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Preface

For the past 14 years, the MODELS conference has been the premier venue for
the exchange of innovative ideas and experiences of model-based approaches in
the development of complex systems. MODELS is universally recognized as one
of the top conferences in software engineering research and is a highly selective
conference, with an acceptance rate averaging 20% in recent years. The con-
ference series covers all aspects of model-based development for software and
systems engineering, including modeling languages, methods, tools, and their
applications.

Research in software and system modeling is now a relatively mature field.
Like any mature field, however, it can be a good idea to encourage fresh thinking.
Whilst not wishing to reduce the importance of solid incremental research, the
conference this year asked participants to think ahead to what modeling would
be like a decade hence. For this reason, the Program Chairs selected Modeling in
2020 as the theme for MODELS 2011. The theme was chosen to encourage new
perspectives about the future role of modeling in complex systems engineering.
As part of this effort, the conference solicited, for the first time, a new category
of research papers—vision papers—that presented “outside the box” thinking.
This category was introduced to encourage the submission of papers with new
ideas that would take the community beyond its normal boundaries.

As part of the effort to encourage fresh perspectives, the conference invited
three outstanding keynote speakers this year, two of which were from outside
the software modeling domain.

Marian Petre is a Professor of Computing at the Open University in the UK.
She is well known for her work considering software from a ‘design studies’ per-
spective and describes her role to ‘pick the brains of experts’ in studying how
leading professional software developers reason about, represent, and communi-
cate designs. Marian’s keynote reported on insights from many years of empirical
studies of expert software designers.

The conference welcomed its first ever Academy Award winning speaker this
year. Mark Sagar is Special Projects Supervisor at Weta Digital. He has de-
veloped technologies for interactive applications and for feature films and has
won two consecutive Scientific & Engineering Academy Awards for his pioneer-
ing work in facial motion capture and realistic relighting of computer generated
faces. He has specialized in bringing computer generated faces to life in some of
Hollywood’s biggest blockbusters including “Avatar” and “King Kong”. Mark’s
fascinating talk focused on creating models for simulating the face.

MODELS was also very lucky to welcome Wolfram Schulte as a keynote
speaker. Wolfram is a principal researcher and the founding manager of Mi-
crosoft’s Research in Software Engineering (RiSE) team in Redmond,



VI Preface

Washington. In his talk, Wolfram presented Formula, a new formal specification
language and toolset for describing, transforming and analyzing meta-models
and instance models.

MODELS 2011 continued its strong tradition of soliciting both research-
oriented papers (the Foundations Track) and practice-oriented papers (the Ap-
plications Track). The Foundations Track received 167 full paper submissions, of
which 34 were finally selected for presentation by the program committee, giving
an acceptance rate of 20%. Out of these, 3 papers were vision papers, selected
out of a total of 20 vision paper submissions (15% acceptance rate). The Appli-
cations Track was particularly healthy this year: the program committee chose
13 out of 27 paper submissions (48% acceptance rate). In addition, two papers
that were originally submitted to the Foundations Track were transferred and
accepted into the Applications Track.

The Program Chairs would like to thank all those who submitted papers, as
well as those who submitted proposals for workshops and tutorials. We would
also like to express our gratitude to the many volunteers who contributed to
the success of the conference, including organizers of the Educators’ Symposium
and Doctoral Symposium. Special thanks are due to Richard van de Stadt for
his support of CyberChairPRO, the conference management system used for
MODELS 2011. We thank our sponsors, ACM and IEEE, and host, the Victoria
University of Wellington. Last, but certainly not least, we give special thanks to
the Program Committee and other external reviewers for all their hard work in
reviewing and discussing papers.

October 2011 Jon Whittle
Tony Clark

Thomas Kühne
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Ingolf Krüger UCSD, USA
Thomas Kühne Victoria University of Wellington,

New Zealand
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Università degli Studi di Milano Bicocca,
Italy

Dorina C. Petriu Carleton University, Canada
Alfonso Pierantonio University of L’Aquila, Italy
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Dénes Bisztray
Quentin Boucher
John Brondum
Petra Brosch
Jens Brüning
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Abstract. Software is a designed artifact. In other design disciplines, such as 
building architecture, there is a well-established tradition of design studies which 
inform not only the discipline itself but also tool design, processes, and 
collaborative work. This talk considers software from such a 'design studies' 
perspective. The talk will present a series of observations from empirical studies 
of expert software designers, and will draw on examples from actual professional 
practice. It will consider what experts’ mental imagery, software visualisations, 
and sketches suggest about software design thinking. It will discuss which 
representations designers use when allowed to choose freely, how designers’ 
informal representations relate to the formal representations from their discipline, 
how the character of their informal representations facilitates design discussions, 
and why many of the functions afforded by their sketching are not well 
supported by existing CAD systems. It will consider what the observations and 
sketches reveal about requirements for an idea-capture tool that supports 
collaborative design. The talk will also discuss some of the deliberate practices 
experts use to promote innovation. Finally, it will open discussion on the 
tensions between observed software design practices and received methodology 
in software engineering. 

Keywords: empirical studies, expert design, software design, flexible modeling, 
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Abstract. Verifying that a software system has certain non-functional
properties is a primary concern in many engineering fields. Although
several model-driven approaches exist to predict quality attributes from
system models, they still lack the proper level of automation envisioned
by Model Driven Software Development. When a potential issue con-
cerning non-functional properties is discovered, the identification of a
solution is still entirely up to the engineer and to his/her experience.
This paper presents QVT-Rational, our multi-modeling solution to auto-
mate the detection-solution loop. We leverage and extend existing model
transformation techniques with constructs to elicit the space of the al-
ternative solutions and to bind quality properties to them. Our frame-
work is highly customizable, it supports the definition of non-functional
requirements and provides an engine to automatically explore the solu-
tion space. We evaluate our approach by applying it to two well-known
software engineering problems — Object-Relational Mapping and com-
ponents allocation — and by showing how several solutions that satisfy
given performance requirements can be automatically identified.

Keywords: Feedback Provisioning, Model Transformations.

1 Introduction

Verifying that a software system exhibits certain non-functional properties is
a primary concern in many application areas. Two very different examples are
embedded systems and Web-based applications, where the limited computation
resources and the possible large number of users may pose serious engineering
problems, respectively. Anticipating the discovery of potential issues concerning
the non-functional characteristics of a system, before it is implemented, is crucial
for the success of the development process and for cost mitigation.

In this direction, model-based quality prediction techniques hold a lot of
promise. System models may be used to verify certain relevant properties of the
� This research was partially founded by the European Commission IDEAS-ERC

Project 227977-SMScom.
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system being developed — such as performance, reliability, or schedulability —
and prevent defects discoverable only after an implementation is available. Sev-
eral approaches have been proposed in literature to perform model-based quality
prediction [6,3,23,4]. However, despite the advances in this research area, the cur-
rent status of the available methodologies is far from an ideal situation. Current
methodologies perform well in the discovery of potential issues, but lack ad-
equate support when it comes to interpretation of results and identification of
solutions. These two tasks are usually left entirely up on the engineers, who have
to rely on their individual skills and experience.

Developing high-quality software systems is however complex. The experience
to identify solutions to quality-related issues is hard to achieve: it is domain spe-
cific, requires a lot of time, and few experts possess it. Methodologies to formalize
and share this knowledge so that also non-experienced engineers are able to cope
with non-functional concerns should be provided by modern Model Driven Soft-
ware Development (MDSD) environments. This challenging problem — on which
our research concentrates — is known as feedback provisioning: how to propose
solutions to non-experienced engineers and guide them in the selection of an ap-
propriate one when issues concerning quality attributes are detected. The kind
of feedback to provide and the way to provide it depend however on the adopted
methodology, and some approaches have been already proposed in literature. Ex-
amples are rule-based approaches [19,24,7], meta-heuristic approaches [14,5,1],
and Design Space Exploration (DSE) frameworks [21,10,17].

Rule-based methodologies rely on a set of domain specific predefined rules to
identify potential quality-related problems and to suggest modifications to the
system models. These approaches, however, present several drawbacks: human
intervention is required, every approach defines its own language to specify rules,
and rules propose solutions only for simple issues and at the level of quality pre-
diction models (i.e., manual intervention is required to translate the suggested
changes to the abstraction level of design models). Meta-heuristic approaches
leverage instead specific algorithms to explore the alternatives space and to pro-
pose solutions. Although the implementations of these approaches are rather
efficient, the price to pay for this is high: implementations are usually optimized
for the specific domains, quality metrics, and exploration directions for which
heuristics where thought. Extensions to new metrics and directions may be thus
difficult, may require knowing the details of the implementation, and may lead to
inefficiencies. DSE works similarly to meta-heuristic approaches, but the alter-
natives space is explored by encoding the problem as a Constraint Satisfaction
Problem (CSP). Although DSE approaches are extremely efficient, they suffer
from the same kind of problems outlined for meta-heuristic techniques.

In [8] we showed how the QVT-Relations [18] language may be extended with
constructs to support quality-driven model transformations [16,11,9,8] and how
this constitutes a valid semi-automatic rule-based solution to the feedback pro-
visioning problem. Quality-driven model transformations extend model transfor-
mation languages with constructs to promote non-functional attributes to first
class citizens that drive the execution of the transformation. In this paper, we
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extend our approach also to the QVT-Operational language, which is much faster
than its declarative counterpart and is thus suitable for efficient design space ex-
ploration. We also describe QVT-Rational, the main contribution of this paper.
QVT-Rational is a customizable multi-modeling framework, which provides a
model to define quality properties, a language to define non-functional require-
ments, and provides an engine to automatically explore solutions and provide
guidance to engineers. The advantages of QVT-Rational with respect to the
existing approaches are several:

– Language Uniformity: by using widely-adopted model transformation lan-
guages to define solutions to quality issues, domain experts may reuse their
knowledge and do not need to master new approaches and specific languages.

– Quality Metrics Support: our approach is not limited to specific metrics.
– Environments and Tool-chains Reuse: existing modeling environment

and quality prediction tools may be plugged in as-is into our framework.
– Automation: the availability of an automatic, requirements-driven, explo-

ration engine can bypass the engineer in the feedback loop.
– High Abstraction Level: feedback is generated and presented at the ab-

straction level at which the engineer works. End users are not required to
know all the details of the underlying quality prediction methodologies.

The rest of this paper is organized as follows. In Section 2 we describe related
work. Section 3 gives an overview of QVT-Rational. Section 4 and Section 5 show
how the framework can be programmed and the runtime support, respectively.
In Section 6 we show QVT-Rational in action by running two case studies, while
Section 7 presents final remarks and future research directions.

2 Related Work

QVT-Rational is a rule-based approach to provide feedback to engineers, based
on an extended model transformation language to specify how system variants
can be generated and how they are bound to the system quality attributes. It is
worth citing some of the related approaches existing in two research areas: the
feedback provisioning area — classified according to the taxonomy introduced
in Section 1 — and the quality-driven model transformations area.

Rule-based Approaches. Xu in [24] describes a semi-automatic approach for
the PUMA framework [23] and proposes the JESS scripting language to spec-
ify feedback rules. The main disadvantage of this approach is the abstraction
level at which rules work. The PUMA framework leverages the Layered Queu-
ing Network (LQN) performance formalism to analyze some quality attributes
of the system being designed. Feedback rules identify issues and propose solu-
tions — only for rather simple performance problems — at this level; it is thus
left to the engineer to decide which modifications should be applied at the sys-
tem abstraction level. Another approach is presented by Parsons in [19], where
feedback rules are derived from well-known performance anti-patterns [22]. This
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approach is however tailored to the JavaEE environment and requires the ex-
istence of a complete implementation. Finally, McGregor et al. present in [15]
ArchE, a programmable framework based on feedback rules to interactively and
iteratively guide engineers in the generation of software architectures compliant
with certain non-functional requirements.

Meta-heuristic Approaches. Aleti et al. in [1] present a framework for em-
bedded systems, where architectural models are optimized by using evolutionary
algorithms. The system, however, only considers component allocation to pro-
pose different solutions, and the supported quality attributes are limited to com-
munication reliability and overhead. Canfora et al. in [5] present a similar work
for service-oriented architectures which suffers from the same kind of problems:
only service selection and few fixed quality metrics are considered. More recent
work is proposed by Martens et al. in [14] where the authors describe PerOpterix,
a framework to automatically improve component based systems with genetic
algorithms. PerOpterix is one of the most complete solutions in this category.
It supports several quality attributes and types of reconfigurations to generate
candidate solutions. It is however tailored to the Palladio component model [3]
and, as the authors say, both quality metrics and exploration dimensions are
fixed.

Generic DSE Approaches. In the context of DSE, it is worth citing some
of the existing generic approaches, i.e., approaches not tailored to specific en-
gineering domains. The DESERT framework [17] is a notable example; it sup-
ports exploration of design alternatives at an architectural level by organizing
the system variants as a tree with boolean constraints to prune the set of viable
solutions. More recent work is the GDSE framework [21], a meta-programmable
system to define and solve domain-specific DSE problems. GDSE is application
domain-agnostic, provides its own language to express boolean, arithmetic, and
set constraints, and supports different underlying solvers to generate candidate
solutions. Another interesting approach is the Formula framework proposed by
Jackson et al. in [10], which uses logic programs to specify models, meta-models,
quality attributes, and non-functional requirements in order to explore the so-
lutions space. Despite being fast and efficient in exploring the set of viable so-
lutions, all these approaches are limited in their applicability range: the set of
supported quality attributes is in fact limited to those that may be expressed in
the logic supported by underlying solvers.

Quality-driven Model Transformations. Merillinna describes in [16] a model
transformation based methodology to guide engineers in developing architectures
compliant with specified non-functional attributes. The approach requires the
availability of two knowledge repositories: Stylebase, containing the set of known
architectural patterns and quality information, and Rulebase, a catalog of model-
transformations to evolve system architectures. This approach, however, requires
complete system designs and is limited only to horizontal transformations, i.e.,
transformation happening at the same abstraction level. Kurtev in [11] addresses
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adaptability of model transformation and proposes a general framework to rep-
resent transformations with alternatives and to use quality attributes to decide
among alternatives. This, however, is only a proposal; no runtime support is
provided to automate the exploration process and no constructs are provided
to specify how quality attributes may be computed. More recent work is also
presented by Insfrán et al. in [9], where authors propose a multi-modeling ap-
proach to select among viable alternatives (represented by different transforma-
tion rules) according to quality attributes. After the engineer has selected the
desired alternatives, the final transformation is derived and system models can
be generated. Although in principle this approach is similar to QVT-Rational,
it presents several limitations. Human intervention is required in the process, al-
ternatives affect the solution globally (i.e., the same alternative will be selected
across the whole system model), alternatives are selected a priori (i.e., before
the quality attributes of the system are concretely evaluated), and it is not clear
how existing model-based quality prediction techniques can be plugged in.

3 Overview of QVT-Rational

Figure 1 gives an overview of our multi-modeling approach for feedback pro-
visioning. QVT-Rational makes heavy use of MDSD techniques to provide its
functionalities. The framework provides the meta-models to define quality met-
rics and requirements, textual editors to create instances of these models, and
leverages High-Order Transformations (HOTs) to generate system variants.

Fig. 1. Overview of the QVT-Rational framework

As the two parts of Figure 1 suggest, QVT-Rational requires the participation
of two very different actors: the domain expert and the designer. The core idea is
to partially shift the responsibility of finding solutions from the less-experienced
designer to the more-experienced domain expert. The domain expert sets up the
MDSD environment for the designer by programming the framework. This step
is mandatory since every engineering domain has its own best practices, design
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meta-models, and strategies to deal with quality-related issues. The domain ex-
pert specifies the meta-models necessary to design a particular class of software
systems, the quality metrics of interest, and packages the quality prediction tools
necessary to assess the system non-functional attributes. The domain expert is
also in charge of sharing his/her knowledge about the engineering domain (i.e.,
knowledge about how quality-related issues may be solved) by specifying how
design feedback can be generated. This information, which is crucial for our
framework, can be elicited through a quality-driven model transformation as we
will explain later in Section 4.1.

Once the modeling environment is ready and the framework is programmed,
QVT-Rational is ready to provide guidance. If system models do not exhibit
a satisfactory level of quality, designers can formalize the desired values for
the non-functional attributes via our requirements language (presented in Sec-
tion 5.1), and can ask our framework to generate compliant system variants. It
is also worth noticing here that the designer is not required to be aware of all
the several methods available to cope with quality-related issues, which only do-
main experts have. As shown in Figure 1, the designer never sees the underlying
quality models used by prediction tools. He/she interacts with the framework,
gets feedback, and obtains solutions only at the same abstraction level of the
system models.

3.1 A Clarifying Example

In order to better understand how QVT-Rational works, in the following we
contextualize the previous description with a well-known engineering problem
for embedded systems: component allocation. We use this problem throughout
the rest of this paper. As the name suggests, component allocation deals with
the allocation of a set of components over a set of limited hardware resources.
Different possible allocations are usually viable but they have different non-
functional properties. For example, allocation affects schedulability of component
operations, system reliability, performance, and manufacturing cost.

QVT-Rational can help solving this kind of problem, by suggesting to de-
signers allocations that show satisfactory quality attributes. In order to do so,
the domain engineer first has to populate the framework with domain-specific
entities, by specifying the components, the hardware, and the allocation meta-
models, by packaging or creating the analysis tools to predict the quality met-
rics of interest, and by writing a quality-driven model transformation that takes
components and hardware models as input, and generates all the possible allo-
cation models as output. Once the components that should be deployed and the
available hardware resources have been modeled, the designer can specify the re-
quired quality — for example reliability must be greater than 0.999 — and can
ask QVT-Rational to provide the viable solutions. Alternatively, the designer
may manually generate an initial allocation model and, if quality attributes are
not satisfactory, may ask to QVT-Rational to evolve existing models and to find
compliant solutions.
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4 Programming the Framework

In this section we provide more details about the steps outlined before in the
context of the reference component allocation case study.

4.1 Specifying Feedback Rules

Our framework provides feedback in the form of complete alternative design
solutions and, as we anticipated in Section 3, the information to identify so-
lutions is embedded into a quality-driven model transformation. The core idea
that lies behind our approach is to represent solutions as different rules in a
transformation; QVT-Rational will then take care of executing the transforma-
tion, selecting the right rules, generating the viable designs, and identifying the
satisfactory ones.

To elicit the space of viable system variants and bind them to quality at-
tributes (i.e., to specify the feedback rules), we extend the QVT-Operational [18]
transformation language with specific annotations as we proposed in [8] for its
declarative counterpart. The annotation language we propose is centered on the
concepts of variability, variation point, and variant which have already been de-
fined in the literature about Software Product Lines (SPLs) [20]. In the context of
feedback provisioning, a variability defines the strategy to solve a quality-related
issue, a variation point identifies the model entities involved in the solution,
while variants specify the different solutions. When these concepts are contextu-
alized to quality-driven model transformations and, in the specific case, to QVT-
Operational based quality-driven model transformations, a variant translates to
a mapping definition — the unit which specifies in a QVT-O transformation
how model entities relate to each other — while a variation point translates to
a mapping definition specifying its variants through a disjunct clause.

The following example may serve the purpose of clarifying these abstract def-
initions. Component allocation is a rather simple problem from a conceptual
point of view: deployment is the only aspect that can vary. If we denote with
C the set of components and with H the set of hardware resources, to gener-
ate all the possible deployments we could proceed by iterating over the tuple
set T = C × H and by finding all the possible subsets of T that map every
component c ∈ C on exactly one resource. Specifying this kind of problem in
QVT-Rational is rather straightforward and simple. Listing 1.1 shows a frag-
ment1 of the QVT-Operational quality-driven transformation that represents
the allocation problem within our framework. The mapping on lines 10-11 de-
fines the variation point which declares that, given a component and a hardware
resource (i.e., a tuple t ∈ T ), deployment may take place or not. The variant
allocate defined by the mapping on line 17 implements the former case, the
variant defined on line 20 defines instead the latter. In order to embed feedback-
related information, variation points and variants must be tagged with special
marker annotations. Annotations enable the specification of bindings to quality
1 Irrelevant details and mapping bodies have been omitted for the sake of clarity.
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attributes — which we describe later in Section 4.2 —, the choice of the tool to
be used to predict their values, and enable the definition of constraints between
variants. We support arbitrarily complex requires and excludes constraints: OCL
queries accessing the model entities involved in a variation point may be used
for their definition. An example is the clustering constraint defined on line 15:
if a component is allocated onto a hardware resource, then every component be-
longing to the module to which the component belongs must be deployed onto
the same hardware resource.

Listing 1.1. The Allocation Variability

1 @varpoint {
2 name := ComponentAllocation ,
3 ana lyzer := modeling . a l l o c a t i o n . Analyzer ( ) ,
4 impact := {
5 S c h e d u l a b i l i t y ( $ "comp " ) ,
6 ComponentRe l iab i l i ty ( $ "comp " ) ,
7 O p e r a t i o n R e l i a b i l i t y ( $ "comp " , $ "comp . ope ra t i on s " ) ,
8 Cost ( ) }
9 }

10 mapping allocateOn_VP ( in comp : Component , in host : Resource )
11 d i s j u n c t s a l l o c a t e , dontAl locate ;
12

13 @variant {
14 name := Al locate ,
15 r e q u i r e s := Al l o ca t e ( $ "comp . module . components " , $ " host " )
16 }
17 mapping a l l o c a t e ( in comp : Component , in host : Resource ) { . . . }
18

19 @variant { name := DontAllocate }
20 mapping dontAl locate ( in comp : Component , in host : Resource ) { }

4.2 Binding to Quality

In order to drive feedback provisioning, transformation rules must be bound to
quality attributes. The domain expert performs this task by i) defining the set
of quality metrics of interest and ii) declaring the impact the variation points
have on them. QVT-Rational adopts the three-layered solution described in [8]
and provides a specific Domain Specific Language (DSL) to accomplish the first
sub-task. Quality metrics are usually relative to particular system artifacts. For
example, reliability can be measured with respect to a component or with respect
to a specific operation. This feature is supported by our DSL through the concept
of context. Listing 1.2 shows the definition of two quality metrics used in the
component allocation example. Lines 1-3 define the ComponentReliability metric
which is computed with respect to a single component — the name enclosed
between the two brackets refers to the meta-class of the context entity — while
lines 4-7 define the OperationReliability metric which is computed with respect
to a component and to an operation.
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Listing 1.2. The Definition of Quality Metrics

1 template ComponentRel iabi l i ty {
2 co ntext comp [ Component ] ;
3 }
4 template O p e r a t i o n R e l i a b i l i t y {
5 co ntext comp [ Component ] ;
6 co ntext op [ Operation ] ;
7 }

Once quality metrics have been defined, they can be referenced in require-
ments — as we will see later in Section 5.1 — and in the transformation annota-
tions through the impact list. The impact list serves the purposes of identifying
which alternatives provide a solution for an issue impacting a specific quality
metric, and defining how concrete values for contexts can be retrieved. As we
did for constraints, arbitrary complex OCL queries accessing the model enti-
ties involved in a variation point may be used for this purpose. For example,
the impact defined on line 6 of Listing 1.1 declares that the ComponentAllo-
cation variation point has an impact on the reliability of the component being
allocated; while line 7 defines an impact on the OperationReliability for each
operation defined for the component being allocated.

5 Providing Feedback

In this section we describe the steps a designer has to perform to use QVT-
Rational to concretely obtain feedback while developing a software system. We
concentrate on two of the new features of our framework: the language to express
requirements and the automatic exploration engine.

5.1 Specifying Requirements

An important feature missing in our initial proposal [8] was the ability to auto-
matically explore the space of the viable solutions. Only an interactive execution
mode was supported; interpretation of quality predictions and decisions about
which of the variants proposed by our framework should be selected were left to
the designer. To overcome this limitation and bypass human involvement in the
process, QVT-Rational provides a meta-model to express requirements about
the quality of system designs, a textual notation and textual editors to ease its
use, and an evaluation engine to check validity of solutions.

Listing 1.3 shows an excerpt of the requirements we specified for the reference
allocation example and outlines the shape of the language. Requirements are
specified as boolean expressions over the quality metrics previously defined by
the domain expert: standard boolean and arithmetic comparison operators are
supported, expressions over quality attributes can be defined with the dollar
notation, and composition is supported by referencing other requirements via
the at notation. The isReliable requirement on lines 1-4 shows all these features:
it constrains the predicted average reliability of every operation to be greater



Quality Driven Exploration of Transformation Spaces 11

than 0.85, the predicted minimum reliability of every component to be in the
(0.8, 1] interval, and references the isFFTReliable requirement. As we mentioned
in Section 4.2 contexts may be defined for quality metrics. This is reflected in the
requirements language and references to quality metrics can be bound either via
the underscore operator — i.e., a catch all operator capturing all the modeling
entities that conform with the context meta-class — or via direct referencing.
The former case is shown on lines 2 and 3, while direct referencing is used on
line 6 for the isFFTReliable requirement which constrains the reliability of the
ComputeFFT operation of the NumericComp component. To handle tradeoffs
between properties, we also distinguish between hard and soft requirements:
hard requirements are required to hold to consider a design solution valid, soft
requirements are not and provide a way to express preferences between valid
solutions. The isCheap requirement on line 8 is an example of a soft requirement:
it tells to QVT-Rational to prefer solutions with a limited manufacturing cost.

Listing 1.3. The Definition of Quality Metrics.

1 req i s R e l i a b l e {
2 $Opera t i o n Re l i a b i l i t y (_,_) [ avg ] >= 0.85 and
3 $ComponentRe l iab i l i ty (_) [ min ] in ( 0 . 8 , 1 ] and @isFFTReliable
4 }
5 req i sFFTRel iable {
6 $Opera t i o n Re l i a b i l i t y (NumericComp , ComputeFFT ) [ min ] >= 0.9
7 }
8 s o f t req isCheap { $Cost <= 10 }

5.2 Design Space Exploration

Obtaining feedback requires the ability to execute the model transformations
that specify feedback rules. In [8] we described how quality-driven transforma-
tions based on QVT-Relations could be executed and used to generate feedback;
QVT-Rational extends the execution model also to its operational counterpart.
From an abstract point of view, a quality-driven model transformation is a non-
injective High-Order Transformation, which produces all the injective transfor-
mations to generate viable outputs. The execution model we propose follows
exactly this schema: by using novel techniques — such as HOTs and black-box
mappings — the occurrence of variation points is intercepted during execution,
the space of the possible transformations is explored, the viable outputs are gen-
erated, evaluated, checked, and proposed as alternative designs to the engineer.
To clarify these concepts, let us consider the allocation example. Figure 2 out-
lines the process by representing the space of the viable transformations (i.e.,
variants) as a tree. Each node represents an occurrence of the variation point we
defined in Listing 1.1. For example, node A-H1 corresponds to deciding about
the allocation of component A on the resource H1. Executing a quality-driven
transformation amounts to traversing this tree, until some or all the viable so-
lutions — corresponding to paths from the root to the leaves of the tree — are
identified, evaluated, and possibly proposed as feedback.
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Fig. 2. The execution process

To increase the automation level, our framework provides an automatic explo-
ration mode in addition to interactive execution. Interactive execution requires
manual intervention whenever a variation point is intercepted and until a final
solution is identified, i.e., for every node encountered along the path to reach a
leaf of the tree. When models are large and several strategies are available to
solve quality-related issues, the exploration tree may become huge and manual
intervention is not feasible anymore. Automatic exploration of the design space
overcomes these two problems by removing the engineer from the execution pro-
cess and by implementing an heuristic to guide the exploration and to reduce the
time to generate feedback. In detail, the guidance algorithm works as shown in
Figure 2. Whenever an invalid solution is found — a solution for which quality
attributes are not satisfactory — the algorithm selects the failed requirements,
identifies the interesting decisions — the decisions taken to reach the invalid
solution which had an impact on the failed requirements — and schedules the
visiting of the exploration branches corresponding to the interesting decisions
with higher priority. This is akin to preferring the exploration branches which
may solve immediately a quality issue, by taking different strategies only for
decisions which impact quality issues and by leaving unmodified everything else.

To clarify the approach, let us consider again the allocation example and
Figure 2. Solution 1 is not valid: the estimated reliability of component A is
less than 0.85, only the decision taken at node A-H1 has an impact on this
quality attribute, hence changing only the allocation of such component may
suffice to find a valid solution. The guidance algorithm marks thus node A-H1
as interesting and schedules exploration of branch A-H2 with higher priority.

6 Evaluation

This section describes two case studies we use to demonstrate QVT-Rational in
action. The goals here are to show that we can handle non-trivial modeling situ-
ations, that we can do more than existing approaches, and that the framework is
able to produce feedback in an acceptable amount of time. All the experiments
have been executed on a high-end workstation, equipped with a four core Intel i7
processor and 6 GB of memory. For space reasons, we provide a brief description
of the case studies and of their results; their full specification is available on the
QVT-Rational website (http://qvtr2.googlecode.com) for reproducibility.
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6.1 The Object-Relational Mapping Case Study

Object-Relational Mapping (ORM) deals with the mismatch between the entity
models used at the application abstraction level and the representation used
by storage technologies. This case study is interesting for several reasons: it is
a well-understood engineering problem, real-world examples are publicly avail-
able [2,12], other model transformations publications adopt it [18,9], and it fits
well our feedback and quality-prediction needs. Indeed, we used it (and detailed
it) also in [8] to show how interactive execution works.
Framework Programming by the Domain Expert. Different database
schemas with different quality may represent the same entity model. For ex-
ample, how generalizations are flattened impacts the space required to store
data and the time required to execute queries. In this example, we consider two
quality metrics: response time of queries and wasted space (i.e., storage space
allocated but not used to store data). The quality-driven model transformation
that takes a domain model and produces viable database schemas implements
three strategies to provide feedback, which concern flattening of generalizations,
generation of values for primary keys, and use of data partitioning. Ad-hoc an-
alyzers have been developed to predict quality and, for the response time, we
provided two implementations: one based on queuing network simulation and
one based on Mean Value Analysis (MVA) [13].
Supporting the Designer. The input model we used to feed our framework de-
fines the domain entities of a real ecommerce application and has been extracted
from [12]. The model consists of 15 classes connected by 9 associations, presents
3 generalizations, and considers 4 query profiles accessing the various entities
with different demands. We asked QVT-Rational to generate the first 5 data-
base schemas exhibiting a maximum 0.2 wasted space factor and a response time
for each query not exceeding the 30ms threshold. Table 1 shows some statistics
about the performance of QVT-Rational. The Ti columns show the time required
to produce the first i alternatives. Although the number of valid solutions is high,
i.e., 1944 solutions out of 5836 viable alternatives, QVT-Rational is able to find
variants and produce feedback in a reasonable amount of time. Results are even
better when the MVA solver is used instead of the queuing network simulator.
The time required to analyze the quality of found solutions drops to the 17% of
the total execution time, and QVT-Rational produces feedback in 18 s.

Table 1. ORM case study performance statistics

Experiment Solver Solutions(Valid) T1 [ s ] T5 [ s ] Analysis Time
1 Simulator 5836(1944) 112.46 486.86 76%
2 MVA 7.21 18.53 17%

6.2 The Component Allocation Case Study

The second case study concerns component allocation. As we mentioned through-
out the paper, component allocation deals with the allocation of a set of
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Table 2. Allocation case study performance statistics

Experiment Modules Components Resources T1 [ s ] T5 [ s ] Analysis Time
1 2 5 5 8.17 34.79 6%
2 2 5 5 0.75 5.68 4.25%
3 3 10 10 2.36 40.29 4.39%
4 5 15 5 159.44 251.55 9.87%

components over a set of limited hardware resources. This example has been ex-
tracted from [10], where authors use the Formula framework and compare their
results with respect to other approaches (Alloy and SModels). In order to show
that we are not limited only to certain quality metrics and that we can reuse ex-
isting quality prediction tool-chains — some of the advantages of QVT-Rational
— the case study has been extended to support also reliability by plugging in the
Recursive Markov Chain (RMC) analyzer available in the KlaperSuite [6].
Framework Programming by the Domain Expert. We programmed QVT-
Rational for this case study as we described before throughout the paper. The
transformation defining feedback rules specifies only one strategy to generate
system variants, i.e., the allocation variability outlined in Listing 1.1. In ad-
dition to the metrics defined in Listing 1.2, we considered also schedulability
of operations and manufacturing cost. Schedulability depends on three factors
specified in the usage profile of the system — worst case execution time (wcet)
of each operation, frequency, and period with which components invoke opera-
tions — and is estimated by performing simple arithmetic. Cost is estimated by
counting the resources used to deploy components, while reliability is computed
by the RMC analyzer developed for the KlaperSuite [6] framework.
Supporting the Designer. We asked QVT-Rational to generate the first 5
schedulable deployments, exhibiting a limited cost and all reliability predictions
greater than 0.85. We have run 4 experiments with different input models: ex-
periment 1 has been manually developed, while remaining experiments have
been generated randomly by specifying number of components, modules, and re-
sources. Table 2 shows some statistics about the performance of QVT-Rational.
QVT-Rational is rather fast for small and medium-sized case studies (i.e., exper-
iments 1-3), while for the largest case study (experiment 4) the time to generate
feedback increases but still remains reasonable. This is even more encouraging if
we consider that component allocation is an NP-Hard problem and if we compare
with the results described in [10]. Formula is much faster in solving the same
problem (given the logic program encoding) but, similarly to our results, shows
exponential growth for little larger models. Indeed, it must be noted that the
example has been extended with reliability, which is not possible in logic-based
frameworks without the extra-effort to encode analysis tools as logic programs.

6.3 Discussion

These experiments show that QVT-Rational is able to handle also non-trivial
modeling situations and that it may scale also to large systems. We have also
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shown that tools reuse is concretely feasible, that we are not limited to specific
quality metrics, and that encoding feedback rules does not require mastering
specific approaches or new languages. All this features, however, have a cost:

– Non-Guaranteed Optimality. Although possible, exploring the whole
space of solutions may not be feasible when models are large. If the de-
signer asks for the first i solutions, there is no guarantee that the found
solutions are the best in terms of exhibited quality. This problem is however
not specific to QVT-Rational, also other methodologies suffer from it.

– Efficiency. When analysis tools require a lot of time to be executed, asking
for feedback can be a time-consuming operation. This makes not practical
an online usage of our system — i.e., while the designer is developing — in
such situations. However, QVT-Rational may still be used by running it in
parallel with the designer or during moon-light hours.

– Impact of the Domain Expert. The quality of the feedback we provide
depends much on the quality of the feedback rules specified by the domain
expert. This is especially true for the binding between variabilities and qual-
ity metrics (i.e., the impact list), on which we rely, for example, to handle
interdependent decisions. Identifying in a precise manner such information
may be hard also for the most experienced domain experts, and this nega-
tively impacts the efficiency of our approach.

7 Conclusions and Future Work

In this paper we presented QVT-Rational, our proposal to tackle feedback provi-
sioning. QVT-Rational leverages QVT-based quality-driven model transforma-
tion to specify how feedback and system variants can be generated, and supports
the designer with models and languages to specify quality attributes and require-
ments. We described the new automatic exploration engine which bypasses the
engineer, and we showed that our approach scales also to non-trivial modeling
situations by running two case studies. Concerning future work, we are currently
working on improving the guidance heuristic, especially for boolean quality met-
rics, and on using alternative exploration methodologies, such as exploration
based on genetic algorithms.

References

1. Aleti, A., Bjornander, S., Grunske, L., Meedeniya, I.: Archeopterix: An extend-
able tool for architecture optimization of aadl models. In: MOMPES. IEEE, Los
Alamitos (2009)

2. Alur, D., Crupi, J., Malks, D.: Core J2EE patterns: best practices and design
strategies. Sun Microsystems Press (2003)

3. Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with
the palladio component model. In: WOSP. ACM, New York (2007)

4. Bures, T., Carlson, J., Crnkovic, J., Sentilles, S., Vulgarakis, A.: Procom - the
progress component model reference manual, version 1.0. Tech. Rep. MHD-MRTC-
230/2008-1-SE, Malardalen University (June 2008)



16 M.L. Drago, C. Ghezzi, and R. Mirandola

5. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for qos-aware ser-
vice composition based on genetic algorithms. In: GECCO. ACM, New York (2005)

6. Ciancone, A., Filieri, A., Drago, M.L., Mirandola, R., Grassi, V.: KlaperSuite:
An integrated model-driven environment for reliability and performance analysis
of component-based systems. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011.
LNCS, vol. 6705, pp. 99–114. Springer, Heidelberg (2011)

7. Cortellessa, V., Martens, A., Reussner, R., Trubiani, C.: A process to effectively
identify “Guilty” performance antipatterns. In: Rosenblum, D.S., Taentzer, G.
(eds.) FASE 2010. LNCS, vol. 6013, pp. 368–382. Springer, Heidelberg (2010)

8. Drago, M.L., Ghezzi, C., Mirandola, R.: A quality driven extension to the qvt-
relations transformation language. In: CSRD. Springer, Heidelberg (2011) (sub-
mitted to), http://home.dei.polimi.it/drago/qvtrr.pdf

9. Insfrán, E., Gonzalez-Huerta, J., Abrahão, S.: Design guidelines for the develop-
ment of quality-driven model transformations. In: Petriu, D.C., Rouquette, N.,
Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6395, pp. 288–302. Springer, Hei-
delberg (2010)

10. Jackson, E.K., Kang, E., Dahlweid, M., Seifert, D., Santen, T.: Components, plat-
forms and possibilities: Towards generic automation for mda. In: EMSOFT. ACM,
New York (2010)

11. Kurtev, I.: Adaptability of Model Transformations. Ph.D. thesis, Unversity of
Twente, Twente, Netherlands (2005)

12. Lau, S.Q., Czarnecki, K.: Domain Analysis of E-Commerce Systems Using Feature-
Based Model Templates. Master’s thesis, University of Waterloo, Canada (2006)

13. Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative System
Performance: Computer System Analysis Using Queueing Network Models. Pren-
tice Hall, Englewood Cliffs (1984)

14. Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve soft-
ware architecture models for performance, reliability, and cost using evolutionary
algorithms. In: WOSP/SIPEW (2010)

15. McGregor, J.D., Bachmann, F., Bass, L., Bianco, P., Klein, M.: Using arche in the
classroom: One experience. Tech. Rep. SEI-2007-TN-001, CMU (2007)

16. Merilinna, J.: A Tool for Quality-Driven Architecture Model Transformation. Ph.D.
thesis, VVT Technical Research Centre of Finland, Vuorimiehentie, Finland (2005)

17. Neema, S., Sztipanovits, J., Karsai, G., Butts, K.: Constraint-based design-space
exploration and model synthesis. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS,
vol. 2855, pp. 290–305. Springer, Heidelberg (2003)

18. Object Management Group (OMG): Mof qvt specification 1.0 (April 2008),
http://www.omg.org/spec/QVT/1.0

19. Parsons, T.: A framework for detecting performance design and deployment antipat-
terns in component based enterprise systems. In: DSM. ACM, New York (2005)

20. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005)

21. Saxena, T., Karsai, G.: MDE-based approach for generalizing design space explo-
ration. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS,
vol. 6394, pp. 46–60. Springer, Heidelberg (2010)

22. Smith, C.U., Williams, L.G.: Performance solutions: a practical guide to creating
responsive, scalable software. Addison Wesley, Reading (2002)

23. Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J.: Per-
formance by unified model analysis (puma). In: WOSP. ACM, New York (2005)

24. Xu, J.: Rule-based automatic software performance diagnosis and improvement.
In: WOSP. ACM, New York (2008)

http://home.dei.polimi.it/drago/qvtrr.pdf
http://www.omg.org/spec/QVT/1.0


Automated Model-to-Metamodel

Transformations Based on the Concepts of Deep
Instantiation

Gerd Kainz1, Christian Buckl1, and Alois Knoll2

1 fortiss, Cyber-Physical Systems
Guerickestr. 25, 80805 Munich, Germany

{kainz,buckl}@fortiss.org
2 Faculty of Informatics, Technische Universität München

Boltzmannstr. 3, 85748 Garching, Germany
knoll@in.tum.de

Abstract. Numerous systems, especially component-based systems, are
based on a multi-phase development process where an ontological hierar-
chy is established. Solutions based on modeling / metamodeling can be
used for such systems, but all of them are afflicted with different draw-
backs. The main problem is that elements representing both CLAsses
and oBJECTs (clabjects), which are needed to specify an ontological hi-
erarchy, are not supported by standard metamodeling frameworks. This
paper presents the combination of two approaches, namely deep instanti-
ation and model-to-metamodel transformations. The resulting approach
combines the clean and compact specification of deep instantiation with
the easy applicability of model-to-metamodel transformations in an au-
tomated way. Along with this a set of generic operators to specify these
transformations is identified.

Keywords: Model-to-Metamodel (M2MM), Model-to-Model (M2M),
Model Transformation, Deep Instantiation, Transformation Operator,
Clabject, Model-Driven Software Development (MDSD).

1 Introduction

Nowadays model-driven software development (MDSD) is widely used for the
development of applications. Relevant tools are in general based on the modeling
hierarchy as defined by the Object Management Group (OMG)1. The modeling
hierarchy is shown in figure 1. It consists of four layers: M3 represents the meta-
metamodel layer and describes the concepts used to define application specific
metamodels. M3 contains very basic concepts such as classes and attributes.
Hence, M3 is generic enough to describe itself and to terminate the modeling
hierarchy. M2 defines application specific metamodels defining the application
concepts and their related data. Based on the metamodels of M2, the application

1 OMG: http://www.omg.org/

J. Whittle, T. Clark, and T. Kühne (Eds.): MODELS 2011, LNCS 6981, pp. 17–31, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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developer can define models in M1, which conform to metamodels of M2 and are
used to specify the application. M0 can be interpreted as the real world, which
is represented by the models of M1.

Fig. 1. Model Hierarchy [1] as Specified by OMG

The model hierarchy is well suited if an application can be described by us-
ing only the two modeling levels M2 and M1. However, for many systems, this
assumption is not true. Examples are the UML specification [2] and the de-
scription of hardware components [3]. Here, some system elements have a dual
role: in their first role they represent instances of a metamodel element; in their
second role they constitute metamodel elements for other system objects. Ele-
ments with this dual role have been named clabjects (CLAsses and oBJECTs)
by Atkinson [4].

Clabjects have been investigated intensively under various circumstances. The
research resulted in many different solutions. Most of them try to find an ad-
equate mapping of the problem to the existing modeling hierarchy. A totally
different approach has been proposed by Atkinson and Kühne. In [2] they sug-
gested to change the current instantiation model from shallow instantiation to
deep instantiation. Deep instantiation allows that elements of a modeling level
have an object and a class facet at the same time. Such a realization requires a
fundamental change of the underlying modeling theory, leading to a clean way
of describing this and other problems. Another approach based on model-to-
metamodel (M2MM) transformations was presented in our previous work [3].
M2MM transformations are based on an iterative development process, where
models of one phase (object facet) are transformed into metamodels (class facet)
describing the models of the next phase. In our previous work, these M2MM
transformations had to be implemented manually without any further support.
The implementation complexity and therefore the effort increases drastically
with each additional M2MM transformation phase.

This paper presents a combination of deep instantiation and M2MM transfor-
mations. The resulting approach combines the clean and compact description of
deep instantiation with the easy applicability of M2MM transformations without
having to change the underlying metamodeling framework. The automation of
the M2MM transformations approach helps in applying this approach to similar
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problems and reduces the time and effort for implementation. In addition, a set
of generic M2MM transformation operators has been identified.

The remainder is structured as follows: Section 2 gives an overview of the
problem. Related work is discussed in section 3. Section 4 contains a small moti-
vating example. A detailed description of the suggested approach and the set of
generic operators is the content of section 5. Details about the implementation
and an evaluated based on a real-world use case is given in section 6. The content
of the paper is summarized in section 7.

2 Problem Statement

Modeling languages are described in two orthogonal dimensions: a linguistic and
an ontological dimension. The linguistic dimension specifies how a language is
constructed and is typically represented by the different modeling levels (meta-
class ← class ← object). The ontological dimension represents elements and
their instance-of-relationship of a certain domain (e.g. Component ← C : Com-
ponent ← CI : C ), the so-called ontological hierarchy [5]. Since state-of-the-
art modeling frameworks are based on the one-dimensional modeling hierarchy,
these two dimensions cannot be represented adequately. This problem becomes
obvious as soon as the ontological hierarchy spans more than two levels or can
be changed / extended by the user [2]. Examples, where this problem arises,
are component based systems where the user is able to define components and
store them in a generic library. By doing so the user specifies a new component
type which can be instantiated / copied later for use. Ptolemy II [6] and MAT-
LAB/Simulink2 include for example a library mechanism as described. Since
they have no direct support for an ontological hierarchy integrated into their
underlying programming model, it requires an enormous effort to emulate on-
tological support on top of their underlying programming model. Many other
examples exist. A simple instance of that kind of problem is presented in figure 2.

Fig. 2. Ontological Hierarchy Example Based on Components and Nodes [2]

The fundamental problem of expressing ontological hierarchies with current
modeling systems is based on the duality of model elements, which is not sup-
ported by most metamodeling frameworks. Duality means that model elements
2 MATLAB/Simulink: http://www.mathworks.com/

http://www.mathworks.com/
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represent objects and classes at the same time. For example: in figure 2 C is an
object of type Component, furthermore it represents the type of CI. This duality
of model elements has been named clabject by Atkinson.

As model elements can represent types of other model elements, they con-
struct their own ontological hierarchy introducing additional levels to the model
hierarchy. Since these additional levels are not supported by standard metamod-
eling frameworks, the ontological hierarchy has to be folded into one level of the
linguistic hierarchy. This leads to the problems of ambiguous classification and
replication of concepts [2].

– Ambiguous classification: Model elements can be seen as both instances of
their linguistic and ontological type, e.g. C has the linguistic type Class and
the ontological type Component.

– Replication of concepts: As it is not possible to propagate attributes and
associations over instantiation relations of the ontological hierarchy, the
workaround is to replicate concepts, e.g. define class Component to repre-
sent C, ComponentInstance to represent CI and for both of them a separate
residesOn association.

The goal of this paper is to propose an approach for a clean and compact de-
scription, which can easily be applied using state-of-the-art metamodeling frame-
works. We start with a survey of existing solutions for the above mentioned
problems and discuss of their strengths and weaknesses.

3 Related Work

The most promising approach in the context of the problem statement is deep
instantiation introduced by Atkinson and Kühne [2, 7–9]. As the name says, the
approach is based on a deep instead of a shallow instantiation mechanism, which
is used in classical metamodeling frameworks. This enables the specification of
model elements (classes, attributes, associations ...), which cannot only affect the
direct underlying model level, but also other model levels underneath. To control
the behavior of the deep instantiation mechanism, the concepts of level and po-
tency are added to every model element. Level defines for each element at which
model level in the hierarchy it resides. Potency on the other hand determines the
number of times a model element can be instantiated. These extensions allow
a compact specification of multi-level metamodeling. A first implementation of
the deep instantiation mechanism called DeepJava3 is available in the context
of Java programming [7]. One major drawback of DeepJava is the missing
support by integrated development environments (IDEs) supporting it. Further-
more, the definition of new ontological types requires that Java code has to be
written by the developer. Therefore, this approach is only suited for software
developers and cannot be directly applied by application users themselves. An
advantage is that the whole ontological hierarchy is available and can be accessed
at any time in the runtime system.
3 DeepJava: http://homepages.mcs.vuw.ac.nz/~tk/dj/

http://homepages.mcs.vuw.ac.nz/~tk/dj/
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To avoid the problem of missing IDE and metamodeling framework sup-
port, we previously suggested an approach based on M2MM transformations [3].
M2MM transformations are based on multi-phase metamodeling, where models
of one phase are transformed into the metamodels of the next phase. This allows
users to define new types, e.g. ControlMotor : Component, in a model. The sub-
sequent M2MM transformation takes care that the corresponding type is created
in the metamodel of the next phase. Each phase constitutes a modeling tool on
its own. This means that by generating the metamodel of the next phase also
the modeling tool of the next phase is altered to reflect the change of the under-
lying metamodel. As M2MM transformations are used to regenerate parts of the
metamodels of the system based on the input data of the previous model, they do
not need additional levels in the metamodeling hierarchy. This is both a strength
and a weakness: on the one hand the metamodel only contains the information
required in the specific phase, but on the other hand it is hard to determine the
relationship between classes / objects at the different levels. Another drawback is
the manual specification of M2MM transformations. The transformations must
be encoded by the developer, who has to take care that all needed data is trans-
formed according to the requirements of the succeeding phases. This can also
imply that data has to be copied to guarantee that it is available in the follow-
ing phases. If more than one M2MM transformations are executed in a row, it is
very hard for the developers to implement those. With each additional M2MM
transformation step, it gets harder to deal with the arising complexity of the
transformations. The reason for the increasing complexity originates from the
additional variability introduced with each new M2MM transformation. While
the first M2MM transformation is based completely on a static metamodel, the
dynamic part of the subsequent metamodels increases. The increasing complex-
ity and the time consuming implementation of M2MM transformations make
this approach very hard to apply. Furthermore, the transformation descriptions
are encoded using a program language. This makes it hard to identify how the
input model is transformed into the succeeding metamodel.

The power types concept of Odell [10, 11] constitutes another solution to
integrate ontological hierarchies into the modeling hierarchy. A power type is
defined to be a type whose instances are subtypes of another type. The relation
between the power type and its instances is defined by a normal association.
When working with power types this fact has to be considered. Furthermore,
power types merely describe how to model an ontological hierarchy but offer no
additional support for their handling.

Like power types, the prototypical concept pattern presented by Atkinson
and Kühne [8] tries to solve the problem of ontological hierarchies within the
modeling hierarchy by combining inheritance and instantiation. Compared to
power types the prototypical concept pattern uses no normal association to con-
nect the power type with the other type. Instead of the association, the instan-
tiation mechanism of the modeling hierarchy is used. By doing so the number
of levels in the modeling hierarchy is extended, which results in the already
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mentioned problems regarding implementation using current metamodeling
frameworks. Moreover the prototypical concept pattern offers no support for
the handling of the introduced ontological hierarchy. Hence, it possesses no ad-
vantage compared to the deep instantiation approach and can be neglected.

Bragança and Machado [12] describe a similar approach to M2MM transfor-
mations supporting multi-phase modeling. In their work they use the term model
promotion instead of M2MM transformation. Compared to the M2MM transfor-
mations approach where flexibility is provided in each transformation step, they
can only specialize their initial metamodel by annotating models with informa-
tion utilized for M2MM transformations. This restricts the power of their M2MM
transformations to the predefined set of transformations offered through anno-
tations. It also limits the usable domain concepts to the concepts introduced in
their first metamodel and requires the specification of metamodel information in
the model. An advantage is that the number of possible M2MM transformations
is unbounded.

4 Motivating Example

As outlined in the previous section each of the presented solutions has different
strengths and weaknesses. Therefore, we propose an approach combining the
clean and compact description of deep instantiation with the easy applicability
of M2MM transformations.

In this section we give a small motivating example based on figure 2. This
shall help to better understand the automated M2MM transformations approach.
The example is concerned with the definition of components residing on nodes
containing various devices. Figure 3 shows the metamodel of the example at
M24. The superscript of the model elements presents the value of potency. The
level is depicted at the model elements as subscript. The metamodel defines
three classes Component, Node and Device and two associations between them.
Additionally three instantiation operators (notes attached to classes) and one
split field operator (note attached to association) are specified.

Fig. 3. Model Level 2 of Components-Nodes Example

Based on the metamodel shown in figure 3 the user is able to define the
model presented on the upper part of figure 4. Applying an automated M2MM
4 When we talk about metamodel, we mean the class facet of a clabject. We refer to

the object facet by talking about the model.
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transformation to the model results in the metamodel that is shown at the
bottom of figure 4. As is visible in the metamodel the ReadSensor, PC, CPU and
Sensor objects are transformed into classes. Furthermore, the devices association
has been refined into a devCPU and devSensor association for the PC class.

⇓ M2MM

Fig. 4. Model Level 1 of Components-Nodes Example

The user can afterwards use the generated metamodel of figure 4 to define a
model at modeling level 0. Such a model is displayed in figure 5, defining the
component instance ReadSensor1 and the node instance Node1 with its CPU
and Sensor devices.

Fig. 5. Model Level 0 of Components-Nodes Example

5 Approach

The idea of this work is to integrate the concepts of deep instantiation in current
metamodeling frameworks. To avoid a reimplementation of the metamodeling
frameworks for a full support of deep instantiation automated M2MM transfor-
mations are used.
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For simplification reasons, we will focus on classes, attributes, references (rep-
resenting associations) and operations of the Essential Meta Object Facility
(EMOF) [13]. As these are the main concepts, this presents no serious restriction.

Deep instantiation uses level and potency to define at which level a model el-
ement exists and how many times it can be instantiated. As this is a very clean
and compact description to establish an ontological hierarchy, we adopted these
concepts and extended the linguistic metamodel elements classes, attributes, ref-
erences and operations with these attributes. This allows the definition of the
basic properties to semi-automatically establish an ontological hierarchy. Addi-
tional to level and potency, operations are specified, which are applied during
transformation. This information is used by the automated M2MM transforma-
tion to generate a metamodel out of an input model. During a M2MM trans-
formation the model data is converted into a new metamodel predominantly by
transforming objects into classes. Additional operations allow to steer the au-
tomated M2MM transformation and provide the missing information, e.g. the
name of a new created class. All the available modification operators are defined
later in this section.

Fig. 6. Principle of the Automated M2MM Transformations Approach (All the Gray
Metamodels are Generated)

Figure 6 shows how automated M2MM transformations work. The developer
specifies the metamodel of the first phase including all the information needed for
the automatic application of all following M2MM transformations. Afterwards
a fully automated extraction step is conducted. During the extraction all model
elements, which have no effect on the current model level, are eliminated. In
short, these are all model elements with a level different to the current model
level. This step is only included to ensure that existing metamodeling tools with



Automated Model-to-Metamodel Transformations 25

no support of level, potency and the additional specified operations are still able
to handle the new kind of metamodels. If eventually all used metamodeling tools
are able to cope with the additional information this step can be skipped. The
models can then be defined based on a reduced metamodel of the current phase.
Based on the specified model and the complete metamodel (not the reduced
metamodel) the M2MM transformation is executed resulting in the complete
metamodel of the next phase. A M2MM transformation affects mainly the model
elements of the current model level with a potency value greater than 1. These
model elements are converted into their corresponding model elements with level
and potency reduced by 15.

Before going into details on how the algorithm of the automated M2MM trans-
formation works, we will explain all available operators, which can be applied to
model elements during a M2MM transformation.

5.1 M2MM Transformation Operators

To reuse common functionality between M2MM transformations we identified a
set of various operators by analyzing the use case described in section 6. Since this
use case is rather complex, we are quite confident that additional operators are
not required. The set of M2MM transformation operators currently supported
is: instantiation, change property, split field, generate enumeration and execute.
Typically the operators work on model elements of the current model level with
a potency greater than 1. These model elements are converted according to the
operator specification into their corresponding model elements with level and
potency reduced by 1.

To incorporate the user input during the application of the operators, the
operators have access to the model data. By providing the operators with de-
scriptions of how to process the model data to extract needed information, each
operator can be adapted to concrete use cases. This makes the operators more
flexible and generic. The descriptions are needed to automate the execution of
the M2MM transformations.

In the following a comprehensive description of all operators is given. To
facilitate the understanding of the M2MM transformation operators, examples
for their application are given according to the motivating example of section 4.

Instantiation. The instantiation operator constitutes the main M2MM trans-
formation operator. It is responsible for the transformation of objects into their
own classes. Hence it implements the connection between the two facets of clab-
jects. Since M2MM transformations are based on an iterative definition process
of the ontological hierarchy, which means that in each phase only one specific
level of the hierarchy can be defined / manipulated, during the application of
the instantiation operator the old class is transformed into the new metamodel

5 Decrementing of level and potency logically happens when instantiating new model
elements. As level and potency are not directly present during modeling this is done
in the M2MM transformation afterwards.
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representing the super class of its newly created sub classes. To prevent further
manipulation of the super class it is automatically converted into an abstract
class. For the fully automatic application of the instantiation operator a descrip-
tion of how to construct the names of the new sub classes out of the object data
is needed. For example the component object ReadSensor is transformed into a
component type ReadSensor, which is sub class of an abstract Component class.

Additionally the instantiation operator takes care of the transformation of
all attributes, references and operations of the class. In cases where sub classes
define different values for properties of a contained model element, the model
element is moved into the sub classes. To prevent unnecessary type casts to access
these elements when working directly with the object model an additional access
operation is added to the super class.

Following is the operator definition. It takes as input a class specification, all
instances of that class and a description for the calculation of the new sub class
names and returns the transformed class and all new created sub classes.

instantiation (in class: Class, in instances: Set<Object>,
in name: Description): Set<Class>

Change Property. The change property operator allows the adaption of model
element properties. For example a new default value for the attribute name of
class PC can be specified with ”PC” + Counter.getNextID(), where the function
returns the number of a running counter. Even the refinement of the data type of
an attribute is possible. This operator is very generic and allows to adapt the next
metamodel in a flexible way. As already mentioned at the instantiation operator,
special attention has to be taken when properties of elements in sub classes
are set to different values. In such cases the elements have to be dragged from
the super class into all sub classes. To further support access to those elements
based on the super type, access operations must be installed. Sometimes it makes
sense to apply this operator on model elements which are not transformed by
the M2MM transformation but are coming into life for the first time, e.g. if the
value of an attribute can be changed depends on previous model data.

As can be seen from the definition below, the operator takes an identification
of the property which shall be changed and a calculation description for the
new value as input. To consider the model data for the new property value
the corresponding object is given to the operator. The result of the operator is
the adaption of the given model element according to the specification.

changeProperty (in property: PropertyKind, in value: Description,
in instance: Object, inout element: ModelElement)

Split Field. A very interesting operator is the split field operator. Its task
is to allow the refinement of associations between super class and sub classes.
Imagine the following example: after specifying that nodes of type PC can have
the devices CPU and Sensor, it should only be allowed to link nodes of type
PC with devices of type CPU and Sensor but nothing else. As can be seen
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from the example, this operator can establish very strong constraints on sub
types. The additional constrains help preventing a lot of careless mistakes during
model handling. Access to referenced object via the previous relation can still be
ensured trough the definition of an access operation instead of the relation in the
base type. The M2MM transformation can additionally take care of providing
an appropriate realization for the access operation for each sub type.

The split field operator is realized in two separate parts. The first part is
responsible for transforming the original reference of the super class into an
appropriate operation. The second part takes as input the reference, a description
of how to define the names of the new references, and a list of all the objects
referenced by the object, which is going to be transformed in a sub class. A list
containing all new references and the access operation including an appropriate
implementation is returned.

splitFieldSuperClass (in reference: Reference): Operation

splitFieldSubClass (in reference: Reference, in name: Description,
in referencedObjects: List<Object>)
: List<ModelElement>

Backtrack. Since M2MM transformations introduce a cut between two suc-
ceeding phases, a backtrack operator is offered to get full access to the model
data of previous phases. This operator is able to return the object belonging
to a class, so it can be used to traverse the M2MM transformations in reverse
order. It is not only available during M2MM transformations but can also be
used when working directly with the object model of a phase. In the context
of our example the backtrack operator applied to the type PC of Node1 at M0
would result in the object defining PC at M1.

The definition of the backtrack operator takes a class as input and returns the
related object in the model of the previous phase. The operator is only defined in
the context of classes representing the class facet of a clabject with both object
and class facet. The behavior for clabjects without any object facet or any other
object is undefined.

backtrack (in class: Class): Object

Generate Enumeration. Generate enumeration is used to create new enumer-
ations. It has been shown during the application of automated M2MM transfor-
mations that sometimes the user defines a list of allowed values for a type in one
phase and wants to use the generated enumeration for an attribute in the next
phase. This helps to assure that only valid values are assigned to the attribute.
For example at M1 it could be possible to specify the valid operating systems
for the node type PC in an additional field os. This list is then transformed into
a new enumeration. The operating system running on node instance Node1 can
then be only selected among those values.
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To create a new enumeration the operator takes a description of the enumer-
ation name and all literals as input and returns the generated enumeration. The
literals of the enumeration consist of a name value pair.

generateEnumeration (in name: Description,
in literals: Description): Enumeration

Execute. There will always be special cases, which are not foreseen. To support
such situations an execute operator is available in automated M2MM transfor-
mations. This operator offers the highest flexibility to transform data according
to special needs. In general all presented operators can be emulated using the
execute operator. Through its high flexibility this operator can be used to im-
plement highly specialized transformations in a M2MM transformation.

To offer its high degree of flexibility the execute operator gets as input the
current class, the complete model and a description of the transformation to
execute.

execute (in class: Class, in model: Object,
in modification: Description,
inout metamodel: List<Object>)

Operator Application Specification. The MOF has been designed with ex-
pandability in mind. For extensions annotations exists. They can be attached to
all model elements. We make extensive use of annotations to specify all the op-
erators with their corresponding data. The operator specifications are attached
to the model elements, on which they shall be applied. As it is important to
apply the operator during the right M2MM transformation, all the annotations
specify the transformation to which they belong.

5.2 Automated M2MM Transformations Algorithm

After the introduction of the different transformation operators the M2MM
transformation algorithm is explained in detail. The algorithm is parameter-
ized with the metamodel containing all operator specifications and the model of
a phase and returns the metamodel of the next phase. To simplify the transfor-
mation the algorithm consists of two parts.

During the first part all types are created. Therefore the instantiation, gener-
ate enumeration and execute operators are executed for model elements, whose
level is equal to the model level of the next phase plus 1 and have a potency
greater than 1. Additionally, all types belonging to a model level lower than or
equals to the model level of the next phase are copied. In this process the effect
of change property operators are incorporated. This part is only responsible for
defining all types, but does not take care of their internal structure. By doing so
problems of referencing not yet created types is effectively prevented.

The second part is responsible for the completion of the created and copied
types. This includes the transformation and copy of all attributes, references and
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operations. While transforming those model elements special cares have to be
taken if for a model element different values are assigned to properties of sub
classes created by the instantiation operator. In those cases the model elements
are moved into the sub classes and an additional access operation is added to
the super class. Additionally, the execute operators are processed again to finish
their tasks.

After the completion of both steps the metamodel of the next phase is com-
pletely constructed. It contains a complete definition of the structure of the cur-
rent and all following model levels. Model elements and specifications belonging
to the previous model levels are completely removed.

5.3 Differences between Automated M2MM Transformations and
the Two Original Approaches

Beside the transformation of models into metamodels, the specification of addi-
tional operations to provide the missing information for the automated M2MM
transformations is a big difference compared to deep instantiation. In contrast
to the deep instantiation approach, automated M2MM transformations rely on
fully automatic creation of new types. Therefore the model data is taken and
all needed information is extracted through specified operations. Thus the user
does not need to know how to define new types in the metamodel or program-
ming language. The only knowledge needed is how to insert correct model data.
The creation of new types is then automatically conducted during M2MM trans-
formations. This relieves the user from knowing how to modify a metamodel or
program and helps him to concentrate on the ontology specification via modeling.

Compared to deep instantiation, potency has a slightly different meaning in
the context of automated M2MM transformations. In the context of deep in-
stantiation, potency specifies how many times a model element can be instan-
tiated. This fact can be utilized to define abstract elements at the metamodel
level with a potency value of 0, which makes the abstract flag obsolete. For auto-
mated M2MM transformations this additional utilization is not allowed, because
M2MM transformations rely on potency for defining how many times a model
element can be instantiated or copied, if it is abstract. Copying model elements
is necessary as in contrast to deep instantiation not the complete ontological
hierarchy is available for direct access at a specific model level. This requires
that parts of the ontological hierarchy are copied to succeeding model levels as
needed.

Deep instantiation also defines the concept of simple and dual fields. Field is
the generalized term unifying attributes and references on the metamodel level
and slots on the model level. A simple field is defined to be a field, which takes
only a value when its potency is 0. In contrast a dual field can have a value for
each model level. In the context of M2MM transformations it has been shown
that the explicit distinction between simple and dual field makes no sense. The
distinction is implicitly achieved through the specification of level and potency.
Level defines the model level in which the field exits. In cases where the level
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number is lower than the number of the current model level, the field can be
treated as nonexistent. Potency on the other hand specifies how many times the
field shall get a value. Through the assumption that an existing field can get
a value, the distinction between simple and dual fields is no longer needed. In
cases where the assignment of values shall be delayed to a later model level the
level can be set accordingly.

As automated M2MM transformations can be seen as an improvement of
the M2MM transformations approach the only difference between those two ap-
proaches lies in the automation of the transformations. Through the definition
of transformation operators the developer is relieved from programming the
whole transformation. By using automated M2MM transformations large parts
of the transformation can be executed automatically based on the specification
of level, potency and the operators to apply.

6 Implementation and Evaluation

A first implementation of the presented approach is available based on the Eclipse
Modeling Framework (EMF) [14]. This implementation has been used to demon-
strate the usefulness of the approach on the example presented in our previous
work [3]6. The application of the automated M2MM transformations approach
on this example resulted in a much simpler and more compact system descrip-
tion. Furthermore, the original three phase approach could be enhanced with an
additional fourth phase, to define the different capability types. It also turned
out that the new approach simplified the M2MM transformations. Most of the
M2MM transformations are described using 43 standard operators (instantia-
tion 9, change property 29, split field 2, backtrack 1 and generate enumeration 2).
Only a special transformation had to be implemented with an execute operator.

7 Conclusion

In this paper we presented a combination of the deep instantiation and the
M2MM transformations approach. The resulting approach uses the clean and
compact description of the deep instantiation to automate the M2MM trans-
formations approach. By combining these approaches main drawbacks of the
original approaches are eliminated. The automated M2MM transformations ap-
proach does not require a fundamental change of the underlying metamodeling
framework. All known and used modeling tools are further utilizable. In addi-
tion, the time consuming manual implementation of M2MM transformations is
replaced by a clean and compact specification of transformation operators. The
M2MM transformation operators support the developer in all transformation
cases. For unsupported transformations a generic execute operator exists.

6 Due to space limitations it is not possible to go into details about the example.
Interested readers can refer to [3] for more information.
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Furthermore, we introduced and presented a set of generic M2MM transforma-
tion operators. The operators are used to guide the M2MM transformations and
provide the transformation with all needed information to ensure an automatic
execution.

Finally a prototype of the automated M2MM transformations approach has
been implemented for EMF and its usefulness has been demonstrated in the
context of a real world example.

References
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Abstract. The increasing adoption of Model-Driven Engineering in in-
dustrial contexts highlights scalability as a critical limitation of several
MDE tools. Most of the current model-to-model transformation engines
have been designed for one-shot translation of input models to output
models, and present efficiency issues when applied to very large models.
In this paper, we study the application of a lazy-evaluation approach
to model transformations. We present a lazy execution algorithm for
ATL, and we empirically evaluate a prototype implementation. With it,
the elements of the target model are generated only when (and if) they
are accessed, enabling also transformations that generate infinite target
models. We achieve our goal on a significant subset of ATL by extending
the ATL compiler.

1 Introduction

Several Model-Driven Engineering (MDE) tools, when adopted in industrial con-
texts, show critical effeciency limitations in handling very large models (VLMs).
When these tools are built around model-to-model (M2M) transformations, the
efficiency of the transformation engine risks to become a performance bottleneck
for the whole MDE environment. While specific M2M transformation languages
and engines have been developed since several years [12,8,3], optimizing the
transformation of VLMs is just becoming a compelling research task.

Lazy evaluation is one of the classical approaches that can provide, under
specific conditions, a significant speed-up in program execution, especially when
manipulating large data structures. When a programming language performs
lazy evaluation, the value of an expression is calculated only when it is needed
for a following computation (in contrast with eager evaluation, where expressions
are evaluated as soon as they occur). This avoids the computation of unnecessary
intermediate values. The useful part of large data structures is only calculated
on-demand, even allowing for infinite-size data structures. For this reason lazy
evaluation is a commonly used technique in several programming paradigms
(for instance functional programming languages are classified in lazy or eager,
depending on their evaluation strategy).

Lazy evaluation would significantly speed-up the execution of MDE tools
based on M2M transformations, e.g., in cases where only part of the VLMs
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involved in the transformations is actually used. Unfortunately, all the M2M
transformation engines we are aware of support only eager computation of the
target models. Models are always completely generated according to the trans-
formation logic and it is not possible to automatically avoid the computation of
model elements that will not be consumed afterwards.

This paper wants to provide the following contributions: 1) the study of the
application of lazy evaluation to M2M transformation languages as a twofold
problem, encompassing lazy navigation of the source model and lazy generation
of the target model; 2) the implementation of an engine for lazy generation of the
target model; 3) a practical evaluation of the lazy approach to model generation.

Our approach has been implemented in a prototype of a lazy transformation
engine for the ATL [8] language, obtained by adapting the standard ATL engine.
Our experimentation shows that M2M transformation languages like ATL, with
an explicit representation of the transformation logic, can be naturally provided
with an efficient lazy evaluation strategy.

Moreover, our approach to lazy generation allows the construction of an en-
gine that can be plugged into existing tools consuming EMF models, without
requiring modifications to the tools. The output model of the transformation is
accessed like a normal EMF model, but its elements are computed on demand.

Finally the lazy generation approach can be naturally applied to transfor-
mations that generate an unbounded target model. Only the part of the model
explicitly requested by the consumer is generated. In this way finite computa-
tions can make use of infinite intermediate models generated by transformation.
This represents a significant extension of the application space of existing trans-
formation languages.

The paper is structured as follows: Section 2 introduces the problems moti-
vating the paper, by providing two running examples. Section 3 describes our
approach to lazy execution of model transformations, in Section 4 we describe
the implementation of a lazy engine for ATL and in Section 5 we experimentally
evaluate its behavior; Section 6 discusses related work and, finally, in Section 7
we conclude the paper and propose further challenges.

2 Motivating Scenarios

In this section we provide two application scenarios that are the motivation
for our work, running examples of the paper and subject of our experimental
evaluation.

2.1 Scenario 1: Large Models

To illustrate how laziness addresses the performance problems of handling VLMs,
we introduce an ideal database schema editor based on M2M transformations,
whose structure is shown is Fig 1. This tool provides the user with an editor of
the conceptual model of the database (in the form of a UML Class Diagram)
and with a transformation that generates a corresponding relational model. The
user can check the relational model by using a read-only model browser.
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Fig. 1. A model-driven database schema editor

Fig. 2. Class and Relational metamodels

The tool uses a M2M transformation to generate the relational model from
the Class diagram (the well-known Class2Relational transformation). In Fig. 2
we show the source and target metamodels of the transformation. The Class-
Diagram metamodel represents a very simplified UML Class diagram. In this
metamodel, Packages are containers of Classifiers that are either Datatypes or
Classes. Classes can, in turn, be containers of Attributes, which can be multi-
valued. The Relational metamodel describes simple relational schemas. Schema
contains Tables that are composed of Columns. Finally, Columns have a type
that characterizes the kind of elements they can hold.

Listing 1.1 shows the main rules of the Class2Relational ATL transformation.

Listing 1.1. ATL Class2Relational transformation

1

2 rule Package2Schema {
3 from
4 p : ClassDiagram ! Package
5 to
6 out : Relational ! Schema (
7 ownedElements <− p . ownedElement−>
8 select ( e | e . oclIsTypeOf ( ClassDiagram ! Class ) )
9 )
10 }
11

12 rule Class2Table {
13 from
14 c : ClassDiagram ! Class
15 to
16 out : Relational ! Table (
17 name <− c . name ,
18 col <− Sequence {key}−>
19 union ( c . attr−>select ( e | not e . multiValued ) ) ,
20 key <− Set { key}
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21 ) ,
22 key : Relational ! Column (
23 name <− ’ objectId ’
24 )
25 }
26

27 rule DataType2Type {
28 from
29 dt : ClassDiagram ! DataType
30 to
31 out : Relational ! Type (
32 name <− dt . name
33 )
34 }
35

36 rule DataTypeAttribute2Column {
37 from
38 a : ClassDiagram ! Attribute (
39 a . type . oclIsKindOf ( ClassDiagram ! DataType ) and not a . multiValued
40 )
41 to
42 out : Relational ! Column (
43 name <− a . name ,
44 type <− a . type
45 )
46 }
47

48 rule ClassAttribute2Column {
49 from
50 a : ClassDiagram ! Attribute (
51 a . type . oclIsKindOf ( ClassDiagram ! Class ) and
52 not a . multiValued
53 )
54 to
55 foreignKey : Relational ! Column (
56 name <− a . name + ’Id ’ ,
57 )
58 }

The ATL transformation constitutes a set of rules that describe how parts
of the input model generate parts of the target model. These rules must have
an input pattern and an output pattern. E.g., in the rule ClassAttribute2Column
input model elements of type Attribute are selected to be transformed into out-
put elements of type Column. Rules can have filters and bindings. Filters are
used to impose conditions on the input elements selected by the input pattern
and bindings are used to initialize values of the elements created by the out-
put pattern. In the rule ClassAttribute2Column, a filter is introduced to select
only Attributes that are not multivalued and whose type is Class. Two bindings
are then used to initialize the name and type of the created Column. The rule
Class2Table creates a Table for each Class, adds a key Column and initializes
the list of columns with the respectively transformed Attributes. Finally, rule
Package2Schema transforms a Package into a relational Schema and initializes
the list of Tables.

The ATL transformation is executed in two steps. In the first step all the
rules are matched creating all the corresponding target elements. Additionally,
matching a rule creates, in the internal structures of the transformation engine,
a traceability link that relates three components: the rule, the match (i.e. source
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Fig. 3. A model-driven visualizator for method-call trees

elements) and the newly created target elements. In the second step, the created
elements are initialized as described in the rule bindings. To perform the inizial-
ization, ATL relies on a resolution algorithm that has been explained in details
in [8].

Even with the very simple mapping of this scenario, when the Class diagram
is large enough the transformation execution time can be significant. If the trans-
formation engine has no support for change propagation (like the standard ATL
engine), after each update to the Class Diagram, the user will have to wait the
whole transformation processing, to see the corresponding element update in
the relational model. Even a support for change propagation does not avoid the
computation time for the whole initial target model.

In the following we propose a solution in which the tool offers a lazy explo-
ration of the relational model. Transformation rules are activated only when the
user requests to analyze a table, and only the necessary rules are executed. This
delays the computation to the moment it is needed (at data consumption instead
of data production) and strongly reduces the computation time.

2.2 Scenario 2: Infinite Models

As a second scenario we introduce a method-call hierarchy browser (similar to
the one included in the Eclipse distribution) that computes this hierarchy in a
model-driven way. The tool (Fig. 3) represents source code as a model conforming
to the Program metamodel and uses a M2M transformation to generate the
method-call hierarchy as a graph. Source and target metamodels are shown in
Fig. 4, while Fig. 5 contains two example models. In the source model, Programs
contain Methods that hold references to the other Methods they call. The target
model is a simple tree, where Nodes represent method calls.

In Listing 1.2 we show an ATL transformation that performs the genera-
tion of the method-call hierarchy. Rule Program2Root translates the Program
element into the root of the target tree. Then Program2Root activates the rule
Method2Node1 to generate a first-level node for each method. Finally Method2Node
is a recursive rule that creates new children Nodes for each method call. In the
1 Method2Node, in the ATL jargon is a lazy rule, i.e. a special kind of declarative rule

that is only fired when directly called from other rules. We will omit discussing lazy
ATL rules in the following sections, to avoid confusion with the concept of laziness we
are promoting in this paper (i.e. the rules are not activated until their target element
is needed). However our prototype engine includes support for ATL lazy rules.
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Fig. 4. Program and Tree metamodels

Fig. 5. A recursive program and its corresponding method-call hierarchy

common case in which two methods call each other (as in Fig. 5), the source
model will contain a loop and the target method-call tree will become infinite
(the Method2Node rule will continue to recur).

Listing 1.2. ATL infinite transformation

1

2 rule Program2Root {
3 from
4 s : Program
5 to
6 t : Node (
7 children <− s . methods−>collect ( e | thisModule . Method2Node ( e ) )
8 )
9 }
10

11 lazy rule Method2Node {
12 from
13 s : Method
14 to
15 t : Node (
16 children <− s . calledBy−>collect ( e | thisModule . Method2Node ( e ) )
17 )
18 }

Contrarily to the example in Listing 1.1, this transformation cannot be exe-
cuted in the current ATL engine, since its computation will not terminate. On
the contrary, the lazy engine we propose can launch the transformation, and gen-
erate nodes on demand, when the user browses the tree. Moreover the consumer
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Fig. 6. Transformation and consumer

tool could compute in a finite time expressions on infinite method-call models
(e.g., reachability of method C from method A in a given number of steps).

3 Lazy Model Transformation

Since every M2M transformation is both a producer and a consumer of models,
a lazy approach to model transformation has to address both the aspects of lazy
production and lazy consumption.

1) Model production (or model generation) by model transformation is based
on an execution strategy that is built-in in the transformation engine or user-
controllable as part of the transformation language. Lazy generation requires the
introduction of a lazy execution strategy, driven by external model-consumption
events.

2) Independently from the execution strategy, transformation engines need to
analyze input models, to obtain the necessary information for controlling their
execution or computing output values. In MDE we usually refer to this phase
with the term model navigation. A lazy transformation approach involves lazy
navigation of source models, possibly performed by a navigation language with
lazy evaluation.

In this section we study the two aspects of lazy model generation and naviga-
tion and we argue that they are separated and orthogonal to each other. We will
refer to a general schema in which the transformation is connected to a consumer
application, as in Fig. 6.

3.1 Lazy Model Generation

With lazy model generation we indicate on-demand activation of the computa-
tion for generating a data element of the target model. No assumption is made
on the strategy for extracting and evaluating data from the source model, i.e.
lazy generation is independent from the navigation mechanism. Since only the
required subset of the target model is computed, lazy generation can be used to
address the problem of VLMs (or infinite models) when they are the target of
the transformation.

Eager transformation languages activate rules according to internal execution
strategies. Source-driven transformation languages base their execution strategy
on the structure of the source model. For instance ATL has a source-driven ex-
ecution algorithm that associates source elements to matching rules and fires
the rules in non-deterministic order [8]. Target-driven languages in contrast fol-
low a predetermined production order for target elements (e.g., sequential or
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template-based). Lazy generation can be seen as an alternative execution strat-
egy that differentiates from the previous ones for being driven by a special kind
of external events, i.e. the consumption requests.

With respect to an eager system, a transformation system with lazy generation
has to provide some additional features:

1. To initiate the lazy generation process, consumption requests on the tar-
get model have to be tracked. This requires extending the model navigation
mechanism the consumer uses, to intercept the requests and activate a cor-
responding generation in the transformation engine. If this adaptation can
be performed in a transparent way, the client system will not notice that
the model is lazily built. For instance, several transformation languages use
EMF [15] as their model management system. A naturally transparent ex-
tension mechanism in this case would be to re-implement the EMF API, so
to provide the same interface of a standard EMF model. For performing lazy
access by the EMF API, we only need to override the eGet() method in the
implementation of model elements, in order to trigger a call to the engine
operations.

2. The transformation engine has to provide the means to launch the computa-
tion of a single model element or a single property of the target model. The
degree of laziness in computing the target elements is strongly dependent on
the modularity of the transformation algorithm. E.g., in a transformation
language natively designed to maximize independent computation of target
elements, the performance of a lazy system would be optimal.

3. Finally, the lazy engine can keep track of the status of the partial transfor-
mation, and use it as a context for the execution of new computations. The
stored context is exploited by the lazy system to avoid recomputations. In
transformation systems this context usually includes trace links that map el-
ements in the target model with their corresponding sources. E.g., the trace
links in the current state can be used to avoid recomputing previous matches
when a new value is requested. Lazy transformation engines that keep ex-
tra state information can be live systems, and keep their state information
constantly in memory, or offline systems, and provide a way to freeze and
restore their state.

Once the engine provides this infrastructure, a generic lazy generation algorithm
works in three corresponding steps:

1. the consumer requests a new target element, and the call gets intercepted
by the navigation interface of the target model;

2. the navigation interface (e.g., the lazy model) requests the engine to generate
the single requested property or element;

3. the engine determines the computations to activate, based on the current
status of the transformation.

In Section 4 we describe an implementation of this approach for the ATL lan-
guage.
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3.2 Lazy Model Navigation

Model navigation can be a more or less clearly separated phase in the trans-
formation execution. In several M2M approaches a different language is used
specifically for model navigation. For instance, popular languages like QVT/R
[12], ATL [8] and Kermeta [3] use OCL [13] to write expressions on the source
models.

Adding a lazy evaluation strategy to the model navigation mechanism allows
the engine to 1) delay the access to source model elements to the moment in
which this access is needed by the transformation logic and, by consequence,
2) reduce the number of source model elements accessed during navigation, by
skipping the unnecessary model elements. For this reason, lazy model naviga-
tion can be used to address the problem of VLMs when they are the source of
transformation. For instance, in Scenario 1, lazy navigation would speed-up the
evaluation of expressions on big Class diagrams.

On the other hand, the problem of lazy navigation does not only exist in trans-
formation systems, as navigation mechanisms and languages are commonly used
outside of transformations. Fig. 6 shows that the consumer application needs to
navigate the generated target model. Lazy target navigation by the consumer is
in principle not different from lazy source navigation by the transformation en-
gine. In the case in which transformation and consumer use the same navigation
language, a lazy implementation can be re-used for both phases.

Navigation languages can be generally augmented with a certain degree of
laziness. For instance, in the case of functional navigation languages, the research
problem of implementing a lazy strategy for an existing language is already
deeply studied (e.g., in [6]). In the task of adding laziness to OCL some work
has already been carried out in [1] and in [2]. Hence, our prototype engine only
focuses on lazy generation. However, in building our implementation we maintain
a clear decoupling among navigation and generation to allow for independent
development of both parts.

Finally, an issue tightly coupled to lazy navigation, is on-demand physical
access to the source model elements, i.e. lazy loading. For lazy loading of models
for transformation we refer the reader to [9].

4 A Lazy Engine for ATL

To demonstrate the feasibility and performance of lazy generation we imple-
mented a prototype engine that activates ATL rules on demand.2

4.1 Transformation Engine

Our implementation consists of an extension of the standard ATL compiler3 and
an adaptation of the EMF EObject class. We don’t modify the syntax of the ATL
language and we reuse the standard ATL Virtual Machine.
2 The full code of the prototype is available at the following address:
http://www.emn.fr/z-info/atlanmod/index.php/Lazy_ATL

3 On the Eclipse CVS: /modeling/org.eclipse.m2m/atl/dsls/ATL/Compiler/ATL.acg

http://www.emn.fr/z-info/atlanmod/index.php/Lazy_ATL
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Fig. 7. Adapted lazy transformation engine

The prototype implements the three features discussed in Section 3.

1. To intercept consumption requests we provide an adaptation of EMF EOb-
ject, called LazyEObject. LazyEObject implements the EMF interface and
overrides only the method eGet(EStructuralFeature eFeature) used to request
for a model feature from normal EMF model elements. In the new imple-
mentation, eGet(): a) checks that the requested feature is still not initialized
and b) calls the initProperty operation of the compiler. The computation
of the requested property and its physical storage in the target model for
future reuse is delegated to the transformation engine.

2. On-demand computation of model elements and attributes is implemented
by refactoring the standard ATL execution algorithm described in Section
2. Once new elements or properties have been computed, the transformation
engine explicitely stores their value in the target model by calling a stan-
dard EObject.eSet() (i.e., data is pushed by the transformation engine, and
not pulled by the lazy model). The fact that the client system leaves to the
transformation engine the responsibility to explicitly fill the target model,
allows us to keep an execution semantics for atomic initialization as simi-
lar as possible to the standard ATL engine. This simplifies the lazy engine
implementation, as well as the subsequent maintenance in parallel with the
standard engine. Practically, the lazy engine has been refactored to expose
two new operations, additional to the standard ones:
transformElement(source: EObject). The operation transformElement

performs on-demand transformation of single elements, by activating the
ATL rule that matches a given source element and creating the corre-
sponding target. The properties of the newly created elements are not
computed in this phase, but they have to be explicitely filled by subse-
quent calls to the operation initProperty. In ATL, once a rule is matched,
more elements are generated at once (output pattern). The matching
phase has a much higher cost than the creation of new empty elements
in the target. For this reason in our implementation transformElement,
together with the target element that has been requested, generates all
the output pattern at once. This optimization is invisible to the user,
and can be easily disabled.

initProperty(target: EObject, propertyName: String). The operation
initProperty performs on-demand generation of target properties by com-
puting the corresponding ATL bindings. If the property is an attribute
its value is computed and stored in the target model. If the property is a
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reference, the ATL binding is into a set of source elements, the trace links
of these elements are navigated to retrieve the corresponding targets (as
it happens for the standard ATL resolution algorithm). If a source ele-
ment has no associated traceability links (which means that it has not
been transformed), a transformation on that element is launched by a call
to transformElement.

3. As in standard ATL, the state of the current transformation is stored as trace
links that relate source elements with target elements and their connecting
rule. The set of traces in the lazy engine is initially empty, it gets initial-
ized when the lazy transformation is started by a call to transformElement,
and then it grows monotonically while the user navigates the target model
(activating calls to initProperty and transformElement). For simplicity we
implemented our system as a live transformation system that keeps its state
information in memory, but we plan in future to exploit the serialization
of the trace link information provided by the ATL engine to implement an
offline behavior.

4.2 Considered ATL Subset

Our prototype supports a well-defined and fully functional subset of the ATL
language. While the following advanced features are not supported yet, they do
not pose a significant research problem and are included in our future plans:

– Resolutionof specific target elements (resoveTempoperation) should
be extended to launch the correct rule in case the element to be resolved has
not been created yet.

– Rule inheritance could be natively handled in a future version of the lazy
engine. However the inheritance tree in ATL can always be eliminated by
copying the inherited features.

– Multiple source pattern elements would require to extend the logic to
get, using trace links, source elements from target ones.

Adding laziness to other aspects of ATL instead would not be trivial:

– Reverse bindings are a means to set the incoming references of the target
element. To detect if a reference is modified by reverse bindings, all of them
have to be computed in an eager way.

– Refining mode: the engine for in-place transformations in ATL first com-
putes the set of changes to apply and then executes them on the source
model. Lazy generation and application of changes in ATL has yet to be
studied.

– Imperative constructs, whose use should be avoided in ATL whenever
possible, create and modify target elements without producing corresponding
traces: this is not compatible with our approach in its current state.
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5 Approach Evaluation

For the experimentation phase, we built a consumer program that performs
controlled sequences of accesses to the target model and records the evaluation
times, both in lazy and eager modes.

When executed in lazy mode, the consumer uses the Eclipse infrastructure
to initiate the process. An extended Eclipse EMF editor allows the user to vi-
sualize the source model, select a starting source element and launch the lazy
transformations from the source element. The rule matching the selected source
element is immediately activated, initial target elements are generated, and the
consumer starts browsing the output model by navigating the references of the
target model elements. In eager mode the consumer simply launches program-
matically an ATL transformation and then performs the same sequence of ac-
cesses as in the lazy mode. We implemented different navigation strategies for
the target model (e.g. depth-first, random), and the experimentation results do
not show significant variations in this respect.

To evaluate the behavior in Scenario 2, the transformation in Listing 1.2
is launched and a constraint is programmatically checked (e.g., reachability of
method C from method A in a given number of steps). The computation does
not terminate in eager mode and generates an immediate result in lazy mode.

The performance hit of the lazy approach in Scenario 1, is illustrated in Fig. 8.
Four sets of tests have been executed, each one characterized by a different source
model. The four source models, ordered by increasing model size (respectively of
8020, 16020, 25220 and 50420 elements), originated the four graphs in figure. In
all the tests, we applied the transformation of Listing 1.1 in lazy and eager mode,
and we navigated a fixed number of target elements4. The graphs in Fig. 8 are
obtained by varying the length of the navigation and marking the correspondent
computation time.

To reduce perturbations, each test has been repeated ten times, with exactly
the same conditions. Each point in the graphs of Fig. 8 represents the average
value of ten identical tests (actually the first iteration was discarded, to avoid
any initialization overhead).

As expected, for a small number of accesses to VLMs, the lazy approach results
much faster than the eager one. However, when the number of accesses is close
to the size of the model the lazy approach is notably slower. This performance
drawback is due to the overhead introduced by the lazy execution, as extra oper-
ations have to be performed everytime an element is generated (to find the source
model from the trace link, check guards, etc). Nevertheless, it’s interesting to ob-
serve that the lazy approach keeps better performance than the eager one until a
significant percentage of target model navigation (from 48% in the smallest case
to 58% in the biggest). Moreover, the evident similarity among the plots, with a
nearly linear increase of computation time in the lazy case, shows that we have
an approximately constant speed-up with the increase of model size.
4 The experimentation has been performed in the following hardware and software

setting: Eclipse 3.5.2, Ubuntu 10.04, Linux kernel v2.6.32, Dell Latitude E6410, Intel
Core i7 processor (2,67 GHz).
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Fig. 8. Experimental results

The performance gap would be much wider for models big enough to exceed
the computer memory. In this cases a lazy approach avoids, for limited naviga-
tions, the performance drop caused by memory management mechanisms.

6 Related Work

As we said, we are not aware of any transformation tool with a lazy generation
strategy in MDE. The Stratego [18] system allows user-defined execution strate-
gies for transformation rules. While user-defined strategies have been used to
implement target-driven approaches [19], the activation of rules as answer to ex-
ternal consumption has not been addressed. VIATRA, despite not implementing
on-demand transformation, evaluates lazily the matchings of connected rules to
avoid unnecessary computation, as described in [16].

Outside the MDE domain, [14] follows an approach similar to ours. The
authors provide an interpreter for XSLT that allows random access to the trans-
formation result. They also show how their implementation enables efficient
pipelining of XSLT transformations. The implementation of a lazy evaluator
for functional (navigation) languages is a subject with a long tradition [7]. We
refer the reader to [6] for an example based on Lisp. This subject has been
explored in [1] and in [2] where performance measures are presented.

Other optimization techniques have been explored in model transformation
engines. Lazy loading [9] is a complementary subject to lazy navigation, when
dealing with models that do not fit into the memory of the transformation
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engine. [11] presents methods to evaluate pattern matches of different rules
in an overlapped way, to increase performance. In [5] transformation context
is preserved to efficiently perform incremental updates whereas in [17] and [4]
strategies for the problem of graph pattern matching optimization are investi-
gated. Finally this paper follows the opposite direction of [10], that adds forward
change propagation to ATL. The study of the possible combination of laziness
and incrementality in ATL and other M2M languages is part of our future work.

7 Conclusions and Future Work

Our experimentation shows that adding lazy execution of transformation rules
to existing transformation languages can provide a remarkable performance gain
and extend the application space of transformation languages to infinite data
structures.

Complete coverage of ATL. The implementation presented here covers a
significant and functional subset of ATL but in the future we plan to extend the
support to the complete declarative part of the ATL language.
Optimization of the lazy engine. As in other lazy approaches, we want to
evaluate the possibility to store intermediate expression values to avoid interme-
diate recomputations in target generation. We plan to add a lazy OCL evaluator
to address the sub-problem of lazy source navigation (which is especially relevant
when working with big source models).
Incrementality. We plan to study the interaction between forward change prop-
agation and laziness in M2M languages and provide a combined engine for ATL.
Transformation chains. Finally we want to study the concatenation of lazy
transformations and the possibilities of pipelining.
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Abstract. In software engineering practice, measurements may reduce
development costs by improving processes and products at early stages.
In model driven approaches, measurements can be conducted right from
the start of a project. For UML models, a collection of metrics has been
empirically validated, however, these need to be precisely defined in or-
der to be useful. Definition of UML metrics in OCL offers a high degree
of precision and portability, but due to shortcomings of this language this
approach is not widespread. We propose the SQUAM framework, a tool–
supported methodology to develop OCL specifications, which incorpo-
rates best practices in software development, such as libraries, testing and
documentation. As a proof of concept we have developed 26 metrics for
UML class diagrams in the academic context. This demonstrated the high
effectiveness of our approach: quick learning, high satisfaction of develop-
ers, low imposed complexity and potential time reduction through reuse.

Keywords: model analysis, UML metrics, OCL specification, OCL
pragmatic extensions, OCL development process.

1 Introduction

Measurement is important in the software engineering domain. Measures can
help address some of the most critical issues in software development and pro-
vide support for planning, monitoring, controlling, and evaluating the software
engineering process [1]. Reliable metrics provide evidence of improvements, allow
cost–benefit analysis, and provide the basis for decision making [2]. Metrics are
good at summarizing particular aspects of things and detecting outliers in large
amounts of data [3].

In model driven approaches measurements can be conducted at the very be-
ginning of the software development process. A subset of software metrics was
successfully transferred from the code level to the model level. Metrics can be
used to measure and evaluate models and to give early feedback in the software
development process.

In our project we focused on the de facto standard for model driven develop-
ment: Unified Modeling Language (UML, [4]). We selected UML class diagram
metrics from a theoretically defined and empirically validated set [5]. According
to [6] four classes of UML metrics can be distinguished: quantity, complexity,
quality and size metrics. Most of selected metrics are from the first two classes.
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Related Work and Discussion. In the subsequent paragraphs we describe
the context of our research, related issues and complementary approaches.

Quality model. Our approach has to be seen as a supporting solution in a larger
context of model quality analysis, where a quality model needs to be defined.
Most quality models are based on the Goal–Question–Metric approach [7,1,2]. At
the conceptual level, a goal of measurement should be established. Next, at the
operational level, questions that can help to check if the goal is fulfilled should be
defined. And finally, at the quantitative level, metrics supporting answering these
questions should be specified. Our approach provides support for the quantitative
level. Additionally, it can be used to aggregate information to the upper levels, if
an aggregation mechanism is known. Discussion of issues related to the purpose
of metrics and their validation [1] is out of scope of this paper.

Variety of specification languages. Different formal or programming languages
were used to specify metrics. In academic approaches the following different no-
tations were used, e.g. Z notation [8], XQuery [9], and SQL+Java [10]. The same
diversity can be observed in existing modeling tools. For example, in MagicDraw
UML1 metrics are hard–coded in Java, in SDMetrics2, a proprietary language
is used, and in UMLAudit3, models are converted into database tables. Even
though preciseness can be guaranteed when using these approaches, in our opin-
ion they can not guarantee portability. Moreover, metrics definitions are hard to
maintain and keep up to date with evolving UML specification.

Advantages of OCL usage. Object Constraint Language (OCL, [11]) 2.x is a
query language, i.e. it has the expressiveness required by relational algebra. Thus,
it enables precise selection of required elements or properties. OCL can express
all mathematical operations required for metrics definitions (e.g. sum, average,
and even square root, e.g. defined based on Babylonian method). The scalability
of the approach is the question of capabilities and performance of used OCL
tools. And currently OCL tools provide quite good performance of OCL evalu-
ation after model loading and an initial parsing [12]. The tool support enables
metrics evaluation and testing for their correctness. Defining metrics in a stan-
dard language enables their usage in any UML tool with an OCL interpreter
(for the appropriate version of the standard). Another advantage is that metrics
are defined at the same abstraction level as models. Alternatively to OCL, the
Query/View/Transformation (QVT) standard can be considered. This would
not significantly differ from usage of OCL, as QVT is based on OCL. The dis-
advantage of QVT is weaker tool support for this language.

Formalisation of metrics in OCL. As the first attempt [13] metrics were cre-
ated as additional operations in the UML 1.3 metamodel and expressed as OCL
conditions. As OCL 2.0 was published, another approach [14,15] was proposed
where metric definitions were decoupled from the metamodel. For this approach a
1 MagicDraw—UML Designing Tool from No Magic, http://www.magicdraw.com/
2 SDMetrics—Software Design Metrics tool for UML,http://www.sdmetrics.com/
3 UMLAudit—Auditing a UML Model, http://www.softeam.com/

http://www.magicdraw.com/
http://www.sdmetrics.com/
http://www.softeam.com/
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prototypic implementation was made based on Octopus4. Another tool, MOVA5,
provides a collection of predefined metrics and users can additionally write and
execute their own metrics using the OCL editor [16]. OCL is used to define
metrics in a commercial UML tool, Borland Together6. There are several more
approaches successfully using OCL to define metrics7. All of them are comple-
mentary to our work and we plan their successive integration into our project.

Disadvantages of OCL usage. The low social acceptance of OCL is a critical
issue. It is believed that OCL is hard to use, learn and teach. It has been shown,
e.g. [17], that in general, it is a difficult, error–prone and time–consuming task for
practitioners to define OCL expressions. Moreover, OCL expressions are often
unnecessarily hard to read [18], UML/OCL models may be difficult to under-
stand and evolve, particularly when constraints containing complex or duplicate
expressions are present [19]. Additionally, difficulties with teaching OCL were
reported in [20]: the professional programmers usually do not like it: it looks like
a programming language, but it is not; it has first order logic semantics, but it
does not look like it.

Problem Statement. UML metrics should be defined at the same abstraction
level as models, in a non–ambiguous manner that enables their exchange via
a standardised language. In our opinion, the best candidate fulfilling these crite-
ria is OCL. It has been successfully used in several approaches, e.g. [13,14,15,16].
Unfortunately, the usage of UML metrics defined in OCL did not reach a broader
acceptance in practice. We suppose that this is due to the low social acceptance
of OCL. As the intention of the project was to analyze the development method
available in our tool, but not the tool itself, we do not provide any comparison
with existing OCL engines. For a comparison we refer to [21].

Proposed Solution. In this paper, we propose a method for systematic devel-
opment of precise and portable metrics using OCL. To increase acceptance of
OCL we use our extensions for modularisation, testing and documentation [22].
With our extensions integrated into a tool–supported systematic development
process [23], even OCL novice users may achieve good results. Moreover, it is
important that metrics are portable and available8 to assist evolution of metrics
involving multiple contributors.

Structure. To illustrate our approach we will start with a presentation of an
example metric (Section 2). Next, we will present the project with 26 UML met-
rics developed as a proof of concept (Section 3). Finally, we will give conclusions
and present our future work (Section 4).
4 Octopus—OCL Tool for Precise Uml Specifications,
http://octopus.sourceforge.net/

5 MOVA—A Tool for Modeling, Measuring and Validating UML Class Diagrams,
http://maude.sip.ucm.es/mova/

6 Borland Together—http://conferences.embarcadero.com/article/33187/
7 A comprehensive list of papers related to metrics can be found at
http://www.monperrus.net/martin/bibtexbrowser.php?bib=metrics.bib

8 Currently our project is available on request, as we want to keep track of its users.

http://octopus.sourceforge.net/
http://maude.sip.ucm.es/mova/
http://conferences.embarcadero.com/article/33187/
http://www.monperrus.net/martin/bibtexbrowser.php?bib=metrics.bib
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2 Example Metric: Number of Local Methods (NOM)

Below we will present our idea on an example of Number Of local Methods
(NOM) metric. At first we will discuss its original definition, next how it is
defined in OCL, and finally how it can be used in model analysis.

Original Definition of NOM. In [24] a set of metrics was proposed to measure
different internal attributes such as coupling, complexity and size. These metrics
were used to measure Classic–Ada designs and source code. They found that the
maintenance effort could be predicted from the values of these metrics. We will
take one of them as a running example to explain our approach.

Definition 1 (NOM). Number Of local Methods provides the number of meth-
ods defined in a class. [24]

Definition 1 seems to be precise, but it states nothing about the visibility of
the methods. When taking a closer look at the intention of this metric in [24],
it was proposed as a class interface increment metric to indicate the operation
property of a class. From this usage intention it could be deduced that only public
methods should be taken into account. On the other hand, in later work [25],
another metric for number of local methods metric (NLM) was proposed, where
only public methods were taken into account. For our running example we will
assume NOM to count all the methods, as opposed to NLM with public methods
only. As Definition 1 mentions methods defined in the class (as opposed to the
declared ones), we will take overwritten methods into account, too. For the sake
of simplification, we treat overloaded methods as same.

It can be seen that even on this simple example informal definition may lead
to impreciseness. In general, selection of appropriate elements or properties of a
considered element is a weak point of informal definitions. Below we will provide
an OCL definition of NOM that overcomes this weakness.

OCL Definition of NOM. In our approach we follow the principle of modu-
larization and split more complex definitions into functionality chunks that are
reused by other definitions. Following this principle we obtained four definitions
leading to the NOM metric specification.

A: getInheritedMemberOperations returns the set of all inherited mem-
bers of the context class which are of type operation.

B: getAllInheritedOperations returns the subset of A excluding operations
which are locally defined (overwritten).

C: getLocalMethods returns the set of all operations excluding elements of B,
i.e. only locally defined operations.

D: NOM returns the size of C, i.e. number of locally defined methods.

Listing 1.1 shows all required OCL definitions and Fig. 1 depicts dependencies
between them. Additionally, it is shown where the definitions were reused in the
whole project (Section 3). As can be seen all four OCL definitions related to
NOM are at least twice directly called. Their reuse is even higher, as neither
indirect calls nor potential usages, described below, are shown in the diagram.



Measuring UML Models Using Metrics Defined in OCL 51

getAllOverwrittenOperations

getInteritedMemberOperations

numberOfInheritedMethods

getAllInheritedOperations

getNumberOfAllMembers

Auxiliary definitions 
in OCL

getLocalMethods

totalNumberOfMetods

Metrics definitions 
in OCL

SIZE

NMI

NOM
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´«calls´»

´«calls´»´«calls´»

´«calls´» ´«calls´»´«calls´»

´«calls´»´«calls´»

´«calls´»

Fig. 1. OCL definitions used to specify the NOM metric (in the middle, in dark) and
their direct calls by OCL definitions related to other metrics (in white)

1 context C l a s s
/∗ −−− DEFINITION A −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/

3 def getInheritedMemberOperations :
getInheritedMemberOperations ( ) : Set ( NamedElement ) =

5 s e l f . i n h e r i t e dMemb e r−> s e l e c t ( ne : NamedElement |
ne . oc lIsTypeOf ( O p e r a t i o n ) )

7 /∗ −−− DEFINITION B −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
def ge tAl l Inher i t edOperat ions :

9 ge tAl l Inher i t edOperat ions ( ) : Set ( NamedElement ) =
getInheritedMemberOperations ( )

11 −> s e l e c t ( op : O p e r a t i o n |
not s e l f . g e t O p e r a t i o n s ( ) . name−>i n c l ude s ( op . name ) )

13 −> asSet ( )
/∗ −−− DEFINITION C −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/

15 def getLocalMethods :
getLocalMethods ( ) : Set ( S t r i ng ) =

17 s e l f . g e t A l l O p e r a t i o n s ( ) . name−>asSet ( )
− ( ge tAl l Inher i tedOpera t ions ( ) . name−>asSet ( ) )

19 /∗ −−− DEFINITION D −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
def NOM:

21 NOM( ) : I n t e ge r = getLocalMethods()−> s i z e ( )

Listing 1.1. Definitions required to formalise NOM. In the listing, the following for-
matting is used: italic font for user definitions, sans serif font for UML metamodel
operations and properties, bold and normal fonts for OCL keywords and operations.

Use of NOM in Model Analysis. The metrics usage scenario is as follows.
Initially, a metric is formalised in OCL. For the metric, a method, optionally
with auxiliary methods, is defined in a given context, usually a class or a model,
and returning a number. Before methods are used, they have to be tested [22].

In Fig. 2, we show related concepts from two perspectives: linguistic and
ontological. From the linguistic point of view we have elements from the stan-
dards (constraints [4] and definitions [11]) and the extended OCL (queries and
tests [22]). From the ontological point of view, in the domain of measurement,
we have metrics, thresholds, collections and model queries. We will explain them
using a series of examples.

From the calculation point of view metrics can be classified into basic metrics
directly calculated based on a given model (e.g. NOM) and derived metrics
calculated based on other metrics. For calculating simple ratios, used metrics
should have the same context. A derived metric can have either the same context
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´«Standard OCL´»
Definition

ontological perspective
linguistic perspective

condition
message

´«OCL Extension´»
Query

Model Query

 test model
 expected result

´«OCL Extension´»
Test

´«Standard UML´»
Constraint

Threshold

Derived Metric

Metric

Basic Metric

Collection

´«use´»
´«use´»´«use´»

´«use´»

Fig. 2. Overview of specification concepts. Elements stereotyped with
�Standard OCL� and �Standard UML� are from the OMG standards [11,4]
whereas elements stereotyped with �OCL Extension� are our pragmatic exten-
sions [22]. Elements without stereotypes are used to explain concepts related to the
measurement domain.

as a basic metric or a broader context, for example extended from class to
package. Metrics with enlarged scope can be used to investigate balance between
larger system components.

Example 1. NOM is calculated in the class context, in the package context we
can calculate package total NOM (PTNOM) as the sum of NOM for all classes
in the package. Next, we can calculate package average NOM as PANOM =
PTNOM/NC, where NC is the number of classes in the context package.

For a metric, upper and lower thresholds can be defined. These thresholds may
be set based on statistical data from previous projects, from the current project
or arbitrarily set by a chief designer. A metric together with its threshold(s) can
be used in a constraint.

Example 2. The lower threshold for NOM9 can be set to 4 and the upper one
to 15 resulting in the following constraint: NOM ≥ 4 and NOM ≤ 15.

Different threshold settings can be specific for particular design phases and used
as warnings and errors indicators. Configurations of thresholds can be saved as
OCL libraries [22], therefore no definitions need to be rewritten.

Example 3. In the design phase, the lower threshold for NOM can be ignored
(i.e. set to 0) and the upper one set to 25. In the code generation phase, they can
be set to 4 and 10, respectively. A parametrised constraint can be expressed as
NOM ≥ NOMmin and NCM ≤ NOMmax, where NOMmin and NOMmax
are thresholds for an appropriate configuration library. Moreover, 10 can define
a warning threshold and 15 an error one, where for the warning a query can be
used and for the error a constraint.
9 This and following thresholds are taken from [3].
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Having a set of metrics, it is easy to build more complex expressions on top of
them. We can define collections with model elements filtered based on metrics
and thresholds. Next, we can present either information about single elements
or aggregated information on a collection. We can use collections to build filters
identifying design disharmonies [3] or to obtain statistics.

Example 4. We can detect packages with classes containing too few or too many
methods. We can identify a package with the highest number of classes with
NOM outside the desired range. We can also define statistics on classes and
methods to obtain a set of tuples with a class and its NOM metric value.

Finally, definitions can be used in informative and conditional model queries.
Using thresholds, conditional queries can be defined. If and only if a class does
satisfy the constraint within a query an appropriate message is shown.

Example 5. NOM can be used in an informative query, to show a human readable
message, e.g. Class C1 has 3 methods. A conditional query for NOM can be
defined to show a message only if the value of NOM is not in the range defined
by the thresholds.

Model queries can incorporate all types of definitions. A text message in a query
is the simplest example of result presentation. If an aggregation algorithm is
known, metrics results can be propagated to the upper levels of a GQM model.
Based on metrics and model queries, evaluation result reports with charts can
be generated. In the next section, we will present our OCL project with a series
of metrics.

3 OCL Project with UML Metrics

In this section we will present the OCL project we developed as a proof of concept
to show that OCL metrics can be written by semi–skilled OCL developers, OCL
expressions can be reused and to see how our method and tool is perceived
by users. We start with a description of project settings. Next we present the
development process and the environment that were used. And finally we show
selected project statistics and feedback from participants.

Project Settings. The OCL project with UML metrics was developed in the
Model Engineering (ME) course that took place in the summer semester 2009
at the University of Innsbruck. The course was in the master program, thus
the participating students were already skilled developers. And as the course
was optional, the participants were ambitious and interested in deepening their
knowledge in the model engineering domain.

Each of the 12 students enrolled in ME and one teacher (the author)
developed two metrics. Students were novices to OCL. In the previous courses
they were taught example OCL expressions but they had no hands–on experience
in writing OCL, especially at the metamodel level. In ME, prior to the project,
they had 3 hours of lectures with practical exercises at the user model level.
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Table 1. UML class diagram metrics defined within the project and references to their
definition sources taken from [5] ([Li93b] is [24] of this paper)

type abr. name / description source

q
u
a
n
ti

ty

NCM Number of class methods in a class [Loren94]
NCV Number of class variables in a class [Loren94]
NIM Number of methods defined for class’ instances [Loren94]
NMA Number of methods defined in a subclass [Loren94]
NMI Number of methods inherited [Loren94]
NMO Number of methods overridden [Loren94]
NOM Number of local methods [Li93b]
PIM Public instance methods [Loren94]
SIZE2 Number of attributes + number of local methods [Li93b]

size DSC Total number of classes in the design [Bansi02]

co
m

p
le

x
it
y

AAPM Average parameters per method [Loren94]
AIF Attribute inheritance factor [Brito94]
ANA Average number of ancestors [Bansi02]
DAC Number of attributes of type defined by another class [Li93b]
DAC’ Number of different classes used as types of attributes [Li93b]
DAM Data access metric [Bansi02]
DCC Direct class coupling [Bansi02]
DIT Depth of inheritance tree [Chida94]
MAM Member access metric [Bansi02]
MaxDIT Maximum depth of inheritance tree [Chida94]
MIF Method inheritance factor [Brito96a]
NOC Number of children [Chida94]
NOH Number of hierarchies [Bansi02]
OA5 Average of the number of class’s direct dependencies [March98]
OA6 Standard deviation for OA5 [March98]
SIX Specialization index [Loren94]

The project had two iterations and students could work in teams. Working
versions of metrics were stored in a subversion repository and available to all
developers. After the first iteration, 13 metrics were released, i.e. all develop-
ers could use or modify them. Students were encouraged to test, bug fix and
reuse their own and other students’ released definitions and libraries. Moreover,
working in teams enabled cooperation before official releases.

We developed OCL libraries with 26 UML class diagram metrics self–
selected from [5]. Self–selection of metrics might lead to selection of apparently
easy metrics, but it promoted cooperation of students who selected related ones.
These were mostly quantity and complexity metrics (Table 1).

Within the project, we used the following standards: UML 2.2 [4] and
OCL 2.0 [11]. Moreover, we used the systematic development process and the
SQUAM OCL tool described below.

Development Process. To increase the quality of the metrics’ formalisation
we used a systematic development process for OCL expressions. Within the
process we used practices inspired by software development: user–defined OCL
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libraries, OCL unit tests and documentation. User–defined OCL libraries en-
able modularisation and reuse of expressions, as well as support of configuration
settings. Usage of OCL unit tests increases semantic quality of OCL expres-
sions. And finally, in–line documentation comments increase comprehension
of OCL expressions, and thus make team work and maintenance easier. Addi-
tionally, HTML documentation was generated out of these comments. For more
details about our extensions we refer to [22].

In the project we followed an iterative process. It started with selection
of a metric, understanding its definition, as well as specifying and documenting
required OCL expressions. In addition to the specification, test models have been
defined and tests performed. Specification and testing was conducted iteratively,
until a developer was convinced of the correctness of the metric and released it.
For a detailed description of the process we refer to our prior work [23,26].

Development Environment. The SQUAM framework supports the OCL de-
velopment process and generation of documentation. When the development
process is finished our OCL extensions can be purged and a specification in
standard OCL is available.

Fig. 3 depicts a screen shot from the OCL development process of the OCL
project. An OCL project consists of the following folders:

– doc documentation generated out of self–documented libraries, it is organised
in similar way to the analogous approaches (like JavaDoc);

– html additional documentation files used in doc;
– model in case of this project it consists of test models for metrics; and
– UMLmetrics OCL libraries with metrics definitions at the top level and aux-

iliary definitions in the helperLibrary folder.

More information about the tool can be found on–line at http://squam.
info/. For technical information we refer to the feature model10, manual11 and
a series of demonstration screen casts12.

Project Statistics. In the subsequent paragraphs we describe size, time effort,
reuse degree and observations in the context of the metrics project.

Project Size. In the project, 51 libraries were developed: 26 with metrics and
25 with auxiliary operations. The number of tests was 178, with an average
of 3.5 tests per library and 2.7 tests per definition. Some definitions were not
tested directly as they were intensively used by other definitions. Some tests
were complex tests covering multiple test data sets. After release of a library by
a developer, students could test it. In this process 4 errors were found and fixed.
Moreover, defined tests were enormously useful in later manual conversion of
the libraries from Ecore–based expressions into UML–based ones (to use UML
metamodel methods only and no Ecore metamodel ones) and in restructuring of
the project. The detailed project statistics are presented in Fig. 4.
10 Feature models for selected OCL tools: http://ide4ocl.opoki.com/
11 SQUAM manual: http://squam.info/ocleditor/manual/
12 Flash demonstrations are available at http://squam.info/?cat=22

http://squam.info/
http://squam.info/
http://ide4ocl.opoki.com/
http://squam.info/ocleditor/manual/
http://squam.info/?cat=22
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Fig. 3. OCL library development in the SQUAM framework (the background window)
and generated documentation (the foreground window). In the background window, the
following components can be seen (from left to right): the project explorer, an example
library, and the overview of its structure. In the foreground window, the generated
documentation can be seen: a list of additional pages (from html) and all libraries
in the project (at the top–left corner), a list of definitions, queries and tests (at the
bottom–left corner), and an additional page (on the right).

Fig. 4. Project statistics showing number and total size of artefacts in lines of OCL
expressions (without comments)

Time Effort. Within the project the time effort was monitored by manual log-
ging by developers. Our estimates may be artificially low because students tended
to underestimate the time they spent on learning and development. The whole
project took 8.6 person–days including learning of the development environ-
ment and understanding informal definitions of metrics. In total 27% of the time
was spent on learning. For a metric, on average 2:38h was required to learn the
process and tool, to understand the metric, and to implement it. Development
of definitions, queries, tests and test models took on average 1:56h per metric.
The statistical analysis of definition specification time showed the median time
equal to 0:15h in values ranging from 0:02h to 3:50h. The broad range can be
explained by significant differences between complexity of definitions, skills of
students and possible reuse. Details of time effort are presented in Fig. 5.

Reuse Degree. For 51 libraries, there were on average 1.4 imports per library,
whereas for 26 metric libraries 1.7 imports. The most frequently used definition
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Category [hh:mm] percent per person per metric

Learning 18:09 27% 1:23 0:41

Definitions 23:24 34% 1:48 0:54

Queries 7:39 11% 0:35 0:17

Tests 14:18 21% 1:06 0:33

Test Models 4:58 7% 0:22 0:11

TOTAL 68:28 100% 5:16 2:38

Box plot for definition specification time in minutes:

Fig. 5. Time effort measurement statistics

was a method to get one element by name. The library was directly imported
by 11 other libraries and the method was called 21 times (in tests). Based on
logged data, we estimated the benefit of reuse by comparison of time required to
develop a set of all definitions with and without reuse. Our estimation was that
the development time could decrease by over half (43% of time without reuse).

Observations. During the project we observed two critical issues related to pre-
ciseness and complexity.

The first one was related to impreciseness of the original definition of metrics.
In a few cases, developers had to arbitrarily decide how to formalise a metric.
This observation confirms the need for metrics formalisation, e.g. in OCL. In gen-
eral, metrics described in the literature can be classified according to a number
of possible semantically equivalent implementation in OCL: zero, one or many.
If a metric can’t be realized as OCL, then it is too ambiguous to be useful, if
it realizes as exactly one OCL implementation, then it is useful, and if there is
more than one possible OCL implementation, then it is ambiguous. Further the
ambiguous metrics could be analysed from the natural language point of view
to identify the areas where ambiguity creeps in. Next, a set of language patterns
of the sources of ambiguity can be defined similarly to [27].

The second issue was related to complexity of OCL expressions. We can con-
sider several sources of complexity. Some complexity is inherited from the under-
lying UML metamodel. In non–trivial cases the navigation via the metamodel
structure is long and not intuitive. It was necessary to look up the semantics of
properties of an inspected element in the UML specification to find out the cor-
rect navigation paths. This complexity is related to any object–oriented query
language, where the original model structure is preserved. An example excep-
tion could be transformation to a relational data base and usage of the standard
query language. The second type of complexity is caused by the necessity of type
casting to access particular properties. For example, to access name of an Element
it should be of type or subtype of NamedElement. This complexity is related to
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any (strongly) typed object–oriented query language. Additionally, there is also
complexity related to OCL. In OCL 2.0, which was used in the project, there
is no transitive closure implemented. Thus we had to use recursive calls of user
defined methods to collect all possible navigation paths. For example, in Depth
of the Inheritance Tree (DIT, Fig. 3) metric, to navigate to the bottom of the
inheritance tree via generalisation relations we used recursive method calls. In
OCL 2.3, the closure is provided, which enables simplification of expressions.
And as tests are available, the conversion should be a feasible task.

Feedback from Participants. After completion of the project, students were
asked to give their feedback in anonymous surveys on perceived knowledge gain,
usability of OCL extensions and the SQUAM framework. Percentages presented
in the subsequent paragraphs are based on the answers of 10 students who com-
pleted the survey.

Perceived knowledge gain. The students self–estimation was that they learned
a lot about OCL (3/10 strongly agree + 5/10 agree) and metrics they developed
(4/10 + 5/10). Moreover, 8/10 believed that the gained knowledge has a practi-
cal character and they may capitalize on it in the future. The aforementioned
statistics were also reflected in the free comments, such as: Learned much about
OCL, I hardly knew OCL before; I learned a lot of OCL and the metrics we
used during defining them; I got a better understanding on how to build OCL
statements, how to use them and actually how to work with OCL and UML.

Perceived usability of the OCL extensions. Most of the students found the exten-
sions for the OCL standard useful and very useful. The usefulness of libraries
was positively evaluated by 9/10 of students (very useful by 4/10 + useful by
5/10). Even a better score was obtained for queries (7/10 + 2/10). Moreover, all
the students found tests (9/10 + 1/10) useful. There was no explicit question
on documentation. Students also appreciated possibility of sharing expressions
within the same team (6/10 + 2/10) and with other teams (4/10 + 5/10). Addition-
ally, most of the students found the possibility of reusing/importing expressions
important, e.g. in my opinion this is a great idea /.../ in a bigger project this
could be very useful; a great way to split complexity.

Feedback on the SQUAM framework. In general there was a positive feedback
on the tool, too. 7/10 of students voted for the positive overall impression,
satisfying performance and stability of the tool. During the project a few bugs
were detected and some improvement ideas were suggested, like debugging or
refactoring support. Several improvements are included in the current version.

4 Conclusions and Future Work

We proposed a methodology and a tool to define UML metrics in OCL. To ob-
tain high quality metric specifications we used an iterative development process
based on software development best practices. In this process we organised OCL
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expressions into libraries, tested OCL definitions for semantic correctness and
documented them for better comprehension and maintenance.

As a proof of concept we developed 26 UML class diagram metrics with novice
OCL users in relatively short time and with positive feedback from them. Within
this project, reuse of definitions provides a potential of a significant reduction in
OCL development time. Moreover, there was low imposed complexity of OCL
expressions. Despite our observations may be project–specific and need to be
supported by further empirical studies, they cast a positive light on efficient
development of UML metrics in OCL.

It is worth noticing that OCL usage is not restricted to UML, thus in general,
our approach can be used to develop metrics for arbitrary models from the
Meta Object Facility (MOF, [28]) family. To apply our approach to an arbitrary
model, appropriate metric definitions should be formalised in OCL in the context
of the underlying metamodel. We used our approach in industrial projects in the
business process [23] and model driven testing [26] domains. In these projects we
developed OCL expressions for completeness, consistency and coverage criteria
in the context of domain specific languages defined as UML profiles.

Recently, within the model engineering course we developed more metrics,
including ones for state diagrams, too. We plan to extend and make the project
public and to involve other contributors to build a useful public domain resource.
The collection of metrics can be used in model reporting, visualisation and static
analysis.
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Abstract. Among model comprehension tools, model slicers are tools that ex-
tract a subset from a model, for a specific purpose. Model slicers are tools that let
modelers rapidly gather relevant knowledge from large models. However, exist-
ing slicers are dedicated to one modeling language. This is an issue when we ob-
serve that new domain specific modeling languages (DSMLs), for which we want
slicing abilities, are created almost on a daily basis. This paper proposes the Kom-
pren language to model and generate model slicers for any DSL (e.g. software de-
velopment and building architecture) and for different purposes (e.g. monitoring
and model comprehension). Kompren’s abilities for model slicers construction is
based on case studies from various domains.

1 Introduction

Model slicing is a model comprehension technique inspired by program slicing [16].
This consists in extracting a subset of a model, called a slice. A slice has different
forms depending on its purpose. For example, when trying to understand a large class
diagram, it can help to extract the smallest strongly connected graph that is the subset
of the class diagram that represents all dependencies of a particular class of interest. On
the other hand for another comprehension purpose, one might want a slice that is closer
to what a semantic zoom could provide [4], e.g. provide a flat view of all references and
attributes inherited by a class of interest.

There has been previous work on the definition of model slicers. For example,
[10] proposed model slicers for UML class and state diagrams. However, all exist-
ing model slicers are dedicated to extracting one form of slice from models that con-
form to a specific metamodel. In times when new domain specific modeling languages
(DSMLs) appear regularly to improve productivity and increase the adoption of model-
driven engineering, this becomes an issue: on one hand it is not convenient to develop
slicers from scratch for every new DSML; on the other hand these DSMLs will pro-
vide full expected benefits for productivity only if they are supported by the same
analysis and comprehension tools as general purpose languages. Thus, it is necessary
to develop a generative approach that will automatically build model slicers for new
metamodels.
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In this paper we propose Kompren1, a DSML to model model slicers for a particular
domain (captured in a metamodel). We learn from existing model slicers, as well as
from practical experiences that require the extraction of sub parts out of models. This
learning phase leads to the different features of the Kompren language. Kompren mainly
allows the selection of classes and properties in an input metamodel. By default, the
model slicer generated out of these elements will be such that it builds slices that contain
all instances of the selected classes and properties, plus all necessary elements to make
the slice a valid instance of the input metamodel. Kompren also offers a set of language
features to generate model slicers that can still be parameterized in order to process the
model slice for a specific purpose. These different characteristics of Kompren aim at
achieving two goals for our generative approach: automatically build model slicers for
any DSML; have model slicers that can extract different forms of slices, depending on
the purpose of the slice.

The contributions of this paper are the following:

– a language to model model slicers for any metamodel
– a compiler that automatically generates model slicers
– demonstrations of the language expressiveness over three illustrative cases.

In section 2 we introduce several motivating scenarios that illustrate the various forms of
model slices that must be generated when analyzing models in various languages. Sec-
tion 3 introduces the overview of building model slicers with the Kompren language.
Section 4 presents the Kompren language: its metamodel, compiler and concrete syn-
tax. Section 5 demonstrates the expressiveness of Kompren on three illustrative cases.
Section 6 discusses related work and section 7 concludes this work.

2 Heterogeneous Use Cases of Model Slicing

The classical use of model slicing consists in extracting sub-models from models by
keeping conformance rules. However, as shown in the motivating use cases below
model comprehension also requires extracting models which do not satisfy confor-
mance. Still, this extraction can rely on model slicing mechanism.

Use case 1: Model operation analysis. Given a model operation on a large metamodel
MM1, developers want to get the effective metamodel MM2 used by the operation such
that MM2 ⊂ MM1. For instance, when defining a state machine flattening operation
over the UML metamodel, only the UML class diagram and the UML state machine
elements are used. This model operation must be analyzed to select MM1 elements it
uses and to get the effective metamodel MM2 [12].

Use case 2: Semantic zooming on models. Understanding and manipulating large
models require visualization techniques to provide meaningful navigation capabilities
[15]. Semantic zooming is a Human-Computer Interaction (HCI) that can be applied
for this purpose. In contrast to physical zooming that changes the size of objects, se-
mantic zooming changes the type and meaning of information displayed by objects [4].

1 https://www.irisa.fr/triskell/Softwares/protos/kompren/

https://www.irisa.fr/triskell/Softwares/protos/kompren/
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For instance, as shown in Fig. 1a, semantically zooming on class inheritance extracts
super-classes of a given class. We can notice that semantic zooming is different from
model slicing for two reasons: the extracted slice does not necessarily conform to the
metamodel and is not saved as a new model but used by HCI to perform semantic
zooming.

(a) Viewing Super-classes of the UML Class
Class

(b) Complex Mechanical Model of a Building,
extracted from [14]

Fig. 1. Examples of Semantic Zooms

Model slicing and semantic zooming are not limited to the computer science domain. In
the design and construction industry, recent works proposed a model-driven approach
for the interoperability of building models [14]. Such models are complex and need
tools to extract information relevant to a particular concern and stakeholder. For exam-
ple, Fig. 1b shows the mechanical model of a building. Mechanical model stakeholders
may want to focus on the details of a given location or mechanism of the building.

Use case 3: Model Monitoring at runtime. Monitoring models at runtime is an
important feature to control their evolution. For example, component-based model
stakeholders may want to monitor only component activations among all the different
possible modifications. Thus, dedicated tools need to extract only information relevant
to component activation. Such information must be incrementally extracted to improve
performance on large models.

3 Overview

Figure 2 provides an overview of the proposed approach to model model slicers. The
core contribution of this paper is a modeling language dedicated to the construction
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of model slicers. The language is called Kompren. All the concepts and relations of
Kompren are captured in a model slicer metamodel (MSMM at the top of figure 2).
A model slicer model (MSM) expressed with Kompren refers to a set of classes and
relations from the input metamodel. Instances of the referenced classes and relations
will be selected for slicing in the input model. Consequently, MSMM points to elements
Ecore to enable Kompren models to use elements from an input metamodel. MSMM
also points to Kermeta, an action language used to specify the behavior of a slicer.
Kompren’s compiler processes a Kompren model defined for an input metamodel, and
automatically generates an actual model slicer function (MSF).

Fig. 2. Overview for Modeling Model Slicers with Kompren

The Kompren model can defined elements that are generated as parameters for the
model slicer function. These parameters allow adjusting the slicing process to an actual
instance of the input metamodel. Once the function’s parameters are set, the model
slicer function processes an input model to automatically extract a model slice from it.

This global approach is a two-level generation process: Kompren’s compiler gener-
ates a model slicer function, which in turn generates a model slice. From a methodolog-
ical perspective, we also distinguish two roles for Kompren users:

– Domain expert. The domain expert knows the domain captured in the input meta-
model and knows its concepts and relationships. This person is thus in charge of
leveraging this domain in order to model one or several model slicers that are rele-
vant for this domain. The domain expert selects the elements in the metamodel that
will be processed by the model slicer.

– Domain users create models in the domain. These users, through their modeling
activities can create large instances of the input metamodel. At some point they
need to extract slices thanks to the model slicer function. These users parameterize
the model slicer according to their need and according to the values in the instance.



66 A. Blouin et al.

4 Model-Driven Specification of Slicers

4.1 Expected Features for a Model Slicer

Basically a Model Slicer Model (MSM) enables the specification of classes and prop-
erties whose instances must be selected from a given input model. Input models can be
either structural or behavioral. In both cases, their slicing consists in slicing the structure
of their metamodel. We distinguish two generation modes of a model slicing function
(MSF) from a MSM. Below, we detail and illustrate these two modes through examples
based on the class diagram input metamodel (Fig. 3a) and the input model shown in
Fig. 3b.

(a) Input Class Metamodel (b) Input Class Model

Fig. 3. Class Model Example

– The strict mode (by default) generates a MSF that extracts model slices that satisfy
all the structural constraints imposed by the input metamodel. Thus, by default a
slice is a valid instance of the input metamodel.

For example, Fig. 4a is a strict slice of Fig. 3b that conforms to the class diagram
input metamodel.

– The soft mode relaxes the conformity constraint over model slices (ensured by the
strict mode) in exchange of additional features for model slicer modeling. This
mode is an answer to the usages illustrated in the motivating examples where slices
are not instances of the input metamodel. In particular, the previous examples have
motivated the need for the following features in the soft mode:
• Add an opposite property in the input metamodel. For example, Fig. 4b is

a slice of 3b that selects A and its subclasses. To ease the slicing of the input
model, the MSM requires the opposite of the superTypes property in the
input metamodel.

• Add constraints to filter the sliced elements. For example, Fig. 4c is a slice
of 3b that selects A and only its composite references. Similarly, Fig. 4d is a
slice of 3b that selects B and its supertypes within a radius of 1.
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• Enlarge the slicing output format. For example, instead of saving the sliced
elements, they could be used to print their relative information. Other usages
such as the notification of external tools must be also considered.

• Automatically update slices. On input model changes, the MSF automatically
updates the slice.

(a) Strict Mode (b) Opposite (c) Constraint (d) Radius

Fig. 4. Class Model Slices

4.2 Kompren Abstract Syntax

The metamodel shown in Fig. 5 describes the abstract syntax of Kompren. An instance
of this metamodel is a Model Slicer Model (MSM). The main package is slicer. In this
package, a Slicer is mainly composed of SlicedElements. These sliced elements cor-
respond to the classes (SlicedClass) and the properties (SlicedProperty) of interest in
the Model Slicing Function (MSF). All sliced elements belong to the input metamodel
identified in the slicer by its URI (uriMetamodel ). Optional SlicedElements (i.e. isOp-
tion is true) are options of the generated MSF. This lets the domain user choose whether
an element is selected or not.

Fig. 5. Model Slicer metamodel
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A SlicedClass refers to a class (EClass) in the input metamodel (domain). All in-
stances of a referenced class in a given input model are selected by the MSF. Then ctx
(contained in SlicedClass) serves as a temporary variable to successively manipulate
each instance (i.e. an iterator). The type of this iterator (type in VarDecl) must corre-
spond to the sliced class. This constraint can be formalized using OCL as follows:

1 context SlicedClass inv:
2 self.domain = self.ctx.type

Similarly, a SlicedProperty refers to a property (EStructuralFeature) in the input
metamodel. All instances of a referenced property in an input model are selected by
the MSF. The src and tgt iterators allow the manipulation of the property’s source and
target. The types of these iterators correspond to the source and the target class of the
property:

1 context SlicedProperty inv:
2 (self.domain.eContainingClass = self.src.type) &&
3 (self.domain.eType = self.tgt.type)

In addition, a sliced property may define an OppositeCreation to precise the creation
of an opposite property whose the role is given by the name.

We assume in this paper an input metamodel defined with an existing object-oriented
metamodeling language. We use in our experiments the Ecore metamodeling language
provided by the Eclipse Modeling Framework2 whose elements are imported in the
package ecore. In Ecore, a class and a property are identified by respectively an EClass
and an EStructuralFeature. Another object-oriented metamodeling language could be
easily considered in Kompren.

Moreover, the iterators on sliced elements (instances of the specified SlicedClass
and SlicedProperty) allow the domain expert to express the expected behavior for each
selected instance. The effect of the MSF on each selected instance is described as an
expression using an action language. In our experiments, we use the action language of
Kermeta [11] whose the corresponding metamodel is imported in the package kermeta.
Another action language could be easily considered in Kompren.

The two modes previously introduced in Section 3 are supported by Kompren. By
default, a MSF is generated according to the strict mode. By setting the attribute strict
(in Slicer) to false, the MSF is generated according to the soft mode.

In that case, the remaining concepts in the Kompren metamodel are used to specify
specific behaviors of the generated MSF. The expressions onStart and onEnd are used
to add a particular behavior in the MSF, which are respectively applied before and after
the visit of the input model. Expressions defined to bring executability to slicers may
require classes provided by third party libraries, attributes or operations needed to the
slicing process. Thus, the domain expert can specify an helper that will contain this
information.

The radius and the constraints can be used to filter the sliced element in the input
model. The radius precises in the MSM the focusedClasses for which the MSF should
be limited to a selection within a given radius. The focused classes must be included in
the sliced classes that can be formalized as follows:

2 http://www.eclipse.org/modeling/

http://www.eclipse.org/modeling/
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1 context Slicer inv:
2 not self.radius.oclIsUndefined() implies
3 self.slicedElements->select{c | c.isTypeOf(SlicedClass)
4 }->includeAll(self.radius.focusedClasses)

The value of the radius must be specified by the domain user as a parameter of
the MSF. The constraints allow the domain expert to define a condition that must be
respected to trigger the slicing of the element targeted by the condition.

The inputClasses precise the type of instances that the MSF will take as input to start
the slicing.

Finally, the attribute active permits to specify if the MSF must be executed as a batch
or an active process. By default, the generated MSF is a batch process executed a single
time on the input model. By settings the attribute active to true, the generated MSF
is executed a first time and then observes modifications applied on the input model in
order to incrementally update the slice.

4.3 Concrete Syntax

A textual concrete syntax has been defined for Kompren allowing the domain expert to
define a Model Slicer Model (MSM). As an example, the following listing shows the
active and soft MSM ClassModelSlicer (cf. line 1), for the metamodel in Fig. 3a (cf.
line 2). The classes of the instances used to launch the Model Slicing Function (MSF)
are declared line 3.

Thereafter, line 4 specifies a sliced class while lines 5 to 8 specify sliced proper-
ties. An expression defined for the sliced class Class is described line 4 where cl
refers to the context of the sliced class. An optional property is illustrated line 5 thanks
to the keyword option. An opposite to a property is defined thanks to the keyword
opposite as shown line 6 where lowerTypes is the name of the opposite.

Line 9 illustrates how to declare a radius based on Class to limit the selection
in the input model by the MSF. The definition of a constraint consists in specifying a
Kermeta boolean expression as shown line 10. Lines 11 to 13 illustrate the definition of
the preprocessing, the post-processing and the helper of the slicer.

1 slicer active soft ClassModelSlicer {
2 domain: platform:/resource/classModel.ecore
3 input: Class
4 slicedClass: Class cl{ stdio.writeln(cl.name) }
5 slicedProperty: Class.superTypes option
6 slicedProperty: Class.superTypes opposite(lowerTypes)
7 slicedProperty: Class.structuralFeatures
8 slicedProperty: Reference.type
9 radius: Class

10 constraint: Reference.containment
11 onStart { stdio.writeln("Starting slicing") }
12 onEnd { stdio.writeln("Ending slicing") }
13 helper { /* Definition of the helper */ }
14 }
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4.4 Semantic

As defined in Fig. 2, model slicer models (MSM) are compiled into model slicer func-
tions (MSF). This compilation produces Kermeta programs composed of two parts. The
first part augments the input metamodel with required information. These information
are the opposites specified in MSMs and methods used to explore the input model.
These methods are generated for the metamodel elements selected in MSMs. If the
slicer is defined as strict, these methods are also generated for elements not selected in
MSMs but required to assure the semantic properties.

The second part generates the slicer function. The preprocessing (onStart) and the
post-processing (onEnd) methods and the Kermeta code corresponding to the helper
are created. From the input classes, the radius and the constraints defined in MSMs are
generated as parameters of the slicer function. For instance, the following Kermeta code
illustrates such generation where: launch is the operation that starts the slicing; input-
Class:Class[0..*] defines the Class instances used to launch the slicing; radius:Integer
specifies the slicing radius; composition:Boolean is a constraint that declares if only
composition references must be sliced.

operation launch(inputClass:Class[0..*], radius:Integer,
composition:Boolean)

Once generated, the slicer function can be executed by calling the launch opera-
tion with its required parameters. The preprocessing is first executed. Then begins the
exploration of the input model using the input instances given as parameter. Each of
these instances is visited. Visiting an instance or a property consists in executing the as-
sociated behavior: for strict slicers, adding the sliced instance to a new model; for soft
slicers, executing the corresponding Kermeta expression defined by the developer. Each
selected property of the current visited class instance are then explored (if they satisfy
the constraints defined in MSMs) to recursively explore their target class instance.

Starting at 0, a value is incremented on each visited class instance concerned by the
radius. The slicing process thus stops when no elements can be sliced anymore or when
this value is greater than the radius given as parameter. When the slicing has stopped,
the post-processing is executed.

About active slicers, because Kermeta does not manage observability of Ecore mod-
els, we use the ActiveKermeta toolkit [3]. ActiveKermeta replaces Kermeta batch op-
erations, such as c.each{e|...} that visits each element e of collection c, by active op-
erations, such as c.eachAdded{e | ...} supplemented by c.eachRemoved{e | ...} that are
respectively called when e is added or removed from c.

5 Validation

In this section, we apply our model slicing approach to three heterogeneous case studies
illustrating the main usages that can be done using our approach.

5.1 Model Operation Analysis

Extracting static metamodel footprint for a model operation defined over a metamodel
MM1 (in our case the Kermeta metamodel) consists in extracting the elements of MM1
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used by the operations [5]. In this section, we use Kompren to model the footprint
generator proposed by Jeanneret et al. [5] and the metamodel pruner proposed by Sen
et al. [12]. The Kompren model is smaller than the initial model slicers: around 70 LoC
have been needed (see details below) while the static metamodel footprinting and the
metamodel pruner both required around 1200 Kermeta LoC. This use case illustrates
the ability of Kompren to ease the slicer definition process.

The effective metamodel extraction is performed through two model slicers: a first
slicer analyzes the model operation to extract the metamodel footprint, i.e. the list of
MM1 elements used by the operation; a second slicer uses this footprint to extract the
effective metamodel from MM1. The effective metamodel extraction could have been
defined using a single slicer. We divided this operation into two slicers to separate the
concerns and be modular.

The first slicer extracts the list of MM1 elements used by the operation. Since this
slice does not conform to MM1, we model the slicer in soft mode (line 1). The model
operation is implemented in Kermeta. Thus, it is an instance of the Kermeta metamodel
MMop and the slicer explores classes and properties of MMop (lines 5 to 15). The
result of the slicing function will be the list of classes used in the operation (line 4).
This list is defined in the helper (line 17). By default all the classes, that can come
from either MM1or MMop, are explored. Because only the classes from MM1 must
be stored, a helper is defined to select them (lines 18 to 22).

1 slicer soft OperationStaticAnalysis {
2 domain: platform:/resource/kermeta.language.model/src/main/ecore/kermeta.ecore
3 input : kermeta.structure.ModelingUnit // The model operation to analyse.
4 slicedClass: kermeta.structure.ClassDefinition cd { addClassDefinition(cd) }
5 slicedProperty: kermeta.structure.ModelingUnit.packages
6 slicedProperty: kermeta.structure.Package.ownedTypeDefinition
7 slicedProperty: kermeta.structure.ClassDefinition.ownedOperation
8 slicedProperty: kermeta.structure.ClassDefinition.ownedAttribute
9 slicedProperty: kermeta.structure.Operation.ownedParameter

10 slicedProperty: kermeta.structure.TypedElement.type
11 slicedProperty: kermeta.structure.ParameterizedType.typeDefinition
12 slicedProperty: kermeta.structure.Operation.body
13 slicedProperty: kermeta.behavior.VariableDecl.type
14 slicedProperty: kermeta.behavior.Block.statement
15 //... 29 properties of MMop are sliced.
16 helper {
17 reference metamodelClassesUsed : ClassDefinition[0..*]
18 reference inputMetamodel : ModelingUnit
19 //... Load of the input metamodel.
20 operation addClassDefinition(cd : ClassDefinition) : Void is do
21 if(inputMetamodel.contains(cd)) then metamodelClassesUsed.add(cd) end
22 end
23 }}

The second slicer, modeled as follows, uses the footprint computed by the first one.
This slicer is modeled in strict mode (line 1) to create an output model that is a strict
slice of the input metamodel MM1 (specified line 2). This slicer slices all the classes
(line 4) linked to the input classes by inheritance or properties (lines 10 to 12). All
properties and operations of the class sliced are included (lines 5 to 9). Because Class-
Definition is linked to Package by a 1..1 reference, this relation and its target class must
be sliced to extract a strict slice. Since we model in strict mode, the packages containing
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sliced elements are sliced even if Package is not modeled as a slicedClass. This mode
also includes 1..n attributes of classes ClassDefinition, Property and Operation.

1 slicer strict MetamodelFootprintExtraction {
2 domain: platform:/resource/kermeta.language.model/src/main/ecore/kermeta.ecore
3 input : kermeta.structure.ClassDefinition
4 slicedClass: kermeta.structure.ClassDefinition
5 slicedClass: kermeta.structure.Property
6 slicedClass: kermeta.structure.Operation
7 slicedProperty: kermeta.structure.ClassDefinition.ownedAttribute
8 slicedProperty: kermeta.structure.ClassDefinition.ownedOperation
9 slicedProperty: kermeta.structure.Operation.ownedParameter

10 slicedProperty: kermeta.structure.TypedElement.type
11 slicedProperty: kermeta.structure.TypedDefinition.superType
12 slicedProperty: kermeta.structure.ParameterizedType.typeDefinition
13 }

5.2 Bringing Semantic Zoom to Model Visualization

Model slicing can be used to bring semantic zooming to model visualization. In this
case, the slicer defines which classes and relations of the visualized model must be
displayed in the user interface (UI). For example, the following code defines a slicer that
slices Kermeta models. Because the goal of this slicer is to notify the UI about sliced
elements, it is defined as soft (line 1). It takes as input instances of ClassDefinition
(line 3) selected by users using the UI. As shown in Fig. 6, the UI displays classes,
inheritances and properties. At the beginning of the slicing all these model elements are
hidden (line 6). Then, when model elements are sliced, the UI is notified that they must
be shown (lines 9, 11 and 14). At the end of the slicing, the UI is updated to perform the
graphical changes (line 7). Some properties must be explored to access the instances to
slice (lines 13 to 17). All these properties to slice are defined as optional. Thus, for each
feature of the model visualizer (e.g. showing the inheritance tree of a selected class),
developers can define which properties must be explored.

1 slicer soft kermetaSemanticZoom {
2 domain: platform:/resource/kermeta.language.model/src/main/ecore/kermeta.ecore
3 input: kermeta.language.structure.ClassDefinition
4 radius: kermeta.language.structure.ClassDefinition
5 constraint: kermeta.language.structure.Property.lower>0
6 onStart { extern ClassDiagramView.hideAllElements() }
7 onEnd { extern ClassDiagramView.updateView() }
8 slicedClass: kermeta.structure.ClassDefinition cd{
9 extern EntityView.showClass(cd) }

10 slicedClass: kermeta.structure.Property prop {
11 extern ReferenceView.showReference(prop.name, prop.owningClass,
12 prop.type.asType(Class).typeDefinition) }
13 slicedProperty: kermeta.structure.TypeDefinition.superType option src tar{
14 extern InheritanceView.showInheritance(src, tar.asType(Class).typeDefinition) }
15 slicedProperty: kermeta.structure.ParameterizedType.typeDefinition option
16 slicedProperty: kermeta.structure.ClassDefinition.ownedAttribute option
17 slicedProperty: kermeta.structure.TypedElement.type option
18 }

The UI shown in Fig. 6 provides a spinner that permits to define the radius effect
of the slicing (defined line 4). The UI also provides a check-box called ”With card 0”.
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This check-box permits to set if properties which lower cardinality equals 0 must be
sliced or not (line 5). The graphical representation of the model and the widgets of the
UI are defined separately from the slicer.

Fig. 6. Class Diagram Visualizer Providing Semantic Zooming Features

5.3 Monitoring Component-Based Models at Runtime

Our model slicing approach can also be used to slice models at runtime, i.e. the slicing
process is no more a batch process but is sustained at runtime to re-evaluate model
elements that change. For example, Kevoree is a component-based model that manages
addition and removal of components at runtime3. These changes can be monitored to
provide stakeholders with such information.

(a) Excerpt of the
Kevoree Metamodel

1 slicer active soft KevoreeComponentMonitoring {
2 domain: platform:/resource/kevoree/kevoree.ecore
3 input : kevoree.ContainerRoot
4 slicedClass: kevoree.ContainerNode
5 slicedClass: kevoree.ComponentInstance ci
6 { table.addComponent(ci) }
7 { table.removeComponent(ci) }
8 slicedProperty: kevoree.ContainerRoot.nodes
9 slicedProperty: kevoree.ContainerNode.components

10 helper {
11 require "platform:/resource/kermeta/ComponentTable.km"
12 attribute table: ComponentTable
13 }}

(b) The slicer model

Fig. 7. Model Slicer Model for Monitoring Kevoree Component Additions and Removals

Fig. 7a is the excerpt of the Kevoree metamodel related to component additions
and removals. Fig. 7b gives the model slicer model (MSM) dedicated to the slicing
at runtime of component additions and removals. In the Kevoree metamodel, activated
components are contained into the composition components of class ContainerNode.
The component model can contains several node containers (composition nodes). Thus,

3 http://dist.kevoree.org/

http://dist.kevoree.org/
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these two compositions components and nodes are selected by the slicer (lines 8 and 9).
Classes ContainerNode and ComponentInstance are defined as the classes to slice (lines
4 and 5). The input instances given to the active slicer are ContainerRoot instances
(line 3). This MSM differs from the previous ”batch” slicers in two points. Firstly line
1, the keyword active means that the generated slicer function must remain active by
updating the sliced output model whenever the input model changes. Secondly, the
attribute table (defined in the helper line 12) is managed throughout two subsequent
blocks: similarly to batch slicers the first block defines how to update the table whenever
a new component instance ci appears (line 6); the second block defines how to update
the table whenever ci is removed (line 7).

6 Related Work

Although model slicing has been studied in literature, most of the inventoried ap-
proaches focus on a particular DSML. For instance, [6,2,10,9,13] focus on the slicing
of UML models whereas [8] proposes the slicing of state-based models. Because of the
diversity of DSMLs, our approach aims at being more generic to allow the specification
of slicers for any DSML. Our generative approach aims at reducing the programmatic
effort spent for the development of model slicers, while giving domain users the ability
to customize the application of the MSF (e.g. radius).

We identified two kinds of output produced by the slicers of the current approaches.
In the first case, the output is a model that conforms to the input metamodel, such as
in [12,10,7]. In the second case, the output is a model that may be not conform to the
input metamodel, such as in [5]. A key concern that our slicing proposal insists on is
the ability for developers to define the kind of output they want. For example, a strict
slicer will produce models that conform the input metamodel with respect to the model
slicing definition. But we also identified several use cases, such as semantic zooming or
model operation analysis, where the expected output is neither a model that conforms
to the input metamodel nor even a model. Thus our slicing proposal permits developers
to define soft slicers which output is customizable.

Androutsopoulos et al. [1] propose different finite state machine slicing algorithms.
Their basic slicer removes a set of transitions to ignore and useless states from finite
state machines. This algorithm can be performed using our approach by defining pa-
rameters that state the slicer not to slice transitions having given names. Their other al-
gorithms extend the first one by removing untriggerable transitions and merging states
having identical semantics. Our approach does not permit to define such slicers.

Kelsen et al. [7] propose an approach for decomposing models into sub-models to
tame the complexity of large models. This approach has similarities with ours since
they are both not dedicated to a unique DSML and they can extract sub-models of
interest that still conforms to the input metamodel. However, their approach does not
permit developers to specify the slicing process, i.e. to select which elements of the
input models must be sliced, and is restricted to the strict model slicing usage.

Shaikh et al. [13] use model slicing for verification purpose. The goal of this ap-
proach is to check if an input UML model supplemented by OCL constraints has legal
instances. OCL constraints are thus analyzed and interpreted to identify which model
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elements are constrained. If their application is dedicated to one of our use case (model
operation analysis), such OCL analyzes and interpretation is much more complex than
extracting types.

Lallchandani et al. [9] propose a slicing technique for UML architectural models.
Even if the proposed approach is limited to UML architectural models, it uses slicing
for different purposes such as regression testing and understanding large architectures.

Obeo Designer4 offers the possibility to easily create graphical viewpoints on large
models. The representation of a slice can be seen as a viewpoint. However, the tool is
limited to visualization and does not address manipulation or serialization of the slices.

7 Conclusion

A number of recent work inspired by program slicing [16] have proposed operations
that extract sub parts of models for different purposes [13,10,7,5]. These operations
are extremely helpful to assist comprehension when building large models. With the
growing adoption of domain-specific modeling, these model comprehension abilities
should be available for any domain-specific modeling language. However, all existing
model slicing approaches are dedicated to one modeling language and one form of slice.

In this work we analyze needs for model slicing to precisely identify expected fea-
tures for domain-specific model slicers. The major contribution of this paper is the
Kompren language to model a model slicer for a domain-specific metamodel. We de-
velop a two-level generative approach on the basis of Kompren: Kompren’s compiler
processes Kompren models to automatically generate an actual model slicer; this slicer
can in turn automatically extract model slices from domain-specific models.

This paper presents the details of Kompren’s features, abstract and concrete syntax
and compiler. We also demonstrate Kompren’s expressiveness through three different
cases that aim at slicing three different forms of slices in three different domains. In
particular we model the slicers defined by Jeanneret et al. [5] and by Sen et al. [12]
and show that the Kompren models (a.k.a. model slicer models) are much smaller and
easier to understand and evolve than the original slicers.

Following our evaluation on the expressiveness of our language, we plan to experi-
ment the scalability of our approach. It could be interesting to explore MSM debugging
as well.
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Abstract. Applying Model-Driven Engineering (MDE) in industrial-
scale systems requires managing complex models which may be very
large. These models must be persisted in a scalable way that allows their
manipulation by client applications without fully loading them.

In this paper we propose Morsa, an approach that provides scalable
access to large models through load on demand; model persistence is
supported by a NoSQL database. We discuss some load on demand al-
gorithms and database design alternatives. A prototype that integrates
transparently with EMF is presented and its evaluation demonstrates
that it is capable of fully loading large models with a limited amount
of memory. Moreover, a benchmark has been executed, exhibiting bet-
ter performance than the EMF XMI file-based persistence and the most
representative model repository, CDO.

Keywords: model persistence, scalability, large models.

1 Introduction

During the last decade, the growing maturity of Model-Driven Engineering
(MDE) technologies is promoting their adoption by large companies [1][2], taking
advantage of their benefits in terms of productivity, quality and reuse. However,
applying MDE in this context requires industry-scale tools that operate with
very large and complex models. One such relevant operation is model persis-
tence and the corresponding access, which is typically supported by modeling
frameworks. A well-known example of a modeling framework is EMF[3].

One critical concern for the industrial adoption of MDE is the scalability
of tools when accessing large models. As noted by [4], “scalability is what is
holding back a number of potential adopters”. Scalability may be tackled in
different ways. One approach is the modularization of modeling languages [4]
to keep models at a reasonable size. However, the complexity of large mod-
els makes it difficult to automatically divide them into parts that are easily
accessible [5]. For example, code models extracted from a legacy system be-
ing modernized may not be properly modularizable because of the complexity
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and Fundación Séneca (grant 14954/BPS/10).

J. Whittle, T. Clark, and T. Kühne (Eds.): MODELS 2011, LNCS 6981, pp. 77–92, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



78 J. Espinazo Pagán, J. Sánchez Cuadrado, and J. Garćıa Molina

of their interconnections, hence having a scalable model persistence solution
would be mandatory [6]. In EMF models are usually stored in XMI files, which
have to be parsed in order to build models in memory. The usual EMF ap-
proach consists of a SAX parser that fully reads an XMI file and builds the
entire model in memory at once. This solution does not scale since large mod-
els may not be fully kept in memory, causing the parser to overflow the client.
Therefore handling large models requires some mechanism that allows the client
to load only the objects that it will use [5]. Model repositories are emerging
as persistence solutions for large models, providing remote model access with
advanced features such as concurrent access, transaction support and version-
ing; model repositories are discussed in Section 7. Currently, CDO is the most
mature repository for EMF; however, it does not scale properly as shown in
Section 8.

Another concern that arises when client applications access persisted models
is tool integration. The integration between a persistence solution and any client
must be transparent, that is, it must conform to the standard model access in-
terface defined by the modeling framework (e.g. the Resource interface of EMF).
Moreover, it would be convenient for a persistence solution not to require any
preprocessing on the (meta)models in order to load or store them, e.g. requiring
source code generation for the persisted (meta)models [8][9] .

In this paper we present Morsa, a model persistence solution aimed at achiev-
ing scalability in large model access. While other approaches use object-relational
mappings [8], Morsa relies on a document-based NoSQL database to achieve
server scalability; moreover, document-based NoSQL provides a more natu-
ral model persistence backend than object-relational mappings since, for ex-
ample, many-to-many relationships are represented just as any other kind of
feature, while object-relational-mappings require intermediate tables. Morsa han-
dles client scalability using a load on demand mechanism supported by an ob-
ject cache which is configurable with different policies. We discuss how these
policies fit for common model traversals such as depth-first order and breadth-
first order. We contribute a prototype implementation for EMF [10] that inte-
grates transparently with client tools such as model transformation languages.
Its evaluation demonstrates that it is capable of fully loading large models with a
limited amount of memory. Moreover, a benchmark has been executed, exhibit-
ing better performance than the EMF XMI file-based persistence and CDO.
In this paper we focus only on accessing models. Our implementation supports
storing models into the repository, but the details are out of the scope of this
paper.

The rest of the paper is structured as follows: Section 2 introduces the NoSQL
movement and some terminology about models; Section 3 gives an overview of
our approach; Sections 4, 5 and 6 discuss the database and loading algorithm
design, and the integration and implementation of our approach, respectively;
Sections 7 and 8 comment the related work and the evaluation of Morsa and
finally Section 9 shows our conclusions and further work.
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2 Background

As introduced in the previous section, this paper deals with the problem of per-
sisting and accessing large models. In this section, the basic concepts regarding
models and model persistence that will be used in the rest of the paper are
explained. Moreover, the NoSQL paradigm is introduced as an alternative to
relational databases and object-relational mappings for model persistence.

2.1 Metamodeling

A model is an instance of a metamodel which defines the metaclasses and rela-
tionships that the model elements conform to. It can also be seen as a directed
labeled graph, where each node represents an object (i.e., a model element) and
each edge represents a relationship between objects, which may be containment
or non-containment relationships. A containment relationship specifies a hierar-
chical transitive link between a parent object (source) and a child object (target),
defining tree-like structures. Given this graph nature, the concepts of ascendant,
descendant, sibling, breadth, depth, etc. common to this mathematical structure
can also be used for models. An object that has no ascendants is called a root
object.

Non-containment relationships define graph-like structures where objects may
refer to non-directly related objects (i.e. non-sibling model elements sharing at
least one ancestor). A special kind of non-containment relationship is instanceOf,
which links a model element to the metamodel element that it conforms to. Since
a metamodel is also an instance of a meta-metamodel (i.e. a metamodeling lan-
guage such as Ecore), it may also be seen as a labeled directed graph containing
objects that refer to each other, allowing for a homogeneous management of both
models and metamodels.

2.2 Model Persistence

Models can be stored into persistence solutions for permanent storage using dif-
ferent approaches. These persistence solutions may be regular files (e.g. XMI),
relational databases through object-relational mappings and, at a higher abstrac-
tion level, model repositories [8]. Modeling frameworks usually define persistence
interfaces that allow client applications to access persisted models, e.g. the EMF
Resource interface. These interfaces provide methods for fully loading, unload-
ing and storing models and in some cases, loading single objects (e.g. EMF Re-
source’s getEObject method). Storing a model consists in representing the object
graph in the persistence solution and loading a model consists in rebuilding that
graph at the client application. If the whole object graph is rebuilt, the model
is fully loaded; otherwise, if only a subgraph (i.e. model partition) is loaded, the
model is partially loaded. Client applications use these basic functions to access
models and traverse them for different purposes. For example: a model-to-model
transformation may search for a particular object that satisfies a given condition
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and then traverse all its descedants; a model-to-code transformation may simply
traverse a whole model, processing each object once or twice, etc.

A persistence solution provides transparent integration when client applica-
tions may access it using the persistence interface defined by the corresponding
modeling framework without changing the models or metamodels, generating
persistence-specific source code for metamodels, or any other form of specific
pre or post-processing. For example, the XMI file-based persistence solution for
EMF does not require generating metamodel-specific Java classes because it may
use dynamic objects, which can be generically built at runtime.

2.3 The NoSQL Movement

The NoSQL [16] movement is composed of several specialized database paradigms
that are used in very large web application scenarios such as Facebook, Google,
Amazon, etc. In NoSQL, performance and scalability are more important than
the ACID properties (Atomicity, Consistency, Isolation, Durability), proposing
the BASE properties (Basically Available, Soft-state, Eventual consistency).
Given the objectual structure of the data that are stored in some web appli-
cations, object-relational mappings have become an expensive solution that re-
duces their performance, while the different NoSQL databases are best suited for
representing object models. There are also implementation differences between
traditional relational databases and NoSQL databases, such as memory-based
data storage instead of disk-based storage, logging and locking. [11].

The most used NoSQL database paradigms are key-value stores and document
databases. Key-value stores have a simple data model in common: a map/dic-
tionary allowing users to put and request values by key. They favor scalability
over consistency and most of them omit rich querying and analytics features. A
well-known key-value store is Amazon’s Dynamo [12]. Document databases also
use keys and values, but they are encapsulated into top-level structures called
documents, which are schemaless. CouchDB [13] and MongoDB [14] are the ma-
jor representatives of document databases. There is no standard query language
in NoSQL; querying capabilities vary from one product to another. For exam-
ple, CouchDB uses static view functions that implement the map/reduce data
processing scheme [15], requiring a view function for each possible query; Mon-
goDB uses a query-by-example approach through JSON documents and Dynamo
queries consist simply in requesting values by their keys. The NoSQL movement
has some features that are beneficial to our approach:

i. Scalable: as explained before, many MDE applications involve large models.
Applications involving large amounts of data representing object models
scale better in NoSQL than in relational databases [16].

ii. Schemaless : having no schemas means having no restrictions to co-evolve
metamodels and models. Relational repositories usually create database
schemas for each stored metamodel, difficulting their evolution and the con-
formance of existent models to the newer versions of their metamodels [8].
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iii. Accessible: many NoSQL databases offer their data as JSON objects [17]
through APIs that can be accessed via HTTP calls. This provides additional
opportunities to access models from web browsers, web services, etc.

3 Overview

We propose Morsa, a persistence solution for managing large models. It relies
on a document-based NoSQL database and integrates transparently with mod-
eling frameworks. The architecture of our approach is shown in Figure 1. Morsa
consists of a client and a NoSQL-based persistence backend.

Fig. 1. Architecture of Morsa

The client side of Morsa supports tool integration through a driver that imple-
ments the modeling framework persistence interface, allowing client applications
to access models in a standard way. Since Morsa is aimed at accessing large
models, a load on demand mechanism has been designed to provide clients with
efficient partial load of large models, achieving scalability [5]. This mechanism
relies on an object cache that holds loaded model objects in order to reduce
database queries and manage memory usage; it is managed by a configurable
cache replacement policy that decides whether the cache is full or not and which
objects must be unloaded from the client memory if needed. Section 5 discusses
the model loading algorithm and the different cache replacement policies. On
the server side, a NoSQL document database provides model persistence. We
have chosen this kind of database because it provides a simple and natural
way to map model elements (objects) to database elements (documents). More-
over, its schemaless architecture is beneficial for model persistence as stated
above.

A running example is used to illustrate the design of our approach. It is
based on the Grabats 2009 [18] reverse engineering case study, which is aimed
at managing large models representing Java source code. A simplification of
the JavaMetamodel metamodel provided by the contest is shown in Figure 2,
representing Java projects, packages and types, and the source code declarations
that are defined inside compilation units (i.e., .java files). The proposed test case
was to retrieve every TypeDeclaration which contains a MethodDeclaration for
a static and public method with the declared type as its returning type.
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Fig. 2. Grabats 2009 contest JavaMetamodel metamodel simplification

4 Persistence Backend Design

Morsa relies on a document-based NoSQL database persistence backend. The
main decision in its design was to choose the granularity of the documents, that
is, how many documents are needed to represent a model. We have considered
three alternatives of model granularity: one document per model, one document
per object and one document per model partition.

i. A model can be represented as a single document. This is possible since the
document-based NoSQL paradigm allows documents to store any number of
objects, representing the structure of the model. However, this architecture
may not scale for large models because it implies loading an entire model
at once; it also has issues related to the maximum document size that some
databases like MongoDB impose. Besides, querying single objects or parti-
tions is cumbersome because nested objects are not globally visible.

ii. The opposite design, that is, one document per object, does not exploit
the nesting capabilities of document-based NoSQL databases, but supports
querying individual objects. However, object relationships have to be imple-
mented using database references, that is, values that represent document
identifiers, which are less efficient in time than nested objects. The resulting
architecture would somehow resemble a relational schema, but it must be
kept in mind that NoSQL is schemaless, so foreign keys between documents
are far more flexible than the ones of the relational paradigm, since they
may refer to any kind of model object.

iii. An intermediate solution would be to represent a model as a set of documents
representing model partitions. Each model partition would be composed of
objects that are always accessed together. Using partitions would speed up
model loading because less database connections would be needed to load an
entire model. Building these partitions requires access pattern analysis like
the one explained in [7]; however, since the database partition is static, no
optimal solution for every access pattern could be achieved.

Considering the previous discussion, we have designed Morsa using the second
choice, that is, a document per object. A Morsa document is composed of a <ID,
value, payload> tuple that where ID is the identifier of the object (object URI for
EMF), value cointains the values of the object’s features in a key-value format,
where the key is the name of the feature and the value is the serialization of
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Fig. 3. Persistence backend structure excerpt for the running example

its value as a string; finally, payload specifies persistence-related metadata, such
as references to the object’s metaclass, the model’s root object, etc. References
to other objects are serialized as document references to their IDs. An index
is created for every concrete metaclass, grouping their instances logically for
faster queries, both for the meta-metamodel (e.g. an index for each metaclass of
the Ecore meta-metamodel) and the metamodels (an index for each metaclass).
Metamodels and models are represented homogeneously: documents representing
model objects have references to the documents representing their corresponding
metaclasses.

A (meta)model is represented as an entry in an index document that maps
each (meta)model URI to an array of references to the documents that represent
its root objects. This design is particulary useful for metamodeling languages
like Ecore, where every object except the root ones must be contained by other
objects, thus saving space in the index document.

Figure 3 shows an excerpt of the persistence backend structure for the running
example. At the metamodel-level, the index for EPackage holds the document
that corresponds to the root package of the JavaMetamodel (shown in Figure
2); this document references the documents that correspond to each metaclass
(JavaModel, JavaProject, SourcePackage, etc.), which are held by the EClass in-
dex. At the model level, there is an index for each metaclass. The index document
references a document representing a JavaModel, which is held by the JavaModel
index; this document references a document that represents a JavaProject in its
corresponding index and so on.

5 Model Loading

Our approach is intented to manipulate large models. In this paper we focus on
the task of model loading, which involves three scenarios that require different
approaches and algorithms: full load, single load on demand and partial load on
demand. The load on demand scenarios have been tackled using an object cache
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managed by a cache replacement policy. Metamodels are always fully loaded
and kept in memory for efficiency reasons: they are relatively small compared
to models and it is worth loading them once instead of accessing the database
every time a metaclass is needed. Each object is identified in the database by
a global ID attribute (object URI in EMF). A mapping between loaded objects
and their IDs is held by the object cache in order to know which objects have
been loaded, preventing the driver to load them again.

Consider a model that is small or medium-sized, hence it can be kept in
memory by a client application. If the whole model is going to be traversed, it
would be a good idea to load the model once, saving communication time with
the persistence backend. We call this scenario full load and this is the way EMF
works when loading XMI files. We aim at supporting full load with the least
memory and time overhead possible. The Morsa full load algorithm works as
the one for load on demand, which will be explained below, but considering an
unlimited object cache, breadth and depth.

5.1 Load on Demand

Consider a model that is too large to be kept in memory by a client application;
consider also a model that can be kept in memory but only a part of it is going
to be traversed. A solution for both cases would be to load only the necessary
objects as they are needed and then unload them to save client memory. We call
this scenario load on demand. We define two kinds of load on demand: single
load on demand and partial load on demand.

A single load on demand algorithm fetches objects from the database one by
one. This behavior is preferred when the objects that need to be accessed are
not closely related (i.e, they are not directly referenced by relationships) and
memory efficiency is more important than network performance, that is, when
the round-trip time of fetching objects from the database is not relevant. The
resultant cache will be populated only with the traversed objects.

Fig. 4. Object loading in the running example: a) object model b) object cache

On the other hand, a partial load on demand algorithm fetches object clusters
from the database. The structure of a cluster is customizable: given a requested
object, its cluster may contain all its referenced objects, both directly and in-
directly within a certain depth and breadth values. For example, when loading
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the model shown in Figure 4(a), a partial load on demand algorithm configured
with a maximum depth and breadth of 2 would load cu0 (depth 1) and its two
first contained TypeDeclaration objects, td0 and td1 (depth 2, breadth 2), but
not md0 nor fd0 (depth 3). This behavior is preferred when all the objects that
are related to an object will be traversed soon and memory efficiency is less im-
portant than network performance, that is, when the round-trip time of fetching
objects from the database is critical. The resultant cache will be populated with
the objects that have been traversed and those expected to be traversed in the
near future. This is a simple form of prefetching that tries to take advantage of
spatial locality. Our load on demand algorithm works as follows:

1. The client application requests an object by its ID
2. The Morsa driver fetches the document identified by that ID
3. A new object is created, filling its attributes with the values stored in the

document and its references with proxies whose URIs refer to the referenced
documents. A proxy is a special object that does not hold any feature value
but an URI (containing the object ID and some persistence metadata such as
database URL) that allows it to be resolved, i.e., filled with its actual values.
In EMF, the idea of proxy is used to represent cross-resource references

4. The new object and its proxies are stored in the object cache, mapping them
to their IDs

(a) If single load on demand is being used, go to step 5
(b) If partial load on demand is being used, the documents that correspond

to the proxies are fetched all at once, saving networking time. The Morsa
driver resolves these documents recursively following the two previous
steps. This process stops if the cache becomes full or if the maximum
depth and breadth is reached

5. If the cache becomes overloaded, some objects of the cache are unloaded
6. The new object is returned to the client application, which can use it as a

regular object. When a reference is navigated and its value is a proxy, the
resolution of that proxy is automatically requested, executing this algorithm

The size limit of the cache is configurable in terms of object counting, but
this limit is soft because some modeling frameworks such as EMF require objects
to have their references filled, that is, their values must be fetched in the form
of proxies or actual objects. For example, consider Figure 4: an object cache
containing 2999 elements is shown (b); its size limit is 3000 objects. Because the
modeling framework requires an object to be fully filled, when cu0 is loaded its
5 contained TypeDeclaration objects (td0..td4 ) must also be fetched as proxies,
causing the cache to be overloaded with 3005 objects.

Whenever the cache becomes overloaded, the exceeding objects must be un-
loaded. A cache replacement policy algorithm selects the objects to be unloaded.
Unloading an object also implies downgrading it to a proxy, i.e. unsetting all
its features. A proxy requires less memory than a resolved object and it may be
freed by the underlying language if it is not referenced by any other object.
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5.2 Cache Replacement Policies

As introduced in the previous section, when the object cache becomes overloaded,
a cache replacement policy algorithm selects which objects will be unloaded to
free the client memory. We have considered four cache replacement policies:

i. A FIFO (First In-First Out) policy would unload the oldest objects in the
cache. This policy is useful when a model is traversed in depth-first order, but
only if the cache can hold the average depth of the model. On the contrary,
it would cause objects to be unloaded after being traversed and then loaded
again when requested for traversal.

ii. A LIFO (Last In-First Out) policy would unload the newest objects in the
cache. This policy is useful when a model is traversed in breadth-first order,
but only if the cache can hold the average breadth of the model. Both this
and the FIFO policies calculate the size of the partition directly contained by
the object that caused the cache overload and unloads that many objects. In
the example of Figure 4, a LIFO policy would unload the objects in positions
3001 to 3005, while a FIFO policy would unload first 5 objects in positions
1 to 5.

iii. A LRU (Less Recently Used) policy would unload the least used objects in
the cache. This policy is well known in the area of operating systems. It
would be equivalent to a FIFO policy for depth-first and breadh-first orders.

iv. A LPF (Largest Partition First) policy would unload all the objects that
conform the largest model partition contained in the cache. This is a conser-
vative solution that is useful when a model is traversed in no specific order.
It does not consider if the selected elements are going to be traversed so it
may lead to multiple loads of the same objects. This policy unloads at least
an amount of objects proportional to the maximum size of the cache.

The choice of which cache replacement policy is used is currently made by the
end-user. However, this choice could be automatically made by the Morsa driver
by analysis of (meta)models and access patterns (i.e. prefetching).

6 Integration and Implementation

Morsa is intented to be integrated with modeling frameworks and their applica-
tions. Our current prototype is integrated with EMF [3]. A transparent way of
achieving this integration is to design the Morsa driver as an implementation of
the persistence interface of the modeling framework (EMF Resource for EMF).
Persisting a model in Morsa is done without any preprocessing, since there is no
need of generating model-specific classes, modifiying metamodels or registering
them into the persistence solution, as opposed to other approaches [8][9][19].
Metamodels are seamlessly persisted if they are not already in the database.
Additional information for persistence configuration can optionally be passed
to the driver; Morsa uses the standard parameters of the EMF load and save
methods to pass this configuration information.
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Morsa supports both dynamic and generated EMF. A dynamic model object
is generated at runtime using EMF dynamic objects (instances of DynamicEOb-
jectImpl) which use reflection to generically instantiate metaclasses. On the other
hand, a generated model object is an instance of a metamodel-specific class that
has been explicitly generated through an EMF generator model. Dynamic ob-
jects are preferred for tool integration since they do not require code generation.
Other approaches [8] support only generated model objects reimplementing part
of the EMF framework to handle persistency.

We have developed a prototype that exhibits some of the features described
previously: EMF integration, single and partial load on demand, FIFO, LIFO
and LPF cache replacement policies and full store. Its integration in EMF in-
cludes all the methods defined in the Resource interface and also methods for
parent resolution (i.e., obtaining the container object of a given object) and
special partial loading methods such as loading every instance of a metaclass.

We have chosen MongoDB [14] as the NoSQL database engine for our pro-
totype; however, its architecture could be easily implemented in other engines.
MongoDB has JSON access, dynamic queries (as opposed to the static views
of CouchDB), server-side Javascript programming and uses BSON [17] objects
for communication which provide fast and bandwith-efficient object transfer be-
tween the client and the database. MongoDB uses collections to logically orga-
nize documents, like the indexes introduced in Section 4. A collection is a set
of documents which can be indexed by one or several attributes, allowing faster
document access.

7 Related Work

Model persistence is not a novel research field. As the interest in MDE has grown
many approaches have been proposed to solve this problem. The standard EMF
solution is to persist models in XMI resources, but there are other alternatives.
One approach is using binary indexed files [21]. Another approach is to use model
repositories. A repository is a persistence solution remotely accesible by users and
tools. Repositories usually rely on databases and provide additional features such
as transactions and versioning. There are many EMF model repositories available
today, being the most mature ones CDO [8], ModelBus [19] and EMFStore [9].

The ModelBus repository is a web service application that manages an embed-
ded Subversion engine which implements the actual repository; however, Subver-
sion is not designed to be integrated in client applications that access to parts of
persisted elements, i.e., it does not support partial access to models. There have
been attempts to make model access scalable in ModelBus [22]; however, the
official release does not implement them. EMFStore implements a different ar-
chitecture but shares the same philosophy as Subversion: models are fully loaded
and stored by human clients using a GUI. This solution does not scale and it is
best suited for design environments.

Currently Connected Data Objects (CDO) is the only model repository that
is capable of managing large models using load on demand. CDO also provides
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a rough version control system and EMF integration through its EMF Resource
implementation, CDOResource. However, CDO is not application-transparent.
First of all, we haven’t been able to make it work with dynamic model objects,
which is a severe drawback for its integration with EMF. Moreover, CDO requires
metamodels to be pre-processed in order to persist their instances. One kind
of pre-processing is to generate the Java model classes of a metamodel. This
allows CDO to work with legacy objects. The other kind is to generate CDO-
aware model classes from a generator model. This allows CDO to work with
native objects. The main difference between legacy and native objects is that
legacy objects cannot be demand-loaded or unloaded, having a huge impact on
performance as will be shown in the next section. Native objects are unloaded
from a CDO client when its memory becomes full using a soft reference approach,
i.e. an object is removed by garbage collector when no other object refers to it
with a reference that is not soft.

There are other domains where large and complex data needs to be accessed;
for example, ontologies may be very large and complex and many solutions
have been proposed, such as creating higher-level descriptions [23], which may
be seen as a form of building views. Client scalability has been also tackled
in the field of object-relational mappings, proposing prefetching mechanisms
that load clusters of objects that will be used by the client application [24][25].
Object caching has also been a subject of study in the field of object databases,
with mathematical approaches to optimizing cache coherence, replacement and
invalidation [27][28]. Our approach could benefit from this reasearch to improve
caching and prefetching with adaptive mechanisms. Finally, as far as we know,
little or no research has been published on applying NoSQL to model persistence.

8 Evaluation

As stated in the previous section, CDO is the main alternative to our approach,
so the evaluation consisted in executing a set of test cases with Morsa, CDO and
the standard EMF XMI parser, comparing their performance results. We have
considered the models proposed in the Grabats 2009 contest [18]. They conform
to the JavaMetamodel metamodel that is shown simplified in Figure 2. There
are five models, from Set0 to Set4, each one larger than its predecessor (from
a 8.8MB XMI file with 70447 model elements representing 14 Java classes to a
646MB file with 4961779 model elements representing 5984 Java classes).

Two benchmarks have been executed: model access and model query. The
model access benchmark consists in traversing models in depth-first order and
breadth-first order. The model query benchmark executes the query proposed in
the Grabats contest, which searches for every class that declares a public static
method whose returning type is that same class. Each benchmark has been
executed using the EMF XMI loading facility, a CDO repository configured for
best speed and least memory footprint in legacy mode and native mode and
Morsa for least memory footprint and best speed using single and partial load
on demand. All tests have been executed under a Intel CoreI5 760 PC at 2.80GHz
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with 8GB of physical RAM running 64-bit Linux 2.6.35 and JVM 1.6.0. CDO
4.0 is configured using DBStore over a dedicated MySQL database and is used
in read-only mode in order to avoid versioning overhead.

8.1 Results

Table 1 shows the results for the model access test cases. Memory footprint
is shown in Megabytes and time is shown in seconds. The Opt column specifies
whether the configuration optimizes speed or memory. As expected, CDO Native
mode is more efficient than CDO Legacy mode, but still Morsa is faster and uses
less memory for all the models. Note that the minimum memory used by CDO
for the Set1 breadth-first order doubles the memory needed by XMI, while Morsa
uses 20% less memory than XMI. We haven’t been able to load the Set2 model
(271MB XMI file, containing 2082481 model elements representing 1605 Java
classes) with CDO within a reasonable time (less than 45 minutes). The cache
replacement policies used for least memory footprint in Morsa were a LIFO
policy for breadth-first order and a FIFO policy for depth-first order. Cache size
was 900 objects for load on demand and unlimited for full load (best speed).
CDO was configured with a maximum available memory of 70MB for the Set0
model and 30MB and 100MB for the Set1 in depth-first order and breadth-first
order, respectively, for the least memory footprint and unlimited memory for the
best speed. These configurations have been obtained empirically.

For all models (including Set3 and Set4, which are not shown), Morsa is much
slower than XMI, but still can load and traverse them entirely. In the best case
for the Set2 model, Morsa uses 17 times less memory than XMI spending 20
times more time. Note that with an unlimited cache, Morsa spends a similar
time than the best speed case with a small one (1.5% time difference). This is
due to the fact that with an unlimited cache, our prototype holds references to
every model object, difficulting garbage collection. On the other hand, a cache
with limited size unloads objects more often, facilitating the garbage collection.
Since we haven’t been able to store the Set3 and Set4 models in CDO, despite
assigning it the maximum available memory (Set2 could be stored, but causing an
exception on commit), the model access test cases for these models are not shown.
For these models, XMI is faster than Morsa but needs much more memory.

The potential of Morsa shows up not only with a limited amount of memory,
but also when models do not have to be completely traversed. For example, the
Grabats 2009 contest query, whose execution results are shown in Table 2, shows
that Morsa is more efficient in memory and time than CDO and XMI for this
particular task. These results illustrate that our approach can be very beneficial
for applications that do not need to process an entire model, such as certain
model transformations. An application can query Morsa for specific objects,
consuming less time and memory and achieving scalability. The query has been
implemented using dynamic EMF for Morsa and generated model classes for
CDO and XMI. CDO and Morsa allow querying the database for all instances of
a given metaclass and then traversing the results to check the query condition,
while XMI requires loading the entire model prior to its traversal.
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Table 1. Performance results for the model access test cases

Order Opt Solution Mode
Set0 Set1 Set2

Mem Time Mem Time Mem Time
- - XMI - 63 1.313 113 2.265 1257 15.632

Depth - CDO Legacy 162 32.156 516 91.136 - -
Breadth - CDO Legacy 172 31.609 444 92.160 - -
Depth Speed CDO Native 289 21.783 435 59.188 - -

Breadth Speed CDO Native 308 21.046 467 56.017 - -
- Speed Morsa Full 113 8.762 363 26.671 1300 317.331

Depth Mem CDO Native 59 31.218 87 80.594 - -
Depth Mem Morsa Single 25 12.130 32 32.348 92 313.027
Depth Mem Morsa Partial 30 14.163 29 39.197 98 410.829

Breadth Mem CDO Native 59 30.010 250 78.204 - -
Breadth Mem Morsa Single 32 18.889 90 31.530 400 322.045
Breadth Mem Morsa Partial 40 29.239 96 85.197 460 761.692

Table 2. Performance results for the query test case

Opt Solution Mode
Set0 Set1 Set2 Set3 Set4

Mem Time Mem Time Mem Time Mem Time Mem Time
- XMI - 70 1.513 121 2.465 1265 16.023 2940 81.340 3512 141.752

Speed CDO Native 7 0.445 23 0.968 129 18.149 - - - -
Speed Morsa Single 5 0.706 8 0.985 168 9.724 205 26.760 254 29.339
Mem CDO Native 4 0.545 6 1.731 61 25.798 - - - -
Mem Morsa Single 5 0.706 5 1.518 36 14.822 96 36.944 59 40.129

9 Conclusions and Further Work

We have presented Morsa, a persistence solution aimed at achieving scalabil-
ity for client applications that access large models. Morsa uses load on de-
mand mechanisms to allow large models to be accessed without overflowing the
client application memory. We have developed several cache replacement policies
that cover different model access patterns. Server scalability is achieved using a
document-based NoSQL database, which is a novel feature since model reposito-
ries usually work with object-relational mappings. As far as we know, applying
document-based NoSQL databases to MDE has not been proposed before, and
is a promising approach to build industrial-scale model persistence solutions.

We have implemented a prototype for EMF that in its early development stage
shows promising performance results. An evaluation of our prototype is shown,
executing two benchmarks against large models and comparing its results with
the ones of XMI and the well-stablished CDO repository. This comparison shows
that Morsa suits better for partial model access and model querying than XMI
and CDO, and that it handles larger models than CDO does.

Our future work is to continue optimizing Morsa while implementing new
features. Among others, these features include: incremental store, that will allow
the client to store changes done to objects that are going to be unloaded, an
advanced query API, support for query languages such as OCL and making our
load on demand algorithms and cache replacement policies more adaptative by
collecting metadata information about the structure of the persisted models.
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Abstract. In the context of an industrial project we are implementing
the software of a casino slot machine. This software has a significant
amount of cross-cutting concerns that depend on, and interact with each
other, as well as with the modular concerns. We therefore wish to express
our design using an appropriate Aspect-Oriented Modeling methodol-
ogy and notation. We evaluated two of the most mature methodologies:
Theme/UML and WEAVR, to establish their suitability. Remarkably,
neither of these allow us to express any of the dependencies and inter-
actions to our satisfaction. In both cases, half of the interaction types
cannot be expressed at all while the other half need to be expressed
using a workaround that hides the intention of the design. As a result,
we consider both methodologies and notations unsuitable for expressing
the dependencies and interactions present in the slot machine domain.
In this paper we describe our evaluation experience.

1 Introduction

A slot machine (SM) is a casino gambling device that has five reels which spin
when a play button is pressed. An SM includes some means for entering money,
which is mapped to credits. The player bets an amount of credits on each play,
the SM randomly selects the displayed symbol for each reel, and pays the cor-
responding prize, if any. Credits can be extracted (called a cashout) by different
mechanisms such as coins, tickets or electronic transfers.

In the context of an industrial project we were required to re-implement the
software for a particular SM. Previous experience had taught us that, beyond
the main functionality sketched above, there are a significant amount of cross-
cutting concerns present in such applications. For example: counters need to
be maintained throughout the application to be able to audit the SM, and the
complete working of the SM needs to be accessible over the network. More-
over, these concerns depend on, and interact with each other as well as with
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the modularized concerns. We therefore opted to use Aspect-Oriented Software
Development in this implementation, taking special care of dependencies and
interactions between the different aspects and modules. In a previous step, we
analyzed the different concerns that define the behavior of SMs, with a specific
focus on concern interactions at the requirements level [13].

The second step in our development process is modeling the software using
an adequate approach for Aspect Oriented Modeling (AOM). However, to the
best of our knowledge there has been no work published that evaluates AOM
approaches in an industrial setting, with a focus on interactions between the
different concerns. We therefore undertook an evaluation of two mature AOM
approaches to establish their applicability in our context. Somewhat surprisingly,
neither of these two is adequate in our setting, as we report in this article.

As basis for our selection we used surveys on AOM [2,12], complemented by
a study of more recent literature. The chosen approaches are Theme/UML [4]
and WEAVR [6,5]. Beyond their maturity, acceptance in the AOM commu-
nity, and claimed support for interactions, both methodologies have specific ad-
vantages. Theme/UML integrates with Theme/Doc: an aspect-oriented require-
ments methodology for requirements specification [13]. WEAVR is arguably the
best-known industrial application of AOM, and the only methodology that we
are aware of that is used in industry to develop complex applications.

We now give an overview of the requirements we have for the design docu-
ment, before giving a high-level overview of the design and the different inter-
actions that need to be specified. Section 4 then proceeds with an evaluation of
Theme/UML, and Sect. 5 follows up with an evaluation of WEAVR. We present
related work in Sect. 6, and conclusions and future work in Sect. 7.

2 Requirements for the Design

In the design phase our goal is to refine the requirement specification docu-
ments into a model of the software artifacts that will form the final system.
This model, written down in a design document, will be passed to the devel-
opers for implementation. Hence, it should be sufficiently complete to allow for
the implementation to be produced relatively independently. As we are perform-
ing Aspect-Oriented Software Development, the choice of an AOM approach for
creating this document is a given. We expect that we will be able to produce
the complete design documents, i.e., not having to resort to a significant addi-
tional documents with an ad-hoc notation to complement for omissions in the
methodology. In the latter case the advantages of using a standard AOM are
small and we would consider rolling our own AOM. We furthermore have two,
related, expectations of the design document: maintenance support and explicit
interactions.

In subsequent maintenance or evolution phases the changes made in the re-
quirements will trigger subsequent changes in the design, and the developers will
modify the implementation accordingly. Such later modifications may not break
the system because they violate constraints of the original design or go against
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the original design decisions. If the change is significant enough to warrant mod-
ifying the design constraints or assumptions, the original intentions should be
maintained as much as possible. Hence the design document must be clear on
which are the the critical design decisions that were made and what assumptions
were taken. Furthermore, it is known that the presence of aspects in a software
system that is being evolved can be problematic [9]. Such issues should be mit-
igated by the information that is explicitly available in the design document.
When evolving the software the implementers must be able to use the document
as a guide, seeing what assumptions taken by the aspects no longer hold, or what
new code now also falls within the realm of an aspect.

As we have said above, our experience is that there is a significant amount of
non-trivial interactions between the different aspects of the system. This is also
confirmed by the results of the requirements analysis we have performed pre-
viously [13]. Even though aspects are intended to provide advanced modularity
and decoupling, they do not exist in isolation. As any module in software, their
presence impacts other modules and their functionality may depend on other
modules. Documented design decisions should therefore include not only which
modules will be aspects and where they crosscut, but also how they interact with
each other. This information must be made explicit so that critical information is
correctly passed to the implementation phase, and is present when maintaining
or evolving the software.

3 Design Overview

Considering the results of the requirements analysis phase we previously per-
formed, we now give an outline of how we envision the design of the SM software.
This provides us with a concrete basis for evaluation of the AOM, as it must
allow us to expand and refine this overview into a complete design document.

3.1 Aspects in the Design

A class diagram that shows the outline of the design is given in Fig. 1. It uses an
ad-hoc extension of UML to indicate crosscutting, showing that we model the
following crosscutting concerns as aspects: Metering, Demo, Program Resump-
tion, Error Conditions, S Communications Protocol, G2S Protocol. We give an
overview of these aspects next.

Metering. The Metering aspect crosscuts Game and other base entities in order
to keep meters data up to date. Meters are essentially a set of counters that
keep information about past plays, e.g. the total amount bet. This information
is used, among other things, to create reports.

Demo. For legal certification the SM must have a ’Demo’ mode, where all pos-
sible outcomes for a play can be simulated. The Demo concern therefore needs
to control the outcome produced by the Game class. It furthermore crosscuts
Metering to avoid polluting accounting meters when it is active.
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Fig. 1. Overview of the class structure of the design

Program Resumption. Program Resumption is a persistence and recovery re-
quirement. The system should recover the last state after a power outage. Infor-
mation to be saved includes the status of the current play and the values of the
meters.

Error Conditions. Error conditions detected by the game such as: tilt, out of
paper, . . . are detected by the Error Condition Detection aspect. Once an error
condition is detected some actions need to be performed, e.g. in case of a tilt
illuminating the tower lamp and sounding an alarm to call the casino attendant.

Communication Protocols. The S Communications Protocol1 (SCP) and G2S
Protocol are communications protocols frequently used in the gaming industry.
Their corresponding aspects crosscut the Game modules to add behavior such
as multiple SMs vying for the same jackpot. Moreover, both protocols need to
report metering information and hence crosscut the Meters aspect.

Figure 1 shows that a simple extension of UML already suffices to provide the
outlines of the aspectual design. Not surprisingly most, if not all, of the AOM
approaches we studied allow us to produce a model similar to this diagram.
What is however lacking in the above diagram is the information of how the
various aspects interact with each other, as well as with the base application.
For example, when in Demo mode network communication must be disabled, as
queries from the server may only receive values corresponding to normal play
conditions. This information should also be present in the design document, but
we find no immediately obvious way in which this can be diagrammed. Hence
the lack of this information in Fig. 1.

1 A pseudonym, licensing restrictions prohibit us from using the real name.
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3.2 Interactions between Concerns

Our resulting design document not only needs to contain the information of the
aspects present in the system, but also how they crosscut. It is also necessary
that the interactions which were identified in the requirements analysis phase
be present in the design document. To better understand what our needs are
for this part of the design document, we now give an overview of the different
interactions in the SM, and how we want this to be reflected in the document.

We structure this discussion and the evaluations of the AOM approaches
later in the text using the AOSD-Europe technical report on interactions [11].
It classifies interactions in four different types: dependency, conflict, mutex and
reinforcement, and the SM software contains an instance of each of these types.

Conflict: Demo versus Multiple Concerns. The aspects of Meters, Communi-
cation Protocols and Program Resumption are present to comply with legal
accounting requirements regarding plays performed on a SM. The Demo aspect,
also a legal requirement, conflicts with all of the above aspects. This is as the
legislation states that a play in Demo mode must not alter the meters nor that
its activity is visible over the network. Hence, after a Demo session the Game
must recover its original status and any event or state change while in Demo
must not be reported by the communication protocols.

In order to cope with this conflicting behavior the design and implementation
must provide support for:

– Avoiding simultaneous activation of Demo and other conflicting aspects.
– While being in Demo a fake set of meters should be used. This ensures that

actions in demo mode do not alter the meter values of normal operations.

Communication Protocols: Mutex, Reinforcement and Dependency. Both com-
munication protocols provide similar functionality: allowing the server to query
information and set some configuration values and state on the SM. For read-
only behavior, such as reporting the value of a meter, there is no problem with
having them active at the same time as no interference will result. On the other
hand, for operations that alter the state of the machine, mutual exclusion must
be ensured during a single program execution. If not, inconsistencies in the SM
may arise. For example, consider setting the time of the SM, an operation per-
formed by the casino server. With both communication protocols enabled, two
different servers with different clock values may set the time on the SM to either
of both clock values. As a result the timing of events on the SM is ambiguous. To
document this mutex what we need is the ability to express that certain object
interactions may not occur during the programs’ execution.

There is a reinforcement from Error Conditions to Communication Protocols.
Not all the Error Conditions specified in the legislation are mandatory, however
when an optional error condition is present in the game, e.g. because a driver
allows for these errors to be detected, the communication protocols must be
able to report this to the server. This means that during development of new
versions of the Game, when new error conditions are present, the associated
behavior in the Communication Protocols should be revisited to ensure that the
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new information is properly reported. Hence we need to document that a change
in a different part of the application enables optional or extended behavior of a
given concern.

The last interaction regarding Communication Protocols is a dependency of
them on Meters. The protocols access the meters in order to report their val-
ues to the server. Consequently, if for some reason metering is not present, the
communication protocols cannot operate. When a communication protocol is en-
abled, meters must be present, and must be properly fed. We need to document
this dependency to ensure the consistent behavior of the system.

4 Evaluation of Theme/UML

Theme/UML is the second half of the Theme approach for Aspect-Oriented
requirements analysis and design. The first half is called Theme/Doc and is
a methodology for AO requirements analysis. Theme provides for a process
for transforming requirements in Theme/Doc into a design in Theme/UML,
and moreover claims to have support for conflict resolution. We therefore chose
to evaluate Theme for our development effort. In the requirements engineering
phase [13] we have evaluated Theme/Doc, and now continue with an evaluation
of Theme/UML.

The Theme/UML approach [4] is an extension of UML that provides both a
notation and a methodology for modeling AO systems. In Theme/UML, a theme
refers to a concern. A theme can consist of class diagrams, sequence diagrams
and state diagrams, each of which is extended with the required notation to be
able to express Aspect-Oriented concepts. Each theme is designed separately,
and subsequently the themes are composed with each other. This is performed
using composition relationships that detail how this is performed.

Themes are divided into two classes: base and crosscutting themes. Base
themes describe a concern of the system that has no crosscutting behavior.
Base themes are composed, both structurally and behaviorally, to form the base
model. If a given concept appears in multiple themes, the composition can merge
the various occurrences into one entity. Crosscutting themes describe behavior
that should be triggered as the result of the execution of some behavior in the
base model. They are designed similarly to base themes, and are parameteriz-
able. Parameters provide a point for the attachment of the crosscutting behavior
to the base model. By binding them to values of the base themes the crosscutting
themes are composed with the base model. Crosscutting themes are composed
one by one with the base themes until the complete design is produced.

In accordance to Fig. 1, we modeled Game as a base theme and Demo, G2S,
Meters, and SCP as crosscutting themes. We found it is straightforward to ex-
press where to attach the crosscutting behavior, both on the base themes and
on other crosscutting themes. However, when considering interactions we find
that Theme/UML does not perform as well. We now discuss the obstacles we
encountered classified in the four different kinds of interactions we discussed in
Sect. 3.2: Conflict, Mutex, Reinforcement and Dependency.
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4.1 Conflict

Theme/UML provides support for conflict resolution when composing different
themes. These composition conflicts arise when the same diagram element in
different themes has an attribute with different values. An example of this is an
instance variable with different visibility specifications. Conflict resolution then
consists of choosing which of the conflicting attributes to use in the composition.

The conflicts we are facing are however of a different nature. For example,
consider the Demo aspect. As mentioned in 3.2, when it is active all conflicting
aspects must be somehow deactivated. We therefore need to model the predom-
inant nature of this aspect in some way. There is however no explicit means in
Theme/UML to declare this kind of predominance. Instead we are required to
design a conflict management strategy, making the conflict implicit.

We therefore model conflict management as follows: the Demo theme crosscuts
the Game theme, capturing the execution of play() for the Game class. When
active, Demo skips the execution of the original play() and instead generates a
predetermined outcome (which is the main responsibility of the Demo mode).
In order to keep the meters unharmed, parts of the Metering theme behavior
are captured and skipped. Considering the communication protocols, their orig-
inal behavior is altered: instead of responding to queries, failure responses are
returned.

(a) Demo on Game (b) Demo on Meters

(c) Demo on Protocols

Fig. 2. The Demo theme affecting the behavior defined in Game, Metering and Pro-
tocols

Our model is shown in Fig. 2. We use Theme/UML sequence diagrams, a
straightforward extension of UML sequence diagrams. The figure shows three
Themes, each of which has a template parameter in the top right corner, cor-
responding to the message send that starts the sequence. At composition time,
this parameter is bound to a specific message send in the base theme, i.e., the
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join point in the base code is identified. Also, within a sequence diagram, the be-
havior of the join point which is matched can be invoked, put differently, Theme
has an equivalent of the AspectJ proceed construct. The syntax to express this
call is do templateOperation. Note that absence of such a call implies that the
original behavior never occurs. For instance, in Fig. 2 there are no do play,
do count or do query calls, which means the join point behavior is skipped.

The above solution has the major downside that design does not explicitly
reveal the intention: the conflict between Demo and Meters, and Demo and the
communication protocols. Instead it must be deduced from the implementation
proposed in the diagrams. As we require that the design intent is explicit, we do
not consider this a feasible solution.

4.2 Mutex

Part of the behavior of the communication protocols is configuration command
processing, as these game parameters can be set by the servers. Both protocols
implement this feature, but it is not permitted that multiple protocols set the
same value during a run of the program. The interaction we thus want to model is
mutual exclusion between configuration actions: two protocols cannot configure
the same item during a given program execution.

(a) SCP theme (b) G2S theme

Fig. 3. Two themes configuring the same item in the Game

Concretely, the protocols are each modeled as a theme, where each theme de-
fines the behavior through a set of sequence diagrams. Considering the sequence
diagrams in Fig. 3 for the two different protocols, what we need to document
is that the behavior in diagrams a) and b) cannot happen in the same program
execution. However, to the best of our knowledge, Theme does not provide any
way in which we can express this mutex relationship between both sequence dia-
grams. Neither do we see an alternative solution in the same spirit as the design
of the conflict interaction. Consequently, we are not able to express this mutex
in the design.

4.3 Reinforcement

The error condition aspect reinforces the behavior of the communication pro-
tocols, reporting all error conditions to the remote servers. Considering this
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interaction, we have a situation similar to mutex: We model the communication
protocol concern as a theme, and the error conditions concern as a theme but we
are unaware of a way in which to explicitly state the reinforcement semantics.
In this particular case we are able to integrate the reinforcement into the design,
but at the cost of making the reinforcement implicit. We show this next.

Fig. 4. SCP Theme reinforced by Error Conditions theme

The left hand side of Fig. 4 shows a sequence diagram for the most severe
type of error condition. It specifies how the error event occurring causes the
tower lamp to be lit and the attendant to be called. Reporting the error to
the server is specified in the right hand side of Fig. 4 using a theme for the
communication protocol. By binding both themes using the arrow construct, we
define a crosscutting behavior of the communication protocol, specifying that it
intercepts all calls of ErrorConditionBehavior.processSevere(Error).

However, as this states that the relationship between them is a typical cross-
cutting relationship, the reinforcement semantics is lost. Even though the generic
behavior of the communication protocols captures all error conditions of this
type, it is not clear that we know there may be new types of error conditions in
the future, and each of them needs to trigger protocol behavior. This informa-
tion is crucial to check the consistency of the system during maintenance and
evolution. As the reinforcement semantics remains implicit here, this verification
step might be omitted.

4.4 Dependency

The metering theme maintains track of given events in the game by changing
the values of meters objects. Complementary to this, the communication pro-
tocols themes specify that to respond to queries sent by the remote server, the
information stored in the meters objects are used. It is clear that the latter
behavior requires the former, hence the communication theme depends on the
meters theme.

The Theme/UML methodology however states that each theme defines all
structure and behavior needed to provide the desired functionality, i.e., in a
standalone fashion. Furthermore, the designer may choose a subset of all themes
to compose a system [4]. In our case this will lead to errors, as selecting the
theme of a communication protocol without adding the theme of meters leads
to an inconsistent design of the system.
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What we need is a way to express that the meters themes are necessary
whenever the communication protocol themes are composed into the system,
but we have found no way to specify this in Theme/UML. Hence we are unable
to include the dependency in the design.

4.5 Conclusion: Theme/UML

We found that Theme/UML does not allow us to express any of the four types
of interactions in an explicit way. At the most, we are able to integrate support
for conflict resolution and reinforcement into the design. However this comes at
the cost of obscuring the explicit relationship between different aspects, which is
likely to lead to errors during maintenance or evolution. As a result, we consider
Theme/UML inappropriate to specify the design of a SM.

5 Evaluation of WEAVR

WEAVR is an add-in extension to the MDE tool suite used by Motorola, adding
support for AOM to their process of building telecom software [6,5]. As WEAVR
is arguably the best-known industrial application of AOM, with claimed support
for interactions, we chose it as the second candidate for evaluation.

Next to a UML notation, the Motorola tool suite also uses SDL [7] transition
oriented state machines as the graphical formalism to define behavior. These
state machines are unambiguous and allow for introducing pieces of code. This
enables code generation of the complete application in C and C++.

The WEAVR pointcut notation is based on state machines, permitting the
capture of action and transition joinpoints. Wildcards are allowed to refer to
multiple states or actions. Advice are also expressed as state machines, and
are related to the pointcuts using the bind relationship. WEAVR is an aspect
weaver: it combines an aspectual state machine with a base state machine when
there is a join point match. The tool allows to visualize the new composed state
machine, so that engineers can verify the composition for correctness before
actual code generation.

Note that although WEAVR can be used to generate the code of the appli-
cation, we do not require this, we only want to specify the design. Also, due
to licensing issues we were not able to use the tool for our evaluation, instead
relying on published work [6,5]. Lastly, even though SDL is a standard, the no-
tation of its usage by WEAVR is not consistent among all the publications. The
diagrams in this text are our best effort to produce a consistent notation, but
we are not able to guarantee their notational correctness.

5.1 Conflicts

Support for conflict resolution in WEAVR is realized by the hidden by stereotype
that is used in the deployment diagrams, where aspects are applied to classes.
The hidden by stereotype relates two different aspects that intercept the same
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join point. The relationship states that the aspect that is hidden does not apply
in those cases. For example, specifying AspectA hidden by AspectB denotes that
at a join point captured by both aspects, only the behavior of AspectB will be
executed. In other words, we can state that the presence of one aspect implies
the absence of another aspect, but only at the level of join points.

In our case such conflict resolution is however not sufficient as we are faced
with aspects that conflict when active on different join points. For example,
consider Demo: when it is active the different protocols must return a failure
message upon a query of the server, which is a different join point than starting
a play. We require instead of a hidden by semantics that works at join point
level, a similar semantics at the system or aspect level. That is, the activity of
Demo should imply the inactivity of G2S and SProtocol.

Similar to the workaround for Theme we proposed in Sect. 4.1, we can provide
a design that incorporates the required conflict resolution behavior. Advice in
WEAVR are always around advice, and use a proceed call. As in Fig. 2, we
can specify an around advice that intercepts Meters and the communication
protocols, without performing the original behavior of the intercepted call. This
workaround consequently suffers from the same drawbacks as in Sect. 4.1, most
importantly the loss of the explicit conflict specification.

5.2 Mutex

Recall that our mutual exclusion consists of the prohibition that, in a single run
of the game, the same configuration item is configured by multiple protocols.
As an example, Fig. 5 shows the design of the setTime functionality for both
protocols in WEAVR . The mutual exclusion in this case boils down to preventing
that the state machine of Fig. 5a executes if the state machine of Fig. 5b was
previously run, and vice-versa. However, WEAVR does not provide for any way
in which this can be specified.

(a) State machine for G2S (b) State machine for SCP

Fig. 5. Mutually exclusive state machines for the setTime command

It is feasible to produce a design document that implements the mutex, but
at the cost of making the explicit information of the mutex implicit. We can
manually combine the different state machines for the different protocols such
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that the mutex relation is implemented. Briefly put, for each configuration action
we combine the two state machines of the different protocols into one state
machine. This combined machine contains the functionality of both protocols
together with the logic that ensures that once the item has been configured by
one protocol it cannot be configured by the other.

The downside of this solution are that it adds a considerable amount of tedious
work, combining the state machines for all configuration settings, and obscures
the intent of the design. Moreover it produces a design where both protocols are
tightly coupled. Consequently, we consider this option unfeasible and discard it.

5.3 Reinforcement

The design of the reinforcement from error conditions to communication pro-
tocols is similar to the design in Theme/UML discussed in Sect. 4.3. We have
an error conditions aspect that handles the different types of errors that occur,
and the communications protocols report these errors by intercepting this. They
define a pointcut that matches on the processing of the error, and the advice
then sends the corresponding notification to the server. We have however not
found a means to denote the reinforcement relationship as such.

As in Sect. 4.3, the downside of this is that the explicit reinforcement relation-
ship has become implicit, which may lead to inconsistencies during maintenance
and evolution, e.g. when new types of errors are added to the system. An upside
of using WEAVR is that its model simulation capabilities allow for consistency
checking of the composed models. This could corroborate the whole execution
path from the occurrence of a new error condition to the final notification to the
server. However the need for such a verification for all types of error conditions
still has to be specified in the design document, and we are unaware of a means
to express this in WEAVR .

5.4 Dependency

Similar to the design in Theme, shown in Sect. 4.4, we have an interplay between
the metering concern and the communication concerns. The metering concern
capturing events regarding game activity and updating the meters, while the
communication protocols consult data contained in these meters when processing
server requests. In Fig. 6, we show the latter, for the G2S protocol. The action
code response := Meters::GetCurrent() refers to data previously stored in the
Meters object by the Metering aspect (which is not included in the figure due
to lack of space). The communication protocols thus depend on the meters to
provide correct functionality. Put differently, if the Meters object is available but
for some reason the behavior of the metering aspect is not executed, the data
returned will be inconsistent.

To declare dependency relationships, WEAVR provides for the depends on
relationship. It states that one aspect depends on another to be able to pro-
vide the required functionality. As in the hidden by stereotype relationship this
however only applies at the join point level. If AspectA depends on AspectB, for
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Fig. 6. Part of the G2S Protocol state machine depending on meters

each shared join point the advice of AspectB will be executed before the advice
of AspectA. Additionally, if AspectB does not match a join point matched by
AspectA, an error is produced.

In our case however, the contact point between two aspects is the existence
of the Meters object, not a shared join point. As a consequence, the depends on
relationship does not allow us to express the required dependency. This is as the
semantics of the depends on relationship is too fine grained. In our case we need
to be able to express this relation at the level of aspect deployment, e.g. state
that the deployment of AspectA implies the deployment of AspectB. WEAVR
does not provide any other dependency construct, and we are not aware of an
alternative option to relate the state diagrams above. We are therefore unable
to include the dependency specification in the design.

5.5 Conclusion: WEAVR

We have seen that WEAVR does not allow us to explicitly express any of the
four interaction types. If we allow making the explicit relations implicit, we can
include support for conflict resolution and mutual exclusion in the design, the
latter of which would be a large amount of tedious work. Such implicit relations
however come at a cost of probable errors during maintenance or evolution.
Consequently, we consider WEAVR unsuited to specify the design of a SM.

6 Related Work

Schauerhuber et al. authored a survey of AOM approaches [12] where concern
interactions are part of the evaluation framework. It shows that most of the
surveyed approaches do not provide for interaction support. Of those that do,
most focus on detection of syntactic and semantic interactions. A representative
approach is to transform UML models into graphs which are then analyzed to
look for interactions. This approach is also advocated by Ciraci et al. [3] and
Mehner et al. [10].

Similarly, detection of interactions in the design phase has been considered
in the feature oriented programming community, e.g. the work of Apel et al. on
FeatureAlloy [1] detects structural (syntactic) and semantic dependencies as well.

The basic assumption in all the above is that interactions are unintended
and arise during aspect composition. This however does not hold in our case as
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interactions may be planned and moreover already have been detected during
the requirements phase [13]. Instead of detection, we need for the design to
effectively document the decisions made to manage them.

Other authors purely focus on avoiding interactions. For example, Katz and
Katz describe how to build an interference-free aspect library [8]. In our case
however some interactions are required to obtain the desired behavior, and other
interactions cannot be removed but should be controlled instead.

It is interesting to note that the vast majority of AOM work on interactions
refer to dependencies and conflicts, but neglect or minimize reinforcement or
mutex. This may indicate that these types of interactions are considered less
frequent. However they nonetheless occur in our context, and we see no reason
why it would be an exceptional case.

7 Conclusions and Future Work

The AOSD-Europe technical report on interactions [11] classifies interactions in
four types: dependency, conflict, mutex and reinforcement. In our software for
a Slot Machine all four types are present, and we evaluated the abilities of two
mature AOM approaches: Theme/UML and WEAVR, to explicitly communicate
these in the design.

The somewhat surprising result of our study is that neither Theme/UML nor
WEAVR allow us to satisfactorily express any of the four types of dependency.
This although both approaches are considered mature, are accepted by the com-
munity, and furthermore claim to have support for specific kinds of interactions.
In our experience their support is however at the wrong level of granularity and
scope to be useful to us. In both methodologies the support is too fine-grained
and the scope is too restricted.

As an alternative approach, instead of explicitly specifying the interactions,
we have been able to include ad hoc, implicit support for interactions in the
design. In Theme/UML we were able to incorporate conflict and reinforcement
in the design, while in WEAVR we could include conflict and mutex. However
having these relations implicit instead of explicit makes it likely for errors to
arise in later maintenance and evolution phases. As a consequence, we need to
discard these solutions as well.

The key question for future work is how we would be able to satisfactorily
express the interactions in our design. The most straightforward solution would
be to extend one of the above methodologies such that it includes the support
we are lacking. We consider this therefore as the main avenue for future work.
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Abstract. Systematic and rigorous robustness testing is very critical for 
embedded systems, as for example communication and control systems. 
Robustness testing aims at testing the behavior of a system in the presence of 
faulty situations in its operating environment (e.g., sensors and actuators). In 
such situations, the system should gracefully degrade its performance instead of 
abruptly stopping execution. To systematically perform robustness testing, one 
option is to resort to model-based robustness testing (MBRT), based for example 
on UML/MARTE models. However, to successfully apply MBRT in industrial 
contexts, new technology needs to be developed to scale to the complexity of 
real industrial systems. In this paper, we report on our experience of performing 
MBRT on video conferencing systems developed by Cisco Systems, Norway. 
We discuss how we developed and integrated various techniques and tools to 
achieve a fully automated MBRT that is able to detect previously uncaught 
software faults in those systems. We provide an overview of how we achieved 
scalable modeling of robustness behavior using aspect-oriented modeling, test 
case generation using search algorithms, and environment emulation for test case 
execution. Our experience and lessons learned identify challenges and open 
research questions for the industrial application of MBRT.          

Keywords: Model-based testing, aspect-oriented modeling, search algorithms, 
MARTE, UML, robustness. 

1   Introduction 

Model-based robustness testing (MBRT) is concerned with testing the behavior of a 
system in the presence of faulty situations in its operating environment. An IEEE 
Standard [1] defines robustness as “the degree to which a system or component can 
function correctly in the presence of invalid inputs or stressful environment 
conditions”. A system should be robust enough to handle the possible abnormal 
situations that can occur in its operating environment and invalid inputs. For example, 
in our industrial application of MBRT for Video Conferencing Systems (VCS) 
developed by Cisco Systems, Norway, we model the robustness behavior of a VCS in 
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the presence of hostile environment conditions (regarding the network and other 
communicating VCSs), such as a high percentage of packet loss and corrupt packets. 
The VCS should not crash, halt, or restart in the presence of such problems. 
Furthermore, the VCS should continue to work in a degraded mode, such as 
continuing the videoconference with low audio and video quality. In the worst case, 
the VCS should return to the most recent safe state instead of bluntly stopping 
execution. Such behavior is very important for a commercial VCS, and so it must be 
accurately tested.  

MBRT is considered very critical for embedded systems, for example 
communication and control systems as is the case of our industrial case study. Such 
robustness is also considered very critical in many standards such as in the IEEE 
Standard Dictionary of Measures of the Software Aspects of Dependability [2], the 
ISO’s Software Quality Characteristics standard [3], and the Software Assurance 
Standard [4] by NASA. Systematic and rigorous robustness testing however requires 
integration of many tools and techniques in an efficient way.  

In this paper, we report on our experience of applying MBRT for VCSs developed 
by Cisco. Note that such industrial applications of MBRT and even more generally of 
model-based testing (MBT) are very rare in the literature [5]. These applications are 
very much needed to evaluate the applicability of MBT in realistic settings. The main 
contribution of this paper is the integration of the following techniques and tools to 
achieve the ultimate goal of systematic and rigorous MBRT: 1) Use UML and the 
MARTE profile to model properties of the environment, whose violations lead to 
faulty situations the VCS must be robust to; 2) Use aspect-oriented modeling (AOM) 
to achieve scalable robustness modeling that improves readability of models, reduces 
modeling complexity, supports enhanced separation of concerns (SOC), and helps in 
model evolution; 3) Use search algorithms to solve complex OCL constraints on 
properties of the environment to introduce faulty situations; 4) Integration of the tool 
support for all of the above with our extensible model-based testing tool (TRUST) 
[6]. Robustness test case execution requires a special setup to emulate the operating 
environment. We discuss how we emulate the environment for the MBRT of Cisco’s 
VCS. A preliminary experiment of MBRT in Cisco revealed a critical robustness fault 
in an already tested VCS. Finally, we discuss our experiences and lessons learned 
while performing MBRT in Cisco. 

The rest of the paper is organized as follows: Section 2 provides a brief description 
of our case study, Section 3 provides an overview on scalable robustness modeling 
using AOM and UML/MARTE, and Section 4 discusses test case generation using the 
TRUST tool. In Section 5, we discuss about robustness test case execution and results 
from our preliminary experiment with MBRT. Section 6 provides lessons learned and 
our experiences regarding MBRT in Cisco. Section 7 compares our work with the 
existing works in the literature. Finally, Section 8 concludes the paper.      

2   Case Study 

Our case study is part of a project aiming at supporting automated, model-based 
robustness testing of a core subsystem of a video conference system (VCS) called 
Saturn. The core functionality to be modeled manages the sending and receiving of 
multimedia streams. Audio and video signals are sent through separate channels and 
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there is also a possibility of transmitting presentations in parallel with audio and 
video. Presentations can be sent by only one conference participant at a time and all 
others receive it. In this paper, we focused on this particularly important subsystem 
(Saturn) and left out the other functionalities of Saturn. We selected this subsystem 
because robustness testing is concerned with testing the behavior of Saturn in the 
presence of faulty environment situations, which can only be tested when Saturn is in 
a conference call with other systems. Saturn is complex enough to investigate the 
applicability and usefulness of MBRT in realistic conditions, while still remaining 
manageable in the context of a case study.  

To test the robustness of Saturn, we modeled its behavior in the presence of faulty 
situations in the network. The behavior of the network can be very unpredictable due 
to busy routers, high bandwidth demanding traffic (audio and video streaming) and 
low speed connections. Hence, Saturn is supposed to work even under the presence of 
faulty situations in a degraded mode. By degraded mode, we mean that the system 
should continue to behave as in the non-faulty situation, except that the quality (such 
as audio and video) or the performance is degraded by running applications at a lower 
speed. The system must try to recover from the degraded mode and go back to a 
normal mode of operation. In the worst case, the system must return to the most 
recent safe state. An example of a safe state of a VCS is the idle state, in which the 
VCS is not in a videoconference with any VCS. 

3   Scalable Robustness Modeling 

In this section, we discuss our scalable robustness modeling approach. In Section 3.1, 
we provide and briefly present partial models for the functional behavior of Saturn. In 
Section 3.2 we discuss how we model robustness behavior with aspect state machines 
using our proposed AspectSM profile.   

3.1   Functional Behavior of Saturn 

The functional behavior of Saturn consists of a set of class diagrams and a set of 
UML state machines. An excerpt of class diagram for the Saturn subsystem described 
in Section 2 is shown in Fig. 1. 

The UML class diagram is meant to capture information about APIs and system 
(state) variables, which are required to generate executable test cases in our 
application context. Saturn’s API is modeled as a set of methods in the Saturn class 
such as dial() and callDisconnect(). The state variables of the system are modeled as 
instance variables of classes. For example, two system variables in the SystemUnit 
class are NumberOfActiveCalls and MaximumNumberOfCalls. NumberOfActiveCalls 
is an Integer, which determines the number of VCS that are currently in a Saturn 
videoconference, whereas MaximumNumberOfCalls determines the maximum 
number of simultaneous calls supported by Saturn. 

The functional behavior of Saturn is modeled as four submachine states. The first 
submachine state contains three simple states, whereas the second contains two 
additional submachine states, each having three simple states. This gives in total 
eleven simple states and 41 transitions in three levels. The flattened state machine 
consists of 70 transitions and 11 states. The complete models are provided in [7]. 
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Fig. 1. Class diagram for Saturn 

3.2   Robustness Modeling Using RUMM 

Previously, we defined a RobUstness Modeling Methodology (RUMM) to model 
robustness behavior using AOM [7]. Our goal was to devise a solution to model 
robustness behavior, which (1) is complete in terms of aspect and state machine 
features, (2) minimizes the learning curve over standard modeling skills, and (3) 
enable automated, model-based testing. RUMM consists of a series of systematic 
activities to model robustness behavior. We do not present here details of these 
activities, however, interested readers may find them in [7]. In this paper, we on 
modeling robustness behavior using the AspectSM profile. Using the AspectSM 
profile, we model each aspect as a UML state machine with stereotypes (aspect state 
machine). The modeling of aspect state machines is systematically derived from a 
fault taxonomy [7] categorizing different types of faults (faults in the environment 
such as communication medium and media streams that lead to faulty situations in the 
environment). Each aspect state machine has a corresponding aspect class diagram 
modeling different properties of the environment using the MARTE profile, whose 
violations lead to faulty situations in the environment.    

Modeling aspect class diagram. For the robustness behavior presented in Section 2, 
we were interested in modeling the behavior of Saturn in the presence of faulty 
situations in the network. For this purpose, we decided to model the following 
network properties: packet loss, packet delay, duplicate packet, corrupt packet, and 
reorder packet. These properties are modeled in a class diagram as shown in Fig. 2. 
All of these properties are modeled using the MARTE profile [8]. For instance, the 
packet loss property introduces packet loss during communication and is measured in 
terms of percentage. This property is defined to be of the MARTE type 
NFP_Percentage, which is defined in the MARTE profile for this purpose. Another 
property we defined is packet delay. This property is defined as a new, non-functional 
property (NFP) data type stereotyped as <<NfpType>> defined in MARTE (Fig. 2). 
The new NFP type includes other properties such as unit of type TimeUnitKind. 
TimeUnitKind in MARTE defines units for time values such as millisecond and 
microsecond. We chose this data type so that a modeler can choose an appropriate 
time unit.  
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Fig. 2. Aspect class diagram for network communication 

Modeling aspect state machine. The aspect state machine for NetworkCommunication 
is shown in Fig. 3. The ‘NetworkCommunication’ state machine is stereotyped as 
‘Aspect’ from the AspectSM profile and the attributes associated with the stereotype 
are shown in the note labeled 1. The first attribute name specifies the name of the 
aspect, which is NetworkCommunicationAspect in this case. The second attribute 
baseStateMachine specifies the base state machine on which the aspect will be 
woven, which is Saturn in this case.     

 

Fig. 3. Aspect state machine for network communication 

A pointcut named ‘SelectStatesPointcut’ on the state ‘SelectedStates’ is shown in 
Fig. 3 (see note 2), which selects all states of the base state machine except for the Idle 
and PresentingWithoutCall states. New transitions modeling robustness behavior of 
the system from all states selected by the ‘SelectStatesPointcut’ pointcut to a new 
state ‘RecoveryMode’ stereotyped with the <<Introduction>> stereotype are 
introduced. These transitions are modeled as UML change events. For instance, when  
self.corrupt.value>0  in any of the states selected by the pointcut, the system goes to 
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‘RecoveryMode’, which is stereotyped as <<Introduction>> indicating that this state 
will be introduced in the base state machine. In this state, the system tries to recover 
the corrupt packets. If the system is successful, the transition with the change event 
‘self.corrupt.value =0’ takes the system back to the original state, which is one of the 
states selected by the SelectedStates state. If the system cannot recover within time t, 
then the system disconnects all the systems and goes to the ‘Idle’ state, stereotyped as 
<<Pointcut>> (see Fig. 3). This is modeled as a new transition from the 
‘RecoveryMode’ state to the ‘Idle’ state, with a time event after(t), and a new effect 
‘DisconnectAll’ with opaque behavior disconnect, which disconnects all the 
connected systems to the system. 

4   Test Case Generation 

In this section, we discuss how we extended our MBT tool, TRansformation-based 
tool for Uml-baSed Testing (TRUST) [6] for robustness testing. 

4.1   An Overview of TRUST 

In our previous work [6], we developed TRUST, whose software architecture and 
implementation strategy facilitate its customization to different contexts by supporting 
extensible features such as input models, test models, coverage criteria, test data 
generation strategies, and test script languages. For example, the tool is extensible 
with respect to coverage criteria and it lets the user implement and integrate new 
coverage criteria with minimum changes to the tool [9]. The tool takes as input a 
UML class diagram and one or more UML state machines and outputs test scripts.   

4.2   Integration of the AspectSM Weaver with TRUST 

A weaver is a tool that takes as input a base model and one or more aspects and 
produces a woven model [10]. We developed a weaver for AspectSM using a set of 
transformation rules in Kermeta [11]. Fig. 4 shows the architecture diagram for the 
weaver. The aspect weaver works in two steps. First it weaves aspect class diagram 
into the UML class diagram (e.g., Fig. 1) corresponding to the base state machine 
using the transformation rules written in Kermeta [11]. These rules take as input an 
aspect class diagram (e.g., Fig. 2) corresponding to an aspect state machine to be 
woven, a class diagram (e.g., Fig. 1) corresponding to the base state machine, and 
output a class diagram which is the class diagram corresponding to the base state 
machine augmented with the aspect class diagram. In the second step, one or more 
aspect state machines (e.g., Fig. 3) are woven into the base state machine. Since our 
queries (Pointcuts [7]) are in OCL, which need to be evaluated during the weaving 
process, we need to convert OCL expressions into Kermeta expressions. This is 
achieved through the OCLToKermeta component. Finally, AspectStateMachineWeaver 
produces a woven state machine which is a standard UML state machine. This state 
machine is then provided to the TRUST tool for test case generation. 
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Fig. 4. Architecture diagram for the weaver 

4.3   Integration of Search-Based Constraint Solver with TRUST  

Emulating faulty situations in the operating environment of a VCS requires solving 
complex OCL constraints on the properties of the environment. These constraints 
must be solved during test case generation to emulate the faulty situations (i.e., to set 
the environment properties in a way for which such faulty situations occur). To 
efficiently solve these constraints, we developed a search-based OCL constraint 
solver [12], since current OCL solvers were not able to handle the complexity of our 
model’s constraints within reasonable time. Fig. 5 shows the architecture diagram for 
our Search-based Constraint solver. We developed a tool in Java that interacts with an 
existing library, an OCL evaluator called the EyeOCL Software (EOS) [13]. EOS is a 
Java component that provides APIs to parse and evaluate an OCL expression based on 
an object model. Our tool implements the calculation of branch distance 
(DistanceCalculator) [12] for various expressions in OCL, which aims at calculating 
how far are environment properties from satisfying constraints. The search algorithms 
employed are implemented in Java as well and includes Genetic Algorithms and 
(1+1) Evolutionary Algorithm [12].   

 

Fig. 5. Architecture diagram for search-based constraint solver 

5   Test Case Execution 

In this section, we provide details on robustness test case execution. Section 5.1 
describes our setup required for test case execution and Section 5.2 provides results of 
test case execution corresponding to the case study provided in Section 2.  
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5.1   Setup for Test Case Execution 

Fig. 6 shows our test execution setup for executing robustness test cases generated by 
TRUST. The current setup involves Saturn, which is the system under test (SUT) and 
three video conferences systems (VCSs). Since the execution of test cases requires 
emulating faulty situations in the environment, we needed a network emulator. For 
this purpose, we relied on software-based emulation facility (netem [14]). The setup 
of network emulator requires setting up a PC with three network interface cards 
(NICs). All communication to/from Saturn (SUT in Fig. 4) passes through 
NetworkEmulator. Saturn is connected to NIC3 of NetworkEmulator and all incoming 
and outgoing traffic from Network comes through NIC1. NIC1 is bridged to NIC3 and 
hence all the traffic goes to Saturn via NIC3. Our test case execution system is 
directly connected to NIC2 of network emulator and through this NIC all faulty 
situations in the network are introduced by test scripts. All other communication from 
the test execution system to SUT and VCSs takes place through NIC2 of 
NetworkEmulator. We separated them because if the faulty situations are introduced 
via the same NIC as other communication flows, we might end up affecting the 
commands that introduce faulty situations. Thus, we may end up not introducing 
faulty situations at all. 

 

Fig. 6. Setup for robustness test case execution 

5.2   Preliminary Test Case Execution Results 

For our current case study (Section 2), we used our weaver (Section 4.2) to produce a 
woven state machine. The woven state machine was given as input to TRUST 
(Section 4.1), which was configured to generate test cases using All Transition 
Coverage implemented by depth first search. In total 72 test cases were generated by 
TRUST. OCL constraints (change events in Fig. 3) were solved using our search-
based constraint solver (Section 4.3) to generate test data and introduce faulty 
situations in the environment. We executed test cases using the setup presented in 
Section 5.1. The execution of test cases found one robustness fault (halt and restart) in 
Saturn, when more than 10% duplicate packets were introduced in network 
communication. Our approach had more chances to catch this fault compared to 
existing practices in Cisco. MBT is more systematic and is in our case specifically 
tailored to catch robustness faults. Our approach indeed focuses on automatically 
testing the robustness of Saturn over various functional scenarios in the presence of 
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several faulty situations in the network. In contrast, current robustness testing at Cisco 
is based on scripts written manually by testers to test a few network properties over a 
few of functional scenarios.  

6   Experience and Lessons Learned 

This section reports our experience of performing model-based robustness testing 
(MBRT) at Cisco. As often with many control and communication systems in 
industry, robustness testing is very critical for Cisco’s Video Conferencing Systems 
(VCS). Currently, robustness testing at Cisco is driven by manually written test 
scripts, which is a common scenario in many industries. Due to time and resource 
constraints (e.g., system-level test cases are run with hardware-in-the-loop), only a 
limited number of test scripts can be written and only a limited number of faulty 
situations can be emulated. In these constrained cases, it is hence essential to carry out 
robustness testing in an automated and systematic way.  

In order to support scalable modeling, aspect-oriented modeling (AOM) is adapted 
to support robustness modeling in the context of embedded systems and UML state 
machines (Section 3). Test cases are then generated based on system models including 
robustness behavior, using coverage criteria such as all round trip paths and all 
transitions criteria [9] (Section 4). Such an approach guarantees to cover important 
test scenarios that could be missed by manual testing, and thus leading to more 
systematic and comprehensive testing. Furthermore, the models can be used to 
generate effective, automated oracles (e.g., state invariants). Test cases are then 
executed using environment emulators (Section 5). 

In the section below, we report on our experience of performing MBRT in Cisco. 
Since such reports are very rare in the literature (see Section 7), we believe that such 
section would provide useful insights in terms of the challenges we faced and the 
effectiveness of the solutions adopted in practice.  

6.1   Robustness Modeling 

In this section, we describe our experience and provide lessons learned obtained from 
modeling robustness behavior of Saturn, a VCS developed by Cisco. Details on our 
experience with functional modeling can be found in [6]. 

Experiences with AOM. Modeling the robustness behavior was performed by the 
authors with the help of testers in Cisco, who are currently involved in robustness 
testing. The modeling was done as part of a research project regarding the application 
of model-based testing technology in industry. 

Before modeling, it was important to have meetings with software engineers at 
Cisco to understand the specifications of the robustness behavior implemented in 
Saturn. When the specifications were sufficiently understood, the modeling process 
started. The testers themselves were involved in the modeling of the robustness and 
functional behavior. The models were discussed and revised several times during the 
modeling, to ensure that the behavior is modeled completely and correctly. The 
robustness modeling took around seven hours. Understanding the specification took 
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approximately four hours, whereas the actual modeling took approximately three 
hours. All the modeling was done with IBM Rational Software Architect (RSA) 7.5 as 
our UML profile (AspectSM) is also implemented in RSA. Note that this time 
accounts only for modeling the robustness behavior of Saturn in the presence of faulty 
situations in the network.   

As we discussed in Section 3, robustness behavior crosscuts functional behavior. 
When robustness behavior is modeled directly with the functional model, the 
complexity of the resulting model increases enormously due to redundant modeling 
elements, which are scattered across the model (e.g., repeated in each state of the 
functional model). Modeling such redundant behavior requires substantial modeling 
effort if not modeled using an AOM methodology as the same behavior has to be 
modeled in several places in the model. As we discussed in Section 3, we employed 
AOM, and more specifically the AspectSM profile to reduce this accidental modeling 
complexity. Based on our experience with the Saturn VCS, we saved more than 95% 
of the modeling effort when measured by the number of modeled elements involved 
in the VCS robustness behaviors [7]. Of course, this effort is saved at the expense of 
learning and applying various stereotypes defined in AspectSM. We will further 
investigate the effort required to learn and apply AspectSM with more industrial case 
studies and controlled experiments in the future. However, the percentage of saving is 
so large that we consider these results to be very promising. In addition, modeling 
robustness behavior using AspectSM significantly improves the readability of the 
models as suggested from the results of a controlled experiment reported in [15].  

Modeling crosscutting behavior in UML state machines provides enhanced 
separation of concerns. This means that a modeler/tester, or several of them with 
possibly different expertise, can focus on each crosscutting concern separately. They 
can model these crosscutting concerns separately from the core functionality and 
other crosscutting concerns (aspects). Our tool [7] can then be used to automatically 
weave these aspects with the behavioral models. 

Experiences with MARTE. As we discussed in Section 3.2, we used a small subset 
of the MARTE profile to model properties of environment, whose violations lead to 
the faulty situations in the environment. The MARTE profile has a package dedicated 
to modeling non-functional properties (NFP). It provides different data types such as 
NFP_Percentage and NFP_DataTxRate, which are helpful to model properties of the 
environment, for instance jitter and packet loss in networks. When the built-in data 
types of MARTE are not sufficient, the open modeling framework of MARTE can be 
used to define new NFP types by either extending the existing NFPs or by defining 
completely new NFPs. For instance, we extended MARTE’s NFPs and define several 
properties of the environment when modeling echo in audio streams and modeling 
miss-synchronization between audio and video streams coming to a VCS [7]. From 
our experience in using MARTE, we can conclude that the MARTE profile and its 
open modeling framework were sufficient to model relevant properties of the Saturn 
operating environment. In addition, the fact that MARTE is a standard UML profile 
by OMG and hence is supported by many modeling tools [8] facilitates the adoption 
of modeling in industrial contexts since models are assets to be reused and modified 
over many years.   
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6.2   Test Case Generation 

In this section, we discuss our experiences regarding the generation of robustness test 
cases. 

Experiences with the TRUST tool. We have previously reported [6] the successful 
application of the TRUST tool in two companies to support functional test case 
generation. In our current application, we extended TRUST for robustness testing. For 
this purpose, we only needed to change the transformation rules in MOFScript [14] 
that generate the concrete test scripts. The modified transformation rules generate 
appropriate commands in the test scripts that emulate faulty situations in the 
environment. Generally, the transformation rules written in, e.g., Kermeta [11], 
MOFScript [14], or Query/View/Transformation (QVT) [16] are relatively compact 
and easy to read, write, and change as opposed to manipulating models using 
programming languages such as Java and C++. For the current implementation, we 
used MOFScript as Model-to-Text (M2T) transformation language, because it was the 
only M2T transformation language with good enough tool support (at the time of 
writing this paper).   

Experiences with environment fault emulation. The most challenging part for test 
case generation was emulating faulty situations in the environment to test a system’s 
robustness against them. A faulty situation in the operating environment is emulated 
when the properties of the environment are violated (Section 3.2). These violations 
are specified as change events (OCL constraints) on aspect state machines that lead to 
faulty states. To obtain a test suite that covers all the states in such UML models, it is 
hence important to find environment configurations for which these OCL constraints 
are evaluated to be true. Unfortunately, some of these constraints are complex, 
comprising of up to eight conjuncted clauses and hence are very difficult to solve 
using existing OCL solvers. For instance, we experimented with one well-known, 
downloadable OCL solver (UMLtoCSP) [17]. The results showed that, even after 
running that tool for 10 hours, no solutions could be found for most of the constraints. 
The reason is that the existing OCL solvers require the conversion of OCL to lower-
level languages such as a Satisfiability (SAT) formula [18] or a Constraint Solving 
Problem (CSP) [17] instance and hence can easily result in combinatorial explosion as 
the complexity of the model and constraints increase (as discussed in [17]). For 
industrial scale systems, as in our case, this is a major limitation, since the models and 
constraints are generally quite complex. Hence, existing techniques based on 
conversion to lower-level languages seem impractical in the context of large scale, 
real-world systems. To solve this issue, we developed a new OCL solver based on 
search algorithms and managed to solve the same constraints in 3.8 minutes on 
average [12] on a regular PC. This gives empirical evidence that it is possible to 
quickly and directly solve complex industrial constraints written in a high-level 
language such as OCL, and hence efficiently emulates faulty situations in the 
operating environment for robustness testing purposes.  

As we discuss in Section 6.2, we developed an OCL constraint solver in Java that 
interacts with an existing library, an OCL evaluator called EyeOCL Software (EOS) 
[17]. Our tool implements a set of heuristics as discussed in [12] for various 
expressions in OCL using EOS’s API, which are then used by search algorithms to 
guide the search for input data that satisfy such constraints. We used EOS for both 
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parsing and evaluating OCL expressions. We experienced that EOS is one of the most 
efficient OCL evaluators and provides a very simple API to evaluate and parse OCL 
expressions. In our experience, the only major downside of EOS is that, to 
evaluate/parse OCL expressions, EOS requires class and/or object diagrams to be 
loaded into its memory in a specific format. To facilitate this, we wrote a MOFScript 
transformation that takes the UML class diagram (modeling state variables, method 
calls, and signal receptions of the SUT) as input and generates a Java wrapper class 
that includes a set of EOS method calls for making class and object diagrams. During 
test case generation, we solve the constraints on the environment properties to 
emulate faulty situations in the environment using EOS and search algorithms. 
Another issue when solving an OCL constraint using a search algorithm is that it 
requires evaluating the OCL expression many times, and hence the speed of constraint 
solving is dependent on the efficiency of the selected OCL evaluator. Recall from 
Section 4.3 that we developed our TRUST testing tool with an open architecture such 
that any other OCL evaluator and parser (more efficient) can be easily replaced with 
EOS if required. 

6.3   Test Case Execution 

This section discusses our experience with test case execution at Cisco. 

Experiences with setting up environment emulators. Executing robustness test 
cases is expensive because it requires setting up special equipment (hardware and/or 
software-based emulators) to emulate faulty situations in the environment. The 
emulators required in our current industrial case study are targeting networks, media 
streams and VCS. In our case, we only experimented with the network emulator 
because all communications between VCSs takes place via the network. It is hence 
important to test a VCS’s behavior in the presence of faulty situations in the network.  
In our current application, we setup network emulator (netem [14]) once and then 
used it for testing without any additional settings for executing each test case. 

Experiences with test case execution. Applying standard MBT criteria on UML 
state machines modeling the VCS results in test suites that are often to expensive or 
time-consuming to fit available test resources. For instance, in our current experiment, 
using a very simple coverage criterion on our (partial) case study (Section 5.2) 
resulted in 72 test cases, which would a take a long time to run in the test lab at Cisco 
Norway. This is expected to be a problem on most industrial systems, especially when 
modeling robustness along with the functional behavior. Executing large test suites is 
not practically feasible in many industrial contexts due to limited time and resources. 
For instance, running one robustness test case requires booking a specialized testing 
lab and takes on average 15 minutes on a Cisco’s VCS. To cope with this practical 
problem, and in general to apply MBT in industry, there is the need of smart 
techniques to automatically select smaller subsets of test cases that can be run within 
testing budgets [19]. 

6.4   Current Limitations  

As we discussed in Section 3, we need to model the faulty situations in the network, 
media streams, and VCSs communicating with a VCS under test (VUT). To date, we 
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experimented only with emulating faulty situations in the network, which is just one 
aspect of the environment. Although we have already modeled the faulty situations in 
media streams (e.g., echo in audio and miss-synchronization between audio and 
video) [7], we do not have an appropriate media stream emulator yet. In addition to 
the media streams emulator, we also need to update our test script generator to 
generate test scripts that will control the media streams emulator during test case 
execution. For emulating faulty situations in other VCSs communicating with the 
VUT, we have not yet modeled the VCSs from that perspective. But we do expect that 
the models of the VCSs should be quite similar to the models of VUT, except for the 
need to select test paths from the models that will trigger faulty situations. For this 
purpose, we do have software-based emulators for VCSs, which can be utilized to 
emulate faulty situations during test case execution. 

7   Related Work 

Most of the work related to MBRT focuses on modeling and testing the behavior of a 
system when invalid inputs are given to the system, or in cases when exceptions 
(similar to exceptions in a programming language) are thrown in the SUT. For 
instance, Pintér and Majzik [20] report on the modeling of exceptions in statecharts in 
a similar fashion to Java mechanisms for writing exceptions (try/catch blocks). 
Exceptions are modeled as events on transitions in statecharts. Such statecharts are 
subsequently used for model checking. Lei et al. [21] provide a methodology to check 
the robustness of component-based systems in the case of invalid inputs. Test cases 
are then generated for invalid inputs at various states and the robustness of the system 
is checked. Nebut et al. [22] provide an automatic test generation approach based on 
use cases extended with contracts, after transforming them into a transition system. 
Their approach supports both functional and robustness test generation. Robustness 
test cases are generated by calling use cases when their preconditions are false.  

The work presented in this paper is different from the existing work in MBRT in 
one or more of the following ways: 1) It focuses on modeling and testing system 
robustness in the presence of faults in its environment; this aspect has received little 
attention in the literature. In contrast, most of the existing work focus only on the 
behavior of a system when receiving invalid inputs [20] [21]. In contrast to the work 
presented in [22], our work is based on UML state machines, which is the main 
notation currently used for model-based test case generation [5]; 2) It uses AOM to 
model robustness behavior separately from the core, functional behavior, hence 
decreasing modeling effort by avoiding clutter in models, making them easier to read 
and decreasing chances of modeling errors; 3) It relies on modeling standards, in this 
case UML state machines and the MARTE profile [8], to model faulty situations of 
the environment. Using standards eliminate the need to adopt new notations and 
consequently facilitates the technology transfer to industry, as there are commercial 
modeling tools supporting UML and its extensions.    

Other related works are the ones which employ search algorithms for non-
functional testing. A recent systematic review [23] on the application of search 
algorithms for non-functional testing reveals that existing works focused on 
performance, quality of service, security, usability, and safety testing. None targeted 
robustness testing using search algorithms, as in our work. 
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8   Conclusion and Future Work 

Model-based robustness testing (MBRT) is a solution for systematic and rigorous 
robustness testing for industrial embedded systems, as for example communication 
and control systems. MBRT involves testing the behavior of a system in the presence 
of faulty situations in its operating environment.  

In this paper, we reported our experience of applying MBRT to video conferencing 
systems (VCSs) developed by Cisco Systems, Norway. Such industrial applications of 
MBRT and even more generally of model-based testing (MBT) are very rare in the 
literature. They are however very important to evaluate the scalability and 
applicability of MBT in realistic settings. We discussed how we integrated different 
tools and techniques to achieve the ultimate goal of automated and systematic MBRT. 
First, we discussed how we achieved scalable modeling of robustness behavior using 
Aspect-oriented Modeling (AOM) and more specifically using the AspectSM profile. 
AspectSM is a UML profile specifically designed to model robustness behavior with 
minimum extensions to UML to ease practical adoption. We also provided details on 
the weaver for AspectSM. Second, we provided details on the use of search 
algorithms (e.g., Genetic Algorithms) to solve complex constraints on environmental 
properties to emulate faulty situations. Third, we described the integration of the 
abovementioned tools with our model-based testing tool TRUST to achieve fully 
automated MBRT. Finally, we discussed the setup required to execute the test cases 
generated by TRUST and preliminary results when running the case studies on the 
VCS under test. The execution of test cases revealed a robustness fault in the VCS 
that had remained undetected by previous testing, in the presence of duplicate packets 
in the network during a videoconference. We then summarized our experiences and 
lessons learned while applying MBRT at Cisco.  

This paper reports on a successful application of modeling to support testing in a 
real industrial setting. The results reported in this paper provide useful insights into 
the challenges and benefits of applying MBRT in a typical embedded system 
environment. One key success factor is to be able to address serious scalability issues 
(e.g., in constraint solving), which usually are not faced when dealing with 
small/artificial problem instances. However, there are still many research questions 
that need to be addressed. In the future, we are planning to extend the TRUST tool 
with more sophisticated test strategies specifically tailored to discovering robustness 
faults in a VCS. We also plan to perform robustness testing in the presence of faulty 
situations in other aspects of the environment such as in media streams and VCSs.         
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Abstract. Aspect-Oriented Modelling techniques allow a modeller to
describe within a single aspect model all model elements that define the
structural and/or behavioural properties of a concern. When applied to
a base model, the model weaver ensures that the entire aspect is reflected
in the woven model. While this is essential for centralized systems, it is
not the case when model elements of a concern are scattered over nodes
in a distributed system. We propose an extension to our Reusable Aspect
Models that allows the modeller to augment an aspect model of a concern
that can crosscut the nodes of a distributed system with distribution role
definitions. A distributed system configuration file specifies the different
node types of the distributed system, and which roles of a distributed as-
pect are assigned to which nodes. The weaver makes sure that every role
of a distributed aspect is assigned to at least one node in the system to
ensure consistent aspect use. The weaver then generates for each node a
final application model that only contains the model elements pertaining
to the distribution roles the node plays.

1 Introduction

Aspect-Oriented Modelling (AOM) techniques allow a modeller to describe within
a single aspect model all model elements that define the structural and/or be-
havioural properties of a concern. AOM approaches that emphasize reuse provide
features that allow an aspect model to clearly specify its interface, i.e. expose the
structure and behaviour provided by the aspect, while hiding unnecessary de-
tails about how the functionality is provided. When a concern is needed within a
specific application model, the aspect model is simply applied to the application
model by matching elements declared in the aspect interface with application
model elements. The aspect weaver then combines both models to yield a woven
model of the application. In the woven model, the model elements of the aspect
crosscut the structure and behaviour of the application model.

The fact that all model elements related to a specific concern are grouped
together is of major importance for the following reasons:

• It prevents scattering of model elements related to the concern over a big
application model. Having all model elements pertaining to the concern in
one place is useful for reasoning about the concern itself. It also simplifies
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making changes to the way a concern provides its functionality, because the
modeller is guaranteed not to overlook anything important.

• It prevents tangling of model elements related to several concerns within
a big application model. This is useful for reasoning about the application
model itself, because the modeller is not distracted by any model elements
related to the aspect. As a result, the application model is easier to evolve.

• It ensures consistent use of the aspect model. Since the aspect model contains
all relevant model elements of the concern, the weaver can ensure that the
entire structure and behaviour of the aspect is indeed composed with the
application model. It would be incorrect to only weave some of the aspect
model elements, since they all logically belong together.

While the last point mentioned above is highly desirable for centralized systems,
the situation changes in the context of a distributed system composed of many
processing nodes. Often, the individual nodes play different roles in the system,
contributing in different ways to fulfill the purpose of the system. Typical exam-
ples of distributed systems with different kinds of nodes are client-server systems,
or systems that use the publish-subscribe paradigm. Unless the distributed ar-
chitecture is perfectly symmetrical, the implementations of the different nodes
vary considerably. For instance, in most client-server systems, the client node
typically knows how to send requests to the server and provides an elaborate
user interface, whereas the server usually waits for requests from clients and
executes them on business objects. When modelling the design of such a dis-
tributed system, a separate design model must ultimately be created for each
kind of node, since in the end each kind of node is implemented by means of a
different executable.

When aspect-oriented modelling techniques are applied in the context of a
distributed system, it is possible that the structure and behaviour defined by an
aspect model crosscuts the different nodes. The distributed system as a whole
still needs all the structural elements and still exhibits the complete behaviour
described in the aspect, but the model for each individual node in the system does
not need to contain all aspect model elements, but just the ones that are used on
that node. For example, in a wireless sensor network, the application running on
the resource-constrained sensor nodes might only send sensor information to the
backend and never receive any messages. Likewise, for confidentiality reasons,
the sensor nodes only need to encrypt the data, whereas the backend application
needs to decrypt it. In order to save resources and reduce application complexity,
the sensor node application should not contain structure and behaviour related
to receiving and decrypting.

In this paper we show how to extend aspect-oriented modelling techniques,
and in particular the Reusable Aspect Models (RAM) [1,2] approach, to model
distributed systems with aspects that crosscut the different kinds of nodes. The
outline of the paper is as follows. Section 2 presents the key concepts of RAM
by showing the design of an Observer aspect that implements the observer de-
sign pattern. Section 3 shows how we introduced the concept of distribution
roles into our aspect models, and illustrates their use by showing a simple
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SocketCommunication aspect that uses sockets to establish a communication
between two nodes. We then proceed to build a RemoteObserver aspect based
on the centralized Observer aspect and the distributable Communication aspect.
Section 4 presents how we envision the RAM tool and aspect weaver to allow a
modeller to configure a distributed system composed of several nodes. Section 5
presents related work, and the last section draws some conclusions.

2 Background on RAM

In [1,2] we have proposed Reusable Aspect Models (RAM), an aspect-oriented
multi-view modelling approach that 1) integrates class diagram, sequence dia-
gram and state diagram AOM techniques into one coherent approach; 2) provides
aspect models with well-defined interfaces for easy and flexible reuse; 3) supports
the creation of complex aspect dependency chains; 4) performs elaborate consis-
tency checks to verify correct aspect composition and reuse; 5) defines a detailed
weaving algorithm that resolves aspect dependencies to generate independent
aspect models and ultimately the final application model.

The section introduces the core concepts of RAM that are relevant for this
paper by modelling the structure and behaviour of the Observer aspect. The
classic Observer Design Pattern [3] is a software design pattern in which an ob-
ject, called the subject, maintains a list of dependents, called observers. When-
ever the subject’s state changes, it notifies all observers by calling an update
operation. The observer design pattern has been used in many publications to
demonstrate different aspect-oriented programming and aspect-oriented mod-
elling techniques.

2.1 Designing the Aspect Interface

When designing an aspect model with RAM, the designer usually starts by
designing the aspect interface, which contains the structural and behavioural
model elements that are important in order to apply the aspect to some base
model. The interface for the Observer aspect is shown in Fig. 1.

aspect Observer

structural view

|Subject
|modify

|Observer
|update+ * |modify(..)

|Subject

+ startObserving(|Subject)
+ stopObserving(|Subject)
~ |update(|Subject)

|Observer

Fig. 1. The Observer Aspect Interface

The most important elements of the interface are the mandatory instantia-
tion parameters. They are depicted as UML template parameters in the upper
right corner of the structural view of the aspect model. Mandatory instantiation
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parameters designate aspect model elements that a modeller must map to model
elements within the base model in order to make use of an aspect. Another way
of looking at this is that the base model must provide model elements for all
the mandatory instantiation parameters of an aspect model in order to use it.
In case of the Observer aspect, the mandatory instantiation parameters are the
|Subject class, which also defines at least one |modify operation, and the |Ob-
server class, which must provide an |update operation. The aspect interface also
declares two public operations for the |Observer class, namely startObserving
and stopObserving that allow an observer instance to register, rsp. deregister,
with a subject instance.

2.2 Designing the Aspect Structure

The next step in the design of an aspect model is to complete the internal
details of the aspect, i.e. add the structure and behaviour necessary to be able
to fulfill the purpose of the aspect. Structurally, in the case of the Observer
aspect, an association needs to be established between the one subject instance
and its observers. Luckily, this is a very common design concern, and there are
several RAM models that have already been developed that can be used in this
context. Here we are going to use the ZeroToManyAssociation (ZOM) aspect, the
interface of which is shown in Fig. 2. As expected, the aspect provides operations
to add an object to the association, remove an object from the association or
query the current state of the association (getAssociated).

aspect ZeroToManyAssociation

structural view
|Data

|Associated

+ add(|Associated a)
+ remove(|Associated a)
+ Set<|Associated> getAssociated()

|Data

|AssociatedSet |Associated

Fig. 2. The ZeroToManyAssociation Aspect Interface

To use ZOM within the Observer aspect, all mandatory instantiation param-
eters of ZOM must be mapped to model elements of the Observer aspect. This
is done by providing instantiation directives as shown in the second compart-
ment of the complete Observer aspect model illustrated in Fig. 3. The directive
specifies that |Data is mapped to |Subject, and |Associated to |Observer. In addi-
tion, getAssociated, the operation provided by |Data, is renamed to getObservers
to better reflect the semantics of the operation in the context of the Observer
aspect.

2.3 Designing the Aspect Behaviour

Now that we have the necessary structural properties in place, it is time to de-
fine the behaviour of the Observer aspect. In RAM, aspect behaviour is specified
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aspect Observer depends on ZeroToManyAssociation

structural view

|Subject
|Observer

|modify
|update~ Set<|Observer> getObservers()

+ * |modify(..)

|Subject

+ startObserving(|Subject)
+ stopObserving()
~ |update(|Subject)

|Observer

Instantiations:
ZeroToManyAssociation: |Data → |Subject; |Associated → |Observer; getAssociated → getObservers

message view startObserving affected by add caller: Caller target: |Observer

startObserving(s)

s: |Subject

add(target)

Default Instantiation: caller → *; Caller → *; target → *

Default Instantiation: caller → *; Caller → *; target → *

caller: Caller target: |Observer

stopObserving()

mySubject:
|Subject

remove(target)

message view stopObserving  affected by remove

message view |modify affected by notification

message view notification affected by getObservers, |update

caller: Caller target: |Subject
|modify(..)

Pointcut

Advice

caller: Caller

|modify(..)

target: |Subject

o: |Observer
|update(target)

                          observers := getObservers()

loop [o within observers]

* *

Default Instantiation: caller → *; Caller → *; target → *

mySubject
0..1

Fig. 3. The Complete ObserverAspect

using sequence diagrams and state diagrams. Sequence diagrams are mandatory:
for each public operation specified in the interface, an aspect model must specify
a message view that shows using a sequence diagram the synchronous message
calls that are exchanged between objects as a result of an invocation of the op-
eration. The state diagrams are optional: for each class defined in the structural
view, the aspect model can declare a state view that is used to define the op-
eration invocation protocol for instances of the class. The state views are used
by the aspect weaver to model check the woven model for consistency. For space
reasons, the state views have been omitted in the aspect examples of this paper.
The interested reader is referred to [2] for details on state views and verification
of composition using model checking.

Since the Observer aspect specifies 3 public operations, Fig. 3 defines 3 mes-
sage views. The message view startObserving shows that the add operation pro-
vided by ZOM is used to associate the observer with the subject. Similarly,
stopObserving uses remove to deassociate the observer from the subject. The
most interesting message view is |modify, which represents operations that mod-
ify the state of the subject instance. It specifies that every call to |modify is
affected by the notification message view. Notification states that after any call
to |modify, getObservers provided by ZOM is called to obtain the set of currently
registered observers. After that, the update operations of each of the observers
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base StockExchange depends on Observer

structural view

~ StockWindow create(Stock s)
~ updateWindow(Stock s)

StockWindow~ Stock create(String name, int currentPrice)
~ String getName()
~ int getCurrentPrice()
~ setCurrentPrice()

- String name
- int currentPrice

Stock

+ main(String[] args)

CentralizedStockExchange

JFrame JLabel
1    myLabel

Instantiations:
Observer: |Subject → Stock; |Observer → StockWindow; 

|modify → setCurrentPrice; |update → updateWindow;

Implementation:
JFrame:
JLabel:

javax.swing.JFrame
javax.swing.JLabel

Fig. 4. The Centralized Stock Exchange Base Model

base StockExchange 

structural view

~ StockWindow create(Stock s)
~ updateWindow(Stock s)
~ startObserving(Stock)
~ stopObserving()

StockWindow
~ Stock create(String name, int currentPrice)
~ String getName()
~ int getCurrentPrice()
~ setCurrentPrice(int price)
~ Set<StockWindow> getObservers()
~ add(StockWindow w)
~ remove(StockWindow w)

- String name
- int currentPrice

Stock + main(String[] args)

CentralizedStockExchange

JFrame JLabel
myLabel   1

1
mySet

0..*
~ Set create()
~ add(StockWindow )
~ remove(StockWindow)
~ delete()

int size
Set<StockWindow>

mySubject
0..1

Fig. 5. The Woven Centralized Stock Exchange Structural View

is called. The default instantiation in the message view states that all calls to
|modify made to instances of the class |Subject are to be observed, regardless of
who the caller is. When the Observer aspect is used, this default instantiation
can be overridden, if only calls made by specific callers are to be observed.

2.4 Weaving

The simple StockExchange base model shown in Fig. 4 applies the Observer as-
pect to update the graphical user interface whenever the price of the visualized
stock changes by mapping |Subject to Stock and |Observer to StockWindow.
To generate the final application model, the aspect weaver recursively weaves
all lower-level aspects into the higher level aspects according to the instantia-
tion directives. For illustration purpose, the final woven structural view of the
centralized StockExchange application is presented in Fig. 5. It shows that the
entire structure of Observer and indirectly also of ZOM is included in the final
model. Based on our experience it is always the case in centralized systems that
all model elements of a reused aspect model need to be woven with the base
model. We believe that if for some reason it would make sense to use only a
subset of the model elements of an aspect, then the aspect model itself was not
designed correctly. It should have been split into several aspects, with potential
dependencies among each other.



Aspect-Oriented Modelling for Distributed Systems 129

3 Modelling Distributed Concerns

While it is essential for centralized systems that all the structure and behaviour
of a used concern is woven into the base model, the situation changes in the
context of a distributed system composed of many processing nodes. Often,
the individual nodes play different roles in the system, contributing in different
ways to fulfill the purpose of the system. Unless the distributed architecture is
perfectly symmetrical, the implementations of the different types of nodes differ
considerably.

To illustrate this point, Fig. 6 presents the model of a very simple Communi-
cation aspect that is capable of establishing a point to point TCP/IP connection
between two nodes using sockets. The design of SocketCommunication is closely
inspired by how the Java [4] language exposes socket-based communication to
the developer. In fact, Java is one of the target languages of RAM, and the
Implementation compartment of SocketCommunication in Fig. 6 specifies how
most of the classes of the aspect are mapped to Java classes.

Since Java already provides the behaviour for most of the public operations
of SocketCommunication, only two message views, i.e. getSender and getRe-
ceiver, are needed to complete the aspect design. Each operation returns the
SocketSender (ObjectOutputStream) resp. SocketReceiver (ObjectInputStream)
associated with the Socket to the caller.

The structural and behavioural model elements provided by the SocketCom-
munication aspect clearly belong together: they are all mandatory elements in
order to establish a communication between two nodes of a distributed system.
However, not all structure and behaviour is used by each of the nodes that want
to communicate. The setup protocol is as follows: one node listens on a port by
creating a server socket; the other node initiates communication to that port by
creating a socket, passing the hostname and port number of the listening node as
a parameter to the constructor. This setup protocol is unavoidably asymmetric.
If successful, the thus established bi-directional communication link can be used
to send or receive objects by either one of the nodes, i.e. it can be used in a
symmetric way. However, nodes can choose to only send or only receive data, if
they wish to.

In order to explicitly support the modelling of distributed systems, we propose
to add the notion of distribution roles to aspect models. A distribution role is a
part of a distributed protocol that a node plays in a distributed system that uses
the aspect. Distribution roles allow the designer to partition the model elements
of the aspect into classes and operations that need to reside on the same node
of a distributed system.

In the SocketCommunication aspect there are four distribution roles, i.e. Lis-
tener, Initiator, Sender and Receiver, as shown in the Distribution Roles com-
partment of Fig. 6. Each role depends on some of the structural and behavioural
model elements of the aspect, which are listed as part of the role definition. Fi-
nally, since it is only possible to send or receive data after a communication link
has been set up, the role definitions specify that a node that plays the Sender
or Receiver role is also required to play either the Listener or Initiator role.
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aspect SocketCommunication 

structural view
|Sendable

+ |Sendable receive()

SocketReceiver

|Sendable

+ send(|Sendable s)

SocketSender

+ ServerSocket create(int port)
+ Socket accept()

ServerSocket

myReceiver

0..1

0..1

mySender

<<interface>>
Serializable

+ Socket create(String host, int port)
+ close()
+ boolean isConnected()
+ SocketReceiver getReceiver()
+ SocketSender getSender()

Socket

Implementation:
Serializable:
ServerSocket:
Socket:
SocketSender:
  send:
SocketReceiver:
  receive:

java.io.Serializable
java.net.ServerSocket
java.net.Socket
java.io.ObjectOutputStream
writeObject

java.io.ObjectInputStream
readObject

message view getSender

caller: Caller

mySender := getSender()

target: Socket

mySender: SocketSender
mySender := create(outputStream)

Default Instantiation: caller → *, Caller → *, target → *

outputStream := getOutputStream()

opt [mySender = null]

Distribution Roles:
Listener:
Initiator:
Sender:

Receiver:

ServerSocket, create, accept, Socket
Socket, Socket.create, Socket.close
requires Listener or Initiator
Socket, getSender, SocketSender, send, |Sendable
requires Listener or Initiator
Socket, getReceiver, SocketReceiver, receive,
|Sendable 

message view getReceiver

caller: Caller

myReceiver := getReceiver()

target: Socket

myReceiver: SocketReceiver
myReceiver := create(inputStream)

inputStream := getInputStream()

opt [myReceiver = null]

Default Instantiation: caller → *; Caller → *; target → *

Fig. 6. The SocketCommunication Aspect

3.1 Distributing the Observer Design Pattern

This subsection shows that the standard RAM design techniques still apply in
the context of modelling of distributed systems. To illustrate how a higher level
aspect can implement its functionality based on lower level aspects, we are going
to design a simple distributed version of the observer design pattern, in which
the subject and the observers are located on different nodes.

The interface of the DistributedObserver aspect shown in Fig. 7 is non-
surprisingly very similar to the interface of the centralized Observer aspect shown
in Fig. 1, except that in the distributed design the |Subject parameter for the op-
eration startObserving has been replaced by a host name and port number. This
is unavoidable, since standard references do not work across virtual machines.
In addition, since this is an aspect for a distributed system, the aspect interface
also declares the two distribution roles that the aspect exposes: the Subject and
the Observer role.
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aspect DistributedObserver 

structural view

|RemoteSubject
|modify

|RemoteObserver
|update

+ * |modify(..)

|RemoteSubject

+ startObserving(String host, int port)
+ stopObserving()
~ |update(|RemoteSubject)

|RemoteObserver

Distribution Roles:
Subject:
Observer:

Fig. 7. The DistributedObserver Aspect Interface

The idea behind the internal design of the DistributedObserver aspect is rel-
atively simple. For every remote observer, a socket-based communication link
is established between the subject node and the observer node. To set up this
link, on the node with the subject, a thread is listening for incoming connections
on the port number associated with the subject. The observer node initiates
the connection by connecting to the same port. Once the communication is es-
tablished, any changes to the state of the subject instance are communicated
to the remote observer by sending a copy of the updated subject through the
socket. According to this design, the Subject role of DistributedObserver uses the
Listener and Sender role of SocketCommunication, and the Observer role uses
Initiator and Receiver.

The complete design of DistributedObserver is shown in Figs. 8 and 9. Inter-
nally, DistributeObserver reuses SocketCommunication for communication be-
tween the subject and observer nodes. The Instantiations compartment shows
that |RemoteSubject is mapped to |Sendable in order to make it possible to send
the state of a remote subject over the network. The centralized Observer aspect
is also reused on the subject node: ObserverInfo objects register with the remote
subject in order to propagate update notifications to the remote observer node.

The message views shown in Fig. 8 specify the behaviour executed on the
Subject node. According to the Distribution Role compartment, the behaviour
involves the classes |RemoteSubject, ObserverInfo and Socket. The initialization
message view ensures that whenever a |RemoteSubject instance is created, a
listener thread is started, passing as a reference the remote subject itself. The
remote subject implements Runnable, and therefore the thread starts executing
the behaviour specified in the |RemoteSubject.run message view: a server socket
is created first, and then the thread waits for incoming connections by observers.
For each connecting observer, an ObserverInfo instance is created and associated
with the socket of the connection, and then registered as an observer with the
remote subject by using the startObserving operation provided by the centralized
Observer aspect. It is also the centralized Observer aspect that calls sendUpdate
of all the registered ObserverInfo instances when a remote subject is modified.
As shown in the sendUpdate message view, the ObserverInfo subsequently sends
the remote subject to the remote observer using the associated socket, if it is still
connected. A closed connection on the other hand signals that the corresponding
observer is not interested in receiving updates anymore, and hence stopObserving
is invoked to deregister the ObserverInfo instance.
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aspect DistributedObserver depends on Observer, SocketCommunication

structural view

|RemoteSubject
|modify

|RemoteObserver
|update

~ |RemoteSubject create(.., int myPort, ..)
+ |modify(..)

- int myPort
|RemoteSubject

- Socket getSocket()
- setSocket(Socket mySocket)
+ startObserving(String host, int port)
+ stopObserving()
~ |update(|RemoteSubject)
~ run()

|RemoteObserver

~ create(Socket mySocket)
~ sendUpdate(|RemoteSubject)

ObserverInfo

Socket
1

mySocket Socket
0..1    mySocket

Instantiations:
Observer:
SocketCommunication:

<<interface>>
Runnable

Distribution Roles:
Subject:

Observer:

depends on SocketComm.Listener, SocketComm.Sender
|RemoteSubject; ObserverInfo; Socket
depends on Socket.Comm.Initiator, SocketComm.Receiver
|RemoteObserver; Socket

|Subject → |RemoteSubject; |Observer → ObserverInfo; |modify → |modify; |update → sendUpdate;
|Sendable → |RemoteSubject; Socket → Socket;

message view |RemoteSubject.create affected by initialization

message view initialization

caller:Caller
new:

|RemoteSubject
new := create(..)

listener: Thread
create(this)

start()

Pointcut Advice

caller:Caller
new:

|RemoteSubject
new := create(..)

Default Instantiation: caller → *, Caller → *, new → *

caller: Thread
run()

new := create(myPort)

target: |RemoteSubject

new: ServerSocket

loop
newConn := accept()

newConn: Socket

obs: ObserverInfo
obs := create(newConn)

message view |RemoteSubject.run affected by startObserving

startObserving(target)

Default Instantiation: caller → *, target → *

message view sendUpdate affected by SocketSender.send & ObserverInfo.stopObserving

caller: |RemoteSubject

send(sub)

sendUpdate(sub)
active := isConnected()

mySocket: Socket

s := getSender()

target: ObserverInfo

alt [active]
s: Sender

send(target)

      stopObserving()
[else]

Default Instantiation: caller → *, target → *

Thread
0..1
updateListener

Implementation:
Thread:
Runnable:

java.lang.Thread
java.lang.Runnable

Fig. 8. The Complete DistributedObserver Aspect Model – Part 1

The message views shown in Fig. 9 describe the behaviour on the Observer
node. As shown by the first message view, a call to startObserving results in
the creation of a socket and attempt to establish a connection with the specified
host on the provided port. Then, an updateListener thread is started, passing as
a parameter the remote observer itself. The |RemoteObserver.run message view
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message view stopObserving 

caller: Caller
run()

target: |RemoteObserver mySocket: Socket

loop

myReceiver := getReceiver()

myReceiver: SocketReceiver

updatedSubject := receive()

message view |RemoteObserver.run affected by |update Advice

|update(updatedSubject)

caller: Caller
stopObserving()

mySocket: Socket
close()

target: |RemoteObserver

opt [mySocket != null]

updateListener: Thread

message view startObserving

caller: Caller

startObserving(host, port)

mySocket: Socket
mySocket := create(host, port)

target: |RemoteObserver

opt [mySocket = null]

updateListener: Thread
create(this)

start()

Default Instantiation: caller → *, Caller → *, target → *

Default Instantiation: caller → *, Caller → *, target → *

interrupt()

Default Instantiation: caller → *, Caller → *, target → *

Fig. 9. The Complete DistributedObserver Aspect – Part 2

shows that the thread simply waits for incoming subject instances, after which
it invokes |update. In case stopObserving is invoked, the socket to the remote
subject node is closed and the updateListener thread is interrupted.

4 Generating Models for a Distributed System

The challenge when generating base models for a distributed system is that we
want to take advantage of the consistency and completeness checks that the
weaver performs just like in the context of centralized systems. This means that
we want the weaver to verify that:

• distribution roles are used consistently on each node, i.e. all structure and
behaviour associated with a distribution role is woven into the base model
of the node, and

• all structure and behaviour of a distributed aspect model is used on some
node of the distributed system.

4.1 Instantiating Distribution Roles

In order to ensure consistent use of distribution roles, the instantiation rules of
the model weaver need to be relaxed. When modelling centralized systems, the
weaver enforces that all the mandatory instantiation parameters of an aspect
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are mapped to base model elements. In distributed systems, since an individual
node does not necessarily play all the distribution roles of an aspect, not all the
model elements defined by the aspect are relevant to the node. The distributed
aspect clearly lists the defined distribution roles in its interface, together with
the model elements associated with each role. In a sense this indirectly defines a
(sub) aspect interface for each role. When a distributed aspect model is applied
to a base model, the modeller specifies which distribution role(s) should be in-
stantiated. The weaver, using the list of model elements given in the Distribution
Roles compartment, makes sure that all mandatory parameters that pertain to
the distribution roles assigned to the node are instantiated, and that no model
elements that are not part of the role are mapped to base model elements.

4.2 Configuring a Distributed System

In order to ensure consistent use of a a distributed aspect model across all nodes
of a distributed system, a new notion needs to be added to the modelling envi-
ronment: a distributed system configuration. A distributed system configuration
declares a set of node types, and then assigns a base model to each node type.
Optionally, (centralized) aspect models and distribution roles of distributed as-
pect models can also be assigned to a node type. The modelling environment
then verifies that for each used distributed aspect, all aspect roles have been
assigned to at least one node in the configuration before asking the weaver to
generate the woven models for each of the nodes.

Currently, our modelling environment does not provide a graphical user in-
terface for specifying distributed system configurations. We envision this to be
accomplished with UML deployment diagrams in the future. In the mean time,
we propose to use a simple textual configuration file as shown in Listing. 1.1.

Listing 1.1. Stock Exchange Client-Server System Configuration

1 configuration StockExchange is
2
3 StockServer : node;
4 StockClient : node;
5
6 begin
7
8 StockServer base is StockBackend;
9 StockServer plays DistributedObserver.Subject

10 (| RemoteSubject -> Stock , |modify -> setCurrentPrice)
11
12 StockClient base is StockGUI ;
13 StockClient plays DistributedObserver.Observer
14 (| RemoteObserver -> StockWindow , |update -> updateWindow)
15
16 end StockExchange;

Lines 3 and 4 declare the two node types in the distributed system: the Stock-
Server and the StockClient. Line 8 assigns the StockBackend base model to the
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1
mySet

base StockBackend

structural view

+ main(String[] args)

StockBackend

~ Stock create(String name, int 
currentPrice, int myPort)
~ String getName()
~ int getCurrentPrice()
~ setCurrentPrice(int price)
~ Set<ObserverInfo> getObservers()
~ add(ObserverInfo a)
~ remove(ObserverInfo a)
~ run()

- int myPort
- String name
- int currentPrice

Stock

- Sender getSocketSender()
~ create(Socket mySocket)
~ startObserving(Stock sub)
~ stopObserving()
~ sendUpdate(Stock sub)

ObserverInfo

 1 mySocket

0..*

~ Set create()
~ add(ObserverInfo )
~ remove(ObserverInfo)
~ delete()

int size
Set ObserverInfo

~ send(Stock s)

SocketSender

~ SocketSender getSender()

Socket0..1

mySender

~ ServerSocket create(int port)
~ Socket accept()

ServerSocket

mySubject
0..1

<<interface>>
Runnable

Fig. 10. The Two Woven Base Models of Distributed Stock Exchange

StockServer node. Line 9 declares that the StockServer node plays the Subject
distribution role of the DistributedObserver aspect, and the mandatory instanti-
ation parameters of the role are mapped to base model elements of StockBackend
in line 10. Line 12 assigns the StockGUI base model to the StockClient node,
and lines 13 and 14 declare that the StockClient plays the Observer role of the
DistributedObserver aspect and map the mandatory instantiation parameters of
the role to StockGUI base model elements.

4.3 Generating the Woven Models for Each Node

Based on the configuration file, the weaver then proceeds to generate
woven models for each of the defined node types. Fig. 10 shows the two wo-
ven models of the StockExchange application: one model for the stock backend
node, and one for the stock GUI. This example shows how significantly the ap-
plication models of different node kinds in a distributed system differ from each
other. The backend contains the business logic, as well as the association be-
tween subjects and observer information. It defines behaviour used for listening
on a port for incoming connections, and for sending Stock instances over the
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net. The GUI contains all presentation logic, as well as behaviour for receiving
updates over the network.

5 Related Work

To the best of our knowledge, no other extensions to AOM approaches for mod-
elling distributed systems have been proposed in the literature. There are how-
ever several papers that apply AOM to model distributed system concerns.

France et al. [5] model client/server systems using aspect-oriented techniques
in order to produce logical, aspect-oriented architecture models that describe
how concerns such as authentication and role-based access control are expressed
in technology-independent modelling terms. The paper mainly focusses on model
composition, and not on distribution-specific AOM techniques. Clarke et al. [6]
study developing pervasive applications by combining aspect-oriented software
development techniques with model driven development techniques using The-
me/UML. Subsequently, Clarke et al. [7] studied how Theme/UML can be used
to better modularize distributed real-time embedded concerns at the modelling
level. They show models of a timing concern for driver information systems and
a generic memory management concern. Unlike our proposal, there is no explicit
discussion in either paper with regards whether the structure and behaviour of
an aspect theme can crosscut several nodes in a distributed system.

At the programming level, Nishizawa et al. [8] modified and extended the
existing aspect-oriented programming languages AspectJ to include new con-
structs that apply to distributed systems. They introduced the notion of a re-
mote pointcut, a programming construct that allows for identifying join points in
the execution of a program running on a remote host. This allows a programmer
to write simple pointcuts that modularize crosscutting concerns distributed over
multiple hosts. Navarro et al. [9] present an aspect-oriented language designed
explicitly for distribution called AWED. It proposes 3 key features: remote point-
cuts with support for remote event sequences, distributed advice execution that
can be asynchronous or synchronous, and distributed aspects with support for
deployment, instantiation, and sharing of state.

Finally, many papers have applied aspect-oriented programming to the
analysis, design and implementation of middleware. For example, Zhang and Ja-
cobsen [10] study the use of aspect-oriented techniques in middleware, in partic-
ular to the design of CORBA-based systems. Cloyer and Clement [11] studied
how aspect-orientation may help to separate support for Enterprise Java Beans
(EJB) from the rest of the application server. Bouchenak et al. [12] discuss us-
ing aspect-orientation to perform caching by treating it as a concern that cuts
across the application. They have implemented AutoWebCache which is an AOP
based caching middleware system using AspectJ as the AOP language of choice.
Fuentes et al. [13] study techniques to integrate heterogeneous event systems in
a homogeneous way through the use of an aspect-oriented middleware platform.
Truyen et al. [14] present the DyReS framework, which allows coordinated weav-
ing or unweaving of multiple inter-dependent aspects at run-time into a distributed
system, while insuring certain safety properties such as global state consistency.
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6 Conclusion

In this paper we proposed an extension to aspect-oriented modelling that allows
the modeller to augment an aspect model of a concern that can crosscut the nodes
of a distributed system with distribution role definitions. A distributed system
configuration file specifies the different node types of the distributed system, and
how the roles of a distributed aspect are assigned to the nodes. Based on the role
definitions and the configuration, the weaver can then ensure the correct use of
the distributed aspect: every role of a distributed aspect must be assigned to at
least one node of the distributed system to ensure consistency. Finally, the weaver
generates for each node a final application model that only contains the model
elements pertaining to the distribution roles the node plays. The presented ideas
were illustrated by integrating them into our Reusable Aspect Models approach,
and by building a model of a distributed version of the observer design pattern.
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Abstract. We present a precise style for the modelling of business pro-
cesses based on the UML activity diagrams and two controlled exper-
iments to compare this style with a lighter variant. The comparison
has been performed with respect to the comprehensibility of business
processes and the effort to comprehend them. The first experiment has
been conducted at the Free University of Bolzano-Bozen, while the sec-
ond experiment (i.e., a differentiated replication) at the University of
Genova. The participants to the first experiment were Master students
and so more experienced than the participants to the replication, who
were Bachelor students. The results indicate that: (a) all the participants
achieved a significantly better comprehension level with the precise style;
(b) the used style did not have any significant impact on the effort; and
(c) more experienced participants benefited more from the precise style.

Keywords: Business Process Modelling, UML activity diagrams, Con-
trolled experiment, Precise and Ultra-light styles.

1 Introduction

To be competitive in the global market, many organizations have been changing
their business processes [11]. In this context, modelling, management, and en-
actment of business processes are considered relevant to support organizations
in their daily activities.

The UML activity diagrams represent a natural choice for modelling business
processes (see, e.g., [10]) since UML has been conceived for the communication
among people and then can be easily understood and used by customers, man-
agers, and developers. In favour of UML, there is also its flexibility that allows
choosing the preferred degree of precision/abstractiveness to model business pro-
cesses. For example, processes may be modelled using lighter variants/styles of
the activity diagrams, where nodes and arcs are simply decorated by natural
language text. Lighter styles could be simpler to use, but they could complicate
the communication among stakeholders because of the possible ambiguities they
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introduce. More precise styles, where for example nodes are expressed in a for-
mal language, could be more complex to use, but they may reduce ambiguities
in the modelled processes.

In this paper, we present a precise style for the modelling of business processes
based on the UML activity diagrams and two controlled experiments to com-
pare it with a lighter style (ultra-light in the following). The participants to the
original experiment were students of the Master program in Computer Science
at the Free University of Bolzano-Bozen. A preliminary analysis of the exper-
imental data [9] indicated that the participants achieved a significantly better
comprehension level when business processes were represented using the precise
style, with no significant impact on the effort to accomplish the tasks.

The second experiment was a differentiated replication1 of the first experi-
ment. It was conducted at the University of Genova with less experienced par-
ticipants, namely Bachelor students in Computer Science. The data analysis
confirmed the results of the original experiment. A further analysis conducted
on both the experiments indicated that more experienced participants benefit
more from the use of the precise style in the comprehension of business processes.

The work presented here is based on [9] and with respect to that paper, we
provide the following further new contributions: (1) a deeper presentation of
the visual formalism used to model business processes; (2) a new experiment
with less experienced participants; (3) a further analysis to assess the effect of
experience on the comprehension of business process models.

The remainder of the paper is organized as follows: Section 2 presents relevant
related literature concerning business process modelling with UML and related
experiments in comprehension tasks. Section 3 introduces both the precise and
the ultra-light styles for business process modelling. Section 4 presents the design
of the controlled experiments, while Section 5 shows and discusses the achieved
results. Final remarks conclude the paper.

2 Related Work

The UML activity diagrams provide an intuitive and easy way to model business
[1] and business process [8,13,10]. For example, Di Nitto et al. [10] propose
an approach to model business processes by using a subset of UML diagrams,
including: (1) UML activity diagrams with object flow to model the control
and data flow, (2) class diagrams to model structural properties of the process,
and (3) state diagrams to model the behaviour of activities. Subsequently, these
models can be translated into executable process descriptions by a UML CASE
tool. Several are the differences between our approach and theirs. The most
remarkable one is that OCL (Object Constraint Language) is not used.

De Lucia et al. [7] present a visual environment, based on an extension of
UML activity diagrams, that allows to graphically design a process and to vi-
sually monitor its enactment. The main difference with our approach is that
1 This kind of replication introduces variations (e.g., different kinds of participants)

in essential aspects of the experimental conditions [3].
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participants and objects are not explicitly considered in their proposal. Further-
more, the behavioural conditions are not formally specified.

Differently from us, all the approaches discussed above do not assess the va-
lidity of the proposed formalism by means of controlled experiments. To our
knowledge, only a few studies perform comparisons among business process for-
malisms by using empirical evaluations. For instance, Peixoto et al. [16] compare
UML and BPMN (Business Process Modelling Notation) [15], with respect to
their readability in expressing business processes. The authors expected BPMN
models to be easier to understand than UML 2.0 activity diagrams, as BPMN
is a specialized language, designed for modelling business process and with the
primary goal of being understandable by all business stakeholders. However, an
experiment with 35 undergraduate students, unskilled in business process mod-
elling, could not confirm their initial hypothesis. A similar result is obtained in
[4], where the authors conclude that UML activity diagrams are at least usable
as BPMN since neither user effectiveness, efficiency, nor satisfaction differ sig-
nificantly. Instead, Gross and Doerr [12] conducted two experiments, comparing
the UML activity diagrams and Event-driven Process Chains (EPCs). The au-
thors found evidence that activity diagrams performed better than EPCs from a
requirements engineer’s perspective. When considering end users, no significant
difference was identified between the two methods.

3 Business Process Modelling with UML

In this paper, we shall not give a rigorous definition of what a business process
is, just assuming the common intuitive meaning, and we shall use the following
terminology:

– basic activities in business processes are called basic tasks of the process;
– business process objects are those entities over which the activities of the

process are performed, obviously these entities are passive, i.e., they are
unable to do any activity by themselves;

– active entities that perform the various tasks are business process partici-
pants : whenever relevant, we shall distinguish autonomous participants from
those corresponding to software and hardware systems.

Behavioural aspects of business processes may be modelled by using UML
activity diagrams, which offer quite a large set of visual constructs to depict
the flow of activities. We shall restrict ourselves to use: action nodes, initial,
final, decision/merge, fork/join control nodes, control flow edges, time and accept
events, and obviously also the rake construct to modularize the activity diagrams.
Object nodes and swimlanes may also be optionally used. This holds also for the
styles considered in the paper.

Even with such a restricted subset of constructs, a straightforward and unique
modelling of a business processes with one UML activity does not exist. Indeed,
it is possible to produce complex and unreadable activity diagrams, correspond-
ing to “spaghetti” business processes, or to make mistakes, e.g., using a business
object before creating it. To overcome these problems, we proposed a proper
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discipline for modelling business processes and some notations [17]. The nota-
tions mainly differ in the level “of the precision” in using UML to depict the
basic ingredients of the activity diagrams (such as actions and guards), or in the
way basic tasks are represented.

In the study presented here, we consider the ultra-light and the precise styles.
These styles are described in the following through a running example, namely a
business process corresponding to order processing in e-commerce systems (EC).
More business process examples are available in [17].

The client sends the order. If the client is not already registered, (s)he will be
asked to register to the site, if (s)he refuses the order will be cancelled. Then, the
order will be sent to the warehouse, which will prepare the package, and in the
meantime, to collect the payment, the handler of the credit card, or Paypal will be
contacted (depending on client preferences). Then, the package will be sent, and
the carrier will inform the company that the package has been delivered. Finally,
the order will be archived.

3.1 Ultra-Light Style

In the ultra-light style a business process is modelled by a UML activity diagram,
where the action nodes and the guards on the edges leaving the decision nodes
are decorated by natural language text; such text does not follow any rules or
patterns. Sentences defining the activities may be either in active or passive
form (e.g., “Clerk fills the form” or “Form is filled by clerk”), and the entity
executing the activity may be precisely determined or be left undefined (e.g.,
“Form is filled”); in other cases nominal sentences might be used instead of
verbal phrases (“Filling the form”). Also the objects over which the business
process activities are performed may be described in different ways, for example
by a substantive (e.g., “Form”, “The form”) or by a qualificative sentence (e.g.,
“Client form”, “Filled form”, “Sent form”).

Fig. 1 shows the ultra-light UML model of the EC business process. It is
a simple activity diagram, where various basic tasks are denoted by natural
language sentences with different structure (e.g., the first one is active and the
subject is explicit, Order archived instead is passive and provides no information
about who will perform the task, and Client registration is just the name of
an action). Since the model is prepared in a completely unconstrained way, it is
very easy to make mistakes or to introduce ambiguities. For example, the passive
sentences in the UML activity diagram do not explicitly mention who will do
the last three basic tasks of the process.

3.2 Precise Style

Participants and objects of a business process shall always be explicitly listed
and precisely modelled with UML by means of classes; and the behavioural view
of business processes shall be given by activity diagrams, with basic activities
and conditions written respectively in the language for the actions of UML and
OCL, the textual language for boolean expressions, included in UML 2.0. Thus
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the UML precise model of a business process consists of: (1) a class diagram, in-
troducing the classes needed to type its participants and objects, (2) the list of its
participants, (3) the list of its objects, and (4) an activity diagram representing
its behaviour. All these parts must satisfy the constraints listed below.

– Classes in the class diagram may be stereotyped by �object� (business
process objects), �businessWorker� and �system� (business process par-
ticipants distinguished between: autonomous entities, i.e., human beings or
complex entities run by human beings, and hardware/software systems); for
readability reasons the stereotype �businessWorker� will be omitted. Mutual
relationships among participants and/or objects are expressed by associa-
tions and specializations, whereas the dependency (visually depicted by a
dashed arrow) is used to represent the fact that participants from a given
class will act over objects from another class.

Fig. 1. EC Specified by the Ultra-light Style

– Participants are named, and they are typed by a class with stereotype ei-
ther �businessWorker� or �system�. Objects are named and typed by classes
stereotyped by �object�. Notice that participants/objects are roles for en-
tities taking part in the business process, and not specific individuals. It is
possible to impose some constraints on participants and objects of a business
process.
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– Basic tasks involving participants and objects are modelled by operations
of the various participants/objects classes stereotyped by �T� (whenever
all operations of a class have this stereotype, it shall be omitted to simplify
the visual presentation). When defining �T� operations, it is important to
keep in mind that: (1) an operation corresponding to a basic task, part of a
class C stereotyped by �businessWorker� or �system�, describes a task that
a participant of type C is responsible to initiate (they should be named using
the imperative verbal mode); (2) an operation corresponding to a basic task,
part of a class C stereotyped by �object�, describes a task that will be done
over an object of type C (they should be named using the past participle).

– Action nodes of an activity diagram are decorated by calls of the the op-
erations corresponding to basic tasks, where participants and objects freely
appear as arguments, whereas conditions on edges leaving decision nodes are
OCL expressions, where participants and objects shall freely appear.

Fig. 2 shows the models of the the EC business process built using the precise
style. The figure shows a class diagram, an activity diagram, and the lists of
participants and objects of the process. The class diagram introduces the class
defining participants and objects, together with some data-type used to describe
them (for example ClientInfo). EC, PAYPAL and CREDITCARD are participants
of the process of kind �system� (they correspond respectively to the software
system running the e-commerce site, the Paypal payment service, and the credit
card handling system), whereas CLIENT is an human participant, CARRIER and
WAREHOUSE are respectively an external transport company, and a department
of the e-commerce company. The latter are not classified as systems since they
might not be fully automated. The e-commerce system is responsible for four
basic tasks, the warehouse for one and the carrier for two.

The model of the process may be made more precise, without modifying the
activity diagram, by adding further details to the class diagram. For example,
we could model how the class ECommerce handles the list of registered clients,
and the effects on it of its operations, e.g., by means of pre-post conditions. More
details on this concern can be found in [17].

4 The Controlled Experiments

In this section we present the design of the two controlled experiments following
the guidelines proposed by Wohlin et al. in [19]. An experimental package, the
raw data, and a draft of our previous paper [9] are available on the Web2.

Applying the Goal Question Metric (GQM) paradigm [2], the goal of our
experiments can be defined as follows: “Analyse the use of the precise style for the
purpose of evaluating it with respect to the ultra-light style in the comprehension
of business processes by two different categories of participants (i.e., High/Low
experienced) from the point of view of researchers, in the context of students
in Computer Science, and from the point of view of project managers, in the
context of novice software engineers”.
2 www.scienzemfn.unisa.it/scanniello/BPM

www.scienzemfn.unisa.it/scanniello/BPM


144 G. Reggio et al.

Fig. 2. EC Specified by the Precise Style
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4.1 Participants

The two experiments have been conducted with:

– Master students. They are enrolled in a Master program in Computer Science
at the Free University of Bolzano-Bozen. Some of them are, or were, industry
professionals. They can be considered close to young software engineers [5],
and in the following we will refer to them as UniBZ.

– Bachelor students. They are students of the Bachelor program in Computer
Science at the University of Genova (UniGE in the following). They can be
considered the next generation of young professional developers [14].

UniGE (62 participants) is a differentiated replication of UniBZ (26 partici-
pants). The participants to UniGE are less experienced than UniBZ. For ethic
reasons, we informed all the participants that the data of the experiment will
be treated anonymously, used only for research purposes, and revealed only in
aggregated form.

4.2 Material and Experimental Objects

The prepared experimental material included: two experimental objects, the doc-
umentation for the training, and a post-experiment survey questionnaire. The ex-
perimental objects are two business processes from application domains on which
the participants were familiar with. Process Order, shortly PO, is in charge of
processing orders for an on-line shop. It takes as input an order, then: (i) the or-
der is accepted; (ii) info is filled; (iii) payment processing and shipment are done
and, finally; (iv) the order is closed. The second business process (i.e., Document
Management Process, shortly DPM) manages the on-line review process of any
kind of documents. First a document is created by the author, then it is reviewed
by a reviewer, and finally it is approved (if its quality satisfies the imposed con-
straints). The two business processes are comparable both in complexity and in
size. PO comprises 10 nodes (8 activities, 1 decisions and 1 object node) and DPM
comprises 12 nodes (6 activities, 2 decisions and 4 object nodes). Furthermore,
they both are small enough to fit the time constraints of the experiment and at
the same time they are realistic for small/medium sized comprehension tasks.
It is worth mentioning that we downloaded the models of the process PO and
DPM from http://www.uml-diagrams.org/activity-diagrams-examples.html. In
the experiments we used the same descriptions provided in the Website.

The documentation for the training included: (i) a set of instructional slides
to introduce the precise and the ultra-light style; (ii) a training task not related
with experimental objects.

Regarding the post-experiment survey questionnaire, we asked the partici-
pants to fill it out, so to gain insight and explain the results. This questionnaire
contained questions about: the availability of sufficient time to complete the tasks
and the clarity of the experimental material and objects. For space reasons, the
analysis of the post-experiment questionnaires is not presented.
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4.3 Hypotheses Formulation

The following null hypotheses have been defined and tested:

Hlo: The use of the precise style does not significantly improve the compre-
hension level of a business process.
Hto: There is no significant difference in terms of effort when using the pre-
cise or ultra-light styles to comprehend a business process.

According to the results of the original experiment [9], the null hypothesis Hl0

is one-tailed, while Ht0 is two-tailed. The objective of the statistical analysis is to
reject the defined null hypotheses, thus accepting the corresponding alternative
ones (i.e., Hla and Hta) that can be easily derived from the null ones.

4.4 Design

In the first experiment, we adopted a counterbalanced design [19] with four
groups: A, B, C, and D. Each participant within these groups worked on two
comprehension Tasks (i.e., Task 1 and Task 2) on the two experimental Objects :
PO and DPM. Each time, participants used the precise or ultra-light styles. For
example, the participants within the group A started to work in Task 1 on PO
using the precise style and then they used the ultra-light style to perform Task
2 on DPM. We randomly assigned the participants to A, B, C, and D.

In the replication a completely randomized design [19] was used. This design
is simpler than the one used in the first experiment, since each participant used
either the precise or the ultra-light styles on only one experimental object (i.e.,
PO or DPM). We used in the replication a different design for time constraints.

4.5 Dependent and Independent Variables

The control group indicates students working with the ultra-light style, while the
treatment group indicates students working with the precise style. Thus, the only
independent variable is Method (also named main factor), which is a nominal
variable that admits two possible values: Precise and Ultra-light. To test the null
hypotheses, we selected the following dependent variables: comprehension level
and comprehension effort.

The comprehension level dependent variable measures the comprehension of
the participants on each business process. Similar to previous studies (e.g., [18]),
we asked the participants to answer a comprehension questionnaire (it is the
same for each object) composed of multiple choice questions. Twelve questions
were asked on each business process, each admitting five possible answers, with
one or more correct answers. An example of question for the PO object is the
following: “Indicate the participants of the PO business process”. The goal of
this question was to investigate whether the experiment participants (subjects)
identified the participants to the business process.

We measured the correctness and completeness of the answers the partici-
pants provided to the questions of each comprehension questionnaire through an
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information retrieval based approach [18]. The correctness was measured using
the precision measure, while we employed the recall for the completeness:

precisions,i =
|As,i ∩ Ci|

|As,i| recalls,i =
|As,i ∩ Ci|

|Ci|
where As,i is the set of answers provided by the participant s on the question
i and Ci indicates the correct set of answers of the question i. To get a single
value representing a balance between correctness and completeness of a given
question, we used the harmonic mean between precision and recall:

F−Measures,i =
2 · precisions,i · recalls,i

precisions,i + recalls,i

The overall comprehension level achieved by each participant was computed
using the overall average of the F-Measure values on all the questions. This
average assumes a value ranging from 0 to 1. Values close to 1 and 0 indicate a
very good and very bad understanding, respectively.

The comprehension effort dependent variable measures the time, expressed
in minutes, that each participant spent to accomplish a task. We got this value
using the start and stop times the participants were asked to record.

5 Results

Because of the sample size and mostly non-normality of the data, we adopted
non-parametric tests to test the null hypotheses. We used the Mann-Whitney
(MW) test for unpaired analysis since it is very robust and sensitive [19]. Further,
it has been widely used in the past in studies similar to the one presented in
the paper. In all the performed statistical tests, we decided (as it is customary)
to accept a probability of 5% of committing Type-I-error [19], i.e., rejecting the
null hypothesis when it is actually true.

While the statistical tests check the presence of significant differences, they
do not provide any information about the magnitude of such a difference. There-
fore, we used the Cohen’s “d” standardized difference between two groups [6].
Typically, it is considered negligible for |d| < 0.2, small for 0.2 ≤ |d| < 0.5,
medium for 0.5 ≤ |d| < 0.8, and large for |d| ≥ 0.8.

5.1 Comparison between the Experiments

To compare the results of the two experiments, we considered the overall values of
comprehension level and effort, without partitioning the observations by Method.
For comprehension level we obtained: UniBZ=0.70 and UniGE=0.60. From this
preliminary analysis, we observe that the mean value of comprehension level in
the first experiment (UniBZ) is 10 points (i.e., 16.6%) higher than in the second
experiment (UniGE). This means that the UniBZ participants comprehended
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better the business process (both represented with the precise and ultra-light
styles) than the UniGE participants. The difference is confirmed by the MW test
(p − value = 0.0004). As far as Comprehension Effort is concerned, the mean
effort in the first experiment is about 2 minutes (11.2%) higher than in the first
experiment. For the effort, such a difference is not statistically significant as the
results of the MW test show (p − value = 0.48). Given the observed differences
in the results, we cannot simply merge the data from the two experiments. As
a consequence, the two data sets ought to be analysed separately and then we
can draw joint conclusions from the results.

5.2 Comprehension Level and Effort

Table 1 reports some descriptive statistics (i.e., mean, median, and standard de-
viation) of comprehension level, and the results of statistical analyses conducted
on the data from both experiments with respect to this dependent variable. The
comparison for the two experiments, without partitioning the observations by
Object, is visually presented in Fig. 3 by means of boxplots. From them, it ap-
pears that students with the precise style outperformed in comprehension the
students provided with the ultra-light one in both the experiments.

Table 1. Descriptive statistics of comprehension level and the MW p-values

Precise Ultralight Mann-Whitney Cohen’s “d”
Experiment Object Mean Median SD Mean Median SD p-value

UniBZ PO + DPM 0.79 0.84 0.11 0.62 0.66 0.14 <0.001 1.35 (large)
PO 0.80 0.84 0.11 0.58 0.69 0.19 0.003 0.56 (medium)
DPM 0.76 0.74 0.10 0.64 0.64 0.10 0.005 1.14 (large)

UniGE PO + DPM 0.64 0.63 0.14 0.57 0.54 0.13 0.02 0.19 (negligible)
PO 0.66 0.66 0.15 0.52 0.49 0.13 0.005 0.24 (small)
DPM 0.63 0.61 0.14 0.61 0.60 0.11 0.31 0.05 (small)

The MW test provides evidence that the difference in terms of comprehen-
sion level between the two styles, and for both experiments (p − value < 0.001
for UniBZ and p − value = 0.02 for UniGE), is significant. Therefore, we can
reject the null hypothesis Hl0 both for UniBZ and UniGE. As shown in Table
1, the difference is significant for both the objects (PO and DPM) in the first
experiment, while only for PO in the replication. The mean comprehension level
improvement, achieved with the precise style, is 17 points for UniBZ (see means
of the “UniBZ PO + DPM” row in Table 1), i.e., 27.41%3 and 7 points for UniGE
(see means of the “UniGE PO + DPM” row in Table 1), i.e., 12.28%.

Participants with the precise style employed slightly more time than partici-
pants with the ultra-light style. Means per experiment are respectively: 22’16”
and 22’11 minutes for UniBZ; 20’41” and 19’46” minutes for UniGE. The MW
test returned 0.89 for UniBZ and 0.21 for UniGE as p − values, respectively.
Therefore, we rejected the null hypothesis Ht0 neither for UniBZ nor for UniGE.
3 The value is computed using the equation: 0.62+0.62*x%=0.79.
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Fig. 3. Boxplots of Comprehension level grouped by Method and Experiment

5.3 Effect of Experience

Fig. 4 shows the interaction plot of method and experience vs. comprehension
level. Potential benefits gained with the precise style are represented by the slope
of the segments: the slope – and thus the benefit gained with the precise style – is
higher for master students from UniBZ than for bachelor students from UniGE.
The plot shows a possible trend (to be verified by further experiments): more
experienced participants received greater benefits from the precise style than
less experienced participants. This could be due to the expertise and level of
maturity needed to understand the language for the actions of UML and OCL,
used in the precise style.

The effect of experience on the dependent variable has also been analysed
using a two-way Analysis of Variance (ANOVA). The results of this further
analysis confirm the results shown by the interaction plot. On the overall data
set, we found a significant effect of the experience on the comprehension level
(p−value = 0.0002), already shown by the MW test, and a marginal interaction
with the main factor (p − value = 0.06).

5.4 Threats to Validity

The threats that could affect the validity of the results for both the experiments
belong to the following four categories [19]: internal, external, construct, and
conclusion.
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Fig. 4. Interaction of Experience and Method

The experimental designs adopted in these experiments enabled us to mitigate
as much as possible internal validity threats. The adopted designs mitigated pos-
sible learning and fatigue effects as well as the effect of the order of the method.
Another threat could be the exchange of information among the participants.
This was prevented by monitoring the students while performing the tasks. In
addition, students were evaluated neither on the time to accomplish the tasks
nor on the their comprehension on the business processes. This reduced possible
threats related to the participants’ apprehension.

External validity may be threatened when experiments are performed with
students and not with software professionals. However, tasks considered in our
experiments do not require a high level of industrial experience. Replications
with professionals are however needed. To confirm or contradict the achieved
results, we also plan to conduct empirical investigations in terms of case studies
on larger and more complex tasks.

Construct validity threats are related to the metrics used to quantitatively
evaluate the participants’ comprehension and effort. We used questionnaires to
assess the comprehension of the business processes and the participants’ answers
to these questionnaires were evaluated using an information retrieval based ap-
proach. This design choice avoided as much as possible any subjective evalua-
tion. Furthermore, the comprehension questionnaires were defined to be complex
enough without being too obvious. The comprehension effort was measured by
means of proper time sheets, and it was validated by researchers. This approach
is widely used in the literature.

Conclusion validity concerns data collection, reliability of measurements, and
validity of statistical tests. We used a conservative statistical non-parametric
test (i.e., Mann-Whitney) to reject the null hypotheses and two-way ANOVA
to detect possible effects and interactions between the main factor and the
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participants’ experience. Even if all the assumptions/conditions to use ANOVA
were not checked, this test is quite robust and has been extensively used in the
past to conduct analyses similar to ours.

6 Conclusion

We have presented a precise style for the modelling of business processes based
on the UML activity diagrams. An experiment and a differentiated replication
have been conducted to compare it with a lighter variant. The results of these
experiments indicate a clear improvement in the comprehension of business mod-
els when the precise style is used (UniBZ +27.41% and UniGE +12.26%) with
no impact on the effort to accomplish a comprehension task. The analysis of
the experiments together showed that more experienced subjects benefited more
from the precise style. This result could be due to the needed expertise and level
of maturity to understand business processes represented with this style.

Future replications have been planned to investigate: (i) the effects of changing
the domain of the business processes used in the controlled experiments; (ii)
whether the observed benefits of the precise style are preserved or improved
for subjects with different levels of experience; and (iii) whether the additional
effort and cost to create models with the precise style is adequately paid back
by an improved comprehension of business process models.

Acknowledgements. We would like to thank the participants to the experi-
ments.
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Abstract. Checking consistency between an object diagram (OD) and
a class diagram (CD) is an important analysis problem. However, several
variations in the semantics of CDs and ODs, as used in different contexts
and for different purposes, create a challenge for analysis tools. To ad-
dress this challenge in this paper we investigate semantically configurable
model analysis. We formalize the variability in the languages semantics
using a feature model: each configuration that the model permits induces
a different semantics. Moreover, we develop a parametrized analysis that
can be instantiated to comply with every legal configuration of the fea-
ture model. Thus, the analysis is semantically configured and its results
change according to the semantics induced by the selected feature config-
uration. The ideas are implemented using a parametrized transformation
to Alloy. The work can be viewed as a case study example for a formal
and automated approach to handling semantic variability in modeling
languages.

“One man’s constant is another man’s variable.”
Alan Perlis [21]

1 Introduction

A class diagram (CD) specifies a model of an object-oriented system structure.
The semantics of a CD, that is, its meaning, consists of the (possibly infinite) set
of object models it permits. The related kind of diagram, object diagram (OD), is
used to document concrete object models. Thus, when both kinds of diagrams are
used in a model-driven design process, e.g., when domain experts and engineers
use ODs as a means of communication and the latter are responsible for designing
the CDs, checking the consistency between a CD and an OD is an important
analysis problem. However, several variations and ambiguities in the semantics
of CDs and ODs, as they are used in different contexts and for different purposes,
create a challenge for analysis tools.
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To address this challenge in this paper we investigate semantically config-
urable model analysis. First, we formalize the variability in the semantics of the
modeling languages at hand using a feature model: each configuration that the
feature model permits, induces a different semantics mapping (over the same
domain). Second, we develop a parametrized analysis technique that can be in-
stantiated to comply with every legal configuration of the feature model. Thus,
the analysis is semantically configured and its results change according to the
semantics induced by the selected feature configuration.

Using a feature model to describe semantic variability has several advantages.
First, it provides a means to formally structure the various semantic choices; this
supports human comprehension of the semantics, allows comparison of different
variants, and, significantly, enables the parsing required in order to support an
automatically configurable analysis. Second, the use of a feature model provides
a formal means to define logical dependencies between the semantic choices,
e.g., mutual exclusion, implication etc. This is indeed necessary, because not all
theoretically possible combinations induce sound and useful semantics.

As concrete languages we use the CD and OD sublanguages of UML/P [23].
The semantics of CDs and ODs is based on [5,7,10] and is given in terms of sets
of objects and relationships between these objects.

Our feature model for the semantics of CD/OD consistency consists of 32
features. One feature, for example, relates to whether empty object models are
considered as possible target values in the semantic domain of CDs. Another fea-
ture relates to the question of whether incomplete ODs, which describe object
models that are missing some attributes or links but can be extended to a com-
plete object model in the semantics of the CD, would be considered consistent
with the CD or not. Another feature relates to the semantics of untyped objects
in the OD. Each feature is formally defined as part of the CD/OD semantics
definition. The feature model organizes the different features so that each of its
configurations induces a specific overall semantics.

The consistency analysis itself is realized using a parametrized transformation
to an Alloy [13] module. The input for the parametrized transformation consists
of a valid configuration of the feature model, a CD, and an OD. The Alloy
module is analyzed using a SAT solver and the result shows whether the CD
and the OD are consistent given the semantics defined by the configuration. An
overview of the architecture of our solution is shown in Fig. 1.

Our work is fully automated and implemented in a prototype Eclipse plug-in,
where one can edit CDs and ODs, select a semantic configuration, and check the
consistency of a CD and an OD. Feature model definitions and implementation
of feature selection use components from FeatureIDE [14]. After the transforma-
tion, the Alloy module is analyzed using the APIs of Alloy Analyzer [1].

Sect. 2 discusses related work. Sect. 3 provides a motivating example. Sect. 4
describes the CD and OD languages, their definition of consistency, and the
feature models of their semantics. Sect. 5 presents our technique for semanti-
cally configurable analysis. Sect. 6 presents the implementation and a discussion.
Sect. 7 concludes.
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Fig. 1. The architecture of our solution

2 Related Work

The challenge of semantically configurable analysis has been investigated before
in a series of works by Atlee et al. [16,20,22,28], which used template seman-
tics to configure the semantics of state machines, and demonstrated configured
translations of state machines into SMV and into Java code. Different from
these works, we use a feature model to model semantic variability. Moreover,
these works relate to state-based behavioral models while our present work fo-
cuses on structural models. In this sense, our present work may be viewed as
complementary to these previous works.

Previous work in our group [8] has presented a taxonomy of variability mech-
anisms in language definitions syntax and semantics, and demonstrated the use
of feature diagrams to model possible variants. The present work builds on these
previous ideas while focusing on semantic variability, specifically, semantic map-
ping variability (rather than syntactic variability) and on its application to se-
mantically configurable analysis, specifically demonstrated and implemented in
the context of CDs and ODs.

Some previous works provide various analyses for CDs (often extended with
fragments of OCL), using a translation to a constraint satisfaction problem [6],
using ad-hoc algorithms or a direct translation to SAT [12,26], using a translation
to Description Logic [25,27], or using a translation to Alloy (see, e.g., [2]). We
use a transformation to Alloy, but our transformation is very different and much
more expressive than the one suggested in [2]. Our transformation extends a basic
transformation that we have described in another, more general, paper [17] in
two ways: first, it accepts as input not only a CD but also an OD, and second,
significantly, it is parametrized based on another input, a feature configuration,
so as to support semantically configurable analysis. Finally, to the best of our
knowledge, none of the CD analysis works mentioned above support variability-
based semantically configurable analysis.
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Fig. 2. od1, cd1, and cd′
1

Fig. 3. od2 and cd2

3 Motivating Example

We describe a simple example to motivate the need for semantically configurable
analysis of CD/OD consistency, when CDs and ODs are used for different activ-
ities during the development life cycle and in different contexts. The description
is semi-formal. Required definitions are given in the following sections.

Consider od1, cd1, and cd′1, shown in Fig. 2. In early stages of system design,
a domain expert suggested several ODs as examples of valid system instances,
among them od1. od1 consists of employees and tasks: dana and bob are em-
ployees, dana has two tasks while bob has no tasks. Dana’s tasks have a date
attribute. The engineers have designed cd1 as a CD for the system and wanted
to check the pair cd1/ od1 for consistency before they continue.

Later in the design process, after more requirements elicitation, additional
information became available and the CD cd1 evolved into a more detailed one,
cd′1, where the same classes include additional attributes. The engineers wanted
to check the consistency of cd′1 not only against some new ODs, where all the
new attributes are defined, but also against the older OD od1, which includes
only a partial list of attributes. Although the objects in od1 did not include all
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the attributes shown in the new CD, the engineers expected that od1 would be
considered consistent with cd′1, because it could be extended into a complete
valid instance of cd′1 where more attributes are present.

After a design review, another version of the CD was prepared, cd2, as shown
in Fig. 3. In cd2 a new class Manager was added as a specialization of Emp, and a
related association with roles mngBy and mngs. In turn, the domain expert used
od1 to create od2, by adding a link between bob and dana, so as to specify that
dana manages bob. While in od2 dana’s shown type is Emp, it is understood
that dana is also a Manager, because she manages bob. The engineers wanted
to check the consistency of cd2 and od2 and expected the result to be positive.

A test engineer, responsible for creating test cases that will be executed after
a running prototype of the system is created, wanted to specify each test’s pre-
and post-conditions using ODs. As a sanity check, it was necessary to verify the
consistency between each of these ODs and the system’s CD. In this case, a much
more strict and complete semantics was assumed, i.e., that the instances in the
OD include complete lists of attributes and specify their exact type, otherwise
the tests may not be accurate or fail (e.g., if dana is constructed as an employee
rather than as a manager). Thus, to be useful, CD/OD analysis in the context of
testing required a slightly different semantics. Note that based on this semantics,
cd2 and od2, which have been considered consistent in the context of requirement
elicitation, are not considered consistent anymore.

Moreover, the design team noted that the objects in the system may be dy-
namically constructed and destructed: the system starts with no object instances,
and during execution may return to this “no instance” state. Thus, an empty
OD, representing the empty OM, should be considered a valid system instance,
because, for example, it needs to be used as a pre- or post-condition of some tests.
Therefore, despite common standard definitions elsewhere and perhaps against
many modelers’ intuition, when checking this empty OD against the system’s
CD for consistency, the team expected a positive result.

Finally, the most complete and detailed version of the system’s CD (not shown
here) is intended for skeleton code generation of the actual implementation.
While in this CD no classes or attributes may be omitted, the team wanted to
check it against all ODs used in the design and see that they are consistent.

This example demonstrates that the consistency of a given CD and OD de-
pends on the specific usage of the diagrams and the context in which the ques-
tion arises; it thus shows the need for more than one definition of semantics for
CD/OD consistency. Characterizing and formalizing the required variability, and
showing how it can be implemented in a single, configurable analysis solution,
are the challenges we address in this paper.

4 CDs and ODs, Consistency, and Semantic Variability

4.1 Class and Object Diagrams Languages

The concrete CD and OD languages we use are sublanguages of UML/P [23], a
conceptually refined and simplified variant of UML designed for low-level design
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and implementation. Our semantics of CDs is based on [5,7,10] and is given in
terms of sets of objects and relationships between these objects. More formally,
the semantics is defined using three parts: a precise definition of the syntactic
domain, i.e., the syntax of the modeling language CD and its context conditions
(we use MontiCore [15,19] for this); a semantic domain, for us, a subset of the
System Model (see [5,7]) OM, consisting of all finite object models; and a map-
ping sem : CD → P(OM), which relates each syntactically well-formed CD to
a set of constructs in the semantic domain OM. The semantics of ODs is defined
over the same semantic domain OM, using a mapping sem : OD → P(OM),
which relates each syntactically well-formed OD to a set of constructs in the
semantic domain OM, that is, to a set of object models. Note that the semantic
domain of CDs is made of OMs, not ODs. For a thorough and formal account
of the semantics see [7].

For example, the semantics of cd1 shown in Fig. 2 includes all object models
consisting of tasks and employees where each employee is responsible for up to
two tasks, and each task is done by exactly one employee and has an attribute
sDate of type date. Note that the empty object model, which is an object
model with no objects at all, may or may not be considered in the semantics
of this CD. In addition, note that we did not say whether object models whose
tasks have additional attributes may be considered in the semantics of this CD
or not. As another example, the semantics of od1 shown in Fig. 2 includes all
object models consisting of two employees where one of the employees is linked
to two tasks that have certain sDate values. Note that we did not say whether
object models that have additional employees, with or without tasks, should
be considered in the semantics of this OD or not. These ambiguities and possi-
ble variations are examples of the kinds of semantic variability that affect the
CD/OD consistency check, as we discuss below.

Finally, we support the following CD language constructs: class attributes,
enumerations, uni- and bi-directional associations with multiplicities, aggrega-
tion, composition, generalization (inheritance), interface implementation, and
abstract and singleton classes. The OD language constructs we support include
objects, their attributes, and the links between them.

4.2 Consistency

A set of diagrams is considered consistent if the intersection of the semantics of
all diagrams in the set is not empty [4]. Formally:

Definition 1 (consistency). Given a set of diagrams D, we say that D is
consistent iff

⋂
d∈D sem(d) �= ∅.

By applying the above definition to the special case of a CD and an OD we get:

Definition 2 (CD/OD consistency). Given a CD cd and an OD od, we say
that the cd and od are consistent iff sem(cd) ∩ sem(od) �= ∅.
While the definition of consistency is generally accepted, definitions of the se-
mantic mapping function sem, for CDs and ODs, may vary. To formally handle
variability in the semantics mapping we use the feature models described next.
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Fig. 4. The OD semantics feature diagram

4.3 The Semantic Variability Feature Models

A feature model describes a structured set of features and their logical depen-
dencies [3,9]. Feature models are commonly used in the area of software product
lines. They may be visually represented using feature diagrams, which are basi-
cally and-or trees, extended with textual cross-tree logical constraints. Here we
use a feature model to formalize variability in the semantics of CDs and ODs.
The model is composed of two sub-models, for CD semantics and for OD se-
mantics, and of several cross-tree logical constraints. In the diagrams we use the
standard notation: for mandatory features, a line ending with a filled circle; for
alternative features of which exactly one must be selected (xor), an empty slice
covering the lines leading to the different alternatives.

Our feature model for OD semantics consists of 19 features, as shown in the
feature diagram in Fig. 4. Roughly, a valid feature configuration of this model
specifies whether the empty object model may be considered a valid OM, whether
the objects shown, links shown, attributes shown, and types shown are complete
or not, and whether all objects shown in the diagram must be typed with their
most specific type, or can use one of their super types.

Our feature model for CD semantics for CD/OD consistency contains 11 fea-
tures, as shown in the feature diagram in Fig. 5. A valid feature configuration of
this model specifies whether the empty object model may be considered a valid
instance of a CD, whether the lists of attributes shown are considered complete
or not, and whether the set of classes shown is considered complete or not.

The complete feature diagram for CD/OD consistency feature model is built
from a CD/OD consistency feature at the root, using the two feature diagrams
described above to represent required features, as its sub trees, as shown in
Fig. 6. To this composed diagram we add cross-tree logical constraints that de-
fine dependencies between the different features, for us, the semantic choices, e.g.,
mutual exclusion, implication etc. This is indeed necessary, because, as we have
found also during evaluation (see Sect. 6), not all theoretically possible combi-
nations (feature configurations) induce sound and useful semantics. Specifically,
we add the following 3 constraints:

not ( cd.allowClassesOmitted and od.allowTypesOmitted ) (1)
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Fig. 5. The CD semantics feature diagram

Fig. 6. The composed CD/OD semantics feature diagram

od.allowObjectsOmitted implies od.allowLinksOmitted (2)
cd.emptyOMInvalid iff od.emptyOMInvalid (3)

We add constraint 1 because the combination of allowing classes to be omitted
from the CD (which means allowing instances to include objects of classes not
shown in the CD) and of allowing the OD to include untyped objects, results in
a semantics which is much too permissive and is not useful. We add constraint 2
because if objects are allowed to be omitted, the links they could have been
connected with must also be allowed to be omitted. We add constraint 3 because
having the empty OM in the semantics of CDs while excluding it from the
semantics of ODs (or vice versa) does not make sense.

Overall, our feature model contains 32 features, 14 of which are core features,
which are included in all configurations. The model has 144 valid configurations.
The complete feature model used in our work is available in [24], also in a format
compliant with [18], to allow others to inspect it and use it.

5 Semantically Configurable Consistency Analysis

The key to the semantically configurable consistency analysis is a parametrized
transformation to an Alloy [13] module. In addition to a CD and an OD, the
input for the parametrized transformation includes one valid configuration of
the CD/OD consistency feature model described in the previous section.

We now describe the parametrized transformation to Alloy. A variant of our
transformation, which takes only a CD as input and is not semantically con-
figurable, is presented in [17]. Here we give an overview of the generated Alloy
module and then focus on the parts related to handling variability. We use the
CDs and ODs presented earlier in Sect. 3 as running examples.
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5.1 Overview of the Transformation to Alloy

The basic transformation relies on several foundational signatures and facts.
These include an abstract signature FName, used to represent association role
names and attribute names for all classes; an abstract signature Obj, which
serves as the parent of all classes, and whose get Alloy field relates it and an
FName to instances of Obj (this allows more flexibility than the built-in Alloy
fields); an abstract signature Val as a specialization of Obj, used to represent
all predefined types (i.e., primitive types and other types that are not defined as
classes in the CD); a signature EnumVal, which extends Obj too, and is used to
represent values of enumeration types; and several facts, among them ones that
state that enumeration values as well as primitive values can have no further
fields and should only appear in an instance if referenced by an object.

A number of parametric predicates are used to specify constraints such as
association’s multiplicities and directions. These are instantiated with concrete
values from within the CD predicate described next. Rather than using Alloy’s
extends keyword to specify generalization relations, we use generated functions
that return the set of sub classes of each class, e.g., if Mgr is a specialization of
Emp then the function EmpSubs returns the atoms in {Emp, Mgr}.

The CD and the OD themselves are represented using two predicates, pred
cd and pred od. In pred cd the attributes and associations of each class are
defined and then restricted using the multiplicity and directionality predicates
mentioned above. In pred od the existence of the objects is stated and their
attributes and links are defined.

Finally, a predicate pred consistentCDOD is defined, consisting of the
single statement cd and od. Checking consistency is done by executing Alloy
Analyzer run command for consistentCDOD.

5.2 Handling Semantic Variability

Handling variability is technically realized using generated parametrized Alloy
predicates and their instantiation from within pred cd and pred od. Below
we show how some of the features are handled.

OD features. List. 1.1 shows several parametrized Alloy predicates correspond-
ing to the different features available for OD semantics. As a concrete example,
List. 1.2 shows the predicate that represents an OD, specifically od2, presented
earlier in Sect. 3, Fig. 3, in the context of a specific semantic configuration where
the empty OM is not a valid instance, all objects and links are shown but at-
tributes may be omitted, all types are shown but are not strict. We now explain
the two listings in detail.

First, the predicate emptyOMNotValidOD (List. 1.1 line 2) specifies that
there exists at least one object. It is mentioned in pred od iff the semantic
configuration includes the feature od.emptyOMInvalid (see List. 1.2 line 18).

Second, the predicates in lines 5-16 are used to specify the three completeness
features, for objects, links, and attributes. The predicate allObjectsShownOD



162 S. Maoz, J.O. Ringert, and B. Rumpe

1 // Semantic variation feature: empty OM
2 pred emptyOMNotValidOD { some Obj }
3

4 // Semantic variation feature: OD completeness
5 pred allObjectsShownOD[objs: set univ] {
6 univ = (objs + FName + auxilary + Val + EnumVal + Int) }
7

8 pred allLinksShownOD[obj: Obj, roleNames: set FName] {
9 no {obj.get[FName - roleNames] - Val - EnumVal } }

10 pred allLinksShownODCmplt[obj: Obj, roleName: one FName,
11 partners: set Obj] { obj.get[roleName] = partners }
12 pred allLinksShownODIncmplt[obj: Obj, roleName: one FName,
13 partners: set Obj] { partners in obj.get[roleName] }
14

15 pred allAttribShownOD[obj: Obj, definedAttrs: set FName] {
16 obj.get.(Val + EnumVal) = definedAttrs }
17

18 // Semantic variation feature: object typing
19 pred strictTypingOD[obj: univ, type: set univ] {
20 obj in type }
21

22 pred nonStrictTypingOD[obj: univ, subtypes: set univ] {
23 obj in subtypes }

Listing 1.1. Parametrized Alloy predicates for OD semantics features

specifies that the set of objects it receives in its parameter (plus some other atoms
from utility sets used in our translation) is equal to the module’s universe, i.e.,
that there are no more objects except the ones specified in its parameter. An
example instantiation of this predicate appears in line 16 of List. 1.2, specifying
that dana, bob, and the two tasks, as shown in the diagram, are all the objects
in the object model. The other completeness predicates use the get relation de-
fined in our translation; this special representation of object’s attributes and field
names allows us to specify their presence or absence. In our example, the seman-
tic configuration requires that all links are shown, and so lines 8-15 of List. 1.2
instantiate the allLinksShownOD and the allLinksShownODCmplt predi-
cates for all the links in od2.

Third, the last two predicates in List. 1.1 handle strict and non-strict typing:
both specify that the set of objects in the first parameter is included in the
set of objects assigned to the second parameter. We keep the two predicates
separate for better readability when they are used: strict typing is used with a
specific signature while non-strict typing is used with our translation’s sub classes
functions (see above). In our example we chose non-strict typing so we use the
sub classes functions EmpSubs, which returns the atoms in {Emp, Mgr}, and
TskSubs, which returns the atoms in {Tsk} (lines 5-6 of List. 1.2).
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1 pred od2 {
2 some dana: Obj| some bob: Obj| some t1: Obj| some t2: Obj|
3 # {dana + bob + t1 + t2} = 4
4 // Semantic variation feature: object typing
5 and nonStrictTypingOD[dana + bob, EmpSubs]
6 and nonStrictTypingOD[t1 + t2, TskSubs]
7 // Semantic variation feature: OD completeness
8 and allLinksShownOD[dana, worksOn]
9 and allLinksShownOD[bob, mngBy]

10 and allLinksShownOD[t1, doneBy]
11 and allLinksShownOD[t2, doneBy]
12 and allLinksShownODCmplt[bob, mngBy, dana]
13 and allLinksShownODCmplt[dana, worksOn, {t1 + t2}]
14 and allLinksShownODCmplt[t1, doneBy, dana]
15 and allLinksShownODCmplt[t2, doneBy, dana]
16 and allObjectsShownOD[dana + bob + t1 + t2]
17 // Semantic variation feature: empty OM
18 and emptyOMNotValidOD }

Listing 1.2. Example Alloy predicate for od2 (shown in Fig. 3)

CD features. List. 1.3 shows the parametrized Alloy predicates related to the
different features available for CD semantics. As a concrete example, List. 1.4
shows the predicate that represents a CD, specifically cd2, presented earlier in
Sect. 3, Fig. 3, in the context of a specific semantic configuration where the
empty OM is not part of the semantics, all classes are shown and their list of
attributes is complete. We now explain the two listings in detail.

The predicate emptyOMNotValidCD (List. 1.3 line 2) specifies that there ex-
ists at least one object. It is mentioned in pred cd iff the semantic configuration
includes the feature cd.emptyOMinvalid (just like in pred od).

The remaining predicates in List. 1.3 handle completeness. The predicate
allAttribShownCD specifies that the get relation of the object does not in-
clude any field name outside the set of field names specified in the fNames
parameter (see List. 1.4 lines 17-19 for instantiations with all classes and their
field names). The predicate allowMoreAttribCD specifies that for the signa-
ture given as the objs parameter either there are no more fields than specified
in the fNames parameter or there are additional attributes and enumeration
values. The predicate allClassesShownCD specifies that the model’s universe
will only contain object instances of the classes given as a parameter. It is in-
stantiated in List. 1.4 line 20 with all classes shown in cd2.

6 Implementation and Discussion

Implementation. We have created a prototype implementation of our work,
packaged as an Eclipse plug-in. For the representation of the CD/OD semantics
feature model and the selection of valid configurations we use components from
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1 // Semantic variation feature: empty OM
2 pred emptyOMNotValidCD { some Obj }
3

4 // Semantic variation feature: CD completeness
5 pred allAttribShownCD[objs: set Obj, fNames:set FName] {
6 no objs.get[FName - fNames] }
7

8 pred allowMoreAttribCD[objs: set Obj, fNames:set FName] {
9 all f : (FName - fNames) | (

10 (no objs.get[f])
11 or (one v : Val | all o : objs | o.get[f] = v)
12 or attribOfEnumValue[objs, f] ) }
13

14 pred allClassesShownCD[objs: set Obj] {
15 univ = (objs + FName + auxilary + Val + EnumVal + Int) }

Listing 1.3. Parametrized Alloy predicates for CD semantics features

FeatureIDE [14]. For editing CDs and ODs we use parsers and editors (with
syntax highlighting etc.) generated by MontiCore [15,19]. The transformation to
Alloy uses FreeMarker templates [11]. Analysis is done using Alloy’s APIs [1].
The prototype plug-in together with several examples is available from [24].

On semantic variability. One may consider semantic variability in a model-
ing language definition to be a weakness, as it may create confusion and lead to
ambiguities in its comprehension and use. We believe, however, that for general
purpose languages such as the sub-languages of the UML, state machines, class
diagrams, etc., a certain degree of variability in general, and of semantic variabil-
ity in particular, is a necessity. The very ‘general purpose’ nature of the language
dictates that it will be used for a variety of tasks and in different contexts, which,
in practice, entails a requirement for variability. This is evident also from the
works of Atlee et al. [20,22,28]. Still, we do not try to promote the existence of
too many semantics; instead, we aim to formally and precisely define the specific
points where the semantics should vary and automate the application and use
of the possible resulting definitions.

As an alternative to language level semantic variability, one may suggest to
enrich the language syntax with keywords that allow the modeler to explicitly
choose between variants, e.g., by adding optional keywords such as ‘complete’ /
‘incomplete’, ‘strict’ / ‘permissive’ etc. as modifiers, at the diagram level or the
diagram-element level. The advantage of this is that there is a single semantics
to handle. The disadvantages however are (1) that the language syntax becomes
more complicated, (2) that questions may arise regarding the default semantics,
e.g., if the ‘complete’ /‘incomplete’ keywords are omitted, and, significantly,
(3) that this solution does not support cases where the same diagram should
change its meaning in different phases of the development process (e.g., when
the same CD should be considered complete during design but incomplete during
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1 pred cd2 {
2 // Definition of class attributes
3 ObjAttrib[Tsk, priority, type_Int]
4 ObjAttrib[Tsk, sDate, type_Date]
5 ObjAttrib[Emp, gender, GenderEnum]
6 ObjAttrib[Emp, name, type_String]
7 ObjAttrib[Mgr, gender, GenderEnum]
8 ObjAttrib[Mgr, exp, type_Int]
9 ObjAttrib[Mgr, name, type_String]

10 // Associations
11 ObjLUAttrib[EmpSubs, mngBy, MgrSubs, 0, 1]
12 ObjL[MgrSubs, mngBy, EmpSubs, 0]
13 BidiAssoc[EmpSubs, worksOn, TskSubs, doneBy]
14 ObjLUAttrib[TskSubs, doneBy, EmpSubs, 1, 1]
15 ObjLUAttrib[EmpSubs, worksOn, TskSubs, 0, 2]
16 // Semantic variation feature: cd completeness
17 allAttribShownCD[Tsk, priority+sDate+doneBy]
18 allAttribShownCD[Emp, gender+name+mngBy+worksOn]
19 allAttribShownCD[Mgr, gender+exp+name+mngBy+worksOn]
20 allClassesShownCD[Tsk+Emp+Mgr]
21 // Semantic variation feature: empty OM
22 emptyOMNotValidCD }

Listing 1.4. Example Alloy predicate for cd2 (shown in Fig. 3)

analysis). It is important to note, though, that our work can easily be adapted
to support this solution: the only change is that the ‘configuration’ would not
come from the feature model but from the keywords on the diagrams themselves.

Evaluation of our solution. Our choice of Alloy as the target formalism
for analysis was motivated by Alloy’s expressive power, its readability, and its
readily available automated analysis. Still, it is important to note that Alloy’s
analysis is generally bounded by a user-defined scope. Interestingly, however,
in the context of CD/OD consistency, the scope limitation is relevant to some
semantic configurations but is irrelevant to others: specifically, when the CD and
OD semantics assume that the diagrams show all classes and all objects, the
scope to be used can be calculated from the input and the analysis is sound and
complete. That said, our experience with Alloy shows that it does not scale well
for large scopes. Alloy was not designed to scale, see the small scope hypothesis
discussed in [13].

We have validated our work as follows. First, we created an automated test
that generates all 144 legal configurations of our feature model, checks their
application to the consistency check of three different CD OD pairs, and ver-
ifies that the result is correct. Second, we used FeatureIDE’s user interface to
manually define 7 different configurations, we used MontiCore’s generated CD
and OD editors to edit 12 CDs and ODs (including the ones shown in this pa-
per in Sect. 3), we ran the configurable consistency check using our plug-in and
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observed that the results are correct. Moreover, we have pre-prepared a number
of configurations that we believe are most useful for specific task contexts, e.g.,
for requirements elicitation and for testing. All configurations, CDs, and ODs
used in our validation are available with the implemented plug-in from [24]. We
encourage the interested reader to check them.

One lesson learned during evaluation was the importance of constraints be-
tween features (the second constraint presented in Sect. 4.3, relating object
omission with links omission, was discovered in the course of our experiments).
Another lesson learned relates to scalability. While our implementation works
very fast for small CDs and ODs, it does not scale to handle CDs associations
with high multiplicities and ODs with many objects. As mentioned above in
the discussion of the use of Alloy, scalability will require the use of abstractions
or the development of a different analysis approach. Finally, one may suggest
additional CD features we do not yet support (e.g., constrained generalization
sets, a fragment of OCL constraints etc.) and additional semantic variation fea-
tures (e.g., allow role names omitted in the OD). Our work can be extended
to support these additions. Each additional feature will require corresponding
support in the configurable transformation and possibly logical constraints on
its combination with other features. We leave these for future work.

7 Conclusion

In this paper we have investigated the idea of semantically configurable analysis
in the context of CD and OD consistency. We formalized semantic variability in
these languages using a feature model and presented a semantically configurable
fully automated analysis solution based on a parametrized transformation to an
Alloy module and its analysis with a SAT solver. The work was implemented in
an Eclipse plug-in and demonstrated with examples.

We consider the following possible future work. First, extending our work to
support additional CD language features, e.g., constrained generalization sets.
Second, defining feature models for semantic variability in other modeling lan-
guages and developing related parametric analysis problems, e.g., the model-
checking of a statechart against a sequence diagram.
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definitions. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp.
670–684. Springer, Heidelberg (2009)

9. Czarnecki, K., Eisenecker, U.: Generative Programming Methods, Tools, and Ap-
plications. Addison-Wesley, Reading (2000)

10. Evans, A., France, R.B., Lano, K., Rumpe, B.: The UML as a Formal Modeling
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Abstract. In this paper we present an experiment and two replications
aimed at comparing the support provided by ER and UML class dia-
grams during comprehension activities by focusing on the single build-
ing blocks of the two notations. This kind of analysis can be used to
identify weakness in a notation and/or justify the need of preferring ER
or UML for data modeling. The results reveal that UML class diagrams
are generally more comprehensible than ER diagrams, even if the former
has some weaknesses related to three building blocks, i.e., multi-value
attribute, composite attribute, and weak entity. These findings suggest
that a UML class diagram extension should be considered to overcome
these weaknesses and improve the comprehensibility of the notation.

1 Introduction

A data model is a set of concepts that can be used to describe both the structure
of and the operations on a database [1]. It represents the output of data modeling
(or conceptual design), an activity that aims at creating a conceptual schema in a
diagrammatic form and facilitating the communication between developers and
users [1]. Understanding and interpreting data models represents a fundamen-
tal activity from the earliest stages of software development, e.g., requirement
analysis. Thus, a comprehensive notation is really desirable to avoid misunder-
standing that can lead to the introduction of errors very expensive to remove in
the later phases of the software development. A comprehensive notation is also
desirable during software maintenance, since it facilitates the comprehension ac-
tivities that have to be performed to understand the design of the system before
the analysis and the implementation of a change request.

Entity-Relationship (ER) and its extensions are the most used notations for
database conceptual modeling and still remains the de facto standard [1]. The
success of the Object-Oriented (OO) approach for software development has en-
couraged the use of this approach also for database modeling [2]. In particular,
UML class diagrams can be used to represent the conceptual schema of the whole
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software system, so the same notation can be used to model the functionality
of the system as well as to represent its data. The structural constructs of the
UML class diagram which represents the data structure is somewhat equivalent
to Extended ER (EER) representation (e.g., object classes considered equiva-
lent to entity and relationship types). The functionality is represented through
“methods” that are attached to the object classes. However, while UML is be-
coming a de facto standard for the analysis and design of software systems, it is
not exploited with the same success for modeling databases. Indeed, nowadays
ER remains the most used notation to model databases and in some cases it
complements UML in the design of software systems. A recent survey also in-
dicated that in some cases both ER and UML class diagrams are employed to
represent the same database [3]. Such behaviors might be the trigger for pos-
sible problems during the evolution of the data models. More effort is required
to maintain the models and their implementation up-to-date, since out-of-data
models can generate inconsistency and misunderstanding during software main-
tenance and evolution. All these considerations lead researchers to empirically
compare the ER and UML diagrams to show the actual benefits given by one
notation as compared to the other [3,4]. The results achieved in all these stud-
ies indicate that the support given by UML class diagrams in comprehension
tasks is at least equal (and in some cases higher than) the support given by
ER diagrams. However, a qualitative and quantitative analysis concerning the
identification of the graphical elements of one notation that are more compre-
hensible than the corresponding element in the other notation is still missing
(this kind of analysis is quantitatively performed in [2] during the comparison
of EER and OO models). Such an analysis is vital to provide insight on why
UML class diagrams are better than ER diagrams or vice versa and highlight
strengths and limitations of the two notations. This kind of analysis can be used
to (i) justify the need of preferring ER or UML class diagrams for data model-
ing; or (ii) identify weakness in a notation that could be overcome to improve
its comprehensibility.

In this paper we aim at bridging this gap presenting the results of a controlled
experiment and two replications to deeply analyze the support given by ER and
UML class diagrams during the comprehension of data models. The experiments
aimed at performing a fine-grained analysis to (quantitatively and qualitatively)
compare the single building blocks, i.e., Entity, Primary Key/ID, Composite At-
tribute, Multi-value Attribute, Recursive relationship, Relationship cardinality,
Ternary relationship, Generalization IS-A, Weak entity, M:N relationship, of the
two notations. The experiment and its replications involved 156 students of the
university of Salerno (Italy) with different academic background represented by
fresher, bachelor, and master students.

The rest of the paper is organized as follows. Section 2 presents the related
work. Section 3 provides details of the design of the experiment and presents
the results achieved while Section 4 discuss the possible threats to validity. Con-
cluding remarks and directions for future work are given in Section 5.
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2 Related Work

In the last two decades some papers have analysed, through controlled experi-
ments, empirical studies, or surveys, graphical notations supporting the software
development process.

To the best of our knowledge only four papers compare the ER notation, or
its extensions, and Objected-Oriented (OO) models [5], [2], [6], [7]. In particu-
lar, Shoval and Shiran [5] compare Extended ER (EER) and OO data models
from the point of view of design quality, where quality is measured in terms
of correctness of the produced models, time to completely perform the design
task, and designers’ opinions. The goal of our empirical investigation is different,
since we compare ER and UML diagrams from a maintainer perspective in or-
der to verify whether the use of UML diagrams provides better supports during
comprehension activities on data models. The comparison performed by Shoval
and Shiran reveals that there are no significant differences between Extended
ER (EER) and OO data models, except for the use of ternary and unary rela-
tionships since in this case EER models provide better results. Furthermore, the
designers preferred to work with the EER models.

Shoval and Frumermann [2] also perform a comparison of EER and OO di-
agrams taking into account the user comprehension. As done by Shoval and
Shiran [5], they separately examine the comprehension of various constructs of
the analysed models. Their analysis reveals that EER schemas are more com-
prehensible for ternary relationships while for the other constructs no significant
difference is found.

Bock and Ryan [6] also examine the correctness of the design for several
constructs of the considered diagram types in an empirical analysis comparing
EER and OO models from a designer perspective. The analysis reveals significant
difference only in four cases (i.e., representation of attribute identifiers, unary
1:1 and binary m:n relationships) and no difference is found concerning the time
to complete the tasks.

A comparison between OO and ER models from an end-user perspective is
also carried out by Palvia et al. [7], whose aim is to establish which is more
comprehensible. Differently from previous reported studies, they measure com-
prehension on overall terms, not considering specific constructs, and the results
of their investigation suggested that OO schemas are superior in this respect.

3 Empirical Evaluation

This section describes in detail the design of the controlled experiment we per-
formed and the analysis and interpretation of the achieved results. A discussion
of the threats to validity is also presented at the end of the section.

3.1 Goal, Definition, and Context

The goal of our experimentation was to analyse whether UML class diagrams
are more comprehensible than ER diagrams during the comprehension of data
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models. Moreover, we are interested in performing a fine grained analysis to
compare the single building blocks Bi of the two notations to identify possible
weaknesses of the UML class diagrams with respect to the ER diagrams, where
Bi ∈ { Entity, Primary Key/ID, Composite Attribute, Multi-value Attribute,
Recursive relationship, Relationship cardinality, Ternary relationship, General-
ization IS-A, Weak entity, M:N relationship}.

The performed experiments involved students of the University of Salerno
(Italy) having different academic backgrounds and, consequently, different levels
of experience on ER and UML diagrams:

– fresher students, i.e., 1st year B.Sc. students that were starting their aca-
demic career when the experiment was performed;

– bachelor students, i.e., 2nd year B.Sc. students that attended Programming
and Databases courses in the past and were attending the Software Engi-
neering course when the experimentation was performed;

– master students, i.e., 1st year M.Sc. students that attended advanced courses
of Programming and Software Engineering in the past and were attending
an advanced Databases course when the experimentation was performed;

Note that in the Software Engineering course the design notation used is UML
while for the Databases course the design notation is ER. The number of subjects
involved in the original experiment were 37 bachelor students, while the first and
second replications involved 52 master students and 67 fresher students subjects,
respectively. We employed the data models of the following systems:

– Company, a software system implementing all the operations required to
manage the projects conducted by a company;

– EasyClinic, a software system implementing all the operations required to
manage a medical doctor’s office.

In particular, we exploited two different data models represented in terms
of ER and UML class diagrams. Table 1 shows the characteristics of the data
models we employed in the experiments. The selection of the objects for each ex-
periment was performed ensuring that the data models had a comparable level of
complexity. For this reason, we extracted sub-diagrams of comparable size from
the original data models according to the “the rule of seven” given by Miller [8]
to build comprehensible graphical diagrams1. In the context of our experimenta-
tion we applied such a rule to select data models easy to comprehend. This was
necessary because (i) each experiment was designed to be performed in a limited
amount of time and (ii) a simple data model is preferred to a more complex data
model since the latter might influence the comprehension activities.

3.2 Design

Each experiment was organised in two laboratory sessions. In particular, in the
context of the experiment subjects had to perform two comprehension activities
1 The rule of seven is the generally accepted claim that people can hold approximately

seven chunks or units of information in their short-term memory at a time [8].
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Table 1. Data models used in each controlled experiment

System # entities # attributes # relationships

Company 7 17 5
EasyClinic-BookingManagement 6 18 5

Table 2. Experimental design

Group Treatment
ER UML

A EasyClinic, Lab1 Company, Lab2
B Company, Lab2 EasyClinic, Lab1
C Company, Lab1 EasyClinic, Lab2
D EasyClinic, Lab2 Company, Lab1

on the data models of two different software systems. Each subject analysed the
UML diagram (or ER diagram) of one system in one laboratory session and
the ER diagram (or UML diagram) of the other system in the other laboratory
session. The organisation of each group of subjects2 in each experimental lab
session (Lab1 and Lab2 ) followed the design shown in Table 2. In particular, the
rows represent the four experimental groups, whereas the columns refers to the
design notation used to represent the data model (i.e., ER and CD).

3.3 Comprehension Questionnaires

The main outcome observed in the three experiments was the comprehension
level. To evaluate it, we asked the subjects to answer a questionnaire (similar
to [9]) consisting of 10 multiple choice questions where each question has one
or more correct answers. The number of answers is the same for each question
(i.e., three answers), while the number of correct answers is different. The ques-
tions cover all the building blocks Bi of the two notations exploited to model a
database. Figure 1 shows a sample question of the comprehension questionnaire
regarding the system Company.

The same building blocks were qualitatively analysed through a questionnaire
where subjects specified their preferences between the two considered notations.
In particular, for each building block Bi they manifested a preference between
ER diagram, No preference, and UML class diagram.

Moreover, at the end of each laboratory session a survey questionnaire was
proposed to the subjects. This survey aimed at assessing the overall quality of the
provided material as well as the clearness and difficulty of the comprehension
tasks. In particular, the subjects provided answers to the following questions
(one choice for each question):

S1 : I had enough time to perform the tasks
S2 : The task objectives were perfectly clear to me
S3 : The tasks I performed was perfectly clear to me
S4 : Judging the difficulty of the comprehension task
2 The students were assigned to the four groups in a randomly balanced way.



Identifying the Weaknesses of UML Class Diagrams 173

where S1, S2, and S3 expected closed answers according to the Likert scale [10]
from 1 (strongly disagree) to 5 (strongly agree), while S4 from 1 (very low) to 5
(very high).

3.4 Variable Selection

We performed a single factor within-subjects design, where the independent
variable (main factor) is represented by the design notation used to represent a
data model. This variable is denoted as Method, that can be ER diagram (ER)
or UML class diagram (CD).

The dependent variable is comprehension level, which denotes the compre-
hension level achieved by the subjects using the two notations. To measure it we
use two well known Information Retrieval metrics, namely recall and precision
[11]. Indeed, since the questionnaire is composed of multiple-choice questions,
we define recall and precision as follow:

recalls =

∑
i

|answers,i∩correcti|∑
i

|correcti| % precisions =

∑
i

|answers,i∩correcti|∑
i

|answers,i| %

where answers,i is the set of answers given by the subjects s to the question i
and correcti is the set of correct answers expected for the question i. Note that
the measures defined above represent aggregations of the precision and recall
values that have been obtained considering each question of the questionnaire.
Differently from aggregate measures based on the mean of precision and recall
values the adopted measures also consider the fact that subjects do not provide
any answer for a given question [12].

Finally, it is worth noting that recall and precision measure two different
concepts. Thus, we decided to use their harmonic mean (i.e., F-measure [11]) to
obtain a balance between them and compute the comprehension level.

However, to better assess the effect of Method it was necessary to control
other factors (called co-factors) that may impact the results achieved by the
subjects and be confounded with the effect of the main factor. In the context of
our study, we identify the following co-factors:

– ER and UML experience: fresher students did not know the ER and UML
diagrams, while bachelor and master students had a fairly good knowledge
of these notations and master students were more trained than bachelor
students on the design methods. We were also interested in analysing the

Q4 Let us focus on the classes Project and Company. 
      Which of the following statements is true:

[] A company has a unique office 
[] A project has a unique office 
[] A company may have multiple offices

Fig. 1. A question example
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effect of the ER and UML experience since the different levels of education
(and, consequently, the different levels of UML and ER experience) may
impact the results achieved by subjects.

– System: even if we tried to select two software systems of a comparable size
and tried to balance the complexity of the data models by using as heuristic
the Miller’s rule, there is still the risk that the system complexity may have
a confounding effect with Method. For this reason we also considered the
modeled system as an experimental co-factor.

– Lab: the experiments were organised in two laboratory sessions. In the first
session subjects performed the task using UML class diagrams (or ER dia-
grams) and in the other session they performed the task using ER diagrams
(or UML class diagrams). Although the experimental design limits the learn-
ing effect, it is still important to analyse whether subjects perform differently
across subsequent lab sessions.

3.5 Procedure and Data Analysis

Subjects performed the assigned tasks individually. Before the experiments, sub-
jects were trained on both ER and UML class diagrams. To avoid bias (i) the
training was performed on a data model not related to the systems selected
for the experimentation and (ii) its duration was exactly the same for the ex-
periment and the replications. Right before the experiments, the students at-
tended a 30 minutes presentation where detailed instructions concerning the
tasks to be performed were illustrated. The design, the material3 and the pro-
cedure were exactly the same for the experiment and its replications. Subjects
represented the only substantial difference among the experiment and the two
replications.

Since in our experiments each subject performed a task on two different models
(i.e., Company, or EasyClinic) with the two possible treatments (i.e., ER, and
CD), it was possible to use a paired Wilcoxon one-tailed test [14] to analyse
the differences exhibited by each subject for the two treatments. A one-tailed
paired t-test [14] can be used as alternative to the Wilcoxon test. However, we
decided to use the Wilcoxon test since it is resilient to strong departures from
the t-test assumptions [15]. The achieved results were intended as statistically
significant at α = 0.05. This means that if the derived p-value is less than
0.05, it can be concluded that there is significant difference between the support
given by the treatments when performing comprehension tasks on data models.
Furthermore, we analysed the students preferences about the single building
blocks of the two notations using histograms, while the answers provided by
subjects to the survey questionnaire were analysed using boxplots. The chosen
design also permitted to analyse the effects of co-factors and their interaction
with the main factor. To this aim we used the two-way Analysis of Variance
(ANOVA) [14].

3 See [13] for the complete material used in the experiments.
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Table 3. Descriptive statistics of comprehension by method and subjects group

Subjects
ER CD
Mean Median St. Dev. Mean Median St. Dev.

Fresher 0.801 1.000 0.307 0.816 1.000 0.280
Bachelor 0.849 1.000 0.242 0.845 1.000 0.278
Master 0.849 1.000 0.277 0.838 1.000 0.272

Table 4. Wilcoxon Test results of comprehension by method and subjects group

Subjects
CD$FM - ER$FM

p-value effect size
Mean Median St. Dev.

Fresher 0.014 0.000 0.404 0.343 0.037
Bachelor 0.003 0.000 0.330 0.420 -0.011
Master -0.012 0.000 0.383 0.817 -0.030

3.6 Analysis and Interpretation of the Results

Table 3 reports the descriptive statistics of the F-measure, i.e., comprehension
level, achieved by the subjects in our experimentation. The results highlighted
that the two notations provided comparable support when performing compre-
hension activities on data models. In particular, the higher difference between
the two notations in terms of F-measure is just 1% (see Table 3). As designed,
to analyse if the difference between the results obtained using the two notations
is statistically significant, we performed the Wilcoxon test. Table 4 reports the
achieved results that highlight no significant difference between the two notations
when used to comprehend data models (p-value always higher than 0.05).

Our finding contrasts with the results achieved in [4] where the authors demon-
strated the benefits provided by the UML class diagrams with respect to the ER
diagrams during the comprehension of data models. To further investigate this
discrepancy, we analysed the support given by the two notations at a fine-grained
level, i.e., on each building block used in the definitions of data models. Table
5 reports the descriptive statistics of the results achieved in terms of F-measure
(considering the subjects answers to questions related to each building block).
The achieved results confirmed an overall “performance equilibrium” between
the two notations. In particular, there are some building blocks that represent
strengths of CD, e.g., Entity and Ternary Relationship, as well as building blocks
that represent weaknesses of CD, e.g., Composite and Multi-value attributes. In
order to statistically analyse the weaknesses of CD, Table 6 shows the results of
the Wilcoxon test executed for each building block to verify where the ER perfor-
mances are statistically better than those of CD. The achieved results revealed
that ER has a comprehension level significantly higher than the comprehen-
sion level of CD for three building blocks, i.e., Composite attribute, Multi-value
attribute, and Weak entity. These results held for all the subjects involved in
the experimentation. The only exception is given by Bachelor students when
analysing the Multi-value attribute building block. However, Table 5 shows that
Bachelor students also achieved better results in terms of descriptive statistics
with ER when answering the questions related to the Multi-value attribute. It
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Table 5. Descriptive statistics of the results (F-measure)

Method Element Fresher Bachelor Master
Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev.

ER

Entity 0.887 1.000 0.260 0.936 1.000 0.125 0.872 1.000 0.281
Primary Key/ID 0.784 1.000 0.406 0.955 1.000 0.179 0.907 1.000 0.277
Composite attribute 0.883 1.000 0.159 0.897 1.000 0.146 0.920 1.000 0.140
Multi-value attribute 0.859 1.000 0.195 0.847 1.000 0.168 0.862 1.000 0.213
Recursive relationship 0.779 1.000 0.301 0.757 0.667 0.224 0.817 1.000 0.243
Relationship cardinality 0.875 1.000 0.240 0.892 1.000 0.158 0.929 1.000 0.179
Ternary relationship 0.741 1.000 0.347 0.828 1.000 0.220 0.804 1.000 0.321
Generalization IS-A 0.684 0.667 0.369 0.734 1.000 0.363 0.712 1.000 0.379
Weak entity 0.725 0.800 0.266 0.767 1.000 0.305 0.747 0.900 0.329
M:N relationship 0.789 1.000 0.368 0.865 1.000 0.319 0.923 1.000 0.244

CD

Entity 0.961 1.000 0.108 0.937 1.000 0.234 0.926 1.000 0.145
Primary Key/ID 0.875 1.000 0.296 0.937 1.000 0.234 0.926 1.000 0.246
Composite attribute 0.742 0.667 0.255 0.781 0.800 0.251 0.815 1.000 0.308
Multi-value attribute 0.775 0.667 0.259 0.788 0.667 0.257 0.801 0.667 0.209
Recursive relationship 0.767 1.000 0.323 0.856 1.000 0.226 0.806 0.800 0.210
Relationship cardinality 0.865 1.000 0.261 0.856 1.000 0.320 0.906 1.000 0.150
Ternary relationship 0.827 1.000 0.265 0.888 1.000 0.150 0.855 1.000 0.162
Generalization IS-A 0.828 1.000 0.225 0.838 1.000 0.290 0.804 1.000 0.328
Weak entity 0.629 0.667 0.407 0.611 0.667 0.407 0.608 0.733 0.447
M:N relationship 0.890 1.000 0.162 0.955 1.000 0.179 0.929 1.000 0.212

Table 6. Wilcoxon Test by Questions

Element
Fresher Bachelor Master
ER$FM - CD$FM

p-value effect size
ER$FM - CD$FM

p-value effect size
ER$FM - CD$FM

p-value effect size
Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev.

Entity -0.059 0.000 0.262 0.983 -0.257 -0.036 0.000 0.153 0.599 -0.032 -0.054 0.000 0.309 0.796 -0.161
Primary Key/ID -0.091 0.000 0.517 0.927 -0.166 -0.027 0.000 0.198 0.415 0.059 -0.019 0.000 0.388 0.660 -0.049
Composite attribute 0.141 0.000 0.303 0.000 0.490 0.116 0.000 0.306 0.022 0.380 0.105 0.000 0.304 0.012 0.343
Multi-value attribute 0.085 0.000 0.316 0.014 0.269 0.059 0.000 0.324 0.141 0.180 0.061 0.000 0.311 0.080 0.196
Recursive relationship 0.012 0.000 0.401 0.455 0.024 -0.010 0.000 0.287 0.983 -0.345 0.011 0.000 0.308 0.536 0.037
Relationship cardinality 0.009 0.000 0.358 0.439 0.028 -0.009 0.000 0.200 0.446 0.094 0.023 0.000 0.224 0.258 0.103
Ternary relationship -0.086 0.000 0.471 0.897 -0.184 -0.042 0.000 0.266 0.869 -0.221 -0.050 0.000 0.368 0.720 -0.135
Generalization IS-A -0.145 0.000 0.421 0.999 -0.388 -0.104 0.000 0.476 0.905 -0.217 -0.093 0.000 0.526 0.903 -0.177
Weak entity 0.096 0.000 0.457 0.027 0.211 0.156 0.000 0.504 0.045 0.309 0.139 0.000 0.590 0.049 0.234
M:N relationship -0.105 0.000 0.379 0.972 -0.249 -0.045 0.000 0.334 0.942 -0.252 -0.006 0.000 0.313 0.562 -0.020

bold if ER comprehension level statistically higher than CD comprehension level

is worth noting that the controlled experiments and replications reported in [4]
did not consider these three building blocks to determine comprehension level
provided by the two notations, i.e., the questionnaires used by the authors did
not include questions related to Composite attribute, Multi-value attribute, and
Weak entity. To verify whether the different findings between our experimenta-
tion and the results achieved in [4] was due to these three building blocks we
also performed the comparison between ER and UML class diagrams without
considering the answers of the students related to Composite attribute, Multi-
value attribute, and Weak entity. In particular, we re-executed the Wilcoxon
test to analyse if CD provided a significant higher comprehension level than ER.
The results in Table 7 highlight that CD achieved statistically significant higher
comprehension level than ER for the Fresher and Bachelor students. Moreover,
CD provided better results than ER also for Master students even if this is not
statistically significant (p-value 0.096).

Besides a quantitative analysis, we also conducted a qualitative comparison
of the support given by the building blocks of the two notations. Figures 2, 3,
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Table 7. Wilcoxon Test results of comprehension support by method and subjects’
group without the identified weaknesses

Subjects
CD$FM - ER$FM

p-value effect size
Mean Median St. Dev.

Fresher 0.066 0.000 0.410 0.000 0.161
Bachelor 0.052 0.000 0.290 0.010 0.120
Master 0.027 0.000 0.358 0.096 0.074

bold if CD comprehension level statistically
higher than ER comprehension level
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Fig. 2. Subject’s preferences - Fresher

and 4 report the preferences expressed by the Fresher, Bachelor, and Master stu-
dents, respectively. It is worth noting that the results of the quantitative analysis
are confirmed by the preferences expressed by the students. In particular, the
students preferred ER diagrams to represent the three building blocks identi-
fied as weaknesses of the UML class diagrams during the quantitative analysis,
i.e., Multi-value attribute, Composite attribute, and Weak entity. Concerning
the remaining building blocks, the students preferred UML class diagrams to
represent the Entity, the Relationship cardinality, and the Generalization rela-
tionship, while they did not provide a clear preference for the Primary key/ID,
Recursive relationship, Ternary relationship, and M:N relationship.
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Fig. 3. Subject’s preferences - Bachelor
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Fig. 4. Subject’s preferences - Master

4 Discussion and Threats to Validity

Summarising, the achieved (quantitative and qualitative) results highlighted that
the UML notation is characterized by three weaknesses related to the repre-
sentation of Composite attribute, Multi-value attribute, and Weak entity, with
respect to the ER notation, when performing comprehension activity on data
models. However, except for the three identified weaknesses, the UML notation
is generally more comprehensible than the ER notation, confirming the findings
of previous experiments [4]. These findings suggest that a UML class diagram
extension focused on these three building blocks should be considered to over-
come these weaknesses and improve the comprehensibility of data models given
in terms of UML notation. All these findings could be affected by many threats
to validity [16] discussed in the following.

Goal, Design, and Statistical analysis. Ease of comprehension was the only
criterion examined, because comprehension is a key issue for a graphical nota-
tion. However, especially where the design of performance-critical, data-intensive
software like databases is concerned, there are other key considerations as well,
e.g., analysability. One may choose to sacrifice expressiveness for analysability or
other properties. For this reason, future work will be devoted to evaluate other
properties of the two notations.

As explained in Section 3 we captured the students’ opinion about the qual-
ity of the provided material, the clearness of the comprehension tasks and the
laboratory goals, and the difficulty in performing the comprehension tasks, to
verify if the results of our experimentation could be influenced by these threats.
Figure 5 shows boxplots of answers for (a) fresher, (b) bachelor, and (c) master
students. The analysis suggested that students had enough time to carry out the
tasks (S1) and the objectives and the tasks to perform were clear (S2 and S3),
since the median of boxplots of answers was 4 (i.e., I agree). Furthermore, they
experienced no particular difficulties when performing the comprehension tasks
(S4) since the median of the answers was 3.
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Table 8. ANOVA: analysis of the Lab and System co-factors

Factor Fresher Bachelor Master All

Lab No (0.787) No (0.163) No (0.175) No (0.216)
System No (0.793) No (0.636) No (0.113) No (0.229)
Method vs Lab No (0.817) No (0.833) No (0.305) No (0.439)
Method vs System No (0.793) No (0.817) No (0.618) No (0.679)
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Fig. 5. Answers of subejcts to survey questionnaire

The metric used to assess the subjects’ performance (comprehension) is an
aggregate measure of precision and recall that well reflects the results achieved
by the subjects. We are also confident that the used tool (multiple-choice ques-
tions) actually measures the comprehensibility of the data models. This is also
confirmed by the fact that previous empirical studies also used similar approaches
to measure the same attributes (see for instance [2], [5], [6], [7], [9]).

Even if the chosen design mitigates the learning (or tiring) effect, there is
still the risk that, during labs, subjects might have learned how to improve their
comprehension performances. We tried to limit this effect by means of a pre-
liminary training phase. In addition, as highlighted in [15], one possible issue
related to the chosen experiment design concerns the possible information ex-
change among the subjects between the laboratories. To mitigate such a threat
the experimenters monitored all the students during the experiment execution to
avoid collaboration and communication between them. Finally, subjects worked
on three different diagrams and, even if we tried to select diagrams having com-
parable size, there is still the risk that one diagram might be easier than another.

All these considerations suggest to account Lab and System as co-factors
in the analysis of results. Indeed, the chosen design permitted to analyse the
effect of co-factors and their interaction with the main factor. Table 8 shows the
results of the ANOVA test by Method and Lab. The analysis did not reveal any
significant influence of the two co-factors nor any significant interaction between
the main factor and the two co-factors.

Since the assigned task had to be performed in a limited amount of time, the
time pressure could represent another threat to validity. However, we decided the
duration of each experiment taking into account previous laboratory exercises
performed by the students involved in the experimentations during their courses.
Furthermore, we also exploited our experience in performing similar controlled
experiments in the past [4]. However, all the subjects completed the assigned
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task and they declared (in the post-experiment questionnaire) that the available
time was enough to complete the task. For these reasons we are confident that
time pressure did not condition the results and thus we did not consider it as a
confounding factor.

Proper tests were performed to statistically analyse the difference in the per-
formance achieved employing the two experimented notations, i.e., ER and UML
class diagram. Survey questionnaires, mainly intended to get qualitative insights,
were designed using standard ways and scales [10] allowing us to use statistical
analysis to analyse differences in the feedback provided by subjects.

Subjects and objects. The three controlled experiments involved students hav-
ing different backgrounds, i.e., fresher, bachelor, and master students. Concern-
ing the undergraduate and graduate students, they had an acceptable analysis,
development, and programming experience. In particular, in the context of the
Software Engineering courses, both master and bachelor students had partici-
pated to software projects, where they experienced software development and
documentation production, including database design documents. Moreover, as
highlighted by Arisholm and Sjoberg [17] the difference between students and
professionals is not always easy to identify. Nevertheless, there are several dif-
ferences between industrial and academic contexts. For these reasons, we plan
to replicate the experiment with industrial subjects to corroborate our findings.
We also plan in the future to conduct a survey involving people from database
and software engineering communities aiming at obtaining opinions on why weak
entity, multi-value and composite attributes are (or might be) problematic in the
UML notation. In this way, we can perform a more notation-oriented discussion
about the identified weaknesses.

The different backgrounds of the students involved in the experiments have
been accounted as a co-factor to analyse its influence on and interaction with
the main factor. As expected the ANOVA test revealed a statistically significant
effect of ER and UML Experience (p-value < 0.001); bachelor and mas-
ter students achieved statistically significant better performances than fresher
students, while the performances achieved by bachelor and master are almost
comparable. In addition, ANOVA did not reveal any interaction between ER
and UML Experience and the main factor (p-value = 0.486).

To avoid social threats due to evaluation apprehension, students were not
evaluated on the performances they achieved in the experiments. During the
experiment, we monitored the subjects to verify whether they were motivated
and paid attention in performing the assigned task. We observed that students
performed the required task with dedication and there was no abandonment.
Moreover, students were aware that our goal was to evaluate the impact of using
ER or UML class diagrams during modelling activities, but they were not aware
of the exact hypotheses tested and of the considered dependent variables.

Finally, the size of the data models is small compared to industrial cases, but it
is comparable with the size of models used in other related experimentations (see,
for instance, [5], [15], [9]). Future work will be devoted to assess the usefulness
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of the notations on realistically sized artefacts. However, we believe that the
comparison of the two notations on small/medium artefacts is still a worthy
contribution.

5 Conclusion and Future Work

We have reported on the results of a controlled experiment and two replications
aimed at analysing the support given by ER and UML class diagrams during
the coprehension of data models. We have also performed a fine-grained analysis
to compare the single building blocks of the two notations (e.g., entity, rela-
tionships). The results of the empirical analysis have suggested that UML class
diagrams are generally more comprehensible than ER diagrams, confirming the
results achieved in a previous study [4]. However, the fine-grained analysis has
revealed some weakness of UML class diagrams with respect to ER diagrams.
In particular, if we take into account the results about the weak entity, multi-
value and composite attributes building blocks, the performances achieved with
ER diagrams are superior than those obtained with UML class diagrams. More-
over, the performed qualitative analysis has also highlighted that the subjects
preferred ER diagrams for specifying weak entities, multivalue and composite
attributes. Taking into account these results, in the future we intend to exploit
stereotypes, as done in other studies [9], [18], [19], [20], to extend the UML class
digrams and bridge the gap with ER diagrams about the specification of weak
entity, multivalue and composite attributes building blocks. The aim is to im-
prove the comprehensibility of UML class diagrams and candidate such notation
as a new de facto standard also for data modeling.

As it always happens with empirical studies, replications in different contexts,
with different subjects and objects, is the only way to corroborate our findings. It
would be interesting to consider alternative experimental settings in several re-
spects, but maybe the most important one is the profile of the involved subjects.
Replicating this study with students/professionals having a different background
would be extremely important to understand how UML class diagrams influence
the results of these different sub-populations.
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Abstract. With the evolving capabilities of devices, mobile applications
are emerging towards complex reactive systems. To handle this complex-
ity and shorten development time by increased reuse, we propose an en-
gineering approach based on UML activities, which are used like building
blocks to construct applications. Libraries of such building blocks make
Android-specific features available. Tool support provides automatic for-
mal analysis for soundness and automatic implementation. Furthermore,
the approach is easily extensible, since new features can be provided by
new building blocks, without changing the tools or notation. We demon-
strate the method by a voice messaging application.

Keywords: Mobile Applications, Android,UML Activities, Model-Driven
Engineering.

1 Introduction

A look at the software development kits (SDKs) of Google [1] and Apple [2]
quickly reveals that the predominant approach for the development of mobile
applications is that of traditional programming. But albeit these SDKs speedup
the creation of applications, it still takes a considerable effort to program ap-
plications of high quality, especially with respect to responsiveness: Even the
official marketplace application, for instance, does at times not react when users
want to cancel ongoing downloads, and the popular Spotify music player does
not react while logging on. We ask therefore, how modeling techniques can be
applied for mobile applications to aid developers by providing better abstrac-
tion levels to express also concurrent behavior, higher degrees of reuse, formal
analysis of properties as well as a further automation of the implementation.

Although mobile platforms often use system kernels that originate from desk-
top operating systems, mobile applications are significantly different from their
desktop counterparts:

– Mobile applications are event-driven and have to constantly react on input
from user interfaces or sensors, as well as on communication via the network.

– Since usually only one application can be operated by a user at a time, the
responsiveness of its interface is an important quality criterion.

J. Whittle, T. Clark, and T. Kühne (Eds.): MODELS 2011, LNCS 6981, pp. 183–197, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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– Applications are not explicitly terminated by the user, but managed by the
operating system, so they have to adhere to strict life cycle protocols.

– Applications need to be programmed efficiently, and avoid polling or busy-
waiting to increase battery life.

These differences stress the importance of the behavioral aspect of mobile ap-
plications. In fact, we observe that these applications exhibit the typical char-
acteristics of reactive systems [3], and we will later see that also the internal
organization resembles that of a distributed system in general. A development
approach needs to take this into consideration.

The current SDKs, however, try to handle behavioral complexity by a frame-
work approach, in which applications are constructed by extending given classes,
and the operating system takes care of the correct invocation of extended meth-
ods upon certain events. The code of an application is therefore mainly shaped
by the framework classes; the workflow of the actual application comes second.
Further overhead comes from the variety of how application components can be
coupled, and the need to introduce synchronization threads to keep the user in-
terface responsive and separated from tasks with high CPU load. This results in
the applications being obscured further by technicalities that are not related to
the problem domain, which makes it difficult to overlook, understand, maintain
and extend them. One can argue further that the obstruction of behavior by
coding details also has a direct effect on the functionality of the applications:
Programmers may for instance decide to stick to sequential patterns where con-
current ones would be more appropriate, just because they cannot handle the
additional complexity.

One way to master reactive behavior and its complexity is by modeling, on an
appropriate abstraction level, with a formal foundation to ensure consistency, for
instance by means of model checking. This, however, is not incompatible with
programming, and a model-based approach should not ignore all aspects that
existing SDKs are good at:

– A modeling tool should integrate well with the existing programming tools,
and make use of their support for the creation of graphical layouts or detailed
API coding support with auto-completion, for example.

– Even though behavior is modeled on idealized levels, there must be a well-
defined way how implementations may be derived from it, ideally with re-
finement semantics, to avoid discontinuities. (See, for instance [4].)

– The entire method must be able to handle the fast-paced evolution of plat-
forms. It must be possible to add new functionality without adjusting the
method or tools for each new version of the mobile API.

In this paper, we will describe such an approach and a fully functional model-
based SDK that implements it. The method is a specialization of our general
method for the development of reactive systems, SPACE [5] and its supporting
tool, Arctis [6]. It is based on UML activities which are used as specification
building blocks, encapsulated by external contracts to hide their inner details,
and which can be connected with each other quite flexibly.
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In the following, we will first review existing work in the area of modeling for
mobile applications. In Sect. 3, we present an overview of the Arctis/Android
SDK and the implied workflow. Section 4 introduces our library of building
blocks for Android, and in Sect. 5 we present our case study. Section 6 provides
an evaluation of the approach, and we close with some concluding remarks.

2 Related Approaches and Tools

Andromate [7] is an Eclipse GEF-based modeling tool for an early version of
Android. It offers specific modeling elements such as menu items, layouts and
view elements that can be used to construct applications and generate some
part of the code. To define behavior, some actions and triggers are defined that
can be added to the model. However, these actions often do not express desired
behavior from the view of the problem domain, but the technical details to serve
the framework, as mentioned in the introduction.

App Inventor [8] is a web-based tool offered by Google to produce simple
Android applications. The tool is based on OpenBlocks [9]. Programming state-
ments as well as elements for functions of the phone are represented by graphical
blocks. The resulting diagrams are similar to Nassi-Shneiderman diagrams for
structured programming and on such a detailed level that it is probably more cor-
rect to talk about “visual programming” instead of “modeling.” In consequence,
App Inventor may be suitable to make programming easier especially for begin-
ners, but does not provide any specific support to model concurrent behavior.

Thompson et al. [12] developed SPOML, a language to sketch Android appli-
cations in order to estimate their power-consumption and reason about design
alternatives. This language is, however, neither detailed enough nor intended to
generate complete executable code.

Gheis et al. [13] describe an approach to develop context-aware applications.
While the work addresses mobile platform in general, they used Android as one
specific evaluation platform. Applications are composed of components, from
which some can be selected at run-time, based to the evaluation of a utility
function that tries to optimize overall quality of service properties depending on
the current context. This work is complementary to what we do; we have a focus
on detailed concurrent behavior of components, but no adaptation, while they
focus with their models on the variability aspect but do not address how the
individual components are modeled internally.

Friese and Behrens [10] present a domain specific language (DSL) which is
used to compose applications from data views and cells and which are connected
by navigation. Code generators produce the necessary code for the provision of
content, memory management and navigation for various mobile platforms. In
contrast to our approach, their DSL targets data-centric applications, and does
not express any concurrent behavior. In contrast, an approach by Dunkel and
Bruns [11] uses W3C XForms to describe user interfaces and lets generic clients
interpret these, while server logic provides the necessary data. Again, such an
approach seems to be suitable only for certain types of data-centric applications.
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3 The Arctis/Android SDK

Arctis is integrated with the Eclipse-based Android SDK offered by Google.
Fig. 1 depicts the tool components and the implied workflow to engineer an
Android application using Arctis.

The Arctis Editor: The Arctis Editor is essentially a UML editor for activi-
ties with state machines as their external contracts, so-called external state ma-
chines (ESM, [14]). We refer to a UML activity with an attached ESM as building
block. Their formal semantics is an event-driven variant of token flows, defined
in [15]. For Android, we add a simple UML profile to mark some elements with
stereotypes (shown later). For most applications, a considerable number of build-
ing blocks can be taken from our existing libraries (see Sect. 6.2). These blocks
are combined in the Arctis editor to form more comprehensive blocks that fulfill
certain tasks. For building blocks that represent user interfaces, layout files are
created with the Android SDK and linked to the blocks which encapsulate their
behavior. Diagrams in this paper are vectorized screenshots taken from the editor.

The Arctis Analyzer: Since building blocks are encapsulated by the ESMs,
they can be checked for consistency separately, as further exemplified in Sect. 5.4.
For this, the Arctis Analyzer [16] is used, which explores all possible states and
checks if the external contracts of all building blocks are obeyed by a composi-
tion. In addition, invariants specific for Android are checked, for instance that
applications obey some user interface guidelines, as further detailed in Sect. 5.5.
Analysis results are provided as feedback annotations into the editor, and con-
sistent blocks may be checked into libraries for later reuse, if desired.

The Arctis Compiler: A complete application (i.e., a hierarchy of composed
blocks) can input to the Arctis Compiler which produces all necessary files to
obtain an executable application, which is fed to the Android SDK and compiled
into an application package that can be deployed in the Android market. The
compiler first transforms the UML activities into executable state machines [17],
from which efficient code generation is rather simple. An Android-specific code
generator adds files needed to wrap the state machines into an executable An-
droid application, for instance a special manifest file.



Engineering Android Applications Based on UML Activities 187

package Android

Base

Start Intent for Result

Broadcast Receiver

Activity Life Cycle

Service Life Cycle

User Interface Communication

Miscellaneous

Location

Location Status

Enable Location

Get Location

Track Location

Show Map

Show Radar

Proximity Listener

Geocode

Receive SMS

Incoming Call

Accepted Call

Send SMS

Network Status

Send Email

Preferences UI

Login UI

Contacts UI

Dialog

Progress Dialog

Input Dialog

Notification

Toast Message

Sensors

Light Sensor

Motion Sensor

Listen Speak

Scan BarcodeAudio

Play Audio Record AudioSave Audio ...
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4 Library of Android Building Blocks

Figure 2 shows an extract of our libraries for Android. At the time of writing,
these libraries contain in total 52 blocks (including variants of blocks for different
usage scenarios), and can be accessed via [18]. The base library contains blocks
to encapsulate Android-specific mechanisms, described below. The sensor library
provides blocks for notifications on ambient light changes, for instance. The user
interface library provides dialogs, notifications as well as complete user interfaces
that are useful for various applications, such as preferences or login screens. The
location library provides access to location features, either to simply query the
current location or to periodically receive updates. The communication library
lets applications listen for instance for incoming calls or send SMS messages. A
miscellaneous library contains blocks providing various other features, such as
blocks to easily access the speech recognition API.

4.1 User Interface Blocks for Android Activities

User interface blocks encapsulate an Android activity,1 a full screen view element
that contains other UI elements. The necessary layout files are produced with the
1 To distinguish the activities of Android from UML activities, we refer to the former

always as Android activities.
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Android layout editor. A building block provides the necessary logic to update
UI elements and detect user input. Internally, it uses a block to manage the life
cycle of an Android activity taken from the base library explained below. We
have described a detailed production process of these blocks elsewhere [19]. Since
special rules apply to them (which we verify in Sect. 5.5), we mark such blocks
with stereotype «activity».

4.2 Blocks to Invoke Other Applications via Intents

Android comes with a coupling mechanism so that applications can utilize ca-
pabilities of other applications, like selecting a person from the contact list or
scanning a barcode. This coupling is based on asynchronously processed mes-
sages, called intents [20]. To start an external task, an application can dispatch
an intent that contains either a reference to the receiver that should handle the
task or a characterization of the task that should be used. The result is delivered
back to the application by the system, via a dedicated callback method.

This mechanism, however, disrupts the workflow of the application behavior,
as mentioned in the introduction: The callback returns at another place in the
code. When we read the callback method later, it is not obvious why and in
which state the original intent was started. Second, an intent that yields a result
must be started from within the context of an Android activity. This means that
when we re-design our UI or workflow, we must move the code to start a task
from one Android activity to another.

Instead, our library offers a dedicated, self-contained building block to start
intents and listen to their results, shown in Fig. 3 (a). It is started with the intent
that describes the task to start. This intent is saved, and an Android activity is
started by call operation action startActivity.2 This Android activity provides the
necessary context to start an intent and to listen to a result, but is itself invisible.
Once it is started by the operating system, it observes the event CREATED,
upon which the previously saved intent is dispatched by operation startIntent.
Within the Android activity, we listen for the result, which is either a successful
result (event RESULT ), or a cancellation by the user (event CANCEL).

The block from Fig. 3 (a) can be further encapsulated, for instance by Scan
Barcode (b). It configures an intent to scan barcodes and retrieves the data of the
barcode as a String from the returned result. With this block, we can provide the
functionality to scan a barcode that can be plugged together with other blocks
(Fig. 3 c), without the disruption of workflow, and without needing to reveal the
detailed mechanisms.

Other blocks from the base library listen to other events. Broadcast Receiver
can be configured to continuously listen to specific kinds of intents, so that
applications can, for instance, react on incoming calls or changes to the state of
the wireless network. In [19], we have described a building block to listen to the
life cycle of Android activities, to react on events of the user interfaces.

2 To provide its detailed behavior, the Arctis Editor is integrated with Eclipse’s Java
editor and keeps a link from a UML operation to a Java method with the same name.
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In addition to the Android-specific libraries of Fig. 2, numerous other libraries
for the Java Standard Edition are provided, for instance for the HTTP, XMPP
and RTP protocols, and others [18], which can also be used for Android.

5 Case Study: Engineering an Instant Voice Messenger

The application originates in a collaboration with TelCage, a provider of a system
to monitor and control offshore fish farms. The instant voice messenger enables
robust communication via the wireless network present at the fish farm instal-
lations. Workers should be able to send short, unidirectional voice messages to
each other. In case of connection problems or simultaneous calls, messages should
be recorded for later replay.

5.1 Involved Building Blocks

The model for the messenger consists of 28 building blocks in total, including
blocks nested within other blocks. Among them are the following ones:

– Blocks RTP Send and RTP Receive which encapsulate streaming of audio
data using the Real-time Transmission Protocol (RTP, [21]).

– Blocks AudioRecord and AudioPlay that use Android’s media API to record,
resp. play streaming audio data sent via RTP.

– Block XMPP which encapsulates access to the Extensible Messaging and
Presence Protocol (XMPP, [22]). It enables to update status information,
and send messages that contain the IP address of a user, so that RTP streams
may be opened.3

3 XMPP was initially called Jabber and designed for chat, but it can also transport
application-specific data. For our messenger it means that users can participate using
their existing XMPP account, for example Google Talk.
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– Block Contacts UI which is an Android activity that displays a list of all
XMPP contacts of a user. From this list, contacts may be selected and a
voice message may be sent. Other UI blocks collect credentials to log into
XMPP, display information about an incoming message, or show a control
while outgoing messages are recorded.

5.2 Separation between Application UI and Background Service

On Android, applications are not terminated by the user. Instead, the operat-
ing system decides on its own when application elements are moved into the
background and finally terminated. However, the messenger should of course
constantly listen for incoming messages, even if the user works with other ap-
plications in the foreground. For this reason, we separate its model into two
parts:

– A foreground UI application part, consisting of all functions closely connected
to user interactions and related tasks, such as displaying the contacts list,
recording a message or adjusting preferences. The foreground part for the
messenger is shown in Fig. 4, we will explain it in detail below.

– A background service part, hosting all functions not to be interrupted. For
the messenger this is the XMPP block, the block to listen for incoming RTP
streams, as well as the block to play and save messages, since this could
happen while other applications are active.

The two parts are modeled by separate UML activity partitions, to which we
apply the stereotypes «foreground» and «background», respectively. Our code
generator deploys «background» partitions as Android services [20]. The oper-
ating system prioritizes such services over inactive foreground activities when
resources get sparse, so that they are usually not terminated.

To communicate between foreground and background part, we use dedicated
building blocks, Bridge To Service in the «foreground» partition in Fig. 4, and
BridgeToUI in the «background» partition (not shown). Since background ser-
vices may be executed as separate processes in separate virtual machines (and
hence memory spaces) communication between services involves serialization.
This can either be done using a remote procedure call (RPC) mechanism of-
fered by Android, or by a manual serialization of objects into bundles of strings,
which are sent via Android intents. In both cases, the encapsulation into UML
building blocks gives the possibility to describe also the interface behavior of the
communication by means of ESMs as contracts, not just their names, types and
signatures.

5.3 Foreground Application UI for the Instant Voice Messenger

When the main application starts (via the initial nodes), it activates ContactsUI,
which shows the initially empty list of contacts. It also activates the background
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Fig. 4. Foreground application UI part of the voice messenger, with some screenshots

service part, using the bridge block. In case the service needs user credentials
to log into XMPP, it requests these credentials via the bridge, which triggers
LoginUI, which is displayed as a dialog over the contact list. Once logged in, the
dialog disappears and the contacts list is updated from now on with all contacts
and their status. To send an audio message, the user taps one of the contacts.
This starts a request to the service, which ensures that no other message is
currently received. If the recording is granted, the recording UI is started. A
similar workflow handles replay of messages that were previously saved.

The background service (not shown due to space constraints) takes care of
the XMPP connection, receiving RTP streams, as well as coordinating all audio
functions. It contains the block Bridge To UI, which communicates with the
foreground UI parts as explained above.

5.4 Formal Analysis of a Building Block

One critical part of the messenger is its ability to coordinate simultaneously
incoming audio messages as well as the recording of outbound messages. Obvi-
ously, only one message should be played or recorded at a time. This is handled
by block MessageAudio, shown in Fig. 5. Since it needs to be active at all times
(playing and storing of messages should not be interrupted), it is hosted in the
background service part of the application. It contains block PlayAudio that can
play incoming or previously stored messages. Block Save Audio stores incoming
messages. Since the messenger should accept several simultaneously incoming
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messages at a time, SaveAudio can be executed with several execution instances
at the same time, emphasized by [0..∗].4

Block One3 is responsible for the mutual exclusion. It is completely described
by the ESM to the right. In state open, any of the incoming flows may pass (for
instance from i1 to out1, whereupon the block switches into state closed, which
ignores further flows until reset is invoked. This coordinates the behavior of
the message audio block: Incoming voice messages via in are stored in any case
by forking them towards Save Audio, but only played if no other audio task is
performed, i.e., One3 is in state open and i1 passes to out1. The same holds for
replay commands, which are simply ignored in case of conflicts. Parameter node
recReq is used to reserve audio functionality to record a new message, which is
allowed to the user interface via parameter node recGrant.

Since the MessageAudio block is encapsulated by an ESM as well (not shown
here), it is self-contained and it can be checked for consistency using the Arctis
Analyzer via model checking. The analyzer first constructs the state state space
of the application based on the formal semantics described in [15]. The state
space is then searched for violations of the ESMs. In the example of Fig. 5,
the state space has only 7 states. Since no violations are reported, we can be
sure that only one message is played or recorded at a time, even though several
incoming messages can be accepted at any time.

5.5 Verification of Android-Specific Rules

The building blocks of the base library in Fig. 2 ensure some Android-specific
properties, for example by keeping track of the life cycle of Android activities
and services. Further, applications as a whole have to adhere to additional rules:

i1 A «foreground» partition must in its initial step start exactly one «activity»
building block. This is the first screen the user will see for this application.

4 UML marks activities that can be executed in several instances with «singleExecu-
tion» [23, Sect. 12.3.4]. We observe, however, that the same activity may be used
with different execution multiplicities, and that this should therefore rather be a
property of the invoking call behavior action, which we annotate here instead.
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If several were started, it would be subject to a non-deterministic race which
one is shown on top.

i2 Whenever a «foreground» partition is active, at least one «activity» building
block is active. This prevents a foreground application from disappearing
visually for the user without terminating correctly.

i3 A «background» partition is only allowed to start an «activity» building
block after the user has been notified in the status bar and tapped on the
notification. This rule originates in the guidelines for services [20], which
should not interrupt the user’s other activities.

These rules are again verified by the Arctis Analyzer. To verify invariant i3,
for instance, all activity steps that start an «activity» building block must be
triggered by a parameter pressed of the dedicated building block Notification,
which is part of the user interface library in Fig. 2.

6 Evaluation and Discussion

In this paper, we are interested in how to model Android-specific features ap-
propriately, but do not elaborate on issues of platform-independence.

Concerning the generated code, we have decided to use only the official APIs
offered by Android and fit into the Android application framework, in order to
stay compatible with future updates. This requires in some cases workarounds in
order to obtain the necessary contexts objects, such as for example the creation
of the invisible Android activity in Sect. 4.2.

The code generated for the applications makes use of a runtime support system
that includes an event-dispatcher, which introduces a slight overhead. However,
we have seen that as soon as concurrent problems need to be addressed, proper
solutions would introduce similar programming constructs for synchronization
anyhow. Using such a runtime support system and generating the necessary syn-
chronization statements automatically relieves the programmer of a complicated
and error prone task, so that concurrency problems can be solved appropriately,
which by far compensates for the overhead. The introduction of the run-time
support system has another benefit: Since all behavior is formulated as event-
driven transitions, one can easily monitor the execution time for each transition
during debugging. Once the execution duration of a transition takes longer than
100 ms, one may reconsider the design, since a longer reaction may be perceived
by the user as a “lack of snappiness” [20].

6.1 Evaluation 1: The Instant Voice Messenger Case Study

The Instant Voice Messenger has been developed within the limited time frame
of a student thesis [26], resulting in an application that could be deployed to the
Android Market (under the name “NTNU Instant Voice Messenger”), proving
the effectiveness of the proposed Arctis/Android SDK.

The separation of the application into foreground UI and background service
is necessary due to the way the Android OS automates life cycle management
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Category r1: Existing blocks taken from library

Category r2: New blocks, but added to library

Category r3: Existing blocks duplicated and adapted

Category r4: New and application-specific blocks

n =  264

n =  377

n =  166

n =  208

more reuse

more specific

26 %

37 %
16 %

21 %

∑ = 1015

Fig. 6. Reuse profile for the Voice Messenger

of applications. One may argue that the separation leads to a disruption of
workflows since communication has to go through the bridge building blocks.
For that reason, we are studying how to model this separation by two activity
partitions, integrated in the same UML activity, and how to use flows that cross
partition borders to model communication between foreground and background.

6.2 Evaluation 2: Reuse Profile of the Instant Voice Messenger

As a metric for how much effort may be saved by reusing building blocks, we
assign to the UML activity of a block i the number ni = vi + ei, where vi is
the number of activity nodes and ei the number of edges, to estimate the effort
spent for its construction. Block Message Audio in Fig. 5, for instance, has an
estimated effort of nmessage audio = 40. The complete model has an estimated
effort of ntotal = 1015. To characterize models with a reuse profile, we assign
each block to one of the following categories:

r1 blocks originating from existing libraries, such as Fig. 2
r2 blocks created for the application but added to libraries for later reuse
r3 blocks that are duplicated and adapted versions of existing ones
r4 blocks that are entirely specific for the application

We summarize the numbers ni of the blocks within the categories and obtain the
reuse profile shown in Fig. 6. The graph shows that in total 26+37 = 63% of the
modeling effort are reusable, either because blocks already existed or are very
likely to be useful in the future. This is consistent with previously reported reuse
proportions on smaller, more academic examples from other domains, presented
in [14]. We expect that the more blocks we collect over time, the more weight
will move from category r2 to r1 (since more blocks are initially available for
reuse), and we hope to further move weight from category r3 to r1 with more
advanced parameterization and adaptation techniques.

6.3 Evaluation 3: Rapid Prototyping Experiment

To estimate, how much our approach can accelerate the development of initial
prototypes, we created a simple application by two separate developer groups in
an experiment [27]. The application should query the user for a target location,
verify the address of the location and get its coordinates, and then offer to either
navigate to the target via map or a radar-like interface.
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– Group A developed the application using the Android SDK by means of
traditional programming. The students knew about the main concepts of
Android, but had not yet experience with the specific interfaces and Android
capabilities and intents that were needed for the application.

– Group B used the Arctis/Android SDK that contained building blocks that
encapsulated the needed functionality. The students received introductory
training on Arctis, and had similar knowledge about Android as group A.

To complete a running application, group A needed 192 minutes using the tra-
ditional SDK with pure programming, while group B only needed 42 minutes
using the Arctis SDK. This means the use of Arctis accelerated the development
in this case with around a factor of four.

6.4 Evaluation 4: Industrial Case Study with Hrafn

Within an industrial verification project [25], we evaluate the Arctis/Android
SDK together with Hrafn AS, a company for tracking and RFID solutions. We
currently build an Android application to simplify repair orders in bicycle shops.
The phones serve as terminals to capture order data and scan tags using the
phone’s camera, and interact with a central database to post orders. At the
initial meeting, Hrafn represented the domain knowledge of customers, and an
expert for user interfaces and a security expert participated as well. Interestingly,
we found that all participants their despite different expertise could understand
the UML activity diagram capturing the overall workflow quite well:

– The domain experts from Hrafn could see from the UML activity that the
business workflow worked as intended, or corrected it where necessary.

– The UI expert could optimize the application workflow so that information
is collected from the end-user in a sequence that is intuitive.

– The security expert could recommend necessary authentication and autho-
rization patterns, and adjusted the workflow where necessary.

The result was a model similar to Fig. 4. Each step of the order registration
could be modeled by a separate building block, intercepted by blocks to acquire
data from various sources. During the discussion, the workflow could be changed
simply by re-arranging the blocks. The resulting blocks could be distributed
among the developers for further implementation, which is currently ongoing.

7 Concluding Remarks

Our aim was to describe and support a well-balanced method to engineer An-
droid applications. We have covered the design, the analysis and briefly outlined
the automated implementation. Several evaluations to cover different aspects of
an engineering method have been presented. So let’s close with some highlights:

– In addition to general properties for well-formed applications, we can for-
mally analyze Android-specific guidelines, such as the invocation of user
interfaces from background tasks.
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– Android-specific functions are not built into the language, but encapsulated
in model libraries, which can evolve together with the frequent updates of
the Android platform. So far, updates of Android could always be taken into
account by updating the library.

– The models support the reactive nature of mobile applications, and enable
to model and analyze concurrent behavior in detail.

– The method scales well with the complexity of applications. As shown in
Sect. 6.3, it is possible to rapidly develop simple applications, but also more
complex ones, such as the instant voice messenger.

– The models have compositional semantics [5]. Once engineers have agreed
on a set of building blocks, they can be designed and analyzed separately,
and the end result will work as intended. Design discontinuities mentioned
in the introduction are avoided. The sketch from the development session
described in Sect. 6.4, for instance, was taken as a starting point for an
initial executable application that was further refined.

– We observed in industrial case studies that the notation based on UML ac-
tivities not only serves as solid communication medium for engineers, but can
also be used to explain solutions to people with a non-technical background.

The theoretical background of the method was treated elsewhere [5,14,15] and
we focussed in this paper on more practical issues that need to be taken into
consideration in order to improve the development of mobile applications.
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Abstract. The two core concepts of model-driven engineering are mod-
els and model transformations. Domain-Specific Modelling has become
accepted as a powerful means of providing domain experts and end users
with the ability to create and manipulate models within the systems that
they use. In this paper we argue that there are domains for which it is
appropriate to also provide domain experts with the ability to modify
and develop model transformations. One such domain is that of quantity
surveying, and specifically the taking-off of quantities from a building
design. We describe a language for expressing transformations between
building models and bills of quantities, and its implementation within
an automated quantity take-off tool, reflecting on the commonalities and
differences between this language and a general-purpose model transfor-
mation language/tool.

1 Introduction

The core components of model-driven engineering are models and model trans-
formations. Models provide a means for a formal expression of the concepts and
structures that are used in the description of some system, and model transfor-
mations allow for a formal description of the way in which the different models
of the system are interrelated.

A complementary area of research to model-driven engineering is that of
domain-specific modelling. In domain-specific modelling, the language or sys-
tem designer is encouraged to provide the end-user, or domain expert, with a
modelling language that reflects the vocabulary of concepts that they use in
describing their domain. This allows them a stronger sense of ownership of the
system, in that they can manipulate these models to reflect their understanding
of the system.

Domain-specific modelling encourages system designers to provide modelling
languages that are usable by domain experts, but this is less common for model
transformations. There is a wide variety of model transformation languages and
tools currently available or under development, and these differ quite dramati-
cally in the way that they allow designers to express their transformations. How-
ever, these tend to be general purpose solutions, that can be used for any and all
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domains. This generality can have the effect of making them less approachable,
and their learning curve steeper, for non-expert users, as is often the case for
the domain experts targeted by domain-specific modelling techniques.

In this paper we present the example of a model-driven system in the quan-
tity surveying discipline of the building design space. The quantity surveyor is
responsible for the estimation of the cost of a building design, based on the quan-
tities of different materials or tasks required for the building’s construction. The
first phase of this calculation is the extraction, or take-off, of these quantities,
which might include the surface area of walls to be painted, the tonnage of steel
beams of different lengths and profiles, the cubic metres of concrete required
either for ground slabs or suspended slabs, or the different surfaces of suspended
slabs that need to be smoothed.

The rules for describing the mapping between building elements in a design
and their representation in the bill of quantities vary from country to country,
from company to company, and from project to project. Because of this, it is
important that a user of the quantity take-off system be able to modify the
rules, or create new ones, to capture these specific requirements. In order to
do this, we have developed a transformation language and tool specific to this
transformation task.

Being a transformation language, there are many design elements in common
with general-purpose transformation languages. For example, the use of trace-
ability models is similar to what one might expect in a general purpose tool.
However, because the language is restricted to specific metamodels, it has been
simplified and customised to them, which makes for a language in which the
rules are simpler, and that is more approachable for quantity surveyors to whom
a general-purpose solution might be intimidating.

The rest of the paper is structured as follows. The next section describes the
role of the quantity surveyor, the bill of quantities and the quantity take-off
process in the digital building design process. Section 3 presents the Automated
Estimator system, and the Intelligent Building Model and Bill of Quantities
metamodels, between which the domain-specific transformations are defined.
Section 4 presents the domain-specific transformation language and its imple-
mentation. Section 5 reflects on the differences and commonalities between this
language and general-purpose languages, and what lessons can be learnt for the
definition of domain-specific transformation languages.

2 Building Information Models and the Quantity
Take-Off Process

Designing and constructing buildings shows many similarities to software devel-
opment. Both can be considered as “wicked” problems [8] where a part of the
process is in defining the scope and requirements of the project. Since both build-
ing and software projects can consume large amounts of resources and take long
periods to complete, controlling the costs of the project is important. Two roles
have emerged within the building industry to assist in controlling project costs.
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The quantity surveyor (in UK/Australian practice) works for the project client
and provides advice to the building design team on the expected cost to com-
plete the project as the building is being designed. This is an iterative process
where cost plans (predictions) are developed several times through the design/-
documentation process to minimise the risk of cost overruns. On completion of
the design, the contract documents will be handed over to an estimator within a
building contracting company. The estimator needs to prepare an accurate esti-
mate of the cost of the building within a short period (normally 4–6 weeks).

The fundamental operation underlying cost planning and estimation is the
preparation of a Bill of Quantities (BoQ). This consists of an itemised list of the
components required to construct a building, prepared at a level of detail enabled
by the state of project documentation at the time the BoQ is prepared (top right
panel in Figure 1). Once the BoQ is prepared the quantity surveyor/estimator
will examine the building components referenced by each item in the BoQ and
will apply a “unit rate” from the company or personal database to calculate
the estimated cost of the item. A weighting factor may be applied if there are
unusual circumstances regarding the buildings element(s). The unit rates are
built up statistically over a long period of time and are the major intellectual
property of the quantity surveyor/estimator.

Traditionally, the quantity surveyor/estimator reads the plans, sections, ele-
vations, details and specifications of the building project to identify all of the
building elements, infer information that was not explicit and then select the
items needed for the project from a standard BoQ. The type, structure and units
of measurement used are defined in industry standards (i.e. [1]) or in company
standards. One organisation does not always use the same measurement rules.

Measurement against the unit rates is not trivial. For some trades, such as
masonry wall construction, openings in walls less than 1m2 are ignored since the
extra work of forming the opening makes up for the reduction in wall material.
Other items, such as areas of formwork underneath or around concrete need to be
inferred as these are not explicitly represented. Of the two distinct stages within
the quantity surveyors/estimators work processes, the extraction of building ele-
ments does not require significant levels of intelligence if the source information
contains appropriate semantic content. This is also the most time consuming
stage, requiring several man-months for a complex building. The addition and
modification of unit rates does require a considerable amount of background
knowledge and intelligence. Consequently, the extraction stage was identified as
the most promising for automation.

The semantic content referred to above is provided by using BIM (Building In-
formation Modelling), which can be considered as second-generation technology
in the storage of building information in computer systems. The first generation
transferred the traditional geometric primitives (lines, arcs, cubes, spheres, etc)
from paper-based hand-drawing methods to virtual paper within CAD (com-
puter aided drafting) systems. This provided only very low levels of semantics.
For example, did two parallel lines represent a wall or furniture? A BIM file
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or database stores objects that describe both the geometric and non-geometric
information about a building element. A wall and a piece of furniture have
distinguishing labels.

The Industry Foundation Classes (IFC)[2] is an open BIM format that sup-
ports semantic content as required above. This was selected as the standard
input format for Automated Estimator when development started in 2001.

3 Automated Estimator: Buildings and Bills

The Automated Estimator (Estimator) is a program developed by the Coopera-
tive Research Centre (CRC) for Construction Innovation which aims to automate
much of the quantity take-off process by:

1. Reading an IFC file;
2. Identifying the building elements in the model against a predefined method

of measurement;
3. Matching the elements against item descriptions in the generic BoQ;
4. Adding information that can be inferred from the model (e.g. areas of form-

work);
5. Extracting the relevant quantities and adding them to the BoQ items; and
6. Presenting the BoQ and model information in a variety of views that support

the estimating process (Figure 1).

Fig. 1. The Bill of Quantities Editor

Estimator is built on a generalised framework for BIM-based analysis of design
models called DesignView. DesignView provides features for the import of IFC
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files, as well as for the querying, inspecting and visualising the imported models
in hierarchical and 3-dimensional views (these views are described in more detail
in Section 3.1).

Estimator is able to handle most quantity take-off tasks. A range of take-off
rules can be used depending on need and level of detail of information in the
BIM. Implicit information, such as formwork and surface finishes can be au-
tomated through defining rules that add such items to the BoQ together with
the geometric queries necessary to calculate the results. Errors in the original
BIM can be identified through built in queries that select all objects measured
within a trade package and also all items not measured. Building designers will
always come up with new building components that do not fit established types.
Additional rules can be added to Estimator to support the gradual evolution
of the standard item set. Since BoQs are often prepared by a team, additional
rules should be added by a single expert so that the implications can be sup-
ported across all trade packages within the project. The major constraint on
improved functionality and performance of Estimator is the level of detail and
consistency of models currently provided by BIM generating software. These are
being addressed both through research projects (by the authors and others) and
also developments by the commercial software vendors.

One important aspect of traditional practice that is perhaps threatened by
automating quantity take-off in Estimator and similar software is the identifi-
cation of errors by the quantity surveyor/estimator. The ability to browse the
model through the geometric and textual panels provides an alternative method
for identifying errors. Additionally, this supports filtering of outputs by element,
by material, by type and by storey.

3.1 The Intelligent Building Model Language

Because of the imposing size of the IFC language, the DesignView platform (and,
by implication, Automated Estimator) uses a simplified language for representing
design models, called the Intelligent Building Model (IntBM). IFC models are
converted into the IntBM language through an import wizard. An extract of the
IntBM metamodel is shown in Figure 2. As can be seen, this language includes
only about 30 classes, as opposed to more than 600 in IFC – a reduction aimed
at simplifying the development of design analysis tools, and achieved through a
few significant language design decisions.

The first economy is that a lot of elements are not considered during import.
Discipline-specific information such as structural moment models, property sets
containing metadata for lifecycle or performance data, or information about
organisational responsibility for building elements, are not interesting for many
design analyses, so these are stripped out during import.

Rather than including classes for all the possible building element types, the
IntBM language uses a flattened type hierarchy in which elements and element
types are included within the same model. This is facilitated by a standard
library of common building element types which are populated during import,
and a standardised mapping for IFC building element types outside this set.
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Fig. 2. The intelligent building model metamodel



204 J. Steel and R. Drogemuller

Because the focus of DesignView is on analysis and visualisation of models
rather than creation or modification, it uses triangles for the surface geometry
rather than IFC’s wide variety of 3D geometry modelling constructs. Conversion
from the richer IFC geometry constructs to triangles is done during import.
Triangularisation can lead to variation in calculation of geometrical properties,
particularly volumes, so some of this calculation is also performed during import
and stored in the model.

The IntBM language also includes a facility for extension of model elements
with extra information. This is used for two purposes within Automated Estima-
tor. Quantity take-off sometimes requires elements to be classified at a finer grain
than normal. For example, most building models will use the Slab element type,
but for quantity take-off it is important to distinguish between ground slabs, sus-
pended slabs, or thickening slabs. These extra classifications are included as tags
through the ElementExtension mechanism. The other use of extensions is for
the area-height information for suspended slabs, which are taken off differently
based on their height above the slab immediately below them. For this purpose,
each suspended slab is annotated with a set of values to show what proportions
of its under-surface areas are at what heights. These Estimator-specific exten-
sions are populated using registered processes that run at the end of IFC model
import.

Within the DesignView platform, the user can inspect the model using a
number of different views. The model browser provides a tree-view of the model
elements in the style common to the EMF framework, with separate tabs to see
elements arranged according to the physical object hierarchy (element within
space within story within building within site), by material, or by element type.
The 3D view uses the triangle representations of the building elements to present
a graphical presentation of the design. Since the chief purpose is typically per-
element analysis of the model, colouring of the 3D model is typically done by
element-type in order to distinguish, e.g. walls from beams from columns from
slabs, etc. The hierarchy and 3D viewers use two levels of selection sharing in
order to facilitate inspection of the models. Clicking on an element or a set of
elements in either view will highlight these elements in the other view. Dragging
a container element or a set of elements from the hierarchy view to the 3D view
will restrict the 3D visualisation to just those elements that are dragged. This
is particularly useful for inspecting a single floor.

3.2 The Bill of Quantities Language

The language used for describing bills of quantities is based on an analysis of
the existing documents used by quantity surveyors. The result is the metamodel
shown in Figure 3.

The BoQ is broken down into a series of trade sections, each of which can
in turn have hierarchical structure within them. At the bottom of these hier-
archies are TradeItems, each of which has a description, a quantity, a unit of
measurement for the quantity, and a cost per unit. These trade sections and the
trade items within them are not hard-coded in the metamodel; they are created
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Fig. 3. The Bill of Quantities metamodel

by the take-off rules that populate the model, in order to provide flexibility in
the structure of the bills being generated. The default rules shipped with Auto-
mated Estimator correspond to the trade sections and items from the Australian
Standard Method of Measurement [1].

In some cases, elements are considered as aggregated units called Trade
Products. For example, in-situ (as opposed to precast) concrete elements such
as slabs with attached thickenings or support beams, are constructed in a single
pour, and calculations for their surface areas or volumes must be done as an
aggregate, not separately for each element. Within the quantities model defined
in Automated Estimator, we further allow TradeItems to be broken down into
Components, to show the contribution made to the item’s quantity by each
building element or trade product. In addition to being defined within a cer-
tain TradeItem, Components can also be tagged, for example by storey, which
allows for breakdowns of the BoQ by other characteristics than the dominant
hierarchy of TradeSections.

BoQ models are accessed using the table-based Bill of Quantities Editor,
shown in Figure 1. This editor supports selection sharing in a similar way to
that used between DesignView’s 3D and Hierarchy views. Selecting building
elements in the 3D or Hierarchy views will highlight the BoQ items that are
contributed to by the selected elements. Similarly, selecting a TradeSection,
Subsection or Item in the Bill of Quantities Editor will highlight the building
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elements that contribute to the selection. Furthermore, if the user drags a selec-
tion of elements into the 3D view, the BoQ will be narrowed to show only the
totals for the selected elements.

4 The Take-Off Rules Language and Tool Support

The rules that govern the generation of a bill of quantities from an IntBM model
are expressed using the Take-off Rules language. The design of this domain-
specific transformation language and its implementation in the take-off rules
engine were based on consultation with quantity surveyors and cost engineers,
in an effort to ensure that the resultant language would be usable by its target
users. These users are already familiar with the idea of using rules in order to
populate a bill of quantities, and the take-off rules language within Automated
Estimator has been designed to reflect this and provide a familiar formalism.

The next sections describe the Take-off Rules language and the implementa-
tion of its engine within Automated Estimator. We also discuss the mechanism
for storing the trace information between the building model and the generated
BoQ, and the facilities for inspecting/debugging the generated bill.

4.1 Take-Off Rules

Figure 4 shows the metamodel of the rule-based Take-off Rules language
used within Automated Estimator. There are two parts to this language –
the structural part and the expression part. The high-level structures in the
Take-off language are based on those from the Bill of Quantities metamodel.
The RuleModule, Subsection and TakeoffRule concepts correspond to, and
result in the instantiation/population of, the TradeSection, Subsection and
TradeItem/Component concepts, respectively, from the Bill of Quantities meta-
model. Unlike bills of quantity, however, Take-off Rule modules are stored with
one RuleModule per file – the collection of rule modules is not modelled.

The expression language used in the Take-off Rules language is a simpli-
fied variant of the expression language from the Tefkat model transformation
language[7]. It includes negation, conjunction, and disjunction, literals for strings
and numbers, and binary relation operators for value comparison (=, <, >, etc).
There are also unary operators for checking a building element’s type or clas-
sification – these include IFC-style element types such as wall, beam or col-
umn, as well as Estimator-specific classifications, as outlined in Section 3.1, such
as plinth, pile cap or upstand beam. Lastly, the expression language also in-
cludes PropertyExpressions, which allow the retrieval of 16 different string-,
number- or boolean-valued properties of elements – either simple properties such
as length, height, or material, or take-off-specific “view” properties such as
height from floor or isCambered.

The description for each RuleModule, Subsection and TakeoffRule ele-
ment in the hierarchical structure of a Take-off Rules model is expressed us-
ing a StringExpression. In the majority of cases this is a StringLiteral, but
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Fig. 4. The Take-off Rules metamodel

some rules include variable elements, which result in the generation of multiple
TradeItems for a single TakeoffRule, each with a different description. One
of the motivating cases for this was structural steel members, which must be
grouped based on their lengths. The structural elements also include a match
expression – a boolean-valued expression which determines whether the section
or rule matches in the context of a given element or, if specified in the rule, a
certain TradeProduct grouping. For RuleModules and Subsections, this nar-
rows the range of objects that can be matched by the contained TakeoffRules.
For example, the concrete RuleModule might have a match expression such
as material = ”concrete”, which ensures that all the TakeoffRules in that
RuleModule will only match concrete elements.

Most of the work in the take-off process is, unsurprisingly, involved in the eval-
uation of TakeoffRule objects. When the rules engine finds a BuildingElement
which satisfies the rule’s matchExpr, it will create a TradeItem (if it doesn’t
already exist), then populate (if it already exists) it with a Component, as the el-
ement’s contribution to the quantity. The main link between the a TakeoffRule
and the TradeItem that is either created or modified is the description, which
uniquely identifies the trade item within its TradeSection. The rule also contains
information for the population of a TradeItem, including a reference number,
default rate, and elemental classification, and these are copied across into the
new or modified TradeItem. It also includes the dimension to be taken off, a
string value taken from a list of 12 dimensions understood by the engine: No
(a count of matching elements), Item (for bill items that appear only once,
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regardless of how many elements they match, such as requirement for a crane),
volume, height, tonnes (for structural steel elements), and various area measures
for total, top, bottom, side or specific face areas. These dictate how the engine
calculates a quantify from the BuildingElement for inclusion in the TradeItem.

4.2 Tool Support for Quantity Take-Off

Take-off Rules models are created and modified in a tabular editor, shown in
Figure 5. This shows the structure of the rules (corresponding to the structure
of the bill to be generated) in the left-most column, with further columns for the
reference number of the target TradeItem, the rate, the dimension, elemental
classification, the TradeProduct grouping, and the match expression. Of these,
only the first and last columns are required.

Both the description of the TradeItem, and the match expression, in the
left-most and right-most columns respectively, are handled using an expression
parser implemented using the Emfatic[5] framework. Using a tabular view em-
phasises the relationship between the structure of the take-off rules and the bills
that they will generate. Mixing tabular and textual representations is also done
to seek a tradeoff between the accessibility of tabular presentation and the ex-
pressive power of a textual syntax. The example match expression in Figure 5,
: slab and isCambered, will match elements classified as slab and which satisfy
the isCambered test (defined as a boolean-valued PropertyExpression).

Fig. 5. The Take-off Rules editor

The take-off process is initiated using a contextual command on a building
model, which prompts the user to nominate a target bill of quantities, and in-
vokes the engine. The engine then evaluates a registered set of take-off rule
modules, managed by the user in a preferences dialog, and populates the new bill.
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The matching phase of the engine is largely based on the EMF Query1 frame-
work, and the target model population is done in Java/EMF.

4.3 Traceability and Debugging

The issue of traceability is very important within Automated Estimator. Much
of the time spent by a quantity surveyor within the tool will be spent inspecting
an automatically generated bill to check whether the correct quantities have
been taken off the building model. Of course, this does not negate the benefit
of automating the bill’s generation, reproducing several man-weeks of manual
effort in less than an hour – much repetitive work is alleviated, and over time,
a user will gain a deeper understanding of how a rule works, and gain more
confidence in its operation. There are a number of typical questions that the QS
will ask:

– What building elements have contributed to this cost item?
– To which cost items have this/these element/s contributed?
– Are there building elements that are not represented in this bill, or within

this part of a bill?

The first two questions are primarily answered using the selection sharing
mechanism between the bill of quantities editor, and the 3D and Hierarchy views
on the building model. Selecting a cost item (including sections or subsections)
will highlight all building elements that contribute to it, i.e. that are referenced
by a Component object within the bill. Similarly, selecting a building element
or set of building elements will highlight the cost items to which the elemen-
t/s contribute, i.e. those TradeItems containing a Component which refers to
one of the selected elements, or to a TradeProduct that contains them. These
Component objects effectively function as in-situ traceability relations within
the bill of quantities model.

To address the third question, the Bill of Quantities Editor provides a com-
mand for detecting unmatched elements, which can be run either relative to the
whole bill, or to some subsection of the bill. This command will highlight any
elements in the currently visible selection that are not matched by the bill or
part-of-bill. Once again, this is done by consulting the Component objects within
TradeItems.

The currently-visible selection is an important factor in the task of inspect-
ing and debugging a bill generated from a building model. The building model
will frequently be very large, containing many thousands of building elements.
Particularly using a 3D view, it is frequently the case that highlighted building
elements will be partially or totally hidden from view behind other elements.
This is partly addressed using transparency, but a more powerful technique is
by reducing the set of objects shown in the view. A popular use observed has
been to inspect the bill storey-by-storey, which allows for a “roof-off” view of a

1 http://www.eclipse.org/modeling/emf/?project=query

http://www.eclipse.org/modeling/emf/?project=query
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more manageable subset of the building, and a more manageable size of bill. An-
other approach is to inspect one trade at a time, e.g. considering only concrete
or only structural steelwork.

At present, the selection-sharing approach to debugging the quantity take-
off process has not been extended to take-off rules. That is, it is not currently
possible to select a take-off rule and show the building elements and cost items
that the rule has matched and generated, respectively. Doing so would not be
complicated, but at this point it is felt that because there is such a strong
correlation between the rules and the bills that they generate, it is not necessary
to provide selection sharing for rules, since selecting the cost item that the rule
generates has a similar result.

5 Reflection on Building a Domain-Specific
Transformation Language

Analysis of the domain indicated that a transformation language was necessary
in order to allow quantity surveyors to modify take-off rules or to define their
own. This was particularly appropriate as the target users were comfortable with
the paradigm of starting with a model and evaluating rules against it in order
to produce another document.

However, it was felt that a general-purpose transformation language would
not be appropriate for the situation, since the users do not have the program-
ming or software modelling background of the typical user of a general-purpose
model transformation language. The expectation was that a domain-specific ap-
proach would yield better results in terms of usability and adoption. We do not
suggest that domain-specific transformation languages are universally, or even
widely, appropriate. The relative comfort with a transformation-based approach
amongst the target users was both a motivation for pursuing the approach, and
a strong input to the design of the language itself.

In designing a domain-specific transformation language, it is important to
first consider the manner in which the targeted domain users are used to think-
ing about transformations. It is also important to consider the specifics of the
source and target languages, and how these influence the way that one writes
transformations between them. Keeping these considerations in mind, one can
then evaluate the alternatives available when building a transformation language
and/or tool. An excellent discussion of these alternatives is presented by Czar-
necki and Helsen in [4]. The feature model presented in that paper could be
used, in combination with the domain-specific considerations, to aid in deciding
upon an approach to design and build the language.

One of the distinctive characteristics of the Take-off Rules transformation
language is the structural similarity between it and the target language. In [6],
the authors identify three styles of model transformation – source-driven, target-
driven and aspect-driven – distinguished by whether the transformation rules
are structured according to the source or target models, or based on aspects
of the transformation that potentially cover multiple source and target model
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elements. In a general transformation language, it is important to support all of
these styles, which tends to lead to an aspect-driven style of language design.
However, in the case of quantity take-off, it was found that the dominant method
of working is by iterating through the trade sections and items, then finding the
building elements which match. This is strongly target-driven, which has a strong
influence on the design of the Take-off Rules language. Specifically, the high-level
structure of a Take-off Rules model corresponds closely to that of the BoQ to
be generated, and this structure is then used to generate the corresponding
structure in the BoQ.

Another advantage of taking a domain-specific approach to the language is
that it allows for presentation of a number of problem-specific elements as first-
class syntactic elements. In the Take-off Rules language, the different element
types and classifications, property expressions and dimensions are encoded as
first-class concepts. In a general-purpose transformation language these would
have had to be included as “standard library” elements.

One alternative that was considered for the implementation of the language
was to define a mapping between the domain-specific transformation language
and a general-purpose language. This would allow the definition of a custom
syntax in the style of the present implementation, but for the evaluation of
the rules by an exiting rules engine. It was decided not to pursue this ap-
proach, on the basis that the semantics of the language were simple enough to be
quickly implemented using traditional programming techniques, and that hav-
ing a custom-built engine would simplify the deployed product. For a language
with a more complex semantics, mapping to a general-purpose transformation
language might be a more viable option.

The Take-off Rules language was designed keeping in mind the prevailing
method by which domain experts think about the quantity take-off process, in
the hope that this would lead to a less steep learning curve. At this point, the
limited deployment of the tool has made it difficult to assess this claim. The tool
has been used by selected users within a large cost engineering firm, and there
has been positive feedback on the general approach of automatically generating
bills of quantity, but to date there has been little formal evaluation of the take-off
rules editing feature and its use.

6 Conclusion

We feel that for some domains there is a case for domain-specific model trans-
formation languages, as illustrated by this example from the field of cost es-
timation/quantity surveying. Providing domain experts with a transformation
language in addition to their domain-specific modelling languages can poten-
tially increase their ability to control and manipulate the way that their models
behave, and for a high degree of control and customisation regarding the pre-
sentation of the language to users.

Some aspects of the transformation language we have developed, notably
traceability, are very similar to the sorts of traceability capabilities from general-
purpose transformation languages. Others, such as the close structural similarity
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between the transformation language and target language, and customised pre-
sentation of the transformations in a specific editor, are less typical of general
approaches.

By considering the specific requirements of the source and target languages,
the users, the nature of the transformations to be expressed, and the points of
variability available across transformation languages, a domain-specific trans-
formation language and toolset can be customised to the task. If this practice
became more commonplace, it would be interesting to investigate the formalisa-
tion of these considerations using a product-family style approach, in order to
streamline the development of transformation editors and/or engines. One can
envisage using an approach such as that of RubyTL [3] which allows the creation
of tool support for variant transformation languages based on feature selection.
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Abstract. In recent years, numerical simulation has attracted increas-
ing interest within industry and among academics. Paradoxically, the
development and maintenance of high performance scientific computing
software has become more complex due to the diversification of hardware
architectures and their related programming languages and libraries.

In this paper, we share our experience in using model-driven develop-
ment for numerical simulation software. Our approach called MDE4HPC
proposes to tackle development complexity by using a domain specific
modeling language to describe abstract views of the software. We present
and analyse the results obtained with its implementation when deriving
this abstract model to target Arcane, a development framework for 2D
and 3D numerical simulation software.

1 Introduction

Thirty-five years ago, Gordon Moore, in one of the most visionary computer-
related predictions [1], said that computer performance would increase by 40%
per year. That prediction still stands. While for about 30 years that increase
in performance was achieved by keeping the traditional sequential programming
model, the performance increase has more recently occurred through parallel
computer architectures. Such a shift has led to the need to rethink traditional
software development in terms of how best to exploit these new architectures.

One of the main concerns of the high-performance scientific computing de-
veloper community is to produce efficient code for numerical simulation. Due
to their thirst for computational power, this shift had to be initiated a long
time ago in order to exploit the architectures of supercomputers. Unfortunately,
in current practice mainstream parallel programming models, and in particular
those addressing HPC, are low level and machine specific.

Even though good performance levels can be achieved with these approaches,
drawbacks in terms of architecture dependency, mix-up of concerns and pro-
gramming complexity occur:
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– Applications vs. supercomputers lifetime cycle. In our application domain,
the life cycle of supercomputers is five to seven times shorter than the life
cycle of scientific applications[2]. CEA’s experience has in fact shown that
the simulation models and numerical analysis methods associated with our
professional problems have a life expectancy of 20 to 30 years and must
therefore be maintained over that period, with all the additional problems
that come with software maintenance over such a period of time (e.g. team
turnover).

In parallel, through its TERA program [3], the CEA has decided that its
main supercomputer has to be replaced every four years in order to increase
its computation power by a factor superior to ten (Tera-1: 2002, Tera-10:
2006, Tera-100: 2010). At a pace faster than Moore´s law [1] hardware tech-
nological breakthroughs in hardware inevitably appear and software migra-
tion problems become an important issue.

– The lack of separation of concerns. The problem to be solved - the scien-
tific knowledge of the physics - is entirely mixed with numerical schemes
and target dependent information, added to manage the parallelism. Once a
complex system has been built, it is difficult to extract the physical models.
As a result, maintenance and upgrading become even more complicated.

– Inaccessibility to domain experts. The complexity of software programming
restricts the use of these workstations and supercomputers to a few scientists
who are willing to spend a significant amount of time learning the specificities
of a particular set of machines.

Furthermore, the situation is getting worse with the new emerging generation
of machines: hybrid machines. They are built by mixing heterogeneous hard-
ware resources such as CPUs with many cores, Graphics Processing Units or
CELLs[4]. GPUs are usually found within graphics cards, where they compute
the rendering of massive 2D and 3D scenes. However, hardware manufacturers of
supercomputers have started to integrate GPUs, since they are particularly well
suited to specific operations such as matrix computations and thus linear alge-
bra solving. GPUs contain a large number (in the range of hundreds) of stream
processors which increase the computation power of supercomputers. To exploit
them, however, developers have to depend on hardware manufacturer specific
instructions (NVIDIA Cuda [5], or in the best case, on libraries which attempt
to be more generic such as the OpenCL API[6]).

We think that model-based development techniques such as MDA [7] can help
us deal with this complexity. In accordance with this opinion, we described in
[8] the characteristics and possibilities of such a development approach. In this
paper we present results of experiments conducted using this approach.

The rest of this paper is organised as follows: in Section 2 we complete the
presentation of the MDE4HPC approach introduced in our previous paper. In
Section 3 we introduce ArchiMDE, an implementation of the MDE4HPC ap-
proach as well as results obtained using this tool for the development of a nu-
merical simulation software. Finally in Section 4 we discuss the contributions of
our research and give directions for future work.
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2 MDE4HPC

The Model-Driven Engineering for High Performance Computing (MDE4HPC)
approach aims to offer solutions for the development of scientific computing
software. The foundations of this approach were presented in [8]. This section
aims to complete this broad description by detailing concepts required for the
understanding of the results presented in Section 3.

2.1 Collaborative Approach

The development of a numerical simulation software requires the completion of a
variety of tasks. Several skills are involved in this process, of course depending on
the size of the project and hence the team, while certain tasks might be assigned
to only one person.

We think that model sharing between persons from different areas of expertise
is a key feature in faster development as it enables enabling reuse, traceability
and consistency of the information. The different expertise profiles involved in
the development of numerical simulation software and their viewpoint on the
global model are presented in Figure 1. This Figure shows that the user point of
view on the model of the simulation software is different according to the task
he has to perform.

Fig. 1. Viewpoints in scientific computing

2.2 HPCML

High Performance Computing Modeling Language (HPCML) is a domain specific
modeling language designed for the description of numerical simulation software.
Its specification is part of the MDE4HPC approach. Figure 2 presents a simplified
view of the concepts available in the HPCML metamodel for PIM (Platform
Independent Model) modeling of the static aspects. Some of these concepts are
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intentionally derived from technologies massively used in the scientific computing
community, such as Fortran. In fact, we wanted to raise the level of abstraction
during the development process without revolutionizing development habits.

Fig. 2. Simplified view of the HPCML PIM metamodel

The basic building block of HPCML is the HPCClassifier. This structural
block enables the description of a set of methods which work on a collection
of HPCVariable that are shared between them. Usually the goal of a numeri-
cal simulation is to forecast the evolution in time and space of one or several
physical phenomena. In concrete terms, each step of a loop makes the simula-
tion go forward in time which is why this loop is sometimes called a time loop.
Computation is performed until the loop stop condition is satisfied (evolution
time, physical state reached...). An HPCFlowDescriptor describes the sequence
of methods which composes the application and thus possesses specific constructs
to model this kind of loop.

Within abstract models, we choose to adopt a data parallelism approach
based on domain decomposition. Variables can be associated with a mesh element
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(vertex,face,cell,particle). This information will guide the concrete implementa-
tion of data organization. Shared variables (HPCSharedVariable) are also an
important modeling element as they allow us to express parallelism between
different components.

Even though refinement transformations do not take this information into
account in the current version of the tool, it is possible to model high level task
parallelism within HPCFlowDescriptor via fork/join constructs.

3 Experiment Results

This section presents the results of an experiment conducted with the tool
ArchiMDE, an implementation of the MDE4HPC approach. Before setting out
the results, we first introduce projects in relation with ArchiMDE and present
their integration within the overall development process.

3.1 Paprika Studio

The specification of a complete and coherent dataset from a numerical simu-
lation has always turned out to be a complex task for the end user. For years,
human input has been necessary to fulfil this task, usually provided by the devel-
oper of the simulation as the person with the best knowledge of the algorithms
parametrization. To reduce the degree of involvement of the developers and to
expand the community of end users, graphical user interfaces were introduced
by specialists.

These specific editors integrate hard coded rules for managing the inputs of
the scientific dataset which are specified by the simulation software developer.
This co-development method allows the end user—assuming an exhaustive phase
of manual validation—to produce complete and coherent datasets for the appli-
cation. However, the dispersion of knowledge between the HPC application and
its user interface is a real challenge for long term maintainability and traceabil-
ity, especially when the life time of a simulation software—in the order of several
decades—is compared to the frequency of renewal of software technologies for
user interfaces. Given that a software simulation and its dataset must be up-
graded at the same pace, the maintenance of the editor implies the availability
of dedicated skills.

At the CEA, the increasing number and diversity of scientific simulation ap-
plications are outpacing the renewal of financial and human resources available
for GUI development. Both to meet the goal of strengthening the coherence be-
tween a simulation software and its dataset editor and to preserve the separation
of concerns, a model-driven approach was adopted for the development of these
dataset editors.

Paprika is a software suite based on Eclipse for building scientific dataset
editors through the use of model-driven engineering techniques. It includes two
essential activities: the modeling of a scientific dataset (Numerical metamodel)
and the construction of a graphic editor based on dataset and GUI models (GUI
metamodel).
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Fig. 3. Simplified view of the Numerical metamodel

In the context of this paper, details about the GUI metamodel are not essen-
tial. In consequence we focus our explanation on the Numerical metamodel. A
simplified view of its metamodel is presented in Figure 3 and shows that at the
highest level, two major concepts are provided:

– the data types, to meet the needs of factorization and reuse of data between
several datasets. These types are of three kinds: predefined : integer, real,
boolean, character string, enumerations; simple, i.e. extending a predefined
type, for example the “Angle” type by extension of the “real” predefined
type; or structured to form compound type as from other types. A range
value can be specified for a simple data type: default value, minimal and
maximal values, increment. It is also possible to associate a simple data type
with a physical quantity, for example a frequency, and to set the unit used
by default. The structured data types are constructed by the aggregation of
predefined and/or simple types. Two structured types can be linked by an
inheritance relationship (specialization of a type) or by a reference relation-
ship, with or without containment.

– the data, to define the dataset model. Data are always attached to a pre-
defined, simple or structured type. The supply of predefined types by the
numerical metamodel makes it possible to define data directly without nec-
essarily defining types beforehand. Data may be isolated or grouped with
other data in recursive data blocks.

The choice of Paprika for our experiment was natural for three reasons. Firstly, in
our quest for abstraction we needed to model the inputs dataset of the numerical
simulation and the Paprika Numerical metamodel was already fulfilling that
task. Secondly by choosing the Numerical metamodel we benefited from the
whole generation process to obtain the associated dataset editor. Moreover, as
an independent product, Paprika was not capable of generating the persistence
management of the dataset and this step was still manual, hence error-prone
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and time consuming. But with its integration with ArchiMDE, the automation
of this step was feasible, allowing easier software maintenance. Finally, Paprika is
developed within our laboratory, so it was easier to access information concerning
its architecture.

3.2 The Arcane Framework

In line with the TERA program presented in the Section 1, CEA/DAM’s main
supercomputer is replaced every four years with a growth of its computation
power by a factor superior to ten. In order to prepare for these frequent upgrades,
in 2000 the CEA-DAM started the development of Arcane [9], a development
framework for 2D and 3D numerical simulation software. Several requirements
determined the design of Arcane:

– the management of as many technical details (mesh management, memory
management, input/output, parallelism) as possible by the framework itself
to simplify software development.

– the possibility to obtain high level of performance on clusters of more than
10000 cores.

– to speed up the development phase by providing a set of tools for building,
debugging, verifying and validating numerical software.

In addition to mathematical algorithms for solving physics equations, a numer-
ical simulation has to handle several technical aspects such as the mesh man-
agement mentioned previously. However for this experiment we wanted to focus
on the definition of the high level concepts without having to deal with a too
complex generation chain. That is why we chose to rely on the Arcane frame-
work to manage all those technical aspects as it has shown great capabilities on
supercomputers and workstations over the last decade.

3.3 Development Process

The MDE4HPC approach presented in Section 2 proposes to offer a tailored
perspective of the project for each kind of participant in the development.
ArchiMDE follows this recommendation by providing a set of views, each adapted
to a specific task. Figure 4 illustrates the different models and transformations
which are part of the development process. In this process physicists and ap-
plied mathematicians are responsible for modeling what the numerical core of
the software must compute(HPCML PIM ) and its inputs (Numerical). Software
engineers and hardware architects are in charge of defining HPCML PDM and
the rules to combine PIM and PDM models, as well as the rules to refine the
PSM model until text based generation (numerical software, GUI, test, docu-
mentation...). The work of software engineers and hardware architects on this
phase of the process is widely reusable between projects while the target machine
does not change. The GUI designer has to model the user interface by deriving
the Numerical model.
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Fig. 4. Development process

All the model transformations are based on Eclipse projects from the Ope-
nArchitecture Ware framework. Model-to-Model transformations use the Xtend
project and Model-to-Text transformations use the Xpand project. Xpand with
its polymorphic template invocation fulfilled most of our needs and its aspect
oriented programming possibilities offer a maintenance improvement of M2T
transformations. Even though the Xtend syntax and use for M2M transforma-
tions is disconcerting at first compared to other M2M framework, it was sufficient
for our experiment. Nevertheless the possibility to define functional extensions
accessible both from Xpand and Xtend was a powerful and useful feature.

Paprika was not initially designed to be integrated with other modelers such as
ArchiMDE. Hence in order to accomplish in ArchiMDE the transformation which
takes Numerical models as input, we had to define a static mapping between
primitive types from Paprika and ArchiMDE. Apart from this point the trans-
formation which integrates the Numerical model from Paprika into ArchiMDE
is straightforward. HPCComponents and their corresponding datasets model are
matched together regarding their name.

3.4 Results with an Lagrangian Hydrodynamic Simulation

To assess the validity of the approach, we developed with ArchiMDE a simplified
Lagrangian hydrodynamic module introduced in [9] where the mesh nodes are
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moved according to Newton’s law and the thermodynamic values are updated.
At each time step this numerical simulation performs the following operations:

– compute pressure force on nodes:

�Fn
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∑
q
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q · �Cs

q

– apply dynamic principle and compute node speed:
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– apply boundary conditions.
– move nodes:
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– update geometric values (meshes volume, meshes characteristic length and
geometric components required for the pressure gradient calculation)

– update density:

ρn+1
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q
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q

– apply equation of state to update internal energy, pressure and sound speed:

en+1 =
1 + (γ−1)

2 · (1 − νn+1

νn )

1 + (γ−1)
2 · (1 − νn

νn+1 )

pn+1 = (γ − 1)ρn+1en+1

cn+1 =

√
γpn+1

ρn+1

– compute the new time step according to the CFL (Courant-Friedrichs-Levy)
constraint.

The HPCFlowDescriptor describing the sequence of methods is shown in Figure
5. Listing 1.1 shows the body of the HPCEntryPoint computePressureForce. It
is an Arcane source code, i.e. C++ syntax plus primitives from the Framework.
It is interesting to note Arcane primitives for mesh manipulation (ENUMER-
ATE_CELL) which are at a higher level of abstraction than the usual array
manipulation.

The graphic user interface of the produced dataset editor is shown in Figure 6.
The version presented here is based on GWT (Google Web Toolkit) but Paprika
offers also the possibility to generate from the GUI model a version based on SWT.

Regarding the size of the experiment, the generated source code (compu-
tational core and dataset editor) is around 12 KLOC, given that the Arcane
source code is relatively compact as many aspects of the numerical simulation
are handled by the framework (pre-processing, inputs/outputs management, load
balancing, post-processing).
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Fig. 5. HPCFlowDescriptor of the hydrodynamic simulation

// Reset o f the f o r c e vec tor
m_force . f i l l ( Real3 : : nu l l ( ) ) ;

// Computation f o r each ver t ex o f each c e l l o f the
// con t r i bu t i on from the pre s su re f o r c e s
ENUMERATE_CELL( i c e l l , a l l C e l l s ( ) )
{

const Cel l & c e l l = ∗ i c e l l ;
Real p re s su re = m_pressure [ i c e l l ] ;
for (NodeEnumerator inode ( c e l l . nodes ( ) ) ; inode . hasNext ( ) ;

++inode )
{

m_force [ inode ] += pres su re ∗ m_cell_cqs [ i c e l l ] [ inode .
index ( ) ] ;

}
}

Listing 1.1. Body of the HPCEntryPoint computePressureForce
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Fig. 6. GUI of the dataset editor generated

We now examine the results of our experiment according to the following
points:

– Performance. The generated source code of the numerical part (Arcane
source code) is similar to the one presented in [9]. Benchmarks of the Ar-
cane framework on the Tera-10 supercomputer are available on this article.
Thus from a computational performance point of view both versions would
obtain the same results, and benchmarks would only have evaluated the per-
formance of the Arcane framework and not of our approach. However, these
results could be improved with the integration of optimization good practice
as model transformations.

– Development Time. The development time with both approaches —modeling
and hand written code— was practically identical. The modeling approach
was a little faster thanks to the GUI part. The time taken to develop the
different refinement transformations were considered apart from the time
required to develop applications. Indeed, as specified in the approach, the
transformations rules would be used by several developments, hence their
cost could be negligible compared to the application development time. In
terms of development productivity, the gain expected by the approach does
not appear clearly in this experiment, because the Arcane framework is al-
ready at a reasonable level of abstraction and enables developers to avoid
certain time-consuming and repetitive tasks. With a low level target genera-
tion such as MPI (Message Passing Interface) [10] or Cuda[5], better results
would have been obtained.
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– Maintenance. The approach would reveal its potential with several applica-
tions and especially over time when application migrations (adaptive main-
tenance) will have to be performed. In that case, the benefits would be
clearer, as application models could be reused. The gain would therefore be
proportional to the number of applications to migrate.

In the case of upgrade maintenance we will take a specific use case to sup-
port our explanation. The scenario is the following: to increase the simulation
precision of one software, a new parameter must be added. To accomplish
this change, several actions have to be performed: the algorithm of the nu-
merical simulation must be updated to profit from this new parameter and
this evolution has to be validated, database validation tests datasets must
be migrated, the dataset reader of the simulation must be updated to read
this new value, tests must be written to ensure that the reading process is
correct, the development documentation and user guide must be updated
to explain the role of the new parameter, the graphic user interface of the
dataset editor must be updated to display the new value and finally the
persistence management of this value must be added into the dataset editor.
Table 1 gives for each of these activities, the average time in hours required
to perform them with four different approaches. It is always a complex task
to measure productivity gains in software development, especially when the
sample size available for the experiment is small. These measures are based
on the experience of two expert engineers and two trainee engineers. Hence
we are working in relative and not absolute terms: the aim is only to observe
trends.

Table 1. Average upgrade maintenance time in hour with four different approaches

Fortran
Tcl/Tk

Fortran
Paprika

Arcane
Paprika

ArchiMDE
Arcane
Paprika

algorithm update 8 8 5 4.5
algorithm validation 4 4 4 4
validation testing migration 1 1 1 1
dataset reader update 0.7 0.7 0.3 0.15
GUI tests 0.3 0.3 0.1 0
documentation 0.25 0.25 0.2 0.15
dataset editor 4 1 1 1
data persistence 2 1 1 0
Productivity improvement reference 1.25 1.61 1.88

The improvement from using Paprika instead of Tcl/Tk comes from the
fact that GUIs usually contain plenty of simple and redundant source code
and that thanks to Paprika this GUI is generated and the repetitive tasks
are now replaced by a faster modeling phase. The improvement from using
Arcane/Paprika instead of Fortran/Paprika can be explained for two rea-
sons: Arcane offers services to reduce the amount of code to produce and
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Arcane provides high level concepts to simplify the development. Finally the
improvement with the global solution (ArchiMDE/Arcane/Paprika) comes
from the integration (more parts can be generated thanks to information
sharing via model transformations) and the higher level of abstraction. Sadly
the job which globally benefits the most from the productivity increase is
the software engineer.

4 Discussion and Perspectives

This experiment is a further step toward the use of model-based techniques for
numerical simulation development in an industrial context. Feedback from this
experiment and from other projects such as [11] shows that regarding the GUI,
model-based development greatly increases the productivity at a low cost. Re-
garding the computational part, the Arcane framework is capable of providing us
with excellent performances and a good scalability which is our primary objec-
tive. In this paper we show that on the one hand performance and productivity
are provided by the framework and that on the other hand costs reduction and
application durability are provided by MDE. Hence this combination of the two
allowed us to reach all of our objectives.

As discussed previously, the use of our approach has allowed us to raise the
level of abstraction with respect to existing practices. Basing our approach on
an existing framework, Arcane, is a pragmatic choice that allowed us to deploy
our approach more rapidly. Nevertheless, the drawback of this choice is that we
inherit the limitations of this framework, for instance with respect to a new hy-
brid architecture. This is why the next step of our research is to extend HPCML
to cover the full modeling of the numerical code.

Regarding related work, we can mention the High Productivity Computing
Systems (HPCS) programme launched in 2002 by the DARPA [12] from emerged
novel programming language: Chapel (Cray), Fortress(SUN) and X10 (IBM).
The principal drawback of this approach is the need to develop high-performance
compiler, debugger and implementation for each existing architecture. Macro-
based approaches such as HMPP (Hybrid Multi-core Parallel Programming en-
vironment) [13] and OpenMP (Open Multi Processing) [14] offer a respectable
solution for improving legacy code. However, as their use is based on compiler
directives which limit the separation of concerns, this solution can appear as less
attractive for new developments. The step forward embedded DSL techniques
such as [15] is language virtualization as defined in the Lizst project [16]. This
project shares the same philosophy as ours and represents a good perspective for
the modeling of dynamic aspects in the MDE4HPC approach. Globally we can
mention that none of these projects are opposed to our approach as they could
be used as target technology at various level of our refinement process.

With the adoption of a full model based development, new possibilities will be
offered to us. For example, hybrid machines presented in Section 1 would become
accessible in order to increase the performance level. Still to fulfil HPC primary
objective, low level optimizations could be achieved via model transformations,
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to achieve better performance levels. Furthermore, with conventional low level
hand-written source code, the development of multiple versions of the software
to assess which one suits the targeted platform best in terms of performance
the targeted platform would be too costly. Even though this feature is not yet
implemented, we think that higher-order transformations can make this kind
of parametric studies accessible. In the same spirit, projects such as StarPU
[17] require the algorithm to be implemented in different languages. StarPU is a
unified runtime system that offers support for heterogeneous architectures (CPU,
GPUs, IBM Cell) by selecting at runtime the more relevant implementation.
With our approach, once the generators for each language have been built, the
cost of multi-languages generation is extremely low comparing to the hand-
written approach.

The validation phase represents a substantial part of the development time,
but for the moment only small productivity gains are offered by our approach
on this aspect. We plan to include validation tests in the modeling process in
order to automatize the migration of database validation tests datasets.
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Abstract. Model-driven development (MDD) has seen wide application
in research, but still has limitations in real world industrial projects.
One project which applies such MDD principles is about developing the
software of a feature phone. While advantages seem to outweigh any dis-
advantages in theory, several problems arise when applying the model-
driven methodology in practice. Problems when adopting this approach
are shown as well as a practical solution to utilize one of the main ad-
vantages of MDD—portability. Issues that originate from using a tool
which supports a model-driven approach are presented. A conclusion
sums up the personal experiences made when applying MDD in a real
world project.

1 Introduction

This paper describes the basic idea and architecture behind a project which uses
a model-driven development approach and the problems which arise during this
process. Our findings are based on personal experience during a case study which
led to a successful implementation of a project by means of a tool which supports
such an MDD approach. We identify the problems or shortcomings that were
observed during the development process, and address what effort was required
in practice to port the system to a different platform.

1.1 Case Study Overview

The project is about developing a configurable Man-Machine Interface (MMI)
and applications—such as phonebook or call application—of a low-cost mobile
phone. Low-cost in that sense refers to rather simple phones being built on con-
ventional real time operating systems—as opposed to feature rich smartphones
for example.
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1.2 Requirements and Aims

Applying MDD in a concrete project—MMI and application layer development
of a low-cost mobile phone—is the primary goal of the project behind this paper.
The intention of applying MDD was to improve the software development process
and subsequently the software quality itself. Two top-level requirements can be
distinguished:

– Platform independent user interface development: Due to limited
hardware resources (screen size, memory constraints), developing user inter-
faces for cellphones has special requirements, and is conducted by domain
experts. As such, these experts often do not have detailed programming
skills. The idea is to offer a possibility which allows domain experts to di-
rectly specify the MMI structure in a graphical manner (e.g., by means of a
WYSIWYG editor).

– The software should be easily portable to other hardware plat-
forms: It is important that the program logic—once developed—is portable
to different target platforms, hence functionality may be added which is
not supported by the current hardware platform. As the main part of the
software solution remains the same, the application logic would have to be
developed redundantly if a traditional development approach is applied.

The following subsections describe the methodologies suggested to meet these
requirements in practice. The platform-independent MMI definition has been
realized using a proprietary Domain-Specific Language (DSL) and is not dis-
cussed further in this paper (as the focus is on problems experienced when using
standard modeling tools).

1.3 Model-Driven Development

The main issue which must be tackled is the platform independence. Thus, MDD
fits best because the application logic can be designed using generic software
models without having platform-specific elements in it. The generic approach of
this development method suits our requirements very well. One way how MDD
can be achieved is the Model-Driven Architecture (MDA) [1].

1.4 Characteristics of MDA

The Model-Driven Architecture was introduced by the Object Management Group
(OMG) in 2001 and is one way to achieve the project aims presented above, which
primarily are to reduce development time and increase the quality of software for
embedded development. The basic idea of MDA is to separate the specification
of the operation of a system from how this system is implemented on a spe-
cific platform. The three primary goals of MDA are portability, interoperability
and reusability through architectural separation of concerns [2]. Strictly speak-
ing, MDA itself is not a standard on its own, but a concept that references a
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number of related OMG technologies (Unified Modeling Language (UML), Meta
Object Facility (MOF), XML Metadata Interchange (XMI), and others) [1]. Our
approach relies on UML as the modeling language. This offers a wide range of
modeling capabilities with different diagram types [3].

As the benefits promised by MDA meet our requirements very well, the de-
cision was made to apply it to the project. The next section will introduce the
key features of the selected MDA tool.

2 MDA Tool Features

There exist a few software tools which support the developer in modeling systems
and generating code within the embedded domain which have been evaluated
in [4]. As a consequence we decided to use IBM Rational Rhapsody1 due to its
focus on embedded development (e.g., reduced memory footprint) and because
of the availability of an operating system adaption layer for the platform used in
our case study. Rhapsody offers a lot of features for model-driven development
which are discussed in the following sections.

2.1 Modeling and Code Generation

Rhapsody supports designing a system by the use of UML diagrams like stat-
echarts or class diagrams for describing the system. Sequence diagrams can be
used to analyze the workflow for testing purposes. Rhapsody comes with an out
of the box code generator for the programming languages C, C++, Java and
Ada. It offers possibilities to influence the code generation process by annotat-
ing UML elements with Stereotypes and Tagged Values. The generated code runs
in a special framework called Object eXecution Framework (OXF) and has to
be recompiled for different target operating systems. IBM Rational Rhapsody
provides an OXF for many of the currently available operating systems [5].

2.2 Action Language

To achieve 100% code generation from a model, actions are required—for in-
stance, in order to invoke operations or to send signals. OMG is currently spec-
ifying such an action language for UML2, which to date is not yet available for
every UML tool, since it is a relatively new development. Rhapsody does not
support ALF yet and instead has a very practical approach as it uses the syntax
of the selected language—and therefore does not provide language-independent
action specifications. Rhapsody-specific macros, such as generating an event, are
implemented in C syntax. This is very comfortable especially if someone wants
to call target-specific APIs which might run besides the Rhapsody code on the
target. Integrating the code on the embedded target is easier this way than

1 http://www.ibm.com/software/awdtools/rhapsody/
2 http://www.omg.org/spec/ALF/

http://www.ibm.com/software/awdtools/rhapsody/
http://www.omg.org/spec/ALF/
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having to translate a proprietary action language syntax to target-specific calls.
The big disadvantage of this approach is the lack of flexibility during a platform
change. In case you want to switch from C to C++, all action code has to be
adapted.

2.3 Product Variants

Rhapsody supports different versions of model elements by specifying product
variants. This feature allows you to create different behavior or structure models
of one class. The variant for the current build can be set in the run configuration.
This way, it is possible to have one basic UML model for different platforms with
variations for the platform-specific parts.

2.4 Conclusion

The features of this modeling tool meet our use case as it focuses on the practi-
cal applicability of model-driven development. Due to the fact that there is no
generic action language implementation, the models are not platform-independent
regarding the programming language, thus it is very difficult to port a model de-
veloped in C to Java. On the other hand, all features of the target programming
language can be utilized.

3 Proposed Solution

Within a case study the software for a mobile phone was developed using a
model-driven approach. The basic concepts of the software architecture are de-
scribed in this section (from [6]):

3.1 System Architecture

The system architecture in Figure 1 shows the layered architecture from a
reusability aspect. Reusability is a key criterion in the embedded software do-
main where product cycles and the time to market are very short. Especially
when blocks of well-tested code artifacts should be reused in a product variant,
it is essential that these key components are platform-independent and therefore
portable.

Three main layers in terms of reuse can be distinguished. From bottom to
top, these are:

1. Hardware-related functionality: On these lower sublayers (Figure 1, illus-
trated in white) hardware, operating system and abstractions such as drivers,
protocol stack, up to middleware, are found. Often these layers are from
third-party providers and are the ones that change when the underlying
platform shall be upgraded or totally replaced.
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Fig. 1. Simplified system architecture: the different patterns indicate different levels of
reuse (according to [6])

2. Platform-specific adaptations: The implemented Operating System Abstrac-
tion Layer (OSAL) is responsible for providing operating system-specific
concepts such as tasks, scheduling or memory management in a platform-
independent manner to its upper layers—specifically, to Rhapsody’s execu-
tion framework OXF (not illustrated in Figure 1 for sake of simplification).
The illustrated API implementations realize the platform-independent in-
terfaces by calling platform-specific middleware functions and reacting on
callbacks. When changing to a new platform, these layers are the crucial
parts, as they are the only ones that need to be adapted to whatever is pro-
vided by the new middleware and operating system.

3. MMI and application logic: This layer encapsulates the user interface, the ap-
plication logic, and abstractions (illustrated as API interfaces) for platform-
specific API implementations. One of the big advantages of MDA is that
this tier can remain totally unchanged during a platform change. The reason
is that the user interface structure and application logic are defined in a
platform-independent way—the whole model can be reused, thus saving a
lot of time and ensuring the same constant high quality products that the
previous platform already provided. This argument usually outweighs the
drawback of the expected increased time required to create such platform-
independent models in the first place (cf. Section 6).
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4 Problems

Although the project was successfully realized, a few shortcomings of the model-
ing approach manifested during the development process. The following section
describes several problems related to the model-driven approach in contrast to
a traditional code-centric approach. In this section we will discuss tool-related
problems as well as issues when working in a team, both from a technical and
organizational perspective.

4.1 Tool-Related Problems

Every modeling tool has features to support the developer in their work. For
example, a tool which is focused on quick practical applicability could have
limitations when it comes to flexibility during a platform change. The usability
of the promised modeling features, as well as limitations during practical usage
of Rhapsody are pointed out in the following paragraphs. Certain aspects of the
problems addressed can be characterized as general problem classes though and
thus apply to other modeling tools as well.

– No action language: This point has briefly been pointed out before. While
writing action code (e.g. calling a method to write something on a display) in
the model directly in the target programming language has been considered
an advantage due to the fact that developers are already familiar with the
syntax, the absence of an action language results in a cumbersome adaptation
process if one wants to change the implementation language later on. The
target language in Rhapsody must be chosen at the time of creating a new
project (either C, C++, Java or Ada). Although changes at a later stage
are possible, it may require a lot of changes—especially if action code has
been extensively used. For example, all code written into statecharts (e.g. in
entry or exit actions) is 100 % language-specific and would be required to
be rewritten. Only when the target language remains the same, action code
can be fully reused.

– Code generator output: Regardless of which modeling tool is used, the
developer has to be aware of the produced output. For instance, several
implementation techniques for statecharts exist. Rhapsody’s built-in code
generator for C uses a flat statechart implementation option (as opposed to
a hierarchical statechart implementation). The drawback of this implementa-
tion is the proliferation of states and transitions, which makes the statechart
very cluttered and the resulting code difficult to read [7]. For example, when
a statechart contains a state, and there are multiple transitions leading to
that state, the action code (e.g., code written into the entry action of that
state) is generated multiple times—once for each transition. Especially for
platforms with scarce memory this might comprise a problem. By reorganiz-
ing the statecharts or outsourcing the redundant code part into a function
this issue can be circumvented. However, this is only possible if the engineer
understands what code is generated from the model. In addition, during
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the debugging phase, the developer has to be aware of that multiple state
generation to correctly setup breakpoints in the source code.

– Round-trip engineering: The flexibility of both generating code from
model, and integrating changes on code level back into the model, is com-
monly known as round-tripping, and has been introduced in many modeling
tools. The concept is a big advantage if one favors to work on code level, for
instance in one’s familiar Integrated Development Environment (IDE)—but
based on the experiences made, round-trip never really worked as intended3:
Although it sounds promising, all team members had to experience a similar
learning curve: In the beginning, everybody applied round-tripping and won-
dered how well it actually worked—until a point in time, when something was
messed up in generated code, and the project stops building correctly. And
while not obvious what caused the problems in the first place, after hours of
bug-tracking it almost always could be blamed to round-trip modifying the
model (and therefore the code) in a way it shouldn’t have (one example was
related to altering the #include statements section that led to wrong/corrupt
dependencies in the model). Eventually, often reverting the model/code to
the last stable revision was the last resort. Bottom line is that every team
member came individually to the conclusion that round-trip wastes more
time in error cases than it saves when everything works as intended. Future
releases of the tool might handle this issue more appropriately which could
increase development speed significantly.

Round-tripping problems are not only inherent to Rhapsody. It is a more
sophisticated issue because all constructs of a target language have to be rep-
resented somehow in the model after adding them on code level. There are so-
lutions for many use cases—but covering all language features might be too big
of a challenge for the current tools [8]. One might argue that round-tripping
between models and code should not be done at all4,5, but it would be sup-
portive for developers who are used to frequently work on code level.

– Animation: Another feature offered by Rhapsody is the animation feature.
During runtime, behavior diagrams like statecharts or sequence diagrams can
be animated to analyze if the model behaves as intended. This is a great way
of finding design flaws in the system or conceptional errors. As good as this
sounds, in our specific case we barely used it for one simple reason: It was too
slow! The procedure for rebuilding the whole project with the animation fea-
ture enabled took for this case study about 10-15 minutes—one reason for the
additional time might have been the integration of the third-party framework.
Subsequently, the execution of the solution is delayed as well for a significant
time, which leads to a minimal usage of this feature. Every programmer used
animation only as a last resort solution as it took most of the time longer to
set up the animation than just debugging with standard tools.

3 Project was built using Rhapsody in C, version 7.4, later 7.5.2.
4 http://vhanniet.wordpress.com/2011/04/20/mdamdd-dont-round-trip/,
5 http://thinkinmodels.wordpress.com/2011/04/22/transformation-between-

models-and-code-can-be-or-not-can-be-that-is-the-question/

http://vhanniet.wordpress.com/2011/04/20/mdamdd-dont-round-trip/
http://thinkinmodels.wordpress.com/2011/04/22/transformation-between-models-and-code-can-be-or-not-can-be-that-is-the-question/
http://thinkinmodels.wordpress.com/2011/04/22/transformation-between-models-and-code-can-be-or-not-can-be-that-is-the-question/
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– Abstracting third-party middleware: A common system modeled using
Rhapsody often just consists of a three-layered architecture. On top, there
is the UML model. The bottom layer consists of hardware and operating
system. In between is the OSAL. Thus, the model is directly situated upon
OSAL, and can tap into the abstracted functions from this layer. Whenever
the platform changes, it is sufficient to exchange/adapt the OSAL, and the
application is good to run on the new hardware. Such a scenario is well
supported in Rhapsody, as one simply has to create different configurations
in the modeling tool for each supported platform.

Our setup is a little bit different though, as we integrate the platform’s
middleware (third party) that the application logic can rely on. As Rhapsody
doesn’t provide a general action language, middleware calls are integrated
using plain C language constructs (at specific predefined points within the
model)—which is what we call API Interfaces in our system architecture
(in other words, it is still part of the UML model, but contains language-
specific constructs). Thus, just exchanging the OSAL won’t be sufficient.
The model no longer is situated solely on top of OSAL, but is (in another
thread) directly accessing platform-specific middleware, too.

One way to abstract such platform-specific calls was to use interfaces.
As C language does not provide built-in linguistic support for interfaces, it
is however possible to simulate interfaces in C (e.g., using function point-
ers) [9]—Rhapsody even hides this implementation detail when a class is
given the Interface stereotype.

Using this approach, in order to support multiple platforms, each interface
realization was put into a separate class (that translates into a separate unit),
to be maintained by different people. Such an interface-like solution implied
two drawbacks in our setup: First, the model needs modification whenever
one has to switch between platforms (e.g., for developers working on different
platforms), as the assignment of the interface realization in use is done inside
the model (e.g., either by modifying a relation in a diagram, or dynamically
selecting the proper object in code). Plus, as all interface realizations exist
in parallel in the model, this also leads to an increased memory footprint by
default, as all platform variations are contained in the generated code.

Lesson learned: As one can see from Rhapsody’s example, an important re-
quirement for a modeling tool is to provide a mechanism to easily switch
between different target platforms. Rhapsody has improved on this in a
newer version—the new feature called Variation Points is discussed in Sub-
section 5.3.

4.2 Problems When Working in a Team

The support of the tool for collaborative working is another aspect worth dis-
cussing because of certain situations that turn out to be problematic when apply-
ing model-driven engineering in a software team of two or more people, compared
to the traditional code-centric way. The most disturbing ones are:
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– Model granularity: As soon as more than one person works on the same
model, the question of sharing options arise. Rhapsody for that matter allows
the user to divide the model in so-called units. A unit may be a whole
package, or just a single class. Each unit is stored in a separate file on
the file system. Therefore, different users can modify different aspects of
a model at the same time. This takes a very thoroughly designed architecture
which should be reflected by a good package and unit structure. Should such
a package structure lack granularity, cooperating on the concerned model
elements won’t be possible.

Even if one has a good architecture and a sufficiently detailed unit gran-
ularity for cooperation purposes, problems arise as soon as dependencies
between different units are created, modified or deleted. Every change of
dependencies affects more than a single unit, which could lead to conflicts
if not all of the concerned model elements are in control of the developer
applying these changes.

– Merging conflicts in version control systems: As pointed out above,
Rhapsody allows for altering the same model on unit level granularity. When
using a version control system with a central repository such as SVN6, con-
flicts are inevitably—caused by users having modified the same files at the
same time. While it is not too hard to merge code on source file level with
traditional programming approaches, mechanisms for merging models are
highly tool-dependent.

In addition to the impractical solution of merging the unit files manually
with a file comparison tool, Rhapsody provides a separate model-merge ca-
pability [10]. Both approaches turn out to be a very time-consuming and
error-prone process, since attention must be paid to identify the intended
modifications.

Lesson learned: There is still potential for improvements on collaboration
mechanisms in today’s MDA tools, since dividing the model for alteration
between different users is a common problem. It is advisable to early inves-
tigate a tool’s capabilities for identifying differences and merging alternate
versions.

– Problems with tool versions and compatibility: As long as everyone
works with the same version of the modeling tool, sharing is possible with-
out any problems. As soon as different modeling tool versions are used in a
project it becomes difficult. A Rhapsody project from a newer version cannot
be modified or even opened with an older version once they are converted,
since projects are not backwards compatible. This makes upgrades to new
tool versions very time consuming because the whole project team has to
switch at the same time which is sometimes not that easy considering a
development team which works in another country with another IT infras-
tructure. So every tool version upgrade has to be coordinated and thought
through very carefully.

6 Subversion, http://subversion.tigris.org/

http://subversion.tigris.org/
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– Difficult sharing of project when OSAL was adapted: Difficulties
arise because the OXF framework files are contained in the Rhapsody in-
stallation folder and change with the Rhapsody version. Whenever an update
of Rhapsody is released, the custom Operating System Abstraction Layer has
to be rebuilt to be compatible with the new version. All changes to the files
responsible for the OXF framework have to be exchanged which imposes a
problem because the Rhapsody installation is traditionally not under version
control, and therefore this process is error-prone.

4.3 Organizational Problems

Introducing model-based engineering approaches promises significant advantages,
primarily the increased product quality and higher productivity. However, not
always obvious is the resistance that a team that decides to go with such an
approach faces during the whole project lifetime. Below, some issues with po-
tential for conflict have been identified—all from the practical standpoint of the
experiences made throughout our project.

Resistance from Stakeholders: While technical-savvy stakeholders (tech-
nical project manager, employees at the customer’s company that we have to
cooperate with) are rather easily convinced of the advantages of model-based
approaches, resistance may be faced from the stakeholders at the customer’s
company. Since the client has different interests, its primary focus is on getting
a high-quality product, as timely as possible.

We experienced that during the startup phase and the tool research the man-
agement was getting impatient due to the lack of presentable results.

Lesson learned: Building a prototype to demonstrate the proof of concept of
the model-based approach helps to set more realistic milestone estimates for the
project plan, and to convince stakeholders more easily.

Resistance within the Team: While resistance from stakeholders such as the
customer or financial partners could be sort of expected, disagreements from
within the own team could not. When the project kicked off, we were starting
out with a team of two—the founders of the project being convinced of MDA
and its advantages. As more developers joined our group and the team grew, not
all of those new members were familiar with model-based engineering.

We observed certain skepticism among the team members that have not been
familiar with such an approach before. This manifested in co-workers that seemed
very doubtful and asked a lot of questions, thus requiring us to repeatedly ex-
plain the advantages of model-based versus conventional engineering. Their main
arguments would be that traditional software engineering techniques appeared
to lead to a result much quicker. The additional abstraction layer seemed to
impose a problem, as this can be seen as additional source for errors and thus
could increase complexity while debugging. In other words, from their viewpoint
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it seemed to be a detour to develop a model first and generate the code out of it.
They did not foresee the long-term perspective of eased technology or application
logic changes, while still preserving high software quality.

Lesson learned: Show the advantages on a practical example that developers
have to develop on their own. After experiencing these advantages themselves
they were more open minded regarding the new technology.

Especially the reuse of model elements during a platform change is a key
advantage of this case study. The following section shows how a platform change
was carried out and which additional adaptations had to be made.

5 Porting to Another Platform

While the system was implemented with a specific target in mind, the next
logical step was to port it to another platform, to experience the maturity of
our MDD approach, the advantages and shortcomings. In correspondence with
the system architecture depicted in Figure 1, each of the following subsections
concentrates on one of the different levels of reuse and tries to identify whether
the promised abstraction level from theory was reached in practice.

5.1 Lower Layers

On the lowest layer, there was a decision to exchange/upgrade the hardware, in
particular to allow for more processing power and thus increased performance,
more memory, different form factors and/or additional hardware features. With
it came the decision to use a new platform that shall enable tapping into all
the beforementioned improvements. Therefore, the new hardware and platform
were given by the cooperating company—while our software for the to-be-built
product was the variable that had to be adaptable.

Implications in Practice: While the previous Real Time Operating Sys-
tem (RTOS) in use was OSE Epsilon7, the next operating system to be used was
Nucleus OS8. The currently existing ULC29 target platform was to be replaced
by the Mediatek (MTK) platform10. While the previous hardware was based on
a C166 processor by Infineon11, the next processor was to be an ARM 712. With
that, the toolchain for building the target system changed. One such changed
element was the need to use an ARM compiler—a target compiler change that
would prove to have an influence when trying to compile the generated code for
the new environment, as pointed out in Subsection 5.4. All in all, the concerned
layers were completely replaced, as decided by company policy. The subsequent
subsections will address the required adaptations.
7 http://www.enea.com/
8 http://www.mentor.com/embedded-software/nucleus/
9 http://www.intel.com/products/wireless/mobilecommunications/platforms/

10 http://www.mediatek.com/en/index.php
11 http://www.infineon.com/
12 http://www.arm.com/products/processors/classic/arm7/index.php

http://www.enea.com/
http://www.mentor.com/embedded-software/nucleus/
http://www.intel.com/products/wireless/mobilecommunications/platforms/
http://www.mediatek.com/en/index.php
http://www.infineon.com/
http://www.arm.com/products/processors/classic/arm7/index.php
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5.2 Adaptation Layers

As our name for these layers implies, these layers are key to all porting efforts,
as they have to mediate between the platform-independent upper tiers and the
platform-specific middleware, drivers, protocol stack and hardware. Two differ-
ent aspects have to be covered:

OSAL: Rhapsody’s Operating System Abstraction Layer (OSAL) must be adapt-
ed to be used with the new Nucleus RTOS. Rhapsody in C already comes with
an OSAL for Nucleus PLUS, however specifically targeted to PPC CPUs. For
this reason, plus the requirement to be compatible with MTK, which already
had its own hardware abstraction layer, the OSAL had to be adapted to our
specific needs. Specifically, memory management and thread management had
to be adjusted (e.g., to prevent delays in controlling the display, as previously
experienced).

API Implementations: As the API implementation layer comprises the real-
ization of the API interfaces, all the realization code must be replaced in order
to tap into MTK’s middleware. The actual function to read the IMEI of the
device, the function to set up a call or to perform a manual network search are
just a few examples of what had to be adjusted on this level.

5.3 Logic/UI Layers

In theory, as pointed out in Subsection 3.1, none of the layers on this level must
be modified on platform change. In our project, this ideal assumption could not
completely hold true, as is pointed out below.

API Interfaces: With the recent release of Rhapsody version 7.5.2, a concept
called Variation Points has been introduced. It allows to model alternative vari-
ants of a specific component or class (e.g., to model platform-specific variants
of an Audio API). Technically, a variation point is just a stereotype that, once
applied to a class, internally generates similar code than the simulated interface
solution introduced in Subsection 4.1. The important advantageous difference is
however that while all platform variations still exist concurrently in the model,
a specific variant can easily be selected (as easy as selecting the proper variant
from a dropdown list), thus simplifying working on different API implementa-
tions by different users concurrently. As the code generator knows which parts of
the model represent a specific variant, it only generates the required code for the
currently selected platform, leading to a reduced memory footprint compared to
the previous solution (precisely speaking, such behavior could be enforced e.g.
using preprocessor conditional blocks in the interface-based solution, too—but
only at the cost of increased manual effort). Having the potential of mitigating
the problems of a purely simulated interface solution, we decided to change the
model on this level and use variation points wherever appropriate. This intro-
duced an additional time delay, but can be considered worth the effort as the
model is now cleaner and future-proven for the next platform change.
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Application logic: The promise for the application logic of not having to
change at all when the underlying platform changes held true. Therefore, the
previously modeled application logic could immediately be reused and no porting
effort was required.

MMI definition: Similarly, the MMI definition, modeled in a WYSIWYG
editor and expressed internally as XML files, would not have to be changed
either. Only due to the changed hardware, the MMI required minor adaptations.
For example, as the new model would not have a slider, this had to be reflected in
the MMI definition. Apart from such direct requirements resulting from hardware
change, no further porting effort was required, and the very benefits of a model-
driven solution could be experienced.

5.4 Problems Spanning Multiple Layers

Another impact we experienced was that some of the generated code from the
UML model—mostly code we have written into Entry/Exit actions—would not
build for the new target architecture. Some of the reasons plus lessons learned
were:

– Different compiler warning level: As the newly used ARM target com-
piler had a stricter warning level set, some generated statements wouldn’t
compile. What previously raised a warning was now treated as an error.
Thus, errors were detected that were not discovered before. Some examples
are “...different types for formal and actual parameter” or “...‘xxx’ undefined;
assuming extern returning int”. On the previous platform, such inconsisten-
cies would often have resulted in runtime errors during execution.

Lesson learned: Using a reasonably high compiler warning level right from
the start helps to detect issues early, and reduces the porting efforts when
changing to a different target compiler.

– Datatypes: Rhapsody provides basic C datatypes (e.g., char, int) and lang-
uage-independent datatypes (such as RhpInteger, a qualifier that could be
equally used in Rhapsody for C, C++, Java and Ada, and translates to an
integer in each language). However, we had to discover that real platform-
independent datatypes were not fully supported. A platform-independent
datatype in that sense was a datatype with a specified width in bits, such
as UINT16 for an unsigned integer 16 bits wide—both built-in type classes
did not specify a fixed width. In practice, under certain circumstances pa-
rameters or return values specified as plain integers for the previous plat-
form resulted in a runtime failure due to a different datatype size on the
new platform—which is not a surprise, it’s just that support for defining
proper types was not satisfying. Of course it is possible to define custom
datatypes—but the mapping to the platform (e.g. what native datatype
(e.g. unsigned short or unsigned int) represents an UINT16 on platform
X) is not in a platform-dependent specification file. As a result, developers
must take care of correct specification whenever the OXF layer is built anew
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(as opposed to the mapping could ideally be read from a platform-specific
file, requiring the user to manually take care of correct specification only
once per platform, not once per new OXF building, as the portable files are
shared). As datatype sizes vary often between different embedded systems,
this is a crucial feature. However, it can be blamed to be a Rhapsody-specific
issue (a corresponding change request has been filed and agreed to by IBM).
Lesson learned: Investigate a tool’s support for defining platform-independent
datatypes early.

– Wrapper functions: Another carelessness was to trust that very common
C functions would be available on all platforms. Examples are printf to
put text or certain string functions such as strcpy. However, we had to
learn that even some of the most basic functions are not guaranteed to be
available on every platform (a similar function usually exists, but could have
a different name or parameters).
Lesson learned: Abstracting even very basic functions into wrapper functions
saves a lot of effort.

Following best practices [11] such as strict compilation, segregating platform-
dependent files from portable files, abstracting data types, wrapping functions, us-
ing various compilers is highly recommended. Assuming one’s model is portable
is only valid after it has actually been ported.

6 Conclusion and Future Work

Applying an model-driven approach in a real world project might not always be
the best choice but can definitely be a smart one under certain circumstances.
It is important that you are aware at the beginning of the project that creating
a solution with MDA for the first time is more time consuming—at least that
is what we experienced—than traditional ways of development. Important for
a successful MDA project are the features provided by the used modeling tool.
Especially the support for code generation and code portability are key features a
tool has to fulfill. The approach explained in this paper was applied to an actual
project and has itself proven successful. Advantages opposed to a conventional
development approach can be found in the animation capabilities for model
debugging, which encourages correcting bugs early in the design phase, and in
the much quicker process of porting the software to a new embedded platform
due to the platform-independence inherent to the model. Although these features
help during the process they have downsides—e.g., time-consuming animation
setup time—and therefore have not been used excessively.

For the case study at hand, quantitative information (e.g., to better compare
the model-based approach to a traditional one) has not been included, since no
hard facts, but only anecdotal evidence exists: In retrospective, the initial model-
based implementation took us about a year for the first platform. Later, when
porting the system to a second platform, it only took us about three months for
a proof of concept, and three more months for achieving the same functionality.
However, future work could focus on the evaluation between a conventional and a
model-based solution to derive metrics for more precise quantitative information.
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Abstract. Building complex real-time embedded systems requires as-
sembly of heterogeneous components, possibly using various computation
and communication models. A great challenge is to be able to design such
systems using models where these heterogeneity characteristics are de-
scribed precisely to assist the next step of the development including im-
plementation or analysis. Although the new MARTE standard provides
the core concepts to model real-time components using various commu-
nication paradigms, we state in this paper that MARTE extensions have
still to be made and we propose to extract common features from several
component based approaches in order to support finer compositions of
heterogeneous sub-systems.

1 Introduction

Building real-time embedded systems through composition of well-defined and
well-documented components is a tricky issue. Composition provides means to
deal with complexity applying the “divide to conquer” paradigm.

In the field of software engineering, composition issues are addressed by the
Component Based Development (CBD) domain. Historically, CBD comes from
disciplines of mechanical and electrical engineering where components are intu-
itively understood. In the field of real-time embedded systems (RTES), composi-
tion is difficult to achieve as complexity is increased by sub-systems heterogeneity
(analog / digital devices, Globally Asynchronous Locally Synchronous systems
– GALS, etc.) and real-time or other QoS issues. Then, a solid alternative is to
consider UML models to handle such heterogeneity in a unified way. Unfortu-
nately, current modeling languages lack means to specify rich interfacing and
connections between components in both software and hardware domains.

In this paper, we are interested in the “Interface Based Programming” applied
to Model Based Engineering (MBE). In particular, we study how assembly can
be achieved (interfacing conditions and constraints) and realized (allocation /
implementation). We propose then to refine the notions of port, interface and
connector of the MARTE GCM (Generic Component Model) sub-profile in order
to achieve better composition and substitution capabilities in the context of
heterogeneous real-time embedded systems design and analysis.

J. Whittle, T. Clark, and T. Kühne (Eds.): MODELS 2011, LNCS 6981, pp. 243–257, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



244 A. Koudri et al.

In the next section, we provide a short survey on component-based approaches
from several communities in order to extract key features component models
should provide. Then, we list identified issues related to composition in UML,
SysML and MARTE. In the third section, we propose a generic solution for
composing heterogeneous system models. In conclusion, we provide insights on
our future work.

2 Background

In software engineering, a component is defined as “a piece of self-contained, self-
deployable computer code with well-defined functionality that can be assembled
with other components through its interface” [14]. More precisely, a component
model defines “rules for the specification of component properties and mech-
anisms for component composition, including composition rules of component
properties”. This definition distinguishes three important parts: the specification
of components internals, including functional and non-functional properties; the
specification of components interfaces, e.g. what they provide/require to/from
their environment; the specification of interactions. While the first and the sec-
ond parts are usually well addressed by architectural patterns, the third part is
usually not explicitly specified and is related to implicit communication patterns.

In order to provide a better understanding of composition, authors of [2]
present a framework for software components that compares interfacing and
interaction styles. According to this survey, an interface is mainly characterized
by: its type, e.g. operation-based (service invocations) or port-based (data-flow);
the distinction between its provided/required parts; the existence of distinctive
features (optional modes); its specification language; its contractualisation level
(syntactic / semantic / behavioral). Besides, authors characterize interactions by:
their interaction type (e.g. request/response, message passing or event-driven);
their communication type (e.g. synchronous or asynchronous); their binding type
(e.g. connection, hierarchy or both).

In hardware engineering, evolution of technologies has pushed the usage of
hardware components as well. Indeed, design of Integrated Circuits (IC) or Very
Large Scale Integrated Circuits (VLSI) requires techniques to handle exponen-
tial complexity due to Moore’s law. Then, hardware engineers can achieve a
better productivity assembling reusable and reliable blocks (Intellectual Prop-
erties – IP): microprocessor, DSP, memory, bus, etc. Indeed, component-based
approaches have been long used with success in hardware engineering and have
proven their relevancy to handle complexity and productivity.

Unfortunately, the aforementioned approaches are mainly focused on imple-
mentation issues and higher level approaches are required to favor analysis activ-
ities. To this end, several Architecture Description Languages (ADL) have been
proposed in both software and hardware domains. According to [9], the purpose
of an ADL is to shift from lines-of-code to coarser-grained architectural elements
(components and connectors). Then, authors define an Architecture Description
Language as “a language that provides features for modeling a software system’s
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conceptual architecture distinguished from the system’s implementation.” Still,
there is no consensus on what aspects of architecture should be modeled and in-
terchanged. For instance, among all existing ADLs, some of them are just used
to provide a better understanding of the system (global behavior and commu-
nications) while other provide full featured language along with analysis tools,
checkers, compilers, synthesis tools, etc.

Whatever, an ADL should provide at least a simple and understandable syn-
tax, possibly graphical, to improve the system analysis. This syntax must rely on
a clear semantics avoiding ambiguities. In [13], authors elaborate six classes of
properties all ADLs should provide: composition, abstraction, reusability, con-
figuration, heterogeneity and analysis. In particular, they argue the need to con-
sider the connector as a first-class entity to support heterogeneity. In [9], authors
provide a comparison framework for ADLs. In this framework, both component
and connector are characterized by their: Interfaces, defining a set of interaction
points providing/requiring services (messages, operations, variables) to/from ex-
ternal world – Services are related to computations in the case of components
and to communications in the case of connectors; Types, defining a configurable
abstraction allowing re-usability, and extensibility – Modeling connectors as type
makes sense because interactions are often characterized by complex protocols;
Semantics, representing a high level behavioral model which is required to per-
form analysis or to ensure consistent mappings from one level of abstraction
to another; Constraints, defining assertions whose violation would render the
system unacceptable; Non-functional properties, e.g. properties that cannot be
derived directly from the specification of behaviors (safety, security, performance,
etc.). Such properties are required early in the design process to perform relevant
analysis or to foster replaceability in context.

3 Motivations

The specification of UML 2.0 [10] introduces several important concepts for
supporting composition: Collaboration, Port, Connector, etc. Unfortunately, the
semantics of those elements is generally not well defined. The main reason of this
lack is because such semantics depends on target domains. Indeed, it is suggested
in p.147 of the specification that “profiles based around components will be
developed for specific component technologies”. In SysML [11], components have
been introduced under the notion of “Block” which is defined as “a modular unit
of system description” providing general purpose capabilities to model large and
heterogeneous systems. SysML refines the UML components in different ways:
reusable constraints, multi-level nesting of connector ends, etc. In MARTE [12],
the Generic Component Model (GCM) sub-profile provides the core concepts to
model real-time and embedded system components. Those concepts represent
a common denominator among various component models (lightweight-CCM,
AADL, EAST-ADL2, etc.) except that no specific execution semantics has been
tied. For instance, a structured component is defined as “a self-contained entity
of a system which may encapsulate structured data and behaviors”.
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Regarding UML components, several issues have been raised by the OMG and
show inconsistencies in both syntax and semantics:

– Handling of requests by ports (behavioral or not) is not clear (issue 10597),
– Typing a port by a class, behavioral or not, has not a clear semantics (issue

15290),
– Connectors do not provide means for specifying an interaction pattern be-

tween involved roles played at connector ends (issue 10474).

Even if SysML proposes refinements of ports, interfaces and connectors, there
are still several lacks and semantics issues that have been raised:

– In some situations, it would be useful to be able to attach a protocol state
machine to ports (issue 10047),

– Handling of complex ports, mixing services and data-flows, is not well ad-
dressed (issues 10059 and 12269),

– Nothing is said about the semantics of binding connector ends with different
multiplicities (issue 11333), and particularly in the context of continuous
flows (issue 15298),

– Binding connectors should be typed in order to support decomposition (issue
15079),

– There are limitations to represent certain kinds of interfaces (mechanical,
electrical, etc.) and ports. For instance, issues 12156 and 15076, propose
to introduce the notions of “Junction Port” and “Non-flow property Port”.
Issue 13179 adds that, in this context, an integration of Modelica concepts
should be discussed,

– Issue 13178 suggests that a flow specification should not be a refinement of
an interface because port decomposition in that case would not be possible.

Since MARTE reuse definitions of SysML blocks, interfaces and connectors, is-
sues presented above are also applicable in this language. To give insights to
those questions, we use the study from section 2 to abstract common denomi-
nators so we can propose a flexible way to specify components and composition
that takes into account systems heterogeneity. This work is required in order to
foster the use of models for design, analysis and implementation of RTES.

4 Contribution

Ideally, the MBE combined with CBD provides a powerful approach as it fa-
cilitates design and analysis activities though a clear separation of concerns.
In practice, this is another story; and before such approach comes to reality,
we have to make efforts to finely characterize components, their interfaces and
connectors. To this purpose, we propose to extend the component model of the
MARTE GCM sub-profile to tackle issues presented in section 3. This work
aims to improve analysis as it contributes to handle emergent behaviors related
to implicit choices.
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4.1 Core Principles

Today, design methodologies and environments integrating semantically distinct
models are in high demand [4]. From study of section 2, we can state that, at
some level, hardware and software developments are quite similar: engineers have
to think in terms of data, computation, communication and architecture. Then,
a system should be conceived as an understandable architecture of cooperating
agents which characteristics and interactions should be well understood under
a certain Model of Computation (MoC). For instance, the rugby conceptual
model [7] states that from specification to implementation, the complexity of
a system can be managed through several representations mainly characterized
by four axes: Computation represents relationship between the inputs and the
output of the system: it can be captured for example by an Ordinary Differential
Equation at high level or a Netlist at low level; Communication represents means
for structural elements to exchange data: it can be a functional call at high level
or a complex bus at low level; Data represents information produced or consumed
by structural elements: it can be abstract data types at high level or bit vectors
at low level; Time represents the causality of the system: it can be causal at
high level (succession of events) or clocked at low-level.

Modeling and analysis of complex systems, composing heterogeneous parts,
requires taking into account each of those properties. In particular, we need
to understand in what circumstances interactions between such heterogeneous
parts can occur. According to [6], modeling explicitly MoCs characteristics has
several advantages: Faster specification development through usage of appropri-
ate primitives and rules; Optimum simulation speed using a unified simulation
engine instead of using multiple languages / frameworks; Useful properties : de-
terminism, protection against deadlocks, introduction of non-determinism only
when needed; Feasible implementation flow through usage of a syntax which is
semantically identifiable by compilation / synthesis tools.

Besides, in [5], authors identify two kinds of specification / integration of
MoCs. The first one, called horizontal heterogeneity, refers to the ability to in-
tegrate a component among others on the same level of abstraction. The second
one, called vertical heterogeneity, is mainly related to refinements of components
between several levels of abstraction and requires transformations.

The next section presents the main concept of our extension to address mod-
eling of heterogeneity for RTES design and analysis.

4.2 Main Concepts

Complex ports. In order to tackle issues related to ports presented in the
previous section, we introduce the notion of “complex port” in the GCM MARTE
sub-profile. This notion refines the UML port in order to support structural
decomposition as well as behavioral specification. A complex port conforms to a
“port specification” which defines its structural and behavioral features (figure
1). Its usage serves several purposes.
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Fig. 1. Refinement of MARTE GCM Port Definition

Fig. 2. Ports Group definition

First of all, building large hierarchical systems often requires gathering ports
into groups to favor readability and reusability. For instance, figure 2 shows a
simple concrete example of complex port usage extracted from OCP/IP specifi-
cation [1]. We can see in this figure how a complex port can be used to gather a
set of ports into a reusable element. We can also notice that such representation
improves the readability of the models. Regarding the issues presented above,
this first example shows how our proposition contributes to tackle issue 13178.

Another benefit of this proposition is to be able to explicit the way requests
/ flows must be handled. Indeed, a port specification can contain definition of
specific data structures and behaviors required to implement a protocol (using
protocol state machines for example) in case of client / server ports, or to spec-
ify how received data are transformed in case of flow ports. Then, the property
“isLightweight” indicates whether the port has to perform some computation on
received data / requests. Setting this property to “false” implies for the port: the
specification of discrete or continuous behavior; the specification of both external
/ internal interfaces, e.g. what is provided / required to / from respectively the
context and the nested elements of the component. External and internal inter-
faces of a port represent two subsets of its nested ports. The first one (external
interface) contains ports that are externally visible features (isService=true),
while the second one are only internally visible features (isService=false).
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Fig. 3. Specifying junction ports

The figure 3 shows a simple concrete example from a “Software Defined Radio”
application where there is a need to specify that incoming signals are mixed
before being processed by the signal processing chain. The ports specification of
this figure defines actually a junction port where signals mixing occur.

In software domain, one could use for example port specification to store
arrival requests (possibly with a timeout) until they are consumed by nested
behavior(s). We can see that, in this case, our proposition contributes to give
an answer to issues 10597, 15290, 10047, 12156, 13179 and 15076. Additionally,
complex ports decomposition allows mixing both services and data-flows ports in
an explicit way, which contributes to give an answer to issues 10059 and 12269.

Finally, our proposition addresses also the routing issue, e.g. how a request /
flow is propagated to /from the component in case of multiple choices? UML is
not clear on that point. We think that such decision is domain dependant and
should be explicitly captured in the model. The Routing Policy defined by the
port tells whether to propagate the request to the first connector (routing=first),
to any of those connector (routing=any) or to all connectors (routing=all). For a
finer routing decision, one can use a complex connector defining a path between
internal and external interfaces.

Complex connectors. Introducing complex ports requires dedicated mecha-
nisms to take into account hierarchy of complex ports. To this purpose, and to
clarify inter-connections in UML, we introduce the notion of complex connector.

The figure 4 shows the abstract syntax of complex connector which extends
the UML connector in order to reinforce its semantic and to provide syntactic
facilities to express multi-level nested connections.

In order to better explain introduced concepts, we distinguish three cases in
the following paragraphs: the first one clarifies connections in UML; the second
one deals with inter-connections of complex ports; the last one discusses usage
of typed complex connectors.
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Fig. 4. Refinement of MARTE GCM Connector Definition

To illustrate the first item, we will use an image processing application as ex-
ample. We consider a piece of the Lucas-Kanade algorithm dedicated to tracking
[8] presented in figure 5.

Fig. 5. Tracking System Data-Flow

In this figure, we can see that the algorithm takes as input a set of eleven
images which are distributed among 5 Gaussian Smoothing blocks. The resulting
images are then passed to 3 different blocks that perform spatial and temporal
gradients to produce new images.
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Fig. 6. Tracking System Model

To model this algorithm using UML composite structure and flow ports, we
would produce the diagram presented in figure 6. This diagram makes benefits
of syntactic facilities of UML to produce a concise model. Unfortunately, be-
cause interpretation of cardinalities of both parts and ports between connected
elements is not clear in UML, it is quite impossible to infer the architecture
presented in figure 5 from the model of the figure 6.

Fig. 7. On richer connection specification
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The figure 7 illustrates how our proposition addresses this problem. In the
left side of the figure, we can see how the delegation connector set between
the input port of the tracking system and the “gs” part should be interpreted.
Such interpretation could be achieved in UML at the price of big efforts using
OCL constraints. In the right side of the figure, we can see the corresponding
repository view. A connector owns several connector ends which store relevant
information on richer connection specification. More precisely, a connector owns
several connector ends that precise finely how related elements are connected.
In this example, we can see that each connector end selects specific parts and
roles from respectively their partWithPort and role properties using value spec-
ification. In this case, we have just used an index to select which parts and roles
are involved into the connection, but it could be any other discriminating factor
(the best QoS for example). This simple example can also be applied to assembly
connector as well as connectors related to service ports. This example shows how
our proposition contributes to give an answer to issues 11333 and 15298.

To illustrate the second item, e.g. connection between complex ports, we use
the example of the figure 8 which shows a connection between an abstraction of
an ARM9 processor and an OCP-IP bus, both complying with OCP-IP standard
specification [1].

In this example, we aim to express connections between nested ports defined
by ports specification. Using UML, we can connect only the first level of the port
hierarchy. Thanks to our extension, it is possible to precise which “sub-ports”

Fig. 8. Connecting Complex Ports
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are connected to each other. The upper part of this figure shows the connection
between two complex ports of the two parts of the hardware design. Using UML
connectors cannot fit the need to specify how the connector is refined through
port decomposition. Then, the middle part of the figure shows in more details
how a complex connector can be used to achieve such refinement. For instance,
we show in this figure that the connector contains two initial ends connecting
the first level of the ports hierarchy. The connector owns other connector ends
that define a path from initial ends. In this example, we can see that each initial
end posses a reference (next end) to another connector end. Connector ends
that are leaf reference one or several opposite ends from which we can infer the
refinement of the connector as shown in the lower part of the figure.

Fig. 9. Repository view

The model repository view presented in figure 9 shows that our proposition
clarifies the specification of interconnections between nested ports. This figure
focuses on interconnections between sub-ports “sres” of the figure 8. Compared
to the RSM sub-profile of MARTE which allows only specification of regular pat-
terns [3] in complex connections, our proposition is complementary as it allows
specification of irregular patterns as well. We see through this small example
how our proposition contributes to give a partial answer to issues 10474 and
15079.

Regarding the last case, connectors must provide more detailed information
to precise finely how messages are conveyed between ports. According to the
UML specification, a connector can be realized by a simple pointer as well as
a complex network. In the latter case, a connector can be seen as a black box
into which several kinds of operation can occur: dispatching, filtering, data cor-
ruption, data transformation, etc. Then, in order to achieve realistic analysis,
we must be able to specify such features for any complex connector. A UML
connector can only be typed by an association, which represents a great limi-
tation to model any behavioral feature required to model and analyze complex
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communications. That is why we have introduced the notion of connector spec-
ification to type connectors. A connector specification gathers a set of common
features a family of connectors share. For example, the connector between the
“Smoothing3” block and the three “Gradient” blocks of the figure 5 illustrates
such complex connector. In this example, each image produced by the “Smooth-
ing” block is sent to “X-Gradient” and “Y-Gradient” blocks. Produced images
are then queued because the “T-Gradient” block requires 5 images to perform a
computation. This kind of model corresponds actually to the Synchronous Data
Flow MoC where production and consumption rates are well-known. As we can-
not specify such connector using an UML association, the figure 10 shows how
our proposition handles this issue.

Fig. 10. On richer connection specification

In this example, the specification of the connector is given by the “CS” class
which defines one fifo to store incoming images and two behaviors triggered when
new images are ready to be processed. The first behavior copies the incoming
image into the fifo and the second one sends a block of five images to the “T-
Gradient” block when the fifo is full.

Interface realization and usage. We have seen in section 3 that Interface
Based Programming is the support of the replaceability in context. An inter-
face defines common features a set of components should provide to be used
indifferently. This suggests that there exists somehow a matching between the
features an interface exposes and the visible features of the implementing com-
ponent. In current approaches, such matching is implicit and consists usually
in name matching. We have seen in section 2 that, among existing CBD ap-
proaches, there are several level of conformance between an interface and its
implementations (syntactic, structural or behavioral). In this paper, we distin-
guish between three incremental levels of conformity: Structural conformity: a
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component is replaceable if it has compatible properties; Behavioral conformity:
a component is replaceable if it has compatible properties and behaviors (exam-
ple: protocol); Non-functional conformity: a component is replaceable if it has
compatible properties and behaviors, and it provides the same non-functional
properties (example: latency).

Using UML, one can specify that a classifier realizes an interface using the In-
terface Realization direct relationship. This relationship references the contract
and the implementing classifier. Thus, the metamodel assumes only a syntactic
conformance since no additional information is given about the level of confor-
mance and the way the implementing classifier implements / uses effectively a
contract. In RTES, this situation is not acceptable as RTES requires more than
a syntactic conformity to allow replacement of a component by one another. We
propose then to refine both interface realization and usage.

Fig. 11. Refinement of MARTE GCM Interface Definition

Figure 11 presents the abstract syntax of our proposition which is illustrated
through the example of the figure 12 taken from the Lucas-Kanade algorithm
mentioned above. The left side of the figure 12 tells that the “IMultiplier” block
conforms to the “IMultIface” interface, although the signatures of its properties
are not the same either in name or in cardinality. In this case, syntactic con-
formance does not work. Then, we need additional information in the interface
realization link to specify how the implementing block actually realizes its inter-
face. We need to express a fine mapping between the properties of the interfaces
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and the ones of the block. The right side of the figure shows the model repository
view focusing on the feature mapping between property “img1” of the interface
and the port “itxy[0]” of the block.

Fig. 12. Example of interface realization

Besides, finer mappings can be expressed using a mapping expression in the
feature mapping. For instance, one could split a single property into two distinct
properties. For example, we could imagine an unsigned integer property coded
into 32 bits (uint < 32 >) mapped into two unsigned integer ports coded into 16
bits (uint < 16 >) for both Most Significant Bits (MSB) and Least Significant
Bits (LSB) parts of the property.

We see through this simple example that our proposition contributes to clarify
interfaces usage and realization. Moreover, such specification can be used to
automate generation of wrappers or complex connectors facilitating COTS IP
integration.

5 Conclusion

Component Oriented Modeling offers several advantages: It is an interface-based
approach providing loosely-coupled specifications and favoring better reuse; It
provides high level services for NFP (Non-Functional Properties) support; It
provides a better support of allocation. Actually, those assumptions are true
only if the semantics of components and composition of heterogeneous systems
are clearly and unambiguously defined.

In this paper, we have presented a small survey on component based ap-
proaches from several domains. From this survey, we have extracted common
denominators in order to propose a generic approach that encompasses design
and analysis of heterogeneous real-time systems. This proposition aims to give
a practical answer to issues raised by the OMG and contributes to reinforce the
semantics of real-time components and composition in the UML for MARTE
profile.
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Beyond UML for MARTE, this work can be generalized to the component
model of UML. This work contributes also to explicit the various models of
computation and communication of real-time embedded systems. It allows the
establishment of libraries of reusable and configurable ports and connectors.
Future works will have to take into account system validation through vertical
refinements of components as well as support of behavioral and non-functional
conformity in order to enable component replaceability in context. This work is
partially founded by the VERDE project (http://www.itea-verde.org/).
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Abstract. With model-based development becoming an increasingly
common development methodology in embedded systems engineering,
models have become an important asset of the the software development
process. Therefore, techniques for the automatic detection of clones in
those models have been developed to improve their maintainability. As
these approaches currently only consider syntactic clones, the detection
of clones is limited to syntactically equivalent copies. Using the concept
of normal forms, these approaches can be extended to also cover seman-
tic clones with identical behavior but different structure. The submission
presents a generalized concept of clones for Simulink models, describes a
pattern-based normal-form approach, and discusses results of the appli-
cation of an implementation of this approach.

1 Introduction

Software has become the driving force in many application domains for embedded
systems, like the automotive domain. Consequently, software in these domains
has reached a substantial size. Furthermore, the developed software systems
make use of a high degree of reuse, due to the large number of variants in
product-lines, high cost pressure, and decreasing length of innovation cycles. As
a result, software maintenance – corrective as well as perfective – has become
an important aspect of the current development process. In automotive software
development, the use of a model-based approach has become standard, specially
in the powertrain, chassis, and body domain. Therefore, the maintenance of
those models – with Simulink or TargetLink as the corresponding domain specific
language – is becoming an increasingly pressing issue.

In code based development, the existence of clones [12] – duplicate or similar
parts of software – is specifically known to often worsen productivity in software
maintenance. With the move from code to models in the embedded domain, the
question arises how to deal with clones in model-based development.

1.1 Problem and Contribution

As discussed in more detail in Section 2, clones can severely hamper the main-
tainability of models of embedded systems. However, only few approaches for
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detection of those clones exist. Furthermore, these approaches are limited to a
rather restricted syntactic notion of similarity – essentially structural identity.
Therefore, an improved technique for model-clone detection is introduced, sup-
porting detection of semantic clones, i.e., parts of models with different structure
but equivalent behavior. The approach is based on the use of normal forms of
Simulink models to identify semantic clones with different syntactic structures,
and the use of semantic-preserving graph transformations to achieve them.

1.2 Outline

Section 2 gives a short introduction on the detection of clones, especially in the
context of model-based development of embedded systems. Section 3 provides
a description of the core aspects of the approach; furthermore, examples of the
normalizing transformations used are given. Section 4 describes the application
of the approach to realistic models and discusses the results of the application.
Finally, Section 5 discusses related works, while Section 6 concludes with a dis-
cussion of the application of the approach and possible future work.

2 Clones in Model-Based Development

Although model-based engineering has become a widespread approach especially
in the development of embedded systems, the identification of clones in models
has be come only recently a research issue [3]. Investigation on practical appli-
cation of model-clone detection [2] has shown that it can be successfully applied
to industrial-scale models with a low range of false positives.

2.1 Clone Detection

In general, (code) clones are (code) fragments that are similar w.r.t. to some
definition of similarity [12]. The employed notions of similarity are heavily in-
fluenced by the program representation on which clone detection is performed
and the task it is used for. The central observation motivating clone detection
research is that code clones normally implement a common concept. A change to
this concept (e.g., a bug fix) hence typically requires modification of all (code)
fragments that implement it, and therefore modifications of all clones.

Clones are introduced for different reasons. Most commonly, they are created
by deliberate copy-and-paste from previous solutions, or by explicitly inlining
library code. However, clones can also be introduced unintendedly by indepen-
dently creating similar solutions.

2.2 Model-Based Development for Control Systems

The models used in the development of embedded systems are taken from control
engineering. Data-flow diagrams as shown in Figure 1 consisting of blocks and
lines are used in this domain as structured description of these systems. Tools like
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Matlab/Simulink are used for the construction and simulation of these models.
To generate software from these models, these diagrams are interpreted as time-
(and value-)discrete control algorithms. By using tools like TargetLink [7], these
descriptions are translated into computation tasks, which are then executed by
use of a real-time operating system to implement an embedded application.

In the context of Simulink models, [3] defines a model clone to be a connected
submodel, which is syntactically equivalent to another one, up to certain edit
operations. Syntactical equivalence means that the data-flow networks have es-
sentially the same structure and labeling, allowing for minor modifications of the
copied submodel like change of constant parameters. In the following, a model
clone is understood as a connected submodel, which is semantically equivalent to
another one – which means that it exposes the same behavior, again up to minor
adaptions like change of parameters. In contrast to syntactic clones, semantic
clones may exhibit a rather different structure.

3 Approach

In this section we introduce our approach for structural normalization of data
flow models. Our normalization considers graphs describing computational data-
flow. Since structural normalization of these graphs uses graph transformations
we briefly introduce directed graphs and graph transformation systems. As we
target embedded systems, the approach is illustrated using Simulink data-flow
models. However, the approach is applicable on all types of data flow graphs
using similar semantics.

Directed Graphs: A directed graph is a triple (V, E, λ) consisting of a set V of
nodes, a set E of edges and a function λ : E → V × V associating each e ∈ E
with an ordered pair (v1, v2) ∈ V × V . Furthermore a labeled directed graph is
a graph with an additional labeling function L : V ∪ E → N which maps nodes
and edges to labels from a set N .

Graph Transformation Systems: A rewriting rule p = (L, R) ∈ P is a pair of
graphs L = (VL, EL, λL), R = (VR, ER, λR) known respectively as the pattern
graph and the replacement graph of p. Applying p to a source graph G resulting
in a target graph H implies the existence of the graph morphisms1 α : L → G
and β : R → H consisting of the two morphisms γ : VL → V and δ : EL → E
such that H = (G \ α(L)) ∪ δ(R).

A graph transformation rule p induces a relation →p on graphs by G →p H
iff H results from application of p to G. This relation can be trivially extended
to a set P of rules, yielding a relation →P . Using the transitive and reflexive
closure →∗

P allows to construct chains of transformations from a source to a
target graph. →∗

P is called confluent iff for all G, G1, and G2 with G →∗
P G1

and G →∗
P G2 some G′ with G1 →∗

P G′ and G2 →∗
P G′ exists. Furthermore,

1 A graph morphism (V, E, λ) → (V ′, E′, λ′) consists of a pair γ : V → V ′ and
δ : E → E′ with λ′(δ(e)) = (γ(v), γ(v′)) if λ(e) = (v, v′).
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Fig. 1. Two syntactically different but semantically equivalent fragments A and B

→∗
P is called Noetherian iff for each G a G′ exists with G →∗

P G′ such that
G′ �→∗

P G′′ for arbitrary G′′. Intuitively, deterministic rule sets yield confluent,
terminating rule sets yield Noetherian relations.

3.1 Normal Forms of Data Flow Models

Behaviorally equivalent data-flow (sub-)models can have completely different
structures (see Figure 1). Therefore it is difficult to directly establish equivalence
of two models using structural comparison techniques. However, if the structures
of two equivalent models can be transformed to the same form without changing
their behavior, it suffices to check structural equality of the transformed forms
to establish their behavioral equivalence. Transforming the data-flow models can
be achieved using graph transformation rules. But this approach is only feasible
if the transformations yield a unique target model for each source model.

In short, we are therefore looking for equivalent unique normal forms of mod-
els. For a given set S of elements – in our case data-flow models – and an equiv-
alence relation ≡, a normal form can be achieved by identifying a set N ⊆ S
such that for all s ∈ S exists exactly a unique n ∈ N with s ≡ n. A set of
transformation rules P induces an equivalence relation ≡P on graphs G and G′

via G ≡P G′ iff G →∗
P H and G′ →∗

P H for some graph H . If the set induces
a confluent and Noetherian relation, the required unique normal form can be
obtained by selecting graphs for which no applicable transformation rule exists.

3.2 Construction of Normal Forms via Model Transformation

To achieve normal forms, normalization is performed by using a set of transfor-
mation rules. The rules are applied iteratively. After no more rules are applicable,
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the clone detection algorithm proposed in [3] is applied. This strategy allows
detecting semantic clones using structural comparison techniques. As the nor-
malization of the syntactically different but semantically equivalent fragments
requires semantically equivalent unique normal forms, the transformation must
be semantically correct, confluent, and terminating.

Semantic Correctness: The transformation defined by each rule has to preserve
the observable behavior of the transformed model fragment, since syntactic mod-
ifications that change the behavior will lead to false positives. In our approach
all transformations are based on mathematical, logical, or structural equivalence
properties of Simulink models.

Rule Confluence: Transformation rules can introduce application conflicts if
their matches overlap and thus their application would lead to non-deterministic
results. This issue is known as the confluence problem and in generally undecid-
able [11]. In the approach presented here confluence is approximated by assigning
a priority value to each rule in order to solve the overlap conflicts in favor of the
rule with the highest priority. Since this however leaves conflicts between appli-
cations of the same rule, no complete confluence is assured, potentially leading
to non-unique normal forms.

Rule Termination: Apparently, the investigation of the conditions under which
the normalization can satisfy the termination criteria is very important for our
approach, since a normal form can only be reached if the graph transformation
terminates. In our case the set of transformation rules can be subdivided into:

– Rules which reduce the size of the model
– Rules which increase the size of the model or keep it unchanged

Since the first class of rules always reduces the number of the finite model ele-
ments, applying these rules always terminates. However the termination of the
second type of rules is undecidable in general [10]. A workaround for the prob-
lem is to use a layered transformation system [4], grouping rules in deletion
and non-deletion layers. All rules belonging to one layer are applied together,
and each layer is applied only once. In a deletion layer all member rules must
delete at least one element but not a newly created one. In a non-deletion layer
each rule must not delete any element or use a newly created element in its pat-
tern. A finite source graph and a finite number of layers guarantee termination.
In addition, to reach a normal form using a layered transformation system the
following conditions must also be fulfilled:

– The last creation of an element with a certain label should precede the first
deletion of an element with the same label.

– The occurrence of an element of a certain label in the pattern of a rule
implies that all elements of the same label were already created in previous
layers.
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Fig. 2. Placing Gain Block before Integrator Block

These two conditions imply that no rules are applicable after all layers have
been completed. Hence, termination is reached. The grouping of rules into layers
is done based on sequential dependency analysis. Furthermore, checking the
mentioned termination conditions in each layer can be done automatically [4].

Negative Application Conditions: To avoid transforming a matched fragment
changing its behavior, a set of negative application conditions are assigned to
rules, which must be fulfilled before applying the transformation. For example,
a transformation rule is not applied if matched blocks are involved in feedback
cycles as shown in Figure 6.

3.3 Derivation of Transformation Rules

We defined 40 semantic preserving transformation rules which perform structural
modifications on Simulink models [1]. The rules are derived using mathematical,
logical and structural semantics of Simulink models. In the following, we present
some of the transformation rules grouped by the properties they are derived
from, discuss their correctness and give examples for clarification.

Rules Derived from Mathematical Properties. The following transforma-
tion rules are based on properties of mathematical operations like commutativity,
associativity, and distributivity.

Placing Gain Block before Integrator Block: In a model fragment with an
integrator block followed by a gain block, the two blocks are swapped, executing
the gain before the integrator, exploiting the commutativity of the operations.
Figure 2 illustrates the rule.

Joining Consecutive Sum/Product Blocks: This rule can be applied on consec-
utive sum or product blocks resulting in merging them. The rule is based on the
commutativity and associativity of addition and multiplication. In Figure 1 the
product blocks in fragment A are joined into one product block in fragment B .

Trigonometric Functions: These are covered by a set of rules converting a
trigonometric function block into its normalized representation using only sine
blocks. For example, the tan block in Figure 3 is replaced by sine and cosine
blocks sharing the original input signal, followed by a product block.
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Fig. 3. Normalizing a tan block

Fig. 4. DeMorgan Law

Rules Derived from Logical Properties. The following transformation rules
are used to normalize model fragments of logical blocks. Hence, the rules are
based on logical properties such as absorption, negation, distribution and De-
Morgan laws.

DeMorgan Law: This rule is executed on two not blocks connected to an or
(and) block resulting in replacing them by an and (or) block followed by a
not block. The new and (or) block combines the two original input signals of
the mentioned not blocks. If the original or (and) block is connected to other
inputs, the original or (and) block is retained and the output of the newly created
fragment is attached to it as a new input (see Figure 4).

Distribution Law: The or -form of this rule is executed on a fragment with two or
blocks, or1 and or2, both with two input signals whose outputs are combined by
an and block and their input signals contain the same signal s. The rule replaces
the fragment by an or block combining the signal s and a new and block whose
input signals are those of the blocks or1 and or2 except for s. If an or block
contains more than two input signals, the rule attaches it as an input signal of
the new created and block. The other rule is similar to the first one except for
swapping the and and or blocks. The rule uses the distribution property in logic.
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Fig. 5. Gain for Multiplying by a Constant

Rules Derived from Structural Properties. The following transformation
rules are based on providing alternative structures or model fragments which
behave similarly to the original model fragments.

Combining Consecutive Mux Blocks: The rule is applied on two consecutive
mux blocks resulting in merging them. All original inputs are inputs of the new
mux block, while its output is the original output of the consecutive mux blocks.
The rule uses the fact that combining mux blocks does not change the resulting
signal structure.

Gain for Multiplying by a Constant: This rule is executed on a product block
with at least one constant block as input. In case of a product block with two
input signals, the rule results in replacing the product block by a gain block
whose value is the value of the constant block. In case a product block with
more than two input signals, only the constant block is eliminated and replaced
by a gain block attached after the original product block (see Figure 5).

Execution strategy. Our execution strategy consists of the following steps,
described in detail in [1]. First the transformation rules are grouped into rule
layers to meet the above-mentioned termination criteria. To construct these lay-
ers, each rule p is assigned to the lowest layer Li respecting the following rules:

1. if Li is a deletion layer then p must at least delete one element.
2. If Li is a non deletion layer then p must not delete any element.
3. If Li is a deletion layer, and p deletes an element e with label l then all rules

creating elements of label l belong to layers Lh with h < i.
4. If Li is a non-deletion layer then for each label l of an element e in the left-

hand side of p all rules creating elements with label l belong to layers Lh
with h < i

Then, the member rules of each group are prioritized in order to solve conflicts
of overlapping matches in favor of the rule with the highest priority.
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Fig. 6. Context Preparation and Non-Applicability of Transformation Rules

After that, the layers are applied one after another, repeatedly applying the
rule with the highest priority as often as possible. Once no more rules can be
applied in a layer, the next layer is applied.

Context Preparation: The context preparation is aimed at preserving the overall
behavior of the model after a model fragment has been normalized. If a matched
block has outgoing lines to other matched blocks as well as to unmatched blocks
the latter outgoing lines are called intermediate results. During the normalization
the behavior provided by the intermediate results can change, in turn potentially
leading a change of the overall behavior of the model outside the fragment.
This problem can be solved by defining negative application conditions to forbid
rule executions in case of the occurrence of intermediate results. However, this
restriction leads to a limitation of further normalization of model fragments.

Therefore, a second possibility has been investigated. This solution is the pro-
vision of these intermediate results by copying the parts of the match which
generate them. Hence, the intermediate results still are generated in the exact
same manner before the normalization and provided to the parts of the model
which depend on them. In special cases the context preparation cannot be ap-
plied, for example in case of feedback loops between matched and unmatched
nodes. Figure 6 illustrates the application of context preparation rules and neg-
ative application conditions: The context preparation copies the derivate block
before applying the transformation rule which swaps the green colored derivative
and gain blocks. The red colored integrator and gain blocks can not be swapped
because of the existence of feedback loops.

4 Case Study

To evaluate the practicability of our approach in enhancing the clone detection
algorithm in [3] with the capability of detecting semantic clones, the detection
method was implemented and applied to a case study.
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4.1 Analyzed Model

We performed our case study on a set of models with more than 1400 Simulink
blocks distributed over 8 files. The set consists partly of models which contain
several identical fragments and partly of models which implement similar behav-
iors. The models implement related functionalities of embedded systems in the
automotive domain.

4.2 Implementation

To evaluate the normalization approach and its usefulness for clone detection we
implemented it as a part of the quality analysis framework ConQAT, performing
the normalization as a preprocessing step before applying the clone detection
algorithm introduced in [3]. Furthermore, we made use of facilities implemented
in [3] for preprocessing the Simulink models used for the case study and for
reviewing the results.

4.3 Application

The clone detection algorithm [3] was applied both with and without the nor-
malization step, using 40 transformation rules (see section 3.3). After the clone
detection algorithm had been applied, each detected clone class together with its
size and the number of its instances was listed. Additionally, for the normalized
model the number of the rule executions and the number of the context prepa-
rations together with the locations of the rule matches were determined. We
removed all clones consisting of less than 4 blocks, since they were considered as
irrelevant. Subsequently, we compared the found clones of both cases based on
their size and location to detect related and semantic clones. Since clones could
be distributed across multiple files, the clone detection algorithm was executed
on all models at the same time.

4.4 Results

Our implementation of the normalization algorithm needed 4 seconds and about
6 kB of memory on a 1.7 GHz workstation with 2 GB of main memory for
transforming a Simulink model with 1400 blocks into a normal form. The nor-
malization performed 321 applications of 16 defined rules, reducing the size of
the model to 1351 blocks. To be able to execute the rules the normalization ac-
complished 142 context preparations. The execution of the clone detection after
performing the model normalization found 127 clone pairs in the models, which
resulted in 42 clone classes after clustering. The average clone size was about
14.5 nodes. On the other hand, the execution of the clone detection without
performing the model normalization found 113 clone pairs which resulted in 49
clone classes after clustering. The average size of the found clones without per-
forming the normalization was about 12.7 nodes. Table 1 shows how often each
transformation rule was applied. The rule with the largest number of executions
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Table 1. Number of Executions for each Rule

Rule # Executions
Gain for Multiplying by Constant 104
Joining Consecutive Gain Blocks 58
Bias for Adding a Constant 42
Joining Consecutive Product Blocks 40
Joining Consecutive Sum Blocks 28
Placing Gain Block before Integrator Block 16
Sum Rule in Integration 6
Power Rule 5
Distribution of Multiplication over Addition 4
Replacing Comp. to Const. by Comp. to Zero 4
Placing Gain Block before Derivative Block 2
Joining Consecutive Mux Blocks 2
Joining Consecutive Bias Blocks 2
Trigonometric functions 2
Elimination of Rounding Blocks 2
Math functions 2
Replacing Unary Minus Block by Gain Block 2

was the “gain for multiplying by constant”-rule followed by the “bias for adding
a constant”-rule. Furthermore the joining rules were the most frequently applied
rules. In contrast, the logical rules were hardly executed. In Table 2 an overview
is given of the cardinality of the clone classes found with and without performing
the normalization step. In both cases the most commonly reported clone classes
were pairs of clones. However, after applying the normalization clone detection
reported more clones but the clustering resulted in fewer clone classes and es-
pecially fewer pair classes than without normalization. This indicates that the
clustering phase was more effective after applying the normalization.

The left half of Table 3 shows the number of found clone classes, while the
right half shows the number of reported clones, in each case in relation to the size
of the clones for the clone detection with and without applying the normaliza-
tion. The number of the largest clone classes and their cardinality were similar
in both cases. The number of the smallest clone classes detected without the
normalization was significantly greater than after applying the normalization.
Since the number of the reported clones in both cases was similar we expected
that the normalization resulted in detecting semantic clones which led to fewer
clone classes after clustering. For the size ranges 7-10 and 16-21, the clone detec-
tion reported considerably more clones after applying the normalization which
indicated the detection of semantic clones within these size ranges. About 62%
of the originally detected clones were recognized again after the normalization.
The size of these clones mostly increased or decreased due to the applied rules.
In 5 detected clones the cardinality of the detected clone classes increased which
indicated the detection of semantic clones. About 17% of the originally detected
clones were not recognized after the normalization, since due to the reduction in
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Table 2. Number of Clone Classes for Clone Class Cardinality

Cardinality of Clone Class Number of Clone Classes
- Not Normalized Normalized
2 32 26
3 5 5
4 6 3
5 4 3
6 1 3
7 1 0
8 0 2
9 0 1

Table 3. Number of Clone Classes and Number of Reported Clones for Clone Size

Clone Size No. of Clone Classes No. of Reported Clones
- Not Normalized Normalized Not Normalized Normalized
4-6 31 17 46 43
7-10 8 13 11 25
11-15 4 4 5 7
16-21 0 4 0 6
21-30 1 0 1 0
>30 4 4 5 5

clone size, they were considered as irrelevant. About 21% of the originally de-
tected clones were destroyed after the normalization, caused by lack of confluence
specifically in context preparation.

Detected Semantic Clones: After the reported clone classes had been manu-
ally inspected, we found out that 5 clone classes contained substantial semantic
clones. One of the found clone classes was very small and of limited functionality.
Two pair classes extended syntactic cones by adding more blocks as a result of
the normalization. The last two clone classes – one of them shown in Figure 7
– consisted of model fragments of relevant size which had different syntax but
similar significant functionalities.

4.5 Discussion

The results – confirmed by additional experiments with models from environment
modeling, embedded control, and energy systems – indicate that the normaliza-
tion approach effectively extends the clone detection algorithm proposed in [3]
with the capability of detecting semantic clones. Moreover the manual inspection
of the found semantic clones shows that simple rules like replacement (trigonom-
etry rules) or swapping rules can be useful for detecting semantic clones. Such
simple rules were useful in our experiment as the syntax of the semantic clones
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Fig. 7. Two Model Fragments A and B Recognizable as Clones after Normalization

were equal except for slight differences. However, a comparison of the reported
clones after applying the normalization with those without applying the nor-
malization shows that the context preparation in our experiment led often to
destruction of existing clones or generation of new ones, due to a lack of con-
fluence. Therefore it is favorable to constraint the context preparation using
negative application conditions even if this decreases the number of possible rule
executions. In addition, the results indicate that normalization often reduced the
size of existing clones, making them considered as irrelevant.

The set of transformations used in the case study potentially results in the
reduction of the size of clones through the normalization and the lack of conflu-
ence, thus leading to a possibility of false negatives, i.e., undetected (syntactic)
clones. As semantic clones detection is used in addition to the detection of syn-
tactic clones, from a pragmatic point of view this still substantially improves the
state of the art via better recall in form of larger and more relevant clones, but
requires research to provide a more complete treatment.

5 Related Work

Currently, clone-detection in model-based development has only gained little
attention. [3] discusses the use of clone-detection for a Simulink-based devel-
opment process, however uses a very restricted notion of similarity. [2] gives a
more detailed comparison of this syntactic clone detection – forming the second
step after the normalization in the semantic clone detection used here – to other
related approaches, and discusses means to improve precision.
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In [9], Pham et al. presents an approach for detecting approximate clones in
Simulink models, allowing slight structural differences in the models. However
the approach can not be used to approximate semantic similarity, since small
structural modifications can introduce substantial behavior changes.

In [6], a formalism is shown for detecting equivalent business process models
based on detecting of semantically equivalent model fragments, transforming a
business process model into a term system and using term rewriting to obtain
a normal form. However, the approach is very specific to business process mod-
els supporting only a more structural notion of similarity. Hence, the approach
cannot be directly adapted to data-flow models such as Simulink.

In [5] Program Dependence Graphs (PDG) are used to identify semantic clones
in programs independent from their linear syntactic representation. As a dataflow
model is similar in nature to a PDG, isomorphic syntactic Simulink-clones al-
ready correspond to those kind of semantic clones, while the normalization used
here exceeds the aspect of isomorphism. Approaches like [8] are using a more
relaxed notion of similarity lifting this limitation, but are not sensitive to topo-
logical differences between subgraphs, thus making them unsuitable for data-flow
models, as topology plays a crucial role there.

6 Conclusions

In this contribution, an extension to the detection of clones in the development
of dataflow models for embedded control systems has been presented. In contrast
to previous approaches, mainly relying on the detection of syntactically equiv-
alent model fragments, in the approach presented here the concept of semantic
equivalence was used. To that end, normalization of models by means of graph
transformations has been used to identify model fragments with equivalent be-
havior. Although specifically implemented for Simulink, the presented approach
is also directly applicable for other data-flow formalisms like ASCET-SD, Es-
terel, or Lustre. While the basic approach – comparing normal-forms of models
obtained by graph transformations – also applies to other specification forms
like state machines, the practical usefulness is ongoing research.

The feasibility of the approach has been proven by the successful application
of a its implementation to models of practical size. This application lead to the
identification of additional clones, not identified by the detection approach re-
lying on structural equivalence alone without the use of normalization. While
the basic feasibility of the approach has been shown in the performed case stud-
ies, more experiments with larger and more heterogeneous models are needed to
finally assess the pragmatic advantages of the approach. As obviously the effec-
tiveness of the detection of semantic clones depends on the notion of similarity
used, which depends on the transformations used to obtain the normalizations,
the introduction of additional transformations must be investigated for model
fragments considered to be equivalent but not detected by the approach.
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Abstract. As a dynamic representation of the running system, a run-
time model provides a model-based interface to monitor and control the
system. A key issue for runtime models is to maintain their causal connec-
tions with the running system. That means when the systems change, the
models should change accordingly, and vice versa. However, for the ab-
stract runtime models that are heterogeneous to their target systems, it
is challenging to maintain such causal connections. This paper presents a
model-transformation-based approach to maintaining causal connections
for abstract runtime models. We define a new instant and incremental
transformation semantics for the QVT-Relational language, according
to the requirements of runtime models, and develop the transformation
algorithm following this semantics. We implement this approach on the
mediniQVT transformation engine, and apply it to provide the runtime
model for an intelligent office system named SmartLab.

1 Introduction

Modern systems provide many kinds of data during runtime, such as their inter-
nal states and configurations, the status of their tasks, and even their physical
environment. Runtime model is a promising approach towards the manipulation
of such runtime system data [1], allowing developers to monitor and control the
system in a model-based way. In this paper, we focus on the structural runtime
models that can be regarded as dynamic object diagrams representing the snap-
shots of running systems. A key issue for such runtime models is to maintain
their causal connections with the systems. That means when the systems change,
the models should change accordingly and instantly, and vice versa.

Many research approaches provide structural runtime models for different
systems [2–5]. These approaches focus on wrapping the low-level management
capability of the target systems into model-based interfaces, and thus their run-
time models directly reflect the system data. However, for a target system, only
one such reflective runtime model is usually not enough. To meet the different
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requirements and concerns on system monitoring and control, we need to ab-
stract the reflective model again in different concepts and organizations. Such
abstract runtime models act as different views of the reflective runtime model.
Due to the heterogeneity between the abstract model and the running system,
maintaining their causal connection is difficult.

In this paper, we present a model-transformation-based approach to maintain-
ing the causal connection for abstract runtime model, by propagating changes
between this abstract model and the existing reflective model of the target sys-
tem. The change propagation is guided by the relation between the two models,
specified in the QVT-Relational language. The challenge here is twofold. First,
the changes on the systems and the runtime models are usually small but fre-
quent, and thus the traditional batching QVT transformation that transforms
the whole model each time is not efficient. We need an instant (the transforma-
tion is triggered instantly after each change) and incremental (the execution is
based on the change but not the whole model) transformation appraoch. Second,
the relations between models and systems are usually bidirectional rather than
bijective. That means for one system change, there may be multiple candidate
abstract changes that all obey the relation, and vice versa. Therefore a clear and
determinate semantics of the transformation need to be defined.

The contributions of this paper can be summarized as follows.

– We define an instant and incremental transformation semantics for QVT-
Relational language, and formulate three properties, namely consistency,
stability and restorability, reflecting the requirements of runtime models.

– We develop the transformation algorithm according to the semantics. we
analyze the impact of the input change and only re-evaluate the influenced
relations and model elements. The impact analysis is based on the QVT rule,
the change type, and the trace of previous transformations.

– We implement an instant QVT transformation engine, on the basis of the
mediniQVT. We apply this engine to provide the runtime models for an
intelligent office system named SmartLab.

The rest of this paper is structured as follows. Section 2 explains the problem
based on a running example. Section 3 and Section 4 present the semantics and
algorithm of our transformation for runtime models. Section 5 evaluates the
approach. Section 6 concludes the paper, with discussions and our future plans.

2 The Running Example

2.1 The SmartLab System

To improve the working condition, the Software Institute of Peking University
sets up a smart office system in its office building. We installed sensors in the
rooms to measure the physical environment such as temperature, brightness, etc.
We also installed an RFID (Radio Frequency Identification) reader in each office
or meeting room. Every member in the institute has a unique RFID tag, stuck
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Fig. 1. The reflective and abstract meta-models for SmartLab

on his/her badge card. Some public assets and personal effects also have unique
RFID tags bound with them. The tags termly transmit unique radio signals,
which can be detected by the reader located in the same room.

Using these devices, SmartLab monitors the status of the whole institute, and
interact with the institute members via Email, short message service (SMS),
etc. Here are two exemplar monitoring scenarios: 1) Missing personal effects.
After meetings, people may leave their personal effects in the meeting room,
such as mobile phones or keys. SmartLab warns the owners when this happens.
2) Leaving the air-conditioners on. People may exit a room without turning
off the air-conditioner, wasting electricity. For such situations, SmartLab warns
the persons in nearby rooms.

2.2 The Runtime Models for SmartLab

Based on our earlier work [5, 6], we provide a reflective runtime model for Smart-
Lab, and an excerpt of its meta-model is shown in the left of Figure 1. The classes
directly define the concepts specific to the devices, and the properties define the
data that can be retrieved from them. However, this reflective runtime model
is still not proper for the above scenarios, because it represents the data in the
solution-space which has a gap between the problem-space concepts, such as
persons, things, rooms, etc., and cannot carry the problem-specific information
such as the ownership relation between persons and things. Therefore, we define
an abstract runtime model as shown in the right part of Figure 1. Using this
abstract runtime model, the first scenario can be implemented in a straightfor-
ward way: If the locate values of a Thing and its owner are not the same, then
create a new Warner, and add it to the owner’s warner list.

We need to maintain the causal connection between the abstract model and
the system, e.g., if a new tag is detected by a Reader, then the Person (or Thing)
should locate in the Room, and if a new Warner is created, a Messenger should
be created. The causal connection is guided by the relation between the two
models, specified as a QVT-Relational rule in Figure 2. The rule is constituted
by a set of relations: RR defines that the root elements are mapped if they have
the same name. SR defines that a Sensor maps to a Room with the same number
and temp values, if their roots are mapped. RTRP defines that if there is a pair of
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1 transformation RFIDLab(sys:RFID,app:Lab){

2 key RFIDRoot{name}; key Sensor{id}; key Room{number};...

3 top relation RR{ name:String;

4 sys rs : Devices{name=name}; abs ra : Lab{name=name}; }

5 top relation SR{

6 id:Integer; temp:Real; rs:Devices; ra:Lab;

7 sys sensor:Sensor{id=id,temp=temp,root=rs};

8 abs room:Room{number=id,temp=temp,root=ra};

9 when{RR(rs,ra);} }

10 top relation RTRP{

11 rid:Integer; tid:Integer; rs:RFIDRoot; ra:LabRoot;

12 sys reader:Reader{id=rid,root=rs}; sys tag:Tag{id=tid,reader=reader};

13 abs room:Room{number=rid,root=ra};

14 abs person:Person{id=tid,root=ra,locate=room};

15 when{RR(rs,ra) and ra.person->collect(id)->includes(tid);} }

16 top relation RTRT{ ... }

17 top relation SMSWarner{

18 phone:String; message:String;rs:Devices;ra:Lab;

19 sys sms:SMS{number=phone,message=message,root=rs};

20 abs person:Person{phone=phone,root=ra};

21 abs warner:Warner{message=message,warnee=person,type=’phone’};

22 when{RR(rs,ra);} }

23 top relation MailWarner{ ... } }

Fig. 2. Sample QVT relational transformation

Reader and Tag, and the Tag id is one of the Persons ids, then this Person is
located in the Room. RTRT is similar. Finally, SMSWarner means that a Person
and its Warner in type of "phone" map to an SMS. The relations illustrate the
heterogeneity between the two models, e.g., both Sensors and Readers map
to Rooms, and the containment association between Readers and Tags map to
horizontal association from the Rooms to either Persons or Things. It is not
straightforward to infer an abstract change from the system one, and vice versa.

2.3 Model Transformation for Runtime Models

Figure 3 summarizes our approach to supporting abstract runtime models. From
the reflective runtime model from our previous work [5, 6], developers define the
abstract meta-model according to the problem concepts, and the relation be-
tween it and the reflective one, using MOF and QVT-R[7], respectively. Here
QVT-R is a natural choice, because it is originally designed for specifying the
relation between models, rather than the transformation imperatives. Following
the provided meta-models and the relation, our transformation engine propa-
gates changes at runtime between the abstract model and the reflective one.
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Fig. 3. Model transformation for runtime models

The engine requires a specific semantics and execution of QVT-R, because of
the following features of runtime models. 1) The users of runtime models usually
require to see the effects of changes and manipulations immediately, and thus
we need instant transformation that is triggered by each change. Moreover, as
the model scale is big and the changes are small but frequent, the transforma-
tion should be incremental, only considering the part of the model impacted
by the change. 2) The users require a clear and determinate expectation about
the causal connection between the model and the system. However, since the
relations between are bidirectional [8], for a change on one model, there may
be multiple candidate changes on the other model that all satisfy the relation.
For example, considering RTRP in Figure 2, if a Tag escapes from a Reader, we
can either delete a Person or just reset its locate value. Therefore, we need
to formulate the semantics for this change-to-change QVT transformation, and
this semantics should meet the common requirements of runtime system moni-
toring and manipulation. 3) The relation is between a model and its view, rather
than two totally different models, and thus it will not be extremely complicated.
Therefore, we can ignore some sophisticated syntax and usage of QVT-R.

3 The Semantics

This section defines the semantics of our instant and incremental QVT transfor-
mation for runtime models, and formulates the properties that must be satisfied.

We first abstract the three inputs: The reflective meta-model S defines the set
of all the states of the reflective model, and the abstract meta-model A defines
the set for the abstract model. The literal meaning of the transformation is a
relation T ⊆ A × S. If (a, s) ∈ T , we say the two models are consistent.

The causal connection between a model and a system has two aspects [2], i.e.,
introspection that propagates the system changes in the abstract model, and
reconfiguration that propagates the abstract changes back. We use ΔS and ΔA

to denote all the possible changes on the two models, respectively. The causal
connection following a transformation T are two functions on the models and
their changes: IntroT : S × A × ΔS → S × A; ReconT : S × A × ΔA → S × A.
To support the above functions, the instant transformation maintains two live
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models, and for each time of execution, it takes the change on one model as an
input and output the change on the other model.

−→
T S×A : ΔS → ΔA; ←−

T S×A : ΔA → ΔS

Using this incremental transformation, we implement IntroT by calculating the
abstract change δa from the system change δs and then merging δa into the
original abstract model a: IntroT (s, a, δs) = (s + δs, a +−→

T s,a(δs)). For ReconT ,
we first calculate the system change δs, and merge it to s. Since merging changes
to the running system does not always lead to the expected effect, we reflect the
side-effects back to the abstract model: ReconT (s, a, δa) = (s + δs + δ′s, a + δ′a),
here, δs = ←−

T s,a(δa), δ′s is the side-effects of δs, and δ′a = −→
T s+δs,a+δa(δ′s).

Considering the requirements of runtime models, and also referring to the
properties of classical QVT transformations [9], we define the following three
properties for our incremental transformation, in forms of the post-conditions
on the result from any input (s, a) ∈ T, δs ∈ ΔS , δa ∈ ΔA.

Property 1. Consistency. First of all, after merging the input and resulted
changes, the two models must be consistent.

(s + δs, a + −→
T s,a(δs)) ∈ T ; (s + ←−

T s,a(δa), a + δa) ∈ T

The first part of consistency ensures that after Intro or Recon the abstract
model correctly represents the system state, and the second part ensures that
the changes executed to the system conforms to the intention of abstract changes.

Property 2. Stability. If the input change on one model does not violate the
relation, it should not cause any change on the other model.

(s + δs, a) ∈ T ⇒ a + −→
T s,a(δs) = a; (s, a + δa) ∈ T ⇒ s + ←−

T s,a(δa) = s

For Intro, stability ensures that the irrelevant system changes (such as the
change of brightness) and intermediate changes (such as detecting a new tag,
but having not got its id) do not disturb the monitoring agents. For Recon,
it not only ensures that the irrelevant abstract changes (such as changing the
ownership relation between persons and things) do not influence the system,
but also ensures the relevant abstract changes remain stable: The side-effect of
valid system writing is usually just a complement to the original change, e.g.,
adding a Mail to the Devices.messager will cause the Mail.root set to the
root element. Such complementary side-effects should not influence the original
abstract change, so that the users can manipulate the model in a coherent way.

Property 3. Restorability. After a change δs and its propagation result δa lead
the two models to s+δs and a+δa, the opposite change δ−1

s and its propagation
result should restore both models back. The other direction is the same.

−→
T s,a(δs) = δa ⇒ a + δa + −→

T s+δs,a+δa(δ−1
s ) = a

←−
T s,a(δa) = δs ⇒ s + δs + ←−

T s+δs,a+δa(δ−1
a ) = s
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Table 1. The modifications and their inverses

description μ μ−1

set the value of e.p from v to v′ set(e, p, v, v′) set(e, p, v′, v)
add v to the set e.p insert(e, p, v) remove(e, p, n)
remove v from the set e.p remove(e, p, v) insert(e, p, v)
create e of class c, with id = v e ← new(c, id, v) delete(e, id, v)
delete the existing element e delete(e, id, v) e ← new(c, id, v)

We require restorability based on the following reasons. First, it is a usual case
that the users undo their last change on the runtime model, and their intention
is to restore the system back. Second, the system changes usually happen in
couples, e.g., a person enters a room and then exits, a light is turned on and off
again. Coupled changes restore the system state and this should be reflected on
the abstract model. Third, for invalid system changes (such as trying to reset
the temperature value of a sensor), the side-effect is their inverses, and when
propagating them back, the original abstract changes should be clearly rolled
back. Finally, Restorability and stability together allow the abstract model to
carry the information that is irrelevant to the system. Since such information
does not influence the relation, the transformation could change it any time
without violating the relation. These two properties prevent it from changing
this information arbitrarily.

4 The Instant and Incremental Transformation Algorithm

Our basic idea is to analyze the impact of the input changes to reduce the scope
of execution. The impact analysis is based on the syntactical feature of QVT
rules, the type of changes, and the trace recorded from previous executions.

A QVT-R transformation T is constituted by a set of relations. A relation
has several domains, each with a class from the meta-models. The goal of QVT
transformation is to enforce each of these primitive relations. For each relation,
the engine tries to bind model elements to its domains, by matching the do-
main patterns. If no elements can be bound to a domain, the engine creates
new elements or updates existing ones. The detailed (but informal) semantics
of these PatternMatching and CreateOrUpdate operations can be found in the
QVT standard [7]. For batching transformation, each time the engine checks
and enforces all relations, and does pattern matching in the scope of all model
elements. Our incremental transformation is also based on the enforcement of
primitive relations, but we screen out the irrelevant relations and shrink the
scope of model elements according to the input changes.

A change is a set of primitive modifications, following Alanen et al.’s definition
[10]. Table 1 lists the five kinds of modifications we support. Each modification μ
has an inverse μ−1. When propagating a change, we deal with its modifications
one by one, in the order of new, insert, set, remove, and delete[10].
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Algorithm 1. The Instant and Incremental Transformation
function InstantTrans : (s, a, μ, tr) → (δa, tr′)1

δa←{}, tr′←tr2

foreach r ∈ T : ∃d ∈ dom(r), μ.e.class = d.c do3

if μ = set[e, p, v, v′] ∨ μ = insert[e, p, v] ∨ μ = remove[e, p, v] then4

if p is mentioned by any patterns in r then5

(δ′′a , tr′′)←ReEvaluate (r, tr′, s, a, μ)6

tr′←tr′′; δa←δa ∪ δ′′a7

else if μ = e ← new[T, id, v] then8

if e satisfies the pattern of d then9

(δ′′a , tr′′)←Construct (τ : {relation �→ r, d �→ e}, s, a, μ, tr′, φ)10

tr′←tr′′; δa←δa ∪ δ′′a11

else if μ ∈ delete then12

foreach τ ∈ tr : rule(τ ) = r ∧ μ.e = elem(τ, d) do13

(δ′′a , tr′′)←Destroy (τ, s, a, μ, tr′)14

tr′←tr′′; δa←δa ∪ δ′′a15

return (δa, tr′)16

A trace is a set of relation instances. An instance records a composition of
model elements bound to the domains of the relation, and these elements satisfy
the relation. We also record the change on the source model that causes this
instance to be established, and the change on the target model calculated by the
enforcement. For each transformation, the trace can be accumulated from the
previous executions on the changes that create the models from scratch, or can
be created at once by a batching transformation.

4.1 The Algorithm

In the rest of this section, we present our algorithm to propagate changes and
update the trace step by step. The following algorithm is in the direction from
the reflective to the abstract model, and the other direction is the same.

The main algorithm InstantTrans takes as input the original models s and
a, the modification μ on s, and the previous traces tr. It outputs the change
δa and the new trace tr′. We initiate δa as empty, and tr′ as the original tr
(Line 2). In the main body, we first screen the relations, and only consider the
ones whose domain classes include the class of μ. We handle the left relations
according to the type of μ: For a set, insert or remove (Line 4), only if the
modified property is mentioned in r, we ReEvaluate it. For a new, since there
may be new compositions of model elements containing e that satisfies r, we
Construct new relation instances, starting from a partial relation instant τ with
e bound to the proper domain. For a delete, we Destroy all the existing instances
of r that have been bound with the deleted element. After each iteration on a
relation, we update the trace, and unite the resulted changes.
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Algorithm 2. Re-Evaluate the QVT Rules
function ReEvaluate (r, tr, s, a, μ) → (δa, tr′)17

δa←{}; tr′←tr18

foreach τ ∈ tr : rule(τ ) = r ∧ ∃de ∈ dom(r) : μ.e = elem(τ, de) do19

if ¬check(r, τ, s + μ, a) then20

(δ′′a , tr′′)←Destroy (τ, s + μ, a, tr′)21

tr′←tr′′; δa←δa ∪ δ′′a22

τ ′←{relation �→ r}23

foreach d ∈ dom(r) : d = de ∨ μ.p is not mentioned by d do24

τ ′←τ ′ ∪ {d �→ elem(τ, d)}25

(δ′′a , tr′′)←Construct (τ ′, s, a, μ, tr′, φ)26

tr′←tr′′; δa←δa ∪ δ′′a27

if no such τ is found then28

if e satisfies the pattern of d then29

(δ′′a , tr′′)←Construct (τ : {relation �→ r, d �→ e}, s, a, μ, tr′, φ)30

tr′←tr′′; δa←δa ∪ δ′′a31

return (δa, tr′)32

To ReEvaluate a relation r, we first enumerate the instances of r that are
bound with the modified element μ.e. For each instance τ , we check the relation
again and Destroy it if it fails now. The modification may cause new compositions
of elements to satisfy the relation, and thus we seek and construct new binding
compositions. Here we do not exhaustively enumerate all the possible compo-
sitions, but utilize the existing bindings as a reference. Note that the property
μ.p is only mentioned by part of the domain patterns. Take SMSWarner in Fig-
ure 2 as an example, the property SMS.message is not mentioned by the person
domain, since the pattern does not contain any direct or transitive reference to
this property. If there is any new binding compositions emerging to satisfy r,
then it must be because the modification makes an element satisfy the pattern
that mentions this property. Therefore, we fix the elements bound to irrelevant
domains, leaving the other domains as free, and then use this partial binding as
a seed to construct new instances. If there is not any existing relation instance
as reference, we construct relations just as if this element is newly created.

Construct is similar to the classical enforcement semantics of QVT, but has
a partial relation instance as a seed, with some domains bound. The input also
includes a δa that records the accumulated changes to bind these domains. If
the seed τ is already complete, and satisfies the relation, this τ is a successful
instance. We return δa as the final change, add the new instance τ into the trace,
and record the source change {μ} and the target change δa under τ . If the input
τ is not complete yet, we take one free domain d, perform PatternMatching
on it to find all the elements that can satisfy the domain pattern, and store the
elements in the set cand (for “candidate”). If no binding is found, we try to create
new elements or update existing ones, and regard the result e as a candidate.
Finally, we try to bind each element e in cand, and invoke Construct recursively
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Algorithm 3. Construct and Destroy Relation Instances
function Construct : (τ, s, a, μ, tr, δa) → (δa, tr′)33

if every d ∈ dom(r) is bound in τ ∧check(τ, s + μ, a + δa) then34

tr′←tr ∪ {τ}; τ.recs←{μ}; τ.reca←δa35

foreach r′ ∈ T : when(r′) = r do36

(δ′′a , tr′′)←Construct (r′, tr′, para, s, a, μ, δa)37

τ.chd←τ.chd ∪ (tr′′ − tr′); δa←δa ∪ δ′′a ; tr′←tr′′38

return(tr′, δa)39

else if ∃d ∈ dom(r) : d /∈ dom(τ ) then40

cand←PatternMatching(τ, d, s + μ, a)41

if cand = φ∧ d is an enforce app domain then42

(δ′a, e)←CreateOrUpdate(τ, s, a + δa); cand←cand ∪ {e}43

foreach e ∈ cand do Construct (r, tr, τ ∪ {d �→ e}, s, a, δa ∪ δ′a)44

function Destroy : (τ, s, a, μ, tr) → (δa, tr′)45

tr′←tr − {τ}; δa←τ.rec−1
a46

foreach τ ′ ∈ τ.chd : ¬check(r, τ ′, s + μ, a) do47

(δ′a, tr′′)←Destroy (r, tr′, τ ′, s, a, μ)48

δ←δ ∪ δ′a; tr′←tr′′49

return (δa, tr′)50

to bind the rest of the free domains. Another thing to consider is the dependency
between relations. Due to the establishment of this relation, some other relations
that depends on it may be satisfied. Therefore, after constructing a new relation
instance, we find the relations depending on it, bind the mentioned elements
in this relation to the new ones, and try to construct new instances from this
partial seed. The constructed instances (tr′′ − tr′) are recorded as the children
of τ , so that when τ is not satisfied we can destroy them.

Destroy deletes an existing relation instance whose bound elements no longer
satisfy r. We delete this relation instance from the trace, and roll back the
recorded change on the system side that has made this instance satisfy the
relation. Since this relation is no longer satisfied, the relations depending on it
cannot be satisfied any longer, and we delete them consequently.

4.2 Examples

We use a set of simplified examples to illustrate how the algorithm works.
The original reflective and abstract models (s0 and a0, respectively) are shown
in Figure 4, without the shaded part. Currently, these two models are con-
sistent, and the trace is: tr = {τ1 : 〈RR, sr, ar〉, τ2 : 〈SR, sn, rm〉, τ3 :
〈RTRP, rd, tg1, rm, ps〉}. For the sake of simplicity, we omit the names of
domains. On these two models, we execute the following sample modifications.

For the first example, the sensor detects a change on the brightness, i.e., μ1 :
set[sn : Sensor, bright, 620.0, 150.0]. Since only SR contains the class Sensor,
whereas bright is not mentioned by it, the algorithm stops at Line 5.
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sr : SysRoot

name : pkusi

ar : AppRoot

name = pkusi

rm : Room

number = 1621
temp = 16.0

ps : Person

name = Hui
id = 102

th : Thing

name=phone
id = 104

root

room person thing

ownownerpersonlocate

sn : Sensor

id = 1621
temp=16.0
Bright=620.0

rd : Reader
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tg1 : Tag
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tg1 : Tag
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wn : Warner

type=mail
message= For…

ma : Mail
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1 1

2
2

Fig. 4. Sample models for transformation

For the second example, μ2 : set[sn : Sensor, temp, 16, 15], the algorithm
should propagate the new temperature to the abstract side. Following the al-
gorithm, we also find r = SR, and ReEvaluate this r. At Line 20, we find the
relation instance τ2, and since it does not satisfy the relation, we destroy it. After
that, we instantiate a new τ4 for r (Line 24), bind sn to its sensor domain, and
invoke Construct. In this method, since there is one free domain room, we try
to bind an element to it (Line 45). The CreateOrUpdate operation find rm and
update its temp attribute, and thus finally δa = set[rm : Room, temp, 16, 15].

For a complicated example, we consider the reader detects a new tag, i.e., δs =
{μ3 : tg2 ← new[Tag, id, 104], μ4 : set[tg3, reader,⊥, rd], μ5 : insert[rd, tag, tg3]}.
This time, we expect the thing 104 locate in room 1621. We propagate these mod-
ifications one by one. For μ3, we find two relations, RTRP and RTRT, but for the
former, tg2 does not satisfy its precondition, so we go on with the latter, and
invoke Construct with τ5 : {relation �→ RTPT, tag �→ tg2} as a seed. In Con-
struct, we cannot find any element to be bound to room (because tag2.reader
is not set yet), and stop the propagation on μ3. When propagating μ4, we Con-
struct τ5 again, and this time we bind rd to reader, rm to room, th to thing, and
update th.locate to rm. So the final result is δa = {set[th, locate,⊥, rm]} and a
new τ5 : 〈RTRT,rd,tg2,rm,th〉, marked as “1” in Figure 4. If his new tag escapes
from rd, the abstract model should be rolled back to a0. This change also con-
tains three modifications, and for the effective one μ7 : set[tg2, reader, rd,⊥],
we destroy the relation instance τ5 (Line 6 -> Line 22). And in Destroy, we
return the inverse of the recorded change under τ5, i.e., {set[th, locate, rm,⊥}.

Finally, we show a bidirectional example, marked as “2” in Figure 4. SmartLab
warns a person by creating a new Warner and adding it to the person’s warner
list. The last manipulation μ8 : set[wn, warnee,⊥, ps] leads to system changes
in the following way. We find the relation MailWarner (Line 3), and invoke
ReEvaluate (Line 6). Since this relation has no instances yet, we directly invoke
Construct (Line 27), and it finally creates a new Mail in the system side and set
its attributes. After successfully sending the message, the system destroys this
new Mail. We finally invoke Destroy, and the returned abstract change is the
inverse of the recorded modification μ8, resetting wn.warnee.
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5 Evaluation

Implementation. We implemented a prototype engine based on the mediniQVT.
The relation instances are extended from the QvtSemanticTasks, which are orig-
inally used by mediniQVT to store intermediate results during batching trans-
formation. The checking, pattern matching, create-or-update operations in our
algorithm are also reused and altered from mediniQVT. The syntactical analy-
sis on QVT rules, such as determining the mentioned properties of each domain
pattern, is implemented as queries and analysis on the QVT syntax tree.

Feasibility and Effectiveness. We applied this instant transformation en-
gine to provide the runtime model for a medium-scale smart office system, the
SmartLab. The reflective meta-model contains 27 classes and 69 properties, and
the QVT rule contains 36 relations (471 lines in total). We encouraged all the
members in our institute to propose and experiment monitoring scenarios based
on the abstract model. Until now, there are totally 41 scenarios proposed within
the capability of current SmartLab devices, e.g., turning off the lights when the
room is empty, turning on the water boiler in advance before a scheduled meet-
ing, warning nearby persons when a valuable public facility is moving, and so
on. Our instant transformation supported all these scenarios: A dedicated group
of students implemented all the scenarios as QVT operational scripts, and the
execution of these scripts satisfies the expectation of both the scenario proposers
and the script developers. To evaluate the approach on a wider scope of run-
time models, we also applied it on some small-scaled systems to support different
runtime models, such as C2 and Client/Server styled architecture for a JEE mid-
dleware named JOnAS and a mobile computing middleware named PLASTIC.
We have tried these cases [11] using batching transformation. The reproduction
of them still satisfies the requirements stated in the original papers.

Performance. The execution performance of our transformation engine is
enough for SmartLab. In peak period there are more than 300 model elements,
and for each change, the runtime model environment finishes the execution of
monitoring rules between 0.1 to 1 second, including the time spent on device
invocation, change collection, instant transformation and script execution. This
performance is acceptable for our monitoring scenarios on SmartLab. For the
other small-scaled cases, the execution time never exceed 0.1 second.

To evaluate the performance of transformation without the influence of other
runtime costs, we made up five pairs of models conforming to the meta-models
in SmartLab, and executed the transformation on them. Figure 5 illustrates the
experiment results. The horizontal axis lists the total number of model elements,
and the vertical axis shows the time spent in millisecond (logarithmic scale). We
performed four experiments on each subject. The first three were incremental
transformations after the irrelevant changes, changing the properties, and creat-
ing new elements. As a contrast, we also executed the batching transformation
directly using mediniQVT. All the experiments were executed on a PC with
Intel Core 2 Duo 3GHz CPU and 2GB memory. From the curves, we have the
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Fig. 5. Performance statistics

following conclusions. 1) the improvement from batching transformation to in-
cremental transformation is significant, and the time increases more gently as
the model scale increases. 2) The execution time on irrelevant changes is stable
around 10 milliseconds. That means the screening on the relations is indepen-
dent to the model scales, and adds very little to the total cost. 3) The curve for
changing properties is lower and gentler than creating elements. Since the only
difference between them is that the former have more fixed domains, this shows
that our effort to fix a part of the domain bindings is valuable.

We also performed stress tests to see the extreme change scale and frequency
we support, upon the subject models with 1000 elements. For scale, we generate
new models and calculate the changes from the original ones to them. When
the change contains more than 220 modifications (in average), the time spent
to transform these modifications becomes worse than transforming the whole
model. For frequency, we continuously generate changes with single modifica-
tions, and use them to launch the transformation. The extreme interval between
changes is 0.21s. For a smaller interval, there will be a queue of changes blocked.

6 Related Work

Runtime models are widely used on different systems to support self-repair [2],
dynamic adaption [4], data manipulation [3], etc. As a direct reflection of the tar-
get system, these runtime models are maintained by imperatively mapping the
model operations to the system management capabilities. In a previous work [11]
we propose the initial idea of using model transformation to maintain the ab-
stract runtime models that are not isomorphic to the low-level systems, but we
use batching transformation in that work. Vogel et al. [12] use incremental trans-
formation for runtime models. The difference is that they focus on integrating
a general-purpose transformation engine into their runtime model environment,
without revising the engine, whereas in this paper, we focus on the semantics
and implementation of a new transformation specific to runtime models.

A declarative transformation rule may allow multiple execution effects. The
solution is to give unambiguous semantics for transformation languages accord-
ing to specific usage. Foster et al. formulate three basic properties for the “view-
update” transformation between tree-based data [13]. Xiong et al. design and
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implement their ATL-based model synchronization according to four pre-defined
properties [14]. Stevens [9] discusses the semantics of the batching bidirectional
QVT transformation. Our properties of instant transformation root in Stevens’s
work, but are defined on model changes. Diskin et al. [15] formally discuss the
semantics and requirements of generic delta-based bidirectional transformation,
but in this paper, we employ a more lightweight and easy-to-implement seman-
tics, specific to the requirement of runtime models.

Johann and Egyed [16] implement instant and incremental model transfor-
mation approach based on the impact analysis of model changes, but the model
relation they support is only the simple mapping between elements. On the
basis of incremental pattern evaluation [17], researchers also implement incre-
mental transformation following the trigger-action rules [18] and ATL rules [19].
However, such imperative rules are not natural for specifying the relation be-
tween runtime models and systems. Giese and Wagner systematically discuss
the definition and requirement of instant and bidirectional transformation, and
implement it based on their TGG transformation engine [20]. However, TGG is
still heavy-weight for specifying model relations. To the best of our knowledge,
there is no work of instant and incremental transformation on QVT-R.

7 Conclusion

This paper presents a model-transformation-based approach to maintaining
causal connections between the running systems and their abstract runtime
models. We define a new incremental transformation semantics for the QVT-
Relational language according to the usage in runtime models, and develop the
instant transformation algorithm based on the impact analysis of changes. We
implement the approach based on the mediniQVT, and apply it in a pragmatic
smart office system named SmartLab.

As an initial attempt, the current target of this approach is not a general-
purpose incremental QVT transformation, but the one customized for runtime
models. The performance of this approach is not good for too big and too fre-
quent changes. However, these two cases are not common in runtime models. We
also have some restrictions on the usage of MOF and QVT. For MOF, we require
every class to have a key attribute, and require all the multiple properties to be
unordered. For QVT, we require 1) every element mentioned by a relation is
explicitly declared as a domain, 2) all the relations are defined as top ones, and
3) only when clauses are used to compose relations. According to our experience,
with these restricts, it is still enough to specify the relations in runtime models.

Our main future plan is to evaluate the feasibility and effectiveness of this
approach on other transformation contexts rather than merely runtime models,
improve the semantics and algorithms, and evaluate the possibility towards wide-
scope or even general-purpose instant and increment transformation on QVT-R.
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Abstract. Model–driven development of large-scale software systems is highly
likely to produce models that describe the systems from many diverse perspec-
tives using a variety of modeling languages. Checking and maintaining consis-
tency of information captured in such multi-modeling environments is known to
be challenging. In this paper we describe an approach to systematically synchro-
nize multi–models. The approach specifically addresses the problem of
synchronizing business processes and domain models in a Service-oriented Ar-
chitecture development environment. In the approach, the human effort required
to synchronize independently developed models is supplemented with significant
automated support. This process is used to identify concept divergences, that is,
a concept in one model which cannot be matched with concepts in the other
model. We automate the propagation of divergence resolution decisions across
the conflicting models. We illustrate the approach using models developed for a
Car Crash Crisis Management System (CCCMS), a case study problem used to
assess Aspect–oriented Modeling approaches.

1 Introduction

Developing a large–scale software system as a Service–oriented Architecture (SOA)
involves the creation and integration of a variety of services. Services must be coordi-
nated to adequately participate in the required behavior of the system. Model–driven
development of such systems is highly likely to produce a variety of models capturing
the many diverse design concerns that arise during development. The management of
models in such multi–modeling environments is known to be challenging. In particular,
activities related to checking and maintaining consistency among the multiple views
of a system can be complex. There is a need for techniques that developers can use to
detect conflicts and divergences across multi-models of systems developed using SOA.
Two models diverge when one model consists of elements that do not correspond to
elements in the other model.
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Our work specifically addresses the problem of synchronizing SOA business pro-
cess models with domain models. The approach described in this paper provides SOA

designers with integrated generative and model composition techniques that can be
used to automatically propagate divergence resolution strategies across these models.
The core of the iterative synchronization approach consists of four major steps: (i)
the generation of a structural model based on the data extracted from the business pro-
cess model, (ii) the merge of the generated model with the initial domain model, (iii)
the identification of formal divergences between these two models and finally (iv) the
automated propagation of resolution strategies provided by experts.

The remainder of this paper is organized as follows. Section 2 introduces the CC-
CMS case study that motivates our approach. Section 3 outlines the challenges and
the solution that we propose in this paper. Section 4 presents situations where diver-
gences occur and proposes a formalization of the divergences. Section 5 illustrates how
we capture experts knowledge about how to resolve divergences. Section 6 focuses on
the fourth step of the process and describes how resolution strategies are automatically
propagated across both the domain model and the business processes model. Section 7
discusses related work and Section 8 concludes this paper.

2 Car Crash Crisis Management System (CCCMS)

We illustrate the approach using a case study problem described in a Transactions on
Aspect-Oriented Software Development (TAOSD) special issue on Aspect-Oriented
Modeling (AOM) [15]. The purpose of the special issue was to compare the applica-
tion of existing AOM approaches on a common system development problem, namely
the development of a Crisis Management System (CMS). In the case study, a CMS is
“a system that facilitates coordination of activities and information flow between all
stakeholders and parties that need to work together to handle a crisis” [11]. Among
the multitude of crises handled by CMS, including terrorist attacks, epidemics, or ac-
cidents, we focus on car accidents. Car accidents are handled by the Car Crash CMS
(CCCMS) which “includes all the functionalities of general crisis management systems,
and some additional features specific to car crashes such as facilitating the rescuing of
victims at the crisis scene and the use of tow trucks to remove damaged vehicles”. The
original system includes ten use cases described using textual scenarios.

For ease of understanding, we illustrate our approach on the Capture Witness Report
(CWR) use case only. The CWR case study (use case #2 in the original document)
captures the set of actions that a Coordinator takes to create a new Crisis based on the
information reported by the Witness of a car accident. The main success scenario for
this use case (extracted from the requirements document) is described in FIG. 1. The
subject of the use case is the CCCMS system represented by System. Two actors are
involved in the sequence of activities needed to report a car crash: (i) PhoneCompany
is the role played by an external partner that provides phone–related information, and
(ii) Coordinator is the role played by the person who interacts with the CCCMS system
through a graphical user interface to enter information.

We focus on the contribution of two experts in the definition of a solution to this
CWR use case: a domain model expert (ed) designs the structural view of the system
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Coordinator requests Witness to provide his identification.
1. Coordinator provides witness information to System as reported by the witness.
2. Coordinator informs System of location and type of crisis as reported by the witness.

In parallel to steps 2−4:
2a.1 System contacts PhoneCompany to verify witness information.
2a.2 PhoneCompany sends address/phone information to System.
2a.3 System validates information received from the PhoneCompany.

3. System provides Coordinator with a crisis-focused checklist.
4. Coordinator provides crisis information to System as reported by the witness.
5. System assigns an initial emergency level to the crisis and sets the crisis status to active.

Use case ends in success.

Fig. 1. Textual Scenario of Use Case #2: “Capture Witness Report”

and a business process expert (eb) designs the behavioral view (i.e., the set of activities
and the flow of control between these activities) of the system.

Domain Model Design. FIG. 2(a) is a class diagram that captures problem concepts
identified from the requirements and that are relevant to the CWR use case. This domain
class diagram (CDD) is designed by ed who formalizes his deep understanding of the
various concepts manipulated in the CCCMS system. The main concepts with respect to
the CWR use case are the following:

Crisis: is the concept shared by any CMS system. A Crisis occurs at a given lo-
cation and at a given time, it has an emergency level, a status and possibly some
additional information. A Crisis may be reported by a Witness and may include
Missions.

Witness: is a person who reports a Crisis.
Mission: is an action that should be taken when a Crisis is reported.
CheckList: is a list of things that should be checked with a Witness.
CMSEmployee: is a human resource who is qualified and capable of performing Miss-

ions in the context of a Crisis.

Business Process Model. The business process model (BPM) associated with the CWR
use case is represented in FIG. 2(b). According to SOA principles, eb designs this busi-
ness process model with regard to his/her own understanding of the system. For better
undestanding, we provide correspondences (black clouds) between the BPM activities
and the steps in the textual scenario (see Fig. 1). The business process starts by receiv-
ing a crisis coordinator (coord) and a crisis identifier (id). It contains two branches,
executed in parallel. The left branch of the business process deals with the internal logic
of the CWR scenario. The context of the current crisis is built by retrieving informa-
tion from the witness of the crisis: the process requests preliminary information about
the crisis and then refines the information it receives through subsequent exchanges
between the system and the witness. In parallel (the right branch), the system calls an
external partner (PhoneCompany) to check the information given by the witness of a
crisis and prevent false or erroneous reports. When the two branches join, that is, when
the system considers the crisis report to be genuine, the system assigns an emergency
level to the crisis and updates the crisis status to active.
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CCCMS

emergencyLevel: String
affectedArea: String
startTime: String
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detailedInfo: String
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emergencyLevel: String
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(a) Structural model (CDD), extract.

1.

2.

3.

4.

5.

2a.1

2a.2

2a.3

(b) Business process model (BPM), graphical representation

We use here the graphical representation defined by ADORE [15] to represent business pro-
cesses. Boxes represent activities (e.g., message reception, service invocation), and arrows rep-
resent causality relations (i.e., the associated partial order). A wait relation (a→ b) means that
b will wait for the end of a to start its own execution. A guard relation (a v→ b) strengthens the
wait semantics, and conditions the start of b to the value of v. Relations are combined using a
conjunctive semantics (∧).

Fig. 2. Initial model artifacts, proposed by experts
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3 Challenges and Synchronization Process

The complete CCCMS implementation contains thirteen business processes, describ-
ing hundreds of activities and thousands of relations between activities. Manual
synchronization of the various views of such a large system can be challenging, time–
consuming and error–prone. This section highlights situations in which checking and
maintaining consistency across models can benefit from the use of automatic syn-
chronization mechanisms. Since CDD and BPM are defined by independent experts
(ed �= eb), one can encounter situations where types from the behavioral model (BPM)
and types from the structural model (CDD) diverge. We illustrate these divergences with
examples from Section 2 below:

S1–Name Mismatch: The business expert misspells a concept that already exists in
CDD. In FIG. 2(b), ed uses a CheckList type whereas eb uses a CrisisCheck-
List type. This situation illustrates naming conflicts that often occur across dif-
ferent views of the same system. For instance, the PROMPT [17] approach for
aligning ontologies addresses this kind of conflicts among others.

S2–Concept Enforcing: The business expert uses data collected from an external part-
ner, which are unknown from the domain point of view. In FIG. 2(b), eb uses in-
formation collected from the external agency PhoneCompany that is unkown to ed

and thus not modeled in the CDD. This situation identifies the need to introduce
externally defined artefacts (i.e., provided by partner services) to the CDD.

S3–Concept Usages: The business expert uses his/her own data structure, i.e., uses
concepts defined in CDD in an unforeseen way. In FIG. 2(b), eb uses a Prelim-

inaryInformation concept in Activity 2. Since the original scenario indicates
that the Coordinator should manipulate the location and type of the Crisis,
we consider that eb aggregated several artifacts already defined in CDD (namely
the location of the crisis and its type) in a single object for practical reasons. This
situation illustrates how specific usage of data in a BPM can improve the CDD.

Clearly, the synchronization of both CDD and BPM is not a trivial problem. We identify
two challenges related to these situations: (i) the automatic identification of such diver-
gences (C1) and (ii) the capture of resolution strategies and their automated propagation
across models in the synchronization process (C2). FIG. 3 illustrates our approach that
tackles these two challenges. The first step of the process extracts data from the set of
available BPM to derive a class diagram (CDI) which contains all the concepts manip-
ulated by this set of processes (1). Then, we use a divergence detection algorithm to
identify occurrences of the situations (Si) that we discussed previously (2). The detec-
tion of divergences leads to a phase of negotiation between experts from the domain and
experts from the business process. Experts should consent on identifying strategies to
resolve divergences (3) and to ultimately perform an accurate synchronization of CDD

and BPM. The last step of the process (4) propagates the resolution strategies using a
dedicated algorithm (strategies propagation), which automatically applies changes in
both CDD and BPM.
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Fig. 3. SOA Models Synchronization: Process Overview

4 Identifying Model Divergences

This section presents the first two steps of the model synchronization process and the
formalization of the divergence detection mechanism.

4.1 Naive Synchronization with Merge

The first step of the process extracts data from the BPM to derive a class–diagram
(CDI). The generation procedure visits all available business processes and extracts the
types of all the declared variables.

Merging CDI with CDD using model composition techniques such as Kompose [8],
produces a naive alignment of both models (FIG. 4). Naive alignment relies on an el-
ement matching process based on names. Elements with equivalent names are unified
into a single element. For instance, the CMSEmployee element has been found in both
CDD and CDI and therefore the merged model contains a single unified CMSEmployee
element. Though simple, the naive alignment cannot align concepts that have different
names. The default behavior of Kompose when such name–mismatches occur is to in-
clude the elements that do not match in the merged model. For instance, Preliminary-
Information is a concept from CDI with no candidate match in CDD.

CCCMS

emergencyLevel: String
affectedArea: String
startTime: String
endTime: String
status: String
detailedInfo: String

Crisis
emergencyLevel: String
location: String
startTime: String
endTime: String
status: String
detailedInfo: String

Mission

Worker

CMSEmployee

identification: String

id: String

Witness

CrisisType

CheckList

0..*

0..*
0..*

0..*

leader

involved

missions

crisis

crisisobservedBy
type

witness
mission

CrisisCheckListPreliminaryInformation CrisisInformation

PhoneCompany

PhoneInformation

CMSEmployee

Fig. 4. Merged model: CDD (white) ⊕ CDI (gray)
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We modified the default behavior of Kompose to record every operation used to
produce the merged model. This record is analyzed to (1) validate every element that is
automatically merged (e.g., CMSEmployee) and to (2) detect divergences between CDD

and CDI.

4.2 Intuitive Definition of Divergences

The analysis of the recorded operations leads to the detection of two kinds of diver-
gences:

Point-of-view divergences occur when a model element from CDI has no equivalent
counterpart in CDD (e.g.,PhoneInformation).

Structural divergences occur when a model element from CDI has an equivalent
counterpart in CDD but the properties of the model element do not match with
the properties of the corresponding model element in CDD (e.g., a “public” model
element in CDI is “private” in CDD).

4.3 Divergence Detection Formalization

The divergence detection mechanism uses a matching operator and a set of signatures
to compare a model element with another one. Let match be the predicate that checks
if a model element of CDI is equivalent to a model element of CDD. With this match
predicate, we formalize the kind of divergences as follows:

– Point-of-view Divergence refers to a model element in CDI that has no equivalent
model element in CDD: b ∈CDIs.t. � ∃di ∈CDD, match(b,di).

– Structural Divergence refers to a model element in CDI that has equivalent model
element in CDD but whose properties do not match.

We formalize structural divergences according to the definitions provided by Barais
et al. [3]. We defined two rules, used to reify the Class signature and the Property
signature.

Class Signature. The signature of a Class encompasses its identi f ier, its modi f ier, pos-
sible superclasses and its usage. In the Object–Oriented (OO) paradigm, the category
and the visibility of classes provide additional information on how we may use these
classes in a given OO program. A class is internal when it participates in calling in-
ternal services either as a value or as the type of a parameter of a service. For all other
usages, we consider the class as mixed.

Classsig = (Identi f ier,Modi f ier,Superclass,Usage)
Modi f iers ∈ {Category,Visibility}, Category ∈ {abstract,concrete, f inal}

Visibility ∈ {private, protected, public}, Usage ∈ {internal,mixed}
CDI reflects the usage of the class definitions at runtime and thus, classes are necessarily
concrete, public with no Superclasses. In other words, we detect a divergence (c1)
when a class in CDI has an equivalent class in CDD that is not public:

(c1) match(CB,CD)∧VisibilityCD �= public (1)
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Usage refers to the class usage in the business processes. This definition has an impact
on the process of deriving CDI: (1) classes that do not participate in calling an internal
service are not captured by the data structure extraction process since we cannot modify
the definition of a class provided by an external partner for compatibility reasons; (2)
classes that are used both within internal and external services are mixed. They can
only be enriched with additional information that cope with the initial definition of the
class. Regarding Usage, we detect a divergence (c2) when the usage of a class in CDD

is internal whereas an equivalent class is mixed in CDI:

(c2) match(CB,CD)∧UsageCD = internal∧UsageCB = mixed (2)

Property Signature. The signature of a property encompasses its Identi f ier, its scope
of use (Static), its Type that is either a Class or a Datatype and its Access.

Propertysig = (Identi f ier,Static,Type,Access)
Static ∈ {static,nonstatic}, Type ∈Class∪Datatype

Access ∈ {read,write,rw,no}
The first divergence (p1) that we may detect is if the two properties that we matched in
CDI and in CDD have different types:

match(PB,PD)∧ (p1) TypePD �= TypePB (3)

A property is static if it is common to all instances of this property and it is nonstatic
otherwise. Properties that are used in BPM are necessarily nonstatic and thus we may
detect the following divergence (p2):

match(PB,PD)∧ (p2) StaticPD = static (4)

Among these usual OO characteristics, we propose an additional access characteristic
which determines how a property is accessed in BPM: read means that the property is
only read by a service; write means that the property is only written by a service; rw
means that the property is read and written by one or more services; no is used in other
cases. For instance, the property id of a Witness in FIG. 2(b) is a read property since
the property is read in activity 2a.1 and never written in any other activity. From this
definition, we may detect two divergences: (p3) a property in CDD is never accessed
(no) or (p3′) a property in CDD is not rw and an equivalent property in CDI is accessed
differently:

(p3) AccessPD = no ∨ (p3′) (AccessPD �= rw∧AccessPD �= AccessPB) (5)

The formalization of the various kind of divergences allows the definition of generic
resolution strategies that we discuss in the next section.

5 Resolution Strategies

This section proposes a formal representation of the resolution strategies (a graphical
representation is presented in Fig. 5) to automate their propagation.
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In the context of this paper, we focus on Point–of–View divergences, since their
resolution requires action from humans and impacts both CDD and BPM. Resolution
of Point-of-View divergences involves a negotiation phase between the experts of the
domain and the experts of the business process. Negotiation leads to a consensus on
proposing a set of resolution strategies to properly synchronize CDD with the data struc-
ture used in BPM.

To support the negotiation phase and to automate the propagation of resolution strate-
gies, we propose a high-level specification of these resolution strategies, using a map-
ping language and the graphical tool that supports it. The mapping language and the tool
are based on previous work [5]. In this specific case study, we map models of different
views of the same system instead of expressing mapping on heterogeneous metamod-
els. The original definition of a mapping relationship remains: a mapping relationship is
a white diamond which has links (dotted lines) to model elements from CDD and CDI.

The definition of a mapping strategy is slightly different from [5] since it depends
on the types of elements involved in the mapping and the arity of the relationship (i.e.,
the number of model elements involved in the mapping relationship). The meaning of
mapping strategies is to ultimately align CDI and CDD data structures and we propose
two unidirectional alignment strategies for synchronizing CDD and BPM:

– Similarity strategy addresses the problem of name mismatch (S1). This strategy al-
lows renaming some classes or properties to allow matching. Experts choose the
name of an element that they consider as correct and they expect that each occur-
rence of the inadequate name is replaced by the chosen name. In FIG. 5, experts
chose to keep CrisisCheckList from CDI instead of CheckList from CDD.
A similarity strategy must be bound to a mapping between exactly two (arity = 1)
model elements of the same type.

– Replacement strategy is chosen by experts when they select which model ele-
ment from CDI or from CDD to keep when addressing the two situations of con-
cept enforcing (S2) and concept usages (S3). The strategy indicates that one of
the model elements is discarded and an additional parameter provides the name
of the relation between the initial container and the model element that is kept. In
FIG. 5, experts have no choice but to add PhoneInformation to CDD since it is
used by an external service. Therefore they indicate the name of the relation be-
tween a Witness and the new class PhoneInformation. Similarly, experts relate
CrisisInformation with three properties of the class Crisis. These properties
are replaced by both a new CrisisInformation class and a relation between
Crisis and CrisisInformation called crisisInfo.

6 Automatic Propagation of the Resolution Strategies

The negotiation phase is important for experts to come to an agreement about how
to deal with divergences in views. We capture their decisions in a dedicated language
that allows automatic propagation across models. Giving a precise interpretation for
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Fig. 5. A mapping model between the extracted model and the domain model is necessary to
capture the users expectations

each resolution strategy, we automatically produce a set of operations on both CDD and
BPM to synchronize the views. In the following sections, we illustrate the interpretation
of each resolution strategy with examples from the case study.

6.1 Name–Mismatch Strategy

The resolution of name–mismatches is straight-forward. The propagation process iden-
tifies every occurrences of a given name and replaces it with the name provided by the
experts. The details of the propagation are discussed in the next subsections for both
CDD and BPM.

Domain model synchronization. We use the language of directives provided by the
Kompose tool to rename model elements in CDD. We adapted the Kompose tool to
execute directives on a single model. Listing 1.1 lists the directives that the Kompose
tool executes for modifying the name of CheckList in CDD.

D i r e c t i v e s {
domainmodel : : C h e c k L i s t . name := ” C r i s i s C h e c k L i s t ”

}
Listing 1.1. Kompose directives for renaming the CheckList class of the domain model CDD

Business Process Synchronization. We use a formal representation of business pro-
cesses models, based on many-sorted first order logic [14]. Thus, one can use logical
substitution (θ = {x ← x′}, [18]) to replace in a given model m all occurrences of x
by x′. We denote a mθ the model obtained after substitution. When several substitu-
tions Θ = {θ1, . . . ,θn} need to be performed on the same model, we denote as mΘ
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their parallel application on m. In the context of name mismatch strategies, the engine
will generate the set of substitutions necessary to perform all the expected alignments:
Θ = {w.identi f ication← w.id}. Denoting as {bp1, . . . ,bpn} the available business pro-
cesses in the system, the enhanced SOA is therefore defined as {bp1Θ, . . . ,bpnΘ}.

6.2 Concept Enforcing and Concept Usage Strategies

The resolution of concept enforcing and concept usages situations may rely on a large
number of operations for propagating changes. The details of the propagation are dis-
cussed in the next subsections for both CDD and BPM.

Domain Model Synchronization. Synchronization of CDD for concept enforcing and
concept usages relies on a set of Kompose directives to modify CDD. We adopt two
interpretations that are driven by the arity of the mapping relationship:

– When a mapping relationship relates only two model elements, the model ele-
ment from CDD is removed, the model element from CDI is added to CDD and
a UML relation is created from the container of the initial model element from
CDD to the new model element in CDD. For instance, experts decided to discard
the phone property of the class Witness and use PhoneInformation instead.
Property phone is removed from the class Witness and we create a new contain-
ment relation between Witness and PhoneInformation. This relation is named
against the parameter of the replacement strategy.

– When a mapping relationship relates more than two model elements, the synchro-
nization process is almost the same except that the model element from CDI is
considered as the container of the model elements from CDD. Thus, we move the
model elements from CDD into the new model element in CDD. For instance, ex-
perts agreed on using PreliminaryInformation instead of the two properties
type and affectedArea from the class Crisis. PreliminaryInformation is
thus enriched with the two properties type and affectedArea and a new con-
tainment relation is created between Crisis and PreliminaryInformation.

Listing 1.2 lists the directives that are applied on CDD for replacing the phone property
of the class Witness with PhoneInformation.

D i r e c t i v e s {
/∗ C r e a t e s a new P h o n e I n f o r m a t i o n c l a s s

and removes e x i s t i n g phone a t t r i b u t e
i n W i t n e s s ∗ /

c r e a t e C l a s s a s $ p i
$ p i . name = ” P h o n e I n f o r m a t i o n ”
d e s t r o y domainmodel : : Wi tnes s : : phone
/ / C r e a t e s t h e phone r e l a t i o n
c r e a t e A s s o c i a t i o n as $phone
$phone . name = ” phone ”
c r e a t e P r o p e r t y a s $ p h o n e s r c
$ p h o n e s r c . a g g r e g a t i o n =

domainmodel : : Aggrega t ionKind : :
# compos i t e

$ p h o n e s r c . uppe r = 1
$ p h o n e s r c . t y p e = domainmodel : : Wi tnes s

c r e a t e P r o p e r t y a s $ p h o n e t g t
$ p h o n e t g t . uppe r = 1
$ p h o n e t g t . t y p e = $ p i

$phone . memberEnd + $ p h o n e s r c
$phone . memberEnd + $ p h o n e t g t
/∗ Adds t h e P h o n e I n f o r m a t i o n c l a s s and

t h e phone r e l a t i o n ∗ /
domainmodel : : packagedE lemen t + $ p i
domainmodel : : packagedE lemen t + $phone }

Listing 1.2. Kompose directives for integrating PhoneInformation in the domain model CDD
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Business Process Synchronization. The propagation of strategies for the resolution of
concept enforcing and concept usage situations relies on logical substitution to propa-
gate the new accesses (e.g., {pi ← wi.phone} to replace the variable pi by an access to
the attribute phone contained in the variable wi). However, such replacements impose
that we retrieve the “container” variable (e.g., wi) that is necessary to access a specific
property (e.g., phone). Synchronization of PhoneInformation and phone illustrates
the situation where the “container” variable already exists. Thus we use this variable to
access to the phone information of a Witness and substitutions are propagated. When
the “container” variable is not already available, we ask the experts how to initialize this
“container” in BPM. After synchronization of PreliminaryInformationwith type
and affectedArea, PreliminaryInformation is contained by a Crisis object.
Since no Crisis object is available in the initial process, experts propose the invoca-
tion of the getCrisis operation exposed by the CMS service. This operation stores a
Crisis object in a variable c. This invocation is automatically inserted into the business
process by the ADORE engine (after the receive acitivity) and default substitutions
are executed.

7 Related Work

Researchers and practitioners recognize the importance of business process modeling
in understanding and designing accurate software systems [4]. Service-Oriented Archi-
tecture supports composition of standard-based services that can be reused quickly to
meet business needs. A common enterprise domain model for integration into a SOA is
used for exchanging business information between services. A pragmatic approach to
support integration of a SOA is to concurrently design the domain model and business
processes.

Model matching and model merging are the key activities in most of the multi–
modeling approaches that tackle analysis or design of software systems. The techniques
for model matching proposed in [16,1,7] are not incompatible with our approach and
we may benefit from them to propose a formal basis for model matching. However, this
paper focuses on the automation of the divergence detection and of the synchronization
process: we propose to capture divergences resolution strategies between heterogeneous
domains in a dedicated model and we provide supporting tools for their automatic prop-
agation.

In [3], authors formalize possible conflicts for classes merging. Predefined Conflict-
Fixers can then be used to automatically solve conflicts. We extend this approach to
provide operations that change the business process when necessary.

In [19], the authors extend the UML metamodel to support consistency maintenance
between class diagrams, sequence diagrams and state diagrams. We complement this
work, focusing on class diagrams and business processes and proposing strategies for
resolving differences. In [6], a component modeling language called MiCo has been
defined that supports multi-view modeling. The consistency between different diagrams
is automatically achieved by building a unique model, gluing the different view models
that the users have built. We provide a similar common model but its purpose is to
propagate resolution strategies in multiple business processes models.
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CCCMS

emergencyLevel: String
status: String

Crisis

emergencyLevel: String
location: String
startTime: String
endTime: String
status: String
detailedInfo: String

Mission
Worker

CMSEmployee

identification: String
Witness

CrisisType

0..*
0..*

0..*

leader

involved missions
crisis

observedBy

mission witness

affectedArea: String
PreliminaryInformation

0..* crisis

type

PhoneCompany

PhoneInformation
CrisisInformation

prelimInfo
phone

detailedInfo: String
startTime: String
endTime: String

crisisInfo

CrisisCheckList

(a) Aligned domain model

(b) Aligned business process model

Fig. 6. Aligned models, after the synchronization
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Among the divergences identified, some require human expertise. Identifying the
divergences and proposing changes is similar to refactoring. Kerievsky defines a set of
patterns and their corresponding sequences of low-level design transformations, known
as refactorings, to improve existing designs [10]. We identify similar patterns for which
we propose automatic transformations.

In [13], authors propose the technique of critical pair analysis to detect the implicit
dependencies between refactorings. The results of this analysis can help the developer
to make an informed decision of which refactoring is most suitable in a given context
and why. We are considering integrating this approach with our approach to identifying
strategies.

When models of different views are changed, it may be necessary to track these
changes. Like [12], we are working to save the changes (synchronization directives) and
strategies that have been applied to improve the traceability of the system and automate
some particular choice. In the long term we also plan to use this information to allow
backtracking and thus support a better management of accidental complexity [2].

8 Conclusion

In this paper we describe an approach for synchronizing business process models with
domain models developed by different teams working on the same system. The ap-
proach leverages and integrates model composition and generative techniques and tools.
While manual intervention is still required, significant aspects of the synchronization
process are automated. Manual intervention focuses on activities that require human
judgment and experience, for example, on activities concerned with resolving diver-
gences and conflicts across the models. Deciding what to compose and which composi-
tion to apply still remains a difficult manual process, due to the many dependencies and
interrelationships between relevant compositions.

We plan to dig further for identifying other situations that require specific resolution
strategies. Improving the automatic detection of divergences and propose an extensive
set of relevant resolution strategies will help managing the global complexity of multi-
view synchronization.
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Université du Luxembourg
Frank.Hermann@uni.lu

4 Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya, Barcelona, Spain

orejas@lsi.upc.edu

Abstract. A bidirectional transformation (BX) keeps a pair of interre-
lated models synchronized. Symmetric BXs are those for which neither
model in the pair fully determines the other. We build two algebraic
frameworks for symmetric BXs, with one correctly implementing the
other, and both being delta-based generalizations of known state-based
frameworks. We identify two new algebraic laws—weak undoability and
weak invertibility, which capture important semantics of BX and are use-
ful for both state- and delta-based settings. Our approach also provides
a flexible tool architecture adaptable to different user’s needs.

1 Introduction

Keeping a system of models mutually consistent (model synchronization) is vital
for model-driven engineering. In a typical scenario, given a pair of inter-related
models, changes in either of them are to be propagated to the other to restore
consistency. This setting is often referred to as bidirectional model transforma-
tion (BX) [3].

As noted by Stevens [15], despite early availability of several BX tools on the
market, they did not gain much user appreciation because of semantic issues.
Indeed, to avoid surprises, a user should clearly understand the behavior of
synchronization procedures implemented by the tool. To formalize the semantics
of BX tools and guide their implementation, algebraic frameworks for BX have
been studied intensively [8,15,6,19,12].

The majority of algebraic BX frameworks (including all those cited above) are
state-based. Synchronizing operations take the states of models before and after
update as input, and produce new states of models as output. This design as-
sumes that model alignment, i.e., discovering relations (deltas) between models,
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is done by update propagating procedures themselves. Hence, two quite different
operations—heuristics-based delta discovery and algebraic delta propagation—
are merged, which causes several theoretical and practical problems [2,5]; we will
discuss them in Section 2.2 after considering several basic examples.

To separate delta discovery and propagation, several researchers proposed
to build delta-based frameworks [4,2,5,11], in which propagation operations use
deltas as input and output rather than compute them internally. Such frame-
works (a general one [5] and a tree-oriented [2]) have been built for the asym-
metric BX case, in which one model in the pair is a view of the other and hence
does not contain any new information. In practice, however, it is often the case
that two models share some information but each of them contains something
new not present in the other; following [11], we call this case symmetric BX. The
symmetric case has been considered in the state-based setting [13,15,6,11], yet
a precise delta-based symmetric framework has been an open issue.

In this paper, we fill the gap and develop a delta-based framework for sym-
metric BX. We build two algebraic structures, symmetric delta lenses and (con-
sistency) maintainers, which comprise delta-based synchronization operations
and laws they must satisfy. Lenses are more abstract and specify an interface
of a model synchronization tool; maintainers are closer to implementation and
allow the tool to reuse an infrastructure for delta composition. We show that 1)
a lens can be built from a maintainer, and 2) the lens’s laws are derived from
the maintainer’s laws so that a desirable lens’s behavior is guaranteed when the
lens is implemented by a suitable maintainer.

The second major contribution of the paper is the introduction of two new
algebraic laws: weak invertibility and weak undoability. A long-standing prob-
lem in existing symmetric BX frameworks is that the basic laws (correctness
and Hippocraticness [13,15]) are not enough to ensure reasonable BX behavior,
whereas more advanced laws like undoability [15] and invertibility [6] are known
to be too strong and exclude many quite practical BXs. Our new laws solve this
problem by reshaping strong laws into a weaker form that allows for reasonable
symmetric BXs and yet prohibits BXs with unwanted behavior.

The paper is organized as follows. Section 2 analyzes an example and iden-
tifies three problems of state-based BXs that motivate our work on delta-based
BXs. We present sd-lenses in Section 3 and maintainers in Section 4. Section 5
discusses related work, and Section 6 concludes the paper. Proofs and examples
omitted in the paper can be found in its longer version [7].

2 The Need for Deltas

We begin with an example showing how state-based frameworks work and what
their problems are. Then we explain why delta-based frameworks are needed.

2.1 Example

Figure 1 presents two related models A and B. The former specifies a class of
Persons with their names and birth years, and the latter specifies Employees
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Fig. 1. The need of vertical deltas (updates)

with their names and salaries. Two models are considered consistent if the cor-
respondence between Persons and Employees, inferred from the equality of their
full names, is bijective. Initially models A and B are consistent, but then B is
modified into B′ and we need to propagate the change to the A side.

A suitable state-based BX framework designed for this task is trigonal sys-
tems [6]. Changes between the two sides are propagated by two ternary opera-
tions: forward propagation fPpg and backward propagation bPpg. When model
B changes to B′, operation bPpg takes the updated model B′ and the original
models B, A, and produces an updated model A′ = bPpg(B′, B, A). Forward
propagation fPpg works similarly: B′ = fPpg(A′, A, B).

Figure 1 shows that two reasonable interpretations of the updated model B′

are possible. Object e2′ may be understood as either a renamed version of e2,
or a new object inserted into the model while e2 is deleted. The difference can
be formally captured by specifying sets of pairs (e, e′) ∈ B×B′ with e and e′

considered to represent the same object; we call this set �v ⊂ B×B′ a (vertical)
sameness relation. A triple b = (B,�v, B

′) is called an update delta from B to
B′ and we write b : B → B′. From �v we can infer which objects were deleted,
inserted, or modified. For example, e2 is deleted by delta b2 because it is not
included in b2, but it is modified by b1 because it is declared to be the same as
e2′ and the last names in e2 and e2′ are different.

Now we observe that two different deltas, b1 and b2, lead to two different
synchronization results. To see that, we first define a correspondence between
models A and B via full names of objects, i.e., we set a (horizontal) sameness
relation �h ⊂ A×B between models A and B; in our case, it consists of three
pairs (pi, ei), i = 1, 2, 3. Propagating delta b1 to the A side results in model A′

1:
as objects p2 and e2, e2 and e2′ are the same, we merely apply modification
of e2 to p2. However, propagation of delta b2 leads to model A′

2, which differs
from A′

1 in the value of bYear: as object e2 is deleted and e2′ is inserted, ob-
ject p2 is deleted and A-counterpart of e2′ — a new object p2′ — is inserted, but
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Fig. 2. The need of horizontal delta (correspondence)

its birth date is unknown. Thus, propagation essentially depends on deltas, and
propagation operation bPpg has to compute them using some heuristics, and
then propagate the change.

To unify terminology and notation, we call a triple r = (A,�h, B) a corre-
spondence or horizontal delta from A to B and write r : A ↔ B; update deltas
are vertical. Importantly, the same models A and B may have different corre-
spondence deltas between them. For example, suppose that a user reviews the
updated model A1′ and discovers that the change is mistaken: it is Melinda
French who gets married and changes her last name, but not Bill Clinton. Then
the user changes names of objects p1 and p2 to, respectively, Melinda Gates and
Bill Clinton, as shown in Fig. 2 with update delta a′ : A′

1 → A′′. To propagate
the update to the B-side, we need to relate models A1′ and B′ and rename the
corresponding Employees. However, because there are two “Bill Gates” in both
models, two cases of correspondences, r1 and r2 in Fig. 2, are possible, which
lead to two different results: B′′

1 and B′′
2 . Of course, from the previous propaga-

tion we know that the correct delta is r1, but since this delta does not explicitly
occur in the output of operation bPpg, forward propagation fPpg does not know
it and has to infer it from the current states of the models.

2.2 Unweaving Delta Discovery and Propagation A � r � B

:bPpg↙↙

A′
1

a1
�

� r1� B′
1

b1
�

:fPpg↘↘

A′′

a′
�

�r′′ � B′′

b′
�

Problems of Merging Delta Discovery into Update
Propagation. First, such a merge, as presented in state-
based frameworks, essentially complicates propagation op-
erations and their semantics. Delta discovery is an inde-
pendent operation with its own laws [1,16], and is usually
far more complex than propagation as such. Weaving delta
discovery into update propagation complicates the laws of
the latter and makes its behavior less predictable.

Second, it unnecessarily complicates support of update sequences. Indeed,
our example can be specified as shown by the inset diagram above (input nodes
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are framed and input arrows are solid; output elements are, respectively, non-
framed and dashed). It shows that the output horizontal delta r1 produced by
bPpg must be the input delta for fPpg. However, in a straightforward state-based
implementation, operation fPpg computes the delta afresh, which may result in
a different delta r′1 �= r1.

Third, our previous work [5] shows that similar problems appear in sequential
composition of BX (think of another BX from B- to C-models) if vertical deltas
are replaced by pairs of models, as is done in the state-based frameworks.

A solution to these three problems is to encapsulate delta propagation in
a special module, which takes the horizontal and vertical deltas as input, and
produces new vertical and horizontal deltas as shown in the inset diagram above;
we call such a module a delta-based BX. It has a simple algebraic semantics,
prevents erroneous composition of updates and BXs, and allows reusing deltas.

Implementation of Deltas. Normally, only small parts of big models are
updated, and implementing vertical deltas as sameness relations is very non-
economic. A practical solution is to implement them operationally as edit
sequences or as overriding deltas [18,5]. Horizontal deltas can be seen as trace-
ability links, which are maintained by many transformation tools. For either
representation, deltas can be abstracted as arrows relating two models.

Managing Deltas and Tool Architecture. Having a separate delta-
propagating module provides a flexible tool architecture. For example, the state-
based framework can be simulated if deltas are first discovered by a model dif-
ferencing tool and then passed to the propagation module. If the two models
are related by a transformation, horizontal deltas can be inferred from it — this
architecture is used in SyncATL [17]. Hybrid interfaces (state-based for one di-
mension and delta-based for the other) are also possible, e.g., two incremental
synchronization tools, based on TGG [9] and QVT [14], take vertical deltas as
input and store horizontal deltas internally. An additional advantage of separat-
ing delta discovery from propagation is that the user may control the result of
differencing and correct it if needed. Finally, if the synchronizer can be tightly
coupled with the application, deltas can be obtained by recording the user op-
erations within the applications; in this case, model differencing phase is not
needed.

Although the tools mentioned above actually use a separated delta propa-
gation module, they lack a precise specification of both their architecture and
semantics of propagation procedures they guarantee. Filling the gap needs a
precise definition of delta-based symmetric BX and a formal algebraic theory of
delta propagation. Developing both of them is our goal for the rest of the paper.

3 Symmetric Delta Lenses

We first specify an algebraic structure modeling the very basic properties of up-
date propagation (Section 3.1). Then we enrich the structure with more advanced
laws of undoability and invertibility (Section 3.2).
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3.1 The Basic Structure

We begin by defining the space of models and their vertical deltas as a graph with
an additional structure representing do-nothing updates and update inversion;
this structure makes the graph reflexive and involutive.

Definition 1 (Model space). A model space A is a graph (MA,ΔA, $A),
whose nodes A ∈ MA are called A-models, arrows a ∈ ΔA are A-model deltas,
and $A is a quadruple of total unary “bookkeeping” functions (�

A
, �

A
, id

A
,

˘A) (with “ ” being the placeholder) providing A with the structure of reflexive
involutive graph explained below.

Functions �A , �A : ΔA → MA provide deltas with their source and target
models resp., and we write a : A → A′ if �

A
a = A and a�

A
= A′. Intuitively, we

understand a as a delta resulting from some update to model A, i.e., as a triple
(A,�v, A

′) like those considered in Section 2.1. By an abuse of terminology, we
will often call delta a an update from A to A′ (though different sequences of
update operations can result in the same delta).

Function id
A
: A → ΔA assign to every model A a special identity delta

id
A
A : A → A that identically relates A to itself. Such a delta may be thought

of as (the result of) an idle update to A, which does nothing. To capture this
intuition formally, we need to introduce sequential composition of deltas and
require id

A
to be its neutral unit (see [5] for details), but in this paper we do

not consider vertical delta composition. However, we will later capture idleness
of id

A
-arrows wrt. their composition with horizontal deltas.

Finally, ˘A is an unary operation of delta inversion: for a : A → A′, arrow
ă A : A′ → A is the same delta traversed in the opposite direction. For exam-
ple, the inverse of delta a = (A,�, A′) : A → A′ in Fig. 2 with � = {(p1, p1′),
(p2, p2′), (p3, p3′)} is delta ă = (A′,�−1, A) : A′ → A with �−1 = {(p1′, p1),
(p2′, p2), (p3′, p3)}. It can be understood as the delta resulting from undoing
update a: changing lNames of p1′ and p2′ to French and Gates resp.

The following evident laws are required (subscript A near ˘ is omitted):
(id

A
A)̆ = id

A
A for all A ∈ MA and (ă )̆ = a for all a ∈ ΔA,

which make operation ˘ an involution and the graph involutive.
Thus, a model space is a reflexive involutive graph.

Now we introduce horizontal deltas as arrows between models in two model
spaces, and come to the notion of triple spaces.

Definition 2 (Triple space). A triple space R : A ↔ B or A R←→ B consists
of a pair of models spaces (A,B), and a set R of arrows from A-nodes to B-nodes
called correspondence relations, or just corrs. Formally,R=(MA,MB,ΔAB, $AB)
is a graph withMA∪MB being the set of nodes,ΔAB the set of arrows (corrs), and
$AB consists of two functions, �

AB
: ΔAB → MA and �

AB
: ΔAB → MB, pro-

viding corrs with their source and target models. For r ∈ ΔAB, we write r : A ↔ B
if �

AB
r = A and r�

AB
= B.
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A � r � B

:fPpg↘↘
A′

a �
� r′ � B′

b
�

A � r � B

:bPpg↙↙
A′

a
�

� r′ � B′

b�

A � r � B

:fPpg↘↘
A

idA
�

� r � B

idB
�

A � r � B

:bPpg↙↙
A

idA
�

� r � B

idB
�

(a) fPpg (b) bPpg (c) (IdPpg) law

Fig. 3. Stable sd-lens: operations (a,b) and the law (c)

To ease terminology, we will use term ’delta’ generically for both updates (vertical
deltas) and correspondences (horizontal deltas). We will also write bookkeeping
functions, i.e., components of $A, $B, and $AB without subscripts.

Now we define operations modeling update propagation.

Definition 3 (sd-lenses). A symmetric delta lens (sd-lens) over a triple space
A R←→ B is a pair of forward and backward propagation operations (note that
backward propagation arrow goes from right to left)
fPpg : ΔA

�× ΔAB → ΔB ×�ΔAB and bPpg : ΔA �×ΔAB ← ΔB×� ΔAB

of arities shown in Fig. 3(a,b): input nodes are framed, input arrows are solid,
and the output elements are non-framed and dashed. Figure 4 shows an example:
operation fPpg takes deltas a and r and produces deltas b and r′.

Symbol �× in the formulas above denotes the subset of the respective Carte-
sian product consisting of all pairs of arrows with the same source: ΔA

�×
ΔAB = {(a, r) ∈ ΔA×ΔAB : �

A
a = �

AB
r}, and respectively ΔB ×� ΔAB =

{(b, r) ∈ ΔB×ΔAB : b�
B

= r�
AB

} is the subset of pairs with the same target.
Similarly, the meaning of symbols ×� and �× is defined by diagram Fig. 3(b).
We must also require right correspondence of the input and output pairs: for
fPpg, if (b, r′) = fPpg(a, r), then �b = r� and �r′ = a� , and for bPpg, if
(a, r′) = bPpg(b, r), then �a = �r and r′� = b� . We call these and similar
equations specifying relationships between arrows incidence conditions.

Note that the arity diagrams unambiguously specify all required incidence
conditions, and their explicit string-based formulation as above can be omitted.
In fact, operations like fPpg and bPpg act upon arrow diagrams, and can be
accurately formalized in terms of diagram algebra [4], which allows one to avoid
bulky formulation of incidence conditions. Below we will use the arity diagram
of an operation as a part of the definition and write � for �×, ×�, ×�, or �×.

The small double arrows in the middle labeled by :fPpg, :bPpg indicate that
the squares are application instances of the operations (other instances are are
formed by other arguments). In the same manner we could write also a:ΔA,
r:ΔAB etc, but we omit these to avoid too heavy notation.

It is convenient to use also the following notation: for the situation in Fig. 3(a),
we write a.fPpg(r) for b and r.fPpg(a) for r′, and similarly for bPpg. To resolve
ambiguity, we always use a, b to denote deltas in A,B, and r to denote corre-
spondences.
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Fig. 4. Example of update propagation

A natural requirement for sd-lenses is that if the input delta changes nothing,
the output delta should also change nothing. Formally, we call an sd-lens stable
if the following law holds for any corr r : A → B (see Fig. 3c):
(IdPpg) fPpg(idA,r)=(idB,r) and bPpg(idB,r)=(idA,r).

The rest of the paper assumes this law holds by default unless the otherwise
is explicitly specified.

We write an sd-lens over a triple space A R←→ B as a double bidirectional
arrow λλλ : A R⇐⇒ B meaning that the second arrow refers to a pair of operations
(fPpg, bPpg) constituting the lens.

3.2 Invertibility and Undoability

A basic requirement for bidirectional model synchronization is compatibility of
propagation operations between themselves. Given a corr r : A ↔ B, an update
a : A → A′ is propagated into update b = a.fPpg(r), which can be propagated
back to update a′ = b.bPpg(r). For an ideal situation of strong invertibility, we
should require a′ = a. Unfortunately, it does not hold in general because A-
specific part of the information is lost in passing from a to b, and cannot be
restored. For example, in Fig. 4 A-objects have birth years, which are absent on
the B-side and hence are lost in a′. However, we could still require invertibility
for data shared between A and B. In our example, name changes are shared and
will be restored in a′; hence, a �= a′ but a′.fPpg = a.fPpg. We thus come to the
notion of weak invertibility of update propagation; it is formalized as follows.

Definition 4 (update equivalence). Given an sd-lens λλλ : A R⇐⇒ B and a
corr r : A ↔ B, two updates of model A, a1 : A → A′

1 and a2 : A → A′
2, are called

r-equivalent if a1.fPpg(r) = a2.fPpg(r); we then write a1 ∼r a2. Similarly, we
introduce r-equivalence b1 ∼r b2 on B-side. (It is easy to see that both relations
are indeed equivalence relations.)

Definition 5 (invertible lenses). Operations fPpg and bPpg are (weakly) in-
vertible if equations below hold for any r : A ↔ B and all a : A → A′, b : B → B′:
(fbInv) a.fPpg(r).bPpg(r) ∼r a.
(bfInv) b.bPpg(r).fPpg(r) ∼r b.
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Fig. 5. Undoing update a from Fig. 4

We will call an sd-lens satisfying the laws invertible. We show in [10] that
invertible sd-lenses can be implemented with triple-graph grammars.

Another important requirement for a reasonable BX is undoability discussed by
Stevens [15] in the state-based setting. In an ideal situation of strong undoability,
if update a is first propagated as b and then is cancelled by delta ă : A′ → A, we
require a reasonable BX to produce delta b̆ : B′ → B to cancel the change on the
other side. Unfortunately, it does not hold in general because some information
about B may be lost in B′ and cannot be restored. For example, Fig. 5 continues
the story of Fig. 4 and shows an update ă canceling a. According to corr r′, a
corresponding new object e2 (Bill Gates in B) should be inserted into model B′

and return it back to B. However, since Bill’s Salary was lost in B′, the propa-
gation of ă along r′ can only set his Salary to Unknown thus resulting in a new
object e2′′ and a new model B′′. It is a vertical-delta analog of the phenomenon
we have just discussed for horizontal deltas, and the strong condition should be
again relaxed by considering updates up to their equivalence.

Definition 6 (undoable lenses). An sd-lens is called (weakly) undoable if the
following forward-undo and backward-undo laws hold:
(fUndo) Let (b, r′) = fPpg(a, r). Then ă .fPpg(r′) ∼r′ b̆ .
(bUndo) Let (a, r′) = bPpg(b, r). Then b̆ .bPpg(r′) ∼r′ ă .

In the long version [7], we show that an sd-lens may be (i) invertible but not
undoable, (ii) undoable but not invertible, or (iii) invertible and undoable. It
means that the two notions are independent and consistent.

To unify terminology, we will call an invertible/undoable lens horizontally/ resp.
vertically well-behaved (Wb). A lens is well-behaved if it is both horizontally and
vertically Wb. We will also refer to the laws as horizontal/vertical round-tripping.

4 Consistency Maintenance and Alignment

We have seen that a well-behaved sd-lens exhibits a truly BX-behavior. An ad-
vantage of the framework is its simplicity yet applicability to practical scenarios.
However, simplicity of the sd-lens framework comes for a price.
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Fig. 6. Two steps in update propagation

First, an update propagation in sd-lenses actually consists of two steps, and
their coupling prevents the reuse of operations in the implementation. Consider
Fig. 6 that shows the case of propagation in Fig. 4 in more details. The first step
is to align models A′ and B and compute a new (diagonal) correspondence delta
d : A′ ↔ B based on the original delta r and update a : A → A′. We call this
operation forward (re-)alignment and denote it as fAln. Note that re-alignment
is nothing but composition of two deltas (a simple computation), and should not
be confused with delta discovery (requiring heuristics). With this reservation, we
will call re-alignment just alignment.

The new correspondence d reveals an inconsistency: objects p1′ and e1 are
declared to be the same yet their lName attributes are different. Hence, in the
second step consistency must be restored by updating object e1 to e1′, and
thus we produce an update delta b : B → B′ and consistent correspondence delta
r′ : A′ ↔ B′ from delta d. We call this operation forward (consistency) restora-
tion, fRst. Since different restoration operations can be built on top of the same
alignment framework, we could reuse alignment operations. However, their reuse
cannot be realized within the sd-lens interface, since (re-)alignment operations
are woven into update propagation in sd-lenses.

The second problem of the sd-lens interface is related to an important BX
requirement — Hippocraticness law of Meertens/Stevens [13,15]. When model
A is updated to A′, it may happen that the new diagonal delta d is still consistent
and then nothing should be done on the B-side. However, since in sd-lenses we
have no access to diagonal deltas, we cannot formulate the requirement above.

We call a pair of forward and backward alignment operations an alignment
framework to stress its basic supporting role for restoration operations built
on top of it. We call a pair of forward and backward restoration operations a
maintainer. Below in this section we formalize the two notions and show that
well-behaved maintainers correctly implement well-behaved sd-lenses.

4.1 Alignment Taken Seriously

We define the notion of alignment framework as a triple space enriched with
re-alignment operations.
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• � r � •
:fAln↘↘

•

a

��

a∗r
�

• � r � •
:bAln↙↙

•

b

�

�

r∗b
�

• � r � •

•

a

�� r′ ��

a∗r

�

•

b

�

�

r∗b
�

(a) fAln (b) bAln (c) fAln;bAln = bAln;fAln

Fig. 7. Alignment operations and their laws

Definition 7 (Alignment framework). An alignment framework over a triple
space R : A ↔ B is a couple of operations

fAln : ΔA � ΔAB → ΔAB and bAln : ΔAB ← ΔB � ΔAB

called forward and backward alignment resp., where symbols � denote subsets
of the respective Cartesian products consisting of all incident arrows as specified
by Fig. 7(a,b) (see p.310). We will also write a ∗ r for fAln(a, r) and r ∗ b for
bAln(b, r).

There are two laws. Identity updates do not actually need re-alignment:
(IdAln) idA ∗ r = r = r ∗ idB
for any corr r : A → B.

The result of applying a sequence of interleaving forward and backward align-
ments does not depend on the order of application as shown in Fig. 7(c):
(AlnAln) (a ∗ r) ∗ b = a ∗ (r ∗ b)
for any a ∈ ΔA, r ∈ ΔAB, b ∈ ΔB.

We will write an alignment framework as an arrow ααα: A �==
R� B.

4.2 Consistency Maintainers: Hippocratic Update Propagation

Definition 8 (maintainers). A (consistency) maintainer over an alignment

framework ααα: A �==
R� B comprises (i) a subclass K ⊂ ΔAB of consistent corrs

and (ii) a couple of consistency restoration operations
fRst : ΔAB → ΔB�ΔAB and bRst : ΔA�ΔAB ← ΔAB

of arities shown in Fig. 8 (a,b): output nodes and arrows are shown blank and
dashed resp.

If (b, r′) = fRst(r), we will also write r| for b and r for r′; similarly, if
(a, r′) = bRst(b), we write |r and r for a and r′. In composed formulas, bars
and underscores always have the highest priority.

A maintainer is called correct if its output corrs are always consistent, and
are compositions of the original corr with output updates:
(Corr) r ∗ r| = r ∈ K and |r ∗ r = r ∈ K
A maintainer is called Hippocratic (we borrow Stevens’ term [15]) if it does
nothing for an originally consistent corr as shown in Fig. 8(c):
(Hipp) If r : A → B ∈ K, then |r = idA, r| = idB and r = r = r .
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(a) fRst (b) bRst (c) Hippocraticness

Fig. 8. Consistency restoration operations (a,b) and their laws
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�

(b) Definition of bPpg

Fig. 9. From maintainers to lenses

We write a maintainer as an arrow μμμ : A
K⊂R
�≡� B comprising pairs of operations

(fAln,bAln) and (fRst,bRst) over the triple space A R←→ B.

4.3 From Maintainers to Lenses: Invertibility and Undoability

Maintainers are designed to implement lenses: update propagation operations
can be defined via alignment and restoration operations as shown in Fig. 9(a,b).

Definition 9 (from maintainers to lenses). Given a correct maintainer

μμμ : A
K⊂R
�≡� B, we define a lens �μμμ� : A K⇐⇒ B by setting

fPpg(a, r) def= (d|, d ) with d = a ∗ r, and bPpg(b, r) def= (|e, e) with e = r ∗ b.

It is easy to see that lens �μμμ� is stable as soon as μμμ is Hippocratic. That is, a
correct and Hippocratic maintainer implements a stable lens.

Now we want to state conditions for μμμ ensuring that the lens �μμμ� is well-
behaved. Since the notion of update equivalence is crucial here, we first refor-
mulate it as corr equivalence in terms of restoration operations.

Definition 10 (corr equivalence). Two corrs with the same target,
ri : Ai ↔ B, i = 1, 2 are called forward equivalent if r1| = r2|; we write r1 ∼• r2.
Dually, two corrs with the same source ri : A ↔ Bi are backward equivalent,
r1 •∼ r2, if |r1 = |r2.

The next step is to substitute operations defined in Definition 9 into Definitions
5 and 6 of invertibility and undoability.



316 Z. Diskin et al.

Definition 11 (well-behaved maintainer). (a) A correct maintainer is called
invertible or horizontally well-behaved (hWb) if the following two dual conditions
hold for any r : A ↔ B ∈ K :
(fbInvm) For any a : A → A′, let d1 = a∗r, e1 = r ∗ d1|. Then |e1 ∗ r ∼• d1
(bfInvm) For any b : B → B′, let d1 = r∗b, e1 = |d1 ∗ r. Then r ∗ e1| •∼ d1

(b) A correct maintainer is called undoable or vertically well-behaved (vWb)
if the following two dual conditions hold for any r : A ↔ B ∈ K:
(fUndom) For any a : A → A′, let d1 = a∗r, b = d1|, r′ = d1 , d2 = r′ ∗ b̆ ,

and e2 = ă ∗ r′. Then d2 •∼ r′ ∗ e2|
(bUndom) For any b : B → B′, let d1 = r∗b, a = |d1, r′ = d1, d2 = ă ∗ r′,

and e2 = r′ ∗ b̆ . Then d2 ∼• |e2 ∗ r′

Details clarifying the meaning of formulas can be found in the long version.
The notion of invertible maintainer is implicit in [10], where alignment and
restoration operations are realized by TGG-means.

(c) A correct maintainer is called well-behaved (Wb) if it is well-behaved both
horizontally and vertically.

Theorem 1. Let μμμ : A
K⊂R
�≡� B be a correct maintainer and �μμμ� : A K⇐⇒ B is

the sd-lens derived from it. Then the following holds
(i) �μμμ� is stable iff μμμ is Hippocratic.
(ii) �μμμ� is invertible iff μμμ is invertible.
(iii) �μμμ� is undoable iff μμμ is undoable.

Hence, a correct maintainer μμμ implements a Wb sd-lens �μμμ� iff μμμ is itself Wb.

The proof of the theorem can be found in the long version. The theorem shows
that heavy definitions of maintainers’ laws can be hidden under the hood of the
sd-lens framework. The latter thus demonstrates a reasonable trade-off between
concreteness and abstraction: it is abstract enough to free the user from the
(re-)alignment concerns, yet provides enough flexibility by explicitly including
deltas.

5 Related Work

Algebraic frameworks for symmetric BX did not get as much attention as asym-
metric ones, perhaps, because of technical difficulties of working in the sym-
metric situation. Several closely related state-based frameworks were built by
Meertens [13], Stevens [15], and Diskin [6]. In these frameworks, model consis-
tency is a binary relation on model spaces. For us, consistency is a property of
the correspondence between models (the idea first proposed in [4]). State-based
frameworks mentioned above appear as special cases of our delta-base main-
tainers, if deltas are merely pairs of models (we call such triple spaces simple).
Then identity, update inversion and alignment operations are trivial: idA = AA,
(AA′ )̆ = A′A, AA′ ∗AB = A′B, AB ∗BB′ = AB′, and are uniquely determined
by model spaces. Hence, these operations can be removed from the signature
and we come to the state-based setting. If undoability of [15] is reshaped to its
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weak form, then Stevens’ coherent transformations are exactly our vertically Wb
maintainers over simple triple spaces. If invertibility is also reshaped to its weak
form, then undoable and invertible trigonal systems of [6] are exactly our Wb
maintainers over simple triple spaces. Precise results can be found in [7].

A different state-based algebraic model of symmetric BX is symmetric lenses
with complement by Hofmann et al [11] (ssc-lenses). They can be seen as our
sd-lenses over simple model spaces (update deltas are pairs) but non-simple
correspondences, that is, we still consider a set R(A, B) of corrs for a given
pair of models (A, B). Given a model A′ and a corr r : A ↔ B, we can simulate
ssc-lens operation putr(A, r) by computing fPpg(AA′, r); symmetrically for B′

and r. Then laws called round-tripping in [11] and our IdPpg laws coincide;
however, our invertibility (which we believe is truly about round-tripping) and
undoability laws are not considered in [11]. On the other hand, symmetric lenses
by Hofmann et al have an element missing referring to minimal models (empty
ones, if permitted by the metamodels), which is omitted in sd-lenses. To fill-in
the gap, we need to enrich our model spaces with initial objects (a construct
well-known in category theory); we leave it for future work.

Mathematical foundations for building delta-based frameworks (called tile al-
gebra) are described in [4]. Diagonal synchronizers specified there are basically
sd-lenses that distinguish between consistent and inconsistent corrs at the in-
put of propagation operations; in addition, they are equipped with alignment
operations called rematching. However, neither update inversion, nor the round-
tripping laws are considered in [4].

6 Conclusion

A delta-based symmetric BX is a synchronization module that does nothing
but propagating vertical deltas over horizontal ones; how these deltas are com-
puted and passed to the module is a separate concern. This design provides a
flexible architecture and fixes compositional problems of the state-based frame-
works. In the paper we built two algebraic frameworks for symmetric delta-based
BXs: more abstract sd-lenses that screen simple but tedious re-alignment com-
putations from the user, and closer to implementation maintainers. We found
new— weaker—versions of important invertibility and undoability laws, which
do constrain synchronization behavior, and yet do not exclude many practically
interesting BXs incompatible with the strong laws considered previously. Our
main result shows that an sd-lens can be implemented by a suitable maintainer,
and the former is weakly invertible and undoable iff the latter is such.

The framework still lacks lens and maintainer combinators for specifying com-
plex BX in a compositional way. A well-designed set of combinators would make
our frameworks practically applicable to the design of BX languages. We leave
it for future work.
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J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative and Transformational
Techniques in Software Engineering III. LNCS, vol. 6491, pp. 92–165. Springer,
Heidelberg (2011)

5. Diskin, Z., Xiong, Y., Czarnecki, K.: From State- to Delta-Based Bidirectional
Model Transformations: the Asymmetric Case. Journal of Object technology 10,
6:1–6:25 (2011)

6. Diskin, Z.: Algebraic models for bidirectional model synchronization. In: Busch, C.,
Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301,
pp. 21–36. Springer, Heidelberg (2008)

7. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From
state- to delta-based bidirectional model transformations: the symmetric case.
Tech. Rep. GSDLAB-TR 2011-05-03, GSD Lab, University of Waterloo (2011),
http://gsd.uwaterloo.ca/node/338

8. Foster, J.N., Greenwald, M., Moore, J., Pierce, B., Schmitt, A.: Combinators for
bidirectional tree transformations: A linguistic approach to the view-update prob-
lem. ACM Trans. Program. Lang. Syst. 29(3) (2007)

9. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and System Modeling 8(1), 21–43 (2009)

10. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correct-
ness of Model Synchronization Based on TGG. In: Whittle, J., Clark, T., Kühne, T.
(eds.) MODELS 2011. LNCS, vol. 6981, pp. 662–676. Springer, Heidelberg (2011)

11. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: POPL (2011)
12. Hu, Z., Mu, S.C., Takeichi, M.: A programmable editor for developing structured

documents based on bidirectional transformations. Higher-Order and Symbolic
Computation 21(1-2), 89–118 (2008)

13. Meertens, L.: Designing constraint maintainers for user interaction (1998),
http://www.kestrel.edu/home/people/meertens/

14. Song, H., Huang, G., Chauvel, F., Zhang, W., Sun, Y., Mei, H.: Instant and in-
cremental QVT transformation for runtime models. In: Whittle, J., Clark, T.,
Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 273–288. Springer, Heidel-
berg (2011)

15. Stevens, P.: Bidirectional model transformations in QVT: semantic issues and open
questions. Software and System Modeling 9(1), 7–20 (2010)

16. Xing, Z., Stroulia, E.: UMLDiff: an algorithm for object-oriented design differenc-
ing. In: ASE, pp. 54–65 (2005)

17. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: ASE, pp. 164–173 (2007)

18. Xiong, Y., Hu, Z., Zhao, H., Song, H., Takeichi, M., Mei, H.: Supporting automatic
model inconsistency fixing. In: ESEC/SIGSOFT FSE, pp. 315–324 (2009)

19. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Synchronizing concurrent model updates
based on bidirectional transformation. Software and Systems Modeling (to appear)

http://gsd.uwaterloo.ca/node/338
http://www.kestrel.edu/home/people/meertens/


Enforcing S&D Pattern Design in RCES with Modeling
and Formal Approaches

Brahim Hamid1, Sigrid Gürgens2, Christophe Jouvray3, and Nicolas Desnos1

1 IRIT, University of Toulouse
118 Route de Narbonne, 31062 Toulouse Cedex 9, France
{brahim.hamid,nicolas.desnos}@irit.fr

2 Fraunhofer Institute for Secure Information Technology SIT
Rheinstrasse 75, 64295 Darmstadt, Germany

sigrid.guergens@sit.fraunhofer.de
3 TRIALOG

25, rue du Général Foy, 75008 Paris, France
christophe.jouvray@trialog.com

Abstract. The requirement for higher security and dependability of systems is
continuously increasing even in domains not traditionally deeply involved in such
issues. Yet, evolution of embedded systems towards devices connected via In-
ternet, wireless communication or other interfaces requires a reconsideration of
secure and trusted embedded systems engineering processes. In this paper, we
propose an approach that associates model driven engineering (MDE) and formal
validation to build security and dependability (S&D) patterns for trusted RCES
applications. The contribution of this work is twofold. On the one hand, we use
model-based techniques to capture a set of artifacts to encode S&D patterns. On
the other hand, we introduce a set of artifacts for the formal validation of these
patterns in order to guarantee their correctness. The formal validation in turn fol-
lows the the MDE process and thus links concrete validation results to the S&D
requirements identified at higher levels of abstraction.

Keywords: Resource Constrained Embedded Systems, Trust, Security, Depend-
ability, Pattern, Meta-model, Model Driven Engineering, Formal Modeling.

1 Introduction

An embedded system [32] is a system that is composed of two main parts, software
and hardware, which evolves in a real world environment and fulfills a specific func-
tion. Such systems come with a large number of common characteristics, including
real-time and temperature constraints, security and dependability as well as efficiency
requirements. Embedded systems are not classical software which can be built with
usual paradigms. In particular, the development of resource constrained embedded sys-
tems (RCES) has to address constraints regarding memory, computational processing
power and/or limited energy.

Non-functional requirements such as security and dependability (S&D) [25] become
more important as well as more difficult to achieve. The integration of S&D features
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requires the availability of both application domain specific knowledge and S&D ex-
pertise at the same time. Currently, the integration of S&D mechanisms is still new in
many domains, hence embedded systems developers usually have limited S&D exper-
tise. Thus capturing and providing this expertise by way of S&D patterns can support
embedded systems development. Model-Driven Engineering (MDE) provides a very
useful contribution for the design of trusted systems, since it bridges the gap between
design issues and implementation concerns. It helps the designer to specify in a sepa-
rate way non-functional requirements such as security and/or dependability needs at a
higher level of abstraction. This allows implementation independent validation of mod-
els, generally considered an important assurance step.

The question remains at which state of the development process to integrate S&D
patterns. As a prerequisite work, we investigate the design process of S&D patterns.
In this paper, we propose an approach for S&D pattern development and validation
that follows the MDE paradigm. Security and dependability patterns on domain inde-
pendent (DI) and domain specific level (DS), respectively, that are derived from and
associated with domain specific models will help developers to integrate application
building blocks with S&D building blocks. Formal pattern validation techniques avoid
the integration of badly designed building blocks. As part of pattern development, the
validation again follows the levels of system abstraction.

The motivation driving the modeling and formalization of security and dependability
of software has typically been the need to amend the principal characteristics of the
system targeting several domains with the same set of user requirements. Achieving
this goal requires (1) a common representation of patterns for several domains; (2) a
pattern flexible structure; (3) unified formal validation of patterns; (4) guidelines for
platform specific implementation of the patterns; and (5) guidelines to guarantee the
correctness of the pattern integration step.

The rest of this paper is organized as follows. Section 2 briefly reviews related work.
Section 3 presents the core of the S&D patterns conceptual modeling. Section 4 pro-
vides terminology, techniques, and tools that are required to understand and use the
proposed modeling language. Section 5 presents in depth the modeling part and Sec-
tion 6 deals with the formal and validation concerns. Finally, Section 7 concludes this
paper with a short discussion about future works.

2 Related Work

Design patterns are a solution model to generic design problems, applicable in specific
contexts. Several tentatives exist in the S&D design pattern literature [30,31,3,28]. They
allow to solve very general problems that appear frequently as sub-tasks in the design of
systems with security and dependability requirements. These elementary tasks include
secure communication, fault tolerance, etc. Particularly, [30] presented a collection of
patterns to be used when dealing with application security. [3] described a hybrid set of
patterns to be used in the development of fault-tolerant software applications. An exten-
sion to the framework [3] for the development of dependable software systems based
on a pattern approach is proposed in [28]. The pattern specification consists of service-
based architectural design and deployment restrictions in form of UML deployment
diagrams for the different architectural services.
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To give a flavor of the improvement achievable by using specific languages, we look
at the pattern formalization problem. UMLAUT [10] is an approach that aims to for-
mally model design patterns by proposing extensions to the UML meta model 1.3.
They used OCL language to describe constraints (structural and behavioral) in the form
of meta collaboration diagrams. In the same way, RBML(Role-Based Meta modeling
Language) [18] is able to capture various design perspectives of patterns such as static
structure, interactions, and state-based behavior. The framework LePUS [9] offers a
formal and visual language for specifying design patterns. It defines a pattern in an
accurate and complete form of formula with a graphical representation.

With regard to the integration of patterns in software systems, the DPML (Design
Pattern Modeling Language) [21] allows the incorporation of patterns in UML class
models. Recently, [27] explains how pattern integration can be achieved by using a
library of precisely described and formally verified S&D solutions.

While many S&D patterns have been designed, still few works propose general tech-
niques for S&D patterns. For the first kind of approaches [8], design patterns are usually
represented by diagrams with notations such as UML object, annotated with textual de-
scriptions and examples of code. There are some well-proven approaches [4] based on
Gamma et al. However, this kind of techniques does not allow to achieve the high degree
of pattern structure flexibility which is required to reach our target. The framework pro-
moted by LePUS [9] is interesting but the degree of expressiveness proposed to design
a pattern is too restrictive. The major concern of [22] is how to exploit security analysis
patterns during the security engineering analysis, an important issue but out of the scope
of our paper. Pattern representation proposed in [5] aims at pattern classification which
may be covered by our pattern representation thanks to the properties artifacts. However
this work does not address the validation activity which is an important contribution of
our paper.

With regard to the modeling of security and dependability in model-driven develop-
ment, UMLSec [17], SecureUML [19] and [16], to name a few, and our proposal are
not in competition but they complement each other by providing different view points
to the secure information system. In concept, our modeling framework is similar to the
one proposed in [27]. Nevertheless they used a rigid structure (a pattern is defined as
quadruplet) and consequently their approach is not usable to capture specific charac-
teristics of S&D patterns for several domains. To summarize, in software engineering,
design patterns are considered as effective tools for the reuse of specific knowledge.
However to the best of our knowledge there is no approach of pattern development and
validation that follows the MDE system development and allows for formal proofs of a
domain independant pattern being an abstraction of a domain specific pattern.

Early work on validation discusses the verification of cryptographic protocols and is
based on an abstract (term-based) representation of cryptographic primitives that can be
automatically verified using model checking and theorem proving tools. One research
line in this category is authentication logics, the first of these logics being the BAN
Logic [2]. The Inductive Approach by Paulson [24] started another research line. Early
work in the area of model checking can be traced back to [20], see [26] for a survey.
One of the more recent approaches is AVISPA [1] which provides the High Level Pro-
tocol Specification Language (HLPSL [29]) and four different analysis tools. Another
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approach [14] has been used to find security flaws in a number of key exchange, authen-
tication and non-repudiation protocols and more recently it has been applied to analyze
certain scenarios based on Trusted Computing [15]. However, to the best of our knowl-
edge, none of the existing approaches is able to integrate the security solution validation
into the MDE refinement process of the application.

3 S&D Patterns Conceptual Framework

One of the major concerns in designing secure and dependable systems is to determine
at which level of abstraction security and dependability concerns should be placed. The
supporting research includes e.g. specification, modeling, implementation mechanisms,
and verification. For example, distributed systems are organized into separate layers fol-
lowing some reference model, e.g. applications, middleware and the operating system
services. The framework must cope with S&D, RCES and domain specific properties.
For this purpose, the proposition presented in this paper is based on three levels of ab-
straction: (i) Pattern Fundamental Structure, (ii) Domain Independent Pattern Model
(DIPM) and (iii) Domain Specific Pattern Model (DSPM). Firstly this decomposition
aims at allowing the design of S&D applications in the context of embedded systems
(since combining S&D and domain specific artifacts introduces a high complexity),
and secondly it overcomes the lack of formalism of the classical pattern form (e.g. tex-
tual). The benefit of this structure is to offer a common modeling language for several
domains in the context of trusted embedded systems.

The following two subsections describe an example that will be used throughout
the rest of the paper to illustrate our approach, and the Pattern Fundamental Structure
metamodel as the first abstraction level.

3.1 Motivating Example: Secure Communication Pattern

The essence of our approach is the separation of general-purpose services from imple-
mentations. In our context, this structure highlights the separation of general-purpose of
the pattern from its related mechanisms. This is an important issue to understand the use
of patterns for security and dependability and, in particular, the notion of trust. In which
layer security mechanisms are placed depends on the trust a client has in how secure the
services are in some particular layer. As example of a widely used pattern we choose the
Secure Communication Pattern referred to in the following as SCP. Messages passing
across any public network can be intercepted. The problem is how to ensure that the
data is secure in transit, e.g. how to guarantee data authenticity. This is one of the goals
of the SCP.

However, SCP are slightly different with regard to the application domain. A system
domain may have its own mechanisms and means, protocols that can be used to im-
plement this pattern. So, the motivation is to handle the modeling of S&D patterns by
following abstraction. As a concrete implementation we use the SSL mechanism.

The SSL mechanism is composed of two phases: The SSL Handshake that establishes
a secure channel, and the SSL Record in which this channel can be used to exchange data
securely. The client initiates the SSL handshake by providing the server with a random
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number and information about the cryptographic algorithms it can handle. The server
replies by choosing the actual algorithm to use, requiring the client to authenticate itself
(this is optional and used in our example) and by sending a random number of its own
and its certificate issued by some certificate authorities trusted by both the server and
the client. For authenticating itself, in the final handshake message the client includes
its own certificate, a signature on all handshake messages generated with its private
key, and a third random number encrypted with the server’s public key contained in
the server’s certificate. After having verified the certificates and signature, both client
and server use the exchanged random numbers to generate session keys for generating
and verifying message authentication codes (MACs) and for encrypting and decrypting
messages.

Since the key used by the client for generating a MAC/encrypting a message is used
by the server only for MAC verification/decryption and vice versa, and since they are
based on a random number confidential for the client and the server, the keys establish
a channel that provides authenticity and confidentiality for both client and server.

3.2 Pattern Fundamental Structure

The Pattern Fundamental Structure is a metamodel defining a new formalism for de-
scribing S&D patterns, and constitutes the base of our pattern modeling language.

Fig. 1. S&D Pattern Metamodel Dependencies

The metamodel describes all the artifacts (and their relations) needed to represent
S&D patterns in the context of trusted embedded systems applications. Here we con-
sider patterns as building blocks that expose services and manage S&D and RCES prop-
erties yielding a way to capture meta-information related to patterns and their context of
use. These pattern are specified by means of a domain-independent generic representa-
tion and a domain-specific representation. The following paragraph details the principle
classes of our meta-model, as described with UML notations in Fig. 1.
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IPattern. This block represents a modular part of a system that encapsulates a solution of a recurrent problem. An IPattern
defines its behavior in terms of provided and required interfaces. As such, an IPattern serves as a type whose confor-
mance is defined by these provided and required interfaces. An IPattern may be manifest by one or more artifacts, and
in turn, that artifact may be deployed by its execution environment. This is the key entry artifact to model pattern at
domain independent level.

Interface. IPattern interacts with its environment through Interfaces which are composed of Operations. A provided in-
terface is implemented by the IPattern and highlights the services exposed to the environment. A required interface
corresponds to services needed by the pattern to work properly. So, larger pieces of a system’s functionality may be as-
sembled by reusing patterns as parts in an encompassing pattern or assembly of patterns, and wiring together required
and provided interfaces. Finally, we consider two kinds of interfaces:

– External interfaces allow implementing interaction with regard to the integration of a pattern into an application
model or to compose patterns.

– Internal interfaces allow implementing interaction with the platform. At a low abstraction level it is e.g. possible
to define links with a software or hardware module for the cryptographic key management. These interfaces are
realized by the SPattern. Note an IPattern does not have an InternalInterface.

Property. Is a particular characteristic of a pattern. A Property is either an S&D Property or an RCES Property (see Sec-
tion 4). Each property of a pattern will be validated at the time of the pattern validating process and the assumptions
used will be compiled as a set of constraints which will have to be satisfied by the domain application.

Internal Structure. Constitutes the implementation of the solution proposed by the pattern. Thus the InternalStructure can
be considered as a white box which exposes the details of the IPatterns. In order to capture all the key elements of the
solution, the Internal Structure is composed of two kinds of Structure: static and dynamic. Note that one pattern can
have several possible implementationsa.

SPattern. Inherits from IPattern. It is used to build a pattern at DSPM. Furthermore an SPattern has Internal Interfaces in
order to interact with the domain specific platform. This is the key entry artifact to model pattern at domain specific
level.

a Usually referred to as variants of design patterns.

4 Details on Prerequisites for Using our S&D Patterns

This section describes the external model libraries that are needed to use the proposed
modeling language. Specifically, we present the extra-functional properties (trust and
S&D) and non-functional properties (RCES concerns) applied to S&D patterns meta-
model (see Section 3.2). In addition, we provide definitions of the terminology em-
ployed as needed.

Resource Constraint Metamodel. The meta-model of resource-constrained embedded
systems describes both its hardware and software execution platforms by means of ba-
sic elements (e.g. Resource, Service) and their specialization to target the hardware
and software platform (e.g. Processor, Memory, Task). In addition the RCES meta-
model describes the properties of elements that compose those systems and classify
them according to their nature (e.g. Resource Properties, Timing Properties, Com-
puting Properties). Due to space limits, this metamodel is not detailed in this paper.
Note, however, that in concept such a modeling part is similar to the one proposed
in [23].

Trust and S&D Metamodel. A general definition of trust is: The term of trust refers to
a relation from one entity in the system to another entity with respect to a property, or
from an entity directly to a property in the system [7]. In the context of our work, we
restrict this to an entity trusting a property to hold in a system. Fig. 2 presents the class
diagram of this metamodel.
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Fig. 2. Properties Metamodel

Trustor. Is an entity who trusts or needs to decide whether to trust one property of the system.
Trustee. Is a system for which trust into a property is evaluated.
Action. Is the activity or behavior that is performed by an entity.
System. Consists of a set of entities acting in the system (i.e. sequences of actions performed by the entities).
Entity. Is an entity acting in a system.
Property. Represents some kind of an extra-functional property of the system (e.g. S&D properties).
Trust. Concretely, the trust relationship is defined between the entity and the property of the system, Trust is itself also

a property. In general, a property is characterized with a degree to exhibit the value with which the entity trusts the
property to hold in the system. In our context, the entity trusts or does not trust the property to hold.

Security and Dependability. S&D in our metamodel is a class that represents the S&D relationship between the entity and
the actions of the system.

5 Modeling S&D Patterns

This section introduces the required artifacts while following the two abstraction lev-
els DIPM and DSPM. These two levels of the Secure Communication Pattern (SCP)
presented in Section 3.1 are illustrated. Note, however, that for lack of space we only
specify those elements that we need in order to explain our proof.

5.1 Domain Independent Pattern Model (DIPM)

This level focuses on domain independent pattern artifacts. This is an instance of the
Pattern Fundamental Structure metamodel. As we shall see, we introduce new concepts
through instantiation of the meta-model in order to cover most existing S&D patterns
in RCES applications. In our case study, the DIPM of the SCP consists of two entities
communicating through a secure channel and is defined as follows:

Properties. At this level, we identify two S&D properties: authenticity and trust.
External Interfaces. The SCP functionalities are exposed through DI external interface

function calls:
Send(P, Q, ch(P, Q), m), Receive(P,Q, ch(P, Q), m), with P and Q denoting the client
C and server S, respectively, ch(P, Q) their communication channel, and m a message.
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Internal Structure. The behavior of SCP can be modeled by a UML Sequence Diagram
describing secure date exchange between client and server through the external
interface.

5.2 Domain Specific Pattern Model (DSPM)

The objective of this specific design level is to specify the S&D patterns for a specific
application domain. This level offers artifacts at a lower level of abstraction with more
precise information and constraints about the target domain. This modeling level is a
refinement of the DIPM that considers the specific characteristics and dependencies
of the application domain. Different DSPM can refine the same DIPM for different
domains. When using SSL as a mechanism related to the application domain to refine
the SCP at DSPM, we introduce the following artifacts:

Properties. In addition to the refinement of the trust property identified in the DIPM,
at this level we identify some related RCES properties, e.g. the size of the crypto-
graphic key.

External Interfaces. The DS external interface, a refinement of the DI external inter-
face, can be specified as follows:
- send(C,S, macC(m), m): The client C sends m and the corresponding MAC (Message
Authentication Code) to the server S.
- recv(S,C, macC(m), m): The server receives m and corresponding MAC.

Internal Interfaces. The most important functions of the DS internal interface of the
SSL pattern can be specified as follows:
genRand(C,RC), genRand(S,RS): Client/server generate a random number.
verifyCert(): Client/server verify each other’s certificate and extract the respective public
key.
encrypt(C, pubKeyS, RC): The client encrypts its random number using the server’s pub-
lic key.
sign(C, . . .): The client signs the SSL handshake messages.
verifySig(S, . . .): The server verifies the client’s signature.
genMac(C,macKeyC , m,macC(m)): The client generates the MAC for message m us-
ing its own SSL shared secret for MAC generation.
verifyMac(S, macKeyC , m, macC(m)): The server verifies, using its shared secret for
MAC verification (i.e. the client’s key for MAC generation), that the MAC for m is correct
and thus originates from the client.
send(), recv(): Send and receive of the SSL messages by client and server, respectively.

Internal Structure. The behavior of SCP can be modeled by a UML Sequence Diagram
following the SSL protocol described in Section 3.1, involving both the DS external
and internal interface.

6 The Formalization and Validation Process

In this section we discuss the use of our Security Modeling Framework (SeMF) [13,7]
for pattern validation through an application to the secure communication example.
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6.1 The Security Modeling Framework SeMF

In SeMF, the specification of any kind of cooperating system is composed of (i) a set
of agents (e.g. some clients and a server), (ii) a set of actions (e.g. the DS internal
interface actions introduced above, (iii) the system’s behavior B, (iv) the agents’ local
views, and (v) the agents’ initial knowledge. The behavior B of a discrete system S can
be formally described by the set of its possible sequences of actions. An agents’ initial
knowledge about the system consists of all traces the agent initially considers possible.
An agent may assume for example that a message that was received must have been
sent before. Finally, an agent’s local view essentially captures what an agent can see
from the system. An agent might see for example only its own actions.

Different formal models of the same application/system are partially ordered with re-
spect to different levels of abstraction. Formally, abstractions are described by so called
alphabetic language homomorphisms that map action sequences of a finer abstraction
level to action sequences of a more abstract level while respecting concatenation of
actions (see Section 6.3.3 for an example).

In SeMF, security properties are defined in terms of such a system specification, i.e.
in terms of actions, agents, the agents’ initial knowledge and local views. Note that a
system specification does not require a particular level of abstraction. The underlying
formal semantics then allows to prove that a specific formal model of a system provides
specific security properties. In the following section we will introduce our validation
artifacts.

6.2 Validation Artifacts

Security properties. One important artifact is the security property (or properties) a
system shall provide. In the following we will explain the basic idea of authenticity,
precedence and trust that are relevant for the example used in this paper without go-
ing into the formal details. For more information about our formal framework and the
definitions of security properties we refer the reader to [13] and [7].

We call a particular action a authentic for an agent P (after a sequence of actions ω
has happened) if in all sequences that P considers to have possibly happened a must
have happened. In many cases we require a particular instantiation of this property to
hold:

auth(a,b,P) denotes that whenever a particular action b has happened, it must be
authentic for agent P that action a has happened as well.

precede(a,b) holds if all action sequences in the system’s behavior that contain an
action b also contain an action a.

Finally we introduce our notion of trust which allows to capture basic trust assump-
tions (like trust in a public key infrastructure) and to reason about these. As illustrated
in Fig. 2, trust is a relation between an agent and a property:

trust(P,prop) Agent P trusts a property prop to hold in the system if the property
holds in the agent’s conception of the system. P ’s conception of the system may defer
from the actual system. P may for example not have all information about the system
behavior and believe more sequences of actions to be possible than B actually contains.
Note that trust of an agent in a property is again a property of the system S.
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Assumptions. Any validation of a security property holding in a system must make use
of basic assumptions. In order to prove for example that the SSL handshake results in
authentic shared secrets for both the client and the server, we need to assume that they
own the authentic public key of the certification authority. In SeMF, these assumptions
are again specified as security properties.

SeMF Building Blocks. A SeMF Building Block (SeBB) is essentially a visualization
of a proof, concerning either an implication between security properties or a security
mechanism. Hence, a SeMF Building Block consists of three different parts:

– The internal properties (assumptions) that are assumed to be satisfied by the system
the SeBB shall be applied to.

– The mechanism or instrument that makes use of the internal properties. There are
two different types: F-SeBBs which constitute a formal proof within SeMF, based
on the formal definitions of the internal properties, and M-SeBBs which constitute
a proof external to SeMF, capturing expert knowledge about security mechanisms
like cryptographic protocols and primitives.

– The external properties are those that are proven to hold for the overall system,
given that the internal properties hold.

An example for an F-SeBB is the transitivity of precedence: precede(a, b) and
precede(b, c) imply precede(a, c). An example for an M-SeBB captures the RSA sig-
nature mechanism: If the private key is confidential for its owner, then a signature ver-
ification action using the respective public key is always preceded by the respective
signature generation action by the owner of the private key. See [6] for a set of SeBBs
and their respective proofs.

SeBBs can be used to prove that a particular pattern provides a particular property.
The assumptions that need to be satisfied in order for the pattern to provide the desired
security property represent the internal properties of one or more SeBBs. By consecu-
tively applying appropriate SeBBs we then search for a proof path that ends with the
property provided by the pattern as external property. For pattern development we use
SeBBs in the reverse way, starting with the property provided by the pattern as exter-
nal SeBB property and deriving the pattern assumptions as internal SeBB properties
by consecutively applying adequate SeBBs. Formally this constitutes a proof that given
the assumptions hold, the pattern provides the desired property. Section 6.3 will explain
both ways of SeBB application in more detail.

F-SeBBs can be applied on all abstraction levels and are thus domain independent,
while M-SeBBs are concerned with particular security mechanisms, hence are consid-
ered domain specific.

Security Preserving Homomorphisms. As explained in Section 6.1, a homomorphism is
an abstraction that maps a concrete system to an abstract one. For defining a particular
homomorphism, we specify which of the concrete actions are mapped onto which of
the abstract actions and onto the empty word, respectively. Under certain conditions
a homomorphism can preserve specific properties: If the conditions hold, and if the
property holds in the abstract system, the respective property also holds in the concrete
system. For the formal proof of sufficient conditions for preserving authenticity and
confidentiality, we refer the reader to [11] and [12], respectively.
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6.3 Validating Secure Communication Patterns

In this section we will explain how the validation artifacts introduced in the previous
section can be used for pattern validation. Exemplarily we will apply them to the DIPM
and DSPM for the secure communication pattern. We will explain how a proof can be
conducted that each time the server receives a message on a channel it shares with the
client, it authentically for the server originates from the client.

6.3.1 Applying SeBBs to DIPM
The formal model that corresponds to the DIPM introduced in Section 5.1 has the agents
client C and server S and the send and receive actions corresponding to the external DI
interface. We further assume that each agent can only see their own actions. According
to Section 6.2, the required authenticity property is expressed as:

auth(Send(C, S, ch(C, S), m), Receive(S, C, ch(C, S), m), S) (P-DI)

First, we search for a SeBB whose external property is authenticity. One important
SeBB of this type states that the internal properties trust(P, precede(a, b)) and
auth(b, c, P ) imply the external property auth(a, c, P ) (see [7] for a proof of this
SeBB). Setting b = c and instantiating a, b, P with the concrete send and receive actions
and agent of property P-DI, we conclude that P-DI holds if the internal properties (as-
sumptions) trust(S, precede(Send(C, S, ch(C, S), m), Receive(S, C, ch(C, S), m)))
and auth(Receive(S, C, ch(C, S), m), Receive(S, C, ch(C, S), m), S) hold. We may
assume the latter property to hold: The server sees its own actions, thus they are always
authentic for the server.

Regarding the trust of the server into the precedence of its receive action by a client
send action, we note that there is no reason that would allow us to just assume this
property to hold. So next we need to find another F-SeBB with this property as external
property. In a more complex model with for example more actions in between the send
and receive action we would certainly be able to apply other F-SeBBs (e.g. the one that
captures the transitivity of precede). However, in this simple DIPM setting, no other F-
SeBB can be applied. Hence this concludes our proof with respect to the DIPM model.
In order for the DIPM model to provide property P-DI, in particular the assumption

trust(S, precede(Send(C, S, ch(C, S), m), Receive(S, C, ch(C, S), m))) (A-DI)

must be assumed to hold. The fact that no more F-SeBBs can be applied shows that we
now have to consider the DSPM level, i.e. we have to find and validate a DSPM pattern
that provides an equivalent property. This will be discussed in the next paragraph.

6.3.2 Applying SeBBs to DSPM Based on SSL Protocol
The formal model corresponding to the DSPM introduced in Section 5.2 contains the
same set of agents, namely client C and server S. Its actions correspond to the external
and internal DS interface function calls presented in Section 5.2 and can be considered
a refinement of the actions of the DIPM formal model.
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The security property that is provided by this SSL pattern and that corresponds to
the trust property assumed to hold for the DIPM model (this correspondence will be
addressed in the next paragraph) is that the server trusts into the precedence of its own
MAC verification action by the MAC generation action of the client:

trust(S, precede(genMac(C, macKeyC, m, macC(m)),
verifyMac(S, macKeyC, m, macC(m))))

(P-DS)

We now identify the assumptions which we need for our proof, i.e. those that the DSPM
model needs to satisfy, and then explain the main steps of our proof. An exhaustive proof
will be introduced in a forthcoming paper.

ass1 trust(S, not-precede(genRand(S, R), genRand(S, R))). A random number is
only generated once, in particular the server trusts in that its own random number
is only generated once.

ass2 trust(S, conf(privKeyS, {S})). The server trusts into the confidentiality of its
own private RSA key.

ass3 trust(S, conf(privKeyCA, {CA})). The server trusts into the confidentiality of
the certificate authority’s (CA) private key.

Assumption ass3 (and ass2) is the internal property of an M-SeBB that captures the na-
ture of RSA signatures. Its application yields the server’s trust into the precedence of a
certificate verification action performed by the server by a certificate generation action
performed by the CA: trust(S, precede(sign(CA, cert(. . .)), verify(S, cert(. . .)))).
This property is the internal property of an M-SeBB that captures the semantics of
a certificate: It essentially states that the CA trusts into the confidentiality of the pri-
vate key which is the counterpart of the public key being certified. Hence the server
trusts the CA in this respect: trust(S, trust(CA, conf(privKeyC , {C}))). The next
F-SeBB allows (under certain conditions) to conclude the direct trust of the server into
the confidentiality of the client’s private key: trust(S, conf(privKeyC , {C})). Using
again the RSA Signature SeBB, this property implies trust of the server into its own
signature verification action being preceded by the client’s signature generation action.
Applying an RSA encryption SeBB to ass2 allows to conclude that the encrypted ran-
dom number is only known to client and server. All this together with ass1 and an
M-SeBB that captures the SSL session key generation allows to conclude that S trusts
in the confidentiality of the shared secrets derived from the SSL handshake, in particu-
lar trust(S, conf(macKeyC , {C, S})) holds. Applying the M-SeBB that captures the
MAC mechanism yields that indeed property P-DS holds.

6.3.3 Correspondence between DIPM and DSPM
We have now achieved proofs that (i) assuming that property A-DI holds, the DIPM
model provides property P-DI, and (ii) assuming that assumptions ass1, ass2 and ass3
hold, the DSPM model provides property P-DS. In the final proof step, we have to show
that the DIPM model is an abstraction of the DSPM model that preserves property A-DI,
and that this property, transfered to the DSPM model, is identical to property P-DS.
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Hence we specify an appropriate homomorphism that maps the actions of the DSPM
model onto the actions of the DIPM model and then show that this homomorphism
preserves trust in precede. We specify h as follows:

h(genMac(C, macKeyC, m, macC(m))) = Send(C, S, ch(C, S), m)
h(verifyMac(S, macKeyC, m, macC(m))) = Receive(S, C, ch(C, S), m)
h(a) = ε for all other actions a

It can be shown that in order for a homomorphism to preserve trust of an agent in a spe-
cific precede property, it must be proven that it maps the agent’s initial knowledge of
the concrete system into the agent’s initial knowledge of the abstract system. Since we
assume property A-DI to hold in the DIPM model, in the server’s abstract initial knowl-
edge all server receive actions are preceded by a client send action. On the other hand,
the server’s concrete initial knowledge reflects the MAC mechanism, i.e. reflecs that a
verifyMac action is always preceded by the respective genMac action. The homomor-
phism h relates these actions, hence indeed maps the server’s concrete initial knowledge
onto the abstract one. Hence h preserves trust into precedence and property A-DI trans-
fered to the DSPM model is identical to property P-DS, which concludes our proof.

7 Discussion and Conclusion

Application developers usually do not have expertise in security and dependability.
Hence capturing and providing this expertise by way of S&D patterns has become an
area of research in the last years. S&D patterns shall enable the development of secure
and dependable applications while at the same time liberating the developer from hav-
ing to deal with the technical details. Model driven engineering (MDE) provides a very
useful contribution for the design of secure and trusted systems, since it bridges the gap
between design issues and implementation concerns. Hence S&D pattern integration
has to be considered at some point in the MDE process.

In this paper, we have proposed an MDE-based approach for S&D pattern devel-
opment and validation. Defined by a meta-model, S&D patterns can be specified and
validated at different abstraction levels. An S&D pattern at domain independent level
allows the application developer to identify S&D requirements and select a respective
abstract solution without specific knowledge on how the solution is designed and imple-
mented. Thus a DIPM pattern can easily be integrated into the overall abstract system
specification. Following the MDE process, the system model is then refined towards a
domain specific level, taking into account concrete elements (e.g., mechanisms to use).
Pattern validation follows these two abstraction levels (i.e., we validate a DIPM pattern
and possible DSPM instantiations independently). However, the additional final vali-
dation step proves that the latter is indeed a refinement of the former which in turn
proves that the overall application system indeed satisfies the S&D requirements ini-
tially specified by the application developer. This process may significantly reduce the
cost of system engineering, since it enables to address S&D issues early in the system
development process while at the same time relieving the developer from the technical
details.

Yet an important task remains to be performed when integrating an S&D pattern
into an application: assurance that assumptions used for proving the correctness of a
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DSPM pattern are indeed satisfied by the particular application environment. In order
to support this task, future work will focus on deriving environment constraints from
the assumptions through the external model libraries discussed in Section 4.
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Abstract. Accurate estimation of Software Code Size is important for 
developing cost-efficient embedded systems. The Code Size affects the amount 
of system resources needed, like ROM and RAM memory, and processing 
capacity. In our previous work, we have estimated the Code Size based on CFP 
(COSMIC Function Points) within 15% accuracy, with the purpose of deciding 
how much ROM memory to fit into products with high cost pressure. Our 
manual CFP measurement process would require 2,5 man years to estimate the 
ROM size required in a typical car. In this paper, we want to investigate how the 
manual effort involved in estimation of Code Size can be minimized. We define 
a UML Profile capturing all information needed for estimation of Code Size, and 
develop a tool for automated estimation of Code Size based on CFP. A case 
study will show how UML models save manual effort in a realistic case. 

Keywords: UML Profile, UML components, software components, functional 
size measurement, code size estimation. 

1   Introduction 

Early and accurate estimation of Software Code Size is important for developing cost-
efficient embedded systems, such as cars, cell phones, washing machines, etc. The 
Code Size affects the amount of system resources needed, like ROM and RAM 
memory, and processing capacity. Systems containing too much memory or processing 
capacity are more expensive than they need to be. Systems containing too little 
memory or processing capacity may need a redesign after only a part of its expected 
lifetime. 

In our previous work, we have estimated the Code Size based on CFP (COSMIC 
Function Points) within 15% accuracy [23],[24],[25],[26],[27],[28]. Our results were 
obtained using software implementations developed by the automotive companies 
Saab and GM (General Motors). The accuracy of the estimated values is important 
because the purpose was to decide how much ROM memory to fit into ECUs 
(Electronic Control Unit, an embedded computer) in products with high cost pressure. 
Our manual CFP measurement process used UML components and textual information 
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from requirement specifications, which would require up to 2,5 man years of effort to 
obtain the CFP value for the application software embedded in a typical Saab car. 

In this paper, we want to investigate how the manual effort involved in estimation 
of Code Size can be minimized. The UML components provide some (but not all) of 
the information needed for estimation of Code Size. Therefore, we define a UML 
Profile capturing all information needed for estimation of Code Size, and develop a 
tool for automated estimation of Code Size based on CFP. Besides the increased 
efficiency obtained by our model-based and automated estimation approach, we 
expect to increase repeatability and consistency in the estimation process compared to 
a manual approach. In addition, our UML Profile contains support for estimation of 
RAM memory size. 

In order to investigate if our approach solves our problem, we formulated the 
following research questions; 

RQ1: “How can UML support in modeling all information needed for automated 
estimation of Software Code Size?” 
RQ2: “How much manual effort can be saved by modeling all information needed for 
automated estimation of Software Code Size?” 

We conduct a case study using requirement specifications and software implementations 
from the automotive industry to answer the research questions. 

This paper is organized as follows: The next section provides background 
information about the COSMIC method. Section 3 defines the UML Profile, and 
section 4 briefly presents the tool. Section 5 describes the case study, and section 6 
evaluates threats to validity. Sections 7 and 8 contain related work, and conclusions. 

2   Background 

This section presents enough information about Functional Size Measurement and the 
COSMIC method to understand the rest of the paper. 

Functional Size is defined as “size of the software derived by quantifying the 
Functional User Requirements” [5]. FUR (Functional User Requirement) describes 
what the software is expected to do for its users. Examples are data transfer, data 
transformation, data storage, and data retrieval. Functional Size is independent of 
software language and development methods. 

There are several FSM methods available. The original method was described by 
Albrecht 1979 [1],[2],[3]. A comprehensive literature survey covering several 
methods is found in [9]. Some of them are IFPUG FPA (Function Point Analysis) 
[12], and COSMIC Function Points (CFP) [5],[19] to name a few. The typical usage 
of FSM is development cost estimation and project planning. In our experiments, CFP 
is chosen because it is known to be suitable for real-time software, like automotive 
systems [5], and it is a “second generation” method, complying with the ISO/IEC 
14143-1:2007 standard for FSM methods [13],[14],[15],[16],[17],[18]. 

The COSMIC Method defines a standardized measure of software Functional Size 
expressed in CFP units. The measurement is carried out in three phases; the strategy 
phase defines the purpose of the measurement and scope of the software to be 
measured, the mapping phase maps the FUR of the software to be measured onto 
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functional processes in the software component of the COSMIC Generic Software 
Model (shown in Fig. 1), and the measurement phase counts the data movements 
contained in each functional process. By defining the purpose of the measurement and 
scope of the software to be measured during the strategy phase, we identify the level 
of decomposition and level of granularity of the software to be measured. The level of 
decomposition points out a particular level in a software – component – sub-
component hierarchy. The level of granularity concerns the amount of details defined 
about the FUR. Both aspects are important when comparing different CFP values to 
each-other. 

SOFTWARE
COMPONENT

Storage
Hardware

I/O
Hardware

ENTRIES

WRITES

READS

EXITS

BOUNDARY

USERS

OR SOFTWARE
OR

ENGINEERED
DEVICES

Functional
process 1

ENTRIES

WRITES

READS

EXITS

Functional
Process n

 

Fig. 1. The Generic Software Model of COSMIC 

As can be seen in Fig. 1, there are four different data movement types. Entry types 
move data across the boundary and into the functional process. Exit types move data 
across the boundary to a user. Read types move data from persistent storage to the 
functional process. Write types move data from the functional process to persistent 
storage. Persistent storage (Storage Hardware in Fig. 1) enables a functional process 
to store data from one execution cycle to another. Each data movement is equivalent 
to 1 CFP, and operates on a common set of attributes. 

In our previous work [27], we have identified factors to use for categorization of 
software in our domain. The categorization is important to increase the estimation 
accuracy, by using historical data from implementations of similar software. This way 
we can capture algorithmic complexity and manipulation of large amounts of data, 
although COSMIC cannot measure this directly. 

To summarize this section, we conclude that the main concepts we need to 
consider in COSMIC are the Generic Software Model (containing users, boundary, 
functional processes, and data movement types), the level of decomposition, and the 
level of granularity. In addition, categorization of software is important for estimation 
of Code Size. How these concepts can be modeled in UML will be described in the 
next section. 

3   A UML Profile for Code Size Estimation Based on COSMIC 

Our goal is to define how to model the COSMIC Generic Software Model using UML. 
We have chosen UML because it is commonly used for system architecture and 
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software development, and it was already in use at Saab and GM. UML components 
[30],[34] have a natural boundary between the software and its users, in a similar way 
as in COSMIC. If we view the UML component as the COSMIC Generic Software 
Model (see Fig. 1), then we can view the Entry data movements as operations in 
required interfaces and Exit data movements as operations in provided interfaces. 

The UML components do not capture the Read and Write data movements. Our 
idea is to capture these data movements by a UML class representing this information 
within the components. Each attribute of this class represents data that can be read, 
written, or both to/from memory. To achieve this we extend the Property in the meta-
model [31] with the stereotype CompSizeProperty, see Fig. 2. We give the stereotype 
CompSizeProperty the attribute “direction” to model Read and Write data 
movements. The value “in” represents Read data movements and the value “out” 
represents Write data movements. The value “inout” represents a combined Read and 
Write data movement, which will be counted as 2 CFP. 

<<Metaclass>>
Property

<<stereotype>>
CompSizeProperty

<<enumeration>>
direction

in
out
inout

 

Fig. 2. The CompSizeProperty stereotype 

Now we can represent all the data movements of COSMIC using UML components 
and our extended classes containing attributes with direction. UML components are 
often used to model complex systems by decomposing a larger software system into 
smaller parts. In this case we only need to extend the components with a class 
representing the Read and Write data movements to obtain software models which can 
be measured by COSMIC. 

We can represent the COSMIC Generic Software Model using UML models, and 
from the models we can obtain CFP values. But how many bytes will 1 CFP represent? 
This might depend on several factors such as the decomposition level of the 
component, compilers used, type of functionality, development methods & tools, etc. 
These factors can be used to categorize the components into groups containing 
components of similar type. Here we will consider two key factors in some detail: level 
of decomposition and type of functionality. 

In domains where components are used at different levels of decomposition, it has 
to be clearly marked for each component which level of decomposition the component 
belongs to. For example, components that describe the top level architecture can 
contain several other components and will therefore in most cases correspond to more 
code, compared to components on a lower level only containing classes. In the case 
study we will present later in this paper, all the components are at the same level of 
decomposition. 

Another factor which might be important is the type of functionality. This factor is 
of particular importance if the different types of functionality correspond to different 
byte sizes. This factor gives the possibility to take into account the algorithmic 
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complexity of the components. For the automotive domain we have shown that 
categorizing the components into groups of similar components is one of the key 
factors for our good estimation results [27],[28]. 

To be able to model the categorization information, we extend the Metaclass 
component with the stereotype CompSizeComponent (see Fig. 3). The stereotype has 
several attributes to be able to assign values to different factors. Exactly which 
attributes the stereotype should have may differ between domains, but some factors 
are probably general such as decomposition_level and functionality. We have 
included granularity_level which is explained in section 2. Other factors necessary for 
categorization of components within GM and Saab are identified in [27]. 

<<Metaclass>>
Component

<<stereotype>>
CompSizeComponent

functionality: String
decomposition_level: String
granularity_level: String
…  

Fig. 3. The CompSizeComponent stereotype 

Table 1 summarizes the complete mapping between the main COSMIC concepts 
and corresponding UML concepts.  

Table 1. Mapping rules between main COSMIC concepts and the UML Profile 

COSMIC concept UML concept 

Functional process 
The functional requirements contained in the 
component. Must reside completely within one 
component. 

User Surrounding components. 
Boundary Component boundary. 
Level of granularity Part of categorization. 
Level of decomposition Part of categorization. 
Entry data movement Operation in required interface. 
Exit data movement Operation in provided interface. 
Read data movement CompSizeProperty with direction=in. 
Write data movement CompSizeProperty with direction=out. 
Read/Write data movement CompSizeProperty with direction=inout. 

 
With the UML models described so far, we can capture all information needed for 

accurate estimation of implemented Code Size in bytes. This bytes value corresponds 
to the amount of ROM-type memory needed to store the code implementation of the 
component. But, in addition to ROM, we are interested in estimating the amount of 
RAM needed to store parameter values, because the RAM size also affects the cost of 
the embedded system. By extending the Property in the meta-model with the 
stereotype ByteSizeProperty (as shown in Fig. 4), we can capture the size of each 
parameter. This is basically the information needed to estimate RAM size. 
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<<Metaclass>>
Property

<<stereotype>>
ByteSizeProperty

size: integer

 

Fig. 4. The ByteSizeProperty stereotype 

The UML Profile defined in this section will be evaluated in a case study later in 
this paper. The case study will show a concrete example on how to use the Profile 
(see Fig. 9). The mapping rules summarized in Table 1 was implemented in a tool, 
which will be described in the next section. 

4   The CompSize Tool 

We have developed a tool based on our results from 3 years of research. The tool can 
parse information from XMI files exported from the Rhapsody tool [11] containing 
the information defined in our UML Profile introduced in the previous section. The 
tool also contains historical data about CFP values and Code Size in bytes from 
implemented components. Subsets of the data set can be selected using categorization 
factors (such as the ones described in section 3) to estimate the Code Size of new 
software. 

The tool was implemented in Java resulting in around 1,7 Mbytes of code, and 
required 6 man months of effort. Further details about the tool are not described in 
this paper due to page limitations, and because the focus of this paper is the UML 
Profile and the complete approach rather than the tool itself. 

5   Case Study 

A case study consisting of several parts was defined, in order to evaluate our model-
based and automated approach and to answer the research questions defined in section 
1. The case study was conducted at Saab using requirement specifications and 
software implementations developed by Saab and GM. 

5.1   Definition and Planning 

Saab and GM use UML Component Diagrams to show how the customer feature is 
divided into its smallest entities called “distributable components”, and the interfaces 
between them. A distributable component must never be split up into more 
components, but can be used by several features. The UML Component Diagram is 
modeled in the Rhapsody tool [11], as part of the system architecture development 
activities within Saab and GM. This is described further in [4]. 

The case study will use existing Component Diagrams of the type shown in Fig. 5. 
In this diagram, we see that the distributable components are modeled as component 
stereotypes denoted “Distributable” followed by the name of the component. As we 
can see from the diagram, the Truck Bed Cargo Lamp component has three required 
interfaces and one provided interface. 
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 «use»  «use» «use»

 

Fig. 5. Component Diagram of the Truck Bed Cargo Lamp component 

The Component Diagrams do not contain all the information we need to measure 
the Functional Size. We also need the requirement specifications related to the 
components. In the requirement specification we find in textual form the information 
needed such as: calibration parameters (used for tuning of a general software 
component to a certain type of product), persistent storage of variables in RAM-type 
memory, etc. The textual requirements for the software component in Fig. 5 are 
shown in Fig. 6. 

The feature Shall be enabled when the calibration CARGO LAMP 
PRESENT is set true. <END>

If the vehicle power mode is “OFF”, and the cargo lights are 
illuminated, the SYSTEM Shall keep the cargo lamps active as 
long as Inadvertent Load Control power is active. <END>

CUSTOMER 
“ACTION”

CUSTOMER 
PERCEIVABLE 

“OUTPUT”

MAXIMUM 
LATENCY

“ACTION” to 
“OUTPUT”

INTERIOR 
ILLUMINATION Lamps 
Switch On and Vehicle 
Parked.

Cargo Lamp Illuminates 100 ms

 

Fig. 6. Extract from a requirement specification for the Truck Bed Cargo Lamp component 

Next we describe the process for estimating the implemented size of software 
components. The main activities (grey boxes) and artifacts (white boxes) involved in 
the process for estimation of software component size are shown in Fig. 7. The first 
activity is the definition of the functional requirements from a user perspective and 
the non-functional requirements, resulting in a textual specification. This is typically 
performed by an expert in the particular functional domain, e.g. a door locking expert 
rather than a software engineer. The textual specification is used by the architect to 
decompose the functional requirements into distributable components, which are 
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modeled in UML Component Diagrams. The Component Diagrams are used for 
software design and implementation, as well as for serial data communication 
definition and implementation. These activities are left out in this description, since 
they are not important in this work. Instead, we will continue describing the activities 
performed by the measurement engineer, shown at the bottom of Fig. 7. 

The Component Diagram is used to identify the interfaces, and the textual 
specification is used to identify the calibration parameters and the information needed 
for categorization of the distributable component. The interfaces, parameters, and 
categorization constitute the information needed by the COSMIC method. The result 
from the COSMIC method is a CFP measure. Historical data containing CFP and 
implemented Code Size in bytes for similar distributable components are used to 
convert the CFP value into bytes, and thereby estimate the implemented Code Size. 

Requ irement
definition

Decomposition
into components

Code Size
estimation

Software
design & implementation

Communication
definition & implementation

Identify input
for COSMIC

Functional Size
measurement

Domain
expert Architect

Measurement
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Diagram & 
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Fig. 7. Main activities and artifacts for estimation of Software Component Size 

In our previous work, we have estimated 46 distributable components manually 
according to this procedure. The main author of this paper acted as measurement 
engineer, and spent 2-4 hours per distributable component for the activities “Identify 
input for COSMIC”, “Functional Size measurement”, and “Code Size estimation”. To 
put this in a practical perspective, we estimate that a typical Saab car contains around 
1200 distributable components. This means that it would take up to 4800 man hours 
(roughly 2,5 man years) to estimate the complete application Code Size of a car. 
Hence, manual estimation of Code Size is not feasible in this context. Instead we 
propose a model-based and automated approach, which is described in Fig. 8. 

In our proposed approach, the architect adds information about calibration 
parameters and the information needed for categorization of the distributable 
component into “Enhanced Component Diagrams”. The Enhanced Component 
Diagrams was defined as a UML Profile in section 3 of this paper. The Enhanced 
Component Diagrams are exported into an XMI file containing all the information 
needed for COSMIC. Hence, the activity “Identify input for COSMIC” that was 
performed manually by reading the textual specification before, is performed by the 
architect who is already familiar with the requirements. The anticipated saving in 
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manual effort is that the measurement engineer does not have to read the textual 
specification. The next step in Fig. 8 is that the XMI file is imported to the CompSize 
tool that automates the “Functional Size measurement” and “Code Size estimation” 
activities in Fig. 7. The CompSize tool was briefly described in section 4 of this paper. 

Requirement
definition

Decomposition
into enhanced
components

Domain
expert

Architect

Measurement
engineer

Textual
Specifi-
cation

Bytes

Enhanced
Component

Diagram

Introduced in 
this work!

Model-based & 
automated 

measurement & 
estimation

 

Fig. 8. Main activities and artifacts for the proposed model-based and automated approach to 
estimation of Software Component Size 

The case study was conducted in two steps. The first step of the case study 
concerns estimation of distributable components with given Component Diagrams. 
The manual measurements and estimations obtained in our previous work [28] 
according to Fig. 7 are replicated using the UML Profile and the CompSize tool 
according to Fig. 8. The purpose is to evaluate the UML Profile and XMI import to 
the tool, and hence answer RQ1. 

The second step of the case study concerns estimation of distributable components 
with unknown Component Diagrams. The manual measurements and estimations 
obtained in our previous work [25] according to Fig. 7 are replicated according to the 
complete process described in Fig. 8. Relative effort data are compared to absolute 
effort data obtained from interviews with architects. The purpose is to answer RQ2. 

5.2   Operation and Data Analysis 

The case study was defined, planned, supervised, and analyzed by the authors of this 
paper, but it was conducted by two Master students with no prior experience from the 
COSMIC method and with limited knowledge about the automotive domain. The 
reason that we let students conduct the case study instead of architects is that students 
are equally inexperienced with each phase of the estimation process as well as with 
different components. An architect on the other hand, is familiar with the Component 
Diagrams and can model that faster than the rest of the UML Profile. Therefore we 
can obtain effort measures that are less biased from the students. The students were 
given lectures about the COSMIC method, the format and structure of the textual 
specifications, and the UML Profile. The CompSize tool was implemented by the 
students, so they were already familiar with the tool before the case study. 

Next, we describe the first step of the case study by going through an example. The 
software component we want to measure is the distributable component, like the one 
shown in Fig. 5 and Fig. 6. The boundary, the users, the surrounding software, and 
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any engineered devices in Fig. 1 are clearly defined by the component diagram. The 
distributable components are always defined at the same level of granularity and level 
of decomposition, which is important to be able to compare CFP values to each-other. 
To illustrate the usage of the UML Profile we explain how the distributable 
component in Fig. 5 and Fig. 6 is modeled. The result is shown in Fig. 9. 

<<CompSizeComponent>>
LGT_ControlTruckBedCargoLamp

Variables 

<<CompSizeProperty>>
Direction = in
<<ByteSizeProperty>>
Size = 1

<<CompSizeProperty,ByteSizeProperty>> 
CARGO LAMP PRESENT:Boolean

<<use>>

<<Interface>>
IPickupBedCargoLamp_osg

<<Signal>>
PickupBedCargoLamp_osg

<<Interface>>
IInteriorLightStatus_rsp

<<Signal>>
InteriorLightStatus_rsp

<<CompSizeComponent>>
functionality = Comf & Conv
decomposition_level = Distributable
granularity_level = Textual spec.
…

 

Fig. 9. Mapping of a distributable component onto the UML Profile 

The maximum latency requirement in Fig. 6 is modeled as a required interface, 
because it will be implemented as a periodic invocation of the component with a 
maximum allowed period time. The vehicle power mode requirement in Fig. 6 is in 
fact a required interface, and it is modeled accordingly. The other interfaces are 
modeled as in Fig. 5. The CARGO LAMP PRESENT requirement in Fig. 6 is 
modeled as a CompSizeProperty with Direction=in. This is the needed information 
for COSMIC, so we can directly use the mapping rules defined in Table 1 to obtain 
the CFP value. The result is CFP=7, i.e. 5 Entry data movements + 1 Exit data 
movement + 1 Read data movement. 

The UML Profile in Fig. 9 was modeled in Rhapsody, and an XMI file containing 
the information in the UML Profile was generated. The CompSize tool imported the 
information, identified the data movements, calculated the CFP value to 7, and 
identified the categorization values. The categorization factor values in Fig. 9 are used 
to select the proper linear regression model to convert the CFP value into bytes, and 
hence estimate the implemented Code Size of the distributable component. In this 
case the resulting estimated Code Size is 1441 bytes, exactly as in [28]. Hence, we 
conclude that the UML Profile can capture the information needed for COSMIC, and 
that the tool can import this information from an XMI file. 

The second step of the case study modeled 10 components based on requirement 
specifications, as described in Fig. 8. The purpose is to collect timing data. The time 
was measured for each of the following activities; reading the textual specification to 
understand the requirements and to identify the distributable component and its 
interfaces, modeling the distributable component and its interfaces, reading the textual 
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specification to identify the additional information needed for COSMIC, modeling the 
additional information in the UML Profile, feeding the information into the CompSize 
tool and obtaining the estimated bytes value. 

In addition, the measured CFP values were compared to our previous measurements 
of the same components. The purpose is to assess whether the students have identified 
the majority of the data movements, and to make sure that the timing data is relevant. 
A scatter plot comparing the CFP values obtained in the case study and our previous 
CFP values from [25], is shown in Fig. 10. As can be seen, the resulting CFP values 
from the student measurements deviate from ours, but in general the students seem to 
have identified the majority of the data movements. The R2 value from the student 
measurement is high (R2=0,80), which confirms the strong correlation between CFP 
and bytes we have found in our measurements. We expected some deviation between 
the measurements performed by the students and our own measurements, because 
published experiments show good repeatability in CFP measured by experienced 
engineers, but poor repeatability in CFP measured by inexperienced engineers [7]. 
Therefore, we concluded that the timing data is realistic. 
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Fig. 10. Scatter plot showing CFP values measured by the main author and the students for the 
same components 

5.3   Interpretation of Results 

The time for each step in the estimation process was measured and collected during 
the case study. The time needed for reading the textual specification to identify the 
additional information for COSMIC and modeling that in the UML Profile was 
converted into percentage of the total time.  

The time for one of the components was identified as an outlier, because it was 
significantly larger than for the other components and the student was in fact sick at the 
time. The statistics of the resulting data for the remaining 9 components is presented in 
Table 2. 

Table 2. Statistics for the amount of added effort for the UML Profile compared to total effort 

Mean value (%) Std deviation (%) Min value (%) Max value (%) 
13 4,3 5,3 20 
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From interviews with architects at Saab we have obtained the manual effort 
involved in creating the standard Component Diagrams according to Fig. 5, to around 
6 man hours for a typical distributable component. This effort includes reading of 
textual specification, modeling the component diagram, having review meetings with 
the domain expert, etc. 

So if we add an additional 13% (mean value from Table 2) of effort to the 6 man 
hours, we would burden the architect with an additional 47 minutes (0,13*6 hours) for 
modeling the UML Profile. The additional 47 minutes are much less than the 2-4 
hours needed for manual measurement and estimation. For the complete application 
software of a typical Saab car it would require around 900 man hours (0,5 man years) 
with our model-based and automated approach, instead of up to 4800 man hours (2,5 
man years). In addition, we expect that the effort needed in our approach will 
decrease even further in a practical case, because an architect will normally read and 
model everything for a component at once. 

A natural question at this point is why the architect would be willing to model the 
additional information for the purpose of estimating Code Size. The motivating factor 
is that the architect needs the estimated values as support for allocation decisions, 
architecture studies in early development phases, etc. 

A significant difference in our model-based and automated approach compared to 
the manual approach, is that much of the COSMIC measurement knowledge is needed 
when the architect models the UML Profile for the component. This is the step where 
the actual measurement takes place. Therefore it is crucial that the architect receives 
COSMIC knowledge support, either directly from a measurement engineer or from 
written guidelines. Our recommendation is the latter, and that is the way we plan to 
implement the approach at Saab. The guidelines are important to obtain high 
repeatability and consistency in the process. 

6   Evaluation of Validity Threats 

Our case study was conducted by two Master students with no prior experience about 
the COSMIC method and limited knowledge about the automotive domain. This fact 
is likely to affect the accuracy of the estimates, as well as the absolute effort to obtain 
the estimate. However, in this paper we focus on the relative effort required in each 
phase of the estimation process. Since the students are equally inexperienced in each 
phase, we expect effort data that are less biased than if an architect who is familiar 
with parts of the process would conduct the case study. Moreover, the case study was 
defined, planned, supervised, and analyzed by the authors of this paper. The main 
author has 15 years of experience from software development activities, of which 6 
years were spent managing Architecture teams at Saab and GM. This experience 
should compensate for the lack of automotive experience of the students. 

The UML Profile is tailored to capture the information needed for the COSMIC 
method. We regard this as a minor limitation, because COSMIC is an approved ISO 
standard for measuring the Functional Size of software and much of the current 
publications concerning software size measurement apply COSMIC. 
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We have only used requirement specifications, Component Diagrams and software 
implementations from two automotive companies. This means we can only make 
conclusions that are valid in this particular domain.  Therefore we plan to evaluate our 
approach with data from other domains. 

7   Related Work 

Marin et al. [29] presents a survey of existing literature related to measurement 
procedures based on COSMIC FP. Eleven procedures are presented of which two 
applies to the real-time systems domain. Of these two, the most relevant one [6] uses 
models developed in the ROOM (Real-time Object Oriented Modeling) language as 
input to the μcROSE tool [7]. Their work is similar to ours, but they use another 
modeling language as input for COSMIC measurement. They conduct a case study to 
validate the tool, but they do not report on the efficiency obtained using the tool 
compared to manual measurement. 

Other works use UML diagrams like use case, class, component, and sequence 
diagrams as input for COSMIC measurement [20],[21],[22]. The purpose is to 
improve the practice of COSMIC measurement and to automate the measurement 
process using a tool, but the tool remains to be developed. 

Another group of publications report on how to use UML models as input for 
IFPUG FPA measurement [8],[35]. In [35], it is shown that UML class diagrams and 
sequence diagrams can be used as input for a software tool that automatically 
calculates the IFPUG FP. 

Stern [32] reports on lessons learned from using COSMIC FP for effort estimation 
purposes at Renault automotive company. Very strong correlation (R2=0,93) were 
found between CFP and supplier effort invoice data. Stern and Gencel [33] investigate 
the relationship between COSMIC FP and memory size of functions using data from 
the automotive industry. They found very strong correlation (R2=0,99) in a range of 
Functional Sizes from CFP=7 to CFP=748. This confirms our own results reported in 
[23],[24],[25],[26],[27],[28]. 

8   Conclusion and Future Work 

The goal of this paper was to investigate how the manual effort involved in estimation 
of Code Size can be minimized. We defined a UML Profile capturing all information 
needed for estimation of Code Size, and developed a tool for automated estimation of 
Code Size based on CFP. 

We conducted a case study using requirement specifications and software 
implementations from the automotive industry to answer the research questions. The 
case study showed that the UML Profile can capture all the information needed by  
the COSMIC method. The case study also showed that the effort for estimating the 
implemented code size of a component is reduced from 2-4 hours to well below 1 
hour. So this work illustrates how the use of UML models can save manual effort 
(and hence money) in a realistic case. 

In addition, our UML Profile contains support for estimation of RAM memory 
size, which is an extension compared to our previous work. We plan to evaluate this 
support in future case studies. 
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As future work we also plan to develop written guidelines to the architects about 
how they are supposed to model the UML Profile to obtain accurate estimation 
results. The guidelines and our model-based estimation approach will be further 
evaluated in a case study conducted by the actual architects. 
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Abstract. With the emergence of Internet of Things (IoT), many things
which typically used to be isolated or operated in small local networks,
will be interconnected through the Internet. One main challenge to tackle
in IoT is efficient management of communication between things, since
things can be very different in terms of available resources, size and
communication protocols. Current Internet-enabled devices are typically
powerful enough to rely on common operating systems, standard net-
work protocols and middlewares. In IoT many devices will be too con-
strained to rely on such resource-consuming infrastructures; they run
ad-hoc proprietary protocols. The contribution of this paper is a model-
based approach for the efficient provisioning and management of the
communication between heterogeneous resource-constrained devices. It
includes a DSML which compiles to a set of interoperable communication
libraries providing an abstract communication layer that can integrate
both powerful and resource-constrained devices. The approach is imple-
mented in an IDE for the development resource-constrained Things.

1 Introduction

We exploit, interact and rely on things in our everyday life (e.g., house-hold appli-
ances, clothing, cars, lights, buildings, mobile phones, etc). Currently, more and
more of these things are equipped with sensors, computing power and communi-
cation capabilities, leading to the emergence of the Internet of Things (IoT). A
vast number of independent or embedded sensors and sensor networks will form
the basis of the IoT infrastructure. New innovative applications exploiting the
IoT paradigm are already emerging in domains such as Ambient-Assisted Living
(AAL), intelligent transport systems and environmental monitoring.

Building advanced services that involve heterogeneous sensors and things that
need to communicate and collaborate can be complex and time consuming for
the following reasons:

– Resource Constraints: While the business logic of each individual thing
is often rather simple, the resource constraints (CPU, memory, power, etc)
make it challenging to efficiently implement this logic. Typically, these things
have to run autonomously for an extended time, which require minimizing
their power consumption while still providing quality of service. For exam-
ple, sensors monitoring the environment are spread in locations not easily
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accessible, making such requirements of high importance to maintain the
system services.

– Heterogeneity: The IoT includes a wide variety of different nodes, ranging
from powerful servers to small things operated by micro-controllers. Powerful
nodes can run common operating systems and rely on common frameworks
and protocols to implement software engineering best practices. However,
IoT will include a vast number of resource-constrained things: some can run
light operating systems like TinyOS, some can only run C or C-like lan-
guages, some can only run low level assembly code. In addition there is a
wide range of (wireless) communication technologies (e.g., WiFi, Bluetooth,
ZigBee) which provide different trade-offs regarding power-consumption,
range, reliability, etc, and which should be combined in a sensor network.

– Independent development of things and services: Things (e.g., phys-
ical devices operated by a C-based micro-controller) and advanced services
(e.g., Java application running on a server) relying on a set of networked
things are usually developed concurrently, by different teams having differ-
ent competencies. This could lead to misalignments and inconsistencies.

– Interoperability: Different IoT-related standards have emerged, such as
the ones proposed by the Sensor Web Enablement Working Group [3], to
provide interoperability support in the context of sensor networks. While
these standards address clear needs, their realization (usually verbose XML-
based document) cannot fit to the most resource-constrained devices, due to
the technical overhead they imply. Instead micro-controllers rely on ad-hoc
and highly optimized protocols, which better fits the resource constraints
and improve the reliability and speed of wireless communications.

For these reasons, developing and IoT application based on a heterogeneous
Wireless Sensor Network (WSN) is challenging. However, solution exists for
tackling these issues for the powerful nodes: standards define ways to repre-
sent and exchange data in a homogeneous way, some middlewares, software
frameworks and networking stacks solve part of the heterogeneity challenges
and the business logic can be realized using classic development techniques in-
cluding MDE. Unfortunately, these solutions cannot directly be applied for the
most resource-constrained nodes. As a result, software embedded in the most
resource-constrained things are in most cases manually developed in C and ASM.
Platforms are too small to embeed OS, middlewares or frameworks so the code
is often a tangled mix of business logic, communication and hardware drivers.

This paper presents an innovative Model-Driven approach to support the ef-
ficient development IoT applications over heterogeneous WSNs. In particular
we have developed a DSML called ThingML, which aims at promoting software
engineering best practices for the specific case of resource-constrained systems.
ThingML comes with editors and checkers and a set of transformations and code
generators which currently target Java and several micro-controller platforms
(e.g., TI MSP, Atmel AVR and Arduino). The contribution presented in this
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paper is a model-driven approach for engineering and managing efficient com-
munications with and between heterogeneous and resource-constrained things
within the IoT, with proper support for independent development.

The paper is organized as follows. Section 2 introduces our running example
and analyzes the problems related to communication with and between resource-
constrained things. Section 3 presents our model-driven approach to tackle these
issues. Our approach is validated on two case studies in Section 4. Section 5
presents related work and Section 6 concludes and opens some perspectives.

2 Problem Analysis and Illustrative Example

This section presents a running example used throughout the paper. The example
both illustrate our approach and motivates our work by detailing challenges
related to development of resource constrained IoT services.

CoffeeSpy is an experimental device that monitors a coffee machine using
technologies typically found in wireless sensor network (WSN) applications. The
left side of Figure 1 presents an overview of the sensor hardware structure. The
core of the device is an 8bits AVR micro-controller with 32ko of flash memory
and 2ko of RAM memory connected to 3 sensors: i) a high-resolution infra-red
temperature sensor, ii) an infra-red distance sensor, and iii) a light sensor.

The wireless communications are realized via an XBee radio chip which im-
plements the ZigBee protocol (http://www.zigbee.org/). This hardware set-up is
rather simple, however, the CoffeeSpy device is representative for devices found
in application domains such as environmental sensor networks or industrial pro-
cess control and monitoring systems, as it uses typical off-the-shelf components.
The CoffeeSpy application provides real time information about:

– the temperature and freshness of the coffee using the temperature sensor,
– the number of cups which have been pored since the coffee was made

using the distance sensor and the temperature sensor, and
– the activity in the coffee room using the light sensor and the distance sensor.

Fig. 1. Architecture of the CoffeeSpy device
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As shown in Figure 1, the device communicates with a server equipped with a
ZigBee adapter. From a software point of view, the application is composed of
two components:

– The server application implemented in Java. The server has a lot of resources
available in terms of computing power, memory, software libraries, middle-
wares, etc. Typical software modeling techniques and development processes
can easily be applied in the development of this part of the application.

– The firmware running on the micro-controller, programmed in C. It is con-
strained in terms of energy, computing power, memory, bandwidth, etc.
These constraints make it impossible to rely on standard middlewares and
operating systems to implement the device functionalities.

This heterogeneity introduces some accidental complexity for the development
of the CoffeeSpy application. Alternatives can be explored to try and avoid this
situation, however, they raise other concerns:

– Using a more powerful core for the CoffeSpy which could run a real OS (e.g.,
embedded Linux) with standard software libraries, network protocols and
communication middlewares. This strategy can be applied to some chosen
devices but cannot be applied to all the devices of the network: the hardware
for such a device would be 50 to 100 times more expensive and its power
consumption would be about 1000 times more. Because devices and sensors
are deployed in large numbers and often need to be battery-operated and
environmentally friendly (green computing), limiting the power consumption
is a primary concern.

– Reducing the features of the firmware to the absolute minimum and delegate
all the functionalities to large nodes like the server of the CoffeeSpy appli-
cation. A minimalistic firmware would simply read values from sensors and
transmit them periodically. Unfortunately this would not be a good solution
for several reasons:
• It is inefficient. To monitor the coffee, the application can sample the

temperature of the coffee every minute, but detecting motion in front of
the coffee machine requires more frequent sampling (several times per
second). While this can easily be implemented, it is highly inefficient
both in terms of power and bandwidth consumption and would thus not
scale to any realistic sensor network.

• It is a threat to reliability. Devices monitoring and controlling equip-
ments, should be able to sustain critical functionalities even if the re-
mote and more powerful nodes are not available. Typically time-critical
and safety-critical features should be implemented in the controllers to
keep these services available even in case of failure of the other nodes or
communication links. The logic of the application should be distributed
among all the nodes (including the smallest ones) to avoid critical points
of failure.

• It does not scale. The CoffeeSpy example has only two nodes but real-life
sensor networks are typically composed of hundreds or thousands nodes.
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The applications running on these nodes need to cope with the sporadic
availability of other nodes, the discovery of new nodes and adapt to
their environment to provide the best possible services. Such dynamic-
ity cannot be implemented in a centralized way and require each node
of the network to implement behavior which contributes to the overall
application.

Designing a distributed system which involves resource-constrained nodes is a
complex trade-off between maintainability, hardware costs, reliability, power con-
sumption, etc. Once the hardware is selected, the main instrument to adjust this
trade-off is the distribution of the features on the different nodes. For example
in the CoffeeSpy application, the freshness of the coffee can either be computed
on the micro-controller or on the server by analyzing raw data coming from the
sensor. As such this would probably be the most convenient solution for our
application since many libraries exist in Java to process data. However if we
want to extend the CoffeeSpy device with a display (located on the device itself)
which shows the age of the coffee, it would be better to have this computation
made locally in order to keep the display properly updated and functional even
if the server side is down. This would in addition avoid back-and-forth exchange
of messages on the wireless network.

The only realistic solution to keep control on this complex trade-off is to
provide efficient support for moving functionalities from nodes to nodes both
at design-time and during maintenance and evolution. This actually means co-
evolving all the nodes contributing to a function in a consistent way. For example,
if the freshness of the coffee is computed on the server, then the CoffeeSpy device
only needs to provide a service for reading temperature. However if the device
does this computation it has to be refactored to also transmit the age of the
coffee. There already exist some elegant solutions to seamlessly communicate
both with local objects and remote objects in an homogeneous environment.
However, when it comes to micro controller-based devices, such an extension
means that both the firmware of the device and its driver on the server has to be
extended with the appropriate computation and communication functionalities.
Even worse, in a realistic setup, the different nodes of an application are typically
developed by different teams and have different life-cycles. The goal of the ap-
proach proposed in this paper is to allow defining in a simple way the interfaces
between devices and to automatically derive APIs to support communications,
and stubs to support the development and testing of nodes in isolation.

3 Approach

The approach proposed in this paper is developed as part of an IDE called
ThingML1 for the development of resource-constrained systems. The idea of
our approach is to specify protocols in a ThingML model using a concise and
comprehensive syntax, as illustrated in Figure 2, and to fully generate code:
1 http://www.thingml.org

http://www.thingml.org
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– Efficient API for the serialization and de-serialization of messages in/from
arrays of bytes, as presented in Section 3.1.

– Handlers for managing message-specific communication features, as pre-
sented in Section 3.2.

– Mock-ups and interactive simulators to enable independent development of
things and services, as presented in Section 3.3.

Fig. 2. Overview of the proposed approach

The idea of ThingML is to build a practical development environment and
methodology to make typical software engineering good practices available to the
development of resource-constrained embedded systems such as micro-controller
applications. We believe that model-driven engineering provides the right tools
to address this problem because models-based approaches do not need to rely
on advanced run-time frameworks, operating systems and middleware to be ap-
plicable. Models can be analyzed, tested and verified and exploited to generate
optimized code which target resource-constrained platforms. In previous work
we have shown how ThingML can be used to produce adaptive firmware using
a high-level adaptation DSL and aspect-oriented modeling techniques applied
to state machines [7]. In this paper we focus on the generation of interoperable
communication APIs to communicate with and between things. To this end, we
use a sub-set of the ThingML language to specify messages.

The ThingML metamodel, editors and code generators are available as part
of the ThingML open-source project2.

3.1 Generating Interoperable APIs for Things and Services

An important aspect when setting up an infrastructure for the IoT is the ability
to properly connect and interoperate the physical “things” with advanced ser-
vices relying on standards [3]. Typically, the raw data provided by the sensors
2 https://github.com/ffleurey/ThingML

https://github.com/ffleurey/ThingML
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(e.g., the actual value of a light sensor) is usually not relevant for end-users.
Instead, end-users are more interested, for example, by a qualitative estimation
of the light in a room.

To ease the integration and interoperability of (C-based) things and (Java-
based) services we generate C APIs for the devices and Java APIs for the more
powerful nodes. All these APIs are able to communicate together. Fully func-
tional APIs are generated from ThingML models, such as the one illustrated
in Figure 3, which define messages with their parameters, and their directions
(sent of received) w.r.t. to the physical device: a message sent by the device is
a message received by the service, and vice-versa. In the generated code, each
message is clearly reified (e.g. by a Java class) and we provide the designers with
a factory to create message either by passing parameters, or from a serialized
format. The code related to serialization/deserialization is also fully generated.

Our code generators thus alleviate designers from directly manipulating low-
level structures, who use the generated APIs instead. The benefits of this ap-
proach are:

– Performance: Messages are automatically serialized as arrays of bytes,
which are the most concise way of representing data, and by consequence
the fastest way of transmitting data on (wireless) networks. They are also
much faster to parse than XML data. As a comparison [9], this is 3 to 10
times smaller than XML-based data, and 20 to 100 times faster to parse.

– Interoperability: Our approach ensures or facilitates different levels of
interoperability:
• Programming languages: Relying on the lowest possible abstraction

(bytes) ensures the interoperability at the lower level: Java, C, etc can
interpret bytes. However, designer only manipulate higher lever repre-
sentations: Java POJOs, C structures, etc.

• Communication links: Arrays of bytes are common inputs/outputs
accepted by most communication stacks: serial port, ZibBee, Bluetooth,
etc. This ensures the interoperability among different links, which is an
important point in WSN.

• Standards: The generated high-level APIs provides a good support for
interoperability with standards. For example, it is straightforward to
instantiate XML templates on values of POJOs.

In addition to the API we also generate the interfaces of two Observer patterns.
The first Observer aims at managing and facilitating the communications with
the device, and the second one for the communications with clients of the device:
other devices, heavy applications running on a server, etc. Using these observers,
it is rather easy to develop applications that for example log the data of devices,
or drive the devices. We also fully generate such an application (an interactive
simulator), as described in Section 3.3.

3.2 Generating Light-Weight and Message-Specific Protocols

Networking is a domain where a large number of techniques, standards and tools
are available to assist software development. These techniques very often rely on
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the 7 OSI layers (or similar stacks) to implement networking capabilities and
offer high-level and reliable communications. The layers are generic components
which require the services of the layer below them and offer a set of services to
the layer above. This componentization enables easy deployment and reuse in
various contexts, but does not suit well resource-constrained systems:

– The generality implies resource penalties. The different layers typically use
different memory buffers to store the incoming an outgoing data and perform
their tasks, which multiply the memory usage of the stack. Collapsing the
layers together would allow building a more efficient networking component
requiring only a fraction of the resources.

– The applications running in a resource-constrained environment typically do
not need all the features of a fully fledged protocol stack. In most cases the
type of messages can be fixed at design time. Depending on the application,
protocol features such as acknowledgments, timeouts, routing, error detec-
tion, error correction, assembling and disassembling of packets and so on
might not all be required.

Fig. 3. Messages with communication features

In practice, the networking component embedded in micro-controllers is man-
ually implemented as a single optimized component developed for each specific
application [15]. This has great advantages in terms of performance and appli-
cability but comes with a large development, testing and maintenance cost. Our
approach leverages models to generate these dedicated networking components.
Figure 3 presents part of the protocol model for the CoffeeSpy device. ThingML
allows modeling a set of communicating devices and a set of messages they can
exchange. By default all messages are considered as asynchronous and are sent
with a “send on forget” policy (see messages related to raw data in the Figure).
This is the simplest message exchange strategy and it can be implemented at
a very low cost on top of any kind of physical link. However, even for applica-
tions as simple as the CoffeeSpy, more complex networking features are required:
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acknowledgments, synchronous message responses, error detection, messages re-
transmission, encryption, etc. ThingML relies on a set of predefined annotations
to further refine the communication semantics of the messages.

The two messages called ping and pong can be used to check the communica-
tion between the server and the CoffeeSpy device. Ping can be sent to the device
and the annotations specify that this message has a synchronous acknowledg-
ment called pong. This acknowledgment is expected to come within 1 second, and
if it does not come, 3 attempts can be made at resending the “ping” message. By
processing these annotations, the code generator produces the emission of the
acknowledgment message in the device code and an operation in the client API
which sends the ping message, handles timeouts and retries and return a sta-
tus information specifying whether or not the acknowledgment was received. By
default the operation simply returns a Boolean but several options can be used
to throw exceptions when communication failures occur. Similarly, it is possible
to manage synchronous calls with a return value in a similar way as illustrated
by the messages GetTemperature and TemperatureValue define a synchronous
way of reading the temperature sensor of the CoffeeSpy device. The annotation
sync response specifies that the parameter v of the message TemperatureValue
is the result of the call.

In all cases, the code generator will only include the code required to im-
plement the networking features on the specified messages. The benefits of the
approach are two-fold: First it allows for efficient, specific and compact network-
ing components. Second, it provides a fined grained way of defining the specific
ways in which different messages should be handled. For example, in a typi-
cal sensor network different types of information are exchanged between nodes
for collecting sensor data, managing the network, discovering new sensor nodes,
etc. Each feature has different needs in terms of synchronization, response time,
bandwidth, reliability, etc. With a classical approach this would require using
the most advanced protocol stack for all communications or to embed a collec-
tion of different protocol stacks. Using the proposed model-based approach, the
type of communication and its quality of service properties can be fine tuned
for each message in order to fulfill the domain requirement with no accidental
overhead.

3.3 Generating Interactive Simulators

In practice, micro-controllers and client software systems are usually developed
by two separate teams with different competences. For productivity reasons,
it is not reasonable to wait that one end ((Java-based) software or (C-based)
things) is fully operational before realizing the second end. Rather, both ends
are developed and maintained concurrently, often leading to misalignments and
inconsistencies. It is thus very important to provide support early in the devel-
opment cycle to be able to test the different ends of a WSN-based application.

The fully automated generation of APIs to encapsulate and exchange mes-
sages (Section 3.1) is a first step to uncouple the development of advanced
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services from the development of things. Once messages are specified in ThingML,
different teams of developers can rely on the generated API knowing that they
will interoperate seamlessly.

Similarly to the development of more classic applications, developing a WSN-
based application often requires an iterative process. This is even more important
since some constraints are imposed by the low-resource hardware. As motivated
in Section 2, it is not always easy to identify a priori the best tradeoff between
which part of the application logic should be implemented on the small device,
and which part should be executed on more powerful nodes.

To support a more agile development process, we also generate interactive
simulators, as illustrated in Figure 4, which respectively mock-up the devices
and their logical environment, in order to respectively test the devices or other
client devices/services [5].

Fig. 4. Interactive simulators to enable independent development

These simulators enables rapid and early testing of the two ends of the system
(C-based devices and Java-based services) to identify early in the development
cycle potential lacks or mismatches in the set of messages, with no need to wait
that one end is fully developed to discover these problems. In the case messages
are updated in the ThingML model, API can be re-generated. This would of
course imply some refactoring in the client code, facilitated by modern IDEs.

As described in Section 3, ThingML focuses on resource-constrained devices,
usually deployed as leaves in a sensor network. However, it is possible to infer
some useful information from the ThingML specifications of such devices. Typ-
ically, if we reverse the protocol of a given device (i.e, send message that were
formerly received, as vice-versa), we can obtain a specification of a client device
equivalent to the logical environment of the initial device. Another alternative
that we also support is to let the designers specifying other devices (that can
potentially run on more powerful nodes, even though ThingML does not specif-
ically address such kind of nodes) that interact with the initial device. These
devices partially intersect the logical environment, but might also define other
messages. By default we generate an interactive simulator that stubs all the
devices specified in the ThingML model, and that also stubs all the logical envi-
ronment. Both stubs are actually generated using the same code generator, since
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we consider the logical environment as a “mirror” device. Each stub is composed
of a simple (fully generated) GUI and a controller that implements the Observer
pattern generated with the API (Section 3.1). By default, we generate a simple
test program which connects both stubs together. The utility of this application
is simply to check that message are serialized and deserialized in a consistent
way by the generated API. However, it is off course straightforward to connect
the stubs to other application implementing our Observer pattern, such as the
JArduino [6] application presented in Section 4.2.

4 Application

In order to validate our ThingML IDE, we have implemented two case studies in
ThingML, on top of the Arduino platforms, and generated the code to actually
run these case studies. Arduino [2] is an open-source (both hardware and soft-
ware) electronics prototyping platform. The Arduino board can be connected to
a set of sensors and actuators and programmed in a language close to C/C++.

The first application is a domain-specific application (the coffee spy) based
on a precise set of sensors that we used as a running example in this paper.
The second case study is a general purpose application to enable the rapid pro-
totyping of sensor networks on top of the Arduino platform, which we have
made available as an open-source project on GitHub [6]. The idea is to gather a
community (basically, Java developers who wants to try the Arduino platform)
around JArduino and collect feedback on the generated code.

We use the Sonar tool (http://www.sonarsource.org/) to compute various
metrics and score (based on simple naming convention, anti-pattern detection,
etc) on the generated Java code. The metrics of the generated C code (smaller)
are provided manually.

4.1 CoffeeSpy: Domain-Specific Application in ThingML

The protocol of the coffee spy is described by 24 messages, in 50 lines of code.
From this rather synthetic model, we generate 44 classes for a total of 2702 lines
of code for the Java side, and almost 400 LoC for the C side. The expansion
factor is thus more than 50. The generated code is fully operational and is of
good quality: it obtains a score of 83.7% of rules compliance, using the default
Sonar settings.

Based on the generated API, we implemented a simple Java client program
(<100 LoC) that monitors the activity around the coffee machine only when this
is relevant (i.e., when someone is approaching the machine). This way it reduces
the traffic on the wireless network and also reduces the amount of data to log.
In more details this program:

1. Subscribes to the motion information,
2. Subscribes to the raw data if it receives an approaching motion message,
3. Logs all the raw data,
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4. Un-subscribes to the raw data if it receives a leaving motion message, with no
sub-sequent approaching motion message in a given time window. Otherwise
it keeps its subscription and continues logging raw data.

This simple Java program has successfully been tested with the generated mock-
up device and (with no modification) with the physical device.

4.2 JArduino: Wrapping the Arduino API in ThingML

The goal of this second case study is to easily integrate sensors and actuators
in Java, for rapid prototyping and experimentation. To achieve this goal, we
wrapped all the standard Arduino API related to Input/Output3 in ThingML,
as well as other commonly used libraries (to interact with LCD, etc). The result
is naturally called JArduino [6], for Java for Arduino.

The protocol of this application is described by 40 messages and 8 enumer-
ations to constrain the parameters of the messages, in about 100 lines of code.
From this rather synthetic model, we generate 68 classes for a total of 4708 lines
of code for the Java side, and close to 500 LoC for the C side embedded in the
micro-controller. The expansion factor is thus more than 50. The generated code
is fully operational and is of fairly good quality: it obtains a score of 67.9% of
rules compliance, using the default Sonar settings. This score is mostly explained
by the naming convention used in the ThingML model describing the Arduino,
where several messages contain underscores. In order to keep the public part
of the generated API aligned with the ThingML specification, we also generate
method names, etc with these underscores. This would however be straightfor-
ward to generate code complying with Java conventions and we would reach
the same score as the Coffee spy case study, but this would slightly change the
alignment of the API w.r.t. its specification.

The generated C-code is uploaded on the micro-controller of the Arduino
board. This code actually receives messages (arrays of bytes as described in
Section 3.1) and dispatches these messages to appropriate handlers, depending
on the types of the messages. These handlers simply delegate to the standard
Arduino API also located on the micro-controller.

The generated Java code is an API which matches the Arduino APIs. The
Arduino API related to control structures, arithmetic, etc is not mapped since
this is a direct sub-set of the Java language or Java standard API. When the
generated Java API is invoked, it generates a message which is sent to the
Arduino board.

This simple yet fully generated case study makes it possible to write Java pro-
grams that seamlessly manage sensors and actuators connected to the Arduino
board. We have successfully ported most of the standard examples provided by
Arduino on JArduino, and provided and extra example which simply connects
the stub that simulates the logical environment to the Arduino. It provides a
GUI to easily administrate the Arduino and quickly experiment sensors and
actuators. More details are available at [6].
3 http://www.arduino.cc/en/Reference/HomePage

http://www.arduino.cc/en/Reference/HomePage
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5 Related Work

5.1 Remote Procedure Calls for Micro-controllers

Several solutions exist to enable the seamless collaboration of software compo-
nents written in different languages and running on different platforms. Corba [10],
RMI [12], Web Services [14], WCF [13] are well-established alternatives for dis-
tributed computing infrastructure. If these technologies differs for some non
functional features [8], they provide the same benefits for building distributed
applications: Independence from language and OS, Strong Data Typing, High
Tune-ability and Compression. CORBA/e [11] sheds the dynamic and high-
resource aspects of CORBA but retains full interoperability. Then, CORBA/e
Micro Profile shrinks the footprint small enough to fit low-powered microproces-
sors: only tens of kilobytes. Other researches exist to support Corba on top of
micro-controllers [16,4], nevertheless these approaches always use a layer model
to hide the communication medium (Bluetooth, RS232, XBee, etc). ThingML
use model information to generate the most suitable communication layer for
each application depending of the feature required in each of them. In particu-
lar, it allows customizing communication features for each specific message.

5.2 Abstractions over Sensors and Micro-controllers

Using higher level of abstraction than the C language is a common approach for
building software on top of micro-controller. Then, it is common to find small
Java, Processing4 or Lua5 implementation for lightweight environment. For ex-
ample, S4A6 is a Scratch [1] modification for Arduino, which provides a high
level interface to Arduino programmers with functionalities such as interacting
with a set of boards through user events. In the same trend, ThingML integrate
a language inspired by state machines to define the behavior of devices [7]. In
this paper we presented another sub-set of ThingML, which can be seen as an In-
terface Description Language used to describe the interface of sensors. ThingML
describes an interface in a language-neutral way, enabling communication be-
tween piece of software written using several programming language. In that
sense, ThingML can be combined to high-level micro-controller programming
language to manage communication.

Google Protocol Buffer is a DSL which offers abstractions to implement pro-
tocols based on efficient serialization/deserialization of structured data [9]. The
sub-set of the ThingML metamodel dedicated to protocols is aligned with Proto-
col Buffer. While Protocol Buffer was formerly designed to handle web protocols,
we handle the communication of wireless sensor networks, where nodes commu-
nicate via ZigBee, Bluetooth, etc. We also generate the code related to the be-
havior of the protocols, using synchronous or asynchronous message exchange,

4 http://processing.org/
5 http://www.tecgraf.puc-rio.br/~maia/oil/
6 http://seaside.citilab.eu/scratch/arduino

http://processing.org/
http://www.tecgraf.puc-rio.br/~maia/oil/
http://seaside.citilab.eu/scratch/arduino
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timeout, retries, etc, as well as code which enable independent development of
the different ends of a communication protocol.

OGC’s Sensor Web Enablement (SWE) framework defines a set of web service
interfaces and communication protocols abstracting from the heterogeneity of
sensor network communication and enabling their discovery, access, tasking, as
well as eventing and alerting [3]. It is an infrastructure enabling access to sensor
networks using standard protocols and API. No specific effort is made in SWE to
provide the link between the web-services and the real sensor. ThingML provides
interoperability at a lower level and the high-level APIs generated from ThingML
can be used to bridge the gap with standards like SWE.

5.3 Networking for Micro-controllers

Network library based on Ethernet, IP, ARP, TCP, UDP and HTTP can run on
resource-constrained micro-controllers [15]. To provide such a compact library
many features of the protocols have been stripped out. For example it does
not support assembling and disassembling packets which means that the size of
each messages is limited to a few hundred bytes. This is perfectly acceptable on
a micro-controller which should just process a set of commands and transmit
the data from a few sensors. Thanks to these limitations not only the library
fits on micro-controllers but it also outperforms many computer based protocol
stacks in terms of response time. Obviously such an approach is very costly in
terms of development, testing, maintenance and evolutions. The more specific the
protocol component is made, the more optimized it can be but the less reusable
it is. ThingML by generating fully functional code to deal with communication
can significantly reduces the burden of developing such libraries.

6 Conclusion and Future Work

This paper presented a Model-Driven approach to generate efficient communica-
tion APIs to exchange messages with and between resource-constrained devices.
Based on a concise ThingML description of the messages sent and received by a
device, we fully generate:

– Efficient API for the serialization and deserialization of messages in/from
arrays of bytes, as presented in Section 3.1.

– Handlers formanaging the communication features (asynchonous/synchronous
messages, timeout, retry, etc) specific to each message, as presented in
Section 3.2.

– Mock-ups and interactive simulators to enable independent development of
things and services, as presented in Section 3.3.

We have validated our approach on two case studies. All the code related to com-
munication has been fully generated. The CoffeeSpy application is a toy example
which however relies on standard technologies used in state-of-the-practice wire-
less sensor networks. JArduino is a medium-sized application that we have made
available as an open-source project.
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In future works, we plan to extend ThingML both for a technical and a
research point of views. From a technical point of view, we will implement a
bi-directional bridge between ThingML and Google Protocol Buffer, and ex-
tend Protocol Buffer with our C code generator targeting low-resource devices.
We will also include the feedback provided by the community on the JArduino
project [6] to improve and extend our code-generators, so that all the applica-
tions generated from ThingML would benefit from these improvements. From
a research point of view, we will continue to investigate how best practices in
“classic” software development can be applied to micro-controllers: separation
of concerns, self-adaptation [7], variability management and reuse, etc.
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Abstract. The abstract syntax of a graphical modeling language is typically 
defined with a metamodel while its concrete syntax (diagram) is informally 
defined with text and figures. Recently, the Object Management Group (OMG) 
released a beta specification, called Diagram Definition (DD), to formally 
define both the interchange syntax and the graphical syntax of diagrams. In this 
paper, we validate DD by using it to define a subset of the UML class diagram. 
Specifically, we define the interchange syntax with a MOF-based metamodel 
and the graphical syntax with a QVT mapping to a graphics metamodel. We 
then run an experiment where we interchange and render an example diagram. 
We highlight various design decisions and discuss challenges of using DD in 
practice. Finally, we conclude that DD is a sound approach for formally 
defining diagrams that is expected to facilitate the interchange and the 
consistent rendering of diagrams between tools. 

Keywords: Diagram, Definition, Model, MOF, UML, QVT, DD, SVG. 

1   Introduction 

Model-driven engineering (MDE) is a software methodology that is based on the use 
of models as a primary form of expression. Models are defined as instances of a 
metamodel, a higher-level model that describes the abstract syntax of a modeling 
language. Those languages are either general-purpose like UML [ 1] or domain-
specific (DSML) like BPMN [ 2]. In fact, metamodels are themselves defined using a 
DSML called MOF [ 3]. In addition, models are interchanged between MOF-based 
tools in XMI [ 4], a specification that maps MOF to XML.  

Moreover, most modeling languages (including the ones aforementioned) have a 
graphical concrete syntax, i.e., a diagrammatic notation. In fact, some tools (e.g. 
Microsoft Visio [ 5]) create models strictly based on the notation. Unfortunately, such 
a notation and its relation to the language’s abstract syntax are often loosely and 
informally defined using text and figures (showing examples of notation). This lack of 
precision and formality prevents tools from interchanging modeling diagrams 
reliably. It also leads to inconsistent rendering of diagrams among tools, which 
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hinders interpretation by users. This led the OMG standards body to issue a request 
for proposal [ 6] to address this problem. As a result, a new specification named 
Diagram Definition (DD) [ 7] has emerged. The specification, whose formalization is 
still under way [ 23], provides an architecture allowing the specification of (1) the 
diagram interchange (DI) and (2) the diagram graphics (DG) mapping for any 
modeling language. DI is used to define the graphical aspects that are user 
controllable whereas DG mapping is used to define the graphical aspects that are 
specified by the language (and therefore uncontrollable by the user). The role DD 
plays in specifying the concrete syntax of a modeling language is akin to the role 
MOF plays in defining the abstract syntax of that language. 

In this paper, we report on a case study where we validate the DD architecture by 
formally specifying the Diagram Definition of a subset of the UML class diagram. 
First, we define an interchange syntax for this subset with a MOF-based metamodel 
named UML DI (that is an extension of a more generic DI metamodel provided by 
DD). This metamodel together with the abstract syntax metamodel represent what is 
needed to reliably interchange this subset between tools. Second, we define the 
graphical syntax of the subset by mapping the two interchange metamodels to a 
generic DG metamodel (provided by DD) with a QVT-based [ 9] transformation. The 
mapping rules specify how the chosen subset should be rendered to graphics. 

We then carried out an experiment where we exported an example class diagram 
from the native format of a modeling tool to the standard UML metamodel and to our 
UML DI metamodel. We also prototyped rendering the exported diagram to graphics 
based on our specified DG mapping. Results showed that we could effectively 
interchange the example diagram and render it consistently with the original tool. 

The rest of this paper is structured as follows: Section  2 provides an overview of 
DD and its architecture; a case study of using DD to define a subset of the UML class 
diagram is presented in Section  3; Section  4 describes an experiment where the 
definition was used to interchange and render an example diagram; a discussion and 
reflection on the case study are given in Section  5; Section  6 highlights related works; 
and finally conclusions and future works are provided in Section  7. 

2   Overview of Diagram Definition 

2.1   Architecture 

The Diagram Definition (DD) specification [ 7] provides a basis for defining graphical 
notations, specifically node and arc style diagrams, where the notations are tied to 
abstract language syntaxes defined with MOF. DD provides an architecture that 
distinguishes two kinds of graphical information: one that users can control, such as 
layouts and notational options, is captured for interchange between tools; another that 
users do not control, such as normative shape and line styles defined by a language 
specification, is not interchanged because it is the same across all tools conforming to 
the language. DD defines two metamodels to enable the specification of these two 
kinds of graphical information: Diagram Interchange (DI) and Diagram Graphics 
(DG), respectively. 

The DD architecture (Figure  2.1) resembles a typical model-view-controller 
architecture [ 8], which separates views from underlying models, and provides 
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controllers to keep them consistent. The model part of the architecture is represented by 
diagram elements and their associated model elements, both of which are created by 
end users and thus need to be interchanged between tools. Model elements are 
instances of an abstract syntax (AS) metamodel; while diagram elements are instances 
of a related diagram interchange metamodel (AS DI). Both metamodels are defined 
by a language specification (e.g., UML) as instances of MOF. The AS DI metamodel 
is also defined as a specialization of the more abstract DI metamodel provided by DD. 
On the other hand, the view part of the architecture is represented by graphical 
elements that are defined as instances of the MOF-based DG metamodel, provided by 
DD to represent platform-independent graphics. Finally, the controller part of the 
architecture is represented by a mapping from the interchanged data (diagrams and 
models) to the viewable/rendered data (graphics). This mapping, which is part of a 
language specification, formally encodes the language’s concrete syntax (CS) rules 
and can be expressed using any suitable mapping language (e.g., QVT [ 9]). The M-
levels in Figure  2.1 are layers of the metamodeling architecture described in [ 10]. 

 

Fig.  2.1. Diagram Definition Architecture [ 7] 

2.2   Diagram Interchange (DI) 

DD provides a DI metamodel (shown in Figure  2.2 after incorporating the first 
official change ballot [ 23]) that allows defining those aspects of graphics that a 
language specification chooses to give its users control over and that need to be 
interchanged. Rather than providing a fit-for-all metamodel, DD provides a high-level 
metamodel that is intended to be specialized by each language to meet its specific 
needs while conforming to the same best practices. 

The core class in DI is DiagramElement, which is the super class of all elements 
nested recursively (via ownedElement) in a diagram. A diagram element can be a 
depiction of a modelElement from an abstract syntax model (e.g., a UML component) 
or can be purely notational (e.g., an attribute compartment). It can also inherit a style 
(with visual properties such as colors and fonts) from a nesting element, have a 
sharedStyle with other elements and even have its own localStyle. A diagram element 
is laid out based on being an instance of Shape or Edge. A shape is laid out within its 
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bounds while an edge is laid out as a poly line with a list of waypoint going from a 
source element to a target element. Also, an element is always rendered on top of its 
owning element if they overlap. Diagram is a special kind of shape that establishes a 
new coordinate system for its nested elements. The top-left corner of a diagram is the 
origin and all location and size measurements are in device units (i.e., pixels). 

 

Fig.  2.2. DI Metamodel 

 

Fig.  2.3. DG Metamodel (excerpt) 

2.3   Diagram Graphics (DG) 

DD provides a DG metamodel (Figure  2.3) that allows specifying the concrete syntax 
of languages in a platform-independent way with 2D graphical information. The core 
class in DG is GraphicalElement, which is the super class of all elements nested in a 
canvas. An element can either be a primitive (e.g., Rectangle, Circle and Text) or a 
Group containing member elements. It can inherit a style (with visual properties such 
as fillColor and fontName) from a group it belongs to, have a sharedStyle with other 
elements and even have its own localStyle. Some primitives are defined as a 
connected set of points (e.g., Polygon and Polyline) and may be decorated with 
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markers (groups of elements) at the start, middle and end points. A Canvas is a 
special kind of group used as a root of containment in a graphics model. 

3   Case Study: UML Class Diagram Definition 

In this section we report on a case study where we used the DD architecture to 
formally define the UML class diagram, both in terms of interchange and concrete 
syntax mapping. We choose the class diagram due to its widespread use and 
familiarity. However, to contain the effort, we limited ourselves to a representative 
subset consisting of three classifiers (Class, Interface and DataType) and three 
relations (Association, Generalization and InterfaceRealization). We believe this 
subset exemplifies the notation (shapes with labels, compartments and alternative 
graphics⎯edges with labels, markers and line styles) of the class diagram. 

3.1   Diagram Interchange 

Before defining the UML DI metamodel, we set some ground rules to govern our 
design decisions. (1) We avoid interchanging notational information that can be 
derived from the UML model to minimize redundancy between the DI and UML 
models. (2) We interchange simple layout constraints (bounds for all shapes/labels 
and waypoints for all edges) and avoid constraints of more complex layout algorithms 
to make it easier for tools to map to/from their native layouts. (3) We interchange the 
overlapping order of sibling diagram elements (which can happen when a diagram is 
crowded) by making all nested element collections ordered (a higher index implies a 
higher overlap order). (4) We avoid interchanging purely stylistic properties (e.g., 
colors/fonts) that tools may give users control over since they may vary dramatically 
between tools. However, we made an exception to some font properties (e.g., name 
and size) that we suspected could affect layout. (5) We keep the DI class hierarchy 
small, thus easier to maintain and evolve, by avoiding extensive sub-classing 
(resembling the UML class hierarchy). Instead, we allow DI classes to have a mixed 
bag of optional properties that apply in specific UML contexts only. 

Furthermore, we defined the UML DI metamodel (Figure  2.2) by extending the DI 
metamodel, where appropriate, using MOF’s extension semantics (subclassing and 
property subsetting and redefinition). Specifically, we defined class UMLDiagram 
that composed a collection of elements of type UMLDiagramElement. The latter 
could optionally reference an element from a UML model and could be styled with 
instances of class UMLStyle, which had two properties (fontName and fontSize). 

Then, we defined classes for interchanging the chosen shapes and edges of the 
class diagram. To do that, we analyzed the relevant notation in the UML specification 
and identified three cases (shown in Figure  3.2): (a) a shape that has a label and an 
optional list of compartments, each of which having an optional list of other labels 
(e.g., the classifier box notation); (b) a shape that has a label only (e.g., the interface 
ball notation); and (c) an edge that has an optional list of labels (e.g., the association 
notation). However, (b) is really a special case of (a) when there is no compartment.  

Based on that, we defined three shape classes (UMLShape, UMLLabel and 
UMLCompartment) and one edge class (UMLEdge) and related them with the 
multiplicities in cases (a) and (c). We also defined them (except UMLCompartment) 



 Diagram Definition: A Case Study with the UML Class Diagram 369 

as subclasses of UMLDiagramElement to allow them to be styled separately, 
reference their own UML elements, and be connectable (an edge was made to only 
connect elements of that type). We then added some properties to disambiguate the 
notation. For example, a kind can be set on a label to indicate what aspects of the 
UML element to show textually. A flag showClassifierShape can be set on a 
classifier’s shape to indicate whether to use the box notation. Notice that we only 
added a subset of the possible notational options for brevity. 

 

Fig.  3.1. UML DI Metamodel 

 

Fig.  3.2. Class Diagram Notational Patterns 

3.2   Concrete Syntax Mapping 

Recall from Section  2.1, that a language can specify its concrete syntax rules as a 
mapping from the AS DI metamodel, which references the AS metamodel, to the DG 
metamodel. The mapping can be expressed using any mapping language. We chose to 
express it using the QVT Operational (QVTo) [ 9] transformation language (designed 
as a thin extension of OCL [ 11]). The choice was motivated by our previous 
experience with QVTo, the fact that it is a standard MOF-based language, the fact that 
it is executable (allowing us to test our mapping), and the availability of a good 
implementation [ 12]. Due to space limitation, we only show parts of the transformation 
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we defined. We assume some reader’s familiarity with QVTo and OCL. We also 
assume familiarity with the syntax of the UML metamodel [ 1]. 

The class diagram’s concrete syntax is defined with a QVTo transformation from a 
UML DI model to a DG model (Figure  3.3, line 1). The transformation starts by 
looking for all instances of UMLDiagram and initiating the mapping for them (lines 
2-4). Mappings (like operations) are defined on UML DI classes and have DG classes 
as return types. For example, a mapping named toGraphics is defined on the 
UMLDI::UMLDiagram and has DG::Canvas as a return type (line 5). This maps an 
instance of UMLDiagram to an instance of Canvas, and initializes the properties of 
the latter according to the body of the mapping. In this case, the body iterates on all 
the owned elements of the diagram, mapping each one in turn to graphics, and adding 
the resulting graphical elements as members of the canvas (line 6).  
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transformation UMLDIToDG(in umldi : UMLDI, out DG);
main() { 
   umldi.objectsOfType(UMLDiagram)->map toGraphics(); 
} 
mapping UMLDiagram::toGraphics() : Canvas { 
   member += self.ownedElement->map toGraphics(); 
} 
mapping UMLDiagramElement::toGraphics() : Group { 
   localStyle := copyStyle(self.localStyle); 
   sharedStyle := copyStyle(self.sharedStyle); 
} 
mapping UMLShape::toGraphics() : Group 
   inherits UMLDiagramElement::toGraphics { 
   member += self.modelElement.map toGraphics(self); 
   member += self.ownedLabel.map toGraphics (); 
   member += self.ownedCompartment->map toGraphics(); 
} 
mapping UMLEdge::toGraphics() : Group 
   inherits UMLDiagramElement::toGraphics { 
   member += self.modelElement.map toGraphics(self); 
   member += self.ownedElement->map toGraphics (); 
} 
mapping UMLCompartment::toGraphics() : Group { 
   member += object Rectangle {bounds := self.bounds}; 
   member += self.ownedElement->map toGraphics (); 
} 
mapping UMLLabel::toGraphics () : Text  
   inherits UMLDiagramElement::toGraphics { 
   var e := self.modelElement; 
   var q := self.showQualified; 
   bounds := self.bounds; 
   data := switch { 
      case (self.kind = LabelKind::signature) 
         e.oclAsType(NamedElement).getSinature(q); 
      case (self.kind = LabelKind::role) 
         e.oclAsType(Property).getRole(); 
      ... 
   }; 
   localStyle := e.map toStyle(self); // update style 
} 

Fig.  3.3. QVTo Mapping from Class DI to DG 
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Furthermore, a UMLShape maps to a Group (lines 12-17) consisting of the 
following: a graphic for the model element (line 14), a graphic for the owned label 
(line 15) and a graphic for each owned compartment (line 16). These graphics are 
produced by other nested mappings (shown later). A similar mapping is defined for 
UMLEdge (lines 18-22). However, the mapping for UMLCompartment (lines 23-26) 
is different as the first member graphic is fixed as a Rectangle whose bounds are 
defined by the compartment. The mapping for UMLLabel (lines 27-40) is also 
different as it maps to a Text whose bounds are defined by the label and whose data 
value is defined based on the label kind. For example, if the kind is signature, the 
value is defined by a query getSignature defined on NamedElement (line 33-34). Also 
notice how the mapping inherits (line 28) another mapping (lines 8-11) that copies 
over the local and shared styles. The local style is further updated (line 39) based on 
the label’s model element (e.g., the fontItalic property is set to true for the signature 
label in the case of an abstract classifier). 

Some of the queries used for the label mapping are shown in Figure  3.4. The 
getSignature query (lines 1-3) returns the (simple or qualified) name of an element 
based on a flag. The query is overridden for different UML types to specify their 
unique signatures. For example, Interface (lines 4-6) overrides it to prefix the name 
with the «Interface» keyword. Property (lines 12-17) overrides it to return the full 
signature of a property in an attribute compartment (with type, multiplicity, etc.).  
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query NamedElement::getSignature(q : Boolean) : String { 
   return self.getName(q); 
} 
query Interface::getSignature(q : Boolean) : String { 
   return “«Interface»\n” + self.getName(q); 
} 
query Property::getSignature(q : Boolean) : String { 
   var t := if self.type->notEmpty() then ":" +  
           self.type.getSignature(q) else "" endif; 
   return self.getRole()+ t + self.getAdornment(); 
} 
query Property::getRole() : String {  
   var d := if self.isDerived then “/” else “” endif;    
   var v := if self.visibility = VisibilityKind::public 
      then “+” else ... endif;    
   return d + v + self.getName(false); 
} 
query NamedElement::getName(q : Boolean) : String { 
   return if q then self.qualifiedName  
          else self.name endif; 
} 
query Property::getAdornment() : String { 
   return “{“ + ... + “}”; 
} 

Fig.  3.4. Queries Used by the UML Label Mapping 

Figure  3.5 shows mappings between UML classifiers and their corresponding 
graphical elements (e.g., box or ball notation). The first mapping (lines 1-3), defined 
on UML Element, delegates to other mappings depending on the type of the element. 
Notice that both Class (lines 4-6) and DataType (lines 7-9) have one mapping each 
creating a rectangle,  while Interface has two mappings, one creating a rectangle 
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(lines 10-13) and the other creating a circle (lines 14-20), based on the flag 
showClassifierShape (lines 11, 15) on UMLShape. 
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mapping Element::toGraphics(s:UMLShape):GraphicalElement  
   disjuncts Interface::toRectangle, Interface::toCircle, 
             Class::toRectangle, DataType:toRectangle {} 
mapping Class::toRectangle (s:UMLShape) : Rectangle { 
   bounds := s.bounds; 
} 
mapping DataType::toRectangle (s:UMLShape) : Rectangle { 
   bounds := s.bounds; 
} 
mapping Interface::toRectangle (s:UMLShape) : Rectangle   
   when { s.showClassifierShape=true } { 
   bounds := s.bounds; 
} 
mapping Interface::toCircle (s:UMLShape) : Circle  
   when { s.showClassifierShape=false } { 
   var b := s.bounds; 
   center := object Point{b.x+b.width/2;b.y+b.height/2}; 
   radius := if b.width<b.height then b.width/2  
             else b.height/2 endif; 
} 

Fig.  3.5. UML Classifier Mappings to Graphics 

Figure  3.6 shows mappings between UML relations and poly lines. The first 
mapping (lines 10-13), defined on UML Element, delegates to other mappings 
depending on the type of the element. The mapping of relation InterfaceRealization 
(lines 14-19) copies the edge’s waypoints to the poly line’a points (line 15). As the 
notation of this relation depends on whether the interface shape was shown as a box 
or a ball, this is checked first (line 16). If it is shown as a box, a shared style with a 
dash pattern (lines 1-2) and a closed arrow marker (lines 3-9) are used (lines 17-18).  
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Property interfaceRealStyle = object DG::Style { 
   strokeDashLength := Sequence {2, 2} }; 
property interfaceRealMarker = object Marker { 
   size := object Dimension {width := 10; height := 10}; 
   reference := object Point {x := 10; y := 5}; 
   member += object Polylgon { 
      point += object Point{ x:=0; y:=0 }; 
      point += object Point{ x:=10; y:=5 }; 
      point += object Point{ x:=0; y:=10 }; }; }; 
mapping Element::toGraphics(e:UMLEdge):GraphicalElement  
   disjuncts Association::toPolyline,  
 Generalization::toPolyline, 
 InterfaceRealization::toPolyline {} 
mapping InterfaceRealization::toPolyline(e:UMLEdge):Polyline{ 
   point := e.waypoint; 
   var s = e.target.showClassifierShape; 
   sharedStyle := if s then interfaceRealStyle endif; 
   endMarker := if s then interfaceRealMarker endif; 
} 

Fig.  3.6. UML Relations Mappings to Graphics 
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4   Experiment: Interchange and Rendering a Diagram 

In this section, we report on an experiment where we used the UML DI metamodel 
(Section  3.1) and the concrete syntax mapping (Section  3.2) we defined for the UML 
class diagram to interchange and render an example class diagram (Figure  4.1). The 
diagram was created using the Rational Software Architect (RSA) v8.0 modeling tool 
[ 13] and included model elements for the notational subset we defined. The objective 
of the experiment was to test the newly defined UML DD architecture in terms of its 
ability to interchange and consistently render diagrams between tools. 

 

Fig.  4.1. Example Class Diagram Defined in RSA 

4.1   Experiment Setup 

In order to satisfy our objective, we needed to export the example diagram from tool 
“A” in UML DI, import it into tool “B” and visually compare the diagram rendered in 
both tools. Since RSA played the role of tool “A” in this execution chain, we 
implemented a UML DI exporter for RSA. Moreover, instead of implementing an 
importer for another UML CASE tool “B”, we decided to implement a simple UML 
DI visualization tool (Section  4.2), which leveraged the UML DI to DG mapping we 
had specified. This allowed us to test both the effectiveness of the UML DI 
metamodel and the accuracy of the mapping in the same time. Additionally, such a 
tool can be used by other UML CASE tools to verify their own UML DI exporters. 

We used the open-source Eclipse Modeling Framework (EMF) [ 14] project, which 
is packaged and used by RSA, as our MOF-based modeling tool infrastructure. We 
used EMF to import the two standard metamodels (DI and DG) provided by DD. We 
also used EMF to define our UML DI metamodel as an extension of DI. Moreover, 
RSA comes packaged with the open-source M2M/QVTo [ 12] project, which provides 
a QVTo editor and execution environment. We used this project to author and execute 
our concrete syntax mapping between UML DI and DG. 

4.2   Experiment Execution 

The first step of the experiment was to export the diagram into UML DI. To do that, 
we defined an exporter from RSA’s native diagram format into UML DI. RSA’s 
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native format is based on a notation metamodel provided by the Graphical Editing 
Framework (GMF) [ 15]. GMF’s metamodel is in fact close in many aspects to the 
standard DI metamodel, so we implemented an exporter as a QVTo transformation 
between the two metamodels. However, we did not find all needed layout data 
represented in the example GMF diagram (the bounds of some labels and shapes are 
derived). We worked around that by doing some pre-processing of the diagram (we 
rendered it using RSA, obtained the missing layout data from graphics and added 
them as annotations to the diagram). Support for DD in RSA should facilitate this 
procedure in future versions of the tool. 

The second step was to render the exported diagram in another tool and visually 
compare it with the original RSA diagram. Our strategy for implementing such a tool 
consisted of two steps: (1) executing the concrete syntax mapping from UML DI to 
DG to obtain a resulting DG model (fortunately, since our mapping was done with 
QVTo, we simply executed the transformation to get a DG model); (2) rendering the 
DG model to graphics. For that step, we defined a model-to-text transformation to 
map the (used subset of the) DG metamodel to SVG [ 17] (DG’s design is close to 
SVG’s). We used the JET framework [ 25] that is packaged with RSA to define the 
model-to-text transformation. We then used a web browser to view the resulting SVG 
image. The experiment’s complete execution chain is depicted in Figure  4.2. 

 

Fig.  4.2. The Execution Chain of the Experiment 

 

Fig.  4.3. Example Class Diagram Exported and Rendered as SVG 
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4.3   Experiment Result 

We executed the experiment on the example diagram and the resulting SVG image is 
shown in Figure  4.3. This image resembles to a large extent the original diagram in 
RSA, indicating an overall successful interchange. However, the two diagrams were 
not identical due to RSA’s own variations on the original notation (e.g., shapes have 
drop shadows, bold names, metaclass icons and list item visibility icons⎯edges have 
round edges at the corners). These variations caused some small differences in the 
diagram layout. Obviously, bugs in the last two links of the execution chain (Figure 
 4.2) could have also caused the diagrams to differ. In order for this chain to be an 
effective way for tool vendors, or for an interchange testing group similar to [ 16], to 
test diagram exporters, the last two links must be carefully tested first. This would 
make tool vendors focus on testing their exporters only. Obviously, this chain does 
not test each tool’s own importer, which needs to be tested separately. Such importer 
would need to implement the QVT mapping rules in two steps: (1) mapping a UML 
DI diagram to a tool’s native DI format, and (2) rendering the latter to graphics. Using 
a generic DI visualization tool in an import testing chain can also simplify the testing 
process for multiple tools. Specifically, it would allow rendering a UML DI diagram 
and comparing it visually to an imported version by each tool. 

5   Discussion 

The case study and experiment show that DD is a promising approach for formally 
defining diagrams of MOF-based languages. By defining a language-specific DI 
metamodel, tools of that language can precisely interchange modeling diagrams. Also, 
by formally specifying a mapping from language-specific DI and AS models to DG, 
vendors can build tools more accurately and with less cost. Users can also reliably 
interpret diagrams produced by different tools. 

Nevertheless, there are a number of current limitations that need to be addressed 
before DD is finalized. One of those limitations is a need for a normative mapping 
from DG, which is basically a platform-independent graphics metamodel, to at least 
one standard vector-based graphics format (e.g., SVG [ 17]). This would help the 
testing process as discussed earlier, but it would also help bootstrap the DD 
architecture by providing a concrete syntax mapping for DG (without requiring the 
use of DD for that). Another limitation exists when a graphical syntax is specified 
using a textual mapping language (like QVTo). While it is very formal and flexible, it 
is also less readable (compared to the current way of defining diagrams that is more 
readable but less formal). One alternative could be to use a mapping language that has 
a graphical notation like QVT Relations (QVTr) [ 9] or GReAT [ 26]. Another 
alternative is to define a DD-specific graphical mapping language (e.g., a BNF 
grammar that incorporates graphical symbols). Such language can make a mapping 
more readable while still being formal. Moreover, another limitation with DD is the 
lack of reusable standard libraries to jumpstart a new DD-based specification. One 
library could provide a set of pre-defined DG types (e.g., styles and markers) that are 
commonly used in modeling notations. Another could be a general-purpose DI 
metamodel for annotations (e.g., notes and their attachments) that can integrate with 
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any language-specific DI metamodel. Such metamodel would have its pre-defined 
mapping to DG. Finally, it would also help if the DD specification highlighted 
common design options and best practices for DD users to benefit from. 

In fact, one of the most important design decisions when defining a language-
specific DI metamodel is how far you go in using the MOF extension mechanisms to 
precisely define the DI syntax. One extreme is to go all the way such that every AS 
class maps to a unique DI class with applicable properties. This option makes it easier 
to create valid DI models (as the metamodel becomes very restrictive) but harder to 
maintain the metamodel (as it becomes very sensitive to changes in the AS 
metamodel). The other extreme is to settle with a very small hierarchy of DI classes 
with properties applicable to many AS classes and provide constraints for their 
applicability. With this option, it becomes more difficult to create valid DI models 
(since constraints are checked only after creation) but the metamodels become easy to 
maintain and less sensitive to changes in the AS metamodels. A more pragmatic 
option is always somewhere in between these two extremes. 

Another subtle but interesting point with using QVTo to express a concrete syntax 
mapping is the fact that QVTo is a unidirectional language. Therefore, what is 
expressed is how the abstract and diagram syntaxes map to graphics, but not the other 
way around. While a unidirectional mapping will still help a user interpret a diagram 
(i.e., relate it back to the AS syntax), it may not always work especially when the 
notation is ambiguous. In this case, a bidirectional mapping (e.g., with QVTr) is more 
preferable. However, we believe that removing ambiguity from a graphical notation 
(if possible) goes further than trying to address it with a bidirectional mapping. 

6   Related Works 

Two categories of works are discussed here: those related to diagram interchange and 
those related to concrete syntax mapping. One early work in the first category is the 
DI v1.0 specification [ 18], which has been deprecated by the new DD specification. 
One issue with that specification is that, unlike DD, it provides a fixed interchange 
metamodel that is not meant for extension. This forces language-specific syntax rules 
(called nesting rules) and constraints to be provided informally. It also forces 
language-specific properties to be added through a key-value string map. 

Another relevant work in this category is the notation metamodel provided by 
GMF [ 15], which is used by a number of tools including RSA and Papyrus [ 19]. This 
metamodel is similar to the one discussed above in that it is not meant for extension 
for a given language (although its diagram elements can have multiple styles and thus 
new style classes can be defined). Additionally, the diagram syntax is defined by 
language-specific creation factories (implemented in java). Once created, there is no 
metadata to help generically interpret or validate the syntax of a given diagram. 

Another related work is the BPMN 2.0 specification [ 2], which uses (an alpha 
version of) DD to define a BPMN-specific DI metamodel. The metamodel is designed 
with minimum extension to the higher level DI metamodel. In other words, it has a 
small number of DI classes with properties applicable to many BPMN classes. The 
metamodel also represents a departure from XPDL [ 20], a format that has historically 
been used to interchange BPMN diagrams. Unlike DD, XPDL uses one schema for 
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both AS and DI data (i.e., does not separate model from notation). Moreover, BPMN 
specification does not specify a concrete syntax mapping from BPMN DI to DG. 

Related works in the second category also exist.  The first one is GMF [ 15], which 
provides two models to map diagrams to graphics. The first one is called a Graphical 
Definition model, where one defines graphical elements (called figures) and associate 
them with notational patterns (called canvas elements) like: nodes, connections, labels 
and compartments. Unlike DD, these notational patterns are predefined; hence one is 
restricted to specify a language’s notation using them only, which is inflexible. The 
second one is a Mapping model, where one defines mappings from AS classes to 
notational patterns (defined in the first model). Mappings are defined in a containment 
hierarchy starting from a canvas mapping, down to node and connections mappings, 
then label and compartment mapping. The mapping details are expressed with OCL. 
This strict containment hierarchy prevents mappings from being reused in other 
places in the hierarchy. On the other hand, DD allows mapping rules to be reused by 
flexibly calling them from other rules. 

Another related work in this category is contributed by Palies [ 21], where a 
transformation is defined using ATL [ 22] (a non-standard declarative language) 
between the old DI metamodel [ 18] and a graphics metamodel (resembling SVG). 
The DI metamodel in this case is used to interchange UML class diagrams even 
though, as mentioned earlier, it is not UML-specific. Hence, the author had to make 
some assumptions regarding the correct DI syntax for UML.  In contrast, we captured 
the UML DI syntax formally with a metamodel. 

7   Conclusion and Future Work 

Formal diagram definition has been missing in the MOF-based modeling architecture 
for many years. The OMG recently released a new specification called DD with an 
architecture that allows for formally defining diagrams of graphical modeling 
languages. DD allows a modeling language to define an interchange metamodel for its 
diagrams and precisely map the diagrams’ concrete syntax to graphics. In this paper, 
we verified DD by using it to formally define a subset of the UML class diagram. 
Specifically, we extended the DI metamodel (provided by DD) to define a UML DI 
metamodel used for interchanging this subset between tools. We also defined the 
concrete syntax of the subset by mapping its UML DI metamodel to DG (a graphics 
metamodel provided by DD) using a QVTo transformation. We then carried an 
experiment where we used those definitions to interchange an example class diagram. 
We designed a testing chain where a diagram is exported from a modeling tool to 
UML DI, transformed to DG and then rendered to SVG. The exported diagram 
resembled to a large extent the original diagram indicating a successful interchange. 
We also highlighted a number of issues with DD including a need for a normative 
mapping to a standard graphics format (e.g., SVG), a need for a more readable 
mapping to DG and a need for standard libraries to jumpstart a new DD specification. 

Going forward, we plan to use DD to define a bigger and more complex subset of 
the UML metamodel, especially the sequence diagram. We also plan to use it to 
specify the notation of a UML profile (e.g., SysML [ 24]) as an extension to that of 
UML. Other possibilities include defining the concrete syntax of UML with a 
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bidirectional mapping (e.g., with QVTr) to ease the interpretation of diagrams, 
defining a graphical mapping language specific for DD and investigating other ways 
to jumpstart the DD definition for modeling languages. 
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Abstract. In class diagrams, so-called multiplicities are integer ranges
attached to association ends. They constrain the number of instances of
the associated class that an instance may be linked to, or in an alterna-
tive reading, the number of links to instances of the associated class. In
complex diagrams with several chains of associations between two classes
(arising e.g. in configuration management) it may happen that the lower
or upper bound of a range can never be attained because of restrictions
imposed by a parallel chain.

In this paper we investigate how multiplicities behave when chain-
ing associations together, and we characterise situations where intervals
can be tightened due to information from other chains. Detecting and
eliminating such redundancies provides valuable feedback to the user, as
redundancies may hint at some underlying misconception.

1 Introduction

The Unified Modeling Language (Uml) [23] nowadays belongs to the reper-
toire of every software engineer. A wide range of tools allows him/her to model
situations by one or the other type of diagrams from the Uml standard, to
specify constraints, to derive program fragments automatically, thus facilitating
model driven development. The familiarity with Uml and the ubiquity of tools
have also led to the application of Uml outside of its core areas in software
engineering. [11, 14]

In this paper we concentrate on Uml class diagrams with associations and
multiplicities (sometimes also called cardinalities) in the context of configura-
tion management. The term configuration as used in this paper refers to an
arrangement of functional units according to their nature, number, and chief
characteristics [27]. Functional units may be software or hardware components
like computer programs, electronic circuits, or parts of a machine. A major issue
is to specify admissible arrangements in a natural way, to set them up accord-
ing to certain criteria of optimality, and to maintain them when requirements
change. These activities are called configuration management. In this context,
a class diagram is a specification (of the component types, their properties and
interrelations), and the collection of concrete instances together with their rela-
tions is a configuration.

J. Whittle, T. Clark, and T. Kühne (Eds.): MODELS 2011, LNCS 6981, pp. 379–393, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



380 I. Feinerer, G. Salzer, and T. Sisel

Using class diagrams for configuration management emphasises aspects and
questions, which are hardly an issue in mainstream software engineering. The
main difference probably is the status of instances. In software engineering, in-
stances are second- or rather third-class citizens: First comes the model, second
the program as a refinement of the model, and only at runtime, instances are
created and destroyed dynamically; in many cases instances do not exist inde-
pendently of programs and models. In contrast, configurations have a life of their
own. A train station and its components remain even if the specification of the
components and the construction processes cease to exist. A question like “Given
a model, what is its smallest instantiation satisfying all constraints?” is rarely
asked in software engineering, while using fewer components for some purpose
clearly is more efficient than using more. Similarly, the problem of adapting a
configuration with a minimal number of modifications to a changed specification
is usually not an issue in software engineering.

Another difference is the characteristic form that multiplicities take in class
diagrams. Multiplicities are pairs of numbers, m..n, specifying that any instance
of a particular class has to be linked to at least m and at most n distinct instances
of some other class (corresponding to the multiplicity attribute unique), or in an-
other interpretation (attribute non-unique), needs that many links to instances
of the other class (not requiring distinctness). Apart from textbook examples,
such multiplicities are of a simple form in everyday software engineering: 0..∗
(unrestricted), 1..∗ (at least one), 0..1 (at most one, optional), and 1..1 (exactly
one). These are also sufficient to express 1-1, 1-M, and M-N relationships typical
of database schemes. In contrast, multiplicities in specifications show a higher
degree of variability. E.g., a specification may state that a computer in a failsafe
environment should be connected to an array of 2..3 power supplies and that
each of the latter may serve 1..4 computers.

These differences are reflected in the functionality offered by (or missing from)
current Uml tools. They allow the user to create and maintain various kinds
of Uml diagrams (=specifications) as well as to generate code, but it is not
possible to handle instances (=configurations) in a similar fashion, checking them
against specifications, checking the specifications themselves for inconsistencies
arising from the elaborate use of multiplicities, repairing configurations when
specifications change, and so on.

Our work was originally motivated by the problems one of our industrial part-
ners experienced when using standard Uml tools for configuration management,
with all their limitations. Our aim throughout the last years has been to inves-
tigate the theoretical foundations of class diagrams in this particular setting;
to develop algorithms for checking the consistency of class diagrams, generating
minimal instances, repairing instances in the face of specification changes, etc.;
and to implement a prototype that hides the complexity behind an intuitive
user interface and gives the user instantaneous feedback about specification or
configuration errors. [13, 12]

As a running example, consider the specification in Fig. 1. It uses the following
basic features of Uml class diagrams: Classes represent the types of available
components; associations relate classes; multiplicities constrain the number of
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Fig. 1. Specification of hardware components

links between objects; and multiplicity attributes label the ends of associations as
unique (default) or non-unique. Moreover, lower bounds define the minimal num-
ber of objects instantiating a particular class in a valid configuration (modelled
in Fig. 1 by the static class attribute min). Classes may have further attributes
or methods, but these do not affect our discussion here.

In this paper we deal with the problem of redundant multiplicities, which was
identified in [11] as one of the open challenges when using class diagrams in the
context of configuration management. Consider the situation in Fig. 1, where a
section houses one or two racks with five slots each. Elements containing up to
eight modules may be placed into such sections, with each module consuming
two slots of a rack. With this intuition in mind it is apparent that the upper
bound of 20 elements per section is overly optimistic: A section offers at most
two racks with a total of ten slots, which may be connected to five modules,
which in turn correspond to at most five elements. Pointing out this discrepancy
as an immediate feedback to the person working on the specification helps to
weed out misconceptions at an early stage.

The paper is structured as follows. The next two sections explain why we
need equations over association chains to model the intended semantics of the
associations within class diagrams and how to specify them. After setting up the
formal framework in section 4, we investigate the composition of associations
with multiplicities tagged non-unique (section 5) and unique (section 6). Based
on these results section 7 solves the initial problem: Given optimised bounds
for the whole association chain, these bounds are propagated inwards to tighten
the multiplicities of the individual associations. The final two sections discuss
related and future work.

2 The Necessity of Additional Constraints

Using the ideas of Lenzerini and Nobili [20], we may represent associations by
inequalities. E.g., the relationship between sections and elements in Fig. 1 can
be characterised by the linear inequalities

1 · |Section| ≤ 1 · |Element|
1 · |Element| ≤ 20 · |Section|
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Fig. 2. Instance of the class diagram in Fig. 1 with a section linked to 20 elements and
a slot connected to two different sections (bold lines)

where |Section| and |Element| denote the number of sections and elements, re-
spectively, in an admissible instantiation. With small extensions, this approach
allows us to check the consistency of specifications and to compute minimal con-
figurations using Ilp1 solvers. And it also solves our problem, as it seems. From
the diagram we obtain the inequalities

1 · |Element| ≤ 1 · |Module|
2 · |Module| ≤ 1 · |Slot|

1 · |Slot| ≤ 5 · |Rack|
1 · |Rack| ≤ 2 · |Section| .

If we multiply the first inequality by 2 and the last one by 5, we obtain 2 ·
|Element| ≤ 10 · |Section| or equivalently 1 · |Element| ≤ 5 · |Section|, which makes
the original inequality 1 · |Element| ≤ 20 · |Section| redundant. One might be
tempted to conclude that the multiplicity [1, 20] can indeed be reduced to [1, 5].
This would be wrong, however. There is a valid configuration with five sections
and 24 elements, where one of the sections is connected to 20 elements and the
other four to just one (Fig. 2).
1 Integer Linear Programming.
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This configuration, however, contradicts our intuition, since it contains slots,
where the section reachable via the rack is different from the section reachable
via module and element. This possibility is not ruled out by the class diagram
in Fig. 1, as it does not restrict the configurations to those associating a unique
section with each slot. The inequalities mirror this semantics and only constrain
the total number of objects for each class, but not the number of objects related
to single instances of a class. Note that the configuration in Fig. 2 satisfies the
inequality 1 · |Element| ≤ 5 · |Section| (since 1 · 24 ≤ 5 · 5), even though there is
a single section connected to 20 elements. We conclude that we need additional
constraints to capture our intuitions, since they are not adequately represented
by the class diagram alone.

3 Equating Association Chains

The requirement missing from the class diagram in Fig. 1 is a constraint stating
that the relation instantiating the composed association a1 = Section-Rack-Slot
has to be the same as the one instantiating the composition a2 = Section-
Element-Module-Slot. Such a constraint excludes configurations like the one in
Fig. 2, since the tuple (se1, sl3) (via ra1) is not contained in the relation cor-
responding to a2, whereas (se2, sl3) (via el2 and mo2) is not contained in the
relation corresponding to a1. The constraint can be expressed in the object con-
straint language (Ocl) [22] as

context Section:
inv: self->collect(s: Section | s.element)

->collect(e: Element | e.module)->flatten()
->collect(m: Module | m.slot)->flatten()->asSet()

= self->collect(s: Section | s.rack)
->collect(r: Rack | r.slot)->flatten()->asSet()

or, using the dot notation as shorthand for collect(),2 more compactly as

context Section:
inv: self.element.module->flatten().slot->flatten()->asSet()

= self.rack.slot->flatten()->asSet()

The key element of this Ocl constraint is collect(), which generates a new
bag (multiset). Successive applications (corresponding to the navigation along
the chain of associations) yield bags of bags, hence intermediate flattening is
necessary. The final equality check on sets models our desired semantics.

In the remainder of the paper we will refrain from using Ocl. On the one
hand, we are only interested in a tiny fragment of Ocl and do not want to
purport that our approach handles Ocl constraints to any reasonable extent.
2 There are subtle differences, though. collect yields a bag, whereas self.element

is a set. As the final comparison is made asSet, this difference does not matter here,
but it may be an issue when dealing with the multiplicity attribute non-unique.
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On the other hand, even in their abbreviated form the Ocl constraints are
rather bulky. We prefer an abstract notation and represent the constraint above
as u1u2u3 = u−1

5 u−1
4 , where the ui denote the five associations in our example

and u−1
i denotes their inverse.

4 Formal Definitions

In this section we make precise what we mean by specifications, configurations,
and compositions of associations. This formal approach is necessary to reason
about class diagrams in a rigorous manner. Our formalisation of class diagrams
strictly adheres to the Uml standard, hence our results carry over to any frame-
work handling class diagrams according to this standard.

A specification is a triple 〈C,A, E〉, where C is a set of classes, A is a set of
associations, and E is a set of equations over A. Classes, associations, and objects
(see below) are assumed to be represented by unique symbols.

Each association u has a type, type(u), of the form C{a..A} → D{b..B} or
C

[
a..A

] → D
[
b..B

]
, where C and D are classes and a, A, b, and B are natural

numbers; A and B may also be the symbol ∗ denoting infinity. Expressions of the
form {a..A} or

[
a..A

]
are called multiplicities and will be interpreted as intervals.

The choice of brackets encodes the multiplicity attribute (non-)unique: {a..A}
marks the association end as unique and

[
a..A

]
as non-unique. The multiplicities

{0..∗} and
[
0..∗] may be omitted.

For an association u of type C{a..A} → D{b..B} or C
[
a..A

] → D
[
b..B

]
the

inverse association u−1 has type D{b..B} → C{a..A} or D
[
b..B

] → C
[
a..A

]
,

respectively. In Uml this corresponds to navigating along the association in the
opposite direction.

An equation over A is of the form x1 · · ·xm = y1 · · · yn, where each xi and yi

is of the form u or u−1 for some association u.

Example 1. The specification in Fig. 1 with the constraint discussed above can be
formalised as S = 〈C,A, E〉, where C = {Section, Element, Module, Slot, Rack},
E = {u1u2u3 = u−1

5 u−1
4 }, and

A = { u1 : Section{1..1} → Element{1..20}, u4 : Slot{5..5} → Rack{1..1},
u2 : Element{1..1} → Module{1..8}, u5 : Rack{1..2} → Section{1..1} } .
u3 : Module{0..1} → Slot{2..2},

A configuration is a pair 〈O,R〉, where O is a set of objects and R is a set of
finite, binary relations over O. In our context a relation is a multiset of pairs
of objects, i.e., it may contain duplicate pairs; the pairs are called links. We
enclose multisets in square brackets, [ ], and sets in braces, { }. The inverse
of a relation r, denoted by r−1, is the multiset [ (o, p) | (p, o) ∈ r ], i.e. the
multiset containing an occurrence of (o, p) for every occurrence of (p, o) in r.
The composition of two relations r1 and r2, denoted by r1 ◦ r2, is the multiset
[ (o, p) | (o, q) ∈ r1, (q, p) ∈ r2 ]. More formally, multisets can be regarded as
maps from elements to natural numbers that specify how often an element occurs
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in the multiset. Then r−1 and r1◦r2 can be defined by the equations r−1((o, p)) =
r((p, o)) and r1 ◦ r2((o, p)) =

∑
q∈O r1((o, q)) · r2((q, p)) for all objects o and p.

Example 2. As an example, consider the configuration C = 〈O,R〉, where

O = {se1, ra1, ra2, sl1, . . . , sl10,mo1, . . . ,mo5, el1, . . . , el5} and
R = {r1 = [(se1, el1), . . . , (se1, el5)],

r2 = [(el1,mo1), (el2,mo2), . . . , (el5,mo5)],
r3 = [(mo1, sl1), (mo1, sl2), (mo2, sl3), (mo2, sl4), . . . , (mo5, sl10)],
r4 = [(sl1, ra1), . . . , (sl5, ra1), (sl6, ra2), . . . , (sl10, ra2)],
r5 = [(ra1, se1), (ra2, se1)] } .

It relates five elements to the single section se1 (relation r1), a unique module moi

to each element el i (relation r2), and two slots sl2i−1 and sl2i to each module moi

(relation r3). Moreover, the section is connected to two racks (relation r5) each
owning five slots (relation r4).

Given a relation r ∈ R and an object o ∈ O, let γr(o) = { p | (o, p) ∈ r } and
δr(o) = [ p | (o, p) ∈ r ] be the set and multiset, respectively, of objects linked
to o. A configuration is an instance of a specification, if the following conditions
are satisfied.

– There is a mapping class : O �→ C associating a unique class with each
object. We say that object o is of class c if class(o) = c. The inverse mapping
obj : C �→ 2O yields the set of all objects for a given class.

– There is a one-to-one mapping rel : A �→ R from associations to relations
such that each association u and its relation r = rel(u) have the following
properties.

• If u is of type C{a..A} → D{b..B}, then b ≤ |γr(o)| ≤ B and a ≤
|γr−1(p)| ≤ A hold for all o ∈ obj (C) and all p ∈ obj (D).

(This corresponds to the multiplicity attribute unique in Uml and is
the default for class diagrams.)

• If u is of type C
[
a..A

] → D
[
b..B

]
, then b ≤ |δr(o)| ≤ B and a ≤

|δr−1(p)| ≤ A hold for all o ∈ obj (C) and all p ∈ obj (D).
(This corresponds to the multiplicity attribute non-unique in Uml.)

• Relation r is well-typed, i.e., r ⊆ obj (C) × obj (D).

– All equations in E have to be satisfied, i.e., for each x1 · · ·xm = y1 · · · yn ∈ E
the composed relations rel(x1) ◦ · · · ◦ rel(xm) and rel(y1) ◦ · · · ◦ rel(yn) have
to be equal as sets, where rel(u−1) is understood as (rel(u))−1.

We say that r is of type T , denoted as r : T , if r instantiates an association
of type T . Note the notational correspondence between multiplicities enclosed
in braces/brackets and their semantics: Multiplicities of the form {a..A} bound
the function γ that yields the set of partner objects, whereas

[
a..A

]
bounds the

function δ that yields the multiset of partner objects.
A type T is weaker than or equal to a type T ′ (T ′ is stronger than or equal

to T ), if every relation of type T ′ is also of type T . Since we do not consider
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Fig. 3. Binary association with minimal solutions for unique and non-unique ends

hierarchies on classes in this paper, type T is weaker if its intervals contain those
of T ′. This leads us to the following fact, which is used implicitly throughout
the paper.

Lemma 3. Let r be of type C{a..A} → D{b..B} (or C
[
a..A

] → D
[
b..B

]
). Then

r is also of type C{a′..A′} → D{b′..B′} (or C
[
a′..A′] → D

[
b′..B′]) for all a′ ≤ a,

b′ ≤ b, A′ ≥ A, and B′ ≥ B.

Example 4. For the configuration C in example 2 and the specification S in
example 1 we define class(se1) = Section, class(rai) = Rack, class(sl i) = Slot,
class(moi) = Module, class(el i) = Element, and rel(ui) = ri. Obviously the
relations are well-typed. Moreover, they satisfy the multiplicities, since for all
objects and all relations the number of unique partner objects is within the
range of the multiplicities. E.g., we have 1 ≤ |γr1(se1)| = |{el1, . . . , el5}| =
5 ≤ 20 and 1 ≤ |γr−1

5
(se1)| = |{ra1, ra2}| = 2 ≤ 2. Regarding the equation

u1u2u3 = u−1
5 u−1

4 we note that

r1 ◦ r2 ◦ r3 = [(se1, sl1), (se1, sl2), . . . , (se1, sl9), (se1, sl10)] = r−1
5 ◦ r−1

4 .

Therefore configuration C satisfies specification S.

Example 5. Fig. 3 illustrates the effect of the multiplicity attribute unique. The
specification in Fig. 3(a) requires that there is at least one D-object, as stated
by the static class attribute min.3

In Fig. 3(b) multiplicities carry the attribute unique. Starting with d1, we
need at least one C-object, c1, because of multiplicity 1..2, which in turn needs
at least three D-objects, d1, d2, and d3. The configuration is an instance of the
specification, since the relation [(c1, d1), (c1, d2), (c1, d3)] is of type C{1..2} →
D{3..4}, and it is minimal by construction.

In Fig. 3(c), multiplicities are non-unique. Starting again with the required
object d1, we need at least one link to a C-object, c1, which in turn needs at least
three links to D-objects. Since d1 can take another link, it suffices to add a second
D-object. The relation [(c1, d1), (c1, d1), (c1, d2)] is of type C

[
1..2

] → D
[
3..4

]
,

hence the configuration is a minimal instance of the specification.
3 Specifying the lower bound on the number of D-objects by a static class attribute
min is pure convention and could e.g. also be expressed by an Ocl constraint.
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5 Composing Relations under Non-uniqueness

In order to detect redundant multiplicities that result from equating association
chains, we first have to understand the effect of composition on relation types.
We start with the attribute non-unique, where multiplicities bound links. The
following proposition shows that in this case the composed relation is bounded
by the product of the individual bounds.

Proposition 6. Let ri be a relation of type Ci−1

[
ai..Ai

] → Ci

[
bi..Bi

]
, for i =

1, . . . , n. Then the composition r1 ◦ · · · ◦ rn is of type

C0

[∏n
i=1 ai ..

∏n
i=1 Ai

] → Cn

[∏n
i=1 bi ..

∏n
i=1 Bi

]
.

Proof. It suffices to show that the composition of r1 : C0 → C1

[
b1..B1

]
and

r2 : C1 → C2

[
b2..B2

]
is of type C0 → C2

[
b1b2..B1B2

]
, which amounts to showing

b1b2 ≤ |δr1◦r2(o)| ≤ B1B2 for all objects o. The general statement is obtained
by induction on n and by observing that the reverse direction regarding the
multiplicities

[
ai..Ai

]
is symmetric.

By the definition of composition and by reordering the terms, we obtain
|δr1◦r2(o)| = |[ p | (o, p) ∈ r1 ◦ r2 ]| =

∑
p r1◦r2((o, p)) =

∑
p

∑
q r1(o, q)r2(q, p) =∑

q r1(o, q) · ( ∑
p r2(q, p)

)
=

∑
q r1(o, q) · |δr2(q)|. The expression |δr2(q)| is

bounded by b2 and B2, hence
∑

q r1(o, q)|δr2 (q)| is bounded by
∑

q r1(o, q)b2

and
∑

q r1(o, q)B2. Since
∑

q r1(o, q) = |δr1(o)| is bounded by b1 and B1, we
obtain that |δr1◦r2(o)| is bounded by b1b2 and B1B2. !"
The bounds of the composed type are tight: For all values of ai, Ai, bi, and Bi

there are corresponding relations such that their composition is of the type given
by the proposition, but of no weaker type. The following example illustrates the
case n = 2, but can be generalised easily to arbitrary n.

Example 7. Let i, j, k, and l be index variables such that 1 ≤ i ≤ a1, 1 ≤ j ≤ a2,
1 ≤ k ≤ b1, and 1 ≤ l ≤ b2. In the following we omit these ranges from (multi)set
definitions, writing e.g. just {cij} instead of { cij | 1 ≤ i ≤ a1, 1 ≤ j ≤ a2 }.

Let C, D, and E be classes such that obj (C) = {cij}, obj (D) = {djk}, and
obj (E) = {ekl}. Consider the relations cd = [(cij , djk)] and de = [(djk, ekl)] as
well as their composition ce = cd ◦ de = [(cij , ekl)]. For the types of the three
relations we obtain cd : C

[
a1..a1

] → D
[
b1..b1

]
, de : D

[
a2..a2

] → E
[
b2..b2

]
, and

ce : C
[
a1a2..a1a2

] → E
[
b1b2..b1b2

]
.

Moreover, let the index variables i′, j′, k′, and l′ range from 1 to A1, A2,
B1, and B2, respectively, and let C′, D′, E′, cd ′, de ′, and ce ′ be classes and
relations defined as above, but with primed index variables and primed object
names. Then the types of the three relations are cd ′ : C′[A1..A1

] → D′[B1..B1

]
,

de ′ : D′[A2..A2

] → E′[B2..B2

]
, and ce ′ : C′[A1A2..A1A2

] → E′[B1B2..B1B2

]
.

Now consider the union of the primed and unprimed classes and relations. Let
obj (C0) = obj (C) ∪ obj (C′), obj (C1) = obj (D) ∪ obj (D′), obj (C2) = obj (E) ∪
obj (E′), r1 = cd ∪ cd ′, r2 = de ∪ de ′, and r1 ◦ r2 = ce ∪ ce ′. Then the strongest
types characterising the relations are C0

[
a1..A1

] → C1

[
b1..B1

]
, C1

[
a2..A2

] →
C2

[
b2..B2

]
, and C0

[
a1a2..A1A2

] → C2

[
b1b2..B1B2

]
, respectively.
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C D E1

2..3

1..2

1

(a) Specification

c1

d1

d2

e1r1 r2

(b) Configuration

Fig. 4. Lower bounds do not multiply in the case of unique multiplicities

6 Composing Relations under Uniqueness

Regarding upper bounds, multiplicities tagged unique behave the same as those
tagged non-unique. For the lower bounds this is not the case, however.

Example 8. Consider the specification and configuration in Fig. 4. The rela-
tions r1 = [(c1, d1), (c1, d2)] and r2 = [(d1, e1), (d2, e1)] are of type C{1..1} →
D{2..3} and D{1..2} → E{1..1}, respectively. Their composition r1 ◦ r2 =
[(c1, e1), (c1, e1)] is of type C

[
1..2

] → E
[
2..3

]
, but not of type C{1..2} → E{2..3}

since there is only one E-object, e1, related to c1. The reason for the diverging
behaviour is that the D-objects each contribute a link to the count, but they
share the same E-object, which is counted only once.

Let Δb,A(x) denote the expression max(# b·x
A $, b · sgn(x)).4 The following lemma

states that x objects of some class are linked to at least Δb,A(x) and at most
Bx objects of the associated class.

Lemma 9. Let r be a relation of type C{a..A} → D{b..B}. Let O ⊆ obj (C) be
a set of some C-objects, and let r(O) := { p | o ∈ O, (o, p) ∈ r } =

⋃
o∈O γr(o) be

the set of related D-objects. Then we have Δb,A(|O|) ≤ |r(O)| ≤ B · |O|.
Proof. Regarding the upper bound we observe that a single C-object is linked
to at most B objects of class D. In the maximal case, the D-objects linked to
distinct objects in O are pairwise different, hence |r(O)| is bounded from above
by B · |O|.

Regarding the lower bound we observe that a single C-object is linked to at
least b objects of class D. In the minimal case, the objects in O maximally share
their D-objects. This sharing is limited by two constraints:

– Due to uniqueness, the D-objects linked to a single C-object have to be
pairwise different, hence r(O) contains at least b elements, provided O is not
empty. This translates to the lower bound b · sgn(|O|).

– The number of C-objects linked to a single D-object is limited by the mul-
tiplicity {a..A}. In total, |O| objects of class C need links to at least b · |O|
objects of class D. Since at most A objects of class C may be linked to each
D-object, we obtain the lower bound # b·|O|

A $.

4 The signum (or sign) function is defined by sgn(x) = 1 for x > 0, sgn(0) = 0, and
sgn(x) = −1 for x < 0.
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C D E F1..2

2..3

2..3

4..4

2..3

5..5

(a) Three associations . . .

C F1..18

7..60

(b) . . . viewed as one.

Fig. 5. Example for the composition of associations with the attribute unique

The number of D-objects has to satisfy both constraints, hence it is bounded by
the maximum of the two expressions. !"
Proposition 10. Let ri be a relation of type Ci−1{ai..Ai} → Ci{bi..Bi}, for
i = 1, . . . , n. Then the composition r1 ◦ · · · ◦ rn is of type

C0

[
yn ..

∏n
i=1 Ai

] → Cn

[
xn ..

∏n
i=1 Bi

]
,

where the lower bounds are defined by x0 = y0 = 1, xi = Δbi,Ai(xi−1), and
yi = Δan−i+1,Bn−i+1(yi−1) for i = 1, . . . , n.

Proof. By induction on n: accumulate the bounds given by lemma 9, starting
with one C0- and one Cn-object, respectively. !"
The upper bound in this proposition is again tight: Observe that in example 7
the E-objects related to a single C-object are all different. Hence the given upper
bounds also apply to the unique case.

Example 11. Consider the chain of associations in Fig. 5(a). For the lower bounds
we obtain:

x0 = 1
x1 = max(# b1x0

A1
$, b1 sgn(x0))

= max(# 2·1
2 $, 2 · sgn(1)) = 2

x2 = max(# 4·2
3 $, 4 · sgn(2)) = 4

x3 = max(# 5·4
3 $, 5 · sgn(4)) = 7

y0 = 1
y1 = max(#a3y0

B3
$, a3 sgn(x0))

= max(# 2·1
5 $, 2 · sgn(1)) = 2

y2 = max(# 2·2
4 $, 2 · sgn(2)) = 2

y3 = max(# 1·2
3 $, 1 · sgn(2)) = 1

The composed association is depicted in Fig. 5(b).
Example 12. Consider one-to-many associations, i.e., let the relations r1, . . . , rn

be given as in proposition 10, but with A2, . . . , An all set to one and with all bi

greater than zero. In this case we regain the lower bounds of the non-unique case,
since xi = max(# bixi−1

Ai
$, bi sgn(xi−1)) = max(bixi−1, bi) = bixi−1 and therefore

xn =
∏n

i=1 bi.
As an even more restricted sub-case consider one-to-one associations. Intu-

itively, relations instantiating them should act as neutral elements in composi-
tions, not influencing the multiplicities of the partner relation. More precisely, if
we have two relations r1 : C0{a..A} → C1{b..B} and r2 : C1{1..1} → C2{1..1},
then the composition r1 ◦ r2 should be of type C0{a..A} → C2{b..B}. This is
confirmed by proposition 10: We have y1 = 1 and y2 = max(#a1y1

B1
$, a1 sgn(y1)) =

max(# a
B $, a · 1) = a.
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7 Detecting and Eliminating Redundancies

Our goal is to exploit the information encoded in equations like u1u2u3 = u−1
5 u−1

4

from example 1 to tighten multiplicity bounds. In the previous sections we inves-
tigated how bounds evolve when composing associations. In general we obtain
two different types, one for each side of the equation, which by the semantics
of equations both characterise the relation instantiating the chains. Obviously a
relation satisfies both types if it satisfies the intersection type, as formally stated
below. If the intersection is empty, then the equation (and the specification) is
unsatisfiable.

Lemma 13. If r is both of type C{a..A} → D{b..B} and C{a′..A′} → D{b′..B′},
then r is also of type C{max(a, a′)..min(A, A′)} → D{max(b, b′)..min(B, B′)}.
Bounds like min(A, A′) and min(B, B′) obtained for the whole chain can now be
propagated to the constituents of the association chains to tighten the individual
multiplicities, based on the following result.

Proposition 14. Let ri be a relation of type Ci−1{ai..Ai} → Ci{bi..Bi} for
i = 1, . . . , n. Suppose r1 ◦ · · · ◦ rn is known to be of type C0 → Cn{m..M},
i.e., each object of class C0 is known to be related to at least m and at most M
objects of class Cn. Then each relation ri is of type Ci−1 → Ci{b′i..B′

i}, where
b′i = min{ b ≥ bi | fn(i, b) ≥ m }, B′

i = max{B ≤ Bi | gn(i, B) ≤ M }, and fn

and gn are defined recursively as

f0(i, b) = 1 g0(i, B) = 1

fj(i, b) =

{
Bj · fj−1(i, b)
Δb,Ai(fj−1(i, b))

gj(i, B) =

{
Δbj ,Aj (gj−1(i, b)) for j �= i

B · gj−1(i, B) for j = i

for j = 1, . . . , n.

Proof. First of all, note that even though b′i is defined as a minimum, it is in fact
larger than or equal to bi. Likewise, B′

i is smaller than or equal to Bi. Therefore
{b′i..B′

i} potentially is a tighter multiplicity than {bi..Bi}.
Second, observe that fn(i, b) essentially is the product of the upper bounds Bj ,

with the only exception that instead of Bi the potential lower bound Δb,Ai is
used (note the occurrence of b instead of bi). Likewise, gn(i, B) is the composition
of the lower bounds Δbj ,Aj , with the only exception that instead of Δbi,Ai the
potential upper bound B is used.

The key insight is that we may increase the lower bounds of multiplicities
as long as the composed lower bound is smaller than m for all combinations
of admissible relations. Suppose we want to find a tighter bound b′i ≥ bi for
relation ri. We assume the worst bounds for all other relations rj , which is the
case if some Cj−1-object is linked to Bj objects of class Cj . For the new bound b′i
we take the smallest value b such that the composed bound does not fall below m.

Likewise we may reduce the upper bounds of multiplicities as long as the
composed upper bound is greater than M for all combinations of admissible
relations. Suppose we want to find a tighter bound B′

i ≤ Bi for relation ri. We
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assume the worst bounds for all other relations rj , which is the case if some
Cj−1-object is linked to Δbj ,Aj objects of class Cj . For the new bound B′

i we
take the biggest value B such that the composed bound does not exceed M . !"
Example 15. Consider Example 1 with its constraint u1u2u3 = u−1

5 u−1
4 . Apply-

ing proposition 10 to the right-hand side of the equation, we see that relations
instantiating u−1

5 u−1
4 are of type Section{1..1} → Slot{1..10}.

Now consider the types of the associations

u1 : Section{1..1} → Element{1..20}
u2 : Element{1..1} → Module{1..8}
u3 : Module{0..1} → Slot{2..2} .

We optimise the multiplicities using proposition 14 with {m..M} = {1..10} from
above. E.g., to check whether the upper bound B1 = 20 can indeed be reduced,
we have to compute B′

1 = max{B ≤ 20 | g3(1, B) ≤ 10 }. We obtain

g3(1, B) = Δb3,A3(Δb2,A2(B · 1)) = max(# 2Δb2 ,A2(B)

1 $, 2) = max(2Δb2,A2(B), 2)

= max(2 max(1·B
1 , 1), 2) = max(2 max(B, 1), 2) = 2B

and thus B′
1 = max{B ≤ 20 | 2B ≤ 10 } = 5. Similarly, we find a tighter bound

B′
2 = max{B ≤ 8 | g3(2, B) ≤ 10 }:

g3(2, B) = Δb3,A3(BΔb1,A1(1)) = max(# 2BΔb1,A1 (1)

1 $, 2) = max(2BΔb1,A1(1), 2)

= max(2B max(# 1·1
1 $, 1), 2) = max(2B max(1, 1), 2) = 2B

and thus B′
2 = max{B ≤ 8 | 2B ≤ 10 } = 5. Therefore the multiplicities {1..20}

and {1..8} of the associations u1 and u2 can be both replaced by {1..5} in the
presence of the equation u1u2u3 = u−1

5 u−1
4 .

8 Related Work

There are several approaches for expressing the semantics of Uml in a rigorous
language as needed for formal reasoning on multiplicities. Felfernig et al. [14]
translate class diagrams with is-a relationships (i.e., specialisation and gener-
alisation) to Oil, a precursor of the ontology language Owl. Other authors
use formal languages like Object-Z [18], Z [10], B [26], Pvs [19], first-order
logic [5, 24], Alloy [1], or description logic [6]. Embedding class diagrams into
an expressive formal language has the advantage that different formalisms can
be translated to the same basic logic and therefore can be mixed in the specifi-
cation. For instance, it is possible to express the semantics of constraints written
in Ocl in the same first-order logic. Moreover, well-developed reasoning tech-
niques and theorem provers for these logics can be used to show satisfiability and
consistency. Calvanese et al. show that frame languages, semantic data models
and object-oriented data models can be translated to a description logic called
ALUNI and that satisfiability and subsumption of models can be checked in
this framework. [7] This flexibility and generality comes at a price, however.
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Reasoning tasks in expressive logics are of a high computational complexity. E.g.,
checking the consistency of ALUNI-specifications is ExpTime-complete. [4] Re-
cently DL-Lite [2,3] was introduced to address these complexity issues, with an
emphasis on finite models. [25]

Dullea and Song analyse cardinality constraints in redundant relationships in
the entity-relationship model. [9] This approach takes into consideration min-
imum and maximum cardinality constraints for one-to-one, one-to-many, and
many-to-many multiplicity types. They perform an exhaustive case study for
combinations of these multiplicity types with a focus on binary associations. Ex-
tensions also deal with n-ary associations but mainly concentrate on the com-
bination of binary and ternary relationships. [17] Our work differs considerably
from these approaches since we investigate multiplicities specified by concrete
intervals [a..A], where both a and A may be any integers satisfying A ≥ a ≥ 0,
instead of generic one-to-one (1:1), one-to-many (1:N), and many-to-many (M:N)
multiplicities as originally introduced by Chen for Er diagrams. [8] The second
main difference are uniqueness attributes as defined by the Uml standard.

Hartmann considers the consistency of so-called int-cardinality constraints
[15], i.e. of multiplicities with gaps, as well as the interaction of cardinality
constraints with key and functional dependencies [16]. This approach allows one
to solve consistency and implication problems, but it does not seem to offer a
method for tightening cardinalities.

9 Conclusion

This paper presented an in-depth analysis of redundant multiplicities for unique
and non-unique associations. We extended Uml class diagrams by equations over
association chains to specify additional properties of relations, and described
how to derive tighter bounds for individual multiplicities. Currently we are in
the process of integrating our theoretical results into an environment capable of
manipulating Uml class diagrams. This implementation will allow us to perform
consistency checks on real-world examples provided by industrial partners. The
prototype is available from [21]. The system has the flavour of a spreadsheet
program, since it re-checks the consistency of specifications and configurations
as well as the redundancy of multiplicities with every change, highlighting in-
consistencies and redundancies as an immediate feedback.
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Abstract. Creating animated computer generated faces which can withstand 
scrutiny on the large screen is a daunting task. How does the face move? How 
does it reflect light? What information is relevant? How can it be captured and 
then transformed to convincingly breathe life into a digital human or fantastic 
creature? The talk will give examples of new technologies and methodologies 
developed to achieve this in blockbuster films including “Avatar” and will point 
the way to the next generation of computer generated characters by showing the 
increasing importance of computational simulation and discovering and 
modeling what is really going on underneath the skin. 
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Abstract. Validating and transforming models are essential steps in
model-driven engineering. These tasks are often implemented as opera-
tions in general purpose programming languages or task-specific model
management languages. Just like other software artefacts, these tasks
must be tested to reduce the risk of defects. Testing model management
tasks requires testers to select and manage the relevant combinations of
input models, tasks and expected outputs. This is complicated by the
fact that many technologies may be used in the same system, each with
their own integration challenges. In addition, advanced test oracles are
required: tests may need to compare entire models or directory trees.

To tackle these issues, we propose creating an integrated unit test-
ing framework for model management operations. We have developed
the EUnit unit testing framework to validate our approach. EUnit tests
specify how models and tasks are to be combined, while staying decou-
pled from the specific technologies used.

Keywords: Software testing, unit testing, model management, test
frameworks, model validation, model transformation.

1 Introduction

Model-driven approaches are being adopted in a wide range of demanding envi-
ronments, such as finance, health care or telecommunications [10]. In this con-
text, validation and verification is identified as one of the many challenges of
model-driven software engineering (MDSE) [21].

MDSE in practice involves creating models, and thereafter managing them,
via various tasks, such as model transformation, validation and merging. The
validation and verification of each type of model management task has its own
specific challenges. Kolovos et al. list testing concerns for model-to-model (M2M)
and model-to-text (M2T) transformations, model validations, model compar-
isons and model compositions in [13]. Baudry et al. identify three main issues
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when testing model transformations [2]: the complexity of the input and output
models, the immaturity of the model management environments and the large
number of different transformation languages and techniques.

While each type of model management task does have specific complexity,
some of the concerns raised by Baudry can be generalized to apply to all model
management tasks:

– There is usually a large number of models to be handled. Some may be
created by hand, some may be generated using hand-written programs, and
some may be generated automatically following certain coverage criteria.

– A single model or set of models may be used in several tasks. For instance,
a model may be validated before performing an in-place transformation to
assist the user, and later on it may be transformed to another model or
merged with a different model. This requires having at least one test for
each valid combination of models and sets of tasks.

– Test oracles are more complex than in traditional unit testing [17]: instead of
checking scalar values or simple lists, we may need to compare entire graphs
of model objects or file trees. In some cases, we might only want to check
specific properties in the generated artifacts.

– Models and model management tasks may use a wide range of technologies.
Models may be based on Ecore [20], XML files or Java object graphs, among
many others. At the same time, tasks may use technologies from different
platforms, such as Epsilon [15], oAW [11] or AMMA [6]. Many of these
technologies offer high-level tools for running and debugging the different
tasks using several models. However, users wishing to do automated unit
testing need to learn low-level implementation details about their modelling
and model management technologies. This increases the initial cost of testing
these tasks and hampers the adoption of new technologies.

– Existing testing tools tend to focus on the testing technique itself, and lack
integration with external systems. Some tools provide graphical user inter-
faces, but most do not generate reports which can be consumed by a con-
tinuous integration server, for instance.

In this work, we propose addressing these issues through an integrated test frame-
work for model management tasks. We illustrate this approach with an improved
version of the EUnit framework initially presented in [13]. EUnit has been ex-
tended with a richer data model, implicit test setup and improved facilities for
testing model transformations and validations, among other new features.

The rest of this work is structured as follows. Section 2 illustrates our previous
points with a JUnit test case for a model-to-model transformation. Section 3
describes how EUnit test suites are organized, and Section 4 shows how they
are written, with an example. Section 5 outlines how EUnit can be extended
to accommodate other technologies. Section 6 shows how we used EUnit to test
a model-driven workflow to generate GMF editors. Finally, Section 7 presents
related works and Section 8 lists the conclusions for this paper and our future
lines of work.
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2 Testing a Model Transformation with JUnit

In this section we will illustrate the abstract issues listed in Section 1 using a
unit testing framework for a general-purpose programming language to test a
model management task. We will test a simple model-to-model transformation
in the Epsilon Transformation Language (ETL) using JUnit 4 [3]. The input and
output models are based on the Eclipse Modeling Framework (EMF) [20].

ETL is one of the languages implemented in the Epsilon platform [15], which
provides an infrastructure for implementing uniform, integrated and interopera-
ble model management languages that can be used to manage models of diverse
metamodels and technologies. Like all Epsilon languages, ETL is based on the
Epsilon Object Language (EOL). EOL is a reworking and extension of OCL
that includes the ability to update models, conditional and loop statements,
statement sequencing, and access to standard I/O streams.

Definition of the test suite. For the sake of brevity, we will only outline the
contents of the JUnit test suite. It is a Java class with three public methods:

1. The test setup method (marked with the @Before JUnit annotation) loads
the required models by creating and configuring instances of EmfModel.
After that, it prepares the transformation by creating and configuring an
instance of EtlModule, adding the models to its model repository.

2. The test case itself (marked with @Test) runs the ETL transformation and
uses the generic comparison algorithm implemented by EMF Compare to
perform the model comparison.

3. The test teardown method (marked with @After) disposes of the models.

Issues. We can identify several issues in each part of the test suite. First, test
setup is tightly bound to the technologies used: it depends on the API of the
EmfModel and EtlModule classes, which are both part of Epsilon. Later
refactorings in these classes may break existing tests.

The test case can only be used for a single combination of input and output
models. Testing several combinations requires either repeating the same code
and therefore making the suite less maintainable, or using parametric testing,
which may be wasteful if not all tests need the same combinations of models.

Model comparison requires the user to manually select a model comparison
engine and integrate it with the test. For comparing EMF models, EMF Compare
is easy to use and readily available. However, generic model comparison engines
may not be readily available for some modelling technologies.

Finally, instead of comparing the obtained and expected models, we could
have checked several properties in the obtained model. However, querying models
through Java code can be quite verbose.

Possible solutions. We could follow several approaches to address these issues.
Our first instinct would be to extend JUnit and reuse all the tooling available
for it. A custom test runner would simplify setup and teardown, and modelling
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platforms would integrate their technologies into it. Since Java is very verbose
when querying models, the custom runner should run tests in a higher-level
language, such as EOL. However, JUnit is very tightly coupled to Java, and this
would impose limits on the level of integration we could obtain. For instance,
errors in the model management tasks or the EOL tests could not be reported
from their original source, but rather from the Java code which invoked them.
Another problem with this approach is that new integration code would need to
be written for each of the existing platforms.

Alternatively, we could add a new language exclusively dedicated to testing
to the Epsilon family [15]. Being based on EOL, model querying would be very
concise, and with a test runner written from scratch, test execution would be
very flexible. However, this would still require all platforms to write new code
to integrate with it, and this code would be tightly coupled to Epsilon.

As a middle ground, we could decorate EOL to guide its execution through
a new test runner, while reusing the Apache Ant [1] tasks already provided by
several of the existing platforms, such as AMMA or Epsilon. Like Make, Ant is
a tool focused on automating the execution of processes such as program builds.
Unlike Make, Ant defines processes using XML buildfiles with sets of interrelated
targets. Each target contains in turn a sequence of tasks. Many Ant tasks and
Ant-based tools already exist, and it is easy to create a new Ant task.

Among these three approaches, EUnit follows the last one. Ant tasks take care
of model setup and management, and tests are written in EOL and executed by
a new test runner, written from the ground up.

3 Test Organization

In the previous section, we listed some of the issues when testing M2M transfor-
mations with a general-purpose framework. In this section, we will describe how
the internal structure of EUnit test suites and test cases helps flexibly combine
models, tasks and tests.

3.1 Test Suites

EUnit test suites are organized as trees: inner nodes group related test cases and
define data bindings. Leaf nodes define model bindings and run the test cases.

Data bindings repeat all test cases with different values in one or more vari-
ables. They can implement parametric testing, as in JUnit 4. EUnit can nest
several data bindings, running all test cases once for each combination. Model
bindings are specific to EUnit: they allow developers to repeat a single test case
with different subsets of models. Data and model bindings can be combined.

Figure 1 shows an example of an EUnit test tree: nodes with data bindings
are marked with data, and nodes with model bindings are marked with model.
EUnit will perform a preorder traversal of this tree, running the following tests:
A with x = 1 and model X, A with x = 1 and model Y, B with x = 1 and both
models, A with x = 2 and model X, A with x = 2 and model Y and finally, B
with x = 2 and both models.
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Fig. 1. Example of an EUnit test tree

3.2 Test Cases

The execution of a test case is divided into the following steps:

1. Apply the data bindings of its ancestors.
2. Run the model setup sections defined by the user.
3. Apply the model bindings of this node.
4. Run the regular setup sections defined by the user.
5. Run the test case itself.
6. Run the teardown sections defined by the user.
7. Tear down the data bindings and models for this test.

An important difference between JUnit and EUnit is that setup is split into two
parts: model setup and regular setup. This split allows users to add code before
and after model bindings are applied. Normally, the model setup sections will
load all the models needed by the test suite, and the regular setup sections will
further prepare the models selected by the model binding. Explicit teardown
sections are usually not needed, as models are disposed automatically by EUnit.
EUnit includes them for consistency with the xUnit frameworks.

Due to its focus on model management, model setup in EUnit is very flexible.
Developers can combine several ways to set up models, such as model references,
individual Apache Ant [1] tasks, Apache Ant targets or Human-Usable Text
Notation (HUTN) [18] fragments. This is detailed in Section 4.

A test case may produce one among several results. SUCCESS is obtained if
all assertions passed and no exceptions were thrown. FAILURE is obtained if an
assertion failed. ERROR is obtained if an unexpected exception was thrown while
running the test. Finally, tests may be SKIPPED by the user.

4 Test Specification

In the previous section, we described how test suites and test cases are organized.
In this section, we will show how to write them.

As discussed in Section 2, after evaluating several approaches, we decided to
combine the expressive power of EOL and the extensibility of Apache Ant. For
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Listing 1. Example invocation of the EUnit Ant task

<epsilon.eunit src="..." failOnErrors="...">
<model ref="OldName" as="NewName"/>
<uses ref="x" as="y" />
<exports ref="z" as="w" />
<parameter name="myparam" value="myvalue" />
<modelTasks><!-- Zero or more Ant tasks --></modelTasks>

</epsilon.eunit>

this reason, EUnit test suites are split into two files: an Ant buildfile and an EOL
script with some special-purpose annotations. The next subsections describe the
contents of these two files and revisit the example in Section 2 with EUnit.

4.1 Ant Buildfile

EUnit uses standard Ant buildfiles: running EUnit is as simple as using its Ant
task. Users may run EUnit more than once in a single Ant launch: the graphical
user interface will automatically aggregate the results of all test suites.

EUnit Invocations. An example invocation of the EUnit Ant task using the
most common features is shown in Listing 1. Users will normally only use some
of these features at a time, though.

The EUnit Ant task is based on the Epsilon workflow tasks, inheriting some
useful features. The attribute src points to the path of the EOL file, and the
optional attribute failOnErrors can be set to false to prevent EUnit from
aborting the Ant launch if a test case fails. EUnit also inherits support for
importing and exporting global variables through the <uses> and <exports>
elements: the original name is set in ref, and the optional as attribute allows
for using a different name. For receiving parameters as name-value pairs, the
<parameter> element can be used.

Model references (using the <model> nested element) are also inherited from
the regular Epsilon workflow tasks. These allow model management tasks to
refer by name to models previously loaded in the Ant buildfile. However, EUnit
implicitly reloads the models after each test case. This ensures that test cases
are isolated from each other.

The EUnit Ant task adds several new features to customize the test result
reports and perform more advanced model setup. EUnit generates reports in the
XML format of the Ant <junit> task. This format is also used by many other
tools, such as the TestNG unit testing framework [4], the Jenkins continuous
integration server [12] or the JUnit Eclipse plug-ins.

The optional <modelTasks> nested element contains a sequence of Ant tasks
which will be run after reloading the model references and before running the
model setup sections in the EOL file. This allows users to run workflows more
advanced than simply reloading model references, such as the one in Listing 4.
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Listing 2. Example of a 2-level data binding

@data x
operation firstLevel() { return 1.to(2); }

@data y
operation secondLevel() { return 1.to(2); }

@setup
operation generateModel() { -* generate model using x and y *- }

@test
operation mytest() { -* test with the generated model *- }

Helper Targets. Ant buildfiles for EUnit may include helper targets. These
targets can be invoked using runTarget("targetName") from anywhere in
the EOL script. Helper targets are quite versatile: called from an EOL model
setup section, they allow for reusing model loading fragments between different
EUnit test suites. They can also be used to invoke the model management tasks
under test.

4.2 EOL Script

The Epsilon Object Language script is the second half of the EUnit test suite.
EOL annotations are used to tag some of the operations as data binding def-
initions (@data), additional model setup sections (@model), test setup and
teardown sections (@setup and @teardown) and test cases (@test).

Data bindings. Data bindings repeat all test cases with different values in
some variables. To define a data binding, users must define an operation which
returns a sequence of elements and is marked with @data variable. All test
cases will be repeated once for each element of the returned sequence, setting the
specified variable to the corresponding element. Listing 2 shows two nested data
bindings and a test case which will be run four times: with x=1 and y=1, x=1
and y=2, x=2 and y=1 and finally x=2 and y=2. The example shows how x and
y could be used by the setup section to generate an input model for the test.
This can be useful if the intent of the test is ensuring that a certain property
holds in a class of models, rather than a single model.

Model bindings. Model bindings repeat a test case with different subsets
of models. They can be defined by annotating a test case with $with Map
{elements}, where elements is a list of key-value pairs. For each key-value
pair dst → src, EUnit will rename the model named src to dst. Listing 3 shows a
test which will be run twice: the first time, model “A” will be the default model
and model “B” will be the “Other” model, and the second time, model “B” will
be the default model and model “A” will be the “Other” model.

Additional variables and built-in operations. EUnit provides several vari-
ables and operations which are useful for testing. For example, supporting Ant
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Listing 3. Example of a model binding

$with Map {"" = "A", "Other" = "B"}
$with Map {"" = "B", "Other" = "A"}
@test
operation mytest() { -* use the default and Other models *- }

targets can be invoked with runTarget("targetName"). Models written in
HUTN [18] can be loaded with loadHutn("modelName", "hutnSource").
Ant tasks can be set up from the EOL script using antProject, a new global
variable which refers to the Ant Project object being executed.

Assertions. In addition to the usual assertions available in most unit testing
frameworks, EUnit implements several assertions which are useful for testing
model transformations: assertEqualModels and assertNotEqualModels
compare entire models, assertEqualFiles and assertNotEqualFiles
compare files, and file trees can be compared with assertEqualDirectories
and assertNotEqualDirectories.

Model comparison is not implemented by the assertions themselves. We ex-
tended the Epsilon Model Connectivity abstraction layer [15] to provide model
comparison as an optional service of its model drivers, in order to decouple tests
from the model comparison engine in use. Additionally, model, file and direc-
tory comparisons take a snapshot of their operands before comparing them, so
EUnit can show the differences right at the moment when the comparison was
performed. This is especially important when some of the models are generated
on the fly by the EUnit test suite, or when a test case for code generation may
overwrite the results of the previous one.

Figure 2 shows a screenshot of the EUnit graphical user interface. On the left,
an Eclipse view shows the results of several EUnit test suites. We can see that the
load-models-with-hutn suite failed. Users can press the Compare button
to the right of “Failure Trace” to show the differences between the expected
and obtained models, as shown on the right. EUnit implements a pluggable
architecture where difference viewers are automatically selected based on the
types of the operands. There are difference viewers for EMF models and file
trees and a fallback viewer which converts both operands to strings.

4.3 Example: Testing a Model Transformation with EUnit

After describing the basic syntax, we will show how to use EUnit to test the
transformation in Section 2.

The Ant buildfile is shown in Listing 4. It has two targets: run-tests (lines 2–
16) invokes the EUnit suite, and tree2graph (lines 17–22) is a helper target which
transforms model “Tree” into model “Graph” using ETL. The <modelTasks>
nested element is used to load the input, expected output and output EMF
models. “Graph” is loaded with read set to false: the model will be initially
empty, and will be populated by the ETL transformation.
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Fig. 2. Screenshot of the EUnit graphical user interface

The EOL script is shown in Listing 5: it invokes the helper task (line 3) and
checks that the obtained model is equal to the expected model (line 4). Internally,
EMC will perform the comparison using EMF Compare.

5 Extending EUnit

EUnit is based on the Epsilon platform, but it is designed to accommodate other
technologies. In this section we will explain several strategies to add support for
these technologies to EUnit.

5.1 Adding Modelling Technologies

EUnit uses the Epsilon Model Connectivity abstraction layer [15] to handle dif-
ferent modelling technologies. EMC has support for EMF models, Java object
graphs and plain XML files. Drivers for MDR and Z models are also available.

Adding support for a different modelling technology only requires implement-
ing another driver for EMC. Depending on the modelling technology, the driver
can provide optional services such as model comparison, caching or reflection.

5.2 Adding Model Management Tasks

As mentioned in Section 3, EUnit uses Ant as a workflow language. Therefore,
the basic requirement to test any model management task with EUnit is that it
is exposed through an Ant task. It is highly encouraged, however, that the Ant
task is aware of the EMC model repository linked to the Ant project. Otherwise,
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Listing 4. Ant buildfile for EUnit with <modelTasks> and a helper target

1 <project>
2 <target name="run-tests">
3 <epsilon.eunit src="test-external.eunit">
4 <modelTasks>
5 <epsilon.emf.loadModel name="Tree" modelfile="tree.model"
6 metamodelfile="tree.ecore" read="true" store="false"/>
7 <epsilon.emf.loadModel name="GraphExpected" modelfile="graph.model"
8 metamodelfile="graph.ecore" read="true" store="false"/>
9 <epsilon.emf.loadModel name="Graph" modelfile="transformed.model"

10 metamodelfile="graph.ecore" read="false" store="false"/>
11 </modelTasks>
12 </epsilon.eunit>
13 </target>
14 <target name="tree2graph">
15 <epsilon.etl src="${basedir}/resources/Tree2Graph.etl">
16 <model ref="Tree"/>
17 <model ref="Graph"/>
18 </epsilon.etl>
19 </target>
20 </project>

Listing 5. EOL script using runTarget to run ETL

@test
operation transformationWorksAsExpected() {
runTarget("tree2graph");
assertEqualModels("GraphExpected", "Graph");

}

users will have to shuffle the models out from and back into the repository
between model management tasks. As an example, a helper target for an ATL [6]
transformation with the existing Ant tasks would need to:

1. Save the input model in the EMC model repository to a file, by invoking the
<epsilon.storeModel> task.

2. Load the metamodels and the input model with <atl.loadModel>.
3. Run the ATL transformation with <atl.launch>.
4. Save the result of the ATL transformation with <atl.saveModel>.
5. Load it into the EMC model repository with <epsilon.emf.loadModel>.

This does not prevent EUnit from testing ATL transformations, but it makes
the helper task quite longer than the one in Listing 4. Ideally, Ant tasks should
be adapted or wrapped to use models directly from the EMC model repository.

Another advantage in making model management tasks EMC-aware is that
they can easily “export” their results as models, making them easier to test.
To illustrate this point, we extended the Ant task for the Epsilon Validation
Language for model validation with the attribute exportAsModel : when set, the
task exports its validation results as an EMC Java object graph model. This way,
EOL can query the results as any regular model (see Listing 6). This is simpler
than transforming the validated model to a problem metamodel, as suggested
in [5]. The example in Listing 6 checks that a single warning was produced due
to the expected rule (LabelsStartWithT) and the expected model element.
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Listing 6. Testing an EVL model validation with EUnit

@test
operation valid() {
var tree := new Tree!Tree;
tree.label := ’1n’;
runTarget(’validate-tree’);
var errors := EVL!EvlUnsatisfiedConstraint.allInstances;
assertEquals(1, errors.size);
var error := errors.first;
assertEquals(tree, error.instance);
assertEquals(false, error.constraint.isCritique);
assertEquals(’LabelsStartWithT’, error.constraint.name);

}

5.3 Integrating Model Generators

By design, EUnit does not implement any model generation technique, as we
consider that running the tests is orthogonal to generating them. Several model
generation tools already exist, such as OMOGEN [7] or Cartier [19]. To EUnit,
model generation is just another kind of model management task. There are
basically two ways in which models can be generated: batch model generation
generates all models before repeating every test through them, and inline model
generation invokes the generator in every test, producing the required models.

Batch model generation can be implemented by calling the Ant task of the
model generator before invoking EUnit, and then using a data binding to repeat
the tests over every generated model. The Ant tasks required to load these
models can be set up by EUnit on the fly in a @model operation, using the
antProject built-in variable. Inline model generation uses data bindings to set
the parameters for generating each model, and then invokes the Ant task of the
model generation tool in a @model operation.

Listing 7 shows a simple example of inline model generation, using EOL code
instead of invoking the Ant task of a model generation tool. Several Tree mod-
els are generated by combining data and model bindings. The data variable
nlevels indicates the number of levels the generated binary tree should have.
The @model operation loads an empty model and populates it as needed. All
tests will be repeated 5 times, with complete binary trees of 0 to 4 levels.

6 Case Study: Regression Tests for Eugenia

In this section, we will show a more advanced case study for the EUnit test frame-
work. This case study is a set of regression tests for the Eugenia [14] tool, which
simplifies the creation of graphical model editors based on the Eclipse Graphical
Modeling Framework (GMF) [8]. The transformations in Eugenia are non-trivial:
some of them are implemented in ETL, and some of them are implemented
in EOL. Before conducting this case study, testing Eugenia was an entirely man-
ual process, as it was deemed too difficult to automate.
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Listing 7. Inline model generation in EUnit

@data nlevels
operation levels() { return 0.to(4); }

@model
operation generate() {
// Load an empty model and populate it
loadHutn(’Tree’, ’@Spec { Metamodel { nsUri: "Tree" }} Model {}’);
generateBinaryTree(new Tree!Node, nlevels);

}

operation generateBinaryTree(root, nlevels) {
if (nlevels > 0) {
for (n in Sequence { new Tree!Node, new Tree!Node }) {
n.parent := root;
generateBinaryTree(n, nlevels - 1);

}
}

}

/* ... tests ... */

After developing EUnit, we decided to use it to add regression tests for the
Eugenia model transformations. We created a new Ant task for Eugenia, and
defined the EUnit test suite as follows:

– The Ant buildfile contains a single target which prepares a test environment,
runs Eugenia on the test environment and invokes EUnit.

– The EUnit test suite uses a data binding to repeat the tests over each of
the six models produced by Eugenia: .ecore, .genmodel, .gmfgraph,
.gmftool, .gmfmap and .gmfgen.

– Test setup creates, configures and runs <epsilon.emf.loadModel> Ant tasks
to load the expected and obtained models.

– Test execution compares the expected and obtained models.

Using regular Ant tasks to integrate external tools has the added benefit that the
same Ant tasks used for testing can also help end-users in automating their own
workflows. If we had defined our own extension framework for EUnit, end-users
would not be able to take advantage of these improvements.

EUnit has reduced the amount of code required to do the tests, by repeating
tests implicitly through data bindings. The antProject variable supplied by EU-
nit helped simplify the Ant buildfile as well: instead of specifying everything in
it, part of the required Ant tasks are created on the fly inside the EOL script.

Overall, our experience using EUnit in this case study has been positive.
Still, we have identified several features which would be useful in EUnit. The
EOL script could have run Eugenia by itself if EUnit had support for running a
specific operation once before or after all test cases, like the @BeforeClass and
@AfterClass annotations in JUnit. With this, the EOL script could do all the
work, but users would still need to explicitly write and run an Ant buildfile. It
would be convenient to have a launcher which generated and ran a minimal Ant
buildfile on the fly, further reducing the learning curve required to use EUnit.
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7 Related Work

Initial work on EUnit was presented in [13]. This paper presented the basic
testing issues in several common types of model management tasks and showed
how model-to-model and model-to-text transformations could be tested with
an early prototype of EUnit. The present version of EUnit supports data and
model bindings, implicitly reloads models, integrates Ant tasks for model setup
and provides a graphical user interface for Eclipse, among other new features.
Our current focus in EUnit is to allow users to test efficiently when confronted
with the large number of combinations of models, tasks and technologies present
in a typical system developed with Model-Driven Engineering.

Lin et al. presented a testing framework for model transformations in [16],
identifying three main challenges: automatic comparison, visualization of dif-
ferences and debugging transformation specifications. Their framework uses the
C-SAW model transformation engine, which runs on top of the Generic Model-
ing Environment platform. Tests are written manually using a textual notation
which binds transformations with input and output models. EUnit can be re-
garded as a more general framework, as it can be used for testing other cate-
gories of model management tasks, such as model validations or model-to-text
transformations. EUnit delegates comparisons to external engines (such as EMF
Compare) and visualizes model, file and directory differences through the Eclipse
Compare component. As for the third challenge, interactive debugging was re-
cently added to several Epsilon languages: it could be integrated into EUnit as
well by extending the Ant tasks for those languages.

Most of the literature in validation of model management tasks focuses on
specific techniques for model transformations, rather than on frameworks to or-
ganize them. Baudry et al. show in [7] the OMOGEN tool, which automatically
generates input models based on a set of coverage criteria and manually de-
fined model fragments. Sen et al. use the Cartier tool to generate models using
partition-based testing [19]. Ehrig et al. generate models using graph gram-
mars [9]. These techniques could be integrated in EUnit as model setup tasks.

Mottu et al. identify several test oracles for model transformations [17]: refer-
ence transformations, inverse transformations, expected output models, generic
contracts, OCL assertions and model snippets. The first three can be imple-
mented using the helper tasks and generic model and file comparison assertions
in EUnit. Generic contracts can be checked by repeating a test with data and
model bindings. OCL assertions can be emulated with EOL, which is inspired
on it. EUnit does not have explicit support for checking if a model snippet is
included in the output model, but it can be approximated using EOL.

8 Conclusions and Future Work

Testing any type of model management task involves dealing with several chal-
lenges. There are many input and output models, tasks and technologies in-
volved. Models may need to be generated in different ways and tested against
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several tasks, and a single task may need to be tested against many models.
Test oracles are harder to write. The technologies used present additional inte-
gration problems when performing automated testing. Existing testing tools do
not integrate well with other systems, such as continuous integration servers.

To tackle these issues, we have proposed in this work creating an integrated
unit testing framework for model management tasks. To illustrate our ideas, we
have developed EUnit, an unit testing framework based on the Epsilon platform:

– EUnit can reuse the same test for many models with suite-wide parametric
testing and test-specific model bindings. Parametric testing can integrate
hand-written model generation programs into the test suite definition.

– Tests in EUnit are written in the Epsilon Object Language, a high-level im-
perative language inspired on OCL which is especially well suited for model
management. EUnit integrates assertions for comparing models and file trees.

– Modelling technologies are unified by the Epsilon Model Connectivity layer,
and model management tasks are wrapped in high-level Apache Ant tasks.

– Ant tasks can be extended to make model management tasks easier to test.
For example, the Ant task for the Epsilon Validation Language can now
provide EUnit with models of the validation results.

– EUnit provides a graphical user interface for the Eclipse integrated devel-
opment environment, and generates test reports in the widely used XML
format of the JUnit Ant task.

At the same time, there are many ways in which EUnit could be improved. In
the near future, we intend to study how EUnit can help test model comparisons
and model compositions, while staying decoupled from specific technologies. We
also plan to integrate with EUnit the interactive debugging facilities which were
recently added to most of the Epsilon languages.

Custom comparison rules could be integrated into the model comparison as-
sertions provided by EUnit. Ant tasks for simplified integration with other plat-
forms (such as AMMA or oAW) could be developed. It would be very interesting
to expose model generation tools (such as Cartier) as Ant tasks and use them
for model setup. Test specification and organization in EUnit could also be im-
proved with support for running code before and after all test cases and with
test groups, theories and assumptions. A test launcher which generated and ran
minimal Ant buildfiles on the fly could be useful.
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Abstract. In UML-RT, capsules communicate via protocols which con-
nect capsule ports. Protocol State Machines (PSMs) allow the description
of the legal message sequences of a port and are potentially very useful
for the modular development and verification of systems. However, it
is unclear how exactly conformance of a capsule to its PSMs should be
defined and how this can be checked automatically. In this paper, we pro-
vide a definition of protocol conformance and show how software model
checking can be used to check protocol conformance automatically. We
describe the design and implementation of a tool that checks the confor-
mance of a capsule with Java action code with respect to the PSMs of all
its ports. The results of the validation of the tool on three case studies
are summarized.

1 Introduction

In general, the interface of an entity represents an abstraction that facilitates
correct use of the entity by listing the operations that the entity makes available
and separating its externally visible parts from the internal ones. Arguably, this
notion is one of the great success stories in computer science. It has become in-
dispensable to modern software development, because it, e.g., enables modular
development and analysis and facilitates maintenance and evolution. To further
increase the utility of interfaces, numerous proposals have been made to enrich
them with more specific information about how the externally visible parts are
to be used. Examples include contracts in the Java Modeling Language (JML),
session types, and Singularity channel contracts [8,4]. In ROOM [18], UML-
RT [16], and UML 2 [12] communication between components (called capsules
in ROOM and UML-RT) is achieved via protocols that connect ports. Protocol
State Machines (PSMs) are used to describe the message sequences that the pro-
tocol allows and that the components connected via the protocol are supposed to
be able to respond to. The idea is that if all components in the system conform
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to the PSM on all their ports, i.e., the communication behaviour of each com-
ponent is consistent with each of its PSMs, then no component will ever receive
an “unexpected” message and the system communication will not deadlock.

Current UML-RT tools, such as IBM Rational R©Rose RealTime (RoseRT)1

and its successor IBM Rational R©Software Architect, RealTime Edition (RSA-
RTE), offer only very rudimentary support for PSMs. PSMs can be drawn and
associated with ports, but they are not leveraged for analysis and do not influ-
ence code generation at all. In particular, whether a message sequence sent by a
capsule over a port is actually allowed by (conforms to) the PSM on that port is
not checked at all, relegating PSMs to a documentary role. In this paper, we ad-
dress this issue. In short, our work leverages software model checking to improve
the component-based construction of embedded systems using model-driven de-
velopment. We define what it means for a capsule state machine to conform to
its PSMs, and present a technique that checks this conformance. The technique
is based on the observation that under some assumptions (called Autonomy and
Finiteness in Section 2) conformance checking can be reduced to an exhaustive
exploration of all the executions of the capsule state machine composed with
all its PSMs (Section 3). We present a prototype implementation of the tech-
nique. The prototype takes as input a capsule and its PSMs created with IBM
RoseRT and checks its conformance fully automatically using RoseRT’s code
generation and Java Pathfinder, a leading software model checker. We discuss
three case studies to illustrate the capabilities of our prototype and the utility
of the approach overall (Section 4).

2 Background

2.1 MDD Using UML-RT

Several development methodologies for real-time software have been developed.
One of the first approaches to gain popularity was the ROOM methodology [18]
which later evolved into a modeling language called UML-RT [16] and now is
a proper profile of UML 2. We provide a very short overview of UML-RT. For
more information the reader is referred to, e.g., [16].

Capsules, ports, and capsule state machines. In UML-RT, the structure
of a system is expressed using capsules, ports, and connectors. The behaviour is
described using state machines and sequence diagrams. A system is composed
using capsules which are specialized classes which communicate with each other
exclusively via synchronous or asynchronous message passing through one or
more boundary objects called ports. Capsules may contain subcapsules, messages
can carry data, and several instances of a capsule or a port can be created using
multiplicity. Each capsule has a capsule state machine (CSM) which describes
its (top-level) behaviour. A CSM is a special case of UML 2 state machines
with some added constraints (e.g., CSMs cannot contain orthogonal regions)
1 IBM and Rational are trademarks of International Business Machines Corporation,

registered in many jurisdictions worldwide.
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and some refinements (for executability). The services offered by the UML-RT
library framework allow, e.g., the creation of a timer, the logging of a message,
or the instantiation of a capsule. Services have a port associated with them.
For instance, after creation, a timer “goes off” after a user-specified time which
causes a timeout message to be sent to the timing port.

Protocols and protocol state machines. The UML-RT stereotype Protocol
defines the interface between capsules. Ports are part of capsule structure and
function as the realization of a so-called base or conjugate protocol role. UML-
RT tools use protocols only to define input messages and output messages along
with the types of any data included in these messages. Connectors can only
be drawn between compatible ports, i.e., the protocol roles must use the same
messages and any data types included in those messages must be compatible in
the Java or C++ sense. A protocol state machine (PSM) can be used to specify
the message sequences that a protocol permits. PSMs in UML 2 [12] are quite
rich and allow, e.g., the use of composite states, history, and concurrent regions.
While UML-RT itself puts no constraints on PSMs, IBM RoseRT limits PSMs
to non-hierarchical state machines without attributes, variables, or branching,
and with transitions containing only send and receive actions. We adopt these
restrictions and support for the omitted features is left for future work. Examples
for the PSMs supported by IBM RoseRT are shown in Fig. 1a where each of the
ports p1, p2, and p3 has a PSM associated with it.

2.2 Conditions Imposed on PSMs

In [20], an autonomy condition is used to guarantee that the contract is realizable,
i.e., that it is possible to find client and server implementations that satisfy their
respective channel contracts and will never deadlock. Slightly rephrased to fit our
UML-RT context, autonomy means that in every state of a PSM, at most one
message can be output and ensures that during the message exchange between
two roles of a protocol it can never happen that two output messages “cross”
each other and leave the PSMs in inconsistent states.

Asynchronous communication is typically implemented using message queues
which store delivered messages until they are received. In general, it is not pos-
sible to bound the size of these queues. To force the size of channel queues to
be finite, Singularity enforces a finiteness condition on contract state machines
(its equivalent to PSMs): Every cycle in a contract state machine must contain
at least one output message and at least one input message. We note that some
useful protocols may violate finiteness (e.g., certain polling protocols) [17]. How-
ever, it appears that it should be possible to modify these protocols slightly such
that finiteness is satisfied, although we have not proved this.

2.3 Java Pathfinder

The implementation of our approach relies on the use of a software model
checker [9], that is, a tool that exhaustively explores the state space of a non-
deterministic program written in some standard programming language. The
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use of a software model checker is necessitated by the fact that, transitions in
the CSM may contain unrestricted code blocks in Java or C++. So, instead of
checking conformance on the model-level, it must be checked at the code-level
which also has the advantage that the deployed code is verified. Since existing
UML-RT tools are capable of generating Java or C++ code from the models,
we require a model checker for one of these two languages. We will use the Java
software model checker Java Pathfinder (JPF) [22] together with the extension
for LTL verification described in [21].

3 UML-RT Protocol Conformance Checking

Intuitively, protocol conformance is supposed to capture that a CSM and the
PSMs on its ports “fit together”. However, a more formal definition is needed.
Our definition will be based on two safety properties and one liveness property:

(1) Input Safety: None of the inputs received on a port is in conflict with the
capsule’s CSM.
(2) Output Safety: None of the outputs generated by the capsule’s CSM is in
conflict with the PSMs on the ports that these outputs go through.
(3) Progress: Assuming that the environment of the capsule always eventually
provides any expected inputs to the ports, the CSM should allow the ports to
make progress, that is, an output enabled at a port will eventually be generated
by the CSM. In some situations, enforcement of Progress may be unrealistic
(e.g., in certain protocols that use message priorities) [17]; therefore, in our tool
described in Section 3.3 the check for Progress is optional.

Formally, our approach to verify the conformance of a CSM to the PSMs on its
ports is based on the exhaustive exploration of the state space of a Verification
Finite State Automaton (VFSA), or verification automaton, for short. The VFSA
consists of the composition of the CSM with all its PSMs. Conformance holds
if and only if the exploration of the VFSA does not find any violations to the
three conformance properties described above.

3.1 Example

A non-conformant capsule C1 is shown in Fig. 1a. C1 has three ports p1, p2,
and p3. The CSM of C1 is shown below the PSMs of each of the ports. The
state space of the VFSA corresponding to C1 is shown in Fig. 1b. A state in
the VFSA shows which states the CSM and each of the PSMs are in. (C0, P10,
P20, P30) is the initial state of the VFSA and corresponds to the initial states
of all state machines on the left. In general, a transition in the VFSA is labeled
with ?m/a where ?m is the input message that causes (triggers) the transition
and a = a1 . . . an is a possibly empty sequence of actions ai each of which either
is an output message pi!mi or some other action language statement (such as
an assignment) that the capsule executes in response to the input message. In
other words, ?m is a message that the capsule C1 receives on one of its ports
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(b) State space of VFSA corre-
sponding to C1

Fig. 1. Example of nonconforming capsule C1 violating Input and Output Safety

from another capsule and each pi!mi is a message sent by C1 to the capsule
that is connected to port pi on C1. Each transition represents a single “run-to-
completion” step and thus may change the state not only of the PSM associated
with the port that ?m came in on and of the CSM, but also of the PSM of
port pi for each output message pi!mi. Note that in the examples used in this
section, the action sequence a is either empty or consists of a single output
message a = p!m. Our case studies in Section 4, however, will consider models
with transitions containing action sequences with Java statements.

A violation of Input Safety (VIS) occurs when the input message ?m is not
enabled in the current state of the CSM. In other words, a port accepts a message
that the CSM is currently not able to handle. A violation of Output Safety (VOS)
occurs when an output message pi!mi destined for port pi is not enabled in the
current state of the PSM associated with pi. In other words, the CSM intends
to send an output message over a port that the port’s PSM is currently not able
to handle.

For instance, in the initial state (C0, P10, P20, P30), port p1 can receive
message ?m1 or port p2 can receive ?m3. In the case of ?m1, a violation of
Input Safety occurs since the capsule does not have a transition defined for that
message in location C0. In the case of ?m3, a transition is triggered which sends
message !m4 on port p2. The VFSA is in state (C1, P10, P22, P30). In this
state, the reception of input message ?m5 on port p2 would create a violation
of Output Safety, because the capsule would send output message p1!m2 which
it is not allowed by the PSM of port p1.

Fig. 1b shows the result of the exhaustive exploration of the state space of
the VFSA corresponding to C1. VIS and VOS are atomic propositions which
indicate, respectively, a violation of Input and Output Safety. A dashed state
boundary indicates that the state has already been visited and therefore the
subtree rooted at this state does not need to be explored again.
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Fig. 2. Example of nonconforming capsule C2 violating Progress

In Fig. 2, the identified problems have been fixed by adding a transition
(label is underlined) and removing an output message. The resulting CSM of
C2 satisfies Input and Output Safety. However, consider the execution indicated
by the bold transitions in Fig. 2b. The CSM never sends a message on port
p3 (i.e., the PSM of p3 remains forever in state P30 in which the sending of
!m6 is enabled), even though the capsule input is fair (i.e., all ports eventually
receive the input they are expecting). Such executions violate Progress. The
final, completely corrected and conformant CSM is shown in Fig. 3.

3.2 Formalization of Conformance Check

We start by formalizing CSMs and PSMs. To avoid confusion, their formal coun-
terparts will be called capsule finite state automata (CFSA) and protocol finite
state automata (PFSA), respectively. The formalization of CSMs does not as-
sume a specific action language, but rather leaves the syntax and semantics of
actions (i.e., how actions impact the capsule state) unspecified. Moreover, the
formalization of CSMs will also ignore many features that our tool readily sup-
ports such as nested states, exit and entry actions, and history states, because
their inclusion would complicate the explanation of our approach unnecessarily.

Definition 1. (Capsule Finite State Automaton wrt PN ) Given a set of port
names PN , a Capsule Finite State Automaton with respect to PN (CFSAPN ,
also called Capsule Automaton for short) is a 4-tuple (S, s0,ActPN , δ) where

1) S is a finite set of capsule states. A capsule state records the location (active
state) that the capsule state machine currently is in and which values the cap-
sule’s attributes and variables currently have, that is, S = Loc × Val where Loc
is a finite set of locations and Val is the finite set of valuations.
2) s0 ∈ S is the initial state of the capsule.
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3) ActPN is a set of actions consisting of messages M and statements Stmt;
messages comprise a set of input messages M? of the form p?m and output
messages M! of the form p!m where p ∈ PN and m ∈ MN are port and mes-
sage names respectively. The message name of an input message may contain
variables, while the message name of an output messages may contain action lan-
guage expressions. Statements are action language statements that are not related
to communication such as assignments to attributes and if-then-else statements.
4) δ ⊆ S × (M? × (M! ∪ Stmt)∗) × S is the transition relation. We assume that
transitions containing input actions with variables correctly update the variables
using the values provided. Also, for each statement in Stmt, we assume that the
transition relation correctly captures the effect of the execution of the statement
on the capsule state. For instance, the transition(

(loc, val), (p?m, x := x + 3), (loc′, val ′)
)

would be triggered by input message ?m received on port p in state (loc, val) and
would lead to the value of variable x to be incremented by 3. �

Note that the examples discussed in this section do not contain any statements.
Moreover, input messages do not contain variables and output messages do not
contain attributes or variables. However, in the case studies to be discussed in
Section 4 a subset of Java is used as action language.

Protocol finite state automata formalize Protocol State Machines. To facili-
tate the definition of conformance, our definition equips them with appropriate
atomic propositions and a labeling function.

Definition 2. (Protocol Finite State Automaton) A Protocol Finite State Au-
tomaton (PFSA, or Protocol Automaton for short) is a 6-tuple (S, s0, M, δ,AP , L)
where

1) S is a finite set of protocol states.
2) s0 ∈ S is the initial state.
3) M is the set of messages. M consists of a set of input messages M? of the
form ?m and output messages M! of the form !m where m ∈ MN is the message
name. The message name of a message may contain variables.
4) δ ⊆ S × M × S is the transition relation. δ is assumed to be deterministic.
5) AP = {enabledm | m ∈ M! ∪ M?} is the set of atomic propositions marking
states in which a particular message can be sent or received.
6) L ∈ S → 2AP is a labeling function. Given a protocol state s ∈ S, enabledm ∈
L(s) if and only if (s, m, s′) ∈ δ for some s′ ∈ S. �

A capsule has ports, a capsule automaton, and attributes.

Definition 3. (Capsule) A capsule is a triple (P,CA, A) where
1) P ⊆ Port is the capsule’s set of ports where each port has a name and a
protocol automaton associated with it, that is, Port = PN ×PFSA. Given a port
p ∈ Port with p = (pn,PA), we will use the notation p.pn = pn and p.PA = PA
to refer to the port’s components.
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2) CA ∈ CFSAPN is a capsule automaton wrt. the capsule’s port names PN .
3) A ⊆ Attribute is the capsule’s set of attributes and variables2. �

Notation. Given a capsule automaton CA = (S, s0,ActPN , δ) ∈ CFSAPN , we
will use the following projection notation to refer to the parts of CA: CA.S = S,
CA.s0 = s0, CA.ActPN = ActPN , and CA.δ = δ. This notation will also be
assumed for protocol automata and capsules.

We can now define the Verification Finite State Automaton corresponding to
a capsule. However, due to space limitations, the definition can only be given
in an abbreviated form here. Informally, the VFSA is obtained by forming the
synchronous composition of the capsule’s capsule automaton with the protocol
automata on all its ports.

Definition 4. (Verification Finite State Automaton, abbreviated) Given a cap-
sule C = (P,CA, A), the Verification Finite State Automaton (VFSA, also called
Verification Automaton for short) corresponding to C is defined to be the au-
tomaton (S, s0,Act , δ,AP , L) where

1) the set of verification automaton states (also called verification states for
short)S is given by S = C.CA.S×p1.PA.S×. . .×pn.PA.S for C.P = {p1, . . . , pn},
2) the set of actions Act is given by the set of actions of the capsule automaton,
that is, Act = C.CA.Act = M? ∪ M! ∪ Stmt,
3) the transition relation δ ⊆ S×(M?×(M!∪Stmt)∗)×S consists of conforming
transitions (δok) and nonconforming transitions (δ¬ok),
4) the set of atomic propositions AP is given by AP = {VIS ,VOS , enabledpn,m |
pn ∈ PN ∧m ∈ M!∪M?} where PN is the set of port names used in the capsule
automaton C.CA.
5) the labeling function L : S → 2AP is used to flag non-conforming states using
δ, δok and δ¬ok. �

Our three conformance properties can now be formalized in Linear Temporal
Logic (LTL).

Definition 5. (Conformance) The capsule automaton of a capsule C is said
to conform to the protocol automata of its ports if and only if the verification
automaton corresponding to C satisfies the following three LTL formulas:

1) Input Safety: �(¬VIS )
2) Output Safety: �(¬VOS)
3) Progress:

(∀p ∈ C.P | ∀?m ∈ C.M? | �fair (p, ?m)) ⇒
∀p ∈ C.P | ∀!m ∈ C.M! | �progress(p, !m)

where fair (p, ?m) and progress(p, !m) abbreviate
a) enabledp.name,?m ⇒ �¬enabledp.name,?m, and
b) enabledp.name,!m ⇒ �¬enabledp.name,!m, respectively. �

2 For our purposes, a distinction between variables and attributes is not necessary.
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Progress ensures that whenever a port p is able to send an output message !m,
then the capsule must eventually send !m over p, i.e., that the execution does not
get stuck with respect to !m and p. However, since the occurrence of outputs will
in general depend on the prior occurrence of inputs, the formalization requires
that an assumption be made about the inputs supplied to the capsule. More
precisely, to determine if a capsule can get stuck with respect to !m and p, the
verification must only consider fair executions, that is, executions along which
an input ?m enabled at some port q is eventually received on q.

On first glance, it appears that the definition of Progress has an unpleasant
side effect: ports with infinite receive cycles (i.e., infinite execution paths in
which a message ?m can be received continually) will give rise to executions
that will not be analyzed for Progress, because enabledp.name,?m never becomes
false and these executions will be unconsidered unfair. Also, ports with infinite
send cycles (i.e., infinite execution paths in which an output message !m is sent
continually) will give rise to executions that will be flagged as violating Progress,
because enabledp.name,!m never becomes false. However, these kinds of PSMs are
impossible due to the finiteness assumption described in Section 2.2.

Finally, we note that an alternative formalization of input safety would have
checked that an input ?m enabled at a port p is also enabled at the CSM:
�(enabledp.name,?m ⇒ enabledCSM,?m); similarly for output safety.

3.3 Implementation

The conformance check of a UML-RT model created using IBM RoseRT pro-
ceeds as follows (see Fig. 4): 1) The user selects a capsule C in this model to
be analyzed and selectively enables checks for Input Safety, Output Safety, or
Progress as desired. 2) Java code implementing the capsule C and its ports and
PSMs is generated and both pieces are combined to form the System under Veri-
fication (SuV), i.e., a Java program which captures the behaviours of C’s capsule
state machine and all its protocol state machines. 3) The SuV is combined with
a Verification Harness (VH) which executes the SuV non-deterministically using
JPF’s choose statement and checks for safety violations. The resulting Java code,
called Closed System (CS), is fed into JPF. The CS is designed in such a way
that its reachable state space coincides with that of the VFSA representing C.
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1 input : Capsule C = (P, CA, A)
2 global
3 variable cState : C.CA.S ;
4 variable pState : array o f C.P.S ;
5 variable VIS , VOS ← false : Boolean ;
6 variable enabled ← false : array o f array o f Boolean ;
7 begin verificationHarness
8 cState ← C.CA.s0 ; % initialize capsule state
9 for a l l p ∈ C.P do pState[p] ← p.PA.s0 ; % initialize protocol states

10 update(enabled) ;
11 while (true) do
12 port ← choose({p ∈ C.P | ∃(pState[p], m, s′) ∈ C.p.PA.δ?}); % choose port
13 m? ← choose({m | (pState[port], m, s′) ∈ C.port.PA.δ?}) ; % choose input message
14 executeTransition(port, m?) % take transition
15
16 proc executeTransition(port, m?)
17 pState[port] ← s′ such that (pState[port], m?, s′) ∈ C.port.PA.δ? ;
18 i f �s′ ∈ C.CA.S such that (cState, (m?, a), s′) ∈ C.CA.δ then VIS ← true
19 acts ← a such that ∃s′ ∈ C.CA.S | (cState, (m?, a), s′) ∈ C.CA.δ ;
20 for a l l output messages mi in acts = 〈m1, . . . , mk〉 do
21 pi ← getPort(mi) ; % find port mi is sent over
22 i f �s′ ∈ C.pi.S such that (pState[pi], mi, s′) ∈ C.pi.PA.δ then VOS ← true ;
23 pState[pi ] ← s′ such that (pState[pi], mi, s′) ∈ C.pi.δ! ;
24 cState ← s′ such that (cState, (m?, a), s′) ∈ C.CA.δ % update capsule state
25 update(enabled)
26 end proc

Fig. 5. Pseudo code for Verification Harness (indentation indicates nesting)

4) JPF analyzes the CS. In all our experiments (with one exception), the state
space of the CS was small enough to allow exhaustive analysis. If JPF observes a
safety or liveness violation, verification stops and an appropriate error message
including a detailed execution trace is output.

We describe some of the artifacts and steps in more detail.

Verification Harness. The process described above relies on the correctness of
the Closed System, that is, the exploration of the Closed System is tantamount to
exploring the VFSA corresponding to C such that C is conformant if and only if
an exhaustive search with JPF does not find any violations. We will not formally
prove correctness of the CS. Instead, the verification harness of the CS will be
described in terms of the formalization as much as possible. Pseudocode for the
harness is shown in Fig. 5. Lines 8-10 initialize the harness where update(enabled)
is assumed to update enabled correctly to the messages enabled in this state.
After nondeterministically choosing a port which has an enabled input message
in its current state (line 12), we also choose a message for that port (line 13). The
notation δ? and δ! refers to input transitions and output transitions respectively,
i.e., δ? = {(s, m, s′) ∈ δ | m ∈ M?}, and δ! = {(s, m, s′) ∈ δ | m ∈ M!}. If the
input message contains variables (i.e., the capsule expects the environment to
also provide data), the choice is extended to range not only over the enabled
input messages, but also over finite sets of possible input data values. After
updating the port state (line 17), we check Input Safety (line 18) and for all
output messages generated by the CSM, Output Safety is checked (line 22) and
the port and capsule states are updated appropriately (lines 23 and 24).
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Closed System. The Verification Harness (VH) is combined with the System
under Verification (SuV) to form the Closed System (CS). Since the action code
within the capsule may use RoseRT framework services, JPF must be enabled
to handle these services. To this end, a separate verification framework has been
implemented since the original cannot be used directly. Also, the framework
had to be instrumented for JPF to provide meaningful error traces. Sometimes,
our implementation only makes a partial, abstract version of a service available.
E.g., the concrete value of a timer is ignored, but care is taken that timeout
messages respect timer values, i.e., if two timers t1 and t2 are set within the
same transition and t1 has a smaller value than t2 (i.e., times out sooner), then
only the sequence in which t1’s timeout occurs before that of t2 is considered.

IBM RoseRT ports allow messages to be deferred and recalled. Multiplicity is
used to support this functionality. More precisely, every port is given a special
instance which has a defer and a recall queue and which is used to defer and
recall messages on that port.

Data in input messages is allowed to range over booleans and finite, user-
specified ranges of integers only. Alternatively, the CS supports a mode in which
variables in choice points in the CSM are left uninterpreted and both choices are
explored by JPF. This feature is useful, if, e.g., the message data cannot be en-
coded as integers or when the exhaustive consideration of all possible input data
is not feasible. However, spurious conformance violations now become possible,
because the error trace produced may not be feasible.

JPF analysis. The CS is fed into JPF. To implement the check for Input and
Output Safety in JPF, simple assertions suffice. However, to implement the check
for Progress, we use JPF’s ltl2buchi package and generate a Büchi automaton
from the negated progress formula. If the state space of the CS is finite (only
infinitely many possible data values can cause it to be infinite), JPF’s analysis
of the state space of the CS will terminate. JPF will exhaustively explore all
non-deterministic choices in the CS and thus decide conformance.

RT-CCC tool. We have implemented our approach in a publicly available
tool called RT-CCC (UML-RT Capsule Conformance Checker)3. RT-CCC uses
JPF as a component and can directly open IBM RoseRT model files. RoseRT’s
code generation is used to obtain code from the capsule. Since RoseRT’s code
generation currently does not support PSMs, a model-to-text transformation
implemented by us in JET4 is used to generate Protocol classes which define the
ports and the PSMs.

Supported features. RT-CCC supports most UML-RT features. There are no
restrictions on PSMs. In the context of CSMs, most features are supported in-
cluding arbitrary Java action code (in exit points, transitions, and entry points),
nested states (“or states”), choice points (branching), deep and shallow history
states, and input and output messages with data (as long as it is boolean or

3 Code and case studies available at sourceforge.net/projects/rtccc
4 Java Emitter Templates; available at www.eclipse.org/modeling/m2t

sourceforge.net/projects/rtccc
www.eclipse.org/modeling/m2t
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numerical). In the context of UML-RT, multiplicities on ports and capsules,
timers (as long as not more than two are used at any time) and message defer
and recall are supported. Currently unsupported are plugin capsules, optional
capsules, and message priorities.

4 Case Studies

We report on the use of RT-CCC on three different models with increasing levels
of complexity. In each model, a capsule with multiple ports is analyzed and we
use RT-CCC iteratively to identify bugs and validate fixes. Each analysis was
performed truly compositionally using only the capsule’s CSM and PSMs. Per-
formance numbers were obtained using a ThinkPad T61P with 2.5GHz Duo and
2GB RAM. The last two examples are complex enough that RT-CCC repeatedly
uncovered new, unexpected violations and proved to be a truly valuable tool for
the design of a conforming CSM. Space limitations prevent us for providing more
details such as UML-RT artifacts (CSMs or PSMs) or RT-CCC artifacts (e.g.,
error traces or screen shots); for these and other details, see [10].

ProductionLine example: Our simplest model simulates a basic production
line and consists of a Controller capsule and a ProductionLine capsule which
contains a Robot and a WorkStation. The Workstation manufactures “widgets”
which are delivered by the Robot. The Controller has four ports: two connecting
it with the WorkStation and the Robot, respectively, together with a Timer and
a Logging port. The analysis with RT-CCC gives rise to six corrections to the
CSM of the Controller. All violations were found in less than a second. The state
space of this example was trivial: each of the CSM and the two PSMs had five
locations, the amount of action code was minimal.

Internet device driver example: Our second model is inspired by the contract
for a network device driver (NicDevice) used in [4]. The model uses a fairly
complex protocol that allows a system to interact with a device. The device
capsule has three user-defined ports which are used to communicate with (1)
three sensors (the associated port thus has multiplicity three), (2) a monitor, and
(3) a controller. A total of nine different input messages (two with integer data)
and four output messages are used. The three PSMs have between three and six
locations and the CSM is hierarchical with a total of 13 locations distributed
over two levels of nesting. Nine analyze-and-edit iterations were necessary to
make the initial CSM conformant. The performance of the exhaustive check of
the final model are given in Table 1.

ATM example: The last case study models an ATM. The checked capsule has
six ports over which 17 different input messages (four with numerical input)
and 13 different output messages flow. The CSM has 32 locations distributed
over five levels of nesting. Ten analyze-and-edit iterations were necessary. A
safety violation is found in less than a minute in each of the first eight. The
performance of the exhaustive check of the final model are given in Table 1.
Due to the use of data and the large size of the Büchi automaton encoding
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Table 1. JPF performance metrics for exhaustive conformance checks of last two
examples (dnf = “did not finish”)

Example Type of check Memory (MB) Visited states Time (h:mm:ss)

NicDevice Safety 51 1776 0:00:15

NicDevice Progress 1039 799354 2:18:44

ATM Safety 1488 288064 1:16:25

ATM Progress dnf dnf dnf

the progress property, the progress check did not complete. However, checks
involving progress properties specialized to individual ports did complete and
allowed us to identify progress violations.

5 Related Work

No approach has been found that allows protocol conformance verification of
UML-RT models that have been created with an UML-RT tool and that have
the kind of features found in industrial models such as Java action code, timers,
defer and recall of messages, and multiple instantiation of ports and protocols.
A large number of related papers either do not go far enough (e.g., [23,13,14]),
or are sufficiently different (e.g., [11,7,15,1,24]), that a more detailed comparison
does not appear productive. Instead, we will focus on the following four groups
of work which we deem most closely related:

(1) Formal definitions of CSMs, PSMs, and conformance are presented in [19]
and inspired our safety properties. However, conformance checking of an exist-
ing CSM is not discussed. The formalization of conformance in [6] contains a
rule similar to our progress property. An algorithm for conformance checking is
presented, however, data is not supported and no implementation is mentioned.
(2) The two papers by Engels et al. [2,3] are concerned with the formal analysis
of UML-RT models using CSP. In [3], a pair of CSMs connected via a protocol
is translated into a CSP process which is then checked for deadlock using the
FDR tool. In [2], a methodology is presented for checking the consistency of the
communication between two capsules where consistency is defined as deadlock
freedom and a CSP-based formalization similar to the one in [3] is used. The
definition of protocol conformance is thus based on the communication behaviour
between two capsules, and neither paper analyzes a single capsule in isolation.
While the use of the FDR tool is described, no implementation is mentioned
that allows the direct analysis of UML-RT models.
(3) The work by Giese et al. in [5] brings modular development and analysis
to timed state machines via the assume/guarantee paradigm. Development pro-
ceeds by (a) identifying composition patterns, (b) verifying them with respect
to the guarantees that they are supposed to make, (c) designing components
and assigning them to the ports in the pattern, and then (d) verifying the com-
ponents with respect to the assumptions that the pattern makes. Theoretical
machinery is presented that ensures that the resulting system satisfies the pat-
tern constraints and component invariants. The work is more broadly scoped due
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to its support of communication patterns and pattern refinement. The various
artifacts are described using mathematical notation (e.g., automata, RT-OCL)
only, rather than UML-RT as in our case. Nonetheless, similarities exist, e.g.,
role automata correspond to PSMs and protocol conformance arises as refine-
ment which is checked in step (d) above.
(4) The Singularity OS has already been mentioned [4]. Channels are used ex-
clusively to implement communication between processes written in Sing#, an
extension of C#. Channel contracts are used to define acceptable message se-
quences in form of finite state machines. In contrast to our work, static analysis
is used to check processes expressed in an entirely textual language (the potential
for false positives is not discussed, though); moreover, only an informal definition
of conformance is given which does not seem to include Progress (“the sequence
of messages observed on channels correspond to the channel contract” [4, 184]).

6 Conclusion

We have presented an approach and a publicly available tool to check the con-
formance of a UML-RT capsule state machine to the PSMs of its ports. The
approach defines conformance as two safety properties and a liveness property
and reduces the conformance verification to the analysis of the synchronous
composition of the capsule state machine with all its PSMs. To implement the
analysis we have taken advantage of JPF and of the code generation facilities
of IBM RoseRT which allows the direct analysis of the code generated by an
MDD tool from the model. Our approach requires that the PSMs satisfy cer-
tain conditions (autonomy and finiteness) which had already been proposed for
the analysis of the channel contracts in Microsoft’s Singularity operating sys-
tem. The approach works on a large enough subset of UML-RT that makes it
interesting for industrial UML-RT models.

Our case studies confirmed that the design of protocol-conformant capsule
state machines is not trivial and benefits substantially from the availability of
an automatic conformance analysis such as the one offered by our tool. Overall,
the performance of the analysis was promising with, not surprisingly, the check
of the liveness property dominating the costs of checking the safety properties.
More work on optimizing the liveness check may improve its performance. We
conclude that automatic protocol conformance verification via software model
checking is realistic and represents a promising avenue to increase the utility and
adoption of interface specifications enriched with PSMs.
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Abstract. Software Product Line (SPL) engineering is a popular ap-
proach for the systematic reuse of software artifacts across a large num-
ber of similar products. Unfortunately, testing each product of an SPL
separately is often unfeasible. Consequently, SPL engineering is in con-
flict with standards like ISO 26262, which require each installed software
configuration of safety-critical SPLs to be tested using a model-based
approach with well-defined coverage criteria.

In this paper we address this dilemma and present a new SPL test suite
generation algorithm that uses model-based testing techniques to derive
a small test suite from one variable 150% test model of the SPL such that
a given coverage criterion is satisfied for the test model of every product.
Furthermore, our algorithm simplifies the subsequent selection of a small,
representative set of products (w.r.t. the given coverage criterion) on
which the generated test suite can be executed.

1 Introduction

Software Product Line (SPL) engineering is a popular approach for the system-
atic reuse of software artifacts across a large number of similar products [1].
Unfortunately, engineers of different domains are nowadays developing SPLs for
embedded, safety-critical systems without knowing how to test the large number
of their product configurations systematically and efficiently in strict accordance
with new software development standards. For example the new standard ISO
26262 [2] for safety-critical automotive software recommends that each software
configurations has been tested thoroughly using model-based techniques and
guaranteeing degrees of coverage according to certain criteria. But, nowadays, in
the automotive industry almost every car of a certain brand has its individual
software configuration, so it is difficult to comply with this recommendation. So
far, SPL testing approaches are not able to efficiently test large SPLs thoroughly
for the following reasons: First of all, testing every single product configuration
of an SPL individually by using common testing techniques is not acceptable for
large SPLs [3]. Furthermore, testing all actually used products only following a
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demand-driven approach is inacceptable, too, due to the still large number of rel-
evant products and the fact that the time available at the end of an assembly line
for testing a just instantiated product is limited. Even exploiting regression-based
techniques on SPLs to reduce the efforts for testing a single product based on the
already spent efforts for testing other similar products previously is unfeasible
as long as precise definitions of “similarity” w.r.t. a chosen coverage criterion are
missing [4]. Finally, successfully used subset selection heuristics which generate
small sets of products that are assumed to be representative for all SPL products
are improper for testing safety-critical software systems as long as there is no
proof that this small set is really representative.

We address this problem and present a new model-based coverage-criteria-
driven approach for safety-critical SPL testing. We can prove that our new SPL
test suite generation algorithm efficiently generates a set of test cases (test suite)
that achieves a complete test model coverage for every product of an SPL w.r.t.
the chosen coverage criterion. For this purpose, our approach makes use of the
150% test model [5] which contains all test models of an SPL as special cases.
By using the 150% test model it is possible to determine if a created a test
case is executable on more than one product. Additionally, our approach utilizes
the Quine-McCluskey algorithm [6] (a method used for minimization of boolean
functions) that helps to efficiently keep a record of all product configurations
which are left to be processed. This makes it possible to create a test suite that
achieves a complete test model coverage for every product of an SPL without
processing each product individually. Furthermore, during test suite generation
our algorithm gathers information that simplifies the subsequent selection of a
small, representative set of products on which this test suite can be executed.To
identify a small, representative set of products of an SPL, for every test-model-
driven approach it is necessary to assume that products with similar behaviors
specified in their test models have similar implementations, i.e. produce the same
verdicts for a test case that has identical traces in their related test models.

The remainder of the paper is organized as follows: In the following section we
introduce domain specific terms. After that, we present our approach in detail
in Section 3 and discuss it in Section 4. In the subsequent Section 5, we show
how our work stands out from related work. Finally, in Section 6 we conclude
the paper and present our plans for future work.

2 Basic Terms of SPL Testing

In the following we explain basic terms from the domain of SPL testing and
model-based testing. A software product line (SPL) defines a set of features
F = {f1, f2, . . . fn}. Features are increments of functionality explicitly stating
commonality and variability parameters for product configurations of the SPL [7].
Theses features are combined into one software product which is interacting with
components of the environment, i.e. sensors and actuators.

In this paper we use an embedded Alarm System (AS) SPL as running ex-
ample. This SPL provides nine features FAS = {AS, C, O, P, W, S, V, M, U }
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Fig. 1. Feature Model of the AS SPL

(cf. Figure 1). Depending on which features are integrated the functionality of
a product in the AS SPL varies. The AS SPL contains products with up to two
alarm levels. The alarm is set off if it is released manually (req. M ) or the vibra-
tion detector detects a vibration over a certain time (req. V ). By entering the
first level, an alarm signal is sent out by a siren (req. S ) or warning light (req.
W ). When the vibration did not stop after a certain time, the system enters level
two. Entering this level the system may call the police (req. O) and/or send an
evidence photo to the police (req. P). Additionally, the SPL offers the feature
that a photo will be taken as security measure when a user interacts with the
environment of the system (req. U ).

In Figure 1 the features of the AS SPL are arranged in a FODA feature
model [7]. The root node of a feature model is a special mandatory feature
denoting the name of the whole SPL. Subnodes introduce further variabilities
to their parent feature nodes: singleton subfeatures can be either mandatory or
optional variabilities for their parent features, and groups of subfeatures define
either or or xor (i.e. alternative) subset constraints among features in that group.
Consequently, feature models introduce dependencies and constraints on feature
combinations, thus limiting the set P(F ) of potential combinations to a subset
of valid product configurations PC = {pc1, pc2, . . . , pck} ⊆ P(F ) where each
pci ∈ PC corresponds to exactly one subset of selected features of F . Due to the
constraints in the feature model of the AS SPL 32 valid product configurations
exist, e.g. pci = {AS, C, P, S, U, V }.

In model-based testing, test models are used to specify the abstract behavior
of one corresponding system-under-test. A test model tm is used to derive a set
of test cases (test suite) that satisfy certain coverage criteria. The derivation
happens either manually or automatically by using a test case generator. In this
paper, we use deterministic state machines as test models, simply consisting of
sets of states and transitions.

In SPL testing, each valid product configuration has its own test model. This
results in a large number of test models TM = {tm1, . . . , tmk}. A function
map : PC → TM maps any valid product configuration pci ∈ PC onto its
defined test model tmi = map(pci). We require map to be a bijection, thus every
product configuration pci ∈ PC owns a unique behavioral specification tmi.

To achieve a better maintainability and a better overall view in SPL testing
it makes sense to combine all test models of an SPL, which usually are rather
similar, into one “super” test model stm, a so-called 150% test model. For the
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Fig. 2. 150% Test Model of the AS SPL with Annotated Selection Conditions
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Fig. 3. Abstract Test Models of the AS SPL with Annotated Test Goals (Transitions)

sake of a better discriminability, in the following, we call a test model for one
specific product a 100% test model. Each 100% test model tm ∈ TM consists of
a subset of states and transitions of the 150% test model stm, which is usually
not an element of TM [5]. In our 150% test model, map is implemented by
annotating states and transitions with logical formulas as selection conditions
defined over features in F , which is exemplarily depicted in Figure 2. The 100%
test model tmi = map(pci) for product configuration pci ∈ PC can be derived by
removing those states and transitions from the 150% model stm whose selection
conditions are not satisfied for the feature combination in pci. For example, in
Figure 3(b) the 100% test model of a product of the AS SPL is depicted.

Usually, in a testing process it is hard to know when to stop testing, thus a
test end criterion must be selected. In model-based testing such test end criteria
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are usually defined by means of coverage criteria, concerning fragments of a
test model to be traversed in test case executions. Therefore, coverage criteria
impose requirements for test suite generation from test models. Applied to test
model tm, a criterion C selects sets of model fragments, so-called test goals
G = {g1, g2, . . . , gl}, that refer to state machine artifacts, e.g., all-states, all-
transitions, all-transition-pairs, etc. [8]. In this paper the set of test goals G is
selected using the 150% test model stm as input. This set of test goals G is
a superset of all test goals of all 100% test models of the SPL. For instance,
considering all-transitions-coverage criterion applied to the 150% test model of
the AS SPL selects all transitions as test goals, thus leading to 27 test goals
G = {g1, g2, . . . , g27} as shown in Fig. 3(a). Correspondingly, each 100% test
model tmi ∈ TM contains a subset Gi ⊆ G of these test goals depending on
the transitions selected from stm via map. For instance, the 100% test model in
Figure 3(b) owns 15 goals.

A test case consists of a sequence of inputs and expected outputs. A test suite
T = {t1, t2, . . . , tm} is a set of test cases ti ∈ T . For a test suite T generated
from a 150% test model stm, each test case ti ∈ T corresponds to a unique
execution path of transitions in stm. We consider the following relations:

– exec ⊆ T × TM , where exec(t, tm) :⇔ test case t is executable on the 100%
test model tm, i.e., the execution path of t is contained in tm as it only
consists of transitions of stm mapped into tm via map,

– satisfy ⊆ T × G, where satisfy(t, g) :⇔ the execution of test case t satisfies
test goal g selected for some coverage criterion C on stm, and

– valid ⊆ T× G × PC, where valid(t, g, pc) :⇔ satisfy(t, g)∧exec(t,map(pc)),
i.e., test case t is valid for test goal g on product pc if it is executable on the
test model of product configuration pc and satisfies test goal g.

3 Complete SPL Test Suites

An SPL test suite TS = (T ′, PC′) contains test cases t′ ∈ T ′ for a set of
products PC′ ⊆ PC of the SPL. We denote the set of all SPL test suites by
TSSPL = P(T ) × P(PC), where T refers to the set of all test cases executable
on stm. A complete SPL test suite TSC achieves a complete test model coverage
for every product of the SPL w.r.t. a certain coverage criterion C which defines
a set of test goals G.

Definition 1. (Complete SPL Test Suite)
SPL test suite TSC = (TC , PC′) ∈ TSSPL with a set of test cases TC ⊆ T and
valid product configurations PC′ ⊆ PC is complete for a set of test goals G, iff

∀g ∈ G, pc ∈ PC : (∃t ∈ T : valid(t, g, pc) ⇒ (∃tg ∈ TC : valid(tg, g, pc))

The easiest way to obtain complete test model coverage for every product of
the SPL is to compute for each 100% test model of an SPL a test suite that
achieves complete coverage, and, afterwards, combine all test suites to TSC .
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This procedure follows a product-by-product approach and is inefficient for large
SPLs. Instead, our algorithm avoids the iteration over every single PC. Our
algorithm analyzes each created test case and if this test case is valid for more
than one PC, all the PCs in this set are processed at once. For this purpose, our
approach computes TSC by deriving test cases from the 150% test model of an
SPL and not from each 100% test model.

An SPL test suite derived from the 150% test model is complete if for all
products of an SPL and for each test goal g in the 150% test model, this SPL
test suite contains at least one test case tg ∈ TC such that valid(tg, g, pc) is true
for every product configuration pc ∈ PC whose 100% test model contains the
respective test goal g. It is important to recognize that a complete SPL test
suite derived from a 150% test model is a superset of a test suite that achieves a
complete 150% test model coverage under the assumption that both test suites
use the same coverage criterion.

During test suite generation, our approach already associates each test case
with a set of PCs for which this test case is valid. After the test suite generation
is finished, these associated sets make it easier to select a small, representative
set of products PCR ⊆ PC for the complete SPL test suite.

Definition 2. (Representative Set of Products)
A set of products PCR ⊆ PC of a complete SPL test suite TSC = (TC , PCR) ∈
TSSPL is representative for all product configurations PC, iff

∀g ∈ G, pc ∈ PC, tg ∈ TC : valid(tg, g, pc) ⇒ (∃pcR ∈ PCR : valid(tg, g, pcR))

3.1 Complete SPL Test Suite Generation – An Example

In this section, we explain our complete SPL test suite generation algorithm by
applying it to the 150% test model of the AS SPL. The following explanation
refers to the pseudo code of the algorithm in Figure 4. Additionally, we use
Figure 5 to illustrate each step in the pseudo code.

Our algorithm iterates over all test goals and repeats each time the same steps
(cf. line 7 of Figure 4). Consequently, it is sufficient to focus on one test goal.
We chose test goal 14 (cf. Figure 3(a)). Out of all 32 valid PCs only 10 PCs
have a corresponding 100% test model that contains test goal 14. For each of
these 10 PCs at least one valid test case has to be created. Using a common
product-by-product approach, it would be necessary to create 10 test cases - one
for each PC. Applying our algorithm, only 4 instead of 10 test cases are created.

At the beginning (cf. first iteration in Figure 5), the test suite is empty
and does not contain any test cases that satisfy test goal 14 for any PC, re-
spectively. Before test case generation starts, the set of not yet processed PCs
(processPCset) is reduced from 512 PCs to 32 valid PCs due to the constraints
of the feature model (cf. line 9). The resulting formula is minimized to a DNF-
formula by applying the well-known Quine-McCluskey algorithm [6]. This is
necessary to efficiently keep a record of all PCs which are left to be processed.
This minimized DNF-formula is depicted in processPCset of the first iteration
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SuperTestModel stm;    // 150% test model 
dnfFormula processPCset := empty; // DNF formula that describes set of not yet processed product configurations 
cFormula inputPCset, outputPCset; // conjunctions describing subsets of (un-)processed product configurations 
List<TestCase> testsuite := empty; // generated representative set of all product configurations plus test cases 
 
// create for each test goal in G a representative set of test products plus test cases 
for each g in G do { 
 // translate feature model with all constraints into DNF formula 
 processPCset := QMC.minimizeDNF( FeatureModel.getConstraintsAsPropositionalLogicFormula() ); 
 do { 
  // select conjunction in DNF formula that references the smallest number of features 
  inputPCset := processPCset.getTermWithSmallestNumberOfLiterals(); 
  // try to create a test case for selected subset inputPCset 
  testcase := TestCaseGenerator.create( g, inputPCset , stm );  
   
  if testcase was created then { 
   // find set of PCs for which testcase is valid by analyzing its feature-flags 
   outputPCset := FlagAnalyzer.findPCset( testcase );  
   testsuite.add( testcase , outputPCset ); 
   // remove successfully processed subset of product configurations from DNF description 
   processPCset : = QMC.minimizeDNF( processPCset  outputPCset ); 
  } else { 
   // removes subset for which no test case was found from the set of all not yet processed PCs 
   processPCset := QMC.minimizeDNF( processPCset  inputPCset ); 
  }      
 } while ( processPCset  empty ) 
}

Fig. 4. Algorithm to Generate a Complete SPL Test Suite
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in Figure 5. After that, for efficiency reasons a subformula inputPCset of the
formula processPCset is selected which references the smallest number of fea-
tures of the SPL (one of the conjunctions of processPCset which has a DNF
representation). The subformula inputPCset represents the set of all PCs that
contain features AS, C, S, M, and U, but not W. This subformula is passed to
the test case generator combined with the 150% test model and test goal 14 (cf.
line 14). The test case generator creates a test case for any appropriate PC in
this passed set of PCs, represented by the subformula inputPCset. Due to some
preparations in the 150% test model of the AS SPL (see Sections 3.2 and 3.3) it is
possible to identify all PCs for which the generated test case is also valid (cf. line
18). These PCs are described by outputPCset. In the first iteration outputPCset
describes two PCs (AS ∧ C ∧ ¬O ∧ P ∧ ¬W ∧ S ∧ M ∧ U ∧ (V ∨ ¬V )). Next,
the generated test case and its associated PCs (outputPCset), for which the
test case is valid, is added to the test suite (cf. line 19). Finally, due to the fact
that a valid test case was created that satisfies test goal 14 for the two PCs de-
scribed by outputPCset, these two PCs are excluded from the unprocessed PCs
in processPCset (cf. line 21). In the second iteration, the test suite contains the
previously generated test case. From the 2nd to 4th iteration, three additional
test cases are created. In the 5th iteration, four test cases that satisfies test goal
14 were generated. For each of these 10 PCs, one of these four test cases is valid
owing to their different execution paths in the 150% test model. That means for
any of these 10 PCs at least one test case is executable on the corresponding
100% test model and satisfies test goal 14. From the 5th to 14th iteration the
test case generator cannot create any more test cases for the remaining 22 PCs
in processPCset because there exists no test case satisfying test goal 14. The
number of iterations needed from the 5th iteration to the end can be shortened
by selecting more than one conjunction in line 12. Summarizing, our algorithm
generated not more than 4 test cases satisfying test goal 14 for 10 PCs of the AS
SPL compared to 10 test cases generated by an product-by-product approach.

3.2 150% Test Model Preparation

The derivation of a complete SPL test suite TSC from a 150% test model stm
requires an appropriate test case generator. So far, common test case gener-
ators support interfaces to pass the test goal g and the test model tm, i.e.
createTestCase(g,tm). But this is insufficient for the generation of test cases
from a 150% test model stm. It is necessary to pass a valid product configu-
ration pc ∈ PC as well, such that the test case generator can instantiate the
corresponding 100% test model from stm. Consequently, an appropriate test
case generator must support at least the interface createTestCase(g,stm,pc).

Prior to test case generation, an embedding of the mapping function map
(see Section 2) into the 150% test model is to be provided. More precisely, each
transition which is annotated by a selection condition now includes this condition
as additional clause in its transition guard (cf. Figure 6). After that, only valid
test cases for a valid product configuration pc are generated from 150% test
model stm by internally instantiating it to the 100% test model tm = map(pc).
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We use the model-based testing framework Azmun [9] as test case generator,
which is based on the model checker NuSMV. We extended Azmun by imple-
menting a plug-in that supports the interface createTestCase(g,stm,PCI). As
third input parameter we use a set of product configurations PCI ⊆ PC instead
of a single product configuration pc ∈ PC. The advantage is that the test case
generator has the possibility to search in this set PCI of product configurations
for any product configuration pc ∈ PCI for which a valid test case t for test
goal g exists in the corresponding test model tm = map(pc). If no test case for
test goal g can be found, then there exists no test case for test goal g for any of
these product configurations in PCI . In this case, all pc ∈ PCI were processed in
one go and discarded (as irrelevant) for this specific test goal (cf. discardedPCset
in Figure 5). In our algorithm, we specify the input set of product configurations
PCI in an implicit way using a propositional formula inputPCset (cf. line 14
in Figure 4). Examples for such formulas inputPCset are depicted in Figure 5.
inputPCset assigns conditional values to some features in F , denoting either
presence (true) or absence (false) constraints on those features to hold for all
product configurations in PCI . The formula then conjuncts all predicates over
features for which a constraint is given.

In the usual case, PCI contains more than one product configuration. To
ensure that a created test case is valid for at least one pc ∈ PCI , it must be
guaranteed that the variable 150% test model is instantiated to exactly one 100%
test model before the test case generator starts searching for the test case. This
is achieved by determining the product configuration beforehand. Therefore, we
add a setup section to the 150% test model consisting of a chain of transitions for
setting the feature variable of each feature, depending on whether this feature
should be present (true) or absent (false). In Figure 7, the setup section of
the AS SPL 150% test model is depicted. The test case generator arbitrarily
decides the presence/absence for each feature provided that the resultant product
configuration pc is in PCI .
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By initially running through some path of this setup section, the test case
generator configures the subsequent 100% test model to be tm = map(pc). When
this setup is completed, the values of the feature variables cannot be changed
afterwards in the 150% test model. For considering another pc′ ∈ PC, the setup
section has to be traversed again.

Owing to these arrangements it is guaranteed that a valid test case will be
derived from the 150% test model if a valid set of product configurations will be
passed to the test case generator.

3.3 Valid Test Case for a Set of Product Configurations

As described previously, the test case generator creates (if possible) a test case t
for test goal g from the 150% test model for some appropriate product con-
figuration pc ∈ PCI . Usually, the created test case t is valid for many PCs.
By PCO ⊆ PC, we refer to the set of output product configurations for which
the generated test case t is valid. There exists at least one pc ∈ PCO ∩ PCI .
To derive the whole set PCO, it is necessary to know which features must be
present and which features must be absent in the product configuration of each
pc′ ∈ PCO to traverse the transitions of the execution path of the test case. For
that reason, we keep a record which features’ presence or absence is necessary
for the execution of the generated test case.

This is done using a flag variable for each feature. These flags are implemented
in the action part of transitions in stm. As a result, a flag is set to true if exactly
this value of the corresponding feature variable is necessary to traverse at least
one transition in the execution path of the test case. If this flag remains false
(default value) then the presence or absence of the corresponding feature has no
impact on whether the generated test case is executable on pc′ ∈ PCO.

For example, consider Figure 6: to traverse the second transition the feature
M and W must be present, but feature S must be absent. For that reason, the
corresponding flags Mflag, Wflag, and Sflag are set to true in the action part.
By analyzing the values of the feature variable and the feature flag of each
corresponding feature f ∈ F , it is possible to determine for which PCs the test
case t is valid. In our algorithm, PCO is specified by a formula outputPCset
(cf. line 18 in Figure 4) which is constructed by conjunction of values of feature
variables whose corresponding flags are set to true.

3.4 Complete SPL Test Suite Generation

The following descriptions relate to the algorithm presented in Figure 4 as well
as to Definition 1 and 2. A full execution of the presented algorithm generates
an SPL test suite TSC = (TC , PCR) ∈ TSSPL from a given 150% test model of
the SPL for coverage criterion C.

Theorem 1. SPL test suite TSC = (TC , PCR), TC ⊆ T , is complete and the
set PCR ⊆ PC of products is representative w.r.t. to coverage criterion C.
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Sketch of Proof: For each test goal g in the 150% test model the outer loop (cf.
line 7-27) generates a formula processPCset that describes all the valid PCs that
have not yet been processed and for which a valid test case has to be generated.
Afterwards, the inner loop (cf. line 10-26) generates a subformula inputPCset of
the formula processPCset (cf. line 12) that describes a subset of those PCs for
which a test case that satisfies g is still missing. Then, the algorithm generates (if
possible) for one product configuration in the set of PCs described by inputPCset
a new test case t for test goal g (cf. line 14). If such a test case t does not exist
then the formula inputPCset describes a set of PCs for which no test case exists
such that test goal g is satisfied. Otherwise, the test case t is added to the test
suite combined with the associated set of PCs described by outputPCset (cf. line
19). The formula outputPCset characterizes a nonempty subset of processPCset
for which the created test case t is valid (cf. line 18 or see Section 3.3). The
inner loop ends by computing a new formula that describes the new set of not
yet processed PCs by concatenating the old formula stored in processPCset with
the negation of either outputPCset (cf. line 21) or inputPCset (cf. line 24).

In each iteration, either (inputPCset ∩ outputPCset) or at least inputPCset
describe nonempty subsets of the set of not yet processed PCs described by
processPCset. Therefore, the inner loop (cf. line 10-26) reduces the number of
unprocessed PCs with each iteration. As a consequence the inner loop of the
algorithm always terminates and generates for the just regarded test goal g a set
of test cases such that for each PC, that contains test goal g, at least one valid
test case is in this set. Furthermore, the outer loop (cf. line 7-27) repeats the
process for all test goals. This loop terminates due to the fact that G is a finite
set. In the end, our algorithm creates a TSC (cf. Definition 1) which contains
for each test case t the associated set of PCs for which t is valid.

To derive an explicitly defined representative set of products PCR for the
complete SPL test suite TSC it is necessary to select for each test case t at least
one PC for which test case t is valid (cf. Definition 2). This can be easily ensured
by selecting one PC from the set of products that was associated with test case t
during test case generation (cf. line 19). In the end, the number of products in
the representative set PCR depends on the heuristics which is used to select
the PCs. A small, representative set of products is achievable by selecting only
those products that were already selected for other test cases. The development
of a sophisticated algorithm, which searches for a minimal, representative set of
products, is subject of our future research activities.

4 Discussion

In our running example, the AS SPL, there exist 32 valid products. If these 32
products are tested individually by using a brute-force “product-by-product”
approach (which does not select a representative set of products) it would be
necessary to create 432 test cases in total to achieve a full test model coverage
w.r.t. the all-transitions coverage criterion for all 32 products. For comparison,
by applying our complete SPL test suite generation approach to the 150% test
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model of the AS SPL it is possible to achieve the same full test model coverage
by only creating 43 test cases. In addition to this, it was possible to select a
representative set of 6 products from 32 possible products by selecting suitable
products from those sets that are associated with the test cases in the complete
SPL test suite. As a first step we only used a brute-force approach for the
selection, although we are planning to do research for suitable heuristics. If these
6 products are tested individually then 120 test cases in total have to be created.
Using our new approach it is sufficient to create only 43 test cases to achieve
the same complete coverage. Detailed data about our evaluation experiments are
published in [10].

We also applied our approach successfully to a body comfort system (BCS)
SPL, a real-world SPL from the automotive domain. The BCS SPL consists of
12 features and, due to the constraints in its feature model, 312 valid PCs exist.
Its corresponding 150% test model contains 152 transitions and 55 states. We
applied our algorithm on the BCS SPL and created a complete SPL test suite
w.r.t the all-transitions coverage criterion. The generated complete SPL test suite
contains not more than 283 test cases and the corresponding representative set
contains not more than two products. This very small number of products in
the representative set is caused by the small number of exclusion-constraints
between the features. These remarkable results for both SPLs, AS SPL and BCS
SPL, show how efficiently our new approach generates complete SPL test suites,
leading to a considerable reduction of costs for SPL testing.

It is important to note that in this paper we ignored redundant test cases,
i.e. it may happen that generated test cases satisfy more than one test goal
(accidently). Hence, for our running example, the AS SPL, the number of test
cases is rather large and contains quite a number of redundant test cases. In
such a case the generated set of test cases may be reduced as, e.g., shown in [11].

4.1 Threats to Validity

A complete SPL test suite created by our algorithm allows the subsequent selec-
tion of a small, representative set of products. To ensure that this representative
set is really representative, it is necessary to require a strong correlation between
the similarity of product implementations and the similarity of their related test
models. In other words, we assume that two products with similar test models
have similar implementations and behavior. Consequently, when the execution
path of a test case that is derived from the test model of product p1 is also
valid for the test model of product p2, then our approach implies that the test
case will always produce identical verdicts (pass, fail, ...) when executed on both
products, p1 and p2, in practice. However, if the assumption is dropped then
any test-model-driven attempt is doomed to fail that tries to identify a small,
representative set of products of a large SPL.

In real-world automotive SPLs the size of used models is usually rather large.
Our approach scales very well with large SPLs, because our algorithm avoids the
iteration over every single PC to create a new test case. Instead, our algorithm
analyzes each created test case and if this test case is valid for more than one PC,
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all the PCs in this set are processed at once. For test case generation purposes we
use the model-based testing framework Azmun [9], which integrates the model
checker NuSMV. Testing with model checkers is still a field of research and
the testing community has different opinions concerning its feasibility and the
state space explosion problem [12]. For our research work a model checker is
suitable due to its flexibility and great capabilities for model queries. For real-
world SPLs with large models, we recommend more efficient model-based testing
tools like Conformiq ATD or Rhapsody ATG. However, currently these tools
do not support an appropriate interface that is needed for our approach (see
Section 3.2).

5 Related Work

Studying related research we have identified three categories for SPL testing
approaches. Approaches in these categories are more or less effective and efficient
to achieve complete test model coverage for all products of an SPL.

Due to the fact that we pay particular attention to the automotive domain
with large SPLs, we skip the first category “Contra-SPL-philosophy”. Approaches
in this category ignore the SPL-philosophy of reuse and, thus, are only appro-
priate for small SPLs [3].

The second category “Reuse-Techniques” includes techniques that are applied
to reuse test artifacts (e.g. test cases and data) to reduce the test effort for SPLs.
Typically, these approaches either make use of regression testing techniques to
incrementally test products or reuse and adapt domain tests during application
testing. The former ones are used in [4] to incrementally test products of an SPL
treating the different variants of products as changes that have to be retested.
This approach struggles with the challenging tasks to (1) identify a suitable prod-
uct to start with and (2) to find out what needs to be retested. The latter ones,
reusing and adapting domain tests, are created during domain engineering for
product tests. Especially, model-based test approaches are used for that purpose.
Model-based testing approaches provide the basis for SPL testing, due to their
reusability and suitability to describe variability. A summary of model-based
testing approaches for SPLs can be found in [1]. Frequently, statecharts, activity
diagrams, and sequence diagrams are used to specify the behavior of software
systems for model-based testing. CADeT [13], ScenTED [14] and Hartmann et
al. [15] utilize reusable test models by means of activity diagrams. Instead of
activity diagrams, we make use of state machines to derive test cases. In [16]
a single state machine is used as test model that describes the functionality of
an entire SPL. We also make use of one single test model, called a 150% test
model, to derive test cases, according to the idea of [5]. The commercial variant
management tool pure::variants [17] in interaction with the modeling tool IBM
Rhapsody and ATG supports the modeling and trimming of a 150% model. One
major drawback of this whole category is that all approaches still aim at deriv-
ing test cases for individual products. The test effort may be reduced because of
reuse-techniques, but being confronted with millions of derivable products, these
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approaches might still not be sufficient. Strategies for the selection of represen-
tative sets of products are also out-of-scope.

In the third category “Subset-Heuristics” a subset of products of the SPL
for testing is created, instead of testing every possible product. The subsets are
generated on the basis of a certain coverage criterion. Scheidemann introduced
a heuristics to generate a representative subset of products covering all SPL re-
quirements [3]. Unfortunately, her approach does not scale for large SPLs and
does not give any guarantees concerning model/code-based coverage criteria.
Kim et al. [18] use static analysis to determine for an existing test case, which
features have to be mandatory present or absent for it to be executed. Thus, they
are able to determine a set of products to execute all test cases for the entire
SPL. In our approach we use a similar concept to generate a complete SPL test
suite very efficiently. In [19] and [20] combinatorial feature combination is used
to generate a set of products covering all t -wise feature combinations. The corre-
sponding algorithms take all constraints and hierarchies of the feature model into
account and generate small (representative) sets of products efficiently. Unfortu-
nately, no guarantees are given concerning required model/requirements-based
coverage criteria. Furthermore, generating test cases for the computed sets of
products is usually done on a product-by-product basis even in the case of [19],
where a 150% test model is used to generate test cases for selected SPL products.

6 Conclusion and Future Work

The SPL test suite generation approach presented in this paper is - as far as we
know - the first published approach that uses a 150% test model of the whole
SPL as a starting point and generates a complete SPL test suite in such a way
that (1) the created test cases satisfy required model-based coverage criteria for
every product of the SPL and (2) the selection of a representative subset of all
products is supported that allows for the execution of all test cases. To ensure
that the selected representative set is really representative, a strong correlation
between the similarity of product implementations and the similarity of their
related 100% test models is required. Nevertheless, various publications with
case studies from the automotive domain show that our SPL testing approach
would be very useful in practice despite of the just mentioned restriction.

Our new approach was exemplary applied to a small SPL and additionally to a
larger SPL from the automotive industry. It could be shown that our approach is
efficient in complete SPL test suite generation for the test models of all products
and still achieves full test model coverage. Additionally, the subsequent process
for selecting a representative set of products is simplified by associating each
generated test case with a set of products on which this test case is executable.
Based on the promising results, in future research activities we will develop a
more sophisticated algorithm for the minimization of the representative set of
products and adapt our test suite reduction approach to a complete SPL test
suite.
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Lines Testing Survey. In: Zander, J., Schieferdecker, I., Mosterman, P. (eds.) Model-
based Testing for Embedded Systems. CRC Press/Taylor&Francis (2011)

2. ISO: ISO - International Organization for Standardization. Website (2011),
http://www.iso.org/iso/ (visited on May 2, 2011)

3. Scheidemann, K.: Verifying Families of System Configurations. PhD thesis, TU
Munich (2007)

4. Engström, E., Skoglund, M., Runeson, P.: Empirical evaluations of regression test
selection techniques. In: Rombach, H.D., Elbaum, S.G., Münch, J. (eds.) Proc. of
ESEM 2008, pp. 22–31 (2008)

5. Grönniger, H., Krahn, H., Pinkernell, C., Rumpe, B.: Modeling Variants of Auto-
motive Systems using Views. In: Modellierung (2008)

6. Jain, T.K., Kushwaha, D.S., Misra, A.K.: Optimization of the Quine-McCluskey
Method for the Minimization of the Boolean Expressions. In: Proc. of the ICAS
2008, pp. 165–168. IEEE, Los Alamitos (2008)

7. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical report, Carnegie-
Mellon University Software Engineering Institute (1990)

8. Souza, S., Maldonado, J., Fabbri, S., Masiero, P.: Statecharts Specifications: A
Family of Coverage Testing Criteria. In: CLEI 2000 (2000)

9. Haschemi, S.: Azmun - The Model-Based Testing Framework. Website (2011),
http://www.azmun.de (visited on May 2, 2011)

10. Cichos, H., Oster, S., Lochau, M., Schürr, A.: Extended Version of Model-based
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Abstract. The UML standard specifies well-formedness rules as constraints on 
UML models. To be correct, refactoring of a model must take these constraints 
into account and check that they are still satisfied after a refactoring has been 
performed — if not, the refactoring must be refused. With constraint-based re-
factoring, constraint checking is replaced by constraint solving, lifting the role 
of constraints from permitting or denying a tentative refactoring to computing 
additional model changes required for the refactoring to be executable. Thus, to 
the degree that the semantics of a modelling language is specified using con-
straints, refactorings based on these constraints are guaranteed to be meaning 
preserving. To enable the reuse of pre-existing constraints for refactoring, we 
present a mapping from well-formedness rules as provided by the UML stan-
dard to constraint rules as required by constraint-based refactoring. Using these 
mappings, models can be refactored at no extra cost; if refactorings fail, the lack 
of meaning preservation points us to how the constraint-based semantic specifi-
cations of the modelling language can be improved. 

1   Introduction 

Refactoring is the discipline of modifying a piece of software so as to improve one or 
more of its non-functional properties (such as readability, changeability, etc.) whilst 
maintaining its external behaviour [5]. While originally conceived as program restruc-
turing [7], refactoring is today applied to all kinds of software artefacts, including 
models [3, 6, 8, 13, 14, 15, 16, 21]. 

Constraint-based refactoring is a refactoring technique that builds on constraints 
for the specification of invariants that a refactoring must regard [18, 19, 22, 23]. In 
constraint-based refactoring, a refactoring problem is translated to a constraint satis-
faction problem (CSP) whose solutions represent all legal refactorings of the artefact 
to be refactored. For this, the syntactic and semantic rules of the language of the arte-
fact must be transcribed to so-called constraint rules which, when applied to the arte-
fact to be refactored, generate the constraints expressing all relevant invariants.  
Constraint-based refactoring has so far exclusively been applied in programming, a 
field in which it has however proven highly successful (see, e.g., [18, 19, 22, 23]). 

In this paper, we apply — to the best of our knowledge for the first time — the 
technique of constraint-based refactoring to modelling. Doing this, we are able to ex-
ploit that the semantics of modelling languages such as the Unified Modelling Lan-
guage (UML) is partly specified in terms of so-called well-formedness rules, which 
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Fig. 1. UML model of a flat file system: a) a Sequence Diagram and b) a Class Diagram 

are largely constraints rejecting syntactically correct, but meaningless (malformed) 
models. In fact, as we will see, well-formedness rules such as the ones found in the 
UML standard [10] can readily be transformed into constraint rules that can serve as 
the basis of constraint-based model refactoring; thus, to the degree that the semantics 
of the UML (or any modelling language for that matter) is specified in terms of well-
formedness rules and other constraints, we are able to guarantee that our refactorings 
are meaning preserving. Furthermore, where the semantics is underspecified, con-
straint-based refactoring may let us detect this, and guide us in filling the gaps. 

The remainder of this paper is organized as follows. In Section  2, we present an in-
structive example explaining the idea of model refactoring based on well-formedness 
rules, here expressed using first-order predicate logic (FOPL) with predicates as con-
straints, extended with path expressions that are required for navigating the associa-
tions of the UML metamodel. In Section  3, we briefly recapitulate constraint-based 
refactoring, explaining how it works for programs. Section  4 specifies how well-
formedness rules are transformed to the constraint rules underlying constraint-based 
refactoring, with emphasis on dealing with the mismatches between what is required 
for expressing model invariants and what can be processed by a standard constraint 
solver. Section  5 applies this procedure to a number of real examples from the UML 
standard expressed in OCL. A brief comparison of related work with ours concludes. 

The two main contributions of this paper are 

1. the discovery that pre-existing constraints (e.g., existing well-formedness rules) 
can be used as the basis for constraint-based refactoring of models, and 

2. the specification of the necessary transformation of well-formedness rules to the 
constraint rules that are required for constraint-based refactoring. 

2   An Instructive Example 

Consider the simple model of a flat file system shown in Figure 1. Files are found in a 
directory by sending the latter a message named “find”, which in turn leads to a mes-
sage “getName” being sent to a file (from an operating system perspective, this is cer-
tainly overly simplistic; however, it will serve our purpose well). 

2.1   A Simple Well-Formedness Rule  

Following a common language pattern which allows only those elements to be  
referenced (or used) that have been declared (or defined) elsewhere, we assume that 
for a Sequence Diagram such as that of Figure 1 a) to be well-formed, the names  
of the messages must correspond to names of operations defined by the classifiers  
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Fig. 2. Metamodels for the diagrams of  Figure 1 

(as in Figure 1 b) associated with the lifelines of the objects to which the messages are 
sent.1 This is expressed by a well-formedness rule  

 ∀l ∈ lifelines ∀m ∈ l.messages ∃o ∈ l.classifier.operations: m.name = o.name (1) 

which is specified relative to the metamodel shown in Figure 2 and in which lifelines 
is the set of lifelines of the Sequence Diagram to be checked (the context in OCL 
terms). The reader can easily verify that, with respect to well-formedness rule (1), the 
model of Figure 1 is well-formed. 

2.2   Name Refactoring 

Now suppose that the message labelled “getName” in the Sequence Diagram of Figure 
1 a) is to be renamed, say to “x” (a variation of the RENAME METHOD refactoring [5], 
in which the refactoring is initiated by the renaming of a use rather than that of a defi-
nition). Re-evaluating well-formedness rule (1) immediately tells us that this renaming 
is not acceptable, since the rule now evaluates to false: for the message renamed to “x” 
and the classifier File, there exists no operation defined by File that has the same name 
“x”. Quite obviously, the problem can be fixed by renaming the operation labelled 
“getName” to “x” also; the question that remains, however, is, can this necessary sec-
ondary change be computed, from the given model and well-formedness rule? 

As it turns out, it can, simply be replacing the constraint checker used for probing 
well-formedness (evaluating the constraint expression to true or false) with a constraint 
solver, which can adapt the constrained properties2 of the model so that the constraint 
is satisfied (and the model is well-formed). For this, application of the well-formedness 
rule (1) to the model of Figure 1 must be transformed into a constraint satisfaction 
problem (CSP), i.e., a set of constraint variables and constraints suitable for submission 
to a constraint solver such as MiniZinc [9]. In case of (1), this is done by unrolling the 
quantifiers, instantiating the quantified variables with the elements of the model the 
rule is applied to. For the model of Figure 1, this leads to the constraint set 

{mfind.name = oadd.name ∨ mfind.name =  ofind.name,   mgetName.name = ogetName.name} 

in which mfind is an object literal denoting the message originally named “find” a.s.f., 
and in which mfind.name denotes the name property of mfind (a.s.f.) which, for the time 
being, we equate with a constraint variable. Thus, when the name property of mgetName 
 

                                                           
1 For the sake of simplicity, we assume here that all operations of a classifier are defined in the 

same Class Diagram. In practice, different operations may be introduced in different Class 
Diagrams, showing different views on the model; yet, for a Sequence Diagram to be checka-
ble for well-formedness, it cannot introduce the required operations itself. 

2 We use the term property here to collectively denote attributes and association ends associated 
with an object ([11], §7.5.1 and §7.5.3). Conforming to [11], we use the dot notation o.p to 
denote the value of a property p of an object o, where o may be an object literal or a variable 
(including another property). 
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Fig. 3. Integration of the metamodels of Figure 2, extended by an association between messag-
es and the operations they bind to 

is set to “x”, the solver will force a change of the name property of ogetName to “x” also, 
making the model well-formed again. Since it has also kept its original meaning (the 
message binds to the same operation as before), it is a refactoring. 

The situation is somewhat different, however, if mfind is renamed, say to “y”: in that 
case, renaming either of the operations defined by the classifier Directory associated 
with the lifeline to which “y” is sent, to “y” also, would equally satisfy the above con-
straint set, and thus restore well-formedness of the diagram. However, not both possi-
ble renamings maintain the original meaning: if oadd is renamed to “y”, the model is 
well-formed with respect to (1), but has a different meaning, since now mfind binds to a 
different operation. 

Obviously, the well-formedness rule (1) is insufficient for refactoring, since it is 
indifferent to the operation a method binds to. Given that (1) is about well-formed-
ness, not about meaning, this is not surprising: (1) and the metamodel of Figure 2 ex-
press a necessary condition for the binding of a message to an operation, namely that 
an operation exists that has the same name as the message, but they do not express 
which operation a method binds to, or that the notion of binding does at all exist — 
this is not required for well-formedness.  

As it turns out, however, the semantic underspecification in (1) can be easily fixed 
by replacing the existential quantification with a Skolem function [17] 

 binding: Lifeline × Message → Operation (2) 

mapping a lifeline and a message to the operation the method (should) bind to. Since 
the lifeline is functionally dependent on the message (meaning that for any given 
message, a lifeline is uniquely determined; cf. Figure 2), (2) can be projected to  

 binding: Message → Operation (3) 

which lets us Skolemize (1) to  

 ∀ l ∈ lifelines ∀ m ∈ l.messages : m.name = binding(m).name (4) 

In modelling, the introduction of the binding (or lookup) function represented by (3) 
translates to adding a metamodel association between Message and Operation as shown 
in Figure 3. This added association allows us to rewrite (4) to  

 ∀ l ∈ lifelines ∀ m ∈ l.messages : m.name = m.operation.name (5) 

whose application to the model of Figure 1 gives us the constraint set 

{mfind.name = mfind.operation.name,  mgetName.name = mgetName.operation .name} 

which lacks the disjunction of the previous set. Instead, it has three different kinds of 
properties (constraint variables): the names of messages and operations (as before), 
and additionally the operation of a message (the one it binds to). However, consider-
ing that to preserve meaning, the binding of messages to operations must not change 
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Fig. 4. Model of  Figure 1 refactored to nested directories: a) new superclass Content extracted 
from File and Directory, and change of association end content to target that class; b) generali-
zation of classifier File to Content. 

(it is an invariant of the RENAME refactoring), the value of m.operation is fixed, mean-
ing that the constraint solver cannot change it. Therefore, if the message mfind is re-
named from “find” to “y”, the solver must rename the operation bound to, ofind, with it. 

One might contend that RENAME refactorings are particularly simple and that it is 
pure coincidence that renaming can be done using existing well-formedness rules (en-
hanced with some additional semantics). To counter this objection, we take a look at 
another, somewhat more complex refactoring. 

2.3   Type Refactoring 

Suppose that the model of Figure 1 is to be refactored to allow nested directories. For 
this purpose, the refactoring EXTRACT SUPERCLASS [5] is applied to classes Directory 
and File. Besides creating a new superclass, Content, that generalizes both Directory 
and File, this refactoring suggests that the new generalization be used in place of Di-
rectory or File wherever the generalization is deemed useful [5]. In our example, this 
is the case for the composition of directories, which can now be composed of files 
and directories, as reflected in Figure 4 (note that for this, not only the composition, 
but also the target of the message labelled “getName” changes). What must be made 
sure by the refactoring, then, is that the operations required from Content are defined 
by Content, so that the changed model is well-formed and keeps its meaning. In the 
given example, this means that Content must define ogetName. 

Contrary to the above RENAME refactoring, applying (5) to the model of Figure 4 
does not help to compute the required change: the constraints generated are the same 
as before but in this case, since no name has changed, are satisfied for the model as is. 
Interestingly, the same does not hold for applying (1) to Figure 4: (1) requires that the 
operation a message binds to is defined by the classifier associated with the lifeline 
the message is sent to. Where did this constraint get lost? 

 As it turns out, replacing the existential quantification with the Skolem function 
binding in (4) ignored the restriction of the range over which was quantified, namely 
l.classifier.operations, a slip that did not affect the RENAME refactoring (since this 
refactoring does not change classifiers associated with lifelines or move operations 
between classifiers), but that shows for EXTRACT SUPERCLASS. In fact, before 
Skolemization in (4), the subexpression 

∃ o ∈ l.classifier.operations : m.name = o.name 

of (1) must be rewritten to  

∃ o : o ∈ l.classifier.operations ∧ m.name = o.name 
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so that Skolemization leads to the well-formedness rule 

 ∀ l ∈ lifelines ∀ m ∈ l.messages : 
 m.operation∈ l.classifier.operations ∧ m.name = m.operation.name 

(6) 

which replaces (5). The constraints generated by applying this rule to the model of 
Figure 4 are 

mfind.operation∈ lleft.classifier.operations ∧ mfind.name = mfind.operation.name 
and  

mgetName.operation∈ lright.classifier.operations 
 ∧ mgetName.name = mgetName.operation .name 

in which lleft and lright denote the left and right lifeline, respectively. Considering  

• that the operation properties are again fixed, thus maintaining binding,  
• that the name properties are also fixed for this refactoring, and  
• that the classifier property of lleft has remained unchanged, whereas that of lright has 

been given a new, fixed value CContent (the class literal representing Content), 

the above two constraints can be reduced to  

ofind ∈CDirectory.operations ∧ “find” = “find” 
and  
 ogetName ∈CContent.operations ∧ “getName” = “getName” 

which, taken as a CSP, are solved by making ogetName a member of CContent.operations.3 
Note how this change does not necessarily amount to pulling up ogetName from CFile to 
CContent: in absence of a constraint requiring that an operation can be defined in only 
one classifier, it could also amount to defining ogetName in both CContent and CFile. If that 
is not acceptable, the missing constraint must be added. 

Thus, we have that the well-formedness rule (1) enhanced and rewritten as in (6) is 
not only sufficient for performing name refactoring, it also supports a type refactoring 
of the kind described in [22]. Admittedly, the typing constraint expressed in (6) is 
somewhat simplistic in that it does not consider inheritance or subtyping; however, we 
do not delve into the technicalities necessary for this here, because they complicate 
matters unduly (and have been addressed in great detail elsewhere; see, e.g., [12, 22]). 

2.4   Interpreting Diagrams 

It is instructive to see that the Skolemized well-formedness rule (6) is not only suffi-
cient for the RENAME and EXTRACT SUPERCLASS refactorings, it also allows the 
automatic mapping of a Sequence Diagram to an instance of the metamodel of Figure 
3, in particular the correct setting of the operation property of messages: if the name 
properties of messages and operations, as well as the classifier associated with a life-
line and the operations defined by the classifier of a lifeline are fixed (which they are 
during interpretation of a given model), a constraint solver applied to the constraints 
generated from (6) as above sets the values of m.operation to those operations that are 

                                                           
3  Note that the class literal CContent is both the owner of the property CContent.operations and the 

value of the property lright.classifier. This is so because the property classifier has reference 
semantics, a notion foreign to standard constraint solvers; we will return to this in Section 4.2. 



446 F. Steimann 

defined by the target classifiers and whose names equal those of the messages m.4 
Note that, that a message should bind to the operation of the same name is not for-
mally specified elsewhere: if anything, it reflects our intuitive interpretation of Se-
quence Diagrams, or how a tool that accepts a Sequence Diagram and maps it to an 
instance of the metamodel interprets it. Thus, there appears to be a mutual depend-
ency between the ability to refactor, and specifying the semantics of, models using 
constraints. 

2.5   Summary 

To summarize, we have that the same constraint (here defined as a well-formedness 
rule) serves the interpretation of the diagrams it constrains, and their refactoring. The 
only adaptation necessary for the different uses of the constraint is to specify which 
properties are fixed and which are non-fixed (and thus can be adapted by the con-
straint solver). This distinction will play an important role below. 

3   Constraint-Based Program Refactoring 

The technique of constraint-based model refactoring that we are presenting in this pa-
per is based on constraint-based program refactoring as described in some detail in 
[18, 19, 22, 23]. In constraint-based program refactoring, a program to be refactored 
is transformed to a CSP by application of so-called constraint rules, which are gener-
ally of the form 

query 

constraints 
Here, query represents a logical expression searching for elements of the program to 
be refactored, and constraints represents the set of constraints to be generated (added 
to the CSP) for the program elements selected by the query. Both the queries and the 
constraints contain variables that are placeholders for the program elements the rule is 
applied to; these variables (which are not constraint variables!) are implicitly univer-
sally quantified. For instance, application of the constraint rule  

 binds(r, d ) 
(7) 

r.name = d.name

to a program to be refactored searches the program for occurrences of all pairs of ref-
erences r and declared entities d such that r binds to d, and generates for each found 
pair a constraint requiring that name properties of r and d equal. This constraint rule 
expresses a binding invariant of the underlying programming language: for r to bind 
to d, r and d must have the same names. Taken alone, this constraint allows it that a 
reference r or a declared entity d be given a new name by a refactoring as long as the 

                                                           
4  Actually, this is not quite correct: for computing the binding of a message to an operation 

based on names and classifiers, operation names must be unique within each classifier. How-
ever, since this does not affect our discourse on refactoring (in which binding is predeter-
mined and only needs to be maintained), we can ignore this constraint here. 
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name of the other changes to that name as well; however, constraints generated by the 
same or other constraint rules may constrain the properties (constraint variables) 
r.name and d.name further. Note that when applied to a well-formed program, the 
generated constraints are always satisfied with the properties set to the values reflect-
ing the program as is before the refactoring (the initial values). 

Once the constraints have been generated from a program to be refactored, the 
refactoring may commence. For this, one or more of the constrained properties (con-
straint variables) are assigned new values, reflecting the refactoring intent. If the con-
straints are still satisfied with the new assignments, the refactoring is finished. Else, a 
constraint solver may attempt to assign other constraint variables new values, until a 
solution is found. The assignments constituting the solution represent the additional 
(secondary) changes to the program required to make the refactoring work; if no solu-
tion is found, the refactoring must be rejected. 

It is instructive to note that to a certain extent, the queries (expressions above the 
bar) and the constraints (expressions below the bar) of a constraint rule are exchange-
able for each other. In fact, as we have noted elsewhere [19, 20], the main difference 
between constraints and queries is that while a query is evaluated at rule application 
time, a constraint (generated by rule application) is evaluated at constraint solving 
time. This means that for constraints whose constrained properties are all fixed (so 
that they can be evaluated at rule application time), constraint rules can be rewritten to 
save the generation of these fixed constraints. For instance, in the constraint rule  

binds(r, d ) 
d∈r.receiver.type.members r.name = d.name 

if the receiver of a reference, its type, and the set of members of the type are all fixed, 
the constraint d∈r.receiver.type.members can be dropped from the rule consequent: it 
always holds if binds(r, d ) holds and therefore does not constrain the solution (if 
binds(r, d ) does not hold, the rule is not triggered and the constraint is not generated, 
anyway). On the other hand, assuming that names are non-fixed means that the con-
straint r.name = d.name is needed for refactoring, since otherwise, one may be 
changed without the other. 

The possible rewriting of constraints rules due to fixed properties is central to our 
transformation of well-formedness rules to constraint rules. 

4   From Well-Formedness Rules to Constraint Rules 

Well-formedness rule checking can be viewed as a special case of constraint-based 
refactoring (constraint generation and subsequent constraint solving) in which all con-
strained properties (constraint variables) are fixed and set to their initial values. For 
instance, the constraint rule (7) directly translates to the well-formedness rule  

∀r, d, binds(r, d ) : r.name = d.name 

However, the opposite mapping, from a well-formedness rule to a constraint rule, is 
more difficult, since it must separate the fixed from the non-fixed properties (and 
therefore depends on the concrete refactoring). 
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Table 1. Fixed and non-fixed properties for three important refactorings (cf. Figure 3) 

REFACTORING 
PROPERTY 

RENAME 
MESSAGE/OPERATION 

EXTRACT 
SUPERCLASS 

MOVE 
MESSAGE/OPERATION 

messages fixed fixed non-fixed 
operation fixed fixed fixed 
classifier fixed non-fixed fixed 
operations fixed non-fixed non-fixed 
name non-fixed fixed fixed 

4.1   Separation into Queries and Constraints 

Generally, a constraint rule has the form of a universally quantified implication, with 
the additional restriction that, as noted in Section  3, the premise must contain only 
constraints whose properties are fixed for all model elements quantified over (so that 
they can be evaluated at rule application time). Thus, the first step in transforming the 
well-formedness rule (6) into a constraint rule is rewriting it to  

 ∀ l, m : l ∈ lifelines ∧ m ∈ l.messages → 
m.operation∈ l.classifier.operations ∧ m.name = m.operation.name 

(8) 

The remainder of the transformation depends on which properties are fixed and  
which are non-fixed for a given refactoring, as shown in Table 1 for three sample 
refactorings. 

For RENAME, name is the only non-fixed property so that (8) can be transformed to 

 l ∈ lifelines m ∈ l.messages 
(9) 

m.name = m.operation.name 

This is so because l.messages never changes so that the constraint m ∈ l.messages can 
be evaluated at rule application time, after m and l have been bound to concrete model 
elements (recall that both m and l are implicitly universally quantified), and because 
neither of m.operation, l.classifier, and l.classifier.operations can change their values, 
so that m.operation∈ l.classifier.operations must remain satisfied and can be dropped5 
(as stated in Section  3, all constraints are satisfied with their initial assignments). 

For EXTRACT SUPERCLASS, the transformation is analogous, yielding 

 l ∈ lifelines m ∈ l.messages 
(10) 

m.operation∈ l.classifier.operations 

which, applied to the example of Section  2.3, produces exactly the constraints neces-
sary to force that ogetName is an operation of CContent. Finally, for MOVE METHOD [5] 
(which, depending on which kind of model element or diagram it is applied to, should 
be called MOVE OPERATION or MOVE MESSAGE), (8) transforms to  

l∈ lifelines m 

m∈ l.messages → m.operation∈ l.classifier.operations 

                                                           
5  Note how (9) corresponds to the incomplete well-formedness rule (5) that turned out to be 

sufficient for the RENAME refactoring of Section 2.2. 
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in which the constraint m ∈ l.messages cannot be promoted to a query, since 
l.messages may be changed by the refactoring (it is changed for the source and target 
lifelines of the message to be moved, and may be changed for other messages that 
may have to move with it; cf. [5] for why this may be the case). 

For well-formedness rules with quantifiers nested inside expressions, these must be 
moved to the left prior to the transformation [17]. Existential quantifiers that cannot be 
removed using Skolemization have to be unrolled during constraint rule application (as 
was done in Section  2.1, before Skolemization was brought into play; note that, since 
the number of model elements is always finite, unrolling is always possible). 

4.2   Mapping Properties to Constraint Variables 

In the previous sections, we pretended that the properties involved in well-formedness 
rules can be directly mapped to constraint variables that can be handled by a con-
straint solver. Generally, however, this is not the case. Instead, we have to deal with 
the following mismatches: 

• Properties may have reference semantics. Properties representing certain attrib-
utes and all association ends have reference semantics, i.e., they point to other ob-
jects. By contrast, constraint variables generally have value semantics, and their 
values (except for set values; see below) are unstructured. 

Solution: Map properties with reference semantics to constraint variables with 
value semantics, and emulate dereferencing of such variables as shown below. 

• Properties may have other than {1} multiplicities. Many properties are optional, 
which in UML is represented by a {0..1} multiplicity. Others model links to arbi-
trary numbers of objects at the same time, which is represented by a {0..*} multi-
plicity. By contrast, constraint variables always have a single value, which may 
however be a set. 

Solution: Map properties to constraint variables with set domains, and transform 
multiplicities to constraints on the cardinalities of the values of these variables. 

• Properties may be chained. Properties with reference semantics (cf. above) may 
be chained, which amounts to a navigation of properties, involving dereferencing 
of intermediate properties. By contrast, constraint variables cannot be derefer-
enced: the value of a constraint variable cannot be, or have, a constraint variable. 
This is particularly a problem if the properties through which is being navigated 
are non-fixed (meaning that their values can be changed by a constraint solver). 

Solution: Let )....( 1 pppxC n  be a constraint constraining property p accessed 
via navigation through properties p1, …, pn (all with reference semantics and, for 
uniformity of presentation, all assumed to be set-valued) starting from the object 
represented by variable x (so that nppx ... 1  evaluates to the set of objects that can 
be reached from x by navigating through p1, …, pn; note that C may — and usually 
will — constrain other properties as well). Without loss of generality, we assume x 
to be universally quantified and restricted by a predicate (constraint) P involving 
only fixed properties, so that we have 

 )....()(: 1 pppxCxPx n→∀  (11) 
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To be able to map )....( 1 pppxC n  to a constraint of a constraint rule, we first 
have to replace nppx ... 1  with a variable y representing the model elements 
reached from x via p1, …, pn so that we can rewrite (11) to the intermediate form 

 
).(...

)(

1 pyCppxy

yxP

n →∈
 (12) 

which is implicitly quantified over x and y and in which y.p is a constraint variable 
not involving dereferencing. If the p1, …, pn are fixed properties (i.e., if their val-
ues cannot be changed by the refactoring), (12) translates to 

).(

...)( 1

pyC

ppxyxP n∈
 

in which np..p.xy 1∈  is evaluated as a query so that the involved properties p1 
through pn need not be mapped to constraint variables. For instance, the constraint 
rule for RENAME, (9), translates to 

l ∈ lifelines m ∈ l.messages o ∈ m.operation 

m.name = o.name 

whose generated constraints contain only properties that map directly to constraint 
variables (cf. Table 1 to see that only fixed properties appear above the bar; note 
that, conforming to the above, m.operation is assumed to be set-valued, i.e., a sin-
gleton). If a single pi is non-fixed, (12) translates to 

).(.

......)(

1

1111

pyCpxx

ppxyxppxxxP

iii

niiiii

→∈
∈∈

−

+−−  

which (implicitly) quantifies over x, xi–1, xi, and y, and in which the constraint 
C(y.p) is guarded by the condition that whatever the values assigned (by the 
solver) to pi, y is reached from x via nppx ... 1 .6 For instance, the constraint rule 
for EXTRACT SUPERCLASS, (10), is rewritten to 

l ∈ lifelines m ∈ l.messages c 

c ∈ l.classifier → m.operation∈ c.operations 

in which l.classifier is a singleton for all l (see Table 1 for fixed and non-fixed 
properties). If two properties pi and pj with i < j are variable, (12) translates to  

).(..

.........)(

11

1111111

pyCpxxpxx

ppxyxppxxxppxxxP

jjjiii

njjjjiijiii

→∈∧∈
∈∈∈

−−

+−+−−−  

and so forth. Note that in all cases, the queries involve only fixed properties so that 
they can be evaluated at rule application time, and the generated constraints con-
tain no chained properties so that no dereferencing is required. 

Thus, together with the transformations of Section  4.1, we are able to rewrite any 
well-formedness rule expressed in terms of FOPL with path expressions into a con-
straint rule that produces only constraints amenable to a standard constraint solver. 
                                                           
6  Note that x0 ≡ x and xn ≡ y, and that queries involving p0 (for i = 1) or pn+1 (for i = n) are 

dropped. 
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5   Real Examples from the UML Standard 

To demonstrate the generality of our approach, we have applied it to three OCL well-
formedness rules directly taken from the UML Superstructure specification [10]. We 
do not delve into the details of translating the various OCL iterators to solver con-
straints here; this has been dealt with, for instance, in [2]. 

• From the Constraints section of §7.3.22, “InstanceSpecification”: 
The defining feature of each slot is a structural feature (directly or in-
herited) of a classifier of the instance specification. 

 slot->forAll(s | classifier->exists (c | c.allFeatures()->includes (s.definingFeature))) 

This is a typing rule, expressing that the defining feature associated with a slot of 
an instance specification must be a feature of at least one classifier the specified 
instance is an instance of. Assuming that typing must be preserved, but that the 
classifier(s) associated with an instance may be changed (e.g., EXTRACT SUPER-

CLASS [5] or GENERALIZE DECLARED TYPE [22] applied to a Communication Dia-
gram), this translates to the constraint rule 

 
()...:

.

sallFeaturecaturedefiningFesclassifierselfcc

slotselfs

∈∧∈∃
∈

 (13) 

in which self represents the context [11], the Instance Specification the rule is ap-
plied to, and in which the existential quantification must be unrolled upon rule  
application. Skolemization is also possible, but requires a slight adaptation: the de-
rived property featuringClassifier of features ([10], §7.3.19) corresponds to a set-
valued Skolem function featuringClassifier: Feature → ℘(Classifier), allowing us 
to rewrite the above rule to 

∅≠∩
=∈

classifierselflassifierfeaturingCf

aturedefiningFesfslotselfs

..

..
 

in which the second conjunct from the consequent of (13), 

s.definingFeature∈s.definingFeature.featuringClassifier.allFeatures() 
has been dropped (because it is tautological).  

• From the Constraints section of §7.3.44, “Property”: 
Subsetting may only occur when the context of the subsetting property 
conforms to the context of the subsetted property. 

subsettedProperty->notEmpty() implies 
  (subsettingContext()->notEmpty() and subsettingContext()->forAll (sc | 
    subsettedProperty->forAll(sp | 
      sp.subsettingContext()->exists(c | sc.conformsTo(c))))) 

This rule is to express that in case a set-valued property (attribute or association 
end) is to subset one or more other properties, the context of the property, the own-
ing or, in case of an end of a more than binary association, all owning classifiers, 
must conform to the classifier(s) of the properties that are being subset. For a PULL 

UP PROPERTY refactoring, it translates to the constraint rule 
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)(.:().().
0|().|

.0|.|

cconformsToscContextsubsettingspcContextsubsettingselfsc
Contextsubsettingself

scropertysubsettedPselfspropertysubsettedPself

∈∃→∈
>

∈>
 

which is however ambiguous with respect to which subsetting context should con-
form to which, in case there is more than one. At least, [10] hints at a suitable 
Skolemization, by requiring conformance with the “corresponding element in the 
context of the subsetted property” (albeit without formalizing correspondence).  

• From the Constraints section of §15.3.12, “StateMachine”: 
The context classifier of the method state machine of a behavioral fea-
ture must be the classifier that owns the behavioural feature. 

specification->notEmpty() implies (context->notEmpty() and 
  specification->featuringClassifier->exists (c | c = context)) 

This is to express that a state machine specifying a behavioural feature (method) of 
a classifier must have that classifier as its context; it could be violated by a MOVE 
BEHAVIOURAL FEATURE refactoring, changing the featuringClassifier and context 
properties. The derived constraint rule for this refactoring is 

contextselfclassifierfeaturingCsccontextself

ionspecificatselfsionspecificatself

.:.0|.|

.0|.|

∈∈∃∧>
∈>

 

whose existential quantifier must be unrolled upon application. Note that, since 
featuringClassifier has multiplicity {0..*} (cf. above), it is not clear to which clas-
sifier the context property of a state machine should be set, not even intuitively — 
in absence of a sensible Skolem function correcting this, context should be given 
multiplicity {0..*}, too, and the constraint should be changed to 

specification->notEmpty() implies context = specification->featuringClassifier 

6   Related Work 

By presenting an initial set of model refactorings, and by providing formal (OCL) 
pre- and postconditions for some of them, Sunyé et al. set an early landmark [21]. 
Philipps and Rumpe subsequently showed how state machine refactorings can be 
viewed as refinements that can be proven meaning preserving [13], but it is unclear 
how their approach generalizes to other refactorings. Pretschner and Prenninger let 
the user specify predicates that partition the state space of state machines, from which 
refactorings can then be computed [15]; their approach also appears to be specialized 
to one kind of models. Porres specified a refactoring as a set of transformation rules 
relying on an action language for query and updating models, where correctness of 
the refactored model is guaranteed by checking conformance with the metamodel and 
satisfaction of applicable OCL constraints [14]. By contrast, we use metamodel and 
constraints as specifications of the refactorings. Gheyi et al. presented an approach for 
proving structural model refactorings for Alloy [6]; however, the technical scaffolding 
required for correct refactoring is significant, especially when compared to our ap-
proach, which re-uses pre-existing semantic specifications.  

Not dealing with model refactoring, but nevertheless related to our work, Cabot et 
al. investigated how UML/OCL models can be transformed to CSPs that can be sub-
mitted to a constraint solver, to verify stated correctness properties of models by  
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generating instances [2]. Our work is different in that we always start with a correct 
(meta)model instance (the model to be refactored) that is then temporarily invalidated 
by a refactoring, so that a similar (neighbouring) instance needs to be found. As has 
been shown elsewhere [19], this allows us to use an algorithm for constraint genera-
tion that avoids the complexity problems from which the unbounded translation of [2] 
suffers. Ali et al. [1] also employ OCL constraint solving, for (UML) model-based 
test case generation, but to address the combinatorial complexity encountered in [2], 
resort to a search-based approach; their search heuristics could be integrated in our 
approach to make constraint solving even faster. Also methodically related to ours is 
Egyed’s work on fixing inconsistencies in models, as detected by the violation of con-
straints [4]: in fact, fixing inconsistencies can be seen as solving an unsatisfied CSP 
(with the set of solutions representing all possible repairs). With the Beanbag lan-
guage [24], OCL-like consistency relations can be extended with fixing behaviour 
specifying how changes leading to model inconsistencies are to be compensated with 
other, repairing changes; however, the compensated changes are not necessarily 
meaning-preserving, and thus not refactorings. Even if certain refactorings could be 
specified as fixes in Beanbag, different refactorings would still need different fixing 
operations. This is in contrast to the approach presented here, for which a single set of 
well-formedness rules suffices for different refactorings. Finally, Correa and Werner 
extended the notion of model refactoring to the (co-)refactoring of OCL constraints 
[3]. Since OCL has well-formedness rules specified in OCL [11], our approach should 
be extendible to OCL refactoring also; however, we have not investigated this further. 

7   Conclusion 

For a modelling language without semantics, every change to a model is a refactoring. 
The more of the semantics of a modelling language has been specified, the fewer 
changes to a model result in models with the same meaning, i.e., in refactorings. By 
taking semantic specifications pre-existing in the form of well-formedness rules ex-
pressed in a constraint language as a starting point, we are able to transform refactor-
ing problems as diverse as renaming, generalizing, or moving model elements, to 
CSPs that are amenable to a standard constraint solver, which can thus be used to 
compute the additional changes required for a specific intended model refactoring. 
Using our approach, semantic underspecification is unveiled by refactored models 
that do not mean the same to the user; in such cases, the pre-existing constraints may 
be complemented with the missing semantics, for instance by extending the meta-
model and adapting the constraints accordingly. 
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Abstract. Although a responsibility driven approach in object oriented analysis
and design methodologies is promising, the assignment of the identified respon-
sibilities to classes (simply, class responsibility assignment: CRA) is a crucial
issue to achieve design of higher quality. The GRASP by Larman is a guideline
for CRA and is being put into practice. However, since it is described in an infor-
mal way using a natural language, its successful usage greatly relies on designers’
skills. This paper proposes a technique to represent GRASP formally and to au-
tomate appropriate CRA based on them. Our computerized tool automatically
detects inappropriate CRA and suggests alternatives of appropriate CRAs to de-
signers so that they can improve a CRA based on the suggested alternatives. We
made preliminary experiments to show the usefulness of our tool.

Keywords: object-oriented design, class responsibility assignment, GRASP.

1 Introduction

Maintainability of final products greatly relies on the quality of their design and their de-
sign processes. There are many object-oriented analysis and design methodologies, and
in particular a family of the methodologies focusing on responsibility of class, so called
responsibility-driven methods, is promising. In this family, after identifying responsi-
bilities from a requirements specification, we assign them into the identified classes
that fulfill them. We can also re-design classes considering which responsibilities the
classes should fulfill. Responsibility Driven Approach [26] and Class-Responsibility-
Collaborator (CRC) cards [3] are examples of the methodologies to design classes based
on responsibilities and being put into practice [2,21]. Although these approaches allow
us to identify classes and their responsibilities, the identified results may be insufficient
for the quality of design, e.g., design quality metrics such as coupling and cohesion,
and it may be difficult to adopt them as a complete design as they are. For example,
in CRC card methodology the quality of the resulting products greatly relies on human
cognitive ability, and the methodology may produce the results that human can easily
and intuitively understand. However, the results may be less changeability or maintain-
ability, which are very significant for software design of high quality.

It is reasonable to refactor classes and responsibilities that have been produced using
these methodologies such as CRC cards so that we can obtain a design model of higher
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quality, i.e., design model refactoring on the identified classes and responsibilities. In
this framework, the assignment of responsibilities to classes (class responsibility assign-
ment: CRA) is a crucial issue. Therefore, its automated support is necessary for human
designers to develop design models of stable quality. There are several techniques to
provide guidelines of CRA such as [25] or GRASP (General Responsibility Assign-
ment Software Pattern (or Principle)) [14]. In particular, GRASP aims at the improve-
ment of design quality metrics and is being to achieve satisfactory results. However,
since GRASP is described in informal way and a large number of classes, responsibil-
ities, and their combinations frequently emerge in real designs, it is difficult for human
designers to apply GRASP by hand and the support of a computerized tool is necessary.
In addition, a design process is a series of trial-and-errors, and the designers frequently
redo design including CRA during their design processes. Thus the computerized sup-
port is preferable to contain the functions of undoing and redoing of CRA. We consider
that design model refactoring based on GRASP and its automated support is useful to
solve the above issues. We present the formal description technique of GRASP and
a computerized tool in this paper. Our formal description of GRASP consists of the
followings:

1. the definitions of predicates to detect the parts where GRASP should be applied, so
called bad smells and

2. refactoring operations as graph transformations on an extended class diagram.

We show the benefits by developing the support tool and making a comparative experi-
ment using this tool.

The rest of the paper is organized as follows. In the next section, we clarify the
details of the issues to be solved. Section 3 presents the description technique of GRASP
including responsibility description. We respectively present the developed tool and the
experiment in Sects. 4 and 5. Section 6 is for related work and we conclude with Sect. 7.

2 Issues in Class Responsibility Assignment

To clarify the issues in CRA, consider the following example shown in Fig. 1(a). Sup-
pose that we design an online shop system like Amazon. This system has two types
of users: an administrator and normal users who buy goods. After login to the system,
it displays either of a menu for the administrator (admin-menu) or for normal users
(user-menu). The administrator can update Web pages of goods, manage the accounts
of normal users, etc. using the admin-menu, while normal users can buy goods and
specify a payment method, etc. using the user-menu. The class Menu in Fig. 1(a) has
the two responsibilities r1 “Display admin menu” and r2 “Display user menu”, which
are represented as notes in the figure, and they are fulfilled by the method displayMenu.

However, it includes several problems from the view of changeability. For example,
since the method displayMenu uses many conditional branches for the alternatives of
normal users (user-menu) and the administrator (admin-menu) to implement these re-
sponsibilities, the body of the method becomes difficult to be changed. Secondly, if we
employ a new type of users in the next version of this system, we should add some meth-
ods of their new authority and functions to the other classes that implement user account
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Menu

+ displayMenu(authority: int)
• r1: Display admin menu
• r2: Display user menu

(a) Original version

• r1: Display admin menu
Menu

+ displayMenu()

Admin-Menu

+ displayMenu()

User-Menu

+ displayMenu()• r2: Display user menu

(b) Refactored version

Fig. 1. Motivating example

management and that execute user functions. This addition leads to the changes of the
method body of displayMenu, i.e., changes are propagated from a class to another class.
Change propagation between classes is an obstacle against to design of higher quality.

Figure 1(b) is a refactored version to solve this problem and in this version, we
employ two subclasses Admin-Menu and User-Menu of the class Menu. Each of the
responsibilities is assigned to the subclass individually. As a result, displayMenu is
implemented with these subclasses separately. Thus, the function of displaying admin-
menu is implemented in the class Admin-Menu without any conditional branches for
alternatives of users and the administrator; these conditional branches are realized by
means of polymorphism of displayMenu in the subclasses. This refactoring can be sug-
gested by two patterns of GRASP: Polymorphism and Protected Variations. In [14],
these two patterns are defined as follows.

Polymorphism —When related alternatives or behaviors vary by class, assign respon-
sibility for the behavior using polymorphic operations to the classes for which the
behavior varies.

Protected Variations —Identify points of predicted variation or instability; assign re-
sponsibilities to create a stable “interface” around them.

GRASP is a set of guidelines or principles that should be kept when assigning responsi-
bilities to classes and includes totally nine patterns, in order to improve object-oriented
design, e.g., decreasing coupling between classes and increasing cohesion within a
class. The other patterns that appear in this paper are Information Expert, Pure Fabri-
cation, Indirection, and Creator. Their details can be found in [14].

Turn back to our example of Fig. 1. First of all, to apply GRASP, we have to detect
parts to be improved. The detection is a time-consuming and error-prone task for human
designers because of large size of design and of informal descriptions of GRASP. In
fact, “when related alternatives or behaviors vary by class” mentioned above specifies
the parts that Polymorphism should be applied to, but this description is not so concrete
and it is difficult to detect the applicable parts of a real design. In our example, the
designer could notice that r1 and r2 have the potential of alternatives by the reason of
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the lexical similarity of their description sentences. The designer apply Polymorphism
to the class Menu so that the designer has obtained two subclasses to which each of the
responsibilities is assigned individually, as shown in Fig. 1(b).

In the refactoring process, there are two problems; one results from the description
of GRASP, and the other does from the description of responsibilities. The former is
related to the way of recognizing that responsibility assignment to the class Menu was a
bad smell, i.e., how to recognize the current CRA is the situation where “alternatives or
behaviors vary by class”. We have to define this situation formally from class structure
and CRA in order to find alternatives or behavior by class. The latter is how to capture
the contents of a responsibility from its description. In our example, the lexical similar-
ity of the descriptions, i.e., sentence pattern “Display *** menu” allows us to find the
potential of alternatives based on the type of menus. However, can we find this potential
of the alternative if a designer describes “Show a list of commands (for administrators)”
instead of “Display admin menu”? The problem is that we can specify responsibilities
in free form with natural language and it may cause the difficulties in identifying the
relationship between responsibilities such as this case.

We can summarize the obstacles against the automated support for CRA and their
solutions as follows:

1. Formal definition of GRASP. To detect bad smells in a class diagram with CRA,
we have defined GRASP formally in machine-understandableway. Some of GRASP
descriptions consist of the descriptions of bad smells and those of solutions to im-
prove them. We define bad smells as structural properties on a class diagram in-
cluding CRA and use predicate logic. In the above example, the bad smell can be
the property that two or more responsibilities are assigned to the same class and all
of them have the coordinate relationship to each other. We define it using logical
formulas. As for descriptions of the solutions, we use the technique of graph trans-
formation. In the example, we write the sequence of operations on the diagram,
e.g., create a subclass for each responsibility and then put in the class a method
fulfilling the responsibility.

2. Description of responsibilities. To detect the relationships between responsibili-
ties, we propose the technique to make a designer describe responsibilities sepa-
rating them into finer-grained elements so that their relationships, e.g., coordinate,
can be automatically detected. This technique is similar to the idea of CASE Gram-
mar [9] that a natural language sentence can be semantically represented with a set
of deep cases specific to verbs. In the above example of coordinate relationship, the
responsibility “Display admin menu” is separated to the verb “Display”, the modi-
fier “admin”, and target case “menu”, when the designer specifies it. “Display user
menu” is described in the same way. The only different elements between these
two responsibilities are their modifiers: “admin” and “user”. Thus we identify the
alternatives when there are two responsibilities which are the same except modifier
parts. In our technique, we use a responsibility form to describe a responsibility
separately into its elements like the case frame approach in Case Grammer.
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Designing CRA
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• Assigning responsibilities to classes

Refactoring
Responsibilities CRA

Fig. 2. Overview of our technique

Table 1. Form of responsibility description

ID (id) A unique number to identify the responsibility.
Action (action) The verb of the responsibility.
Target (target) The target of the action.

Possessive (pos) If a noun denoting a target of the action has a modifier of a possessive case,
the modifier is assigned to this item. In the example that the target is “name of
customer”, “customer” is assigned to this item.

Modifier (mod) Otherwise, the modifier to a noun is assigned to this item.
Condition (cond) The condition whether the action of the responsibility is executed or

not. For example, the following sentences are the candidates of conditions.
“edit mode”, “input mode”, the phases including “mode”, “when the button
was pushed”.

Dependency (dep) The responsibilities to which are referred by this responsibility. They can
be collaborated with this responsibility.

3 Our Approach

3.1 Overview

Figure 2 shows an overview of our proposed technique. First, designers extract respon-
sibilities from requirements documents such as use case descriptions. In this process,
they can use existing techniques of responsibility extraction such as CRC card [3] and/or
robustness analysis [20]. The extracted responsibilities are described according to our
responsibility form. Next, they design CRA, i.e., creating new classes and assigning the
extracted responsibilities to the classes using a special editor. For every step in CRA,
the editor automatically detects bad smells of the current CRA and suggests refactored
CRAs as alternatives. Designers can accept or reject the suggested CRAs. By repeating
the steps of the responsibility assignment and refactoring, designers explore the most
appropriate CRA.

3.2 Describing Responsibilities

Since coordination and dependency relationships among responsibilities are a key factor
to detect bad smells, the technique to describe responsibilities should enable us to iden-
tify these relationships from responsibility descriptions. Thus it is necessary to describe
responsibilities in a finer grain level rather than in one sentence level. More concretely,
we separately describe the information of a responsibility into several items as shown
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Table 2. Examples of responsibility description

Responsibility action target pos mod cond dep
r1: “Display admin menu” Display menu – admin – –
r2: “Display user menu” Display menu – user – –

in Table 1. Some of these items can compose a sentence of the form “an owner does an
action to a target under a condition (who does what to what when)”, and it allows us to
extract these items from the sentences expressing responsibilities. In addition, we can
paraphrase these items into a sentence easy for a human designer to read. A target can be
divided into three finer-grained items, possessive, modifier and body (target), based on
the types of modifiers to a noun denoting the target. Note that the last item dependency
is for specifying explicitly the responsibilities dependent on this responsibility.

The example of Fig. 1 can be described as shown in Table 2. In this example, we had
very short phrases as the sentences expressing the responsibilities only. However, by
analyzing syntactically their phrase structures we can identify the items to be assigned.
If we have more detailed sentences of responsibilities such as use case descriptions
and CRC card descriptions, we can use them. To detect coordination relationships, we
should focus on the items action and body (of target). In this example, since the respon-
sibilities r1 and r2 have the same value in these two items, we detect a coordination
relationship between them. This is generally specified as the rules to detect the bad
smells that a certain GRASP, e.g., Polymorphism, should be applied to. In addition, the
types of actions such as create (responsibility related to creating an object) are also used
for detecting other types of bad smells. The beneficial point of our technique mentioned
in this section is the possibility of lightweight semantic processing of responsibilities
by means of separating responsibility descriptions into semantical components such as
action and target.

3.3 CRA Refactorings

In our approach, we define the detection rules of bad smells and the transformation rules
of CRA refactorings based on GRASP. In the detection rules of bad smells in CRA, we
can use facts of the class structure (the name of classes and the types of connections
on classes such as inheritances or associations, including the information of stereotypes
such as�create�) and given responsibility descriptions on a predicate logic.

List of Refactorings. We have defined the following five refactorings including smell
detection rules of their smells and transformation rules of CRAs.

Move Responsibility —It moves a responsibility to more appropriate class using the
coordinate relationship among responsibilities. This refactoring is based on Infor-
mation Expert.

Introduce Simple Factory —When a class is instantiated in multiple parts, this refac-
toring unifies them using Pure Fabrication and Indirection.

Introduce Creator —It moves responsibilities of instantiating a class to an appropriate
class using Creator.
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Introduce Polymorphism —It separately assigns coordinate responsibilities to individ-
ual classes having a common parent class. This refactoring is based on Polymor-
phism and Protected Variations patterns.

Introduce Facade —It reorganizes a CRA having complex dependencies among own-
ers (classes) of the responsibilities by introducing an indirect responsibility among
the owner classes. This refactoring is based on Pure Fabrication and Indirection.

Smell detection rules of each refactoring are defined as predicate logic and based on the
descriptions of GRASP. Because of the space limitation, we only picks up Introduce
Polymorphism and illustrate its detection rules and transformation mechanism.

Example. Introduce Polymorphism refactoring is based on Polymorphism and Pro-
tected Variations patterns. As mentioned in Sect. 2, Polymorphism and Protected Vari-
ations respectively focus on the situations “when related alternatives or behaviors vary
by class” and “identify points of predicted variation or instability”. These conditions
can be substituted to detect coordinate relationships. We can detect the coordinates of
responsibilities by checking whether (1) both the actions and bodies of the responsibil-
ities are the same and (2) the responsibilities differs in only one of the modifiers and
possessives, or in the case that both of the modifiers and possessives are the same but
they differ in conditions. More formally, the predicate coordinate(r, r′) holds if

r.action = r′.action ∧ r.target = r′.target ∧
( (r.pos � r′.pos ∧ r.mod = r′.mod) ∨

(r.pos = r′.pos ∧ r.mod � r′.mod) ∨
(r.pos = r′.pos ∧ r.mod = r′.mod ∧ r.cond � r′.cond) ).

Here, r.∗ denotes the property ∗ in the form of responsibility r.
We find a maximal coordinate set R, i.e., ∀r, r′ ∈ R · coordinate(r, r′) as the input of

Introduce Polymorphism. The mechanism how to apply Introduce Polymorphism is as
follows:

0. Check pre-conditions. Here, we check that Polymorphism have not introduced in
the current CRA yet. More concretely, we guarantee that there is no common parent
class for every owner class of the given responsibilities by checking (�c · ∀c′ ∈
owners(R) · c ∈ parents(c′)) ∨ (∃r, r′ ∈ R · owner(r) = owner(r′)). Here, owner(r)
denotes the owner class of given responsibility, and owners(R) := { owner(r) | r ∈
R }. Also, parents(c′) denotes a set of the classes that c′ inherits or implements.

1. Create new classes Classi (1 ≤ i ≤ |R| − | owners(R)|).
2. Move responsibilities r ∈ R to newly added classes Classi.
3. Create a class Base, and make each owner class of R inherit Base.
4. Rename each class properly.

For example, consider applying Introduce Polymorphism refactoring to the CRA
shown in Fig. 1(a). As mentioned above, r1 and r2 have a coordination relationship,
i.e., coordinate(r1, r2). Moreover, they are assigned to a common class Menu. Thus,
R = {r1, r2} satisfies the smell detection rules and the precondition of this refactoring.
By applying Introduce Polymorphism, we obtain the resulting CRA shown in Fig. 1(b).
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First, a new class Class1 is created, and the responsibility r1 is moved to the new class.
Second, another new class Base is also created. Third, we make both Menu and Class1

inherit Base. Finally, we respectively rename Menu, Class1, and Base to User-Menu,
Admin-Menu, and Menu according to their meanings.

4 Support Tool

We have implemented RAST, a support tool for automating our approach. RAST is an
extended version of an existing CASE tool named AmaterasUML [1].

(a)

(d)

(b)

(c)

Fig. 3. Snapshot of RAST
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Fig. 4. How many GRASP patterns does RAST supports?

Figure 3 is a snapshot when we develop CRA using RAST. The view (a) is an editor
for designing class structure and responsibilities. In RAST, each rectangle box express-
ing a class in the diagram has extra fourth area in the bottom representing the assigned
responsibilities1. For example, the class Order Controller has 10 responsibilities includ-
ing “Create order”. When we select a class, the responsibilities corresponding with it
will be shown in the view (b). All responsibilities for all classes can be shown when we
click the background of the editor. We can describe responsibilities in the form proposed
in Sect. 3.2 and edit them using the properties view (c). After editing responsibilities,
possible refactorings (alternative CRAs) will be suggested in the view (d), and we can
accept a suggested CRA by double-clicking it. In the figure, the suggested refactor-
ings include Move Responsibility #22: “Notify stockout” in the class Order DB to the
class Order Controller. This refactoring is suggested because the responsibility “Notify
stockout” in Order DB depends on the responsibilities #16: “Check mellowing status of
ordered wine” and #19: “Check stock status of ordered wine”, but they are in another
class Order Controller. When a user single-clicks an alternative, the classes related to
the refactoring will be highlighted for confirmation of the refactoring effects. In the
case shown in the figure, the user can understand that the above refactoring will affect
two classes Order DB and Order Controller. Additionally, we can undo already-applied
refactorings and redo them so that we tend to design our CRA by trial-and-error step
by step. This view is also useful because it shows the averages of coupling and cohe-
sion metric values as additional information for each alternative and the current CRA.
Although designers are needed to coordinate metric conflicts, i.e., trade-off relation-
ship between cohesions and couplings, listing the suggestions with their metric values
after performing the suggested refactoring enables the desingers to understand which
refactoring improves which metric values easily.

Figure 4 illustrates how RAST supports GRASP. RAST supports eight patterns of
GRASP out of nine. In particular, six patterns are supported by our CRA refactorings.
Additionally, Low Coupling and High Cohesion are indirectly supported by the metric
view of RAST. Currently, Controller is not supported by RAST. This is because Con-
troller is more implementation-side pattern instead of upstream design, dealing with the

1 The reason why there are only two areas in every class in Fig. 3 is that the user did not input
any attributes and methods.
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flow of events. The current responsibility form does not have the ability to represent
the flow of events. It is a candidate of future work to support Controller by representing
the flow of events in the responsibility form.

5 Preliminary Evaluation

In order to evaluate our method described in Sect. 3, controlled experiments with four
subjects are conducted. In particular, we are interested in answering the following re-
search questions (RQs):

RQ1 —Does our method improve the design quality of CRA?
RQ2 —Do CRA alternatives suggested by our tool support designers appropriately?

5.1 Experimental Design

Two students (Subjects S 1 and S 2) and two design experts (Subjects E1 and E2 respec-
tively in academia and industry) participated after receiving an explanation about the
purpose of this experiment and usage of RAST. Each subject was assigned to the same
design task based on responsibility driven design [25]. They designed classes and their
CRA of a target system. In the task, at most two hours were spent for each subject. The
target system was specified with use case descriptions and with a list of responsibilities
extracted from the use case descriptions. These designing tasks were limited to class
identification processes only. The details of class features such as attributes and meth-
ods were not defined. The target system is a part of a supply chain management system
for a virtual winery. The system has five use cases such as “Order a wine”, “Update
an order”, or “Register new wine”. We analyzed these use case descriptions and iden-
tified 46 responsibilities of the target system. All of the subjects were provided with
the use case descriptions and the extracted responsibilities to identify classes and CRA.
They could use our tool, but for two of them, i.e., Subjects S 1 and E1, a part of the tool
functions were disabled so that they could not be suggested the CRA alternatives which
were displayed in the view (d) of Fig. 3. That is to say, they only used RAST as a tool
for input and management of CRA. In contrast, Subjects S 2 and E2 utilized a function
of CRA. They considered the advantages and disadvantages of all the suggested CRAs
and selected a CRA which they decided as the best.

We assessed final CRAs of each subject by using following three metrics. A prin-
ciple of appropriate CRA is low coupling and high cohesion [14]. We used CLCr and
NCr to measure the strength of coupling based on Class-Responsibility and Class-Class
relationships respectively. We also used LCOM∗r to measure the lack of cohesion. The
lower values of all metrics on a CRA indicate the more appropriate CRA. In the follow-
ing definitions of metrics, C := {c1, . . . , cN} and R(c) := { r | owner(r) = c } respectively
denote the set of all classes included in the class diagram and the set of responsibilities
assigned to the class c.

CLCr is a modified CLC (Class Level Coupling) [6,12] which measures the coupling
of a class design to adapt for the assessment of CRA. We focus on the relationships
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between responsibilities instead of ones between methods and/or attributes which are
counted in original CLC:

CLCr :=
1
|C|
∑

c∈C

∑

r∈R(c)

(depend(r) + create(r)) .

Here, depend(r) and create(r) will be 1 if and only if r is a responsibility depending on
another responsibility and r creates an object respectively, and otherwise 0.

NCr is the average of number of relationships between classes. We refer to met-
rics [10,15] for assessment of a design model based on the number of relationships
such as aggregation, composition, or generalization in a class diagram:

NCr :=
1
|C|
∑

c∈C
CO(c)

where CO(c) is a number of classes which have relationships with the class c.
LCOM∗r is a modified LCOM∗ (Lack of Cohesion Of Method) [11] to adapt for the

assessment of CRA. We use a number of responsibilities which are specified in De-
pendency column of responsibility descriptions instead of one of attribute references in
methods:

LCOM∗r :=
1
|C|
∑

c∈C

∑
r∈R(c) μ(r, c)/|R(c)| − |R(c)|

1 − |R(c)|
where μ(r, c) is the number of responsibilities of the class c which depend on the re-
sponsibility r.

In order to evaluate the quality of suggested design alternative, we also conducted
a survey in the form of a questionnaire to Subjects S 2 and E2 who utilized a function
of CRA alternative suggestion of RAST. The questionnaire includes questions about a
reason why they accept or reject suggestions.

Note that the subjects include one of the authors of this paper. In order to minimize
the bias, we carefully set up the experiment; he is independent of the example prepara-
tion and did not utilized the function of CRA.

Table 3. Experimental results

Subject S 1 E1 S 2 E2 Average

# accepted suggestions2 – – 6 7 –
# created classes 15 20 27 28 –

CLCr
w/ suggestions – – 0.67 1.04 0.86
w/o suggestions 2.53 1.30 – – 1.92

NCr
w/ suggestions – – 0.85 1.07 0.96
w/o suggestions 1.27 1.60 – – 1.43

LCOM∗r
w/ suggestions – – 0.72 0.79 0.76
w/o suggestions 0.80 0.97 – – 0.89

2 Exclude suggestions whose application was canceled.
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Table 4. A survey of questionnaire on quality of suggestion by our proposed refactoring

Move Responsibility
(+) Tool suggested just what I intend to move.

(+/−) Reasonable suggestions. However many unnecessary suggestions included.
Introduce Facade

(−) The suggestion makes my design more complicated rather than reduce complexity.
Introduce Creator

(+) Reasonable and useful suggestions.
Introduce Polymorphism

(+) I just realized coordinate responsibilities when tool suggested this refactoring.
(+) Tool suggested a responsibility split just what I intend to.

5.2 Experimental Result and Discussion

In this subsection, we show our experimental results and discuss the answer to the
research questions mentioned in Sect. 5.1.

Table 3 shows the values of three metrics for a final CRA, the number of accepted
suggestions, and the number of created classes of each subject. A summary of question-
naire answers3 is shown in Table 4. In the table, the symbols ‘+’ and ‘−’ respectively
indicate positive and negative answer.

RQ1: Based on differences of average values of CLCr, NCr and LCOM∗r , it could be
noted that the final design of Subjects S 2 and E2, who utilized a suggestion function of
RAST, had lower coupling and higher cohesion values than Subjects S 1 and E1. From
the viewpoint of a coupling and cohesion principle, the suggestion of CRA alternative
based on our approach allowed them to derive more appropriate CRA.

RQ2: As shown in Table 4, the answers for suggestions based on the three CRA refac-
toring are mostly positive. In the case of Introduce Polymorphism and Move Responsi-
bility, our subjects obtained the suggestions of CRAs which they just intended to apply
and could save time-consuming tasks. In particular, the former found a better CRA
rather than one designed by a subject. There were negative answers for unnecessary
suggestions of Move Responsibility and Introduce Facade. Since the target of this
experiment is an interactive application such as Web application, some subjects ap-
plied the MVC architecture and separately assigned related responsibilities to models
and controllers. Our tool suggested that a responsibility for a model/controller must
be moved to the other even if it causes architecture violations because these respon-
sibilities often have dependencies. We can reduce unnecessary suggestions by tuning
detection rules based on analyses of more case studies. It is quite important in a design
task to find many design candidates and choose the best design under various design
trade-offs. Therefore, we answer for this research question that our proposed method
can help developers to find better CRA appropriately.

3 Since any CRA alternative based on Introduce Simple Factory was not suggested in this ex-
periment, there is no answer related this refactoring.
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6 Related Work

There are several works for supporting design model refactoring to improve a de-
sign. Bowman et al. used genetic algorithm to calculate the assignment of methods
and attributes to classes so as to optimize coupling and cohesion values of a class dia-
gram [4,5]. However, their approach is based on coupling and cohesion calculated only
from the syntactical relationships among methods and attributes such as caller-callee
relationships between methods and referential relationships between methods and at-
tributes. It does not consider any semantical information of responsibilities, differently
from ours.

Tsantails et al. focused on source code, not object-oriented design [24]. Their ap-
proach is to detect method assignment so that cohesion values become higher prevent-
ing coupling values from rising. It also provides a refactoring technique of method
movement for designers. Kerievsky also proposed patterns for refactoring, but they are
mainly applied to source code [13]. It is preferable to improve method assignment as
early as possible, not in the step of source code level but design because of avoiding
rework of development activities in later steps.

We can find several metric-based approaches to detect bad smells [16,18,19]. Mari-
nescu [16] defined detection strategies with metrics-based rules to capture deviations
from good design principles and heuristics. Oliveto et al. [19] proposed a method to
identify occurrences of antipatterns [7] based on numerical analysis of metric values.
Moha et al. proposed DECOR method and DETEX technique [18] to specify and au-
tomatically generate identification algorithms for code/design smells based on metrics
and structural characteristics. They showed the detection performance of 19 automatic
generated algorithms by DETEX. However, these approaches have no features to sug-
gest design alternatives against detected bad smells.

Zamani et al. proposed a method to analyze a UML model using the information
on stereotypes and checks whether enterprise architectural patterns (EAA patterns) are
applied correctly to the model or not [27]. The conditions to decide the correct appli-
cation of EAA pattern are defined with Object Constraint Language (OCL). However,
this approach is for the case where a designer has used specific patterns dealing with
relationships among several classes, and it is difficult to apply CRA as it is because
CRA requires more general principles for its improvement in the level of finer granu-
larity. In [22], model refactoring on UML class and state diagrams is formalized as a
sequence of transformation operations defined in OCL. However, it did not discuss how
to define and detect bad smells in diagrams. In addition, it dealt with simple refactoring
such as removal, renaming and additions of elements including generalization.

Trifu et al. discussed relationship between a design flaw and the number of directly
observable indicators [23]. They defined specifications of the design flaw including
context and indicators, and a diagnosis strategy using indicators and correction strate-
gies written in a natural language. They also presented a tool to identify design flaws.
Their indicators for design flaw identification are defined as a combination of design
metrics and structural information. ClassCompass [8], which is an automated software
design critique system, has a feature to suggest design correction based on rules written
in a natural language. However, they have no information related to responsibilities of
systems.
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Some of the principles proposed in [17] can be used for CRA. For example, Depen-
dency Inversion Principle says that modules in a higher level should not be dependent
on those in lower level, etc. We can apply our approach to some of them and use them
as guidelines of CRA together with GRASP.

7 Conclusion

This paper presented a technique for the automated support of design model refactoring,
more specifically improving class responsibility assignment (CRA). In this technique,
we describe responsibilities in the form similar to case frames of Case Grammar, and
define bad smells and refactoring operations based on GRASP. Our supporting tool
called RAST automatically detects bad smells in a class diagram with CRA information
and suggests candidates of applicable refactoring operations. A designer can remove the
bad smells by performing one of the suggested refactorings. Furthermore, we made a
preliminary experiment and it showed a tendency to realize CRA of higher quality from
object oriented design view.

We can summarize agenda for future work as follows:

– In the experiment of this paper, our subject did not think that some of the sugges-
tions of refactoring were useful so much. We will analyze its reasons and improve
our rules.

– More experiments, including usability evaluations of RAST, are necessary to obtain
more meaningful and significant findings.

– We will leverage design constraints and architecture information. For example, a
suggestion filtering feature based on such information will effectively reduce un-
necessary suggestions.

– The other types of patterns or principles except GRASP such as Dependency In-
version Principle [17] should be considered to make the applicability of our tool
wider.

– We did not assess the efforts for designers to describe responsibilities following our
approach during their design activities. Based on this assessment, we will explore
the improvement of our description technique if any issues are found.
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Abstract. Models should represent the essential aspects of a system and
leave out the inessential details. In this paper we propose an automatic
approach to determine whether a model indeed focuses on the essential
aspects. We define a new metric, structural essence, that quantifies the
fraction of essential elements in a model. Our approach targets structural
models, such as the prevalent UML class diagrams. It is inspired by
the idea of algorithmic essence – the amount of repetitive constructs
in a program – and the duality between behavior and structure. We
present a framework for computing the essence of a structural model
based on a transformation of that model into a “distilled model” and
on an existing graph algorithm operating on that distilled model. We
discuss the meaning of our concept of structural essence based on a set
of example models. We hope that our notion of structural essence will
spark discussions on the purpose and the essence of models.

1 Introduction

Given a structural model of a system, can we help a designer to answer the ques-
tion whether a given model element is essential, or whether that element could
be omitted without affecting the functionality of the system? Models with lots
of inessential elements can be considered bloated. From an extreme perspective,
one could even argue that models should not contain any inessential elements
at all: Models are abstractions of a system, they describe essential aspects of
the system and leave out the inessential details. Brook’s “No Silver Bullet –
Essence and Accident in Software Engineering” [2] makes a clear distinction
between the essential and accidental artifacts in software construction. Brooks
deems essential the “complex conceptual structures that compose the abstract
software entity”, while he classifies as accidental the “representation of these
abstract entities in programming languages”. Moreover, he writes “The essence
of a software entity is a construct of interlocking concepts: data sets, relation-
ships among data items, algorithms, and invocations of functions. The essence
is abstract, in that the conceptual construct is the same under many different
representations.”

Recent work [10] introduced an approach to determine the essence of object-
oriented programs by analyzing the implementation of those programs. In this
paper we propose to lift that idea from the level of binary code, where complete
details are available, to the more abstract level of structural models.
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Fig. 1. Example UML Model (Left) and Corresponding Distilled Model (Right)

Figure 1 shows a structural model in the form of a UML class diagram. Our
goal is to determine the essential aspects in that model. Following the idea of al-
gorithmic essence [10], we focus on artifacts representing repetitions. Our model
is structural, not behavioral, so it does not directly represent repetitive behavior.
Nevertheless, some structural artifacts will lead to repetitive behaviors. These
are (1) multiplicity on associations, and (2) navigable cycles in the model. The
distilled model on the right of the figure brings out these essential aspects. As-
sociation ends with unbounded (*) multiplicity are reified as gray nodes (e.g.,
Period[). Public concrete classes participating in navigable cycles are represented
as black nodes. Other concrete classes are represented as white nodes. The gray
and black nodes constitute the essence of the model. The other (white) classes
could be considered inessential, because they do not lead to repetitive computa-
tions or data structures. Those inessential classes could theoretically be inlined
into the essential classes, without affecting the functionality of the model.

We now define our approach for transforming a UML model into a distilled
model to identify its essential elements, and for computing our essence metric.
Then we present our implementation of that approach, and we discuss how our
notion of structural essence can affect research on models.

2 Approach

Our approach to compute structural essence is based on two steps. First, we
transform the UML class diagram into a distilled model, and second we compute
the structural essence on the distilled model.

A distilled model is a directed graph. It represents an abstract view of a UML
class diagram. The distilled model is a static structural model of the system. It
describes all possible runtime object graphs. Most nodes in the distilled model
correspond to a class in the UML model, and most edges in the distilled model
correspond to an association in the UML model. However, some nodes in the
distilled model (the multiplicity nodes) do not correspond to a UML class, and
some edges in the distilled model (the inferred edges) do not correspond directly
to a UML association.

2.1 Model Transformation

Our model transformation consists of four steps: (1) All non-abstract classes in
the UML model are converted into nodes in the distilled model. (2) In the UML
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model, attributes of classes are converted into equivalent associations between
classes. (3) Associations in the UML model are converted into edges in the
distilled model. (4) Generalizations in the UML model are used to generate
additional implicit association edges in the distilled model. We now define this
transformation in more detail.

Classes. For each non-abstract Class in the UML model we create a correspond-
ing node in the distilled model. We do not create nodes for Interfaces and abstract
Classes, because the dynamic type of an object in the runtime object graph must
correspond to a concrete class.

Properties. In a UML model, a class can have attributes (Properties). An at-
tribute p of type B in a class A often is a manifestation of an association between
class A and class B. In particular, it manifests an association that is navigable
from A to B. The attribute p also can have a multiplicity, which corresponds
to the multiplicity of the association end at class B. Figure 2 shows how, for
every property of every class, we infer the corresponding association, if that as-
sociation does not already exist. The top half of the figure shows the original
UML model containing classes with attributes, and the bottom half shows the
resulting UML model where attributes have been transformed into associations.
Note that each attribute leads to exactly one unidirectional association, naviga-
ble from the class containing the attribute to the class representing the type of
the attribute. The source end (tail) of the association always has a multiplicity
of “1”. The multiplicity of the target end (head) corresponds to the multiplicity
of the attribute.

Fig. 2. Transforming UML Properties to UML Associations

Associations. The transformation of associations in the UML model into the
distilled model depends on the multiplicity and navigability of those associations.
Figure 3 shows the seven variants of a binary association and their transforma-
tions into the distilled model. The two parts of the figure (unidirectional vs.
bidirectional) differ in terms of navigability. The columns within a part differ in
terms of multiplicity: they represent 1-to-1, 1-to-many, many-to-1, and many-to-
many relationships. For each column in the figure, the top shows the UML class
diagram, the middle shows the corresponding distilled model, and the bottom
shows the structural essence (number of multiplicity nodes plus cycle header
nodes).
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Fig. 3. Transforming UML Associations to Distilled Model

For each association end with a multiplicity involving a “*” (i.e., “0..*” or
“1..*”), we create a multiplicity node (grey) in the distilled model. The multi-
plicity node can be seen as an array (e.g., of type B[]). The reason for creating
multiplicity nodes is that an unbounded multiplicity implies repetition: there
could be an arbitrary number of objects on that end, and an implementation of
the system will need to traverse that association using either a loop or a recur-
sion. Our idea of structural essence is directly tied to the notion of repetition:
the repetitions represent the essential aspects of the system.

If the “*” occurs at a navigable end (the arrow head), we add an edge from the
origin (e.g., A) to the multiplicity node, and a second edge from the multiplicity
node to the target (e.g., B). However, a “*” occurring at the non-navigable (tail)
end of an unidirectional association has to be treated specially: We want to create
a multiplicity node to represent the importance of such a N:1 relationship, but
we do not want to introduce a cycle into the distilled model, because the UML
model does not contain a cycle. Thus, we create the multiplicity node, and we
add an edge from the multiplicity node to the class at its association end. This
almost introduces a cycle: it only leaves one edge out (the one from the opposite
class to the multiplicity node).

The figure shows that bidirectional associations introduce cycles into the dis-
tilled model. This is desired. Like multiplicity nodes, cycles contribute to essence
because they imply repetition: there could be an arbitrary number of objects rep-
resented by such a cyclic model (e.g., a linked list), and an implementation of
the system will need to traverse that cycle using either a loop or a recursion.

Generalizations. Generalizations can introduce cycles into an otherwise acyclic
distilled model. Thus, generalizations can affect structural essence. Figure 4
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shows the transformation of generalizations into the distilled model. It contains
five cases, and for each case, it shows the original UML class diagram (top) and
the resulting distilled model (bottom). The figure explains the effects of two
basic principles: field polymorphism and field inheritance.

Fig. 4. Transforming UML Generalizations to Distilled Model

Field polymorphism means that a field of a given type may refer to an object
of that type or of any subtype of that type. Case 1 in the figure shows the effect
of field polymorhism on the distilled model. The UML class diagram shows one
uni-directional binary association. That association a from A to B implies two
possible kinds of links at runtime: links of an instance of A to an instance of B,
and links of an instance of A to an instance of Bs. We thus make that second
link explicit as the inferred edge a′ from A to Bs in the distilled model1.

Field inheritance means that a field in a superclass is inherited by that su-
perclass’ subclasses. Case 2 in the figure shows the effect of field inheritance on
the distilled model. The UML class diagram shows one uni-directional binary
association. That association a from A to B implies two possible kinds of links
at runtime: links of an instance of A to an instance of B, and links of an instance
of As to an instance of B. We thus make that second link explicit as the inferred
edge a′ from As to B in the distilled model.

Cases 3 and 4 are special cases of field polymorphism and field inheritance
where the field refers to a superclass (case 3) or a subclass (case 4).

Case 5 combines field polymorphism and field inheritance. It shows that this
leads to more than one implicit edge in the distilled model: for each subtype of
A (incl. A) we need to create an edge to each subtype of B (incl. B).

1 Such implicit associations due to field polymorphism are the structural equivalent
to the behavioral idea of inferred call edges due to method polymorphism in static
call graphs. In a call graph involving a method A.m(), and a method B.x() that is
overridden in subclass Bs, a call site in A.m() with the static call target B.x() would
imply that at runtime, A.m() might call Bs.x().
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Fig. 5. Interaction of Generalization and Multiplicity

Generalization and Multiplicity. Above we have shown how generalization
affects the transformation of associations with a bounded multiplicity (e.g., “1”).
We also have seen that associations with unbounded multiplicity lead to multi-
plicity nodes in the distilled model. Here we combine the two aspects to define
the transformation for associations with unbounded multiplicity that refer to a
superclass. Figure 5 shows the nine possible cases. The main design decision in
this aspect of the transformation is that we create only one multiplicity node
for each unbounded association end (e.g., “A[” and “X[”), and that we do not
create additional multiplicity nodes for inferred associations2.

2 The online appendix for this paper discusses design alternatives for this and other
aspects of our approach: http://sape.inf.usi.ch/essence/structural

http://sape.inf.usi.ch/essence/structural
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2.2 Essence Computation

The distilled model constitutes the minimal representation necessary to compute
essence. It consists of multiplicity nodes that represent 1-to-many relationships
and class nodes that represent classes3.

Essence quantifies the amount of repetition (multiplicity and cycles). To com-
pute essence, we thus count the number of multiplicity nodes and the number of
“cycle header” nodes. To detect cycles in the graph and to identify the header
nodes of those cycles, we use an algorithm that detects nested strongly connected
components [10]. Because that algorithm requires an “entry” node from which
all other nodes are reachable, we introduce an artificial entry node, and we create
an edge from that entry node to all public class nodes. We also add edges from
the entry node to those multiplicity nodes that are otherwise unreachable.

The cycle header detection algorithm proceeds iteratively: First, it finds
strongly connected components (SCC). Second, it identifies all nodes in an SCC
reachable from outside that SCC as “cycle header” nodes. Third, it removes all
back-edges (edges from nodes within the SCC to its cycle headers). It repeats
these three steps until all SCCs are trivial (single nodes).

The absolute structural essence of a model corresponds to the number of
cycle header nodes plus the number of multiplicity nodes. The relative structural
essence of a model corresponds to the absolute structural essence divided by the
number of class nodes.

3 Implementation

Figure 6 presents our implementation of the above approach. The “XMI Struc-
ture Transformer” represents the approach described in Section 2.1. We imple-
mented this transformation as an extension4 of the SDMetrics framework [9].
The “Essence Metric Analysis” corresponds to the approach described in Sec-
tion 2.2. It is based on the implementation of the cycle detection algorithm for
computing algorithmic essence of Java bytecode [10]. The “Distilled Model Vi-
sualizer” transforms the distilled model into GraphViz dot visualizations similar
to the ones used throughout this paper.

The “XMI Structure Transformer” represents just one possibility to derive a
distilled model. Given the relative scarcity of publicly available example UML
models, we also implemented a second transformer, the “Java Bytecode Structure
Transformer”, which transforms the structural aspects of a Java implementation
of a system into a distilled model. That transformer reads Java class files instead

3 The distilled model is logically equivalent to the loop call graph used when computing
behavioral essence [10]. The multiplicity nodes in the distilled model correspond to
the loop nodes in the loop call graph, and the class nodes in the distilled model
correspond to the method nodes in the loop call graph.

4 We slightly changed SDMetrics to gather information about multiplicities and static
vs. instance members.
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Fig. 6. Extensible Framework for Computing Essence

of UML/XMI structural models. For the cases where Java classes are created 1:1
from UML models, the resulting distilled model is equivalent to the one produced
from UML.

Our implementation is extensible and allows the addition of new kinds of
transformers. For example, we recast the computation of a loop call graph [10]
(which represents the behavioral, or algorithmic, aspects of a Java application) as
a transformer for our new framework (“Java Bytecode Algorithm Transformer”).
We could also envision a transformer that transforms the behavioral aspects
of a UML model (e.g., the call graph and loop information available in UML
interaction diagrams) into a distilled model.

4 Discussion

We now discuss how the concept of structural essence may affect work on models.

Essence of model vs. essence of implementation. Models are abstract
representations of systems. They abstract away the inessential details and
describe the essential aspects of a system. Structural essence represents an
automatically computable and (we believe) intuitive measure of the essen-
tial aspects of a system. Should an (abstract) model have a higher relative
essence than a (concrete) implementation, because the model omits inessen-
tial artifacts? Could one also claim that the higher the relative essence of a
model, the “better” (more essential) that model?

Matching models and implementations. Could structural essence and our
distilled model help in establishing the correspondence between a model and
its implementation? Could our distilled models, which include multiplicity
nodes and highlight cycle headers, be effective as a basis for building soft-
ware reflexion models [6]? Could our idea improve correspondence matching
approaches such as those introduced by van Opzeeland et al. [8]?

Structural essence of recursive data types. We computed the essence of
UML models of different designs of lists, trees, and graphs5. We found that
the absolute structural essence of all directly-recursive design variants is
constant, and that essence increases from lists to trees to graphs (all directly-
recursive list designs have structural essence 1, all trees 2, all graphs 3).

5 Details on http://sape.inf.usi.ch/essence/structural/recursive-datatypes

http://sape.inf.usi.ch/essence/structural/recursive-datatypes
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Structural essence of design patterns. We computed the structural essence
of UML class diagrams of the 23 GoF design patterns [4]6. 15 patterns have
an essence of 0; they represent artifacts of modularization. Composite and
Decorator have essence 2; they introduce tree structures. Flyweight, Memento,
and Chain of Responsibility have essence 1; they introduce new lists. Observer
and Mediator have essence 3; they decouple cyclic relationships.

Essence of other structural models. In this paper we focused on computing
essence based on structural models in the form of class diagrams. The reason
for this is the prevalence of this kind of model. How could one best compute
essence based on other structural models such as component diagrams?

Structural vs. behavioral essence. Prior work introduced the notion of al-
gorithmic (behavioral) essence of Java code [10]. Given the duality between
behavior and structure, between loops and association multiplicities, be-
tween recursions and cyclic associations, between the inlining of methods
and the inlining of objects, does structural essence correlate with algorithmic
essence? We performed a preliminary experiment, where, due to the lack of a
large suite of complete UML models, we analyzed the structural and behav-
ioral essence of Java code. We measured 81 realistic open-source applications
consisting of 73246 classes (a subset of the Qualitas Corpus [7]) and found
Pearson’s correlation coefficient between structural and behavioral essence
to be only 0.2, with a 95% confidence interval of [−0.017, 0.402]. It remains
to be seen whether this low correlation would also apply to structural and
behavioral essence computed on real-world UML models.

Behavioral essence of models. The original measure of algorithmic essence
is based on a behavioral view of the implementation of a system (the bytecode
instructions in Java code) [10]. How could we best compute essence based on
more abstract behavioral models? Assuming the availability of a complete
set of interaction diagrams, one could construct the system’s call graph (and
count the number of recursions) based on the messages, and one could count
the number of loops based on the loop combined fragments. Alternatively,
one could use activity diagrams (with loop nodes) or state machine diagrams
(through cycles involving states and transitions) to determine analogous ways
to determine repetitive behavior.

Practical use: quality prediction. Briand and Wüst [1] review prior empiri-
cal results on modeling external system qualities based on internal properties.
Most of the surveyed work uses the measures proposed by Chidamber and Ke-
merer [3] to characterize structure. The most prevalent of the C&K measures
are coupling and cohesion. They help in deciding which parts of a model to
move where. Our measure of essence may help in deciding which parts of a
model to keep and which parts to remove. NAS, number of associations [5],
is a metric that looks similar to essence. However, essence focuses on repeti-
tion, and thus it excludes associations with bounded multiplicities, and it also
counts cycle headers in the model. Given the difference between structural

6 Details on http://sape.inf.usi.ch/essence/structural/design-patterns

http://sape.inf.usi.ch/essence/structural/design-patterns
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essence and existing metrics, would structural essence, an internal structural
property, improve quality prediction models based on existing metrics?

Evaluation on benchmark models. We have created the essentializer7, a web
site that allows developers to analyze the essence of their model and to
compare their model to a corpus of public models in terms of essence. We
have populated the essentializer’s database with a set of artificial “micro-
benchmark” models. We would like to study the structural essence of repre-
sentative real-world models, based on a future corpus of application models
similar to the Qualitas Corpus [7] of Java application implementations.

In this paper we introduce the notion of “structural essence”, and we describe an
approach to compute that metric on UML class diagrams. Unlike the traditional
view that navigability and multiplicity are details of associations that may be
omitted from higher-level models, our view is that multiplicities (and the cycles
due to the navigability of associations) are essential. We hope that this idea will
spark discussions on the purpose and the essence of models.
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1. Briand, L., Wüst, J.: Empirical studies of quality models in object-oriented sys-
tems. Advances in Computers 59, 97–166 (2002)

2. Brooks Jr, F.P.: The mythical man-month. anniversary ed.. Addison-Wesley
Longman Publishing Co., Inc., Boston (1995)

3. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (1995)

5. Harrison, R., Counsell, S., Nithi, R.: Coupling metrics for object-oriented de-
sign. In: Proceedings of the 5th International Symposium on Software Metrics,
METRICS 1998, pp. 150–156. IEEE Computer Society, Washington, DC (1998)

6. Murphy, G.C., Notkin, D., Sullivan, K.J.: Software reflexion models: Bridging the
gap between design and implementation. IEEE Trans. Softw. Eng. 27, 364–380
(2001)

7. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,
Noble, J.: Qualitas corpus: A curated collection of java code for empirical studies.
In: 2010 Asia Pacific Software Engineering Conference (APSEC 2010) (December
2010)

8. van Opzeeland, D.J.A., Lange, C.F.J., Chaudron, M.R.V.: Quantitative techniques
for the assessment of correspondence between UML designs and implementations.
In: Proceedings of the 9th QAOOSE (July 2005)
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Abstract. Today, energy consumption is one of the major challenges
for optimisation of future software applications and ICT infrastructures.
To develop software w.r.t. its energy consumption, testing is an essen-
tial activity, since testing allows quality assurance and thus, energy con-
sumption reduction during the software’s development. Although first
approaches measuring and predicting software’s energy consumption for
its execution on a specific hardware platform exist, no model-based test-
ing approach has been developed, yet. In this paper we present our vi-
sion of a model-based energy testing approach that uses a combination
of abstract interpretation and run-time profiling to predict the energy
consumption of software applications and to derive energy consumption
test cases.

Keywords: Energy consumption testing, abstract interpretation, pro-
filing, unit testing, model-based testing.

1 Introduction

Today, energy consumption of software systems is gaining more and more impor-
tance. The energy demand of information and communication technology (ICT)
infrastructures is growing rapidly and has become a significant factor of world-
wide carbon dioxide emissions. In 2007, Gartner, Inc. estimated an amount of 2%
of world-wide CO2 emissions for ICT [1]. The SMART2020 report confirmed that
estimation and predicted an annual growth of 6% of the ICT’s emissions until
2020 [2]. For hardware, first approaches for energy-saving operation modes have
been developed [3, 4]. In the domain of wireless sensor networks (WSNs) first
solutions for energy-optimised operation and energy testing exist [5–7]. However,
classical software is optimised w.r.t. its functional and specific non-functional re-
quirements like real-time or performance constraints only. For an energy-optimal
ICT application, software must be optimised w.r.t. energy consumption as well,
since software is executed on (i.e., CPU) and uses (e.g., network devices) hard-
ware and thus influences the hardware’s utilisation and energy consumption. We
argue that an application’s energy consumption must be tested to ensure that it
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can be reduced during development in an easy manner such as today’s testing
frameworks allow quality assurance for real-time and functional requirements.

Our vision is a model-based energy testing (MBET) approach that allows
not only testing the energy consumption of software artefacts but deriving such
test cases from the software’s implementation code or a behavior model. MBET
allows developers predicting and analysing the energy consumption bounds of
their software w.r.t. input parameters (i.e., data) and the software’s execution
context (i.e., hardware). The envisioned solution predicts the energy consump-
tion in a generic way that allows the use of same test cases on different execution
platforms, consuming different amounts of energy (as they are built of different
hardware devices). The major idea of MBET is to interpret the application’s
behavior model in an abstract manner to derive formulas for its best, worst and
average case energy consumption. The basis for these predictions is data ob-
tained from energy consumption profiling of atomic building blocks (e.g., single
Java bytecode instructions). This allows the prediction of a program’s energy
consumption based on static analysis and the derivation of test cases compar-
ing these estimations with real values profiled during runtime. Although some
approaches for resource and energy consumption analysis of software systems ex-
ist [8–11], this is—to the best of our knowledge—the first model-based approach
for energy consumption testing of software applications.

The remainder of this paper is structured as follows. In Section 2 we introduce
model-based testing (MBT), energy consumption analysis of Java applications,
and abstract interpretation. Further we present some related work w.r.t. energy
testing. Afterwards, our MBET approach is described in Section 3. Since the
approach is still in an early development phase, we present our plan to achieve
a fully-implemented realisation of MBET and conclude this paper in Section 4.

2 Background and Related Work

In this section we introduce the three domains related to our MBET approach.
These are: MBT, energy consumption prediction of Java programs and abstract
interpretation. Finally, we present related work in the domain of energy testing.

Model-Based Testing. Utting et al. define MBT as the “automatable derivation
of concrete test cases from abstract formal models, and their execution” [12].
Furthermore, they provide a taxonomy for MBT and a classification of several
MBT approaches. Another definition is given by Roßner et al. They define MBT
as a process including either (1) utilisation of models for automation of testing
activities, (2) the modelling of artefacts within a testing process, or (3) both [13].
Our MBET approach uses a behavior model (e.g., program code, pseudocode,
state charts, or sequence diagrams) as input for energy test case generation.
Thus, it can be considered as a white-box MBT approach.

Energy Consumption of Java Applications. Lafond et al. [8] developed a frame-
work that allows measuring the average energy consumption of Java bytecode
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instructions executed on a specific Java virtual machine (JVM). They used their
framework to estimate the energy consumption for a large subset of all Java
bytecode instructions and evaluated their measurements using several bench-
marks. A similar framework was implemented by Seo et al. [9, 10] who profiled
Java bytecode to predict the average energy consumption for the execution on a
specific platform. Navas et al. [11] designed a framework that allows analysing
the resource usage of Java bytecode instructions. Furthermore, they used formal
methods to compute mathematical expressions describing the upper bounds for
a program’s resource utilisation w.r.t. its input parameters. Similar work has
been done by Süttner who developed a framework to predict a Java program’s
resource (e.g., CPU, harddrive, or network device) utilisation [14]—which is a
prerequisite to predict its energy consumption. He developed an invasive pro-
filing approach that can be used to profile a method’s resource utilisation and
to derive mathematical expressions approximating resource consumption w.r.t.
input data.

Abstract Interpretation. As defined by Cousot and Cousot, “Abstract Interpre-
tation of programs consists in using [a program’s computational denotation] to
describe computations in another universe of abstract objects, so that the results
of abstract execution give some information on the actual computations” [15].
It can be used to derive constraints or equations from the program’s static se-
mantics to prove general properties of a program’s behavior for every possible
execution. For example, abstract interpretation can be used to check whether a
mathematical expression always results in a negative value, to predict the bounds
of a specific variable’s possible values or for static semantics such as type anal-
ysis. In our MBET approach we plan to use abstract interpretation to compute
bounds for energy consumption of programs based on their control flow graphs
(CFGs) and input data.

Energy Testing Approaches. As stated above, energy testing is a rather new re-
search domain in software engineering. Existing approaches focus on hardware’s
energy optimisation or on embedded systems such as WSNs. Chan et al. [6]
proposed a power-aware testing approach for WSNs that is based on metamor-
phic testing. Energy consumption test cases are created by tracing the energy
consumption of functional test cases. Although they propose an approach for en-
ergy consumption testing, they focus on WSNs. Similar work has been done by
Woerhle et al. [7] who developed a testing architecture for WSNs that is based
on so-called power unit tests. The tests are associated to regular functional test
cases and use a temporal function that predicts lower and upper bounds for the
test case’s energy consumption during execution.

3 Model-Based Energy Testing

In this section we present our MBET approach that shall allow testing software
w.r.t. its energy consumption in a model-based manner. Our MBET approach
can be described as a process consisting of six steps which are (cf. Fig. 1):
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(a) (b)

(c) (d)

(5) Test Case Generation

@Test
public void testMain01() {
  /* Execute and profile main()
     1000 times. */
  List<EProfile> result =   
    profileNTimes("main",1000); 
  assertConsumedMin(result,3); 
  assertConsumedMax(result,29); 
  assertConsumedAvg(result,14.5); 
}

(e) (f)

Fig. 1. The MBET Approach

1. Modelling
2. Model Transformation
3. Abstract Interpretation
4. Energy Consumption Prediction
5. Test Case Generation
6. Test Case Execution

These six steps form our testing process which can of course consist of multiple
iterations. For example, test cases can be regenerated after the behavior model
changed during development. All six steps are shortly explained in the following
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using the example program1 given in Figure 1. Possible solutions and approaches
to achieve these steps are given as well.

3.1 Modelling

Our vision of an energy testing approach targets to support energy testing for
different platforms and hardware. We envision an MBET approach that allows
deriving energy test cases from models. Thus, modelling of the system under
test (SUT) is its first step. As a model we consider either executable code (e.g.,
a Java program) or a behavior model (e.g., pseudocode, a UML state chart
or a UML sequence diagram). The major requirement for the model used for
MBET is a description of the software’s behavior on a level of detail that allows
deriving a control flow graph (CFG). Figure 1(a) shows a simple Java program
that contains a for loop that is executed for 0 to 5 times depending on a random
value. This program can be considered as an example input model for MBET.

3.2 Model Transformation

In a second step, the model must be transformed into a data structure that
can be used for abstract interpretation. In MBET we plan to use a CFG as
the basis for abstract interpretation. This leads to a data structure where each
statement or state from the behavior model corresponds to a node in the CFG
with transitions probably having guards (i.e., Boolean expressions) to represent
loops and if statements. As can be seen in Figure 1(b), the example input
model has been transformed into a CFG consisting of five nodes. Furthermore,
the graph contains a cycle which represents the for loop from the input program.

3.3 Abstract Interpretation

During abstract interpretation, the CFG is interpreted in an abstract manner.
For example, abstract interpretation can be used to predict bounds for the values
that variables of a program can have at runtime [15]. For example, one might
prove that a specific integer variable can never reach a negative value during a
program’s execution and thus, the variable has a lower bound of 0. In our case the
result of abstract interpretation shall be a set of formulas that allow to compute
the lower and upper bounds of a program’s energy consumption (cf. Fig. 1(d)).
Each node of the graph—representing an instruction of the program—has to
be associated with its average energy consumption. These values can be mea-
sured or predicted during benchmarking and profiling, e.g., for Java bytecode
instructions as done by Lafond et al. [8] and Seo et al. [9, 10]. Once each node
has a predicted energy consumption (cf. Fig. 1(c)), formulas can be derived that
express the program’s best, worst and average case energy consumption. In the
1 For simplicity, all energy consumption rates of the presented example are specified in

simple Joule values. We did not try to use realistic values but simple and clarifying
values instead.



Vision Paper: Towards Model-Based Energy Testing 485

given example, all nodes have a constant energy consumption. Only node (2) has
a consumption that can vary between 1J and 2J . However, its imaginable that
nodes may have a more complex energy consumption rate. For example, the rate
may depend on the data structure handled by the instruction represented by the
node or the times the instruction has been executed before. In such cases nodes
may have energy consumption rates expressed by mathematical expressions in-
stead of constant values.

3.4 Energy Consumption Prediction

Once the formulas are derived from abstract interpretation, they can be used
to predict a program’s energy consumption. As shown in Figure 1(d), we have
derived formulas for the program’s minimal, maximum, and average energy con-
sumption, based on a general formula for the program’s energy consumption:2

E = 1J + [1J, 2J ] ∗ [1, 6] + (1J + 2J) ∗ [0, 5] + 1J (1)

The minimal and best case is an execution where the program’s for loop is not
executed at all. The initial node (1) is executed; afterwards, the loop’s condition
(2) is checked and results in false. Finally, node (5) is executed. This results in
a minimal execution of 1J + 1J + 1J = 3J . The maximum energy consumption
is the worst case where the loop is executed five times (nodes (3) and (4))
and its loop condition (node (2)) is executed six times, each time consuming
its worst case energy (2J). This results in a maximum energy consumption of
1J +2J ∗6+(1J +2J)∗5+1J = 29J . The average energy consumption rate can
be computed in a similar way as illustrated in Figure 1(d). Besides best, worst,
and average case energy consumption, other predictions are imaginable as well.
For example, it is possible to combine the formulas from abstract interpretation
with concrete input values of a program to predict specific energy consumptions
for test cases using specific input values as their test data.3

An interesting research question for energy consumption prediction is which
energy consumption cases can be predicted for which programs. According to
Seo et al., three different types of programs exist [9]: Programs having constant
energy consumption (1), programs whose energy consumption depends on the
data they are processing (2) (e.g., a sort algorithm’s energy consumption depends
on the size of the data to sort) and (3), programs whose energy consumption
is unpredictable (e.g., a program requesting an external database whose con-
sumption depends on the size of the data within the database and the network’s
response time). Whereas the energy consumption of type (1) and (2) programs
can be predicted using abstract interpretation, the prediction of type (3) pro-
grams can be complicated if not impossible. Furthermore, some programs do
not allow to predict worst case energy consumptions as, e.g., loops may not have

2 Square brackets denote intervals with lower and upper bounds. For example, [0, 5]
means values between 0 and 5 inclusively.

3 Of course, this would require another example program using input parameters.
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1 /* Simple example to test main(). */
2 @Test
3 public void testMain() {
4 // Execute and profile main() a 1000 times.
5 EProfiler profiler = new EProfiler();
6 List<EProfile> result = EProfilerUtil
7 .profileNTimes(this, "main", new Object[0], profiler, 1000);
8 // Test best and worst case consumption.
9 EAssert.assertConsumedMin(result, 3);

10 EAssert.assertConsumedMax(result, 29);
11 // Test average consumption (delta is +/-1.5).
12 EAssert.assertConsumedAvg(result, 14.75, 1.5);
13 }

Listing 1. A JouleUnit Example

upper bounds w.r.t. their number of iterations. A possible solution would be
to predict probabilistic values or quantiles for these cases (e.g., a program that
consumes a maximum amount of 10J with a probability of 99%).

3.5 Test Case Generation

Once a program’s energy consumption has been predicted, test cases can be gen-
erated that execute the program, measure its real energy consumption and check
the measured consumption against the predicted values. Our vision is to develop
a testing framework JouleUnit for energy consumption profiling and testing (cf.
Fig. 1(e)). Similar to other non-functional optimisation problems, energy con-
sumption should not be tested in isolation but altogether with other functional
and non-functional requirements of the SUT. Thus, JouleUnit extends the func-
tional testing capabilities of JUnit4 for energy consumption profiling and test-
ing.5 As shown in Listing 1, JouleUnit supports energy consumption profiling as
well as assertions for best, worst and average case energy consumption including
the specification of deltas for allowed variances between expected and measured
values. Furthermore, we plan to support a construct that allows executing a
method under test multiple times to measure its average energy consumption
in an appropriate way (cf. Listing 1, lines 7–8). As JouleUnit is still in an early
development phase, the proposed syntax may change and further constructs for
profiling and energy consumption testing may be introduced.

3.6 Test Case Execution

Finally, of course, the derived test cases have to be executed and their assertions
have to be checked. Our vision is that we are able to implement MBET platform-
independently such that it is possible to execute the same test cases on different
4 http://www.junit.org/
5 Of course, extending JUnit is just one possibility. Developing similar unit testing

framework extensions for other programming languages is possible as well.

http://www.junit.org/
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machines (and even different operating systems) in a way that they lead to the
same deterministic results although the program consumes different amounts of
energy on different platforms. Therefore, we plan to generate energy test cases
that can be configured or calibrated for each execution platform. A possible
solution for this problem would be to generate the test cases in a way that
they use abstract energy consumption values instead of concrete Joule values
(e.g., abstract formulas derived from the abstract interpretation that were not
calibrated to a specific platform using profiling results). A setup phase could
benchmark and profile the execution platform and transform the generic test
cases into platform-specific ones. However, such a solution is only a first idea
and implementation details of the soultion are the target of future work.

Another challenge is the question how to monitor the SUT during test exe-
cution to retrieve real energy consumption rates of the program during testing.
We are planning to build a specific JouleUnit component that is responsible to
monitor the energy consumption at runtime. First work in this direction has
been done by Süttner [14], but a sufficient solution will be another task of future
work. As monitoring a SUT introduces a probe effect that influences the moni-
toring results, another challenging question for future work will be to estimate
or avoid the probe effect of energy consumption testing.

4 Conclusion

In this paper we have presented our vision of an MBET approach. To the best of
our knowledge this is the first approach for model-based energy testing. As the
major basis for MBET we proposed a six-step testing process using combination
of abstract interpretation and statement-based energy consumption profiling to
predict a program’s best, worst, and average case energy consumption. Further
we have presented our vision of a JouleUnit framework that extends JUnit for
energy consumption profiling and testing. As stated above, MBET has not been
implemented nor evaluated completely, yet. Thus, we identified many open issues
that have to be realised until we obtain a realisation of our complete MBET
process.

At first we focus on the development and improvement of our JouleUnit exten-
sion for JUnit. JouleUnit will provide the required energy consumption profiling
and testing statements and will also provide methods to execute and profile a
Java program multiple times for its best, worst, and average case energy con-
sumption testing. The first JouleUnit prototype is currently under development
and shows promising results for energy consumption testing of Java applications
on desktop PCs as well as for Java applications controlling embedded systems
(e.g., Nao humanoid robots). Once JouleUnit is working, we plan to implement
a test case generator that generates JouleUnit code from the formulas for a
program’s energy consumption derived from static program analysis.

Thus, we need an abstract interpreter that allows deriving these formulas
from a program’s CFG or a similar behavior model. We plan to either implement
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a specific abstract interpreter for energy consumption predictions of Java CFGs
or to realise a more generic solution by implementing a program analysis genera-
tor that is able to generate energy consumption analysers for different program-
ming languages and behavior models. Earlier work in the domain of abstract
interpretation has shown that it is possible to develop such analyser generators
for static program analysis [16]. Whether a similar solution is possible for en-
ergy consumption analysis and which kind of statements, languages and maybe
even which kinds of applications do allow static energy consumption analysis
based on abstract interpretation remains a challenging task of future work. First
investigations showed that this is possible for small domain-specific languages
(DSL) (e.g., a simple DSL controlling a Nao humanoid robot), but whether the
same appraoch is appropriate for complex programming languages remains a
research question for future work. For energy consumption analysis we further
need a model that associates different nodes from CFGs to their average energy
consumption. We have started first work that analyses the CPU and memory
utilisation of Java programs [14], but further work is necessary that allows de-
riving energy consumption of Java instructions from their hardware utilisation.
Alternatively, results presented by Lafond et al. [8] could be used as a basis
for instruction-wise energy consumption prediction. The profiling capabilities of
JouleUnit could help here by benchmarking and profiling specific Java instruc-
tion w.r.t. their energy consumption. For modelling software applications we
have developed the cool component model (CCM) that can be used to model
software and hardware components w.r.t. their behavior and their demands of
non-functional properties (i.e., qualities) as well as hardware dependencies [17].
Besides Java source code, we plan to investigate the usability of the CCM for
input models of MBET. Furthermore, other behavior models like UML state
machines and sequence diagrams are further options for MBET input models.

Finally, evaluation plays a major role to develop a reasonable MBET imple-
mentation. Thus, we plan to evaluate both the JouleUnit framework and the
energy consumption prediction using several case studies to ensure that our test
framework evaluates the programs in an appropriate and realistic way.

As this paper is entitled as a vision paper it presented our vision of MBET
and not our final solution. Some parts of the MBET concepts may evolve or
be even removed during our research, as it remains open whether or not it is
possible to statically predict a program’s energy consumption by using abstract
interpretation. However, we are sure that the general idea of MBET can help to
reduce the energy consumption of future software applications.
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Abstract. Syntactic difference between models is a wide research area with
applications in tools for model evolution, model synchronization and version con-
trol. On the other hand, semantic difference between models is rarely discussed.
We point out to main use cases of semantic difference between models, and then
propose a framework for defining well-formed difference operators on model
semantics as adjoints of model combinators such as conjunction, disjunction and
structural composition. The framework is defined by properties other then con-
structively. We instantiate the framework for two rather different modeling lan-
guages: feature models and automata specifications. We believe that the algebraic
theory of semantic difference will allow to define practical model differencing
tools in the future.

1 Introduction

The notion of syntactic difference is well established in software engineering. Textual
and graphical algorithms are used to identify differences between text files (source code)
and models, and then employed to construct versioning systems, which support com-
parison and merging of files. Semantic difference between models is rarely discussed in
the modeling community. This is surprising given the wide recognition of importance
of software evolution; semantic difference can support evolution scenarios like bug
localization, or incremental verification, and enable model merging that does not fail
on ad-hoc syntactic conflicts.

While working on specification theories, within the realm of concurrency and ver-
ification, we have observed that many familiar operators on specifications also apply
to other models: conjunction – superposition of requirements; parallel composition –
structural composition of models; refinement – subtyping, just to mention the most
important ones. However the notion of difference, as a form of (partial) inverse to the
above operators, does not attract nearly as much interest in software engineering.

Our objective is to define and present semantic difference between models in a
general fashion. We propose an unambiguous definition of difference which emphasizes
its algebraic properties. We instantiate it both for a very simple modeling language,
feature models [13], and also for the mode complicated language of automata specifica-
tions [14].
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Finally, we also try to explain how difference operators can be used to make formal
software development more iterative. It is a common belief that development by step-
wise refinement, or use of component algebras, requires using a highly planned and
waterfall-like development process. See for example the following quote:

An important variant of the waterfall model is formal system development,
where a mathematical model of a system specification is created. This model is
then refined, using mathematical transformations that preserve its consistency,
into executable code. Based on the assumption that your mathematical transfor-
mations are correct, you can therefore make a strong argument that a program
generated in this way is consistent with its specification. [22, p.32]

We will point out uses of difference between models involving flow of information
between the stages of the development process and abstraction layers in either way.
This allows to run the formal development process in a more agile and iterative manner.

Let us give a teaser of our approach to difference with an extremely simple example:
the difference operator for integer numbers. Observe that given two integers t and s, the
difference t − s can be defined as the maximum integer x for which s + x ≤ t. More
succinctly: x is a difference of t by s if it holds that for any other integer y:

s + y ≤ t iff y ≤ x.

It is then easy to see that this defines a unique notion of difference. Now observe that
we have here defined t − s by property rather than construction. To show that such a
difference actually exists, one has to do more work; but if it does, we already know that
it is unique. We will repeatedly use constructions like the above for defining differences
with respect to other binary operators and for other objects than integers.

A similar algebraic structure can be uncovered in the area of software verification:
In programming languages, there is a long established notion of weakest precondition,
as the proof obligation on the context of a piece of code which suffices to conclude
a given goal [8,11]. Let P be a fragment of imperative code consisting of a number
of sequentially composed statements s1, . . . , sk. Let the axiomatic semantics for each
statement be expressed by a Hoare triple {ϕi}si{ψi}, where ϕi is a precondition and
ψi is a postcondition, and let ψ be a desired property of the state after executing P .
Proving that P is correct, i.e. that {true}P{ψ} describes P , amounts to showing that
true → ϕ1, ϕ1 → ψ1, ψ1 → ϕ2, . . . , ψk → ψ.

However this may not always be possible, since it enforces correctness regardless of
the initial state. Instead it is more reasonable to synthesize an assumption X for which
X → ϕ1, ϕ1 → ψ1, ψ1 → ϕ2, . . . , ψk → ψ. The property X is called a sufficient
precondition for P to guarantee ψ. We say that X is the weakest precondition if it is
also necessary, i.e. if it holds for all formulae Y that

Y → ϕ1, ϕ1 → ψ1, ψ1 → ϕ2, . . . , ψk → ψ iff X → Y.

The precondition X informs the user of P on what conditions she has to meet. Dually
if the precondition ϕ for P is fixed by the users of the program, the strongest post-
condition shows the developer what can be guaranteed with P . If this conclusion is
unsatisfactory, the developer can use it to improve P , to give stronger guarantees.
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In the following section we will see that this weakest precondition structure, will also
appear in differencing feature models.

2 Case Study: Difference for Feature Models

We will now define difference for the language of feature models [13]. To the best of
our knowledge, semantic differences for feature models have not been studied before.

Definition 1. A feature model is a tuple M =(F, H, G, ϕ). F is a finite set of features,
H ⊆ F×F is a set of directed edges, G⊆2F is a set of or-groups, and ϕ is a Boolean
formula over F expressing so-called cross-tree constraints. We demand that i) (F, H)
is a forest1 and write parent(f), for f ∈ F , for the unique p ∈ F for which (p, f) ∈ H ,
and that ii) all states in an or-group share the same parent, so for all e, f ∈ g ∈ G,
parent(e) = parent(f).

Fig. 1 presents feature models of two applets (in the spirit of [1]) which we will use as
examples. We will use single letter names for features (underlined in the diagram). In
applet1, the root feature is a and represents the concept of an applet itself. The diagram
says that the applet is decomposed into three smaller features (m, d, t). The empty circles
above the names of d and t mean that implementing these two features is optional: an
applet may, but does not have to override d and t. However, each applet must override
(m) at least one of the methods p, s, and i; this necessity is denoted by the filled circle
above the feature m and the filled arc in the concrete syntax. In the abstract syntax, this
is expressed by or-groups {m}, {p, s, i} ∈ G. Moreover the cross-tree constraint (placed
under the diagram) requires that any applet overriding d or s must also override i.

The variant of feature models presented above is among the simplest (and perhaps
most popular) in use. The semantics of the language is defined in terms of translation
to Boolean logics, see [2]. Let M = (F, H, G, ϕ) be a feature model, then

[[M ]] = ϕ ∧ ( ∧
(p,c)∈H

c → p
) ∧ ∧

{f1,...,fk}∈G

(
parent(f1) →

k∨
i=1

fi

)
.

The generated formula describes the configurations allowed by M . All of them need to
satisfy the cross-tree constraint ϕ. Also, whenever a feature f is included in a configura-
tion, its parent must be included, too. Finally, for each group at least one of its members
must be present as soon as its (unique) parent is present. The semantics of our example
is hence(

(d → i) ∧ (t → i)
) ∧ (

(m → a) ∧ (d → a) ∧ (t → a)

∧ (p → m) ∧ (s → m) ∧ (i → m)
) ∧ (

(a → m) ∧ (m → (p ∨ s ∨ i))
)
.

Analysis techniques for feature models often rely on SAT solving or BDDs [23,16,24,17].
Consider now the feature model applet2 of Fig. 1, which could emerge as a result

of the same concept being modeled by another engineer. To focus attention we will

1 A forest is a finite disjunction of rooted trees, so technically we capture sets of feature models.
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(d → i) ∧ (t → i)

applet1

(¬m → i)

applet2

(¬m → i)

Quotient approximation

Fig. 1. The two example feature models and an over-approximation of their quotient

assume that this model has been created by a designer of a component that needs to
satisfy model applet1 as a requirement. A few questions arise: How do these two models
differ? Are they equivalent? If not, what is the actual difference?

Syntactic difference algorithms cannot address these questions. A textual difference
algorithm applied to the cross-tree constraint would just say that they differ, being
unable to qualitatively explain the difference. An edit-distance based algorithm applied
to the tree diagram could likely discover that i has been moved to become a parent of
d and t, but not more – tree difference algorithms inform about the editing steps, but
they cannot explain their impact. Admittedly, syntactic difference has a proven record
of usefulness in many situations. However a modeler trying to understand the difference
between the two diagrams, would likely ask a non-syntactic question: What does this
change mean? Such question is best addressed semantically.

Following the pattern of the examples in the introduction, we will define the semantic
difference of formulae ϕ and ψ as the “weakest” solution X to the implication ϕ∧X →
ψ. Hence:

Definition 2. Given two formulae ϕ and ψ, a formula X is an adjoint to the conjunction
ϕ ∧ ψ if it holds for all formulae Y that

ϕ ∧ Y → ψ iff Y → X.

Thus X satisfies ϕ ∧ X → ψ and is implied by any Y which also solves this “equa-
tion”. The next lemma shows that adjoints to conjunction are defined uniquely up to
bi-implication, hence we may speak of the adjoint to a conjunction ϕ ∧ ψ and denote it
X = ψ \∧ ϕ (provided that it exists, which we shall show below):

Lemma 1. If X1 and X2 are adjoints to the conjunction ϕ ∧ ψ, then X1 ↔ X2.

Proof. X1→X1 entails ϕ∧X1→ψ and hence X1→X2. Similarly for X2→X1. !"
Existence of adjoints to conjunction is settled by the following lemma, whose proof is
a routine verification of the property in the definition.

Lemma 2. For formulae ϕ, ψ, we have ψ \∧ ϕ ≡ ϕ → ψ.

Coming back to our example, a routine computation shows that [[applet1]] \∧ [[applet2]] =
m ∨ p ∨ s ∨ ¬ a ∨ ¬ i. We have computed the weakest cross-tree constraint which
needs to be added to applet2 for it to act like applet1. In other cases it might not be useful
just to compute a cross-tree constraint as the difference of two feature models; instead
one might want a representation which is closer to the concrete feature-model syntax.
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QUOTIENT-AND

Input: ϕ, ψ : formulae in CNF
Output: an over-approx. to ψ \∧ ϕ

1 Let X = ∅
2 for each clause c ∈ ψ do
3 if SAT(ϕ ∧ ¬c) then add c to X
4 return X

For this the algorithm displayed on the right can
be used. It takes as input two formulae ϕ and ψ in
conjunctive normal form (note that semantics of
feature models are easily converted to CNF) and
then finds for the quotient all clauses in ψ which
are not entailed by ϕ (through the satisfiability
check of ϕ ∧ ¬c in line 3). This is clearly an
over-approximation of the quotient, but might fail
at maximality. It can still be useful in the software development process as a more
syntactic representation.

As an example, the approximation computed for the quotient of applet1 by applet2 is
(¬a∨m)∧ (¬i∨m) = (a → m)∧ (i → m), and this can easily be added to the syntactic
representation of applet2 to signal the changes necessary, see Fig. 1 (rightmost).

In [6] we have presented a general feature model synthesis algorithm. The concrete
syntax for the difference in the example above could be automatically computed by
this algorithm. In general the algorithm could be used in a modeling tool visualizing
semantic differences between feature models.

3 A Categorical Intermezzo

We will now generalize the considerations on adjoints and difference.

Definition 3. A preorder category is a class C of objects and a morphism relation
→C ⊆ C×C which is reflexive and transitive. A functor of preorder categories C, D is
a mapping F : C→D which respects the morphisms: if x →C y then F (x) →D F (y).

A preorder category is just a usual preorder, and a functor is a preorder homomorphism.
We use categorical language here because adjoints are categorical concepts:

Definition 4. Let C, D be preorder categories and L : C → D, R : D → C functors.
Then (L, R) is called an adjoint pair if it holds for all x ∈ C, y ∈ D that

L(x) →D y iff x →C R(y).

In an adjoint pair (L, R), L is called the left and R the right adjoint. The notion of
adjoints is important in category theory; note that we have simplified things here by
only working in preorder categories, see e.g. [15, Ch. 4] for the full story. We can
generalize the proof of Lemma 1 to show that up to isomorphism, one half of an adjoint
pair determines the other:

Lemma 3. If (L1, R1), (L1, R2), and (L2, R1) are adjoint pairs between preorder
categories C, D, then R1(y) ↔C R2(y) and L1(x) ↔D L2(x) for all x ∈ C, y ∈ D.

To apply these considerations to the setting of Section 2, we need only notice that we
are working there in the category F with logical formulae as objects and implications
as morphisms. If we denote by Aϕ and Iϕ, for ϕ ∈ F , the mappings F → F given by
Aϕ(ψ) = ϕ ∧ ψ, Iϕ(ψ) = ψ \∧ ϕ, then the biimplication of Definition 2 reads

Aϕ(Y ) → ψ iff Y → Iϕ(ψ),
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hence we are defining an adjoint pair (Aϕ, Iϕ) for all formulae ϕ. Lemma 2 then says
that such an adjoint pair exists for each formula ϕ. Another way to state this is that with
tensor product ∧, the category F is (strict symmetric) closed monoidal; in this context,
the adjoint \∧ is also called the exponential to ∧.

4 Difference and Development Processes

The adjoint to conjunction is useful in a top-down development scenario, when a general
requirements model is given (applet1) and a refinement is developed by a component
designer (applet2). By visualizing the difference [[applet1]] \∧[[applet2]], the designer can
monitor his refinement, and see how to constrain it to meet the general requirements.

In this scenario, information flows top-down – as in the quote in the introduction. The
difference is used to refine models at lower abstraction levels. As much as this is useful,
this is not fully satisfactory. In software engineering processes, information flows both
ways. Especially in iterative processes the implementations are continuously adjusted
to meet requirements, while requirements themselves are also continuously adjusted as
a result of changing business conditions, and learning from experience in implementing
the previous iterations. So we need to not only have ways for communicating model
changes top-down in the refinement hierarchy, but also bottom-up.

Let us link these observations to differencing feature models. Observe that ϕ∧X → ψ
is equivalent to ϕ → ¬X ∨ ψ. Moreover, if X is the weakest constraint that makes the
former valid, then¬X is the strongest constraint that makes the latter valid. If interpreted
in modeling terms, ¬X represents the least amount of weakening that needs to be added
to the model whose semantics is given by ψ (in the example applet1) in order for the
requirements to be possible to meet with components satisfying ϕ (applet2). So ¬X
represents the information that flows upwards in the refinement hierarchy whenever it is
not the component that needs to be ’fixed’, but the requirements that need to be relaxed.

In our example, the negation of the difference formula is¬m∧¬p∧¬s∧a∧i. It directly
describes a configuration of applet2 that needs to be admitted by applet1 in order to
make the two models equivalent. In general this negation encodes all configurations of
applet2 that need to be admitted by applet1 in order to make the two models equivalent.

We define the adjoint to disjunction using a universal property as in Def˙ 2: Given
formulae ϕ, ψ, say that a formula X is an adjoint to the disjunction ϕ ∨ ψ if it holds
that

ϕ → Y ∨ ψ iff X → Y

for all formulae Y ; hence X is now to be the “strongest” (with respect to implication
ordering) solution to the implication ϕ → X ∨ ψ.

If we denote by Oψ the mapping Oψ(ϕ) = ϕ∨ψ, the above bi-implication defines a
left adjoint Jψ to Oψ, i.e. an adjoint pair (Jψ , Oψ). By the considerations of Section 3
we know that such left adjoint, if it exists, is unique; using Lemma 2 and self-duality
of the category F we can conclude that ψ \∨ ϕ := Jψ(ϕ) = ¬(ψ \∧ ϕ) = ¬(ϕ → ψ),
hence the adjoint to disjunction always exists.

Use Cases for Semantic Difference of Feature Models. Let us conclude the feature
modeling example with a list of concrete applications for the difference of feature
models, seen as a difference of their semantics (some of them already suggested above):
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– Visualizing and explaining difference between models as specifications.
– The difference is a debugging information. Instances satisfying applet2 but not the

adjoint, are examples of configurations that are illegal in the requirements model.
– Dually they can be shown to the designer of applet1 as examples of possible config-

urations, which might be used to expand requirements.
– If system configurations in [[applet2]] ∧ ¬([[applet1]] \∧[[applet2]]) pass correctness

tests then the modeler should consider communicating them upward, to negotiate
relaxation of these (otherwise reuse may be hindered).

5 Difference for Automata Specifications

We will now briefly show that the same construction of adjoint is applicable (and in fact
known) for automata specifications. Assume a fixed alphabet of actions Σ.

Definition 5 ([14]). A modal specification (MS) is a tuple R=(P, λ0, Δm, ΔM ) where P
is a set of states, λ0∈P is the initial state and ΔM ⊆ Δm ⊆ P ×Σ×P . ΔM and Δm

are respectively must- and may-transitions, both deterministic and total: for every state
p∈P and action a∈Σ, there is exactly one λ∈P such that (p, a, λ)∈Δm.

An automaton is a MS where ΔM = Δm. An instance of a MS is an automaton that is
obtained by unfolding the modal specification and cutting some may transitions while
ensuring that all the must transitions stay present. Formally, let R=(P, λ0, Δm, ΔM ) be
a MS and A=(M, m0, Δ) an automaton. A is an instance of R, written A |= R, if there
exists a binary relation ρ ⊆ M × P such that (m0, λ0) ∈ ρ, and for all (m, p) ∈ ρ:

(1) for every (p, a, λ) ∈ ΔM there is a transition (m, a, m′) ∈ Δ with (m′, λ) ∈ ρ
(2) for every (m, a, m′) ∈ Δ there is a transition (p, a, λ) ∈ Δm with (m′, λ) ∈ ρ.

We write [[R]] for the set of instances of a MS R and say that a MS S refines another
MS T , written S ≤ T , iff [[S]] ⊆ [[T ]].

Two modal specifications over the same alphabet can be composed by synchronizing
on common actions, similarly to composition for regular transition systems, but with
the provision that the composition of two may-transitions is again a may-transition, and
the composition of two must-transitions is a must-transition. The composition M1 ‖M2

accepts all compositions between models of M1 and of M2, so [[M1 ‖ M2]] = {(m1 ‖
m2) | m1∈ [[M1]], m2∈ [[M2]]}.

Given specifications S and T , the quotient operation \‖ computes the greatest spec-
ification X (with respect to the refinement order) such that S ‖ X ≤ T . So T \‖ S is
essentially the difference between S and T with respect to structural composition – it
describes the component that is missing in order to provide T . In a more succinct way
we can say that X is a quotient of T by S if it holds that

S ‖ Y ≤ T iff Y ≤ X

for all specifications Y . In the spirit of Section 3, we can note that modal specifications
and refinements form a preorder category M, and then the bi-implication above means
that quotient is the right adjoint to structural composition, i.e. that for any specification
S, the functors PS(T ) = S ‖ T and QS(T ) = T \‖ S form an adjoint pair (PS , QS).

Algorithms for computing these quotients are known for many behavioral component
algebras [7,4,19,3,10].
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6 Discussion: Towards Difference between Languages

We have characterized semantic distance as an adjoint of a composition operator, and
exemplified it for conjunction, disjunction, and parallel composition. In this section we
want to illustrate an interesting direction into discussing semantic difference, namely
characterizing distance between an instance of a modeling language and a subclass of
this language.

This problem appears often in practice. For instance model-checkers for automata-
like models may assume that models are deterministic to improve efficiency. Similarly,
analysis tools for class diagrams may assume use of a subset of OCL, in order to make
the validity (or consistency) problem decidable. For feature models, it is sometimes
interesting to look at a class of models that are possible to represent purely diagrammat-
ically (i.e. without cross-tree constraints). However modeling using the full power of
the language is usually easier. It is efficient to abstract behaviors with nondeterminism;
it is easier to write constraints in full OCL; and it is often natural to express some cross-
tree constraints in propositional logics. So the problem arises, whether the full-featured
instance of the language is far, or not far, from the subclass of models which are easy to
analyse. Is it easy to translate into this subclass? How much expressivity is lost (if any)?

Such translation is usually performed by an abstraction operation. Automata can be
determinized; OCL (and propositional) constraints can be weakened to approximate
their semantics within the sublanguage. Interestingly such an abstraction is also an
adjoint, manifesting the same abstract structure as the instance-to-instance differences.
Below we detail this for the example of determinization of modal automata.

The essence of a determinization operator det for (non-deterministic) modal
specifications is that for any specification S, det(S) is the smallest deterministic over-
approximation of S. Hence det(S) is deterministic, S ≤ det(S), and for any determin-
istic specification D, S ≤ D implies det(S) ≤ D. Now the last two properties can be
combined by demanding that

S ≤ D iff det(S) ≤ D

for all deterministic D, which is almost the property we have encountered earlier.
Now let M be the preorder category of deterministic modal specifications as before,

and let N be the larger category of non-deterministic specifications. We have a functor
I : M → N (which “forgets” that the specification is deterministic; hence called a
forgetful functor), and det is a functor N → M. The equation above then becomes

det(S) ≤M D iff S ≤N I(D)

for all S ∈ N , D ∈ M. Hence the determinization functor det is left adjoint to the
forgetful functor I; this type of functors is usually called free.

We see in this example that existence of a faithful abstraction to the subclass of
our modeling language, which maps a model to an abstraction which is “not too far”
away, is the same as a free functor from the language to the subclass, left adjoint to
the forgetful functor. This is indeed characteristic of a number of other examples, and
motivates the search for free functors also in other areas.
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7 Final Remarks and Related Work

We have described a formal approach to defining semantic difference between models.
Perhaps somewhat unexpectedly, our proposal relies on using a preorder on models,
instead of using equality (equivalence) and attempting to construct some sort of coun-
terpart of subtraction. Our difference is an operator that is defined as an adjoint. In
modeling it makes sense to consider differencing with respect to various composition
operators, with conjunction and structural composition being the two main contenders.

Let us briefly summarize the process of defining a semantic difference:

1. Identify a set of models S and a preorder ≤ on S×S (here this was a refinement on
automata, or implication of formulae; in other contexts it could be subtyping).

2. Choose a binary composition operator (merge) ⊗ : S× S → S. We have used
entailment, parallel composition, conjunction and disjunction in this role.

3. The semantics of models is given as a mapping [[·]] : S→D to a semantic domain.
4. Usually the semantic domain D has better algebraic structure than the syntactic

domain S. Thus it is easier to define the difference, as an operator \⊗ on the
semantic domain: \⊗ : D × D → D. By definition T \⊗ S returns the maximum X
for which S⊗X ≤ T , or (as for disjunction) the minimum X for which S ≤ X⊗T .
Not in all semantic domains such a maximum, or minimum, may exist, but if it does,
it is unique (up to the equivalence relation induced by the preorder ≤).

In the future we intend to work on semantic differences for other modeling languages,
including UML class diagrams. Providing a difference for this language requires that
we are able to compute differences for a substantial fragment of first order logics.

Related Work. Semantic difference is discussed in [21], which defines the difference
operator between models T − S as a set of witnesses, which are instances of T but
not instances of S. While this definition is natural, and can be useful in many practical
cases (for example it directly allows providing counterexamples for non-emptiness of
difference), it also has drawbacks. Unlike our proposal, such definition of difference
defines an operator which has a different co-domain than the domains of operands. A
difference between models is no longer a model. Secondly, in most practical cases, the
set of witnesses is infinite and cannot easily be enumerated.

Model merging [5] is composing overlapping models, typically, without prior com-
putation of differences between them. In [18] a semantics oriented merge operation
is discussed for statecharts. It would be interesting to see whether this work could be
extended to provide visualization of semantic differences for statecharts.

Gerth and co-authors [9] present a semantic-based notion between change operations
in a version control scenario. Two operations are equivalent if they lead to equivalent
business process models (in the sense of trace inclusion). They are not concerned with
synthesizing difference models, but with detecting and avoiding merge conflicts. Our
operator, could potentially be used in conflict resolution or visualizing changelogs.

Segura et al. [20] define a syntactic merge operator for feature models using graph
transformations. Closer to semantics, Thüm et al. [23] discuss semantic differences of
edits to feature models. They do not compute differences but simply classify them as
strengthening, weakening, refactoring, and incomparable.

Semantic difference for programs is understood better than for models. For instance,
in [12] differences between procedures are approximated by dependence relations.
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21. Shahar Maoz, J.R., Rumpe, B.: A manifesto for semantic model differencing. In: Interna-
tional Workshop on Models and Evolution (2010)

22. Sommerville, I.: Software Engineering, 9/E. Addison-Wesley, Reading (2011)
23. Thüm, T., Batory, D.S., Kästner, C.: Reasoning about edits to feature models. In: ICSE, pp.

254–264. IEEE Computer Society, Los Alamitos (2009)
24. Trinidad, P., Benavides, D., Cortés, A.R., Segura, S., Jimenez, A.: FAMA framework. In:

SPLC, p. 359. IEEE Computer Society, Los Alamitos (2008)



Automatic Derivation of Utility Functions for

Monitoring Software Requirements�

Andres J. Ramirez and Betty H.C. Cheng

Michigan State University
Department of Computer Science and Engineering

3115 Engineering Building
East Lansing, MI 48824

{ramir105,chengb}@cse.msu.edu

Abstract. Utility functions can be used to monitor requirements of a
dynamically adaptive system (DAS). More specifically, a utility function
maps monitoring information to a scalar value proportional to how well
a requirement is satisfied. Utility functions may be manually elicited by
requirements engineers, or indirectly inferred through statistical regres-
sion techniques. This paper presents a goal-based requirements model-
driven approach for automatically deriving state-, metric-, and fuzzy
logic-based utility functions for RELAXed goal models. State- and fuzzy
logic-based utility functions are responsible for detecting requirements vi-
olations, and metric-based utility functions are used to detect conditions
conducive to a requirements violation. We demonstrate the proposed ap-
proach by applying it to the goal model of an intelligent vehicle system
(IVS) and use the derived utility functions to monitor the IVS under
different environmental conditions at run time.

1 Introduction

A dynamically adaptive system (DAS) monitors itself and its execution environ-
ment to assess how well it satisfies requirements at run time. This monitoring
information enables a DAS to detect both requirements violations, as well as
conditions conducive to their occurrence [7,8,16]. Utility functions have been
successfully applied for self-assessment purposes in DASs [3,9,15,17]. Within the
context of a DAS, a utility function maps monitoring data to a scalar value,
typically within the ranges of zero and one, that is proportional to how well
the DAS satisfies its requirements at run time. This paper presents a goal-based
model-driven approach for automatically deriving utility functions during the
requirements engineering phase. The set of derived utility functions enable a
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DAS to monitor the satisfaction of requirements at run time, as well as identify
potential sources of obstacles that may impede a goal’s satisfaction.

Utility functions provide a light-weight technique for associating the actions
taken by a decision-making process with a DAS’s high-level goals, concerns, and
requirements [9,17]. As such, utility functions can be used to monitor both func-
tional and non-functional requirements of a DAS. Utility functions for monitoring
the functional behavior of a DAS are often derived manually by requirements
engineers with the aid of domain experts. In contrast, utility functions for moni-
toring the non-functional requirements (e.g., performance) of a DAS may be in-
directly inferred at run time through statistical regression-based techniques [1,9].
These performance-based utility functions often generate a single, application-
level utility value representative of the overall system’s performance. Deviations
from this utility value suggests an anomalous behavior that may require an adap-
tation. While these approaches facilitate the derivation of performance-based
utility functions, they tend to postpone their integration until deployment when
real execution data becomes available to drive the regression process.

This paper presents Athena, an approach that leverages goal-based models
to facilitate the automatic derivation of utility functions at the requirements
level. Currently, Athena supports the automatic derivation of state-, metric-, and
fuzzy logic-based utility functions for KAOS models [5,12] that include RELAXed
goals [2,18]. State-based utility functions assess whether a DAS satisfies func-
tional invariant goals. Metric-based utility functions, on the other hand, detect
conditions conducive to a requirements violation, ideally enabling a DAS to mit-
igate such conditions before an invariant goal becomes violated. Lastly, fuzzy
logic-based utility functions compute the satisfaction of non-invariant goals that
have been RELAXed in order to explicitly account for the effects of environmental
uncertainty. Derived utility functions enable a DAS not only to monitor require-
ments at run time, but also identify candidate sets of system and environmental
agents that may be responsible for a requirements violation.

Athena accepts as input a goal model and a mapping between environmen-
tal conditions and the monitoring elements responsible for observing them, and
generates utility functions to be used for requirements monitoring. To generate
a utility function, Athena uses these mappings to identify observable conditions
of the system-to-be and its execution environment specified in a goal’s defini-
tion. Next, Athena maps keywords in a goal’s definition to different types of utility
function templates. For each invariant goal, Athena generates a state-based utility
function that returns true or false depending on the satisfaction of the goal. For
a non-invariant goal, Athena generates a metric-based utility function to measure
the degree to which some observable condition in the goal’s definition is mini-
mized or maximized with regards to a given threshold. Lastly, for a RELAXed
goal, Athena generates a fuzzy logic-based utility function by mapping RELAX
operators to their corresponding fuzzy logic-based mathematical functions [18].
At run time, derived utility functions accept monitoring data from the envi-
ronmental agents (i.e., sensors) in order to detect requirements violations and
conditions conducive to their occurrence.
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We demonstrate Athena by applying it to a goal model we constructed to
capture the objectives, constraints, and requirements of an Intelligent Vehicle
System (IVS) application that must perform adaptive cruise control and lane
keeping while avoiding collisions with other vehicles on the road. Based on this
goal model, Athena generated utility functions to assess how well the IVS satisfies
its requirements at run time. Lastly, we implemented the set of derived utility
functions within a prototype of the IVS in the Webots simulation platform [14]
to enable the monitoring of requirements during simulation runs.The remainder
of this paper is organized as follows. In Section 2 we present background mate-
rial on goal-oriented requirements modeling and the RELAX language. Next, in
Section 3, we introduce the IVS application domain and use it to present the pro-
posed approach. Section 4 presents our case study. We then provide an overview
of related work in Section 5. Lastly, Section 6 discusses Athena, summarizes main
findings, and presents future directions.

2 Background

This section presents background material on goal-based requirements modeling,
and the RELAX requirements specification language.

2.1 Goal-Based Requirements Modeling

From the perspective of a stakeholder, a goal specifies the objectives that the
system-to-be and its execution environment must satisfy at run time [12]. While
the system-to-be must always satisfy invariant goals, it may temporarily allow
the dissatisfaction of non-invariant goals. In general, goals may be classified
across two orthogonal dimensions. A goal may be classified either as functional
or non-functional depending on whether it specifies what services the system-to-
be must provide or whether it constrains how such services must be provided,
respectively. In addition, a goal may also be classified either as a hard or soft
goal. The satisfaction of a hard goal can be determined in a crisp manner, usually
through state-based predicates. In contrast, a soft goal may be measured, to
some degree, through user-defined metrics, though their ultimate satisfaction
may not be precisely determined due to subjective, and potentially conflicting,
preferences by various stakeholders. Since the satisfaction of a soft goal cannot
be absolutely determined, it is often said that a soft goal is satisficed [4]. Jureta
et al. [11] extended these concepts of achieving a hard goal and satisficing a soft
goal with the notion of excelling, where a goal may be constantly improved upon
some measurable dimension (e.g., minimize vehicle acceleration rate).

A key objective in goal-based analysis is to systematically decompose high-
level goals into finer-grained goals. To this end, goals are graphically represented
in an acyclic directed graph where a goal may be decomposed into subgoals
through AND/OR refinements. While a goal that has been AND-decomposed
may only be satisfied if all of its subgoals are satisfied, a goal that has been
OR-decomposed is satisfied if at least one of its subgoals is satisfied. This goal
decomposition process terminates once each goal is assigned to a single system
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or environmental agent. Whereas a goal under the assignment of an agent in
the system-to-be is a requirement, a goal under the assignment of an envi-
ronmental agent is an expectation of the environment [12]. Darimont and van
Lamsweerde [6] developed a set of goal refinement patterns to guide require-
ments engineers through the process of decomposing higher-level goals into finer-
grained goals. Each refinement pattern is proven correct, thereby enabling a
requirements engineer to instantiate them and leverage the underlying theoreti-
cal framework without having to prove their correctness again.

2.2 RELAX Specification Language

RELAX [2,18] is a requirements specification language for identifying, evaluating,
and mitigating sources of environmental uncertainty in a DAS. RELAX focuses
on declaratively specifying the sources and impacts of uncertainty at the shared
boundary between the system-to-be and its execution environment [10]. This
information is organized into ENV, MON, and REL elements. In particular, ENV

specifies environmental properties that may or may not be directly observable
by a DAS; MON specifies the elements that make up the DAS’s monitoring
infrastructure; and REL defines how to compute the values of ENV properties from
MON elements. The semantics of RELAX operators have been defined in terms
of fuzzy logic to constrain the extent to which a non-invariant requirement may
become temporarily unsatisfied [18]. For example, the RELAXed goal “Achieve
[VehicleSpeed AS CLOSE AS POSSIBLE TO DesiredSpeed]” specifies that while
the value of VehicleSpeed should approximate the DesiredSpeed threshold value,
minor deviations between the two values, as specified by a corresponding fuzzy
logic operator, are tolerable at run time.

Previously, Cheng et al. [2] presented an approach for applying the RELAX
process to non-invariant goals in a KAOS model [5,12] where uncertainty may
cause a goal to become temporarily unsatisfied. To apply their approach, a re-
quirements engineer informally specifies ENV, MON, and REL elements. This pa-
per automates the derivation of utility functions for KAOS models with RELAXed
goals where the definition of ENV, MON, and REL are specified more formally and
amenable to automated processing.

3 Athena Approach

This section presents a goal-based, requirements model-driven approach for au-
tomatically deriving utility functions. First, we introduce the intelligent vehicle
system (IVS) application domain and present a goal model that captures its
requirements, including several goals that have been RELAXed when environ-
mental uncertainty is an issue. We then use the IVS goal model as an example
to present and describe the steps of Athena in detail.

3.1 Intelligent Vehicle System

Intelligent transportation systems (ITS) will provide safe and efficient trans-
portation of passengers across roadways. Within the ITS domain, an intelligent
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vehicle system (IVS) provides autonomous vehicle control through a combina-
tion of adaptive cruise control (ACC), lane keeping, and collision avoidance fea-
tures. As Figure 1 illustrates, the ACC module is responsible for maintaining a
SafeDistance between the IVS and obstacles in front of the IVS, such as Lead Ve-

hicle. Specifically, the ACC module commands the vehicle’s engine to maintain a
SafeSpeed and keep the IVS within the CoastingZone. The lane keeping module,
on the other hand, detects roadway markings and keeps the IVS within the cen-
ter of the driving lane. Lastly, the collision avoidance module uses cameras and
distance sensors to detect obstacles and adjust the vehicle’s engine and steering
mechanisms in response.

Distance Sensors, CamerasIVS LeadVehicle

Safe DistanceCoasting Zone

Fig. 1. Intelligent Vehicle System

The Webots simulation platform [14] provides a generic implementation of an
IVS capable of cruise control and lane keeping. This generic IVS model comprises
a GPS unit for computing the vehicle’s velocity, a camera for detecting roadway
markings, and an accelerometer to compute acceleration and deceleration rates.
For this study, we extended the basic Webots IVS implementation with a moni-
toring infrastructure that supports ACC, lane keeping, and collision avoidance.
The extended IVS also includes a compass and a gyroscope to compute changes in
vehicle heading and velocity, three additional cameras to detect roadway mark-
ings and obstacles, and ten laser- and sonar-based distance sensors that measure
the distance between the IVS and nearby obstacles. For the remainder of this
paper, IVS refers to the extended IVS implementation.

Figure 2 shows an elided RELAX goal model for the IVS application. This
model captures goals for computing the current speed of the IVS, as well as its
distance to nearby obstacles. The IVS can use either a GPS unit or wheel sensors
to compute its velocity, and either cameras or distance sensors to compute its
distance to nearby obstacles. These alternative refinements enable the IVS to
change how it senses its environment at run time. Several non-invariant goals
were RELAXed in this goal model, where the RELAX operators are in upper-
case, to explicitly account for the effects of uncertainty in achieving a goal. For
instance, goal (C) was RELAXed since the IVS can tolerate minor differences
between VehicleSpeed and DesiredSpeed. However, goal (D) was not RELAXed as
deviations between VehicleSpeed and SafeSpeed may cause a collision. Lastly, to
capture the interactions between system and environmental agents (denoted by
a stick figure in an agent hexagon), we applied the unmonitorability refinement
pattern [6] to goals (I,L,M) (J,N,O), and (K,P,Q). This refinement pattern was
applied because system agents alone were not capable of monitoring the condi-
tions formulated in goals (I,J,K). Instead, by applying this refinement, system



506 A.J. Ramirez and B.H.C. Cheng

Achieve[VehicleSpeed  
Equal To SafeSpeed if 

ObstacleDetected]

Achieve[VehicleSpeed AS 
CLOSE AS POSSIBLE TO 

DesiredSpeed 
if not ObstacleDetected]

Maintain[AdaptiveCruiseControl]

Achieve[Vehicle-
SpeedComputed] Achieve

[VehicleSpeed 
= SetSpeed]

navigation 
component

Speed
Controller

Achieve[AS 
EARLY AS 
POSSIBLE 

VehicleSpeed-
Measured

While
Coordinates]

Achieve[Vehicle-
SpeedComputed 

While
VehicleMoving]

distance sensor

AS OFTEN AS 
POSSIBLE 
Measure

Coordinates iff 
VehicleMoving

gps

Achieve[Vehicle-
SpeedComputed 

While 
WheelsTurning]

Achieve[AS 
EARLY AS 
POSSIBLE 

VehicleSpeed-
Measured

While
WheelRotation]

AS OFTEN AS 
POSSIBLE 
Measure 

WheelRotation iff 
WheelsTurning

wheel
sensor

Achieve
[DistanceToObstacle-

Computed]

Achieve
[SafeSpeed-
Computed]

ObstacleDetected 
iff NearObstacle

Maintain
[DistanceToObstacle >= 

SafeDistance]

Achieve[AS EARLY 
AS POSSIBLE 

Measure 
DistanceToObstacle 

While Proximity]

AS OFTEN AS 
POSSIBLE 
Measure 

Proximity iff 
NearObstacle

...

accelerometer

...

(A)

(B)

(C)

(D)

(E)

(F)
(G)

(H)

(I) (J)

(K)

(L) (M) (N) (O) (P) (Q)

Goal

Requirement / Expectation

AgentRefinement

Complete Refinement

Legend:

Goal ID( )

Fig. 2. Goal model for adaptive cruise control in IVS, including RELAXed goals

agents process the environmental conditions measured by an environmental
agent. Due to space constraints we only show the ACC goal model and not
its lane keeping counterpart.

3.2 Description of Athena Approach

To use Athena, a requirements engineer must first follow the RELAX goal modeling
approach [2] and construct a goal model, specify invariant goals, and ENV, MON,
and REL elements for each requirement. ENV specifies environmental conditions
observable by the DAS; MON specifies environmental agents (i.e., sensors) that
make up the DAS’s monitoring infrastructure; and REL specifies how to compute
the values of ENV properties from MON elements. Table 1 presents a subset of
ENV, MON, and REL elements for the IVS application. For example, row (1) spec-
ifies that the IVS obtains the value of the WheelRotation ENV property directly
from its WheelSensor MON element. In contrast, row (2) specifies that the IVS is
unable to directly compute the value of the ENV property VehicleSpeed. Instead,
the IVS computes the value of this property from the wheel’s dimensions and
rotation rate, as specified in the REL relationship for that row.

Athena accepts as input a goal model and set of ENV, MON, and REL elements,
and produces as output a set of state-, metric-, and fuzzy logic-based utility
functions by instantiating functions templates based on the goal’s type. As with
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Table 1. Table with ENV, MON, and REL elements for IVS application

Row Goal ENV MON REL

1

2

3

4

5

6

7

8

9

M WheelRotation WheelSensor WheelSensor.value

L VehicleSpeed VehicleSpeed = IVS.wheel_diameter * 3.1415 * WheelRotation

O Coordinates GPS Coordinates = GPS.value

N VehicleSpeed VehicleSpeed = (NavigationComponent.prev_pos - Coordinates) / 
GPS.time_unit

Q Proximity DistanceSensor Proximity = DistanceSensor.value

P DistanceToObstacle DistanceToObstacle = Proximity * DistanceSensor.max_range

H SafeSpeed WheelSensor, GPS, 
DistanceSensor

SafeSpeed = VehicleSpeed - 0.1 * VehicleSpeed * (1.0 - SafeDistance / 
DistanceToObstacle)

E ObstacleDetected DistanceSensor ObstacleDetected = Proximity > 0.95

B SafeDistance WheelSensor, GPS SafeDistance = 2.5 * VehicleSpeed * 1000 / 3600

traditional requirements monitoring approaches, Athena generates state-based
functions to monitor functional invariant goals since their satisfaction can be
absolutely determined. In contrast, Athena generates metric- and fuzzy logic-
based utility functions to monitor the satisficement [4] of non-invariant goals
whose satisfaction may not be precisely determined, ideally enabling a DAS to
detect and mitigate conditions that would otherwise lead to the violation of an
invariant goal. Once implemented within a DAS, these utility functions compute
utility values at run time based on available monitoring data, thereby enabling
a DAS to monitor requirements, detect conditions conducive to a requirements
violation, and facilitate the identification of potential goal obstructions.

The data flow diagram in Figure 3 illustrates the bottom-up approach that
Athena applies to automatically generate utility functions starting at the leaf
goals and progressing towards the root goal. We now describe each of the key
steps that Athena automatically applies:

Goal-
oriented 
Model

Identify 
ENV 

property

(1)

Identify 
constraint

(2)

goal
goal, 
ENV 

property

MON, ENV, REL 
properties
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Instantiate 
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[Real-valued ENV],
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Utility Functions

ENV
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Data StoreProcess Data Flow
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parent 
goal

(5)

utility function

Fig. 3. Data flow diagram describing the approach

(1) Identify ENV Property. ENV specifies observable conditions of the execu-
tion environment, and can thus be observed by the DAS through its monitoring
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infrastructure. Athena matches text elements in a goal’s specification with the set
of ENV properties (see Table 1). For example, goal (B) refers to the ENV property
DistanceToObstacle specified in row 6 of Table 1. Not all goals, however, refer
to an ENV property. For instance, goal (F) does not refer to an ENV property
(i.e., VehicleSpeedComputed is not specified in Table 1). If a goal does not refer
to an ENV property, then Athena proceeds to step (5).
(2) Identify Constraints on the Goal. Constraints are often logical condi-
tions or thresholds that can be evaluated in a crisp fashion (i.e., true or false).
A goal may specify either an absolute constraint (i.e., a fixed threshold), or a
relative constraint that specifies a relationship between properties whose value
may change, such as an ENV property. For instance, goal (B) specifies a relative
constraint/threshold, SafeDistance, whose value depends upon the IVS’s current
speed that is observable and controllable by the system. If a goal does not specify
a constraint or threshold, then Athena proceeds to step (5).
(3a) Map RELAX Operator to Fuzzy Logic-Based Utility Function. RE-
LAX defines a set of operators to constrain how a non-invariant goal may become
temporarily unsatisfied due to environmental uncertainty [2,18]. Each operator
is associated with a fuzzy logic-based function that evaluates the degree to which
a non-invariant goal is satisfied. Athena generates a fuzzy logic-based utility func-
tion by mapping a RELAX operator to its corresponding fuzzy logic operator. For
instance, Figure 4(A) presents a triangle-shaped function template for the RE-
LAX operator MeasuredQuantity AS CLOSE AS POSSIBLE TO DesiredQuan-
tity. This utility function returns a value between 0 and 1 proportional to how
much MeasuredQuantity approaches DesiredQuantity.

Continuing with this example, Figure 4(B) illustrates how this fuzzy logic-
based utility function template was applied to goal (C). In particular, the mea-
sured ENV property, VehicleSpeed, is mapped to a triangular shape that is
centered at the ENV property’s constraint (i.e., DesiredSpeed). This RELAXed
goal specifies that the IVS tolerates temporary deviations between VehicleSpeed
and DesiredSpeed within the minimum and maximum bounds allowed.

double   triangle_template(measured, desired, bounds) {
      if(measured < bounds OR measured > bounds) {
         return 0.0;
      }
      if(measured < desired) {
         return (1 / bounds / 2) * (desired - measured);
      } else {
         return 1- (1 / bounds / 2) * (measured - desired);
      }
} DesiredSpeed

1

0

VehicleSpeed

Max. Speed
Allowed

Min. Speed 
Allowed

(A) Fuzzy Logic Utility Function Template (B) Fuzzy Logic Utility Function Instance

Fig. 4. Example function template for RELAX operator

(3b) Derive a Metric for a Real-Valued ENV Property. Athena gener-
ates a metric-based utility function for measuring the satisficement of invariant
and non-invariant goals. While it is possible to determine whether an invariant
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goal is satisfied, Athena also evaluates the degree to which an invariant goal is
satisficed or excelled [11], thereby enabling a DAS to detect and mitigate con-
ditions conducive to a requirements violation. To this end, Athena leverages a
goal’s fitness criterion, which is an annotation often associated with soft goals
to quantify the extent to which a goal should be met [12]. Specifically, Athena

maps keywords in this annotation (i.e., minimize/maximize some condition) to a
function template that either minimizes or maximizes the divergence between an
ENV property and its constraint or threshold. For instance, the following func-
tion template measures the degree to which an ENV property approaches a given
constraint, Valconstraint:

UTminimize = 1 − min
{ |ValENV − ValConstraint|

ValENV
, 1

}
(1)

As such, Athena generates a utility function that measures the degree to which
the IVS minimizes the difference between VehicleSpeed and SafeSpeed. Function
template (1) can be instantiated as follows:

UTSafeSpeed = 1 − min
{ |VehicleSpeed − SafeSpeed|

VehicleSpeed
, 1

}
(2)

This utility function produces a utility value inversely proportional to the dif-
ference between VehicleSpeed and SafeSpeed. A sharp drop in the utility values
produced by this utility function may suggest the IVS is exceeding its SafeSpeed
constraint, which may lead to a collision with an obstacle.
(3c) Derive State-Based Function for an Invariant Goal. An invariant
goal describes a functionality that the system-to-be must always provide. To
specify an invariant goal, a requirements engineer uses a set of KAOS [5,12] key-
words (i.e., Maintain, Achieve, Avoid) that can be mapped to precise semantics
in temporal state-based logic [12]. Athena maps these keywords to a state-based
utility function template that returns true or false depending on whether the
constraint is satisfied. For instance, Figure 5(A) presents a state-based utility
function template that is used to monitor the satisfaction of Maintain goals,
where ENV refers to the environmental condition identified in step (1), Op
refers to a logical operator (i.e., <, =, etc.), and Constraint refers to the goal’s
constraint identified in step (2). This template uses a satisfied guard to preserve
the semantics of a Maintain goal and thus returns true only if the constraint has
always been satisfied. As an example, Figure 5(B) shows how this template was
instantiated for goal (B), where the utility function returns true as long as the
IVS has never crossed the SafeDistance threshold.

boolean   maintain_template(ENV, Op, Constraint) {
      if(satisfied) {
         return (satisfied = Op(Env, Constrain));
      }
      return false;
}

(A)  general state-based utility function (B)  instance of state-based utility function

boolean   maintain_template(DistanceToObstacle, <=, SafeDistance) {
      if(satisfied) {
         return (satisfied = DistanceToObstacle <= SafeDistance);
      }
      return false;
}

Fig. 5. Example state-based function template for Maintain goals
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(4) Instantiate Function Template. Athena leverages the set of ENV proper-
ties, MON elements, and REL relationships (See Table 1) to express each utility
function solely in terms of MON elements. These MON elements provide the mon-
itoring information that each utility function needs to assess the satisfaction of
a goal at run time. For example, Athena replaces the ENV property term Vehicle-
Speed in the utility functions derived for goal (D) with the following expression:

VehicleSpeed = IVS.wheel diameter * 3.1415 * WheelSensor.value (3)

This expression, shown in row (2) of Table 1, specifies that the value of Vehi-
cleSpeed can be computed based on the wheel’s geometry and its rotation rate,
which is measured by WheelSensor.
(5) Propagate Utility Values to Parent Goals. Athena propagates the util-
ity values associated with a goal (if any) to its parent goal in order to detect
conditions conducive to a requirements violation. To a parent goal, this prop-
agated utility value measures how well its subgoals are satisficed. The utility
values of multiple subgoals are combined in different ways depending on the
type of goal refinement applied. For an AND-decomposition, Athena computes
the product of each utility value reported by the subgoals in the refinement. For
instance, if the utility value associated with goals (L) and (M) are 0.8 and 1.0,
respectively, then from the perspective of goal (I), its subgoals are satisficed to a
degree of 0.8. In contrast, for an OR-decomposition, Athena selects the maximum
value of each utility value produced by the subgoals in the OR-refinement. For
example, if the utility value associated with goals (I) and (J) are 0.8 and 0.9,
respectively, then from the perspective of goal (F), its subgoals are satisficed to
a degree of 0.9. These semantics capture the notion that to satisfy a goal that
has been AND-decomposed all subgoals must be satisfied, whereas to satisfy a
goal that has been OR-decomposed, at least one subgoal must be satisfied.
(6) Repeat Steps (1) through (5) Until the Root Goal is Reached.

4 Case Study

This case study presents two different scenarios, each implemented in the Webots
simulation platform [14], to illustrate how the set of derived utility functions
enable a DAS to perform self-assessment in response to changing system and
environmental conditions. The following scenarios involve a single IVS placed
400 meters behind a Lead Vehicle in the same lane. During each simulation, both
vehicles accelerate in order to achieve their desired velocities. While the IVS sets
its desired speed to 60 km/h, the Lead Vehicle sets its desired speed to 40 km/h.
This speed differential makes it necessary for the ACC module in the IVS to
readjust its speed to prevent a collision with the Lead Vehicle.

4.1 No Requirements Violations

In this scenario, the utility functions derived by Athena enable the IVS to satisfy
its requirements by mitigating conditions conducive to a requirements violation,
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such as a collision, via dynamic adaptive behavior. Figure 6 shows an excerpt
of the values produced by four different utility functions during this simulation,
as they relate to the high-level goal (B) in Figure 2. As this plot illustrates, in
order to satisfice RELAXed goal (C), the IVS gradually increases its VehicleSpeed
until it is equivalent to DesiredSpeed (at approximately time step 400). The IVS

maintains its DesiredSpeed until its distance sensors detect the Lead Vehicle, at
approximately time step 840 in Figure 6(A). At this point, the metric-based
utility function measuring the satisficement of goal (B) reports lower values as
the distance between the IVS and the Lead Vehicle decreases. Simultaneously,
the IVS switches from satisficing goal (C) to satisfying goal (D). Figure 6(A)
illustrates this transition as the utility function that measures the satisficement
of goal (D) drops to 0 (time step 860) and then progressively increases to 1 as the
IVS achieves its SafeSpeed. Lastly, the IVS continues to maintain its SafeSpeed
until the end of the simulation, at which point the IVS has not violated any
invariant goals, as shown by Figure 6(B).
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Fig. 6. Plot of recorded utility functions for adaptive cruise control in IVS application

4.2 Sensor Noise Leads to Requirements Violation

In this scenario, the utility functions derived by Athena enable the IVS to detect
the violation of an invariant requirement and diagnose potential causes for such
a violation. To produce such a requirement violation, we introduced intermittent
noise in the forward-bearing sensors of the IVS, which are responsible for detect-
ing and computing the distance between the IVS and the Lead Vehicle. Due to
the severe levels of noise applied to these sensors, the IVS is unable to accurately
measure the distance to the Lead Vehicle and thus violates several requirements.

Figure 7 shows an excerpt of the values produced by utility functions during
this simulation as they relate to the high-level goal (B) in Figure 2. Initially, the
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IVS satisfies all invariant goals and satisfices its RELAXed goal (C) by achiev-
ing its DesiredSpeed, at timestep 450 in Figure 7(A). Shortly thereafter, the
IVS distance sensors detect the Lead Vehicle. Due to environmental uncertainty,
however, the computed value of DistanceToObstacle is unreliable. In particular,
forward-bearing distance sensors intermittently report noisy data that suggests
no obstacle is present. As a result, the IVS begins to alternate between satisficing
goal (C), when distance sensors do not report an obstacle, and satisfying goal
(D), when distance sensors report an obstacle. Alternating between these two
goals impedes the IVS from successfully achieving its SafeSpeed objective.

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep (30 ms)

U
ti
lit

y
 V

a
lu

e

 

 

DesiredSpeed FL (Goal C)
SafeSpeed Metric (Goal D)

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timestep (30 ms)

U
ti
lit

y
 V

a
lu

e

 

 

SafeDistance State (Goal B)
SafeDistance Metric (Goal B)

(B)  State- and Metric-based utility 
functions for Goal B

(A) Fuzzy-logic-based and Metric-based
utility functions for Goals C and D, respectively

Fig. 7. Plot of recorded utility functions for adaptive cruise control in IVS application

Given the failure to accurately compute the value of DistanceToObstacle, the
IVS crossed the SafeDistance threshold (at approximately time step 1000) and
violated the invariant goal (B). The state-based utility function for this invari-
ant goal successfully detected this requirement violation, as can be observed in
Figure 7(B), where the SafeDistance State utility curve dropped from 1 to 0
for the remainder of the experiment. As the SafeDistance Metric utility curve
shows, the metric-based utility function for this invariant goal suggested an im-
minent violation of goal (B) by gradually reporting values closer to 0 as the IVS

approached the SafeDistance threshold. By leveraging the entire set of utility
functions, the DAS is able to partially detect a set of agents involved in the
goal’s violation. In particular, plotted utility curves indicate goals (B) and (D)
were violated during the simulation. Moreover, by examining the utility values
produced by (D)’s subgoals, the DAS is able to further pinpoint that goals (H),
(K), and (P) were not satisfied multiple times between time steps 700 and 1000,
thus suggesting the NavigationComponent and DistanceSensor agents as root
causes for the invariant goal’s violation. This information enables requirements
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engineers to either revise the interactions between the NavigationComponent
and the DistanceSensors, or alternatively, add new refinements to mitigate the
obstacle that caused this requirement violation.

5 Related Work

This section overviews related work in specifying partial satisfaction of goals,
requirements monitoring, and the use of utility functions for self-assessment in
a DAS.

5.1 Partial Satisfaction of Goals

Letier and van Lamsweerde [13] introduced a probabilistic framework for spec-
ifying and analyzing the partial satisfaction of goals. Their approach leveraged
probability theory to model how requirements may become obstructed, as well
as how the obstruction of such goals impact the satisfaction of other goals in the
goal-oriented model. In addition, Letier and van Lamsweerde also presented var-
ious heuristics to identify probabilistic functions that measure the likelihood of
goals becoming unsatisfied. While similar in objective, Athena uses utility func-
tions to measure requirements satisfaction instead of probability theory. As a
result, a requirements engineer can apply Athena without requiring data from
which goal satisfaction probabilities may be derived.

5.2 Requirements Monitoring

Requirements monitoring focuses on detecting and mitigating both requirements
violations and conditions conducive to a requirements violation. Feather, Fickas,
and Robinson [7,8,16] developed frameworks for run-time monitoring of software
requirements that support the instrumentation, diagnosis, and reconfiguration
of the system. To leverage these frameworks, a requirements engineer must first
model the system’s requirements through a goal-based modeling language, such
as KAOS [5], and identify assumptions and constraints that could become vi-
olated. At run time, a requirements monitoring framework observes traces of
the executing system, logs violations of assumptions and constraints, and then
reconciles the system with its goals. Athena shares similar objectives as these
requirements monitoring frameworks. However, Athena supports the automatic
derivation of utility functions from goal models. Furthermore, Athena supports
state-, metric-, and fuzzy logic-based utility functions for measuring the satis-
faction and satisficement of goals at run time.

5.3 Utility Functions for Self-adaptive Systems

Utility functions have been applied for self-assessment purposes in DASs. For in-
stance, Walsh et al. [17] used utility functions to map monitoring data to a scalar
value representative of how well the system was executing, akin to the concept
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of a health value. In this manner, utility functions provide not only an objec-
tive and quantitative basis for automated decision-making, but also facilitate the
mapping of those decisions to higher-level goals, requirements and concerns. Sim-
ilarly, utility functions have been applied within a DAS to guide the selection of
self-optimizing strategies. For instance, Garlan et al. [3] applied utility functions
to evaluate and select among different reconfiguration strategies depending on
how each satisfied architectural and performance-based constraints. Even though
utility functions provide numerous benefits for decision-making within a DAS,
these are usually elicited either from domain experts or application users [9].

Statistical regression techniques enable a DAS to infer utility values that
capture their overall performance at run time [1,9]. For instance, Valetto et al. [9]
proposed a statistical correlation-based approach for generating, at run time, a
single application-level utility value that measured the most salient properties of
that system. These approaches automate the task of deriving utility functions,
but their success depends on the quality of monitoring data gathered from the
executing DAS. Specifically, regressed utility functions may inadvertently miss
the detection of anomalous behaviors if this behavioral data is incomplete or
contains undesirable behaviors. Athena does not suffer from such drawbacks as
it derives utility functions directly from a goal model. Athena could, however,
leverage these techniques to further refine derived utility functions at run time.

6 Conclusions

This paper presented Athena, a goal-based requirements model-driven approach
for automatically deriving utility functions from a KAOS or RELAX goal model.
In particular, Athena leverages the information contained in a KAOS goal model,
as well as its RELAXed goals, corresponding fuzzy logic-based constraints, and
MON, ENV, and REL elements to derive utility functions that can be used at
run time to monitor the requirements of a DAS. As such, the primary benefit of
Athena is that it leverages artifacts already produced by a requirements engineer
that applied either a KAOS or RELAX goal modeling approach, thereby enabling
a requirements engineer to focus on other aspects of the design rather than on
manually deriving utility functions via ad-hoc manual approaches.

These utility functions enable a DAS to assess requirements satisfaction and
satisficement at run time. In particular, state- and fuzzy logic-based utility func-
tions enable a DAS to determine whether an invariant or a RELAXed goal has
been violated, respectively. Metric-based utility functions enable a DAS to detect
conditions conducive to a requirements violation, thereby facilitating the mitiga-
tion of such conditions before a goal violation occurs. Experimental results show
that utility functions generated by Athena are not only successful at requirements
monitoring, but also at identifying a candidate set of agents responsible for the
violation of a goal.

Future directions for this work include applying evolutionary computation
techniques in order to optimize the set of utility functions generated by Athena. In
addition, we are also exploring the use of generated utility functions for adaptive
requirements monitoring [15].
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Abstract. Models are at the heart of the emerging Model-driven En-
gineering (MDE ) approach in which software is developed by repeated
transformations of models. Intensive efforts in the modeling community
in the past two decades have produced an impressive variety of tool sup-
port for models. Nonetheless, models are still not widely used throughout
the software evolution life cycle and, in many cases, they are neglected in
later stages of software development. To make models more useful, one
needs a powerful model-level IDE that supports a wide range of object
modeling tasks. Such IDEs must have a consistent formal foundation.

This paper introduces F-OML, a language intended as an expressive,
executable formal basis for model-level IDEs. F-OML supports a wide va-
riety of model-level activities, such as extending UML diagrams, defining
design patterns, reasoning about UML diagrams, testing UML diagrams,
specification of Domain Specific Modeling Languages, and meta-modeling.
F-OML is a semantic layer on top of an elegant logic programming lan-
guage of guarded path expressions, called PathLP. We believe that a
combination of current object technology with F-OML as an underlying
language can lay the basis for a powerful model-level IDE.

1 Introduction

Models are at the heart of the emerging Model-driven Engineering (MDE ) ap-
proach in which software is developed by repeated transformations of models.
The MDE approach is motivated by the understanding that the growing com-
plexity of software requires multiple levels of abstraction that programming lan-
guages do not usually support [1].

Intensive efforts in the modeling community in the last two decades have
produced an impressive variety of tool support for models. Nevertheless, models
are still not widely used throughout the software evolution life cycle and, in many
cases, they are neglected in later stages of software development. Moreover, users
neglect specification of essential constraints, since they are not supported by the
software tools that implement the models. To make models more useful, one
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needs a powerful model-level IDE that supports a wide range of object modeling
tasks. Such IDEs must have a consistent formal foundation.

This paper1 introduces F-OML, a language intended as an expressive, exe-
cutable formal basis for model-level IDEs. F-OML can support a wide variety
of model-level activities, such as extending UML diagrams, defining design pat-
terns, reasoning about UML diagrams, testing UML diagrams, specification of
Domain Specific Modeling Languages (DSMLs), and meta-modeling. F-OML pro-
vides a formal API for object modeling, supported by a well-defined semantics
and a provably correct execution methods. The visual models (e.g., UML) pro-
vide concrete syntax on top of the language abstract syntax.

F-OML is a semantic layer on top of an elegant formal language of guarded
path expressions, called PathLP, which is used to define objects and their types.
PathLP is a logic programming language, inspired by F-logic [3]. It supports
path expressions, rules, constraints, and queries, and can be easily implemented
in a tabling Prolog engine, such as XSB. PathLP has three distinctive features
that make it a particularly powerful tool for object modeling: (1) polymorphism
of language expressions and of class hierarchies; (2) multilevel object modeling;
(3) executable model instantiation. F-OML consists of the two first-class object
concepts of Class and Property, and a library of parameterized constructors
and features. The paper defines PathLP and F-OML, and illustrates them with
examples of various model-level tasks.

Section 2 describes F-OML by example, and Section 3 formally introduces the
PathLP language. The F-OML layer is described in Section 4, and its usage is
demonstrated in Section 5. Section 6 briefly describes related work and Section
7 concludes the paper.

2 F-OML by Example

2.1 PathLP Introduction

PathLP consists of path expressions, facts, rules, queries and constraints.

Path Expressions: The key syntactic element of PathLP, which generalizes
path expressions in traditional object-oriented languages is path expression. They
extend a similar notion in XSQL [4], an F-logic [3] based language for querying
object-oriented databases, in the direction of the more general path expressions
in the F-logic systems [5]. PathLP also generalizes many aspects of XPath.

The building blocks of path expressions are terms, guards, cardinalities, and
two operators : “.” and “!”. Terms are constructed from constant symbols and
variables (which are denoted by symbols prefixed with “?”). Guards are path ex-
pressions written within square brackets. Examples of PathLP path expressions
are shown in Table 1. In these path expressions, Mary, spouse, ageAt(2010),
and ?C are terms, [?S] and [Person] are guards, and {0..1} is a cardinality.
?C:Student and ?C.ageAt(2010)<20 are query formulas.
1 A preliminary overview on this work appeared in [2].
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Intuitively, the “.” operator provides navigation along value paths. Therefore,
in a path expression n.e1. . . . .ek (ignoring guards), we refer to n as a node and
to the ei-s as edges. The “.“ in n.e yields a “value” that results from navigation
along an “edge” e whose origin is n. There can be multiple such edges as, for
example, in John.childOf.

Table 1. Examples of path expressions

Expression Informal meaning

Mary.spouse.ageAt(2010) the age at 2010 of the spouse of Mary

?C.student[?S].name given a binding c for the variable ?C, binds ?S to an
object who is a student of C, and returns its name

John.childWith(Mary)[?C].name,

?C:Student, ?C.ageAt(2010)<20

the name of a child of John and Mary, who is a stu-
dent, whose age in 2010 is less than 20

Person!spouse[Person]{0..1} restricts the type of the spouse property of Person
to be Person, and to have cardinality 0..1

The intuition behind the operator “!” is similar to “.”, but “!” yields a type of
an edge, rather than its value. For instance, Person!spouse denotes the possible
types of a spouse edge of a person, Person!spouse[Person] checks that Person
is one of these types (implying that so are also all of its super types), and
Student!thesis[Document]!length[NaturalNumber] checks that the type of
a Student thesis is Document, and the type of the length edge from Document
is NaturalNumber. Type path expressions can also have constrained cardinalities
of the form {low..high}, which specify the minimum and maximum cardinality
for member nodes (precise definition in Section 3). Altogether, the semantic
domain of PathLP can be viewed as directed value graphs and directed type
graphs sharing the same set of nodes.

Guards play the role of selectors. They are usually variables or constants. For
instance, John.childOf[?X].name binds the variable ?X to the object that rep-
resents one of John’s children, and denotes the value of the edge labeled name of
that object. Similarly, John.childOf[Mary].height checks that Mary is one of
the children of John and denotes her height. Guards can be followed by query
formulas that act like tests on the intermediate values of path expressions. For in-
stance, John.childOf[?X].name,?X:Student,?X.ageAt(2009)<10, binds ?X
to an object that represents one of Johns children who is a student and is under
10 years old, and denotes the name of that child.
Facts, Rules, Queries, and Constraints: Facts specify assertions, rules spec-
ify implications, and constraints restrict the legal states, by specifying forbidden
states. Queries trigger reasoning.

Fact Examples

1. John.spouse[Mary]. John.childOf[Bob]. John.childOf[Bill].
John has a spouse Mary, and children Bob and Bill (and possibly others).

2. Inclusion and membership assertions: Nodes are related by two relations “::”
and “:” that have properties of set inclusion and membership, respectively.
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Bob:CS_committee. CS_committee::Academic_committee.
Academic_committee:Committee. Committee::Group.

The intuition behind these facts is
Bob ∈ CS committee ⊆ Academic committee ∈ Committee ⊆ Group.

3. A type assertion: Person!spouse[Person]{0..1}.
Person is one of the types of the spouse edge of Person, and its cardinality
constraint is {0..1}.

Rule and Constraint Examples
1. ?S.studentOf[?Prof] :- ?S:Student, ?S.takes.teaches[?Prof].

A rule stating that if ?S is a member of the Student node and ?S takes a
course taught by ?Prof then ?Prof is a value of a studentOf edge from ?S.

2. ?A:advisor :- ?T:Thesis, ?T.author.advisor[?A].read[?T],
?A:Professor.
This rule states that ?A is an advisor if ?A has read a thesis ?T of an author
that ?A advises.

3. !- ?P:Professor, not ?P.degree[PhD].
A constraint that forbids states where a professor ?P has no PhD degree.

2.2 Introduction to F-OML

F-OML uses PathLP for formulating the two fundamental object oriented con-
cepts of Class and Property. This approach is close to meta-modeling semantics
[6], since the two model levels are expressed in PathLP, which defines the abstract
syntax and semantics of models. F-OML specifications are executable since they
are expressed in PathLP. The library of constructors and properties is a major
source of expressivity for F-OML.

The following examples use model-level constructors for expressing class in-
variants and for generalizing a concrete invariant into an invariant pattern. We
use UML class diagrams for visualizing (as concrete syntax) F-OML expressions
that specify classes, properties and cardinality constraints.
Example 1. Figure 1 describes a User-Table class diagram. A table has a single
user as its owner, and a user might own multiple tables. The tableDependency
association is not constrained by multiplicity constraints.

Fig. 1. User-Table ownership Class Diagram

Assume that the model requires the constraint: “Tables with a common owner
are directly or indirectly linked via the tableDependency association.” In order
to express this constraint there is a need to relate a table to all of its indi-
rect parent tables and all of its indirect child tables. The property constructor
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Fig. 2. Single ownership Class Diagram pattern

closure is used to define the new parameterized properties closure(parent)
and closure(child) that provide the necessary mappings. The or-constructor
defines a parameterized property which is the union mapping of its arguments.
Therefore, the property or(closure(parent),closure(child)) maps a ta-
ble to all of its direct and indirect parent and child tables. The required constraint
is captured by a rule stating that a table ?s is a direct or indirect parent or child
table of a table ?t if ?t and ?s have the same user owner:

?t.or(closure(parent),closure(child))[?s] :-
?t:Table,?s:Table,?t.owner=?s.owner.

Example 2. Suppose that the above constraint is identified by domain experts
as a typical ownership situation that can serve as a reference model. They define
the following design pattern: A single owner of multiple objects of the same
class requires mutual relationships between its owned objects. A solution is to
instantiate the reference model given by the class diagram pattern in Figure 2
and the associated constraint pattern.

?o1.or(closure(?parent),closure(?child))[?o2] :-
?o1:?Owned,?o2:?Owned,?o1.?owner=?o2.?owner.

Instantiation is performed by replacing class and property variables (?Owned and
?owner) with concrete classes and properties (Table and owner) in Figure 1.

The reference model formulation exploits the expression polymorphism and
the multi-level features of PathLP. Due to the executable nature of PathLP at the
foundation, we can further manipulate the reference model and its instantiation.

3 PathLP — The Underlying Logic of F-OML

3.1 Syntax

The alphabet of the PathLP language includes countably many constant sym-
bols, (e.g., Foo 123) and variables (designated with the “?” prefix, e.g., ?x), plus
the auxiliary symbols “!”, “:”, “::”, “[”, “]”, “(”, “)”, “:-”, “>”, “=”, and so on.

A term is defined recursively as either a variable, a constant, or an expression
of the form c(t1, ..., tn), where c is a constant and t1, ..., tn, n ≥ 0, are terms.
The latter kind of a term is called a compound term .

Path Expressions: The following BNF productions define path expressions
where Var, Term, NonNegInt denote variables, terms, and non-negative integers.
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PathExpr := ObjectPathExpr | TypePathExpr

ObjectPathExpr := (Expr ’.’)* Expr

TypePathExpr := (Expr ’!’)+ Expr [ ’{’ Cardinality ’}’ ]

Expr := GuardedExpr | UnguardedExpr

UnguardedExpr := Term

GuardedExpr := UnguardedExpr ’[’ Guard ’]’

Guard := UnguardedPathExpr (’,’ UnguardedPathExpr)*

Cardinality := (Var|NonNegInt) ’..’ (Var|NonNegInt|’*’)

where UnguardedPathExpr is a PathExpr ending with UnguardedExpr (it is not
defined explicitly to simplify the presentation).

PathLP expressions resemble those of XPath.2 Examples include John.spouse,
Person!name[String], and Person!spouse[Person]{0..1}. The last two of
these are guarded path expressions. The definition of query formulas, below,
uses GuardedPathExpr as a syntactic category for guarded path expressions.
Queries and constraints: PathLP uses query formulas as selectors in path
expressions and as bodies of PathLP inference rules and constraints.
Query := ’?-’ QueryFormula ’.’

Constraint := ’!-’ QueryFormula ’.’

QueryFormula := ElementaryFormula

| ’not’ QueryFormula | ’(’ QueryFormula ’)’

| (QueryFormula (’and’|’or’) QueryFormula)

ElementaryFormula := Membership|Subset|GuardedPathExpr|Comparison

Membership := Term ’:’ Term

Subset := Term ’::’ Term

Comparison := Term Op Term

Op := ’=’ | ’!=’ | ’>’ | ’<’ | ’>=’ | ’=<’

The and connective in query formulas can be replaced by a comma.

Facts and Rules: We introduce a new syntactic category Consequent, that
represents formulas that are allowed as facts or rule consequences. Such for-
mulas are considerably simpler than query formulas and even than elementary
formulas – the usual restriction in logic programming languages. Consequents
are ElementaryFormulas that are subject to the following restrictions:

– Comparison formulas can be only of the form Term = Term. That is, we are
not allowed to infer facts like a > b.

– Path expressions can have only one operator “.” or “!” and only terms as
guards. That is, they can take one of the following forms: Term.Term[Term],
Term!Term[Term], or Term!Term[Term]{Cardinality}.

These restrictions make PathLP reducible to Logic Programming and provide a
way for an efficient implementation. Finally, the definition of facts and rules:
Fact := Consequent ’.’

Rule := Consequent ’:-’ QueryFormula ’.’

2 Apart from the differences in the underlying models, PathLP variables turn it more
expressive than XPath. Although PathLP expressions have no descendant-or-self
wildcards of XPath, these can be defined recursively by rules.
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PathLP has three language features that make it a powerful foundation for
supporting object modeling:

1. Polymorphism: PathLP has two forms of polymorphism: expression poly-
morphism, which enables the specification of patterns and reference models
as in or(closure(?parent),closure(?child))[?o2] – see Example 2, and
the standard class hierarchy polymorphism of object-oriented modeling.

2. Multi-level object modeling: This feature enables full meta-modeling,
defining the abstract syntax on the meta-model level, and the semantics on
the model level, as in:

intersection(?C1,?C2):Class :- ?C1:Class, ?C2:Class.
?o:intersection(?C1,?C2) :- ?o:?C1, ?o:?C2.

The first rule specifies the class constructor intersection on the meta-
model level, and the second rule partially specifies its semantics, on the
model level. Section 4 provides further explanations.

3. Executable language: PathLP is an executable standalone language (un-
like OCL). It supports model instantiation (i.e., population of objects and
links) which enables testing and querying on various modeling levels.

3.2 Semantics

The semantic domain of PathLP is a set of entities, over which various structures
(value graphs, type graphs, membership and inclusion relations, and cardinality
constraints) are defined. The domain does not differentiate entities by their role:
node, edge, or type: the same entity can play different roles depending on the
syntactic context. Formally, up to an isomorphism, the domain is a set of all
ground (i.e., variable-free) terms, which includes the values of standard data
types (strings, numbers, etc.).

A PathLP interpretation , I, is a tuple of the form 〈U, IC , IV , IF , Ival, Itype,
Imin, Imax,∈I , ≺I〉, where U is the domain, IC is a mapping from constant
symbols to U ; IV is a variable assignment mapping, which is a total function
V ars −→ U ; IF is a function U −→ (∪∞

n=0U −→ U), which associated to every
element in U a polyadic function ∪∞

n=1U −→ U ; and Ival, Itype are both ternary
relations over U . Imin, Imax : U × U −→ (Integers ∪ {∗}) are mappings such
that 0 ≤ Imin(x, y) ≤ Imax(x, y) for all x, y ∈ U . ∈I and ≺I are binary re-
lations over U : ∈I represents the membership relation , and ≺I is a partial
order that represents the subset relation .

The mapping Ival determines the values of edges. A triple (n, e, v) ∈ Ival

defines v as the value of the edge e of node n. For a given node n and edge e,
there can be multiple such triples, since the value graph structure allows multiple
edges with the same label for a node. The mapping Itype determines the types
of edge values. A triple (n, e, t) ∈ Itype defines t as the type of the edge e of node
n. Typing should satisfy closure properties with respect to the subset relation,
and well-typing properties with respect to the value mapping.



524 M. Balaban and M. Kifer

Closure Properties:
– Upward-closure: if (n, e, t) ∈ Itype and t ≺I t′ then also (n, e, t′) ∈ Itype

(if e has type t then every supertype of t is also a type of e).
– Inheritance: if n ≺I n′ and (n′, e, t) ∈ Itype then (n, e, t) ∈ Itype (if e has

type t for a node n′ then it has type t for every subset-related node of
n′; i.e., e is inherited).

Well-typed Interpretations: Well-typed interpretations, first introduced in [3],
enforce well-typing of edge values of member nodes. Well typing has two as-
pects: A typing restriction for each value, and obeying the cardinality restric-
tions. Namely, for every value-triple (n, e, v) ∈ Ival, there is a type-triple
(n′, e, t) ∈ Itype such that
– n ∈I n′ and v ∈I t
– Imin(n′, e) ≤ cardinality({v | (n, e, v) ∈ Ival}) ≤ Imax(n′, e)

The membership and subset relations are required to satisfy these properties:
n ∈I n′ and n′ ≺I n′′ imply n ∈I n′′. This implies that the set of all the members
of n′ is a subset of the set of the members of n′′. Note that the opposite does
not have to hold.
The Meaning of PathLP Constructs
Given an interpretation I, we define the notion of satisfaction by interpretation
for PathLP query formulas, facts, rules, and constraints. We first define the de-
notation mapping associated with I. The purpose of that mapping is to interpret
path expressions as subsets of the domain of I. It is common to use the same
symbol I both for the interpretation and for its associated denotation mapping.
The definitions of the denotation mapping and of satisfaction are inductive on
the structure of the formulas and are mutually dependent.

Denotation of Path Expressions
– Constant : If c is a constant then I(c) = {IC(c)}.
– Variable: If ?x is variable then I(?x) = {IV (?x)}.
– Unguarded expression: If τ is a compound term c(t1, ..., tn) (an unguarded

expression) with zero or more arguments then:
I(τ) = {IF (IC(c))(t′1, ..., t

′
n)}, where t′i ∈ I(ti) for i = 1, ..., n.

The previous three cases form the basis for the inductive definition of I(τ),
where τ is a path expression. The inductive part of the definition now follows.

– Unguarded object path expression: If τ is objpathexp.expr, where obj-
pathexp is an object path expression and expr is a term then:

I(τ)={v | ∃n ∈ I(objectpathexp), ∃e ∈ I(expr), such that (n, e, v) ∈ Ival}.
Note that I(τ) can be empty.

– Guarded object path expression: If τ is ungobjpathexp[grd], where ungobj-
pathexp is an unguarded object path expression and grd is a guard of the
form ungpathexp1, ..., ungpathexpn then:

I(τ) = I(ungobjpathexp) ∩ I(ungpathexp1) ∩ · · · ∩ I(ungpathexpn)
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– Type path expression:
• Unguarded without cardinality constraint: If τ is tpathexp!expr, where

tpathexp is a type path expression and expr is an expression then:

I(τ) = {v | ∃n ∈ I(tpathexp), ∃e ∈ I(expr), such that (n, e, v) ∈ Itype}.
• Unguarded with cardinality constraint : If τ is tpathexp!expr{lo..hi},

where tpathexp is a type path expression and expr is an expression then:

I(τ) = {v | ∃n ∈ I(tpathexp), ∃e ∈ I(expr), such that
(n, e, v) ∈ Itype and Imin(n, e)=I(lo), Imax(n, e)= I(hi)}.

• Guarded : Similarly to guarded object path expressions.

Built-in size Terms: PathLP assigns special meaning to the properties size()
and size(prop), used for counting the number of objects in a class and the range
size of a property. Thus, the denotation of these properties must satisfy:
– size(): (n, I(size()), N) ∈ Ival, where n ∈ U and N ≥ 0 is an integer, if

and only if the set {v | v ∈I n} is finite and has cardinality N .
– size(e): (n, I(size(e)), N) ∈ Ival, where n ∈ U and N ≥ 0 is an integer,

if and only if the set {v | (n, e, v) ∈ Ival} is finite and has cardinality N .
Satisfaction by Interpretations
1. Elementary formulas

– Membership: I |= t : s, where t, s are terms, if and only if I(t) ∈I I(s).
– Subset : I |= t :: s, where t, s are terms, if and only if I(t) ≺I I(s).
– Guarded path expression with and without cardinality constraints : I |= p,

where p is a guarded path expression, if and only if I(p) is non-empty.
– Comparison formulas I |= (t = s), where t, s are terms, iff I(t) = I(s).

Likewise, I |= t < s, iff I(t) < I(s). The definition of satisfaction for
the remaining comparisons is similar.

2. Query formulas:
– And : I |= t and s iff I |= t and I |= s.
– Or : I |= t or s iff either I |= t or I |= s.
– Not : I |= not t iff it is not the case that I |= t.

3. Rules and facts : I |= (t :- s) if and only if either I |= t or I �|= s. This
also covers the case of satisfaction for PathLP facts, since we can view any
fact t as a rule of the form t :- true.

4. Constraints : I |= (!- queryformula) iff I �|= queryformula.
A PathLP interpretation that satisfies the facts, rules, and constraints of a
PathLP specification is a model of that specification. As usual in logic pro-
gramming, we focus on canonical models. Without negation (not), there is a
unique least model, which is the canonical model. With negation, the semantics
is defined using so-called well-founded models [7]. A PathLP specification is sat-
isfiable if it has a canonical model. An answer to a query ?- queryformula is
the set of all instantiations of queryformula satisfied by the canonical model.

With no negation, PathLP reduces to classical logic analogously to the re-
duction of F-logic to classical logic [3] and is semi-decidable. With negation,
it reduces to logic programs with the well-founded semantics and can be imple-
mented on top of a tabling deductive engine, like XSB, similarly to the FLORA-2
implementation of F-logic [5]. Without function symbols, PathLP is decidable
and has polynomial data complexity even with negation.



526 M. Balaban and M. Kifer

4 F-OML – The Semantic Layer over PathLP

F-OML uses PathLP to define axioms for two basic notions of object modeling,
classes, and properties, along with their interrelationships. Class characterizes
objects that function as collections of objects. Property defines objects that
function as mappings among classes. The definition covers three modeling levels:
the Meta Model level (OMG’s M2 level) that specifies the abstract syntax of F-
OML models, and Model and Data levels (OMG’s M1 and M0 levels), that
specify the semantics of F-OML specifications.

F-OML Syntax: Figure 3 presents the meta-model of F-OML notions.

Fig. 3. Meta-model of F-OML

This meta-model is defined by the following PathLP specification:

1. F-OML classes, i.e., members of Class, have multiple properties which are
members of Property: Class!property[Property].

2. F-OML properties, i.e., members of Property, have a unique source class,
target class, and minimum and maximum multiplicities:
Property!source[Class]{1..1}. Property!target[Class]{1..1}.
Property!min[Min mult]{1..1}. Property!max[Max mult]{1..1}.

3. Class-Property inter-relationships : Property is a member of Class, and
the source of a property is a class with that property:
Property:Class.

?C.property[?p] :- ?p:Property,?p.?ST[?C],(?ST=source or ?ST=target).

?p.source[?C] :- ?C:Class, ?S.property[?p].

4. Class and Property properties are not defined on other objects:
!- ?C.property[?p], not ?C:Class.

!- ?p.target[?C], not?p:Property.

Similarly for other Property properties.

An F-OML specification is a collection of class and property facts:
1. Class definitions : {ti : Class}i=1...n, where t1, . . . , tn are ground (i.e., variable-

free) terms. These are the classes of the model.
2. Property definition: {〈pi.source[tj ], pi.target[tk], pi.min[ni], pi.max[xi]〉}

i=1...m, where p1 . . . pm are all different ground terms; tj , tk are classes of
the model; and ni ≤ xi are natural numbers, where xi can also be ∗. The
pis are the properties of the model.

3. Additional constraints : PathLP specification imposing inter-relationships
among the classes or the properties.

AnatomicF-OMLspecification is onewhose classes andproperties are constants.A
non-atomic F-OML specification might have classes such as intersection(User,
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Guest) or properties such as inverse(owner).Example 3 presents a (non-atomic)
F-OML specification that describes the class diagram in Figure 1.

Example 3. An F-OML specification for Figure 1.
User:Class. Table:Class. owned=inverse(owner). parent=inverse(child).

owner.source[User]. owner.target[Table]. owner.min[1]. owner.max[1]

owned.source[Table]. owned.target[User]. owned.min[1]. owned.max[1]

parent.source[Table]. parent.target[Table]. parent.min[0]. parent.max[∗].
child.source[Table]. child.target[Table]. child.min[0]. child.max[∗].

An F-OML pattern is an F-OML specification with non-ground classes or
properties. F-OML patterns function as reference models for typical problems.
F-OML semantics: An F-OML state is a PathLP canonical model that sat-
isfies axioms that define the intended meaning of F-OML classes and properties:

1. Semantics of properties of classes:
?C!?p[?T]{?low .. ?hi} :-

?p:Property,?p.source[?C],?p.target[?T],?p.min[?low],?p.max[?hi].

2. Classes must not have undeclared properties:
!- ?C:Class, ?C!?p[?T]{?low .. ?hi},

not( ?p:Property, ?p.source[?C], ?p.target[?T],

?p.min[?low], ?p.max[?hi] ).

3. Members of classes can have only the properties declared for their classes:
!- ?o:?C, ?C:Class, ?o.?p[?v], not ?C!?p[?x].

The set of members of a class C in an F-OML state I is the set of objects
that relate to it under the membership relation: {e|e ∈I I(C)}. Due to space
limitations we omit the notions of satisfiability and finite-satisfiability in F-OML.
F-OML Specifications and Class Diagrams: An atomic F-OML specifica-
tion is equivalent to a class diagram that has the same classes, properties, and
multiplicity constraints. A non-atomic F-OML specification can enforce inter-
relationships among classes or properties, as in GuestUser:Class; GuestUser
= difference(User, RegisteredUser). Such inter-relationships are inexpress-
ible by class diagrams.

The correspondence between F-OML specifications and class diagrams has
several important consequences. First, F-OML specifications can be visualized
by class diagrams. Second, F-OML state can be used for formulating and im-
plementing object modeling tasks. Third, results on satisfiability [8] and finite
satisfiability [9] can be used for static analysis.

Parameterized Construction and Characterization

F-OML provides specification for a wide variety of library constructors and pred-
icates that enable definition of non-atomic F-OML specifications and F-OML
patterns. Due to space restrictions, we present just a few, and provide only
object-level axioms, and omit meta-level characterization.
1. Class construction using Set operations:

?o:intersection(?C1,?C2):- ?o:?C1, ?o:?C2.



528 M. Balaban and M. Kifer

2. Finite class construction: Defined by the classOf class constructor, e.g.,
Color = ClassOf([red, blue, yellow]).
?o:ClassOf(?List) :- ?List.members[?o].
!- ?o:ClassOf(?List), not ?List.members[?o].

3. Property construction using logic-based constructors:
Property disjunction: ?o.or(?p1,?p2)[?v] :- ?o.?p1[?v] or ?o.?p2[?v].

4. Property inversion: ?o1.inverse(?p)[?o2] :- ?o2.?p[?o1].
5. Property composition:

Binary: ?o.compose(?p1,?p2)[?v] :- ?o.?p1.?p2[?v].
N-ary: ?o.path( [?p] )[?v] :- ?o.?p[?v].

?o.path([?p|?path])[?v] :- ?o.?p.path(?path)[?v].
where [?p|?path] is Prolog List notation

Transitive closure: ?o.closure(?p)[?v] :- ?o.?p[?v].
?o.closure(?p)[?v] :- ?o.?p.closure(?p)[?v].

F-OML provides a variety of library definitions that characterize classes and
properties e.g., injective, surjective, bijective [10], acyclic and unary properties,
a subproperty relation, and disjoint and singleton classes. For example,

1. Injective properties :
?p.kind[injective]:-?p:Property,inverse(?p).min[0],inverse(?p).max[1].

Assuming that the Property class has a kind property.
2. The subproperty relation: All p-mappings are also q-mappings:

?s.?q[?t]:- ?p:Property, ?q:Property, ?p.subproperty[?q], ?s.?p[?t].

3. An acyclic property: !- ?p:Property,?p.circularity[false],?o.closure(?p)[?o].

4. Disjoint classes:
!- ?C1:Class, ?C2:Class, ?C1!=?C2, ?C1.disjointfrom[?C2], ?o:?C1, ?o:?C2.

5 Using F-OML

This section illustrates various uses of F-OML for modeling objects.
I. Static Invariant Language: Figure 4 presents a class diagram that models
User-Table access permissions in a database. A user that has an access permis-
sion to a table (its grantor), can grant access permission to another user (the
grantee). Assume that the following invariant requirements are given:

Fig. 4. User-Table permission Class Diagram

Requirement 1. The owner of a table is automatically granted an access per-
mission and is the grantor for that permission.
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Requirement 2. A non-owner user cannot grant himself a permission to a
table, directly or indirectly.

These requirements cannot be captured by class diagram constraints, and require
a constraint language. In UML, this is provided by the Object Constraint Lan-
guage (OCL) [11]. The F-OML class invariants that capture these requirements
rely on the F-OML class diagram module (not presented in this paper) that
formulates class diagram constraints. For the association class constraint, the
class diagram module defines parametrized navigation properties to and from
an association class to its related classes. For Figure 4, the navigation prop-
erties from a Permission object to its associated User and Table objects are
grantee(Permission) and granted(Permission). Requirement 1 is captured
by a class diagram invariant that consists of 2 rules:

?t.grantee[?u] :- ?t:Table, ?t.owner[?u].

?p.grantor[?u] :- ?p:Permission, ?p.grantee(Permission)[?u],

?p.granted(Permission).owner[?u].

Requirement 2 is captured by the following rule and constraint:

?u.permissionGrantor(?t)[?v] :-

?u:User, ?u.Permission(grantee)[?p].granted(Permission)[?t],

?p.grantor[?v].

!- ?u:User,?t:Table,not ?u.owner[?t],?u.closure(permissionGrantor(?t))[?u].

The rule defines an auxiliary parametrized property permissionGrantor(?t)
that, for a table ?t, maps a grantee user ?u to the grantor of his/her permission
to ?t. The rule uses the inverse navigation property Permission(grantee) that
maps a User-object to the associated Permission-objects (this property is pro-
vided by the association class formulation in the F-OML class diagram module).
The guarded path expression ?u.Permission(grantee)[?p] selects a permission
?p for a user ?u and ?u.Permission(grantee)[?p].Table(Permission)[?t]
further selects the table ?t of that permission ?p. This constraint denies circular
access granting to prevent non-owners from granting mutual access permissions.

The OCL formulation of requirement 2 is not straightforward. The rule can be
captured by a similar query. However, the acyclicity constraint requires compu-
tation of a closure, which is rather complex in OCL (due to the need to compute
navigation paths whose length cannot be bound a priori).
II. Design Pattern Formulation: F-OML provides natural support for for-
mulating design patterns, including specification of their semantics. We show a
design pattern generalization of the User-Table access permission model.

Access-permission-granting Pattern
Problem: An access policy of readers to objects allows: (1) owner access to the
owned object, (2) authorized readers granting access to object to other readers,
(3) disallows granting cycles.
Solution: (1) Instantiate the class diagram pattern (a visualization of an F-
OML pattern) in Figure 5. Instantiation means replacement of the class variables
?Reader, ?Object, ?Access and the property variables ?owner, ?owned,
?grantee, ?granted, ?grantor, ?permission by constants.
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Fig. 5. Access permission Class Diagram pattern

(2) Apply the same instantiation of Class and Property typed variables to
the following F-OML specification:

?r.accessGrantor(?o)[?q] :- ?r:?Reader,
?r.?Access(?grantee)[?a].?granted(?Access)[?o],?a.?grantor[?q].

!- ?r:?Reader, ?o:?Object, not ?r.?owner[?t],
?r.closure(?AccessGrantor(?o))[?r].

III. Meta-Modeling: The PathLP features of polymorphic expressions and
multi-level specification enable full meta-modeling.
A key Property:
!- ?C:Class, ?C.key[?p], ?p:Property, ?o1:?C, ?o2:?C,

?o1.?p[?val1], ?o2.?p[?val2], ?val1 != ?val2.

One can postulate that a property named ID is a key property as follows:
?C.key[?p] :- ?C:Class, ?C.property[?p].name[ID].

IV. Model Query and Reasoning: Model-level reasoning has an essential
role in the process of software development, explanation, understanding, and
validation. F-OML supports such reasoning with PathLP queries and rules.
Class reachability : In Figure 4, find all classes accessible from User, and the
sequence of properties in the access path.
?C.path([?p])[?C1]:- ?C.property[?p].target[?C1].
?C.path([?p|?path])[?C1]:- ?C.property[?p].target.path(?path)[?C1].

The reachability query can be ?- User.path(?path)[?C]. The answer includes
?path=[owned,grantee,permission], ?C=Permission.
V. Model Testing: Model testing involves checking mandatory and possible
characterizations of F-OML specifications (like object diagrams). Mandatory
properties should hold in every state, and can be tested by posting F-OML
queries. For example, in Figure 4, if class Table is restricted to be non-empty
then in every state there is a Permission object whose grantee is also the owner
of the table of the permission. This can be verified as follows:
?- ?p:Permission, ?p.grantee(Permission).owned[?T],

?p.granted(Permission)[?T].

Negative examples, that present illegal instantiations, are also helpful in model
testing. A negative example can be tested by posing their negation as queries.
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6 Related Work

The Object Constraint Language (OCL) [11] is the UML 2.0 language for spec-
ification of invariants, queries, and pre/post conditions on operations. It is not
a standalone language; its expressions must be associated with UML diagrams.
In general, the OCL handling of nested collections, unbounded data structures
and recursive constraints is quite cumbersome. For example, suppose that the
class Table in Figure 1 has two subclasses, SystemTable and UserTable, and
we wish to add the invariant: “A user cannot be an owner of a system table and
of a user table at the same time.” The OCL formulation is:

Context User

inv: self.owned->select(oclIsTypeOf(SystemTable))->

intersection(self.owned->select(oclIsTypeOf(UserTable)))->isEmpty()

For comparison, the F-OML 1-line formulation is:

!- ?u:User, ?u.owned[?st], ?st:SystemTable, ?u.owned[?ut], ?ut:UserTable.

F-OML has a number of advantages over OCL, including wider applicability,
simplicity, full support for meta-modeling, patterns, simple management of un-
bounded data structures and recursion, model querying, analysis, and testing.
The model analysis and the testing features rely on the status of F-OML as a
standalone executable language.

Alloy [12] has been used recently for analysis, validation, and testing of UML
models. Alloy is a standalone model checker, and it appears to support part of
the functionality of F-OML. Yet, as a modeling language it resides at a lower
level. Also, Alloy’s handling of recursion and unbounded data structures like
paths, cycles and tree is quite complex.

Another related work is that of [13], which extends the standard instance
diagram language to support positive or negative examples as well as invariants.
As illustrated earlier in the paper, F-OML provides an underlying logic support
for the language of mandatory, possible, and negative instance diagrams.

7 Conclusion and Future Work

We presented F-OML, an expressive, executable modeling language, that can
provide a formal basis for model-level IDEs. It is a semantic layer on top of
the PathLP path expression language. PathLP has three distinctive features:
(1) polymorphism of language expressions and of class hierarchies; (2) multilevel
object modeling; (3) executable semantics. F-OML supports the basic concepts
of Class and Property, and provides a library of constructors and features that
function like modeling patterns.

At present, an implementation of PathLP is underway. We have already ac-
complished a major part of the Class diagram module. Once PathLP, F-OML
and the class diagram module are implemented, we plan to combine it with
a UML modeling tool (e.g., http://sourceforge.net/apps/trac/mide-bgu/
wiki). Then, we can experiment with F-OML as an underlying language for

http://sourceforge.net/apps/trac/mide-bgu/wiki
http://sourceforge.net/apps/trac/mide-bgu/wiki
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the IDE, in combination with other IDE applications (http://www.cs.bgu.ac.
il/ modeling/?page id=314). One specifically challenging goal is extending
F-OML to support dynamic models, such as statecharts or sequence diagrams.

Acknowledgments. We would like to thank Igal Khitron who implemented
PathLP and provided numerous suggestions for improvements. We also thank
the referees for the remarks that helped improve the presentation.
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Abstract. We present a formal calculus for operational QVT. The cal-
culus is implemented in the interactive theorem prover KIV and allows
to prove properties of QVT transformations for arbitrary meta models.

Additionally we present a framework for provably correct Java code
generation. The framework uses a meta model for a Java abstract syntax
tree as the target of QVT transformations. This meta model is mapped to
a formal Java semantics in KIV. This makes it possible to formally prove
with the QVT calculus that a transformation always generates a Java
model (i.e. a program) that is type correct and has certain semantical
properties. The Java model can be used to generate source code by a
model-to-text transformation or byte code directly.

1 Introduction

Model-driven development holds the promise to create better software in shorter
time since the modeler can concentrate on the essential properties of the appli-
cation under development. Technical details will be filled in by model transfor-
mations. In specialized areas the complete source code of an application can be
generated from the model.

However, there is the question of the correctness of the generated code, or –
more broadly speaking – of the model transformations. This is a largely unsolved
problem. First, it can be quite difficult to describe precisely, i.e. formally, what
correctness means. Usually a formal semantics of the source and target model is
needed, which is definitely not trivial if, for example, UML activity diagrams are
transformed into Java code. Second, the transformation must be proved correct.
This in turn requires a formal logic and proof support for the transformation lan-
guage. Third, the transformations itself can be large and complex which makes
a formal proof difficult and time-consuming.

In this paper we present a framework that allows to prove properties of gen-
erated Java code for transformations written in operational QVT (QVTO [15]).
This work is part of our SecureMDD approach [22,23], a model-driven develop-
ment method for security-critical applications based on cryptographic protocols.
The application, e.g. an electronic purse or a ticketing system, is modeled with
UML extended with a profile and an abstract programming language MEL. From
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the model a formal specification can be generated, and the security of the ap-
plication can be proved [24,25]. Additionally, the complete Java code for the
protocols can be generated by model transformations. In this setting it is imper-
ative that the code is correct and secure with respect to the formal specification
(i.e. is a refinement that preserves security [13]).

In the next section the framework for correct code generation will be presented
with a very simple example that generates Java classes from a UML class dia-
gram. Sect. 3 describes a formal calculus for reasoning about operational QVT
transformations, and discusses some experiences. Sect. 4 presents related work,
and Sect. 5 concludes.

2 A Framework for Correct Code Generation

We illustrate our approach with a small example. The idea is to generate Java
classes with fields, getters, and setters from simple UML class diagrams as shown
in Fig. 1. The result are three Java classes A, B, and C. The UML primitive type
Integer is translated to int. Obviously it is possible to generate more methods
(e.g. in SecureMDD we generate equals, copy, and de-/serialization methods).

-flag : Boolean
C

-y : Integer
B

-x : Integer
A

-b

-c

-b

-c

public class A {
private B b ;
private int x ;
private C c ;

public B getB ( ) { return this . b ; }
public int getX ( ) { return this . x ; }
public C getC ( ) { return this . c ; }

public void setB (B b) { this . b = b ; }
public void setX ( int x){ this . x = x ; }
public void setC (C c ) { this . c = c ;}}

Fig. 1. A simple UML class diagram and the generated Java code for class A

The aim is to formally prove properties about the generated Java code, e.g.:

1. The code is type correct.
2. Correspondence to the UML model: One Java class for every UML class, one

Java field for each UML Property etc.
3. Semantic properties of the generated methods: A getter returns the value

of a field, calling a setter, then the corresponding getter returns the same
reference, etc.

Formal treatments of Java (either formal semantics of Java, e.g. [39,34,37] or
Java calculi for program verification, e.g. [18,36,2]) all work on an annotated
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abstract syntax tree of a Java program. This makes sense since parsing Java text,
and annotating an abstract syntax tree are problems of compiler correctness that
pose very different challenges, and should be separated from a Java semantics.
If we use a model-to-text transformation to generate Java code from the UML
class diagram we have a problem: A model-to-text transformation essentially
concatenates strings. For example, generating the getter methods in XPand [41]
looks like

«FOREACH this.ownedAttribute AS a»
public «a.type.toJavaType()» get«a.name.toFirstUpper()»(){

return this.«a.name»; }
«ENDFOREACH»

Formal reasoning about the text requires parsing this mixture of source text and
quoted expressions (and it is not clear how this can be done), annotating the
resulting syntax tree, and then reasoning about its semantics, thereby mixing the
different problems. Our framework introduces a meta model that represents a
Java annotated abstract syntax tree (JAST). This allows a separation of concerns
(see also Fig. 2):

-name : String
LocVarAccess

FieldCategory

-name : String
FieldAccess

Expression

-op : String
BinaryExpr

Type
-left 1 -type

1

-expr1-right 1

-category1

Fig. 2. Generating Java code with an intermediate JAST model (left) and part of the
JAST meta model (right)

1. A model-to-model transformation is used to generate an instance of the
JAST meta model from an arbitrary source and meta model (MEL is a meta
model used in SecureMDD). The transformation is specific for the model-
driven application. The JAST model is the basis for formal reasoning.

2. From the JAST model text can be generated by model-to-text transforma-
tion. It is also possible to generate byte code directly. (Not supported in
our framework, though.) It should be noted that this step depends only on
the JAST meta model, and is completely independent of the transformation
that created the JAST model.

A small part of the JAST meta model is shown in Fig. 2 as a UML class diagram.
The actual model is defined as an Ecore model in Eclipse.
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Every Java expression and statement becomes one EClass in the meta model
(37 in our case). Other elements represent method and field declarations and class
declarations. Every Java expression has a result type (that would be computed
by a compiler when annotating the syntax tree); a binary (infix) expression like
x + y has a left and right expression and an operation; a local variable access
is a separate expression; an instance field access FieldAccess has an invoking
expression and a reference FieldCategory that identifies the accessed field (a
Java compiler determines whether x is a local variable or an instance field and
treats the latter as this.x).

2.1 Transforming UML to JAST

In our example we use operational QVT to transform the UML class diagram into
a JAST model. Operational QVT (chapter 8 in [15]) is essentially a programming
language based on OCL [14] and tailored to model transformations. Fig. 4 shows
the start of the transformation, and Fig. 5 shows the generation of a getter
method for an attribute.

1 modeltype UML uses ’ http ://www. e c l i p s e . org /uml2 /3 . 0 . 0/UML’ ;
2 modeltype J uses ’ http :// i s s e . de/JAST ’ ;
3
4 t rans fo rmat ion s imple ( in umlmodel : UML, out r e s : J ) ;
5 main( ) {
6 var model : Model := umlmodel . r ootOb jec t s ( ) ! [ Model ] ;
7 model .map createModel ( ) ;
8 }
9 mapping Model : : createModel ( ) : JModel {

10 in i t {
11 var c s s := s e l f . packagedElement [ Class ] ;
12 var j c s := css−>map toJavaClass ( ) ;
13 }
14 name := s e l f . name ;
15 ownedElements += object PackageDeclarat ion
16 { name := packageName ( ) ;
17 typedec l s := j c s ; }
18 }
19 /∗ c r e a t e every c l a s s ∗/
20 mapping Class : : toJavaClass ( ) : TypeDeclarat ion {
21 in i t { var a t t s := s e l f . ownedAttr ibute ; }
22 mod i f i e r s += ’ pub l i c ’ ;
23 name := s e l f . name ;
24 c l a s s t yp e := classType ( s e l f . name ) ;
25 members += atts−>map dec l a r eF i e l d ( s e l f . name ) ;
26 members += atts−>map c r eateGet te r ( s e l f . name ) ;
27 members += atts−>map c r e a t e S e t t e r ( s e l f . name ) ;
28 }

Fig. 3. Start of the QVTO transformation
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Lines 1 and 2 declare UML and J as abbreviations for the meta models, and
line 4 declares the transformation simple that transforms a UML model into a
J(AST) model. Running the transformation will call the main method (line 5)
that selects an element of the UML type Model from the input (line 6) and calls
the mapping createModel (line 7). There is no explicit assignment to the output
variable res because all model elements that are created during the transfor-
mation will be collected automatically in the output variable. A mapping (line
9) is one of the central concepts of QVT and creates a correspondence between
a source and a target element. The target element is created automatically,
and in lines 14–17 its properties are set. In the case a JModel has a name and
ownedElements, a list of (Java) packages. In line 11 the classes from the UML
model are selected and mapped to Java (JAST) classes in line 12. The mapping
toJavaClass creates a class by iterating over the attributes and creating the
fields, getters, and setters (lines 25–27).

1 mapping Property : : c r eateGet te r ( c : String ) : MethodDeclarat ion{
2 mod i f i e r s := Sequence { ’ pub l i c ’ } ;
3 name := ’ get ’ + s e l f . name . f i r stToUpper ( ) ;
4 returnType := s e l f . type . toJas t ( ) ;
5 methodbody := object Block {
6 stms += object ReturnStm {
7 expr := s e l f . f a ( th isExpr ( c ) , c ) ;
8 } ; } ;
9 }

10 query Property : : f a ( e : J : : Expression , c : String ) : J : : Express ion {
11 return object Fie ldAcces s {
12 expr := e ;
13 category := object SimpleFie ldCategory {
14 name := s e l f . name ;
15 c l a s s t yp e := classType ( c ) ;
16 i s S t a t i c := fa l se ;
17 type := s e l f . type . toJas t ( ) ;
18 } ;
19 type := s e l f . type . toJas t ( ) ;
20 } ;
21 }
22 query th isExpr ( c : String ) : J : : Express ion {
23 return object LocVarAccess {
24 name := ’ t h i s ’ ; type := classType ( c ) ; } ;
25 }

Fig. 4. Generating a getter method with QVTO

The mapping createGetter (line 1 in Fig. 5) is defined for a UML property
(the class attributes in this case), has as additional input the name of the class,
and creates a JAST method declaration. The body of the method (line 5) is a
block containing a return statement that returns a JAST field access (line 7) (i.e.
this.field). The statements and expressions are not mapped, but generated as
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new objects (with the keyword object), because they have no correspondence
to a UML source element. Finally the field access is created by the method fa
(line 10).

Obviously the QVT code is much more verbose than the actual Java source
code, because the JAST model contains much more information explicitly. A
programmer needs a good knowledge of the JAST model, but the QVT program
in itself is simple (and uses only a fraction of all operational QVT features). The
programming style shown in this example is typical for operational QVT, and
well suited for the creation of abstract syntax trees.

2.2 Formal Reasoning about Models and Meta Models

We have described the JAST meta model, and we have shown how QVT trans-
formations look like. Now we will show how a JAST model is given a formal
semantics in our framework. For the formal part we use the KIV system [19,1,16]
that is developed in our group. KIV is an interactive theorem prover based on
algebraic specifications with several logical extensions (e.g. Dynamic Logic for
imperative programs and Java and temporal logic for parallel programs and state
charts).

The calculus for operational QVT presented in the next section is not limited
to UML and JAST, but supports arbitrary input and output (meta) models.
This means we need an algebraic specification for meta models and models.
Basically, we follow the EMF [35] approach: A meta model is defined as an
Ecore model. In a slightly simplified version a meta model is an EPackage con-
taining EClassifiers (that define the model elements) that in turn contain
EAttributes for properties with primitive types and EReferences for properties
containing model elements (i.e. other EClassifiers). This is a standard algebraic
specification with freely generated data types.

The formal specification of a model follows its internal representation in EMF.
Model elements are EObjects with an unique identifier and a list of EContent
that are either attribute values, contained references (to model elements with
Containment = true), or external references. Contained references are again
EObjects, while external references simply contain the identifier of the refer-
enced object. The result is a tree structure that is well suited for algebraic
specifications. Meta models and models that are available in Eclipse can be ex-
ported with a plugin into a format suitable for the KIV system. Built on these
specifications is the formal definition of a valid meta model, and a valid model
with respect to a meta model.

There exists a formal Java semantics in KIV [36,37] that was defined sev-
eral years ago. The formal semantics is based on an algebraic specification of a
Java abstract syntax tree. The connection between a JAST model (formally an
EObject structure) and the existing abstract syntax tree is obtained by a spec-
ification model2sem mapping a JAST model to the abstract syntax tree. In this
manner a formal semantics is provided for a JAST model. Another approach is
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to specify the Java semantics in terms of a JAST model, but this requires very
much effort since a formal Java semantics is huge and complex, especially with
a proof of type soundness.

The Java semantics in KIV is a natural big-step operational semantics. A
Java expression defines a relation between an initial Java heap and variable
binding and a resulting Java heap, variable binding, and result after evaluating
the expression: (v×h)[[e]]tds(v

′×h′×result) Here v is the variable binding for local
variables and method parameters, h is the Java heap, e is the Java expression,
tds is the context consisting of the class declarations, v′, h′ are the resulting
binding and heap, and result is the result of evaluating the expression. If the
expression does not terminate (e.g. if it is a call to a recursive, non-terminating
method) there is no resulting state, i.e. the relation [[.]] is empty. The semantics
faithfully models class initialization (first active use), and exceptions.

3 Formal Reasoning about QVT Transformations

3.1 Formulating Properties in Dynamic Logic

Operational QVT is essentially an object-oriented, imperative programming lan-
guage that operates on input and output models, and keeps track of mappings
with the help of a trace that contains source object, target object, and applied
mapping operation for every executed mapping call. Our calculus for QVTO is
a sequent calculus for dynamic logic (DL, [17]). DL extends predicate logic with
two modal operators, box [ . ] . and diamond 〈 . 〉 . , written as 〈(in, out, trace) α〉
ϕ. Here α is a QVTO expression, (in, out, trace) are the initial input and output
models, and the trace, and ϕ is again a DL formula. The intuitive meaning is:
with initial models and trace (in, out, trace) the QVTO expression α terminates,
and afterwards the formula ϕ holds ([ . ] . does not include termination). ϕ usually
reasons about the resulting output model. A sequent ϕ1, . . . , ϕm * ψ1, . . . , ψn

consists of two lists of formulas (often abbreviated by Γ and Δ) divided by *
and is equivalent to the formula ϕ1 ∧ . . . ∧ ϕm → ψ1 ∨ . . . ∨ ψn. ϕ1, . . . ϕm

can be thought of as preconditions, while one of ψ1, . . . , ψn must be proved. A
Hoare triple {ϕ}α{ψ} can be expressed as ϕ * [α]ψ or ϕ * 〈α〉 ψ if termination
is included. An example is the following sequent:

valid(in, UML), suitable(in), out == [], trace == []
* 〈(in, out, trace) Simple::main()〉 typeCorrect(model2sem(out))

Simple::main() is a call to the QVTO transformation’s main()method (see Fig.
4). The in model must be a valid UML model valid(in, UML), that is addition-
ally suitable for the transformation suitable(in). The output model out and
the trace are initially empty. Then after running the transformation the resulting
output model out, converted to the formal Java specification model2sem(out) is
a type correct Java program typeCorrect(model2sem(out)).

It is also possible to prove properties for parts of the transformation. In our
example we have one mapping that creates a Java method declaration for a



540 K. Stenzel, N. Moebius, and W. Reif

setter, and one mapping for a getter. We can formulate a property that calling
the setter, and then the getter returns the setter’s argument. In Java this would
look like a.setB(b); b == a.getB();. Formally (and simplified) this looks like

1. valid(in, UML), suitable(in), isProperty(a), a ∈ in, unmapped(a, trace)
2. * 〈(in, out, trace) g := a.map createGetter(c)〉
3. 〈(in, out, trace) s := a.map createSetter(c)〉
4. 〈(in, out, trace) f := a.map declareField(c)〉
5. (∀ v1, h1, a, b, v2, h2, v3, h3, val, tds. valid(v1, h1, a, b) ∧
6. tds = class c { model2sem(f), model2sem(s), model2sem(g) }
7. ∧ (v1 × h1)[[a.setB(b)]]tds(v2 × h2 ×⊥)
8. ∧ (v2 × h2)[[a.getB()]]tds(v3 × h3 × val)
9. → val == b)

In lines 2, 3, 4 the mappings from the transformation (see Fig. 4) are called
and each result is assigned to a variable. Since the mappings are defined for
a UML property the invoking variable a must be a property that has not yet
been mapped by any mapping operation (line 1). The postcondition of the three
consecutive diamonds begins in line 5. In line 6 the JAST elements g, s, f, are
converted to their Java semantics counterpart (two Java method declarations
and a field declaration), and a class containing them is constructed. In line 7
the semantics of a setter call is used. This will modify the heap h2 which is
then used in line 8 as the initial heap for a getter call. Evaluating the expression
will produce a result val which is equal to the setter’s argument b (line 9), our
desired property. The proof requires a couple of minutes.

3.2 Two Example Rules of the Calculus

The calculus essentially has one rule for every operational QVT expression. It
works by symbolic execution of the QVT program from its beginning to its end
(i.e. computation of strongest postcondition). This means it follows the natural
execution of the program.

Most QVT expressions return a result. To make this result accessible the cal-
culus introduces assignments if necessary. For example, the rule for a conditional
works like this:

1. e = true, Γ * 〈(in, out, trace) x := α〉 ϕ
2. e �= true, Γ * 〈(in, out, trace) x := β〉 ϕ

Γ * 〈(in, out, trace) x := if e then α else β endif; 〉 ϕ

Γ is an arbitrary list of formulas (other preconditions), α and β are QVT ex-
pressions, and ϕ is a Dynamic logic formula, i.e. it may contain again diamonds
or boxes with QVT expressions. The rule has two premises, one for the case that
the test is true, one for the case that it is not. The conclusion contains the if
expression. In case the test is true the then part is assigned to x, otherwise the
else part. This captures the standard meaning of an if expression. However, the
interesting part is the test e. The rule is only applicable if e is a simple expres-
sion, either a literal (like true or false) or a variable. In these cases it is possible
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to write e = true because a literal and a variable have a truth value in our logic.
If the test is a more complex expression like a.map someMap(b.someQuery())
it will be replaced by a new variable that is assigned to the expression:

y := a.map someMap(b.someQuery()); if y then ...

Nested expressions are flattened to a sequence of simple expressions that can be
executed directly by introducing intermediate assignments. In the above example
y := a.map someMap(b.someQuery()); is flattened to z := b.someQuery();
y := a.map someMap(z);.

One of the most interesting rules of the calculus is the rule for a mapping call,
i.e. x := a.map m(args);. Mapping operations and mapping calls are described
in Sect. 8.2.1.5 and 8.2.1.21 in the QVT specification [15]. We describe only a
simplified version of the rule. It has three premises:

1. The invoking expression a may not be null: a �= null ∧ a �= invalid
2. If the invoking object has been mapped before (i.e. is contained in the trace)

the result is looked up in the trace:
a ∈ trace * 〈(in, out, trace)x := lookup(a, trace); 〉 ϕ

lookup is not a QVT expression, but a logical function. It behaves similar to
QVT’s resolveIn expression. In fact, resolveIn is reduced to lookup.

3. Otherwise, the mapping call is replaced by the (slightly modified) body of
the mapping operation. The body of a mapping operation consists of three
(optional) sections: an initialization section (denoted by init {...}), a pop-
ulation section where attributes of the result are computed, and a termina-
tion section (denoted by end {...}). The mappings in our example (Fig.
4,5) contain only an init section and a population section (without any key-
words). The QVT specification states that between the init and population
section the following happens: If the result is still null an object of the cor-
rect result type is created, and the source and result objects are added to
the trace.
In the proof rule a mapping call x := a.map m(); with declaration
mapping m() {init; population; end;} is replaced by
{init; trace(result); population; end; x := result;}
First, the init section is executed. Then, the logical extension trace(result)
is executed. This extension has its own proof rule that either does nothing
or creates the result object, assigns it to result, and adds it to the trace.
result is a predefined variable containing the result. Then population and
end sections are executed, and finally the result variable is assigned to x.

This finished the description. Fig. 5 shows the rule. Since mappings can be over-
ridden for more specific invokers there can be more premises similar to premise
3 for every possible mapping body. (The QVT specification states that “This
follows usual object-oriented virtual call semantics.”) Additionally, the formal
parameters are bound to the actual arguments by equations, and the predefined
QVT variable self is bound to the invoker a. This may require renaming of
variables to avoid conflicts.
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1. Γ � a �= null
2. Γ, a �= null, a ∈ trace � 〈(in, out, trace) x := lookup(a, trace)〉 ϕ
3. Γ, a �= null,¬ a ∈ trace, self = a, params = args

� 〈(in, out, trace) init; trace(result);population; end; x := result; 〉 ϕ

Γ � 〈(in, out, trace) x := a.map m(args)〉 ϕ

Fig. 5. The proof rule for mapping calls

3.3 Discussion

OCL has 12 expressions, imperative OCL 21, and QVT 5 additional expressions,
most of them with many features (e.g. the ImperativeIterateExp (QVT 8.2.2.7)
defines 6 different iterators). The OCL and QVT standard library have about
175 predefined operations. This means that implementing a calculus for full QVT
requires a huge effort. Therefore we follow a pragmatic approach: Currently the
calculus has rules only for a subset of all expressions (18) and operations (30),
namely those that occur in the transformations we verified so far. More proof
rules will be added in the future.

The OCL and QVT specifications are together 500 pages long. However, the
description is often imprecise and leaves many issues open, even for rather central
language constructs. This raises the question how a correct proof rule should look
like. Here we follow the following strategy:

1. If an issue is not clear from the specification, but is irrelevant for ‘normal’
QVT transformations, the proof rule will have a precondition that excludes
the issue.

2. Otherwise we check what the QVTO implementation in Eclipse [29] and
SmartQVT [32] do. If their behavior seems reasonable the proof rule is de-
signed correspondingly. This makes sense because verifying and actually run-
ning a transformation should produce the same results (i.e. correct target
models).

3. Otherwise we program our transformations around the issue and do not sup-
port it. We also make sure that our transformations work in both Eclipse
QVTO and SmartQVT. (There are some differences, but they change be-
tween versions.)

Some examples of open issues:

– Mapping operations: (QVT 8.2.1.15) “Resolving the mapping call implies
finding the operation to call on the basis of the actual type of the source (self
variable). This follows usual object-oriented virtual call semantics.”

This leaves room for interpretation since different object-oriented lan-
guages have different call semantics.

– Mapping operations: The result object of the mapping operation is (usu-
ally) created automatically. But what happens if the result type is ab-
stract? E.g. in mapping UML::Type::toJastType() : J::Type the JAST
Type is abstract (the subtypes PrimitiveType, ClassType and so one are con-
crete), so it is not possible to create a result object automatically. The QVT
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specification is silent about this. The Eclipse QVTO compiler requires an
init section where the result should be instantiated manually. At run time,
if the result after the init section is still null the transformation fails with a
run time exception, SmartQVT also fails.

– Assignments: (QVT 8.2.2.11) “In addition null values are automatically
skipped.” For example, in modifiers := Sequence { null, "public" };
the result will be a list with one element, "public". This is a nice feature for
programming. But what about OclInvalid? Older versions of QVTO failed
with an EMF error, newer versions also skip OclInvalid.

OclInvalid. Essential OCL does not support error handling, but has a generic
error element OclInvalid that can occur almost everywhere. Programming ex-
perience with several thousand lines of QVT transformations shows that this
concept has some drawbacks. If a simple programming error (applying first()
on an empty sequence or casting to the wrong type with oclAsType) raises an
exception the error is easy to locate. However, if the result is OclInvalid it will
propagate through the rest of the code and the result of the transformation will
be something unexpected. Locating the error can be very time consuming.

Therefore, we feel deliberately programming with OclInvalid should be
avoided. For this reason, our calculus guarantees that OclInvalid does not
occur. For x.first() it must be proved that x is a non-null, non-empty se-
quence. This simplifies the calculus considerably because a special treatment of
OclInvalid can be avoided. Otherwise a three valued logic must be used (see
e.g. the OCL specification [14] p. 213, Semantics of boolean operations), and ev-
ery proof rule will have at least one additional premise. Both would make proofs
more complex. But there is no theoretical obstacle against supporting invalid
values.

Assumption hunting. Often it is not clear what assumptions are made about
the input model of a transformation. A standard assumption is that the model
is a correct instance of its meta model. We make this assumption for the UML
model, but do not assume that the additional constraints mentioned in the UML
specification hold. But usually there are more specific assumptions. E.g. in our
example it is necessary that all class attributes have types, although a type is
optional in UML, i.e. can be null. Otherwise the formal verification that the
resulting JAST model is type correct will fail, because the JAST type will also
be null. A second assumption is that the type is something expected – many
UML elements can be used as a type. A third assumption is that a class type
will reference a class that is contained on top level in the packagedElements
of the model, and not in a sub package. In general, formal verification is very
good at finding (hunting for) implicit assumptions. All assumptions must be
incorporated explicitly in the preconditions, or the verification will fail. However,
not all assumptions are found. For example, generalizations in the class diagram
are simply ignored by the transformation (Fig. 4) and the JAST model will have
no subclassing. This may not be what a modeler would expect. The assumptions
could be checked with another QVTO program, but this is future work.
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Proof experiences. Interactive theorem provers require quite a lot of experience
to use successfully, because the user must know the logic, the input language,
how things are formalized, and how to utilize the strength of the tool.

QVT transformations often use iterators over sequences or sets, e.g. css->map
toJavaClass() (line 12 in Fig. 4). This avoids loops or recursion, but is similarly
difficult for verification. The properties that hold during the iteration must be
formulated as invariants. The first elements of the collection have already been
mapped, and the output model contains appropriate elements, and the remaining
elements are not yet mapped. Quite a lot of work also goes into reasoning about
the structure of the models since the specification is quite complex, and UML
itself is very complex.

Proving type correctness of the generated Java abstract syntax tree is actually
more difficult than the properties about setter and getter methods. The problem
is that intermediate results are not type correct, only the final result is. E.g. class
A is generated first and has a field of class type B. However, B is created later
so A in itself is not type correct. Here some kind of look ahead is needed that
the missing parts are eventually generated.

4 Related Work

Related work can be divided into two areas: formal treatment of OCL and QVT,
and correctness of model transformations in general. The OCL specification [14]
contains a formal semantics on paper (i.e. not tool supported which makes a
big difference). A formalization of OCL in Isabelle/HOL is described in [4] on
500 pages, and identifies many problems in the specification. Their goal is to
“provide a semantic representation compliant with the OCL standard semantics
definition”. They define OCL with respect to UML class diagrams (in contrast to
Ecore/MOF used in QVT), and faithfully model undefined and invalid values.
This means their calculus is based on a three valued logic. Experience shows
that a three valued logic creates a considerable technical overhead for concrete
proofs. Therefore we designed our calculus without undefined/invalid values as
discussed in the previous section. The USE tool [12] supports different techniques
for checking OCL constraints for concrete UML models, e.g. with SAT solvers
[33]. Other automated approaches are e.g. [20,28]. They all do not aim at the
verification of QVT transformations. There is some work on the semantics of
different parts of QVT. [5] identifies problems with imperative OCL, [10] for-
malizes the QVT Core language [7] and [40] map QVT relations to petri nets,
thereby providing a formal semantics. [31] show (informally) how QVT relations
can be translated into operational QVT. We are not aware of work on the formal
verification of QVT transformations.

An overview over model transformation approaches in 2006 [6] concludes that
they are “often ad hoc, that is, without proper theoretical foundation.”. Correct-
ness is mentioned only once as a vague possibility. Early work translates UML
models and transformation to B [21], and triple graph grammar transformations
to Isabelle/HOL [11]. [27] (and also [38,3,26]) present frameworks for the verifica-
tion of model transformations. The transformations are based on (triple) graph
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transformations that have a long tradition and well-defined formal foundation
[8]. Rewriting logic can be used to verify relations between input and output
models. The results presented in [27] are not yet implemented in a verification
tool, and focus on structural models. This means it is not clear if the framework
can be used for code generation.

[9] transform activity diagrams to TAAL, a Java-like programming language,
with graph transformations, and present a correctness notion based on trace
equivalence. They can check the correctness for concrete input and output mod-
els, but their “ultimate aim is a general proof of correctness for the transfor-
mation”. [30] transform state machines to Java code, and add annotations for a
model checker to the Java code. The model checker can then be used to prove
that the Java code behaves as the state machine for every concrete input and
output model. They argue that “Verifying the generated output in this way is
more efficient than formally verifying the transformation’s definition.” This may
be true, but what if the verification fails because the output is not correct? Only
a verification of the transformation itself can guarantee that the output will
always be correct.

5 Conclusion

We have presented a framework that allows the formal verification of Java code
generation in a model-driven setting. It is based on a meta model for an anno-
tated abstract Java syntax tree (JAST), a formal Java semantics, and operational
QVT transformations from arbitrary models into a JAST model. The major in-
gredient is a calculus for operational QVT that allows formal reasoning about
transformations. It is implemented in our theorem prover KIV.

Our target are transformations for security-critical systems, primarily in the
context of our SecureMDD project. Here, a UML model extended with our MEL
programming language of a security protocol is the basis for a formal specifica-
tion where the security of the system can be proved, and for generating a Java
implementation of the protocols. It is essential that the generated code is cor-
rect, i.e. is a correct refinement of the formal specification. Since we generate
Java Card code that runs on resource restricted smart cards the generated code
is not trivial. Serialization and de-serialization must work correctly, and detect
malicious input. Objects must be reused, values copied, the code must never
throw run time exceptions, etc.

The transformations are several thousand lines long. In principle, it is now
possible to prove these properties though the effort will be considerable. The
work presented in this paper is just a starting point. Future work includes
adding heuristics to the prover to increase automation, supporting more QVTO
operations, incorporating input validation, and proving the correctness of our
SecureMDD transformations.

References

1. Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system develop-
ment with KIV. In: FASE 2000. LNCS, vol. 1783, p. 363. Springer, Heidelberg (2000)



546 K. Stenzel, N. Moebius, and W. Reif
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Abstract. Mechanical product engineering is a research and industrial
activity which studies the design of complex mechanical systems. The
process, which involves the collaboration of various experts using domain-
specific software, raises syntactic and semantic interoperability issues
which are not addressed by existing software solutions or their underly-
ing concepts. This article proposes a flexible model-based software archi-
tecture that allows for a federation of experts to define and collaborate
in innovative design processes. The presented generic approach is backed
and validated by its implementation on an academic usecase.

1 Introduction

(Mechanical) product engineering is a domain which studies the entire lifecycle
of a complex mechanical system from the customer requirements analysis to its
end of life. It involves several phases: design, industrialization, production, ex-
ploitation, dismantling, recycling. The design phase is the activity that aims at
creating a complete digital mock-up including all information on the product
coming from multiple points of view: functions, components, form features, ma-
terials, multi-physical behaviors, etc. [30,27,38]. This strongly knowledge-based
and collaborative activity involves many partners with different expertises, each
of them using very specialized computer tools, in their turn based on different
knowledge representations and operational procedures.

Such a complex computer-assisted activity has to be supported by a flexible
and efficient software architecture based on rigorous knowledge formalizations.
Although it has been the subject of many research over the past 20 years, the
current state-of-the-art, mainly centered on extended CAD tools, suffers from
many deep limitations such as lack of interoperability [22], lack of flexibility [6],
lack of control over the manipulated knowledge [28], etc.

This article proposes a software architecture based on model-driven engineer-
ing that aims at overcoming the current scientific and operational issues. The
approach, called Model-driven product design, is backed by preceding motiva-
tions studies [25,1], operational, and validated through its application to an
industrial product.

This paper is organized as follows. In section 2, we briefly introduce the con-
text of product design, model-driven engineering main principles, as well as mo-
tivations to this work through a study of current issues and challenges. Section 3
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describes the approach and proposes a generic model-driven software architec-
ture. In Section 4, we show its application to a product design scenario. Finally,
Section 5, discusses related work and proposes directions for future research.

2 Context

2.1 Introduction to (Mechanical) Product Design

Mechanical product design is part of mechanical product engineering that aims
at studying a product from its beginning of life (marketing, value analysis...) to
its end of life (dismantling, recycling...). This approach strongly supports the
design rational information that assists industry both in innovative or routine
product design. Product design has to tackle the path from functions (what
the product is designed for) and solutions (what are the technologies to achieve
functions). The design process is commonly composed of several phases [15]:
requirements specification, conceptual design, embodiment design and detailed
design that progressively breakdown the product in multiple bill of material
(BOM): as-specified (F-BOM), as-designed (Product-BOM, CAD-BOM...), as-
manufactured (CAM-BOM...). In the current industrial context of the extended
enterprise, the design activity is composed of collaborative and remote tasks that
need to link all the knowledge coming from different experts that define their
own BOM (functional analysis, components and material selection, structure
analysis, manufacturing process selection...). Nowadays most of those BOM are
computer-supported. Three main categories of computer tools can be listed:

– The PLM (Product LifeCycle Management) system which acts as the in-
formation backbone by linking BOMs [3]. However, these tools operate at
a low-granularity level. Indeed, they mainly consist in a database of files
produced by different expert tools (CAD or CAx), with some additional
workflow management (files repositories, access restrictions and versioning).
As such, they do not provide detailed knowledge management and rely on
existing file exchange standards to achieve interoperability.

– The CAx (Computer Aided X) tools that support product’s X assessments
during the design process (X being related to functional analysis, manufac-
turability, recyclability, etc.).

– The CAD (Computer Aided Design) software that manages form features
and acts as one of the collaborative space for designers since the design
process is still CAD-centric. Some CAD tools have been extended over the
years to embrace the increasing collaborative aspect of engineering. A perfect
example of this approach is the leading CAO tool CATIA [35]. Based on
engineering good practices, they have developed additional modules (CAx
like) which plug different expertises to the geometrical representation of the
product. Limits of such an approach are well known by software developers:
lack of modularity (ad hoc integration), lack of functionalities (modules are
less powerful than specialized tools), lack of efficiency (engineers have to
adapt their practices to the tool).
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2.2 Introduction to MDE and Model Transformation

Model Driven Engineering considers models, through multiple abstract repre-
sentation levels, as a unifying software concept. The central notions that have
been introduced are terminal model, metamodel, and metametamodel. A ter-
minal model is a representation of a system. It captures some characteristics of
the system and provides knowledge about it. MDE tools act on terminal models
expressed in precise modeling languages. The abstract syntax of a modeling lan-
guage, when expressed as a model, is called a metamodel. The relation between a
model and the metamodel of its language is called conformsTo. Metamodels are
in turn expressed in a modeling language for which conceptual foundations are
captured in an auto-descriptive model called metametamodel. This metameta-
model language, derived from set-theory and object-languages, usually consists
of entities, attributes and relations.

While this originates from an industrial need to have a homogeneous orga-
nization where different facets of a software system may be easily separated or
combined, the proposed architecture goes beyond software or platform models
and reveals itself suited for many other areas where knowledge representation,
exchange and reasoning is a central preoccupation, including ontologies [32].

The main way to automate MDE is by executing operations on models. For
instance, the production of a model Mb from a model Ma by a transforma-
tion Mt is called a model transformation. The OMG’s Query View Transform
(QVT) specification[26] defines a set of useful model operations, an appropriate
descriptive language, and proposes clues on how it should be implemented.

Finally, interoperability with non-MDE enabled technologies (here called tech-
nical spaces) is achieved by special projections here called injection (obtaining
a model from structured data) and extraction (the opposite operation).

These main MDE principles and technologies are summarized in Figure 1.

based on

Fig. 1. Model-driven engineering main principles
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2.3 Current Issues and Challenges in Product Design Software

In order to support the product design activity, the information system is now
recognized as a critical component of collaborative engineering practices [6]. Sub-
section 2.1 has presented the main categories of current computer tools currently
used in industry to support mechanical product modelling. Although those tools
have reached a high level of functionalities several issues remain to fully tackle
the real complexity of the design process. For 15 years the paradigm of design
activity has changed from a sequential process to a concurrent process [31]. This
new paradigm increased the involvement of several experts in the solution selec-
tion. The design process then has to be centered on shared experts knowledge.
New issues are thus related to the complexity of managing that knowledge via
computer-supported tools:

Knowledge Synthesis versus form Feature Modelling. For almost 30 years CAD
systems have been developed and improved to currently reach powerful features
that support product’s shape modelling, which makes the design process geo-
metric centric. This approach has shown its great interest in industry to tackle
the problem of digitizing hand-done drawing and to improve the CAD-CAM
links. Nowadays, the CAD model also finds an interest in improving the digital
mock-up used during a decision making process. However current CAD systems
are not able to manage all the knowledge related to the product definition. This
information has to be related to the whole lifecycle [9] (from requirement speci-
fications to dismantling information). The product, and its CAD model, is now
defined, as far as possible, taking into account “X” constraints as assumed in a
DFX (Design For X) approach. CAD model (i.e. form feature) then has to be
generated from knowledge synthesis approach [24].

Interoperability versus Heterogeneity of Knowledge Modelling. Since the number
of experts and product assessments are increasing, knowledge is becoming more
and more heterogeneous but has to be linked in order to manage the impact of
changes on each other. Each knowledge model is indeed created and can evolve
independently. [17] proposes three approaches to afford the interoperability:

– Integration aims at proposing a unique global fused model that integrates
every knowledge concept. A consensus has to be found among every concept,
and should be changed when a new concept is added.

– Unification aims at proposing a metamodel used to map some knowledge
concepts via semantic associations. This metamodel has to evolve or a new
one has to be created when a new concept is added.

– Federation aims at creating mappings between knowledge models dynami-
cally. This distributed approach seems to be the more flexible one since only
local changes have to be treated when adding new concepts.

We propose to use a model-based architecture to support the federation approach
since MDE principles naturally promote its distributed nature. Metamodels will
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be used to formalize collaborative knowledge, while projections and transforma-
tions will be used to support syntactic and semantic interoperability between
BOMs (as proposed for instance in [13]). The dynamic creation of mappings
remains nevertheless a great difficulty and will not be fully treated in this paper.

3 A Model-Based Software Architecture for Product
Design

As seen previously, we believe MDE is fitted to support a federated product
design software architecture. In order to map MDE concepts and operations to
product engineering, we have compiled design scenarios from academic littera-
ture and industrial usecases. As a result, we identified a set of different concepts,
design patterns and requirements. We first give an overview of the proposed ar-
chitecture, then discuss its different parts and alternatives in details.

3.1 Architecture Overview

Figure 2 presents an overview of the proposed software architecture, illustrated
through a fictive scenario involving various components. As outlined by the
squares on the side, the symbols may be read equally at two levels with dif-
ferent semantics, corresponding to the M1 and M2 levels of MDE:

expert
 tool   

1

2

3

4

expert
 tool   

expert
 tool   

expert
 tool   

Fig. 2. Architecture overview
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– Yellow ellipses represent expert tools data. At level M2, their data structure
or grammar. At level M1, the actual file produced (i.e. exported) or used
(i.e. imported) by a specialized tool.

– At both levels, the dotted circle represents the frontier between tools techni-
cal spaces and MDE. The dotted arrows represent the injections/extractions
required to obtain corresponding knowledge models.

– At a level M2 lecture, blue-filled circles represent the domain-specific meta-
models, whereas at level M1 they are the actual models manipulated during
the scenario.

– Green solid arrows represent (inter-)model operations. At level M2, it is their
definition (hopefully a declarative description). At level M1, their execution
on the models during the scenario. The different types of operations needed
(marked by numbers on the figure) are detailed in a following subsection.

– The whole process is defined and driven by design process knowledge, ex-
pressed as a model of some workflow language (red square).

3.2 Technical Spaces and Connectors

Expert tools use various formats to store and manipulate data. Most, if not all,
provide import/export facilities from/to either proprietary formats, or, for inter-
operability requirements, from/to industry standards (in our industrial context,
STEP [33] is largely used). In order to manipulate product data in the MDE
environment, we need to obtain corresponding knowledge models.

This operation, here called injection/extraction, has a well-known process in
the MDE community: 1) obtain, or define, the data structure of the technical
space; 2) define the corresponding metamodel; 3) map both of them using a
MDE language/tool that automates the operation.

In practice, we usually fall into two main possibilities:

– An XML format is provided: the process is then eased by existing work on
briding XML schemas to metamodels.

– A textual file is provided: a grammar of the textual syntax has to be defined
(usually in EBNF style), and its concepts mapped to the metamodel.

The obtained metamodel is often syntactically close to the original data struc-
ture. However, it is possible to complete the connector with an additional trans-
formation, defining (or reusing) a target metamodel that has a more appropriate
structure.

Finally, it is important to note that not all the data manipulated by the expert
tool may be of relevance for collaborating with other experts. In that sense, the
model-based architecture offers a very flexible approach: the knowledge model
can very well be a (reformulated) subset of the original expert data.

In the implementation and usecase sections, we will show the application of
these alternatives on a concrete scenario and discuss potential fallbacks.
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3.3 Knowledge (Meta) Models

Knowledge metamodels capture a subset of expert data that is relevant for other
experts in the design scenario. The architecture does not place any constraint
on which metamodels should be used, hence remaining flexible. However, our
experience shows that we are mainly dealing with three types of knowledge
models:

– Tool models. These counterparts of expert tools data structure, as seen in the
previous subsection, may be used as entry-point models to obtain specialized
(tool-independant) models, or simply linked to another tool model in order
to achieve interoperability.

– Specialized models. Design scenarios literature describe custom knowledge
models which aim at defining, checking or enforcing specific properties of the
product (such as its energetic integrity).

– Intermediate models. Complex transformations may require intermediate
models for technical (simplicity) or conceptual reasons (semantic decom-
position).

The flexibility of the approach allows for an easier development of new design
scenarios: knowledge models may be reused, extended or created from scratch
depending on the scientific analysis rather than tools existing support. Possibil-
ities are however limited by the expressiveness of the metametamodel language.

3.4 Model Operations

From the studied scenarios, we outline a (non-exhaustive) list of different experts
collaboration patterns, translate them to knowledge manipulation requirements,
and map these to existing MDE concepts and technologies:

– The output of an expert is used, later in the design process, by another
expert. This is a typical interoperability problem. To obtain the downstream
knowledge model, existing rule-based model transformation techniques [18,7]
can be used (mark 1 on Fig 2).

– The output of several expert analysis have to be combined. A classical exam-
ple is the geometrical mockup of the designed product, which is constrained
by several expert analysis (energy flows, materials, technologies, etc.). In
order to merge (and/or divide) knowledge, modern MDE tools offer the pos-
sibility to specify multi-source (and/or multi-target) transformations (mark
2 on Fig 2).

– Two (or more) experts share some knowledge and have to maintain their
data consistent. Typically, different analysis will share product parameters.
When activities are held in a back and forth stream, bijective transforma-
tions may be used. Since these transformations are not yet mature [34],
MDE applications usually simulate this behavior with two injective trans-
formations. When activities are held concurrently, more advanced mecha-
nisms, such as constraint-based propagation of modifications [4], are to be
investigated (mark 3 on Fig 2).
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– An expert is faced with two or more inconsistent data constraints. It is thus
required to calculate the impact of modifications and notify upstream experts.
Although a rough impact can be calculated from the activities workflow, the
MDE approach may offer more fine-grained possibilities through traceability
mechanisms [16]. As the production of knowledge may be achieved through
an external tool operation, traceability must also be kept between the models
which are not directly transformed (mark 4 on Fig 2).

3.5 Process (Meta) Model

A design scenario is supported by a process which describes the different experts,
activities and tools involved, as well as temporal and collaboration constraints.
This description may be captured using existing generic workflow languages
or product engineering specialized languages [14]. The MDE process, which de-
scribes the models and model operations involved, may be automatically derived
from the expert activities workflow. These are however out of scope of this paper
which does not preclude or impose the use of a particular process language.

4 Usecase

In order to further validate the presented architecture, we illustrate its use on
an innovative design scenario which is not currently well supported by existing
software solutions. The usecase, adapted from [19], deals with the design of a
mechanical coupling system between a plane propeller and a diesel engine. The
design process aims at obtaining a description of a product assembly from its
functional and energetic analysis.

Figure 3 outlines the tools, data files and knowledge models used in the sce-
nario. The following subsections detail each operation.

Fig. 3. Usecase scenario
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4.1 Architecture Implementation

We have chosen the Eclipse EMF platform [8] as the implementation framework,
mainly for its maturity and tools support. ECORE is used as the metametamodel
language, and ATL [18] for transformations. The usecase files, models and trans-
formations are open source and can be freely downloaded from a single package
[5]. In the following, metamodels will be represented using ECORE diagrams.

4.2 Knowledge Models

Our scenario uses three specialized models which are briefly introduced below.

FPPT. FPPT stands for Function, Physical Principle, Technology. Informally
described in [21], we created a metamodel which covers most of its concepts. An
excerpt is shown in Figure 4. Functions refer to abstract product functionalities,
which may be divided into subfunctions. Terminal functions are realized, through
a physical principle, by a specific (known) technology.

Fig. 4. An excerpt of the FPPT metamodel

SK2. SK2 stands for Skins, Skeletons, informally described in [23]. Figure 5 is
an excerpt of the corresponding metamodel. Briefly, product parts have external
skins which can be linked to other skins. The product skeleton, which represents
the energy flows, is made of external functions between those skins, and internal
functions inside the parts. Each function has energetic properties.
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Fig. 5. An excerpt of the SK2 metamodel

ASB. ASB stands for product ASemBly. This very simple metamodel, in which
the system is simply viewed as a set of interconnected parts, has been created
specifically for this scenario, as an intermediate knowledge model between SK2
and the CAD tool CATIA.

4.3 TDC - FPPT Connector

The functional analysis tool selected for the usecase is TDC [36]. The tool pro-
vides an export of its data as an XML file. We used EMF native facilities to ob-
tain the ECORE metamodel from the provided XML schema and the associated
injection/extraction operation. However, due to XML arborescent restrictions,
the associative references of the schema are simulated through the equivalence of
textual properties (IDs). We thus created an additional model transformation,
using ATL, to a target metamodel where associative references are restored.

The final step to the connector is an ATL transformation which targets the
FPPT metamodel. The transformation involves a loss of knowledge which is not
relevant for other experts in the context of our collaborative scenario.

Figure 6 summarizes this chain of transformations.

4.4 FPPT to SK2 Transformation

This ATL transformation mainly consists of two parts:

– a mapping from FPPT’s functions and technologies to SK2’s external func-
tions and parts.

– a characterization of the skeleton energetic properties obtained from FPPT’s
physical principles.
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Fig. 6. TDC - FPPT: chain of transformations

4.5 SK2 to ASB Transformation

This very simple ATL transformation uses SK2’s knowledge to create an assem-
bly where different product parts are linked according to the skeleton.

4.6 ASB to CATIA Connector

The selected geometrical modelling tool is CATIA [35]. Among the possible
formats for importing data, CATIA proposes STEP AP-203 [11], an industry
standard for exchanging geometrical information about a mechanical product.

The STEP standard [33] defines textual files which conform to a STEP schema
(Application Protocol here AP-203), which in turn is defined using a relational
language called EXPRESS [10]. The OMG had already considered the interop-
erability between STEP files and MOF models in the original XMI proposal.
Two alternatives were envisioned:

– a metametamodel mapping between EXPRESS and MOF, if any is possible
due to the semantic gap.

– a metamodel mapping between a specific STEP schema and its counterpart
metamodel.

To the best of our knowledge, the first option has been worked on by various
projects but is not yet mature nor known feasible in the general case. We thus
chose the second option.

Technically, we used XTEXT/XPAND [39] to define the STEP grammar and
generated the corresponding metamodel. This state-of-the-art technology allows
us to inject and extract STEP files to/from STEP models.

For the sake of clarity, we separated the STEP general metamodel from the
AP-203 schema metamodel (which contains most fo the product information).
An excerpt of the latter is shown in Figure 7.
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Fig. 7. excerpt of the STEP AP-203 metamodel

A first ATL transformation generates an AP-203 model from our assembly
knowledge model (ASB). In order to obtain the general STEP model, a second
ATL transformation takes two models as source: the AP-203 model and a custom
model which only contains necessary header information for the STEP file (such
as author, etc.). Figure 8 shows the whole connector chain of transformations.

EXPRESS
 

Fig. 8. ASB - CATIA: chain of transformations

5 Related and Future Work

From the product engineering perspective, most of the related work has been car-
ried out using integrated product model approaches [27], often supported by on-
tology management technologies [20], as opposed to the model-based federation
proposed in this article. Recent work have explored the use of meta-modelling
[37], but are restricted to specific operations such as tool interoperability [22],
design coherency [28], use a unifying metamodel like SysML [29], or focus small
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parts of the design process such as functional requirements [20]. [12,25] share
our requirements for weaving and transformations between federated product
models but stay at a conceptual level. Our work generalizes these principles in
an flexible federation approach grounded in model-based techniques.

From the model-driven engineering perspective, product design requires com-
plex metamodels and transformation processes. Therefore, while our work makes
use of several existing model-based techniques, it also raises new challenges re-
garding traceability, consistency, bidirectional transformations and metamodels
expressiveness. A large share of the work on megamodels, for instance [2], may
also be investigated to ease the definition and evolution of the design process.

Future work includes experimentations on various industrial usecases, in order
to confirm the viability of the MDE architecture and propose generic methods
for the different collaboration patterns. One of the critical issues is incremental
change management and its propagation to upstream models. Finally, investi-
gations are currently carried out to tackle the dynamic aspects of creating the
information system dynamically with respect to the adequate knowledge used in
the product design process. That would provide a great opportunity to support
the flexibility of the design process in industry. The expected output is a design
process model which will be used to generate and automate the software process.

6 Conclusion

In the context of mechanical product engineering, software systems such as CAx
and PLM have provided functionalities to manage product breakdown through
organizational access rights and workflows on persistent files generated by spe-
cialized expert tools. However the increasing complexity of systems now requires
a fine-grained control over collaborative knowledge in order to assess the impact
of local changes, as well as flexible software systems which support the creation
of innovative scenarios.

This paper describes an original model-based federation approach for the de-
sign of mechanical products, complementary to existing solutions (integration,
unification). The proposed architecture adapts model techniques such as meta-
modelling, transformations and projections to the context of collaborative prod-
uct design software. Based on previous experiences and studied design scenarios,
generic model-based solutions are proposed to handle the digital chain of product
knowledge at the desired granularity level, while preserving a flexibility that al-
lows for innovative scenarios to be defined and automated. The implementation
on an academic usecase validates the viability of the approach. Considering the
high complexity and heterogeneity of product design scenarios, a number of orig-
inal issues and challenges are raised, which lays the path for future investigations
on both product engineering and model-based software techniques.
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Abstract. Model-based system engineering (MBSE) is regarded as an effective 
way of developing systems. We are now applying the model-based approach to 
IT system development/integration (SI) because we urgently need to reduce the 
cost of SI. However, there are various challenges imposed when applying 
MBSE to SI. One of these is that reducing the cost to update models is more 
significant than that in other MBSE domains such as embedded systems. We 
adopted SysML to handle these issues and extended it to modeling IT systems. 
We present the details on this SysML extension and how it overcame these 
issues. We are developing an in-house SI-support tool called "CASSI", which 
evaluates the non-functional requirements; performance and availability of the 
IT system's models written in that extended manner and helps these models to 
be reused. This paper also includes industrial case studies of CASSI, and its 
effectiveness is discussed. 

Keywords: Model-based, IT systems development, system modeling. 

1   Introduction 

It is urgently needed to suppress cost of enterprise IT system development/integration 
(SI). Model-based system engineering (MBSE) is regarded as an effective 
methodology to achieve this. Requirements, specifications, and design in MBSE are 
written in formal modeling language, and the models can be automatically verified 
and reused. The main benefits of MBSE are summarized below [1]. 

 

1. Improved quality  
 More complete, unambiguous, and verifiable requirements 
 More rigorous traceability of requirements 

Enhanced design integrity 
2. Increased productivity  
 Improved impact analysis of requirements and design changes 
 Reuse of existing models to support design evolution 
3. Reduced development risks  
 Ongoing validation of requirements and verification of design 

More accurate cost estimates to develop the system 
                                                           
* Corresponding author. 
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However, the model-based approach is less popular for developing enterprise IT 
systems in our experience, despite the rate at which many frameworks and view 
models have been proposed. We consider that this is mainly because of cost-benefit 
conflicts. If the effort of creating and updating models is larger than the benefit 
brought about by modeling, MBSE will not be practical. We observe that three 
properties of enterprise IT systems prevent MBSE from being cost effective. 
 
1. Rapidly changing hardware infrastructure 

IT products are shifted and updated too rapidly and models quickly become out of 
date. 

2. Large-scale and heterogeneous components 
IT systems comprise a wide variety of third party application software, libraries, 
and middleware. Consequently, it is not cost effective to model them all, unless 
they are repeatedly reused. 

3. Comparatively easy bug fixing nature 
Most problems with IT systems are caused by software defects, which can easily 
be fixed, even after their release. Therefore, very strict modeling at the design 
phase is less important. 

 
Issues 1 and 2 increase the cost of modeling, and issue 3 decreases benefits. These 
issues suggest that we should apply lightweight MBSE to SI, where lightweight 
means ease of learning, ease of use, and less modeling effort. 

We are now developing an in-house MBSE environment named CASSI (Computer 
Aided System model-based System Integration environment) [2], which employs 
SysML [3] as a modeling language. As the name indicates, CASSI is intended to be a 
Computer Aided Engineering (CAE) tool for SI. Generally, more detailed systems are 
modeled, better results, such as more accurate evaluation and verification or more cost 
saving benefit will be obtained. However, we must avoid over-modeling to enable 
CASSI to be corporate-widely used as a pragmatic tool. Otherwise, the benefits 
previously listed are ruined by the efforts of modeling. This level of modeling detail 
largely depends on target domain of modeling and will vary from organization to 
organization, because the extra effort of applying MBSE heavily depends on skill and 
knowledge of engineers. Consequently, even if our design choice (the level) is proven 
to be effective for us, it might not be for other organizations. However, our practice 
and knowledge will be a good reference for other organizations. 

The primary contribution of this paper is to present our implementation in applying 
MBSE to the practical development of enterprise IT systems. We have defined 
minimal views for our needs, and extended (specialized) SysML according to this. 
We also managed some problems attributed to SysML itself. This paper also includes 
industrial case studies of CASSI, and discusses its effectiveness. 

The rest of this paper is structured as follows. Section 2 presents the overall 
framework for model-based SI using CASSI. Also, details on our SysML extension, 
which we called PlatForm Modeling Language or PFML, are presented in this section. 
Section 3 explains case studies of CASSI that were applied to real SI. Then, some 
related work covering other modeling frameworks for IT systems and comparisons are 
presented in Section 4. Section 5 concludes this paper and outlines future work. 



Applying a Model-Based Approach to IT Systems Development Using SysML Extension 565 

2   Details on CASSI and PFML 

We present the overall framework for model-based SI using CASSI in this section. 
Also, the definition of PFML, which is used as a modeling language, is explained in 
detail. 

2.1   Framework for Model-Based SI 

An enterprise IT system is so complex that its architecture should be described 
according to the interests (concerns) of all stakeholders such as clients, architects, 
designers, application programmers, and infrastructure engineers [4]. We assumed 
that three kinds of stakeholders would interact with CASSI. 
 
• System Engineers (SEs) 

An SE is responsible for providing customers with an IT system with the 
requirements they demand. For example, in developing an e-commerce site, he/she 
designs database schema, configures Web applications, and determines the 
appropriate platform architecture. 

• Platform Architects (PAs) 
A PA is responsible for providing modules of platform architecture, which we call 
system models. A system model is a self-contained unit of reuse that achieves a 
certain functionality. For example, a Web 2-tier system, composed of Web servers, 
a load balancer, a database server, and network peripherals is an example of system 
models. 

• Infrastructure Architects (IAs) 
An IA is responsible for providing verified combinations of products. For example, 
he/she verifies whether a certain type of network card or memory can be mounted 
on some type of server. 

 
Here, platform means hardware and software elements that are not specific to 
particular projects. For example, computers, routers, and RDBMS software compose 
a platform. Application code dedicated to a particular project is not part of a platform. 

There is an overview of model-based SI flow using CASSI in Figure 1. The PA 
designs common architecture for various systems as system models and stores them in 
the repository. In parallel, IA verifies combinations of products, stores them in the 
product library, and updates them along with the release of products. The SE can 
utilize them and only need to select an adequate system model from the repository 
and customize it and adopt an appropriate product for their system design according 
to user requirements. We call this process as “constructing a system from a system 
model”, where the system model is used as a design template. 

Basically, we separate the modeling of “system dependent” and rapidly changing 
parts from that of comparably unchanging parts and attempt to reduce the effort of 
modeling. 
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Fig. 1. Model-based SI flow using CASSI 

The two primary objectives of CASSI are to reuse system models and evaluate 
non-functional requirements (NFRs). 

 
1. Reuse and integration of system models 

An SE chooses and integrates existing system models as an execution platform for 
the project. Reuse reduces the effort and cost of development, and maintains 
quality. Being model-based, CASSI helps the SE to retrieve appropriate system 
models and checks the integrity among them. 

2. Evaluation of NFRs during whole design process 
An SE needs to adjust the execution platform to meet the NFRs required by the 
customer (e.g., capacity planning). CASSI can evaluate the performance and 
availability of the model, and helps the SE’s decisions [2]. 

 
Currently, we do not pursue other MBSE benefits such as tracing and verification of 
functional requirements, since CASSI focuses on the platform design phase within the 
whole system development process and application design or testing phase is out of 
scope. The reason we omit the application modeling is that application models are 
less reusable than platform models and require more modeling effort. It is a future 
task whether we extend our target to the application modeling or not. 

2.2   System Model Overview 

The definition of system model is outlined in Figure 2. 
The system model consists of a logical model, a process model, and physical 

models. The logical model describes use cases (related to functional requirements) 
and the functions of the system. Each function has links to a process, which are the  
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Fig. 2. Definition of system model 

components of the process model. Here, function does not mean application-level 
functions such as “adding items to the user’s cart”, but platform-level functions such 
as a “Web server”. For example, the “Web server” function can be allocated to the 
“Apache” or “Tomcat” process. There are various implementation of the same 
platform-level function and CASSI currently utilizes the logical model for searching 
adequate system models holding a certain function from various process models. As 
there are not many differences between logical and process models in our model, the 
relations between them can be handled by allocations, which are comparatively 
simple relationships. The process model describes the structure of processes, which 
comprise the sequence (scenario) performed by the application software. Here, a 
scenario is constructed of several steps. A physical model describes the structure of 
physical elements, such as servers, network devices, and their connections. When 
cloud systems are modeled, we can define two physical models: the first for virtual 
servers and the second for physical (real) servers. 

Note that Figure 2 briefly outlines the structure and more specialized classes are 
defined in CASSI. For example, the subclass of physical element includes servers, 
processors, memory, and network peripherals. Also, scenarios can include control 
flow elements, such as branches, loops, forks, and joins. 

Additionally, there are two types of system models, viz., white-box and black-box 
models [5]. If the details of a system are known, the corresponding system model can 
be written to be as detailed as possible, i.e., as a white box. Otherwise, we need to 
treat uncertain parts of systems as a black box and do not go into component details. 
This is effective for modeling large-scale systems and their multiple components. 
Thus, we can omit detailed modeling of uncertain components and its behavior. 

Also, the system model can include other system models. The included system 
models behave as components of the including system model, where the allocations of 
the included system models are preserved. 

The relation between a system model and a system is somewhat similar to that of a 
class and instances in the object-oriented approach. The system model is instantiated 
by fixing user-changeable factors as follows. 
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• Scaling Factors 
Scaling factors indicate user-changeable parameters of system models, such as the 
number of servers in a cluster and size of thread pools. As such values vary from 
system to system even if the basic architecture remains the same, they are to be 
specified separately from the system model. Scaling factors instantiate processes and 
physical elements by applying specified values to them, through their attributes. 
 

• Application Factors 
Application factors mean the values that are specified according to the properties of 
the user and real behavior of applications, such as count/size of requests arriving at 
the system and the CPU time for each request. As such values vary for scale and 
content of the job of each application, they cannot be fixed in the design phase for the 
platform architecture. As a result, they need to be defined separately from system 
models and be easily fixed and changed later. Application factors instantiate steps, by 
applying the specified value to them through their attributes. Many application factors 
are common with those defined in MARTE-PAM [6], but we have defined more 
domain-specific factors such as the number of SQL queries. 
 

• Product Allocations 
There are many options for selecting products. That means we can use several kinds 
of servers and network devices for implementation. For example, servers may be 
exchanged with newly released products with better specifications. Therefore, actual 
information about products for constructing systems and their specifications should 
easily be updated as products are exchanged. Information on several products and 
their possible inner structures, such as the number of CPU cores and mounted 
memory size, is defined as a library (separate from the system model) in CASSI and 
is periodically maintained by IA. Physical elements are allocated to these products in 
the instantiation procedure and the destination for allocation can easily be changed to 
another product. 

We call these factors configuration parameters (CPs), and the instantiated system 
model in which CPs are fixed is known as an instance model. CPs affect the NFRs of 
the system, and by changing them, we can make models for various system designs 
with different NFRs, such as performance and availability. Thus, once the basic 
system model is constructed by the PA, all SEs can utilize it as a template for the 
design of various systems. 

The separation of CPs and system models makes it easy to update and customize 
parts of the model, and minimize the effort of constructing instance models (the 
model of various systems) by reusing existing models. Furthermore, we can define the 
platform and application parts independently, and integrate them later in each 
development phase. This is also convenient for the platform as a service (PaaS) 
environment, whose application platforms are provided by the PaaS vendor and 
application developers do not know the platform’s details. 

2.3   SysML Representation 

We employ SysML to represent the above model (meta-model of PFML). The logical 
model, process model, and physical model are represented by SysML blocks and the 
components of each model are represented by part properties and connectors. Their 
structure is described with internal block diagrams (IBD). We employ a sequence 
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diagram to describe scenarios. Steps are written as messages and execution 
specifications. A scenario is represented by the first message in the sequence. The use 
case is naturally represented by a SysML use case, and described by a use case 
diagram. These extensions are done by stereotypes in a standard way. 

We also added some extensions to SysML. One of the advantages of SysML in 
representing systems architecture is that IBD can present nested parts intuitively. 
However, because properties cannot be nested in the UML2 meta-model, there is a 
gap between presentation and internal representation.  

For example, we assume that there is a different part “a1” and “a2” with the same 
type of A in a certain IBD. If A includes a part “b”, two parts “a1.b” and “a2.b” are 
shown in the IBD and they are the identical element, even though they look different 
elements to the user. Therefore, it is impossible to describe allocations from the element 
“a1.b” to a different element to that allocated from “a2.b”. If done so, two allocations 
from the block A to the different elements are generated. This is so confusing that we 
redefined allocation so that it could represent the relation between propertyPath to 
propertyPath, where propertyPath is the same as the attribute of SysML’s 
NestedConnectorEnd. For the same reason, we avoided using “represents” for the 
attributes of lifelines but used the redefined allocation to relate lifelines and parts. 

CPs are represented by a dedicated data structure and externally related to a path of 
part properties inside the system model. Although SysML defines a method of 
representing configurations without the problem stated above (i.e., initialValues), there 
are few reasons to employ this complex representation, because we implemented a 
dedicated configuration view to simplify use. 

The diagrams and their relationships are outlined in Figure 3. This also shows the 
CPs editing view used in the instantiation procedure above. 

  

Fig. 3. Relationship between each diagram and example of CPs editing view 
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2.4   NFR Evaluation 

This paper only briefly illustrates the method of evaluating performance (one 
important property of NFRs) due to space limitations. Details on the evaluation of 
availability are given in [2] [7]. The module for performance evaluation converts 
SysML (XMI) files and CPs, which describe an instance model, into a simulation 
model, and then executes discrete event simulation. The simulation model is 
comprised of a directed graph, whose semantics is similar to the activities of UML, 
and its node reference resources [2]. Similar approaches are found in [8]. 

Figure 4 is an example of conversion. The right side shows translated graphs, 
where the resource for each node is after a colon. This can be summarized in four 
steps. 
 
1. Convert a sequence diagram into an equivalent activity graph. 
2. Translate the graph according to allocation between a lifeline and a process. The 

allocated part is established as a resource for the node. If there are other elements 
between allocated parts, the nodes or edges for them are also generated (e.g., 
“c:fio”). 

3. Translate the graph again according to allocation between a process and a physical 
element. Products are expanded and allocation is inferred by its type (e.g., 
“b:CPU”, “d:DISK”). This step can be repeated if there are multiple physical 
layers. The performance of a virtual environment is evaluated as such. 

4. Calculate the service demand of each node from the application factors of the node 
and attributes of the resource (e.g., the demand of “a:C1” is a.msgSize * 
C1.bandWidth).  

  

Fig. 4. Conversion from system model to simulation model 

Here, the reason we first convert a sequence diagram into a graph like an activity 
diagram is that its semantics is much clearer. A comprehensive discussion about the 
semantics of a sequence diagram and its translation into formal language (such as 
Petri net) is presented in [9]. As explained in the paper, there are so many 
interpretations for a sequence diagram that we need a less ambiguous data structure 
for the conversion process. The whole conversion process from system models to 
simulation models will be addressed in another paper. 
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Note that the user (SE/PA) does not need to create all allocations, because some 
allocations such as the ones for SWITCH are inferred automatically. Also, the SE 
does not need to know details on products, because allocations to inner components 
are also inferred. Although it was not included in the example, CASSI fills other 
semantic gaps between the system model and simulation model. For example, if the 
object in the process model is a thread and its multiplicity is limited, the performance 
evaluation module generates nodes for allocating/releasing a thread from a thread 
pool, each time when the thread is used. These features reduce the cost of modeling. 

3   Case Studies 

We present two case studies in this section. The first is server consolidation: migration 
from existing systems to virtual environments without changing applications. This is 
one of the standard patterns in recent SI with the trend in cloud computing. The second 
one is the evaluation of performance of an integrated system composed of multiple 
system models (System of Systems: SoS) [5]. As an SoS includes various third-party 
systems (unknown parts) to achieve functional requirements, the system model 
includes some black-box parts. 

3.1   Server Consolidation 

We assumed migration from two Web 3 tier systems to a virtual environment in this 
case study. The system model for the pre-migrated (two Web 3 tier) systems is 
illustrated in Figures 5 and 6. Since this model is written by the PA and stored in the 
repository, the SE only needs to access it using CASSI. 

 

Fig. 5. Process structure of system and its behavior (process model) 

 

Fig. 6. Physical structure of system (physical model) 
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Note that each target system of migration (two Web 3 tier systems) is described 
with the same system model but has different CPs (different instance model). 
Therefore, we next customize (instantiate) the above system models with the 
performance data of pre-migration systems. We can edit these parameters with the 
application factor editing view of CASSI. 

Then, the above instance model is migrated onto a post-migrated system model. 
Here, we assume that the post-migration system has the two host servers in Figure 7, 
and Web/AP processes will be migrated (allocated) on one server (Host1) and the DB 
process, on another server (Host2). These allocations can be done with the product 
allocation editing view. 

 

Fig. 7. Physical model of post-migrated system 

The SE can now evaluate the performance of the post-integrated system, which is 
first done with the default configuration (Figure 8). The left indicates the utilization of 
each resource (here, the CPUs of Host1 and Host2), and the right indicates the 
response time for the request. 

 

Fig. 8. Resource utilization (left) and response time for request (right) with default setting 

These results indicate that the CPU of Host1, on which the APServer is migrated, 
will be saturated. One solution to this is to increase the number of CPUs of Host1 
from 1 to 4. The SE can change this with the product allocation editing view, 
reevaluate it, and confirm if the performance problem has been resolved. 
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This case shows the following benefits. 

• The SE can estimate the appropriate configuration (e.g., the number of CPU cores 
and number of servers) without any knowledge of the performance model of the 3 
tier Web system, or virtual machine monitors. 

• The SE can confirm that the post-migration system satisfies user requirements, 
such as the “response time for 90% of requests must be within 1 sec”. 

• SE only needs to modify the CP through the CP editing view on CASSI, and does 
not need to go into the detailed architecture of the pre/post migrated system. 

• CASSI will be effective for developing applications in the PaaS environment. 

3.2   System of Systems Evaluation 

We dealt with an actual Web system for a network carrier in this case study (the left 
of Figure 9), which consisted of a reverse proxy, authorization system, and a Web 
system. Transactions to the reverse proxy are forwarded to the authorization system, 
and then the reverse proxy forwards these transactions to the Web system if 
authorization succeeds. The Web system consists of a Web/application server 
(Web/AP), database server (DB), an enterprise service bus (ESB), and a business 
logic server (BS). The BS is connected to an external system that provides various 
Web services (the right of Figure 9). Here, the details on the external system are 
unknown and are therefore treated as a black box. 

 

Fig. 9. Schematics of system (left) and Web system (right) 

The process construction (process model) of the Web system is outlined in  
Figure 10. Also, the behavior of each process is modeled in detail except for the 
external system part. Its sequence diagram is omitted due to space limitations. 

This black-box part and other part of the Web system are defined as a separated 
system model and the SE can combine them. When the SE is analyzing the 
performance of the Web system, he/she gives a reasonable value to the response time 
of the external system since the details on the external system are unknown. 
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Fig. 10. Process structure of Web system including external system model 

Then, CASSI analyzes the performance of this system model and the influence 
caused by the increase in the number of requests arriving at the external system. In the 
first case, we applied 1 sec to the response time of the external system. The left of 
Figure 11 shows the results obtained from the performance simulation. We can see 
that the utilization of Web/AP’s CPU is saturated, i.e., it is the bottleneck in this 
system. In the second case, we applied a larger response time (4 sec) to the external 
system than to the first case. The simulation results shifted as seen at the right of 
Figure 11, and the utilization of thread pool in the Web/AP process is saturated. 
Namely, the bottleneck of this system shifted from Web/AP’s CPU to Web/AP’s 
thread pool. 

  

Fig. 11. Resource utilization in first (left) and second cases (right) 

It is possible to detect the influence, shift of a bottleneck due to the change in the 
external system in this way. This bottleneck was detected because CASSI generates a 
simulation model that includes thread pools from the process structure shown in 
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Figure 10. Since the details on the external system are unknown, this external system 
could not be modeled explicitly. CASSI was able to incorporate this external system 
as a black box by defining the interaction between this black-box part and other 
independent systems. 

This case shows the following benefits. 

• CASSI can comprehensively deal with several system models regardless of 
whether they are white or black boxes, so the system models defined separately can 
be combined as needed and thus effectively reused. 

• If the PA models details on the middleware in a system model, all SEs who use it 
can evaluate the complex nature of the system with little extra effort. It will make 
capacity planning much more accurate. 

4   Related Work 

MBSE is regarded as a promising method of developing real time embedded systems, 
such as avionics and automotive control systems. AADL [10] has been a successful 
modeling language target in developing real time embedded systems. Also, the UML 
profile for Modeling and Analysis of Real Time Embedded Systems (MARTE) has 
been standardized by OMG [6]. 

Also, many view models have been proposed for decades to describe enterprise 
architectures or technical architectures. Enterprise architectures such as [11-14] treat a 
wide range of enterprises and include many viewpoints. Technical (software and/or 
system) architectures such as the 4+1 model view [15] include a concise set of views 
to describe the system architecture. IBM’s System Description Standard (SDS) [16] is 
represented by UML2, and focuses mainly on the technical aspects of an enterprise 
[17]. The viewpoint model for IT systems can be found in [18]. 

Some prior work has applied the model-based approach to SI. Balmelli et al. 
demonstrated practical MBSE based on a Rational Unified Process for Systems 
Engineering (RUP-SE) [19]. It is a heavyweight approach and requires a great deal of 
effort for modeling. It is cost efficient if the target system is highly mission critical or 
its lifetime is long. However, we consider lightweight approaches are more suitable 
for the majority of modern enterprise IT systems. Tsadimas et al. proposed the model-
based design of an enterprise information system architecture [20]. CASSI is similar 
to their approach; both focus on NFR evaluations and employ a similar view model. 
However, CASSI takes a more pragmatic approach such as having dedicated 
configuration views. 

Furthermore, there has been much prior work on UML-based analysis of software 
performance [8] [21-23]. Most of this work has required comprehensive modeling to 
analyze performance, which requires knowledge of performance engineering. As 
explained in Section 2.4, CASSI defines a more domain specific model so that the 
performance evaluation module can efficiently fill semantic gaps and ordinary SEs do 
not need special knowledge about performance engineering. 
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5   Conclusion and Future Work 

We presented a model-based SI environment CASSI. The benefits of CASSI are 
summarized as follows and it becomes possible to accelerate the reuse of IT platform 
architectures (system models). 
 
1. SE can efficiently adjust the configuration of the system model by evaluating 

NFRs. Configuration parameters can be set with a dedicated view to simplify both 
use and learning. 

2. SE can integrate multiple system models without having to know details on 
uncertain parts of the system, such as third-party systems or application libraries. 

3. SE can easily change the physical infrastructure by selecting a verified 
combination of products from the library. 

4. SE can retrieve appropriate system models from the repository by querying their 
logical models. 

 
Considering the nature of enterprise IT systems discussed in Section 1, we consider it 
is cost-efficient and pragmatic approach to accelerate the development of enterprise 
IT systems with model-based engineering. We are now evaluating the effectiveness of 
CASSI with real projects on SI, and intend to have the results published in future 
papers. 
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Abstract. We are in the business of delivering software intensive business 
systems using model-driven techniques. Developing suitable code generators is 
an important step in model-based development of purpose-specific business 
applications. Hence, it becomes critical to ensure that code generator 
development doesn’t become a bottleneck for the project delivery. After 
establishing a sophisticated technology infrastructure to facilitate quick and easy 
adaptation of model-based code generators, we experimented with agile 
methodology. In this paper, we discuss why pure agile methodology does not 
work for model-driven software development. We propose a modification to the 
agile methodology in the form of meta-sprints as a golden mean between agile 
method and traditional plan-driven method. Early experience with the proposed 
development method is shared along with the lessons learnt.  

Keywords: model-driven development, agile method, software intensive 
business systems. 

1   Introduction 

We are involved in developing business-critical software systems for large enterprises. 
These systems are characterized by low algorithmic complexity, database intensive 
operation, large size, and distributed architecture. The large size of a typical business 
application leads to large development team that needs to work in a coordinated 
manner. Choice of distributed architecture paradigm necessitates effective management 
of multiple technologies such as databases, online transaction processing monitors, 
batch schedulers, and graphical user interface platforms. Moreover, many a time the 
customer has non-negotiable technology platform preferences. To avail the short 
opportunity window, the solution needs to be delivered quickly, and being business 
critical in nature, is expected to be in use for a long time. Given the increasing business 
and technology dynamics, the latter poses a significant architectural challenge. Our 
experience is that no two solutions, even for the same business intent such as straight-
through-processing of trade orders, back-office automation of a bank, and automation 
of insurance policies administration, are identical. Though there is a significant overlap 
across functional requirements for a given business intent, the variations are manifold 
too. Moreover, the higher management expects delivery of subsequent solutions for the 
same business intent to be significantly faster, better and cheaper. 
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Use of the model-driven approach helped us to separate functional concerns from 
technology platform thus enabling developers to focus solely on specification of 
business functionality in an intuitive manner closer to the problem domain [13]. Use 
of a component abstraction designed essentially to facilitate divide-and-conquer 
helped manage the large size. The application could now be modelled as a set of 
related components with provider – consumer relationship being made explicit. Use 
of component as a unit of development led to better coordinated development process 
wherein components could be implemented in parallel with assurance of integration 
into a well-formed application later [15]. A set of code generators translated 
component / application specifications into the desired technology platform thus 
delivering increased productivity, uniformly high code quality, and platform 
independence [14]. In our experience, no two solutions shared identical choices for 
design strategies, architecture, and technology platform. Since code generators encode 
these details while transforming application specs to implementation, every new 
project necessitated development of new set of code generators. Therefore, 
MasterCraft team was becoming a bottleneck in fast delivery of the purpose-specific 
business application. We devised the building block abstraction to specify the desired 
code generator as a hierarchical composition from which its implementation can be 
automatically derived [16]. In spite of these advances in the mechanisms for 
implementing a model-driven approach, we were still somewhat away from the 
desired agility and responsiveness. This led to us looking into the process aspect of 
model-driven development. 

Agile development method is gaining industry acceptance. We argue the method 
cannot be used as is with model-driven approaches. We suggest modifications that 
need to be introduced into the agile method for delivering purpose-specific software 
systems at product cost. We begin with an overview of our model-driven approach and 
toolset. We then describe the proposed agile development methodology. We discuss 
early experience, benefits and lessons learnt before concluding with a summary. 

2   Our Model-Driven Development Approach and Toolset 

Model-driven development approach starts with defining an abstract specification that 
is to be transformed into a concrete implementation on a given target architecture 
[16]. The target architecture is usually layered with each layer representing one view 
of the system. Typically, business applications are implemented across three layers – 
user interface, application functionality and database, where a user interacts with an 
application through its user interface layer, application layer implements the business 
functionality in terms of business logic, business rules and business process, and 
database layer provides persistency of an application. The modeling approach 
constructs the application specification using different abstract views - each defining a 
set of properties corresponding to the layer it models. The model captures structural 
concerns and a high level language or meta-model is used to specify behavioral 
concerns. View specification in terms of the model and the text is transformed into the 
desired implementation.  

We developed a model-driven development toolset, MasterCraft [19], for 
developing large database-centric business critical applications. It comprises: i) a meta 
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modeling tool to specify an abstract view, ii) a set of modelers to populate an instance 
of an abstract view, iii) a set of code generators that transform each view instance to 
the desired implementation artifacts, iv) several build automation utilities, and v) a 
repository-centric component-based development method. An application 
specification, specified using the various modelers, can be targeted to multiple 
technology platforms and different architectures of choice by using suitable code 
generators and build automation utilities. In essence, model-based code generator 
interprets the model in the light of suitable design decisions and architectural strategies 
in order to generate code for a specific implementation technology platform. For 
instance, a class model can be transformed into database access layer code for JDBC or 
ODBC or ProC while incorporating suitable O-R mapping and currency management 
strategies. 

Managing evolution of MasterCraft was fairly simple when target platform and 
technology choices for the generated application were relatively bounded. But of late, 
with increased number of users the demand for supporting new technologies and 
evolving architectures has increased significantly. Moreover, we experienced that no 
two generated applications made the same choices of design decisions, architectural 
strategies and technology platform. With MasterCraft tools interpreting the choice in 
order to generate the desired code, addition of a new choice or a new configuration of 
choices would result in modifications to these tool implementations. Our standard 
practice was to identify a closest-match version of the tool, create a copy of its 
implementation, and modify it suitably. One would expect such jump-started 
approach to be time and effort saving, but our experience was to the contrary – to say 
nothing of the increased hassles of versioning and configuration management. To 
overcome these issues, we re-architected MasterCraft such that a code generator is 
specified as a hierarchical composition of model-to-text transformation templates with 
well-defined extension points. A plug-in for an extension point is also a model-to-text 
transformation template which in turn may have its own extension points and so on 
[2]. This extensible plug-in architecture is implemented on Eclipse [11]. Though this 
enabled MasterCraft toolset to be maintained as a code generator product line, the 
complexities related to changes that are not predicted a priori and hence require 
exploration remained unaddressed. Based on the ease of evolution, we categorize 
MasterCraft activities into the following three kinds:  

− Extension: Adding new extension for a predefined extension point. Impact of this 
kind of activity is typically localized and low. For instance, supporting a new 
widget such as new grid control in GUI modeler, supporting a different kind of 
logging capability in generated application. 

− Mutation: Changes related to the internal structure / architecture / design of a tool 
so as to add a new extension point and the related refactoring effort. This impact 
is typically large and knowledge intensive. For instance, re-architecting a tool for 
the plug-in architecture, externalizing GUI screen flow. 

− Exploration: Exploratory work for introducing new concepts into MasterCraft 
and proving them. For instance, code generation for deployment on public cloud. 

Typical characteristics of these kinds of activities with respect to overall MasterCraft 
development effort are described in table 1. 
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Table 1. Characteristics of MasterCraft Development effort 

 Extensions Mutations Explorations 

Typical demand/year ~100 ~10 3-4 

Average invested effort with 
respect to total invested 
effort 

50% 30% 20% 

Success rate (Converted into 
MasterCraft feature in time) 

80% 60% 40-50% 

Typical turnaround time 
6 months (One 
release cycle) 

6 months – 1 
years (1-2 release 

cycle) 
> 1 year 

Customer focus High Low High-Low 

 
Even with clear understanding of MasterCraft evolution characteristics, use of 

abstractions for improved change isolation, and use of software product line 
techniques, the overall turnaround time for delivering new functionality did not 
improve to the desired degree. This led us to look into the process aspect of 
MasterCraft evolution. We were using traditional waterfall method [22] along with 
traditional team structure for managing evolution of MasterCraft toolset. 
Development activities were characterized by detailed planning and rigorous review 
process as prescribed by waterfall model. MasterCraft development team comprised 
of independent teams one each for a tool catering to a specific architectural layer of 
the generated application, e.g. GUI team, Server side team, DB team. Each team was 
reasonably small in size and conformed to the traditional organization structure i.e. a 
team lead, one or two module leads and team members. All team leads reported to a 
single group leader responsible for the entire toolset. Typical turnaround time was 
about 6-12 months.  

This mode of operation served well in early development of MasterCraft when 
more than 70% of activities were either exploratory or mutative and the delivery 
timeframes were more relaxed. With more than 50% of the development activities 
today being extensions, MasterCraft users naturally demand a far shorter turnaround 
time for new enhancement requests. We were unable to meet this demand with 
existing team structure using the waterfall model of development. We discovered 
several reasons for these limitations. It was difficult to plan for small and semi-
volatile requirements. The low value-add activities such as status reporting, tracking 
meetings and so on made the operational process sluggish. Rapidly changing 
requirements and lack of coordination between different sub-teams led to high amount 
of rework. Fewer and far spaced deliveries meant infrequent and delayed user 
feedback resulting eventually in low team morale. The waterfall model didn’t provide 
the necessary visibility at the desired frequency to customer about the development 
artifacts. As a result, work reprioritization suffered. In addition, we found that 



582 V. Kulkarni, S. Barat, and U. Ramteerthkar 

existing methodology left little scope for partial (and incremental) delivery for quick-
win (and continuous improvement), and early demonstration of research ideas for 
end-users’ feedback. 

3   Proposed Development Methodology 

With the principal objectives of delivering functionality that brings value to the 
customers, establishing better mechanisms for feedback from all stakeholders, and 
enabling quick transformation of an idea/requirement into a set of MasterCraft 
features, we found Agile Manifesto [18] as the best bet for many reasons. Existing 
approach heavily depended on documentation for communication between the phases 
that, we felt, could be eliminated to some extent by having more and closer 
interactions of customer with tool and solution builders – it was always a demand to 
show some working software than say, a usecase diagram or a design document. In 
existing approach, one could get to see a working version after a significant time has 
elapsed after the requirements were communicated. Thus, it was hard to establish 
quick-wins with the existing approach. Moreover, most certainly the requirements 
would have undergone a change thus necessitating rework. Agile method puts greater 
stress on close collaboration with the customer as opposed to a contract. As advised in 
Agile methodology, we felt that responding to a change requisitioned by the customer 
should take precedence over following a plan.  

However, we found some limitations of using Agile methodology for all kinds of 
MasterCraft development activities. Agile methods haven’t been as useful for large 
development teams comprised of members having wide variance in expertise levels 
and operating in a geographically distributed manner [10]. In addition, some 
characteristics of MasterCraft created hindrances for applying Agile methodology 
uniformly. We observed that mutation and exploration kind of changes are not 
suitable for Agile method. Catering to mutative changes demands in-depth analysis, 
experimentation and detailed documentation of the results, observations and 
conclusions. These activities are difficult to achieve in the short sprint cycles 
advocated by Agile method. Exploratory work demands in-depth study and analysis 
which is hard to synchronize with sprint timelines. Agile method advocates to keep 
customer aware of all decisions, however, that may create unnecessary pressure 
during exploratory stage and also entail significant product testing and quality 
assurance effort at the exploratory stage itself. Agile method puts greater stress on 
working software as opposed to documentation, however, low / no documentation of 
design rationale and far reaching changes may create problems for hassle-free 
maintenance and smooth induction. Customer visibility into sprint-backlogs and 
planning means there is little opportunity for long term research activities. Moreover, 
defining sprint-backlogs based purely on customer requirements is not always 
possible – as MasterCraft is a set of interrelated tools, sometimes the order of scoping 
a feature in a sprint-backlog depends on internal factors rather than purely customer 
needs. 

To overcome these concerns, we modified the standard Agile methodology as 
depicted in Fig. 1. We organized the development process at two levels which execute  
 



 Early Experience with Agile Methodology in a Model-Driven Approach 583 

 

Fig. 1. Adapted Agile Methodology for MasterCraftDevelopment 

as parallel threads having periodic synchronization. A feature backlog comprising of 
new feature requests and change requests drives the development process [7]. Items 
that are well-understood are prioritized to be taken up for implementation through a 
series of normal sprints. Changes that are more fundamental in nature and require 
detailed exploration or even research are prioritized to be taken up for implementation 
through a series of longer duration sprints that we term as meta-sprints. Meta-sprints 
differ from normal sprints in that they don’t necessarily produce working software as 
deliverable. Instead, meta-sprints carry out precise investigations the results of which 
enable product evolution through normal sprints which is similar to SCRUM [24] 
iteration. Essentially, meta-sprint is to understand the problem statement, to determine 
the what part of the solution, and to break the what part into smaller units of work 
(work breakdown structures) such that these can be scoped in sprint iteration(s). 
Meta-sprint also deals with the inherent precedence amongst the units of work. 
Typically, meta-sprints are of a longer duration than normal sprints. For instance, we 
are gravitating towards a 12-week meta-sprint whereas normal sprint lasts for 4 
weeks. Unlike Agile method, meta-sprint deliverables are not working software but 
can be a design document, a proof-of-concept implementation, evaluation of a set of 
design strategies, work breakdown structures, or prioritization preferences for sprints  
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Fig. 2. MasterCraft productline team structure with roles and responsibilities 

iteration. Unlike traditional method, meta-sprint puts an upper bound in terms of time 
(and hence effort) on exploratory and mutative activities. In addition, meta-sprint 
deliverables facilitate subsequent normal sprints. Thus, development proceeds on two 
parallel threads namely meta-sprint and sprint with periodic synchronization between 
the two threads. We use a planning technique, similar to Timeboxing planning 
technique [12], for synchronizing instances of the two threads. Our planning 
technique emphasizes on agreed timeline for deliverables instead of the scope of the 
deliverables i.e. compromise on the scope of the delivery of an iteration to maintain 
the timeline. Both the threads share a common feature list or sprint-backlog. 
Theoretically, one can possibly think of meta-meta-sprint, meta-meta-meta-sprint and 
so on. However, in our experience, so far two levels seem to suffice. 

We used feature model notation to declaratively state MasterCraft capabilities. 
Since MasterCraft code generators themselves are specified declaratively in a model 
form, establishing traceability from the feature model to code generator specs was 
relatively straightforward [16 and 17]. Repository-centric model-driven nature of 
MasterCraft ensured that its feature model can act as the sole driver for the evolution 
process. Meta sprint delivers working prototypes/concept notes and a proposed 
feature tree with new feature/option whereas sprint delivers a working MasterCraft 
with new features/options. We used burn-down charts as an indicator of health and 
hygiene of overall MasterCraft. 

Since developing suitable code generators is an important step in model-based 
development of purpose-specific business applications, it becomes critical to ensure 
that code generator development doesn’t become a bottleneck for the project delivery. 
We used meta-sprints primarily to manage evolution of MasterCraft and normal 
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sprints to manage delivery of application using MasterCraft. Therefore, meta-sprints 
were needed only in the initial stages of the project delivery. However, there were 
occasions when meta-sprints were resorted to in the light of significant changes 
requested by customer at a later stage of project delivery. The two level process, and 
repository-centricity and model-driven nature of both MasterCraft and application 
development help address such changes in a tractable manner. 

Development team was restructured to make everyone accountable and responsible 
for delivering MasterCraft feature(s). We restructured our development team as 
shown in Fig. 2. Essentially, we moved the ownership from Project Lead / Module 
Lead to a feature owner for delivering or exploring a feature, and scrum–master for 
executing iterations. To improve involvement, we encouraged members to play different 
roles for different sprints. We encouraged all stakeholders to participate in decision-
making. Essentially, sprint flow is a minor adaptation of SCRUM methodology. In 
addition, we set some rules for smooth execution of sprints. For instance,  

− All stakeholders to be involved in scoping the sprint backlog. 
− Items exceeding 5% schedule slippage to be automatically dropped from the 

current sprint-backlog. 
− Each sprint to produce an adequately tested working version. 
− A sprint to last for 4 weeks out of which- 3 weeks to be reserved for 

development, internal testing and review, and one week for integration and 
integration testing. 

− Stand-up meetings to be conducted as and when required but at least twice a 
week. 

4   Early Results, Benefits and Lessons Learnt 

With the proposed development method, we observed slow but steady improvement 
in delivery of features on time. In first iteration we delivered only 50% of the 
promised sprint-backlog with a delay of 2 weeks. But results improved significantly 
in subsequent iterations, and we could achieve our target on time within 3 sprints. We 
conducted many sprints of duration 4-5 weeks and a few meta-sprints of duration 2-3 
months. About 15-20 features were implemented in each sprint and 1-2 research 
ideas/mutative changes were taken up in each meta-sprint. The usual sprints worked 
well for extension kind of evolution with fairly accurate effort estimation. We tried to 
use normal sprint for mutation and exploration kinds of activities, but the result was 
not very positive. However, those worked well with the proposed approach with 
improved turn-around as compared to the existing approach. Sprint and meta-sprint 
bring several tangible and intangible values to the overall development. Those are 
documented in table 2. 

Several literature surveys, case studies and our early experience essentially suggest 
a limited scope of using Agile methodology, i.e. it is more effective in a context 
where development infrastructure and development team are matured, development  
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Table 2. Deliverables and benefits of Sprint and Meta-sprint 

 Sprint Meta-Sprint 
Turnaround time 
from requirement 
to delivery 

4 weeks as compared to 6 months 
for traditional approach 

3 months as compared to minimum 
6 months for traditional approach 

Productivity High due to continuous focus on 
deliverable unit and better issue 
resolution. 

Better as research and exploratory 
efforts channelize through proper 
execution path. 

Customer 
Expectation 
Management 

A demonstrable version with 
latest feature is always available 

A demonstrable PoC/Prototype is 
available  

Resource 
Utilization 

High Not changed from traditional 
approach. 

Team morale High (nobody, specially juniors, 
feels left out at any time of 
development activity) 

High due to more frequent 
interaction with end-users and 
early feedback. 

Rework effort Low due to early feedback Low due to early demonstration 
with a working prototype. 

 
architecture and core design decisions are proven, and requirements are relatively 
dynamic but less critical in terms of rework for any change. The effective context of 
Agile methodology with respect to traditional methodology along with the increased 
scope of the context while adapting meta-sprint flow is depicted in Fig. 3. It worked 
well for mutative and exploratory activities. However we identified several challenges 
that need to be addressed for better execution of sprints and meta-sprints, 

Team Maturity: Sprint and meta-sprint both work well for teams strong on 
knowledge and experience. However, inducting new people in the team becomes a 
challenge as every team member is fully occupied throughout the iteration.  
Automated Testing: Lack of automation in integration testing led to longer sprint 
durations. 
Configuration Management: Typically, many parallel teams are working for 
different sets of features; hence a better configuration management tool is required.  
Document Generation: As the method puts more stress on producing working 
software over documentation, we resorted to generation of minimal documentation 
from the models. As MasterCraft code generators are also generated from their 
model specifications, this strategy sufficed for documenting generated applications 
as well as the code generation toolset. 
Migration of Models: Some change requests involved change in the meta models. 
These changes resulted in a side-effect – earlier models had to be migrated to the 
new meta model. Here, at times, the short sprint cycles were a challenge. 

There were many lessons learnt while moving a large project from traditional 
development method to the proposed development method. We took time to stabilize 
into the new method. Initial estimates were off by a large margin and burn charts were 
always red. Working on smaller chunks with frequent synchronization resulted in on-
time and high quality delivery. Non-technical issues like coordination, motivation and  
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Fig. 3. Environment of different methodologies and fitment of meta-sprint 

taking ownership seemed to be the key success factors. We experienced the necessity 
of a motivated scrum master in the transition phase for bringing an attitude change in 
the entire team. We learnt not to be particular about the process – whether to use 
agile, traditional or something in-between like meta-sprint. Letting the requirement 
decide the development process rather than any organizational diktat seemed to work. 
For example MasterCraft uses product line architecture to guide product evolution. 
Thus visualization of requirements in the form of a feature model is very intuitive. 
Early experience indicates that a hybrid approach is better for projects in incubation 
stage. Today, MasterCraft is a mature software system with more than 50% work 
being of extension kind. Therefore, pure Agile methodology works well. It might not 
have worked in the early stages where core architecture and design were being 
formulated.  

5   Related Work 

Numerous development methods and models have been proposed for developing 
applications in a systematic and efficient manner. Fundamentally, they are 
categorized into two kinds – Plan-driven approach and Agile approach. The Plan-
driven approach, like waterfall model, spiral model, V-model, focuses on stability and 
higher assurance for a predefined sets of requirements. On the other hand, Agile 
approach, such as XP [3], Crystal Clear [8], Dynamic System Development Method 
[23] Feature Driven Development [21], and SCRUM [24], advocates faster 
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development with increased customer satisfaction for dynamic requirements using 
iterative and incremental development techniques [4]. As argued in [4] we also 
experienced that there are some home grounds for pure plan-based approach and 
Agile approach but appropriate balancing of these two approaches provides better 
handle for managing dynamic requirements with increased stability and assurance. In 
the literature, several tailored development approaches are recommended for 
developing applications such as Lean/Agile development methodology [6], and 
SCRUM and CMMI based development methodology [26]; and few approaches are 
also presented to systematize these tailoring processes with increased precision [5, 9]. 
However these tailored approaches address development of one-off application only. 
The need of delivering a set of applications that vary along multiple dimensions is not 
met. We presented a tailored approach to address this need of managed evolution 
using model-based techniques. The proposed meta-sprint follows agile philosophy 
rather than any specific process, such as SCRUM, XP, FDD. The core differences of 
sprint and meta-sprint flow are discussed in table 3.  

Table 3. Sprint Vs Meta-Sprint 

 Sprint Meta-sprint 

Qualifying 
criteria 

No impact on the core 
architecture/design or 
concept. 

Fundamental changes to MasterCraft 

Output Working MasterCraft with 
new features 

Approach note, reference 
implementation of  features, 
prospective feature tree 

Timeline 4-5 weeks (fixed) 2-3 months (varies) 

Communication Informal Formal but not in specific format 
Knowledge 
Management 

Tacit Explicit 

Visibility To all stake-holders Opaque to external stakeholders, e.g. 
customers.  

 
Essentially, meta-sprint relaxes the criteria of plan-based approach by limiting the 

planning only for strategic and high-level activities, and monitoring them in terms of 
observable outcomes instead of recording day-to-day progresses. Similarly, it relaxes 
some of the mandates of Agile approach such as working software as a deliverable at 
the end of each cycle, 3-6 weeks cycle time and total visibility to all the stakeholders. 
With these adaptations in development methodology, we could overcome the limiting 
factors [10, 20] of both kinds of methodologies while retaining the benefits of both. 
We adapted Timeboxing technique [12] suitably to synchronize different iterations of 
meta-sprint and sprint threads. On the other hand, the meta-sprint differs from meta-
SCRUM [25] to some extent as meta-sprint details a requirement and analyzes it 
further to break a larger activity into smaller units that can be accommodated in sprint 
whereas meta-SCRUM synchronizes and plans several interrelated sprints to manage 
them flawlessly. 
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The use of Agile methodology in model-driven development is not very prevalent 
yet, except tailored Agile approaches, such as Agile model driven development [1]. 
However these approaches are restricted to modeling activities rather than 
emphasizing on delivering entire application from the models. On the contrary, we 
argue that true agility in model-driven development is possible only when code 
generators can also be adapted as quickly as application models.  

6   Summary 

We are in the business of delivering software intensive business systems using model-
driven techniques. Since developing suitable code generators is an important step in 
model-based development of purpose-specific business applications, it becomes 
critical to ensure that code generator development doesn’t become a bottleneck for the 
project delivery. After having put in place sophisticated technology infrastructure in 
place to facilitate quick and easy adaptation of model-based code generators, we 
experimented with agile methodology. We discussed why pure Agile methodology 
does not work for model-driven software development. We proposed modification to 
the Agile method in the form of meta-sprints as a golden mean between Agile method 
and traditional plan-driven method. Unlike Agile method, meta-sprint deliverables are 
not working software but could be a design document, a proof-of-concept 
implementation, evaluation of a set of design strategies etc. Unlike traditional method, 
meta-sprint puts an upper bound in terms of time (and hence effort) on exploratory 
activities. In addition, meta-sprint deliverables facilitate subsequent normal sprints. 
Thus development proceeds on two parallel threads namely meta-sprint and sprint 
with periodic synchronization between the two threads. 

Early results of using Agile methodology are encouraging with a note that it is not 
applicable for all kinds of development activities and needs considerable preparedness 
for deployment in practice. We adapted true agile methodology by introducing meta-
sprint concept for mutative and exploratory work; and used this methodology only 
after plug-in architecture and suitable tools were in place. Though our objective is to 
channelize more development activity through sprint stream than meta-sprint stream 
and establish an agile development environment, we would like to continue with a 
relatively relaxed environment (meta-sprint) for exploratory and knowledge intensive 
activities. Our early results show that this kind of hybrid development environment is 
better suited for model-driven software development. 
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Model-based development focuses on creating and manipulating domain mod-
els. We present the formula language and its tool environment for specifying,
documenting, and analyzing models.

The formula language is based on the observation that constraints are ubiq-
uitous. For instance, a real-time system must meet its deadlines, a software de-
ployment must obey resource constraints, a compiler must preserve the meaning
of its source language. Each design problem is defined w.r.t. some abstraction;
in formula these abstractions are called domains. A domain encapsulates a set
of data structures used to formalize key concepts, and logic programming is used
to describe restrictions on the set of possible solutions. Complex systems have
a multitude of facets. Our language provides a rich set of domain composition
operators for building new abstractions. Similarly, transforms synthesize other
models at the same or different level of abstractions. formula has a standard
first-order logic semantics.

The formula solver answers queries under the open-world-assumption, which
considers that not all facts are known a priori. Evaluating a query under this as-
sumption means searching for a finite set of facts where the program satisfies the
query. These missing facts are the solutions to our modeling problems, e.g. legal in-
stances of schedules, feasible deployments, necessary synchronization constraints.
In the end, formula translates to state-of-the-art satisfiability-modulo-theory
solvers, which search through complex spaces in the presence of many constraints.

formula draws on methods from type theory, logic programming, and auto-
matic theorem proving. It has successfully been applied to a number of domains
from scheduling, meta-modeling and configuration management, to software
deployment. More information at: http://research.microsoft.com/formula.
Joint work with Nikolaj Bjorner, Dirk Seifert, Markus Dahlweid, and Thomas
Santen.
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Abstract. We present CD2Alloy, a novel, powerful translation of UML
class diagrams (CDs) to Alloy. Unlike existing translations, which are
based on a shallow embedding strategy, and are thus limited to check-
ing consistency and generating conforming object models of a single CD,
and support a limited set of CD language features, CD2Alloy uses a
deeper embedding strategy. Rather than mapping each CD construct
to a semantically equivalent Alloy construct, CD2Alloy defines (some)
CD constructs as new concepts within Alloy. This enables solving sev-
eral analysis problems that involve more than one CD and could not be
solved by earlier works, and supporting an extended list of CD language
features. The ideas are implemented in a prototype Eclipse plug-in. The
work advances the state-of-the-art in CD analysis, and can also be viewed
as an interesting case study for the different possible translations of one
modeling language to another, their strengths and weaknesses.

1 Introduction

The analysis of artifacts in one modeling language can, in many cases, be done
using a semantics preserving translation to another language, and a reversed
translation, back from the analysis results to the concepts of the first language.
Often, more than one possible translation may be developed, and so, the defi-
nition of alternative translations, their implementation, and a comparative dis-
cussion on their strengths and weaknesses is worthwhile.

A UML class diagram (CD) can be analyzed using a translation to Alloy [1,14].
The Alloy module is analyzed using a SAT solver, and the analysis result, an
instance of the module, if any, can be translated back to the UML domain, as
an object diagram. Existing translations [2,3,18,22], however, are limited to this
basic analysis of a single CD and are missing support for several CD language
features, e.g., multiple inheritance and interface implementation, mainly because
these features of CDs do not have direct, immediate counterparts in Alloy. In
other words, they use a shallow embedding strategy.
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In this paper we present CD2Alloy, a new, alternative translation of UML CDs
to Alloy, which is based on a deeper embedding strategy. Rather than mapping
each CD construct to a semantically equivalent Alloy construct, our translation
defines (some of) the CD constructs as new concepts within Alloy. For exam-
ple, class inheritance is not mapped to its Alloy’s counterpart — the extends
keyword. Instead, it is defined using several of Alloy’s language constructs —
facts, functions, and predicates, whose semantics reflects the semantics of class
inheritance in CDs.

The alternative translation we present has several advantages. First, it allows
us to support more CD language features, in particular those features that do
not have direct counterparts in Alloy, such as multiple inheritance and interface
implementation. Second, significantly, it allows us to solve several analysis prob-
lems that go beyond the basic consistency check and instance generation tasks
of a single CD, e.g., the analysis of the intersection of two CDs (i.e., generating
common object models), the comparison of two CDs (checking if one is a refine-
ment of the other), etc. These would have been very difficult, if not impossible,
to support using existing translations from the literature.

Technically, as concrete languages we use the CD and object diagrams (OD)
sublanguages of UML/P [20], a conceptually refined and simplified variant of
UML designed for low-level design and implementation. Our semantics of CDs
and ODs are based on [4,8,10] and are given in terms of sets of objects and
relationships between these objects.

We define a transformation that takes one or more CDs and outputs an Alloy
module. The Alloy module can then be analyzed with the Alloy Analyzer. Finally,
using another transformation, instances of the Alloy module, if any, as found by
the SAT solver connected to the Alloy Analyzer, are translated from Alloy back
to ODs. The transformations are presented in Sect. 3. As mentioned above, the
new translation allows us not only to support an extended list of CD language
features but also to solve analysis problems that involve a number of CDs and
could not have been solved before. We discuss the extension of the transformation
from a single CD to multiple CDs, and some of the analysis problems we solve,
in Sect. 4.

Our work is fully implemented in a prototype Eclipse plug-in we call CD2Alloy.
CD2Alloy allows the engineer to edit a CD, to analyze it using Alloy, and to view
the instances that the SAT solver finds, if any, back in the form of ODs. The
analysis is fully automated, so the engineer need not see the generated Alloy
code. We discuss the implementation in Sect. 5.

Sect. 2 gives brief background on the CD and OD languages and a short
overview of Alloy. Sect. 3 describes our new translation from CDs to Alloy and
back to ODs, side by side with the shallow translation described in [3]. Sect. 4
shows how the new transformation can be used to solve several analysis problems
involving more than one CD. Sect. 5 presents the CD2Alloy plug-in. Sect. 6
summarises the comparison between the existing shallow translations and the
new one, considering their strengths and weaknesses. Sect. 7 discusses related
work and Sect. 8 concludes.
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2 Preliminaries

2.1 Class and Object Diagrams

As concrete languages we use the CD and OD sublanguages of UML/P [20].
UML/P is a conceptually refined and simplified variant of UML designed for
low-level design and implementation. Our semantics of CDs is based on [4,8,10]
and is given in terms of sets of objects and relationships between these objects.
More formally, the semantics is defined using three parts: (1) a definition of the
syntactic domain, i.e., the syntax of the modeling language CD and its context
conditions (we use MontiCore [15] for this), (2) a semantic domain, in our case, a
subset of the System Model (see [4,8]) OM, consisting of all finite object models,
and (3) a mapping sem : CD → P(OM), which relates each syntactically well-
formed CD to a set of constructs in the semantic domain OM. A thorough and
formal account of the semantics can be found in [8].

2.2 A Brief Overview of Alloy

Alloy [1,14] is a textual modeling language based on relational first-order logic.
An Alloy module consists of signature declarations, fields, facts and predicates.
Each signature denotes a set of atoms, which are the basic entities in Alloy.
Relations between two or more signatures are represented using fields and are
interpreted as sets of tuples of atoms. Facts are statements that define con-
straints on the elements of the model. Predicates are parametrized constraints.
A predicate can be included in other predicates or facts.

Alloy modules can be analyzed using Alloy Analyzer, a fully automated con-
straint solver. This is done by a translation of the module into a Boolean ex-
pression, which is analyzed by SAT solvers embedded within the Analyzer. The
analysis is based on an exhaustive search for instances of the module, bounded
by a user-specified scope, which limits the number of atoms for each signature in
an instance of the system that the solver analyzes. The Analyzer can check for
the validity of user-specified assertions: if an instance that violates the assertion
is found within the given scope, the assertion is not valid, but if no instance is
found, the assertion might be invalid in a larger scope. Used in the opposite way,
the Analyzer can look for instances of user-specified predicates: if the predicate is
satisfiable within the given scope, the Analyzer will find an instance that proves
it, but if not, the predicate may be satisfiable in a larger scope. For a complete
and detailed account of Alloy see [14].

3 The CD2Alloy Translation

We show our translation from CD to Alloy and from Alloy’s instances back
to ODs. We present these side by side with the shallow translation, described
in [3], and focus on the key technical differences between the two (we chose to
compare with [3] because it provides an implementation and appears to be the
most advanced work of the shallow embedding approaches). The presentation
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Fig. 1. cd1, an example class diagram with classes, attributes, enumerations, associa-
tions with multiplicities, and inheritance

1 // Names of fields/associations in classes of the model

2 abstract sig FName {}

3

4 // Parent of all classes relating fields and values

5 abstract sig Obj { get: FName -> {Obj + Val + EnumVal} }

6

7 // Values of fields

8 abstract sig Val {}

9

10 // No values can exist on their own

11 fact { all v: Val | some f: FName | v in Obj.get[f] }

12

13 // Names of enum values in enums of the model

14 abstract sig EnumVal {}

15

16 // No enum values can exist on their own

17 fact { all v: EnumVal | some f: FName | v in Obj.get[f] }

Listing 1.1. Excerpt from the generic part of our translation: FName, Obj, Val, and
EnumVal signatures and related facts

uses the CD of Fig. 1 as a running example. We begin with an overview of our
approach and continue with specific examples for various features. The complete
translation will appear in an extended version of this paper.

3.1 From CD to Alloy

CD2Alloy takes a CD as input and generates an Alloy module. The module
consists of a generic part (described below) and a CD specific part, which includes
a predicate that describes the CD itself.

The Generic Part. List. 1.1 shows the abstract signature FName used to rep-
resent association role names and attribute names for all classes in the module.
The abstract signature Obj is the parent of all classes in the module; its get
Alloy field relates it and an FName to instances of Obj, Val, and EnumVal. The
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1 pred ObjAttrib [objs:set Obj ,

2 fName:one FName , fType:set {Obj + Val + EnumVal}] {

3 objs.get[fName] in fType

4 all o: objs | one o.get[fName] }

5

6 pred ObjNoFName [objs:set Obj , fName:set FName] {

7 no objs.get[fName] }

8

9 pred ObjUAttrib [objs:set Obj ,

10 fName:one FName , fType:set Obj , up: Int] {

11 objs.get[fName] in fType

12 all o: objs | (#o.get[fName] =< up) }

Listing 1.2. Excerpt from the generic part of our translation: parametrized predicates
for the relations between objects and their fields, and for their multiplicities

abstract signature Val, which we use to represent all predefined types (i.e., prim-
itive types and other types that are not defined as classes in the CD). Values
of enumeration types are represented using the signature EnumVal. Enumera-
tion values and primitive values should only appear in an instance if they are
referenced by an object (as specified by the facts in line 11 and line 17).

List. 1.2 shows some of the generic, parametrized predicates responsible for
specifying the relation between objects and fields: ObjAttrib limits
objs.get[fName] to the correct field’s type and ensures that there is exactly
one object, value, or enumeration value related to the field name by the get
relation; ObjFNames is used to ensure objects do not have field names other than
the ones stated in the CD. List. 1.2 also shows one of the generic predicates re-
sponsible for specifying association multiplicities: ObjUAttrib provides an upper
bound for the number of objects in the set represented by the get relation for a
specified role name.

All the above are generic, that is, they are common to all generated modules,
independent of the input CD at hand. We now move to the parts that are specific
to the input CD, and present specific examples of various features.

Classes and Attributes. Consider a fragment of the CD shown in Fig. 1
consisting of only the class Car and its color attribute. With the transformation
of [3], this fragment translates to the Alloy code shown in List. 1.3. In our
transformation, this fragment translates to the Alloy code shown in List. 1.4.

Associations. We continue with associations, where directions and multiplicity
ranges need to be expressed. To support bidirectional associations and custom
multiplicity ranges in the shallow translation of [3], engineers are required to
manually write the specific OCL constraints that characterize these features,
because Alloy does not have a direct counterpart to the concept of associa-
tion and its signature field definition does not have explicit built-in support for
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1 sig Car{color:one ColorKind }

2 abstract sig ColorKind {}

3 one sig black extends ColorKind {}

4 one sig red extends ColorKind {}

5 one sig white extends ColorKind {}

Listing 1.3. Car with color in the translation of [3]

1 one sig color extends FName {}

2

3 lone sig enum_ColorKind_black extends EnumVal {}

4 lone sig enum_ColorKind_red extends EnumVal {}

5 lone sig enum_ColorKind_white extends EnumVal {}

6

7 sig Car extends Obj {}

8

9 fun ColorKindEnum : set EnumVal {

10 enum_ColorKind_black +

11 enum_ColorKind_red +

12 enum_ColorKind_white }

13

14 pred cd {

15 ObjAttrib [Car , color , ColorKindEnum ]

16 ObjFNames [Car , color] }

Listing 1.4. Car with color in our translation

cardinalities. In our work, however, the semantics of bidirectionality and custom
multiplicity ranges is part of the translation itself: there is no need for manual
OCL writing to express these standard concepts.

For example, consider a fragment of the CD shown in Fig. 1 consisting of
only Employee and Address, and the association worksIn between them. With
the transformation of [3], this fragment translates to the Alloy code shown in
List. 1.5.1 It is translated in our transformation to the code shown in List. 1.6.

Single Inheritance, Interfaces, and Multiple Inheritance. We now ex-
tend the examples above with inheritance. We show how the two translations
handle single inheritance and how our translation can also support interfaces
and multiple inheritance.

The translation of [3] takes advantage of Alloy’s built-in support for inheri-
tance, and thus directly maps CD class inheritance to Alloy’s extends keyword.
In our translation, in contrast, the semantics of inheritance, that is, the meaning
1 According to our experience, UML2Alloy tool of [3], version 0.5.2, does not support

such multiplicity ranges without the manual addition of OCL expressions. The above
code shows how the translation of UML2Alloy could have handled multiplicity ranges
if it supported this feature.
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1 sig Address {}

2 sig Employee {worksIn:set Address}

3 fact Asso_Employee_of_worksIn_Address { Employee <:

4 worksIn in ( Employee ) one->set ( Address) }

5 fact AssoCustom_Employee_of_worksIn_Address {

6 all var:Employee | #var.worksIn =< 3 && #var.worksIn >= 1}

Listing 1.5. Employee works in Address in the translation of [3]

1 one sig of,worksIn extends FName {}

2

3 sig Address ,Employee extends Obj {}

4

5 fun AddressSubs : set Obj {Address}

6 fun EmployeeSubs : set Obj {Employee }

7

8 pred cd {

9 ObjFNames [Address , of]

10 ObjFNames [Employee , worksIn]

11 ObjLUAttrib [EmployeeSubs , worksIn , AddressSubs , 1,3]

12 ObjLUAttrib [AddressSubs , of, EmployeeSubs , 1,1] }

Listing 1.6. Employee works in Address in our translation

of the ‘is-a’ relation in terms of inclusion between sets, is explicitly expressed
using sub class functions. The inheritance hierarchy is flattened and then rebuilt:
in particular, as part of flattening, the complete list of attributes and associa-
tions of each class is collected from all its super classes. The sub class functions
define the set of sub classes of each class.

Listings 1.7 and 1.8 show the parts related to inheritance in the Alloy code
for the example CD of Fig. 1 in the two translations. Note the EmployeeSubs
function in line 8 of List. 1.8 which returns the set of sub classes of Employee.

Similar functions are used to support interfaces. For every interface we define
a function which returns all classes implementing it.

Significantly, consider a different CD where the class Driver does not inherit
Employee, but where a new class Chauffeur inherits both Driver and Employee.
This multiple inheritance setup is not supported by shallow translations like the
one of [3] but it is supported by our translation (see List. 1.9). The use of
functions provides the flexibility required to support multiple inheritance.

Composition. Our translation supports a whole/part composition relation.
Composition is not supported by shallow translations like the one of [3] because
CD’s composition has no direct counterpart construct in Alloy.

The semantics of composition requires that a part cannot exist without a
whole and that it belongs to exactly one whole. The predicate for composition
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1 sig Address {}

2 sig Employee {worksIn:set Address}

3 sig Car{drivenBy:one Driver}

4 sig Driver extends Employee{drives:one Car}

Listing 1.7. Driver inherits from Employee in the translation of [3]

1 one sig drivenBy ,of ,worksIn ,drives extends FName {}

2

3 sig Driver ,Car ,Address ,Employee extends Obj {}

4

5 fun DriverSubs : set Obj {Driver}

6 fun CarSubs: set Obj {Car}

7 fun AddressSubs : set Obj {Address}

8 fun EmployeeSubs : set Obj {Employee + Driver}

9

10 pred cd {

11 ObjFNames [Driver , drives]

12 ObjFNames [Car , drivenBy ]

13 ObjFNames [Address , of]

14 ObjFNames [Employee , worksIn]

15 ObjLUAttrib [EmployeeSubs , worksIn , AddressSubs , 1,3]

16 ObjLUAttrib [AddressSubs , of, EmployeeSubs , 1,1]

17 BidiAssoc [DriverSubs , drives , CarSubs , drivenBy ]

18 ObjLUAttrib [CarSubs , drivenBy , DriverSubs , 1,1]

19 ObjLUAttrib [DriverSubs , drives , CarSubs , 0,1] }

Listing 1.8. Driver inherits from Employee in our translation

is shown in List. 1.10. This predicate can be used, e.g., to specify a composition
relation between Employee and Address, by adding the statement Composition
[EmployeeSubs , worksIn , AddressSubs] to the CD predicate.

3.2 Back to UML Object Diagrams

Finally, we discuss the translation back from Alloy instances to UML ODs. In
the translation presented in [3], the translation of an Alloy instance back to a
UML OD is an immediate one to one mapping, which, according to [22], can be
automatically computed from the first translation. Each atom is transformed,
directly, into a UML object.

In contrast, in our translation, object instances are constructed only for the
atoms in the Alloy instance that are instances of Obj; for each of these, attributes
and their values are computed from the instances of their get relation (see line
5 of List. 1.1). More specifically, an Alloy instance that is found for a module
generated by our translation may also include atoms that do not correspond
to objects in the object model it represents, e.g., field names and enumeration
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1 one sig drivenBy ,of ,worksIn ,drives extends FName {}

2

3 sig Driver ,Car ,Address ,Employee , Chauffeur extends Obj {}

4

5 fun DriverSubs : set Obj {Driver + Chauffeur }

6 fun CarSubs: set Obj {Car}

7 fun AddressSubs : set Obj {Address}

8 fun EmployeeSubs : set Obj {Employee + Chauffeur }

9 fun ChauffeurSubs : set Obj {Chauffeur }

10

11 pred cd {

12 ObjFNames [Driver , drives]

13 ObjFNames [Car , drivenBy ]

14 ObjFNames [Address , of]

15 ObjFNames [Employee , worksIn]

16 ObjFNames [Chauffeur , worksIn + drives]

17 ObjLUAttrib [EmployeeSubs , worksIn , AddressSubs , 1,3]

18 ObjLUAttrib [AddressSubs , of, EmployeeSubs , 1,1]

19 BidiAssoc [DriverSubs , drives , CarSubs , drivenBy ]

20 ObjLUAttrib [CarSubs , drivenBy , DriverSubs , 1,1]

21 ObjLUAttrib [DriverSubs , drives , CarSubs , 0,1] }

Listing 1.9. Multiple inheritance: Chauffeur inherits both Driver and Employee, in
our translation (note the functions in lines 5 and 8)

1 pred Composition [wholes: set Obj ,

2 rName: some FName , parts: set Obj] {

3 all p: parts | #{w: wholes , r: rName | p in w.get[r]}=1 }

Listing 1.10. A predicate for whole/part composition relation

values. Thus, these should not be translated to objects in the translation back
to UML ODs. This makes our transformation from Alloy instances back to UML
somewhat complicated. The resulting OD is a valid UML object diagram that
indeed describes an instance of the original CD in terms of UML semantics.

4 Multiple CD Analysis

In addition to supporting an extended list of CD language features, the new
translation allows us to solve several analysis problems beyond the basic, single
CD consistency and instance generation. We show how the translation described
in the previous section is generalized to support multiple CDs and continue to
present its application to two analysis problems.
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Fig. 2. cd2, an example CD for the computation of intersection with cd1 (see Sect. 4.2)

Fig. 3. cd3, an example CD that refines cd1 (see Sect. 4.3)

4.1 Handling Multiple CDs

To handle multiple CDs in one Alloy module, we define signatures for the union
of classes from all input CDs, and divide the CD specific functions (sub class
functions, enumeration value functions) between the CDs by adding a suffix
CDi to all functions generated for the i-th CD. Moreover, instead of creating
a single predicate cd, we generate several predicates, cd1, cd2, etc., one for
each of the input CDs. Each predicate cdi uses the functions with suffix CDi
and defines constraints to not include any objects of classes not in cdi. This
is necessary because the predicate is interpreted as part of the module, which
contains signatures representing classes from other CDs too.

4.2 Example Analysis Problem: Intersection

As one example application, we show how to use our translation to check the
intersection of the semantics of two (or more) CDs. Recall the CD shown in
Fig. 1 and consider a second CD, as shown in Fig. 2. Is there a system that
satisfies both CDs, i.e, do the two CDs have common object model instances?

To answer this question using our translation we ask Alloy to find instances of
the predicate cd1 and cd2. If any exist, we know that the intersection of the two
CDs semantics is not empty. List. 1.11 shows snippets from the Alloy module
corresponding to checking the intersection of the two CDs in our example, cd1

of Fig. 1 and cd2 of Fig. 2. Analyzing the predicate cd1 and cd2 reveals that
their intersection is not empty: for example, an object model consisting of two
drivers, each with one address, is an instance of both CDs. This object model
can be found when executing the analyzer on the predicate cd1 and cd2 with
our translation of the two CDs.
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1 // signatures for the union of classes from the two CDs

2 // ...

3

4 // functions with CD# suffix

5 fun DriverSubsCD1 : set Obj {Driver}

6 fun EmployeeSubsCD1 : set Obj {Employee + Driver}

7 fun DriverSubsCD2 : set Obj {Driver}

8 fun EmployeeSubsCD2 : set Obj {Employee + Driver + Manager}

9 // more functions ...

10

11 pred cd1 {

12 // use functions with suffix CD1

13 // ...

14 no Manager }

15

16 pred cd2 {

17 // use functions with suffix CD2

18 // ...

19 no Car }

20

21 run {cd1 and cd2} for 10

Listing 1.11. Checking the intersection of cd1 and cd2 using our translation

4.3 Example Analysis Problem: Refinement

The above technique can be easily generalized to solve the consistency of any
Boolean expression over a set of CDs. For example, an analysis of the predicate
cd1 and not cd2 would find instances of the first CD that are not instances of
the second, if any.

So, as a second analysis problem, we show that our translation can be used to
check for refinement relations between CDs: If the predicate cd1 and not cd2 is
inconsistent (has no instances) and the predicate cd2 and not cd1 is consistent
(has instances), we can conclude that all instances of cd1 are also instances of cd2

(but not the other way around), namely, that cd1 is a (strict) refinement of cd2.
As a concrete example, recall CD cd1 of Fig. 1 and consider cd3 shown in Fig. 3.
Analyzing cd1 and not cd3 and cd3 and not cd1 reveals that all instances of
cd3 are indeed instances of cd1, but not the other way around. Thus, the analysis
shows that cd3 is a refinement of cd1.

To the best of our understanding, such analyses are not possible in existing
translations.

5 Implementation: The CD2Alloy Plug-In

Our work is implemented in a prototype Eclipse plug-in called CD2Alloy. The
input for the implementation is a UML/P CD, textually specified using Monti-
Core grammar and generated Eclipse editor [15]. The transformation to Alloy
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is implemented using templates written in FreeMarker [11] and the execution
of the generated module’s run commands is done using Alloy’s APIs [1]. The
analysis is fully automated so the engineer does not need to see the generated
Alloy code (viewing the generated Alloy code is optional).

CD2Alloy allows the engineer to edit a CD, to analyze it using Alloy, and to
view the instances that the SAT solver finds back in the form of ODs. The plug-
in, together with relevant documentation and examples, is available from [7]. We
encourage the interested reader to try it out.

6 Discussion

The analysis of artifacts in one modeling language can, in many cases, be done
using a semantics preserving translation to another language (and a reversed
translation, back from the analysis results to the concepts of the first language).
Often, more than one possible translation may be developed, and so, a compara-
tive discussion on the characteristics of such translations and their implementa-
tion is worthwhile. Our work may be viewed as an interesting case study example
of the differences between two different translations, their strengths and weak-
nesses, in particular when they are used in the context of mechanized analysis
(rather than, say, in the context of a pure theoretical definition of a semantics).

Strengths of the translations of [3,18], and other shallow translations, are
readability and relatively simple definition and implementation. The translation
of each class requires only a local analysis and the resulting module syntax is
linear in the size of the input CD. Weaknesses are the limited list of language
features and possible potential analyses supported; these translations do not take
full advantage of the expressive power of Alloy to cover the rich features of CDs.

Strengths of the new translation are twofold. First, the powerful possible anal-
yses, such as refinement checking, mounting to evaluating any Boolean expression
over CDs. Second, the extended list of features, including multiple inheritance
and interface implementation, which have no direct counterparts in Alloy and
are thus handled using a deep embedding strategy. Supporting these is impor-
tant not only for theoretical coverage of language features but also because many
CDs in the real world do make significant use of them.

One weakness of the new translation is that it is more difficult to read and
understand, because there is no direct explicit mapping between the syntax of
the generated module and the syntax of the CD. However, readability may be
not so important in our context because the analysis is fully automated and the
results are translated back to the UML domain.

Another weakness of the new translation is that it is harder to implement
and more computationally complex: the flattening of the inheritance hierarchy
requires a global analysis of the CD and in the worst case its reconstruction
using functions may result in a module whose size is quadratic in the size of the
input CD. This leads to a larger formula for the SAT solver used by Alloy.

As an example for the differences in computation complexity and performance,
according to our experience, checking the consistency of the CD of Fig. 1 by gen-
erating an instance, with Alloy scope 3, using UML2Alloy (the tool described
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in [2,3]), resulted in a SAT formula of 618 variables and 1025 clauses. Using
our new translation, CD2Alloy, the same problem resulted in a formula of 3354
variables and 5627 clauses. SAT solving time increased too, from 6 to 14 millisec-
onds (using SAT4J, on a Dell Latitude E6500 laptop running Windows 7). Note,
however, that the use of the same scope in this comparison may be misleading:
in the translation of [3], the scope defines the maximal number of objects per
class in the instance, while in CD2Alloy, the scope defines the maximal number
of objects in the instance.

To conclude, our work clearly demonstrates the tradeoff between the read-
ability and intuitiveness of a simple shallow translation on the one hand and the
expressiveness of a deeper translation on the other hand. The choice of transla-
tion to use depends on the specific needs of the applications at hand.

Finally, it is important to note that all existing translations, our new transla-
tion, and any other analysis performed with the Alloy Analyzer, are subject to a
scope, which limits the number of atoms per signature (see [14]). In particular, it
may be the case that a predicate does not hold in one scope but holds in a larger
one. For an unbounded analysis one would need a translation of CDs to other
formalisms, e.g., to enable the use of theorem provers, giving up full-automation,
as in [5,13].

7 Related Work

In [2,3], the authors present a tool called UML2Alloy and provide a detailed dis-
cussion of the challenges of transforming CDs and OCL expressions into Alloy.
One strength of this work is that the transformation used is defined and imple-
mented using an MDA technique, that is, by formally defining a metamodel for
CDs, a metamodel for Alloy, and transformation rules between the two. However,
the shallow nature of the transformation between these metamodels limits the
set of UML CD features that the work supports. For example, as multiple inher-
itance cannot be directly represented in Alloy, it is not supported by this work
and is explicitly disallowed by the related profile (see [3, pp. 75]). Following an
in-depth discussion of the differences between the languages, the authors of [3]
conclude that “Because of these differences, model transformation from UML to
Alloy has proved to be very challenging.” [3, pp. 70]. Indeed, our work proposes
to address this challenge by means of a deeper embedding strategy that bridges
some of the differences between the languages: it takes advantage of Alloy’s own
expressive power to represent CD concepts that cannot be mapped directly to
semantically equivalent concepts in Alloy.

A related work by some of the same authors [22] uses the same MDA approach,
transformation, and tool, and adds a round trip transformation, from Alloy’s
instances back to UML ODs, implemented in QVT [19]. As we have shown in
Sect. 3, our work supports a backward translation which results in correct ODs,
i.e., ones which represent valid instances of the original CD according to the
UML semantics. Supporting a translation back to the UML space is of course
critical to the usefulness of the entire approach in practice.



CD2Alloy: Class Diagrams Analysis Using Alloy Revisited 605

In [18], the authors suggest to analyze CDs with Alloy, using a shallow em-
bedding similar to [3]. This work does not present an implementation.

In [9], the authors use Alloy to formalize UML package merge. The work
models a fragment of the UML metamodel in Alloy, in order to check various
properties of package merge. Unlike our approach, this work does not present a
generic transformation to Alloy. Analyses of multiple models are not discussed.

In [21], Sen presents a translation of the UML metamodel to Alloy, formalized
and implemented in Kermeta. Similar to our work, this translation is not shallow
and handles an extended list of CD features such as multiple inheritance and
composition. Different from our work, it does not support analyses of multiple
input models such as checking refinement and intersection.

UMLtoCSP [6] verifies UML/OCL models by a translation to a constraint sat-
isfaction problem, solved using a constraint solver within a user-defined bounded
search space. The tool checks for various kinds of satisfiability (and other anal-
ysis problems), and can generate an example instance (object model). Our work
has similar strengths and weaknesses: the analysis is fully automated but is con-
ducted in a bounded scope. We do not know whether UMLtoCSP supports mul-
tiple inheritance. It may be possible to extend UMLtoCSP to check for Boolean
expressions over CDs, as supported by our work.

The USE tool [12] supports the analysis of CDs and related OCL invariants,
checking, e.g., the consistency of a single CD, the independence of an OCL in-
variant, etc. A more recent work by the same group [23] reports on analyzing
UML/OCL models directly using a SAT solver. To the best of our knowledge,
applications such as checking refinement between two CDs are not available
in [12,23], but it may be possible to extend these works to support such appli-
cations.

Finally, in recent work [16] we have defined a semantic differencing operator for
CDs (used for semantic model comparison in the context of model evolution),
which we have implemented using a translation to Alloy, similar to the one
presented here. This work takes two CDs as input and outputs an Alloy module
whose instances represent diff witnesses, object models in the semantics of one
CD that are not in the semantics of the other. Also, in another recent work [17] we
use a variant of the translation presented here and extend it to support semantic
variability in CD/OD consistency analysis. This work takes three artifacts as
input: a CD, an OD, and a feature configuration, which specifies choices over
a set of semantic variability points; the analysis is semantically configured and
its results change according to the semantics induced by the selected feature
configuration. These works are additional examples for the kinds of analyses
enabled by our translation.

8 Conclusion

We have presented CD2Alloy, a translation from UML CDs to Alloy, which is
deeper and qualitatively different than previously suggested translations. Our
translation takes advantage of Alloy’s expressive power and advances the state-
of-the-art in CD analysis in several ways: (1) support for more CD language
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features and (2) support for solving additional analysis problems concerning
multiple CDs. The ideas are implemented in a prototype Eclipse plug-in and
demonstrated with running examples.

Future work includes the investigation of additional possible embeddings of
fragments of UML into Alloy, in order to support additional language features
and analyses, for example, constrained generalization sets.
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Abstract. A primary goal of Model Driven Engineering (MDE) is to reduce the
cost and effort of developing complex software systems using techniques for
transforming abstract views of software to concrete implementations. The rich
set of tools that have been developed, especially the growing maturity of model
transformation technologies, opens the possibility of applying MDE technologies
to transformation-based problems in other domains.

In this paper, we present our experience with using MDE technologies to build
and evolve compiler infrastructures in the optimizing compiler domain. We illus-
trate, through our two ongoing research compiler projects for C and a functional
language, the challenging aspects of optimizing compiler research and show how
mature MDE technologies can be used to address them. We also identify some of
the pitfalls that arise from unrealistic expectations of what can be accomplished
using MDE and discuss how they can lead to unsuccessful and frustrating appli-
cation of MDE technologies.

1 Introduction

Model Driven Engineering (MDE) research is primarily concerned with reducing the
accidental complexities associated with developing complex software systems [1]. This
is accomplished through the use of technologies that support rigorous analysis and
transformation of abstract descriptions of software to concrete implementations [2].
At the core of MDE are modeling languages that are typically defined as metamodels.
The metamodels are expressed in a metalanguage such as the OMG Meta-Object Facil-
ity (MOF). Developers can use these modeling languages to describe complex systems
at multiple levels of abstraction and from a variety of perspectives. MDE is essentially
concerned with transforming descriptions of software artifacts to other forms that better
serve specific purposes. For example, MDE techniques can be used to transform a de-
tailed design model expressed in the Unified Modeling Language (UML) [3] to a Java
program that can be compiled and executed, or to transform an abstract description of
software to a performance model that can be used to estimate software performance
characteristics.

It may seem that researchers in the MDE and optimizing compilers communities
tackle vastly different problems. However, some of the more mature MDE technologies
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can be fruitfully leveraged in research-oriented optimizing compiler infrastructures. The
connection between MDE and the optimizing compiler domains stems from the obser-
vation that the intermediate representations of optimizing compilers are abstractions of
input programs that are repeatedly transformed to more efficient forms. In addition, re-
searchers in the optimizing compiler domain need tools that enable rapid development
and continuous evolution of compiler implementations built specifically to prototype
and evaluate research ideas. The preceding concerns makes the application of MDE
techniques in the optimizing compiler research domain appealing and useful.

In this paper, we illustrate the role MDE techniques can play in the optimizing com-
piler research domain using two on-going research compiler projects as case studies.
These two compilers accept and optimize significantly different languages, C/C++ and
a purely functional language, but they both benefit from the use of MDE techniques
in a similar manner. We identify significant tasks in research compiler development,
and highlight how MDE techniques can help reduce the cost and effort of performing
these tasks. Our experience provides some evidence that bridging the two communities
is possible and can yield significant benefits. Unrealistic expectations of what MDE
can do may lead to ineffective use of MDE in the optimizing compiler domain, and
thus we discuss pitfalls that users should be aware of when using these techniques. Our
experience also revealed that the concept of a transformation in the optimizing com-
piler domain is broader than the concept currently supported by MDE tools. It would
be interesting to explore how the broader notions of transformation can be leveraged
in the MDE community. In this paper we identify some of the broader transformation
concepts that may usefully be explored by the MDE community.

The rest of this paper is organized as follows. In Section 2, we briefly characterize
optimizing compiler research, and the similarity between compiler intermediate rep-
resentations and models. Then we describe common challenges that arise in research
compiler development in Section 3. Section 4 highlights the benefits of applying MDE
techniques to compilers through examples taken from our research compilers being de-
veloped with MDE. In Section 5, we present some of the pitfalls that researchers in
the optimizing compiler domain need to be aware of in order to use MDE effectively.
Finally, we give our conclusions and perspectives in Section 6.

2 Optimizing Compilers

Experimental compiler infrastructures play an important role in compiler research. Such
infrastructures are different from production compilers as illustrated by our two exam-
ple infrastructures, namely GeCoS1 and AlphaZ2.

2.1 Optimizing Compiler Research

Optimizing compiler research infrastructures are key elements in many research com-
munities including High Performance Computing [4] and Embedded Systems Design

1 http://gecos.gforge.inria.fr
2 http://www.cs.colostate.edu/AlphaZ/

http://gecos.gforge.inria.fr
http://www.cs.colostate.edu/AlphaZ/
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Automation [5]. Optimizing compilers aim at obtaining the best possible performance
from input programs. Performance is to be understood in its broader sense, and may
either correspond to execution time, power/energy consumption, code size or any com-
bination of these metrics. Achieving better performance depends on both the target
application and the target architecture.

Indeed, target physical machines can be very different, ranging from general pur-
pose single/multi-core processors to special purpose hardware. Such target machines
include, Graphics Processing Units (GPUs), Application Specific Instruction-set Pro-
cessors (ASIPs) and/or application specific hardware accelerators implemented on ei-
ther Complex Programmable Logic Devices (CPLD) or dedicated VLSI circuits.

For example, in High Performance Computing, applications (climate modeling,
weather prediction, physical simulation, etc.), often run on supercomputers, where the
execution time directly affects the cost. In Embedded Systems Design Automation,
many applications involve Digital Signal Processing and/or multimedia algorithms, and
target machines usually consist of special purpose hardware with a short life cycle. For
these targets, the focus is cost (i.e., silicon area), performance/energy trade-off and also
design time (because of time to market constraints).

Optimizing compiler research is therefore a collection of efforts to achieve high per-
formance by analysis and optimizations of programs at the compiler level. Individual
research usually tackles very specific problems (automatic parallelization, instruction
selection, etc.), and can be therefore be seen as developing building blocks of a full
compiler. As a consequence, significant effort is spent on prototyping new analysis/-
transformation passes in a research compiler infrastructure. There is hence a strong need
for highly productive compiler infrastructure, where research ideas and prototypes can
be quickly validated.

2.2 Optimizing Compiler Infrastructures

Compilers range from industrial strength production compilers to experimental ones
that tackle domain specific problems and generally require more user intervention and/or
multiple input specifications. However, most compilers share the same structure with
three stages:

1. Parsing takes some form of input, usually a program written in a textual language,
and constructs its Intermediate Representation (IR). The input language can be
virtually anything, from complex languages such as C++ to domain specific lan-
guages. Similarly, compiler IRs range from Abstract Syntax Trees to complex data
structures including additionnal information (typing, control flow, etc.).

2. Program Optimizations are repeatedly performed as transformations on the IR.
The result of a transformation may stay in the same IR, or it may be another (gen-
erally lower level) IR, better suited to support platform specific optimizations. In
the context of optimizing compilers, these stages involve complex combinatorial
optimizations problems.

3. Code Generation translates the transformed IR to either executable binaries or
source programs (which may not use the same language). As a matter of fact,
Source-to-Source compilers are very common in optimizing compiler research.
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(a) GeCoS (b) AlphaZ

Fig. 1. Basic flow of GeCoS and AlphaZ. Transformations are performed in various places for
optimization or lowering the level of abstraction. There are a number of different specifications
that are given as additional inputs, and multiple different outputs are produced.

2.3 Role of Compiler Infrastructures

Research on optimizing compiler tries to answer questions such as: what transforma-
tions leads to more efficient code, how to define good cost functions to predict perfor-
mance, how to ensure legality of a transformation, etc.

Whenever a new and/or better answer to one of these questions is found, researchers
provide a “proof of concept” implementation of their approach that is used to ex-
perimentally validate their claims. The main role of research oriented compiler in-
frastructures is therefore to facilitate such rapid prototyping. As a consequence, the
infrastructure code base tends to evolve very quickly. Fortunately, such compilers are
not expected to be as stable and robust as production compilers. Similarly, the perfor-
mance of the compiler implementation itself is rarely an issue, as long as the compiler
output ultimately leads to improved performance.

2.4 GeCoS and AlphaZ

We now present two research compiler infrastructures: GeCoS and AlphaZ that illus-
trate the diversity of the optimizing compiler infrastructure landscape.

GeCoS is a C compiler infrastructure geared toward embedded system design. It can
be used for Application Specific Processors (ASIPs) design and Custom Hardware Ac-
celerator Synthesis. It can be used as a Source-to-Source C compiler or as a standalone
flow with a complete retargetable compiler back-end and support for hardware synthesis
via back-end to generate hardware descriptions.
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AlphaZ is a system for exploring and prototyping analyses, transformations, and
code generations for a class of programs that fit a formalism called the Polyhedral
model. The system takes programs written in an equational language as inputs, and
produces C codes targeting general purpose processors, in particular, multi-core archi-
tectures.

It is important to note that these two compilers take very different input languages, C
and an equational language, and also produce outputs for diverse set of target platforms,
from custom application specific hardware accelerators to general purpose processors.
The internal flow of the two compilers are also significantly different as depicted in
Figure 1. GeCoS has a number of different IRs being used at different stages of compi-
lation, but AlphaZ performs all optimizing transformations in a single IR.

Interestingly, and despite all these differences, the developers of these compilers face
very similar issues and challenges, that we describe in the following section.

3 Challenges in Optimizing Compilers

Research compiler infrastructure developers face many challenges, some of them being
quite specific to compiler design, as explained below.

3.1 Maintainable and Sustainable Code

One of the fundamental challenges in our context is sustainability and maintainability
of the code. Research-oriented compilers are very complex pieces of software, gener-
ally developed by generations of graduate students and interns working on parts of the
infrastructure. This high turn over rate raises the need to support incremental develop-
ment practices, and the seamless homogenization of programming style.

Furthermore, it is difficult to expect that contributors to such compiler infrastructures
have a solid software engineering background and/or practice. Worse, many students
working in the embedded system design automation community have an electrical/-
computer engineering background, rather than computer science.

3.2 Structural Validity of Intermediate Representation

When writing an optimizing transformation, one of the most tedious task consists in
making sure that the transformed IR remains consistent with respect to the IR data
structure. There are many consistency rules that must be enforced by the IR. For exam-
ple, in many imperative programs, the use of a variable in a statement must be preceded
by its declaration somewhere in the program execution flow. Such validations are gen-
erally performed on the IR after parsing. In research compiler infrastructures, it may
also be desirable to perform these checks after a call to a transformation/optimization
so as to spot obvious inconsistencies as early as possible. Writing these static checks
is however very time consuming, as it involves a lot of navigation and book keeping
operations, which are tedious to write and very error prone.

Moreover, experimental languages are more frequently extended and/or modified
than conventional languages. Any non-trivial extensions or modification of the language
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forces developers to spend significant effort for updating these analysis, making this
task even more time consuming.

3.3 Complex Querying of the IR

A compiler optimization is generally only applicable to a narrow subset of constructs of
the language, and for which a precise set of preconditions holds. Retrieving the target
constructs and checking that the corresponding preconditions are enforced requires a
lot of querying within the IR. Many of these queries actually correspond to more or less
simple pattern matching operations. As an example, a simple loop unrolling transfor-
mation requires to retrieve all the loop constructs from the IR in which the bounds and
the step are constant. Then, for each of such loop, the transformation must check that
the loop body has no side-effect on the loop iterator.

While navigation can be efficiently handled through the use of visitor design pat-
terns, the code complexity induced by the query implementation quickly makes the
code difficult to understand and to maintain.

3.4 Interfacing with External Tools

Experimental research compilers infrastructures make an extensive use of third party
libraries that are used for very specific purposes. For example, boolean satisfiability,
integer linear programming solvers and/or machine learning libraries are often used to
express and solve compiler optimization problems. These libraries may be implemented
in various languages, and therefore require custom bindings if the compiler is written
in a different language.

Similarly, there also exist powerful tools to ease the implementation of complex
pattern matching operations over trees/graphs. For example, Tom/Gom3 provides a term
rewriting engine, particularly well suited to express compiler optimization. However,
exposing the IR to the Tom/Gom engine requires a complex mapping specification that
has to be written by hand.

3.5 Semantics Preserving Transformations

One of the most fundamental requirements for a compiler is to ensure that the semantics
of the original source code are retained by the output. This has led to growing emphasis
on provability, as seen in the CompCert [6] project that implemented a verified produc-
tion compiler, as well as increasing influence of theorem provers in compilers [7]. In
the context of an optimizing compiler, where usually only small parts of the code are
changed based on specific preconditions, an important challenge is that in addition to
proving that a proposed transformation preserves the original semantics, we must also
prove that the implementation of the transformation correctly preserves the designer’s
intention. Ideally, every transformation needs a proof of correctness before being im-
plemented, and tools to certify that the implementation preserves this. Such an ability
would turn out to be very useful to identify mismatch between theory and practice (un-
supported corner cases, flawed algorithm, etc.)

3 http://tom.loria.fr/

http://tom.loria.fr/
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3.6 Systematic Approaches for Capturing Domain Specific Knowledge

Optimizing compilers often fail at fully taking advantage of all optimization opportuni-
ties because they lack of knowledge about low level details of the target machine.

These limitations have been addressed by proposing language dialects and/or exten-
sions to address the shortcoming of existing general purpose programming languages.
This is particularly true for parallel programming where such domain specific knowl-
edge is mandatory to achieve reasonable performance: [8,9,10]. Other approaches advo-
cate the use of alternatives and/or more specific languages, that better fit some purpose.
AlphaZ uses an equational language as inputs, where the computation is specified as
mathematical equations. One of the motivations for this equational language is the sep-
aration of concerns; what to compute should be separated from other choices, such as
memory allocation.

Such domain specific knowledge may also be used by the compiler developers them-
selves. For example, most compiler frameworks rely on a formal description of the
processor instruction set and of its micro-architecture. This description is then used to
automate the porting of the compiler to that new architecture.

However, the use of DSL in the context of optimizing compiler is hindered by by
the fact designing custom languages involves high development and maintenance ef-
forts. In particular, even if existing tools (e.g., ANTLR, Yacc) help addressing parsing
issues, they fail at providing facilities for interfacing the parser output to the target IR
(and to other components of the compiler). This is a significant problem in compiler
research, where domain specific languages are generally designed incrementally, and
where adding a new feature in the language has hence significant development cost.

Of course, these problems are even more severe when it comes to extending GPL
with embedded DSLs, as the languages that have to be extended are often very complex
(e.g., C/C++). As of now, even compiler compilers do not provide enough facilities to
help solving this type of problems.

3.7 Code Generation

In a research context, compilers may need to target multiple architectures or languages.
In addition, a same input program can lead to several distinct code in the same tar-
get language (e.g., sequential C code and MPI parallel C code). This is particularly
common in research paralleling compilers that deals with emerging architectures (e.g.,
IBM/SONY/Toshiba Cell BE, GPGPUs, Intel Larrabee) to explore optimization oppor-
tunities. Developing code generators for each target and/or language requires a lot of
effort that could be significantly reduced by the use of facilities to reuse and customize
code generators.

4 How to Use MDE in Compilers

Since compiler IRs are abstractions used to represent programs, they are by essence
models (an instance of IR is an abstraction of the given source code). In this context,
the grammar of the source language, or more often the structure of IR, becomes the



Model-Driven Engineering and Optimizing Compilers 615

metamodel. We now report how three kind of MDE uses can answer to the challenges
described in Section 3. The description leverages our development experience after we
started using these technologies two years ago for both the GeCoS and AlphaZ infras-
tructures.

4.1 Direct MDE Benefits

The GeCoS and AlphaZ compilers started from a significant legacy code base, and we
therefore soon felt a strong need for a formalized and standardized software develop-
ment process. Because the GeCoS compiler infrastructure was already tightly coupled
with the Eclipse environment, it seemed natural for us to use the metamodeling facilities
provided by EMF4.

Model can Serve as a Documentation. An immediate benefit is that all the key infor-
mation lies in the metamodel specification. It focuses on the problem domain, without
excessive implementation details and helps bootstrap new developers into a project,
even when documentation is lacking.

Code Generator. Homogenization and good development practices are some of the
most immediate benefits of MDE. The use of code generators (e.g., generic EMF Java
code generator) providing standardized interfaces and ensuring (structural) model con-
sistency has a direct impact on code quality. The advanced reflexivity (e.g., contain-
ments and structural features) of the generated code eases the development of tool
functions without requiring tedious instrumentation (that is usually far from the pro-
cess being modelled) of the metamodel.

Generic Tools. All the generic tools based on the model specification also offer signif-
icant added value at zero development cost. These tools can help a lot to increase the
robustness of compilers. First, a model enforces its metamodel simple structural prop-
erties (arity of references and containments consistency). These properties can be easily
verified by using standard serialization process.

Moreover, the EMF Tree editor generated from the metamodel specification also
proved to be helpful. During early development stages it helped us in fixing bugs
through an understandable visualization of transformation results. Figure 2 shows the
slightly customized editors for AlphaZ and GeCoS IRs.

Finally, Object Constraint Language (OCL) can be used to express additional invari-
ant rules (and pre/post-conditions) that are checked at runtime against model instances.
This turns out to be particularly useful in the context of an optimizing compiler, as it
helps ensure that a given transformation preserves the correctness of transformed IR.
For example, many transformations requires the input IR to be in SSA5 form. A simple
OCL query can easily check this property as a post-condition of the SSA transformation
and as pre-condition of the optimizations.

4 http://www.eclipse.org/modeling/emf/
5 Static Single Assignment. All variables within a function are assigned exactly once.

http://www.eclipse.org/modeling/emf/
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(a) AlphaZ source (b) AlphaZ IR

(c) C source (d) GeCoS IR

Fig. 2. Matrix multiplication in AlphaZ and C, and its corresponding intermediate representation
in AlphaZ and GeCoS

4.2 Using Metatools

MDE can significantly increase efficiency through generic tools targeted at complex
and specific development tasks.

Facilities to Define DSLs. As discussed in Section 3, compilers can benefit a lot by
capturing domain specific knowledge. Tools such as Xtext6 or EMFText7 can provide
concrete textual syntax to a DSL, together with an editor with basic syntax highlighting
and auto-completion.

For example, the equational language used in AlphaZ is parsed using Xtext generated
parser. Because the language is experimental, minor/major language changes or exten-
sions occur frequently, and the use of model based tools makes it easier to maintain the
consistency between the parser and other components.

Facilities to Generate Code. Model-to-Text (M2T) tools such as Xpand/Xtend8 pro-
vides a modular and extensible template based specification of the generated text through

6 http://www.eclipse.org/Xtext/
7 http://www.emftext.org/
8 http://www.eclipse.org/modeling/m2t/?project=xpand

http://www.eclipse.org/Xtext/
http://www.emftext.org/
http://www.eclipse.org/modeling/m2t/?project=xpand
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imports and aspects. In Xpand, each template rule supports parametric polymorphism
that simplifies the management of specialized entities (especially useful for compiler
IRs described as an abstract syntax tree with specialized nodes).

In both GeCoS and AlphaZ, these facilities are heavily utilized for code generation.
In the case of GeCoS, the compiler IR is eventually translated into a model that rep-
resents the target hardware to generate, and different templates are used to generate
VHDL (hardware description language), or SystemC (C-like language for high-level
synthesis). In AlphaZ, the compiler IR corresponding to the functional representa-
tion is transformed into another representation that is closer to imperative programs.
From the imperative IR, Xpand aspects are used to generate variations such as C code
with OpenMP pragmas for loop parallelization, or alternate implementations of multi-
dimensional arrays.

4.3 Defining Metatools

All metamodels are described using the same model (metametamodel), and thus we can
manipulate/analyze metamodels in a generic fashion, by developing in the metameta-
model. One of the benefits, is to bind some generic behaviors to the manipulated meta-
models. This can be achieved by a generative approach or even by interpretation for a
fast prototyping. In both cases, a dedicated environment based on the common metameta-
model provides a language to describe the executable behaviors.

Generative Approaches. The definition of generative metatools allows the developers
to automate a task to all or some subset of metamodels comforting to the metameta-
model. Some tasks may be fully automated through Model-to-Model (M2M) trans-
formations on the metamodel using tools such as ATL9 or Kermeta10. Others, can be
guided by DSLs. The resulting metatools generate codes corresponding to the tasks
instantiated for different metamodels.

Structural software design patterns are a perfect example of generic concepts. Ex-
pressing them at a metametamodel level gives a powerful toolbox to the developers
who can apply or reuse these patterns on all their metamodels. In compilers, we need
to query/transform the IR. This is done mostly by using the visitor design pattern and
extensively used tree traversal algorithms such as depth first and breadth first. Whereas
adding a visitor pattern to an existing code is tedious since it needs to add a function to
each visited entity, it can be done automatically using a simple M2M transformation.
Behavior codes of the various traversal strategies are inferred by a simple containment
analysis and added as annotations to the transformed metamodel.

Using DSLs proves to be especially useful to build generative tools for more complex
repeated tasks such as interfacing with external tools. We give here two examples of
DSL-based metatools that significantly enhanced our productivity for difficult and time
consuming tasks.

Example: Graph Mapper. Compiler optimizations often rely on graph-based IR and
thus can benefit from an external, optimized graph library implementation. The key

9 http://www.eclipse.org/atl/
10 http://www.kermeta.org/

http://www.eclipse.org/atl/
http://www.kermeta.org/
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idea of Graph Mapper is to map the library graph implementation to the IR instead
of defining the IR from this graph (through inheritance). Hence, we designed a DSL
that takes any metamodel as input and helps to explicitly describes how to map nodes
and edges to this metamodel. The tool then generates an adapter to the external graph
implementation.

Example: Tom/Gom bindings. Tom/Gom is a term rewriting system for Java. Both
GeCoS and AlphaZ use Tom/Gom for a number of transformations that are pure rewrit-
ing of the IR. For example, expressions that occur in programs like 2i+ 2i can be sim-
plified as 4i by applying the rewrite rule expressed as the following:

add(term(c1,var),term(c2,var))→ term(c1+c2,var)

that simplifies additions of two terms when the variables in the two linear terms are
identical.

These rules are much easier to express and to understand than visitor based imple-
mentations. However, Tom/Gom requires bindings from expressions in its language to
Java objects. We have developed a tool that automates this task using a simple DSL to
specify the terms that are manipulated in a model, and the names of the Tom expres-
sions. Binding specifications are then generated using M2T facilities.

Model Mapping. Previous examples of bindings using DSLs can be seen as specific
model mappings. Some existing generic mapping languages enable defining such links
between metamodels and to use them for M2M transformations. For example the semi-
automatic process presented by Clavreul et al. [11] enables defining mappings between
two metamodels and generating bidirectional transformations. This kind of approach
could be used for external tool interfacing and to pass from one IR to another.

Metamodel Instrumentation. Executable metamodeling languages (i.e., action lan-
guages provided by the metametamodel) such as Kermeta provide facilities to express
executable behaviors directly on the metamodel. They enable the instrumentation of
metamodels through aspect oriented modeling thereby providing a very elegant way
to achieve separation of concerns. Thus, complex IR transformations can be efficiently
described without the need of visitors. Since the metamodel can be instrumented with
new attributes and methods in the intent of the transformation, it significantly reduces
the complexity of the algorithm implementation.

A concrete example is an M2M transformation from a IR where an instruction is
described as a tree to another one where a sequence of instructions corresponds to a
directed acyclic graph (DAG). If M2M tools such as ATL provide an easy way of doing
M2M for one to one mapping rules, it becomes difficult and nearly intractable for a
standard software engineer to express complex any to any mappings. In the case of
the tree to DAG transformation it is much more convenient to instrument each of the
metamodels by tools aspects and to code the transformation using these new helpful
attributes and methods. Some subsets of the added features may be useful for other
transformations and can be advantageously split into independent layers as depicted
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Helpers

Tree to DAG transformation

DAG metamodel Tree metamodel

Helpers

Mapping

Fig. 3. Tree instructions to DAG instructions transformation through Kermeta. Layers of aspects
instrument the metamodels and simplify the transformation code.

in Figure 3. The helpers layers corresponds to utilities aspects that can be reused in
multiple other transformations. The mapping layer adds simple references to avoid the
need of expensive maps linking DAG/tree elements.

The instrumentation of a metamodel introduces powerful concepts but also an im-
portant tooling overhead in terms of memory and speed. Opening/transforming a large
model in a framework such as Kermeta can be quite slow or even impracticable in in-
dustrial cases containing tens of thousands of model elements. Although we strongly
believe that the use of metamodel instrumentation significantly enhances flexibility and
maintainability, the scalability issues we currently are facing prevents us from using
this facility to our research compilers.

4.4 Summarizing Answers from MDE to Compilers Challenges

MDE provides low-entry-cost advanced solutions for M2M and M2T transformations
making it a very attractive technology for developing compiler components. We now
briefly summarize how MDE facilities introduced in this Section correspond to the chal-
lenges described in Section 3.

The use of generative programming tools based on metamodel specifications leads
to well structured and homogeneous code, and forces programmers to follow good soft-
ware engineering practices addressing the challenge described in Section 3.1. MDE also
contribute to the validation of IR and transformations through enforced simple structural
properties and more complex OCL queries, corresponding to challenge in Section 3.2,
and partially to challenges in Sections 3.3 and 3.5.

Defining metatools, by generation or instrumentation of the metamodels, simplifies
the design of complex transformations/queries on the IR also addressing the challenges
in Section 3.3. It also enables the automation of time consuming interfacing with ex-
ternal tools described in Section 3.4. Some of these defined metatools benefits from
the facilities for describing DSLs and code generation that also give partial answers to
challenges in Section 3.6 and 3.7.

5 Applicability of MDE

While it is possible and beneficial to build bridges that put MDE technologies to work
in optimizing compiler research infrastructures, it is also important to understand that
unrealistic expectations of MDE approaches can lead to frustration and failure. Some of
this may also be due to poor software modeling skills needed to effectively apply MDE.
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5.1 Scope

MDE is a very attractive solution to many problems in the complex software system de-
velopment. For such systems, models can be used to describe the software to be built at
various levels of abstraction and MDE technologies can be used to manage the creation
and manipulation of the models. Here, models are used to describe solutions to prob-
lems. It may be tempting to extrapolate this use of models to system software infras-
tructures, including optimizing compilers. Indeed, compilers can be viewed as a kind of
complex information systems. However, a compiler is much more than an information
system. Many of the compiler design challenges involve complex combinational opti-
mization problems that are outside the scope of problems targeted by MDE techniques.
Furthermore, many parts (e.g., classic data flow analysis and abstract and non-standard
interpretation) require deep understanding of the mathematical foundations of lattice
theory, fixed points, etc. As an example, modeling the instruction set of a given proces-
sor is not enough to efficiently compile a program for that instruction set. In a sense,
modeling the problem is not solving the problem.

A key to effective use of MDE techniques is an understanding that models are created
to serve specific purposes, and a good model is one that effectively serves its purposes.
Developers need to ensure that the models they build are fit for purpose. For example, a
good compiler intermediate model is one that describes a program in a format that can
be efficiently analyzed as required in particular compilation stages.

Developers also need to be aware that MDE technologies are not intended to create
models that are guaranteed to be fit for purpose. Human creativity is needed to create
models that are fit for purpose. MDE techniques are designed to enhance, not replace,
the creative abilities of modelers. They allow modelers to describe and analyze their
models in order to build confidence that their models effectively serve its purposes.
In the optimizing compiler research, this means that MDE technologies will not help
produce better models of programs that are fit-for-use in the compilation process.

5.2 Prerequisites

The first requirement is that team members must be able to deal with abstraction, and
more precisely must have solid modeling skills. Modeling here is in its broader sense,
from mathematical analytical modeling through combinatorial/operational research op-
timization problem modeling to UML like approaches.

It is also mandatory for developers to be comfortable with OO programming princi-
ples. Our experience has shown that even though most young electrical engineers have
followed some OO programming courses in their curriculum, few of them have a good
understanding of its concepts like polymorphism. A basic understanding of design pat-
terns is also required.

To obtain an executable code, the MDE developer needs first to model the software
and then to generate it. These two steps introduce a tooling overhead which may slow
down the initial development. Moreover, even if most MDE tools provide a low entry
cost for common metamodel-based tools (e.g., primary model editor automatically gen-
erated from a default configuration of tools, such as EMF, GMF and TMF), the price of
a flexible tool is often high software design complexity. If MDE tools rapidly provide
prototypes, reaching an industrial level leads to an extra load of understanding.
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Developers with experience in complex software development will quickly find MDE
attractive. These developers know from their previous experience that the quality of the
design is critical, and time spent on modeling may be greater than that for implementa-
tion. This family of users will be easily convinced of the interest of metaness. It is not
so obvious for inexperienced developers working on simple softwares projects with a
low level of flexibility and reusability. Based on our experience, successful use of MDE
in the compiler domain requires an open-minded development team that is willing to
try software engineering techniques to tackle their development problems. This is of-
ten facilitated by an influential champion who is willing to spend the time and effort
learning and experimenting with MDE technologies.

6 Conclusion and Perspectives

In this paper, we described how optimizing compiler research and MDE can be easily
bridged due to inherent modeling aspects of compilers. We illustrated the benefits of
MDE through our experiences in building research compiler infrastructures.

The most obvious benefit is a seamless systematization/homogenization of develop-
ment practices, something that is often very difficult to achieve in an academic environ-
ment. Metamodels also offer an abstract representation of the software, and documents
many important design choices. This is a very valuable benefit in a context where most
of the development consist in undocumented prototypes. Additionally, metatools and
metatooling greatly help in automating many of the time consuming and error prone
development tasks. Finally, we observed that metatools and generative approaches op-
erate as creativity boosters as they enable very fast prototyping and evaluation of many
new ideas.

Even though MDE has proved to be well suited for solving many of challenges aris-
ing in optimizing compilers development, this new context of utilization also raises
many open research directions that we believe to be of high interest to the MDE com-
munity. First, the growing use of M2M transformations (e.g., to implement compilation
passes) raises the need for that ensuring structural and behavioral properties are pre-
served during model transformations. As a consequence, we see model transformation
verification and testing as a very important research challenge that needs to be tackled
by the MDE community.

Moreover, since MDE now offers tools that significantly ease the definition of DSLs,
it is becoming urgent to efficiently handle their rapid increase in numbers. In particular,
a DSL should not be created from scratch if another DSL exists that can be used to
derive the new DSL (e.g., using reutilization and extension), and the DSL tooling (e.g.,
simulator, checker and generator) should be reused over a family of DSLs. We believe
that the ability to capitalize transformations by enabling their application over a family
of metamodels rather than on a single metamodel is a very important issue. To address
this challenge, we are currently studying a theory leveraging model typing [12] and
model mapping [11] so as to be able to manipulate DSLs as first class entities.

Finally, it turns out that applying MDE technologies to the development of optimiz-
ing compilers led us to face a scalability barrier. The models manipulated by compilers
are indeed generally fairly large (in terms of number of model elements) and are not
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handled very well by many of the MDE tools. Besides, even if research-oriented opti-
mizing compilers do not suffer from strong constraints on execution time, current MDE
technologies renders them unsuitable for industrial strength compilers.

We hope these three topics; semantics preserving transformations, model transfor-
mations reuse, and tools scalability; will motivate future work.
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Abstract. As model transformations have become an integral part of
the automated software engineering lifecycle, reuse, modularisation, and
composition of model transformations becomes important. One way to
compose model transformations is to compose modules of transformation
rules, and execute the composition as one transformation (internal com-
position). This kind of composition can provide fine-grained semantics,
as it is part of the transformation language. This paper aims to gener-
alise two internal composition mechanisms for rule-based transformation
languages, module import and rule inheritance, by providing executable
semantics for the composition mechanisms within a virtual machine. The
generality of the virtual machine is demonstrated for different rule-based
transformation languages by compiling those languages to, and execut-
ing them on this virtual machine. We will discuss how ATL and graph
transformations can be mapped to modules and rules inside the virtual
machine.

Keywords: Model transformation, Model transformation composition,
ATL, Graph transformation.

1 Introduction

Model transformations play a central role in MDE, and have become an inte-
gral part of the automated software engineering lifecycle, just like build script
interpreters and compilers. In order to keep this automated lifecycle maintain-
able, model transformations will have to be reusable, modular, and composable.
We can distinguish between two kinds of composition for model transformation:
external composition and internal composition [1]. External composition refers
to a chain of several model transformation executions, where models are passed
from one transformation to another. Internal composition refers to the compo-
sition of multiple transformation rules and/or modules into one transformation
module, which can then be executed as a whole.
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The advantage of external composition is its independence of the transfor-
mation language, while internal composition relies on specific transformation
language semantics and/or constructs (e.g. modules, rules, operations, etc.). It
therefore often applies to one transformation language only, as language seman-
tics generally apply to one language only. The advantage of internal composition
is the richer, more fine-grained composition semantics it can provide. It is pos-
sible to refine or redefine existing rules, add new rules, etc., as long as there is a
common notion of what a rule is.

Different transformation languages have different strengths, which has been
demonstrated by the Transformation Tool Contest workshop series1. The ability
to perform fine-grained composition of transformation rules expressed in different
languages is a powerful tool for tackling complex transformation problems, as
each language can be used for their strong points.

This paper aims to mitigate the problem of internal composition being spe-
cific to one transformation language by defining the composition mechanism
within the context of a transformation virtual machine (VM). The VM provides
a common, executable semantics for (composition of) transformation modules
and rules. Two internal composition mechanisms for rule-based transformation
languages are generalised in this way: module import and rule inheritance. The
VM, called EMF Transformation Virtual Machine (EMFTVM), is based on the
Eclipse Modeling Framework (EMF) [2], which represents a de facto standard for
modelling today. As a result, the proposed composition mechanisms are specific
to EMF.

The generality of EMFTVM – within the scope of EMF – is demonstrated by
compiling more than one rule-based model transformation language to the VM,
and by extension provide executable semantics for those languages. As a proof of
concept, we discuss how ATL [3] and graph transformations [4] can be mapped
to modules and rules in our VM. For this purpose, we’ve developed SimpleGT, a
minimal graph transformation language on top of EMF, based on double push-
out (DPO) semantics. The combination of ATL and SimpleGT already provides
a non-trivial spectrum of rule-based languages, as ATL is a model mapping
language, and SimpleGT is a recursive model rewriting language. This difference
is discussed in detail in the paper.

The generality of EMFTVM also applies to the composition mechanisms im-
plemented in EMFTVM: ATL’s and SimpleGT’s notion of module import and
rule inheritance are mapped to the same implementation, and therefore have
common executable semantics. In the long term, EMFTVM may evolve towards
a general interoperability solution for model transformation languages that lever-
ages commonalities between languages.

The rest of this paper is organised as follows: in section 2, we discuss related
work. In section 3, we briefly explain the EMFTVM language. Then, we discuss
how the VM implements rule inheritance in section 4, and module import in
section 5. Section 6 discusses how ATL and SimpleGT are mapped to modules
and rules in our VM. Section 7 concludes this paper.

1 http://planet-research20.org/ttc2011/
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2 Related Work

2.1 Common Semantics and Virtual Machines

In the domain of model transformation, there have been two efforts to provide
common executable semantics for multiple transformation languages. One of
these concerns the alignment of ATL and QVT Operational [5]. The executable
semantics are provided by the ATL VM in this case. Another such effort is the
ATC VM2, which aims to provide a common execution framework for languages
such as QVT or RubyTL. In both cases, composition possibilities are limited,
because rules are compiled away into low-level primitives. The necessary meta-
data to perform rule composition, such as what code belongs to what rule, what
are the rule’s input/output elements, and what are a rule’s super-rules, are no
longer available.

2.2 Rule Inheritance

Rule inheritance allows a transformation rule to specify one or more super-rules,
where structure and behaviour of super-rules is inherited cf. object-oriented in-
heritance. According to [6], there are currently three model transformation lan-
guages that include an explicit notion of rule inheritance: ATL [3], the Epsilon
Transformation Language (ETL) [7], and Triple Graph Grammars (TGG) [8].
Each of these languages assumes slightly different semantics for rule inheritance,
and conflict with each other at specific points. For example, ETL triggers a
super-rule whenever its sub-rule triggers , whereas ATL will only trigger a sub-
rule if its super-rule triggers first. TGG in turn requires you to include the
entire super-rule as part of each sub-rule, which allows both ETL’s and ATL’s
rule inheritance strategy to be used.

QVT Operational and Relations [9] include “when” and “where” clauses,
which allow for triggering other mappings/relations from the context of a map-
ping/relation. A “when” clause requires the referenced mapping/relation to
match first, before the current mapping/relation is applied. This corresponds
to the rule inheritance strategy for ATL. A “where” clause enforces the refer-
enced mapping/relation to be applied before the current mapping/relation is
applied. This corresponds to the rule inheritance strategy for ETL.

The VIATRA2 language [10] uses reusable patterns to specify rule trigger
conditions. Rules can refer to patterns, and patterns may include other patterns.
This results in a kind of “inheritance hierarchy” of patterns, where each pattern
requires all its included patterns to match first. VIATRA2 also uses the pattern
hierarchy to perform optimised matching [11].

2.3 Module Import

Module import allows model transformation languages to separate transforma-
tion rules into multiple modules, and allow a module to include the contents
2 http://sourceforge.net/projects/atc/

http://sourceforge.net/projects/atc/
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of one or more other modules. ATL provides a feature called module superim-
position [12], which allows for combining multiple transformation modules by
loading them on top of each other, redefining rules and helpers with the same
signature. ETL supports a built-in module import construct, which loads other
modules during the loading of the current module. Elements with the same sig-
nature are also redefined in ETL. QVT Operational uses “access” and “extends”
to compose modules. “Access” loads another module in its own namespace, and
all its mappings must be explicitly triggered. “Extends” loads another module
into the current namespace, where the current module redefines any mappings
with the same signature in the extended module. VIATRA2 supports a mod-
ule import construct as well, which enables fine-grained reuse of patterns. It is
unclear whether VIATRA2’s module import also supports redefinition.

3 Transformation Virtual Machine Language

The EMFTVM is a stack-based VM (i.e. instructions communicate values via
a stack), and uses a low-level bytecode language to describe model transforma-
tions. The main feature of this bytecode language is that it includes an explicit
representation of transformation modules and rules. This decision allows per-
forming module and rule composition on the bytecode itself, as all necessary
meta-data is available as a first-class entity in the bytecode. This section dis-
cusses the two main EMFTVM bytecode language features that are relevant for
module import and rule inheritance: modules and rules.

3.1 Modules

EMFTVM bytecode is organised into modules, which represent self-contained
units of execution. Each module consists of a number of fields, operations, and
rules. Fields and operations can be static or dynamic, similar to Java fields and
methods. Modules may import other modules, as is further explained in section 5.

Instructions are organised into code blocks. Fig. 1 shows the structure of code
blocks. Code blocks are executable lists of instructions, and have a number of
local variables and a local stack space. Code blocks are used to represent opera-
tion bodies and field initialisers. Code blocks may also have nested code blocks,
which effectively represent closures. Closures are nameless functions that can be
invoked or passed as parameters to other functions. Closures are helpful for the
implementation of OCL’s higher-order operations, such as select and collect.
Closures are also helpful to simplify compilation of source transformation lan-
guages, as each source language AST node can be locally compiled into its own
code block, and may be nested into the correct place. Such closures may be
inlined after compilation.

EMFTVM supports 47 different instructions3. Apart from the general-purpose
instructions for control flow, several EMF-specific instructions exist, such as

3 http://soft.vub.ac.be/viewvc/*checkout*/EMFTVM/trunk/emftvm/EMFTVM.html

http://soft.vub.ac.be/viewvc/*checkout*/EMFTVM/trunk/emftvm/EMFTVM.html


Towards a General Composition Semantics 627

SET, GET, ADD, REMOVE, and INSERT. While mapping style transformation
languages typically SET element properties, rewriting style languages typically
ADD and REMOVE element properties. As EMF properties are ordered lists,
an INSERT instruction allows one to insert a property value at a specific index.

Finally, modules specify a number of input, inout, and output models. This
distinction allows one to enforce read-only or write-only constraints at run-time:
input models are read-only, output models write-only, and inout models can be
read and written.

3.2 Rules

Fig. 1 shows the part of the EMFTVM metamodel that defines rules and code
blocks. Rules consist of input elements, output elements, a matcher code block,
applier code block, and post-apply code block. This distinction between matcher,
applier, and post-apply allows one to execute rules in stages: the matcher filters
potential input element matches, the applier assigns element properties and
deletes elements, and the post-apply block contains code that should be run
after a rule has been applied. EMFTVM provides a framework for automatic
matching and tracing, which invokes these three different code blocks at specific
stages.

Fig. 1. Structure of EMFTVM rules and code blocks

Input elements can have a binding code block. This allows EMFTVM to apply
a search plan strategy [10] in its automatic matcher. Each binding block calcu-
lates the valid values for an input element, given the values of the input elements
that have already been bound (either by iteration or by another binding).
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Furthermore, rules have a name that is unique within its module, and can
have a number of super-rules. These super-rules are stored as names only, and
are resolved at load-time, when rules are composed. This is done to facilitate
interaction with the module import mechanism, and is further discussed in sec-
tion 5. Super-rules and rule inheritance are further explained in section 4.

Rules can be abstract, which means that they are only applied in combination
with a non-abstract sub-rule. A rule may create default traces, which allows
the transformation module to resolve target elements from a (list of) source
element(s). Default traces have as consequence that the same input pattern may
not be matched by another rule that creates default traces, as this would result in
ambiguous source-target value resolution. Rules may also match against distinct
elements, which means that no two elements in a single input pattern match can
be equal.

Finally, rules have an execution mode, which can be either manual, auto-
matic single, or automatic recursive. Manual rules have to be explicitly invoked.
Automatic single rules are matched once, then applied once by the automatic
matching framework. Automatic recursive rules are matched and applied by the
automatic matching framework until there are no more matches.

The next section proposes a common semantics for rule inheritance.

4 Rule Inheritance

Rule inheritance in EMFTVM allows rules to specify a list of super-rules, whereby
sub-rules can only match on input that has also matched against their super-
rules. As a result, rule inheritance serves as an optimisation strategy that only
tries to match sub-rules whenever their super-rules have already matched. This
effectively represents a RETE network, such as applied in VIATRA2 [11]. Rule
inheritance also serves as a reuse mechanism, whereby sub-rules can reuse and
extend the input pattern and output pattern with new elements. Reducing the
number of input elements – or output elements – is not possible, and any omit-
ted input/output elements are implicitly inherited from the super-rule. However,
super-rule input/output elements must be repeated in the sub-rule in case lexical
access to the elements is required (e.g. in the applier or post-apply block).

The EMFTVM rule inheritance mechanism supports multiple inheritance,
which requires all super-rules to have matched on the same input before trying
to match the sub-rule. Before applying the sub-rule, all super-rules are applied in
the order they are specified in the sub-rule. Fig. 2 outlines the semantics for rule
matching in the context of rule inheritance. Each rule is represented by a box
with compartments. The left compartment contains the input elements, whereas
the right compartment contains the output elements. Each input/output element
is specified by a label and a type (i.e. label:Type).

Rule R3 in the figure only matches against input elements that have also been
matched by super-rules R1 and R2. Input/output elements correspond by label:
input element b:B in rule R1, and b:D in rule R2 are the same as input element
b:F in rule R3 for any match of rule R3. Therefore, R3 only matches b’s that are
an instance of B, D, and F.
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Fig. 2. Matching semantics for rule inheritance

As the number of input/output elements cannot be reduced in sub-rules, R3
is considered to inherit the input elements a:A and c:C from rules R1 and R2,
respectively, and output element v:V from rule R2. Rule R3 cannot lexically
access those elements, however, as the EMFTVM engine does not pass them as
parameters to R3’s matcher, applier, and post-apply code blocks.

It is only possible to define super-rule relations between rules of the same
kind: manual, automatic, or recursively automatic, and default or non-default.
This is because super- and sub-rules are executed together according to the same
execution semantics. Taking this into account, the matching semantics of each
rule remains sound, even if any of the rules is replaced by an arbitrary other rule
(of the same kind). If rules are truly incompatible, they will simply not produce
any combined match.

Fig. 3 outlines the semantics for rule application in the context of rule inheri-
tance. Whereas the matching semantics are sound for any change in the rule hi-
erarchy, the application semantics comes with some type safety constraints. The
types of all input elements are already guaranteed by the matching algorithm
(matches only occur on the specified types). However, the types of the output
elements must be compatible between super- and sub-rule. The rule application
algorithm creates output elements that are instances of the types specified in the
sub-rule. Therefore, those types must be co-variant with the types specified for
the same elements in the super-rule. For example: an element x : V is created
for each match of R3, but is considered as x : X in the application of R1. There-
fore, V must be co-variant with X: each instance of V must also be an instance
of X. Similarly, for the creation of y : Z for R3, and y : Y in R1, Z must be
co-variant with Y. These type safety constraints may be checked at load-time by
the virtual machine.

The automatic rule matching framework performs optimised matching of rule
hierarchies, while being implemented reflectively, i.e. looking up super-rules and
input/output elements and their types at run-time. The algorithm is split up
into two phases: (1) matching the single automatic rules and (2) matching the
recursive automatic rules. The algorithm for single rules works as follows:

1. All rules without super-rules are matched, and their matches (tuple of input
elements) are stored.
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Fig. 3. Application semantics for rule inheritance

2. All rules for which all of their super-rules have matched the same elements
are now matched on those elements, and their matches are stored. For all
matches, the super-rule matches are removed.

3. The previous step is repeated until all applicable rules are processed.
4. For all matches of non-abstract rules, output elements are created, and the

match tuple is converted to a trace tuple that includes the output elements.
5. For all traces, the corresponding rule applier code block is invoked, super-

rules first, then the sub-rule.
6. For all traces, the corresponding rule post-apply code block is invoked, super-

rules first, then the sub-rule.

Single automatic rules are expected to match on elements from a different
model (e.g. an input model) than the model in which the rules are applied
(e.g. an output model). This guarantees that previously found matches are not
invalidated by applying rules.

The same cannot be expected for recursive rules, which must be able to match
on their own output. Therefore, recursive rules can match on elements from
any model (e.g. inout models). The algorithm for recursive rules takes this into
account, by re-matching after each apply:

1. Rules without super-rules are matched first. For rules with sub-rules, all
matches (tuple of input elements) are stored, while only the first match is
stored for rules without sub-rules. If a (non-abstract) rule without sub-rules
matches, it is applied4, the recorded matches are cleared, and the algorithm
restarts.

2. Rules for which all of their super-rules have matched the same elements are
now matched on those elements. Again, for rules with sub-rules, all matches
are stored, while only the first match is stored for rules without sub-rules.
For all matches, the super-rule matches are removed. If a (non-abstract) rule
without sub-rules matches, it is applied, the recorded matches are cleared,
and the algorithm restarts.

4 For recursive rules, applying involves converting a match to a trace, creating output
elements, and invoking the applier block and post-apply block.
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3. When all rules have been processed, and (non-abstract) matches have been
recorded, the first of those matches is applied, the recorded matches are
cleared, and the algorithm restarts. Otherwise, the algorithm ends.

These algorithms ensure that sub-rules are only matched for the elements that
have already been matched by their super-rules, with no unnecessary matching.
They also ensure that sub-rules cannot widen the initial input element type con-
straints and constraints encoded in the matcher code block of the super-rules.

When executing single and recursive automatic rules together, they may oper-
ate on the same models in the following way: the single rules transform from an
input model to an inout model, and the recursive rules then further transform
the inout model.

Even though the different kinds of rules use different matching algorithms,
these algorithms share their implementation of rule inheritance. A unified se-
mantics for rule inheritance is enforced in this way.

The following section proposes a common semantics for module import.

5 Module Import

EMFTVM supports module import via the “imports” attribute of each module,
which lists a number of module names. These names are resolved at load-time by
the VM. Fig. 4 shows how EMFTVM module import works. Each module loads
its imported modules before loading itself, in the specified order. For example,
module M1 requires that first M2 is loaded, and then M3. The first step is then
to start loading M2 (1). Then, M2 requires that M4 and M3 are loaded before
itself. Therefore, M4 is loaded (2), and then M3 is loaded (3), which finds that
its imported M4 was already loaded (4). Now, M2 can be loaded, and M1 finds
that M3 was already loaded (5). Finally, M1 is loaded. Circular imports – and
self-imports – are ignored.

Fig. 4. Module import semantics

Module import supports redefinition of fields, operations, and rules that were
already specified in an imported module. Whenever a module is imported, its
fields, operations, and rules are registered in the VM’s lookup table: rules are
registered by name, whereas fields and operations are also registered by their
context and parameter types5. Fields and operations are only redefined by an
5 Static fields/operations have a separate lookup table.
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importing module if the context and parameter types match. Fields and op-
erations with different context/parameter types are overloaded instead. Hence,
redefinition of fields and operations is always type-safe. Redefined elements are
completely removed, and cannot be accessed by the redefining element.

Because rules are only registered by name, any rule with the same name may
redefine an existing rule. That means additional constraint checking is required
for rule redefinition. Rules must be of the same kind – manual/automatic sin-
gle/automatic recursive, and default/non-default – to allow sound redefinition.
After all modules are imported, and all rule redefinition has been performed, the
super-rules for each rule are resolved. At this time, the type safety checks for
rule inheritance are performed (see section 4).

Finally, in case of conflicting specified importing orders, the depth-first load-
ing order, as shown in Fig. 4, is followed. For example, if M1 specified another
imports M4 statement after imports M3, the loading algorithm would still load
M3 after M4. This is considered correct, because by specifying imports M4, M3
states that it wants the opportunity to redefine elements of M4. M1 may still
redefine all elements, as it is the last module to be loaded.

Module import is considered transitive: if M1 imports M2, and M2 imports M4,
then M1 imports M4, and can redefine elements of M4.

6 Mapping of Rule-Based Model Transformation
Languages

To demonstrate the generality of the previously explained composition mecha-
nisms, a mapping from ATL and SimpleGT to the EMFTVM is presented. ATL
is an established, mapping-style model transformation language, and SimpleGT
is a proof-of-concept, rewriting-style model transformation language, based on
double push-out (DPO) graph transformation semantics. By mapping these two
different languages to the same VM, we effectively provide common executable
semantics for both languages, including a common semantics for the composition
mechanisms discussed before.

6.1 ATL

ATL transformation definitions consist of modules, which can contain different
kinds of rules, helper attributes, and helper methods. The mapping of ATL to
EMFTVM is straightforward for the most part: Table 1 provides an overview of
how ATL constructs are mapped to EMFTVM constructs.

As ATL includes OCL to do its model navigation, OCL support also has to
be included in the mapping. EMFTVM forms a symbiosis with the underlying
Java run-time environment, and allows the lookup of Java types and invocation
of Java methods. OCL support is provided in the form of a natively implemented
EMFTVM module of operations, and a set of natively implemented collection
types (Sequence, Set, Bag, OrderedSet). Higher-order collection operations, such
as select and collect, take an EMFTVM code block as an argument. The
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Table 1. Mapping of ATL constructs to EMFTVM constructs

ATL construct → EMFTVM construct

module → module

uses → imports

input model → input model

output model → output model

metamodel → metamodel

matched rule → automatic single default rule

nodefault matched rule → automatic single rule

lazy rule → manual rule

unique lazy rule → manual default rule

rule input element → input element

rule output element → output element

input pattern filter expression → code in rule matcher block

output pattern bindings → code in rule applier block

code in “do” block → code in rule post-apply block

matched rule variables → rule fields

called rule → static operation

called rule variables → local variables in operation code block

entrypoint rule → static operation, called from main

endpoint rule → static operation, called from main

helper attribute without context → static field

helper attribute with context → field

helper method without context → static operation

helper method with context → operation

complete mapping of ATL to EMFTVM is described in the ATL-to-EMFTVM
compiler6. This compiler is written in ATL, and compiled by itself to EMFTVM.

6.2 Graph Transformations

Most existing graph transformation languages have already evolved into a fairly
complex language (e.g. using implicit NAC expressions [13] and control flow
constructs [14]). However, none of them support rule inheritance yet7, and the
transformation language has to be altered to support it. Therefore, we introduce
a basic, proof-of-concept graph transformation language with built-in rule in-
heritance and module import support: SimpleGT. SimpleGT is a textual graph
rewriting language, based on double push-out semantics (DPO): rules include an
input graph, correspondence graph, and output graph, where the input graph
is deleted, the correspondence graph is left unchanged, and the output graph
is created. The correspondence graph is implicit, and is represented by the

6 http://tinyurl.com/ATLtoEMFTVM-atl
7 Triple Graph Grammars (TGG) do support rule inheritance, but form a different

class of graph transformation.

http://tinyurl.com/ATLtoEMFTVM-atl
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module InlineCodeblocks;

transform M : EMFTVM;

rule RetargetInvoke_cbLocalVariableStart { ... }

rule RetargetInvoke_cbLocalVariableEnd {

from lv : EMFTVM! LocalVariable (endInstruction =~ invoke_cb),
invoke_cb : EMFTVM!Invoke_cb (codeBlock =~ nestedCb ),
nestedCb : EMFTVM! CodeBlock (code =~| last),
last : EMFTVM! Instruction

to lv : EMFTVM! LocalVariable (endInstruction =~ last),
invoke_cb : EMFTVM!Invoke_cb (codeBlock =~ nestedCb ),
nestedCb : EMFTVM! CodeBlock (code =~ last),
last : EMFTVM! Instruction }

abstract rule Invoke_cb {

from cb : EMFTVM!CodeBlock (code =~ invoke_cb),
invoke_cb : EMFTVM!Invoke_cb

to cb : EMFTVM!CodeBlock (code =~ invoke_cb),
invoke_cb : EMFTVM!Invoke_cb }

rule Invoke_cb_inline_locals extends Invoke_cb {

from cb : EMFTVM!CodeBlock (code =~ invoke_cb),
invoke_cb : EMFTVM!Invoke_cb (codeBlock =~ nestedCb ),
nestedCb : EMFTVM! CodeBlock (localVariables =~ lv),
lv : EMFTVM! LocalVariable (slot =~ lv.slot)

to cb : EMFTVM!CodeBlock (code =~ invoke_cb ,
localVariables =~ lv),

invoke_cb : EMFTVM!Invoke_cb (codeBlock =~ nestedCb ),
nestedCb : EMFTVM!CodeBlock ,
lv : EMFTVM! LocalVariable }

rule Invoke_cb_inline extends Invoke_cb {

from cb : EMFTVM!CodeBlock (code =~ invoke_cb),
invoke_cb : EMFTVM!Invoke_cb (codeBlock =~ nestedCb ),
nestedCb : EMFTVM! CodeBlock

not nestedCb : EMFTVM! CodeBlock (localVariables =~ lv),
lv : EMFTVM! LocalVariable

to cb : EMFTVM!CodeBlock (code =~ invoke_cb ,

code =~ nestedCb .code before invoke_cb ,
lineNumbers =~ nestedCb .lineNumbers ,

nested =~ nestedCb .nested before nestedCb ),
invoke_cb : EMFTVM!Invoke_cb }

Listing 1.1. Excerpt of InlineCodeblocks SimpleGT module

intersection of the input and output graph. SimpleGT uses explicit negative
application condition graphs (NACs), which specify input patterns that prevent
the rule from matching.

Listing 1.1 shows an excerpt of a SimpleGT transformation module, named
“InlineCodeblocks”. This transformation rewrites INVOKE CB instructions by
inlining the invoked code block into the calling code block. SimpleGT uses from
to specify the input pattern, and to to specify the output pattern. The common
elements in the input and output pattern form the correspondence graph, and
is not altered by EMFTVM. Nodes map to EMF EObjects and edges map to
EMF EReferences. A node is specified using a label and type. An edge is specified
using the ‘=~’ matching operator: this operator specifies the existence of an edge
(or EReference value). In addition, the ‘=~’ operator can be used to match node
attribute values (EAttributes).

The rules RetargetInvoke cbLocalVariableStartand RetargetInvoke cb-
LocalVariableEnd re-map the start and end instruction of local variables that
refer to INVOKE CB instructions. Only the latter rule is listed here, as it
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Table 2. Mapping of SimpleGT constructs to EMFTVM constructs

SimpleGT construct → EMFTVM construct

module → module

imports → imports

model → inout model

metamodel → metamodel

rule → automatic recursive distinct rule

input nodes → input element

nac nodes → code in rule matcher block

output nodes → output element if new element

unchanged edges → code in rule matcher block

deleted edges → code in rule matcher block and applier block

new edges → code in rule applier block

deleted nodes → code in rule matcher block and applier block

includes a special feature: EMF models have ordered edges; the ‘=~|’ opera-
tor allows one to match the last edge going out from a node (the regular ‘=~’
operator always matches the first edge). In this case, the endInstruction of
local variable lv should be re-mapped to the last instruction in the nested code
block.

The Invoke cb rule is an example of an abstract rule that is inherited by In-
voke cb inline locals and Invoke cb inline. An abstract rule is only applied
when a non-abstract sub-rule is applied. Conversely, the sub-rules only match
when all super-rules have matched. Invoke cb inline locals moves one local
variable at a time into the calling code block, while re-setting the assigned local
variable slot (the EMFTVM metamodel implementation automatically sets this
again on read access). Invoke cb inline performs the actual inlining, and moves
the code (i.e. instructions), nested code blocks, and line number mappings from
each invoked code block into its calling code block. The before keyword is used
to enforce insert semantics instead of append semantics (the default): the code
of the nested code block should be inserted before the subject INVOKE CB
instruction.

The remainder of the transformation module8 is omitted, as it does not in-
troduce new SimpleGT constructs. An overview of the mapping of SimpleGT
to EMFTVM is provided in Table 2. The complete mapping of SimpleGT to
EMFTVM is described in the SimpleGT-to-EMFTVM compiler9, which is writ-
ten in ATL, and compiled to/executed in EMFTVM.

SimpleGT rules map to automatic, recursive, non-default rules in EMFTVM.
Input nodes map to input elements, output nodes map to output elements only if
they did not occur in the input pattern. NAC nodes are not explicitly represented
by rule elements in EMFTVM: the goal is to not match them. Instead, they are
represented in the rule matcher code block, to make sure they do not occur as
8 http://tinyurl.com/InlineCodeblocks-simplegt
9 http://tinyurl.com/SimpleGTtoEMFTVM-atl

http://tinyurl.com/InlineCodeblocks-simplegt
http://tinyurl.com/SimpleGTtoEMFTVM-atl
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part of the input graph. The binding code block of EMFTVM rule input elements
is used to implement a search plan strategy, where input node values are derived
from other input node values. The search plan code for NAC nodes is embedded
in the rule matcher code block.

7 Conclusion and Future Work

This paper has presented an approach to achieve a general semantics for two
internal composition mechanisms for rule-based model transformation languages:
module import and rule inheritance. These general semantics are achieved in
three steps: (1) module import and rule inheritance are defined within a virtual
machine (VM) for model transformation, named EMFTVM, (2) the generality
of the VM is demonstrated by translating two distinct transformation languages,
ATL and graph transformations, to the VM, and (3) by translating ATL and
graph transformations to the same VM, a common semantics for module import
and rule inheritance applies to those languages.

The generality of the presented semantics is limited by two factors: (1)
EMFTVM is specific to EMF models, and (2) only two rule-based languages
have been translated to EMFTVM. As EMF is a de facto standard for mod-
elling, and many transformation languages target EMF [3,7,9,10,14,15,16], the
scope of EMF is considered sufficiently relevant to the modelling community.
The fact that only ATL and SimpleGT, a proof-of-concept graph transforma-
tion language, have been translated to EMFTVM is mitigated by the nature
of both languages. ATL is a model mapping language, which uses a single rule
matching phase, after which all rules are applied. SimpleGT is a recursive model
rewriting language, which applies its rules recursively until no more matches can
be found. Both are very different in rule matching and application semantics, but
are still able to share the semantics for module import and rule inheritance. Any
languages with semantics similar to either ATL (i.e. the QVT-like languages)
or SimpleGT (i.e. graph transformation languages) can likely be mapped to
EMFTVM as well.

As EMFTVM implements the entire ATL and SimpleGT languages, it pro-
vides a complete interoperability solution for these languages (including ATL’s
rule invocation and implicit tracing mechanism). Over time, EMFTVM may
evolve as a general interoperability solution, as more languages are mapped to
it. It is currently not possible to map synchronisation-style languages, such as
QVT Relations [9] and Triple Graph Grammars (TGG) [8], to EMFTVM. These
languages try to first match output elements, and will create them if not found.
Current EMFTVM output elements are always created.
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Abstract. Feature models and associated feature diagrams allow mod-
eling and visualizing the constraints leading to the valid products of a
product line. In terms of their expressiveness, feature diagrams are equiv-
alent to propositional formulas which makes them theoretically expensive
to process and analyze. For example, satisfying propositional formulas,
which translates into finding a valid product for a given feature model,
is an NP-hard problem, which has no fast, optimal solution. This theo-
retical complexity could prevent the use of powerful analysis techniques
to assist in the development and testing of product lines. However, we
have found that satisfying realistic feature models is quick. Thus, we
show that combinatorial interaction testing of product lines is feasible
in practice. Based on this, we investigate covering array generation time
and results for realistic feature models and find where the algorithms can
be improved.

Keywords: Software Product Lines, Testing, Feature Models, Practical,
Realistic, Combinatorial Interaction Testing.

1 Introduction

A software product line is a collection of systems with a considerable amount
of code in common. The commonality and differences between the systems are
commonly modeled as a feature model. Testing of software product lines is a
challenge since testing all possible products is intractable. Yet, one has to ensure
that any valid product will function correctly. There is no consensus on how
to efficiently test software product lines, but there are a number of suggested
approaches. Each of the approaches still suffers from problems of scalability
(Section 2).

Combinatorial interaction testing [4] is a promising approach for performing
interaction testing between the features in a product line. Most of the difficulties
of combinatorial interaction testing have been sorted out, but there is one part of
it that is still considered intractable, namely finding a single valid configuration,
an NP-hard problem. This is thus the bottleneck of the approach. In this paper
we resolve this bottleneck such that combinatorial interaction testing should
not be considered intractable any more (Section 3). We then investigate how a
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basic covering array generation algorithm performs on realistic feature models
(Section 4), and suggest, based on the resolution of the bottleneck and on the
empirics, how the algorithm can be improved (Section 5).

2 Background

2.1 Software Product Lines

A software product line (SPL) [19] is a collection of systems with a considerable
amount of code in common. The primary motivation for structuring one’s sys-
tems as a product line is to allow customers to have a system tailored for their
purpose and needs, while still avoiding redundancy of code. It is common for
customers to have conflicting requirements. In that case, it is not even possible
to ship one system for all customers.

The Eclipse products [22] can be seen as a software product line. Today,
Eclipse lists 12 products on their download page1. These products share many
components, but all components are not offered together as one single product.
The reason is that the download would be unnecessary large, since, for exam-
ple, a C++ systems programmer usually does not need to use the PHP-related
features. It would also bloat the system by giving the user many unnecessary
alternatives when, for example, creating a new project. Some products contain
early developer releases of some components, such as Eclipse for modeling. In-
cluding these would compromise the stability for the other products. Thus, it
should be clear why offering specialized products for different use cases is good.

One way to model the commonalities and differences in a product line is using
a feature model [10]. A feature model sets up the commonalities and differences
of a product line in a tree such that configuring the product line proceeds from
the root of the tree. Please refer to an example of a feature model for a subset
of Eclipse in Figure 1. Proceeding from the root, configuring the product line
consists of making a decision for each node in the tree. Each node represents a
feature of the product line. The nature of this decision is modeled as a decoration
on the edges going from a node to another. For example, in Figure 1, one has
to choose one windowing system which one wants Eclipse to run under. This is
modeled as an empty semi-circle on the outgoing edges. When choosing a team
functionality provider, one or all can be chosen. This is modeled as a filled semi
circle. The team functionality itself is marked with an empty circle. This means
that that feature is optional. A filled circle means that the feature is mandatory.
One has to configure the feature model from the root, and one can only include
a feature when the preceding feature is selected. For example, supporting CVS
over SSH requires that one has CVS.

The parts that can be different in the products of a product line are usually
called its variability. One particular product in the product line is called a variant
and is specified by a configuration of the feature model. Such a configuration
consists of specifying whether each feature is included or not.
1 http://eclipse.org/downloads/

http://eclipse.org/downloads/
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Fig. 1. Feature model for a subset of Eclipse

2.2 Software Product Line Testing

Testing a software product line poses a number of new challenges compared to
testing single systems. It has to be ensured that each possible configuration of the
product line functions correctly. One way to validate a product line is through
testing, but testing is done on a running system. The software product line is
simply a collection of many products. One cannot test each possible product,
since the number of products in general grows exponentially with the number of
features in the product line. For the feature model in Figure 1, the number of
possible configurations is 512, and this is a relatively simple product line.

There is no single recommended approach available today for testing product
lines efficiently [5], but there are many suggestions. Some of the more promising
suggestions are combinatorial interaction testing [4], discussed below; reusable
component testing, seen in industry [9], but which does not test for interaction
faults in the product line; a technique called ScenTED, where the idea is to
express the commonalities and differences on the UML model of the product
line and then derive concrete test cases by analyzing it [21]; and incremental
testing, where the idea is to automatically adapt a test case from one product
to the next using the specification of similarities and differences between the
products [25].

2.3 Combinatorial Interaction Testing for Product Lines

Combinatorial interaction testing [4] is one of the most promising approaches.
The benefits of this approach is that it deals directly with the feature model to
derive a small subset of products which can then be tested using single system
testing techniques, of which there are many good ones. The idea is to select a
small subset of products where the interaction faults are most likely to occur.
For example, we can select the subset of all possible products where each pair
of features is present. This includes the cases where both features are present,
when one is present, and when none of the two are present. Table 1 shows the 22
products that must be tested to ensure that every pair-wise interaction between
the features in the running example functions correctly. Each row represents one
feature and every column one product. ’X’ means that the feature is included
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for the product, ’-’ means that the feature is not included. Some features are
included for every product because they are mandatory, and some pairs are not
covered since they are invalid according to the feature model.

Table 1. Pair-wise coverage of the feature model in Figure 1 the test suites numbered

Feature\ Product 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
EclipseSPL X X X X X X X X X X X X X X X X X X X X X X
WindowingSystem X X X X X X X X X X X X X X X X X X X X X X
Win32 - - X - - X - - X - - - - - X - - - - - - X
GTK - X - - - - X - - X - - - X - - X - - - - -
Motif - - - - X - - X - - - X - - - - - - X - - -
Carbon - - - X - - - - - - X - - - - X - X - - - -
Cocoa X - - - - - - - - - - - X - - - - - - X X -
OS X X X X X X X X X X X X X X X X X X X X X X
OS Win32 - - X - - X - - X - - - - - X - - - - - - X
Linux - X - - X - X X - X - X - X - - X - X - - -
MacOSX X - - X - - - - - - X - X - - X - X - X X -
Hardware X X X X X X X X X X X X X X X X X X X X X X
x86 X - - X X - - X - X X X - - X X - X X - - -
x86 64 - X X - - X X - X - - - X X - - X - - X X X
Team - - - - - X X X X X X X X X X X X X X X X X
CVS - - - - - - - - - - - - - - X X X X X X X X
CVS Over SSH - - - - - - - - - - - - - - - X X X X X X X
CVS Over SSH2 - - - - - - - - - - - - - - - - X X X X X X
SVN - - - - - X X X X X X X X X X X - X X X X X
Subversive - - - - - - - - - - X X X X X - - - - - - X
Subclipse - - - - - X X X X X - - - - - X - X X X X -
Subclipse 1 4 x - - - - - - - X X X - - - - - X - - - - X -
Subclipse 1 6 x - - - - - X X - - - - - - - - - - X X X - -
GIT - - - - - - - - - X - - - - - X X - X X - X
EclipseFileSystem X X X X X X X X X X X X X X X X X X X X X X
Local X X X X X X X X X X X X X X X X X X X X X X
Zip - - - X X - - - X - - - - X - - - - - X - X

Testing every pair is called 2-wise testing, or pair-wise testing. This is a special
case of t-wise testing where t = 2. 1-wise coverage means that every feature is
at least included and excluded in one product, 3-wise coverage means that every
combination of three features are present, etc. For our running example, 5, 64
and 150 products is sufficient to achieve 1-wise, 3-wise and 4-wise coverage,
respectively.

An important motivation for combinatorial interaction testing is a paper by
Kuhn et al. 2004 [11]. They indicated empirically that most bugs are found for
6-wise coverage, and that for 1-wise one is likely to find on average around 50%,
for 2-wise on average around 70%, and for 3-wise around 95%, etc.

There are three main stages in the application of combinatorial interaction
testing to a product line. First, the feature model of the system must be made.
Second, the subset of products must be generated from the feature model for
some coverage strength. Such a subset is called a t-wise covering array for a
coverage strength t. Last, a single system testing technique must be selected
and applied to each product in this covering array. The first and last of these
stages are well understood. The second stage, however, is widely regarded as
intractable, thereby rendering the approach useless for industrial size software
product lines.
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3 The Case for Tractable t-wise Covering Array
Generation

3.1 Complexity Analysis of Covering Array Generation

The generation of t-wise covering arrays is equivalent to the minimum set cover
problem, an NP-complete problem. Given a set of elements, for example U =
{1, 2, 3, 4, 5}; we have a set of sets of elements from U , for example S = {{1, 2, 3},
{2, 4}, {3, 4}, {4, 5}}. The set cover problem is to identify the minimum number
of sets, C, from S such that the union contains all elements from U , which is for
the example C = {{1, 2, 3}, {4, 5}}.

1-wise covering array generation is easily converted to a set cover problem
by listing all valid configurations of the product line, and having that as S.
Each element of U is a pair with the feature name and a Boolean specifying the
inclusion or exclusion of the feature. Solving this set cover problem then yields
a 1-wise covering array. This can be done similarly for t > 1 by having tuples of
assignments in U .

The set cover problem has a known approximation algorithm. (An approxi-
mation in this context is not the degree of t-wise coverage, which is 100% for
all the discussion in this paper; but how many more products are selected than
absolutely necessary.) The approximation algorithm was presented in Chvátal
1979 [3]. It is a greedy algorithm with a defined upper bound for the degree
of approximation which grows with the size of the problem, but the degree of
approximation remains acceptable. The algorithm is quite simple; it selects the
set in S which covers the most uncovered elements until all elements are cov-
ered. For t-wise testing, this means selecting the product which covers the most
uncovered tuples.

The set cover problem assumes that the sets with which to cover are already
available so that one can look at all of them. For feature models, the solution
space grows exponentially with respect to the number of features. Thus, it is
infeasible to iterate through all the valid configurations.

And it gets worse, even generating a single configuration of a feature model
is equivalent to the Boolean satisfiability problem (SAT), an NP-hard problem.
SAT is the problem of assigning values to the variables of a propositional formula
such that the formula evaluates to true. Batory 2005 [1] showed that ordinary
feature models are equivalent to propositional formulas with respect to expres-
siveness, and that a feature model can easily be converted to a propositional
formula.

Approximating the SAT problem is not possible: either we have the solution
or we do not. This is also why the literature on combinatorial interaction testing
classifies the generation of covering arrays as intractable.

3.2 Quick Satisfiability of Realistic Feature Models

Nie and Leung 2011 [16] is a recent survey of combinatorial testing. They state
that their survey is the first complete and systematic survey on this topic. They
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found 50 papers on the generation of covering arrays. Covering array generation
is reported to be NP-hard, but no detailed analysis is given. Such an analysis
is given in both Perrouin et al. 2010 [18] and Garvin et al. 2011 [6] which both
classify covering array generation as intractable because finding a single config-
uration of a feature model is equivalent to the Boolean satisfiability problem.

And this is indeed the general case given an arbitrary, grammatically valid
feature model, but is it so in practice? It was observed by Mendonca et al.
2009 [15] that SAT-based analysis of realistic feature models with constraints is
easy, but they did not identify the theoretical reason for this nor whether it is
necessarily so and suggested finding the theoretical explanation as future work.

We propose that the theoretical explanation simply is that realistic feature
models must be easily configurable by customers in order for them to efficiently
use them. Configuring a feature model is equivalent to solving the Boolean sat-
isfiability problem for the feature model.

The primary role of feature models in software product line engineering is for
a potential customer to be able to sit down and configure a product to fit his
or her needs. Imagine the opposite case. A company has developed a product
line, but finding a single product of the product line takes a million years since
there is no tractable solution to NP-hard problems. This situation is absurd. If
it is really that difficult to find even a single product in a product line, then
the feature model is too difficult for customers to use. If the customers cannot
configure a feature model by hand assisted by a computer, is not an important
point of the product line approach lost?

The same argument also shows that finding the solution to a partially con-
figured feature model remains quick. If not, a customer might come into the
situation that he or she cannot manage to complete the product configuration.

The kind of complexity that gives rise to modern computers being unable to
solve a Boolean satisfiability problem in a timely manner would start challenging
what is understandable by an engineer maintaining the product line.

Therefore, for the class of feature models intended to be configured by humans
assisted by computers, which we think at least is a very large part of the realistic
feature models, quick satisfiability is also a property.

3.3 Configuration Space

Even if the satisfiability of a realistic feature model is quick, traversal of the
configuration space is still an issue. The configuration space of a feature model
grows exponentially with the number of features, so one cannot traverse this
space looking for the configuration that covers the most uncovered tuples, as
required by Chvátal’s greedy approximation algorithm.

Even if one only manages to cover one tuple per iteration, the upper bound
for both time and the numbers of products is polynomial, since the number of
tuples is

(
f
t

)
(where f is the number of features and t the coverage strength; for

example,
(
f
2

)
gives the number of ways we can select a pair out of the configured

features where order does not matter.) It is highly likely, however, that one is able
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to quickly cover many tuples. For pair-wise coverage, finding the first product
covers

(
f
2

)
out of 4

(
f
2

)
pairs for the worst case scenario. This is at least 25% of

the possible pairs.
Covering many tuples at each iteration is still a challenge, but the upper

bound of the penalty is polynomial. Since it is not feasible to traverse the con-
figuration space to find the product which covers the most tuples, neither is it
possible to guarantee the upper bound for the approximation with Chvátal’s
greedy algorithm. As we will see in the section on empirics, this does not seem
to be a problem as one is usually able to cover many tuples per iteration.

3.4 Tractable Approximation of Covering Arrays

Since finding a covering array consists of two parts, finding valid configurations
and solving the set cover problem, and since the former was shown to be tractable
and the second is approximable by Chvátal’s algorithm, we conclude that finding
an approximation of the covering array is also tractable for realistic feature
models.

4 Performance of Chvátal’s Algorithm for Covering
Array Generation

Even if the generation of covering arrays can be shown to be tractable, some
improvement of the algorithms still have to be done in order to generate covering
arrays from some of the largest known feature models. Let us look at how a basic
implementation of Chvátal’s algorithm for generating covering arrays performs
and then discuss how to improve it.

The following algorithm assumes a feature model, FM , has been loaded, and
a strength, t, of the wanted coverage strength has been given. From the set of
assignments, (f, i), where f is a feature of FM , and i is a Boolean specifying
whether f is included, all combinations of t assignments are generated and placed
in a set, U . This set then includes all valid and invalid tuples.

An Adaption of Chvátal’s Algorithm for Covering Array Generation.

While U is not empty:
c is a configuration of FM with no variables assigned.
For each tuple e in U:
Satisfy FM assuming the assignments in both c and e.
If satisfiable: Fix the assignments of e in c. Remove e from U.

Satisfy FM assuming c, add the solution to the covering array C.
//At some point, decide to remove the invalid tuples from U.
If the number of newly covered tuples < number of features:
For each tuple e in U:
If FM is not satisfiable assuming e, remove e from U.

//C now holds the covering array of FM of strength t.
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4.1 Models

Sometimes in papers discussing combinatorial interaction testing, experiments
are run on randomly generated feature models. The problem with that is that
one is assuming things about feature models that might not be realistic. Here,
performance measurements will be run on realistic feature models, so that no
assumptions are made on the nature of realistic feature models.

Models2 were gathered from some available sources within software product
line engineering research where the models are open and available. All the feature
models are either of actual product lines or related to publications. The models
are listed in Table 2 together with the product line name and their source.

Table 2. Models and Sources

System name Model File Name Source
X86 Linux kernel 2.6.28.6 2.6.28.6-icse11.dimacs [23]
Part of FreeBSD kernel
8.0.0

freebsd-icse11.dimacs [23]

eCos 3.0 i386pc ecos-icse11.dimacs [23]
e-Shop Eshop-fm.xml [12]
Violet, graphical model ed-
itor

Violet.m http://sourceforge.net/projects/violet/

Berkeley DB Berkeley.m http://www.oracle.com/us/products/
database/berkeley-db/index.html

Arcade Game Maker Peda-
gogical Product Line

arcade game pl fm.xml http://www.sei.cmu.edu/productlines/
ppl/

Graph Product Line Graph-product-line-fm.xml [13]
Graph Product Line Nr. 4 Gg4.m an extended version of the Graph Product

line from [13]
Smart home smart home fm.xml [27]
TightVNC Remote Desk-
top Software

TightVNC.m http://www.tightvnc.com/

AHEAD Tool Suite (ATS)
Product Line

Apl.m [24]

Fame DBMS fame dbms fm.xml http://fame-dbms.org/

Connector connector fm.xml a tutorial [26]
Simple stack data structure stack fm.xml a tutorial [26]
Simple search engine REAL-FM-12.xml [14]
Simple movie system movies app fm.xml [17]
Simple aircraft aircraft fm.xml a tutorial [26]
Simple automobile car fm.xml [28]

4.2 Tool and Transformations

The models gathered were of many different formats. Software product line en-
gineering is an active field of research, and there are many research tools for
different purposes and with various strengths and weaknesses.

In order to measure the performance of covering array generation on the gath-
ered models, integration and some modification of existing tools and libraries
were needed to make them cooperate. Figure 2 shows the overview of the tool

2 The models are available at the following URL: http://heim.ifi.uio.no/martifag/
models2011/fms/

http://sourceforge.net/projects/violet/
http://www.oracle.com/us/products/database/berkeley-db/index.html
http://www.oracle.com/us/products/database/berkeley-db/index.html
http://www.sei.cmu.edu/productlines/ppl/
http://www.sei.cmu.edu/productlines/ppl/
http://www.tightvnc.com/
http://fame-dbms.org/
http://heim.ifi.uio.no/martifag/models2011/fms/
http://heim.ifi.uio.no/martifag/models2011/fms/
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that was constructed for this purpose3. The figure is of no particular graphical
modeling notation. The diamonds symbolize files with a certain suffix, the boxes
symbolize internal data structures and the arrows symbolize transformations
between the formats.

The tool accepts feature models in three different formats: GUI DSL (model
names suffixed with ’.m’), as shipped with earlier versions of Feature IDE; SXFM,
the Simple XML Feature Model format (model names suffixed with ’.xml’) and
dimacs (model names suffixed with ’.dimacs’), a file format for storing proposi-
tional formulas in conjunctive normal form (CNF).

Fig. 2. Transformations in the tool

The GUI DSL files can be loaded using the Feature IDE library. This library
allows writing and reading of SXFM files. Thus, they can be loaded into the
SPLAR library4 along with other SXFM files.

The SPLAR library provides an export to conjunctive normal form (CNF),
a canonical way of representing general propositional constraints. Thus all the
previously loaded models can be converted into CNF formulas, along with other
formulas stored in dimacs files.

Once a model is in the form of a CNF formula, it can be given to SAT4J, an
open source tool for solving the SAT problem. Thus, all the feature models can
be input to the covering array algorithm discussed above. (SAT4J is also used
to calculate satisfiability time for the feature models.)

The covering arrays are written to a comma separated values (CSV) file, which
can be viewed in Microsoft Excel, Open Office Calc, etc. The covering arrays are
then ready to be used to configure products for which single system testing is
applied.

(Another interesting thing to know about a feature model is the number
of possible configurations. The SPLAR library makes it possible to generate a

3 The tool is available as open source at http://heim.ifi.uio.no/martifag/

models2011/spltool/
4 http://splar.googlecode.com

http://heim.ifi.uio.no/martifag/models2011/spltool/
http://heim.ifi.uio.no/martifag/models2011/spltool/
http://splar.googlecode.com
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binary decision tree (BDD) which JavaBDD can work with. It then calculates
the number of possible configurations of the feature model.)

4.3 Results

Table 3 shows the results from running5 our tool on the feature models in Table 2.
The feature models are ordered after the number of features. The next column
shows the number of unique constraints in the model as the number of clauses
of the conjunctive normal form of the constraints. (Constraints implied by the
structure of the feature diagrams were not included in the count.) The number
of valid products for each feature model is available for some of the smaller
models, and as can be seen, quickly increases. The next column shows the time,
in milliseconds, for running SAT4J on the feature model to find a single valid
solution. The following columns show both the size and time for generating
covering array of strengths 1–4. Some of the results are not available because
the current implementation of the tools to not scale well to these sizes.

Boolean Satisfiability Times for Feature Models. Satisfiability in gen-
eral has a worst case of about O(2n) according to Pătraşcu and Williams 2010
[20]. Table 3 shows the satisfiability times for the feature models. Empirically
the satisfiability time of the feature models remains low. Thus, our conclusion
regarding the quickness of satisfiability of realistic feature models is consistent
with these few observations. Note that this is not meant as a validation, but
merely as a demonstration of what we discussed in Section 3; that is, it follows
from the fact that the feature models are meant to be configured manually.

Covering Array Generation. The following are the statistically significant
relations6 between the number of features and the sizes of the covering arrays.
CA(P, t) is the covering array with strength t for the propositional formula, P,
representing a feature model with F features. The size function gives the size of
the covering array.

log(size(CA(P, 2))) = 0.37 ∗ log(F ) + 1.30, adjusted R2: 0.59
log(size(CA(P, 3))) = 1.09 ∗ log(F ) + 0.00, adjusted R2: 0.63

Covering array sizes of strength 1 and 4 did not allow for a statistical model with
a decent fit to be made. The fit for strengths 2 and 3 are poor. The reason is that
covering array sizes are not really dependent on the number of features but on
the structure of the feature model. For example, for 1-wise coverage, a covering
array of size 2 might be sufficient: a certain assignment of optional features and
the inverse.
5 The computer on which we did the measurements had an Intel Q9300 CPU

@2.53GHz and 8 GB, 400MHz ram. All executions ran in one thread.
6 Adjusted R2 is a measure, ranging from 0 to 1, of the goodness of fit of a statistical

model. A value of 0.90 means that it is very unlikely a random sample would fit this
approximation with the same significance, and a value of 0.20 means that it is very
likely.
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The following are the estimated relations between the number of features and
the time taken in milliseconds of generating the covering arrays.

log(time(CA(P, 1))) = 1.46 ∗ log(F ) + 0.00, adjusted R2: 0.84
log(time(CA(P, 2))) = 2.13 ∗ log(F ) + 0.00, adjusted R2: 0.96
log(time(CA(P, 3))) = 4.03 ∗ log(F ) − 3.51, adjusted R2: 0.98
log(time(CA(P, 4))) = 6.02 ∗ log(F ) − 6.41, adjusted R2: 0.97.

5 Discussion

5.1 Memory Requirements

The way our tool deals with the constraints in a feature model is to calculate and
store the valid, uncovered tuples in memory. The tuples need to be traversed in
order to find the configurations which cover the most uncovered tuples at each
iteration. Doing it this way, the number of constraints does not affect the memory
requirement significantly, but memory might prove to be a bottle neck.

This effectively sets the memory requirement to O(F t), where F is the number
of features in a feature model and t is the strength of the coverage. For a system
with M bytes of memory and assuming each t-tuple requires t ∗ x bytes, the
upper bound for t-wise coverage is F t = M/(t ∗ x).

For pair-wise coverage on a system with 8GB of memory, and assuming
that a structure holding the pairs take 20 bytes, the upper bound is n =√

8, 000, 000, 000/20, n = 20, 000 features. This is the upper bound of a high-end
laptop. More powerful computers are available which can be used for generating
covering arrays which increases the upper bound such that even 3-wise coverage
of the second largest feature model in our sample is within.

5.2 Accepted Covering Array Size

There is a correspondence between the number of features in a feature model
and the size of the team working with it. Thus a team of developers and testers
should be able to deal with a covering array of a size around the same size as
the number of features. If we look at the data and statistical models for covering
array size, we can see that the size of 1–3-wise covering arrays is below or close
to the number of features since the coefficient of log(F), and thus the exponent
of F, is less than or close to 1.

5.3 Suggested Improvements and Future Work

Given the evaluations up to this point, there are a number of source of improve-
ment for generating covering arrays for software product lines.

Exploiting the Boolean Satisfiability Speed. Nie and Leung 2011 [16] clas-
sified handling constraints for covering array generation is an open problem for
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covering array generation in general. Using SAT-solvers is good way to handle
constraints for covering array generation based on feature models. Also, since
satisfiability of feature models has been assumed to be intractable up to this
point, it might be an unexploited source for improvement of covering array gen-
eration speed.

Parallelization. The algorithm that was used to make the measurements in this
paper ran in one thread. An algorithm which supports running on several threads
will improve the execution time for generating the covering arrays. For example,
the step for finding all invalid tuples in the adaption of Chvátal’s algorithm
above can be run in parallel by splitting the set of tuples in, for example, four
and checking each fourth in a separate thread.

Heuristics. Another unexploited source of improvement for covering array gen-
eration is knowledge from the domain model. UML-models and annotations on
feature models should be taken into account when generating a covering array to
make it smaller and its generation time lower. CVL [7] is a variability language
with tool support which, in addition to feature diagrams, models the variabil-
ity of a system on the system model as well. Knowing what a feature refers to
in a system model is an unexploited source of improvement for covering array
generation.

In a recent publication [8], we show how to exploit one commonly occurring
structure in product lines when doing combinatorial interaction testing. Often
there are several implementations of the same basic functionality which is used by
the other components in the product line through an abstraction layer. These
implementations occur as mutual exclusive alternatives in the feature model.
Mutual exclusive alternatives are detrimental to combinatorial interaction test-
ing [2], causing a substantial increase in the number of products in the covering
arrays. We show that if the increase of products is due to the abstraction layer
implementations, then the number of test suites required can be reduced by
reusing test suites for several of the products in the array without losing the bug
detection capabilities.

6 Conclusion

In this paper we showed that although it is widely held that configuring feature
models is intractable, in practice the role of feature models in software product
line engineering implies that it is quick. Boolean satisfiability solvers thus provide
an efficient way to handle constraints in feature models and should be exploited
for doing covering array generation without the fear that the running time will
be intractable.

Acknowledgments. We want to thank the anonymous reviewers for their help-
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product lines. In: Käkölä, T., Dueñas, J.C. (eds.) Software Product Lines, pp. 479–
520. Springer, Heidelberg (2006)

22. Rivieres, J., Beaton, W.: Eclipse Platform Technical Overview (2006)
23. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering

feature models. In: Taylor, R.N., Gall, H., Medvidovic, N. (eds.) ICSE, pp. 461–470.
ACM, New York (2011)

24. Trujillo, S., Batory, D., Diaz, O.: Feature refactoring a multi-representation pro-
gram into a product line. In: Proceedings of the 5th International Conference on
Generative Programming and Component Engineering, GPCE 2006, pp. 191–200.
ACM, New York (2006)

25. Uzuncaova, E., Khurshid, S., Batory, D.: Incremental test generation for software
product lines. IEEE Transactions on Software Engineering 36(3), 309–322 (2010)

26. Voelter, M.: Using domain specific languages for product line engineering. In: Pro-
ceedings of the 13th International Software Product Line Conference, SPLC 2009,
pp. 329–329. Carnegie Mellon University, Pittsburgh (2009)

27. Weston, N., Chitchyan, R., Rashid, A.: A framework for constructing semantically
composable feature models from natural language requirements. In: Proceedings of
the 13th International Software Product Line Conference, SPLC 2009, pp. 211–220.
Carnegie Mellon University, Pittsburgh (2009)

28. White, J., Dougherty, B., Schmidt, D.C., Benavides, D.: Automated reasoning
for multi-step feature model configuration problems. In: Proceedings of the 13th
International Software Product Line Conference, SPLC 2009, pp. 11–20. Carnegie
Mellon University, Pittsburgh (2009)



Reasoning about Metamodeling with Formal

Specifications and Automatic Proofs

Ethan K. Jackson1, Tihamér Levendovszky2, and Daniel Balasubramanian2

1 Microsoft Research, Redmond, WA
2 Vanderbilt University, Nashville, TN

ejackson@microsoft.com,

{tihamer,daniel}@isis.vanderbilt.edu

Abstract. Metamodeling is foundational to many modeling frameworks,
and so it is important to formalize and reason about it. Ideally, correct-
ness proofs and test-case generation on the metamodeling framework
should be automatic. However, it has yet to be shown that extensive au-
tomated reasoning on metamodeling frameworks can be achieved. In this
paper we present one approach to this problem: Metamodeling frame-
works are specified modularly using algebraic data types and constraint
logic programming (CLP). Proofs and test-case generation are encoded
as CLP satisfiability problems and automatically solved.

1 Introduction

Metamodeling is foundational to many modeling frameworks, and so it is impor-
tant to formalize it properly. Ideally, a formalization should enable automated
reasoning by generating test cases, proving correctness of the meta-interpreter,
and proving correctness of editing operations. However, the state-of-the-art is
somewhat less than ideal. On one hand, there has been a general consensus
that the Meta-Object Facility (MOF) standard is under-formalized and deserves
careful attention [1,2,3,4,5]. On the other hand, attempts at full formalization
of MOF/MOF-alternatives have not yet enabled extensive automated reasoning
on metamodeling frameworks. (We give a summary of existing results shortly.)

In this paper we present a new approach to formalizing and reasoning on
metamodeling frameworks. The core of our approach uses algebraic data types
(ADTs) and constraint logic programming (CLP) for formal specifications. We
modularize these specifications so they mirror the key components of metamod-
eling frameworks: (1) A model store for representing models, metamodels, and
conformance. (2) A set of model editing operations. (3) A meta-interpreter for
promoting model-level elements to meta-level elements. We encode proof goals
as instances of CLP satisfiability problems, and use our FORMULA framework
to solve these instances [6]. The result is a concise formal specification whose
structure resembles the tool architecture, but allows constructive automated
reasoning to perform correctness proofs and test case generation.

Our contributions are: First, we develop a complete specification of a simple
metamodeling framework based on typed graphs [7]. This gives a blueprint for

J. Whittle, T. Clark, and T. Kühne (Eds.): MODELS 2011, LNCS 6981, pp. 653–667, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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specifying more complicated frameworks. Second, We prove that our choice of
editing operations preserves model conformance. We prove metacircularity by
automatically constructing a meta-metamodel. These results have the interest-
ing side-effect that it is unnecessary to write a bootstrapping meta-metamodel; it
falls out of the proof. Third, we relate these results to a MOF-like metamodeling
framework with richer conformance constraints, such as acyclicity and multiplic-
ity constraints. These results are obtained using our formula specification and
analysis framework.

2 Related Work

Metamodeling continues to be an extensively researched topic [8] with many
approaches to formalization. A few representatives are: The Metamodeling Lan-
guage Calculus (MML) based on ς-calculus [1]. The graph-theoretic approaches
of KM3 [2] and VPM [3]. The work of [4] provides a rich set-theoretic setting for
metamodeling. MOMENT2 uses membership equational logic and term rewrit-
ing as a formal foundation [5]. Though formal, many approaches support limited
automated reasoning on the metamodeling framework.

In this paper we investigate the power of automated formal methods to rea-
son on metamodeling frameworks. Our tool supports expressive specifications
corresponding to fixpoint logic (FPL) over theories [9], and provides a finite
model finder for automated reasoning. Other automated techniques have been
applied to metamodeling. The work of [5] uses MAUDE [10] to check meta-
model/model conformance and linear temporal logic (LTL) properties via term
rewriting systems. A proof is a reduction of an input term to a term with no
further reductions. Model finding is not generally supported by this approach.
Related to this, [11] describes translators from VPM -style specifications into
explicit/symbolic state model checkers, though not necessarily for the purpose
of reasoning on metamodeling frameworks.

The work of [12] provides a translation from UML and a subset of OCL into the
finite model finder Alloy [13]. Alloy is perhaps the closest tool to formula; for
an extensive comparison see [6]. Alternative approaches avoid solving altogether,
in favor of abstracting to graph grammars [14], or interactive theorem provers
[15]. Yet, model finders continue to be effective for automative reasoning, even
in areas such as software product lines [16].

These results are based on preliminary work we presented in [17]. To our
knowledge, this is the first time such automated proofs have been shown for a
metamodeling framework.

3 Introduction to CLP and Satisfiability

Constraint Logic programming (CLP) provides a powerful approach to writing
formal specifications. First, a logic program Π can be directly (i.e. in polynomial-
time) translated into first-order logic (FOL) according to its Clark Completion.
Following the notation of [18], we refer to this translation as Π�. Second, logic
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programs are executable, allowing programmatic reasoning to be applied while
devising specifications. This form of reasoning is harder to obtain when directly
writing FOL. Actually, an even stronger property holds: The execution of a logic
program proves theorems about its logical semantics. If g is a quantifier-free
formula over the relations computed by Π , then ∃̃g can be decided by executing
Π . (∃̃g denotes the existential closure of g.) The formula g is called a goal.

Consider the following program, which computes paths and cycles occurring
in a directed graph.

Example 1 (Cycles)

Πcycles
·=

path(x, y) :- e(x, y).
path(x, z) :- e(x, y), path(y, z).
inCycle(x) :- path(x, x).

The symbols e(), path(, ), and inCycle() are user defined relations. Each logic
programming rule behaves like a universally quantified implication. Whenever
the relations on the right-hand side of a rule hold for some substitution of the
variables, then the left-hand side holds for that same substitution. A logic pro-
gram is stronger than a set of implications, because it only entails theorems that
can be explained by repeated applications of rules. Derivations must begin with
facts, which are rules whose right-hand side is true. Formally, this means: (1) Π�

contains additional formulas to constrain the implications, and (2) the intended
interpretation of Π� is the smallest set of relations satisfying Π�. In this way,
Example 1 encodes the transitive closure of a directed graph. (An alternative
formalization for CLP is obtained by extending FOL with fixpoint operators [9].)

The program Πcycles is not very interesting because it contains no facts. The
least interpretation of this program assigns e = path = inCycle = ∅; it is called
the least Herbrand model and denoted lm(Π�). A goal ∃̃g holds for a program
Π if g evaluates to true under the least Herbrand model; denoted:

lm(Π�) |= ∃̃g.

In particular, lm(Π�
cycles) �|= ∃x inCycle(x). Suppose the program is extended

with the fact e(1, 1), then exactly the additional facts path(1, 1) and inCycle(1)
are deducible and the goal is satisfied. Most LP languages are concerned with
efficient rule application to prove a goal, either by working backwards from a
goal to facts or forwards from facts to a goal.

3.1 CLP Satisfiability

We will generate automatic proofs from formal specifications by solving CLP
satisfiability problems. Satisfiability is different from checking goal satisfaction;
it is to determine if a program can be extended by a finite set of facts so that a
goal is satisfied. As the previous example shows, this problem cannot be solved by
simply running a logic program. It requires searching through (infinitely) many
possible extensions, which we achieve by efficient forward symbolic execution of
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a logic program into the state-of-the-art satisfiability modulo theories (SMT)
solver Z3 [19]. As a result, specifications can include variables ranging over
infinite domains and rich data types. Nonetheless, the method is constructive;
it returns extensions of the program witnessing goal satisfaction.

Let U be a (possibly infinite) set called a universe and r an n-ary relation
symbol. Then a (finite) interpretation of r, written rI , is a (finite) subset of Un.
We write r(

⇀

t ) as a shorthand for r applied to elements t1, . . . , tn of U .

Definition 1 (CLP Satisfiability). Given:

1. A program Π with relation symbols R = {r1, r2, . . . , rn},
2. Rp ⊆ R a subset of the program relations, called the primitive relations.
3. A quantifer-free goal g over the program relations.

Then find a finite interpretation RI
p for primitive relations such that:

lm((Π ∪ RI
p)

�) |= ∃̃g. (1)

The program Π ∪ RI
p is obtained by extending Π with a fact r(

⇀

t ) whenever
RI

P |= r(
⇀

t ).

The program can only be extended by primitive relations RP . The contents
of RI

P are the facts that, when added to the program, cause the goal to be
satisfied. We write S(Π, Rp, g) to denote an instance of CLP satisfiability and
RI

P ∈ S(Π, Rp, g) to denote an interpretation satisfying the problem. In a very
technical sense, we refer to RI

P as a model of S. However, such interpretations
can also represent instances of an abstraction, allowing them to serve as models
in a more general sense. Thus, we may use the symbol M when more intuitive.

3.2 Blueprint of a Metamodeling Framework

We formalize metamodeling frameworks using CLP and CLP satisfiability ac-
cording to the following blueprint:

1. Model Store. The model store encodes the set of all conforming meta-
model/model pairs. It captures the semantics of metamodel conformance.
Interesting instances of metamodel/model pairs can be constructed by solv-
ing satisfiability problems. We present a two-level model store, though an
arbitrary number of meta-layers could be specified.

2. Editing Operations. These are transformations for editing model-level el-
ements through creation and deletion. These transformations are also defined
over the model store. By formalizing editors we can generate test cases where
editing breaks model conformance. For a simple metamodeling framework
we can choose model editors so that conformance is always maintained.

3. Meta-interpreter. The meta-interpreter is a transformation promoting
model-level elements to meta-level elements. This transformation is defined
over the model store. We say a framework is metacircular if there exists an
input model that is promoted to its own metamodel by the meta-interpreter.
Again, this property can be rephrased as a satisfiability problem and meta-
metamodels are constructed witnessing this property.
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4 Metamodeling by Typed Graphs

Typed graphs have been studied extensively as representations for (meta-) mod-
els, especially by the model transformation community [7]. For example, they
are the basis for KM3 metamodeling notation employed by the ATLAS trans-
formation language, and can be used as a more basic foundation for MOF [2].
They are simple to define and easy to understand, so we use them to illustrate
a complete metamodeling framework.

4.1 Typed Graphs and the Model Store

Definition 2 (Directed Graph). A directed graph is a quadruple
G = 〈V, E, src, dst〉 where V and E are sets; src : E → V and dst : E → V .

Definition 3 (Typed Graph). A typed graph is a quadruple T = 〈G, H, τv , τe〉
where G and H are directed graphs; τv : VH → VG and τe : EH → EG.

The graph G acts like a metamodel providing a set of node types and edge
types1. Graph H is an instance model referencing these types. The type of each
vertex v is τv(v) and edge e is τe(e). A model H conforms to the metamodel G
if the edges and vertices of H are connected according to their types:

conforms(T ) ·= ∀e ∈ EH

(
srcG(τe(e)) = τv(srcH(e)) ∧
dstG(τe(e)) = τv(dstH(e))

)
. (2)

Fixing the universe U of edge/vertex labels yields a set of all possible conforming
metamodel/model pairs. We call this set the model store:

Store(U) ·= {T | conforms(T ) ∧ VG, EG, VH , EH ⊆ U}. (3)

4.2 Specifying the Model Store with ADTs and CLP

Figure 1 shows an equivalent specification of the model store in formula. This
specification is wrapped in a domain block, which delimits a domain-specific ab-
straction. As mentioned earlier, formula directly supports algebraic data types
and these are used to encode user defined relations. For example, Line 3 declares
a data type constructor MetaNode() for instantiating meta-level nodes (VG). This
constructor produces MetaNode records, each of which has a field called typename
of type String . Similarly, MetaEdge(, , ) constructs elements of EG using
MetaNodes as endpoints (Line 5). The Node and Edge constructors instantiate
model-level elements (graph H), and the fields called type encode τv and τe.

Due to the flexibility of ADTs, it is unnecessary to distinguish between data
type constructors and user-defined relation symbols. Instead, every program
computes two standard unary program relations, rp and rd, over records. The
primitive relation rp contains only records built with primitive constructors, and

1 Our definition differs from others as we allow edges to also acts as types.
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1. domain ModelStore
2. {
3. MetaNode ::= (typename: String).
4. [Closed(src, dst)][Unique(typename −> src, dst)]
5. MetaEdge ::= (typename: String, src: MetaNode, dst: MetaNode).
6. [Closed(type)][Unique(name −> type)]
7. Node ::= (name: String, type: MetaNode).
8. [Closed(src, dst, type)][Unique(name −> src, dst, type)]
9. Edge ::= (name: String, src: Node, dst: Node, type: MetaEdge).

10.
11. badSrc :=Edge( , src, dst, t), t.src != src.type.
12. badDst :=Edge( , src, dst, t), t.dst != dst.type.
13. conforms :=!badSrc & !badDst.

14. }

Fig. 1. formula specification of a model store containing typed graphs

the derived relation rd contains only records built with derived constructors.
Primitive constructors can be used to extend a program in order to solve a sat-
isfiability problem; derived constructors cannot. Primitive constructors always
begin with a capital letter. Every formula domain contains a special nullary
derived constructor called conforms. The models of a domain D are those ex-
tensions of Π by rp where conforms is derivable:

models(D) ·= {rI
p | rI

p ∈ S(ΠD, {rp}, conforms)}. (4)

formula provides special syntax for expressing domain models, as shown in
Figure 2. The declaration model M of D is a claim that the code-to-follow gives
an interpretation rI

P ∈ models(D). This claim is checked by the compiler. Recall
that rI

p is just a set of records, thus a model block is just a set of records. The
StateDiagram model in Figure 2 is an instance of the model store representing
a small state diagram over the meta-types State and Transition .

The constraints describing typed graph conformance are expressed in Lines
11 - 13 of Figure 1. formula also provides special syntax for rules where the
left-hand side is a nullary constructor. We refer to these as queries and use the
query definition operator (:=) for query definitions. Intuitively, a query behaves
like a propositional variable that is true if and only if the right-hand side of
the definition is true for some substitution. As a convenience, formula allows
queries to be treated like propositional variables when they appear in other query
definitions. For example, the badSrc query in Line 11 of Figure 1 detects if the
source of a model-level edge has been connected improperly. It corresponds to
the following formula in Π�:

badSrc ∈ rd ⇔ ∃Edge(n, src, dst, t) ∈ rp getsrc(t) �= gettype(src). (5)

where getx() extracts the field named x. Similarly, the conforms query is ex-
pressed as:

conforms ∈ rd ⇔ badSrc /∈ rd ∧ badDst /∈ rd ∧ ϕcompiler . (6)
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1. model StateDiagram of ModelStore
2. {
3. MetaNode(“State”)
4. MetaEdge(“Transition”,
5. MetaNode(“State”),
6. MetaNode(“State”))
7. Node(“S1”, MetaNode(“State”))
8. Node(“S2”, MetaNode(“State”))
9. Edge(“T1”,
10. Node(“S1”, MetaNode(“State”))
11. Node(“S2”, MetaNode(“State”))
12. MetaEdge(“Transition”,
13. MetaNode(“State”),
14. MetaNode(“State”)))

15. }

State Transition

S1 S2T1

dst

src

inst. of inst. of inst. of

Fig. 2. A formula model from the model store that encodes a state diagram

The sub-formula ϕcompiler holds additional conformance constraints that are
automatically added by the compiler. These extra constraints may appear due to
inheritance of constraints through the module system or due to shorthands. One
such shorthand is the Closed annotation (Line 4), which requires the src/dst
fields of MetaEdge to contain only meta-nodes declared at the top level. The
Unique annotation requires all records with identical fields on the left of the
arrow (−>) to have identical fields on the right of the arrow. These shorthands
encompass many common constraints, though it always possible to express the
same constraints without using them.

In summary, the formula specification encodes a typed graph model store
using ADTs and CLP. The set of all conforming metamodel/models pairs is
characterized by the satisfiability problem models(ModelStore). Therefore, we
can use automated techniques to prove properties about the model store. We
shall illustrate this in the later sections. But first, our typed graph framework
requires a few operations for editing models: Delete node, create node, delete
edge, and create edge. In the next sections we show how to specify these opera-
tions, illustrating that CLP satisfiability can also be used to reason about model
transformations.

5 Encoding Model Transformations

Model transformations are encoded as logic programs where data types distin-
guish the inputs and outputs of the transformation. For example:

Example 2 (Filter MetaNodes)

Πfilter
·= out.MetaNode(x) :- in.MetaNode(x).
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The constructor in.MetaNode() stands for meta-node primitives at the input of
the transformation. Similarly, out.MetaNode() stands for meta-node primitives
on the output of the transformation. A transformation is executed by providing
an interpretation rI

p for the input primitives, and then computing the output
primitives according to the logic program:

transform(Π, rI
p) ·= {f(

⇀

t ) | lm((Π ∪ rI
p)�) |= f(

⇀

t ) ∧ isOut(f)} (7)

where the predicate isOut(f) tests if constructor f is an output primitive.
In order to ease the use of transformations we introduce the renaming oper-

ator as. Let Π as X return a new program ΠX obtained by replacing every
occurrence of a function symbol f with X.f in Π . This also applies to the type
declarations in Π . Similarly, rI

P as X replaces every f -record with an equiva-
lent X.f record. Thus, the program Πfilter can be used to transform the model
StateDiagram in Figure 2 as follows:

transform(Πfilter ,StateDiagram as in) = {out.MetaNode(“State”)}.
The filter transformation only copies meta-nodes to the output, so it effectively
deletes all other information from the output.

Satisfiability can be used to reason about model transformations. The
approach is to compose renamed versions of input/output domains with the
transformation in order to reason about its impact on domain constraints. For
example, we may wish to know if there exists a conforming instance from the
model store that is no longer conforming after filter is applied.

Example 3 (Property Conformance-Breaking)

ΠCB
·=

Πfilter ∪ (ModelStore as in) ∪ (ModelStore as out) ∪
confBreaking := in.conforms & !out.conforms.

The problem S(ΠCB, {rp}, confBreaking) has a solution if and only if there exists
such an input to the transformation. (Note that rp only contains input primitives;
output primitives are placed in rd). In this case, the problem is unsatisfiable, so
there is no such input to the transformation.

5.1 Editing by Transformations

The formula module system simplifies the specification of model transforma-
tions, as shown in Figure 3. Line 1 declares the transformation called CreateNode,
which requires two parameters called newName and newType. Parameters are
extra pieces of information provided to the transformation, in addition to the
input models. These parameters give the name and type of the node to be added.
Line 2 identifies the inputs/outputs of the transformation by two lists of renamed
domains. The compiler automatically composes the transformation logic (Lines
4 - 10) with the renamed input/output domains.

Lines 4 - 7 of the transformation copy the input metamodel/model to the
output of the transformation. These rules are particularly simple due to renam-
ing inference by the compiler. For example, the right-hand side of the rule in
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1. transform CreateNode <newName : String, newType : in.MetaNode>

2. from ModelStore as in to ModelStore as out
3. {
4. out.MetaNode(typename) :- in.MetaNode(typename).
5. out.MetaEdge(typename, src, dst) :- in.MetaEdge(typename, src, dst).
6. out.Node(name, type) :- in.Node(name, type).
7. out.Edge(name, src, dst, type) :- in.Edge(name, src, dst, type).
8. out.Node(newName, newType) :- fail in.Node(newName, ).

9.
10. confBreaking := in.conforms & !out.conforms.

11. }

Fig. 3. A CreateNode transformation in formula

1. partial model PInst of ModelStore
2. {
3. MetaNode( ) MetaNode( ) MetaNode( )
4. MetaEdge( , , ) MetaEdge( , , ) MetaEdge( , , )
5. Node( , ) Node( , ) Node( , )
6. Edge( , , , ) Edge( , , , ) Edge( , , , )

7. }

Fig. 4. Partial instance of rI
p to guide the solver

Line 5 has a variable called src that must be of type in.MetaNode . However,
the constructor out.MetaNode on the left-hand side expects src to be of type
out.MetaNode. The compiler detects this and applies renaming to src on the left-
hand side. In addition to copying, Line 8 adds a new node called newName to the
output if such a node does not already exist. Line 10 specifies the conformance-
breaking property.

The CreateNode transformation has all the context needed for proving prop-
erties about its behavior. The solver can be used to find an instance of the inputs
and parameters causing conformance to be broken. Because there are many de-
grees of freedom in this problem, it is useful to give the solver some guidance. We
call this guidance a partial model ; it is roughly a lower bound on the structure
of rI

p. Figure 4 shows a partial model containing three applications of each prim-
itive constructor to fresh variables (denoted ). This partial model requires the
solver to return models with at least one (meta-)node/edge each. In addition,
the free variables cause the solver to eagerly search for larger models. The size
and structure of rI

p may be further expanded during the search process, beyond
the contents of the partial model. In order to check the conformance-breaking
property, we issue the following command to formula:

solve CreateNode < , > PInst confBreaking

This allows the solver to search for any parameter values that break conformance
when applied to some instance of the model store. In this case, the problem is
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1. model Proof of ModelStore
2. {
3. MetaNode(“A”)
4. MetaEdge(“B”, MetaNode(“A”), MetaNode(“A”))
5. Node(“C”, MetaNode(“A”))
6. Edge(“D”, Node(“C”, MetaNode(“A”)), Node(“C”, MetaNode(“A”)),
7. MetaEdge(“B”, MetaNode(“A”), MetaNode(“A”)))

8. }
9. newName = “E”, newType = in.MetaNode(“F”)

Fig. 5. An automatically generated witness that CreateNode is conformance breaking

satisfiable because an undeclared meta-node may be provided as the newType
parameter. (This violates the Closed constraint in Figure 1, Line 6.) Figure
5 shows an example of the formula output, which consists of a model and
parameter valuations solving the satisfiability problem.

5.2 Conformance-Preserving Edits

The typed graph formalism is simple enough that we can define editing opera-
tions which never break conformance. Specifically, CreateNode should only create
a node if there is no other node with same name and the meta-node exists. Thus,
Line 8 is replaced by:

out.Node(newName, newType) :- in.MetaNode(n), n = newType.typename,
fail in.Node(newName, ).

Similar rules hold for CreateEdge. DeleteNode must also delete all incident edges.
See http://research.microsoft.com/formula for the complete specification
of these transformations.

In general it is undecidable whether or not there exists a finite interpretation
satisfying a CLP satisfiability problem. Therefore, the solver can only guarantee
the absence of solutions up to some size of rI

p. This is a well-known problem when
using constructive methods to generate proofs. Fortunately, there is a well-known
solution: Provide an inductive argument that generalizes the absence of solutions
to interpretations of arbitrary size. The advantage of such inductive arguments
is that they can be rather generic and reusable across problem instances.

For example, the formula solver can be used to show that for all con-
forming inputs rI

p where |rI
p| ≤ k, then no editing operation breaks confor-

mance. These results can be paired with a theorem showing that all other cases
can be decomposed into these small cases. First, a term homomorphism ϕ is
a function from records to records with the property that ϕ(f(t1, . . . , tn)) =
f(ϕ(t1), . . . , ϕ(tn)). Let the base cases B be a finite set of input interpretations,
and τ〈⇀

x〉(M) denote an editing operation with parameters ⇀
x applied to model

(input interpretation) M .

http://research.microsoft.com/formula
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Theorem 1 (Decomposition Theorem). The transformation τ〈⇀
x〉(M) is

equivalent to transforming a relabeled instance of B and combining it with a
subset of M . In symbols:

∀M,
⇀
x ∃M ′, M ′′, ϕ τ〈⇀

x〉(M) = M ′ ∪ ϕ−1

(
τ
〈
ϕ(⇀

x)
〉(

ϕ(M ′′)
))

(8)

such that:
M = M ′ ∪ M ′′ and ∃B ∈ B ϕ(M ′′) = B. (9)

Note, ϕ(M) is ϕ applied to every term in M . The function ϕ−1 is the inverse
image of ϕ.

This theorem formalizes the fact that an edit operation acts locally on an input.
Reasoning on the set of base cases B is sufficient, because every input can be
described as a local edit on a base case. In fact, B need not be constructed
manually; only an upper bound k on the largest interpretation in B needs to be
constructed. While the proof of this theorem is not automatic, its form is not
specific to this example so it provides a general proof strategy.

6 The Meta-interpreter

A meta-interpreter is a transformation promoting model-level elements to meta-
level elements. When combined with editing operations, it provides a way to
build new abstractions using the operations provided by the framework.

Figure 6 shows one such meta-interpreter in formula; there are several note-
worthy aspects. First, the promotion is determined by arbitrary and hard-coded
type names. Lines 3, 4 promote a model-level node to a meta-node only if the
node has type Class . Similarly, the promotion of edges to meta-edges only occurs
if an edge’s type is Assoc and its end-points are Classes (Lines 5 - 11). Second,
the choice of type names is unrelated to the formalization of the model store.
The strings “Class” and “Assoc” are convenient, but arbitrary, monikers. Thus,
the model store may have a simpler formalization than the concepts exposed
by the meta-interpreter (though perhaps less convenient). Certainly, the model
store can be insulated from the naming of the concepts, which may vary between
standards.

Metamodeling frameworks are said to be bootstrapped by a meta-metamodel
or are “described using themselves” [20]. Informally, a framework is meta-circular
if there exists a metamodel MM whose conforming models are metamodels and
MM is among them. Of course, this terminology has concerned many researchers,
as it may lead to circular definitions. We formalize meta-circularity as a simple
property of the framework:

Definition 4 (Meta-circularity). A framework is a meta-circular if there ex-
ists a conforming input to the meta-interpreter producing a conforming output
with the same metamodel.
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1. transform MetaInterpreter from ModelStore as in to ModelStore as out
2. {
3. out.MetaNode(name) :- in.Node(name, type),
4. type = in.MetaNode(“Class”).

5. out.MetaEdge(name,

6. MetaNode(srcname),
7. MetaNode(dstname)) :- in.Edge(name, src, dst, type),
8. src = in.Node(srcname, mClass),
9. dst = in.Node(dstname, mClass),
10. type = in.MetaEdge(“Assoc”, mClass, mClass),
11. mClass = in.MetaNode(“Class”).

12. }

Fig. 6. A simple meta-interpreter that promotes nodes of type Class and edges of type
Assoc to the meta-level

1. metaDiffers := in.MetaNode(t), fail out.MetaNode(t).
2. metaDiffers := out.MetaNode(t), fail in.MetaNode(t).
3. metaDiffers := in.MetaEdge(t, MetaNode(st), MetaNode(dt)),
4. fail out.MetaEdge(t, MetaNode(st), MetaNode(dt)).
5. metaDiffers := out.MetaEdge(t, MetaNode(st), MetaNode(dt)),
6. fail in.MetaEdge(t, MetaNode(st), MetaNode(dt)).
7. metaCircular := !metaDiffers & in.conforms & out.conforms.

Fig. 7. Specification of meta-circularity for the typed graph framework

The input witnessing this property is the meta-metamodel.
In our approach neither meta-circularity is required for bootstrapping nor does

a meta-metamodel determine properties of the framework. Instead, the frame-
work is determined by the model store, editing operations, and meta-interpreter.
A meta-metamodel, if it exists, is a byproduct of this framework. In fact, it can be
constructed automatically as a witness to the meta-circularity property. Figure
7 shows the specification of meta-circularity in formula. The query definitions
in Lines 1 - 2 test if there exists a meta-node in the input, which is not in the
output, and vice versa. Lines 3 - 6 perform the same test for meta-edges. Then
meta-circularity is simply the absence of any discrepancies at the meta-level of
the input and output, both of which must conform to the model store.

A meta-metamodel is constructed by adding the specification ofmeta-circularity
to the meta-interpreter and invoking the solver as follows:

solve MetaInterpreter PInst metaCircular

The result is the meta-metamodel of Figure 8. There is an additional use for
this meta-metamodel; it provides a starting point for building metamodels using
only the framework operations. For example, the state diagram abstraction used
in Figure 2 can be constructed as follows:
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1. model MetaMetaModel of ModelStore
2. {
3. MetaNode(“Class”)
4. MetaEdge(“Assoc”, MetaNode(“Class”), MetaNode(“Class”))
5. Node(“Class”, MetaNode(“Class”))
6. Edge(“Assoc”,
7. Node(“Class”, MetaNode(“Class”)),
8. Node(“Class”, MetaNode(“Class”)),
9. MetaEdge(“Assoc”, MetaNode(“Class”), MetaNode(“Class”)))

10. }

Fig. 8. An automatically generated meta-metamodel witnessing meta-circularity⎛⎜⎜⎜⎜⎝
τmi ◦

τ+edge

〈
“Transition”, in.Node(“State”), in.Node(“State”),

in.MetaEdge(“Assoc”, . . .)

〉
◦

τ+node〈“State”, in.MetaNode(“Class”)〉 ◦
τmi

⎞⎟⎟⎟⎟⎠ MM (10)

where MM is the meta-metamodel, τmi is an application of the meta-interpreter,
τ+edge creates an edge, and τ2◦τ1 is the application of τ2 after τ1. If the semantics
of the model store or meta-interpreter are changed, then the starting point MM
can be automatically reconstructed. To our knowledge, this is the first time such
a technique has been demonstrated.

7 A MOF-Like Framework

Several issues arise when specifying a richer metamodeling framework, such as
the Meta-Object Facility (MOF). The first issue is the number of additional con-
cepts that must be specified. Naturally, this is handled by introducing more types
in the model store and more rules in the meta-interpreter. In the case of MOF, the
key concepts at the meta-level are Classifier , Class , Association , Generalization ,
and Property . At the instance level there are InstanceSpecification , InstanceValue,
and Slot concepts. An instance is related to one or more meta-level Classifier s,
which include Classes and Associations. Each instance specification contains
Slots, which bind Values to Properties . The endpoints of n-ary associations are
expressed using slots and properties.

The second issue is the expressiveness needed to define the model store. Here
the primary complications are acyclicity and multiplicity constraints. MOF re-
quires the generalization relationship to be acyclic and strong containment to
be tree-structured. These constraints are not first-order definable, as they are
equivalent to finite transitive closure. Fortunately, CLP exposes fixpoint oper-
ators via recursive rules (see Example 1), so acyclicity constraints are easily
captured. Multiplicity constraints require the number of instances related to
another to be in an interval [kl, ku]. formula supports encoding of multiplic-
ity constraints through aggregation operators, such as count(), which count the
number of facts matching some pattern. For example, the following rule:
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outEdgesInInterval(n) :- n is Node, Multiplicity(n, kl, ku),
count(Edge( , n, , )) >= kl,
count(Edge( , n, , )) <= ku.

produces an outEdgesInInterval(n) fact for every node n whose out-edges num-
ber between kl(n) and ku(n). The expression n is Node is a shorthand for
Node( , ). Please see http://research.microsoft.com/formula for an exam-
ple of a MOF-like framework.

8 Discussion and Conclusion

We have provided a modular specification of a complete metamodeling frame-
work using ADTs and CLP. The key components of this specification where: (1)
a model store, formalizing the legal metamodel/model pairs, (2) editing oper-
ations, formalizing the evolution of the model-level elements within the frame-
work, (3) a meta-interpreter, formalizing the promotion of elements from the
model-level to the meta-level. We have illustrated that formula simplifies the
presentation through the use of domains, transformations, and partial models.
We have shown that proofs can be phrased as CLP satisfiability problems and au-
tomatically solved. Using this approach we were able to provably synthesize the
meta-metamodel of the specified framework. To our knowledge, this is the first
time this has been accomplished. It also shows concretely that meta-metamodels
simply fall out of the specification, and are not paradoxical. (Though this fact
has long been known.)

Throughout this paper we focused on automatic proofs, though test-case
generation is another immediate consequence. This can be accomplished by de-
scribing a regime of interesting test-cases using a query definition, and then con-
structing instances satisfying the query. For example, to generate metamodels
we solve for conforming instances of the model store with no model-level ele-
ments. To generate models conforming to a metamodel, we solve for conforming
instances that share a common fixed meta-level. The formula module system
makes it straightforward to add these additional constraints for the purpose of
test-case generation.

These results point the way to interesting future work. First, there is the
question of how to automatically generalize unsatisfiability results to interpre-
tations of arbitrary size. Positive theoretical results include known fragments of
CLP that are decidable and well-behaved. However, we do not know of exist-
ing tools that leverage these results to compute an automatic upper-bound on
the size of rI

p. Second, there are other properties of a metamodeling framework
that might be of interest. We might want to know a closure property that every
well-formed instance of the model store can be constructed by starting from the
meta-metamodel and applying the framework operations. Automatically decid-
ing such a property may very well require symbolic model checking in addition
to the techniques illustrated here.

http://research.microsoft.com/formula
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Abstract. Triple graph grammars (TGGs) have been used successfully to ana-
lyze correctness and completeness of bidirectional model transformations, but a
corresponding formal approach to model synchronization has been missing. This
paper closes this gap by providing a formal synchronization framework with bidi-
rectional update propagation operations. They are generated from a TGG, which
specifies the language of all consistently integrated source and target models.

As a main result, we show that the generated synchronization framework is
correct and complete, provided that forward and backward propagation opera-
tions are deterministic. Correctness essentially means that the propagation oper-
ations preserve consistency. Moreover, we analyze the conditions under which
the operations are inverse to each other. All constructions and results are moti-
vated and explained by a small running example using concrete visual syntax and
abstract syntax notation based on typed attributed graphs.

Keywords: Model Synchronization, Correctness, Bidirectional Model Transfor-
mation, Triple Graph Grammars.

1 Introduction

Bidirectional model transformations are a key concept for model generation and syn-
chronization within model driven engineering (MDE, see [22,19,1]). Triple graph gram-
mars (TGGs) have been successfully applied in several case studies for bidirectional
model transformation, model integration and synchronization [17,21,9,8], and in the
implementation of QVT [12]. Inspired by Schürr et al. [20,21], we started to develop
a formal theory of TGGs [7,14], which allows us to handle correctness, completeness,
termination, and functional behavior of model transformations.

The main goal of this paper is to provide a TGG framework for model synchro-
nization with correctness guarantees, which is based on the theory of TGGs, work
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on incremental synchronization by Giese et al. [9,8], and the replica synchronization
framework [3]. The main ideas and results are the following:

1. Models are synchronized by propagating changes from a source model to a cor-
responding target model using forward and backward propagation operations. The
operations are specified by a TGG model framework, inspired by symmetric replica
synchronizers [3] and realized by model transformations based on TGGs [7]. The
specified TGG also defines consistency of source and target models.

2. Since TGGs define, in general, non-deterministic model transformations, the de-
rived synchronization operations are, in general, non-deterministic. But we are able
to provide sufficient static conditions based on TGGs to ensure that the operations
are deterministic.

3. The main result shows that a TGG synchronization framework with deterministic
synchronization operations is correct, i.e., consistency preserving, and complete.
We also give sufficient static conditions for invertability and weak invertability of
the framework, where “weak” restricts invertability to a subclass of inputs.

Deriving a synchronization framework from a TGG has the following practical benefits.
Consistency of related domains is defined declaritively and in a pattern-based style,
using the rules of a TGG. After executing a synchronization operation, consistency of
source and target models is always ensured (correctness) and the propagation operations
can be performed for all valid inputs (completeness). The required static conditions of a
TGG and the additional conditions for invertibility can be checked automatically using
the existing tool support of AGG [23].

The next section presents our running example and Sec. 3 introduces the TGG
model framework. Therafter, we briefly review model transformations based on TGGs
in Sec. 4 and define the general synchronization process in Sec. 5. Section 6 presents the
main result on the correctness of model synchronization. Finally, Secs. 7 and 8 discuss
related work, conclusions, and future work. The proof of our main result is given in a
technical report [15].

2 Running Example

Throughout the paper, we use a simple running example, which is based on previous
work [2]. The example considers the synchronization of two organizational diagrams as
shown in Fig. 1. Diagrams in the first domain—depicted left—provides details about the
salary components and is restricted to persons of the marketing department. The second
domain provides additional information about birth dates (marked by “*”) and does not
show the salary components. Therefore, both domains contain exclusive information
and none of them can be interpreted as a view—defined by a query—of the other. Both
diagrams together with some correspondence structure build up an integrated model,
where we refer by source model to the first and by target model to the second diagram.
Such an integrated model is called consistent, if the diagrams coincide on names of
corresponding persons and the salary values are equal to the sums of the corresponding
base and bonus values.

Example 1 (Integrated Model). The fifth row of Fig. 1 shows a consistent integrated
model M in visual notation. The source model of M consists of two persons belonging
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Fig. 1. Forward propagation

to the marketing department (depicted as persons without pencils) and the target model
additionally contains the person “Bill Gates” belonging to the technical department (de-
picted as a person with pencil). The first row of Fig. 7 in Sec. 5 shows the corresponding
underlying formal graph representation of the integrated model.

The synchronization problem is to propagate a model update in a way, such that the re-
sulting integrated model is consistent. Looking at Fig. 1, we see a source model update
that specifies the removal of person “Bill Clinton” and a change of attributes LastName
and Bonus of person “Melinda French”. The executed forward propagation (fPpg) re-
moves person “Bill Clinton” and updates the attribute values of “Melinda French” in
the target model, while preserving the unchanged birth date value.

3 Model Synchronization Framework Based on TGGs

Model synchronization aims to achieve consistency among interrelated models. A gen-
eral way of specifying consistency for models of a source and a target domain is to
provide a consistency relation that defines the consistent pairs (MS ,MT ) of source and
target models. We argue that triple graph grammars (TGGs) are an adequate technique
for this purpose. For this reason, we first review main concepts of TGGs [21,7].

In the framework of TGGs, an integrated model is represented by a triple graph
consisting of three graphs GS , GC , and GT , called source, correspondence, and target
graphs, respectively, together with two mappings (graph morphisms) sG : GC → GS

and tG : GC → GT . Our triple graphs may also contain attributed nodes and edges [7,6].
The two mappings in G specify a correspondence r : GS ↔ GT , which relates the
elements of GS with their corresponding elements of GT and vice versa. However, it is
usually sufficient to have explicit correspondences between nodes only. For simplicity,
we use double arrows (↔) as an equivalent shorter notation for triple graphs, whenever
the the explicit correspondence graph can be omitted.

(GS

mS ��

G GC
sG��

mC
��

tG �� GT )
mT ��

(HSH
m

��

HC
sH

��
tH

�� HT )

Triple graphs are related by triple graph mor-
phisms m : G → H consisting of three graph
morphisms that preserve the associated correspon-
dences (i.e., the diagrams on the right commute).

Our triple graphs are typed. This means that a type triple graph TG is given (playing
the role of a metamodel) and, moreover, every triple graph G is typed by a triple graph
morphism typeG : G → TG. It is required that morphisms between typed triple graphs
preserve the typing. For TG = (TGS ← TGC → TGT ), we use VL(TG), VL(TGS ), and
VL(TGT ) to denote the classes of all graphs typed over TG, TGS , and TGT , respectively.
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Fig. 2. Some triple rules of the TGG

A TGG specifies a language of triple graphs, which are considered as consistently
integrated models. The triple rules of a TGG are used to synchronously build up source
and target models, together with the correspondence structures.

(LS
� �trS ��

L LC
sL��

� �
trC

��

tL �� LT )
� �trT ��

(RSR

� �
tr

��

RC
sR

��
tR

�� RT )

L
m ��

� � tr �� R
n��(PO)

G
� �

t
�� H

A triple rule tr, depicted on the
right, is an inclusion of triple graphs,
represented L ↪→ R. Notice that one
or more of the rule components trS ,
trC , and trT may be empty. In the example, this is the case for a rule concerning em-
ployees of the technical department within the target model. A triple rule is applied to
a triple graph G by matching L to some sub triple graph of G. Technically, a match is a
morphism m : L→ G. The result of this application is the triple graph H, where L is re-
placed by R in G. Technically, the result of the transformation is defined by a pushout di-
agram, as depicted above on the right. This triple graph transformation (TGT) step is de-

noted by G =
tr,m
==⇒ H. Moreover, triple rules can be extended by negative application con-

ditions (NACs) for restricting their application to specific matches [14]. A triple graph
grammar TGG = (TG, S , TR) consists of a triple type graph TG, a triple start graph S
and a set TR of triple rules and generates the triple graph language VL(TGG) ⊆ VL(TG).

Example 2 (Triple Rules). Figure 2 shows some triple rules of our running exam-
ple using short notation, i.e., left- and right-hand side of a rule are depicted in one
triple graph and the elements to be created have the label “++”. The first rule Per-
son2NextMarketingP requires an existing marketing department. It creates a new
person in the target component together with its corresponding person in the source
component and the explicit correspondence structure. The TGG contains a similar rule
(not depicted) for initially creating the marketing department together with one per-
son, where an additional NAC ensures that none of the existing departments is called
“Marketing”. The second rule in Fig. 2 extends two corresponding persons by their first
names. There are further similar rules for the handling of the remaining attributes. In
particular, the rule for the attribute birth is the empty rule on the source component.

A TGG model framework specifies the possible correspondences between models and
updates of models according to Def. 1 below. The framework is closely related to the ab-
stract framework for diagonal replica synchronizers [3] and triple spaces [4]. In our con-
text, a model update δ : G → G′ is specified as a graph modification δ : G ←i1−− I −i2−→ G′.
The relating morphisms i1 : I ↪→ G and i2 : I ↪→ G′ are inclusions and specify the
elements in the interface I that are preserved by the modification. While graph modi-
fications are also triple graphs by definition, it is conceptually important to distinguish
between correspondences and updates δ.
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Definition 1 (TGG Model Framework). Let TGG = (TG,∅, TR) be a triple graph
grammar with empty start graph. The derived TGG model framework MF(TGG) =
(VL(TGS ),VL(TGT ),R,C, ΔS , ΔT ) consists of source domain VL(TGS ), target domain
VL(TGT ), the set R of correspondence relations given by R = VL(TG), the set C of
consistent correspondence relations C ⊆ R given by C = VL(TGG), (i.e., R contains
all integrated models and C all consistently integrated ones), and sets ΔS , ΔT of graph
modifications for the source and target domains, given by ΔS = {a : GS → G′S |
GS ,G′S ∈ VL(TGS ), and a is a graph modification} and ΔT = {b : GT → G′T | GT ,
G′T ∈ VL(TGT ), and b is a graph modification}, respectively.

GS �� r ��

a
�� �:fPpg

GT

b��

G′S ��
r′

�� G′T

GS �� r ��

a
�� �:bPpg

GT

b��

G′S ��
r′

�� G′T

Fig. 3. Synchronization operations

Given a TGG model framework, the synchro-
nization problem is to provide suitable forward
and backward propagation operations fPpg and
bPpg, which are total and deterministic (see
Fig. 3, where we use solid lines for the inputs
and dashed lines for the outputs). The required
input for fPpg is an integrated model (correspondence relation) GS ↔ GT together
with a source model update (graph modification) a : GS → G′S . In a common tool
environment, both inputs are either available directly or can be obtained. For exam-
ple, the graph modification of a model update can be derived via standard difference
computation and the initial correspondence can be computed based on TGG integration
concepts [5,17]. Note that determinism of fPpg means that the resulting correspondence
G′S ↔ G′T and target model update b : GT → G′T are uniquely determined. The prop-
agation operations are correct, if they additionally preserve consistency as specified
by laws (a1) − (b2) in Fig. 4. Law (a2) means that fPpg always produces consistent
correspondences from consistent updated source models G′S . Law (a1) means that if
the given update is the identity and the given correspondence is consistent, then fPpg
changes nothing. Laws (b1) and (b2) are the dual versions concerning bPpg. Moreover,
the sets VLS and VLT specify the consistent source and target models, which are given
by the source and target components of the integrated models in C = VL(TGG).

Definition 2 (Synchronization Problem and Framework). Let MF = (VL(TGS ),
VL(TGT ),R,C, ΔS , ΔT ) be a TGG model framework (see Def. 1). The forward syn-
chronization problem is to construct an operation fPpg : R ⊗ ΔS → R × ΔT

leading to the left diagram in Fig. 3, called synchronization tile, where R ⊗ ΔS =

{(r, a) ∈ R × ΔS |r : GS ↔ GT , a : GS → G′S }, i.e., a and r coincide on GS . The pair
(r, a) ∈ R ⊗ ΔS is called premise and (r′, b) ∈ R × ΔT is called solution of the forward
synchronization problem, written fPpg(r, a) = (r′, b). The backward synchronization
problem is to construct an operation bPpg leading to the right diagram in Fig. 3. The
operations fPpg and bPpg are called correct with respect to consistency function C, if
axioms (a1) and (a2) resp. (b1) and (b2) in Fig. 4 are satisfied.

Given propagation operations fPpg and bPpg, the derived synchronization frame-
work Synch(TGG) is given by Synch(TGG) = (MF, fPpg, bPpg). It is called correct, if
fPpg and bPpg are correct; it is weakly invertible if axioms (c1) and (c2) in Fig. 4 are
satisfied; and it is invertible if additionally axioms (d1) and (d2) in Fig. 4 are satisfied.
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(a1) :

∀ c ∈ C :

GS �� c ��

1
�� �:fPpg

GT

1
��

GS ��
c

�� GT

(a2) :

∀G′S ∈ VLS :

GS �� r ��

a
�� �:fPpg

GT

b
��

G′S ��
r′ :C

�� G′T

(b1) :

∀ c ∈ C :

GS �� c ��

1
�� �:bPpg

GT

1
��

GS ��
c

�� GT

(b2) :

∀ G′T ∈ VLT :

GS �� r ��

a
�� �:bPpg

GT

b
��

G′S ��
r′ :C

�� G′T

(c1) :

GS �� r ��

a1 �� �:fPpg

GT

b
��
�:bPpg

GS��r�� �� r ��

a2�� �:fPpg

GT

b
��

GS
1

��
r1

�� G′T GS
2

��
r2

�� ��
r2

�� G′T
(d1) :

GS �� r ��

a1
�� �:fPpg

GT

b
�� �:bPpg

GS��r��

a2
��

G′S ��
r′

�� G′T G′S��
r′

��

(c2) :

GT �� r ��

b1 �� �:bPpg

GS

a
��
�:fPpg

GT��r�� �� r ��

b2�� �:bPpg

GS

a
��

GT
1

��
r1

�� G′S GT
2

��
r2

�� ��
r2

�� G′S
(d2) :

GT �� r ��

b1 �� �:bPpg

GS

a
�� �:fPpg

GT��r��

b2��

G′T ��
r′

�� G′S G′T��
r′

��

Fig. 4. Laws for correct and (weak) invertible synchronization frameworks

Remark 1 (Correctness and Invertibility). Correctness of fPpg according to (a1) means
that for each consistent correspondence c : GS ↔ GT and identity as modification
1 : GS → GS we have an identical result, i.e. , fPpg(c, 1) = (c, 1). According to (a2), we
have for each general correspondence r : GS ↔ GT and modification a : GS → G′S with
consistent source model G′S ∈ VLS a solution (r′, b) = fPpg(r, a), where r′ : G′S ↔ G′T

is consistent, i.e., r′ ∈ C. Note that also for non-consistent r : GS ↔ GT the result
r′ : G′S ↔ G′T is consistent, provided that G′S is consistent.

Weak invertibility (laws (c1) and (c2)) imply that the operations are inverse of each
other for a restricted set of inputs. Update b in (c1) is assumed to be part of the result
of a forward propagation and update a in (c2) is assumed to be derived from a back-
ward propagation. Invertibility ((d1) and (d2)) means that the operations are essentially
inverse of each other, although the interfaces of a1 and a2 (resp. b1 and b2) may be dif-
ferent. Invertibility requires effectively that all information in one domain is completely
reflected in the other domain.

4 Model Transformation Based on TGGs
The operational rules for implementing bidirectional model transformations can be
generated automatically from a TGG. The sets TRS and TRF contain all source and
forward rules, respectively, and are derived from the triple rules TR as shown in the
diagrams below. The rules are used to implement source-to-target transformations. The
sets of target rules TRT and backward rules TRB are derived analogously and the gen-
eration of operational rules has been extended to triple rules with negative application
conditions [7].

(LS

trS ��

L LC
sL��

trC
��

tL �� LT )
trT ��

(RSR
tr ��

RC
sR

��
tR

�� RT )

triple rule tr

(LS

trS ��

∅��

��

�� ∅)
��

(RS ∅�� �� ∅)
source rule trS

(RS

id ��

LC
trS ◦sL��

trC
��

tL �� LT )
trT��

(RS RC
sR��

tR �� RT )
forward rule trF

Example 3 (Operational Rules). The rules in Fig. 5 are the derived source and forward
rules of the triple rule FName2FName in Fig. 2.
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Fig. 5. Derived source and forward rules

The derived operational rules provide the basis for the definition of model transfor-
mations based on source-consistent forward transformation sequences [7,11]. Source

consistency of a forward sequence (G0 =
tr∗F
==⇒ Gn) via TRF is a control condition which

requires that there is a corresponding source sequence (∅ =
tr∗S
=⇒ G0) via TRS , such that

matches of corresponding source and forward steps are compatible (nS
i,S (x) = mS

i,F(x)).
The source sequence is obtained by parsing the given source model in order to guide the
forward transformation. Moreover, source and forward sequences can be constructed
simultaneously and backtracking can be reduced in order to derive efficient execu-
tions of model transformations [7,14]. Given a source model GS , a model transfor-

mation sequence for GS is given by (GS , G0 =
tr∗F
=⇒ Gn,GT ), where GT is the resulting

target model derived from the source-consistent forward sequence G0 =
tr∗F
==⇒ Gn with

G0 = (GS ← ∅→ ∅) and Gn = (GS ← GC → GT ).
Model transformations based on model transformation sequences are always syntac-

tically correct and complete [7,11,14]. Correctness means that for each source model
GS that is transformed into a target model GT there is a consistent integrated model
G = (GS ← GC → GT ) in the language of consistent integrated models VL(TGG) de-
fined by the TGG. Completeness ensures that for each consistent source model there is
a forward transformation sequence transforming it into a consistent target model.

The concept of forward translation rules [14] provides a simple way of implement-
ing model transformations such that source consistency is ensured automatically. A
forward translation rule trFT extends the forward rule trF by additional Boolean valued
translation attributes, which are markers for elements in the source model and specify
whether the elements have been translated already. Each forward translation rule trFT

turns the markers of the source elements that are translated by this rule from F to T
(i.e., the elements that are created by trS ). The model transformation is successfully
executed if the source model is completely marked with T. We indicate these markers
in the examples by checkmarks in the visual notation and by bold font face in the graph
representation. Similarly, from the triple rules, we can also create marking rules [15],
which, given an integrated model (GS ↔ GT ), simulate the creation of the model by
marking its elements. If all elements are marked with T, then (GS ↔ GT ) belongs to
VL(TGG).

5 General Synchronization Process Based on TGGs

This section shows how to construct the operation fPpg of a TGG synchronization
framework (see Def. 2) as a composition of auxiliary operations 〈fAln, Del, fAdd〉.
Symmetrically, operations 〈bAln, Del, bAdd〉 are used to define the operation bPpg.
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Signature Definition of Components
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a∗1
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a=
( f S ,1)

��
⇓:Del

GT

b=
( f T ,1)

��
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k
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�� GT
k

G = (GS GCs�� t �� GT )
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k
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��
f
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k
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sk��
tk �� GT

k )
��

f T

�� ∅ =
tr∗
=⇒ Gk

is maximal w.r.t.
Gk ⊆ G

∀G′S ∈ VLS :

GS ��
r=(s,t):C

��

a=
(1,a2)

��
�:fAdd

GT

b=
(1,b2)

��

G′S ��
r′=(s′,t′)

�� G′T

(GS

� �
a2

��

G GC
s�� t ��

� �
1

��

GT )
� �

1
��

(G′S
� �

1
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G0

� �
g

��

GC
� �
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a2◦s�� t �� GT )
� �

b2 ��

(G′SG′
tr∗F ��

G′C
s′�� t′ �� G′T )

G0 =
tr∗F
==⇒ G′

with G′ ∈ VL(TGG)

Fig. 6. Auxiliary operations fAln, Del and fAdd

As a general requirement, the given TGG has to provide deterministic sets of opera-
tional rules, meaning that the algorithmic execution of the forward translation, back-
ward translation, and marking rules ensures functional behavior (unique results) and
does not require backtracking. For this purpose, additional policies can be defined that
restrict the matches of operational rules [15], as discussed in Ex. 5 in Sec. 6. Fact 1
in Sec. 6 provides sufficient conditions for deterministic operational rules. We provide
additional static conditions and automated checks in the technical report [15].

The general synchronization process is performed as follows (see Fig. 6; we use
double arrows (↔) for correspondence in the signature of the operations, and the ex-
plicit triple graphs for the construction details). Given two corresponding models GS

and GT and an update of GS via the graph modification a = (GS ←a1−− DS −a2−→ G′S ) with
G′S ∈ VLS , the forward propagation fPpg of δS is performed in three steps via the auxil-
iary operations fAln, Del, and fAdd. At first, the deletion performed in a is reflected into
the correspondence relation between GS and GT by calculating the forward alignment
remainder via operation fAln. This step deletes all correspondence elements whose el-
ements in GS have been deleted. In the second step, performed via operation Del, the
two maximal subgraphs GS

k ⊆ GS and GT
k ⊆ GT are computed such that they form a

consistent integrated model in VL(TGG) according to the TGG. All elements that are
in GT but not in GT

k are deleted, i.e., the new target model is given by GT
k . Finally, in

the last step (operation fAdd), the elements in G′S that extend GS
k are transformed to

corresponding structures in G′T , i.e., GT
k is extended by these new structures. The result

of fAdd, and hence also fPpg, is a consistent integrated model.

Definition 3 (Auxiliary TGG Operations). Let TGG = (TG,∅, TR) be a TGG with
deterministic sets of operational rules and let further MF(TGG) be the derived TGG
model framework.
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1. The auxiliary operation fAln computing the forward alignment remainder is given
by fAln(r, a) = r′, as specified in the upper part of Fig. 6. The square marked by
(PB) is a pullback, meaning that DC is the intersection of DS and GC.

2. Let r = (s, t) : GS ↔ GT be a correspondence relation, then the result of the aux-
iliary operation Del is the maximal consistent subgraph GS

k ↔ GT
k of r, given by

Del(r) = (a, r′, b), which is specified in the middle part of Fig. 6.
3. Let r = (s, t) : GS ↔ GT be a consistent correspondence relation, a = (1, a2) :

GS → G′S be a source modification and G′S ∈ VLS . The result of the auxiliary
operation fAdd, for propagating the additions of source modification a, is a consis-
tent model G′S ↔ G′T extending GS ↔ GT , and is given by fAdd(r, a) = (r′, b),
according to the lower part of Fig. 6.

Remark 2 (Auxiliary TGG Operations). Intuitively, operation fAln constructs the new
correspondence graph DC from the given GC by deleting all correspondence elements
in GC whose associated elements in GS are deleted via update a and, for this reason, do
not occur in DS . Operation Del is executed by applying marking rules (cf. Sec. 4) to the
given integrated model until no rule is applicable any more. If, at the end, GS ↔ GT

is completely marked, the integrated model is already consistent; otherwise, the result
is the largest consistent integrated model included in GS ↔ GT . Technically, the ap-
plication of the marking rules corresponds to a maximal triple rule sequence as shown
in the right middle part of Fig. 6 and discussed in more detail in [15]. Finally, fAdd is
executed by applying forward translation rules (cf. Sec. 4) to G′S ↔ GT until all the
elements in G′S are marked. That is, these TGT steps build a model transformation of
G′S extending GT . Technically, the application of the forward translation rules corre-
sponds to a source-consistent forward sequence from G0 to G′, as shown in the right
lower part of Fig. 6. By correctness of model transformations [7], the sequence implies
consistency of G′ as stated above. The constructions for these auxiliary operations are
provided in full detail in [15].

Example 4 (Forward Propagation via Operation fPpg). Figure 7 shows the application
of the three steps of synchronization operation fPpg to the visual models of our running
example. After removing the dangling correspondence node of the alignment in the first
step (fAln), the maximal consistent subgraph of the integrated model is computed (Del)
by stepwise marking the consistent parts: consistent parts are indicated by grey boxes
with checkmarks in the visual notation and by bold font faces in the graph representa-
tion. Note that node “Bill Gates” is part of the target graph in this maximal consistent
subgraph, even though it is not in correspondence with any element of the source graph.
In the final step (fAdd), the inconsistent elements in the target model are removed and
the remaining new elements of the update are propagated towards the target model by
model transformation, such that all elements are finally marked as consistent.

Definition 4 (Derived TGG Synchronization Framework). Let TGG = (TG,∅, TR)
be a TGG with deterministic sets of derived operational rules and with derived model
framework MF(TGG), then operation fPpg of the derived TGG synchronization frame-
work is given according to Def. 2 by the composition of auxiliary operations (fAln, Del,
fAdd) with construction in Rem. 3. Symmetrically—not shown explicitly—we obtain
bPpg as composition of auxiliary operations (bAln, Del, bAdd).
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Fig. 7. Forward propagation in detail: visual notation (top) and graph representation (bottom)
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Signature Definition of Components

∀ G′S ∈ VLS :

GS �� r ��

a

��
�:fPpg

GT

b
��

G′S ��
r′

�� G′T

GS �� r ��

aA �� �:fAln��

��

a

��

GT

1�� ��

�	

b

��

DS �� r1 ��

aD �� ⇓:Del

GT

bD��

GS
k

�� r2 ��

a f
�� �:fAdd

GT
k

b f
��

G′S ��
r′

�� G′T

a = (a1, a2)
= (GS ←a1−− DS −a2−→ G′S )

aA = (a1, 1)
aD = (a′1, 1)
af = (a1 ◦ a′1, a2)
b = bf ◦ bD

1 /* == alignment remainder == */
2 forall(correpondence nodes without image in the source model){
3 delete these elements }
4 /* ==== delete === */
5 while(there is a triple rule p such that R\L is unmarked){
6 apply to G the marking rule corresponding to p }
7 forall(unmarked nodes and edges from the target model){
8 delete these elements }
9 /* ===== add ===== */

10 while(there is a forward translation rule applicable to G){
11 apply to G the forward translation rule }

Fig. 8. Synchronization operation fPpg - top: formal definition, bottom: algorithm

Remark 3 (Construction of fPpg according to Fig. 8). Given a not necessarily con-
sistent integrated model r : GS ↔ GT and source model update a : GS → G′S with
G′S ∈ VLS , we compute fPpg(r, a) as follows. First, fAln computes the correspondence
(DS ↔ GT ), where DS is the part of GS that is preserved by update a. Then, Del com-
putes its maximal consistent integrated submodel (GS

k ↔ GT
k ). Finally, fAdd composes

the embedding GS
k → G′S with correspondence (GS

k ↔ GT
k ) leading to (G′S ↔ GT

k ),
which is then extended into the consistent integrated model (G′S ↔ G′T ) via forward
transformation. If G′S � VLS , then the result is given by b = (1, 1) : GT → GT together
with the correspondence relation r′ = (∅,∅) and additionally, an error message is pro-
vided. The bottom part of Fig. 8 describes this construction algorithmically in pseudo
code, leaving out the error handling; marking is explained in Sec. 4.

6 Correctness of Model Synchronization Based on TGGs

Based on the derived TGG synchronization framework (Def. 4), we now state our main
result concerning correctness, completeness, and invertibility. The proofs and full tech-
nical details are provided in the technical report [15]. According to Def. 2, correctness
requires that the synchronization operations are deterministic, i.e., they have functional
behaviour and ensure laws (a1) - (b2). Concerning the first property, Fact 1 below pro-
vides a sufficient condition based on the notion of critical pairs [6], which is used in
the automated analysis engine of the tool AGG [23]. A critical pair specifies a conflict
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between two rules in minimal context. Solving a conflict means to find compatible
merging transformation steps, which is formalized by the notion of strict confluence [6].
The result is provided for almost injective matches, which means that matches are in-
jective on the graph part and may evaluate different attribute expressions to the same
values. Completeness requires that operations fPpg and bPpg can be successfully ap-
plied to all consistent source models G′S ∈ VLS and target models G′T ∈ VLT , respec-
tively. For this reason, additional propagation policies are defined in order to eliminate
non-determinism. They can be seen as a kind of application conditions for the rules and
are called conservative, if they preserve the completeness result. By Fact 2 in [15], we
provided a sufficient static condition for checking this property.

Fact 1 (Deterministic Synchronization Operations). Let TGG be a triple graph
grammar and let matches be restricted to almost injective morphisms. If the critical
pairs of the sets of operational rules are strictly confluent and the systems of rules are
terminating, then the sets of operational rules are deterministic, which implies that the
derived synchronization operations fPpg and bPpg are deterministic as well.

Remark 4 (Termination). In order to ensure termination of the TGG constructions, we
can check that each operational rule is modifying at least one translation attribute (cf.
Sec. 4), which is a sufficient condition as shown by Thm. 1 in [14] for model transfor-
mation sequences.

Invertibility of propagation operations depends on additional properties of a TGG. For
this purpose, we distinguish between different types of triple rules. By TR+s we denote
the triple rules of TR that are creating on the source component and by TR1s those that
are identical on the source component and analogously for the target component. A
TGG is called pure, if TR1s ⊆ TRT and TR1t ⊆ TRS meaning that the source-identic
triple rules are empty rules on the source and correspondence components and analo-
gously for the target-identic triple rules. According to Thm. 1 below, weak invertibility
is ensured if the TGG is pure and at most one set of operational rules is restricted by a
conservative policy. In the more specific case that all triple rules of a TGG are creating
on the source and target components (TR = TR+s = TR+t), then the TGG is called tight,
because the derived forward and backward rules are strongly related. This additional
property ensures invertibility meaning that fPpg and bPpg are inverse to each other
when considering the resulting models only.

Theorem 1 (Correctness, Completeness, and Invertibility). Let Synch(TGG) be a
derived TGG synchronization framework, such that the sets of operational rules of TGG
are deterministic. Then Synch(TGG) is correct and complete. If, additionally, TGG is
pure and at most one set of operational rules was extended by a conservative policy,
then Synch(TGG) is weakly invertible and if, moreover, TGG is tight and no policy was
applied, then Synch(TGG) is also invertible.

Example 5 (Correctness, Completeness, Invertibility, and Scalability). The initially de-
rived set of backward transformation rules for our running example is not completely
deterministic because of the non-deterministic choice of base and bonus values for prop-
agating the change of a salary value. Therefore, we defined a conservative policy for
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the responsible backward triple rule by fixing the propagated values of modified salary
values to bonus = base = 0.5 × salary. By Fact 2 in [15], we provided a sufficient
static condition for checking that a policy is conservative; we validated our example
and showed that the derived operations fPpg and bPpg are deterministic. For this rea-
son, we can apply Thm. 1 and verify that the derived TGG synchronization framework
is correct and complete. Since, moreover, the TGG is pure and we used the conserva-
tive policy for the backward direction only, Thm. 1 further ensures that Synch(TGG)
is weakly invertible. However, it is not invertible in the general sense, as shown by a
counter example in [15], which uses the fact that information about birth dates is stored
in one domain only. The automated validation for our example TGG with 8 rules was
performed in 25 seconds on a standard consumer notebook via the analysis engine of
the tool AGG [23]. We are confident that the scalability of this approach can be signifi-
cantly improved with additional optimizations.

In the case that the specified TGG does not ensure deterministic synchronization oper-
ations, there are still two options for synchronization that ensure correctness and com-
pleteness. On the one hand, the triple rules can be modified in a suitable way, such that
the TGG can be verified to be deterministic. For this purpose, the critical pair analysis
engine of the tool AGG [23] can be used to analyze conflicts between the generated
operational rules. Moreover, backtracking can be reduced or even eliminated by gen-
erating additional application conditions for the operational rules using the automatic
generation of filter NACs [14]. On the other hand, the TGG can be used directly, lead-
ing to nondeterministic synchronization operations, which may provide several possible
synchronization results.

7 Related Work

Triple graph grammars have been successfully applied in multiple case studies for bidi-
rectional model transformation, model integration and synchronization [17,21,9,8], and
in the implementation of QVT [12]. Moreover, several formal results are available con-
cerning correctness, completeness, termination [7,10], functional behavior [16,10], and
optimization with respect to the efficiency of their execution [14,18,10]. The presented
constructions for performing model transformations and model synchronizations are
inspired by Schürr et al. [20,21] and Giese et al. [8,9], respectively. The constructions
formalize the main ideas of model synchronization based on TGGs in order to show cor-
rectness and completeness of the approach based on the results known for TGG model
transformations.

Perdita Stevens developed an abstract state-based view on symmetric model syn-
chronization based on the concept of constraint maintainers [22] and Diskin described
a more general delta-based view within the tile algebra framework [3]. The construc-
tions in the present paper are inspired by tile algebra and follow the general frame-
work presented by Diskin et al. [4], where propagation operations are defined as the
composition of two kinds of operations: alignment and consistency restoration. In the
current paper, operations fAln and bAln take care of the alignment by removing all cor-
respondence nodes that would be dangling due to deletions via the given model update.
Then, operations Del and fAdd resp. bAdd provide the consistency restoration by first
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marking the consistent parts of the integrated model and then propagating the changes
and deleting the remaining inconsistent parts.

Giese et al. introduced incremental synchronization techniques based on TGGs in
order to preserve consistent structures of the given models by revoking previously per-
formed forward propagation steps and their dependent ones [9]. This idea is generalized
by the auxiliary operation Del in the present framework, which ensures the preservation
of maximal consistent substructures and extends the application of synchronization to
TGGs that are not tight or contain rules with negative application conditions. Giese et
al. [8] and Greenyer et al. [13] proposed to extend the preservation of substructures
by allowing for the reuse of any partial substructure of a rule causing, however, non-
deterministic behavior. Moreover, a partial reuse can cause unintended results. Con-
sider, e.g., the deletion of a person A in the source domain and the addition of a new
person with the same name, then the old birth date of person A could be reused.

In order to improve efficiency, Giese et al. [9,8] proposed to avoid the computation
of already consistent substructures by encoding the matches and dependencies of rule
applications within the correspondences. In the present framework, operation Del can be
extended conservatively by storing the matches and dependency information separately,
such that the provided correctness and completeness results can be preserved [15].

8 Conclusion and Future Work

Based on our formal framework for correctness, completeness, termination and func-
tional behavior of model transformations using triple graph grammars (TGGs) [7,14],
we have presented in this paper a formal TGG framework for model synchronization
inspired by [9,8,20,21]. The main result (Thm. 1) shows correctness, completeness and
(weak) invertibility, provided that the derived synchronization operations are determin-
istic. For this property, sufficient static conditions are provided (Fact 1) based on
general results for TGGs in [14].

In future work, the tool Henshin based on AGG [23] will be extended to implement
the synchronization algorithm for forward propagation in Fig. 8. Moreover, the relation-
ship with lenses [22] and delta based bidirectional transformations [4] will be studied
in more detail, especially in view of composition of lenses leading to composition of
synchronization operations. Furthermore, we will study synchronization based on non-
deterministic forward and backward propagation operations in more detail.
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language. As a means to clarify and refine requirements that have been expressed
in natural language, developers construct domain models that identify the key
elements of the system and their relationships to one another, as well as their
relationships to external elements. In order to better understand the required be-
havior, developers often create prototypes or state-based representations based
on the domain model. While simulations and executable prototypes enable vali-
dation of requirements, it is equally important to be able to verify requirements
to identify inconsistencies, (invariant) property violations, etc. Thus, there is a
need for tools that identify errors in requirements specifications based on anal-
ysis of early prototype models. This paper presents a toolchain that facilitates
the detection of syntactic and semantic errors in state-based diagrams and also
identifies properties that specify latent behavior, the unspecified and potentially
unwanted behavior of the model.

Many tools have been developed to support model-driven engineering of soft-
ware systems. Tools such as ArgoUML, IBM Rational Software Architect, and
Microsoft Visio support visual modeling of software designs via the Unified Mod-
eling Language (UML). IBM Rational Rhapsody supports UML modeling as
well as code generation and many consistency tests to ensure that the system
under development is free of syntax errors. However, none of these tools per-
forms syntax or type checking on state transition expressions in state diagrams.
Particularly for applications involving complex logic and system behavior (e.g.,
embedded systems), transitions may contain complex guards and action state-
ments that often define the core functionality of the system being modeled. Thus,
tools that treat the transition expressions as uninterpreted strings allow subtle
errors to propagate into the source code that is generated from the model, par-
ticularly in the context of model-driven engineering. Furthermore, while tools
such as Rhapsody provide traceability from requirements to source code, to the
best of the authors’ knowledge, no existing commercial or research tools provide
the comprehensive automated identification of the collection of different types
of errors covered by our toolchain for UML models.

This paper describes an experience report from using a newly-developed
toolchain that supports syntax and type checking as well as detection of la-
tent system properties. After requirements have been elicited for an embedded
system, developers often build a domain model using class diagram syntax that
describes the key elements of the system (including physical elements, such as
sensors and actuators, and software elements, such as controllers) and elements
in the environment with which the system interacts. A state diagram is cre-
ated for each key element, resulting in a collection of interacting state diagrams.
While such diagrams are useful for refining system requirements and may be
used during the design phase, there is limited tool support for detecting errors
in syntax and semantics, and to our knowledge there is no tool support for au-
tomatically identifying latent properties. The proposed toolchain has two key
advantages over current approaches. First, all state transition expressions are
parsed and type-checked, thus identifying many errors that existing tools do not
address until the code generation phase. Second, automated detection of latent
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properties enables system developers to identify so-called blind spots in system
requirements. Blind spots are missing or incomplete requirements that are over-
looked by requirements engineers, and they are often discovered only after the
system has been partially implemented or, worse yet, deployed to the field. By
identifying these errors early in the development process and suggesting poten-
tial resolution strategies, the proposed toolchain minimizes the number of subtle
design defects and the cost of redesigning the system to correct the defects.

The proposed toolchain comprises three main tools: Cyclops, a model pre-
processor that identifies common syntax and semantics errors in behavioral mod-
els specified in XMI (XML Metadata Interchange) format; Hydra, a tool for
translating UML behavioral models into Promela, the formal language for the
SPIN model checker [3]; and Marple, a tool for automatically generating prop-
erties that are satisfied by the model and may represent latent and potentially er-
roneous behavior. We apply this toolchain to an industrial software system from
the automotive embedded systems domain. The software system was developed
using UML version 1.5 and comprises three subsystems: Lighting, Power Manage-
ment, and Windshield Wipers.1 The Lighting subsystem handles all functionality
related to interior lamps, headlights, and tail lights. The Power Management sub-
system monitors and controls the ignition status, vehicle speed, door statuses,
battery status, and other electronic features. The Windshield Wipers subsystem
controls the movement and speed of the windshield wipers. The subsystems are
sophisticated and interact with one another at run time, thus creating the poten-
tial for errors in modeling semantics, unintended behavior that spans multiple
subsystems, and feature interactions.

Based on feedback from the developer of the model, it is clear that several of
the detected errors would have been very difficult and time-consuming to detect
and resolve without the use of the toolchain. The remainder of the paper is or-
ganized as follows. In Section 2, we discuss background concepts. We present the
software model that was studied in this work in Section 3. Next, we describe the
process of using the toolchain in Section 4. Section 5 describes related work. Our
experience of applying the toolchain to an automotive embedded systems model
is presented in Section 6. We discuss the results and implications of applying
the toolchain in Section 7. Finally, we present our conclusions and discuss future
work in Section 8.

2 Background

In this section, we discuss background concepts and enabling technologies that
support the proposed toolchain, including the Unified Modeling Language, the
SPIN model checker, evolutionary computation, and novelty search. These en-
abling technologies are presented according to the tool(s) that leverage their
capabilities.

1 Due to organizational constraints and in-house tool support, the industrial collabo-
rator was constrained to use UML 1.5 for its modeling activities.
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2.1 Cyclops and Hydra

Cyclops and Hydra have been developed to support the analysis of models in
the Unified Modeling Language (UML), the de facto standard in object-oriented
software modeling. They enable developers to perform extensive error checking
on UML models that describe system prototypes and support the translation of
UML state diagrams into Promela for analysis with the SPIN model checker.

Unified Modeling Language. The Unified Modeling Language (UML) is a general-
purpose visual modeling language that is used for modeling object-oriented soft-
ware. It comprises several types of diagram notations, including support for class
diagrams, interaction diagrams, state machine diagrams, and others. A UML
model may contain many different diagrams that describe different views of the
same system. For the purposes of this paper, we assume the use of UML version
1.5 and focus on state machine diagrams. A state machine diagram (hereafter,
“state diagram”) describes the various states in which a system can be and
the transitions between the states. Visually, a state diagram comprises rounded
rectangles (representing states) and lines with arrows that indicate transitions
between states. The lines are annotated with optional guards and trigger events
that denote the conditions that enable a transition and the actions that are gen-
erated as a result of the transition, respectively. In this study, we use a domain
model (expressed in terms of a class diagram notation) to provide the context
and vocabulary for the state diagrams.

SPIN Model Checker. The SPIN model checker [3] is a tool for exhaustively
verifying state-based models. It takes a model expressed in Promela and pro-
duces a model checker in C code. SPIN uses nondeterministic automata to check
properties expressed in Linear Temporal Logic (LTL) [4] and performs exhaus-
tive analysis of a system’s state space in order to identify undesirable system
behaviors. It was originally developed to formally analyze telecommunications
protocols, but in recent years it has also been used to analyze distributed sys-
tems [5, 6].

2.2 Marple

Marple is a tool that automatically discovers latent properties in UML state
diagrams [7]. It leverages novelty search, an evolutionary search technique, and
formal model analysis to generate a list of properties that describe the behavior
specified by the model.

Evolutionary Computation. Evolutionary computation (EC) is a biologically-
inspired family of techniques for exploring large solution spaces using concepts
such as mutation and selection [8]. EC is effective for finding solutions to prob-
lems that have large solution spaces that cannot be exhaustively explored in
a reasonable amount of time. It begins with a large population of randomly-
generated individuals. Each individual is evaluated to determine its fitness for a
given task. Next, an EC algorithm probabilistically selects a set of individuals
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that will represent the next generation. Each selected individual is probabilis-
tically mutated, thus introducing diversity into the population. This process of
selection, mutation, and evaluation continues until a fixed number of generations
have passed or an optimal solution (if one exists) has been found.

Novelty Search. One EC technique, known as novelty search [9], replaces the
explicit fitness computation with a novelty function that measures how different
each individual is from other individuals in the population and in an archive of
previous individuals. Novelty search then selects individuals whose behavior is
the most distant (i.e., the most novel), thus increasing the diversity in the pop-
ulation and exploring the solution space more efficiently than a random search.
The specific measure of distance between individuals varies with the problem
being solved, but a Euclidean distance is typically used when the behavior of an
individual can be mapped to a numerical vector.

3 Body Subsystem Model

In this section, we describe the Body Subsystem model that was used in this study.
The model describes embedded devices that control the electronic subsystems
of a modern passenger automobile and was created for the purposes of require-
ments elicitation and analysis.2 The subsystems of the model include interior and
exterior lighting, power management, and windshield wiper control. While the
onboard electronics involves several more subsystems, these three were selected
because they exhibit known, intended interactions. One of our objectives was
to investigate whether the subsystems also exhibit unknown interactions. The
remainder of this section provides a brief description of each subsystem under
study.

3.1 Lighting Subsystem

The Lighting subsystem comprises 16 classes and is responsible for managing
interior lights, including map, vanity, trunk, and under-hood lamps; and exterior
lights, including head lights (low- and high-beam) and tail lights. The subsystem
also contains classes that monitor the intensity of ambient light in order to
control day time running lights and activate the vehicle’s head lights and tail
lights for night time driving.

3.2 Power Management Subsystem

The Power Management subsystem comprises 25 classes and is responsible for
monitoring ignition status, sleep mode status, battery voltage, and commands
from remote key fobs. The subsystem responds to events such as the insertion
of an ignition key, exceeding vehicle speed thresholds, and the firing of timers.
2 The model was developed by the industrial partner as an example of an industrial-

strength model with representative system elements and behavior. The model does
not contain any proprietary or specific configuration parameters of a deployed vehicle.
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3.3 Windshield Wiper Subsystem

The Windshield Wiper subsystem comprises eight classes and is responsible for
controlling wiper behavior. The classes represent hardware and software ranging
from the low-level motor controller, the washer fluid pump, and a stall sensor
that turns off the wiper motor if it detects that the wipers are not moving.

4 Process

In this section, we provide an overview of the process that was used to apply
the toolchain to the Body Subsystem model. A data flow diagram for the process
is shown in Figure 1. The process begins with a system model in XMI (XML
Metadata Interchange) format. In this case, Rhapsody was used by our industrial
collaborators to create the system model due to its support for requirements
traceability, code generation capabilities, and support for state-based modeling.

Promela
Model

1: Model 
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2: Model 
Analysis

3: Property 
Review

System
Requirements

XMI 
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Marple
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Latent Properties
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Fig. 1. Data Flow Diagram

4.1 Model Transformation

First, the XMI model is given to step 1: Model Transformation. The Cy-
clops tool takes the XMI model and checks for common syntax and semantics
errors. For example, it parses and checks each state transition expressions to en-
sure that they are well-formed and do not refer to undeclared classes, attributes,
or operations. Cyclops produces specific error messages that indicate the na-
ture of any errors that are discovered, and it makes suggestions when appropriate
(e.g., when an attribute from another class is referenced as though it were de-
clared in the current class). Cyclops supports an iterative process of analysis,
detection of errors, and model correction. This incremental error-correction cycle
is shorter and more interactive than comparable techniques available in commer-
cial tools. For example, using code generation to detect syntactic and semantic
errors in a model would require at least one additional step for compilation and
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linking compared to our toolchain. Once the errors detected by Cyclops are
resolved, it translates the XMI model into the Hydra Intermediate Language
(HIL) that can then be processed by the Hydra tool.

Hydra is a model translator initially developed by McUmber and Cheng [10].
It takes a model in HIL format and produces an equivalent model in Promela
(the PROcess MEta Language). Promela is a formal logic language that was
developed to support analysis and exhaustive checking of concurrent systems
of communicating processes [11]. Promela models are checked using the SPIN
model checker [3], a tool that identifies livelocks, deadlocks, error conditions, and
other undesirable behavior. It also has support for verifying arbitrary properties
specified using LTL.

4.2 Model Analysis

Goldsby and Cheng developed Marple [7], a novelty-search tool for automati-
cally discovering properties that represent the behavior of UML models. Specifi-
cally, a property may specify a known system requirement or, more interestingly,
an unknown latent behavior of the model. As part of the 2: Model Analysis
step, Marple accepts the Promela model generated by Hydra and a set of
parameters as input. Marple parameters include the number of properties that
should be returned, the size of the population that the novelty search algorithm
should use, and the number of distinct classes (i.e., domain elements) that are
mentioned in each property. The parameters may be tuned by the system devel-
oper according to the model being analyzed and the number of results that are
desired.

Each property generated by Marple is created by instantiating one the five
most commonly occurring LTL specification patterns, identified by Dwyer et
al. [12], with model-specific domain elements provided as parameters. For exam-
ple, one of the specification patterns is stated as follows: “Globally, it is always
the case that P holds”. The placeholder P is constructed from an alphabet that
includes the set of domain elements in a given model, integer values for those
domain elements to take, and operators for conjunction, disjuction, equality, and
inequality. The novelty search algorithm creates properties from the specifica-
tion patterns by filling in the placeholder with varying combinations of items
from the alphabet. One such value of P might be “DriverDoor.Closed== 1
∧ MapLamp.Brightness == 3”. Marple could also generate variants of this
property, perhaps with different numerical values, that may evaluate differently
from the original. The property grammar supports nesting of conjunctions and
disjunctions, thus facilitating a rich space of properties to consider.

Once a property has been generated, it is evaluated using the SPIN model
checker [3]. A property that is shown to be false is discarded. Properties that
hold true are retained for further analysis. To assess the novelty of a property
that holds for the model, Marple compares the state space of the shortest path
that satisfies the property to the state space of other properties. If the property
visits a previously unexplored region of the state space, then the property is
considered more novel, and thus more fit, than a property that visits states
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within a well-explored region. New properties are compared to other properties
within the current generation and within the archive of previously generated
properties. By including the properties in the archive in the comparison process,
the novelty search algorithm is able to “remember” the portions of the solution
space that it has explored previously, thus ensuring that the algorithm does not
stagnate or become “stuck” in a suboptimal portion of the space.

As output, Marple produces a set of LTL properties that are presented
to the developer in natural language for readability purposes. To enable this
natural language property representation, we use a component of SPIDER [13],
a specification pattern instantiator and analysis tool to translate between LTL
properties and natural language [13].

4.3 Property Review

Finally, in step 3: Property Review, the latent properties discovered by
Marple are presented in natural language to the system developer for review.
If a given property is desirable, then the developer may consider adding it to the
list of explicit system requirements. If the property is undesirable, however, then
action must be taken to ensure that the property does not continue to hold. For
example, the developer might examine the state diagrams for the classes that
are mentioned in the property. If an error is discovered in the diagrams, then
the model is revised and the toolchain is restarted at step 1.

5 Related Work

As stated earlier, many commercial tools support the creation of UML models,
syntax checking, simulation, and code generation capabilities. However, they do
not support the automated detection of the full suite of syntactic and semantic
error checks for state-based diagrams that we describe in this paper. Addition-
ally, they do not support the identification of latent properties satisfied by the
model. In this section, we overview research tools that have been created to
address these two challenges.

5.1 Consistency Checking among UML Class and State Diagrams

One key challenge that arises as the result of using multiple diagrams to pro-
vide different views of the same system is maintaining consistency among these
different representations. As a result, researchers have developed a number of
approaches to support various aspects of consistency checking among UML mod-
els (e.g., [14–19]). The toolchain described by this paper automatically detects
inconsistencies in the syntax and semantics of UML class and state diagrams cre-
ated as part of the late requirements engineering phase of development. Thus,
we focus our attention on approaches that examine consistency among these two
diagram types. Simmonds et al. [18] use rules presented in terms of description
logic [20], a subset of first order predicate logic, to identify inconsistencies among
UML class, sequence, and state diagrams during the design phase. However, their
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approach does not check that the transitions within the state diagram use vi-
able elements from the class diagram. Gomaa et al. [16] present an approach
to checking the consistency among use case diagrams, class diagrams, sequence
diagrams, and state diagrams. Their manual approach involves specifying con-
sistency checking rules among the various types of diagrams, including class and
state diagrams. Egyed proposes an automated approach for detecting and resolv-
ing inconsistencies that arise within UML models during the design phase [14].
His approach relies upon the specification of consistency rules, which are period-
ically evaluated. To the best of our knowledge, these consistency rules can detect
whether elements of the state diagrams are consistent with those that appear
in the class diagram, but do not detect subtle errors, such as assignments that
occur within transition guards. Schwarzl and Peischl [17] propose an approach
to statically analyzing state diagrams for syntax, existence, data type, commu-
nication, non-determinism, and transition hiding errors. As part of this process,
the transitions on the state diagrams are checked for well-formedness. The set of
syntactical and semantic errors that they detect is a subset of the errors that Cy-
clops detects. However, the behavioral errors that they detect (e.g., deadlock
conditions and circular messaging dependencies) are complementary to errors
detected by the approach presented in this paper.

5.2 Detection of Latent Properties

Several approaches generate temporal logic properties that specify the behavior
of systems [21–25]. Because the objective of our approach is to automatically
identify obscure latent properties that might not otherwise be discovered, we fo-
cus on how the approaches blend developer knowledge and automation to identify
properties. Perracotta [25] is a dynamic inference approach that infers properties
from imperfect execution traces, which have been generated by running the pro-
gram code. To produce these execution traces, the developer must instrument
the program to monitor events and states of interest; these are used to form the
possible propositions. Perracotta then creates properties by instantiating eight
variations of the temporal logic response pattern with the propositions. Weimer
and Necula proposed a static inference approach [24], which analyzes program
text and generates properties. These properties specify potentially erroneous be-
havior of the error-handling portions of the source code. Lastly, Chang et al. [22]
proposed a dynamic inference approach that generates properties from program
event traces. The program traces are created during the execution of the program
and track developer-specified events. Chang’s approach involves refining the in-
ference templates built using the Propel patterns [26] to eliminate properties
that are not satisfied by the program’s event traces.

These approaches differ from our toolchain-based approach in two key ways.
First, they focus on automatically generating properties that describe the be-
havior of the code, rather than the model. As such, the cost of correcting errors
in the later development phase is likely to be more expensive. Second, in general,
these approaches rely on the developer to select portions of the code to explore
for properties, and this limits the ability of the approaches to discover properties
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that represent unwanted latent behavior in blind spots. These notable differences
mean that our approach can be used in a complementary fashion. Specifically,
as part of the model-driven development process our toolchain can be used to
automatically discover properties that may represent unwanted latent behavior
within the UML model. Once the UML model has been translated to code, the
other approaches could be used to ensure that no errors have been introduced.

6 Applying the Toolchain

This section describes our experience of applying the proposed toolchain to the
Body Subsystem model that was presented in Section 3. We present the types of
errors that were discovered, the mitigation strategy that was used for each error,
and the consequences of correcting the error. For clarity, we present the errors
according to the stages of the toolchain. That is, we begin with a discussion
of syntax and consistency errors that Cyclops detected. Next, we discuss the
errors in types and semantics that Cyclops also detected. Finally, we describe
how the model was translated into the Promela language and discuss the latent
properties that Marple discovered.

6.1 Preliminaries

The model comprises class diagrams, sequence diagrams, and state diagrams,
thus providing a rich domain vocabulary (i.e., class, operation, and attribute
names) as well as a complete set of states and transitions that represent the
behavior of the system-to-be. The Body Subsystem model contains 52 classes,
37 state diagrams, 255 states (including composite states), and 400 state transi-
tions. There are fewer state diagrams than classes because several of the classes
are abstract superclasses or static classes that serve as structures. The model
generated approximately 38,000 lines of C++ code. This code was intended to
provide a means to execute the requirements; it is not intended to be sufficiently
detailed to contain platform-specific or implementation details.

6.2 Phase I: Syntax and Consistency Check (Cyclops)

We begin by applying Cyclops to the model, which comprises class and state
diagrams. Cyclops performs a battery of checks on the input model before it
is passed to Hydra to be translated into Promela. It examines each class, at-
tribute, and operation reference and verifies that the referenced element exists.
Cyclops also checks for unmatched or missing parentheses, missing semicolons
between action statements, and ensures that attributes and operations do not
have the same name as their owning class. It also ensures that each state transi-
tion expression is well-formed. Cyclops identified a wide range of errors in our
model, including references to undeclared variables and typographical mistakes.3

3 A complete listing of the categories of errors that were discovered, and their frequency
of occurrence, is available as a technical report [27].
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Error Mitigation. Defects that are discovered during Phase I are typically
inconsistencies that result from typographical errors. Automated tools cannot
make reliable suggestions for resolving most defects of this type, and therefore
Cyclops must rely on software engineers who are familiar with the model to
correct the problem. Once each defect has been corrected, the revised model is
given again as input to Cyclops, and the Phase I analysis is reapplied. It takes
less than one second to parse and check the Body Subsystem, thus providing an
interactive experience. This incremental defect resolution process proceeds until
no further syntax errors are found in the model.

6.3 Phase II: Semantics and Type Check (Cyclops)

Next, we used Cyclops to check the semantics of each state transition in the
model’s state diagrams. Cyclops ensures, for example, that each reference to an
attribute, operation, or class is valid with respect to the model being analyzed,
using the domain model as a point of reference. Furthermore, Cyclops verifies
that boolean comparisons and assignments are between compatible data types.

Error Mitigation. Phase II focuses on discovering defects that are more sub-
tle, and therefore more difficult to detect, than those discovered during Phase I.
The primary focus of Phase II is on parsing and verifying the contents of state
transition expressions. A state transition expression specifies the conditions un-
der which the modeled system will move from the current state to the next state
and what actions (e.g., variable assignments or calls to operations) will be taken
as a result of the transition. Each expression comprises an optional triggering
event, a set of expressions that form a guard, and a set of actions to perform in
the following format: event[guard]/action-list .

Errors in state transition expressions can be difficult to detect by visual in-
spection. For example, it is easy to overlook an assignment operator (‘=’) that
was mistyped as an equality operator (‘==’). Such an error still produces valid,
executable code in many programming languages that are used for embedded
systems (e.g., C). However, there is a mismatch between the intent of the code
and its actual behavior when the system is executed, thus making this class of
subtle defects potentially very serious.

6.4 Phase III: Model Translation

Once the model is free of syntactic and semantic errors, the third phase uses
Cyclops and Hydra to translate the model into the formal language Promela.
Cyclops begins by translating the model into the Hydra Intermediate Language
(HIL). This intermediate step enables us to build new front-end translators for
successive versions of XMI, whose formats evolve over time, without needing
to modify the core translation code in Hydra. Next, Hydra translates the
HIL code into Promela. By constructing an equivalent model in Promela, we
are able to conduct formal analysis of the model and to verify model properties
specified in LTL. Each state diagram in the model is treated as a distinct Promela
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process, thus facilitating the interleaved execution that often reveals unexpected
interactions among system components. The translation phase completes within
two seconds for the Body Subsystem model.

6.5 Phase IV: Discovery of Latent System Properties (Marple)

In the fourth and final phase, the Promela model that was produced by Hydra
is provided as input to Marple, which generates a suite of LTL properties
that are presented to the developer in natural language. If a property is deemed
desirable, then it is added to the list of system requirements. A property that
is undesirable must be addressed by the system’s developer. Potential problems
created by unwanted properties include incorrect functional behavior, feature
interactions, distributed behavior problems, and behavioral inconsistencies. This
phase takes on the order of six hours to complete on a 1.8 GHz PC with 16 GB
of memory. According to our industrial collaborators, this time frame was well
within the acceptable range given the potential severity of errors found. For these
experiments, Marple was configured to return 25 properties.

Next, we present a sample set of latent properties that were discovered in the
Body Subsystem. We provide a natural language representation of each property
along with a brief discussion of the property, its consequences, and the mitigation
strategy that was used.

Property 1: Globally, WiperModes.WiperMaster ! = RSM eventually holds

Property 1 states that the WiperMaster attribute in the WiperModes class
must eventually have a value that is not RSM (Rain Sensor Mode). The developer
determined that one of the state transitions in the WiperModes state diagram was
missing a guard. Therefore, the transition was always available to be executed.
Once the missing guard was added, as part of regression analysis we verified that
the property no longer held.

Property 2:
Globally, it is always the case that if DrvrDrSwitch.Switch == 1

holds, then Voltage Range Monitor.VBattRaw ! = 18 previously held

Property 2 states that if the Switch attribute in the DrvrDrSwitch (Driver
Door Switch) class has a value of 1 then the VBattRaw attribute of the Voltage
Range Monitor class must not have had a value of 18 in the previous state.
Once the property was identified, the model developer was able to identify a
missing assignment statement (battStatus = NORM) for the INITIAL state in
the VoltageRangeMonitor state diagram. After the missing assignment state-
ment was added, the property no longer held.

Property 3:
Globally, it is always the case that if WiperModes.Command == 5 holds,
then AmbientLightSensorInput.lightLevel ! = 4 previously held
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Property 3 states that if the value of the Command attribute in the WiperModes
class is HALT, then the value of the lightLevel attribute in the Ambient
LightSensorInput class must not have been TWILIGHT in the previous state.
Despite the different set of classes and attributes in this property as opposed to
Property 2, the model developer discovered that Property 2 and Property 3
held because of the same missing assignment statement in the VoltageRange
Monitor state diagram. After the statement was added to remedy Property 2,
Property 3 no longer held.

Property 4: Globally, it is always the case that WiperModes.Command ! = HALT

Property 4 states that the value of the Command attribute in the WiperModes
class will never be HALT. From this property, the model developer determined
that a triggering event in the RelayControl class (part of the Windshield Wipers
subsystem) never occurs, and thus the state machine remains in the WAIT state
indefinitely. Figure 2 shows partial state diagrams from the RelayControl and
WiperModes classes. There was a missing call to the event RlyCtlActive (shown
in bold) in the transition expression for the initial state in RelayControl (Fig-
ure 2(a)). Since the transition expression for WiperModes (Figure 2(b)) is waiting
for the event to be fired (also shown in bold), it will wait indefinitely. After adding
a call to the missing event in the appropriate state transition in RelayControl,
the property no longer held.

ACTIVE

/ RlyCtlActive();
HighLowRelayCmd = NOT_HIGH;
RunParkRelayCmd = OFF

(a) RelayControl (b) WiperModes

BOOT

WAIT

RlyCtlActive/Command = SINGLE;
WashCleanupFlag = NO_WASH;
WiperMaster = UNDEFINED;
ParkCmd = false

HIGH

OFF
VOLTAGE/
FAULT

WPROFF

WAIT_WASH STOPPING

. . . . . .

Fig. 2. Partial State Diagrams for Classes Affected by Property 4

7 Discussion

In this section, we present a discussion of the results of applying the proposed
toolchain and consider the consequences of its use in an industrial development
setting. As in previous sections, we present the discussion in terms of each phase
of the toolchain.

7.1 Syntax and Semantics Defects

We had access to two major revisions of the Body Subsystem model for this work:
an early revision that had not been used to generate source code and thus con-
tained syntax errors and type inconsistencies, and a subsequent revision that had
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undergone source code generation and compilation. In order to assess Cyclops’s
ability to detect syntax and semantics errors, we applied it to the earlier model
revision. Cyclops detected all of the errors that the compilers had detected
during source code generation and compilation, and it also identified additional
errors that were subtle and would be difficult to locate by manual inspection.
For example, an assignment statement that was mistyped as a boolean com-
parison would not be detected by a compiler, but such a mistake may have an
adverse effect on system behavior. The developer of the Body Subsystem model
stated that without the use of a tool such as Cyclops, these subtle errors would
have been allowed to propagate into generated source code and, perhaps, into
the design and implementation of the system. Since system models are typically
small during the late requirements stage of the software lifecycle, such defects
are straightforward to resolve once they have been identified. Identifying and re-
solving these subtle defects in the requirements stage reduces the amount of time
spent debugging and reengineering the system at later stages of development.

7.2 Latent Property Detection

While the proposed toolchain detects several types of model errors, the developer
of the Body Subsystem told us that the toolchain is most useful for identifying
portions of the model or system requirements that are missing. The toolchain
identified a set of missing constant initializations, transition guards, and transi-
tion action statements. The discovered properties did not always point directly
to the missing model components (e.g., properties 2 and 3 in Section 6), but they
yielded enough information for a developer with knowledge of the system and
model to make inferences about the possible causes of the defect and to revise
the model accordingly. In the absence of the proposed toolchain, such defects
would most likely be discovered during integration testing after the source code
has been completed, thus increasing the cost to repair the defect.

Marple uses an evolutionary search technique to explore the space of prop-
erties for a given model. Due to inherent randomness in the search process, it is
unlikely that Marple will revisit the same property in independent executions.
However, it is straightforward to make note of any interesting properties and to
re-examine them at a later time to monitor for regressions. The ability to track
defects over time facilitated a step-wise, iterative model refinement process that
enabled us to work remotely with the model developer to incrementally resolve
the problems that our toolchain identified.

8 Conclusions

In this paper, we presented an experience report describing the use of a toolchain
for detecting syntactic and semantics errors in behavioral system models, as
well as detecting latent system properties during the early requirements phase
of the software lifecycle. We demonstrated that the proposed toolchain is an
effective means for identifying syntax errors, resolving ambiguous references,
and discovering unwanted latent system properties.
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We are considering several avenues for future work. First, we plan to integrate
metamodel-level consistency checking into the Cyclops tool, thus enabling flex-
ible and robust error detection that is grounded in a formal semantics for UML
state diagrams. Next, we are investigating patterns within the discovered latent
properties and to leverage their key features to fine-tune parameters for the
Marple tool. We are exploring several strategies for reconfiguring the toolchain
to detect situations in which two system features interact and lead to system
failures or other unexpected behavior. Finally, we are exploring how to apply
the principles of this toolchain to other languages and environments, including
Simulink.
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données, réseaux 10(2-3), 231–244 (2004)

19. Wagner, R., Giese, H., Nickel, U.: A plug-in for flexible and incremental consistency
management. In: Proc. of the International Conference on the Unified Modeling
Language 2003 (Workshop 7: Consistency Problems in UML-based Software De-
velopment), San Francisco, USA (2003)

20. Baader, F.: The description logic handbook: theory, implementation, and applica-
tions. Cambridge Univ. Pr., Cambridge (2003)

21. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 450–463. Springer, Heidelberg (2000)

22. Chang, R.M., Avrunin, G.S., Clarke, L.A.: Property inference from program exe-
cutions. Technical Report UM-CS-2006-26, University of Massachusetts (2006)

23. Gurfinkel, A., Chechik, M., Devereux, B.: Temporal logic query checking: A tool
for model exploration. IEEE Transactions on Software Engineering 29(10), 898–914
(2003)

24. Weimer, W., Necula, G.C.: Mining temporal specifications for error detection. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 461–476.
Springer, Heidelberg (2005)

25. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining tem-
poral API rules from imperfect traces. In: ICSE 2006: Proceedings of the 28th
International Conference on Software Engineering, pp. 282–291. ACM, New York
(2006)

26. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Propel: an approach sup-
porting property elucidation. In: ICSE 2002: Proceedings of the 24th International
Conference on Software Engineering, pp. 11–21. ACM, New York (2002)

27. Jensen, A.C., Cheng, B.H.C., Goldsby, H.J.: A toolchain for the detection of struc-
tural and behavioral latent system properties. Technical Report MSU-CSE-11-
10, Computer Science and Engineering, Michigan State University, East Lansing,
Michigan (May 2011)



Defining MARTE’s VSL as an Extension of Alf

Arnaud Cuccuru, Sébastien Gérard, and François Terrier

CEA LIST, Boîte 94, Gif-sur-Yvette, F-91191 France
{arnaud.cuccuru,sebastien.gerard,francois.terrier}@cea.fr

Abstract. VSL and Alf are two OMG standards providing a textual
notation for complex mathematical expressions and detailed activities
respectively. Since these two notations have been designed by separate
communities (real-time embedded for VSL and software engineering for
Alf), they differ in syntax and semantics. Nevertheless, they clearly
exhibit intersections in their form and use cases. The purpose of this
article is to demonstrate that an alignment effort between the two lan-
guages would be beneficial for both users and tool providers. We show
that most of the syntactic constructs introduced in VSL are related to
general-purpose concerns (i.e., they are not specific to the real-time do-
main), most of them being covered by Alf. In this paper, we first identify
the subset of VSL which is valuable for the real-time domain, and then
propose a way of extending Alf with this subset1.

1 Introduction

Concrete syntaxes associated with modeling languages must provide abstrac-
tions suited to the targeted domains, offering to users the right balance between
conciseness and expressiveness. In UML, this balance is found with a mix of
graphical and textual notations, some concepts having a straightforward rep-
resentation in diagrams (classes, state machines, etc.), some others clearly re-
quiring text. Complex mathematical expressions and detailed UML activities
are representative examples of model elements for which a textual specification
can be preferred. These two cases have been specifically addressed by two re-
cent OMG initiatives: the Value Specification Language (VSL) and the Action
language for foundational UML (Alf).

VSL has been standardized in the context of the UML profile for Modeling
and Analysis of Real-Time and Embedded systems (MARTE) [1]. The main ra-
tionale for VSL was to provide users from the real-time domain with a simple
textual syntax for specifying the values of non-functional properties of their sys-
tem models. VSL has proven successful for this primary objective, as well as for
another major concern of real-time systems development and analysis: the speci-
fication of time expressions. As a typed expression language, VSL more generally
provides users with the ability to express complex mathematical expressions, in-
volving timing aspects and non-functional values.

1 This work is partially supported by the ITEA 2 - 08020VERDE project.

J. Whittle, T. Clark, and T. Kühne (Eds.): MODELS 2011, LNCS 6981, pp. 699–713, 2011.
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The standardization of Alf [2] is more recent. It can be considered as a logical
follow-up to the OMG standard on the Semantics of a Foundational Subset for
Executable UML Models (fUML) [3]. fUML identifies a structural and behavioral
subset of UML for which it provides a precise execution semantics. Activities
are the only kind of UML behavior to be included in this subset. An Activity
enables the expression of data and control flow graphs, focusing on sequences
and conditions for coordinating lower-level behaviors. While the formalism is
precise and expressive enough to describe algorithms at a low abstraction level,
the widespread dissemination of Activities as a behavioral formalism is limited
by the inadequacy of activity diagrams to capture detailed descriptions. These
diagrams often result in specifications too complex to handle and understand.
Alf fills the gap by providing a mostly Java-like syntax for Activities which is by
far more readable and intuitive for users. With the formal semantics provided
by fUML for Activities, Alf moreover benefits from a sound semantic definition.

As explained above, these two textual languages have been designed in differ-
ent contexts, involving separate communities with distinct concerns. Neverthe-
less, VSL and Alf clearly exhibit intersections in their form and potential use
cases. On the one hand, a significant part of Alf syntactic constructs is dedi-
cated to the specification of typed expressions. This is a common situation for
imperative languages where statements rely on expressions. On the other hand,
we explain in this paper that VSL rules for producing typed expressions mainly
address aspects which are not specific to the real-time domain. They are related
to general-purpose concerns which are also considered by Alf. With its Java-like
syntax and its precise semantic basis, Alf does have a chance of becoming more
widely used, whereas VSL will always remain a niche language. In terms of con-
solidation of the MARTE profile, it is necessary to clarify the future of VSL with
respect to the emergence of Alf. Our proposal consists in properly defining VSL
as an extension of Alf, focusing on the aspects of VSL which are valuable for the
real-time domain.

Section 2 provides strategic and pragmatic arguments in favor of an alignment
of the two languages, and motivates the idea of defining VSL as an extension
of Alf. Section 3 establishes a comparison between VSL and Alf type systems,
in order to precisely identify aspects of VSL which are not already covered by
Alf. From the aspects identified in this section, section 4 describes our concrete
proposal: a definition of VSL as an extension of Alf, which is validated by the
description of a prototype implementation for our UML modeling tool Papyrus.
Section 5 finally concludes this article and sets guidelines for future work.

2 Why VSL Should Be Defined as an Extension of Alf?

As explained in the introduction to this article, both VSL and Alf enable the
specification of typed expressions. In the context of a UML model, it basically
means that the two languages can be used in any case where an expression is
required. For example, this includes: default values for properties of a classi-
fier, lower and upper bound of a multiplicity, tagged-values of a stereotype or
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specification of constraints. Maintaining two distinct languages for common use
cases however implies several disadvantages for users, tool providers and stan-
dardization actors. These disadvantages, detailed in the next paragraphs, clearly
motivate a definition of VSL as an extension of Alf.

From a user standpoint, learning a new language is not an easy task.
Obviously, users will accept learning costs only if they are worthwhile for their
activities. Ideally, the new language should address concerns which are as much
orthogonal as possible to what they already know and practice. In case of inter-
sections, the syntactic differences between the two languages should be negligible.
If one of these two conditions is not satisfied, it is highly probable that the new
language will be rejected (A third condition concerns tool support. It is discussed
in the next paragraph). This fact has clearly influenced the definition of the Alf
syntax, which basically reuses Java syntax. On top of this Java basis, Alf then
brings additional syntactic constructs which make sense and are useful in a UML
context. Users are, however, free to use these additional facilities or only rely on
the Java constructs they already know. In this case, Alf clearly implies a limited
learning effort and does have a chance of becoming more widely used. Since VSL
mostly addresses concerns which are already covered by Alf (details are given in
section 3), it runs the risk of remaining a niche language. A reasonable strategy
to favor its adoption is to define it as an extension of Alf, focusing on aspects
which are valuable to the real-time domain, while leaving users leverage on their
Alf or even Java knowledge.

From a tool provider standpoint, developing an editor for a textual lan-
guage is costly and error-prone, even if model-based technologies such as Xtext or
emfext greatly ease the development task. Using Xtext, we have recently devel-
oped a VSL editor for our UML modeling tool Papyrus2. We also have an ongoing
development effort around an editor for Alf. Regarding VSL, we spent approxi-
mately 6 person-months to develop a parser, a type checker and editing facilities
such as completion proposals. For Alf, we have also spent 6 person-months, ex-
cept that the type checker is 70% complete and that 6 extra person-months
will probably be necessary to provide user-friendly editing facilities (completion
proposals, quickfixes, ...). As a public Research and Technology Organisation,
CEA LIST has to promote new technologies and formalisms among industry
and can therefore support this kind of efforts. For commercial tool vendors, the
situation is quite different. The development cost is worthwhile only if they can
secure a return on investment, which at least implies interested users. We have
shown in the previous paragraph that having VSL defined as an extension of Alf
would greatly improve its potential for adoption by users. On the one hand, it
means that if tool providers actually develop tool support around Alf, they will
find clients for it. On the other hand, it also means that any VSL-specific tool
support could be implemented as an extension of existing tool support for Alf,
where reuse would significantly decrease development costs.

From a standardization actor standpoint, there are also pragmatic rea-
sons in favor of having VSL defined as an extension of Alf. VSL has some basic

2 http://www.eclipse.org/modeling/mdt/papyrus/

http://www.eclipse.org/modeling/mdt/papyrus/
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flaws and limitations for which Alf already provides solutions. The purpose here
is not to establish an exhaustive list but rather to provide a few examples il-
lustrating how the VSL specification could benefit from such an alignment. For
example, VSL implies that any model element must have a Java compliant name
so that it can be referenced in an expression. This is a real issue since UML does
not imply any restrictions regarding naming conventions (a name can start with
a figure, contain white spaces, exotic characters such as ? etc.). It means that
a UML model not designed with the intent of using VSL could require name
refactorings before actually be suited to a VSL usage. In this case, Alf simply
proposes to use a delimiter (’) to encapsulate the name. Another issue concerns
the limitations of VSL for the specification of constraints. VSL does not provide
any OCL-like quantifier such as forAll, exist, one or more generally collection
operators such as select or reject (Rationale for this situation can be found in
[4], section 3.2.1, which has been used as a basis for the definition of VSL). If a
user needs to specify a constraint involving both a collection and a timing aspect
(e.g. all the tasks assigned to a processor must have an execution duration lower
than a given duration), he simply cannot. Alf provides all these operators (more
information about the inclusion of OCL in Alf can be found in [2], section 1).
These issues, among others, will require fixes by the MARTE revision task force.
Defining VSL as an extension of Alf would give an elegant solution to these
issues without having to reinvent the wheel.

We have given arguments in favor of defining VSL as an extension of Alf. The
purpose of the next sections is to demonstrate the feasibility of the proposal.
Section 3 is meant to clearly identify the aspects of VSL which are valuable to
the real-time domain. Taking into account identified aspects, Section 4 proposes
a refactoring of VSL in order to properly define it as an extension of Alf.

3 Comparison of VSL and Alf Type Systems

A type system represents the collection of rules specifying the types that can
be inferred from syntactic constructs provided by a language [6]. Comparing
type systems of VSL and Alf is therefore a good strategy to identify how the
two languages overlap, and consequently precisely identify aspects of VSL which
need to be considered in a potential extension of Alf. Figure 1 illustrates in an
abstract way the relationship between the type systems of VSL (depicted by the
small ellipse in the top-left part of the figure) and Alf (depicted by the ellipse in
the center).

Figure 1 is horizontally partitioned. The lower part of the figure abstracts
syntactic constructs related to the specification of statements. The upper part
concerns expressions. Since VSL is not an imperative language (and consequently
does not carry any rule for specifying statements), it only appears in the upper
part of the figure. Zone 1 depicts the intersection between type systems of VSL
and Alf. It represents the subset of VSL type system which clearly addresses
general-purpose considerations and for which Alf could be directly used instead.
Zones 2 and 3 concern aspects which are not covered by Alf. We however establish
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Fig. 1. Overlapping between VSL and Alf type systems

a distinction between zone 2, still addressing general purpose considerations, and
zone 3, which covers aspects more directly related to the real-time domain.

The next three sections refer to these zones to provide a more detailed com-
parison of VSL and Alf type systems. We organize this comparison according
to three kinds of syntactic rules that can be found in the VSL grammar: Type-
specific rules, metatype-specific rules and generic rules. These categories are
relevant with respect to the type system, in the sense that each one implies a
particular strategy for determining the type of a syntactic construct. This in
turn gives useful inputs for the realization of a type checker that would actually
implement the type system.

3.1 Type-Specific Rules

By “Type-Specific” rule, we mean a rule for which the type system statically spec-
ifies the exact evaluation type. Syntactic rules for literal specifications usually
fall into this category. The table contained in figure 2 identifies all type-specific
rules of VSL (column “VSL syntactic rule”), provides usage examples in VSL
and equivalent Alf expressions when possible (columns “examples”) and finally
gives the evaluation type associated with each rule (columns “inferred type”).
Note that these types are all defined in model libraries which are intrinsically
parts of the two language definitions (see [1] section D.1 for VSL and [2] section
11.2 for Alf).

Overlapping with Alf. The table contained in figure 2 is horizontally parti-
tioned into 3 zones (numbered 1, 2 and 3), where each zone corresponds to a
subset identified in figure 1. For rules of category 1, we can notice that VSL
and Alf syntaxes are almost the same. The first syntactic difference concerns the
additional capability of Alf to specify integer literals using octal form (i.e. 017
in the example) whereas VSL only supports decimal, binary and hexadecimal
forms (i.e. 15, 0b1111 and 0xF in the example). Note that in Alf, the type asso-
ciated with these literals is Natural, a datatype part of the standard Alf library
which is defined as an extension of Integer and UnlimitedNatural. The second
syntactic difference concerns the delimiter symbol used for string literals. VSL
uses symbol ’ whereas Alf uses symbol ”.
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Fig. 2. Type-specific rules of VSL and overlapping with Alf

Complementarity with Alf. Other type-specific rules of VSL evaluate to prim-
itive types Real or DateTime. These rules naturally fall into categories 2 and 3
of figure 1 (i.e. Alf has no equivalent predefined type in its model libraries and
therefore no equivalent type-specific rule). Primitive type Real represents the
set of real numbers IR. The rule LiteralReal enables the literal representation
of real values with the usual dot or scientific notations (i.e., in the example,
1234.56 and 1.2E3 respectively). Primitive type DateTime represents the set of
time instants. The rule LiteralDateTime enables the literal representation of a
time instant using a calendar form.

Finally, the rule JitterExpression addresses a more domain-specific need. It
specifies a particular kind of duration observation, which denotes an unwanted
variation (i.e. a jitter) between the time instants of two observed events (in the
example, these time instants are identified with time observations t1 and t2. See
section 3.3 for a definition of TimeObservation).

3.2 Metatype-Specific Rules

The term “Metatype” refers to metaclasses and stereotypes which can be used
to define the types actually handled by a language. For example, in the UML
metamodel, all the children of metaclass Classifier (such as Class, PrimitiveType
or DataType) are metatypes. By metatype-specific rule, we therefore refer to
syntactic rules for which the type system statically specifies the metatype that
can be derived. However, determining the exact evaluation type typically requires
further context analysis. Figure 3 illustrates the various metatype-specific rules
considered by VSL. The figure is vertically partitioned in 2 numbered zones.
Each zone maps to a subset with corresponding number in figure 1. Note that
category 3 is not represented here. It means that VSL do not carry metatype-
specific rules which can be considered as specific to the real-time domain.

Overlapping with Alf. VSL mostly provides metatype-specific rules which
evaluate to stereotypes defined in MARTE (except Enumeration Specification,
which evaluates to an UML Enumeration. VSL and Alf examples provided in
figure 3 relate to the enumeration TimeUnitKind in the bottom part of figure 4.
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Note that the definition of this enumeration is the same for VSL and Alf.). These
stereotypes, depicted in the top-left part of figure 4, are all defined as extensions
of the UML metaclass DataType.

TupleSpecification enables the specification of tuple values, whose evaluation
resolves to a TupleType. Property tupleAttribs of this stereotype enables to ref-
erence the properties which are actually part of the tuple (i.e., it can be a subset
of all the properties owned by the TupleType). In the examples (15,ms) and
(value=15,unit=ms) (whose evaluations resolve to TupleType Duration defined
in the bottom-left part of figure 4), each element of the tuple specification pro-
vides a value for a property of the TupleType. In the first notation option, the
reference with the property is established by order: 15 provides a value for prop-
erty value, ms for property unit. In the second notation option, each property
is explicitly named. Note that the equivalent Alf syntax is less concise. It relies
on the usage of the instance creation operator new, applied to a DataType (in
the example, the DataType is Duration, defined in the bottom-right part of fig-
ure 4). The arguments of the instance creation provide values for the properties
of the DataType. Like in VSL, the relationships between values and properties
can be established by order or by explicitly specifying the name of the property.
Note that the shorter notation options provided by Alf (i.e., where the name of
the datatype is not explicitly specified) can be used only in specific cases.

CollectionSpecification enables the specification of sequence of values, whose
evaluation resolves to a CollectionType. A CollectionType is characterized by the
type and number of elements that can be contained. This information is derived
from the type and multiplicity of the Property referenced via the attribute collec-
tionAttrib of this stereotype. The CollectionType IntegerCollection depicted in
the bottom-left part of figure 4 therefore represents an unbounded collection of
integer values. The equivalent Alf expressions do not rely on a specific collection
metatype. The standard Alf library rather introduces a template class Collection
which is parameterized by the type of elements it can contain (depicted in the
bottom-right part of figure 4). Like for tuple values, specifying a sequence of
values then comes to write an instance creation expression (where the operator
“new” is optional), provide a template binding (e.g.,Collection<Integer>, or to
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be more precise, a concrete subclass of Collection) and finally specify the se-
quence of values. Note that the third notation option of the examples, which is
the same as the VSL notation, is available only in very specific cases.
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Fig. 4. VSL and Alf metatypes and type definition examples

Complementarity with Alf. VSL introduces two additional metatype-specific
rules which have no equivalent in Alf: IntervalSpecification and ChoiceSpecifi-
cation. An IntervalSpecification represents the specification of an open/closed
interval of values, and its evaluation resolves to an IntervalType. Figure 4 (bot-
tom left-part) illustrates the usage of this stereotype for the specification of
IntegerInterval. The type of the elements contained in the interval is derived
from the Property referenced by the attribute intervalAttrib of the stereotype
IntervalType (i.e., in the example, the property is bounds : Integer [2]). The ex-
pression [2..45] (depicted in figure 3) therefore specifies a valid IntegerInterval
value.

The rule ChoiceSpecification evaluates to ChoiceTypes, a metatype similar to
C unions and Ada/Pascal “variant-records”. The stereotype ChoiceType enables
to combine multiple types into a single data type, where each type represents a
kind of alternative. Each alternative is defined by a Property of the ChoiceType
(the type of this property determines the type of the alternative) and the set of
all alternatives is identified via the attribute choiceAttribs of the stereotype (see
top-left part of figure 4). With the rule ChoiceSpecification, specifying a value
for a ChoiceType implies to identify the chosen alternative, and then specify the
corresponding value. As illustrated in figure 3, the chosen alternative is identified
by specifying the name of the corresponding property.
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3.3 Generic Rules

By “generic” rule, we mean syntactic rules for which the type system does not
statically specify the evaluation type or metatype. These rules usually involve
the manipulation of names, where each name is used to identify a named element
from the context model. Depending on the syntactic construct and the context,
the type system determines how to retrieve the corresponding named element
and infer a type from it. Figure 5 identifies all the generic rules provided by VSL
and determines whether they are covered (zone 1) or not (zone 2 and 3) by the
type system of Alf.
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Fig. 5. Generic VSL rules and overlapping with Alf

Overlapping with Alf. Even though they do not necessarily imply names, rules
LiteralNull and ConditionalExpression fall into the category of generic rules
as defined in the introduction to this section. Their evaluation type is indeed
completely context dependent. In the case of LiteralNull, the VSL specification
states that it should be evaluated to the DataType of the element for which the
expression is specifying a value. Note that this interpretation differs from Alf,
where the same expression would be considered untyped with multiplicity 0.
The rule ConditionalExpression enables the specification of two possible return
values, the one to be returned depending on the evaluation of a condition. The
expression (a > b) ? a : b given as an example in figure 5 will either return a
if a is greater than b, or b otherwise. The evaluation type therefore depends on
the type of the two possible return values. The type system of Alf specifies the
same evaluation rule.

Rules PropertyCallExpression, OperationCallExpression and BehaviorCall-
Expression actually deal with names, which must resolve to properties, opera-
tions and behaviors respectively. In figure 5, PropertyCallExpression examples
refer to a property called size. OperationCallExpression examples refer to an op-
eration called get. Finally, BehaviorCallExpression examples refer to a behavior
called Max, defined in a package called IntegerFunctions. Regarding the note-
worthy differences between VSL and Alf syntax, we can notice that Alf enables
explicit naming of parameters when specifying the arguments of the operation
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or behavior invocation (e.g. get(index => 2)). Alf also enables the usage of de-
limiter :: in qualified names, whereas . is the only delimiter considered by VSL.

Regarding the overlapping between generic rules, another interesting differ-
ence between VSL and Alf (not reported in figure 5 due to the limited size of
this article) concerns the management of predefined binary and unary operators
in infix and prefix expressions. In VSL, signatures of these operators are defined
as operations of predefined data types. Alf rather follows a procedural approach,
where each signature is defined as a function. For example, an expression such
as a + b will be interpreted as a.+(b) in VSL (i.e., a call to the operation +
associated with the datatype of a) whereas in Alf, it will be interpreted as +(a,b)
(i.e., a function call).

Complementarity with Alf. In the specification of a tuple value or an opera-
tion/behavior call expression, a DefaultLiteral (symbol -) can be used to denote
that no specific value is provided for a tuple element or an argument. If a default
value exists for this element, it must be used. Otherwise, - is interpreted as null.
Note that in practice, this symbol appears to be unusable when the number of
elements to specify (i.e. tuple elements or arguments) is important. This is a
common situation for most of the tuple types defined in the MARTE libraries.

Rules InstantExpression (which Evaluates to DateTime) and DurationExpres-
sion (which evaluates to Real) consist in the specification of a (potentially quali-
fied) name identifying a TimeObservation or a DurationObservation respectively.
TimeObservation is a UML concept which enables to model the time instant when
a particular event occurs (e.g., communication event, start of execution event,
etc.). DurationObservation is another UML concept which represents the dura-
tion between the occurrences of two events. Rules InstantExpression and Dura-
tionExpression are typically useful to specify time constraints, as illustrated in [5].

3.4 Summary of the Comparison

We have reviewed all the syntactic rules provided by VSL and described how they
are considered by the VSL type system to evaluate their type. The rules have
been categorized according two orthogonal criteria: The potential overlapping
with Alf (i.e. categories identified in figure 1) and how they are perceived by
the type system of VSL (type-specific, metatype-specific or generic rules). The
first criteria provides a global overview of where Alf needs to be extended (i.e.
all aspects falling into categories 2 and 3 of figure 1). Note that for some of the
rules falling into category 1 (i.e. TupleSpecification and CollectionSpecification),
we have shown that the VSL syntax was much more concise. This aspect must
be considered in the extension of Alf.

The second criteria provides a more precise idea of how Alf should be ex-
tended. Globally, type-specific rules rather require a syntactic extension (i.e.
for specific literals and keywords) and a model library extension (i.e. for spe-
cific types associated with these literals and keywords). Metatype-specific rules
rather require an extension of the metatypes supported by the language (e.g.
stereotype «ChoiceType»). Generic rules rather imply an extension of the type
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system, showing how existing Alf construct (e.g. qualified names) can resolve to
named elements considered by VSL (e.g. time and duration observations). The
next section takes into account these considerations for a definition of VSL as
an extension of Alf.

4 A Definition of VSL as an Extension of Alf

The extension we propose covers 3 aspects: Refactor the VSL types and metatypes,
extend Alf syntactic rules and finally extend the type system of Alf. These as-
pects are detailed in the next sections.

4.1 Refactoring of VSL Types and Metatypes

Figure 6 illustrates our refactoring proposal regarding types and metatypes of
VSL. In figure 2 (zones 2 and 3), we have highlighted the fact that Alf does not
have predefined types equivalent to Real and DateTime. Integer, UnlimitedNat-
ural, String and Boolean are however considered, since they are imported from
UML primitive types. Our proposal, depicted in left part of figure 6, then con-
sists in refactoring library MARTE_PrimitiveTypes by including only Real and
DateTime primitive types and importing other primitive types from Alf. In order
to be consistent with Alf principles and architecture (see discussion about VSL
operations and Alf function behaviors in section 3.3), refactoring also implies
removing all PrimitiveType operations defined in the original MARTE library.
They are replaced by function behaviors (which are not depicted in the diagram
due to size limitations).

« Primitive »
Real

« Primitive »
DateTime

MARTE_PrimitiveTypes Alf::Library

« Primitive »
Integer

UML::AuxiliaryTypes::PrimitiveTypes

« Primitive »
UnlimitedNatural

« Primitive »
Boolean

« Primitive »
String

« Primitive »
Natural

PrimitiveTypes

Collection

CollectionClasses

T

« import »

MARTE_CompoundTypes

bounds : T [2]
lowerOpen : Boolean
upperOpen : Boolean

Interval
T

« import » « import »Refactored New

Fig. 6. Modification of MARTE type libraries

In figure 3, we have highlighted the various metatypes considered by VSL: Tu-
pleType, CollectionType, IntervalType and ChoiceType. Our proposal consists
in reducing the set of VSL-specific metatypes. The purpose is to limit unnec-
essary complexity and therefore minimize the learning effort for an Alf user. In
section 3.2, we have explained the subtle difference between a UML DataType
and a MARTE TupleType (a TupleType can identify a subset of its own prop-
erties which are actually part of the tuple). In practice, this difference is never
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exploited, and this stereotype can be safely removed. In section 3.2, we have
also explained the similarities between the VSL metatype CollectionType and
the predefined Alf class Collection. We propose to remove CollectionType and
rely on class Collection instead. We follow a similar approach for the stereotype
IntervalType: the stereotype can be removed and replaced by a new template
class Interval. Interval is illustrated in the right part of figure 6 with the package
MARTE_CompoundTypes (in the MARTE specification, the term Compound-
Type designates all the stereotypes discussed in this section).

Finally, since ChoiceType carries a particular semantics (i.e., similar to C
unions and Ada/Pascal “variant-records”), we propose to keep it as part of the
VSL-specific metatypes. The other metatype to be kept is BoundedSubtype (not
discussed so far since it has no syntactic impacts), which can be used to statically
specify that a type subsets another type in terms of range of values.

4.2 Extension of Alf Syntactic Rules

Rules LiteralReal, LiteralDateTime and JitterExpression (see figure 2) can be
easily integrated in the Alf grammar. Indeed, their implementation can be based
on terminals which do not conflict with existing Alf rules. The type system of
Alf can be extended consequently to infer primitive types Real or DateTime (as
defined in the previous section).

In section 3.2, we have highlighted the fact that the syntax for sequences (e.g.
{1, 2, 3}) or tuple values (e.g. (value = 15, unit = ms)) is much more concise in
VSL than in Alf. Our proposal then consists in extending Alf syntax to support
corresponding syntactic sugar. Regarding sequences, Alf enables a concise syntax
(i.e. {1, 2, 3}) only in the case where a sequence is itself composed of sequences
(e.g. new Collection<Collection<Integer> >{{1,2}, {3}}). The extension then
consist in relaxing this constraint by promoting the corresponding rule (i.e. Se-
quenceCreationExpression) as a primary expression of the language. The type
system is extended to infer class Collection (as described in the previous section)
with appropriate template binding.

Regarding tuple values, the solution is not so straightforward. In the Alf gram-
mar, directly introducing support for expressions like (value = 15, unit = ms)
raises numerous issues, mainly due to the presence of parentheses. There is basi-
cally a conflict with parenthesized and cast expressions. Our pragmatic solution
consists in considering a tuple value as a sequence, except that all its elements
do not necessarily have the same type, and that in addition, a name (used to
denote the property of the tuple) can be specified. The rule SequenceCreation-
Expression (mentionned above) is extended in this way. Its usage would produce
expression such as {15, ms} or {value => 15, unit => ms}, which are quite near
from the original VSL examples depicted in figure 3. Note that symbol => is
used instead of =. An expression such as {value = 15} would indeed be parsed as
an assignment expression. The type system is extended to infer the correspond-
ing DataType. If the exact DataType cannot be inferred from the context, users
still have the possibility to specify an Alf instance creation expression with the
operator new.
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Rule IntervalSpecification (depicted in figure 3) also requires some syntactic
adaptations before being integrated in Alf. An expression such as ]a..b] (i.e.,
an interval where the lower bound a is not included) raises parsing issues. The
conflicts are due to the fact that other Alf constructs (which are part of the
Statement subset of Alf) also rely on symbols [ and ]. Again, our proposal
consists in extending rule SequenceCreationExpression mentioned above. When
using this rule for instantiating a collection, Alf supports the option of specify-
ing the interval of values to be contained in the collection instance. For exam-
ple, an expression such as new Collection<Integer>{0..3} is equivalent to new
Collection<Integer>{0, 1, 2, 3} (i.e. the lower and upper bound are implicitly
included). According to the extension described in the previous paragraphs (i.e.
promoting SequenceCreationExpression as a primary expression), {0..3} is al-
ready a valid expression, and it is syntactically very near from the original VSL
syntax (i.e. [0..3]). We simply extend the rule to optionally specify if the lower
and/or upper bounds are actually included in the interval. According to this ex-
tension, the expression ]a..b] would become {]a..b}. The type system is extended
to infer Interval (as defined in figure 6), where the binding for the template pa-
rameter is inferred from the type of the lower and upper bound expressions.

Rule ChoiceSpecification, also depicted in figure 3, does not imply any syn-
tactic extensions. We see in the next section that an extension of the Alf type
system is sufficient.

4.3 Extension of Alf Type System

Rule ChoiceSpecification (depicted in figure 3) evaluates to metatype Choice-
Type. Syntactically, it is however very similar to an operation or behavior in-
vocation (e.g., other(aperiodic), provided as an example in figure 3). There are
other cases in Alf where an invocation-like syntax is used, such as for link ex-
pressions (which can be used to get all the instances playing a given role in the
context of an association). At the parsing level, these rules are not syntactically
distinguishable. They are all merged into a single parsing rule, which consists
in specifying a (potentially qualified) name, followed by a list of (potentially
named) arguments. Depending on the context, the qualified name may resolve
to an Operation, a Behavior or an Association, and the arguments may refer
to parameters of the operation/behavior or association ends of the Association.
To support rule ChoiceSpecification, we simply propose to extend this inference
rule, so that the qualified name can refer to a property of a ChoiceType, and
arguments may refer to properties of this property’s type.

Alf introduces a rule called NameExpression. It enables to specify a reference
to a property, a local variable or a formal parameter by giving its (potentially
qualified) name. Concerning rules InstantExpression and DurationExpression in-
troduced in figure 5, our proposal simply consists in extending the inference rule
associated with NameExpression so that it can also resolve to a TimeObservation
or a DurationObservation.
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Fig. 7. VSL as an extension of Alf: Synthesis of proposed extensions

Finally, rule LiteralDefault (see figure 5) is simply ignored in this proposal
due to the fact that the symbol has proven unusable in practice (see discussion
in section 3.3).

Figure 7 summarizes all the extensions we have proposed in order to properly
define VSL as an extension of Alf. For each VSL rule implying an extension of Alf
(the names depicted in the first column are those used in section 3), it provides
examples using the original VSL syntax, the one based on the Alf extension and
finally identifies the extension strategy which has been followed (i.e., extending
libraries and/or extending the syntax and/or extending the type system).

4.4 Prototype Implementation

The elements described in the proposal above have almost all been validated by
a prototype implementation. This prototype consists in an extension of the Alf
parser, a refactoring of the MARTE type libraries and a partial implementation
of the type system extensions. As explained in section 2, we are developing an
Alf editor for Papyrus. This editor is developed with Xtext, which provides an
interesting feature called “grammar mixins”. This functionality enables grammar
designers to reuse and overload existing grammars. In our prototype, the VSL
grammar (as described in this section) simply reuses the Alf grammar, extends it
with new rules (e.g., LiteralReal, LiteralDateTime), and finally overloads where
necessary (e.g., SequenceCreationExpression, described in section 4.2). The syn-
tactic extensions we have proposed have all been implemented. They do not
bring any ambiguity in the parsing process.

The extensions of the type system have been implemented for simple cases,
such as LiteralReal (which evaluates to primitive type DateTime from the refac-
tored MARTE library) or NameExpression for the cases where it refers to time
or duration observations (which requires a simple name analysis). The overload-
ing related to management of ChoiceSpecification has not been implemented
yet. Since it relies on principles that we have already implemented for manag-
ing operation or behavior invocations, we however have no doubt regarding its
technical feasibility.
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5 Conclusion

We have proposed a definition of VSL as an extension of Alf. This extension
covers three aspects. The first one concerns a refactoring of MARTE libraries
(underlying the type system of VSL) so that they properly import and then
extend Alf libraries. The second aspect concerns an extension of the Alf syntax, in
order to consider the need for new literals or syntactic sugar (e.g. for tuple values
or sequences). The last aspect concerns the extension of the Alf type system,
where we have extended inference rules of Alf to account for VSL concerns. The
technical feasibility of the proposal has been validated with the description of a
prototype implementation for our UML modeling tool Papyrus.

The direct follow-up to this work concerns the raising of an official MARTE
issue regarding the future of VSL with respect to the emergence of Alf. This
issue will of course motivate the need to define VSL as an extension of Alf. All
the ideas that we have presented in this article will provide useful material in
the context on the ongoing MARTE revision task force 1.2, where CEA LIST is
strongly involved.

A more long-term work concerns the impact of the proposed extensions re-
garding the statement subset of Alf. As explained in the introduction to this
article, Alf (via statements, themselves relying on expressions) provides a con-
crete syntax for UML Activities. fUML in turn provides a precise and executable
semantics for this behavioral formalism. Some of the extensions we have proposed
are related to Time. Since fUML is time-agnostic, extensions to fUML are clearly
required. Defining these extensions in a simple revision task force requires too
much work and adds to the current version of MARTE. It will be addressed
in a request for proposal (more generally concerning the relationship between
MARTE and fUML) which will be raised before the end of 2011.
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Abstract. Development of model-based Electric/Electronic (E/E) architecture 
in the automotive industry poses a high demand on the data management of 
models. The collaborative modeling work involves stakeholders dispersed 
across various locations and departments, while the models themselves are of-
ten extremely large-scaled. In this paper, we present our approach addressing 
the model data management issue for both asynchronous and synchronous 
modeling. Compared to asynchronous modeling, which is based on the 
lock/commit mechanism for cross-department collaboration, synchronous mod-
eling is targeted to assist quick and efficient interaction among small groups of 
members. We use the delta model for versioning in the database as well as for 
the synchronous modeling functionality. Furthermore, other versatile uses of the 
delta model such as the cumulative delta model and the reverse delta model are 
also introduced. 

Keywords: Delta Model, Collaborative Modeling, Real-time Collaboration, 
Versioning, Groupware, Computer Supported Cooperative Work (CSCW). 

1   Introduction 

In the last decades, model-based development has been applied in various domains 
which go beyond just software. Just like other Computer Supported Cooperative 
Work (CSCW) tools which can be classified as asynchronous and synchronous [14], 
tools supporting collaborative co-modeling also fall into these two groups. There are 
two important issues related to data: (1) how to organize the data for model version-
ing (normally occurs in asynchronous co-modeling environment) and (2) how to mi-
nimize the transferred data in a synchronous (real-time) collaborative environment.  

Our tool PREEvision is a model-based system engineering solution for complex 
electric/electronic (E/E) systems design and optimization [10, 12, 17]. As Fig. 1 
shows, an E/E model integrates huge amount of engineering data spread across vari-
ous domains. Members participating in the overall modeling process often involve 
engineers belonging to diverse functional departments situated at various locations. 
Hence, the two issues mentioned above become more important here than in the case 
of other tools. The reasons are: (1) Large-scaled meta-model and model: The 
PREEvision model is based on a highly complex domain specific meta-model sup-
porting various industrial standards such as AUTOSAR, KBL, ELOG, FIBEX etc.  
 



Delta Model for Collaborative Work of Industrial Large-Scaled E/E Architecture Models 715 

 

Fig. 1. Modeling layers in the PREEvision Tool [20] 

The meta-model contains more than 1000 meta-classes at the time of writing this 
paper (Fig. 2). The model which the users edit is often extremely large-scaled (more 
than 500,000 artifacts and the model XMI-file is larger than 200MB). (2) Supporting 
flexible collaboration: Our goal is to support both asynchronous and synchronous 
collaboration. As Fig. 3 shows, at the organizational level, collaborative modeling is 
generally asynchronous based on pessimistic locking with version support. Synchron-
ous modeling is typically used among small groups of users to collectively explore, 
discuss, and brainstorm a solution simultaneously. Here the model changes of all the 
group members are always synchronized to the same state.  

In this paper, we describe our approach addressing these two issues. Our contribu-
tions can be summarized in the following two points: (1) Fine-grained delta model is 
used both in the persistent layer to minimize the data for model versioning and in real-
time collaboration to minimize the network traffic. (2) The delta model is used for solv-
ing other problems in real-time collaboration such as undo/redo and latecomer support.  
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Fig. 2. A part of the PREEvision meta-model 

 

Fig. 3. Asynchronous and Synchronous Modeling in an Organization 
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The remainder of this paper is structured as follows: related work is discussed in 
Section 0. Section 0 provides a brief overview of the PREEvision collaboration envi-
ronment. Section 0 lays down the principle and the concrete usage of the delta model. 
Finally, Section 0 talks about the state of the current work and briefly discusses the 
future work that needs to be done in this area. 

2   Related Work 

For a system with versioning functionality, data volume would be an important topic 
in the persistent layer in which all different versions of models are stored. The re-
quired data volume is dependent on the individual data structure as well as (perhaps 
more) on the versioning granularity. CVS [2] and SubVersion [7] are examples of 
extreme coarse versioning. A file is the minimal versioning unit. If the versioning of a 
complete model is based on the file level, each version of the model is then stored in 
the persistent layer as a single file. Fine grained versioning could be versioning small-
er units such as package, diagram or single artifact. For example, commercial UML 
tool Poseidon [19] enables versioning a diagram. STEVE is a framework in the re-
search field with a fine-grained versioning mechanism making versioning software 
artifacts possible [15].  

In contrast, a synchronous groupware system is highly interactive, volatile and fo-
cused. It requires a short response time (time necessary for the actions of one user to 
be reflected by his/her own interface) as well as a short notification time (time neces-
sary for one user’s action to be propagated to the other users’ interface) [9]. Com-
pared to versioning that mainly influences the persistent layer, synchronous modeling 
demands a harder requirement on “live” data on the network traffic. 

Most of the collaborative modeling tools supporting synchronous modeling are 
UML tools. D-Meeting uses a simple extra layer such as whiteboard which is purely 
additive to the model layer [3]. The white board is used as a medium to have a quick 
stretch of ideas. In the work of Chen [5], manual stretch is recognized and trans-
formed to artifacts as integrated part of the model. For the two examples mentioned 
above, the transferred data might be data streaming representing the shared image. 
Other tools allow users to directly work on model artifacts. SLIM [22] and Process-
Wave [21] are such examples which are lightweight applications and use web browser 
to do the synchronous collaborative modeling. For these two examples, transferred 
data might be a simple command object representing the action to be executed. 

Obviously, handling data is more complicated in a synchronous collaborative mod-
eling environment as compared to an asynchronous one. Some of the features, which 
are normally of no concern in asynchronous modeling, can pose real challenges in a 
synchronous collaborative modeling environment. Undo/redo and latecomer support 
are two such examples. Undo action removes the past action and allows the user to 
reverse erroneous operations. Redo is the inverse of undo. A late comer is a user who 
joins the collaborative synchronous work process after the session has already been 
established. In other words, there are changes that have already been carried out by 
other participants. Before starting to work on the shared area, the late comer needs to 
retrieve all the changes first. 
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There exist some conceptual works addressing the undo/redo problem [1, 4, 11]. 
For instance, Chen et al. [4] propose an algorithm enabling the user to undo any oper-
ation in history; Göhnert et al. [11] further suggest a multi-mode undo mechanism to 
provide the participants the flexibility in terms of undo mode and maintain the integri-
ty of the history. In a collaborative modeling tool, undo/redo is typically realized 
through a command pattern, in which forward and reverse state transitions at the ac-
tion level is encapsulated in a command object [1]. It works fine in simple cases (e.g. 
moving an object from a position A to B corresponds to a reverse transition of moving 
the position from B to A.). However, it is not appropriate for complex operations for 
which a forecast of reverse action is difficult or even impossible. Furthermore, be-
cause it is not suitable for software refactoring, long-term software maintenance 
would also be a problem if the number of actions is large.  

Related work in CSCW uses a different technique to handle the latecomer problem. 
One sends the entire data over the network for the latecomer, proposed by Illmann et 
al. [13] and the other sends the missing data in sequential units, suggested by Chiara, 
et al. [6]. These two mechanisms will work well in small-scaled data, but is not suita-
ble in our case. Transmission of large amount of a complete model data is time con-
suming. Sequential update of all individual data could consume even more time in an 
extreme case.  

To sum up, in spite of the existence of various applications, there has not been 
enough work that really addresses the problem of the data itself. The reasons might be 
that most models in the research area are restricted to small-scaled models. Another 
reason might be that few tools needed to handle large-scaled models both in asyn-
chronous and synchronous modeling. In fact, this is where our work differs from other 
existing works in that we focus on the data aspect in the context of asynchronous and 
synchronous collaborative work of large-scaled models.  

3   Overview of the Collaborative Modeling Environment 

Fig. 4 shows the PREEvision collaborative modeling environment. All model infor-
mation is stored in a relational database. A model has different versions with a unique 
version number for each version as its indicator. With versioning, a user can view an 
earlier state of the model. Exclusive locking on the sub-model in the database is re-
quired before changes at that locked area are allowed. The locked sub-model can be 
of different granularity. After a commit operation, the local model changes are fina-
lized in the persistence layer and the version number is incremented by one. Moreo-
ver, within the locked area, the user has the flexibility to involve other participants to 
synchronously make model changes. The inclusion of group members in synchronous 
modeling is through the share/join action. In order to begin a session, the owner of the 
lock can share the locked sub-model and group members need to explicitly execute 
the join action to participate (Fig. 5). 

Fig. 6 illustrates our overall three tier software architecture. It consists of the 
PREEvision client, the middleware and the underlying database. Architecture model 
is replicated in every PREEvision client. The middleware serves as an intermediate 
layer responsible for data exchange, task coordination, undo/redo as well as latecomer 
support. The workflow for synchronous modeling is as follows: (1) the client works 
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Fig. 4. Asynchronous and Synchronous Collaborative Modeling 

 

Fig. 5. Screenshot of PREEvision  

with the domain specific model based on our complex meta-model. A delta model 
listener registered in the model repository observes changes at the artifact level. (2) 
Based on the information provided by the listener, the delta model is serialized to a 
generic and domain independent binary model format (see Section 0) after every 
individual model operation. (3) The binary model delta is transferred to the  
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Fig. 6. Software architecture 

middleware through a socket connection. In order to ensure that models in partici-
pating clients and middleware are always in the same state, every model change is 
immediately broadcast to other participants. (4) Finally, this received delta model is 
merged with the cache model in other clients using the delta model merger. After the 
merging process is finished, the model state of other clients is then updated to the 
same state as that of the sender. 

4   The Use of Delta Model  

4.1   Delta Model in Generic Form 

It was mentioned before that the delta model format is based on a generic data model 
(Fig. 7) in order to have better reusability and scalability. This data model is to a large 
extent compatible with MOF [18] and consists of only objects, attributes and rela-
tions. Object corresponds to an instance of the MOF class and contains its attributes. 
Attribute corresponds to a MOF attribute and has its name and value. Relation corres-
ponds to an association from one to another object. In order to assure the order, rela-
tions are saved as a list aggregated to the source object.  

In our relational database, the models themselves are also saved as fine-grained ob-
jects, attributes and relations. In each model version, only the delta model in terms of 
objects, attributes and relations compared to the last model version is saved in the 
database. Switching or updating to a specific model version is also through the fine-
grained delta model. Thus, the data storage in the database is reduced. 
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Fig. 7. Generic data model 

4.2   Principle of Delta Model 

The delta model represents the difference between two model states. In Fig. 8, the 
generation (upper part) enables the serialization of the delta model. The merging 
(lower part) enables the model to transit from one state to another through the merg-
ing of the delta model into the complete model.  

Generally the changes can be classified as addition, deletion and changes of an arti-
fact. Deleting an artifact automatically causes the deletion of artifacts contained di-
rectly or indirectly by this artifact. Moreover, changing an artifact can be a result of 
the changing of its attributes as well as its relations. 

 

Fig. 8. Principle of delta model  
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Fig. 9. A simple example of concrete model  

As shown in the simple and concrete example in Fig. 9, the name of sensor be-
comes “intelligent sensor” and the communication medium is also changed from con-
ventional connection to CAN bus system. If we ignore the diagram part of the model, 
the delta model is: (1) the deletion of objects (two conventional connectors and con-
ventional connection) with the automatic deletion of relations to other objects (sensor 
and ECU at two sides). (2) The added bus system and two bus connectors. (3) The 
change of name (attribute) of sensor and the relations of bus connectors with sensor 
and ECU at each side.  

4.3   Model Transition between Different Model States 

The model states between which a model can “move” were illustrated earlier in Fig. 4. 
Our use of delta model is shown in Fig. 10. The model that a user edits is always at a 
certain model state. The model state can be transformed to forward and backward with 
the help of forward delta model and reverse delta model. The transition from one model 
state to another adjacent model state is atomic. Cumulative delta model is the cumula-
tive result of all individual delta models. As explained in Table 1, the above terms have 
different meanings and use cases in asynchronous and synchronous modeling.  

Forward/Reverse Delta Model 
Forward/Reverse delta model enables the model transition to forward/backward direc-
tion respectively. The format of forward and reverse delta model is the same. For 
asynchronous modeling, given the specific source and target model versions, delta 
model can be obtained through SQL-Query in the persistent layer. For synchronous 
modeling, we currently use forward/reverse delta model for redo/undo action. In  
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Fig. 10. Model transition between different model versions 

Table 1. Different meaning and use cases in asynchronous and synchronous modeling 

 Asynchronous modeling Synchronous modeling 

Atomic model tran-
sition 

Delta model between two adja-
cent model versions 

Delta model caused by one 
model operation 

Forward/Backward 
direction  

Forward: switch from an older to 
a newer model version; 
Backward: switch from a newer 
to an older model version 

Forward for redo action  
Backward for undo action 
 

Delta model Model difference between two 
model versions in persistent layer 

Model difference in cache mod-
el caused by model operation(s) 

Forward/Reverse 
delta model 

Delta model between model 
version X and Y depending 
which value is greater 

Delta model in cache enabling 
model transition for for-
ward/backward direction 

Cumulative delta 
model 

Delta model between model 
version X and Y which are not 
adjacent 

Cumulative cache of all cached 
delta models addressing the 
latecomer problem 

general, history and selective undo/redo are two kinds of undo/redo modes. History 
undo/redo mode performs the linear transformation of data state according to the his-
tory tree. Selective undo/redo provides the user the possibility to select one or more 
specific history changes. As Fig. 10 shows, a forward and its reverse delta model form 
a pair. In the middleware repository, sequential pairs are stored in list. Each new 
model change from the client will take its place at the foremost position. Middleware 
knows the current position of the model state. Our tool currently supports only history 
redo/undo. If the current state is not the foremost position and a user submits model 
change, the delta model pairs in front of the current position will automatically be 
removed and replaced by this new change.  
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Table 2 gives a summary of the relationship of forward and reverse delta models. 
As the concrete example shown in Fig. 11, added artifact in the delta model will be 
the deleted artifact in its reverse delta model and vice versa. If it is a changed artifact, 
then the artifact state including its attributes and relations at the target state is in the 
delta model. 

Table 2. Forward and reverse delta model 

 Forward delta model 
(model state A to B) 

Reverse delta model 
(model state B to A) 

Added artifact Added artifact with its attributes 
and relations 

The XMI-ID of deleted artifact  

Deleted artifact The XMI-ID of deleted artifact Added artifact with its all 
attributes and relations 

Changed artifact Changed artifact with its 
attributes and relations at state B 

Changed artifact with its all 
attributes and relations at state A 

 

Fig. 11. A simple example of reverse delta model 

Cumulative Delta Model. Cumulative delta model enables the switch to a model 
state which is not adjacent to current model state. Similar to the forward/reverse delta 
model in asynchronous modeling, cumulative delta model can be obtained through 
SQL-Query in persistent layer. For synchronous modeling, we currently only support 
the cumulative delta model corresponding to the sum of all model changes since the 
start of a session. We use cumulative delta model to resolve the latecomer problem 
discussed in Section 2. Having identified the problems of other existing mechanisms, 
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our aim is to let the user update the newest model state through minimal data. A cache 
repository of the cumulative delta model is initialized once the synchronous modeling 
session is created. It is not a complete model repository because only the changed 
parts are gathered. Middleware cumulates the received individual delta model in the 
background upon receiving it from a client. After the merging of the cumulative delta 
model, the newly joined user can immediately update to the newest state.  

Fig. 12 shows exemplarily the principle of the cumulative delta model. Again, the 
algorithm is based on classification of added/changed/deleted artifacts. If an artifact 
exists in two delta models, its attributes and relations in later delta model will replace 
the earlier. A simple concrete example of cumulative delta model can be seen in Fig. 
13. The cumulative is a result of four delta models caused by four model operations: 
(1) deleting the conventional connection, (2) changing the name of sensor to “Sensor 
Unknown”, (3) adding and connecting a bus system and (4) renaming once more the 
sensor name to “Intelligent Sensor”.  

 

Fig. 12. The principle of cumulative delta model 

 

Fig. 13. A simple example of cumulative delta model 
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5   Discussion and Future Work 

This paper presents our approach of using delta model for asynchronous and syn-
chronous collaborative modeling. For both working modes the delta model is crucial. 
First of all, it reduces the storage in the persistent layer, as only the difference be-
tween model versions is saved. Secondly, it reduces the network traffic, which is one 
of the most important requirements for synchronous work.  

Although our approach is targeted for collaborative E/E architecture development, 
its principle could be used in other areas, as delta model both in the persistent and the 
cache layers is generic. In other words, we can even resolve the collaborative textual 
editing in a model-based way, as we need only to generate a corresponding domain 
specific model for textual editing without reimplementation of business logics related 
to delta model. 

So far, the implementation of asynchronous work with versioning in the database 
has been productively used for more than two years. Experience shows that it is an 
efficient concept. Synchronous collaborative modeling is still under development. We 
have finished implementation of all the work related to data manipulation (delta mod-
el generation, serialization, merging, undo/redo support and cumulative delta model). 
A prototype with the most pessimistic concurrency control has already been devel-
oped. However, there is still some way to go, before our mechanism can be put into 
productive use. The focus of our future work lies in the follows areas: 

Extension of delta models: In the future, we need to have a mechanism for selective 
undo/redo support. The main problem here is how to undertake dependency analysis 
of the generic delta models which do not bear the real semantics. Furthermore, un-
do/redo delta model storage opens various new possibilities. For instance, user can 
use the delta model to have a complete view of model evolvement during the overall 
synchronous collaborative modeling process. Moreover, the extension of the cumula-
tive delta model would enable a participant to disconnect and reconnect at any time. 

“Awareness” support: Dourish and Bellotti [8] define “Awareness” as an “under-
standing of the activities of others, which provides a context for your own activity”. 
Particularly in synchronous collaborative modeling environment, “awareness” infor-
mation is critical. “Awareness” is the area where our work needs to intensify. Gener-
ally we need to have good UI concepts to let all the participants know what others are 
doing in order to avoid the users editing the same artifact at the same time.  

Concurrency control: Right now we do not have a mature mechanism for concur-
rency control. It is one of our core future tasks to implement a much more optimistic 
concurrency control without losing data consistency. 
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