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Abstract. In this paper we address a voting mechanism to combine clustering
ensembles leading to the so-called co-association matrix, under the Evidence Ac-
cumulation Clustering framework. Different clustering techniques can be applied
to this matrix to obtain the combined data partition, and different clustering strate-
gies may yield too different combination results. We propose to apply embedding
methods over this matrix, in an attempt to reduce the sensitivity of the final parti-
tion to the clustering method, and still obtain competitive and consistent results.
We present a study of several embedding methods over this matrix, interpreting
it in two ways: (i) as a feature space and (ii) as a similarity space. In the first
case we reduce the dimensionality of the feature space; in the second case we
obtain a representation constrained to the similarity matrix. When applying sev-
eral clustering techniques over these new representations, we evaluate the impact
of these transformations in terms of performance and coherence of the obtained
data partition. Experimental results, on synthetic and real benchmark datasets,
show that extracting the relevant features through dimensionality reduction yields
more consistent results than applying the clustering algorithms directly to the
co-association matrix.

Keywords: clustering ensembles, co-association matrix, evidence accumulation
clustering, embedding methods.

1 Introduction

Clustering is one of the central problems in Pattern Recognition and Machine Learn-
ing. Given a set of unlabeled data, its typical goal is to group objects into clusters, such
that objects within a cluster are similar, and objects in distinct clusters are dissimilar.
Assuming that clusters are disjoint, the clustering process leads to a data partition. Hun-
dreds of clustering algorithms exist, handling differently issues such as cluster shape,
density, noise. k-means is one of the most studied and used algorithms [9,18].

Recently, taking advantage of the diversity of clustering solutions produced by clus-
tering algorithms over the same dataset, an approach known as Clustering Ensemble
methods, has been proposed and gained an increasing interest [4,16,10,1]. Given a set
of data partitions - a clustering ensemble (CE) - these methods propose a consensus
partition based on a combination strategy, having in general a leveraging effect over the
single data partitions in the CE.

We can generate clustering ensembles following two approaches: choice of data rep-
resentation or choice of clustering algorithms or algorithmic parameters. In the first
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case, we can get different representations of objects by applying different preprocess-
ing mechanisms or feature extraction techniques, or just by sampling the data a number
of times. We can also have clustering ensembles if we use several clustering algorithms
or just the same algorithm with different parameter values.

Fred and Jain [5] proposed a clustering ensemble approach based on the combina-
tion of information provided by a set of different partitions of a given dataset, through
the Evidence Accumulation method. To combine all the different partitions, Fred and
Jain [5] proposed a voting scheme, which leads to a pairwise relationships matrix, called
“co-association matrix”. The final data partition is obtained by applying a clustering al-
gorithm over the co-association matrix. One main advantage of this voting scheme is
that it can deal with partitions having different number of clusters and different data
representations.

The application of different clustering techniques to this matrix may yield different
solutions. We propose to use embedding methods (also called dimensionality reduction
(DR) methods) over this matrix, in an attempt to reduce the sensitivity of the combined
data partition to the clustering method, and obtain better and more consensual results.
We present a study of the performance and coherence of the solutions when different
clustering techniques are applied to the resulting data representations. To obtain those
representations we will follow two approaches: interpret the co-association matrix as a
feature space, and as a similarity space.

The first approach is similar to the one proposed by Kuncheva et al. [11]: we will
view the co-association matrix as a feature space, but instead of using the full feature
space, we will reduce its dimension using several dimensionality reduction (DR) meth-
ods. These DR techniques aim to take a set of data points in a high-dimensional space
and output a new set of data points in a lower-dimensional space, in a way that preserves
the topology of the high-dimensional data. This new data representation is commonly
called an embedding of the original dataset. We will empirically show that the use of
DR methods to remove redundant features improves the quality and consistency of the
final partition for different clustering techniques.

In the other approach we view the co-association matrix as a similarity space, as
in [5]. However, instead of applying directly the clustering techniques to this matrix,
we will first apply DR methods to it. Many DR methods take as input some distance
measure between points (usually in a distance matrix whose (i, j) entry contains the
distance between data points i and j). Therefore, if one converts the similarity measures
in the co-association matrix into distance (or dissimilarity) measures, one can input this
dissimilarity matrix into the DR methods directly. The resulting low-dimensional data
points are then clustered with several clustering techniques. Again, we intend to study
if there exists consistency and an improvement in the quality of the solutions.

The dimensionality reduction methods used have different characteristics such as:
linear vs. nonlinear; preserving local structure vs. preserving global structure; preserve
spatial distances vs. preserving graph distances. This means that different embedding
strategies may influence differently the solutions; we intend to study if there exists a
class of embedding methods suitable for certain types of datasets (well separate clusters,
touching clusters).
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This paper is organized as follows: Section 2 gives a brief explanation of the em-
bedding algorithms used in the study. Section 3 explains the evidence accumulation
approach, including the construction of the co-association matrix. Section 4 explains
the new methodology proposed in this paper and the two interpretations we give to this
matrix. Section 5 describes the datasets used in this study and the experimental results
for the two interpretations of the co-association matrix: feature space (section 5.2) and
similarity space (section 5.3). We summarize and discuss the main findings in Section 6.
Conclusions are drawn in Section 7.

2 Embedding Methods

To perform embeddings we will use several unsupervised DR methods: Locality
Preserving Projections (LPP) [7]. Neighborhood Preserving Projections (NPE) [6],
Sammon’s mapping [15], Curvilinear Component Analysis (CCA) [3], Isomap [17],
Curvilinear Distance Analysis (CDA) [13], Locally Linear Embedding (LLE) [14] and
Laplacian Eigenmap (LE) [2]. We now briefly introduce each of these algorithms.

2.1 Nonlinear Methods

The Locally Linear Embedding (LLE) [14] assumes that the data manifold is smooth
and sampled densely enough such that each data point lies close to a locally linear sub-
space on the manifold. In other words, the manifold smoothness and sampling should
be enough to locally approximate the manifold by a hyperplane. LLE makes a locally
linear approximation of the whole data manifold; it first estimates a local coordinate sys-
tem for each data point from its k-nearest neighbors. To produce the embedding, LLE
finds low-dimensional coordinates that preserve the previously estimated local coordi-
nate systems as well as possible. Technically, LLE first minimizes the reconstruction
error E(W) =

∑
i ‖xi −

∑
j Wi,jxj‖2 with respect to the coefficients Wi,j , under the

constraints that Wi,j = 0 if i and j are not neighbors, and
∑

j Wi,j = 1. After finding
these weights, the low-dimensional configuration of points is next found by minimizing
E(Y) =

∑
i ‖yi −

∑
j Wi,jyj‖2 with respect to the low-dimensional representation

yi of each data point.
The Laplacian Eigenmap (LE) [2] uses a graph embedding approach. An undirected

k-nearest neighbor graph is formed, where each data point is a vertex. Points i and j
are connected by an edge with weight Wi,j = 1 if j is among the k nearest neighbors
of i, otherwise the edge weight is set to zero; this simple weighting method has been
found to work well in practice [2]. To find a low-dimensional embedding of the graph,
the algorithm tries to put points that are connected in the graph as close to each other as
possible and does not care what happens to the other points. Technically, it minimizes
1
2

∑
i,j ‖yi − yj‖2Wi,j = yT Ly with respect to the low-dimensional point locations

yi, where L = D−W is the graph Laplacian and D is a diagonal matrix with elements
Dii =

∑
j Wi,j . This cost function has an undesirable trivial solution: having all points

in the same position would have a cost of zero, which would be a global minimum
of the cost function. In practice, the low-dimensional configuration is found by solving
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the generalized eigenvalue problem Ly = λDy [2]. The smallest eigenvalue corre-
sponds to the trivial solution, but the eigenvectors corresponding to the next smallest
eigenvalues yield the desired LE solution.

Isomap [17] is a variant of Multidimensional Scaling (MDS) [12], which finds a
configuration of output coordinates matching a given distance matrix. Isomap does not
compute pairwise input-space distances as simple Euclidean distances but as geodesic
distances along the manifold of the data (technically, along a graph formed by connect-
ing all k-nearest neighbors). Given these geodesic distances the output coordinates are
found by standard linear MDS. When output coordinates are found for such input dis-
tances, the manifold structure in the original data becomes unfolded; it has been shown
that this algorithm is asymptotically able to recover certain types of manifolds.

Curvilinear component analysis (CCA) [3] is a variant of MDS [12] that tries to pre-
serve only distances between points that are near each other in the embedding. This is
achieved by weighting each term in the MDS cost function by a coefficient that depends
on the corresponding pairwise distance in the embedding. In our case, this coefficient
is simply 1 if the distance is below a predetermined threshold and 0 if it is larger. This
approach is similar to Isomap but the determination of whether two points are neighbors
is done in the output space in CCA, rather than in the input space as in Isomap.

Curvilinear distance analysis Curvilinear Distance Analysis (CDA) [13] is an exten-
sion of CCA. The idea is to replace in MDS the Euclidean distances in the original space
with geodesic distances in the same manner as in the Isomap algorithm. Otherwise the
algorithm is similar to CCA.

2.2 Linear Methods

Locality Preserving Projections (LPP) [7] is a linear dimensionality reduction method
that preserves local neighborhood information. It shares many properties of nonlinear
techniques such as Laplacian Eigenmaps or Locally Linear Embedding, since it is a
linear approximation of the nonlinear Laplacian Eigenmaps.

Neighborhood Preserving Projections (NPE) [6] is a linear dimensionality reduction
method that preserves the local structure of the data. It has similar properties to LPP,
but it is a linear approximation of Locally Linear Embedding (LLE), which means that
it has properties similar to that method.

3 Evidence Accumulation: The Co-association Matrix

Let X = {x1, x2, . . . , xn} be a set of n objects or samples represented in a feature
space or some other data representation. A clustering algorithm takes X as input and
groups the n patterns into k clusters, forming a partition P . A clustering ensemble, P,
is a set of N different partitions of the data X :

P = {P 1, P 2, . . . , PN} (1)

P 1 =
{
C1

1 , C1
2 , . . . , C1

k1

}

...

PN =
{
CN

1 , CN
2 , . . . , CN

kN

}
,
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where Ci
j is the jth cluster in data partition P i, which has ki clusters and ni

j is the

cardinality of Ci
j , with

∑ki

j=1 ni
j = n, i = 1, . . . , N .

The evidence accumulation approach, proposed by Fred and Jain [5], is a three-step
cluster ensemble method: 1- build the clustering ensemble (CE); 2- combine evidence
in the CE, mapping it into a co-association matrix; 3- extract the consensus partition
by applying a clustering algorithm over the co-association matrix. The basic idea is
that patterns belonging to a “natural” cluster are very likely to be assigned to the same
cluster in different data partitions. Taking the co-occurrences of pairs of patterns in the
same cluster as votes for their association, the N data partitions of n patterns yield a
n × n co-association matrix:

C(i, j) =
nij

N
, (2)

where nij is the number of times the pattern pair (i, j) is assigned to the same cluster
among the N partitions.

In its normalized form, as per expression (2), matrix C can be given different inter-
pretations, either probabilistic or simply as pairwise similarity. Another issue is how to
address and use this matrix for clustering purposes. In the following we propose a novel
methodology by applying DR techniques.

4 Dimensionality Reduction in Evidence Accumulation Clustering

We propose a new methodology called Dimensionality Reduction in Evidence Accumu-
lation Clustering (DR-EAC), which is based on the Evidence Accumulation Clustering
(EAC) method described above. As said before, the evidence accumulation approach is
a three-step cluster ensemble method; we now propose a four-step method. We build
the clustering ensemble (step 1) and the co-association matrix (step 2) similarly to the
evidence accumulation approach. However, instead of applying a clustering algorithm
directly to the co-association matrix, we apply a DR technique to it (which is now step
3). As detailed below, we propose two ways to do this, depending on how one interprets
the co-association matrix. This DR technique outputs a low-dimensional dataset, which
is then fed into a clustering algorithm (which is now step 4). We now discuss each of
these four steps in more detail.

1) Build the Clustering Ensemble. As referred before, there are several ways to produce
a clustering ensemble. In this study we build a clustering ensemble by running the
k-means algorithm to produce a total of N = 200 data partitions, each one with k
clusters, k being an integer randomly drawn between kmin = max{√n/2, n/50} and
kmax = kmin + 20, where n is the number of samples of the dataset.

2) Obtain the co-association matrix. We begin by computing the co-association matrix
according to equation (2). Then, we interpret this matrix in one of two possible ways:

– Co-associations viewed as Features: One way to look at matrix C is to say that its
i-th row represents a new set of features for the i-th data point, an idea originally
proposed by Kuncheva et al. [11]. Thus, each pattern is now represented by how
many times it was grouped together with all other patterns.
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– Co-association viewed as Similarities: We can transform the co-association ma-
trix C, which is a similarity matrix, into a dissimilarity matrix (or distance matrix).
Since many DR methods can take as input a matrix of pairwise distances (or dissim-
ilarities), if we transform this matrix of similarities into a matrix of dissimilarities
we can exploit this property. Since the elements of C lie between 0 and 1, we use
a very simple transformation: the new dissimilarity matrix has the element (i, j)
given by 1 − C(i, j).

3) Apply Dimensionality Reduction techniques. We apply DR techniques to obtain a
new representation of the data, preserving the topology of the original data. For the
DR methods we need to choose a target dimension to reduce the data to and, in some
cases, we also have to choose a parameter of the method (usually the number of nearest
neighbors to consider). In all cases we let each algorithm choose the most suitable
parameter and dimension by an intrinsic criterion. This intrinsic criterion can be the
value of the cost function that each algorithm has to minimize, or the reconstruction
error. For example, in Isomap we chose the parameter (which is the number of nearest
neighbors used to construct a graph) which minimizes the residual variance [17]. It is
beyond the scope of this paper to detail how these parameters should be chosen; the
relevant information can be found in the references cited in Section 2.

4) Extract the consensus partition. After we get the embedded data, we apply eight
well-known clustering algorithms: k-means, single-link, complete-link, average-link,
Ward-link, centroid-link, median-link and weighted-link [9].

4.1 Quality Measures

We use two quality measures to assess the results: consistency index (CI) and normal-
ized mutual information (NMI).

The CI simply measures the fraction of patterns correctly grouped together compared
to the ground-truth labeling. It takes values between 0 and 1, and it is a measure of the
accuracy of the clustering.

The NMI [16] is a symmetric measure of the information shared between two par-
titions. Consider the partition P a, which describes a labeling of the n patterns in the
dataset X into ka clusters. If one takes frequency counts as approximations for probabil-

ities, the entropy of the data partition P a is given by H(P a) = −∑ka

i=1
na

i

n log
(

na
i

n

)
,

where na
i represents the number of patterns in cluster Ca

i ∈ P a. The agreement between
two partitions P a and P b is given by their mutual information:

I(P a, P b) =
ka∑

i=1

kb∑

j=1

nab
ij

n
log

⎛

⎝
nab

ij

n

na
i

n · nb
j

n

⎞

⎠ ,

whith nab
ij the number of shared patterns between clusters Ca

i ∈ P a and Cb
j ∈ P b.

The NMI is then defined by

NMI(P a, P b) =
I(P a, P b)

√
H(P a)H(P b)

.
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It is similar to the widely used mutual information, but normalized to be in the interval
[0, 1]. For each DR method, we compute the NMI between all 28 pairs of clustering
algorithms1. We then take the average of these 28 NMI values to obtain the average
NMI for that DR method. This average NMI will measure how consistent the partitions
are among the 8 clustering algorithms after applying that DR method.

5 Experimental Results

We will apply the new methodology described in section 4 to several datasets, in an
attempt to improve the quality and robustness of the solutions, compared to the evi-
dence accumulation approach. We will apply the clustering algorithms mentioned in
section 4 to the co-association matrix directly (in both interpretations), an approach
we will denote by EACF (Evidence Accumulation Clustering in the feature space) and
EAC (Evidence Accumulation Clustering in the sense presented by [5]). The idea is
to verify empirically whether the use of embedding methods and subsequent cluster-
ing algorithms is advantageous relative to the application of clustering algorithms on
the co-association matrix directly. Also, we will try to find some correspondence be-
tween pairs of embedding and clustering methods suitable for some types of data. In
that sense, we will study synthetic data and real data, with the synthetic data divided in
two broad meta-sets: datasets with separate clusters and datasets with touching clusters.

5.1 Data

We used 18 datasets: 10 synthetic datasets (5 well-separated and 5 with touching clus-
ters), and 8 real datasets from the UCI Machine Learning Repository2. The synthetic
datasets were chosen to take into account a wide variety of situations: well-separated
and touching clusters; gaussian and non-gaussian clusters; arbitrary shapes; and diverse
cluster densities. These synthetic datasets are shown in figure 1. The Iris dataset con-
sists of three species of Iris plants (Setosa, Versicolor and Virginica). This dataset is
characterized by four features and 50 samples in each cluster. Std Yeast is composed of
384 samples (genes) over two cell cycles of yeast cell data. This dataset is characterized
by 17 features and consisting of five clusters corresponding to the five phases of the cell
cycle. The Pima dataset is composed of 768 samples (genes) from National Institute of
Diabetes and Digestive and Kidney Diseases, it has 8 features and two clusters. Wine
consists of the results of a chemical analysis of wines grown in the same region in Italy
divided into three clusters with 59, 71 and 48 patterns described by 13 features. Optdig-
its is a subset of Handwritten Digits dataset containing only the first 100 patterns of each
digit, from a total of 1000 data samples characterized by 64 attributes. The Wisconsin
Breast-Cancer dataset consists of 683 patterns represented by nine features and has two
clusters. The House Votes dataset consists of votes for each of the U.S. House of Repre-
sentatives Congressmen on the 16 key votes identified by the Congressional Quarterly
Almanac. It is composed by two clusters and only the patterns without missing values

1 28 is the number of off-diagonal elements in the upper triangular part of the matrix containing
the NMI between pairs of clustering algorithms, which is an 8-by-8 matrix.

2 http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml
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Fig. 1. Synthetic datasets

were considered, for a total of 232 samples (125 democrats and 107 republicans). The
Crabs dataset consists of 200 patterns represented by 5 features and has two classes.
Pima, House Votes, Crabs and Wine were normalized to have unit variance.

5.2 Experiment 1: Feature Space

In this section we interpret the co-association matrix as a new feature space, as described
in Section 4. The application of clustering algorithms directly to the co-association
matrix viewed as a feature space, is here denoted by EACF .

Analyzing the average NMI in figure 2 over all clustering algorithms used to obtain
the final partition, we notice that LE and LPP are the ones that produce more coherent
solutions for the synthetic datasets with separate clusters (figure 2 top), which indicates
that they are robust to the extraction algorithm. CCA and CDA are the algorithms with
the most dispersion in the solutions for all datasets. Unlike for separate clusters, the
NMI for datasets with touching clusters (figure 2 middle) shows that no DR algorithm
is robust to the choice of the clustering algorithm. In the real datasets, LE is the most
consistent DR algorithm in half of the datasets (Wine, Std Yeast, Optdigits and Iris).

Even if the NMI is high, it is not necessarily true that we have a high CI (i.e. that
the results of the clustering algorithms are good), it only means that the clustering al-
gorithms obtained similar final partitions. However, the use of that measure is a good
indicator that the embedded space yields good clustering results regardless of the clus-
tering algorithm. This is an advantage, since we do not know a priori which is the most
suitable clustering algorithm for a certain kind of data.

Table 1 contains the best CI values (first row of each dataset) and the corresponding
clustering algorithm used for that solution; it also presents the average CI over all the
clustering algorithms (second row of each dataset). Based on figure 2 we have claimed
that LE and LPP are the ones that produce the most coherent solutions for the synthetic
datasets with separate clusters; Table 1 corroborates these findings, since LE and LPP
usually yield maximum CI for several clustering algorithms.

In synthetic datasets with separate clusters, LE and LPP, which are local algorithms,
combine well with multiple hierarchical clustering algorithms. Isomap and Sammon,
which are global and nonlinear, combine well with single-link, which is also the best
clustering algorithm for EACF .
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Fig. 2. Mean and standard deviation of Normalized Mutual Information over the clustering algo-
rithms for each dataset and each embedding method. The co-association matrix was interpreted as
features. Top: Synthetic datasets with separate clusters. Middle: Synthetic datasets with touching
clusters. Bottom: Real datasets.
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The analysis of the CI values for the synthetic datasets with touching clusters, shown
in Table 1, shows that LPP, Isomap and LE are, on average values, better than EACF .
In terms of maximum values, EACF outperforms the DR-based methods only in one
dataset (R-2-new), and still by a very small margin; while it is outperformed in all
remaining datasets.

The best DR-clustering algorithm pairs, for synthetic datasets with touching clusters,
are LPP with k-means, Sammon with Ward-link and CDA with k-means. The overall
best DR is Isomap, which is in first place in maximum CI for 4 out of 5 datasets.

The analysis of CI values for real datasets (see Table 1), shows that all DR meth-
ods do relatively well when compared to EACF , except for CCA and CDA. Isomap
and Sammon are the two best DR algorithms when compared to the remaining DR
techniques, especially in the Optdigits dataset. CCA and CDA are the worst overall
methods, especially in the Std Yeast and Optdigits datasets.

These results show the advantage of performing DR over using EACF . In fact, from
Table 1, using DR gives in general the best CI in all datasets, both in terms of maximum
CI and of average CI.

Overall, for both synthetic and real datasets, there is no DR algorithm which is al-
ways robust in terms of NMI. However, LE and LPP (which is a linear version of LE),
seem to have this property, especially in synthetic datasets with separate clusters. For
the real datasets, LPP and LE present the best results, except in the Optdigits dataset,
which yields better results with a global DR method (like Isomap and Sammon), instead
of a local method.

5.3 Experiment 2: Similarity Space

In this section we interpret the entries of the co-association matrix as similarity values.
We transform these into dissimilarity values, as described in Section 4. We plug-in this
dissimilarity matrix into the embedding methods and will add “EA-” (from “Evidence
Accumulation”) before the acronyms of the DR methods to emphasize the dependency
of this matrix.

The analysis of NMI values for the synthetic datasets with separate clusters, shown
in Figure 3, shows that EA-LE and EA-LLE yield the most coherent clustering results,
except for the Half-rings dataset. For the Mixed Image 2 dataset, local algorithms (EA-
LPP, EA-NPE, EA-LLE and EA-LE) and global algorithms that preserve “geodesic”
distances (EA-Isomap, EA-CDA) have very coherent results. However, the analysis of
the CI values (Table 2) immediately shows that results are not good for that dataset.
This suggest that the co-association matrix might not be the best clustering ensemble
approach for this dataset.

Similar to the feature space, the analysis of NMI values for synthetic datasets with
touching clusters (figure 3 middle) suggests that no DR algorithm is robust to the choice
of clustering algorithm; except the EA-Sammon in the Mixed Image 3. For the real
datasets (figure 3 bottom) EA-LE is the DR algorithm with the most consistent results,
except for the Pima, Crabs and Breast cancer datasets.

The best overall DR methods, for the synthetic datasets with separate clusters, are
EA-LE and EA-LLE. EA-Isomap, EA-CCA, EA-CDA and EA-LE yield the best results
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Table 1. Consistency index (%) for co-association matrix interpreted as features. (First row) Best
CI and clustering algorithm(s) which yield that CI value. Legend: (1) k-means, (2) single-link, (3)
complete-link, (4) average-link, (5) Ward-link, (6) centroid-link, (7) median-link, (8) weighted-
link. (Second row) Average CI (%) over all clustering methods. The gray cells correspond to the
best NMI presented in figure 2 and the best average CI are shown in bold.

EACF LPP NPE Sammon CCA Isomap CDA LLE LE

Sy
nt

he
tic

da
ta

w
ith

se
pa

ra
te

cl
us

te
rs

Rings 100 100 61.25 100 50.00 100 52.00 85.50 100
(2) (1-8) (1) (2) (2) (2) (4) (5) (2-8)

65.28 100 55.13 64.78 43.00 73.56 45.75 66.06 99.47
d1 100 100 82.00 100 70.00 100 70.50 72.50 100

(2-8) (2-8) (6) (2,4-8) (2,6) (2) (2) (2) (2,8)
98.44 98.19 65.25 91.75 54.75 65.31 50.13 69.69 85.88

d2 100 93.50 51.00 100 59.00 69.00 60.50 50.50 67.00
(2) (7) (7) (2) (6) (2) (4) (2) (3,4,6)

76.31 73.87 42.56 73.00 49.87 59.56 49.25 44.88 61.69
Half-rings 100 100 69.75 100 81.75 100 74.75 100 100

(2) (1,2,4-8) (2,4-8) (2) (5) (1,2) (2,6,7) (2) (2,4-8)
72.19 93.31 65.81 72.09 66.19 59.87 63.56 88.28 86.63

Mixed Image 2 65.70 71.80 36.60 71.60 22.90 71.40 23.70 47.00 71.60
(2) (2) (5) (2) (6) (2) (1) (5) (3)

54.44 63.69 32.50 51.90 21.10 57.45 22.61 38.52 70.66

Sy
nt

he
tic

da
ta

w
ith

to
uc

hi
ng

cl
us

te
rs

Bars 99.25 99.25 79.25 99.25 59.50 99.25 73.75 76.00 96.00
(5) (4,5) (1) (5) (1) (2,3) (1) (7) (1)

68.19 75.25 64.78 68.19 53.09 90.16 58.78 62.84 76.84
Circs 99.50 100 58.75 99.50 63.00 100 84.50 59.00 99.50

(2,5,8) (1-6,8) (1) (2,8) (5) (1,8) (1) (8) (5)
80.00 96.16 54.94 80.56 55.62 91.37 62.31 55.31 66.91

R-2-new 90.20 77.40 44.40 89.20 50.40 82.80 51.20 57.20 78.60
(4) (1) (2) (4,5) (6) (4) (7) (5) (1)

66.60 73.95 40.55 70.52 39.52 71.22 42.57 51.67 71.52
Mixed Image 3 84.90 71.90 66.80 74.60 54.80 89.50 74.80 55.30 83.80

(5) (1) (3) (5) (8) (3) (1) (3,5) (4)
61.52 67.10 58.16 61.59 52.15 73.42 55.59 53.17 74.92

Spiral 2 77.67 77.67 64.33 77.67 58.67 85.00 51.67 85.00 85.00
(2) (2) (8) (2) (1) (2) (1) (1-8) (2,5,7,8)

63.50 70.96 56.54 61.12 52.50 82.54 50.75 85.00 81.33

R
ea

ld
at

a

Wine 96.07 98.31 90.45 96.07 72.47 96.63 84.27 61.24 96.63
(8) (3) (3) (5) (1) (5,6) (1) (5) (1)

75.91 94.03 77.18 71.07 46.49 88.48 58.43 47.68 94.66
Std Yeast 60.94 63.80 58.07 61.20 37.24 61.20 35.94 60.16 71.35

(4) (1) (7) (8) (4) (3) (6) (5) (3,5,7)
54.88 58.36 50.10 54.10 33.33 57.19 32.49 51.14 66.83

Pima 64.71 64.71 65.36 66.02 65.10 64.71 65.23 64.71 64.58
(2,7) (1,2,4,6-8) (2) (7) (4) (2) (2,7) (5) (2)
56.95 64.34 63.95 57.86 60.90 60.12 60.16 64.49 57.03

Optdigits 87.90 49.60 52.00 85.40 22.50 84.10 17.60 46.30 55.90
(8) (5) (5) (1) (5) (3) (1) (3) (5)

69.75 31.06 39.34 74.42 17.46 71.18 14.53 43.91 38.61
Iris 84.00 90.67 70.67 90.67 58.67 94.00 49.33 53.33 90.67

(5,8) (3) (3) (2,8) (1) (1) (1) (2,4-8) (1-3,7,8)
63.17 84.83 62.08 68.42 45.17 86.58 39.75 53.00 90.42

Crabs 65.00 56.00 58.00 65.00 57.00 70.50 54.00 67.00 70.50
(2) (3) (1,5) (2) (5) (2) (3) (7) (4,6)

59.94 53.12 53.31 57.37 52.50 55.87 51.56 58.00 62.81
Breast Cancer 62.96 68.81 58.13 64.86 64.86 94.58 74.23 75.55 68.67

(2) (5) (2,3,7,8) (2-4,6-8) (2,6,7) (4-8) (1) (8) (1)
56.81 61.11 56.44 61.68 60.65 86.09 64.81 67.84 60.45

House Votes 89.22 88.36 81.90 87.93 81.47 87.07 61.21 64.66 74.14
(1) (1) (5) (1) (1) (3) (5) (1) (1)

74.52 71.28 63.31 73.81 59.37 69.34 54.69 57.81 62.88
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Fig. 3. Mean and standard deviation of Normalized Mutual Information over the clustering algo-
rithms for each dataset and each embedding method. The co-association matrix was interpreted
as similarities. Top: Synthetic datasets with separate clusters. Middle: Synthetic datasets with
touching clusters. Bottom: Real datasets.
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Table 2. Consistency index (%) for co-association matrix interpreted as similarities. (First row)
Best CI and clustering algorithm(s) which yield that CI value. Legend: (1) k-means, (2) single-
link, (3) complete-link, (4) average-link, (5) Ward-link, (6) centroid-link, (7) median-link, (8)
weighted-link. (Second row) Average CI (%) over all clustering methods. The gray cells corre-
spond to the best NMI presented in figure 3 and the best average CI are shown in bold.

EAC EA-LPP EA-NPE EA-Sammon EA-CCA EA-Isomap EA-CDA EA-LLE EA-LE
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nt
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w
ith
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Rings 100 74.00 74.00 77.50 77.50 63.25 79.00 81.00 100
(2,4,8) (2) (2) (1) (2) (7,8) (1) (7,8) (1-8)
74.79 58.69 56.59 70.41 68.44 61.47 72.53 73.50 100

d1 100 100 90.50 100 100 100 100 90.00 100
(2,4-8) (2,4) (2) (2) (2) (2) (2,7) (2) (2)
94.07 74.31 69.06 59.62 61.31 67.62 77.06 87.81 71.75

d2 100 100 61.50 66.50 100 88.50 100 100 79.00
(2) (2) (2) (4) (2) (2) (2) (2) (2)

70.21 59.87 48.56 59.31 60.75 60.06 59.94 56.50 64.50
Half-rings 100 94.75 88.00 81.75 93.25 100 100 100 100

(2,4,8) (4) (8) (2) (6) (2) (2) (1-8) (2,4-8)
82.86 81.06 80.12 64.59 68.69 79.62 72.41 100 90.84

Mixed Image 2 72.40 67.50 67.70 60.00 70.80 71.00 70.80 66.90 68.10
(8) (6) (2) (1) (2) (2) (2) (2) (2-4,6-8)

53.34 60.10 61.46 50.72 60.31 63.45 62.81 64.09 67.05

Sy
nt
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te
rs

Bars 99.25 100 75.25 69.75 99.50 99.50 74.00 99.00 99.25
(4) (5,8) (1) (4,6) (6) (3,5) (1) (4) (5)

74.25 88.69 65.53 61.00 77.53 90.28 61.84 77.66 69.84
Circs 99.50 81.00 78.75 82.25 71.00 99.50 99.50 78.75 99.50

(2,4,5) (3) (5) (1) (3) (1,4-6) (2) (5) (2,5)
76.54 63.50 62.47 66.22 61.37 88.97 73.78 63.37 76.47

R-2-new 89.20 58.80 58.80 65.80 60.60 63.20 79.80 59.80 80.60
(5) (2) (2) (2) (2) (2) (2) (2) (8)

65.77 44.32 47.55 60.32 45.62 45.12 44.92 53.77 67.80
Mixed Image 3 88.70 92.40 75.00 50.10 85.10 89.60 91.90 82.60 76.10

(5) (5) (5) (1-8) (5) (4) (3) (1) (5)
67.14 82.00 66.34 50.10 68.42 79.95 82.00 60.31 68.12

Spiral 2 85.00 56.33 55.67 65.33 77.67 84.00 91.33 60.33 85.00
(2) (4,5,7) (5,8) (1) (2) (1,5) (7,8) (7) (2,5,7,8)

63.43 54.29 53.67 58.54 61.00 79.25 81.92 54.75 78.79

R
ea

ld
at

a

Wine 93.82 98.31 73.03 97.75 97.19 94.94 94.94 91.01 91.57
(8) (3) (5) (1) (1) (5) (4,6) (2) (3-6)

72.12 92.84 61.45 70.86 68.40 82.80 82.94 85.74 86.24
Std Yeast 67.71 72.14 72.14 72.92 72.40 67.45 72.40 51.04 63.28

(4) (8) (5) (4) (4) (7) (3) (5) (4-6,8)
51.79 63.38 59.89 50.13 52.11 60.03 60.87 41.89 61.36

Pima 65.10 71.35 65.63 64.71 68.49 64.71 64.71 65.76 64.71
(6,7) (7) (6) (2,4) (4) (2,3,6-8) (2) (7) (2-4,6-8)
62.91 65.74 61.95 60.81 60.03 62.04 58.41 64.13 63.49

Optdigits 80.70 56.60 23.60 81.90 82.70 82.60 80.90 47.10 72.00
(5) (5) (1) (5) (5) (5) (5) (5) (5)

55.41 43.86 20.92 70.91 64.61 70.74 72.30 36.24 60.35
Iris 90.67 90.00 95.33 89.33 90.67 94.67 90.67 79.33 90.67

(2,4,5,8) (4,6) (1,3,8) (5) (2) (1) (2) (1) (1-8)
75,62 83.92 88.75 70.75 67.75 91.17 71.83 57.25 90.67

Crabs 71.00 54.00 88.00 70.50 71.00 71.00 71.00 66.00 74.50
(2) (1) (1,4-6) (5) (2) (2) (2) (3) (5)

57.56 52.06 78.31 56.13 56.87 56.87 56.44 62.12 63.44
Breast Cancer 69.84 95.75 81.41 94.29 85.65 97.07 97.22 88.43 96.05

(3) (1,4) (1) (1) (4) (1) (1) (5) (1)
62.12 88.54 71.34 75.35 65.96 92.22 92.90 72.29 64.79

House Votes 88.36 90.09 90.09 89.22 94.40 88.36 89.22 59.91 66.81
(4) (1) (4-6) (3,4) (4) (3) (1) (3) (1-8)

68.53 84.80 88.79 72.90 70.53 81.14 85.67 59.54 66.81
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with single-link. For the synthetic datasets with touching clusters, the best DR methods
are EA-Isomap and EA-LE, when used with the appropriate clustering algorithm.

For the Std Yeast dataset the worst results correspond to nonlinear local DR methods
(EA-LLE and EA-LE). For the Optdigits dataset, the worst results correspond to local
methods (EA-LPP, EA-NPE, EA-LLE and EA-LE), while nonlinear global methods
perform very well. In the House votes dataset, the best DR algorithms in average CI are
linear methods (EA-LPP and EA-NPE) and nonlinear global methods that preserves
“geodesic” distances (EA-Isomap and EA-CDA). These last two algorithms also have
very good results for the Breast cancer dataset.

From Table 2, we notice that there exists at least one DR method that outperforms or
equals EAC for each dataset, showing that there is an advantage in performing DR.

Like in the feature space, single-link is the best extraction method, except for real
datasets. In real datasets, k-means and Ward link work better.

Overall, nonlinear methods are more suitable for this space, with local methods
working better in synthetic data with separate clusters.

6 Discussion

There are some interesting findings to draw from all the above data. First, there is an
advantage in using DR techniques on the co-association matrix to improve clustering re-
sults. However, care must be taken in choosing the right DR technique for each dataset.

Second, the use of DR techniques usually improves the average consistency index
(CI) values over the co-association matrix. This suggests that using DR makes the clus-
tering results less dependent on the choice of the specific clustering algorithm.

Although no DR algorithm consistently outperforms all the others, some algorithms
do well in specific circumstances. Good results are obtained from datasets with sepa-
rate clusters using LPP and LE (local DR methods). For datasets with touching clusters,
Isomap and LE (nonlinear DR methods) yield the overall best results. Importantly, in
real datasets no DR algorithm stood out from the others, and considerable variability
was detected from dataset to dataset, again stressing out that the choice of the appropri-
ate DR technique is crucial.

To further investigate this aspect, we have computed the measures N13 and silhouette
for the real datasets studied in this paper. Those values are presented in table 3. Datasets
Std Yeast and Pima stand out for having high values of N1, and in those datasets local
DR methods yield the best clustering results in terms of average CI. On the other hand,
datasets Optdigits and Breast Cancer stand out for having low values of N1 and the
best results in those datasets come from global DR methods. Also, Crabs and Std Yeast
have low values of the silhouette index and local DR methods perform well with these
datasets. Given the relatively small number of datasets and DR methods used in this
paper, we present these associations not as proven rules, but rather as temporary guide-
lines. We will actively research these types of associations using more datasets and
more DR methods in the future.

3 As explained in [8] “This method constructs a class-blind minimum spanning tree over the
entire dataset, and counts the number of points incident to an edge going across the two classes.
The fraction of such points over all points in the dataset is used as the N1 measure.”
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Table 3. N1 and Silhouette measures for the real datasets studied in this paper, and type of DR
method that yields the best average CI for both types of spaces (feature and similarity spaces).
The question mark (?) indicates datasets where the best DR type is different in the two spaces.

Real Datasets N1 Silhouette Best DR type
Wine 0.118 0.4368 local
Std Yeast 0.388 0.2274 local
Pima 0.438 0.1524 local
Optdigits 0.059 0.2892 global
Iris 0.100 0.6565 ?
Crabs 0.160 0.0442 local
Breast Cancer 0.057 0.7178 global
House Votes 0.159 0.4471 ?

There are some differences between using the co-association matrix as features or
as similarities. For example, CCA and CDA perform poorly in the former case but
considerably better in the latter. On the other hand, Sammon performs better in the
feature space relative to the similarity space.

It is interesting to note that the DR algorithms which have the highest NMI values for
each dataset are very often the ones which have also the highest average CI values. In
other words, it seems that the DR algorithms which yield the most consistent partitions
also yield the best partitions. Furthermore, for each dataset, the highest NMI between
the feature space and the similarity space very often corresponds to the highest average
CI as well. This suggests that NMI (a measure which does not need to know the true
partition) can help predict the CI (which does use the true partition).

7 Conclusions

This study shows that the use of dimensionality reduction (DR) techniques in clustering
ensembles presents interesting advantages in accuracy and robustness. Future work is
needed to study the influence of different strategies to construct the clustering ensemble,
and the influence of parameter choice for the DR and clustering algorithms.

We also reported some interesting associations between types of datasets and appro-
priate DR methods; however, further work is needed to draw conclusive information.
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