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Abstract. When objects cannot be represented well by single feature
vectors, a collection of feature vectors can be used. This is what is done
in Multiple Instance learning, where it is called a bag of instances. By
using a bag of instances, an object gains more internal structure than
when a single feature vector is used. This improves the expressiveness of
the representation, but also adds complexity to the classification of the
object. This paper shows that for the situation that not a single instance
determines the class label of a bag, simple bag dissimilarity measures
can significantly outperform standard multiple instance classifiers. In
particular a measure that computes just the average minimum distance
between instances, or a measure that uses the Earth Mover’s distance,
perform very well.

Keywords: pattern recognition, multiple instance learning, dissimilar-
ity representation.

1 Introduction

Standard pattern recognition assumes that objects are represented by a feature
vector, containing measurements on the objects that are informative for the
class separability [7]. Unfortunately, for complex real world objects this is often
insufficient. By using a single feature vector, much of the internal structure of
the object is lost. Take for instance an image, that can contain several regions
with very different characteristics: a person, a face, a tree in the background, a
blue sky. It is a priori not clear how important each region is for the classification
problem at hand. Only when a very clear classification task is requested, suitable
features may be selected and extracted. Otherwise, the representation should be
flexible enough to encode all information in the image, and let the classifier
optimize its model to get a good performance.

When the representation requires more flexibility, the single feature represen-
tation may be replaced by a collection of feature vectors. For instance in the
case of image classification or image retrieval, it is customary to segment the
image in more-or-less homogeneous subparts, and to represent the full image by
a collection of feature vectors. This is what is called Multiple Instance Learn-
ing (MIL)[5]. Objects are represented by a set (called bag) of feature vectors
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(called instances), and each object can belong to the positive or negative class.
Typically, it is assumed that objects from the positive class contain at least one
instance from a so-called concept. The task of a classifier is then to identify if one
of the instances belong to the concept, and label the object then to the positive
class. Many MIL algorithms therefore contain an optimization strategy to search
for the most informative instance per bag, and create a model of the concept
[20,13,22,1].

For the situation that no clear concept can be defined, or the situation that
most instances in a bag actually contribute to the class discrimination, a more
global approach in comparing bags can be defined. Instead of focusing on the
single most informative instance in a bag, a similarity measure between sets
of feature vectors is defined [9,15,2,12]. In most cases the goal is to define a
Mercer kernel between the bags, such that a standard support vector classifier
can be trained. By this one tries to implicitly reduce the complexity of a bag of
instances back to a simple vector representation. The advantage is that the well
understood procedures of pattern recognition can be applied, but the drawback
is that a part of the representational power is lost.

When the demand for Mercer kernels is relaxed, more powerful dissimilarity
measures can be defined. Actually, any (dis)similarity can be constructed, as long
it may be informative for the class separability [17]. This is at the expense that
it cannot be directly plugged into the support vector classifier. The alternative
is then to apply a classifier that can operate on distances, like the k-nearest
neighbor classifier or a nearest mean classifier, or to use a dissimilarity space
approach [8,14]. In a dissimilarity space approach the dissimilarities are treated
as new features, such that any classifier can be trained on these features. The
distance character of the dissimilarities is then not used, but as features they
can still contribute to a good class separation.

In this paper we propose a few simple dissimilarity measures between bags,
based on pairwise dissimilarities between instances. These dissimilarities capture
a more global differences between instance distributions of bags. This is done in
section 2. We show in section 4 that for quite some multiple instance problems,
the more global dissimilarity measures are very informative in that the classifiers
trained on top of them give very good classification performance. In section 5
we conclude and have a bit more discussion on the results.

2 Bag Dissimilarities

Assume an object i is represented by a bag Bi = {xik, k = 1, ..., ni} containing ni

instances, where each instance is represented by a vector x ∈ R
d. In the training

set {(Bi, yi), i = 1, ..., N} each bag is labeled positive yi = +1 or negative
yi = −1. Given the bag of instances, a classifier has to predict its class label
ŷi = f(Bi). First define the pairwise dissimilarities of instances in the bags Bi

and Bj :
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Dij = D(Bi, Bj) =

⎛
⎜⎜⎜⎝

D(xi1,xj1) ... D(xi1,xjnj )
D(xi2,xj1) ... D(xi2,xjnj )

...
...

D(xini ,xj1) ... D(xini ,xjnj )

⎞
⎟⎟⎟⎠ , (1)

where D(xik,xjl) defines the distance between instance k from bag Bi and in-
stance l from bag Bj . In principle, any distance D(xi,xj) can be used, but in
this paper the squared Euclidean distance is used.

The classic approach for the classification of a bag B is to first identify a
concept C ∈ R

d, and to check for each instance if it is member of this concept.

f(Bi) =

{
+1, if ∃xik ∈ C

−1, otherwise
(2)

In section 3 a few approaches using concepts are explained in more depth.
Instead of focussing on the single most informative instance from a bag, a

bag can be described by its full distribution of its instances. This assumes that
all instances in a bag are informative about the bag label and not a single
instance can determine the class label. It is then possible to define a dissimilarity
matrix dij = d(Bi, Bj) between bags, that is measuring the difference between
(or overlap in) the distributions of Bi and Bj .

A drawback may be that the distances obtained in such manner may not be
euclidean, or even metric. Therefore only methods that directly operate on dis-
tances can be applied, for instance a k-nearest neighbor (k-nearest bag) classifier
would be suitable. The alternative approach is to interpret the distances to the
other bags as new features, and to train classifiers on this new dissimilarity space
[14]:

f(Bi) = f((di1, di2, ..., diR)) (3)

Typically, the distances to all training bags can be used so R = N , but reductions
in complexity and computational requirements can be obtained when a smaller
representation set is chosen R << N .

We did not specify the dissimilarity dij between bags yet. In this paper we
consider two approaches, the first using bag distribution dissimilarities (section
2.1) and the second using the pairwise instance dissimilarities (section 2.2).

2.1 Bag Distribution Dissimilarities

To characterize bag differences in terms of differences between distributions of
the instances would mean that for each bag a probability density has to be
estimated, and next the difference between the distributions of two bags. It is
not only very hard to estimate a high dimensional probability density function
in a high dimensional feature space, it is also very computational demanding
to estimate the difference, or overlap, of two distributions. Therefore approxi-
mations are made, and the following approximate distribution comparisons are
considered:
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Mahalanobis Distance. The distribution of each bag is approximated by a
single Gaussian distribution with mean μ and covariance matrix Σ. The
difference between two Gaussian distributions is computed using the Maha-
lanobis distance:

dij = (μi − μj)T

(
1
2
Σi +

1
2
Σj

)−1

(μi − μj) (4)

Note that the averaged covariance matrix is used of the covariance matrices
Σi and Σj of the two bags. That means that when the number of instances
per bag is low, and the feature dimensionality is high, it can become hard
(or, in fact, impossible) to invert the averaged covariance matrix.

Earth Mover’s Distance. The Earth Mover’s distance measures the dissim-
ilarity between two distributions pi and pj by measuring the effort to turn
one distibution pi, one ’pile of earth’, into another one pj . [16] In case of
a discrete probability mass, the probability has to be moved over distances
Dij(k, l) as defined in (1). For the MIL bag similarity that we consider, we
assume that each instance in bag Bi contains 1/ni of the total probability
mass. The Earth Mover’s distance is defined by the minimum amount of
work that is needed to transform distribution pi into pj :

dij = min
fkl

∑
k,l

fklDij(k, l) (5)

where fkl defines the flow between instance k and instance l, and with the
additional constraints that fkl ≥ 0, ∀k, l,

∑
l fkl ≤ 1/ni,

∑
k fkl ≤ 1/nj and∑

kl fkl = 1.

2.2 Pairwise Instance Dissimilarities

Instead of modeling full probability densities, the empirical distances between
instances can be used.

To get a single dissimilarity measure between bags Bi and Bj , the matrix in
(1) has to be reduced to a single scalar. A collection of operations O1, .., O5 is
defined that first reduce the rows and columns of the matrix to (two) vectors,
and then reduces the vectors to a scalar. In figure 1 a graphical representation
of the general family of operations on the dissimilarity Dij is shown. The first
two operations perform a row and column wise reduction:

d̃i = O1(D(xi1,xj1), ..., D(xini ,xj1)) (6)

d̃j = O2(D(xi1,xj1), ..., D(xi1,xjnj )) (7)

where the individual operators reduce a vector to a scalar: Oi : R
n → R. On

these reduced vectors, the final bag dissimilarity is defined:

dij = O5(O3(d̃i), O4(d̃j)). (8)
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O1
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D d̃j

d̃i dij

ni

nj

Fig. 1. The operations that can be performed on a general dissimilarity matrix D
between bags Bi and Bj

(Note that dij contains a single scalar dissimilarity, while Dij contains the full
instance dissimilarity matrix.) Often a symmetric dissimilarity matrix is pre-
ferred, dij = dji, and therefore the operations are defined in a symmetric way:
O1 = O2 and O3 = O4.

This reduction of the full dissimilarity matrix using these operations gener-
alizes many approaches, depending on the choices for Oi. This results in well-
known and new bag similarity measures:

Overall Minimum. O1 = O2 = min, O3 = O4 = min, O5 = min: Use the
overall minimum pairwise distance between instances. This is expected to be
quite noisy because a single instance determines the final distance between
bags. When the number of instances per bag is low, and there is a very dense
concept C, i.e. it is covering a small area in the feature space, this measure
may actually work.

Mean Minimum Distance. O1 = O2 = min, O3 = O4 = mean, O5 = mean
The mean minimum distance between bags, where for each instance the
closest instance in the other bag is found, and where the minimum distances
are averaged over all the instances. This is certainly not as noise sensitive as
the overall minimum, and captures more of the general similarity between
the distributions of the two bags. This does not work if there is a single
instance that determines the class label.

Standard Haussdorf Distance. O1 = O2 = min, O3 = O4 = max, O5 =
max: The standard Haussdorf distance between bags, where for each in-
stance the closest instance in the other bag is found, and from all the closest
matches, the lastest distance is used to define the bag distance. The advan-
tage is that the Haussdorf distance defines a metric, but it is sensitive to a
single outlier instance, that can dominate the full bag distance.

Modified Haussdorf. O1 = O2 = min, O3 = O4 = max, O5 = min: The
modified Haussdorf distance between bags [6] that is less sensitive to single
outliers.
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2.3 Linear Assignment Dissimilarity

The operations that are defined in (8) matches instances independently of each
other; each element in (6) or (7) are computed individually. By performing a
linear assignment [11], instances in bag Bi are matched to bag Bj . When one
bag is larger than the other, instances of the largest bag are not matched, and
will not contribute to the distance between the two bags. Define Ikl = 1 when
instances k and l are matched, and Ikl = 0 otherwise, then the bag dissimilarity
is defined as:

dij =
∑
k,l

IklDij(k, l). (9)

3 Standard MIL Classifiers

The original model proposed by [5] was an axis-parallel rectangle that was grown
and shrunk to best cover the area of the concept. Several parameters determine
the optimization of the rectangle, and one of them (τ) defines a slight extrapola-
tion around to box to become a bit resistant against noise. It is applied to a drug
discovery problem where molecules have to be distinguished based on their shape
into active and inactive molecules. It appears that this rectangular model fits well
with the molecule shape classification, but it is less successful in other applications.

A probabilistic description of the MIL problem was given by [13]. The concept
is modeled by a general probabilistic model, where typically an axis-parallel Gaus-
sian is used. Unfortunately, the optimization of the parameters requires a compu-
tationally expensive maximization of an likelihood that is adapted to include the
constraint that at least one of the instances in a positive bag has a high concept
probability.Because the error landscape is verywild, several random initialisations
are tried, and the solution with the highest likelihood is used.

Newer methods often avoid the modeling of the concept by a density model,
and try to separate concept instances from background instances using a dis-
criminative approach. Two of them include the MISVM [1] and the MiBoost
[19]. The first uses a support vector classifier, in which one instance from each
positive bag is selected as being the ‘witness’, i.e. each bag is reduced to its most
positive member. The second is a variant of boosting, where in each boosting
step a weight per instance is updated. The weight indicates how informative this
instance seems to be in the prediction of the class label of the bag.

The abovementionedmethods assume the presence of a concept.Othermethods
avoid this assumption, and try to apply standard pattern recognition techniques
directly to the MIL problem. The first approach is to extract features from the bag
of instances, like the average instance, or the minimum and maximum feature val-
ues that appear in the bag, and train a standard classifier on this feature vector
[9]. A second approach is to ignore the MIL problem and to label all instances ac-
cording to their bag label. [21] Then a standard classifier can be fitted to the fully
labeled instance dataset. To classify a new bag of instances, first all instances are
classified, and then a simple combining rule like taking the maximum, or majority
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voting is applied. Finally, an idea similar to the bag of words in the natural lan-
guage processing can be applied. In particular, in MILES [4] all instances in the
training set are considered words (or potential concepts), and new bags are repre-
sented by their similarity to each of the words. On these long similarity vectors a
sparse classifier is fitted to select the most informative words.

4 Experiments

To show the benefits and limitations of the bag similarities, classification exper-
iments are performed on some standard real world MIL datasets. The datasets
often deal with image classification, where with different procedures segments
are extracted, different features per segment are computed and different classes
are defined. [3,1,4]. Two non-image problems are the classical drug discovery
problems Musk1 and Musk2, in which molecules are described by 166 shape fea-
tures [5], and the webpage classification, in which webpages are described by a
collection of pages that have links to the original page. In table 1 some character-
istics are shown of the datasets that are considered in this paper. The datasets
are chosen to show some variability in the number of features, the number of
bags, and the average number of instances per bag.

Table 1. Some characteristics of the standard MIL datasets used in this paper

pos. neg. min. median max.
dataset nr.inst. dim. bags bags inst/bag inst/bag inst/bag

MUSK 1 [5] 476 166 47 45 2 4 40
MUSK 2 [5] 6598 166 39 63 1 12 1044
Corel African [4] 7947 9 100 1900 2 3 13
Corel Historical [4] 7947 9 100 1900 2 3 13
SIVAL AjaxOrange [10] 47414 30 60 1440 31 32 32
Web atheism [23] 5443 200 50 50 22 58 76
Web motorcycles [23] 4730 200 50 50 22 49 73
Web mideast [23] 3373 200 50 50 15 34 55
Corel Fox [1] 1320 230 100 100 2 6 13
Corel Tiger [1] 1220 230 100 100 1 6 13
Corel Elephant [1] 1391 230 100 100 2 7 13

In tables 2, 3 and 4 the results of the classifiers mentioned in Section 2 are
shown. Three different types of classifiers are used: the standard MIL classifiers in
the top block, the k-nearest neighbor that is directly operating on the distances
defined in Section 2 given in the middle block, and finally classifiers that use the
distances as features in the last block.

For the Axis-parallel Rectangle classifier (APR) the τ parameter is varied,
because that appears to have the most significant influence on the performance.
The other parameters are fixed. For the Diverse Density 100 random restarts of
the optimization is chosen. In the miBoost the number of boosting runs was set
to M = 100. For the MI-SVM and MILES the kernel was chosen to be an RBF
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kernel, where the width parameter σ was roughly optimized (using 5 candidates).
For the MI-SVM the linear kernel was also applied for comparison.

The more simple MIL classifiers includes first the Linear Discriminant Anal-
ysis (LDA) trained on all instances, with a maximum combination rule to get
from instance to bag labels. The next two classifiers represent a bag of instances
by the mean instance (where the feature values are averaged) or the minimum
and maximum feature value, respectively. On this new feature vector a LDA is
trained. The last simple MIL classifier applies a bag of words approach, where
first k cluster centers are obtained by applying k-means clustering on all in-
stances, next the bags are represented by the number of instances that are as-
signed to each cluster, and finally a (linear) support vector classifier is trained
on the histograms.

The standard MIL classifier are compared to the classifiers that work with the
bag dissimilarities. Five different dissimilarities are considered here, the ’Overall
Minimum’ (minmin.) dissimilarity, the ’Mean Minimum’ (mindist) distance, the
’Hausdorff’ (haussd.) distance, the Mahalanobis (mahal.) distance, the Earth
Mover’s distance (emd) and, finally, the linear assignment (lin.ass.) distance.
The classifier that is used for classifying distance data is the k-nearest neighbor.
The k is optimized on the training set using leave-one-out crossvalidation.

Furthermore, all classifiers are implemented, trained and evaluated using a
Matlab toolbox [18]. In quite some cases the performance as mentioned in the
literature could not be reproduced. This might be caused by the fact that the
optimization of the free parameters in the methods was not so extensive as in
the original papers. In this paper a reasonable range of parameters was chosen
and an internal crossvalidation was used to find the final optimal value. In some
cases (in particular the Diverse Density) the optimization was so slow, that just a
fixed parameter setting was chosen. Furthermore, all features have been rescaled
to zero mean and unit variance on the training set. The reported performance
is the area under the ROC curve (×100). A performance of 50.0 means that the
two classes are not separated at all, a performance of 100.0 is perfect.

From the results in Tables 2, 3 and 4 several things can be concluded:
Datasets that contain a clear concept often do not gain much by the use of

bag similarities. That is visible in datasets Musk 1, Musk 2, AjaxOrange, Corel
Tiger and Corel Elephant. For datasets in which many instances contain some
information about the class label, like in the webpage classification, but also a bit
in Corel African, Corel Historical and Corel Fox, the bag dissimilarity measures
are informative.

It is not always the case that using a nearest neighbor classifier on the dis-
tances gives the highest performance. In particular on the webpage classification
problems significant improvements can be made by using a k-nearest neighbor
classifier (or a Parzen classifier) in the dissimilarity space. On the other hand,
on the Corel African and Corel Historical datasets, training a classifier in the
dissimilarity space slightly deteriorates the results. This is probably caused by
the fact that the dissimilarity space is quite large here because the number of
training bags is high: 90% of 2000 = 1800D.
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Table 2. AUC performances (100×) of the classifiers on datasets Musk1, Musk2, Corel
African and Corel Historical. Results are obtained using five times 10-fold stratified
crossvalidation. Results (1) cannot be obtained because some bags in Musk2 are too
large to compute the Earth Mover’s distance between bags.

classifier Musk 1 Musk 2 Corel African Corel Historical

Standard MIL classifiers

APR τ = 0.999 81.8 (1.3) 82.5 (1.2) 50.5 (0.0) 50.5 (0.1)
APR τ = 0.995 78.9 (1.7) 80.8 (2.3) 57.4 (0.8) 61.4 (0.4)
Diverse Density (100 restarts) 89.4 (1.3) 93.2 (0.0) 85.6 (0.1) 83.4 (0.7)
MiBoost (M = 100 rounds) 80.3 (3.1) 49.3 (3.7) 68.0 (0.0) 80.4 (1.6)
MI-SVM (linear kernel) 70.3 (3.0) 81.5 (2.1) 63.4 (2.0) 78.9 (0.6)
MI-SVM (RBG kernel) 92.9 (1.3) NaN (0.0) NaN (0.0) 90.8 (1.0)
MILES (RBF kernel) 92.8 (1.4) 95.3 (1.5) 58.9 (9.2) 60.8 (12.8)
Simple MIL with LDA, max-comb. 72.9 (3.4) 76.7 (3.4) 68.8 (0.2) 74.4 (0.2)
LDA on mean-inst 85.7 (1.4) 87.6 (2.8) 77.2 (0.3) 86.2 (0.1)
LDA on extremes 92.4 (1.9) 88.9 (4.0) 88.5 (0.1) 85.3 (0.2)
BagOfWords (k=10)+linear SVM 72.7 (4.7) 63.7 (6.1) 75.1 (3.2) 78.4 (3.9)
BagOfWords (k=100)+linear SVM 78.7 (5.5) 71.2 (3.1) 83.4 (1.8) 85.6 (2.6)

Distance-based classifiers on bag dissimilarities

minmin+k-NND 90.1 (1.4) 84.0 (1.9) 86.6 (0.4) 84.1 (1.2)
mindist+k-NND 86.3 (2.0) 83.2 (1.6) 92.7 (0.7) 90.7 (1.1)
haussd.+k-NND 89.0 (1.6) 84.2 (0.8) 86.7 (0.9) 88.5 (1.0)
mahal.+k-NND 61.8 (2.8) 65.7 (5.7) 67.3 (0.7) 63.2 (1.2)

emd+k-NND 90.1 (2.7) (1) 92.0 (0.7) 88.8 (1.7)
lin.ass.+kNND 84.7 (1.6) 76.5 (2.7) 69.9 (0.6) 87.8 (0.4)

Standard classifiers on bag dissimilarity space

minmin.+Parzen Classifier 94.7 (3.0) 92.3 (2.7) 90.4 (0.6) 84.0 (0.6)
mindist.+Parzen Classifier 61.2 (6.0) 50.0 (0.0) 83.4 (0.9) 86.0 (0.5)
haussd.+Parzen Classifier 86.9 (0.7) 92.1 (2.5) 79.1 (0.6) 84.3 (0.5)
mahal.+Parzen Classifier 52.1 (0.9) 65.8 (2.4) 46.3 (2.4) 52.4 (1.3)

emd+Parzen Classifier 87.4 (3.4) (1) 89.4 (0.4) 85.4 (0.7)
lin.ass.+Parzen Classifier 83.3 (2.7) 72.2 (2.9) 83.5 (0.7) 86.2 (0.5)
minmin.+k-NN 93.3 (1.5) 90.7 (3.9) 88.7 (0.8) 83.5 (1.3)
mindist.+k-NN 88.8 (3.0) 83.8 (1.4) 81.7 (1.1) 85.5 (1.0)
haussd.+k-NN 89.2 (2.7) 91.6 (1.0) 77.0 (0.7) 80.0 (1.3)
mahal.+k-NN 72.0 (3.1) 61.6 (2.7) 53.3 (1.6) 57.0 (0.8)

emd+k-NN 92.4 (1.4) (1) 86.9 (1.1) 79.6 (1.5)
lin.ass.+k-NN 88.6 (2.1) 72.6 (3.7) 81.5 (1.4) 84.7 (1.4)
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Table 3. AUC performances (100×) of the classifiers on datasets SIVAL AjaxOrange,
webpage Atheism, webpage Motorcycles and webpage Mideast. Results are obtained
using five times 10-fold stratified crossvalidation. Results (2) cannot be obtained be-
cause the linear programming optimizer required more than 128GB of memory, which
was not available.

classifier AjaxOrange alt.atheism rec.motorcycles politics.mideast

Standard MIL classifiers

APR τ = 0.995 48.4 (0.8) 50.0 (0.0) 50.0 (0.0) 49.8 (0.4)
Diverse Density (100 restarts) 55.5 (2.9) 52.2 (2.4) 46.4 (2.9) 40.2 (2.5)
MiBoost (M = 100 rounds) 56.5 (2.4) 50.0 (0.0) NaN (0.0) 50.3 (1.5)
MI-SVM (linear kernel) 93.6 (2.6) 69.8 (2.8) 76.4 (4.0) 79.8 (2.3)
MI-SVM (RBG kernel) NaN (0.0) 45.5 (7.1) 49.7 (5.4) 46.1 (2.4)

MILES (RBF kernel) (2) 47.1 (4.5) 44.7 (4.8) 54.1 (1.8)
Simple MIL with LDA, max-comb. 89.3 (0.3) 81.6 (1.2) 80.4 (2.1) 75.0 (3.1)
LDA on mean-inst 82.3 (0.9) 83.7 (2.1) 84.4 (1.8) 78.1 (1.7)
LDA on extremes 90.3 (0.3) 50.0 (0.0) 51.2 (0.4) 65.0 (1.8)
BagOfWords (k=100)+linear SVM 81.2 (2.5) 54.0 (0.0) 65.2 (9.3) 58.6 (6.8)

Distance-based classifiers on bag dissimilarities

minmin+k-NND 53.6 (1.2) 50.0 (0.0) 50.0 (0.0) 52.8 (2.2)
mindist+k-NND 62.9 (1.3) 59.2 (1.9) 58.4 (0.5) 53.4 (1.1)
haussd.+k-NND 72.4 (1.3) 72.8 (3.0) 68.7 (3.2) 67.1 (1.8)
mahal.+k-NND 64.0 (1.6) 47.7 (4.4) 45.0 (3.4) 58.5 (6.0)
emd+k-NND 77.6 (2.6) 56.0 (1.2) 60.8 (0.4) 57.2 (1.3)
lin.ass.+kNND 71.6 (1.4) 69.2 (1.7) 53.7 (2.9) 58.5 (3.2)

Standard classifiers on bag dissimilarity space

minmin.+Parzen Classifier 55.7 (1.6) 49.8 (0.4) 50.0 (0.0) 50.4 (2.3)
mindist.+Parzen Classifier 78.0 (1.3) 78.9 (2.8) 78.4 (0.5) 75.2 (1.9)
haussd.+Parzen Classifier 71.8 (0.9) 73.8 (2.0) 82.0 (2.2) 73.8 (0.9)
mahal.+Parzen Classifier 75.3 (0.9) 54.2 (3.3) 43.7 (3.5) 61.9 (1.8)
emd+Parzen Classifier 78.7 (1.1) 89.7 (1.3) 77.6 (1.5) 87.8 (1.1)
lin.ass.+Parzen Classifier 78.9 (0.6) 80.1 (2.4) 84.2 (2.8) 84.3 (3.1)
minmin.+k-NN 56.0 (1.6) 50.0 (0.0) 50.0 (0.0) 47.8 (2.7)
mindist.+k-NN 70.6 (2.6) 84.9 (1.6) 86.6 (2.0) 82.2 (1.5)
haussd.+k-NN 68.9 (1.9) 85.6 (2.1) 89.2 (3.5) 77.2 (3.2)
mahal.+k-NN 70.8 (1.5) 51.2 (3.6) 56.3 (3.8) 55.8 (4.6)
emd+k-NN 72.0 (2.4) 90.0 (1.4) 86.7 (0.7) 82.6 (1.7)
lin.ass.+k-NN 70.1 (0.8) 82.1 (2.3) 82.9 (2.4) 80.8 (3.8)
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Table 4. AUC performances (100×) of the classifiers on datasets Corel Fox, Corel
Tiger, and Corel Elephant. Results are obtained using five times 10-fold stratified
crossvalidation.

classifier Corel Fox Corel Tiger Corel Elephant

Standard MIL classifiers

APR τ = 0.995 55.2 (1.2) 57.9 (1.6) 74.6 (3.2)
Diverse Density (100 restarts) 66.5 (1.6) 79.3 (0.2) 90.8 (0.0)
MiBoost (M = 100 rounds) 53.5 (1.4) 74.2 (1.3) 88.9 (1.3)
MI-SVM (linear kernel) 54.4 (1.5) 80.1 (1.1) 84.1 (1.3)
MI-SVM (RBF kernel) 69.6 (1.4) 86.5 (1.4) 91.1 (1.2)
MILES (RBF kernel) 69.8 (1.7) 87.2 (1.7) 88.3 (1.1)
Simple MIL with LDA, max-comb. 57.9 (1.4) 83.4 (1.3) 90.8 (1.6)
LDA on mean-inst 58.5 (2.8) 86.5 (1.2) 89.7 (1.3)
LDA on extremes 62.9 (3.0) 84.8 (1.0) 91.3 (1.3)
BagOfWords (k=10)+linear SVM 51.8 (4.6) 71.2 (4.0) 73.0 (1.9)

Distance-based classifiers on bag dissimilarities

minmin+k-NND 65.7 (1.3) 83.4 (1.2) 83.4 (1.1)
mindist+k-NND 63.9 (1.5) 76.4 (1.3) 87.9 (1.7)
haussd.+k-NND 63.5 (3.0) 80.9 (1.2) 80.9 (2.2)
mahal.+k-NND 58.8 (2.9) 58.8 (2.9) 66.3 (4.1)
emd+k-NND 61.3 (2.1) 85.5 (0.9) 86.8 (2.3)
lin.ass.k+NND 57.5 (4.1) 78.9 (2.4) 72.8 (2.5)

Standard classifiers on bag dissimilarity space

minmin.+Parzen Classifier 61.2 (4.0) 74.3 (2.8) 86.7 (0.7)
mindist.+Parzen Classifier 62.3 (1.9) 70.7 (1.2) 74.9 (4.2)
haussd.+Parzen Classifier 59.8 (1.7) 66.9 (2.2) 73.2 (1.1)
mahal.+Parzen Classifier 68.9 (3.4) 68.9 (3.4) 64.9 (1.7)
emd+Parzen Classifier 54.3 (2.1) 67.8 (1.5) 76.5 (2.2)
lin.ass.+Parzen Classifier 64.4 (1.9) 64.6 (1.4) 69.6 (2.1)
minmin.+k-NN 67.0 (1.4) 78.6 (1.4) 87.8 (1.1)
mindist.+k-NN 59.6 (3.1) 73.7 (1.3) 76.0 (1.8)
haussd.+k-NN 56.7 (3.8) 70.6 (1.9) 77.8 (0.9)
mahal.+k-NN 75.0 (3.8) 75.0 (3.8) 65.6 (1.1)
emd+k-NN 61.4 (0.9) 76.5 (0.6) 76.3 (1.0)
lin.ass.+k-NN 65.0 (3.1) 68.7 (2.9) 71.8 (2.3)



Bag Dissimilarities in MIL 233

5 Conclusions

In some MIL problems not a single instance may be decisive, but the full dis-
tribution of all the instances in a bag. For these situations bag dissimilarities
are defined that characterize the difference in distribution between bags. For the
webpage classification problem this resulted in very good performances, while
for other problems, where a single concept can be expected, the bag dissimilarity
is far less successful. It seems that most webpages that link to another webpage,
contain information about the linked-to webpage, and therefore selecting just
one single most informative webpage is not optimal. For other problems, like
the image classification problem, the different segments appear to be more in-
dependent, in that detecting the single most informative segment is often best.
This effect is also enhanced by the fact that in the image classification problems
images often do not have many segments (around 3-6), so it is hard to treat
these few instances as a distribution.

When the given the bag dissimilarities are interpreted as new features to rep-
resent the bag, a classifier can be trained on these distance features. In this paper
only the k-nearest neighbor and the Parzen classifier are considered. Although
the choice of the classifier has some influence on the final performance, the choice
of the bag dissimilarity is more important. One well-performing dissimilarity is
using the Earth Mover’s Distance.
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