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Abstract. This paper demonstrates the derivation of a clustering model
for paired comparison data. Similarities for non-Euclidean, ordinal data
are handled in the model such that it is capable of performing an inte-
grated analysis on real-world data with different patterns of missings.

Rank-based pairwise comparison matrices with missing entries can be
described and compared by means of a probabilistic mixture model de-
fined on the symmetric group. Our EM-method offers two advantages
compared to models for pairwise comparison rank data available in the
literature: (i) it identifies groups in the pairwise choices based on simi-
larity (ii) it provides the ability to analyze a data set of heterogeneous
character w.r.t. to the structural properties of individal data samples.

Furthermore, we devise an active learning strategy for selecting paired
comparisons that are highly informative to extract the underlying rank-
ing of the objects. The model can be employed to predict pairwise choice
probabilities for individuals and, therefore, it can be used for preference
modeling.

1 Introduction

Objects oa, ob, . . . of a given set of objects O can be characterized in the most
elementary form by a preference relation. Such pairwise comparisons, that yield
so-called paired comparison data, encode the preferences of objects in many
different contexts. Comparing two objects oa and ob with an operator <, i.e.
measuring whether object oa is bigger, higher, more preferred, ... than object ob

endows an otherwise unstructured pair of objects with a very elementary piece
of information (1-bit). Neither the actual difference between the two objects is
important nor are there any compulsary restrictions placed on the operator (e.g.
transitivity). The data type is a comparison matrix, where objects oa, ob, . . . , om

are compared pairwise to each other:

X = (xab) ∈ B
m×m = {0, 1}m×m

The comparison operator can be specified dependent on the application at hand.
Here, we focus in particular on preference data.

A data set consists of i = 1, . . . , n samples:

X =
{
X(i)

}
=

{
(xab)(i)

}

M. Pelillo and E.R. Hancock (Eds.): SIMBAD 2011, LNCS 7005, pp. 207–221, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



208 L.M. Busse and J.M. Buhmann

In this work, we aim at finding structure in pairwise comparison rank data. A
famous simple model for pairwise comparisons is the Babington Smith model (a
thorough overview is provided in [19]).

Many data arise as pairwise comparisons (rather than as points in an Eu-
clidean vector space R

n). Suppose we have a number of objects oa, ob, ... which
are to be considered according to some common quality. If the quality is mea-
surable in some objective way, the objects yield variate values, and the problem
is amenable to treatment by standard machine learning methods. However, it
may happen for either theoretical or for practical reasons that the quality is
not measurable or cannot be measured robustly. We then have to rely for a
discussion of the variation of the quality based on a comparison of the objects
among themselves. The method of pairwise comparisons provides reliable and
informative data about the relative quality1.

A widely used methods of comparison ranks the object according to a suit-
able application criterion. The objects are arranged in the order in which they
possess the quality under consideration (total order). The ranking method is not
appropriate [14] when the quality considered is not known to be representable by
a linear variable. It is not necessarily unreasonable that object oa < ob, ob < oc

and oc < oa, if the objects deal for example with tastes in music, eatables or
film stars; and in practice this in not uncommon [14]. Such “inconsistent” in-
formation can never appear in a ranking for if oa is preferred to ob and ob to
oc, then oa must automatically be shown as preferred to oc. The use of rankings
thus destroys what may be valuable information.

When preference relations are evaluated under a single criterion, there is one
dominant total order (ranking assumption). However, noise can result in proba-
bilistically intransitive data. In this paper, we consider a probabilistic model for
pairwise comparison data, establishing a probability distribution over rankings.
The model allows for intransitivities and places equal probability mass on all
rankings that are equally consistent with the given pairwise comparisons. Noisy
real-world data can be handled in a meaningful way.

1 Data derived from paired comparison experiments: Many situations naturally pro-
duce pairwise comparisons such as sporting events which involve two teams (e.g.
football, basketball). The records of wins and losses for the teams constitute the
data. In other situations, such as food tasting, pairwise comparisons are helpful be-
cause of the difficulty of distinguishing preferences when more than two objects are
considered simultaneously. Though direct rankings are popular to elicit preferences
e.g. in music, movies, and food, giving a ranking for more than, say, 5 objects is quite
a difficult and time-consuming task for an interviewee to complete. Deciding between
just 2 objects at a time is easier than infering complete rankings and thus, pairwise
comparison generates data of superior quality. An alternative to asking someone to
rank the m objects is to have the ranker choose which of each pair of objects is
preferred. With many objects being up for consideration (e.g. products), we must
expect the stated pairwise preference data to have missings. Pairwise comparison
matrices might be incomplete because respondents do not express all preferences or
are indifferent.



Model-Based Clustering of Inhomogeneous Paired Comparison Data 209

We derive a mixture model for cluster analysis and provide an EM algorithm
for parameter estimation (unsupervised inference). The model and parameter
estimator can tolerate missings in the data, incase not all paired comparisons
are made or available to the data analyst.

We also devise a strategy for automatically selecting paired comparisons that
are “significant” to extract a ranking.

The model framework introduced above is instantiated for the application of
preference modeling. Cluster analysis of paired comparison data attempts to find
groups of preference choices. Preference data of surveys often suffer from missing
values since respondents might answer to only a few paired comparisons, possibly
a different set of paired comparisons for each respondent causing heterogeneity
in the data. We present a mixture approach for similarity-based pattern analysis
of such discrete, non-Euclidean, and inhomogeneous preference data by a single
probabilistic model. The usefulness of the method is demonstrated by that pre-
dictions (=recommendations) for individuals can be made based on the cluster
solution.

This paper is organized as follows: A model for heterogeneous paired com-
parison data comprising different clusters and missings is presented in Sec. 3,
and its algorithmic estimation from data in Sec. 4. Sec. 5 proposes a strategy
for selecting pairwise comparisons. In Sec. 6, we point out that the method is
helpful for predicting preferences. Experimental results are reported in Sec. 7.

2 Relevant Work

Learning to rank and ordinal regression are presently popular research topics. In
[7], the problem of learning how to order instances, given feedback in the form
of preference judgments, is tackled. Another supervised approach to learning a
preference function is [10]. Here, the training information consists of samples
with partial and possibly inconsistent information about their associated rank-
ings. From these, a ranking function is induced. Learning a preference function,
defined over pairs, for producing a ranking is also presented in [2]. An approach
to ensemble learning is introduced in [15], which takes ranking rather than clas-
sification as fundamental. Multiple input rankings are combined according to the
degree of expertise that each ranker has. A supervised pairwise/listwise approach
to ranking is developed in [6], and in [21], the problem of consensus finding for
a group of rankers is considered.

Unsupervised learning on rank and pairwise data is mostly considered in the
context of Collaborative Filtering (see [23] for a survey of techniques). A model
for the cluster analysis of rank-type data is developed in [4], which is now re-
laxed to accomodate for paired comparison data. Learning Mallows models with
pairwise preferences was very recently developed in [17].
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3 Modeling Paired Comparison Data

When modeling paired comparison data there are two options: i) To model the
pairwise comparison process (physical/mechanical/behavioral/neurological pro-
cesses). ii) To model the population of n pairwise comparison givers (compara-
tors). Here, we focus in this second, data-analytic approach.

Suppose there are m objects, also called items. By permuting the objects one
can form all m! possible rankings. Considering the simplex Pm!, we wish to
define a probability model, i.e. a family of probability distributions, i.e. a subset
of Pm!, parametrized by θ in a space Θ: {P (θ)|θ ∈ Θ} ⊂ Pm!, where P (θ) is a
function from Θ to Pm!. The set of possible rankings of m objects has a group
structure and is referred to as the symmetric group of order m, denoted Sm.
The distribution on Sm will be given through its density Pπ(θ) = P [Π = π; θ],
π ∈ Sm, θ ∈ Θ.

Please note that a ranking π ∈ Sm is a permutation of the object indices,
i.e. indicating the ranks. Inverting a ranking gives the corresponding ordering
� ∈ Tm. An ordering lists the objects according to their order.

In sufficient statistic models, the parameter θ “touches the data π” only
through functions s(π). Section 9E of [8] motivate the exponential family distri-
butions : if s = (s1, s2, . . . , sp), then:

Pθ(π(1), . . . , π(n)) = exp(
p∑

j=1

θjsj − nψ(θ)).

We now look at an exponential family model using the pairwise comparisons
I[πa < πb] implied by a ranking π as sufficient statistics. I[πa < πb] is the 0/1
indicator variable indicating whether the rank of object oa is smaller than the
rank of object ob in the ranking π (meaning that object oa is bigger/higher/more
preferred/...). The model assumes that the structure resides in the pairwise com-
parisons. The general model is based on the

(
m
2

) × 1 parameter p whose indices
ab, a < b are ordered. The pab is interpreted as the probability object oa would
be preferred to object ob if only that comparison were to be made. Note that
pba = 1 − pab.

A ranking is obtained by making independently all the pairwise comparisons
using those probabilities. The probability that the pairwise comparisons are
consistent with an ordering � ∈ Tm is

Z(p) =
∑

�∈Tm

∏
a<b

p�a�b

The probability of an ordering� given that the pairwise comparisons are consis-
tent is the probability that the comparisons yield � divided by the probability
they are consistent. The Babington Smith model [19] thus has the density

Pp(�) =
1

Z(p)

∏
a<b

p�b�b
.
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Remark: A Babington Smith model has weak stochastic transitivity, if for a, b,

pab ≥ 1
2

and pbc ≥ 1
2
⇒ pac ≥ 1

2

and has strong stochastic transitivity if

pab ≥ 1
2

and pbc ≥ 1
2
⇒ pac = max{pab, pbc}

We now write down the exponential model defined over the space of rankings,
where the sufficient statistics consist of the m̄ =

(
m
2

)
pairwise comparisons xab

for a < b. The model is

M(π|θ) = exp(θ′X(π) − ψ(θ)), π ∈ Sm (1)

where θ = (θ12, θ13, . . . , θm−1,m),
X(π) = Xπ with X = (x12, x13, . . . , xm−1,m),
xπ

ab = I[πa < πb] (the pairwise comparisons implied by the ranking π),
1 ≤ a < b ≤ m;
ψ is the normalizing constant.

Note that the symmetric group (of rankings) is the model space, whereas the
data space consists of all pairwise comparisons (matrices). The model enforces
transitivities by comparing the measured, possibly intransitive choices with rank
induced pairwise choices. Objects are ranked by determining the maximum like-
lihood ranking. Rankings with equal maximal likelihood are averaged.

The choice parameters p are related to the θ’s through

pab =
exp(−θab)

1 + exp(−θab)
, a, b ∈ O. (2)

The quantity X(π) plays the role of a dissimilarity measure. The model exem-
plifies the derivation of a suitable similarity information for non-Euclidean data
that can be used in order to perform learning.

Given a sample of size n, the maximum likelihood estimator exists if and only
if 0 < x̂ab < 1 for all a < b. If x̂ab = 0 (= 1), then set θ̂ab = +∞ (−∞). Let
H = {(a, b)|a < b, 0 < x̂ab < 1} be the set of pairs remaining, and S

∗
m be the

subset of rankings that conform to the sample, i.e.
S
∗
m = {π ∈ Sm|πa < (>) πb if x̂ab = 0 (= 1)}.
The loglikelihood is

l∗(θ, X̂) =
∑
a<b

(a,b)∈H

nθabx̂ab − nψ∗(θ) (3)

with
exp(ψ∗(θ)) =

1
m!

∑
π∈S∗

m

exp(
∑
a<b

(a,b)∈H

θabI[πa < πb]) (4)
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3.1 Model-Based Clustering

For cluster analysis, the observed paired comparison data is assumed to consist
of K groups. Each group is modeled by a Babington Smith distribution (cf.
equation 1):

M(k)(π|θ(k)) = exp(θ(k)′X(π) − ψ(θ(k))), π ∈ Sm

The component distributions are joined in a mixture model,

M(π) =
K∑

k=1

c(k)M(k)(π|θ(k)), (5)

with the mixture weights (c(1), . . . , c(K)) forming a partition of 1. Model parame-
ters can be estimated with an expectation-maximization (EM) algorithm [20], or
more sophisticated latent variable estimation algorithms such as Deterministic
Annealing [11].

3.2 Missings

When measuring paired comparison data (e.g. elicit pairwise preferences in a
survey), we have to expect that the pairwise comparison matrices may contain
missings. That is, at position (a, b) in a matrix we do not have the information
0 or 1 but rather a ∗ indicating that this paired comparison is missing.

To further complicate the problem, in both cases below the pattern of missings
might vary between the n pairwise comparison matrices constituting the samples.

Missings may occur for different reasons. The number of pairwise comparisons
between m objects is m(m−1)

2 . Instead of insisting on having all paired compar-
isons, the analyst might only measure/ask for a subset of the paired comparisons
in order to make the experiment more cheap or comfortable. For example, he
might query each pair with a probability pq so that the number of necessary
paired comparisons is only a fraction of all pairs.

A further reason for missings in a paired comparison dataset is that – though
all paired comparisons are queried – some are not available. Some measurements
might be unavailable, whether occuring by chance or built into the design of
the experiment (e.g. to save costs or in an industrial experiment some results
are missing because of mechanical breakdowns unrelated to the experimental
process). Respondents in a survey might not answer all questions because they
are indifferent w.r.t. to a paired comparison (i.e. object oa and ob are seen equally
preferred; in an opinion survey some interviewees may be unable to express a
preference for one object over another) or respondents get tired and are not
willing to answer all the questions posed.

Sometimes it is natural to treat the values that are not observed as missing,
in the sense that there are true underlying values that would have been observed
if the industrial equipment had been better maintained or survey techniques had
been better. Sometimes, however, it is less clear that a well-defined preference
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has been masked by the nonresponse. Instead, the lack of a response is essentially
an additional point in the sample space.

Excluding units that have missing values is generally inappropriate, since the
investigator is usually interested in making inferences about the entire target
population and since the removal of a subsample of common characteristic might
cause a systematic bias.

In the following, an option for handling heterogeneous (i.e.: different patterns
of missings within the samples) data in a probabilistic model is given. The per-
formance of any missing-data method depends heavily on the mechanisms that
lead to missing values. Data missing completely at random (MCAR) means that
the missingness is not related to the data under study. Data can be missing
at random (MAR, missingness is related to the observed data but not to the
missing data) and there are also nonignorable missing-data mechanisms. For a
thorough review of statistical analysis with missing data see the book of [16].

Notation:
Mis(i) = {(a, b)| paired comparison between (a, b) missing in sample i}
is the set of missings in sample i.

Model-based completion
Assuming that there are “true” values underlying at the missing matrix positions
which are just masked (i.e. for each sample there is an unobservable complete
pairwise comparison matrix), we can try to estimate these unobserved true val-
ues. We can explicitly estimate a maximum likelihood completion to a partial
pairwise comparison matrix by treating the missing pairwise comparisons as la-
tent information, and assuming complete pairwise comparison matrices to be
distributed according to the model, e.g. the Babington-Smith model. An esti-
mate of the full pairwise comparison matrix is obtained with an EM-type al-
gorithm (latent variable estimation algorithm), which alternatingly reestimates
the model parameters from current completion estimates, and then reestimates
completions based on the current model (estimate the true frequencies of the
full pairwise comparison matrices in the sample, then maximize the resulting
likelihood).

In the E-step, the current parameter estimates are used to estimate the ex-
pected value of the sufficient statistics for the complete data. In the M-step, the
estimated sufficient statistics are used to obtain maximum likelihood estimates
of the model parameters.

This iterative EM procedure naturally suits into the clustering EM algorithm
announced in section 3.1 and detailed in section 4. Having missings in the data
adds more latent variables besides the unknown cluster assignments. The method
can be used as basis for partial paired comparison data clustering, by performing
completions based on the data currently assigned to a cluster during the clus-
tering E-step, and performing maximum likelihood estimation for the mixture
components given the current completion estimates during the M-step. Model-
based completions can be performed based on the current cluster solution.
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4 Model Inference

Heterogeneous, partial paired comparison data drawn from K distinct groups
can now be described by a mixture model. The generative model for the data is

M(π|c, θ) =
K∑

k=1

c(k) 1
m!

exp(θ(k)′X(π) − ψ∗(θ(k),Mis(π))), π ∈ Sm (6)

with the normalizing constant ψ depending on the cluster-specific θ(k) and the
sample-specific pattern of missings Mis(π) by

exp(ψ∗(θ(k),Mis(π))) =
1
m!

∑
ρ∈S∗

m

exp(
∑
a<b

(a,b)∈H

∑

(a,b)/∈Mis(π)

θ
(k)
ab I[ρa < ρb]).

For inferencebasedonmaximumlikelihood (ML)estimation, for themixturemodel
describedabove, the overallMLestimator of themodel parameters is approximated
with an expectation-maximization (EM) algorithm [20]. In this section, we derive
estimation equations for the heterogeneous data model, and discuss the implemen-
tation of an efficient EM algorithm for paired comparison data.

For data X(i), i = 1, . . . , n and K clusters, define cluster assignments
q(i) = (q(i)(1), . . . , q(i)(K)). If X(i) is assigned to cluster k, then q(i)(k) = 1 and
all other entries are 0. These assignment probabilities q(i)(k) (q(i)(k) ∈ [0, 1],∑

k q
(i)(k) = 1) are hidden variables of the EM estimation problem.

The E-step of the algorithm computes estimates of the assignment probabil-
ities conditional on the current parameter configuration of the model. For sam-
ples that are only partially available, we want to make the cluster assignments
maximally non-committal w.r.t. missings (i.e. paired comparisons not given). This
involves establishing a uniform probability distribution over the missing values
(maximum entropy argument), i.e. the restricted model assigns equal probabili-
ties to all paired comparison matrices consistent with the given values regardless
of what actual values the missings might have (uniform distribution over the miss-
ings). The maximum entropy approach avoids hidden assumptions about missing
pairwise comparison entries.To summarize, for computing cluster assignments, the
lack of knowledge about some paired comparisons is handled by substituting with
the set of pairwise comparison matrices consistent with the given pairwise com-
parisons. The parameters θ are comparable for paired comparison matrices with
different pattern of missings. Formally, this holds because the model is a distribu-
tion on the consistent completions (all possible matrices that are consistent with
the given pairwise comparisons form an equivalence class).

Given estimates of the component parameter θ(k) and the mixture weight c(k)

for each cluster k, assignment probabilities are estimated as

q(i)(k) =
c(k)M(π(i)|θ(k))∑K

k′=1 c
(k′)M(π(i)|θ(k′))

.

In the M-step, assignment probabilities are assumed to be given. For each cluster,
the parameters to be estimated are c(k) and θ(k). As for any mixture model
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EM algorithm, the mixture weights are straightforwardly computed as c(k) =
1
n

∑n
i=1 q

(i)(k).
For ML estimation of the component parameters θ(k), consider the Newton-

Raphson method. To find the estimates of the θ(k)
ab for each mode, the Newton-

Raphson method can be applied to the negative log-likelihood:

− l∗(θ(k), X̂) =
∑
a<b

(a,b)∈H

n∑
i=1

q(i)(k)θ
(k)
ab x̂

(i)
ab −

n∑
i=1

q(i)(k)ψ∗(θ(k)) (7)

In practice, the normalizing constants ψ∗(θ(k),Mis(π)) can be expensive to com-
pute if m is large. We therefore derived a MCMC sampler to approximate l∗(θ(k))
and ψ∗(θ(k),Mis(π)).

Suppose that θ0 is close to the ML estimate. A sample of rankings
πs1 , πs2 , . . . , πss ∼ M(π|θ0) is a random sample of rankings from the distri-
bution defined by the paired comparison model with parameter θ0. Make use of
the law of large numbers to estimate an expectation (ML estimate in exponential
families is the value θ̂0 for which the expected value of the statistics is equal to
the observed value) by a sample mean ≈ 1

s

∑s
r=1 exp((θ − θ0)′X(πsr )) (further

details of derivation omitted).

E-step: At the current parameter value θ(k), a Monte Carlo simulation of the
Markov ranking is made; this simulation is used to estimate cumulants (or mo-
ments) of the distribution. The approximated log-likelihood for cluster k is:

l∗(θ(k), X̂) ≈
n∑

i=1

q(i)(k)
{
− ln{1

s

s∑
r=1

exp((θ(k) − θ
(k)
0 )′(X(π(k)

sr
) − X(π(i))))}}(8)

For sampling, simulate a discrete-time Markov chain whose stationary distri-
bution is the distribution we want to sample from. Change (or not) the cur-
rent ranking, according to some rule dependent on θ0. Begining with an initial
ranking, the elements of this ranking are stochastically updated, the updating
mechanism circles through the ranking again and again, this defining a stochas-
tic process which is a Markov chain. Approximate random draws e.g. by Gibbs
sampling or Metropolis-Hastings.

Details for a Metropolis-Hastings type of sampler: As an elementary change,
we define a transposition in the ranking, i.e. two random ranks are exchanged.
πτ denotes the ranking with transposition. The change takes effect with proba-
bility ∼ min(1, pτ ), with pτ = exp(θ0)′(X(πτ ) − X(π)), otherwise the change is
discarded.

5 Selection of Comparisons

As pointed out in section 3.2, we should not rely on having all paired comparisons
available, since the number of pairwise comparisons grows quadratically with
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the number m of objects. Sometimes we have no control on which pairwise
comparisons we can measure or get a response to. In other settings, however,
we are able to select pairwise comparisons that data is aquired for. In a survey,
for example, instead of asking for all pairwise comparisons, the interviewer can
choose a subset of questions. It is thus reasonable to think of a strategy for the
selection of comparisons.

We here again assume that there is a ranking underlying the paired compar-
isons (otherwise we see no argument why some paired comparisons are more
“informative” than others). Under this transitivity assumption, the task reduces
to the problem of sorting a partially ordered set (poset; the partial order induced
by the paired comparisons). That is, like with any comparison-based sorting al-
gorithm, one constructs a linear order (ranking) by queries “<” on pairs of
objects. The two differences to standard sorting are: (i.) the query operation
(“<”) might be expensive (e.g. time-consuming measurement, limited attention
of respondents in surveys); (ii.) the query operation (“<”) might be noisy (e.g.
flipped with a probability pError). We now give a method for selecting paired
comparisons ensuring that the first paired comparisons queried are the most in-
formative to construct the ranking. The method might not be robust to errors in
the paired comparisons, in particular if errors occur between distant objects. For
an error bound analysis for QuickSort with noisy comparison operation (resp.
intransitivities) we refer to [1]. Probabilistic QuickSort always needs O(n log n)
calls to the comparison oracle and, moreover, it is not clear whether the first
queries yield the most valuable information about the ranking.

Let us try to make sure that the gain of information (for the ranking) is
monotonically decreasing in the sequence of paired comparisons that are queried.
The motivation is that only a limited number of comparisons can be queried due
to cost or time constraints; for example, in a survey the interviewer does not
even know when the interviewee will stop answering the questions. Technically,
the problem rephrases as: Each additional comparison that is queried should
reduce most the cardinality of the set of rankings (total orders) consistent with
the partial order, since finally we would like to identify the single one underlying
ranking. The method below is thus based on the theory of linear extensions [13].

Let P denote a poset (here: paired comparisons acquired so far) and |E(P )|
is the set of its linear extensions (here: all rankings consistent with the paired
comparisons given). Suppose that we can choose any pair oa, ob ∈ {o1, . . . , om}
and ask an oracle to compare them. Having gotten the answer, say oa precedes
ob, we add the relation a < b and all its transitive consequences to P and obtain a
new partial order P 1 = P&[a < b]. We call the oracle again and ask it to compare
a new pair of objects as long as |E(P q)| > 1. In a finite number q of queries
we sort the original poset P , i.e. obtain a total linear order P q = π ∈ E(P ).
Clearly, one has the information theory worst-case lower bound q ≥ log2 |E(P )|
on the number of queries. For any poset P with |E(P )| > 1 linear extensions
there exists a pair of objects a, b ∈ {1, . . . ,m} such that:

max{ |E(P&[a < b])|
|E(P )| ,

|E(P&[b < a])|
|E(P )| } ≤ β (9)
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The inequality (9) says that in any poset P there exists a comparison a, b which
decreases the number of linear extensions by at least β. β is conjectured to
be 2/3 and it is known [12] that inequality (9) holds with β = 8/11. The latter
result implies that using 8/11-balanced test comparison one can sort an arbitrary
poset P in at most q ≤ 2.2 log2 |E(P )| queries. [12] also show that computing the
“balancing constants” βab = |E(P&[a < b])|/|E(P )| = Prob{a < b in E(P )} is
#P-hard. However, one can compute approximations to the balancing constants
in time O(T ), where T is the complexity of nearly uniform generation of linear
extensions of P . Therefore, a well-balanced comparison in a given poset can
also be found with high probability in time O(T ). Now, the following fact [12]:
Let ra = 1

|E(P )|
∑

π∈E π(a) be the average rank of a ∈ {1, . . . ,m} over the set of
linear extensions of P , then an arbitrary pair a, b of objects such that |ra−rb| < 1
is an 8/11-balanced comparison in K. The strategy is to minimize |r̂a − r̂b|
over a, b ∈ {1, . . . ,m}. Intuitively, this approach favors comparing objects that
are close to each other. This is particularly helpful to refine the underlying
ranking, while it is – for exactly the same reason – of disadvantage for estimating
a pairwise model, since comparisons between objects that are far apart (high
absolute value of θab) are more discriminative.

For averaging the ranks r̂a of objects we need a nearly uniform generator of
linear extensions of the poset (Markov chain with uniform stationary distribution
for combinatorial object “linear extension”). For algorithm and details, please
consult [13].

6 Application: Preference Prediction

Finally, we like to stress the usefulness of the probabilistic paired comparison
model for preference modeling. A powerful approach to preference elicitation is
the use of rankings, where the members of a population order items, values,
or products according to their degree of preference or importance. The task of
ranking, however, can be tedious. Deciding between just two items at a time is
easier, and such pairwise preference data often naturally or implicitly arises (e.g.
a dog is presented with two feeding dishes. The one that the dog eats first is the
more preferred one).

Identifying Groups of Choices: The mixture model defined above expresses
the separation of the comparators observed in the data into different groups or
types, each of which exhibits a “typical” preference behavior. The interpretation
of the θab’s for each group is that a positive value codes a preference of object
oa over ob by the group (when θab → ∞: oa is always preferred to ob). A value
of 0 means indifference or neutrality w.r.t. to the two objects at hand, whereas
a negative value of θab indicates that object oa is seen as less preferable than ob.
The soft preference probabilities pab between objects can be used to construct
the utility weights (as described in [22], for example) that a society and its groups
assign to the different objects/options oa, ob.

Recommendations: The method is helpful to estimate preference relations on
the set of objects, i.e. to predict the choice probabilities between two objects for
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Table 1. Estimation errors on synthetic data with K = 2 and K = 3 clusters. The
distances between the cluster centers and the cluster overlaps are varied.

Setting Results

K τd λ / p errorL2 θ̂

6 1.0 / 0.73 0.43 ± 0.10
2

3 1.0 / 0.73 0.55 ± 0.12
0.5 / 0.62 0.52 ± 0.17

l-approximation: 0.94 ± 0.60

4-5 1.5 / 0.82 1.14 ± 0.423

2-4 1.5 / 0.82 0.84 ± 0.27
0.5 / 0.62 0.74 ± 0.13

an individual. The prediction of the preference between objects oa and ob for
individual i based on the cluster solution is given by the posterior:

p
(i)
ab =

K∑
k=1

q(i)(k) exp(−θ(k)
ab )

1 + exp(−θ(k)
ab )

(10)

7 Experimental Results

The experiments include synthetic and real-world paired comparison data de-
rived from rankings. The mixture analysis with artificial data drawn from a
density with known parameters is conducted to check the method’s capability
of recovering parameters from paired comparison data. Additional experiments
are conducted on a data set from a study on change in mass politics described
in [3], where Germans expressed their preference regarding political goals. All
experiments are performed with the EM algorithm described in section 4.

7.1 Synthetic Data

Synthetic pairwise comparison data observations were derived from rankings
drawn at random from a mixture of Mallows models [18]. Sample experiments
for m = 4 objects and K = 2 and 3 clusters are shown in Tab 1. τd are the
mutual Kendall distances between the cluster centers; λ is an inverse spread (a
lower value resulting in an higher overlap between the clusters) and 1− p is the
inverse flip probability of a pairwise comparison. In the setting of 2 equally sized
clusters n = 150 samples were used, for the 3 clusters, including a small one,
n = 300 samples were used. The quality of parameter estimates is reported as the
L2 error to the true θ. The Bayesian Information Criterion (BIC) [20] estimate
of the number of clusters was correct except for very near cluster centers and/or
broad cluster overlaps.

With the distance between the cluster centers decreasing, the estimation errors
increase. The estimation errors become smaller when the cluster have a higher
spread (small λ). Approximating the likelihood by sampling generally increases
the estimation error.
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Fig. 1. Missings in the data set: Estimation error of θ versus different sorts of incom-
plete data

We also measured the parameter recovery error depending on different types
of missings in the data, i.e. with the paired comparison matrices only partially
available in the sample (here: n = 500). The value of the method being capable
of handling missings is illustrated in Fig. 1, where from left to right the num-
ber of missings increases (Remark: thereby, the effective sample size is reduced,
may possibly reduce e.g. the costs of measuring or time of surveying!). First,
the algorithm sees all pairwise comparisons (the full information is available). In
the second scenario, in each pairwise comparison matrix, each entry is available
with probability 0.9. It is a genuine advantage of the proposed model that it can
handle samples containing different patterns of missing at the same time. Previ-
ously, when the data analyst was confronted with such heterogenous data it was
often common practice that he had to delete incomplete samples or to analyse
them separately. Next, random 80% and 70% of the pairwise comparisons got
accessible to the inference procedure. Finally, we used the method described in
section 5 to automatically determine the subset of paired comparisons for ranking
construction. As expected, the error is significantly higher compared to random
selection for the reason given at the end of section 5: comparisons between near
objects are helpful to refine the underlying ranking, while for discriminating
between clusters distant objects are more helpful.

7.2 Political Goals German Data

The political goals data set of real-world rankings from a study on change in mass
politics: A sample of 2262 Germans expressed their preference on four political
goals based on their perceived personal importance: Order, Say, Prices, Freedom.
We analyzed the paired comparisons by EM estimation of the above mixture
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Table 2. Political Goals: Preference probabilities for the two clusters found: “Materi-
alism” and “Post-materialism”

Pair (oa, ob) → (O,S) (O,P) (O,F ) (S,P) (S,F ) (P,F )

p̂
(Mat.)
ab 77% 48% 86% 29% 53% 76%

p̂
(Post−mat.)
ab 43% 37% 29% 58% 57% 49%

model and found two clusters in agreement with the original classification by
[3] of the goals into Materialist and Post-materialist (see Tab. 2). The analysis
in [19] by a simple Babington Smith model “lefts a significant proportion of
the data unexplained”. We measured the prediction quality of our method by
deleting 10% random subsamples of the paired comparisons. The trained model
was able to predict the capped paired choice probabilities with a prediction
error of 8.65% ± 0.78%. To the best of our knowledge, there does not exist
an alternative method for comparison that is able to make predictions on this
granularity of individual paired choices.

8 Conclusion

A probabilistic mixture model for the analysis of inhomogeneous paired com-
parison data was introduced. Our modeling approach permits the integration of
data with different patterns of missings by estimating a model-based distribu-
tion on the subset of matrices consistent with the information given and thus
can combine estimate contributions in a meaningful way.

The assumption throughout this line of work is that there is a ranking un-
derlying the order relation. A ranking (or total order) orders objects according
to some criterion, neglecting any ”distance” between the objects. In practice,
paired comparisons (or partial orders) are sometimes easier to acquire. In fact,
when rankings are distributed according to the well-known Mallows model with
modal ranking σ and inverse spread λ, the flip probabilities of the induced paired
comparisons directly relate to the spread of the rank model. An advantage of
models based on ranks is that parameters can be tied in order to reduce the
number of free parameters (see [9,4]).

The underlying ranking assumption is valid as long as there is a single criterion
under which the objects are evaluated, or the objects map to a linear scale.
What can be done in case of intransitivities (oa < ob, ob < oc, and oc < oa)
that arise systematically due to conflicting multiple criteria? Intransitivities can
be consistently resolved and used to estimate utility weights for multicriteria
decision making ([5]).

References

1. Ailon, N., Mohri, M.: An Efficient Reduction of Ranking to Classification, Technical
Report, TR2007-903 (2007)

2. Ailon, N., Mohri, M.: Preference-Based Learning to Rank. Machine Learning 80,
189–211 (2010)



Model-Based Clustering of Inhomogeneous Paired Comparison Data 221

3. Barnes, S.H., Kaase, M.: Political Action: Mass Participation in Five Western
Countries. Sage, Beverly Hills (1979)

4. Busse, L.M., Orbanz, P., Buhmann, J.M.: Cluster Analysis of Heterogeneous Rank
Data. In: International Conference on Machine Learning (2007)

5. Busse, L.M., Buhmann, J.M.: Multicriteria Scaling for Utilities under Intransitiv-
ities (to appear, 2011)

6. Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., Li, H.: Learning to Rank: From Pairwise
Approach to Listwise Approach, Microsoft Tech. Report (2007)

7. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to Order Things. In: Advances
in Neural Information Processing Systems, vol. 10 (1998)

8. Diaconis, P.: Group Representations in Probability and Statistics, Institute of
Mathematical Statistics (1988)

9. Fligner, M.A., Verducci, J.S.: Distance based rank models. Journal of the Royal
Statistical Society B 48(3), 359–369 (1986)
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Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS
(LNAI), vol. 2837, pp. 145–156. Springer, Heidelberg (2003)

11. Hofmann, T., Buhmann, J.: Pairwise Data Clustering by Deterministic Anneal-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(1), 1–14
(1997)

12. Kahn, J., Saks, M.: Every poset has a good comparison. In: Proc. 16-th Symposium
on Theory of Computing, pp. 299–301 (1984)

13. Karzanov, A., Khachiyan, L.: On the Conductance of Order Markov Chains. Or-
der 8, 7–15 (1991)

14. Kendall, M.G., Babington Smith, B.: On the Method of Paired Comparisons.
Biometrika 31, 324–345 (1940)

15. Lebanon, G., Lafferty, J.D.: Cranking: Combining Rankings Using Conditional
Probability Models on Permutations. In: International Conference on Machine
Learning (2002)

16. Little, R.J.A., Rubin, D.B.: Statistical analysis with missing data. Wiley series
in probability and mathematical statistics. Applied probability and statistics, NJ
(2002)

17. Lu, T., Boutilier, C.: Learning Mallows Models with Pairwise Preferences. In: In-
ternational Conference on Machine Learning (2011)

18. Mallows, C.L.: Non-null ranking models I. Biometrika 44, 114–130 (1957)
19. Marden, J.I.: Analyzing and Modeling Rank Data. Chapman & Hall, Boca Raton

(1995)
20. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. John Wiley

& Sons, Chichester (1997)
21. Meila, M., Phadnis, K., Patterson, A., Bilmes, J.: Consensus ranking under the

exponential model. In: Conference on Uncertainty in Artificial Intelligence, UAI
(2007)

22. Saaty, T.L.: A scaling method for priorities in hierarchical structures. Journal of
Mathematical Psychology 15, 234–281 (1977)

23. Su, X., Khoshgoftaar, T.M.: A Survey of Collaborative Filtering Techniques. In:
Advances in Artificial Intelligence (2009)


	Model-Based Clustering of Inhomogeneous Paired Comparison Data
	Introduction
	Relevant Work
	Modeling Paired Comparison Data
	Model-Based Clustering
	Missings

	Model Inference
	Selection of Comparisons
	Application: Preference Prediction
	Experimental Results
	Synthetic Data
	Political Goals German Data

	Conclusion
	References




