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Preface

Traditional pattern recognition techniques are intimately linked to the notion
of “feature spaces.” Adopting this view, each object is described in terms of a
vector of numerical attributes and is therefore mapped to a point in a Euclidean
(geometric) vector space so that the distances between the points reflect the
observed (dis)similarities between the respective objects. This kind of represen-
tation is attractive because geometric spaces offer powerful analytical as well
as computational tools that are simply not available in other representations.
Indeed, classical pattern recognition methods are tightly related to geometrical
concepts and numerous powerful tools have been developed during the last few
decades, starting from the maximal likelihood method in the 1920’s, to percep-
trons in the 1960’s, to kernel machines in the 1990’s.

However, the geometric approach suffers from a major intrinsic limitation,
which concerns the representational power of vectorial, feature-based descrip-
tions. In fact, there are numerous application domains where either it is not
possible to find satisfactory features or they are inefficient for learning purposes.
This modeling difficulty typically occurs in cases when experts cannot define fea-
tures in a straightforward way (e.g., protein descriptors vs. alignments), when
data are high dimensional (e.g., images), when features consist of both numeri-
cal and categorical variables (e.g., person data, like weight, sex, eye color, etc.),
and in the presence of missing or inhomogeneous data. But, probably, this sit-
uation arises most commonly when objects are described in terms of structural
properties, such as parts and relations between parts, as is the case in shape
recognition.

In the last few years, interest around purely similarity-based techniques has
grown considerably. For example, within the supervised learning paradigm (where
expert-labeled training data is assumed to be available) the well-established
kernel-based methods shift the focus from the choice of an appropriate set of
features to the choice of a suitable kernel, which is related to object similarities.
However, this shift of focus is only partial, as the classical interpretation of the
notion of a kernel is that it provides an implicit transformation of the feature
space rather than a purely similarity-based representation. Similarly, in the un-
supervised domain, there has been an increasing interest around pairwise or even
multiway algorithms, such as spectral and graph-theoretic clustering methods,
which avoid the use of features altogether.

By departing from vector-space representations one is confronted with the
challenging problem of dealing with (dis)similarities that do not necessarily pos-
sess the Euclidean behavior or not even obey the requirements of a metric. The
lack of the Euclidean and/or metric properties undermines the very foundations
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of traditional pattern recognition theories and algorithms, and poses totally new
theoretical/computational questions and challenges.

This volume contains the papers presented at the First International Work-
shop on Similarity-Based Pattern Recognition (SIMBAD 2011), held in Venice,
Italy, September 28–30, 2011. The aim of this workshop was to consolidate re-
search efforts in the area of similarity-based pattern recognition and machine
learning and to provide an informal discussion forum for researchers and practi-
tioners interested in this important yet diverse subject. The workshop marks the
end of the EU FP7 Projects SIMBAD (http://simbad-fp7.eu) and is a follow-up
of the ICML 2010 Workshop on Learning in non-(geo)metric spaces.

We believe that there are two main themes underpinning this research topic,
which correspond to the two fundamental questions that arise when abandoning
the realm of vectorial, feature-based representations. These are:

– How can one obtain suitable similarity information from data representations
that are more powerful than, or simply different from, the vectorial?

– How can one use similarity information in order to perform learning and
classification tasks?

The call for papers produced 35 submissions, resulting in the 23 papers ap-
pearing in this volume, 16 of which presented orally at the workshop and 7 in a
poster session. The papers cover a wide range of problems and perspectives, from
supervised to unsupervised learning, from generative to discriminative models,
and from theoretical issues to real-world practical applications. In addition to
the contributed papers, the workshop featured invited keynote talks by Marco
Gori, from the University of Siena, Italy, Ulrike Hahn, from Cardiff University,
UK, and John Shawe-Taylor, from University College London, UK. All oral pre-
sentations were filmed by Videolectures, and will be freely available on-line in
due course.

We gratefully acknowledge generous financial support from the PASCAL2
network of excellence, and thank the International Association for Pattern Recog-
nition (IAPR) for its sponsorship. We also acknowledge the Future and Emerging
Technology (FET) Programme, of the 7th Framework Programme for Research
of the European Commission, which funded the SIMBAD project, within which
this workshop was conceived and of which was an outgrowth.

We would also like to take this opportunity to express our gratitude to all
those who helped to organize the workshop. First of all, thanks are due to the
members of the Scientific Committees and to the additional reviewers. Special
thanks are due to the members of the Organizing Committee. In particular,
Samuel Rota Bulò and Nicola Rebagliati managed the online review system and
were webmasters, Furqan Aziz assembled the proceedings, and Veronica Giove
provided administrative support.
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Finally, we offer our appreciation to the editorial staff at Springer in produc-
ing this book, and for supporting the event through publication in the LNCS
series. Finally, we thank all the authors and the invited speakers for helping to
make this event a success, and producing a high-quality publication to document
the event.

August 2011 Marcello Pelillo
Edwin Hancock
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On the Usefulness of Similarity Based Projection

Spaces for Transfer Learning�

Emilie Morvant, Amaury Habrard, and Stéphane Ayache

Laboratoire d’Informatique Fondamentale de Marseille,
Aix-Marseille Université, CNRS UMR 6166, 13453 Marseille cedex 13, France
{emilie.morvant,amaury.habrard,stephane.ayache}@lif.univ-mrs.fr

Abstract. Similarity functions are widely used in many machine learn-
ing or pattern recognition tasks. We consider here a recent framework
for binary classification, proposed by Balcan et al., allowing to learn
in a potentially non geometrical space based on good similarity func-
tions. This framework is a generalization of the notion of kernels used
in support vector machines in the sense that allows one to use similarity
functions that do not need to be positive semi-definite nor symmetric.
The similarities are then used to define an explicit projection space where
a linear classifier with good generalization properties can be learned. In
this paper, we propose to study experimentally the usefulness of similar-
ity based projection spaces for transfer learning issues. More precisely,
we consider the problem of domain adaptation where the distributions
generating learning data and test data are somewhat different. We stand
in the case where no information on the test labels is available. We show
that a simple renormalization of a good similarity function taking into
account the test data allows us to learn classifiers more performing on
the target distribution for difficult adaptation problems. Moreover, this
normalization always helps to improve the model when we try to regu-
larize the similarity based projection space in order to move closer the
two distributions. We provide experiments on a toy problem and on a
real image annotation task.

Keywords: Good Similarity Functions, Transfer Learning, Domain
Adaptation, Image Classification.

1 Introduction

Many machine learning or pattern recognition algorithms are based on similarity
functions. Among all of the existing methods, we can cite the famous k-nearest
neighbors, k-means or support vector machines (SVM). An important point is

� This work was supported in part by the french project VideoSense ANR-09-CORD-
026 of the ANR in part by the IST Programme of the European Community, under
the PASCAL2 Network of Excellence, IST-2007-216886. This publication only re-
flects the authors’ views.

M. Pelillo and E.R. Hancock (Eds.): SIMBAD 2011, LNCS 7005, pp. 1–16, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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to choose or adapt the similarity to the problem considered. For example, ap-
proaches dealing with numerical vectors are often based on the Mahalanobis dis-
tance [12,15,27] and many methods designed for structured data (strings, trees
or graphs) exploit the notion of edit distance [7,14,24]. For binary classification
with SVM classifiers, the similarity function must often be a valid kernel1 in
order to define a potentially implicit projection space which is an Hilbert space
and where data can be more easily separated. In this case, the similarity function
must be symmetric and positive semi-definite (PSD), allowing one to define a
valid dot product in the implicit projection space. However, these constraints
may rule out some natural similarity functions. Recently, a framework proposed
by Balcan et al. [2,3] considers a notion of good similarity function that over-
comes these limitations. Intuitively, this notion only requires that a sufficient
amount of examples are on average more similar to a set of reasonable points of
the same class than to reasonable points of the opposite class. Then, the simi-
larity can be used to build an explicit (potentially non geometrical) projection
space, corresponding to the vector of similarities to the reasonable examples.
In this similarity based projection space, a classifier with good generalization
capabilities can be learned.

This kind of result holds in a classical machine learning setting, where test
data are supposed to have been generated according to the same distribution
than the one used for generating labeled learning data. This assumption is in
fact very useful to obtain good generalization results, but is not always valid in
every application. For example, in an image classification task, if labeled data
consist of images extracted from the web and test data images extracted from
different videos, the various methods of data acquisition may imply that labeled
data are no longer representative of test data and thus of the underlying classi-
fication task. This kind of issue is a special case of transfer learning [22] called
domain adaptation (DA) [18,23]. DA arises when learning and test data are
generated according to two different probability distributions: the first one gen-
erating learning data is often referred to as the source domain, while the second
one for test data corresponds to the target domain. According to the existing
theoretical frameworks of DA [4,20] a classifier can perform well on the target
domain if its error relatively to the source distribution and the divergence be-
tween the source and target distributions are together low. One possible solution
to learn a performing classifier on the target domain is to find a projection space
in which the source and target distributions are close while keeping a low error
on the source domain. Many approaches have been proposed in the literature to
tackle this problem [9,10,11,19].

In this paper, we consider the case where a learning algorithm is provided with
labeled data from the source domain and unlabeled data from the target one.
Our aim is to investigate the interest of the framework of Balcan et al. for do-
main adaptation problems. More precisely, we propose to study how we can use
the lack of geometrical space of this framework to facilitate the adaptation. We
consider two aspects. First, the influence of a renormalization of the similarity

1 Nevertheless there exists some approaches allowing to use indefinite kernels [16].
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function according to the unlabeled source and target data. Second, the addition
of a regularization term to the optimization problem considered for learning the
classifier in order to select reasonable points that are relevant for the adaptation.
This approach can be seen as a feature selection for transfer learning aiming at
moving closer the two distributions. We show experimentally that these two as-
pects can help to learn a better classifier for the target domain. Our experiments
are based on a synthetic toy problem and on a real image annotation task.

The paper is organized as follows. We introduce some notations in Section 2.
Then we present the framework of good similarity functions of Balcan et al. in
Section 3. We next give a brief overview of domain adaptation in Section 4. We
present in Section 5 the approach considered and we describe our experimental
study in Section 6. We conclude in Section 7.

2 Notations

We denote by X ⊆ Rd the input space. We consider binary classification prob-
lems with Y = {−1, 1}, the label set. A learning task is modeled as a probability
distribution P over X × Y , D being the marginal distribution over X . For any
labeled sample S drawn from P , we denote by S|X the sample constituted of all
the instances of S without the labels. In a classical machine learning setting, the
objective is then to learn a classifier h : X → Y belonging to a class of hypoth-
esis H such that h has a low generalization error errP (h) over the distribution
P . The generalization error errP (h) corresponds to the probability that h can
commit an error according to the distribution P , which is defined as follows:

∀h ∈ H, errP (h) = E(x,y)∼P L(h(x), y)

where L corresponds to the loss function modeling the fact that h(x) �= y. We
will see later that in a DA scenario, we consider two probability distributions
PS and PT corresponding respectively to a source domain and a target one.

We now give a definition about the notion of similarity functions.

Definition 1. A similarity function over X is any pairwise function

K : X ×X → [−1, 1].

K is symmetric if for any x,x′ ∈ X: K(x,x′) = K(x′,x).

A similarity function is a valid kernel function if it is positive semi-definite,
meaning that there exists a function φ from X to an implicit Hilbert space such
that K defines a valid dot product in this space, i.e. K(x, x′) = 〈φ(x), φ(x′)〉.
Using a valid kernel offers the possibility to learn a good classifier into a high
dimensional space where the data are supposed to be linearly separable. However,
the choice or the definition of a good kernel can be a tricky task in general. We
present in the next section a framework that proposes a rather intuitive notion
of good similarity function that gets rid of the constraints of a kernel.
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3 Learning with Good Similarity Functions

In this section, we present the class H of linear classifiers considered in this
paper. These classifiers are based on a notion of good similarity function for
a given classification task. A common general idea is that such a similarity
function is able to separate examples of the same class from examples of the
opposite class with a given confidence γ > 0. Given two labeled examples (x, y)
and (x′, y′) of X × Y , this idea can be formalized as follows: if y = y′ then
K(x,x′) > γ, otherwise we want K(x,x′) < −γ. This can be summarized by the
following formulation: yy′K(x,x′) > γ. The recent learning framework proposed
by Balcan et al. [2,3], has generalized this idea by requiring the similarity to be
good over a set of reasonable points.

Definition 2 (Balcan et al. [2]). A similarity function K is an (ε,γ,τ)-good
similarity function for a learning problem P if there exists a (random) indi-
cator function R(x) defining a set of reasonable points such that the following
conditions hold:

(i) A 1− ε probability mass of examples (x, y) satisfy

E(x′,y′)∼P

[
yy′K(x,x′)|R(x′)

]
≥ γ, (1)

(ii) Prx′ [R(x′)] ≥ τ .

From this definition, a large proportion of examples must be on average more
similar, with respect to the margin γ, to random reasonable examples of the
same class than to random reasonable examples of the opposite class. Moreover,
at least a proportion τ of examples should be reasonable. Definition 2 includes all
valid kernels as well as some non-PSD non symmetric similarity functions [2,3].
The authors have shown that this definition of good similarities allows also to
solve problems that can not be handled by classical kernels, which makes the
definition a strict generalization of kernels. According to the following theorem,
it provides sufficient conditions to learn a good linear classifier in an explicit
projection space defined by the reasonable points in the set R.

Theorem 1 (Balcan et al. [2]). Let K be an (ε, γ, τ)-good similarity func-
tion for a learning problem P . Let S = {x′

1, . . . , x
′
d} be a sample of d =

2
τ

(
log(2

δ )+8 log(2/δ)
γ2

)
landmarks (potentially unlabeled) drawn from P . Consider

the mapping φR : X → Rd defined as follows: φR
i (x) = K(x, x′

i), i ∈ {1, . . . , d}.
Then, with probability at least 1 − δ over the random sample R, the induced
distribution φR(P ) in Rd has a separator of error at most ε + δ relative to L1

margin at least γ/2.

Thus, with an (ε,γ,τ)-good similarity function for a given learning problem P
and enough (unlabeled) landmark examples, there exists with high probability a
low-error linear separator in the explicit φR-space, corresponding to the space of
the similarities to the d landmarks. The criterion given by Definition 2 requires
to minimize the number of margin violations which is a NP-hard problem gen-
erally difficult to approximate. The authors have then proposed to consider an
adaptation of Definition 2 with the hinge loss formalized as follows.
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Definition 3 (Balcan et al. [2]). A similarity function K is an (ε, γ, τ)-good
similarity function in hinge loss for a learning problem P if there exists a
(random) indicator function R(x) defining a (probabilistic) set of “reasonable
points” such that the following conditions hold:

(i) we have
E(x,y)∼P

[
[1− yg(x)/γ]+

]
≤ ε, (2)

where g(x) = E(x′,y′)∼P [y′K(x,x′)|R(x′)]
and [1− c]+ = max(0, 1− c) is the hinge loss,

(ii) Prx′ [R(x′)] ≥ τ .

Using the same φR-space than Theorem 1, the authors have proved a similar
theorem for this definition with the hinge loss. This leads to a natural two
step algorithm for learning this classifier: select a set of potential landmark
points and then learn a linear classifier in the projection space induced by these
points. Then, using du unlabeled examples for the landmark points and dl labeled
examples, this linear separator α ∈ Rdu can be found by solving a linear problem.
We give here the formulation based on the hinge loss presented in [2].

min
α

dl∑
i=1

⎡⎣1−
du∑

j=1

αjyiK(xi, x
′
j)

⎤⎦
+

such that
du∑

j=1

|αj | ≤ 1/γ. (3)

In fact, we consider a similar formulation based on a 1-norm regularization,
weighted by a parameter λ related to the desired margin.

min
α

dl∑
i=1

⎡⎣1−
du∑

j=1

αjyiK(xi, x
′
j)

⎤⎦
+

+ λ‖α‖1. (4)

In the following, a classifier learned in this framework is called a SF classifier.

4 Domain Adaptation

Domain adaptation (DA) [4,20] arises when the learning data generation is some-
what different from the test data generation. The learning data, generally called
the source domain, is represented by a distribution PS over X × Y and the test
data, referred to the target domain, is modeled by a distribution PT . We denote
by DS and DT the respective marginal distributions over X .

A learning algorithm is generally provided with a Labeled Source sample LS =
{(xi, yi)}m

i=1 drawn i.i.d. from PS , and a Target Sample which contains a large set
of unlabeled target instances TS = {xj}m′

j=1 drawn i.i.d. from DT and sometimes
a few labeled target data drawn from PT . The objective of a learning task is then
to find a good hypothesis with a low error according to target distribution PT .
In this section, we provide a brief and non-exhaustive overview of some existing
DA approaches, note that some surveys can be found in [18,23].
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The first theoretical analysis of the DA problem was proposed by Ben-David
et al. [4,5]. The authors have provided an upper bound on the target domain
error errPT that takes into account the source domain error errPS (h) and the
divergence dH between the source and target marginal distributions:

∀h ∈ H, errPT (h) ≤ errPS (h) +
1
2
dH(DS , DT ) + ν. (5)

The last term corresponds to the optimal joint hypothesis over the two domains
ν = argminh∈H errPS (h)+errPT (h). It can be seen as a quality measure of H for
the DA problem considered. If this best hypothesis performs poorly, it appears
then difficult to obtain a good hypothesis for the target domain. This term is
then supposed to be small to ensure a successful adaptation.

The other crucial point is the divergence2 dH which is called the H-distance.
This result suggests that if the two distributions are close, then a low error
classifier over the source domain can be a good classifier for the target one. The
intuition behind this idea is given in Figure 1. The distance dH is actually related
to H by measuring a maximum variation divergence over the set of points on
which an hypothesis in H can commit errors:

dH(DS , DT ) = 2 sup
h∈H

∣∣PrDS [I(h)]− PrDT [I(h)]
∣∣

where x ∈ I(h) ⇔ h(x) = 1. An interesting point of this theory is that the
H-distance can be estimated from finite samples when the VC-dimension of H
is finite. Using a VC-dimension analysis, the authors show that the empirical
divergence converges to the true dH with the size of the samples. Let US be
a sample i.i.d. from DS and UT a sample i.i.d. from DT . Consider a labeled
sample US

⋃
UT where each instance of US is labeled as positive and each one

of UT as negative. The empirical divergence can then be directly estimated by
looking for the best classifier able to separate the two samples3 [4]:

d̂H(US , UT ) = 2
(

1−min
h∈H

ˆerr
US ,UT

(h)
)

, (6)

with ˆerr
US ,UT

(h)=
1
m

⎛⎜⎜⎝ ∑
x∈US∪UT ,
h(x)=−1

�x∈US +
∑

x∈US∪UT ,
h(x)=1

�x∈UT

⎞⎟⎟⎠, where �x∈US =
{

1 if x ∈ US

0 otherwise.

Note that finding the optimal hyperplane is NP-hard in general. However, a
good estimation of d̂H allows us to have an insight of the distance between the
two distributions and thus of the difficulty of the DA problem for the class H.
We will use this principle to estimate the difficulty of the task considered in our
experimental part.
2 The authors consider actually the divergence over HΔH, the space of symmetric

difference hypothesis, see [4] for more details.
3 By considering the 0-1 loss, L01, defined as follows: L01(h, (x, y)) = 1 if h(x) �= y

and 0 otherwise.
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(a) (b)

Fig. 1. Intuition behind a successful domain adaptation. Source points are in (dark)
green (pos. +, neg. −), target points are in (light) orange. (a) The distance between
domains is high: the two samples are easily separable and the classifier learned from
source points performs badly on the target sample. (b) The distance between domains
is low: The classifier learned from source points performs well on the two domains.

Later, Mansour et al. [20] have proposed another discrepancy measure al-
lowing one to generalize the dH distance to other real valued loss functions.
Note that the bound presented in their work is a bit different from the one of
Ben-David et al.. Moreover, they have also provided an average analysis with in-
teresting Rademacher generalization bounds. These theoretical frameworks show
that for a good domain adaptation, the distance between distributions and the
source error must be low. According to [6], minimizing these two terms appears
even necessary in general.

One key point for DA approaches is thus to be able to move closer the dis-
tributions while avoiding a dramatic increase of the error on the source domain.
In the literature, some methods have proposed to reweight the source instances
in order to get closer to the target distribution. They are often based on some
assumptions on the two distributions [8,17,19,20,26]. For example some of these
approaches rely on hypothesis like the covariate shift where the marginal dis-
tributions over X may be different for the two domains, but the conditional
distribution of Y given X are the same, i.e. PS(y|x) = PT (y|x) for every x ∈ X
and y ∈ Y but PS(x) �= PT (x) for some x ∈ X [26]. Other works are based on
iterative self labeling approaches in order to move progressively from one domain
to the other one [10]. Another standpoint for moving closer the two distributions
is to find a relevant projection space where the two distributions are close. In
[9], the authors propose a structural correspondence learning approach to iden-
tify relevant features by looking for their correspondence in the two domains.
Another idea is to use an augmented feature space for both source and target
data and use the new input space obtained with classical machine learning al-
gorithms [11]. Some authors have also proposed to use spectral approaches to
build a new feature space [21].

The main underlying ideas among the different approaches presented in this
section is that a potential good adaptation needs to have the source and target
distributions close. One way to achieve this goal is to build a relevant feature
space by defining a new projection operator or by choosing relevant features. In
the next section, we study the usefulness of the framework of Balcan et al.. to
deal with domain adaptation problems. More precisely, we propose to investigate
how the definition of the similarity function and the construction of the feature
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space - i.e. the φ-space of similarities to a set of reasonable points - can help to
improve the performance of the classifier in a domain adaptation setting.

5 Modifying the Projection Space for Domain Adaptation

In this section, we present our two approaches for modifying the similarity based
projection space in order to facilitate the adaptation to the target distribution.
First, we present a simple way for renormalizing a similarity function according
to a sample of unlabeled instances. Second, we propose a regularization term
that tends to define a projection space where the source and target marginal
distributions tend to be closer.

5.1 A Normalization of a Similarity Function

For a particular DA task, we build a new similarity function KN by normalizing
a given similarity function K relatively to a sample N . Recall that, from Defi-
nition 2, a similarity must be good relatively to a set of reasonable points. We
propose actually to renormalize the set of similarities to these points. Since the
real set of reasonable points is unknown a priori, we consider a set of candidate
landmark points R′ and we apply a specific normalization for each instance of
x′

j ∈ R′. The idea is to apply a scaling to mean zero and standard deviation
one for the similarities of the instances of N to x′. Our procedure is defined as
follows.

Definition 4. Let K be a similarity function which verifies the Definition 2.
Given a data set N = {xk}p

k=1 and a set of (potential) reasonable points R′ =
{x′

j}du

j=1, a normalized similarity function, KN , is defined by:

∀x′
j ∈ R′, KN (.,x′

j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

K(.,x′
j)− μx′

j

σx′
j

if −1 ≤
K(.,x′

j)−μ̂x′
j

σ̂x′
j

≤ 1,

−1 if −1 ≥
K(.,x′

j)−μ̂x′
j

σ̂x′
j

,

1 if
K(.,x′

j)−μ̂x′
j

σ̂x′
j

≥ 1,

(7)

where μ̂x′
j

is the empirical mean of similarities to x′
j over N :

∀x′
j ∈ R′, μ̂x′

j
=

1
|N |

∑
xk∈N

K(xk,x′
j),

and σ̂x′
j

is the empirical unbiased estimate of the standard deviation:

∀x′
j ∈ R′, σ̂x′

j
=
√

1
|N | − 1

∑
xk∈N

(
K(xk,x′

j)− μ̂x′
j

)2
.
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By construction, the similarity KN is then non symmetric and non PSD. In
the following, we will consider that a learning algorithm is provided with two
data sets: LS = {(xi, yi)}m

i=1 constituted of labeled source domain data, and
TS = {xi}m′

i=1 of unlabeled target domain data. According to the theoretical
result of domain adaptation of Ben-David et al.. recalled in Equation (5), the
learned classifier should also perform well on the source domain. We then propose
to define our normalized function, denoted by KST , with N = LS|X∪TS in order
to link the two domains by considering the information of both of them at the
same time, for avoiding an increasing of the source error. Our choice is clearly
heuristic and our aim is just to evaluate the interest of renormalizing a similarity
for domain adaptation problems. In order to study the potential of adaptation,
we will only consider candidate landmark points R′ from the source domain.

5.2 An Additional Regularization Term for Moving Closer the Two
Distributions

As a second contribution, we propose to add a regularization term to the opti-
mization Problem 4 proposed by Balcan et al.. The objective is to control the
selection of reasonable points leading to a projection space where the two distri-
butions are close. According to the empirical divergence dH given in Equation 6,
the source and the target domains are close if it is difficult to separate source
from target examples. Let two subsets US ⊆ LS and UT ⊆ TS of equal size,
our idea is then to build a set CST of pairs belonging to US × UT . And then,
for each pair (xs,xt) ∈ CST , we propose to regularize the learned classifier such
that the outputs of the classifier are close for the two instances xs and xt. For
any classifier h(·) =

∑|R|
i=1 αiK(·, x′

i), this can be expressed as follows:

|h(xs)− h(xt)| =

∣∣∣∣∣∣
|R|∑
j=1

αjK(xs,x′
j)−

|R|∑
j=1

αjK(xt,x′
j)

∣∣∣∣∣∣
≤

|R|∑
j=1

∣∣αj

(
K(xs,x′

j)−K(xt,x′
j)
)∣∣ by using triangle inequality

=
∥∥(tφR(xs)− tφR(xt)) diag(α)

∥∥
1
. (8)

This leads us to propose a new regularization term which tends to select land-
marks with similarities close to both some source and target points, which allows
us to define a projection space where source and target examples are closer. Let
R be a set of du candidate landmark points, our global optimization problem is
then defined as follows:

min
α

dl∑
i=1

⎡⎣1−
du∑

j=1

αjyiK(xi, x
′
j)

⎤⎦
+

+λ‖α‖1+C
∑

(xs,xt)∈CST

∥∥(tφR(xs)−tφR(xt)) diag(α)
∥∥

1

(9)
The construction of CST is difficult since we have no information on the target
labels. In practice, we build the matching CST from US and UT by looking for
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a bipartite matching minimizing the Euclidean distance in the φ-space defined
by the set of candidate landmarks. This can be done by solving the following
problem. Note that in the particular case of bipartite matching, this can be done
in polynomial time by linear programming for example.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
βst

1≤s≤|US |
1≤t≤|UT |

∑
(xs,xt)∈US×UT

βst‖φR(xs)− φR(xt)‖22

s.t.: ∀(xs,xt) ∈ US × UT , βst ∈ {0, 1},
∀xs ∈ US ,

∑
xt∈UT

β(st) = 1,
∀xt ∈ UT ,

∑
xs∈US

β(st) ≤ 1.

Then CST corresponds to the pairs of US × UT such that βst = 1. The choice
of the points of US and UT is hard and in an ideal case, we would like to select
pairs of points of the same label. But since we suppose that no target label is
available, we select the sets US and UT randomly from the source and target
samples, from different draws, and we choose the best sets thanks to a reverse
validation procedure described in Appendix A.

6 Experiments

We now propose to evaluate the approaches presented in the previous section on
a synthetic toy problem and on a real image annotation task. For every problem,
we consider to have: a labeled source sample LS drawn from the source domain, a
set of potential landmark points R′ drawn from the marginal source distribution
over X and an unlabeled target sample TS drawn from the marginal target
distribution over X .

As a baseline, we choose a similarity based on a classical Gaussian kernel,
which is a good similarity function according to the framework of Balcan et al.:

K(x,x′) = exp
(
−‖x− x′‖22

D2

)
.

We then consider the normalized similarity KST which corresponds to the nor-
malization of K according to the instances of the source and target samples
LS|X ∪TS. For each of the two similarities K and KST , we compare the models
learned by solving Problem (4), corresponding to learning a classical SF-based
classifier, to those learned using our regularized formulation in Problem (9). We
tune the hyperparameters with a “reverse” validation procedure described in
Appendix A. Moreover, in order to evaluate if KST is a better similarity for the
target domain, we propose to study the (ε,γ,τ)-guarantees on the target sample
according to Definition 3. For this purpose, we estimate empirically ε as a func-
tion of γ from the target sample (we use here the real labels but only for this
evaluation), i.e. for a given γ, ε̂ is the proportion of examples x ∈ TS verifying:∑

x′
j∈R′

yiy
′
jK(xi,x′

j) < γ.
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We also assess the distance d̂H between the two domains by learning a SF-based
classifier with K for separating source from target samples in the original space.
From Equation (6), a small value, near 0, indicates close domains while a larger
value, near 2, indicates a hard DA task.

6.1 Synthetic Toy Problem

As the source domain, we consider a classical binary problem with two inter-
twinning moons, each class corresponding to one moon (see Figure 3). We then
define 8 different target domains by rotating anticlockwise the source domain
according to 8 angles. The higher the angle is, the harder the task becomes. For
each domain, we generate 300 instances (150 of each class). Moreover, for study-
ing the influence of the pair set CST , we evaluate the obtained results when CST

corresponds to a set of “perfect pairs (xs,xt)” where xt is the obtained instance
after rotating xs. These results correspond to an upper bound for our methods.
Finally, in order to assess the generalization ability of our approach, we evaluate
each method on an independent test set of 1500 examples drawn from the target
domain (not provided to the algorithm). Each adaptation problem is repeated
10 times and the average accuracy obtained for each method is reported in
Table 1. We can make the following remarks.

– Our new regularization term for minimizing distance between marginal dis-
tributions improves significantly the performances on the target domain.

– As long as the problem can be considered as an easy DA task, the normal-
ized similarity does not produce better models. However, when the difficulty
increases, using a normalized similarity improves the results.

– Regarding the bipartite matching influence, having perfect pairs leads to
the best results and is thus important for the adaption process, which is
expected. However, our reverse validation procedure helps us to keep correct
results when a set of perfect pairs can not be built.

Figure 2 shows the goodness guarantees of the similarities over each adaptation
task. A better similarity has a lower area under the curve, meaning a lower error
in average. The ε̂ rate is relatively high because we consider only landmarks from
the source sample in order to study our adaptation capability. We observe for
hardest problems (≥ 50◦) an improvement of the goodness with the normalized
similarity KST . For easier tasks, this improvement is not significant, justifying
the fact that the similarity K can lead to better classifiers. Our normalized
similarity seems thus relevant only for hard domain adaptation problems.

6.2 Image Classification

In this section, we experiment our approach on PascalVOC 2007 [13] and TrecVid
2007 [25] corpora. The PascalVOC benchmark is constituted of a set of 5000
training images and a set of 5000 test images. The TrecVid corpus is constituted
of images extracted from videos and can be seen also as an image corpus. The
goal is to identify visual objects and scenes in images and videos. We choose the
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(a) For a 20◦ task. (b) For a 30◦ task.

(c) For a 40◦ task. (d) For a 50◦ task.

(e) For a 60◦ task. (f) For a 70◦ task.

(g) For a 80◦ task. (h) For a 90◦ task.

Fig. 2. Goodness of the similarities over the target sample: ε̂ as a function of γ
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Fig. 3. Left: A source sample. Right: A target sample with a 50◦ rotation

Table 1. Average results in percentage of accuracy with standard deviation on the toy
problem target test sample for each method

Rotation 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

d̂H 0.58 1.16 1.31 1.34 1.34 1.32 1.33 1.31

SF without distance regularization

with K 88 ± 13 70 ± 20 59 ± 23 47 ± 17 34 ± 08 23 ± 01 21 ± 01 19 ± 01
with KST 79 ± 10 56 ± 15 56 ± 10 43 ± 09 41 ± 08 37 ± 10 36 ± 10 40 ± 09

SF with distance regularization

with K 98 ± 03 92 ± 07 83 ± 05 70 ± 09 54 ± 18 43 ± 24 38 ± 23 35 ± 19
with KST 93 ± 05 86 ± 08 72 ± 12 72 ± 013 69 ± 10 67 ± 12 63 ± 13 58 ± 09

SF with distance regularization and perfect matching

with K 99 ± 01 96 ± 01 86 ± 02 73 ± 11 65 ± 23 56 ± 29 47 ± 23 39 ± 19
with KST 97 ± 04 92 ± 06 83 ± 10 75 ± 12 73 ± 16 73 ± 02 69 ± 7 60 ± 11

concepts that are shared between the two corpora: Boat, Bus, Car, TV/Monitor,
Person and Plane. We used visual features extracted as described in [1]. We
consider as the source domain, labeled images from the PascalVOC 2007 training
set. For each concept, we generated a source sample constituted of all the training
positive images and negatives images independently drawn such that the ratio
+/− is 1

3/ 2
3 . As the target domain, we use some images of the TrecVid corpus, we

built also a sample containing all the positive examples and drew some negative
samples in order to keep the same ration +/− of 1

3/ 2
3 . In these samples, the

number of positive examples may be low and we propose to use the F-measure4

to evaluate the learned models. The results are reported in Table 2. The different
nature and ways of acquisition of the images make the problem of adaptation
difficult. As an illustration, the empirical d̂H between the two domains is high for
every concept. In this context, for all the tasks, the normalized similarity with
distance regularization provides the best results. This is confirmed on Figure 4
where the evaluation of the goodness of the two similarities for two concepts is
provided: the normalized similarity is better for difficult tasks.

4 The F-measure or the balanced F-score is the harmonic mean of precision and recall.
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(a) For concept Boat (b) For concept Plane.

Fig. 4. ε̂ on the target domain as a function of γ for 2 concepts

Table 2. Results obtained on TrecVid target domain according to the F-measure

Concept boat bus car monitor person plane Average

d̂H 1.93 1.95 1.85 1.86 1.78 1.86 1.86

SF without distance regularization

with K 0.0279 0.1806 0.5214 0.2477 0.4971 0.5522 0.3378
with KST 0.4731 0.4632 0.5316 0.3664 0.3776 0.5635 0.4626

SF with distance regularization

with K 0.2006 0.1739 0.5125 0.2744 0.5037 0.5192 0.3640
with KST 0.4857 0.4891 0.5452 0.3989 0.5353 0.6375 0.5153

7 Conclusion

In this paper, we have proposed a preliminary study on the usefulness of the
framework of Balcan et al. [2,3] for domain adaptation. We have proposed a
normalization of a similarity function according to a test sample based on the fact
that a similarity does not need to be PSD or symmetric. We have also proposed
a new regularization term that tends to define a projection space of reasonable
points where the source and target distributions of the examples are closer. We
have provided experiments on a toy problem and on a real image annotation task.
Our regularization term generally helps to improve the learned classifier and the
normalization proposed seems only relevant for difficult adaptation tasks.

As a future work, we will continue on the idea of normalizing a similarity
in order to adapt it to the target domain. Around this idea, many questions
remain open like the choice the landmark points, the influence of the test set
or avoiding overfitting. The use of some labeled target data may also help to
produce a better projection space. From a theoretical standpoint, a perspective
would be to consider an extension of the framework of robustness of Xu and
Mannor [28] to domain adaptation.
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A Appendix

Given a classifier h, we define the reverse classifier hr as the classifier learned
from the target sample self labeled by h : {(x, sign(h(x)))}x∈TS . According to
the idea of Zhong et al. [10,29], we evaluate hr on the source domain (see Fig. 5).
Given k-folds on the source labeled sample, we use k−1 folds as labeled examples
for solving Pb. (9) and we evaluate hr on the last kth fold. The final error corre-
sponds to the mean of the error over the k-folds: êrrS(hr) = 1

k

∑k
i=1 ˆerrLSi(h

r).
Among many classifiers h, the one with the lowest êrrS(hr) is chosen.

Fig. 5. Reverse validation. Step 1: Learning h with Problem (9). 2: Auto-labeling the
target sample with h. 3: Learning hr on auto-labeled target sample by Problem (4). 4:
Evaluation of hr on LS (with a k-folds process) for validating h.
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Abstract. We propose what appears to be the first anomaly detection
framework that learns from positive examples only and is sensitive to
substantial differences in the presentation and penalization of normal vs.
anomalous points. Our framework introduces a novel type of asymmetry
between how false alarms (misclassifications of a normal instance as an
anomaly) and missed anomalies (misclassifications of an anomaly as nor-
mal) are penalized: whereas each false alarm incurs a unit cost, our model
assumes that a high global cost is incurred if one or more anomalies are
missed.

We define a few natural notions of risk along with efficient minimiza-
tion algorithms. Our framework is applicable to any metric space with a
finite doubling dimension. We make minimalistic assumptions that natu-
rally generalize notions such as margin in Euclidean spaces. We provide a
theoretical analysis of the risk and show that under mild conditions, our
classifier is asymptotically consistent. The learning algorithms we pro-
pose are computationally and statistically efficient and admit a further
tradeoff between running time and precision. Some experimental results
on real-world data are provided.

1 Introduction

Cost-sensitive learning [10,38] is an active research area in machine learning. In
this framework, different costs are associated with different types of misclassifi-
cation errors. In general, these costs differ for different types of misclassification.
Classifiers are then optimized to minimize the expected cost incurred due to their
errors. This is in contrast with cost-insensitive learning, where classification al-
gorithms are optimized to minimize their error rate — the expected fraction of
misclassified instances, thus implicitly making the (often unrealistic) assumption
that all misclassification errors have the same cost.

Cost-sensitive classification is often useful for binary classification, when the
datasets under consideration are highly imbalanced and consist mostly of nor-
mal instances and with only a small fraction of anomalous ones [19,23]. Since
the terms “false positive” and “false negative” are confusing in the context of
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anomaly detection, we call a normal instance misclassified as an anomaly a false
alarm and an anomaly misclassified as normal a missed anomaly. Typically, the
cost of a missed anomaly is much higher than that of a false alarm.

We consider a cost-sensitive classification framework, in which learning is
based on normal instances only and anomalies are never observed during train-
ing. Our framework introduces a novel type of asymmetry between how false
alarms and missed anomalies are penalized: whereas each false alarm incurs a
unit cost, our model assumes that a high global cost is incurred if one or more
anomalies are missed.

As a motivating example for our framework, consider a warehouse equipped
with a fire alarm system. Each false fire alarm automatically triggers a call to the
fire department and incurs a unit cost. On the other hand, any nonzero number
of missed anomalies (corresponding to one or more fires breaking out in the
warehouse) cause a a single “catastrophic” cost corresponding to the warehouse
burning down one or more times (only the first time “matters”).

We define a natural notion of risk and show how to minimize it under various
assumptions. Our framework is applicable to any metric space with a finite
doubling dimension. We make minimalistic assumptions that naturally generalize
notions such as margin in Euclidean spaces. We provide a theoretical analysis
of the risk and show that under mild conditions, our classifier is asymptotically
consistent. The learning algorithms we propose are efficient and admit a further
tradeoff between running time and precision — for example, using the techniques
of [15] to efficiently estimate the doubling dimension and the spanner-based
approach described in [14] to quickly compute approximate nearest neighbors.
Some experimental results on real-world data are provided.

Related Work. The majority of published cost-sensitive classification algo-
rithms assume the availability of supervised training data, were all instances are
labeled (e.g. [9,12,24,32,35,38,39]).

Some work considers semi-supervised cost-sensitive classification. Qin et al.
[29] present cost-sensitive classifiers for training data that consists of a relatively
small number of labeled instances and a large number of unlabeled instances.
Their implementations are based on the expectation maximization (EM) algo-
rithm [8] as a base semi-supervised classifier. Bennett et al. [4] present AS-
SEMBLE, an adaptive semi-supervised ensemble scheme that can be used to
to make any cost-sensitive classifier semi-supervised. Li et al. [22] recently pro-
posed CS4VM - a semi-supervised cost-sensitive support vector machine classi-
fier. Other cost-sensitive semi-supervised work involves attempts to refine the
model using human feedback (see, e.g., [16,25,27]).

Our framework falls within the realm of one-class classification [34] since
learning is done based on normal instances only. Crammer and Chechik [7] con-
sider the one-class classification problem of identifying a small and coherent subset
of data points by finding a ball with a small radius that covers as many data points
as possible. Whereas previous approaches to this problem used a cost function that
is constant within the ball and grows linearly outside of it [3,30,33], the approach
taken by [34] employs a cost function that grows linearly within the ball but is kept
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constant outside of it. Other papers employing the one-class SVM technique in-
clude [18,26]. Also relevant is the approach of [31] for estimating the support of a
distribution — although in this paper, the existence of a kernel is assumed, which
is a much stronger assumption than that of a metric.

Definitions and Notation. We use standard notation and definitions through-
out. A metric d on a set X is a positive symmetric function satisfying the triangle
inequality d(x, y) ≤ d(x, z)+d(z, y); together the two comprise the metric space
(X , d). The diameter of a set A ⊆ X is defined by diam(A) = supx,y∈A d(x, y). In
this paper, we always denote diam(X ) by Δ. For any two subsets A, B ⊂ X , their
“nearest point” distance d(A, B) is defined by d(A, B) = infx∈A,y∈B d(A, B). The
Lipschitz constant of a function f : X → R is defined to be the smallest L > 0
that makes |f(x) − f(y)| ≤ Ld(x, y) hold for all x, y ∈ X . For a metric space
(X, d), let λ be the smallest number such that every ball in X can be covered
by λ balls of half the radius. The doubling dimension of X is ddim(X ) = log2 λ.
A metric is doubling when its doubling dimension is bounded. Note that while a
low Euclidean dimension implies a low doubling dimension (Euclidean metrics
of dimension k have doubling dimension O(k) [17]), low doubling dimension is
strictly more general than low Euclidean dimension.

Throughout the paper we write �{·} to represent the 0-1 truth value of the
subscripted predicate.

Paper Outline. The rest of this paper is organized as follows. In Section 2
we present our theoretical results: first, for the idealized case where the data
is well-separated by a known distance, and then for various relaxations of this
demand. Some experimental results are provided in Section 3. We close with a
discussion and ideas for future work in Section 4.

2 Theoretical Results

2.1 Preliminaries

We define the following model of learning from positive examples only. The
metric space (X , d) is partitioned into two disjoint sets, X = X+ ∪ X−, where
X+ are the “normal” points and X− are the “anomalous” ones. The normal set
X+ is endowed with some (unknown) probability distribution P and the training
phase consists of the learner being shown n iid draws of Xi ∈ X+ according to
P . In the testing phase, the learner is asked to classify a new X ∈ X as normal
or anomalous. By assumption, normal test points are drawn from P , but no
assumption is made on the distribution of anomalous test points.

Further structural assumptions are needed to make the problem statement
non-trivial. By analogy with common separability assumptions in supervised
learning by hyperplanes, we make the following assumption:

d(X+,X−) ≡ inf
x∈X+,y∈X−

d(x, y) > γ (1)

for some separation distance γ > 0.
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We distinguish the two types of classification error: when a normal point is
wrongly labeled as an anomaly, we call this a false alarm, and when an anomaly
is wrongly classified as normal, we call this an missed anomaly.

2.2 Known Separation Distance

When the separation distance γ is known, we propose a simple classification
rule f : X → {−1, 1} as follows: given a sample S ⊂ X+, classify a new point
x as normal (corresponding to f(x) = 1) if d(x, S) ≤ γ and as anomalous
(f(x) = −1) if d(x, S) > γ. Our assumption (1) implies that f will never make a
missed anomaly error, and we can use the techniques of [14] to bound the false
alarm rate of this classifier. Define the false alarm rate of f by

FA(f) =
∫
X+

�{f(x)<0}dP (x). (2)

Theorem 1. Given a training set S = {X1, . . . , Xn} drawn from X+ iid under
the distribution P , define the proximity classifier fn,γ as above:

fn,γ(x) = �{d(x,S)≤γ} − �{d(x,S)>γ}. (3)

Then, with probability at least 1 − δ, this classifier achieves a false alarm rate
that satisfies

FA(fn,γ) ≤ 2 (D log2(34en/D) log2(578n) + log2(4/δ))
n

, (4)

where

D = �8Δ/γ�ddim(X )+1 (5)

and ddim(X ) is the doubling dimension of X .

Proof. Consider the function h : X → [−1, 1] satisfying

(i) h(x) ≥ 1 for all x ∈ S
(ii) h(x) < 0 for all x with d(x, S) > γ
(iii) h has the smallest Lipschitz constant among all the functions satisfying (i)

and (ii).

It is shown in [14,36] that h (a) has Lipschitz constant 1/γ and (b) the function
x �→ sgn h(x) is realized by fn,γ defined in (3). Corollary 3 in [14] shows that
the collection of real-valued 1/γ-Lipschitz functions defined on a metric space X
with doubling dimension ddim(X ) and diameter Δ has a fat-shattering dimen-
sion at scale 1/16 of at most (8Δ/γ)ddim(X )+1. The claim follows from known
generalization bounds for function classes with a finite fat-shattering dimension
(e.g., Theorem 1.5 in [2]). ��

Remark 1. Note that the approach via Rademacher averages in general yields
tighter bounds than those obtained from fat-shattering bounds; see [36].
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In the sequel, we will find it useful to restate the estimate in Theorem 1 in the
following equivalent form.

Corollary 1. Let fn,γ be the proximity classifier defined in Theorem 1, based
on a sample of size n. Then, for all 0 ≤ t ≤ 1, we have

P (FA(fn,γ) > t) ≤ exp((An,γ − t)/Bn)

where
An,γ = (2Dγ log2(34en/Dγ) log2(578n) + 2 log2 4) /n

and
Bn = 2/(n ln 2)

and D = Dγ is defined in (5).

Proof. An equivalent way of stating (4) is that

FA(fn,γ) > An,γ −Bn ln δ

holds with probability less than δ. Putting t = An,γ − Bn ln δ and solving for δ
yields the claim. ��

2.3 Definition of Risk

We define risk in a nonstandard way, but one that is suitable for our particu-
lar problem setting. Because of our sampling assumptions — namely, that the
distribution is only defined over X+ — there is a fundamental asymmetry be-
tween the false alarm and missed anomaly errors. A false alarm is a well-defined
random event with a probability that we are able to control increasingly well
with growing sample size. Thus, any classifier f has an associated false alarm
rate FA(f) defined in (2). Since fn,γ itself is random (being determined by the
random sample), FA(fn,γ) is a random variable and it makes sense to speak of
E[FA(fn,γ)] — the expected false alarm rate.

A missed anomaly is not a well-defined random event, since we have not
defined any distribution over X−. Instead, we can speak of conditions ensuring
that no missed anomaly will ever occur; the assumption of a separation distance
is one such condition. If there is uncertainty regarding the separation distance γ,
we might be able to describe the latter via a distribution G(·) on (0,∞), which
is either assumed as a prior or somehow estimated empirically.

Having equipped γ with a distribution, our expression for the risk at a given
value of γ0 becomes

Risk(γ0) =
∫ ∞

γ0

E[FA(fn,γ)]dG(γ) + C

∫ γ0

0

dG(γ)

which reflects our modeling assumption that we pay a unit cost for each false
alarm and a large “catastrophic” cost C for any nonzero number of missed
anomalies.
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2.4 Classification Rule

As before, we assume a unit cost incurred for each false alarm and a cost C for
any positive missed anomalies. Let An,γ and Bn be as defined in Corollary 1 and
assume in what follows that n is sufficiently large so that An,γ < 1 (the bounds
are vacuous for smaller values of n).

When γ is known, the only contribution to the risk is from false alarms, and
it decays to zero at a rate that we are able to control.

Theorem 2. Suppose the separation distance γ is known. Let fn,γ be the prox-
imity classifier defined in Theorem 1, based on a sample of size n. Then

Risk(γ) ≤ (An,γ + Bn)

where An,γ and Bn are as defined in Corollary 1 and n is assumed large enough
so that An,γ < 1.

Proof. We compute

Risk(γ) = E[FA(fn,γ)]

=
∫ ∞

0

P (FA(fn,γ) > t)dt

≤
∫ 1

0

min {1, exp((An,γ − t)/Bn)} dt

=

[∫ An,γ

0

dt +
∫ 1

An,γ

exp((An,γ − t)/Bn)dt

]
= [An,γ + Bn −Bne(An,γ−1)/Bn ]
≤ (An,γ + Bn),

where the first inequality is an application of Corollary 1. ��

When the exact value of the separation distance γ is unknown, we consider the
scenario where our uncertainty regarding γ is captured by some known distribu-
tion G (which might be assumed a priori or estimated empirically).

In this case, the risk associated with a given value of γ0 is:

Risk(γ0) =
∫ ∞

γ0

E[FA(fn,γ)]dG(γ)γ + C

∫ γ0

0

dG(γ)

≤
∫ ∞

γ0

(An,γ + Bn)dG(γ) + C

∫ γ0

0

dG(γ)

=: Rn(γ0),

where the inequality follows immediately from Theorem 2.
Our analysis implies the following classification rule: compute the minimizer

γ∗ of Rn(·) and use the classifier fn,γ∗. As a sanity check, notice that An,γ

grows inversely with γ (at a rate proportional to 1/γddim(X )+1), so γ∗ will not
be arbitrarily small. Note also that Rn(γ0)→ 0 as n →∞ for any fixed γ0.
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2.5 No Explicit Prior on γ

Instead of assuming a distribution on γ, we can make a weaker assumption. In
any discrete metric space (S, d), define the quantity we call isolation distance

ρ = sup
x∈S

d(x,S \ {x});

this is the maximal distance from any point in S to its nearest neighbor. Our
additional assumption will be that ρ < γ (in words: the isolation distance is less
than the separation distance). This means that we can take ρ — a quantity we
can estimate empirically — as a proxy for γ.

We estimate ρ = ρ(X+, d) as follows. Given the finite sample X1, . . . , Xn

drawn iid from X+, define

ρ̂n = max
i∈[n]

min
j �=i

d(Xi, Xj). (6)

It is obvious that ρ̂n ≤ ρ and for countable X , it is easy to see that ρ̂n → ρ almost
surely. The convergence rate, however, may be arbitrarily slow, as it depends on
the (possibly adversarial) sampling distribution P .

To obtain a distribution-free bound, we will need some additional notions. For
x ∈ X , define Bε(x) to be the ε-ball about x:

Bε(x) = {y ∈ X : d(x, y) ≤ ε} .

For S ⊂ X , define its ε-envelope, Sε, to be

Sε =
⋃
x∈S

Bε(x).

For ε > 0, define the ε-covering number, N(ε), of X as the minimal cardinality
of a set E ⊂ X such that X = Eε. Following [5], we define the ε-unseen mass of
the sample S = {X1, . . . , Xn} as the random variable

Un(ε) = P (X+ \ Sε). (7)

It is shown in [5] that the expected ε-unseen mass may be estimated in terms of
the ε-covering numbers, uniformly over all distributions.

Theorem 3 ([5]). Let X be a metric space equipped with some probability dis-
tribution and let Un(ε) be the ε-unseen mass random variable defined in (7).
Then for all sampling distributions we have

E[Un(ε)] ≤ N(ε)
en

,

where N(ε) is the ε-covering number of X .

Corollary 2. Let Un(ε) be the ε-unseen mass random variable defined in (7).
Then

E[Un(ε)] ≤ 1
en

(
Δ

ε

)ddim(X )+2

.
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Proof. For doubling spaces, it is an immediate consequence of [21] and [1, Lemma
2.6] that

N(ε) ≤
⌈

Δ

ε

⌉ddim(X )+1

≤
(

Δ

ε

)ddim(X )+2

.

Substituting the latter estimate into Theorem 3 yields the claim. ��

Our final observation is that for any sample X1, . . . , Xn achieving an ε-net, the
corresponding ρ̂n satisfies

ρ̂n ≤ ρ ≤ ρ̂n + 2ε.

We are now in a position to write down an expression for the risk. The false-alarm
component is straightforward: taking γ̂ = ρ̂n + 2ε, the only way a new point X
could be misclassified as a false alarm is if it falls outside of the ε-envelope of
the observed sample. Thus, this component of the risk may be bounded by

1
en

(
Δ

ε

)ddim(X )+2

.

On the other hand a missed anomaly can only occur if γ̂ > γ. Unfortunately,
even though γ̂ = ρ̂n + 2ε is a well-defined random variable, we cannot give a
non-trivial bound on P (γ̂ > γ) since we know nothing about how close ρ is to
γ. Therefore, we resort to a “flat prior” heuristic (corresponding roughly to the
assumption Pr[ρ + tΔ > γ] ≈ t), resulting in the missed-anomaly risk term of
the form

2Cε

Δ
. (8)

Combining the two terms, we have

Rn(ε) =
1
en

(
Δ

ε

)ddim(X )+2

+
2Cε

Δ

which is minimized at

εn =
Δddim(X )+3

2Cen
.

Note that as n →∞, we have εn → 0 and Rn(εn)→ 0, implying an asymptotic
consistency of the classifier fn,ρ̂n+2εn for this type of risk. Observe also that
analogous asymptotically consistent estimators are straightforward to derive for
risk bounded by

Rn(ε) =
1
en

(
Δ

ε

)ddim(X )+2

+
2Cεa

Δ

for any a > 0.
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Fig. 1. A schematic presentation of the various quantities defined in Section 2.5. In the
left diagram, ε is too small, resulting in false alarms. On the right, a too-large value of
ε leads to missed attacks.

3 Experiments

3.1 Methodology

We experimented with several datasets, both synthetic and real-world. The Eu-
clidean metric d(x, x′) = ‖x− x′‖ =

√∑
(xi − x′

i)2 was used in each case. For
each dataset, a false alarm incurs a unit cost and any number of missed anoma-
lies incurs a catastrophic cost C. The value of C is strongly tied to the particular
task at hand. In order to obtain a rough estimate in the case of an attack on a
computer network, we consulted various figures on the damage caused by such
events [13,37] and came up with the rough estimate of 300, 000 for C; this was the
value we used in all the experiments. The diameter Δ is estimated as the largest
distance between any two sample points and the doubling dimension ddim(X ) is
efficiently approximated from the sample via the techniques of [15]. The figures
presented are the averages over 10 trials, where the data was randomly split into
training and test sets in each trial.

Before we list the classifiers that were tested, a comment is in order. For a fair
comparison to our proposed method, we need a classifier that is both (i) cost-
sensitive and (ii) able to learn from positive examples only. Since we were not
able to locate such a classifier in the literature, we resorted to adapting existing
techniques to this task. The following classifiers were trained and tested on each
dataset:

• Asymmetric Anomaly Detector (AAD) is the classifier fn,ρ̂n+2εn proposed
in Section 2.5 of this paper.

• Peer Group Analysis (PGA) is an unsupervised anomaly detection method
proposed by Eskin et al. [11] that identifies the low density regions using
nearest neighbors. An anomaly score is computed at a point x as a function
of the distances from x to its k nearest neighbors. Although PGA is actually
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a ranking technique applied to a clustering problem, we implemented it as
a one-class classifier with k = 1. Given the training sample S, a test point
x is classified as follows. For each xi ∈ S, we pre-compute the distance to
xi’s nearest neighbor in S, given by di = d(xi, S \ {xi}). To classify x, the
distance to the nearest neighbor of x in S, dx = d(x, S) is computed. The
test point x is classified as an anomaly if dx = d(x, S) appears in a percentile
α or higher among the {di}; otherwise it is classified as normal. We set the
parameter α = 0.01 (obviously, it should depend on the value of C but the
dependence is not at all clear).

• Global Density Estimation (GDE), proposed by [20] is also an unsupervised
density-estimation technique using nearest neighbors. Given a training sam-
ple S and a real value r, one computes the anomaly score of a test point x
by comparing the number of training points falling within the r-ball Br(x)
about x to the average of |Br(xi) ∩ S| over all xi ∈ S. We set r to be twice
the sample average of d(xi, S \ {xi}) to ensure that the average number of
neighbors is at least one. In order to convert GDE into a classifier, we needed
a heuristic for thresholding anomaly scores. We chose the following one, as it
seemed to achieve a low classification error on the data: x is classified as nor-
mal if exp(−((Nr(x)−N̄r)/σr) > 1/2, where Nr is the number of r-neighbors
of x in S, N̄r is the average number of r-neighbors over the training points,
and σr is the sample standard deviation of the number of r-neighbors.

Each classifier is evaluated based on the cost that it incurred on unseen data:
c units were charged for each false alarm and an additional cost of C for one
or more missed anomalies. As an additional datum, we also record the cost-
insensitive classification error.

3.2 Data Sets

We tested the classifiers on the following three data sets.

2D-Single-Cluster. This is a two-dimensional synthetic data set. As shown in
Figure 2, the normal data points are concentrated along a thin, elongated cluster
in the middle of a square, with the anomalies spread out uniformly. A total of
363 points were generated, of which 300 were normal with 63 anomalies. For
the normal points, the x-coordinate was generated uniformly at random and
the y-coordinate was a function of x perturbed by noise. A positive separation
distance was enforced during the generation process.

9D-Sphere. This is a 9-dimensional synthetic data set containing 550 instances.
The coordinates are drawn independently from mean-zero, variance-35 Gaus-
sians. Points with Euclidean norm under 90 were labeled as “normal” and those
whose norm exceeded 141 were labeled “anomalies”. Points whose norm fell be-
tween these values were discarded, so as to maintain a strong separation distance.

BGU ARP. The abbreviation ARP stands for “Address Resolution Protocol”,
see [28]. This is a dataset of actual ARP attacks, recorded on the Ben-Gurion
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Fig. 2. The 2D-Single-Cluster dataset

University network. The dataset contains 9039 instances and 23 attributes ex-
tracted from layer-2 (link-layer) frames. Each instance in the dataset represents
a single ARP packet that was sent through the network during the recording
time. There were 173 active computers on the network, of which 27 were at-
tacked. The attacker temporarily steals the IPv4 addresses of its victims and as
a result, the victim’s entire traffic is redirected to the attacker, without the vic-
tim’s knowledge or consent. Our training data had an anomaly (attack) rate of
3.3%. The training instances were presented in xml format and their numerical
fields induced a Euclidean vector representation.

3.3 Results

Our basic quantities of interest are the number of false alarms (FA), the number
of missed anomalies (MA), and the number of correctly predicted test points
(CP). From these, we derive the classification error

err =
FA + MA

FA + MA + CP

and the incurred cost
Cost = FA + C · �{MA>0}.

Although in this paper we are mainly interested in the incurred cost, we also
keep track of the classification error for comparison. The results are summarized
in Figure 3. Notice that our classifier significantly outperforms the others in
the incurred cost criterion. Also interesting to note is that a lower classification
error does not necessarily imply a lower incurred cost, since even a single missed
attack can significantly increase the latter.
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Fig. 3. The performance of the classifiers on the datasets, averaged over 10 trials

4 Discussion and Future Work

We have presented a novel (and apparently first of its kind) method for learn-
ing to detect anomalies in a cost-sensitive framework from positive examples
only, along with efficient learning algorithms. We have given some preliminary
theoretical results supporting this technique and tested it on data (including
real-world), with encouraging results.

Some future directions naturally suggest themselves. One particularly unre-
alistic assumption is the “isotropic” nature of our classifier, which implicitly
assumes that the density has no preferred direction in space. Directionally sen-
sitive metric classifiers already exist [6] and it would be desirable to extend our
analysis to these methods. Additionally, one would like to place the heuristic
missed-anomaly risk term we proposed in (8) on a more principled theoreti-
cal footing. Finally, we look forward to testing our approach on more diverse
datasets.

Acknowledgments. We thank Lee-Ad Gottlieb for helpful discussions.
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Abstract. The One-Shot-Similarity (OSS) is a framework for classifier-
based similarity functions. It is based on the use of background samples
and was shown to excel in tasks ranging from face recognition to docu-
ment analysis. However, we found that its performance depends on the
ability to effectively learn the underlying classifiers, which in turn de-
pends on the underlying metric.

In this work we present a metric learning technique that is geared
toward improved OSS performance. We test the proposed technique us-
ing the recently presented ASLAN action similarity labeling benchmark.
Enhanced, state of the art performance is obtained, and the method
compares favorably to leading similarity learning techniques.

Keywords: Learned metrics, One-Shot-Similarity, Action Similarity.

1 Introduction

Analyzing videos of actions performed by humans is a subject of much research
in Computer Vision and Pattern Recognition. The particular problem of action
pair-matching is the task of determining if actors in two videos are performing the
same action or not. This, when the two actors may be different people and when
the viewing conditions may vary. Contrary to related image-similarity tasks such
as pair-matching of face images [1], where class labels are well defined, this task
is often ill-posed; actions are frequently not atomic, and so whether or not two
videos present same or not-same actions is not well defined. In addition, when
the videos are obtained “in the wild”, with no control over viewing conditions
and without the collaboration of the actors appearing in them, the task is even
more challenging.

In this paper we focus on pair-matching (same/not-same classification) of ac-
tion videos obtained in such unconstrained conditions. Performance in this task
ultimately depends on the suitability of the similarity measure used to com-
pare video pairs. Recent results on similar image-based challenges have shown
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that employing background information (sometimes called side information) can
boost performance significantly. In our framework, the background information
consists of a moderately large set of unlabeled examples, that are expected to
be of different classes than the pair of samples we are comparing.

Specifically, the One-Shot-Similarity (OSS) measure [2] utilizes unlabeled non-
class examples to obtain better estimates for the similarity of two face images [3].
OSS results consequently outperformed other methods on the LFW challenge [4].
OSS also compares favorably to other metric learning techniques in tasks related
to ancient document analysis [5] and elsewhere [2].

Here, we report attempts to employ OSS on the recently introduced “Action
Similarity Labeling” (ASLAN) data set [6], which includes thousands of videos
from the web, in over 400 complex action classes. The ASLAN set was designed to
capture the variability typical to unconstrained, “in the wild”, action recognition
problems and is currently the most comprehensive benchmark available for action
similarity in videos (some example frames from the ASLAN set are presented in
Figure 1).

Our tests on the ASLAN benchmark demonstrate that the performance gain
obtained using OSS and background information for other tasks does not carry
over to action similarity on the ASLAN set. While background-information might
capture information vital for correctly measuring the similarity of two actions,
benefiting from this information requires that the input space is suitable of this
type of analysis. We therefore propose a novel scheme for supervised metric
learning, the OSS-Metric Learning (OSSML). OSSML learns a projection ma-
trix which improves the OSS relation between the example same and not-same
training pairs in a reduced subspace of the original feature space. Our results
demonstrate that OSSML significantly enhances action similarity performance
on the ASLAN benchmark, compared to existing state-of-the-art techniques.

To summarize, this work makes the following contributions: (a) We have de-
veloped a new metric learning approach and applied it to the problem of action
similarity (pair-matching) in videos. (b) We show how learned projections us-
ing background statistics enhance the performance over unsupervised metric
learning (such as PCA). (c) We further show that applying two complementary
weakly supervised criteria in an interleaving manner provides a substantial boost
in performance, obtaining state-of-the-art results on the ASLAN benchmark.

The rest of this paper is structured as follows. Section 2 presents the OSSML
and derives its formulation. Section 3 applies OSSML to action recognition on
the ASLAN benchmark. Experimental results are presented in section 4. We
conclude in section 5.

1.1 Related Work

Metric Learning. The choice of a suitable metric is crucial for the design of
a successful pattern recognition system. The literature on the subject is there-
fore substantial. Some existing similarity measures are hand crafted (e.g., [7,8]).
Alternatively, there is growing interest in methods which apply learning tech-
niques to fit similarity measures and metrics to available training data (see [9]
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Fig. 1. Examples of actions in the ASLAN set

for a comprehensive study). Most common to these techniques is the learning of
a projection matrix from the data so that the Euclidean distance can perform
better in the new subspace. Learning such a matrix is equivalent to learning a
Mahalanobis distance in the original space.

The Relevant Component Analysis (RCA) method of Bar-Hillel et al. [10] is
one such example. They learn a full rank Mahalanobis metric by using equiva-
lence constraints on the training elements. Goldberger et al. [11] described the
Neighborhood Component Analysis (NCA) approach for k-NN classification.
NCA works by learning a Mahalanobis distance minimizing the leave-one-out
cross-validation error of the k-NN classifier on a training set. Another method,
designed for clustering by [12], also learns a Mahalanobis distance metric, here
using semi-definite programming. Their method attempts to minimize the sum
of squared distances between examples of the same label, while preventing the
distances between differently labeled examples from falling below a lower bound.

In [13] a Large Margin Nearest Neighbor (LMNN) method was proposed,
which employed semi-definite learning to obtain a Mahalanobis distance metric
for which any collection of k-nearest neighbors always has the same class label.
Additionally, elements with different labels were separated by large margins.

The Information Theoretic Metric Learning (ITML) approach of Davis et
al. [14] solves a Bregman’s optimization problem [15] to learn a Mahalanobis
distance function. The result is a fast algorithm, capable of regularization by a
known prior matrix, and is applicable under different types of constraints, includ-
ing similarity, dissimilarity and pair-wise constraints. The Online Algorithm for
Scalable Image Similarity (OASIS) [16] was proposed for online metric learning
for sparse, high-dimensional elements.
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Unlike the previously mentioned approaches, the recent method of Nguyen and
Bai [17] attempts to learn a cosine similarity, rather than learning a metric for the
Euclidean distance. This was shown to be particularly effective for pair-matching
of face images on the Labeled Faces in the Wild (LFW) benchmark [1,18].

Similarities Employing Background Information. The first similaritymea-
sure in a recent line ofwork, designed toutilize background-information, is theOne-
Shot-Similarity (OSS) of [3,2]. Given two vectors I and J , their OSS score is com-
puted by considering a training set of background sample vectors N . This set of
vectors contains examples of items different from both I and J , but are otherwise
unlabeled. We review the OSS score in detail in Sec. 2.1. This OSS has been shown
to be key in amplifying performance on the LFW data set. Here, we extend the OSS
approach by deriving a metric learning scheme for emphasizing the separation be-
tween same and not-same vectors when compared using the OSS.

2 One-Shot-Similarity Metric Learning (OSSML)

Given a set of training examples our goal is to learn a transformation matrix
which improves OSS performance, as measured using cross-validation. We next
derive this transformation for the case where the classifier underlying the OSS
computation is a free-scale Fisher Linear Discriminant.

2.1 The Free-Scale LDA-Based, Symmetric OSS Score

Given two vectors I and J their One-Shot-Similarity (OSS) score is computed
by considering a training set of background sample vectors N . This set contains
examples of items not belonging to the same class as neither I nor J , but are
otherwise unlabeled. A measure of the similarity of I and J is then obtained
as follows: First, a discriminative model is learned with I as a single positive
example, and N as a set of negative examples. This model is then used to classify
the vector, J , and obtain a confidence score. A second such score is then obtained
by repeating the same process with the roles of I and J switched. The particular
nature of these scores depends on the classifier used. The final symmetric OSS
score is the average of these two scores. Figure 2 summarizes these steps.

The OSS score can be fitted with almost any discriminative learning algo-
rithm. In previous work, Fisher Linear Discriminant (FLD or LDA) [19,20] was
mostly used as the underlying classifier. Similarities based on LDA can be ef-
ficiently computed by exploiting the fact that the background set N , which is
the source of the negative samples, is used repeatedly, and that the positive
class, which contains just one element, does not contribute to the within class
covariance matrix.

The free-scale LDA-based One-Shot-Similarity is a simplified version in which
the projection is done along the unnormalized vector. Although in general, the
OSS score is not a positive definite kernel, it was shown in [2] that the free-scale
LDA-based OSS version gives rise to a positive definite kernel and so is suitable
for use in kernel machines, such as Support Vector Machines (SVM) [21]. The
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One-Shot-Similarity(I, J, N) =

Model1 = train(I, N)

Score1 = classify(J, Model1)

Model2 = train(J, N)

Score2 = classify(I, Model2)

return ½(Score1+Score2)

Fig. 2. Computing the symmetric One-Shot-Similarity score for two vectors, I and J,
given a set, N, of background examples

symmetric Free-Scale One-Shot-Similarity (FSOSS) between two vectors I and
J given the negative set N , is expressed as:

FSOSS(I, J, N) = (I−μN)T S+
w (J− I + μN

2
)+(J−μN)T S+

w (I− J + μN

2
) (1)

Where,
μN is the mean of the negative set with X1, ...Xr samples, and S+

w is the
pseudo-inverse of Sw = 1

r

∑r
k=1(Xk − μN )(Xk − μN )T . In practice, to allow for

efficient computation, we apply PCA before the learning, and therefore there
are more examples than dimensions, thus, Sw is invertible and S+

w is simply the
inverse (Sw)−1, which we will denote by, (Sw)−1 = S−1.

2.2 Deriving the OSSML

Let Ii, Ji ∈ Rn be the pairs of input vectors in the training set. Let Li ∈ {0, 1} be
the corresponding binary labels indicating if Ii and Ji belong to the same class or
not. Our goal is to learn a linear transformation A : Rn −→ Rm(m < n) which
will be used to compute OSS in the transformed space. Specifically, we want to
learn the linear transformation that will minimize the cross-validation error when
similarities are computed by the OSSML score below. For each pair of vectors I, J ,
the OSS score in the transformed space (i.e. OSSML) is defined by:

OSSML(I, J, N, A) =
(AI − μAN )T S+

AN (AJ − AI+μAN

2 ) + (AJ − μAN )T S+
AN (AI − AJ+μAN

2 )
(2)

Here, N is the negative set, with r samples, A is the matrix to learn, AN
is the negative set after applying A to each vector, μAN is the mean vector
of the negative set after applying A, S+

AN is the pseudo-inverse of SAN =
1
r

∑r
k=1(AXk − μAN )(AXk − μAN )T , and SAN = ASwAT = ASAT is invertible

iff S(= Sw) is invertible.
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Replacing, S+
AN by S−1

AN = (ASAT )−1 We get,

OSSML(I, J, N, A) =

1
2 (AI −AμN )T (ASAT )−1(2AJ −AI −AμN )+
1
2 (AJ −AμN )T (ASAT )−1(2AI −AJ −AμN ) =

1
2 (I − μN )T AT (ASAT )−1A(2J − I − μN )+
1
2 (J − μN )T AT (ASAT )−1A(2I − J − μN ).

(3)

Using the following notations:

a = (I − μN )
b = (2J − I − μN )
c = (J − μN )
d = (2I − J − μN )

We have,

OSSML(I, J, N, A) =
1
2
aT AT (ASAT )−1Ab +

1
2
cT AT (ASAT )−1Ad. (4)

2.3 Objective Function

The objective function f(A) is defined by:

f(A) =
∑

i∈Pos

OSS(Ii, Ji, N, A)− α
∑

i∈Neg

OSS(Ii, Ji, N, A)− β||A−A0||2 (5)

Where, Pos and Neg are the set of indices of the pairs belong to the same and
not-same sets, respectively. Our goal is to maximize f(A) with respect to A,
given two parameters α and β, both non-negative. In practice we iterate on a
range of β values, using cross-validation on part of the training data, as suggested
by the CSML [17] algorithm. For A0 we followed [17] and tried different m× n
initial projections.

2.4 Free-Scale LDA-Based OSS Gradient

The objective function f(A) is differentiable with respect to A. The gradient is
given by:

∂(f(A))
∂(A) =∑

i∈Pos

∂(OSS(Ii, Ji, N, A))
∂(A)

− α
∑

i∈Neg

∂(OSS(Ii, Ji, N, A))
∂(A)

− 2β(A−A0).
(6)

Using the notations in Equation 4, the free-scale LDA-based OSS derivative is
given by,
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∂(OSS(Ii,Ji,N,A))
∂(A) =

∂( 1
2 ai

T AT (ASAT )−1Abi)

∂(A) + ∂( 1
2 ci

T AT (ASAT )−1Adi)

∂(A) .

(7)

This consists of two identical terms. Each can be written as:

1
2

∂(xT AT (ASAT )−1Ay)
∂(A)

Denote by W the (m×n)-dimensional matrix of the result obtained by deriving
this term. Let D = ASAT , where, A is an (m× n)-dimensional matrix, S is an
(n× n)-dimensional matrix and thus, D is an (m×m)-dimensional matrix.

We want to find the derivative of the function, g(D, A) = xT AT D−1Ay, with
respect to the matrix A.

D is a function of A, thus the chain rule can be written as:

[
∂g(D)

∂A
]ij =

∂g(D)
∂Aij

=
K∑

k=1

L∑
l=1

∂g(D)
∂Dkl

∂Dkl

∂Aij
= Tr[(

∂g(D)
∂D

)T ∂D

∂Aij
]

Which is a matrix of the same dimensions as A (i.e. m× n).
The total derivative W is therefore,

Wij = [∂(xT AT (ASAT )−1Ay)
∂A ]ij = Tr[(∂g(D)

∂D )T ∂D
∂Aij

] + [∂g(D,A)
∂A ]ij =

Tr[(∂(xT AT D−1Ay)
∂D )T ∂D

∂Aij
] + [∂(xT AT D−1Ay)

∂A ]ij
(8)

where, ∂g(D)
∂D and ∂D

∂Aij
are (m × m)-dimensional matrices. The last term,

∂(xT AT D−1Ay)
∂A , gives a matrix the same size as A and we take the ij entry.

1. From the following identity (see, for example, [22] for the various identities
used throughout)

∂(xT X−1y)
∂X

= −X−T xyT X−T ,

we have

∂(xT AT D−1Ay)
∂D

= −D−1Ax(Ay)T D−1 = −(ASAT )−1Ax(Ay)T (ASAT )−1

where, X = D = ASAT is an (m ×m)-dimensional symmetric matrix, and we
use Ax and Ay instead of x and y.

2. Using the identity

∂(XT BX)
∂Xij

= XT BJ ij + JjiBX
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we therefore have,

∂D

∂Aij
=

∂ASAT

∂AT
ji

= ASJji + J ijSAT

Where, X = AT , B = S, and J is a 4-dimensional tensor with J il
jk = δjlδki. Jji

is a matrix of the same dimensions as AT which are, (n ×m), with 1 at the ji
entry, and 0 otherwise. We thus get a (m×m)-dimensional matrix.

3. From the identity

∂bT XT DXc

∂X
= DT XbcT + DXcbT

we get,

∂xT AT D−1Ay

∂A
= D−T AxyT +D−1AyxT = (ASAT )−1AxyT +(ASAT )−1AyxT

where, X = A, D = D−1 = (ASAT )−1, b = x and c = y.
Finally, the total derivative in Equation 8 becomes:

Wij = [∂(xT AT (ASAT )−1Ay)
∂A ]ij =

Tr[(∂(xT AT D−1Ay)
∂D )T ∂(ASAT )

∂Aij
] + ∂(xT AT D−1Ay)

∂A =

Tr[(−(ASAT )−1Ax(Ay)T (ASAT )−1)T (ASJji + J ijSAT )]+
((ASAT )−1AxyT + (ASAT )−1AyxT )ij

(9)

Which gives a scalar for each entry ij.
The general formula for W is given by,

W (x, y)kl =
Tr[(−(ASAT )−1Ax(Ay)T (ASAT )−1)T (ASJ lk + JklSAT )]+
((ASAT )−1AxyT + (ASAT )−1AyxT )kl

(10)

for k ∈ 1, ..., n, l ∈ 1, ...m.
We have two such (m× n)-dimensional W matrices for each (Ii, Ji) pair.
To summarize, Equation 6 becomes,

∂(f(A))
∂A =

1
2

∑
i∈Pos

(W (ai, bi) + W (ci, di))−

1
2α

∑
i∈Neg

(W (ai, bi) + W (ci, di))−

2β(A−A0)

(11)

With W as above (Equation 10) for,
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ai = (Ii − μN )
bi = (2Ji − Ii − μN )
ci = (Ji − μN )
di = (2Ii − Ji − μN )

3 Application to Action Recognition

In this section we apply OSSML to action similarity by measuring its perfor-
mance on the ASLAN dataset.

3.1 ASLAN Data Set

The Action Similarity Labeling (ASLAN) collection is a new action recognition
data set. This set includes thousands of videos collected from the web, in over 400
complex action classes. To standardize testing with this data, a “same/not-same”
benchmark is provided, which addresses the action recognition problem as a non
class-specific similarity problem instead of multi-class labeling. Specifically, the
goal is to answer the following binary question – “does a pair of videos present the
same action, or not?”. This problem is sometimes referred to as the “unseen pair
matching problem” (see for example [1]). Each video in the ASLAN collection is
represented using each of the following state-of-the-art video descriptors: HOG,
HOF and HNF [23]. Below, we use these descriptors, as made available by [6]
without modification.

3.2 Same/Not-Same Benchmark

To report performance on the ASLAN database, the experimenter is asked to
report aggregate performance of a classifier on ten separate experiments in a
leave-one-out cross-validation scheme. Each experiment involves predicting the
same/not-same labels for the video pairs in one of the ten “splits”. Each such
split includes 300 pairs of same actions and 300 pairs of not-same actions. In
each experiment, nine of the splits are used for training, with the tenth split used
for testing. The final parameters of the classifier under each experiment should
be set using only the training data for that experiment, resulting in ten separate
classifiers (one for each test set). The ASLAN benchmark has been designed such
that these ten splits are mutually exclusive in the action labels they contain; if
videos of a certain action appear in one split, no videos of that same action will
appear in any other split. These tests therefore measure performance on general
action similarity rather than the recognition of particular action classes.

3.3 Experimental Setup

We apply our experiments on each of the three descriptors available with the
ASLAN data set. The dimension of each of the three descriptors is 5000. For
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each descriptor, we begin by applying PCA to get the vectors in a reduced n-
dimensional space. We preform extensive tests with different PCA dimensions
to choose a suitable subspace. We further reduce the dimension by applying
OSSML as follows.

For each of the ten separate experiments we divide the nine training subsets
such that one subset was used as a negative set, four subsets as validation samples
and four subsets as training samples. We then use the training samples to find a
matrix A that maximize f(A) for a given α, β and initial matrix A0. Then, we
use the validation samples to choose the next matrix A such that the accuracy
on the validation sets is increased. We proceed iteratively until convergence.

For comparison we have implemented the Cosine Similarity Metric Learning
(CSML) algorithm following the description in [17]. We have further used the
CSML projection as an initial projection for our own OSSML algorithm.

Finally we have used a combination of similarity scores produced by differ-
ent descriptors in the projected subspace to find optimal classifiers using linear
SVM [21].

Results are reported by constructing an ROC curve and measuring both the
area under curve (AUC) and the averaged accuracy ± standard errors for the
ten splits.

4 Experimental Results

We first apply LDA-based OSS in the original 5000-dimensional descriptor space
and compare it to the Cosine Similarity (CS). Table 1 reports the results of find-
ing an optimal threshold on similarities calculated between vectors in the original
descriptor space, as well as on the square root values of the descriptor entries
(which makes sense for histograms [3]). Original vectors were L2 normalized
before similarities were computed.

To allow for efficient computation, we next use PCA to reduce the dimension
of the original space. PCA was preformed using different training sets for each
experiment. We next choose an n×m initial projection matrix A0 for the learning

Table 1. Original classification performance (no learning): Accuracy±Standard Error
and (AUC), averaged over the 10-folds

OSS FSOSS CS

HOG original 53.75 ± .0.5(54.6) 51.90 ± 0.4(51.5) 54.27 ± 0.6(55.7)

sqrt 53.20 ± .0.7(53.7) 52.22 ± .0.6(50.6) 53.47 ± .0.6(54.2)

HOF original 53.52 ± .0.5(55.8) 52.63 ± 0.4(53.3) 54.12 ± 0.7(56.5)

sqrt 54.80 ± .0.6(56.0) 52.58 ± 0.6(52.9) 53.83 ± 0.7(56.0)

HNF original 54.57 ± 0.5(55.6) 52.60 ± 0.4(52.4) 54.50 ± 0.6(57.6)

sqrt 54.27 ± .0.6(54.9) 53.17 ± 0.6(51.5) 53.93 ± 0.73(55.8)



One Shot Similarity Metric Learning for Action Recognition 41

algorithm (in our setting n = 100 and m = 50). We tried three different initial
projections as suggested by [17]. We found that in our case best initial results
were obtained by a simple n ×m PCA projection. The initial PCA projection
already improved the results over the original vector space. See the first block
of Table 2.

We next perform three metric learning scenarios: CSML and OSSML with
initial PCA projection, as well as OSSML with the matrix obtained by the
CSML algorithm as the initial projection. We apply the projections obtained by
each of these scenarios and calculated both CS and OSS scores in the projected
subspace.

In the next three blocks of Table 2 we report the performances achieved by
finding optimal thresholds for each of these scores. In the last column, we show
the performances achieved by concatenating the scores of the three descriptors
and finding an optimal classifier using linear SVM on a three-dimensional input
vector. We further concatenate both scores from all three descriptors to form a
six-dimensional vector given as an input to the linear SVM to get an optimal
classifier. This is reported as CS+OSS on the third line of each algorithm.

Table 2. Classification performance on ASLAN: Accuracy±Standard Error and
(AUC), averaged over the 10-folds. Please see text for more details.

HOG HOF HNF all descriptors

PCA
init.

CS 60.08 ± 0.7(63.9) 57.07 ± 0.7(60.1) 60.43 ± 0.7(64.2) 61.10 ± 0.7(65.2)

OSS 59.83 ± 0.7(63.1) 56.88 ± 0.6(59.4) 59.80 ± 0.7(63.0) 60.98 ± 0.7(64.9)

CS+
61.23 ± 0.6(65.4)

OSS

CSML

CS 60.15 ± 0.7(64.2) 58.62 ± 1.0(61.8) 60.52 ± 0.6(64.3) 62.90 ± 0.8(67.4)

OSS 60.00 ± 0.9(63.8) 58.88 ± 0.7(62.4) 59.98 ± 0.7(63.3) 62.63 ± 0.7(67.6)

CS+
63.12 ± 0.9(68.0)

OSS

OSSML
after
PCA

CS 60.22 ± 0.7(64.1) 57.20 ± 0.8(60.5) 60.10 ± 0.7(64.3) 60.80 ± 0.6(65.7)

OSS 60.05 ± 0.7(63.8) 58.05 ± 0.8(60.7) 60.53 ± 0.8(64.0) 62.32 ± 0.8(66.7)

CS+
62.52 ± 0.8(66.6)

OSS

OSSML
after
CSML

CS 60.63 ± 0.6(65.0) 59.53 ± 0.9(63.6) 60.83 ± 0.8(65.1) 63.17 ± 0.8(68.0)

OSS 60.00 ± 0.8(64.3) 60.05 ± 0.5(63.8) 60.75 ± 0.8(64.1) 63.70 ± 0.8(68.9)

CS+
64.25 ± 0.7(69.1)

OSS
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Fig. 3. ROC for the ASLAN benchmark

ROC curves of the results for View-2 of the ASLAN data set are presented in
Figure 3. The results were obtained by repeating the classificationprocess 10 times.
Each time, we use nine sets for learning as specified in Section 3.3, and evaluate
the results on the tenth set. ROC curve was constructed for all splits together (the
outcome value for each pair is computed when this pair is a testing pair).

To gain further insight on our results, Figure 4 presents the most confident
predictions made by our best scoring OSSML based method. The figure presents
the most confident correct same and not-same predictions, and the most confi-
dent incorrect same and not-same predictions. Here, confidence was measured
as the distance of the vector of similarities from the SVM hyperplane. These re-
sults emphasize the challenges of the ASLAN benchmark: as can be seen, many
of the mistakes result from misleading context. Either “same” was predicted for
two different actions because of similar background or camera motion, or “not-
same” was predicted for the same action, based on very different backgrounds
and motions.
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Fig. 4. Most confident OSSML results. The Same/Not-Same labels are the ground
truth labels, and the Correct/Incorrect labels indicate whether the method predicted
correctly. For example, the top right quadrant displays same-action pairs that were
most confidently labeled as not-same.

5 Conclusion

In this paper we have extended the usability of the recently proposed One-Shot-
Similarity to cases in which the underlying metric is such that this similarity is
ineffective. To learn a new metric, we construct a cost function that encourages
either high or low similarity to pairs of samples depending on the associated
same/not-same label.

Experiments on a recent and challenging action recognition benchmark reveal
that the proposed metric learning scheme is effective and leads to the best re-
ported results on this benchmark; However, not surprisingly, the degree of success
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depends on the specific initialization used. As an immediate but useful exten-
sion, we would like to apply similar methods to learn effective similarity scores
between sets of vectors based on recent application of the One-Shot-Similarity
to such problems [24].
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Abstract. The effect of non-monotonicity of similarity measures is ad-
dressed which can be observed when measuring the similarity between
patterns with increasing displacement. This effect becomes the more ap-
parent the less smooth the pattern is. It is proven that commonly used
similarity measures like f -divergence measures or kernel functions show
this non-monotonicity effect which results from neglecting any ordering
in the underlying construction principles. As an alternative approach
Weyl’s discrepancy measure is examined by which this non-monotonicity
effect can be avoided even for patterns with high-frequency or chaotic
characteristics. The impact of the non-monotonicity effect to applications
is discussed by means of examples from the field of stereo matching, tex-
ture analysis and tracking.

Keywords: Kernel functions, f -divergence, discrepancy measure,
Lipschitz property, stereo matching, texture analysis, tracking.

1 Introduction

This paper is devoted to the question whether similarity measures behave mono-
tonically when applied to patterns with increasing displacement. Misalignment
of patterns is encountered in various fields of applied mathematics, particularly
signal processing, time series analysis or computer vision. Particularly when deal-
ing with patterns with high frequencies the comparison of the shifted pattern
with its reference will show ups and downs with respect to the resulting similar-
ity values induced by commonly used similarity measures. More precisely, let us
think of a pattern M as a function v : X ⊆ Rn → R. A translational shift by a
vector t induces a displaced pattern Mt represented by vt(.) = v(. − t). In this
paper we study the monotonicity behavior of similarity measures S as function
ΔS [v, t](λ) = S(v0, vλt) depending on the displacement factor λ ≥ 0 along the
vector t. If ΔS [v, t](.) is monotonically increasing for a class V of patterns v ∈ V
for any direction t we say that the similarity measure S satisfies the monotonicity
condition (MC) with respect to the class V . Unless mentioning V explicitly we
restrict to the class of patterns with non-negative entries with bounded support.
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As main theoretical contribution of this paper a mathematical analysis in
Section 2 and Section 3 show how this effect follows from construction principles
which neglect any ordering between the elements of the patterns. While Section 2
refers to similarity and distance measures which rely on the aggregation of an
element-wise operating function, Section 3 is devoted to the class of f -divergence
measures which evaluate the frequencies of single values v(x) of the pattern. For
both classes of similarity measure examples are presented that demonstrate the
non-monotonicity effect. In Section 4 an alternative construction principle based
on the evaluation of partial sums is introduced and recalled from previous work,
particularly [Mos09]. Theoretical results show that the non-monotonicity effect
can be avoided. Finally, in Section 5 the impact of the non-monotonicity effect
to applications in the field of stereo matching, tracking and texture analysis is
discussed.

2 Construction Principles of Similarity Measures Induced
by the Aggregation of Element-Wise Operating
Functions

The analysis of formal construction principles of similarity measures based on the
composition of an element-wise operating function and an aggregation operation
leads to elucidating counter examples showing that commonly used similarity
measures in general are not monotonic with respect to the extent of displacement.

Therefore we will have a look at similarity measures from a formal construction
point of view. For example let us consider the elementary inner product < ., . >
of Euclidean geometry which is defined as

< x, y >=
∑

i

xi · yi. (1)

Formular (1) is constructed by means of a composition of the algebraic product
which acts coordinate-wise and the summation as aggregation function. For-
mally, (1) therefore follows the construction principle

Δ[A,C](f, g) := Ax(C(f(x), g(x))), (2)

where C and A denote the coordinate-wise operating function and the aggrega-
tion, respectively. f, g refer to vectors, sequences or functions with x as index or
argument and the expression Ax means the aggregation of all admissible x. The
elements f, g denote the elements from some admissible space Ψ ⊂ {f : X → R}
for which the formal construction yields well defined real values. For example,
in the case of (1) the n-dimensional Euclidean space Rn for n ∈ N or the Hilbert
space of square-integrable sequences l2 would be admissible.

In the following we draw conclusions about the monotonicity behavior of the
induced function (2) by imposing certain algebraic and analytic properties on
the coordinate-wise operating function C and the aggregation A.
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Theorem 1. The construction

Δ[A,S,C](f, g) := S(Ax(C(f(x), g(x)))) (3)

induces a function
Δ[A,S,C] : Ψ × Ψ → R

that does not satisfy the monotonicity condition (MC) under the assumption that
Ψ is an admissible space of functions f : Z ⊆ R → R that contains at least the set
of pairwise differences of indicator functions of finite subsets of Z, C : R×R → R

is a coordinate function that satisfies

(C1) C is commutative,
(C2) C(1, 0) �= C(1, 1),
(C3) C(0, 0) = min{C(1, 0), C(1, 1)},

the aggregation function A : Rn → R is

(A1) commutative and
(A2) strictly monotonically increasing or decreasing in each component,

respectively,

and the scaling function S : R → R is strictly monotonically increasing or de-
creasing in each component, respectively.

Proof. Without loss of generality let us assume that the aggregation function
is strictly monotonically increasing in each component.

We use the notation: c01 := C(0, 1), c11 := C(1, 1), c00 := C(0, 0) and

h(.) := 1{0}(.) + 1{2}(.). (4)

Consider

Δ0 = Δ[A,S,C](h(.), h(.− 0)) = S(A(c00, . . . , c00, c11, c00, c11, c00, c00, . . . , c00)),
Δ1 = Δ[A,S,C](h(.), h(.− 1)) = S(A(c00, . . . , c00, c10, c10, c10, c10, c00, . . . , c00))
Δ2 = Δ[A,S,C](h(.), h(.− 2)) = S(A(c00, . . . , c00, c10, c00, c11, c00, c10, . . . , c00)).

The case of c10 < c11 implies c00 = c01, hence a strictly increasing scaling
function entails Δ0 > Δ1 < Δ2, and the case c10 > c11, c00 = c11 yields
Δ0 < Δ1 > Δ2 which proves (4) to be a counter-example with respect to the
monotonicity condition (MC). An analogous conclusion applies to a strictly de-
creasing scaling function. ��

A direct consequence of Theorem 1 is that a binary operation � : R×R→ R that
preserves ordering in each argument, or reverses the ordering on both arguments,
respectively, yields a further construction that cannot satisfy the monotonicity
condition (MC) with respect to the class of patterns with non-negative entries
with bounded support.
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Corollary 1. Let

Δ1[A1,S1, C1](f, g) := S1(A1x(C1(f(x), g(x))))
Δ2[A2,S2, C2](f, g) := S2(A2x(C2(f(x), g(x))))

be functions following the construction principle (3) then

Δ(f, g) = Δ1[A1,S1, C1](f, g)�Δ2[A2,S2, C2](f, g)

does not satisfy the monotonicity criterion (MC), where � : R × R → R is an
operation that is strictly monotonic of the same type in each component.

Examples of similarity and distance measures following the construction princi-
ples of Theorem 1 or Corollary 1 are listed in Table 1.

Table 1. Examples of kernels and distance measures that follow the construction
principles of Theorem 1 or Corollary 1 with summation as aggregation function

fomular name remark

‖f − g‖p Minkowski distance C(a, b) = |a − b|p, S(x) = p
√

x

< f, g >=
∑

i fi · gi inner product C(a, b) = a · b
e−

1
σ

∑
i(fi−gi)

2
Gaussian kernel S(x) = exp(−x/σ)

−√‖f − g‖2 + c2 multiquadratic S(x) = −√
x + c2

1√
‖f−g‖2+c2

inverse multiquadratic S(x) = (
√

x + c2)−1

‖f − g‖2n ln(‖f − g‖) thin plate spline ln, xn as scaling, �(a, b) = a · b
< f, g >d, d ∈ N polynomial kernel (1) recursively applied, �(a, b) = a · b

(< f, g > +c)d, d ∈ N inh. polynomial kernel (1) recursively applied, �(a, b) = a · b
tanh(κ < x, y > +θ) sigmoidal kernel S(x) = tanh(κx + θ)

The following construction principle which does not require strictly mono-
tonicity of the scaling function also leads to similarity measures that do not
satisfy the monotonicity condition (MC).

Theorem 2. The construction

Δ[A,S,C](f, g) := S(Ax(C(f(x), g(x)))) (5)

induces a function
Δ[A,S,C] : Ψ × Ψ → R

that does not satisfy the monotonicity condition under the assumption that Ψ
is an admissible space of functions f : Z ⊆ R → R that contains at least the
set of pairwise differences of scaled indicator functions of finite subsets of Z,
C : R× R → R is a continuous coordinate function that satisfies
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(C’1) C is commutative,
(C’2) C(0, .) is strictly monotonic,
(C’3) ∀α : C(α, α) = 0,

the aggregation function A : Rn → R is continuous and satisfies (A1) and (A2)
of Theorem 1 and the scaling function S : R → R is

(S1) continuous,
(S2) non-trivial in the sense that it is not constant on the range

R = {A(C(α, 0), C(α, 0), 0, . . . , 0) ∈ R
+
0 : α ∈ R}.

Proof. Without loss of generality 0 = Ax(0) = A(0, . . . , 0). Set

h(.) := a · 1{0}(.) + b · 1{2}(.)

and, let us denote Θt(a, b) = Ax(C(f(x), f(x− t))).
Then, by applying (A1) we obtain

Θ0(a, b) = A(0, . . . , 0, C(0, 0), C(0, 0), C(0, 0), C(0, 0), 0, . . . , 0)
Θ1(a, b) = A(0, . . . , 0, C(a, 0), C(a, 0), C(b, 0), C(b, 0), 0, . . . , 0)
Θ2(a, b) = A(0, . . . , 0, C(a, 0), C(a, b), C(b, 0), C(0, 0), 0, . . . , 0).

Let ζ ∈ R, ζ > 0, and note that there is a0 > 0 such that Θ1(a0, 0) = ζ. Observe
that

∀a ∈ [0, a0] ∃ ba ∈ [0, a0] : Θ1(a, ba) = ζ.

Let γζ = {(a, ba) : Θ1(a, ba) = ζ}. Further, note that

∀(a, ba) ∈ γζ , a > 0 : Θ2(a, ba) < Θ1(a, ba) = ζ

and

lim
a→a−

0

Θ2(a, ba)︸ ︷︷ ︸
Θ2(a0,0)

= lim
a→a−

0

Θ1(a, ba)︸ ︷︷ ︸
Θ1(a0,0)

.

Then ∀ε > 0 ∃ξ ∈ (ζ − ε, ζ)∃(aξ, bξ) ∈ γζ we have

ξ = Θ2(aξ, bξ) < Θ1(aξ, bξ) = ζ. (6)

Let s0 = S(0). Without loss of generality s0 > 0. As S is not constant on R,
there is a ζ ∈ R such that

s = S(ζ) �= S(0) = s0.

Hence ζ > 0. Without loss of generality s < s0. Let ξ = inf{ζ > 0 : S(ζ) ≤ s}.
The continuity assumption of S implies ξ > 0. By (6) for all n ∈ N there is
ξn ∈ (ξ − 1

n , ξ) for which there is (an, bn) ∈ γξ with

ξn = Θ2(an, bn) < Θ1(an, bn) = ζ.
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Note that ∀n ∈ N : S(ξn) > S(ξ) and limn S(ξn) = S(ξ). Therefore, there is a n0

with S(ξn0 ) ∈ (s, s0). For an illustration of the construction of ξn0 see Figure 2.
By construction, for

h0(.) := an0 · 1{0}(.) + bn0 · 1{2}(.)

we obtain
0 = Θ0(an0 , bn0) < Θ2(an0 , bn0) < Θ1(an0 , bn0)

which shows that the monotonicity condition (MC) cannot by satisfied, as

Ax(C(h0(x), h0(x− 0))) < Ax(C(h0(x), h0(x− 1))) > Ax(C(h0(x), h0(x− 2)))

��

Fig. 1. Illustration of construction of ξn0

Examples of similarity measures that meet the conditions of Theorem 5 are
translational invariant kernels Φ(x, y) = Φ(‖x − y‖) where φ : [0,∞) → R is a
continuous function that results from a Bessel transform of a finite non-negative
Borel measure μ on [0,∞), i.e. φ(r) =

∫∞
0 Ωs(rt)dμ(t) where Ω1(r) = cos r and

Ωs(r) = Γ ( s
2 ) s

2
(s−2)/2J(s−2)/2(r), s ≥ 2 and J(s−2)/2 is the Bessel function of first

kind of order s−2
2 . For example there is the Dirichlet kernel k(x, y) = ΦD(x)(‖x−

y‖) provided by the continuous function ΦD(x) = sin
(
(2n + 1) · x

2

)
/sin

(
x
2

)
or

the Bn-spline kernels k(x, y) = B2p+1(‖x − y‖) that result from multiple con-
volution of indicator functions, Bn = ⊗n

i=11[− 1
2 , 1

2 ], where the positive definite
kernel property is only satisfied by odd orders.

For details on kernels and particularly translational invariant kernels see
e.g. [SS01].

3 f -Divergence Measures

In this Section we concentrate on histogram based measures, see e.g. [TJ91]. The
most prominent one is the mutual information, which for two discrete random
variables X and Y can be defined as

I(X ; Y ) =
∑
x,y

PXY (x, y) log
(

PXY (x, y)
PX(x)PY (y)

)
(7)



52 B. Moser, G. Stübl, and J.-L. Bouchot

where PXY is the joint probability distribution of X and Y , and PX and PY

are the marginal probability distribution of X and Y respectively. This measure
is commonly used in various fields of applications as for example in registering
images, see e.g. [GGL08], [LZSC08]. Equation (7) is a special case of Kullback-
Leibler divergence, [Kul59],

DKL(P‖Q) =
∑

z

P (z) log
(

P (z)
Q(z)

)
(8)

which measures the deviation between the probability distributions P and Q.
The mutual information is regained from (8) by setting z = (x, y), P (x, y) =
PXY (x, y) and Q(x, y) = PX(x)PY (y). A further generalization is provided by
the class of f -divergence measures Df(P‖Q), see e.g. [DD06,LV06], defined by

Df(P‖Q) =
∑

z

Q(z)f
(

P (z)
Q(z)

)
(9)

where f : [0,∞] → R ∪ {+∞} is convex and continuous. These measures
were introduced and studied independently by [Csi63], [Mor63] and [AS96]. The
Kullback-Leibler divergence (8) results from (9) by means of f(t) = t log(t).

Theorem 3. Let f : [0,∞] → R ∪ {+∞} be a strictly convex and continuous
function. For two discrete sequences A = (ai)n

i=1 ∈ Vn and B = (bi)n
i=1 ∈ Vn,

n ∈ N let

Df(A‖B) =
∑

v,w∈V
PA(v)PB(w)f

(
PA B(v, w)

PA(v)PB(w)

)
(10)

where PA B(v, w) denotes the joint frequency of occurrence of the pair of values
(v, w), and PA(v), PB(w) denote the frequencies of v, w in the corresponding
sequences A and B, respectively. Then there are sequences h : Z → V such that
χ : N → [0,∞] given by

χt = Df(A0, At)

does not behave monotonically with respect to t, where At(.) = 11,...,n(.) ·h(.− t).

Proof. Set V = {0, 1}, and define h(.) :=
∑m

j=1 1{2·j}(.) where m ∈ N. Set
n = K ·m with K ≥ 3. Then

PAt(0) = n−m
n , PAt(1) = n−m

n

for t ∈ {0, 1, 2}, further

PA0,A0(0, 0) = n−m
n , PA0,A0(0, 1) = 0, PA0,A0(1, 0) = 0, PA0,A0(1, 1) = m

n ,
PA0,A1(0, 0) = n−2m

n , PA0,A1(0, 1) = m
n , PA0,A1(1, 0) = m

n , PA0,A1(1, 1) = 0,
PA0,A2(0, 0) = n−m

n , PA0,A2(0, 1) = 1
n , PA0,A3(1, 0) = 1

n , PA0,A2(1, 1) = m−2
n .
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By taking n = K ·m into account we get

n2

m2
χ0(K, m) = f

(
K

K − 1

)
(K − 1)2 + 2f(0)(K − 1) + f(K),

n2

m2
χ1(K, m) = f

(
(K − 2)K
(K − 1)2

)
(K − 1)2 + 2f

(
K

K − 1

)
(K − 1) + f(0),

n2

m2
χ2(K, m) = f

(
K

K − 1

)
(K − 1)2 + 2f

(
K

K − 1
1
m

)
(K − 1) + f

(
K

m− 2
m

)
.

Observe that because of the continuity of f for all K ≥ 2 we obtain

lim
m→∞

(χ0(K, m)− χ2(K, m)) = 0. (11)

As
(K − 1)2 − 2(K − 1)

(K − 1)2
+

2(K − 1)− 1
(K − 1)2

+
1

(K − 1)2
= 1

and

(K − 2)K
(K − 2)2

(K − 1)2 − 2(K − 1)
(K − 1)2

· K

K − 1
+

2(K − 1)− 1
(K − 1)2

· 0 +
1

(K − 1)2
·K

the strict convexity of f implies

f

(
(K − 2)K
(K − 2)2

)
=

(K − 1)2 − 2(K − 1)
(K − 1)2

· f
(

K

K − 1

)
+

2(K − 1)− 1
(K − 1)2

· f(0) +
1

(K − 1)2
· f(K)

and, therefore, for all m > 2 it follows that

χ0(K, m)− χ2(K, m) = εK > 0. (12)

Together, formulae (11) and (12) imply that there are indices K0 and m0 such
that χ0(K0, m0) > χ1(K0, m0) < χ2(K0, m0) which proves the claim. ��

Finally let us remark that an analogous proof shows that the claim of Theorem 3
is also true if the histograms PX and PY are compared directly in the sense of
definition (9).

4 The Monotonicity Property of the Discrepancy
Measure

The concept of discrepancy measure was proposed by Hermann Weyl [Wey16]
in the early 20-th century in order to measure deviations of distributions from
uniformity. For details see, e.g. [BC09,Doe05,KN05]. Applications can be found
in the field of numerical integration, especially for Monte Carlo methods in
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high dimensions, see e.g. [Nie92, Zar00,TVC07] or in computational geometry,
see e.g. [ABC97, Cha00, KN99]. For applications to data storage problems on
parallel disks see [CC04,DHW04] and half toning for images see [SCT02].

In the image processing context of registration and tracking, the discrepancy
measure is applied in order to evaluate the auto-misalignment between a pattern
P with its translated version PT with lag or shift T . The interesting point about
this is that based on Weyl’s discrepancy concept distance measures can be con-
structed that guarantee the desirable registration properties: (R1) the measure
vanishes if and only if the lag vanishes, (R2) the measure increases monotoni-
cally with an increasing lag, and (R3) the measure obeys a Lipschitz condition
that guarantees smooth changes also for patterns with high frequencies. As the
discrepancy measure as defined by (13)

‖f‖D := sup

{∣∣∣∣∣
m2∑

i=m1

fi

∣∣∣∣∣ : m1, m2 ∈ Z

}
(13)

induces a norm on the space of vectors f = (f1, . . . , fn) ∈ Rn in the geometric
sense we further on refer to it as discrepancy norm. As pointed out in [Mos09]
Equation (13) is equivalent to

‖f‖D := max(0, max
1≤k≤n

k∑
i=0

fi)−min(0, min
1≤k≤n

k∑
i=0

fi) (14)

which is advantageous in terms of computational complexity which amounts
to O(n) in comparison with O(n2) of the original definition (13). Note that
the only arithmetical operations in the algorithm are summation, comparisons
and inversion which on the one side are fast to compute and on the other side
cheap in hardware design. In the context of this paper its dependency on the
ordering of the elements is worth mentioning which is illustrated by the exam-
ples ‖(1,−1, 1)‖D = 1 and ‖(−1, 1, 1)‖D = 2. Note that alternating signals like
(−1, 1,−1, . . .) lead to small discrepancy values, while reordering the signal e.g.
in a monotonic way maximizes it.

As outlined in [Mos09] Equation (13) can be extended and generalized to
arbitrary finite Euclidean spaces equipped with some measure μ in the following
way:

‖f‖(d)
C = sup

c∈C
|
∫

c

fdμ| (15)

where C refers to a set of Cartesian products of intervals. For example, let Bd

denote the set of d-dimensional open boxes I1×I2×· · ·×Id with open intervals Ii

from the extended real line [−∞,∞], and B̃d ⊂ Bd the set of Cartesian products
of intervals of the form ]−∞, x[, ]x,∞[. It can be shown that for all d ∈ N and
non-negative f ∈ L(Rd, μ), f ≥ 0, there holds

‖f − f ◦ Tt‖(d)

Bd = ‖f − f ◦ Tt‖(d)

B̃d
(16)
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where Tt = x− t. Formulae 16 can be expressed by means of integral images and
their higher dimensional variants which is crucial in terms of efficient computa-
tion. With this definitions the following result can be proven, for details and the
proof see [Mos09].

Theorem 4. Let d ∈ N, let f ∈ L(Rd, μ), f ≥ 0 and let ΔC [f ](t) = ‖f−f ◦Tt‖C
denote the misalignment function t ∈ Rd. Further, let

δμ[f ](t) = sup
C∈C

max{μ(C\Tt(C)), μ(Tt(C)\C)}.

Then for C = Bd or C = B̃d we have

1. If f is non-trivial, i.e.,
∫
|f |dμ > 0 then ΔC [f ](t) = 0 ⇐⇒ t = 0

2. Lipschitz property: ΔC [f ](t) ≤ δμ[f ](t)‖f‖∞.
3. Monotonicity: 0 ≤ λ1 ≤ λ2 =⇒ ΔC [f ](λ1t) ≤ ΔC [f ](λ2t) for arbitrary

t ∈ Rd.

Figure 2 illustrates the principle difference between the characteristics of the
resulting misalignment functions induced by a measure, in this case normalized
cross-correlation, that shows the non-monotonicity artefact on the one hand and
the discrepancy norm on the other hand.

(a) (b) (c)

Fig. 2. Figure (a) shows a sawtooth function with frequency ω = 1. In the other two
figures misalignment functions for this sawtooth function and its variants with higher
frequencies, ω = 2, 4, 16 with respect to one minus the normalized cross-correlation,
Figure (b), and the discrepancy norm, Figure (c), are shown. With increasing frequen-
cies of the in Figure (b) the In contrast to Figure (b) the discrepancy norm induced
misaligment functions in (c) show a monotonic behaviour with bounded slope due to
the Lipschitz property.

5 Impact of the Non-monotonicity Effect on Applications

Misalignment is a phenomenon which can be observed in numerous situations
in applied mathematics. In this paper we concentrate on examples from image
processing in order to illustrate the relevance and impact of the monotonicity
and Lipschitz property of the discrepancy measure in comparison to commonly
used measures for which these properties cannot be guaranteed.
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5.1 Image Tracking

Image tracking aims at identifying and localizing the movement of a pattern
along a sequence of images. In this context a commonly used similarity measure
is the so-called Bhattacharyya coefficient [Bha43] defined by

DB(PX , PY ) =
∑

x

√
PX(x)PY (x). (17)

See [CRM00] for details in the context of tracking. Note that −DB(PX , PY )
turns out to be a special f -divergence measure by means of f(u) = −

√
x.

Figure 3 depicts the cost functions of a person track on the CAVIAR (Context
Aware Vision using Image-based Active Recognition) 1 database based on the dis-
crepancy norm (second row) and the Bhattacharyya coefficient. It interesting to
observe the robustness of the discrepancy norm at the presence of massive noise.

(b) (c) (d)

(a) (e) (f) (g)

(h) (i) (j)

Fig. 3. Tracking of female from Figure 2(a) in a consecutive frame Figure (2b) and
the same frame corrupted with additive gaussian noise with SNR = 3 in Figure 2(c)
and SNR = 1.5 in Figure 2(d). Figures 2(e), (f) and (g) depict the corresponding cost
function based on the discrepancy norm (DN) as similarity, whereas (h), (i) and (j) refer
to the Bhattacharyya coefficient based similarity. The images are taken from frame 697
and frame 705 of the EC Funded CAVIAR project/IST 2001 37540 (”Shopping Center
in Portugal”, ”OneLeaveShop2cor”).

1 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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5.2 Stereo Matching

Cost estimation in stereo matching is crucial for stereo vision, see [SS02]. Fig-
ure 4 illustrates the working principle of a typical stereo matching algorithm:
the content of the white window in Figure 4(a) is compared with the windows
along the white line in Figure 4(b). Figure 4(c) plots the comparison results
with different matching cost functions. The x-value with the lowest dissimilarity
is finally taken as disparity from which depth information can be derived.

Typically the sum of absolute distances (SAD), sum of squared distances (SSD)
or cross correlationaswell as their normalizedandzeromeanvariants (NCC,ZSAD,
etc.) are used as dissimilarity measures in this context. However these cost func-
tions follow the construction principle of Equation (5) and suffer therefore from
non-monotonic behaviour. Especially when adding white noise to the source im-
ages the number of local minima of these matching cost functions increase,whereas
the discrepancy norm keeps mainly its monotonic behaviour, see Figure 4(c).

5.3 Defect Detection in Textured Surfaces

In the context of quality control typically reference image patches are compared
to image patches which result from a sliding window procedure. For a discussion
on similarity and a template matching based approach for detecting defects
in regularly textured images see [BSM11]. Here an example is presented that

(a) (b) (c)

(d) (e) (f)

Fig. 4. Matching cost evaluation of sum of squared differences (SSD), normalized cross
correlation (NCC) and discrepancy norm (DN) evaluated on the Middlebury Stereo
2003 Dataset [SS03], Teddy Example, at position x=192/y=300 with windowsize 10,
depth 60. Figure 4(c) shows the evaluation of the white patch in Figures 4(a) along the
white line in Figure 4(b). Whereas the results of Figures 4(d) and 4(e) with SNR = 6.1
are shown in Figure 4(f). DN is more robust regarding noise than the other costs.
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demonstrates the behaviour of similarity measures showing the non-monotonicity
effect versus the discrepancy norm. Fig. 5(b) depicts an example taken from the
TILDA database 2. As the presented texture shows a repetitive pattern it allows
to apply a pattern matching approach and to compute the dissimilarity given
some translational parameters. A defect-free pattern, depicted in Figure 5(a),
is considered as a reference pattern and is then translated along the textured
image. Each tx and ty displacement induces a dissimilarity value as illustrated
in Figure 5(d) where the ordinate refers to the dissimilarity value. Observe the
distinct local minumum of the discrepancy norm even in the presence of noise
in Figures 5(e) and 5(f).

(a) (b) (c)

(d) (e) (f)

Fig. 5. Template matching example for regularly textured images. A defect-free ref-
erence template is shown in Figure (a) with corresponding patches (white square)
in a noise free and a corrupted image by added white Gaussian noise, Figure (b)
and Figure (c), respectively. Figure (d) plots a surface of dissimilarity values between
the reference and the patches of Figure (b). Figures (e) (noise-free) and (f) (gaus-
sian noise) show the behaviour of different cost functions along the x-axis: discrepancy
norm (solid), L2 norm (dotted), Bhattacharyya measure (square plotted) and mutual
information (dashed-dotted).

6 Conclusion and Future Work

A non-monotonicity effect of commonly used similarity measures has been exam-
ined in the context of misaligned patterns. As it was shown this non-monotonicity

2 Available from Universität Freiburg, Institut für Informatik, Lehrstuhl für Muster-
erkennung und Bildverarbeitung (LMB).
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effect is caused by certain underlying construction principles. As the application
section demonstrates this effect is worth thinking about for example in order
to reduce local minima in resulting cost functions e.g. in the context of stereo
matching. It remains future work to elaborate alternative similarity concepts as
for instance based on Weyl’s discrepancy measure to come up with cost functions
that avoid the artefacts from the non-monotonicity effect.

Acknowledgement. This work was supported in part by the Austrian Science
Fund (FWF) under grant no. P21496 N23 and the Austrian COMET program.
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Abstract. In this paper, a novelty methodology for the representation
and similarity measurement of sequential data is presented. First, a
linear segmentation algorithm based on feature points is proposed. Then,
two similarity measures are defined from the differences between the
behavior and the mean level of the sequential data. These similarities
are calculated for clustering and outlier detection of subjective sequential
data generated through the evaluation of the driving risk obtained from
a group of traffic safety experts. Finally, a novel dissimilarity measure
for outlier detection of paired sequential data is proposed. The results of
the experiments show that both similarities contain complementary and
relevant information about the dataset. The methodology results useful
to find patterns on subjective data related with the behavior and the
level of the data.

Keywords: Subjective sequential data, Similarity, Clustering, Outlier.

1 Introduction

In the last few years, several representations of sequential data have been
proposed, including Fourier Transforms [1], Wavelets [2], Symbolic Mappings [3]
and, the most frequently used representation, Piecewise Linear Representation
(see, for instance, [4,5,6,7]). Alternatively, the design of similarity measures for
sequential data is addressed from a model-based perspective (see, for instance,
[8,9]). In any case, the representation of the sequential data is the key to efficient
and effective solutions. However, most of these representations imply sensitivity
to noise, lack of intuitiveness, and the need to fine-tune many parameters [4].
In the present work, an alternative piecewise linear representation based on
feature points is proposed. Similarity measures between sequential data is a
common issue that has been treated in several ways. Usually, the statistical
models fitted to the data are compared. Nevertheless, subjective sequential data
are rarely considered. This kind of data corresponds to information collected
from human opinions over a period of time. Although, it is not possible to
successfully fit a unique model to all the data set since the changes on the level
of the series usually respond to a great variety of factors, different model based
approaches overcome this problem by employing one model per sequence [10].
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(a) Truck simulator (b) Driver top view (c) Road main view

Fig. 1. Truck simulator and sample frames of visual information acquired

The piecewise linear representation proposed in this work allows the definition of
two similarity measures considering the behavior and the level of the sequential
data, respectively. The proposed similarity measures were applied for clustering
and outlier detection of a group of traffic safety experts’ driving risk evaluations.
Each expert provide two sequential risk evaluations of a simulated driving
exercise. The data acquisition process was made as follows: a driving simulation
exercise of ten minutes was recorded from a truck cabin simulator. Then, a group
of 38 traffic safety experts were asked to evaluate the driving risk of the simulated
exercise. One of the main objectives behind this project is to identify drivers’
unsuitable behavior and lacks of attention.

The rest of the paper is organized as follows. Section 2 presents the process
for the acquisition of the experts’ evaluations. In Section 3, the piecewise
linear representation algorithm for the linear segmentation of sequential data is
developed. In Section 4, the section-wise similarities are defined. The evaluation
of the performance of the proposed similarities on the experts’ evaluations is
presented in Section 5. Finally, Section 6 concludes.

2 CABINTEC Database

2.1 Data Acquisition

CABINTEC (âĂIJIntelligent cabin truck for road transportâĂİ) is an ongoing
project focused on risk reduction for traffic safety [11]. The CABINTEC project
is being developed in a highly realistic truck simulator (shown in Fig. 1(a)). The
simulator was made using a real truck cockpit mounted over a stewart-platform
to provide a natural driving sensation. Further, the driver’s visual field is covered
by a detailed simulated 3D scene. The data acquisition process consisted on the
detailed monitoring of a simulated driving session of ten minutes in an interurban
scenario that simulates a light traffic highway near San Sebastian (Spain). The
driving exercise was carried out by professional drivers with more than 20 years of
experience. The data acquired at the acquisition process consist of data registers
of the vehicle dynamics and road characteristics, and visual information from
two video sources: image sequences of driver’s top view (Fig. 1(b)) and image
sequences of the main view of the road (Fig. 1(c)). The data acquired in the truck
simulator was used to make a detailed reproduction of the driving session to a
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Fig. 2. Time line of the risk evaluations made by each traffic safety expert

group of traffic safety experts in a knowledge acquisition process. The knowledge
acquisition process consisted on the risk evaluation, by a group of 38 traffic safety
experts, of two partially overlapped sections of the simulated driving session (see
Fig. 2). Each traffic safety expert was asked to evaluate the driving risk of the
simulated session in the two different time periods in a randomly selected order.
For that purpose, the simulation reproduction and knowledge acquisition tool
called Virtual Co driver was used [12]. The Virtual Co driver system allows the
evaluation of the driving risk through a Visual Analog Scale (VAS) in a range
from 0 to 100, where 100 refers to the highest driving risk level. This method has
been considered the best for subjective measurements (see, for instance, [13]).
The main screen of the Virtual Co driver tool is shown in Fig. 3. The data
considered for our CABINTEC database (shown in Fig. 4) consist on 76 risk
evaluations (two for each traffic safety expert) obtained from the intersected time
lapse between the two risk evaluations. Similar evaluations are expected for each
expert. Hence, the capability of our acquisition methodology and the robustness
of the subjective risk evaluations will be analyzed. In addition, wrong evaluations
could be detected by comparing the two evaluations of the same expert. At first
sight, given the high heterogeneity of the experts’ VAS evaluations (see Fig.
4), it is hard to identify similar behavior between the curves. Further, given
the subjectivity implied on the driving risk evaluation, small oscillations out of
the main trend appear. These oscillations make it difficult to analyze subjective
phenomena where a linear behavior along a temporary period of time is expected.
To get a proper representation of sequential data, a piecewise representation is
proposed in the next section.

Fig. 3. Simulation reproduction and knowledge acquisition tool (Virtual Co driver)
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Fig. 4. Subjective sequential data acquired from the traffic safety experts

3 Trend Segmentation Algorithm

One of the main tasks of the present work is to define a proper similarity measure
between subjective sequential data. Given the characteristics of sequential data
(where sudden changes occur and where the key information is given by its trend),
a piecewise representation of the data is appropriate. A variety of algorithms to
obtain a proper linear representation of sequential data have been presented (see,
for instance, [14], [15] and [16]). However, when working with subjective data,
special considerations must be taken into account when selecting the cut points
where a linear model will be fitted over the data. In this case, we propose a linear
segmentation algorithm based on the time-honored idea of looking for feature
points where extreme changes on the data trend occurs. We call this method Trend
Segmentation Algorithm (TSA). On the first stage of the algorithm, the feature
points of the VAS evaluation where the trend of the data presents a deviation from
a straight coursemust be located.For that purpose the curvature of the data at each
point needs to be calculated. Let f(t) be a VAS evaluation at time t = {1, . . . , T}.
Following [17], the n-order tangent at time t is calculated as:

fn(t) = wf(t) −
n∑

i=−n, i�=0

wif(t + i) , (1)

where wi = 1/(2|i|), and w is the sum of all the weights wi.
That is, we compute the tangent at t as a weighted average of the VAS

evaluation in the n consecutive points surrounding t. The weight wi is inversely
proportional to the distance from the closest point to the point t. The curvature
at each point t is computed as the absolute value of the difference between the
tangent at that point and the tangent at point t− 1:

C(t) = |fn(t)− fn(t− 1)| . (2)

A point t is a feature point if it satisfies one of the following conditions:

1. t = 1 or t = T (initial and final point)
2. C(t) > max(C(t + 1) , C(t− 1)) (local maximums)
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Algorithm 1. Trend Segmentation Algorithm (TSA)
Input: VAS evaluation f , R2

min

Output: {CP} (set of Cut Points)
1. Obtain the feature points of curve f → {FP} = {fp1, fp2, . . . , fpN}
2. Repeat for each pair of consecutive feature points fpi, and fpi+1

Fit a regression line (Ŷ ) in the current segment [fpi , fpi+1]
if (R2(Ŷ ) ≥ R2

min) then
Store the initial and final points of the current segment as cut points
(fpi ∈ CP ,fpi+1 ∈ CP )

else
Subdivide the segment to reduce the error and go to 2

end if
3. Joint identical regression lines between the selected cut points.

That is, the feature points are points with relevant changes in the curvature of the
original VAS evaluation f . Notice that, since we work with a discretization of the
curvature, there will be a smoothing effect depending of the n value. An example
of the selection of feature points in a VAS evaluation using the 5-order curvature
is shown in Fig. 5. In this example, a total of 38 points where the trend of the
data suffered a relevant change were selected as feature points. Given a set of N
feature points {FP}, the second stage of TSA consists on the selection of points
where a piecewise linear model can be properly fitted (Cut Points={CP}). As
other segmentation algorithms, TSA needs some method to evaluate the quality
of fit for a proposed segment. A measure commonly used in conjunction with
linear regression is the coefficient of determination. Further, in order to ensure
a linear fitting in each section, an Anderson-Darling Normality test is applied
to the residuals of each fitted line (see, for instance, [18]). The pseudo code of
the TSA is presented in (Algorithm 1). The input of the algorithm is the VAS
evaluation f . The output of the algorithm will be a set of Cut Points among
which a linear model can be fitted with an error lower or equal than the allowed

Fig. 5. Example of the selection of feature points (green marks) based on the curvature
(black line) of a subjective sequential serie (blue line)
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by the parameter R2
min. Given a VAS evaluation f , all its feature points are

obtained and stored in the set {FP}. Next, a linear model is tested in each
segment defined by each pair of consecutive points in {FP}. If the regression
error is low (R2 is higher than R2

min) then the feature points that define the
segment are stored as Cut Points. Otherwise, the linear model is not proper for
the observations in the segment and, as a consequence, the segment is divided. In
this work we propose to store all the points in the segment as Cut Points. Finally,
in order to reduce the number of generated sections, the consecutive segments
with identical regression lines are joined together. Following the example shown
in Fig. 5, the linear representation of the VAS evaluation after the application
of TSA is shown in Fig. 6. In this example, 22 feature points were selected
as Cut Points. That is, 21 linear sections were enough to represent the VAS
evaluation with an R2

min of 0.75. Notice that, the main advantage of the TSA
algorithm is its special care when selecting Cut Points to fit a linear model. This
righteousness becomes very important when working with subjective sequential
data because the trend of the data is kept. In order to choose the optimal linear
representation of a specific dataset, a trade-off between the global error and the
complexity of the representation (number of generated segments) is considered
by the minimization of:

C = α(1 −R2) + (1 − α)
number of segments

T − 1
, (3)

where the parameter α is set to 0.5 to grant similar relevance for both terms. In
this case, R2 is a global average over the R2 of the linear models fitted in each
of the segments obtained from TSA. In order to make comparable two linearized
curves it is necessary to align the linear segments of each curve. To achieve this
aim, an OR operation between the Cut Points selected from each curve is done.
Figure 7 shows an example of the OR operation between the set of Cut Points
selected from a two VAS evaluations. The outcome aligned segmentation for both
VAS evaluations is shown in Fig. 7(c).

Fig. 6. Example of linear sections generated between the selected feature points
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(a) First evaluation

(c) Combination

(b) Second evaluation

Fig. 7. Example of the TSA applied to two series acquired from the same traffic safety
expert in different knowledge acquisition experiments

4 Similarity Definitions

One of the main tasks of the present work is to define a proper similarity
measure between subjective sequential data. The similarity between two VAS
evaluations can be measured in many ways. Given a pair of aligned linearized
curves, it is possible to define a set of similarity measures taking advantage of the
characteristics of the linear representation proposed in Section 3. In this work,
we propose two similarity measures based on the difference of levels and the
difference of angles between the linear regression lines obtained from the TSA
representation of the curves.

4.1 Mean Level Based Similarity

Let k = [t(1), t(2)] be a common section defined for the curves fi and fj . Let
Ŷi = β0i + xβ1i and Ŷj = β0j + xβ1j be the regression lines fitted in the section
k of the curves fi and fj, respectively. The mean level similarity is based on
the mean levels of the regression lines Ŷi and Ŷj over the section k (see Fig.
8(a)). The mean level similarity calculated in the section k, denoted by s0(k), is
obtained as one minus the ratio between the Euclidean distance (d) of the mean
levels of the regression lines Ŷi and Ŷj and the worst possible distances between
them:

s0(k) = 1− d

d̆
, (4)

where s0(k) is in [0, 1]. The worst distance d̆ is calculated from the maximum
possible distance that the mean level of the curves could have in all the dataset. In
this case, for a set of VAS evaluations ranging in [0, 100], the maximum possible
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(a) Mean Level Similarity (b) Angle Level Similarity

Fig. 8. Similarities between two sections of two segmented sequential series

distance d̆ is 100. Finally, the overall mean level section-wise similarity for the
curves fi and fj is calculated as the weighted sum of all the sectional similarities
as follows:

S0(fi, fj) =
∑K

k=1 w(k) s0(k)∑K
k=1 w(k)

, (5)

where w(k) is the width of the section k = 1, . . . , K.

4.2 Angle Based Similarity

The angle based section-wise similarity considers the angle formed by the
regression lines defined in the sections k = 1, . . . , K. Let β1i and β1j be the
slopes of the regression lines Ŷi and Ŷj , respectively (see Figure 8(b)). The angle
between the regression lines is calculated as:

θ = atan(|β1i − β1j |). (6)

The angle based similarity calculated in the section k, denoted by s1(k), is
obtained as the relation between the angle θ and the worst possible angle θ̆
of the section k as follows:

s1(k) = 1− θ

θ̆k

, (7)

where s1(k) is in [0, 1]. The worst angle θ̆ is established as the maximum
possible change in an analyzed section. The maximum possible angle between
two regression lines at the section k can be calculated as:

θ̆k = atan(| 2d̆

w(k)
|) , (8)

where w(k) is the width of the section k = 1, . . . , K.
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Finally, the overall angle based section-wise similarity for the curves fi and
fj is calculated as the weighted sum of all the sectional similarities as follows:

S1(fi, fj) =
∑K

k=1 w(k) s1(k)∑K
k=1 w(k)

, (9)

where w(k) is the width of the section k = 1, . . . , K.

5 Experiments

Given the set of curves from the CABINTEC dataset, it is possible to generate
similarity matrices with the definitions presented in the Section 4. For our
purposes, an unique similarity matrix mas built:

S0,1 =
S0 + S1

2
. (10)

In this case, as the proposed similarities matrices (S0, and S1) are obtained as
the weighted mean of a set of similarities obtained from individual sections, a
deviation from the Euclidianess may occur. Following [19], the deviation from
Euclidianess of each similarity matrix of the CABINTEC dataset was calculated
as the ratio of the smallest negative eigenvalue to the largest positive eigenvalue
of the similarity matrices (rmm). When the negative eigenvalues are relatively
small in magnitude, those negative eigenvalues can be interpreted as a noise
contribution. However, if the negative eigenvalues are relatively large, possibly
important information could be rejected by neglecting them (see [20] for a
complete description). The deviation of each matrix is presented in Table 1.
Several techniques have been proposed to solve this problem ([20]). In this
work, Multidimensional Scaling was applied to represent the data set in a
Euclidean space. As mentioned before, the CABINTEC database consist of
76 VAS evaluations of a group of 38 traffic safety experts. That is, the same
simulated driving session was evaluated twice for each expert. We will illustrate
the performance of the similarity measures defined in Section 4 based on two kind
of experiments on the CABINTEC dataset. The first one is a cluster experiment,
whose main objective is to know if there are meaningful classes of experts that
can be grouped together. In addition, it is possible to detect wrong evaluations
when the two evaluations of the same experts are grouped in different clusters.
The second experiment is based on a new measure for outlier detection. If there
is a high difference between the two evaluations of the same expert, then the
expert is considered an outlier and should be studied carefully.

Table 1. Euclidianess deviation of the similarity matrices of the dataset CABINTEC

Similarity
Lowest

Eigenvalue
Highest

Eigenvalue
Deviation from

Euclidianess (rmm)

S0 -0.1602 58.6125 0.0027

S1 -0.0165 50.3231 0.0003
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(a) Cluster 1 (b) Cluster 2

Fig. 9. Clusters of the CABINTEC database with the mean level and angle similarities

5.1 Clustering

Clustering is an initial and fundamental step in data analysis. It is an
unsupervised technique whose goal is to reveal a natural partition of data into
a number of meaningful subclasses or clusters. Accurate clustering requires a
precise definition of the nearness between a pair of objects, in terms of either
the pairwised similarity or distance. Clustering of sequential data differs from
clustering of static feature data mainly in how to compute the similarity between
two data objects. In general, depending upon the specific characteristics of the
sequential data, different clustering studies provide different methods to compute
this similarity. Once the similarity of sequential data is defined, many general-
purpose clustering algorithms can be used to partition the data. In this work, we
focus on clustering sequential data in which each sequential object is represented
as a set of regression lines defined from a linearization algorithm. In our work,
we test the capability of the similarity measure presented in (10) in order to
achieve accurate clustering of the CABINTEC experts’ evaluations. We will use
this similarity to perform a partitioning clustering of the experts’ evaluations
into clusters around k representative objects or medoids among the sequential
experts’ evaluations of the dataset (see [21] for a complete description of the
PAM algorithm). The clusters generated for the CABINTEC database are shown
in Fig. 9. To apply PAM method, we will work with the dissimilarity defined
as 1 − S0,1. For each cluster, the medoid (a representative VAS evaluation of
the cluster) is remarked with a green line. In this case, two clearly identifiable
patterns were found. In the simulated driving exercise, the driver received a
phone call from second 5 to second 60. In the second cluster (Fig. 9(b)), the
traffic safety experts considered the phone call as the maximum fault giving a
100 in their VAS evaluations. However, in the first cluster (Fig. 9(a)), the traffic
safety experts did not consider to answer a phone call as the maximum risk in
which a driver could fall. In this way, as the experts’ evaluations bunched in
cluster 2 were giving the maximum possible risk level during all the phone call,
they were unable to penalize the action of driving with no hands on the steering
wheel given from second 38 to second 50. On the other side, this action (no hands
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Table 2. Clustering error of the CABINTEC database with several similarity measures

Method Bad clustered experts Error (%)

TSA
S0 5 13.2
S1 12 31.6

S0+S1
2

1 2.6

DTW 3 7.9

Euclidean distance 6 15.8

Hausdorff distance 12 31.6

Kendall correlation 16 42.1

Pearson correlation 17 44.7

on wheel) was detected and penalized by most of the experts bunched on the
cluster 1. At the second half of the risk evaluation (from second 60) the experts
of the first cluster punish in a moderated way a group of risky situations of
the driver leaving a margin on their VAS range to punish riskier situations that
could come. In the same way, the experts of the second cluster, detected most
of the risky situations given at the second half of the evaluation. However, these
experts continued with high VAS values until the end of the risk evaluation. The
clusters generated with the similarities proposed in this work are very helpful
to select the kind of data that will be considered in the future stages of the
research. On the one hand, we have identified experts (cluster 2) whose major
concern is the distraction of the driver while doing a secondary task (like a
phone call). On the other hand, we have identified experts (cluster 1) that are
more concerned about the driving efficiency regardless of the number of tasks
of the driver. It is well known that is very difficult to conduct a systematic
study comparing the impact of similarity metrics or distances on cluster quality,
because objectively evaluating cluster quality is difficult in itself. In practice,
manually assigned category labels are usually used as a baseline criteria for
evaluating clusters. Nevertheless, in this case we know a relevant information:
the expert that generated each evaluation. We estimate our clustering error as the
number of experts such that the two evaluations of the same expert are grouped
in different clusters. This error measure was used to compare the methodology
proposed in this work with the clustering based on other well-known distance
measures (DTW: Dynamic time warping, Euclidean and Hausdorff distance, and
correlation of Kendall and Pearson). The results are shown in Table 2. The best
result is achieved by the combination of the mean level and angle similarities.
These results show the complementarity of both similarity measures achieving
an error reduction from 13.2% and 31.6% to 2.6%.

Other Data. Additionally to the CABINTEC dataset, several well-known
databases, out of the driving risk problem, were analyzed: the ECG200, Gun
Point, Coffee, and Growth databases. A summary of these databases is shown in
Table 3 (see [22] and [23] for a complete description). The Trend Segmentation
Algorithm and the Similarity measure proposed in Section 4 were applied to all
the series. Results are presented in Figure 10. For the ECG200 [22], two patterns
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were found among the 200 curves of the dataset. On the first one (see Fig. 10(b)),
the main valley is generated faster with a steeper slope. After that, a decreasing
behavior is observed until the end. On the second one (see Fig. 10(c)), the main
valley is reached later with a moderated slope and an increasing behavior is
observed until the end. In this case, it is clear that the angle and mean level
similarities are useful to separate these patterns. In the same way, for the Gun
Point database (see Fig. 10(e) and 10(f)) [22], the patterns found among the 200
curves are evidently dependent of the width of the main peak. For this clusters,
the similarities presented in this paper shows relevance when separating the
patterns. For the Coffee database (see Fig. 10(h) and 10(i)) [22], the two patterns
found among the curves show a major relevance on the information given by the
mean level similarity. In this case, the curves are mainly identified by its level
since they have a similar angle behavior. Finally, for the Growth database (see
Fig. 10(k) and 10(l)) [22], the patterns identified among the curves are clearly
discovered by the behavior of their slope. In this case, each cluster is characterized
by the tilt of each curves while they increase along their 31 registers.

5.2 Outlier Detection

One of the first tasks in any outlier detection method is to determine what
an outlier is. This labor strongly depends on the problem under consideration.
In this case, we are interested in the detection of experts that generated
heterogeneous evaluations (or even random evaluations) during the acquisition
process. An expert should be considered an outlier if a very high distance between
the two risk evaluations of the experts is observed. Let f1

i , and f2
i be the two

evaluations obtained from expert i. Given the similarity measure presented in
Section 4 two sets of evaluations are defined:

F (i)1,2 = {fj : S0,1(f1
i , fj) > S0,1(f1

i , f2
i )} , (11)

F (i)2,1 = {fj : S0,1(f2
i , fj) > S0,1(f1

i , f2
i )} . (12)

That is, F (i)1,2 is the set of the experts’ evaluations such that the similarities
between them and the first evaluation of expert i are higher than the similarity
between the two evaluations of expert i. Hence, the evaluations between
evaluations 1 and 2 of expert i are considered.

δ(i) = #{F (i)1,2 ∩ F (i)2,1} . (13)

Table 3. Summary of the databases considered in the clustering experiments

Database
Name

Number of
series

Time Series
Length

Figure

ECG200 200 96 10(a)

Gun Point 200 150 10(d)

Coffee 56 286 10(g)

Growth 93 31 10(j)
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ECG200 database

(a) Original data (b) Cluster 1 (c) Cluster 2

Gun Point database

(d) Original data (e) Cluster 1 (f) Cluster 2

Coffee database

(g) Original data (h) Cluster 1 (i) Cluster 2

Growth database

(j) Original data (k) Cluster 1 (l) Cluster 2

Fig. 10. Clustering of several databases with the mean level and angle similarities
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(a) Expert 22 (b) Expert 23

Fig. 11. Outliers of the CABINTEC database with the mean level and angle similarities

In the same way, F (i)2,1 is the set of the experts’ evaluations such that the
similarities between them and the second evaluation of expert i are higher than
the similarity between the two evaluations of expert i. Hence, the evaluations
between evaluations 2 and 1 of expert i are considered. Given that, we deal with
sequential data, in general F (i)1,2 �= F (i)2,1. To obtain the outliers evaluations in
our experiments, we define the following dissimilarity measure: That is, given the
similarity measure S0,1, the dissimilarity measure evaluated on expert i equals
the number of evaluations between his two evaluations. On the one hand, if the
two evaluations of expert i are very similar, there will be very few elements in
sets F (i)1,2 and F (i)2,1, and as a consequence, δ(i) will be very low. On the other
hand, if the two evaluations of expert i are not similar, there will be very a lot
of elements in sets F (i)1,2 and F (i)2,1, and as a consequence, δ(i) will be very
high. Next, we calculate this dissimilarity measure in the CABINTEC database.
Table 4 presents the values of the dissimilarity function (13) in the experts’ VAS
evaluations of the CABINTEC database.

Table 4. Dissimilarity measure for outliers detection in the CABINTEC database

δ value 0 1 2 4 5 6 10 12 20 24

Number of experts 24 5 2 1 1 1 1 1 1 1

Notice that in 24 out of 38 experts (63.2%) no other evaluations were found
between the two expert’s evaluations. That is, there are no neighbors in common
between the first and the second evaluations of these experts. On the other hand,
there were two experts with 20 and 24 neighbors in common between their
two evaluations. That is, the two evaluations of the same expert are strongly
different. Figure 11 shows the evaluations of these two experts that are considered
as outliers. For the expert 22 (Fig. 11(a)), a group of contradictions could be
observed between his two evaluations. In addition, from the second 100 , the first
evaluation of the expert (green line), shows a decreasing risk value until the end
of the evaluation and, on the other side, the second evaluation (blue line) shows
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a high level VAS evaluation the whole time. For the expert 23 (Fig. 11(b)), his
second evaluation (blue line) shows a total disinterest on the experiment.

6 Conclusions

The main contribution of this paper, is a novelty methodology for the analysis
of subjective sequential data. First, a linear segmentation algorithm for the
proper representation of subjective data, based on the location of feature points,
has been developed. This algorithm is useful to represent sequential data in a
piecewise model emphasizing the trend of the data. Next, two similarity measures
have been defined from the differences between the level and the angle of the lines
of the piecewise representation. This similarities were defined in order to cover
the two more relevant characteristics of the trend: behavior (angle) and scale
(level). The methodology proposed in this work, focused on the representation
and similarity measurement of subjective data, have been used for clustering
several experts’ risk evaluations of a simulated driving exercises. Further, a
novel dissimilarity measure for outlier detection of paired sequential data have
been proposed. The results of the cluster and outlier detection experiments show
that both level and angle based similarities contain complementary and relevant
information about the data trend. In the future, clustering of the individual
segments of a linear segmentation representation of sequential data will be
performed. In this way, potential high driving risk areas will be detected and
studied for its prediction.
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Abstract. In this paper, we propose to use advanced classification tech-
niques with shape features for nuclei classification in tissue microarray
images of renal cell carcinoma. Our aim is to improve the classification
accuracy in distinguishing between healthy and cancerous cells. The ap-
proach is inspired by natural language processing: several features are ex-
tracted from the automatically segmented nuclei and quantized to visual
words, and their co-occurrences are encoded as visual topics. To this end,
a generative model, the probabilistic Latent Semantic Analysis (pLSA)
is learned from quantized shape descriptors (visual words). Finally, we
extract from the learned models a generative score, that is used as input
for new classifiers, defining a hybrid generative-discriminative classifica-
tion algorithm. We compare our results with the same classifiers on the
feature set to assess the increase of accuracy when we apply pLSA. We
demonstrate that the feature space created using pLSA achieves better
accuracies than the original feature space.

Keywords: probabilistic Latent Semantic Analysis, renal cell carcinoma,
SVM.

1 Introduction

The computer-based detection and analysis of cancer tissues represents a chal-
lenging yet unsolved task for researchers in both Medicine and Computer Science.
The complexity of the data, as well as the intensive laboratory practice needed
to obtain them, makes the development of such automatic tools very problem-
atic. In this paper, we consider the problem of classifying cancer tissues starting
from a tissue microarray (TMA), a technology which enables studies associating
molecular changes with clinical endpoints [19]. With this technique, 0.6mm tis-
sue cylinders are extracted from primary tumor blocks of hundreds of different
patients, and are subsequently embedded into a recipient paraffin block. Such
array blocks can then be used for simultaneous analysis of primary tumors on
DNA, RNA, and protein level.
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Here we focus on the specific case of renal cell carcinoma (RCC). In order
to analyse it, the tissue is transferred to an array and stained to make the
morphology of cells and cell nuclei visible. Current image analysis software for
TMAs requires extensive user interaction to properly identify cell populations
on the TMA images, to select regions of interest for scoring, to optimize analysis
parameters and to organize the resulting raw data. Because of these drawbacks,
pathologists typically collect tissue microarray data by manually assigning a
composite staining score for each spot. The manual rating and assessment of
TMAs under the microscope by pathologists is quite inconsistent due to the
high variability of cancerous tissue and the subjective experience of humans, as
quoted in [15]. Manual scoring also introduces a significant bottleneck that limits
the use of tissue microarrays in high-throughput analysis. Therefore, decisions for
grading and/or cancer therapy might be inconsistent among pathologists. With
this work, we want to contribute to a more generalized and reproducible system
that automatically processes TMA images and thus helps pathologists in their
daily work. One keypoint in the automatic TMA analysis for renal cell carcinoma

Fig. 1. The nuclei classification pipeline: detection, segmentation and classification into
benign or cancerous

is the nucleus classification. In this context, the main goal is to automatically
classify cell nuclei into cancerous or benign – this typically done by trained
pathologists by eye. Clearly, prior to classification, the nucleus should be detected
and segmented in the image.

In this paper, the problem of the classification of nuclei in renal cancer cells
is investigated with the use of hybrid generative-discriminative schemes, repre-
senting a quite recent and promising trend of classification approaches [18,20].
The underlying idea is to take advantage of the best of the generative and the
discriminative paradigms – the former based on probabilistic class models and
a priori class probabilities, learnt from training data and combined via Bayes
law to yield posterior probabilities, the latter aimed at learning class boundaries
or posterior class probabilities directly from data, without relying on generative
class models [21,24]. In the hybrid generative-discriminative scheme, the typical
pipeline is to learn a generative model – suitable to properly describe the prob-
lem – from the data, and using it to project every object in a feature space (the
so-called generative embedding space), where a discriminative classifier may be
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trained. This class of approaches have been successfully applied in many differ-
ent scenarions, especially in the case of non-vectorial data (strings, trees, images)
[28,8,22].

In particular, as for the generative model, we choose to employ the probabilis-
tic Latent Semantic Analysis (pLSA) [17], a powerful methodology introduced in
the text understanding community for unsupervised topic discovery in a corpus
of documents, and subsequently largely applied in the computer vision commu-
nity [12,8] as well as in the medical informatics domain [3,11,4]. Referring to
the linguistic scenario, where these models have been initially introduced, the
basic idea consists in characterizing a given document by the presence of one
or more topics (e.g. sport, finance, politics), which may induce the presence of
some particular words, and realizing that the topic distribution may be learned
by looking at word co-occurrence in the whole corpus. In our case, similarly to
[8,11], the documents are the cell nuclei images, whereas the words are visual
features computed from the image – following the automated pipeline of TMA
processing already proposed in [26]. Given a set of images, the visual features
are quantized in order to define the so-called dictionary, and histograms of fea-
tures describe the level of presence of the different visual words in every image.
Then the pLSA model is learned to find local co-occurring patterns leading to
the definition of the so-called visual topics. Finally, the topic distributions of
each image represent the new space (the generative embedding space), where
any discriminative classifier may be employed.

The proposed approach has been tested in a dataset composed by 474 cell
nuclei images, employing different visual features as well as different classifiers
in the generative embedding final space. The results were compared to those
obtained working directly with the visual features, encouraging us in going ahead
along this direction.

The paper is organized as follows. In Section 2, we introduce pLSA, and
in Section 3, the data set and preprocessing used in this study is described.
We explain the applied methods in Section 4, and illustrate our experiments in
Section 5. Section 6 concludes the work.

2 Background: The Probabilistic Latent Semantic
Analysis

The probabilistic Latent Semantic Analysis (pLSA) [17] is a probabilisitc gener-
ative model firstly introduced in the linguistic scenario, to describe and model
documents. The basic idea underlying this model – and in general under the
class of the so called topic models (another excellent example is the the Latent
Dirichlet Allocation LDA [7]) – is that each document is characterized by the
presence of one or more topics (e.g. sport, finance, politics), which may induce
the presence of some particular words. From a probabilistic point of view, the
document may be seen as a mixture of topics, each one providing a probability
distribution over words. A topic model represents a generative model for docu-
ments, since a simple probabilistic procedure permits to specify how documents
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are generated. In particular, a new document may be generated in the following
way: first choose a distribution over topics; then, for each word in that docu-
ment, randomly select a topic according to its distribution, and draw a word
from that topic. It is possible to invert the process, in order to infer the set of
topics that were responsible for generating a collection of documents. The rep-
resentation of documents and words with topic models has one clear advantage:
each topic is individually interpretable, providing a probability distribution over
words that picks out a coherent cluster of correlated terms. This may be really
advantageous in the cancer detection context, since the final goal is to provide
knowledge about complex systems, and provide possible hidden correlations.

A variety of probabilistic topic models have been used to analyze the content
of documents and the meaning of words. These models all use the same funda-
mental idea – that a document is a mixture of topics – but make slightly different
statistical assumptions; here we employed the probabilistic Latent Semantic Anal-
ysis, briefly presented in the following. Let us introduce the pLSA model from the
original and most intuitive point of view, namely from the linguistic community
perspective. As a starting point, the pLSA model takes as input a data set of N
documents {di}, i=1,..., N , encoded by a set of words. Before applying pLSA, the
data set is summarized by a co-occurrence matrix of size M×N , where the entry
n(wj , di) indicates the number of occurrences of the word wj in the document di.
The presence of a wordwj in the document di is mediated by a latent topic variable,
z ∈ T = {z1,..., zZ}, also called aspect class, i.e.,

P (wj , di) =
Z∑

k=1

P (wj |zk)P (zk|di)P (di). (1)

In practice, the topic zk is a probabilistic co-occurrence of words encoded by
the distribution P (w|zk), w = {w1,..., wM}, and each document di is compactly
(Z < M)1 modeled as a probability distribution over the topics, i.e., P (z|di),
z = {z1,..., zZ}; P (di) accounts for varying number of words. The hidden distri-
butions of the model, P (w|z) and P (z|d), are learnt using Expectation-Maximi-
zation (EM), maximizing the model data-likelihood L:

L =
N∏

i=1

M∏
j=1

P (wj , di)n(wj ,di) (2)

The E-step computes the posterior over the topics, P (z|w, d), and the M-step
updates the parameters, P (w|z) which identifies the model. Once the model has
been learnt, the goal of inference is to estimate the topic distribution of a novel
document. To do this, one can use the standard learning algorithm keeping fixed
the parameters P (w|z).

The typical classification scheme with pLSA is a standard generative ap-
proach, where one has to learn a model per-class and assign a new sample to

1 Both Z and M are constants to be a-priori set.
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the category whose model fits the point best, i.e., the model with highest likeli-
hood (see Equation 2). Recently, other approaches successfully used meaningful
distributions or other by-products coming from a generative model, as feature
for a discriminative classifier. The intuition is that generative models like pLSA
are built to understand how samples were generated, and they haven’t any no-
tion of discrimination; on the other hand, discriminative classifiers are built to
separate the data and they are highly more effective if the data has been pre-
viously “explained” by a generative model. In this paper pLSA has been used
in such a hybrid generative-discriminative context. LDA has an advantage over
LSA in the sense that, even though you may overestimate the number of topics,
it automatically finds the effective number of topics by discarding the unused
topics. This can also be achieved using pLSA by applying information theoretic
measures such as Bayesian Information Criterion (BIC). In this work, we do
not report accuracies using LDA because the accuracies are similar as also been
reported by [27,25,23]; and LSA is a simpler model.

3 The Tissue Microarray (TMA) Pipeline

In this section the tissue microarray pipeline is briefly summarized. For a full
description please refer to [26]. In particular, first we describe how TMA are
determined, followed by the image normalization and patching (how to segment
nucleui). Finally, the image features we employed are described.

3.1 Tissue Micro Arrays

Small tissue spots of cancerous cell tissue are arranged on a glass array. They
are stained with eosin which visualizes the morphological structure of the tissue.
Further, immunohistochemical staining specifically stains MIB-1 expressing cell
nuclei dark brown. Therefore, dark blue spots mark the cell nuclei (cancerous or
benign), whereas dark brown spots show the MIB-1 positive nuclei.

The TMA slides were scanned with a magnification of 40x, resulting in three
channel color images of size 3000x3000px per patient. Eight spots were exhaus-
tively and independently labeled by two pathologists, marking the location and
label of each cell nucleus (cancerous/benign) on the images [15].

The data set we employed in the evaluation comprises eight quarters of the
images, which consist 100-200 cell nuclei, each (see Figure 2). Also, only those
nuclei on which the two pathologists agreed on the label were retained.

3.2 Image Normalization and Patching

To minimize illumination variances among the scans the images were adjusted
in contrast. Then, to get individual nuclei, we extracted patches of size 80x80
px, such that each patch has one nucleus in its center (see Figure 3). Both steps
improved the following segmentation of cell nuclei.
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Fig. 2. Top: One 1500x1500px quadrant of a TMA spot from a RCC patient. Bottom:
A pathologist exhaustively labeled all cell nuclei and classified them into malignant
(black) and benign (red).
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3.3 Segmentation

The segmentation of cell nuclei was performed with graphcut [10]. The gray
intensities were used as unary potentials. The binary potentials were linearly
weighted based on their distance to the center to prefer roundish objects lying
in the center of the patch (see Figure 3). The contour of the segmented object
was used to calculate several shape features as described in the following section.

Fig. 3. Two examples of nucleus segmentation. The original 80x80 pixel patch are
shown, each with the corresponding nucleus shape found with graphcut.

3.4 Feature Extraction

Features have been extracted from the patches, according to several intuitive
guidelines used by pathologists to classify nuclei. They are based on pixel inten-
sities as well as on shape descriptors. The features then have been summarized in
histograms, representing the starting point of our algorithm. In [26], histograms
have been directly used for classification: we will show in this paper that a signif-
icant benefit may be gained when an intermediate generative step is introduced
before the final classification. The histograms are described in Table 1). The
quantization of the features in histograms was reasonably chosen according to
runtime and size of the underlying features. The loss of information due to this
process was tried to be kept minimal. Other possible feature extraction methods
such as curvature coefficients [5], wavelets [1], similarity based representations
[14,6] have been left as future work.

4 Nuclei Classification

The hybrid generative discriminative approach employed to classify the nuclei
can be summarized as follows:

1. Nucleus Image Characterization via Feature Extraction and Sum-
marization: in this step each image is analysed following the pipeline de-
scribed in the previous section, giving as output features, histograms.

2. Generative Model Training: given the training set, the pLSA genera-
tive model is trained. In particular, we straightforwardly assume that the
visual features previously presented represent the words wj , while the nuclei
are the documents d. With such a point of view, the extracted histograms
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Table 1. Features extracted from patch images for training and testing. All features
are histograms.

Shortcut Feature Description

All Patch Intensity: A 16-bin histogram of gray scaled patch

Fg Foreground Intensity: A 16-bin histogram of nucleus

Bg Background Intensity: A 16-bin histogram of background

Lbp Local Binary Patterns: This local feature has been shown to bring con-
siderable performance in face recognition tasks. It benefits from the fact
that it is illumination invariant.

Col Color feature: The only feature comprising color information. The colored
patch (RGB) is rescaled to size 5x5. The 3x25 channel intensities are then
concatenated to a feature vector of size 75.

Fcc Freeman Chain Code: The FCC describes the nucleus’ boundary as a
string of numbers from 1 to 8, representing the direction of the boundary
line at that point ([16]). The boundary is discretized by subsampling with
grid size 2. For rotational invariance, the first difference of the FCC with
minimum magnitude is used. The FCC is represented in a 8-bin histogram.

Sig 1D-signature: Lines are considered from the object center to each bound-
ary pixel. The angles between these lines form the signature of the shape
([16]). As feature, a 16-bin histogram of the signature is generated.

Phog Pyramid histograms of oriented gradients: PHOGs are calculated
over a level 2 pyramid on the gray-scaled patches ([9]).

represent the counting vectors, able to describe how much a visual feature
(namely a word) is present in a given image (namely a document). Given the
histograms, pLSA is trained following the procedure described in Section 2.
Only one model is trained for both classes, disregarding labels. Despite its
simplicity – many other schemes may be used to fit the generative model in
a classification task [2] – this option yielded promising results.

3. Generative Embedding: within this step, all the objects involved in the
problem (namely training and testing patterns) are projected, through the
learned model, to a vector space. In particular, for a given nucleus d, the
representation φ(d) in the generative embedding space is defined as the es-
timated pLSA posteriors distribution (namely the mixture of topics charac-
terizing the nuclei). In formulae we have that the

φ(d) = [P (z|d)] = [P (z1|d), · · ·P (zZ |d)] (3)

Our intuition is that the co-occurrence of visual features is different be-
tween healthy and cancerous cells. Since the co-occurrences are captured by
the topic distribution P (z|d), we are defining a meaningful score for dis-
crimination. This representation with the topic posteriors has been already
successfully used in computer vision tasks [12,8] as well as in the medical
informatics domain [11,4].
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4. Discriminative Classification: In the resulting generative embedding space
any discriminative vector-based classifier may be employed. In this fashion,
according to the generative/discriminative classification paradigm, we use
the information coming from the generative process as discriminative fea-
tures of a discriminative classifier.

5 Experiments

In this section the presented approach has been evaluated. In particular we give
details about the experimental setup, together with the results and a discussion.

The classification experiments have been carried using a subset of the data pre-
sented in [26]. We selected a three patient subset preserving the cancerous/benign
cell ratio. In particular, we employed three patients: from the labeled TMA im-
ages, we extracted 600 nuclei-patches of size 80x80 pixels. Each patch shows a
cell nucleus in the center (see Figure 3). 474 (79 %) from the nuclei form our
data set (as said before, we retain only those where the two pathologists agree
on the label): 321 (67 %) benign and 153 (33 %) malignant nuclei.

The data of 474 nuclei samples is divided into ten folds (with stratification).
We have eight representations (All, Bg, Col, Fcc, Fg, Lbp, Phog, and
Sig); for each representation and each fold, we train pLSA on the training set
and apply it to the test set. The number of topics has been chosen using leave-
another-fold-out (of the nine training folds, we used 9-fold cross validation to
estimate the best number of topics) cross validation procedure on the training
set. In the obtained space, different classifiers have been tried. The obtained
results have been compared with those obtained with the same classifier working
on the original histograms (namely without the intermediate generative coding).
In particular we employed the following classifiers (where not explicitly reported,
all parameters have been tuned via cross validation on the training set)

– (svl): support vector machines with linear kernel (this represents the most
widely employed solution with hybrid generative-discriminative approaches).

– (svp): support vector machines with polynomial kernel: after a preliminary
evaluation, the degree p was set to 2.

– (svr): support vector machines with radial basis function kernel.
– (ldc): linear discriminant classifier
– (qdc): quadratic discriminant classifier
– (knn): k-nearest neighbor classifier
– (tree): decision tree

All results were computed by using PRTools [13] MATLAB toolbox. They are
reported in tables 2 and 3, for the SVM family and for the other classifiers, respec-
tively. The feature representations where the proposed approach overperforms
the original space are marked with bold face (statistically significant difference
with paired t-test, p = 0.05). In particular, results are averaged over ten runs. In
all experiments the standard errors of the mean were inferior to 0.01 for support
vector machines and 0.017 for other classifiers.
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Table 2. Accuracies with SVM. ORIG is the original histogram based feature space,
whereas PLSA stands for the proposed approach.

svl svp svr
ORIG PLSA ORIG PLSA ORIG PLSA

All 68.36 74.26 65.40 75.06 74.47 75.11
Bg 72.88 70.82 66.79 71.50 74.22 71.92
Col 66.90 69.03 56.93 70.32 68.98 68.82
Fcc 67.30 67.72 66.89 67.92 67.95 68.57
Fg 70.68 71.97 64.12 72.62 70.49 71.09
Lbp 68.61 69.43 42.36 70.70 68.79 70.47
Phog 75.45 79.67 63.92 79.22 76.55 76.80
Sig 67.72 68.34 58.64 67.69 67.72 67.72

Table 3. Accuracies using different classifiers. ORIG is the original histogram based
feature space, whereas PLSA stands for the proposed approach.

ldc qdc knn tree
ORIG PLSA ORIG PLSA ORIG PLSA ORIG PLSA

All 71.71 70.21 69.55 69.01 72.35 73.44 ∗71.97 70.30
Bg 70.79 68.31 68.48 67.52 74.25 71.29 62.25 67.29
Col 69.42 69.86 67.55 67.94 69.41 68.62 60.62 62.44
Fcc 66.68 65.25 60.76 65.19 66.66 67.71
Fg 70.24 70.70 68.59 68.78 69.79 70.48 63.07 63.46
Lbp 71.55 71.98 70.71 68.37 71.13 70.29 60.14 63.97
Phog 75.29 ∗77.57 67.93 ∗74.62 70.71 ∗74.69 63.51 66.49
Sig 67.73 66.87 64.74 68.95 63.50 67.72 58.04 61.85

Observing the Table 2, we can see that the best accuracy using a SVM is
75.45% whereas the best accuracy on the pLSA space is 79.22 %. For most
representations (except Lbp, Phog and Col), the accuracies of different kernels
on the original space do not have large differences. We also observe that the
data set is a difficult data set because there are some classifiers which have
accuracy equal to the prior class distribution of the data set (67 per cent). We
see that except the support vector machine with rbf kernel, the space constructed
by pLSA always supercedes the original space (except Bg on svl) in terms of
average accuracy. The bold face in the table shows feature sets where pLSA
space is more accurate than the original space using 10-fold CV paired t-test at
p = 0.05.

By looking at the result with other classifiers (Table 3), we can again see
that when we transform to the space with pLSA, we get higher accuracies with
other classifiers but this time the difference is not strong as in support vector
machines. The values with a “*” shows the best classification accuracy using
that classifier and again bold face shows feature sets where pLSA space is more
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accurate than the original space. We can see that, although the number of fea-
ture sets where pLSA is better than the original space decreases, except for the
decision tree, pLSA space gives the best results for all the classifiers.

5.1 Discussion

We have seen that by using the generative abilities of pLSA and applying the
idea of natural language processing to shape features, we can project our data
to another space where discriminative classifiers work better. We see that our
algorithm automatically finds number of topics and on the space created by
pLSA, we have the best results. We observe this behavior with support vector
machine variants and also other classifiers.

In this preliminary work, we used a subset of all available subjects to test if the
new space created by pLSA has advantages. We have seen that with the new space
wehavehigher accuracy thanapplying on theoriginal feature space.This promising
result encourages us to use more data and apply other kernels to get better classi-
fication accuracies. In this work, we use the outputs of pLSA as features in a new
space. Another approach would be to directly compute kernels after pLSA and use
them for classification. We will explore this option as a future work.

6 Conclusion

In this paper, we propose the use of pLSA to transfer the given shape features into
another space to get better classification accuracy for the classification of nuclei
in TMA images of renal clear cell carcinoma. Our results show that the features
computed by pLSA are more discriminative and achieves higher classification
accuracies.

This study extends our previous works by using pLSA to project the data
into another space which is more discriminative. We have used the outputs of
pLSA as features in a new space but for future work, we plan to compute kernels
from the outputs of pLSA and directly use them in kernel based classification.
Since the outputs of pLSA are actually probability density functions, we believe
that by computing the kernel directly and applying them in a kernel learning
paradigm, we may achieve better classification accuracies.

In this work, we used image based feature sets for creating multiple features.
In a further application of this scenario, the use of other modalities or other
features (e.g. SIFT) extracted from these images, as well as the incorporation of
complementary information of different modalities to achieve better classification
accuracy is possible.
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Abstract. We investigate a multi-task approach to similarity discrim-
inant analysis, where we propose treating the estimation of the differ-
ent class-conditional distributions of the pairwise similarities as multiple
tasks. We show that regularizing these estimates together using a least-
squares regularization weighted by a task-relatedness matrix can reduce
the resulting maximum a posteriori classification errors. Results are given
for benchmark data sets spanning a range of applications. In addition, we
present a new application of similarity-based learning to analyzing the
rhetoric of multiple insurgent groups in Iraq. We show how to produce
the necessary task relatedness information from standard given training
data, as well as how to derive task-relatedness information if given side
information about the class relatedness.

Keywords: similarity, generative similarity-based classification,
discriminant analysis, multi-task learning, regularization.

1 Introduction

Generative classifiers estimate class-conditional distributions from training sam-
ples, and then label a new sample as the classmost likely to have generated it [21]. In
standard metric-space learning problems, the class-conditional distributions’ sup-
port is over the Euclidean space of feature vectors. For example, a standard metric-
space generative classifier is quadratic discriminant analysis (QDA), which models
each class as a multivariate Gaussian [16, 35]. More flexible generative models in-
clude Gaussian mixture models [21, 19] and locally Gaussian models [17].

In contrast, generative similarity-based classifiers build class-conditional prob-
abilistic models of the similarities between training samples, and label any new
sample as the class most likely to have generated its similarities to the training
data. That is, in generative similarity-based classification, the class-conditional
distributions’ support is over a similarity space. Similarity discriminant analysis
(SDA) models the class-conditional distributions of the similarities as exponential
functions [7]. The local similarity discriminant classifier (local SDA) models as ex-
ponential functions the class-conditional distributions of the similarities of a test
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sample to the k-most similar samples from a training set [5]. Successful classifica-
tion with local SDA, as with any generative similarity-based or feature-based clas-
sifier, depends on the ability to estimate numerically-stable model parameters. A
standard approach to ensuring low variance parameter estimates is regularization.

This paper proposes a multi-task approach to regularizing the parameters of the
class-conditional exponentialmodels in the local SDAclassifier.Themotivatinghy-
pothesis of themulti-task approach is that learningmultiple related tasks inparallel
can reduce estimation variance when compared to learning the tasks individually.
The successful application of the multi-task approach to many different problems
empirically supports this hypothesis, as we briefly review in Sect. 4.

In this paper, the individual tasks consist of estimating the mean of the simi-
larities between samples from pairs of classes. The standard single-task local SDA
classifier estimates each of these class-conditionalmean similarities independently.
In the proposed multi-task approach, the mean estimates are regularized toward
each other proportionally to their degree of relatedness,which is captured by a task
relatedness matrix. The multi-task regularized mean estimates produce more ro-
bust local SDA exponential models which result in improved classification.

Our focus in this paper is on multi-task regularization for SDA. However,
SDA is only one of many possible methods for similarity-based learning. Besides
SDA, a different approach to generative classification based on pairwise similar-
ities treats the vector of similarities between any sample and the training set as
a feature vector and applies standard feature-space generative classifiers to the
similarities-as-features. A drawback of this approach is that the model complex-
ity grows linearly or exponentially with the size of the training set [29,28]. Other
related research considers generative models for graphs [20], where a graph is
modeled as being drawn from an exponential distribution.

Other similarity-based learning methods are not generative. Nearest-neighbor
methods mirror standard metric space classifiers such as k-nearest neighbors (k-
NN) and classify objects based on their most similar neighbors from a training
set. Discriminative approaches to similarity-based classification also exist, owing
to the popularity of kernel methods such as support vector machines (SVMs).
One such approach treats the similarities as features, and mirrors the standard
SVM trick of forming kernels by way of inner products (or exponential functions)
operating on the vectors of similarities [18, 24].

Another approach treats the entire matrix of training pairwise similarities as
the kernel. Since similarities are more general than inner products, the given
similarity matrix may be indefinite and must be transformed into an admis-
sible positive semi-definite kernel for use with an SVM [9, 37, 31, 10, 26, 8, 38].
SVM-KNN is a local SVM classifier that trains the SVM only on a test sample’s
k-most similar neighbors in similarity space [39]. For indefinite similarities, it
was found to be advantageous to use local similarity-based classifiers such as
SVM-KNN or kernel ridge interpolation weighted k-NN that approximate the
local similarity matrix with a positive definite matrix, because lower-error matrix
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approximations are needed for local neighborhoods than for the entire ma-
trix. For a recent, comprehensive review of similarity-based classifiers, see Chen
et al. [9].

In Sect. 2 we briefly review the necessary background on local SDA and illus-
trate how the need for regularization arises. Section 3 introduces the proposed
multi-task regularization for local SDA, shows that the regularized mean simi-
larities have a closed-form solutions and discusses possible choices for the task
relatedness matrix. Section 4 discusses other approaches to multi-task learning
and contrasts them to the proposed approach. Section 5 reports experimental
results on a set of benchmark similarity datasets spanning many different types
of similarities, and Sect. 6 reports the results for a document classification prob-
lem where the documents are transcripts of statements made by Iraqi insurgent
groups. Section 7 concludes with some open questions.

2 Background on Local Similarity Discriminant Analysis

Local SDA models the distribution of similarities as discrete exponentials, and
takes its name from the discriminant curves that form the class boundaries
in similarity space, in analogy to the standard feature-space classifier QDA,
which forms discriminants in feature space. Also in analogy with feature-space
generative classifiers, local SDA follows from the standard a posteriori Bayes
classifier, which assigns a class label to a test sample x according to the rule

y = argmax
g

P (x|Y = g)P (Y = g) ,

where P (x|Y = g) is the probability of x having been generated from class g,
and P (Y = g) is the class g prior probability.

For similarity-based classification, assume that the test and training samples
belong to an abstract space B, such as the set of available Internet downloads,
the set of amino acid sequences, or the set sonar echoes. Let X ∈ B be a random
test sample with random class label Y ∈ {1, 2, . . . , G}, and let x ∈ B denote
the realization of X . Also assume that one can evaluate a relevant similarity
function s : B × B → Ω, where Ω ⊂ R is assumed to be a finite discrete space
without loss of generality, and r = |Ω|. Alternatively, the pairwise similarity for
all training and test samples considered could be given. Let X ⊂ B be the set
of n training samples, and N (x) ⊂ X be the neighborhood of a test sample x,
defined as its k-nearest (most similar) training samples. Also, let Ng(x) ⊂ N (x)
be the subset of x’s neighbors that belong to class g.

The standard local SDA classifier makes the fundamental assumption that all
the information about x’s class label depends only on a set of local similarity
statistics computed from N (x), T (x) =

⋃
h=1...G Th(x), where Th(x) is the local

similarity statistic computed from Nh(x). Given a test sample x, the local SDA
classifier assigns x the label y according to the maximum a posteriori rule
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y = arg max
g

P (T (x)|Y = g)P (Y = g) (1)

= arg max
g

G∏
h=1

Ph(Th(x)|Y = g)P (Y = g), (2)

where (2) is produced from (1) by assuming that the similarity statistics are
independent such that the joint class-conditional probability is the product of
the marginals.

Several choices are possible for the local similarity statistics T (x) [5, 7]. In
practice, an effective choice are the sets of similarities between x and all its k
most-similar neighbors from each class [32], so that Th(x) = {s(x, z)|z ∈ Nh(x)}.
With this choice, each class-conditional marginal pmf is modeled as the average
of exponential functions of the similarities:

Ph(Th(x)|Y = g)

=

1
kh

∑
z∈Nh(x)

P̂ (s(x, z)|Y = g)

=
1
kh

∑
z∈Nh(x)

γgheλghs(x,z), (3)

where kh = |Nh(x)|.
Each of the parameters {λgh} is determined by numerical minimization un-

der the following method-of-moments constraint that the expected value of the
similarity be equal to the average similarity computed from the neighborhood
training samples:

EPh(Th(x)|Y =g)[s(X, z)] =

∑
za∈Ng(x)

∑
zb∈Nh(x) s(za, zb)

kgkh
. (4)

Each of the G2 mean-constraints (4) is solved by one unique λgh, but there may
be numerical difficulties. For example, when the neighborhood is small, when
the discrete similarity domain consists of few distinct values, or when all of x’s
neighbors are equally maximally (or minimally) similar to each other, the local
mean constraint could take on an extremal value:

EP (s(x,μh)|Y =g)[s(X, μh)] = c, c ∈ {inf(Ω), sup(Ω)}. (5)

There is no finite λgh solution to (5) – the solution to (5) is a Kronecker delta pmf,
δ(s(x, z)− c). In practice, such degenerate pmfs can also arise when a finite λgh

solution exists, but give rise to an exponential function so steep that it effectively
acts like a Kronecker delta, which incorrectly concentrates all probability mass
on an extremal similarity value c, causing classification errors.

The SDA formulation (3) mitigates, but does not eliminate, the deleterious ef-
fects of degenerate pmfs by modeling the class-conditional marginals as averages
of exponentials, which smooth – or regularize – the effects of the components [32].
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Other strategies considered in previous work included regularizing the exponen-
tial pmfs by convex combinations with averages of local exponential pmfs, and
regularizing the model parameters (the exponents or the means) by convex com-
binations with baseline parameter values [6]. Yet another strategy considered a
Bayesian estimation approach whereby the requirement that the pmfs be expo-
nential was relaxed and the similarities were assumed multinomially distributed
with Dirichlet priors on the parameters [32].

All previous strategies regularized each class-conditional pmf in isolation. In
the following we present the main contribution of this paper: a multi-task strat-
egy for regularizing the pmfs that exploits the relatedness between the classes.

3 Multi-task Regularization of Mean Similarity Estimates

Given a test sample x, we define as one task the problem of estimating the (g , h)
mean class-conditional pairwise similarity that appears on the right-hand-side
of (4) to solve for the local exponential model. As discussed in the previous
section, simply taking the empirical average can lead to numerical problems and
non-finite estimates for λgh. Instead, we propose estimating all G2 mean class-
conditional pairwise similarities jointly as a multi-task problem. Then we use
the (g , h) multi-task estimate as the right-hand side of (4) to solve for a more
stable exponential class-conditional model.

Denote the set of G2 average similarities by {vgh}, where vgh is the average
similarity between x’s neighbors that belong to class g and x’s neighbors that
belong to class h. That is, {vgh} are the average similarities the on right side of
(4). We find regularized estimates of the mean similarities

{v∗gh}G
g,h=1 = argmin

{v̂gh}G
g,h=1

G∑
g,h=1

∑
za∈Ng(x)

∑
zb∈Nh(x)

(s(za, zb)− v̂gh)2)+

η

G∑
j,k=1

G∑
l,m=1

A(vjk, vlm)(v̂jk − v̂lm)2. (6)

Substituting the solutions into the mean constraint equations (4) yields the
regularized-mean constraints

EPh(Th(x)|Y =g)[s(X, z)] = v∗gh , (7)

whose numerical solutions produce the corresponding local SDA model param-
eters {λ∗

gh}.
The first term of (6) minimizes the empirical loss. If one solves (6) with no

regularization (η = 0), the solutions are simply the empirical average similarities
{vgh}. The second term of (6) regularizes the average similarities proportionally
to their degree of relatedness, which is captured by the G2 × G2 matrix A.
Each element A(vjk , vlm) quantifies the relatedness of the tasks. We base the
task relatedness on the empirical average similarities vjk and vlm. We detail our
choice for the relatedness A in Sect. 3.2.
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The regularizing action of the second term of (6) shrinks the mean similarities
toward each other, but weights the shrinkage by their relatedness. The effect
in the degenerate case (5) is that the average similarity moves away from the
extremal value c and shrinks toward the average similarity estimates for the other
pmfs proportionally to their relatedness. Thus, the corresponding exponential
class-conditional pmf estimate becomes feasible, that is the average similarity
has been regularized.

Note that the regularization operates across classes: The average similarity of
samples from class g to samples of class h, vgh, is regularized toward the average
similarity of the samples from class l to class m, vlm. This is in contrast with
other multi-task learning approaches, which associate a task with a sample;
instead, the proposed approach associates each task to an exponential class-
conditional marginal pmf, which is uniquely determined by the average local
similarity parameter. Thus, matrix A captures the degree of relatedness between
two exponential pmfs.

3.1 Closed-Form Solution

The minimization problem in (6) is convex and, if A is invertible, has the closed-
form solution

v∗ = (I − Ã)−1ṽ , (8)

where I is the diagonal unit matrix. The vector ṽ ∈ RG2
and the matrix Ã ∈

RG2×G2
have components:

ṽgh =

∑
za∈Ng(x)

∑
zb∈Nh(x) s(za, zb)

kgkh + η
∑

l,m �=g,h A(vgh, vlm)
and

Ã(vgh, vlm) =

{
ηA(vgh,vlm)

kgkh+η
∑

g,h�=l,m A(vgh,vlm) for{g, h} �= {j, k}
0 for{g, h} = {j, k}.

These expressions result from setting to zero the partial derivatives of (6) with re-
spect to v̂gh, assuming that the task relatedness A is symmetric, and simplifying.

3.2 Choice of Task Relatedness A

Ideally, the task relatedness matrix A conveys information about the strength of
the connection between the tasks, but any symmetric invertible matrix can be
used as the task relatedness matrix A. For the benchmark classification experi-
ments in Sect. 5, we define A using a Gaussian kernel operating on the differences
of the average similarities,

A(vjk, vlm) = e−(vjk−vlm)2/σ . (9)

The choice of the Gaussian kernel for A in (6) has an intuitive interpretation.
When the average similarities vjk and vlm are close to each other (in the squared
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difference sense), the Gaussian kernel weights their contribution to the regular-
ization more heavily. When the average similarities are far apart, their recip-
rocal regularizing influence is greatly diminished by the exponential decay of
the Gaussian. The effect is to emphasize the reciprocal influence of closely re-
lated average similarities and to discount unrelated mean values, thus preventing
unrelated tasks from introducing undue bias in the regularized estimates.

More generally, the task affinity may be mathematically-poorly-defined do-
main knowledge about how the classes in a particular problem relate to each
other. For example, in the insurgent rhetoric classification problem of Sect. 6,
we use side information to produce A based on a measure of relatedness between
groups that is proportional to number of communiqués jointly released by insur-
gent groups. The proposed approach can flexibly incorporate such a priori side
information about the tasks in the form of matrix A.

4 Related Work in Multi-Task Learning

Many new multi-task learning (MTL) methods have been proposed and shown
to be useful for a variety of application domains [1, 2, 4, 14, 13, 23, 34, 40, 25].
Such methods comprise both discriminative and generative approaches that ei-
ther learn the relatedness between tasks or, like this work, assume that a task-
relatedness matrix is given.

Recently, multi-task learning research has focused on the problem of simul-
taneously learning multiple parametric models like multiple linear regression
tasks and multiple Gaussian process regression [2, 4, 14]. Some of these multi-
task methods jointly learn shared statistical structures, such as covariance, in a
Bayesian framework [4]. Zhang and Yeung [40] assumed there exists a (hidden)
covariance matrix for the task relatedness, and proposed a convex optimization
approach to estimate the matrix and the task parameters in an alternating way.
They develop their technique from a probabilistic model of the data and extend
it to kernels by mapping the data to a reproducing kernel Hilbert space.

For SVMs, multi-task kernels have been defined [27]. Evgeniou et al. [13]
proposed a MTL framework for kernels that casts the MTL problem as a single-
task learning problem by constructing a special single kernel composed of the
kernels from each task. The tasks are learned and regularized simultaneously.

Sheldon [33] builds on the work of Evgeniou et al. [13] and proposes a graphical
multi-task learning framework where the tasks are nodes in a graph and the task
relatedness information is captured by a kernel defined as the pseudoinverse
of the weighted graph Laplacian. This task kernel penalizes distant tasks and
shrinks more related tasks toward each other, but in practice must itself be
regularized to avoid overfitting. The concept of a task network is also taken up
by Kato et al. [23], who combine it with local constraints on the relatedness of
pairs of tasks in a conic programming formulation to simultaneously solve for
the tasks using kernel machines.

A recent approach integrates semisupervised learning with multi-task learning
[25]. In that work both unlabeled and labeled data contribute to the simultaneous
estimation of multiple tasks, and their contribution is weighted by their pairwise
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similarity,which is taken to be a radial basis kernel defined on the difference
between feature vectors. We will not discuss in detail here related work in domain
adaptation methods and transfer learning [11], which we differentiate as methods
that compute some estimates for some tasks, and then regularize estimates for
new tasks to the previous tasks’ estimates.

The major difference between the existing and the proposed MTL approaches
is that the existing approaches do not target similarity-based classifiers. The
natural support for existing MTL methods is the Euclidean feature space, and
adapting them to similarity-based learning remains an open question beyond the
scope of this paper. In contrast, the proposed multi-task regularization naturally
operates in similarity space and is ideally suited for generative similarity-based
classifiers such as local SDA. Furthermore, as we discuss in Sect. 7, the proposed
multi-task regularization approach can be extended to standard Euclidean-space
classification and regression tasks.

5 Benchmark Classification Results

We compare the classification performance of the the multi-task regularized lo-
cal SDA classifiers to the standard single-task local SDA classifier, where the
chosen task affinity is the Gaussian kernel operating on the average similarities
(9). For comparison, we also report classification results for the k-NN classifier in
similarity space and for the SVM-KNN classifier, where the chosen SVM kernel
is the inner product of vectors of similarities-as-features. We report classification
results for six different benchmark similarity datasets from a variety of appli-
cations1. More classifier comparisons and details about these datasets can be
found in Chen et al. [9].

The Amazon problem is to classify books as fiction or non-fiction, where the
similarity between two books is the symmetrized percentage of customers who
bought the first book after viewing the second book. There are 96 samples in
this dataset, 36 from class non-fiction, and 60 from class fiction. This dataset
is especially interesting because the similarity function strongly violates the tri-
angle inequality and the minimality property of metrics (a sample should be
maximally similar to itself), because customers often buy a different book if
they first view a poorly-reviewed book.

The Aural Sonar problem is to distinguish 50 target sonar signals from 50
clutter sonar signals. Listeners perceptually evaluated the similarity between two
sonar signals on a scale from 1 to 5. The pairwise similarities are the sum of the
evaluations from two independent listeners, resulting in a perceptual similarity
from 2 to 10 [30]. Perceptual similarities are often non-metric, in that they do
not satisfy the triangle inequality.

The Patrol problem is to classify 241 people into one of 8 patrol units based
on who people claimed was in their unit when asked to name five people in their
unit [12]. The self-similarity is set to 1. Like the Amazon dataset, this is a sparse
dataset and most of the similarities equal to zero.
1 Datasets and software available at http://staff.washington.edu/lucagc



98 L. Cazzanti et al.

The Protein problem is to classify 213 proteins into one of four protein classes
based on a sequence-alignment similarity [22].

The Voting problem is to classify 435 representatives into two political parties
based on their votes [3]. The categorical feature vector of yes/no/abstain votes
was converted into pairwise similarities using the value difference metric, which
is a dissimilarity designed to be useful for classification [36]. The voting similarity
is a pseudo-metric.

The Face Recognition problem consists of 945 sample faces of 139 people from
the NIST Face Recognition Grand Challenge data set. There are 139 classes, one
for each person. Similarities for pairs of the original three-dimensional face data
were computed as the cosine similarity between integral invariant signatures
based on surface curves of the face [15].

The six datasets are divided in 20 disjoint partitions of 80% training samples
and 20% test samples. For each of the 20 partitions of each dataset we chose
parameters using ten-fold cross-validation for each of the classifiers shown in
the tables. Cross-validation parameter sets were based on recommendations in
previously published papers and popular usage. The choice of neighborhood sizes
was {2, 4, 8, 16, 32, 64, min(n, 128)}. The regularizing parameter η and the kernel
bandwidth σ were cross-validated independently of each other among the choices
{10−3, 10−2, 0.1, 1, 10}.

Table 1 shows the mean error rates. Across five datasets multi-task local SDA
outperforms single-task local SDA (one dataset is a tie) and for all six datasets
it performs better than similarity k-NN. For Sonar and Voting, multi-task local
SDA brings the performance closer to SVM-KNN.

Table 1. Percent test error averaged over 20 random test/train splits for the benchmark
similarity datasets. Best results are in bold.

Amazon Sonar Patrol Protein Voting FaceRec
2 classes 2 classes 8 classes 4 classes 2 classes 139 classes

Multi-task Local SDA 8.95 14.50 11.56 9.77 5.52 3.44
Local SDA 11.32 15.25 11.56 10.00 6.15 4.23
Similarity k-NN 12.11 15.75 19.48 30.00 5.69 4.292

SVM-KNN (sims-as-features) 13.68 13.00 14.58 29.65 5.40 4.232

6 Iraqi Insurgent Rhetoric Analysis

We address the problem of classifying the rhetoric of insurgent groups in Iraq.
The data consist of 1924 documents – translated jihadist websites or interviews
with insurgent officials – provided by the United States government’s Open
Source Center. We consider the problem of classifying each document as having

2 Results for k-NN and SVM-KNN were reported previously. The same train/test
splits were used, but the cross-validation parameters were slightly different. See Chen
et al. for details [9].
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been released by one of eight insurgent groups operating in Iraq from 2003 to
2009.

Each document is represented by a 173-dimensional vector whose elements
contain the frequency of occurrence of 173 keywords in the document. The dic-
tionary of keywords was defined by one of the authors, who is an expert on in-
surgent rhetoric analysis. The chosen document similarity was the symmetrized
relative entropy (symmetrized Kullback-Leibler divergence) of the normalized
keyword frequency vectors.

For this problem, we compared two definitions of the task relatedness. One,
we defined the task relatedness as proposed in Sect. 3. In addition, we derived
a task relatedness from side information about the number of communiqués
jointly released by two groups, shown in Table 2, where the j-th row and the
k-th column denote the number of communiqués jointly released by the j-th and
k-th insurgent groups. This side information was derived from a smaller, separate
dataset. A higher number of joint statements indicates more cooperation among
the leaders of the two groups and, typically, greater ideological affinity as well.
Note that some groups work in isolation, while others selectively choose their
collaborators.

Table 2. Number of Communiqués Jointly Released By Any Two Groups

G
ro

up
1

G
ro

up
2

G
ro

up
3

G
ro

up
4

G
ro

up
5

G
ro

up
6

G
ro

up
7

G
ro

up
8

Group 1 0 0 0 0 7 8 6 2
Group 2 0 0 0 0 0 0 0 0
Group 3 0 0 0 0 0 0 0 0
Group 4 0 0 0 0 0 0 0 1
Group 5 7 0 0 0 0 6 5 1
Group 6 8 0 0 0 6 0 5 1
Group 7 6 0 0 0 5 5 0 1
Group 8 2 0 0 1 1 1 1 0

We conjecture that an appropriate multi-task regularization is to shrink the
average document similarity estimates of more strongly connected groups toward
each other. Recall that for local SDA there are G2 mean-similarity constraints,
where G is the number of classes. Each constraint is associated with its corre-
sponding task of estimating the class-conditional marginal exponential pmf of
the similarity between documents from group j and documents from group k,
and consequently the task relatedness matrix A has dimensions G2 × G2. In
this problem there are G = 8 insurgent groups. Let the 8 × 8 matrix given in
Table 2 be denoted by Q. We form the 64× 64 task relatedness A from the joint
communiqués Q as

A(vjk , vlm) = e−(Qjk−Qlm)2/σ . (10)

This choice of task relatedness implies that the mean document similarities vjk

and vlm should be strongly related if the number of joint communiqués released
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Table 3. Percent leave-one-out cross-validation classification error for the insurgent
rhetoric document classification problem. Best result is in bold.

Multi-task Local SDA (w/ joint statements task relatedness) 52.34
Multi-task Local SDA (w/ Gaussian kernel task relatedness) 52.75
Local SDA 54.52
Similarity k-NN 53.53
Guessing Using Class Priors 77.91

by groups (j, k) is the same as the number released by groups (l, m), and should
be weakly related if the numbers differ greatly. Thus the task relatedness mea-
sures the similarity between pairs of insurgent groups. Furthermore, choosing a
Gaussian kernel operating on all possible differences of the entries in matrix Q
ensures that A is invertible.

Table 3 shows the leave-one-out cross-validation error rates for single-task,
multi-task local SDA, and similarity k-NN. The neighborhood size and the pa-
rameters η and σ were cross validated from parameter choices identical to the
benchmark datasets. In addition to the task relatedness derived from the side
information Q, we tested the Gaussian kernel operating directly on the class-
conditional document similarities in (9) without using any side information. For
both choices of task relatedness, the performance of multi-task local SDA pro-
vides a small gain over the standard local SDA and similarity k-NN.

The communiqués-derived and the mean document similarity-derived task
relatedness definitions represent two approaches to capturing the relationships
between the insurgent groups. The former approach incorporates mathematically
poorly-defined side information about the problem available from a separate data
set, while the latter is purely data-driven from the document similarity data. The
multi-task local SDA can flexibly accommodate both types of task knowledge.
It is interesting that in this experiment both approaches lead to almost identical
classification improvement over single-task local SDA.

Finally, many other definitions of document similarity are possible. While
choosing the best similarity is an important practical problem, it is beyond the
scope of this paper. In any case, the SDA classification framework, single- or
multi-task, is independent of the chosen document similarity function, thus can
accommodate any future choice of document similarity.

7 Discussion and Open Questions

In this paper,wehaveproposed treating the estimationofdifferent class-conditional
distributions in a generative model as multiple tasks, and shown that regularizing
these estimates together with a simple least-squares similarity-based regulariza-
tion can reduce classification errors.

It can be argued that regularizing the class-conditional distributions toward
each other according to their relatedness implies that the class-conditional local
SDA models are in fact correlated, which appears inconsistent with the assump-
tions that the class-conditional marginals in the SDA classifier (2) are indepen-
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dent. It might be possible to model the correlations directly in the SDA model
without resorting to multi-task regularization, but this strategy must contend
with the concomitant problem of having to estimate the task correlations in
addition to the task-specific parameters, and makes the SDA classifier more
complex. In constrast, the proposed multi-task regularization does not impose
a particular structure on the task relatedness (i. e. correlation), which can be
provided as domain-specific knowledge or computed directly – not estimated –
from the task-specific parameters. We argue that this approach is more flexible,
because it does not require modifying the original classifer, and more general,
because it accommodates any problem-relevant task relatedness.

In the SDA model, the class-conditional pmf Pj(Tj(x)|k) models the similarity
of samples from class k to the samples of class j. Thus to tie the Pj(Tj(x)|k)
task to the Pm(Tm(x)|l) task, we need the relatedness between the pair of classes
(j , k) to the pair of classes (l , m). A simpler model would be to tie together
tasks based only on one of the involved classes: Tie together the Pj(Tj(x)|k)
and Pm(Tm(x)|l) tasks based only on the relatedness between the k-th and m-th
classes or only on the relatedness between the j-th and l-th classes. Then the
task-relatedness would simply be the class-relatedness.

Side information about class relatedness could be used, like the group relat-
edness given in the group rhetoric analysis in Sect. 6. In the absence of side
information, class relatedness could be produced by first running a single-task
classifier (like local SDA) and using the resulting class-confusion matrix as the
task-relatedness matrix for the multi-task classifier. However, an advantage to
the approach we took here of tying pairs of classes together is that we use the
relatedness of both the (j,k) pair and the (l,m) pair, and by using a Gaussian
RBF kernel to form A, an invertible A is always produced, ensuring a closed-form
solution.

A more general nonparametric multi-task learning formulation would be

{y∗
t }U

t=1 = arg min
{ŷt}U

t=1

U∑
t=1

Nt∑
i=1

L(yti, ŷt) + γJ
(
{ŷt}T

t=1

)
, (11)

where L is a loss function, J is a regularization function, U is the number of
tasks, and Nt is the number of data points from task t. However, an advantage
of the squared error formulation given in (6) is that is has a closed-form solution,
as given in Sect. 3.1.

A number of theoretical questions can be asked about the proposed multi-
task framework. Many MTL methods have a Bayesian interpretation, in that the
task-specific random variables can be modeled as drawn from some shared prior,
such that joint shrinkage towards the mean of that prior is optimal. Whether the
proposed MTL can be derived from a Bayesian perspective is not clear. Also,
ideally, the assumed multi-task similarities would perfectly represent the under-
lying statistical relatedness of the tasks. For what types of statistical relatedness
is the proposed multi-task learning optimal, and what would the corresponding
optimal task relatedness look like? Further, to what extent can one estimate an
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optimal task relatedness matrix of interest from the statistics of the tasks, with
or without side information?
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Abstract. Evidence accumulation clustering (EAC) is a clustering com-
bination method in which a pair-wise similarity matrix (the so-called
co-association matrix) is learnt from a clustering ensemble. This co-
association matrix counts the co-occurrences (in the same cluster) of
pairs of objects, thus avoiding the cluster correspondence problem faced
by many other clustering combination approaches. Starting from the
observation that co-occurrences are a special type of dyads, we pro-
pose to model co-association using a generative aspect model for dyadic
data. Under the proposed model, the extraction of a consensus cluster-
ing corresponds to solving a maximum likelihood estimation problem,
which we address using the expectation-maximization algorithm. We re-
fer to the resulting method as probabilistic ensemble clustering algorithm
(PEnCA). Moreover, the fact that the problem is placed in a probabilistic
framework allows using model selection criteria to automatically choose
the number of clusters. To compare our method with other combina-
tion techniques (also based on probabilistic modeling of the clustering
ensemble problem), we performed experiments with synthetic and real
benchmark data-sets, showing that the proposed approach leads to com-
petitive results.

Keywords: Unsupervised learning, clustering, clustering Combination,
generative models, model Selection.

1 Introduction

Although clustering is one of the oldest and most studied problems in statistical
data analysis, pattern recognition, and machine learning, it is still far from being
considered solved and continues to stimulate a considerable amount of research.
Given a set of unlabeled objects, the classical goal of clustering is to obtain a
partition of these objects into a set of K classes/groups/clusters (where K itself
may be known or unknown). Numerous clustering algorithms having proposed
in the past decades, but none can be considered of general applicability, mainly
because each method is intimately attached to a particular answer to the key
question that underlies clustering: “what is cluster?”. For example, methods
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designed under the assumption that a cluster is a compact set of objects will fail
to identify connected sets of objects [7].

Clustering combination techniques, which constitute a recent and promis-
ing research trend [1], [5], [8], [9], [17], [18], typically outperform stand-alone
clustering algorithms and provide a higher degree of adaptability of the cluster
structure to the data. The rationale behind clustering combination methods is
that, in principle, a “better” and “more robust” partitioning of the data may be
achieved by combining the information provided by an ensemble of clusterings
than by using a single clustering (or clustering method).

Ensemble-based clustering techniques exploit the diversity of clustering solu-
tions available in an ensemble of partitions, by proposing a consensus partition
that leverages individual clustering results. One key aspect of this type of meth-
ods is that diversity can be created without any assumption about the data
structure or underlying clustering algorithm(s). Moreover, ensemble methods
are robust to incomplete information, since they may include partitions obtained
from sub-sampled versions of the original dataset, from different data representa-
tions, from different clustering algorithms, and no assumptions need to be made
about the number of clusters of each partition in the ensemble.

Evidence accumulation clustering. (EAC), proposed by Fred and Jain [8], [9],
is an ensemble-based method that seeks to find consistent data partitions by
considering pair-wise relationships. The method can be decomposed into three
major steps:

(i) construction of the clustering ensemble;
(ii) accumulation of the “clustering evidence” provided by ensemble;
(iii) extraction of the final consensus partition from the accumulated evidence.

In the combination/accumulation step (ii), the clustering ensemble is trans-
formed into matrix, termed the co-occurrence matrix, where each entry counts
the number of clusterings in the ensemble in which each pair of objects were
placed in the same cluster. A key feature of EAC is that obtaining the co-
occurrence matrix does not involve any type of cluster correspondence, a non-
trivial problem with which many other clustering ensemble methods have to
deal.

The theory of dyadic data analysis, as defined by Hofmann et al. [13], fits
perfectly with the EAC approach. In dyadic data, each elementary observation is
a dyad (a pair of objects), possibly complemented with a scalar value expressing
strength of association [13]. As explained in detail in Section 2, the co-association
matrix obtained in the EAC approach can be interpreted as an aggregation of
the information provided by an observed set of pairs of objects, thus can be seen
as a dyadic dataset.

Hofmann et al. [13] proposed a systematic, domain independent framework
for learning from dyadic data using generative mixture models. In this paper, we
apply those ideas to the EAC formulation, yielding a generative model for the
clustering ensemble. In the proposed approach, the consensus partition extrac-
tion step naturally consists in solving a maximum likelihood estimation (MLE)
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problem, which is addressed with the expectation-maximization (EM) algorithm
[4]. We refer to the proposed method as probabilistic ensemble clustering algo-
rithm (PEnCA).

One of the advantages of this MLE-based approach is the possibility of in-
clusion of a model selection criterion to estimate the number of cluster in the
consensus partition. To that end, we can use a simple version of the minimum
description length (MDL) criterion [15] or adaptation for mixtures [6] or even
more recent and sophisticated methods [2].

This paper is organized as follows: in Section 2, we present the generative as-
pect model for the co-association matrix and a maximum likelihood estimation
criterion for the consensus partition. Section 4 reviews some related work. Ex-
perimental results on both synthetic and real benchmark datasets are presented
in Section 5. Finally, Section 6 concludes the paper by drawing some conclusions
and giving pointers to future work.

2 Generative Model for Evidence Accumulation
Clustering

2.1 Clustering Ensembles and Evidence Accumulation

The goal of evidence accumulation clustering (EAC) is to combine the results of
an ensemble of clusterings into a single data partition, by viewing each clustering
as an independent piece of evidence about the pairwise organization of the set
of objects under study.

Consider a set of N objects X = {1, . . . , N} to be clustered; without loss
of generality1, we simply index these objects with the integers from 1 to N .
A clustering ensemble (CE), P, is defined as a set of M different partitions of
the set X , that is, P = {P1, . . . ,PM}, where each P i is a partition with Ki

clusters: P i = {Ci
1, . . . , Ci

Ki
}. This means that Ci

k ⊆ X , for any i = 1, ..., M and
k = 1, ..., Ki, and that the following constraints are satisfied:

(k �= j)⇒ Ci
k ∩ Ci

j = ∅, for i = 1, ..., M (1)

and
Ki⋃
k=1

Ci
k = X , for i = 1, ..., M. (2)

Although higher-order information could be extracted from P, the EAC approach
focuses on the pair-wise information contained in P, which is embodied in a
sequence S of all the pairs of objects co-occurring in a common cluster of one of
the partitions of the ensemble P. Clearly, the number of pairs in S is

|S| =
M∑
i=1

Ki∑
k=1

|Ci
k|
(
|Ci

k| − 1
)
, (3)

1 Any characteristics of the objects themselves (feature vectors, distances, ...) are only
relevant for the individual clusterings of the ensemble and are thus encapsulated
under the clustering ensemble obtained and irrelevant for the subsequent steps.
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where |Ci
k| denotes the number of objects in the k-th cluster of partition P i.

Each element of S is a pair (ym, zm) ∈ X ×X , for m = 1, ..., |S|, such that there
exists one cluster in one of the partitions, say Ci

k, for which ym �= zm, ym ∈ Ci
k

and zm ∈ Ci
k.

The (N×N) co-association matrix C = [Cy,z], which is the central element in
the EAC approach, collects a statistical summary of S by counting the number
of clusterings in which each pair of objects falls in the same cluster; formally,
the element (y, z) of matrix C is defined as

Cy,z =
|S|∑

m=1

I
(
(ym, zm) = (y, z)

)
, for y, z ∈ X (4)

where I is the indicator function (equal to one if its argument is a true propostion,
and equal to zero if it is a false proposition). Naturally, matrix C is symmetrical
because if some pair (a, b) ∈ S, then also (b, a) ∈ S. Because the set S does not
contain pairs with repeated elements (of the form (z, z)), the diagonal elements
are all zero.

2.2 Generative Model

Inspired by [11], [12], [13], we adopt a generative model for S, by interpreting it
as samples of |S| independent and identically distributed pairs of random vari-
ables (Ym, Zm) ∈ X ×X , for m = 1, ..., |S|. Associated with each pair (Ym, Zm),
there is a set of |S| multinomial latent class variable Rm ∈ {1, ..., L}, also inde-
pendent and identically distributed, conditioned on which the variables Ym and
Zm themselves are mutually independent and identically distributed, that is

P (Ym = y, Zm = z|Rm = r) = P (Ym = y|Rm = r)P (Zm = z|Rm = r) (5)

and
P (Zm = z|Rm = r) = P (Ym = z|Rm = r), (6)

for any r ∈ {1, ..., L}, and z ∈ {1, ..., N}. The rationale supporting the adoption
of this model for clustering is that if there is an underlying cluster structure
revealed by the observations in S, then this structure may be captured by the
the different conditional probabilities. For example, if L = 2 and there are two
clearly separated clusters, {1, ..., T} and {T +1, ..., N}, then P (Ym = z|Rm = 1)
will have values close to zero, for z ∈ {T + 1, ..., N}, and relatively larger values
for z ∈ {T +1, ..., N}, whereas P (Ym = z|Rm = 2) will have the reverse behavior.

The modeling assumptions in (5) and (6) correspond to a mixture model for
(Ym, Zm) of the form

P (Ym = y, Zm = z) =
L∑

r=1

P (Ym = y|Rm = r)P (Ym = z|Rm = r)P (Rm = r),

(7)



108 A. Lourenço, A. Fred, and M. Figueiredo

which induces a natural mechanism for generating a random sample from
(Ym, Zm): start by obtaining a sample r of the random variable Rm (with prob-
ability P (Rm = r)); then, obtain two independent samples y and z, with prob-
abilities P (Ym = y|Rm = r) and P (Ym = z|Rm = r).

The model is parameterized by the (common) probability distribution of the
latent variables Rm, (P (Rm = 1), ..., P (Rm = L)), and by the L conditional
probability distributions (P (Ym = 1|Rm = r), ..., P (Ym = N |Rm = r)), for r =
1, ..., L. We write these distributions compactly as an L-vector p = (p1, ..., pL),
where pr = P (Rm = r) (for any m = 1, ..., |S|) and an L×N matrix B = [Br,j ],
where Br,j = P (Ym = j|Rm = r) = P (Zm = j|Rm = r) (for any m = 1, ..., |S|).
With this notation, we can write

P (Y = y, Z = z, R = r) = pr Br,y Br,z, (8)

and

P (Y = y, Z = z) =
L∑

r=1

pr Br,y Br,z. (9)

With the generative model in hand, we can now write the probability distribution
for the observed set of pairs S = {(ym, zm), m = 1, ..., |S|}, assumed to be
independent and identically distributed samples of (Y, Z):

P (S|p,B) =
|S|∏

m=1

L∑
r=1

pr Br,ym Br,zm . (10)

Consider now the so-called complete data, which, in addition to S (the samples
(ym, zm) of (Ym, Zm), for m = 1, ..., |S|), also contains the corresponding (miss-
ing/latent) samples of the random variables Rm, R = {rm, m = 1, ..., |S|}. The
so-called complete likelihood is then

P (S,R|p,B) =
|S|∏

m=1

prmBrm,ymBrm,zm (11)

=
|S|∏

m=1

L∏
r=1

(
pr Br,ym Br,zm

)I(rm=r)
. (12)

Although it would be computationally very easy, it is not possible to obtain
maximum likelihood estimates of p and B from (12), because R is not observed.
Alternatively, we will resort to the EM algorithm, which will provide maximum
marginal likelihood estimates of p and B, by maximizing P (S|p,B) with respect
to these parameters.

3 The Expectation Maximization Algorithm

According to the generative model described in the previous section, each pos-
sible value of Rm ∈ {1, ..., L} corresponds to one of the L clusters and each
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probability Br,j = P (Ym = j|Rm = r) is the probability that cluster r “owns”
object j, which can be seen as a soft assignment. Consequently, estimating ma-
trix B will reveal the underlying (consensus) cluster structure. We pursue that
goal by using the EM algorithm [4], where R is the missing data.

3.1 The E-Step

The complete log-likelihood (the expectation of which is computed in the E-step)
can be obtained from (12),

log P (S,R|p,B) =
|S|∑

m=1

L∑
r=1

I(rm = r) log
(
pr Br,ym Br,zm

)
. (13)

The E-step consists in computing the conditional expectation of logP (S,R|p,B)
with respect to R, conditioned on the current parameter estimates p̂ and B̂ and
the observed S, yielding the well-known Q-function. Since log P (S,R|p,B) is a
linear function of the (latent) binary indicator variables I(Rm = r),

Q(p,B; p̂, B̂) =
|S|∑

m=1

L∑
r=1

E

[
I(Rm = r)

∣∣∣S, p̂, B̂
]
log

(
pr Br,ym Br,zm

)
(14)

=
|S|∑

m=1

L∑
r=1

R̂m,r log
(
pr Br,ym Br,zm

)
, (15)

where

R̂m,r ≡ E

[
I(Rm = r)

∣∣∣S, p̂, B̂
]

= P
[
Rm = r

∣∣∣(ym, zm), p̂, B̂
]
, (16)

due to the independence assumption among the pairs and the fact that I(Rm = r)
is a binary variable. The meaning of R̂m,r is clear: the conditional probability
that the pair (ym, zm) was generated by cluster r. Finally, we can write

R̂m,r =
p̂r B̂r,ym B̂r,zm

L∑
s=1

p̂s B̂s,ym B̂s,zm

, (17)

which is then plugged into (15).

3.2 The M-Step

The M-step consists in maximizing, with respect to p and B, the Q-function,
which we now write as

Q(p,B; p̂, B̂) =
|S|∑

m=1

L∑
r=1

R̂m,r log
(
pr

)
+

|S|∑
m=1

L∑
r=1

R̂m,r log
(
Br,ym Br,zm

)
, (18)
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showing that, as is common in EM for mixture models, the maximizations with
respect to p and B can be carried out separately.

The maximization with respect to p (of course, under the constraints that
pr ≥ 0, for r = 1, ..., L and

∑L
r=1 pr = 1) leads to the well-known

p̂ new
r =

1
|S|

|S|∑
m=1

R̂m,r for r = 1, ..., L. (19)

For the maximization with respect to B, we begin by writing the relevant terms
of (18) as

|S|∑
m=1

L∑
r=1

R̂m,r log
(
Br,ym Br,zm

)
=

L∑
r=1

N∑
y=1

N∑
z=1

Ĉ r
y,z log

(
Br,y Br,z

)
(20)

=
L∑

r=1

N∑
y=1

log
(
Br,y

) N∑
z=1

Ĉ r
y,z +

L∑
r=1

N∑
z=1

log
(
Br,z

) N∑
y=1

Ĉ r
y,z (21)

= 2
L∑

r=1

N∑
y=1

log
(
Br,y

) N∑
z=1

Ĉ r
y,z (22)

where

Ĉ r
y,z =

|S|∑
m=1

R̂m,r I((ym, zm) = (y, z)), (23)

for r = 1, ..., L and y, z ∈ {1, ..., N} and the equality in (22) is due to the
symmetry relation Ĉ r

y,z = Ĉ r
z,y. Comparison of (23) with (4) shows that Ĉ r

y,z

is a weighted version of the co-association matrix; instead of simply counting
how many times the pair (y, z) appeared in a common cluster in the clustering
ensemble, each of these appearances is weighted by the probability that that
particular co-occurrence was generated by cluster r. We thus have L weighted
co-association matrices, Ĉ1, ..., ĈL, whose elements are given by (23).

Finally, maximization of (22) with respect to Br,y, under the constraints
Br,y ≥ 0, for all r = 1, ..., L and y = 1, ..., N , and

∑N
y=1 Br,y = 1, for all

r = 1, ..., L, leads to

B̂ new
r,y =

N∑
z=1

Ĉ r
y,z

N∑
t=1

N∑
z=1

Ĉ r
t,z

. (24)

3.3 Summary of the Algorithm and Interpretation of the Estimates

In summary, the proposed EM algorithm, termed PEnCA (probabilistic ensem-
ble clustering algorithm) works as follows:



A Generative Dyadic Aspect Model for Evidence Accumulation Clustering 111

1. Given the set of objects, obtain an ensemble P of clusterings and, from this
ensemble, build the set S of co-occurring pairs (see Section 2.1).

2. Choose a number of clusters, L, and initialize the parameter estimates p̂ and
B̂.

3. Perform the E-step, by computing R̂m,r, for m = 1, ..., |S| and r = 1, ..., L
according to (17).

4. Compute the weighted co-association matrices Ĉ1, ..., ĈL, according to (23).
5. Update the parameter estimates according to (19) and (24).
6. If some stopping criterion is satisfied, stop; otherwise go back to step 3.

The parameter estimates returned by the algorithm have clear interpretations:
p̂1, ..., p̂L are the probabilities of the L clusters; each distribution B̂r,1, ..., B̂r,N

can be seen as the sequence of degrees of ownership of the N objects by cluster r.
This is in contrast with the original EAC work [8,9], where once a co-association
matrix is obtained, a consensus clustering is sought by applying a some hard
clustering algorithm. Notice that these soft ownerships are obtained even if all
the clusterings in the ensemble are hard. It is also elementary to obtain an
estimate of probability that object y belongs to cluster r (denoted as V̂y,r), by
applying Bayes law:

V̂y,r = P̂ (R = r|Y = y) =
B̂r,y p̂r

L∑
s=1

B̂s,y p̂s

. (25)

4 Related Work

Topchy et al. introduced a combination method based on probabilistic model
of the consensus partition, in the space of contributing clusters of the ensem-
ble [18] [19]. As in present work, the consensus partition is found by solving
a maximum likelihood estimation problem with respect to the parameters of a
finite mixture distribution. Each mixture component is a multinomial distribu-
tion and corresponds to a cluster in the target consensus partition. As in this
work, the maximum likelihood problem is solved using the EM algorithm. Our
method differs from that of Topchy et al. in that it is based on co-association
information.

Wang et al. extented the idea, with a model entitled Bayesian cluster ensem-
bles (BCE) [20]. It is a mixed-membership model for learning cluster ensembles,
assuming that they were generated by a graphical model. Although the posterior
distribution cannot be calculated in closed, it is approximated using variational
inference and Gibbs sampling. That work is very similar to the latent Dirichlet
allocation (LDA) model [10], [16], but applied to a different input feature space.

Bulò et al. presented a method built upon the EAC framework where the co-
association matrix was probabilisticly interpreted, and the extracted consensus
solution consisted in a soft partition [3]. The method reduced the clustering
problem to a polynomial optimization in the probability domain, solved using
the Baum-Eagon inequality.
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Fig. 1. Synthetic two-dimensional datasets

5 Experimental Results and Discussion

In this section, we present results for the evaluation of the proposed algorithm
(which we refer to as PEnCA – probabilistic ensemble clustering algorithm) on
several synthetic and real-world benchmark datasets from the well known UCI
(University of California, Irvine) repository2. Figure 1 presents the four synthetic
two-dimensional datasets used for this study.

To produce the clustering ensembles, we extend [14], where the classical K-
means algorithm is used, and the several partitions in the ensembles are obtained
by varying the numbers of clusters and the initialization. The minimum and the
maximum number of clusters varied as a function of the number of samples,
according to the following rule:
{Kmin, Kmax} =

{
max

(
�
√

N/2�, �N/50�
)

, Kmin + 20
}
,

Figure 2 shows a co-association matrix obtained for the Iris dataset, using an
ensemble produced with the proposed rule.

The color scheme of the representation ranges from white (C(y, z) = 0) to
black (C(y, z) = M). Notice the evident block diagonal structure, and the clear
separation the between the three clusters (Setosa, Versicolour, and Virginica).

2 http://www.ics.uci.edu/~mlearn/MLRepository.html

http://www.ics.uci.edu/~mlearn/MLRepository.html
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Fig. 2. Example of co-association matrix for the Iris dataset

Figure 3 presents the probabilistic assignment of each sample to each cluster,
given by the posterior probabilities V̂y,r (see 25)) obtained after running the EM
algorithm with L = 3. Notice that the assignments of the last fifty labels are
noisier due to the not so clear separation of clusters 2 and 3, as can be seen in
co-association matrix in Figure 2.

In a second set of experiments, we compared the results of PEnCA with those
obtained with the approach from [18] (which we will refer to as MM – mixture
model). The performance of the two methods was systematically assessed in
terms of accuracy, by comparing the respective consensus partitions with ground
truth clusterings. The accuracy is calculated using the consistency index (CI) [8]
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Fig. 3. Soft assignments obtained by PEnCA for the Iris dataset
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Fig. 4. Results on the optdigits-r-tra-1000 dataset: accuracy (mean and standard de-
viation) over the several trials and for different number of aspects

which provides percentages of correct labels. For each ensemble, we have repeated
the extraction of the consensus partition 10 times, in order to test the variability
of the result and the dependence of the initialization.

Figure 4 shows the results for the optdigits-r-tra-1000 dataset, the variability
in the accuracy over the several trials, and for different numbers of clusters.
The dashed and solid lines represent, respectively, the PEnCA and the MM
results; blue and red represent results for ensemble (a) and (b). Notice that the

Table 1. Results obtained on the benchmark datasets (see text for details)

Data Set N K PEnCA MM

stars 114 2 0.921 0.737
cigar-data 250 4 0.712 0.812
bars 400 2 0.985 0.812
halfrings 400 2 1.000 0.797

iris-r 150 3 0.920 0.693
wine-normalized 178 3 0.949 0.590
house-votes-84-normalized 232 2 0.905 0.784
ionosphere 351 2 0.724 0.829
std-yeast-cellcycle 384 5 0.729 0.578
pima-normalized 768 2 0.681 0.615
Breast-cancers 683 2 0.947 0.764
optdigits-r-tra-1000 1000 10 0.876 0.581
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variability in the accuracy on both models is of the same order of magnitude
(in this example approximately 5% of the absolute value) and that PEnCA has
always achieves higher accuracies than MM.

Finally, Table 1 reports the results obtained on several benchmark datasets
(four synthetic and eight USI datasets).The best result for each dataset is shown
in bold. These results show that PEnCA almost always achieves better accuracy
than MM.

6 Conclusions and Future Work

In this paper, we have proposed a probabilistic generative model for consensus
clustering, based on a dyadic aspect model for evidence accumulation clustering
framework.

Given an ensemble of clusterings, the consensus partition is extracted by solv-
ing a maximum likelihood estimation problem via the expectation-maximization
(EM).

The output of the method is a probabilistic assignment of each sample to each
cluster, which is an advantage over previous works using the evidence accumu-
lation framework.

Experimental assessment of the performance of the proposed method has
shown that it outperforms another recent probabilistic approach to ensemble
clustering.

One of the advantages of this framework is the possibility of inclusion of a
model selection criterion. We hope to address this issue in future.

Ongoing work on different initialization schemes and strategies to escape from
local solutions is being carried on.
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Abstract. Graph-based representations have been used with consider-
able success in computer vision in the abstraction and recognition of
object shape and scene structure. Despite this, the methodology avail-
able for learning structural representations from sets of training exam-
ples is relatively limited. In this paper we take a simple yet effective
Bayesian approach to attributed graph learning. We present a näıve
node-observation model, where we make the important assumption that
the observation of each node and each edge is independent of the others,
then we propose an EM-like approach to learn a mixture of these mod-
els and a Minimum Message Length criterion for components selection.
Moreover, in order to avoid the bias that could arise with a single esti-
mation of the node correspondences, we decide to estimate the sampling
probability over all the possible matches. Finally we show the utility of
the proposed approach on popular computer vision tasks such as 2D and
3D shape recognition.

1 Introduction

Graph-based representations have been used with considerable success in
computer vision in the abstraction and recognition of object shape and scene
structure, as they can concisely capture the relational arrangement of object
primitives, in a manner which can be invariant to changes in object viewpoint.
Despite their many advantages and attractive features, the methodology avail-
able for learning structural representations from sets of training examples is
relatively limited, and the process of capturing the modes of structural variation
for sets of graphs has proved to be elusive.

Recently, there has been considerable interest in learning structural represen-
tations from samples of training data, in particular in the context of Bayesian
networks, or general relational models [6]. The idea is to associate random vari-
ables with the nodes of the structure and to use a structural learning process
to infer the stochastic dependency between these variables. However, these ap-
proaches rely on the availability of correspondence information for the nodes of
the different structures used in learning. In many cases the identity of the nodes
and their correspondences across samples of training data are not known, rather,
the correspondences must be recovered from structure.

In the last few years, there has been some effort aimed at learning structural
archetypes and clustering data abstracted in terms of graphs. In this context

M. Pelillo and E.R. Hancock (Eds.): SIMBAD 2011, LNCS 7005, pp. 117–132, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



118 A. Torsello and L. Rossi

spectral approaches have provided simple and effective procedures. For exam-
ple Luo and Hancock [8] use graph spectral features to embed graphs in a low
dimensional space where standard vectorial analysis can be applied. While em-
bedding approaches like this one preserve the structural information present,
they do not provide a means of characterizing the modes of structural varia-
tion encountered and are limited by the stability of the graph’s spectrum under
structural perturbation. Bonev et al. [3], and Bunke et al. [4] summarize the data
by creating super-graph representation from the available samples, while White
and Wilson [18] use a probabilistic model over the spectral decomposition of the
graphs to produce a generative model of their structure. While these techniques
provide a structural model of the samples, the way in which the supergraph is
learned or estimated is largely heuristic in nature and is not rooted in a sta-
tistical learning framework. Torsello and Hancock [14] define a superstructure
called tree-union that captures the relations and observation probabilities of all
nodes of all the trees in the training set. The structure is obtained by merg-
ing the corresponding nodes and is critically dependent on the order in which
trees are merged. Further, the model structure and model parameter are tightly
coupled, which forces the learning process to be approximated through a se-
ries of merges, and all the observed nodes must be explicitly represented in the
model, which then must specify in the same way proper structural variations and
random noise. The latter characteristic limits the generalization capabilities of
the model. Torsello [15] recently proposed a generalization for graphs which al-
lowed to decouple structure and model parameters and used a stochastic process
to marginalize the set of correspondences, however the approach does not deal
with attributes and all the observed nodes still need be explicitly represented
in the model. Further, the issue of model order selection was not addressed.
Torsello and Dowe [16] addressed the generalization capabilities of the approach
by adding to the generative model the ability to add nodes, thus not requiring
to model explicitly isotropic random noise, however correspondence estimation
in this approach was cumbersome and while it used a minimum message length
principle for selecting model-complexity, that could be only used to choose from
different learned structures since it had no way to change the complexity while
learning the model.

2 Generative Graph Model

Consider the set of undirected graphs S = (g1, . . . , gl), our goal is to learn a gen-
erative graph model G that can be used to describe the distribution of structural
data and characterize the structural variations present the set. To develop this
probabilistic model, we make an important simplifying assumption: We assume
that the model is a mixture of näıve models where observation of each node and
each edge is independent of the others, thus imposing a conditional independence
assumption similar to näıve Bayes classifier, but allowing correlation to pop up
by mixing the models.

The näıve graph model G is composed by a structural part, i.e., a graph
G = (V, E), and a stochastic part. The structural part encodes the structure, here
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V are all the nodes that can be generated directly by the graph, and E ⊆ V ×V
is the set of possible edges. The stochastic part, on the other hand, encodes the
variability in the observed graph. To this end we have a series of binary random
variables θi associated with each node and τij associated with each edge, which
give us respectively the probability that the corresponding node is generated
by the model, and the probability that the corresponding edge is generated,
conditioned on the generation of both endpoints. Further, to handle node- and
edge-attributes, we assume the existence of generative models Wn

i and W e
i,j

that model the observable node and edge attribute respectively, and that are
parametrized by the (possibly vectorial) quantities ωn

i and ωe
i,j . Note that θi

and Wn
i need not be independent, nor do τij and W e

i,j . With this formalism, the
generation of a graph from a näıve model is as follows: First we sample from the
node binary indicator variables θi determining which nodes are observed, then
we sample the variables τi,j indicating which edges between the observed nodes
are generated, and finally we sample the attributes Wn

i and W e
i,j for all observed

nodes and edges, thus obtaining the full attributed graph.
Clearly, this approach can generate only graphs with fewer or equal nodes than

V . This constraint limits the generalization capability of the model and forces
one to model explicitly even the observed random isotropic noise. To correct
this we add the ability to generate nodes and edges not explicitly modeled by
the core model. This is obtained by enhancing the stochastic model with an
external node observation model that samples a number of random external
nodes, i.e., nodes not explicitly modeled in the generative model. The number
of external nodes generated is assumed to follow a geometric distribution of
parameter 1 − θ̄, while the probability of observing edges that have external
nodes as one of the endpoints is assumed to be the result of a Bernoulli trial
with a common observation probability τ̄ . Further, we assume common attribute
models W̄n and W̄ e for external nodes and edges, parametrized by the quantities
ω̄n and ω̄e. This way external nodes allow us to model random isotropic noise
in a compact way.

After the graph has been sampled from the generative model, we lose track
of the correspondences between the sample’s nodes and the nodes of the model
that generated them. We can model this by saying that an unknown random
permutation is applied to the nodes of the sample. For this reason, the obser-
vation probability of a sample graph depends on the unknown correspondences
between sample and model nodes.

Figure 1 shows a graph model and the graphs that can be generated from
it with the corresponding probabilities. Here model is unattributed with null
probability of generating external nodes. The numbers next to the nodes and
edges of the model represent the values of θi and τi,j respectively. Note that,
when the correspondence information (letters in the Figure) is dropped, we can-
not distinguish between the second and third graph anymore, yielding the final
distribution.

Given the node independence assumptions at the basis of the näıve graph
model, if we knew the correspondences σg mapping the nodes of graph g to the
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Fig. 1. A structural model and the generated graphs. When the correspondence infor-
mation is lost, the second and third graph become indistinguishable.

nodes of the model G, we could very easily compute the probability of observing
graph g from model G:

P (g|G, σg) = (1− θ̄)
∏
i∈V

P (gσ−1
g (i)|θi, ω

n
i ) ·

∏
(i,j)∈E

P (gσ−1
g (i),σ−1

g (j)|τi,j , ω
e
i,j)·

·
∏
i�∈V

P (gσ−1
g (i)|θ̄, ω̄n) ·

∏
(i,j) �∈E

P (gσ−1
g (i),σ−1

g (j)|τ̄ , ω̄e) ,

where the indexes i ∈ V and (i, j) ∈ E indicate product over the internal nodes
and edges, while, with an abuse of the formalism, we write i �∈ V and (i, j) �∈ E to
refer to external nodes and edges. With the ability to compute the probability
of generating any graph from the model, we can compute the complete data
likelihood and do maximum likelihood estimation of the model G, however, here
we are interested in the situation where the correspondences are not known and
must be inferred from the data as well.

Almost invariably, the approaches in the literature have used some graph
matching technique to estimate the correspondences and use them in learning
the model parameters. This is equivalent to defining the sampling probability
for node g as P (g|G) = maxσ∈Σn P (g|G, σ). However, as shown in [15], assum-
ing the maximum likelihood estimation, or simply a single estimation, for the
correspondences yields a bias in the estimation as shown in Figure 2. Here, the
graph distribution obtained from the model in Figure 1 is used to infer a model,
however, since each node of the second sample graphs is always mapped to the
same model node, the resulting inferred model is different from the original one
and it does not generate the same sample distribution.

0.50.25 0.25

1 1

0
0.250.75

1

Fig. 2. Model estimation bias. If a single node correspondence is taken into account the
estimated model will exhibit a bias towards one of multiple possible correspondences.
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To solve this bias Torsello [15] proposed to marginalize the sampling probabil-
ity over all possible correspondences, which, once extended to deal with external
nodes, results in the probability

P (ĝ|G) =
∑

σ∈Σm
n

P (g|G, σ)P (σ) =
1
|Σg|

∑
σ∈Σm

n

P (g|G, σ) , (1)

where ĝ is is the quotient of g modulo permutation of its nodes, i.e., the repre-
sentation of g where the actual order of the nodes is ignored, Σm

n is the set of
all possible partial correspondences between the m nodes of graph g and the n
nodes of model G, and Σg is the set of symmetries of g, i.e., the set of graph
isomorphisms from g onto itself.

Clearly, averaging over all possible correspondences is not possible due to
the super-exponential growth of the size of Σm

n ; hence, we have to resort to an
estimation approach. In [15] was proposed an importance sampling approach
to compute a fast-converging estimate of P (g|G). Note that similar importance
sampling approaches marginalizing over the space of correspondences have been
used in [2] and [11]. In particular, in the latter work the authors show that the
estimation has expected polynomial behavior.

2.1 Correspondence Sampler

In order to estimate P (g|G), and to learn the graph model, we need to sample
correspondences with probability close to the posterior P (σ|g,G). Here we gen-
eralize the approach in [15] for models with external nodes, also eliminating the
need to pad the observed graphs with dummy nodes to make them of the same
size of the graph model.

Assume that we know the node-correspondence matrix M = (mih), which
gives us the marginal probability that model node i corresponds to graph node
h. Note that, since model nodes can be deleted (not observed) and graph nodes
can come from the external node model, we have that ∀h,

∑
i mih ≤ 1 and

∀i,
∑

h mih ≤ 1. We turn the inequalities into equalities by extending the matrix
M into a (n + 1)× (m + 1) matrix M̄ adding n + m slack variables, where the
first n elements of the last column are linked with the probabilities that a model
node is not observed, the first m elements of the last row are linked with the
probability that an observed node is external and element at index n + 1, m + 1
is unused. M̄ is a partial doubly-stochastic matrix, i.e., its first n rows and its
first m columns add up to one.

With this marginal node-correspondence matrix to hand, we can sample a cor-
respondence as follows: First we can sample the correspondence for model node
1 picking a node h1 with probability m1,h1 . Then, we to condition the node-
correspondence matrix to the current match by taking into account the struc-
tural information between the sampled node and all the others. We do this by
multiplying m̄j,k by P (gh1,k|G1,j), i.e., the probability that the edges/non-edges
between k and h1 map to the model edge (1, j). The multiplied matrix is then
projected to a double-stochastic matrix M̄h1

1 using a Sinkhorn projection [13]
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adapted to partial doubly-stochastic matrix, where the alternate row and column
normalization is performed only on the first n rows and m columns. We can then
sample a correspondence for model node 2 according to the distribution of the
second row of Mh1

1 and compute the conditional matching probability M̄h1,h2
1,2

in much the same way we computed Mh1
1 . and iterate until we have sampled

a complete set of correspondences, obtaining a fully deterministic conditional
matching probability M̄h1,...,hn

1,...,n , corresponding to a correspondence σ, that has
been sampled with probability P (σ) = (M̄)1,h1 ·(M̄h1

1 )2,h2 ·. . .·(M̄
h1,...,hn−1
1,...,n−1 )n,hn .

2.2 Estimating the Model

With the correspondence samples to hand, we can easily perform a maximum
likelihood estimation of each model parameter by observing that, by construction
of the model, conditioned on the correspondences the node and edge observation
are independent to one another. Thus, we need only to maximize the node and
edge models independently, ignoring what is going on in the rest of the graph.
Thus, we define the sampled node and edge likelihood functions as

Li(S,G) =
∏
g∈S

∑
σ

P (gσ(i)|θi, ω
n
i )

P (σ)

Li,j(S,G) =
∏
g∈S

∑
σ

P (gσ(i),σ(j)|τi,j , ω
e
i,j)

P (σ)

from which we can easily obtain maximum likelihood estimates of the parameters
θi, ωn

i , τi,j , and ωe
i,j .

Further, we can use th samples to update the initial node-correspondence
matrix in the following way

M̄ ′ =
1∑

σ
P (σ|g,G)

P (σ)

∑
σ

P (σ|g,G)
P (σ)

Mσ

where Mσ is the deterministic correspondence matrix associated with σ. Thus in
our learning approach we start with a initial guess for the node-correspondence
matrix and improve on it as we go along. In all our experiments we initialize the
matrix based only on local node information, i.e. mi,h is equal the probability
that model node i generates the attributes of graph model h.

The only thing left to estimate is the value of |Σg|, but that can be easily
obtained using our sampling approach observing that it is proportional to the
probability of sampling an isomorphism between g and a deterministic model
obtained from g by setting the values of τi,j to 1 or 0 according the existence of
edge (i, j) in g, and setting θ̄ = 0. It interesting to note that in this corner case,
our sampling approach turns out to be exactly the same sampling approach used
in [1] to show that the graph isomorphism problem can be solved in polynomial
time. Hence, our sampling approach is expected polynomial for deterministic
model. and we can arguably be confident that it will perform similarly well for
low entropy models.
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2.3 Model Selection

Given this sampling machinery to perform maximum likelihood estimation of
the model parameters for the näıve models, we adopt a standard EM approach
to learn mixtures of näıve models.

This, however, leaves us with a model selection problem, since model likelihood
decreases with the number of mixture components as well as with the size of
the näıve models. To solve this problem we follow [16] in adopting a minimum
message length approach to model selection, but we deviate from it in that we
use the message length to prune an initially oversized model.

Thus we seek to minimize the combined cost of a two part message resulting
in the penalty function

I1 =
D

2
log
(
|S|
2π

)
+

1
2

log(πD)− 1−
∑
g∈S

log
(
P (g|G, σg)

)
, (2)

where |S| is the number of samples and D the number of parameters for the
structural model.

The learning process is initiated with a graph model that has several mixture
components, each with more nodes that have been observed in any graph in the
training set. We iteratively perform the EM learning procedure on the oversized
model and, with the observation probabilities to hand, we decide whether to
prune a node from a mixture component or a whole mixture component and
after the model reduction we reiterate the EM parameter estimation and the
pruning until no model simplification reduces the message length.

The pruning strategy adopted is a greedy one, selecting the operation that
guarantees the largest reduction in message length given the current model pa-
rameters. Note that this greedy procedure does not guarantee optimality since
the estimate is clearly a lower bound, as the optimum after the pruning can be
in a very different point in the model-parameter space, but it does still give a
good initialization for leaving the reduced parameter set.

In order to compute the reduction in message length incurred by removing a
node, while sampling the correspondences we compute the matching probability
not only of the current model, but also of the models obtained from the current
one with any singe node removal. Note, however, that this does not increase the
time complexity of the sampling approach and incurs only in a small penalty.

3 Experimental Evaluation

In order to asses the performance of the proposed approach, we run several
experiments on graphs arising from different classification problems arising from
2D and 3D object recognition tasks, as well as one synthetic graph-classification
testbed. The generative model is compared against standard nearest neighbor
and nearest prototype classifiers based on the distances obtained using several
graph matching techniques at the state of the art. In all cases the prototype is
selected by taking the set-median of the training set. The performance of the
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generative model is assessed in terms of the classification performance for the
classification task to hand. For this reason, for all the experiments we plot the
precision and recall values:

precision =
tp

tp + fp
recall =

tp

tp + fn

where tp indicates the true positives, tn the true negatives and fn the false
negatives.

With the exception to the last set of experiments, all the graphs used have
a single numerical attribute associated to each node and no attributes linked
with the edges. The last set of experiments, on the other hand, is based on
edge-weighted graphs with no node attribute.

For the node-attributed graphs, we adopted the rectified Gaussian model used
in [14]. To this end, we define a single stochastic node observation model Xi for
each node i. We assume Xi is normally distributed with mean μi and standard
deviation σi. When sampling node i from the graph model, a sample xi is drawn
from Xi. If xi ≥ 0 then the node is observed with weight wi = xi, otherwise
the node will not be present in the sampled graph. Hence the node observation
probability is θi = 1−erfc(μi/σi) where erfc is the complementary error function

erfc =
∫ ∞

x

1√
2π

exp
(
−1

2
s2

)
ds .

The edge observation model, on the other hand is a simple Bernoulli process.

3.1 Shock Graphs

We experimented on learning models for shock graphs, a skeletal based represen-
tation of shape. We extracted graphs from a database composed of 150 shapes
divided into 10 classes of 15 shapes each. Each graph had a node attribute that
reflected the size of the boundary feature generating the corresponding skeletal
segment. Our aim was to compare the classification results obtained learning
a generative model to what can be obtained using standard graph matching
techniques and a nearest neighbor classifier. Figure 3 shows the shape database,
the matrix of extracted edit distances between the shock graphs, and a mul-
tidimensional scaling representation of the distances; here numbers correspond
to classes. As we can see, recognition based on this representation is a hard
problem, as the class structure is not very clear in these distances and there is
considerable class overlap.

In Figure 4 we compare the classification performance obtained with the near-
est neighbor and nearest prototype rules with the one obtained by learning the
generative models and using Bayes decision rule for classification, i.e., assigning
each graph to the class of the model with largest probability of generating it.
Note that the graphs are never classified with a model that had the same graph
in the training set, thus in the case of the 15 training samples, the correct class
had only 14 samples, resulting in a leave-one-out scheme. Figure 4 shows a clear
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Fig. 3. Top row: Left, shape database; right, edit distance matrix. Bottom row: Mul-
tidimensional Scaling of the edit distances.
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Fig. 4. Precision and Recall on the shock graph dataset as the number of training
samples increases

improvement of about 15% on both precision and recall values regardless the
number of samples in the training set, thus proving that learning the modes of
structural variation present in a class rather than assuming an isotropic behavior
with distance, as has been done for 40 years in structural pattern recognition,
gives a clear advantage.

3.2 3D Shapes

The second test set is based on a 3D shape recognition task. We collected a num-
ber of shapes from the McGill 3D Shape Benchmark [12] and we extracted their
medial surfaces. The final dataset was obtained by transforming these skeletal
representations into an attributed graph. Figure 5 shows the shapes, their graph
distance matrix and a Multidimensional Scaling representaion of the distances.
The distances between the graphs were computed using the normalized metric
described in [17], which in turn relies on finding a maximal isomorphism be-
tween the graphs, for which we adopted the association graph-based approach
presented in [10]. Both the distance matrix and the Multidimensional Scaling
show that the classes are well separated, resulting in a relatively easy classifica-
tion task.

Once again we tested the generative model performance against the nearest
neighbor and the nearest prototype classifier. Figure 6 confirms our intuition
that this was indeed an easy task, since both the nearest neighbor and the near-
est prototype classifiers achieve the maximum performance. Yet, the generative
model performs extremely well, even when the training set contains just a very
few samples. As for the performance gap between the nearest neighbor and the
generative model, it is probably due to the very näıve way of estimating the
initial node correspondences, and could be probably reduced using a more so-
phisticated initialization.

3.3 Synthetic Data

To further assess the effectiveness of the proposed approach we tested it on
synthetically generated data, where the data generation process is compatible
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Fig. 5. Top row: Left, shape database; right, distance matrix. Bottom row: Multidi-
mensional Scaling of the graph distances.

with the näıve model adopted in the proposed learning approach. To this end,
we have randomly generated 6 different weighted graph prototypes, with size
ranging from 3 to 8 nodes. For each prototype we started with an empty graph
and then we iteratively added the required number of nodes each labeled with
a random mean and variance. Then we added the edges and their associated
observation probabilities up to a given edge density. Given the prototypes, we
sampled 15 observations from each class being careful to discard graphs that
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Fig. 6. Precision and Recall on the 3D shapes dataset

were disconnected. Then we proceeded as in the previous set of experiments
computing the dissimilarities between the graphs and learning the graph models.

Generating the data with the same model used for learning might seem to
give an unfair advantage to our generative model, but the goal of this set of
experiments is asses the ability of the learning procedure to obtain a good model
even in the presence of very large model-overlap. A positive result can also
provide evidence for the validity of the optimization heuristics.

Figure 7 shows the distance matrix of the synthetic data and the correspond-
ing Multidimensional Scaling representation. There is a considerable overlap
between different classes, which renders the task particularly challenging for the
nearest neighbor and nearest prototype classifiers. Yet, our generative model was
able to learn and describe this large intra class variability, thus coping with the
class overlap. Figure 8 plots the precision and recall curves for this set of exper-
iments. Even with a relatively small training set, our approach achieves nearly
90% precision and recall, and as the number of observed samples increases, it
yields perfect classification. On the other hand, the nearest neighbor classifier
is not able to increase its precision and recall above the 84% limit, while the
nearest prototype approach exhibits even lower performance.

3.4 Edge-Weighted Graphs

In the finals set of experiments, we applied the approach to an object recogni-
tion task. To this end we used a subset of the COIL-20 dataset [9]. For each
image we extracted the most salient points using a Matlab implementation of
the corner detector described in [7], the salient points where connected according
to a Delaunay triangulation, thus resulting in an edge-weighted graph, were the
edge-weights correspond to the distance between the salient points.

With this representation we used different node and edge observation models.
Since nodes are not attributed, we used simple Bernoulli models for them. For the
edges, on the other hand, we used a combined Bernoulli and Gaussian model:
a Bernoulli process establishes whether the edge is observed, and if it is the
weight is drawn according to an independent Gaussian variable. The reason for
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Fig. 8. Precision and Recall on the synthetic dataset

this different weight model resides in the fact that the correlation between the
weight and the observation probability that characterized the rectified Gaussian
model did not fit the characteristics of this representation.

To compute the distances for the nearest neighbor and nearest prototype
rule, we used the graph matching algorithm described in [5], which is capable of
dealing with edge-weighted graphs. Once the correspondences where computed,
we adopted the same metric as before. As Figure 9 shows, the generated dataset
is even more complex than the synthetic one. This is mainly due to the instability
of the corner detector, which provided several spurious nodes resulting in very
large intra-class structural variability.

Figure 10 shows that even on this difficult dataset, we significantly outperform
both the nearest neighbor and nearest prototype classifiers, emphasizing once
again the advantages of our structural learning approach.
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mensional Scaling of the graph distances.
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Fig. 10. Precision and Recall on the COIL-20 dataset

4 Conclusions

In this paper we have addressed to problem of learning a generative model for
graphs from samples. The model is based on a näıve node independence assump-
tions, but mixes such simple models in order to capture node correlation. The
correspondences are estimated using a fast sampling approach, the node and
edge parameters are then learned using maximum likelihood estimates, while
model selection adopts a minimum descriptor length principle.

Experiments performed on a wide range of real world object recognition tasks
as well as on synthetic data show that learning the graph structure gives a
clear advantage over the isotropic behavior assumed by the vast majority of the
approaches in the structural pattern recognition literature. In particular, the
approach very clearly outperforms both the nearest neighbor and the nearest
prototype rules regardless of the matching algorithm and the distance metric
adopted.
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An Information Theoretic Approach to Learning

Generative Graph Prototypes

Lin Han, Edwin R. Hancock, and Richard C. Wilson

Department of Computer Science, University of York

Abstract. We present a method for constructing a generative model
for sets of graphs by adopting a minimum description length approach.
The method is posed in terms of learning a generative supergraph model
from which the new samples can be obtained by an appropriate sampling
mechanism. We commence by constructing a probability distribution for
the occurrence of nodes and edges over the supergraph. We encode the
complexity of the supergraph using the von-Neumann entropy. A variant
of EM algorithm is developed to minimize the description length criterion
in which the node correspondences between the sample graphs and the
supergraph are treated as missing data.The maximization step involves
updating both the node correspondence information and the structure
of supergraph using graduated assignment. In the experimental part,
we demonstrate the practical utility of our proposed algorithm and show
that our generative model gives good graph classification results. Besides,
we show how to perform graph clustering with Jensen-Shannon kernel
and generate new sample graphs.

1 Introduction

Relational graphs provide a convenient means of representing structural pat-
terns. Examples include the arrangement of shape primitives or feature points
in images, molecules and social networks. Whereas most of traditional pattern
recognition and machine learning is concerned with pattern vectors, the issue
of how to capture variability in graph, tree or string representations has re-
ceived relatively little attention in the literature. The main reason for the lack
of progress is the difficulty in developing representations that can capture vari-
ations in graph-structure. This variability can be attributed to a) variations in
either node or edge attributes, b) variations in node or edge composition and c)
variations in edge-connectivity.

This trichotomy provides a natural framework for analyzing the state-of-the-
art in the literature. Most of the work on Bayes nets in the graphical models
literature can be viewed as modeling variations in node or edge attributes [1].
Examples also include the work of Christmas et al.[2] and Bagdanov et al. [3] who
both use Gaussian models to capture variations in edge attributes. The problems
of modeling variations in node and edge composition are more challenging since
they focus on modeling the structure of the graph rather than its attributes.

M. Pelillo and E.R. Hancock (Eds.): SIMBAD 2011, LNCS 7005, pp. 133–148, 2011.
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The problem of learning edge structure is probably the most challenging of
those listed above. Broadly speaking there are two approaches to characterizing
variations in edge structure for graphs. The first of these is graph spectral,
while the second is probabilistic. In the case of graph spectra, many of the
ideas developed in the generative modeling of shape using principal components
analysis can be translated relatively directly to graphs using simple vectorization
procedures based on the correspondences conveyed by the ordering of Laplacian
eigenvectors [5,4]. Although these methods are simple and effective, they are
limited by the stability of the Laplacian spectrum under perturbations in graph-
structure. The probabilistic approach is potentially more robust, but requires
accurate correspondence information to be inferred from the available graph
structure. If this is to hand, then a representation of edge structure can be
learned. To date the most effective algorithm falling into this category exploits
a part-based representation [8].

In this paper, we focus on the third problem and aim to learn a generative
model that can be used to describe the distribution of structural variations
present in a set of sample graphs, and in particular to characterize the variations
of the edge structure present in the set. We follow Torsello and Hancock [6] and
pose the problem as that of learning a generative supergraph representation
from which we can sample. However, their work is based on trees, and since the
trees are rooted the learning process can be effected by performing tree merging
operations in polynomial time. This greedy strategy does not translate tractably
to graphs where the complexity becomes exponential, and we require different
strategies for learning and sampling. Torsello and Hancock realize both using edit
operations, here on the other hand we use a soft-assign method for optimization
and then generate new instances by Gibbs sampling.

Han, Wilson and Hancock propose a method of learning a supergraph model
in [23] where they don’t take into account the complexity of the supergraph
model. Here, we take an information theoretic approach to estimating the su-
pergraph structure by using a minimum description length criterion. By taking
into account the overall code-length in the model, MDL allows us to select a su-
pergraph representation that trades-off goodness-of-fit with the observed sample
graphs against the complexity of the model. We adopt the probabilistic model in
[7] to furnish the required learning framework and encode the complexity of the
supergraph using its von-Neumann entropy[11] (i.e. the entropy of its Normal-
ized Laplacian eigenvalues). Finally, a variant of EM algorithm is developed to
minimize the total code-length criterion, in which the correspondences between
the nodes of the sample graphs and those of the supergraph are treated as miss-
ing data. In the maximization step, we update both the node correspondence
information and the structure of supergraph using graduated assignment. This
novel technique is applied to a large database of object views, and used to learn
class prototypes that can be used for the purposes of object recognition.

The remainder of this paper is organized as follows. Section 2 outlines the
probabilistic framework which describes the distribution of the graph data. Sec-
tion 3 explains how we encode our model so as to formulate the problem in hand
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in a minimum description length setting. In Section 4, we present the EM al-
gorithm for minimizing the code-length. Section 5 provides experimental results
that support our approach. Finally, section 6 offers some conclusions.

2 Probabilistic Framework

We are concerned with learning a structural model represented in terms of a so-
called supergraph that can capture the variations present in a sample of graphs.
In Torsello and Hancock’s work [6] this structure is found by merging the set of
sample trees, and so each sample tree can be obtained from it by edit operations.
Here, on the other hand, we aim to estimate an adjacency matrix that captures the
frequently occurring edges in the training set. To commence our development we
require the a posteriori probabilities of the sample graphs given the structure of
the supergraph and the node correspondences between each sample graph and the
supergraph. To compute these probabilities we use the method outlined in [7].

Let the set of sample of graphs be G = {G1, ...Gi, ...GN}, where the graph
indexed i is Gi = (Vi, Ei) with Vi the node-set and Ei the edge-set. Similarly, the
supergraph which we aim to learn from this data is denoted by Γ = (VΓ , EΓ ),
with node-set VΓ and edge-set EΓ . Further, we represent the structure of the
two graphs using a |Vi| × |Vi| adjacency matrix Di for the sample graph Gi and
a |VΓ | × |VΓ | adjacency matrix M for the supergraph model Γ . The elements
of the adjacency matrix for the sample graph and those for the supergraph are
respectively defined to be

Dab =
{

1 if (a, b) ∈ ED

0 otherwise , Mαβ =
{

1 if (α, β) ∈ EΓ

0 otherwise . (1)

We represent the correspondence matches between the nodes of the sample graph
and the nodes of the supergraph using a |Vi| × |VΓ | assignment matrix Si which
has elements

si
aα =

{
1 if a → α
0 otherwise . (2)

where a → α implies that node a ∈ Vi is matched to node α ∈ VΓ .
With these ingredients, according to Luo and Hancock [7] the a posteriori

probability of the graphs Gi given the supergraph Γ and the correspondence
indicators is

P (Gi|Γ, Si) =
∏

a∈Vi

∑
α∈VΓ

Ki
a exp[μ

∑
b∈Vi

∑
β∈VΓ

Di
abMαβsi

bβ ] . (3)

where
μ = ln 1−Pe

Pe
, Ki

a = P
|Vi|×|VΓ |
e Bi

a . (4)

In the above, Pe is the error rate for node correspondence and Bi
a is the proba-

bility of observing node a in graph Gi , the value of which depends only on the
identity of the node a . |Vi| and |VΓ | are the number of the nodes in graph Gi

and supergraph Γ .
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3 Model Coding Using MDL

Underpinning minimum description length is the principle that learning, or find-
ing a hypothesis that explains some observed data and makes predictions about
data yet unseen, can be viewed as finding a shorter code for the observed data
[10,13,9]. To formalize this idea, we encode and transmit the observed data and
the hypothesis, which in our case are respectively the sample graphs G and the
supergraph structure Γ . This leads to a two-part message whose total length is
given by

L(G, Γ ) = LL(G|Γ ) + LL(Γ ) . (5)

3.1 Encoding Sample Graphs

We first compute the code-length of the graph data. For the sample graph-
set G = { G1, ...Gi, ...GN } and the supergraph Γ , the set of assignment
matrices is S = {S1, ....Si, ...SN} and these represent the correspondences be-
tween the nodes of the sample graphs and those of the supergraph. Under the
assumption that the graphs in G are independent samples from the distribution,
using the a posteriori probabilities from Section 2 the likelihood of the set of
sample graphs is

P (G|Γ,S) =
∏

Gi∈G

∏
a∈Vi

∑
α∈VΓ

Ki
a exp[μ

∑
b∈Vi

∑
β∈VΓ

Di
abMαβsi

bβ ] . (6)

Instead of using the Shannon-Fano code [12], which is equivalent to the negative
logarithm of the above likelihood function, we measure the code-length of the
graph data using its average. Our reason is that if we adopt the former measure,
then there is a bias to learning a complete supergraph that is fully connected. The
reason will become clear later-on when we outline the maximization algorithm in
Section 4, and we defer our justification until later. Thus, the graph code-length
is LL(G|Γ ) = − 1

|G|
∑

Gi∈G log P (Gi|Γ, Si) which is the average over the set of
sample graphs G.

3.2 Encoding the Supergraph Model

Next, we require to compute a code-length to measure the complexity of the
supergraph. For two-part codes the MDL principle does not give any guideline as
to how to encode the hypotheses. Hence every code for encoding the supergraph
structure is allowed, so long as it does not change with the sample size N . Here
the code-length for describing supergraph complexity is chosen to be measured
using the von-Neumann entropy [11]

H =
−
∑

k
λk

2 ln λk

2

|VΓ |
. (7)
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where |VΓ | is the number of nodes in the supergraph and λk are the eigenvalues
of the normalized Laplacian matrix of the supergraph L̂ whose elements are

L̂αβ =

⎧⎪⎨⎪⎩
1 if α = β
− 1√

TαTβ

if (α, β) ∈ EΓ

0 otherwise
. (8)

where Tα =
∑

ξ∈VΓ

Mαξ and Tβ =
∑

ξ∈VΓ

Mβξ. The normalized Laplacian matrix is

commonly used as a graph representation and graph cuts [18,19] and its eigenval-
ues are in the range 0 ≤ λk ≤ 2 [17]. Divided by 2, the value of λk

2 is constrained
between 0 and 1, and the von-Neumann entropy derived thereby is an intrinsic
property of graphs that reflects the complexity of their structures better than
other measures. We approximate the entropy −λk

2 ln λk

2 by the quadratic entropy
λk

2 (1 − λk

2 ), to obtain

H =
−
∑

k
λk

2 ln λk

2

|VΓ |
 
∑

k
λk

2 (1− λk

2 )
|VΓ |

=
∑

k λk

2|VΓ |
−
∑

k λ2
k

4|VΓ |
. (9)

Using the fact that Tr[L̂n] =
∑

k λn
k , the quadratic entropy can be rewritten as

H =
Tr[L̂]
2|VΓ |

− Tr[L̂2]
4|VΓ |

. (10)

Since the normalized Laplacian matrix L̂ is symmetric and it has unit diagonal
elements, then according to equation(8) for the trace of the normalized Laplacian
matrix we have

Tr[L̂] = |VΓ | . (11)

Similarly, for the trace of the square of the normalized Laplacian, we have

Tr[L̂2] =
∑

α∈VΓ

∑
β∈VΓ

L̂αβL̂βα =
∑

α∈VΓ

∑
β∈VΓ

(L̂αβ)2

=
∑

α,β∈VΓ

α=β

(L̂αβ)2 +
∑

α,β∈VΓ

α�=β

(L̂αβ)2

= |VΓ |+
∑

(α,β)∈EΓ

1
TαTβ

. (12)

Substituting Equation(11) and (12) into Equation (10), the entropy becomes

H =
|VΓ |
2|VΓ |

− |VΓ |
4|VΓ |

−
∑

(α,β)∈EΓ

1
4|VΓ | TαTβ

=
1
4
−

∑
(α,β)∈EΓ

1
4|VΓ | TαTβ

. (13)

As a result, the approximated complexity of the supergraph depends on two
factors. The first is the order of supergraph, i.e. the number of nodes of the
supergraph. The second is the degree of the nodes of the supergraph.
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Finally, by adding together the two contributions to the code-length, the over-
all code-length is

L(G, Γ ) = LL(G|Γ ) + LL(Γ ) = (14)

− 1

|G|
∑

Gi∈G

∑
a∈Vi

log{
∑

α∈VΓ

Ki
a exp[μ

∑
b∈Vi

∑
β∈VΓ

Di
abMabs

i
bβ ] } +

1

4
−
∑

(α,β)∈EΓ

1

4|VΓ | TαTβ
.

Unfortunately, due to the mixture structure, the direct estimation of the su-
pergraph structure M from the above code-length criterion is not tractable in
closed-form. For this reason, we resort to using the expectation maximization
algorithm.

4 Expectation-Maximization

Having developed our computational model which poses the problem of learning
the supergraph as that of minimizing the code-length, in this section, we provide
a concrete algorithm to locate the supergraph structure using our code-length
criterion. The minimization of the code-length is equivalent to the maximization
of its negative, and we develop an EM algorithm to realize the maximization.
We view the node correspondence information between the sample graphs and
supergraph as missing data, and regard the structure of the supergraph as the
set of parameters to be estimated. In the two interleaved steps of the EM al-
gorithm, the expectation step involves recomputing the a posteriori probability
of node correspondence while the maximization step involves updating both the
structure of the supergraph and the node correspondence information.

4.1 Weighted Code-Length Function

We follow Figueiredo and Jain’s MDL setting of the EM algorithm [16] and make
use of Luo and Hancock’s log-likelihood function for correspondence matching.
According to Luo and Hancock [7], treating the assignment matrix as missing
data, the weighted log-likelihood function for observing a sample graph Gi, i.e.
for it to have been generated by the supergraph Γ is

Λ̄(n+1)(Gi|Γ, Si,(n+1)) =
∑
a∈Vi

∑
α∈VΓ

Qi,(n)
aα {ln Ki

a +μ
∑
b∈Vi

∑
β∈VΓ

Di
abM

(n)
αβ s

i,(n+1)
bβ } .

(15)
where the superscript n indicates that quantity is taken at iteration n of the EM
algorithm and Qi,(n) is a matrix with elements Q

i,(n)
aα that are set equal to the a

posteriori probability of node a in Gi being matched to node α in Γ at iteration
n of the EM algorithm.
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With the above likelihood function and the code-length developed in the pre-
vious section, Figueiredo and Jain’s formulation of EM involves maximizing

Λ(n+1)(G|Γ,S(n+1)) =
1

|G|
∑

Gi∈G

∑
a∈Vi

∑
α∈VΓ

Qi,(n)
aα {ln Ki

a + μ
∑
b∈Vi

∑
β∈VΓ

Di
abM

(n)
αβ s

i,(n+1)
bβ }

− 1

4
+

∑
(α,β)∈EΓ

1

4|VΓ | T
(n)
α T

(n)
β

. (16)

The expression above can be simplified since the first term under the curly braces
contributes a constant amount∑

Gi∈G

∑
a∈Vi

∑
α∈VΓ

Qi,(n)
aα ln Ki

a =
∑

Gi∈G

∑
a∈Vi

ln Ki
a . (17)

Based on this observation, the critical quantity in determining the update
direction is

Λ̂(n+1) = (18)

1

|G|
∑

Gi∈G

∑
a∈Vi

∑
α∈VΓ

∑
b∈Vi

∑
β∈VΓ

Qi,(n)
aα Di

abM
(n)
αβ s

i,(n+1)
bβ − 1

4
+

∑
(α,β)∈EΓ

1

4|VΓ |T (n)
α T

(n)
β

.

4.2 Maximization

In order to optimize our weighted code-length criterion, we use graduated as-
signment [15] to update both the assignment matrices S and the structure of the
supergraph, i.e. the supergraph adjacency matrix M . The updating process is re-
alized by computing the derivatives of Λ̂(n+1), and re-formulating the underlying
discrete assignment problem as a continuous one using softmax[14].

In the maximization step, we have two parallel iterative update equations. The
first update mode involves softening the assignment variables, while the second
aims to modify the edge structure in the supergraph. Supergraph edges that
are unmatchable become disjoint by virtue of having weak connection weights
and cease to play any significant role in the update process. Experiments show
that the algorithm appears to be numerically stable and appears to converge
uniformly.

Updating Assignment Matrices: To update the assignment matrices, we
commence by computing the partial derivative of the weighted code-length func-
tion in Equation (18) with respect to the elements of the assignment matrices,
which gives

∂Λ̂(n+1)

∂s
i,(n+1)
bβ

=
1
|G|
∑
a∈Vi

∑
α∈VΓ

Qi,(n)
aα Di

abM
(n)
αβ . (19)
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To ensure that the assignment variables remain constrained to lie within the
rage [0,1], we adopt the soft-max update rule

si,(n+1)
aα ←−

exp[
1
T

∂Λ̂(n+1)

∂s
i,(n+1)
aα

]

∑
α′∈VΓ

exp[
1
T

∂Λ̂(n+1)

∂s
i,(n+1)
aα′

]
. (20)

The value of the temperature T in the update process has been controlled us-
ing a slow exponential annealing schedule of the form suggested by Gold and
Rangarajan[15]. Initializing T−1 with a small positive value and allowing it to
gradually increase, the assignment variable s

i,(n+1)
aα corresponding to the maxi-

mum ∂Λ̂(n+1)

∂s
i,(n+1)
aα

approaches 1 while the remainder approach 0.

Updating Supergraph Structure: The partial derivative of the weighted
code-length function in Equation (18) with respect to the elements of the super-
graph adjacency matrix is equal to

∂Λ̂(n+1)

∂M
(n)
αβ

=
1
|G|
∑

Gi∈G

∑
a∈Vi

∑
b∈Vi

Qi,(n)
aα Di

abs
i,(n+1)
bβ − 1

4|VΓ |(T (n)
α )2

∑
(α,β′)∈EΓ

1

T
(n)
β′

.

(21)
The soft-assign update equation for the elements of the supergraph adjacency

matrix is

M
(n+1)
αβ ←−

exp[
1
T

∂Λ̂(n+1)

∂M
(n)
αβ

]

∑
(α′,β′)∈EΓ

exp[
1
T

∂Λ̂(n+1)

∂M
(n)
α′β′

]
. (22)

In the case of the updating of the assignment matrix elements, in each row
and each column of the recovered assignment matrix no more than one element
can take on unit value. By contrast, in the case of the recovered supergraph
adjacency matrix there may exist multiple elements in each row or column with
a unit value. To deal with this problem, in practice we set a threshold, and then
recover the adjacency matrix by setting all elements larger than the threshold
to unity and set the remaining elements to zero. This is repeated each time we
decrease the temperature T in the annealing schedule.

From Equation (21), it is interesting to note that the derivatives of Λ̂(n+1)

with respect to the elements of supergraph adjacency matrix are dependent on
the frequency of sample-set edges that are in correspondence with the same
supergraph edge. To illustrate this point, if we approximate the matrix Q using
S, then the first term in Equation (21) becomes the expectation value of the
permutated adjacency matrices for the sample graphs. As a result, the elements
of the supergraph adjacency matrix reflect the frequency of corresponding edges
in the sample-set. The thresholding process selects frequent edges and removes
unfrequent ones.
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Recall that in Section 3 we discussed the encoding of the sample graphs, and
chose to use the average of Shannon-Fano code. We can now elucidate that the
reason for this choice is that as the number of the sample graphs increases, for
instance in the limit as the size of the graph sample-set G increases, i.e. N →∞,
the sum of permuted adjacency matrices of the sample graphs might dominate
the magnitude of the second term in Equation (21). Thus the update algorithm
might induce a complete supergraph that is fully connected. Hence, we choose
to use its average rather than its sum.

4.3 Expectation

In the expectation step of the EM algorithm, we compute the a posteriori cor-
respondence probabilities for the nodes of the sample graphs to the nodes of the
supergraph. Applying Bayes rule, the a posteriori correspondence probability
for the nodes of the sample graph Gi at iteration n + 1 are given by

Qi,(n+1)
aα =

exp[
∑
b∈Vi

∑
β∈VΓ

Di
abM

(n)
αβ s

i,(n)
bβ ]πi,(n)

α∑
α′∈VΓ

exp[
∑
b∈Vi

∑
β∈VΓ

Di
abM

(n)
α′βs

i,(n)
bβ ]πi,(n)

α′
. (23)

In the above equation, π
i,(n)
α′ = 〈Qi,(n)

aα′ 〉a, where 〈 〉a means average over a.

Fig. 1. (a)Example images in the COIL dataset. (b)Example images in the toys dataset.

5 Experiments

In this section, we report experimental results aimed at demonstrating the utility
of our proposed generative model on real-world data. We use images from two
datasets for experiments. The first dataset is the COIL [20] which consists of
images of 4 objects, with 72 views of each object from equally spaced directions
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over 360◦. We extract corner features from each image and use the detected
feature points as nodes to construct sample graphs by Delaunay triangulation.
The second dataset is a dataset consisting of views of toys, and contains images
of 4 objects with 20 different views of each object. For this second dataset, the
feature keypoints used to construct Delaunay graphs are extracted using the
SIFT [21] detector. Some example images of the objects from these two datasets
are given in Figure 1.

The first part of our experimental investigation aims to validate our super-
graph learning method. We test our proposed algorithm on both of the two
datasets and in order to better analyze our method, we initialize the supergraph
in our EM algorithm with different structures. For the COIL dataset, we initial-
ize the supergraph structure with the median graph, i.e. the sample graph with
the largest a posteriori probability from the supergraph. On the other hand, to
initialize the structure of the supergraph in the toys dataset, we match pairs of
graphs from a same object using the discrete relaxation algorithm [22]. Then we
concatenate(merge) the common structures over for the sample graphs from a
same object to form an initial supergraph. The initial supergraph constructed in
this way preserves more of the structural variations present in the set of sample
graphs. The median graph, on the other hand, captures more of the common
salient information. We match the sample graphs from the two datasets against
their supergraphs both using graduated assignment[15] and initialize the assign-
ment matrices in our algorithm with the resulting assignment matrices. Using
these settings, we iterate the two steps of the EM algorithm 30 times, and ob-
serve how the complexity of the supergraph, the average log-likelihood of the
sample graphs and the overall code-length vary with iteration number. Figures
2 and 3 respectively shows the results for the COIL and toys datasets illustrated
in Figure 1.

From Figure 2(a) it is clear that the von-Neumann entropy of the super-
graph increases as the iteration number increases. This indicates that the super-
graph structure becomes more complex with an increasing number of iterations.
Figure 2(b) shows that the average of the log-likelihood of the sample graphs
increases during the iterations. Figure 2(c) shows that the overall-code length
decreases and gradually converges as the number of iterations increases. For the
toys dataset, the von-Neumann entropy in Figure 3(a) shows an opposite trend
and decreases as the number of iterations increases. The reason for this is that
the initial supergraph we used for this dataset, i.e. the concatenated supergraph,
accommodates too much structural variation from the sample graphs. The re-
duction of the von-Neumann entropy implies some trivial edges are eliminated
or relocated. As a result the supergraph structure both condenses and simplifies
with increasing iteration number. Although the complexity of the graphs be-
haves differently, the average of the likelihood of the graphs in Figure 3(b) and
the overall-code length in Figure 3(c) exhibit a similar behaviour to those for the
COIL dataset. In other words, our algorithm behaves in a stable manner both
increasing the likelihood of sample graphs and decreasing the overall code-length
on both datasets.
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Fig. 2. COIL dataset: (a)variation of the complexity of the supergraph, encoded as
von-Neumann entropy, during iterations, (b) variation of average log-likelihood of the
sample graphs during iterations and (c) variation of the overall code-length during
iterations
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Fig. 3. Toy dataset: (a)variation of the complexity of the supergraph, encoded as von-
Neumann entropy, during iterations, (b) variation of the average log-likelihood of the
sample graphs during iterations and (c) variation of the overall code-length during
iterations

Our second experimental goal is to evaluate the effectiveness of our learned
generative model for classifying out-of-sample graphs. From the COIL dataset,
we aim 1) to distinguish images of cats from pigs on the basis of their graph
representations and 2) distinguish between images of different types of bottle.
For the toys dataset, on the other hand, we aim to distinguish between images
of the four objects. To perform these classification tasks, we learn a supergraph
for each object class from a set of samples and use Equation (3) to compute the
a posteriori probabilities for each graph from a separate (out-of-sample) test-set.
The class-label of the test graph is determined by the class of the supergraph
which gives the maximum a posteriori probability. The classification rate is the
fraction of correctly identified objects computed using 10-fold cross validation.
To perform the 10-fold cross validation for the COIL dataset, we index the
72 graphs from a same object according to their image view direction from
0◦ to 360◦, and in each fold we select 7 or 8 graphs that are equally spaced
over the angular interval as test-set, and the remainder are used as as sample-
set for training. The similar applies for the toys dataset. For comparison, we
have also investigated the results obtained using two alternative constructions
of the supergraph. The first of these is the median graph or concatenated graph
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used to initialize our algorithm. The second is the supergraph learned without
taking its complexity into account, which means, this supergraph is learned
by maximizing the likelihood function of the sample graphs given in equation
(6). Table 1 shows the classification results obtained with the three different
supergraph constructions. From the three constructions, it is the supergraphs
learned using the MDL principle that achieve the highest classification rates on
all the three classification tasks.

Table 1. Comparison of the classification results. The bold values are the average
classification rates from 10-fold cross validation, followed by their standard error.

Classification Rate cat & pig bottle1 & bottle2 four objects (Toys)

learned supergraph(by MDL) 0.824 ± 0.033 0.780 ± 0.023 0.763 ± 0.026

median graph/concatenated graph 0.669 ± 0.052 0.651 ± 0.023 0.575± 0.020

learned supergraph 0.807 ± 0.056 0.699 ± 0.029 0.725 ± 0.022

We have also compared our method with a feature-based classifier. Here we
apply a K-nearest neighbor classifier to the Laplacian spectrum of the graph. We
perform experiments that are reported on the classification task from the COIL
dataset involving images of the cat and pig. To do this, we compute the eigenval-
ues of the Laplacian matrix of each sample graph, and encode the spectrum as
a set of eigenvalues of decreasing magnitude. Using these Laplacian spectra, we
find that 10-fold cross-validation with a 3NN classifier gives an average correct
classification rate of 0.625. To investigate how our learned supergraph improves
the classification result. We visualize the classifications results delivered by the
two methods in Figure 4. The bottom shows the classification result obtained
using our generative model. Here the test images are arranged into series accord-
ing to their a posterior classification probabilities. The vertical line is the Bayes
decision boundary between the two objects (cat to the left and pig to the right).
Each images is labeled with its index and actual identity. In the top row we show
the images that are classified in error using the 3-NN classifier. Object images
56cat, 26cat, 66cat, 36cat and 26pig that are misclassified using the 3NN, are
correctly classified using our learned supergraph.

Next, we investigate how to embed graphs from different objects into pattern
space so as to cluster the graphs according to object identity. Here we combine
the Jensen-Shannon divergence with the von-Neumann entropy to measure the

Fig. 4. Improvement of our classification result
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pairwise dissimilarity between graphs. We then apply kernel PCA to the Jensen-
Shannon kernel to effect the embedding. We construct a supergraph for each pair
of graphs and measure their dissimilarity using the Jensen-Shannon divergence
computed from the von-Neumann entropy,

JSD(Gi, Gj) = H(Gi ⊗Gj)−
H(Gi) + H(Gj)

2
. (24)

In the above equation, Gi ⊗ Gj represents the supergraph for graphs Gi, Gj ,
and H(·) denotes the von-Neumann entropy of the corresponding graph. From
the Jensen-Shannon divergence we construct a kernel K(Gi, Gj) = JSD(Gi, Gj)
and with the kernel matrix we embed the graphs into pattern space by kernel
PCA. In order to assess the quality of the method, we compare our embedding
result with that obtained by using edit distance to measure graph dissimilarity. In
Figure 5, we illustrate the Jensen-Shannon embedding onto a 2D space for two ob-
ject clustering tasks. The first row shows the embeddings of graphs from images of
cat (red) and pig (blue). The second row shows the embedding of the graphs from
two types of bottle images (bottle1 as black scatter points and bottle2 as green
scatter points). The left column displays the clustering results by edit distance
and the right column gives the result by Jensen-Shannon divergence. It is clear
from Figure 5 that the Jensen-Shannon kernel embedding gives better clustering
results than the edit distance embedding. This is especially the case for the cat
and pig objects, where the cat graphs and pig graphs are heavily overlapped in
the edit-distance embedding.
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Fig. 5. Comparison of graph clusterings obtained from Jensen-Shannon kernel and edit
distance. Row 1: cat (red) and pig (blue). Row 2: bottle1(black) and bottle2 (green).
Column 1: edit distance and Column 2: Jensen-Shannon kernel.
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Fig. 6. The adjacency matrices of four graphs. (a) the learned supergraph, (b) a gen-
erated sample graph that has high likelihood, (c) the median graph, (d) a generated
sample graph with low likelihood.

Finally, we explore whether our generative model can be used to generate new
sample graphs. Given a supergraph structure, we use Gibbs sampling to generate
some new samples. From the newly generated graphs, we select a graph that has
high generating likelihood together with a graph that has low likelihood, and
compare their structure with that of the median graph and the supergraph.
We use black and white squares to indicate zero and unit entries respectively
to represent the elements of the adjacency matrices. The adjacency matrices
for the four graphs are shown in Figure 6. The example supergraph here is
learned using Delaunay graphs from the 72 pig images. From Figure 6, it is clear
that the supergraph, median graph and high likelihood sample graph have very
similar structure. On the other hand, the low likelihood sample graph shows a
very different structure. It is also important to note that the structure of the
supergraph is more complex than that of the median graph, which supports
our observation that the von-Neumann entropy in Figure 2(a) increases with
iteration number.

6 Conclusion

In this paper, we have presented an information theoretic framework for learning
a generative model of the variations in sets of graphs. The problem is posed as
that of learning a supergraph. We provide a variant of EM algorithm to demon-
strate how the node correspondence recover and supergraph structure estimation
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can be couched in terms of minimizing a description length criterion. Empirical
results on real-world dataset support our proposed method by a) validating our
learning algorithm and b) showing that our learned supergraph outperforms two
alternative supergraph constructions. We also have illustrated how to embed
graphs using supergraphs with Jensen-Shannon divergence and investigated the
performance of our generative model on generating new sample graphs. Our fu-
ture work will aim to fit a mixture of supergraph to data sampled from multiple
classes to perform graph clustering.
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Abstract. Random walks on graphs have been extensively used for
graph characterization. Positive kernels between labeled graphs have
been proposed recently. In this paper we use backtrackless paths for gaug-
ing the similarity between graphs. We introduce efficient algorithms for
characterizing both labeled and unlabeled graphs. First we show how to
define efficient kernels based on backtrackless paths for labeled graphs.
Second we show how the pattern vectors composed of backtrackless paths
of different lengths can be use to characterize unlabeled graphs. The pro-
posed methods are then applied to both labeled and unlabeled graphs.

Keywords: Backtrackless paths, Graph kernels, Graph Clustering.

1 Introduction

Many real world data such as texts, molecules, or shapes can be represented
using graphs. It is for this reason that graph based methods are widely used
in many applications including network analysis[17], world wide webs[18], and
problems in machine learning[19]. To compare such objects, the problem then
reduces to the problem of comparing graphs. However, subgraph isomorphism is
known to be NP-complete, and so computing the exact solution can be compu-
tationally intractable. For this reason inexact and decomposition methods have
been used instead. Inexact methods include the use of approximate methods to
compute graph edit-distance [15,16]. Decomposition Methods include the idea of
decomposing graphs into substructures such as paths, cycles, and trees. Similar-
ity between graphs can be measured using frequencies of matching substructures.

For labeled graphs, kernel methods are becoming increasingly popular because
of their high performance[10]. A number of kernels, defined on substructures such
as paths, trees and cycles, have been proposed [4,3,1]. One of the most popular
polynomial time algorithms for labeled graph is the random walk kernel[1]. The
idea behind the random walk kernel is to measure the similarity between graphs
based on the matching of random walks of different lengths. One of the problem
with the random walk kernel is ”tottering” which means that it can move in one
direction and return to the same vertex instantly[8]. Mahá et al[8] have proposed
a method for reducing tottering by transforming the graph into an equivalent
directed graph that does not allow cycles of length 2 and then define a kernel on
the transformed graph. The size of the transformed graph, however, is |V|+2|E|,
and in most cases computing such a kernel is not practical.

M. Pelillo and E.R. Hancock (Eds.): SIMBAD 2011, LNCS 7005, pp. 149–162, 2011.
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Unlabeled graphs can be classified using feature vectors that can be con-
structed from the number of walks, cycles, or trees on a graph. Recently Peng
et al[11,12,13] have proposed the use of the coefficients of the reciprocal of Ihara
zeta function to characterize and measure the similarities between graphs. These
coefficients are related to the number of prime cycles in a graph and can be com-
puted from the eigenvalues of the adjacency matrix of the oriented line graph.
The method, however, cannot successfully classify graphs which have branches,
for example graphs of chemical compounds. Moreover, computing such pattern
vector can also be computationally expensive as the size of oriented line graph
can be O(V2) in the worst case.

These disadvantages in existing graph clustering methods are due to compet-
ing requirements in their design[4]. Not only should a kernel give good measure of
similarity between graphs, it should also both have the polynomial time complex-
ity and applied to a large class of graphs of different structures. The problem with
the random walk kernel is its expressiveness which can be improved by both avoid-
ing cycles of length 2 and by label enrichment[8]. However such an extension can
badly increase the execution time of the kernel, making it impractical to apply it
to dense graphs. In this paper our goal is to efficiently classify graphs with higher
accuracy based on backtrackless walks on graphs. We use backtrackless kernels for
labeled graphs,whose worst case time complexity is the same as that of the random
walk kernel. For unlabeled graph,weuse a feature vector composed of backtrackless
walks of different length. To evaluate the performance of the backtrackless paths,
we apply the proposedmethods on both synthetic and realworld data and compare
its accuracy with existing methods. Finally we give a comparison of the run time
of our approach with that of alternative approaches.

2 Backtrackless Walks on Graphs

AgraphG consists of a finite set of vertices (or nodes)V and a finite set of edges E ⊂
V×V . In this paper n denotes the size of the graph, i.e., the number of vertices in the
graph, and m denotes the number of edges in the graph. For a labeled graph there
is additionally a set of labels L along with a function l : V ∪E → Lwhich assigns a
label to each edge and/or vertex of the graph.A labeled graph canbe vertex-labeled
which assigns labels to the vertices only, edge-labeled which assigns labels to the
edges only, or fully labeled which assigns labels to both edges and vertices. Any
edge-labeled(or vertex-labeled) graph can be considered fully labeled if we consider
that all of the edges(or vertices) of the graph are assigned the same label. Similarly
anunlabeled graph canbe considered as a labeled graph, that assigns the same label
to each vertex and edge. In this paper we will consider the case of both labeled and
unlabeled graphs.

A random walk w in a graph is a sequence of vertices v1, v2, ...vk where vi ∈ V
such that (vi, vi+1) ∈ E . A walk has backtracking if vi−1 = vi+1, for some i,
2 ≤ i ≤ k − 1, where k is the length of the walk. A walk is backtrackless if it
has no backtracking. Gärtner et al[1] and Kashima et al[6] have defined graph
kernels based on matching random walks in graphs. In this paper our focus is to
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efficiently classify graphs based on backtrackless paths of the graph. The motiva-
tion here is that the random walk totters and can add noise to the representation
of the graph. Figure 2 shows an example of the difference between the number of
backtrackless walks and random walks of length 3 in the graph of Figure 1. The
i, jth entry in Figure 2(a) shows the number of random walks of length 3 from
vertex i to vertex j. Similarly, the i, jth entry of Figure 2(b) shows the number
of backtrackless walks of length 3 from vertex i to vertex j. These matrices show
that there are a total of 74 random walks of length 3 in the graph of Figure 1(a),
while there are only 26 backtrackless walks of same length in the graph of Fig-
ure 1(a). In particular there are 6 random walks of length 3 from vertex 1 to ver-
tex 4, which are (1, 2, 1, 4), (1, 5, 1, 4), (1, 4, 1, 4), (1, 2, 3, 4), (1, 4, 3, 4), (1, 4, 5, 4).
Out of these random walks only (1, 2, 3, 4) is a backtrackless walk, and therefore
there is only one backtrackless walk of length 3 from node 1 to node 4. Now
suppose that the vertices 1, 2, 3, 4, 5 of the graph are assigned the labels x, y, x,
y, w respectively. Then the sequence x-y-x-y might correspond to path (1,4,1,4)
or (1,2,3,4). By preventing tottering, the first option can be eliminated.

(a) Graph (b) Adjacency Matrix

Fig. 1. Graph and its adjacency matrix

One way of locating backtrackless walks of different lengths, is to transform the
graph to a form that enforces a backtrackless structure. One such transformation
is the Perron-Frobenius operator which converts a graph into a oriented line
graph. The oriented line graph is of size 2m. The i, jth entry of kth power of
the adjacency matrix of a oriented line graph gives the number of backtrackless
paths of length k from vertex i to vertex j if i �= j, while it gives the number
of prime cycles of length k starting at vertex i if i = j. A prime cycle is a cycle
with no backtrackless paths and no tails. A cycle has a tail if any of its cyclic
permutation has backtracking.

To construct the oriented line graph OLG(VL, EL) of the original graphG(V , E),
we first convert the graph into its equivalent digraph, DG(VD, ED), by replacing
each edge by a pair of directed arcs. The oriented line graph is the directed graph
whose vertex set VL and edge set EL are defined as follows
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(a) Random Walks (b) Backtrackless Walks

Fig. 2. Random Walks vs Backtrackless walks of length 3

VL = ED,
EL = {((u, v), (v, w)) ∈ ED × ED : u, v, w ∈ V , u �= w}
Figure 3(a) shows an example of a graph, Figure 3(b) shows its equivalent

digraph, and Figure 3(c) shows the oriented line graph of the original graph. A
path between any two different vertices in the oriented line graph corresponds
to a backtrackless path in the original graph, while a path between the same
vertices corresponds to a prime cycle in the original graph.

(a) Graph (b) Diagraph (c) Oriented line graph

Fig. 3. Graph and its oriented line graph

Our objective in this paper is to use backtrackless paths for classifying graphs.
Mahé et al have proposed a graph kernel based on backtrackless path for labeled
graphs. However the cost of computing their kernel is very high and so in most
cases it cannot be applied to practical problems. In this paper, we propose effi-
cient methods for classifying both labeled and unlabeled graphs. We propose a
kernel for labeled graphs based on backtrackless paths whose time complexity is
the same as that of the random walk kernel. For unlabeled graphs we use pattern
vectors constructed from backtrackless paths of different lengths.
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3 Kernels for Labeled Graphs

In this section we review the literature on existing kernels for labeled graphs
and their extensions. A graph kernel is a positive definite kernel on the set of
graphs G. For such kernel κ : G ×G → R it is known that a map Φ : G → H into
a Hilbert space H exists, such that κ (G, G′) = 〈Φ(G), Φ(G′)〉 for all G, G′ ∈ G
[10]. Graph kernels can be defined on random walks [1], shortest paths [4], cyclic
patterns [3], and trees [2] in the graph. In this paper we propose an efficient
method for computing graph kernels based on backtrackless paths of the graph.

Gärtner et al [1] have defined graph kernel using random walks, which is based
on the idea of counting the number of matching walks in two input graphs. Their
kernel for the two input graphs G1 = (V1, E1) and G2 = (V2, E2) is given by the
direct product graph G×:

κ (G1, G2) =
|V×|∑
i,j=1

∞∑
k=0

εk

[
Ak

×
]
i,j

(1)

where A× is the adjacency matrix of G× = (V×, E×), which is defined as

V×(G1×G2) = {(v1, v2) ∈ V1 × V2 : label(v1) = label(v2)}
E×(G1×G2) = {((u1, u2) , (v1, v2)) ∈ V 2

× (G1 ×G2) :
(u1, v1) ∈ E1 ∧ (u2, v2) ∈ E2 ∧ label (u1, v1) = label (u2, v2)}

and (ε1, ε2, ε3, ...) is a sequence of constants, chosen such that (1) converges.
As pointed out in [8,4], one of the problem with the random walk graph

kernel is that of tottering. A tottering walk can move to one direction and then
instantly return to the starting position. This results in many redundant paths
in the graphs, which may decrease the discriminative powers of the kernels. To
reduce tottering, Mahé et al[8] have defined a kernel based on backtrackless walks
instead of random walks. They first transform the graph into a directed graph
of size n + 2m that captures the backtrackless structure of the original graph.
They then define the kernel on the transformed graphs. Since the oriented line
graph is also related to the backtrackless structure of the graph with a size of
only 2m, the same kernel can be defined on an oriented line graph. Let T1 and
T2 be the adjacency matrices of the oriented line graphs of the graphs G1 and
G2 respectively. The kernel can be defined as

κ (G1, G2) =
|V×|∑
i,j=1

∞∑
k=0

εk

[
T k
×
]
i,j

(2)

where T× is the adjacency matrix of the direct product graph of T1 and T2.
The use of backtrackless kernels in practice is, however, limited because of the

computational cost of such kernels. The problem is the size of the transformed
graph which is O (m1m2). In the worst case when m = O

(
n2
)
, the size of

the product graph can be O
(
n2

1n
2
2

)
. In such cases the computational cost of
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computing the kernel can be very high and computing such kernels in most
cases may not be feasible.

To overcome this problem, in this paper we use a method that efficiently com-
putes kernels on backtrackless walks using the adjacency matrix of the original
graph instead of the transformed graph. To commence, we introduce an n × n
matrix Ak whose (i, j)th entry is given by

(Ak)i,j =

{
number of paths in G of length k with no backtracking
starting at i and ending at j.

(3)

Here i, j run over the vertices of G. Since there is no backtracking in paths of
unit length, we define A1 = A. To locate the paths of length k ≥ 2, we use the
following theorem [21]

Theorem 1. (Recursions for the matrices Ak). Let A be the adjacency matrix
of a simple graph G and Q be a n× n diagonal matrix whose ith diagonal entry
is the degree of the ith node minus 1. Then

Ak =

⎧⎪⎨⎪⎩
A if k = 1
A2 − (Q + I) if k = 2
Ak−1A−Ak−2Q if k ≥ 3

(4)

The proof of the above theorem can be found in [21]. We now define a kernel on
Am as

κ (G1, G2) =
|V×|∑
i,j=1

∞∑
k=0

εk [(A×)k]i,j (5)

where A× is the product graph and the (i, j)th entry of (A×)k is the number of
backtrackless paths of length k in G, starting from vertex i and ending at vertex
j. Since kernel defined here is same as one defined in 2, therefore it is valid
positive definite kernel if we choose a sequence of positive coefficients εi such
that (5) converges[5]. Here we propose to choose εi = εi for i ≥ 1 and 0 < ε < 1.
The value of ε depends on the particular dataset that we are using. In practice,
we select a smaller value for dense graphs and a larger value for sparse graphs.
This is because for dense graphs, the paths with larger length add more noise to
the structural representation of the graph.

The graph kernel introduced here can be computed efficiently. This is because
the size of the product graph in this case is O (n1n2) which is much smaller than
the size of the product graph for the oriented line graph or the transformed graph
used by Mahé[8]. By using dynamic programming, in which we first compute A1

and A2, and then iteratively compute Ak, for k ≥ 3, we can speed up the running
time of our kernel.

4 Pattern Vectors for Unlabeled Graphs

In this section we review methods for measuring the similarity between unla-
beled graphs. Although kernels on random walks and other substructures can be
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efficiently applied to labeled graphs, where the number of unique labels assigned
to nodes and edges are sufficiently large, such kernels can be very inefficient in
the case of unlabeled graphs. For unlabeled graphs, the size of the product graph
is n1×n2. Computing the higher powers of such matrices can be computationally
very expensive.

One way to overcome this problem is to first define a vector representation
for a graph based on the frequency with which a particular substructure ap-
pears in the graph, and then take the dot product of these vectors for different
graphs to gauge the similarity between unlabeled graphs[7,20]. Recently Peng
et al[11,12,13] have used pattern vectors constructed from the coefficients of the
reciprocal of Ihara zeta function. The Ihara zeta function associated to a finite
connected graph G is defined to be a function of u ∈ C [23]

ζG(u) =
∏

c∈[C]

(
1− ul(c)

)−1

(6)

The product is over equivalence classes of primitive closed backtrackless, tail-less
cycles. Here l(c) is the length of the cycle c. The Ihara zeta function can also be
written in the form of a determinant expression [22]

ζG(u) =
1

det(I − uT )
(7)

where T is the Perron-Frobenius operator. So the reciprocal of the Ihara zeta
function can be written in terms of the determinant of the matrix T, and hence
in the form of a polynomial of degree 2m:

ζG(u)−1 = det(I − uT ) = c0 + c1u + c2u
2 + c3u

3 + ... + c2mu2m (8)

Peng et al [11] have used these coefficients to cluster unlabeled graphs. Since
these coefficients are related to the prime cycles, such a feature vector reduces
tottering.

There are two problems with pattern vectors composed of Ihara coefficients.
The first problem is the computational cost of computing such vectors. The Ihara
coefficients can be computed from the eigenvalues of the oriented line graph[14].
The worst case complexity for finding such vectors of fixed length can be O(n6).
The second problem is that the pattern vectors constructed from the Ihara co-
efficients may fail to convey meaning in case where the graph has branches. The
reason is that the Ihara zeta function is defined on the number of prime cy-
cles of the graph and ignores the branches in the graph. To avoid the second
problem here we use pattern vector based on the frequencies of backtrackless
paths of different lengths in the graph. We propose to use the pattern vector
vG = [ε1l1, ε2l2, ..., εklk], where li is the number of backtrackless paths of length
i and (ε1, ε2, ..., εk) is a sequence of weights. Since paths with larger length may
give some redundant information, we assign these weights in such a way that the
number of paths with smaller length get higher weights. Here we propose εi = εi

for i ≥ 1 and 0 < ε < 1. The value of l1 can be computed from the adjacency
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matrix of the graph. To compute lk for i ≥ 2, we can use the adjacency matrix
of the oriented line graph. So the coefficients lk for k ≥ 2 can be computed as

lk =
|V|∑

i,j=1

[
T k−1

]
i,j

(9)

Since we are computing our feature vector using the adjacency matrix of oriented
line graph which captures the backtrackless structure of the graph, the pattern
vector introduced here can be applied to a larger class of graphs. The worst
case computational cost of computing the feature vector is, however, O(n6). To
reduce the computational cost, we use Ak defined in (3) instead of T. So we
compute each lk, for k ≥ 1, as

lk =
|V|∑

i,j=1

[Ak]i,j (10)

Using (10), the cost of computing the proposed pattern vector of some constant
length is O(n3), which is smaller then the cost of computing pattern vectors
from coefficients of Ihara zeta function.

5 Experiments

In this section we apply our proposed method to both real and synthetic datasets.
The purpose of the experiments on synthetic dataset is to evaluate whether
the backtrackless walks to distinguish between different graphs under controlled
structural errors. For the real-world data we have selected two different datasets.
i.e., MUTAG[9] and COIL.

5.1 Synthetic Data

We commence by investigating the relationship between graph edit distance and
the Euclidean distance between pattern vectors composed of Ihara coefficients.
The edit distance between two graphs G1 and G2 is the minimum edit cost taken
over all sequences of edit operations that transform G1 to G2. In our experiment
we choose a seed graph and construct a new graph by randomly deleting certain
number of edges from the seed graph. The edit cost between seed graph and the
newly generated graph is then equal to the number of edges deleted.

To start with, we generate 100 random points in Euclidean space and construct
a Delaunay triangulation over the point positions. We use the resulting graph with
100 nodes and 288 edges as our seed graph. We next generate 1000 graphs by ran-
domly deleting up to 30 edges of the seed graph. For each graph we compute back-
trackless paths of length up to 10 using (10) and construct a pattern vector in the
form vG = [ε1l1, ε2l2, ..., ε10l10]. Here we choose ε = 0.1. We compute the feature

distance between the pattern vectors vi and vj as dij =
√

(vi − vj)
T (vi − vj).

The experimental results are shown in Figure 4, which shows the feature distance
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between pattern vectors composed of backtrackless walks of seed graph and edited
graph as a function of edit distance. i.e., number of edges deleted. Similarly Fig-
ure 4(b) shows the feature distance between pattern vectors composed of random
walks of the seed graphand the edited graphas a function of the edit distance. Small
variance in figure 4(a) compared to figure 4(b) shows that backtrackless paths offer
more stability to noise.

To compare the stability of the feature vector composed of backtrackless walks
with the feature vector composed of random walks and the feature vector com-
posed of Ihara coefficients we have shown the relative standard deviation as a
function of edit distance for all the three methods in Figure 4(c). It is clear from
Figure 4(c) that backtrackless walks provide a more stable representation of the
graph when compared to either random walks or the Ihara coefficients.

(a) Backtrackless walk (b) Random walk

(c) Percent relative standard deviation

Fig. 4. Effect of Edit distance

5.2 Real-World Dataset

In this section we compare our method with alternative methods on real-world
data. We choose two real-world datasets namely Mutag[9] and COIL. We then
compare our method to existing methods. We use KNN classifier to measure the
classification accuracy of data.
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Mutag Dataset: Mutag is a collection of 188 chemical compounds. The task,
in this dataset, is to predict whether each of 188 compounds has mutagenicity
or not. The maximum number of vertices is 40 and the minimum number of
vertices is 14, while the average number of vertices is 26.03. The vertices and
edges of each compound are labeled with real numbers between 0 and 1.

COIL Dataset: The second dataset consists of graphs extracted from the im-
ages in the COIL dataset. Here the task is to classify thirty images of each of
three objects, into three different object classes. To establish a graph on the im-
ages of objects, we first extract feature points from the image. For this purpose,
we use the Harris corner detector[25]. We then construct a Delaunay graph us-
ing the selected feature points as vertices. Figure 5(a) shows some of the object
views (images) used for our experiments and Figure 5(b) shows the correspond-
ing Delaunay triangulations.

(a) COIL

(b) Delaunay triangulation

Fig. 5. COIL objects and their Delaunay triangulations

Experiments and Results: To evaluate the performance of our kernel on
labeled graphs we use the Mutag dataset. We have compared our method with
the random walk kernel[1]. The classification accuracies are estimated using 10-
fold cross-validation and are shown in Table 1. The classification accuracy of our
method is 91.1%, while that of random walk kernel is 90.0%. Results show that
by reducing tottering, we can improve classification accuracy.

To evaluate the performance of the pattern vector extracted from backtrackless
walks on a graph, we first apply our method to the COIL dataset. We compute
backtrackless paths of length up to 10 using Equation (10) and construct a pattern
vector of the form vG = [ε1l1, ε2l2, ..., ε10l10]. In this case we choose ε = 0.1. Fi-
nally we perform PCA on the feature vectors to embed them into a 3-dimensional
space. Figure 6 shows the embedding. We have compared our method to both pat-
tern vectors constructed from random walks on a graph and pattern vectors con-
structed from the coefficients of Ihara zeta function for the graph. Table 1 shows
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Fig. 6. Performance of clustering

the accuracies of these methods on the COIL dataset. The accuracy of the feature
vector constructed from backtrackless walks is 95.5%, while the accuracy for both
feature vectors from random walk and feature vectors from the Ihara coefficients
is 94.4% . This shows that even on md2 graphs (graphs with degree of each vertex
at least 2), the feature vector constructed from backtrackless paths outperforms
that constructed from the coefficients of the reciprocal of the Ihara zeta function.
We have also applied the shortest path kernel[4] to the same dataset and its ac-
curacy was only 86.7%. In other words our results show that the kernel based on
backtrackless path outperforms alternative kernels.

Finally, we evaluate the performance of our feature vector on unlabeled graphs
from the Mutag dataset. Table 1 shows the accuracies of each of the three fea-
ture vectors. The results show that, in the case of graphs having branches, the
coefficients of the reciprocal of the Ihara zeta function are not very effective in
distinguishing such graphs.

Table 1. Experimental Results

Method Dataset Accuracy

Random walk kernel Mutag(labeled) 90.0%
Backtrackless walk kernel Mutag(labeled) 91.1%

Feature vector from Random walk COIL(unlabeled) 94.4%
Feature vector from backtrackless random walk COIL(unlabeled) 95.5%
Feature vector from Ihara coefficients COIL(unlabeled) 94.4%
Shortest Path Kernel COIL(unlabeled) 86.7%

Feature vector from Random walk Mutag(unlabeled) 89.4%
Feature vector from backtrackless random walk Mutag(unlabeled) 90.5%
Feature vector from Ihara coefficients Mutag(unlabeled) 80.5%

6 Timing Analysis

Our kernel avoids tottering, however it remains an important question that how
it compares to known kernels in terms of computational complexity. In this
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section our goal is to compare the time complexity and the execution time of
different methods.

Suppose we are dealing with two graphs with n1 and n2 nodes respectively,
where both n1 and n2 are bounded by n. To compute the random walk kernel we
first have to determine the direct product graph. The size of the adjacency matrix
of the direct product graph can be O(n2) in worst case. We then have to compute
the product of adjacency matrix of the direct product graph. So the worst case
time of computing the random walk kernel is O(n6). In practice, the run time can
be improved[1]. However, the worst case run time remains the same. To compute
the kernel on the transformed graph, we first have to transform the graph in a
representation that captures its backtrackless structure. The number of vertices
in each transformed graph can be O(n2), and so the size of the adjacency matrix
of their direct product graph can be O(n4). The worst case time complexity of
computing the kernel in such cases can be O(n12). The worst case running time
for our method still remains O(n6), since we are computing the kernel using the
adjacency matrix of that of the graph without transforming it.

In practice the execution time of our method is close to that of random walk
kernel. To show this, we use the synthetic data used in Section 5.1. For each
graph, we compute random walks of length 10, backtrackless walks of length
10 using our method, and backtrackless walks of length 10 by transforming the
graph to an oriented line graph. The execution time for each method on 1000
graphs is shown in Table 2. It is clear that even on sparse graphs our method
performs very well compared to that based on the transformed graph.

Table 2. Execution time comparison

Method Execution Time (Seconds)

Random walk 9.98
Backtrackless random walk using our method 12.30
Backtrackless random walk using transformed graph 313.14

7 Strengths and Weaknesses

We conclude by discussing the advantages and disadvantages of using back-
trackless paths in graphs as a measure of similarity. The disadvantages of most
of the kernel methods are their expressiveness and running time. The shortest
path kernel[4] avoids the problem of tottering, however it uses only the shortest
paths between the nodes. The kernel based on cyclic patterns[2] uses all possible
cyclic pattern, but is not polynomial. The major advantage of using backtrack-
less walks instead of random walks is that such kernels not only reduce tottering,
but they also retain the expressivity of the random walks and can be computed
in polynomial time.

There are however some limitations of the methods based on backtrackless
walks. Although such methods reduce tottering, they cannot completely avoid
the problem. This happens when a graph contains a triangle. For such a case, a
path of length 6 may corresponds to a path that traverses six different edges or a
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path that traverses the same triangle twice. Another problem with backtrackless
paths is that although the theoretical time for both methods is the same, in
practice the random walk kernel performs better. This is due to the fact that
the power series for adjacency matrix of the product graph can be efficiently
computed[1].

8 Conclusion

In this paper we have presented methods for measuring the similarity between
graphs based on frequencies of backtrackless paths of different lengths. We have
proposed efficient methods for both labeled graphs and unlabeled graphs and
applied on both synthetic and real world data. The proposed scheme for labeled
graphs gives better results than those for the random walk kernel. For unlabeled
graphs our scheme is superior to one that uses feature vector from the coefficient
of the reciprocal of the Ihara zeta function both in terms of time and accuracy.
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Abstract. Many fast similarity search techniques relies on the use of
pivots (specially selected points in the data set). Using these points, spe-
cific structures (indexes) are built speeding up the search when queering.
Usually, pivot selection techniques are incremental, being the first one
randomly chosen.

This article explores several techniques to choose the first pivot in
a tree-based fast similarity search technique. We provide experimental
results showing that an adequate choice of this pivot leads to significant
reductions in distance computations and time complexity.

Moreover, most pivot tree-based indexes emphasizes in building bal-
anced trees. We provide experimentally and theoretical support that very
unbalanced trees can be a better choice than balanced ones.

1 Introduction

Similarity search has become a fundamental task in many application areas,
including data mining, pattern recognition, computer vision, multimedia infor-
mation retrieval, biomedical databases, data compression or statistical data anal-
ysis. The simplest, yet most popular method for this task is the well-known k-
Nearest Neighbor (kNN) classifier. However, one of the main constraints of using
this technique to classify large datasets is its complexity: finding the k-Nearest
Neighbors for a given query is linear on the database size. A classical method
to speed up the search is to rely in some property of the dissimilarity measure
to build up a data structure (index) in preprocess time. Once the index has
been built, similarity queries can be answered with a significant reduction in the
number of distance computations.

In this work we are going to focus our attention in dissimilarity functions
that fulfills the conditions of being a distance and then define a metric space (A
review of such techniques can be found in [3][7][18].) According to Navarro and
Reyes [12], algorithms to search in metric spaces can be divided in pivot-based
and clustering algorithms:

– Pivot-based algorithms use a set of distinguished objects (pivots) of the
datasets. Usually, the distances between pivots and some (or all) the ob-
jects in the database are stored in the index. This information, along with
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the properties of the distance function, is used in query time to avoid some
distance computations.

– Clustering algorithms divide the spaces in zones as compact as possible, stor-
ing a representative point for each zone and extra information that permit
to discard a zone at query time.

According to Hjaltason and Samet [7] and Zezula et al.[18], the algorithms can
be divided in:

– Ball partitioning algorithms, that requires only one pivot to divide a set S
into two subsets using a spherical cut.

– Generalized hyperplane partitioning algorithms, where the division is done
using two pivots.

– Distance matrix algorithms, where precomputed distances between the ob-
jects in the datasets are stored to be used in query time.

For example, the Vantage Point Tree (vp-tree) algorithm [17] is a pivot-based
algorithm that uses ball partitioning metric trees. The simplest method selects
randomly the vantage points. However, the author argues that a more careful
selection procedure can yield better search performance.

One of the first works about the selection of pivots was done by Shapiro in
1977 [14]. He found that if the data set belongs to a uniform distribution on
a hypercube in the Euclidean space, it is better to pick (vantage) points near
corners of the hypercube as pivots to improve search performance. Taking into
account these results, Yianilos argues that choosing the points near corners as
pivots can be shown to minimize the boundary of the ball that is inside the
hypercube, increasing search efficiency.

Other well-known example of pivot-based method was proposed by Ullmann
in 1991 [15]. Ullmann defines a metric tree (gh-tree) using generalized hyperplane
partitioning. Instead of picking just one object for partitioning the space as in
the vp-tree, this method picks two pivots, usually, the samples farthest from each
other, dividing the set of remaining samples based on the closest pivot. Similar
strategies were applied in Faloutsos and Lin [5] or Merkwirth et al. [10].

Despite the taxonomy proposed by Navarro and Reyes, some clustering algo-
rithms also use pivots to build indexes. GNAT (Geometric Near-neighbor Access
Tree) [2] is a clustering algorithm, that is a generalization of a gh-tree, and then,
where more than two pivots should be chosen to divide the data set at each
node. The method for choosing the pivot samples is based on a philosophy simi-
lar to that of Yianilos for the vp-tree (and also suggested by others [1][14]). The
method first randomly selects a set of candidate pivot samples from the dataset.
Next, the first pivot is selected randomly from the candidates, and the remaining
pivots are selected iteratively as the farthest away from the previously selected.

A bisector tree, proposed by Kalantari and McDonald [8], is a gh-tree aug-
mented with the maximum distance to a sample in its subtree. Moreover, if in
this structure one of the two pivots in each non leaf node is inherited from its
parent node, the monotonous bisector tree (mb-tree) is obtained [13]. Since this
strategy leads to fewer pivot objects, its use reduces the number of distance
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computations during search (provided the distances of pivot objects are prop-
agated downward during search), at the lower cost of a worse partitioning and
a deeper tree. It should be clear that many different configurations are possible
for obtaining a mb-tree, since there are many options to choose the second pivot
at each step for the next decomposition. For example, one strategy is to select
as the second pivot the one that tries to associate the same number of objects
with each node (then, obtaining a balanced tree).

In the last few years we worked with MDF-trees. This indexes can be viewed
as a particularization of the mb-tree. In order to build an MDF-tree, first a
pivot is chosen from the database (usually randomly). The algorithm proceeds
by dividing the database in two sets each time a node of the tree is split. To
split a node, two pivots are chosen, the corresponding to the new left node is
the pivot of the node to be split and the right pivot is the farthest element of
the left pivot. Then, the objects of the original node are distributed according
to its nearest pivot. This structure stores some additional information (i.e. the
distance from the node pivot to the farthest object of the node) [4].

However, the selection of the first pivot (root of the tree) has not received
special attention. Note that in mb-trees, the selection of the first pivot is affecting
all levels of the tree because the decomposition of the space is done in a top-down
manner.

In this paper we are interested in the initialization of MDF-trees, this index is
used as the basis for building other more complex indexes ([11][4]). In this case
the initialization involves only the selection of the representative of the root.

In this paper an experimental survey of several initializations for the MDF-
tree has been done. Although these initializations involves only the selection of
the representative of the tree root, significant variations on the properties of the
trees and efficiency of the search can be observed.

Moreover, we show that, in this type of trees, it is not a good idea to force
the tree to be balanced. The main reason is that forcing the nodes to be of equal
size leads to big overlapping regions. We show that it is better to force to have
wide unbalanced trees in order to reduce the overlapping regions.

In the next section, a quick review of the construction of the MDF-tree is
presented. In section 3 different initialization proposals are detailed. In section 4
experiments have been carried out on several artificial and real datasets. Finally,
some concluding remarks are depicted in Section 6.

2 The MDF-Tree

The MDF tree is a binary indexing structure based on a hyperplane partitioning
approach [11][4]. The main difference with mb-trees is related to the selection of
the representatives (pivots) each time a node is split.

2.1 Building an MDT-Tree

In order to build an MDF-tree, firstly a pivot is randomly selected as the root
of the tree (first level). Secondly, the farthest object to the root is chosen as the
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second pivot, then the rest of objects are distributed according to the closest
pivot. This procedure is recursively repeated until each leaf node has only one
object (see Figure 3). It is interesting to observe that the root of the tree is
propagated recursively through all the levels of the tree as the left node.

Algorithm 1 describes how an MDF-tree is built. The function build tree
(�,S) takes as arguments the future representative of the root node (�) and the
set of objects to be included in the tree (excluding �) and returns the MDF-tree
that contains S∪{�}. The first time that build tree(�,S) is called, � is selected
randomly among the data set. In the algorithm, MT is the pivot corresponding
to T , rT is the covering radius, and TL (TR) is the left (right) subtree of T .

Algorithm 1. build tree(�, S)
Data:

S ∪ {�} = D: set of points to include in T ;
�: future left representative of T

create MDF-tree T
if S is empty then

MT = �
rT = 0

else
r = argmaxx∈S d(�, x)
rT = d(�, r)
S� = {x ∈ S|d(�, x) < d(r, x)}
Sr = {x ∈ S|d(�, x) ≥ d(r, x)} − {r}
TL = build tree(�,S�)

TR = build tree(r,Sr)
end
return T

2.2 The Search Algorithm

Given a query point, the search algorithm proceeds in a top down procedure.
At each step, the search algorithm computes the distance to the representa-

tives of each child node and updates the current nearest neighbor candidate if
necessary. Next, using the distance from the sample to the representatives and
the radius of the node, it tries to discard each of the nodes. At last, the search
continues with each of the undiscarded nodes.

Note that since in MDF-trees the representative of the left node is the same
as the representative of its father, the distance computation of the query point
to the left representative can be avoided. Then, only one distance is computed
each time a node is explored (see alg. 2.)

As pruning rule, here we are going to consider the simplest one. Given a query
point x and the current NN candidate nn, no object in the tree T can be nearest
to x than the current NN candidate if (see fig. 1)

d(x, nn) ≤ d(rep(T ), x)− rT
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Algorithm 2. search tree(T , x)
Data:

T : tree node;
x: sample

if not exists TL then return
if not exists TR then

if not pruned TL then search(TL, x)
return

end
dr = d(rep(TR), x); update nearest neighbour
if d� < dr then

if not pruned TL then search (TL, x)
if not pruned TR then search (TR, x)

end
else

if not pruned TR then search (TR, x)
if not pruned TL then search (TL, x)

end

rep(T ) x

rT nn

Fig. 1. Pruning rule

Note that as a consequence of this rule if the representatives of the children of a
node are too near or their radius are too large, an overlapping region will appear
where none of the children can be pruned (see fig. 2). This (usually unavoidable)
situation provokes the algorithm to explore both subtrees.

The MDF-tree building procedure tries to weaken this effect by choosing, as
representative for the right child, the farthest object of the left representative.
Unfortunately, this usually leads to large radius.

3 Initialization Methods

As stated in the previous section, it is necessary to choose a pivot that will
act as the root of the tree for construction purposes. To our knowledge, no
work has been done before to study alternative initialization choices. In this
work, we present experimental results (both for tree construction and for search
performance) when performing different root initializations.

Let we enumerate the methods used for this purpose.
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Fig. 2. Overlapping region

3.1 Random Method

This initialization is the usual method applied in the MDF-tree [11][4]. It consists
on selecting randomly a sample from the database.

3.2 Outlier Method

The aim of this method is to choose an outlier as initialization. In this method,
we first choose randomly one sample from the database, and then the most
distant sample from it is selected as root of the tree.

The hypothesis is that by choosing two, probably, very distant points at the
first level, and recursively dividing the space, the resulting subspaces will have
similar size, producing a very balanced tree.

Given a dataset D, and given p ∈ D randomly chosen, we select r as the root
of the tree, where

r = argmaxt∈D d(p, t)

Figure 3 is and example of the partition an the MDF-tree produced by a set of
points in a two dimensional space. As expected, the tree is reasonably balanced.

3.3 Median Method

The aim now is to choose a “centered” point as initialization. In this case, we
choose the point that minimizes the sum of the distance to all the others, i.e.
the set median of the training set.

Given a dataset D, we select the root of the tree r, where

r = argminp∈D

∑
t∈D

d(p, t)

An example, using the same data set than in fig. 3, can be seen in fig. 4. Note
that now the tree is very unbalanced.
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Fig. 3. Example of a space partitioning produced by a MDF-tree in a two-dimensional
space (top). Given a random object, “L”, in this example the root is the most distant
object to “L” (label “A”), and then is propagated through all the levels of the three
through the left child. The same criterion is used recursively for the propagation of the
rest of pivots. The decomposition continues until there are only one object in each leaf
node (down).
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Fig. 4. Example of a space partitioning produced by a MDF-tree in a two-dimensional
space (top). In this example the root is the set median of the set. The decomposition
continues until there are only one object in each leaf node (down).
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4 Experiments

We have carried out a series of experiments using synthetic and real data to
study the influence of the different methods for the first pivot selection in the
MDF-tree.

Two sets of databases were used in our experiments:

1. Synthetic prototype sets, generated from uniform distributions in the unit
hypercube, from dimension 2 to 20. Each point in the plot shows the result
of a experiment using 50 000 samples as training set, an 10 000 samples as
test. The Euclidean distance was used as dissimilarity measure.

2. Two string databases:
– A database of 69 069 words of an English dictionary was used. A training

set of 50 000 samples with 10 000 test samples were used for the experi-
ments. The words for the samples are randomly chosen from the entire
dictionary. In order to obtain reliable results, several experiments were
carried out, changing the value of the random seed to obtain different
set of words in each case.

– A database of 61 293 strings representing contour chains [6] of the hand-
written digits in NIST database. A training set of 10 000 samples with
1 000 test samples were used for the experiments. Several experiments
with a distinct random seed were carried out.

In both cases, the edit distance [9][16] was used as dissimilarity measure.
Edit distance between two strings is the minimum cost sequence of character
insertions, deletions and substitutions to make equal the two strings. In our
experiments the cost of apply any of the three operations are the same.

Figure 5 shows the depths of the trees using Random, Outlier and Median
initializations, for a dataset with 50 000 samples uniformly distributed points
in the unit hypercube for dimensions varying form 2 to 20. Unlike the other
initializations, the depth of the tree for the Median initialization grows quickly
with the dimension of the space. This is due to the fact that, in general, the
space around the median is usually more populated than in the other choices.

To analyze the behavior of the trees during the search, several experiments
were done. Figure 6 (left) shows the average number of distance computations
in a nearest neighbor search for the three initialization. The same datasets as
in the previous experiments were used. Figure 6 (ref) shows the time spent, in
microseconds, by each search. The time was measured on a cpu running at 2660
MHz under a Linux system.

It can be observed that, unexpectedly, in high dimensional spaces the Median
initialization (the method that obtained deepest trees) reduces significantly the
number of distance computations with respect to the classical approaches (Ran-
dom and Outlier).

Similar results have been obtained using the English dictionary and the NIST
Database. Results can be seen in tables 1, 2 and 3.
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 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2  4  6  8  10  12  14  16  18  20

tr
ee

 d
ep

th

dimension

Random
Outlier

Median

Fig. 5. Tree depths using Random, Outlier and Median initialization in the Euclidean
Space

Table 1. Tree depths using Random, Outlier and Median initializations

Random Outlier Median

English dic. 184.7 97.2 361.8

NIST 137.1 119.8 203.3
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Fig. 6. Average number of distance computations (on the left) and time (in seconds)
using Random, Outlier and Median initialization in the Euclidean Space

Table 2. Average number of distance computations using Random, Outlier and Median
initializations

Random Outlier Median

English dic. 4402.6 5324.6 3241.9

NIST 1713.8 1845.9 1501.2
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Table 3. Time (in microseconds) using Random, Outlier and Median initializations

Random Outlier Median

English dic. 16446.6 19906,4 12268.6

NIST 87769.9 95037.9 78800.6

5 Non Balanced Trees

In order to find an explanation to this result the MDF-tree was studied deeply.
Let suppose we have a very big database were a good candidate to NN is

found quickly and its distance to the query object is negligible with respect to
the radius of the nodes.

In a node we can distinguish four regions depending on two criteria:

– if we are in the left (right) node region.
– if we are in the overlapping region or not.

Let we call r the probability that a random point in the node goes to the left
child. Let we call s the probability that a point falls in the overlapping region.
We are going to assume now that this probabilities depends only on the size of
the node.

In order to check if this is assumable, for each node of some MDF-tree, we
have counted the number of points in the node and the number of points in the
left child. The trees were obtained from a database of 20 000 points uniformly
distributed in 5, 10 and 15 dimensional unit hypercube. The euclidean distance
was used as dissimilarity function. The experiments were repeated using the
Outlier and the Median initialization techniques. The results of this experiment
is shown in fig. 7. Similarly, the number of points in the node versus the number
of points in the overlapping region was represented in fig. 8. It can be seen that
the ratios are quite linear (perhaps with the exception of the last point). Then
the slope gives us the parameter r and s respectivelly. Table 4 shows their values.
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Table 4. Values of the parameters r and s

dim. param. r param. s

Outlier Median Outlier Median

5 0.65 0.94 0.67 0.20
10 0.63 0.97 0.75 0.15
15 0.65 0.97 0.81 0.15

Note that parameter r is smaller for the Outlier than for the Median initial-
ization. That means that the trees are more balanced for the Outlier than for
the Median initialization. In fact, for the Median initialization, the trees are very
unbalanced.

Note also that parameter s is smaller for the Median than for the Outlier
initialization. Assuming the distance to the NN is negligible, if a query point
falls in the overlapping region, the algorithm should search in both children,
otherwise it search only in one of them.

In this situation, the Median initialization is displacing the frontier of the
two children towards the right one and reducing the overlapping region at the
expenses of increasing the depth of the tree.

To get an idea of how efficient the effect can be, we can estimate the expected
number of distance computations.

In order to do that we need to know the following probabilities:

– Probability of being in left node but not in the overlapping region: r(1 − s)
– Probability of being in the left node and in the overlapping region: rs.
– Probability of being in the right node and in the overlapping region: (1−r)s.
– Probability of being in the right node but not in the overlapping region:

(1− r)(1 − s).

The the expected number of distance computations in a tree with n objects
(c(n)) can be expressed as:
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c(n) = r(1 − s) c(rn) + s [c(rn) + c((1− r)n)] + (1− r)(1 − s) c((1 − r)n) + 1
= (r(1 − s) + s) c(rn) + (s + (1− r)(1 − s)) c((1− r)n) + 1

and obviously, c(n) = 1 if n ≤ 1.
Table 5 shows the expected number of distance computations corresponding

to the parameters in table 4.

Table 5. Expected number of distance computations

dim. Outlier Median

5 5502 879
10 10235 2103
15 16291 2374

6 Conclusions

In this work we show that an appropriate initialization technique can lead to
significant distance computations reductions in MDF-trees based search algo-
rithms.

Surprisingly, and far from what intuitively was expected, the method that
produces a more degenerate tree is the one that computes the least number of
distances. Moreover, the reduction is more important as the dimensionality of
the data increases.

The lesson learnt from this work is that balanced trees can not be taken as a
guide to increase the performance of the algorithm. We have developed a simple
theory to explain why very unbalanced trees can lead to significant distance
computation reductions.

Many questions remains open:

– Can we devise an expression to link the reduction factor r (which is related
with the balance degree of the tree) with the overlapping factor s? This
expression will guide us to find which is the optimal relative volume of the
chidren nodes.

– In our case, we are manipulating the relative value of the children nodes just
by choosing an initial pivot. Can we propagate this idea to the selection of
pivots in all the nodes?

– Can we extrapolate this results to other tree based indexes?
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Abstract. Multiple-instance learning (MIL) deals with learning under ambigu-
ity, in which patterns to be classified are described by bags of instances. There has
been a growing interest in the design and use of MIL algorithms as it provides a
natural framework to solve a wide variety of pattern recognition problems. In this
paper, we address MIL from a view that transforms the problem into a standard
supervised learning problem via instance selection. The novelty of the proposed
approach comes from its selection strategy to identify the most representative ex-
amples in the positive and negative training bags, which is based on an effective
pairwise clustering algorithm referred to as dominant sets. Experimental results
on both standard benchmark data sets and on multi-class image classification
problems show that the proposed approach is not only highly competitive with
state-of-the-art MIL algorithms but also very robust to outliers and noise.

1 Introduction

In recent years, multiple-instance learning (MIL) [7] has emerged as a major machine
learning paradigm, which aims at classifying bags of instances with class label infor-
mation available for the bags but not necessarily for the instances. In a typical MIL
setting, a negative bag is composed of only negative instances, whereas a bag is consid-
ered positive if it contains at least one positive instance, leading to a learning problem
with ambiguously labeled data. MIL paradigm provides a natural framework to handle
many challenging problems in various domains, including drug-activity prediction [7],
document classification [1], content-based image retrieval [25], object detection [21],
image categorization [5,4], and visual tracking [2,10].

In general, MIL methods can be grouped into two main categories. The first class
of approaches, including the APR [7], DD [16], EM-DD [24] methods, uses generative
models to represent the target concept by a region in the instance feature space which
covers all the true positive instances while remaining far from every instance in the
negative bags. Alternatively, the second class of works employs discriminative learn-
ing paradigm to address the MIL problems. The methods in this group are mainly the
generalizations of the standard single-instance learning (SIL) methods to the MIL set-
ting, e.g. mi-SVM and MI-SVM [1], MI-Kernel [9], MIO [12], Citation KNN [22] and
MILBoost-NOR [21].

Recently, a new group of SVM-based methods has been proposed for MIL, namely
the DD-SVM [5], MILES [4], MILD B [13] and MILIS [8] methods, which tackles
multi-instance problems by transforming them into standard SIL problems. The basic
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idea is to embed each bag into a feature space based on a representative set of instances
selected from the training bags and to learn a classifier in this feature space. The major
difference between these methods is how they select instance prototypes, which will
be detailed in the next section. However, it should be noted here that a good set of
prototypes is vital to the success of any method.

In this paper, a new instance selection mechanism is proposed for multiple-instance
learning. The novelty comes from utilizing dominant sets [18], an effective pairwise
clustering framework, to model the distributions of negative instances and accordingly
to select a set of instance prototypes from the positive and negative training bags.
Therefore, the proposed approach is named MILDS, Multiple-Instance Learning with
instance selection via Dominant Sets. The main contributions are as follows: (i) The
constructed feature space is usually of a lower dimension compared to those of other
instance-selection based MIL approaches [5,4,8]. This is mainly due to the use of clus-
tering performed on the instances from the negative training bags. (ii) The presented
approach is highly insensitive to noise in the bag labels as the dominant sets framework
is proven to be very robust against outliers that might exist in the data. (iii) The pro-
posed binary MIL formulation can be easily generalized to solve multi-class problems
in a natural way due to the proposed cluster-based representation of data. (iv) The ex-
perimental results demonstrate that the suggested approach is highly competitive with
the state-of-the-art MIL approaches.

The remainder of the paper is organized as follows: Section 2 summarizes the pre-
vious work on instance-selection based MIL and provides background information on
the dominant sets framework. Section 3 presents the proposed MILDS algorithm. Sec-
tion 4 reports experimental results on some benchmark data sets and on multi-class
image classification problems. Finally, Section 5 concludes the paper with a summary
and possible directions for future work.

2 Background

2.1 Instance-Selection Based MIL

As mentioned in the introduction, the existing instance-selection based MIL methods,
namely DD-SVM [5], MILES [4], MILD B [13] and MILIS [8], can be differentiated
mainly by the procedures they follow in identifying the set of instance prototypes used
to map bags into a feature space. Below, we review these differences in detail.

In DD-SVM, a diverse density (DD) function [16] is used in identifying the instance
prototypes. Within each training bag, the instance having the largest DD value is cho-
sen as a prototype for the class of the bag. Then, a standard SVM in combination with
radial basis function (RBF) is trained on the corresponding embedding space. The per-
formance of DD-SVM is highly affected by the labeling noise since a negative bag close
to a positive instance drastically reduces the DD value of the instance, thus its chance
to be selected as a prototype.

In MILES, there is no explicit selection of instance prototypes. All the instances
in the training bags are employed to build a very high-dimensional feature space, and
then the instance selection is implicitly performed via learning a 1-norm SVM classifier.
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As expected, the main drawback of MILES stems from its way of constructing the em-
bedding space. Its computational load grows exponentially as the volume of the training
data increases.

In [13], an instance-selection mechanism based on a conditional probability model is
developed to identify the true positive instance in a positive bag. For each instance in a
positive bag, a decision function is formulated whose accuracy on predicting the labels
of the training bags is used to measure true positiveness of the corresponding instance.
The authors of [13] use this instance selection mechanism to devise two MIL methods,
MILD I and MILD B, for instance-level and for bag-level classification problems, re-
spectively. Here, MILD B is of our interest, which defines the instance-based feature
space by the most positive instances chosen accordingly from each positive bag, and
like DD-SVM, trains a standard SVM with the RBF kernel in that feature space.

In MILIS, instances in the negative bags are modeled as a probability distribution
function based on kernel density estimation. Initially, the most positive (i.e. the least
negative) instance and the most negative instance are selected respectively in each pos-
itive bag and each negative bag based on the distribution estimate. These instance pro-
totypes form the feature space for the bag-level embedding in which a linear SVM is
trained. To increase the robustness, once a classifier is learnt, MILIS employs an alter-
nating optimization scheme for instance selection and classifier training to update the
selected prototypes and the weights of the support vectors. As a final step, it includes
an additional feature pruning step which removes all features with small weights.

2.2 Clustering with Dominant Sets

Our instance selection strategy makes use of a pairwise clustering approach known as
dominant sets [18]. In a nut shell, the concept of a dominant set can be considered as
a generalization of a maximal clique to edge-weighted graphs. Suppose the data to be
clustered is represented in terms of their similarities by an undirected edge-weighted
graph with no self-loops G = (V, E, w), where V is the set of nodes, E ⊆ V × V is
the set of edges, and w : E → R+ is the positive weight (similarity) function. Further,
let A = [aij ] denote the n×n adjacency matrix of G where aij = w(i, j) if (i, j) ∈ E
and is 0 otherwise. A dominant set is formulated based on a recursive characterization
of the weight wS(i) of element i w.r.t. to a set of elements S (A curious reader may
refer to [18] for more details), as:

Definition 1. A nonempty subset of vertices S ⊆ V such that
∑

i∈T wT (i) > 0 for any
nonempty T ⊆ S, is said to be dominant if:

1. wS(i) > 0, for all i ∈ S,
2. wS∪{i}(i) < 0, for all i /∈ S.

The above definition of a dominant set also formalizes the notion of a cluster by ex-
pressing two basic properties: (i) elements within a cluster should be very similar (high
internal homogeneity), (ii) elements from different clusters should be highly dissimilar
(high external inhomogeneity).
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Consider the following generalization of the Motzkin-Straus program [17] to an
undirected edge-weighted graph G=(V, E, w):

maximize f(x) = xT Ax

subject to x ∈ Δ
(1)

where A is the weighted adjacency matrix of graph G, Δ={x ∈ Rn | x≥0 and eT x=1}
is the standard simplex in Rn with e being a vector of ones of appropriate dimension.
The support of x is defined as the set of indices corresponding to its positive com-
ponents, i.e. σ(x) = {i∈V | xi > 0}. The following theorem (from [18]) provides a
one-to-one relation between dominant sets and strict local maximizers of (1).

Theorem 1. If S is a dominant subset of vertices, then its weighted characteristic vec-
tor x ∈ Δ defined as:

xi =

{
wS(i)∑

j∈S wS(j) if i ∈ S

0 otherwise
(2)

is a strict local solution of (1). Conversely, if x is a strict local solution of (1), then its
support S = σ(x) is a dominant set, provided that wS∪{i}(i) �= 0 for all i /∈ S.

The cohesiveness of a dominant set (cluster) S can be measured by the value of the
objective function xT Ax. Moreover, the similarity of an element j to S can be directly
computed by (Ax)j where

(Ax)j

{
= xT Ax if j∈σ(x)
≤ xT Ax if j /∈σ(x) .

(3)

As a final remark, it should be noted that the spectral methods in [20,11] maximize
the same quadratic function in Eq. (1). However, they differ from dominant sets in their
choice of the feasible region. The solutions obtained with these methods are constrained
to lie in the sphere defined by xT x = 1 instead of the standard simplex Δ used in the
dominant sets framework. This subtle difference is crucial for our practical purposes.
First, the components of the weighted characteristic vector give us a measure of the
participation of the corresponding data points in the cluster. Second, this constraint
provides robustness against noise and outliers [18,15].

3 Proposed Method

In this section, we present a novel multiple-instance learning framework called MILDS,
which transforms a MIL problem into a SIL problem via instance selecting. Unlike the
similar approaches in [5,4,13,8], it makes use of the dominant sets clustering frame-
work [18] for instance selection to build a more effective embedding space. We first re-
strict ourselves to the two-class case. However, as will be described later in Section 3.4,
extension to multi-class MIL problems is quite straightforward.
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3.1 Notations

Let Bi = {Bi1, . . . , Bij , . . . , Bini} denote a bag of instances where Bij denotes the
jth instance in the bag, and yi ∈ {+1,−1} denote the label of bag i. For the sake of
simplicity, we will denote a positive bag as B+

i and a negative bag as B−
i . Further, let

B =
{
B+

1 , . . . , B+
m+ , B−

1 , . . . , B−
m− ,
}

denote the set of m+ positive and m− negative
training bags. Note that each bag may contain different number of instances, and each
instance may have a label which is not directly observable.

3.2 Instance Selection with Dominant Sets

Recall the two assumptions of the classical MIL formulation that a bag is positive if
it contains at least one positive instance, and all negative bags contains only negative
instances [7]. This means that positive bags may contain some instances from the neg-
ative class but there is no such ambiguity in the negative bags (provided that there is no
labeling noise). Just like in [13,8], our instance selection strategy is heavily based on
this observation. However, unlike those approaches, to select the representative set of
instances we do not explicitly estimate either a probability density function or a condi-
tional probability. Instead, we try to model the negative data by clustering the instances
in the negative bags, and then making decisions according to the distances to the ex-
tracted clusters. As will be clear throughout the paper, the dominant sets framework
provides a natural scheme to carry out these tasks in an efficient way.

Denote N= {Ii | i = 1, . . . , M} as the collection of negative instances from all of
the negative training bags, i.e. the set defined by

{
B−

ij ∈ B−
i | i = 1, . . ., m−}. Construct

the matrix A= [aij ] composed of the similarities between the negative instances as:

aij =

{
exp
(
− d(Ii,Ij)

2

2σ2

)
if i �= j

0 otherwise
(4)

where d(·, ·) is a distance measure that depends on the application and σ is a scale
parameter. In the experiments, the Euclidean distance was used.

To extract the clusters in N , the iterative peeling-off strategy suggested in [18] is
employed. In specific, at each iteration, a dominant set (a cluster) is found by solving
the quadratic program in (1). Then, the instances in the cluster are removed from the
similarity graph, and this process is reiterated on the remaining instances. In theory, the
clustering process stops when all the instances are covered, but in dealing with large and
noisy data sets, this is not very practical. Hence, in our experiments, an upper bound
on the number of extracted clusters was introduced that at most m− (i.e. the number
of negative bags) most coherent dominant sets were selected according to internal co-
herency values measured by the corresponding values of the objective function. Notice
that, in this way, instance pruning is carried our in an early stage. This is another fun-
damental point which distinguishes our work from the approaches in [4,8] as these two
methods perform instance pruning implicitly in the SVM training step. Moreover, this
provides robustness to noise and outliers.

Suppose C= {C1, . . . , Ck} denotes the set of clusters extracted from the collection
of negative training instances N . A representative set for N is found by selecting one
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prototype from each cluster Ci ∈ C. Recall that each cluster Ci is associated with a char-
acteristic vector xCi whose components give us a measure of the participation of the
corresponding instances in the cluster [18]. Hence, the instance prototype z−i represent-
ing the cluster Ci is identified based on the corresponding characteristic vector xCi as:

z−i =Ij∗ with j∗ = arg max
j∈σ(xCi )

xCi

j . (5)

In selecting the representative instances for the positive class, however, the suggested
clustering-based selection strategy makes no sense on the collection of positive bags
because the bags may contain some negative instances which may collectively form one
or more clusters, thus if applied, the procedure may result in some instance prototypes
belonging to the negative class. Hence, for selecting prototypes for the positive class, a
different strategy is employed. In particular, the most positive instance in each positive
bag is identified according to its relationship to the negative training data.

For a positive bag B+
i =

{
B+

i1, . . . , B
+

in+
i

}
, let A† be an n+

i ×|N | matrix composed

of the similarities between the instances in B+
i and the negative training instances in N ,

computed like in (4). The true positive (i.e. the least negative) instance in B+
i , denoted

with z+
i , is picked as the instance which is the most distant from the extracted negative

clusters in C as follows:

z+
i =B+

ij∗ with j∗= arg min
j=1,...,n+

i

∑
�=1,...,k(A†xC�)j×|C�|∑

�=1,...,k |C�|
(6)

where the term (A†xC�)j is the weighted similarity of the instance B+
ij to the cluster

C�, and |·| denotes the cardinality of the set1. Intuitively, in (6), larger clusters have
more significance in the final decision than the smaller ones.

To illustrate the proposed selection process, consider the two-dimensional synthetic
data given in Fig. 1(a). It contains 8 positive bags and 8 negative bags, each having at
least 8 and at most 10 instances. Each instance is randomly drawn from one of the five
normal distributions: N ([4, 8]T , I), N ([0, 4]T , I), N ([−1, 12]T , I), N ([−4,−2]T , I)
and N ([6, 2]T , I) with I denoting the identity matrix. A bag is labeled positive if it
contains at least one instance from the first two distributions. In Fig. 1(a), positive and
negative instances are respectively represented by crosses and circles, and drawn with
colors showing the labels of the bags they belong: blue for positive and red for nega-
tive bags. The result of the proposed instance selection method is given in Fig. 1(b).
The extracted negative clusters are shown in different colors, and the selected instance
prototypes are indicated by squares. Notice that the dominant sets framework correctly
captured the multi-modality of the negative class, and the prototypes selected from the
extracted clusters are all close to the centers of the given negative distributions. More-
over, the true positive instances in the positive bags were successfully identified.

1 Note that since the zero-components of xC� have no effect on estimating z+
i s, in practice

highly reduced versions of A†s are utilized in the computations.
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Fig. 1. Synthetic data set (best viewed in color). (a) Raw data. (b) The instance selection process.
See text for details.

3.3 Classification

Wecan nowdescribeourclassification scheme.SupposeZ=
{
z−1 , . . . , z−k , z+

1 , . . . , z+
m+

}
denote the set of selected instance prototypes, where k is the number of extracted nega-
tive clusters, m+ is the number of positive training bags2. A similarity measure s(z, Bi)
between a bag Bi and an instance prototype z is defined by

s(z, Bi) = max
Bij∈Bi

exp

(
−d(z, Bij)2

2σ2

)
(7)

which calculates the similarity between z and its nearest neighbor in Bi. Then, we
define an embedding function ϕ which maps a bag B to a (k+m+)-dimensional vector
space by considering the similarities to the instance prototypes:

ϕ(B)=
[
s(z−1 , B), . . . , s(z−k , B), s(z+

1 , B), . . . , s(z+
m+ , B)

]T
(8)

For classification, the embedding in (8) can be used to convert the MIL problem into a
SIL problem. In solving the SIL counterpart, we choose to train a standard linear SVM
which has a single regularization parameter C needed to be tuned. In the end, we come
up with a linear classifier to classify a test bag B as:

f(B;w) = wT ϕ(B) + b (9)

where w ∈ R|Z| is the weight vector, b is the bias term. The label of a test bag B is
simply estimated by:

y(B) = sign(f(B;w)) (10)

The outline of the proposed MIL framework is summarized in Algorithm 1.

2 Note that one can always select more than one instance from each cluster or each positive bag.
A detailed analysis of this issue on the performance will be reported in a longer version.
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Algorithm 1. Summary of the proposed MILDS framework.

Input : Training bags
{
B+

1 , . . . , B+
m+ , B−

1 , . . . , B−
m−
}

1 Apply dominant sets to cluster all the instances in the negative training bags
2 Select k (≤m−) instance prototypes from the extracted k negative clusters via Eq. (5)
3 Select m+ instance prototypes from the positive bags via Eq. (6)
4 Form the instance-based embedding in Eq. (8) using the selected prototypes
5 Train a linear SVM classifier based on the constructed feature space

Output: The set of selected instance prototypes Z and the SVM classifier f(B;w) with
weight w

3.4 Extension to Multi-class MIL

The proposed approach can be straightforwardly extended to solve multi-class MIL
problems by employing a one-vs-rest strategy. In particular, one can train c binary clas-
sifiers, one for each class against all other classes. Then, a test bag can be classified
according to the classifier with the highest decision value. Note that an implementation
of this idea forms a different instance-based embedding for each binary subproblem.
Here, we propose a second type of embedding which results from using a set of repre-
sentative instances common for all classes, as:

φ(B) = [s(z1
1 , B), s(z1

2 , B), . . . , s(z1
m1

, B),
s(z2

1 , B), s(z2
2 , B), . . . , s(z2

m2
, B),

...
s(zc

1, B), s(zc
2, B), . . . , s(zc

mc
, B) ]

(11)

where zk
i is the ith instance prototype selected from class k (note that the number of

prototypes may differ from class to class). In this case, training data is kept the same for
all binary subproblems, only the labels differ, and this makes the training phase much
more efficient. This second approach is denoted with milDS to distinguish it with the
naive multi-class extension of MILDS.

In milDS, instance selection is performed as follows. Let Ik=
{
Ik
i | i = 1, . . . , Mk

}
denote the collection of instances in bags belonging to class k, i.e. the set defined by
{Bij∈Bi | for all Bi∈B with y(Bi)=k}. First, for each class k, the pairwise similarity
matrix Ak of instancesIk is formed, and accordingly a set of clustersCk=

{
Ck

1 , . . . ,Ck
mk

}
is extracted via dominant sets framework3. Then, an instance prototype from each cluster
Ck

i is identified according to:

zk
i =Ik

j∗ with j∗ = arg max
j∈σ(xCk

i )

x
Ck

i

j /βik(j) (12)

where the function βik(j) measures the similarity of jth instance in Ck
i to all the re-

maining classes. The basic idea is to select the most representative element in Ck
i which

is also quite dissimilar to the remaining training data from other classes. However, here
we make a simplification and estimate βik(j) by considering only the most closest class:

3 In the experiments, for each class k, we extract at most mk clusters that is equal to the number
of training bags belonging to class k.
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βik(j)= max
m=1,...,c
m �=k

∑
Cm

� ∈Cm(AkmxCm
� )j×|Cm

� |∑
Cm

� ∈Cm |Cm
� | (13)

with Akm denoting the Mk×Mm matrix of similarities between the instances in Ik

and the instances in Im.
The embedding procedure described above gives rise to a feature space whose di-

mensionality is at most
∑

k mk, i.e. the sum of the total number of clusters extracted
for each class.

3.5 Computational Complexity

From a computational point of view, the most time consuming step of the proposed
MILDS method and its multi-class extensions is the calculation of pairwise distances,
which is also the case for [4,13,8]. In addition, there is the cost of clustering negative
data with dominant sets. In this matter, a dominant set can be computed in quadratic
time using the approach in [19]. An important point here is that the size of the input
graphs becomes smaller and smaller at each iteration of the employed peeling off strat-
egy, and this further introduces an increase in the efficiency of the clustering step.

4 Experimental Results

In this section, we present two groups of experiments to evaluate the proposed MILDS
algorithm. First, we carry out a thorough analysis on some standard MIL benchmark
data sets. Following that, we investigate image classification by casting it as a multi-
class MIL problem. In the experiments, LIBSVM [3] package was used for training
linear SVMs. In addition to the SVM regularization parameter C, our algorithm has
only a single scale parameter σ that needs to be tuned. The best values for C and σ
are selected by using n-fold cross validation from the sets {2−10, 2−9, . . . , 210} and
linspace(0.05μ, μ, 20), respectively, with μ being the mean distance between pair of
instances in the training data and linspace(a, b, n) denoting the set n linearly spaced
numbers between and including a and b.

4.1 Benchmark Data Sets

We evaluate our MILDS method on five popular MIL benchmark data sets used in many
multiple-instance learning studies, namely Musk1, Musk2, Elephant, Fox and Tiger. In
Musk1 and Musk2, the task is to predict drug activity from structural information. Each
drug molecule is considered as a bag in which the instances represents different struc-
tural configurations of the molecule. In Elephant, Fox and Tiger, the goal is to differen-
tiate images containing elephants, tigers and foxes from those that do not, respectively.
Each image is considered as a bag, and each region of interest within the image as an
instance. The details of the data sets are given in Table 1.

For experimental evaluation, we use the most common setting, 10 times 10-fold cross
validation (CV). That is, we report the classification accuracies averaged over 10 runs
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Table 1. Information about the MIL benchmark data sets

bags avg.
data set pos./neg. inst./bag dim
Musk1 47/45 5.17 166
Musk2 39/63 64.69 166
Elephant 100/100 6.96 230
Fox 100/100 6.60 230
Tiger 100/100 6.10 230

where the parameter selection is carried our by using 10-fold cross validation. Our
results are shown in Table 2 together with those of 12 other MIL algorithms in the
literature [13,8,4,5,10,12,14,1,24]. All reported results are also based on 10-fold CV
averaged over 10 runs4, with the exception of MIForest, which is over 5 runs, and
MILIS and MIO, which are over 15 runs. The results demonstrate that our proposed
approach is competitive with and often better than the state-of-the-art MIL methods.
In three out of five MIL benchmark data sets, it outperforms several MIL approaches.
However, it is more important to note that it gives the best performance among the
instance-selection based MIL approaches.

Table 2. Classification accuracies of various MIL algorithms on standard benchmark data sets.
The best performances are indicated in bold typeface.

Algorithm Musk1 Musk2 Elephant Fox Tiger
MILDS 90.9 86.1 84.8 64.3 81.5
MILD B [13] 88.3 86.8 82.9 55.0 75.8
MILIS [8] 88.6 91.1 n/a n/a n/a
MILES [4] 83.3 91.6 84.1 63.0 80.7
DD-SVM [5] 85.8 91.3 83.5 56.6 77.2
MILD I [13] 89.9 88.7 83.2 49.1 73.4
MIForest [10] 85.0 82.0 84.0 64.0 82.0
MIO [12] 88.3 87.7 n/a n/a n/a
Ins-KI-SVM [14] 84.0 84.4 83.5 63.4 82.9
Bag-KI-SVM [14] 88.0 82.0 84.5 60.5 85.0
mi-SVM [1] 87.4 83.6 82.2 58.2 78.9
MI-SVM [1] 77.9 84.3 81.4 59.4 84.0
EM-DD [24] 84.8 84.9 78.3 56.1 72.1

In Table 3, for each instance-selection based MIL approach, we report the average
dimensions of the corresponding embedding spaces. MILES has the highest dimension
since it utilizes all the training instances in the mapping. On Musk2 and Fox, our MILDS
approach does not offer any advantage in terms of dimension reduction, but for the
other data sets, it decreases the dimension ∼ 6−23%, as compared to MILIS and DD-
SVM. Among all, MILD B has the lowest dimension as it only uses positive instance

4 Note that the results of MILD B and MILD I on Musk1 and Musk2 are different than re-
ported in [13]. This is because, for a complete comparison, we downloaded the source codes
of MILD B and MILD I available at the authors’ webpage and repeated the experiments on
all the five data sets with our setting of 10 times 10-fold CV.
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Table 3. The dimensions of the embedding spaces averaged over 10 runs of 10-fold CV

Algorithm Musk1 Musk2 Elephant Fox Tiger
MILDS 75.0 92.0 169.4 180.0 139.2
MILD B 42.4 35.2 90.0 90.0 90.0
MILIS 83.0 92.0 180.0 180.0 180.0
MILES 429.4 5943.8 1251.9 1188.0 1098.0
DD-SVM 83.0 92.0 180.0 180.0 180.0

prototypes in its embedding scheme. However, as can be seen in Table 2, neglecting the
negative prototypes results in a poor performance compared to the other approaches.

4.2 Image Classification

The multi-class extensions of our approach have been investigated on image classifica-
tion problems. In specific, we used the COREL data set which contains 2000 natural
images from 20 diverse categories, each having 100 examples. Each image is considered
as a bag of instances with instances corresponding to regions of interest obtained via
segmentation. Each region is represented by a 9-dimensional feature vector describing
shape and local image characteristics (refer to [5,4] for details). Some example images
from the data set are given in Fig. 2.

In our evaluation, we used the same experimental setup described in [4], and per-
formed two groups of experiments, which are referred to as 1000-Image and 2000-
Image, respectively. In 1000-Image, only the first ten categories are considered whereas
in 2000-Image, all the twenty categories in the data set are employed. On both exper-
iments, five times two-fold CV is performed. The average categorization accuracies
are presented in Table 4. As can be seen from the results, the performance of MILDS
and milDS are competitive with the state-of-the-art MIL approaches. Especially for the
larger 2000-Image data set, our milDS method gives the best result.

Africa (4.84) Beach (3.54) Historical building (3.10) Buses (7.59) Dinosaurs (2.00)

Elephants (3.02) Flowers (4.46) Horses (3.89) Mountains (3.38) Food (7.24)

Dogs (3.80) Lizards (2.80) Fashion models (5.19) Sunset scenes (3.52) Cars (4.93)

Waterfalls (2.56) Antique furniture (2.30) Battle ships (4.32) Skiing (3.34) Desserts (3.65)

Fig. 2. Example images randomly drawn from the COREL data set. For each category, the average
number of regions per image is given inside the parentheses.
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Table 4. Classification accuracies of various MIL algorithms on COREL 1000-Image and 2000-
Image data sets. The best performances are indicated in bold typeface.

Algorithm 1000-Image 2000-Image
milDS 82.2 70.6
MILDS 83.0 69.4
MILD B [13] 79.6 67.7
MILIS [8] 83.8 70.1
MILES [4] 82.6 68.7
DD-SVM [5] 81.5 67.5
MIForest [10] 59.0 66.0
MissSVM [26] 78.0 65.2
mi-SVM [1] 76.4 53.7
MI-SVM [1] 74.7 54.6

Recall that in MILDS, each classifier trained for distinguishing a specific category
from the rest is built upon a different embedding space, or in other words, the set of
selected prototypes varies in every subproblem. For each subproblem in 1000-Image,
Fig. 3 shows the instance prototype identified in one of the training images from the tar-
get class. Notice that the prototypes are selected from the discriminative regions for that
class. On the other hand, in milDS, the set of selected instance prototypes is the same
for all the subproblems. This second selection strategy provides a rich way to include
contextual relationships in representing visual categories. In some respects, it resembles
the vocabulary generation step of the bag-of-words approach [6]. The subtle difference
is that a similarity-based mapping is employed here instead of a frequency-based one.
Fig. 4 shows five prototypes among the full set of representative instances selected for
the Horse and Battle ships categories. Observe that for the Horse category, selected
prototypes include not just horses but also the regions corresponding to grass regions.
Likewise, for the Battle ships category, there are additional prototypes representing sky
and sea regions.

4.3 Sensitivity to Labeling Noise

Lastly, we analyzed the sensitivity to labeling noise. For that purpose, we repeated the
experiment in [4] which involves distinguishing Historical buildings from Horses in
COREL data set. In this experiment, we compared our method with MILES, MILIS,
MILD B with varying degrees of noise levels where the results are based on five times
2-fold CV. For each noise level, d% of positive and d% of negative images are randomly
selected from the training set, and then their labels are changed to form the noisy labels.
Fig. 5 shows the average classification accuracies. When the level of labeling noise
is low (d≤5%), there is no considerable difference in the performances. As the noise
level increases, the performance of MILIS degrades. MILES gives comparable results
to MILDS and MILD B for the noise levels up to d≤25%, but gives relatively poor
outcomes afterwards. Overall, MILDS is the most robust MIL algorithm to labeling
noise among all the tested MIL algorithms. Its performance remains almost the same
over all levels of the labeling noise. This is expected, since dominant sets is known to
be quite robust to outliers [18,15].
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Africa Beach Historical building Buses Dinosaurs

Elephants Flowers Horses Mountains Food

Fig. 3. Sample instance prototypes selected by the MILDS algorithm. For each image category,
the first row shows a sample training image from that category, and the bottom row illustrates the
selected prototype region (shown in white) on the corresponding segmentation map.

Fig. 4. Sample instance prototypes selected by the milDS algorithm for the Horse and the Battle
ships categories. The leftmost columns are the prototypes. The rightmost three columns show
other sample regions from the corresponding extracted clusters. The regions in each cluster share
similar visual characteristics.
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Fig. 5. Sensitivity of various MIL algorithms to labeling noise. MILDS produces the most robust
results.

5 Summary and Future Work

In this paper, we proposed an effective MIL scheme, MILDS, which offers a new solu-
tion to select a set of instance prototypes, for transforming a given MIL problem into
a standard SIL problem. This instance selection approach enables us to successfully
identify the most representative examples in the positive and negative training bags. Its
success lies in the use of dominant sets pairwise clustering framework. Our empirical
results show that the proposed algorithm is competitive with state-of-the-art MIL meth-
ods and also robust to labeling noise. As a future work, we plan to extend our approach
to multi-instance multi-label learning setting [27,23].
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Abstract. We study the problem of efficiently clustering protein se-
quences in a limited information setting. We assume that we do not
know the distances between the sequences in advance, and must query
them during the execution of the algorithm. Our goal is to find an ac-
curate clustering using few queries. We model the problem as a point
set S with an unknown metric d on S, and assume that we have access
to one versus all distance queries that given a point s ∈ S return the
distances between s and all other points. Our one versus all query rep-
resents an efficient sequence database search program such as BLAST,
which compares an input sequence to an entire data set. Given a natural
assumption about the approximation stability of the min-sum objective
function for clustering, we design a provably accurate clustering algo-
rithm that uses few one versus all queries. In our empirical study we
show that our method compares favorably to well-established cluster-
ing algorithms when we compare computationally derived clusterings to
gold-standard manual classifications.

1 Introduction

Biology is an information-driven science, and the size of available data continues to
expand at a remarkable rate. The growth of biological sequence databases has been
particularly impressive. For example, the size of GenBank, a biological sequence
repository, has doubled every 18 months from 1982 to 2007. It has become im-
portant to develop computational techniques that can handle such large amounts
of data. Clustering is very useful for exploring relationships between protein se-
quences. However, most clustering algorithms require distances between all pairs
of points as input, which is infeasible to obtain for very large protein sequence data
sets. Even with a one versus all distance query such as BLAST (Basic Local Align-
ment Search Tool) [AGM+90], which efficiently compares a sequence to an entire
database of sequences, itmaynot be possible to use itn times to construct the entire
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pairwisedistancematrix,wheren is the size of thedata set. In thisworkwepresenta
clustering algorithmthat gives an accurate clustering using onlyO(k log k) queries,
where k is the number of clusters.

We analyze the correctness of our algorithm under a natural assumption about
the data, namely the (c, ε) approximation stability property of [BBG09]. Balcan
et al. assume that there is some relevant “target” clustering CT , and optimizing
a particular objective function for clustering (such as min-sum) gives cluster-
ings that are structurally close to CT . More precisely, they assume that any c-
approximation of the objective is ε-close to CT , where the distance between two
clusterings is the fraction of misclassified points under the optimum matching
between the two sets of clusters. Our contribution is designing an algorithm that
given the (c, ε)-property for the min-sum objective produces an accurate clus-
tering using only O(k log k) one versus all distance queries, and has a runtime
of O(k log(k)n log(n)). We conduct an empirical study that compares compu-
tationally derived clusterings to those given by gold-standard classifications of
protein evolutionary relatedness. We show that our method compares favorably
to well-established clustering algorithms in terms of accuracy. Moreover, our al-
gorithm easily scales to massive data sets that cannot be handled by traditional
algorithms.

The algorithm presented here is related to the one presented in [VBR+10].
The Landmark-Clustering algorithm presented there gives an accurate clustering
if the instance satisfies the (c, ε)-property for the k-median objective. However, if
the property is satisfied for the min-sum objective the structure of the clustering
instance is quite different, and the algorithm given in [VBR+10] fails to find an
accurate clustering in such cases. Indeed, the analysis presented here is also quite
different. The min-sum objective is also considerably harder to approximate.
For k-median the best approximation guarantee is (3 + ε) given by [AGK+04].
For the min-sum objective when the number of clusters is arbitrary there is
an O(δ−1 log1+δ n)-approximation algorithm with running time nO(1/δ) for any
δ > 0 due to [BCR01]. In addition, min-sum clustering satisfies the consistency
property of Kleinberg [Kle03, ZBD09], while k-median does not [Kle03]. The
min-sum objective is also more flexible because the optimum clustering is not
always a Voronoi decomposition (unlike the optimum k-median clustering).

There are also several other clustering algorithms that are applicable in our
limited information setting [AV07, AJM09, MOP01, CS07]. However, because
all of these methods seek to approximate an objective function they will not
necessarily produce an accurate clustering in our model if the (c, ε)-property
holds for values of c for which finding a c-approximation is NP-hard. Other than
[VBR+10] we are not aware of any results providing both provably accurate
algorithms and strong query complexity guarantees in such a model.

2 Preliminaries

Given a metric space M = (X, d) with point set X , an unknown distance function
d satisfying the triangle inequality, and a set of points S ⊆ X , we would like to
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find a k-clustering C that partitions the points in S into k sets C1, . . . , Ck by
using one versus all distance queries.

The min-sum objective function for clustering is to minimize
Φ(C) =

∑k
i=1

∑
x,y∈Ci

d(x, y). We reduce the min-sum clustering problem to
the related balanced k-median problem. The balanced k-median objective func-
tion seeks to minimize Ψ(C) =

∑k
i=1 |Ci|

∑
x∈Ci

d(x, ci), where ci is the me-
dian of cluster Ci, which is the point y ∈ Ci that minimizes

∑
x∈Ci

d(x, y). As
pointed out in [BCR01], in metric spaces the two objective functions are related
to within a factor of 2: Ψ(C)/2 ≤ Φ(C) ≤ Ψ(C). For any objective function Ω
we use OPTΩ to denote its optimum value.

In our analysis we assume that S satisfies the (c, ε)-property of [BBG09] for
the min-sum and balanced k-median objective functions. To formalize the (c, ε)-
property we need to define a notion of distance between two k-clusterings C =
{C1, . . . , Ck} and C′ = {C′

1, . . . , C
′
k}. As in [BBG09], we define the distance

between C and C′ as the fraction of points on which they disagree under the
optimal matching of clusters in C to clusters in C′:

dist(C, C′) = min
σ∈Sk

1
n

k∑
i=1

|Ci − C′
σ(i)|,

where Sk is the set of bijections σ: {1, . . . , k} → {1, . . . , k}. Two clusterings C
and C′ are said to be ε-close if dist(C, C′) < ε.

We assume that there exists some unknown relevant “target” clustering CT

and given a proposed clustering C we define the error of C with respect to CT as
dist(C, CT ). Our goal is to find a clustering of low error. The (c, ε) approximation
stability property is defined as follows.

Definition 1. We say that the instance (S, d) satisfies the (c, ε)-property for
objective function Ω with respect to the target clustering CT if any clustering
of S that approximates OPTΩ within a factor of c is ε-close to CT , that is,
Ω(C) ≤ c · OPTΩ ⇒ dist(C, CT ) < ε.

We note that because any (1 + α)-approximation of the balanced k-median ob-
jective is a 2(1+α)-approximation of the min-sum objective, it follows that if the
clustering instance satisfies the (2(1+α), ε)-property for the min-sum objective,
then it satisfies the (1 + α, ε)-property for balanced k-median.

3 Algorithm Overview

In this section we present a clustering algorithm that given the (1+α, ε)-property
for the balanced k-median objective finds an accurate clustering using few dis-
tance queries. Our algorithm is outlined in Algorithm 1 (with some implementa-
tion details omitted). We start by uniformly at random choosing n′ points that
we call landmarks, where n′ is an appropriate number. For each landmark that we
choose we use a one versus all query to get the distances between this landmark
and all other points. These are the only distances used by our procedure.
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Our algorithm then expands a ball Bl around each landmark l one point at
a time. In each iteration we check whether some ball Bl∗ passes the test in line
7. Our test considers the size of the ball and its radius, and checks whether
their product is greater than the threshold T . If this is the case, we consider all
balls that overlap Bl∗ on any points, and compute a cluster that contains all the
points in these balls. Points and landmarks in the cluster are then removed from
further consideration.

Algorithm 1. Landmark-Clustering-Min-Sum(S, d, k, n′, T )
1: choose a set of landmarks L of size n′ uniformly at random from S;
2: i = 1, r = 0;
3: while i ≤ k do
4: for each l ∈ L do
5: Bl = {s ∈ S | d(s, l) ≤ r};
6: end for
7: if ∃l∗ ∈ L : |Bl∗ | · r > T then
8: L′ = {l ∈ L : Bl ∩ Bl∗ �= ∅};
9: Ci = {s ∈ S : s ∈ Bl and l ∈ L′};

10: remove points in Ci from consideration;
11: i = i + 1;
12: end if
13: increment r to the next relevant distance;
14: end while
15: return C = {C1, . . . Ck};

A complete description of this algorithm can be found in the next section. We
now present our theoretical guarantee for Algorithm 1.

Theorem 1. Given a metric space M = (X, d), where d is unknown, and a
set of points S, if the instance (S, d) satisfies the (1 + α, ε)-property for the
balanced-k-median objective function, we are given the optimum objective value
OPT, and each cluster in the target clustering CT has size at least (6+240/α)εn,
then Landmark-Clustering-Min-Sum(S, d, k, n′, αOPT

40εn ) outputs a clustering that
is O(ε/α)-close to CT with probability at least 1 − δ. The algorithm uses n′ =

1
(3+120/α)ε ln k

δ one versus all distance queries, and has a runtime of O(n′n log n).

We note that n′ = O(k ln k
δ ) if the sizes of the target clusters are balanced. In

addition, if we do not know the value of OPT, we can still find an accurate
clustering by running Algorithm 1 from line 2 with increasing estimates of T
until enough points are clustered. Theorem 2 states that we need to run the
algorithm n′n2 times to find a provably accurate clustering in this setting, but
in practice much fewer iterations are sufficient if we use larger increments of T . It
is not necessary to recompute the landmarks, so the number of distance queries
that are required remains the same. We next give some high-level intuition for
how our procedures work.

Given our approximation stability assumption, the target clustering must have
the structure shown in Figure 1. Each target cluster Ci has a “core” of well-
separated points, where any two points in the cluster core are closer than a
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Fig. 1. Cluster cores C1, C2 and C3 are shown with diameters d1, d2 and d3, respec-
tively. The diameters of the cluster cores are inversely proportional to their sizes.

certain distance di to each other, and any point in a different core is farther
than cdi, for some constant c. Moreover, the diameters of the cluster cores are
inversely proportional to the cluster sizes: there is some constant θ such that
|Ci| ·di = θ for each cluster Ci. Given this structure, it is possible to classify the
points in the cluster cores correctly if we extract the smaller diameter clusters
first. In the example in Figure 1, we can extract C1, followed by C2 and C3 if
we choose the threshold T correctly and we have selected a landmark from each
cluster core. However, if we wait until some ball contains all of C3, C1 and C2

may be merged.

4 Algorithm Analysis

In this section we give a complete description of our algorithm and present
its formal analysis. We describe the structure of the clustering instance that
is implied by our approximation stability assumption, and give the proof of
Theorem 1. We also state and prove Theorem 2, which concerns what happens
when we do not know the optimum objective value OPT and must estimate one
of the parameters of our algorithm.

4.1 Algorithm Description

A detailed description of our algorithm is given in Algorithm 2. In order to ef-
ficiently expand a ball around each landmark, we first sort all landmark-point
pairs (l, s) by d(l, s) (not shown). We then consider these pairs in order of in-
creasing distance (line 7), skipping pairs where l or s have already been clustered;
the clustered points are maintained in the set S̄.

In each iteration we check whether some ball Bl∗ passes the test in line 19. Our
actual test, which is slightly different than the one presented earlier, considers
the size of the ball and the next largest landmark-point distance (denoted by r2),
and checks whether their product is greater than the threshold T . If this is the
case, we consider all balls that overlap Bl∗ on any points, and compute a cluster
that contains all the points in these balls. Points and landmarks in the cluster
are then removed from further consideration by adding the clustered points to
S̄, and removing the clustered points from any ball.
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Our procedure terminates once we find k clusters. If we reach the final
landmark-point pair, we stop and report the remaining unclustered points as
part of the same cluster (line 12). If the algorithm terminates without parti-
tioning all the points, we assign each remaining point to the cluster containing
the closest clustered landmark (not shown). In our analysis we show that if the
clustering instance satisfies the (1 + α, ε)-property for the balanced k-median
objective function, our procedure will output exactly k clusters.

The most time-consuming part of our algorithm is sorting all landmark-points
pairs, which takes O(|L|n log n), where n is the size of the data set and L is
the set of landmarks. With a simple implementation that uses a hashed set
to store the points in each ball, the total cost of computing the clusters and
removing clustered points from active balls is at most O(|L|n) each. All other
operations take asymptotically less time, so the overall runtime of our procedure
is O(|L|n log n).

Algorithm 2. Landmark-Clustering-Min-Sum(S, d, k, n′, T )
1: choose a set of landmarks L of size n′ uniformly at random from S;
2: for each l ∈ L do
3: Bl = ∅;
4: end for
5: i = 1, S̄ = ∅;
6: while i ≤ k do
7: (l, s) = GetNextActivePair();
8: r1 = d(l, s);
9: if ((l′, s′) = PeekNextActivePair()) ! = null then

10: r2 = d(l′, s′);
11: else
12: Ci = S − S̄;
13: break;
14: end if
15: Bl = Bl + {s};
16: if r1 == r2 then
17: continue;
18: end if
19: while ∃l ∈ L − S̄ : |Bl| > T/r2 and i ≤ k do
20: l∗ = argmaxl∈L−S̄|Bl|;
21: L′ = {l ∈ L − S̄ : Bl ∩ Bl∗ �= ∅};
22: Ci = {s ∈ S : s ∈ Bl and l ∈ L′};
23: for each s ∈ Ci do
24: S̄ = S̄ + {s};
25: for each l ∈ L do
26: Bl = Bl − {s};
27: end for
28: end for
29: i = i + 1;
30: end while
31: end while
32: return C = {C1, . . . Ck};
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4.2 Structure of the Clustering Instance

We next describe the structure of the clustering instance that is implied by
our approximation stability assumption. We denote by C∗ = {C∗

1 , . . . , C∗
k}

the optimal balanced-k-median clustering with objective value OPT=Ψ(C∗).
For each cluster C∗

i , let c∗i be the median point in the cluster. For x ∈ C∗
i ,

define w(x) = |C∗
i |d(x, c∗i ) and let w = avgxw(x) = OPT

n . Define w2(x) =
minj �=i|C∗

j |d(x, c∗j ).
It is proved in [BBG09] that if the instance satisfies the (1+α, ε)-property for

the balanced k-median objective function and each cluster in C∗ has size at least
max(6, 6/α) · εn, then at most 2ε-fraction of points x ∈ S have w2(x) < αw

4ε . In
addition, by definition of the average weight w at most 120ε/α-fraction of points
x ∈ S have w(x) > αw

120ε .
We call point x good if both w(x) ≤ αw

120ε and w2(x) ≥ αw
4ε , else x is called

bad. Let Xi be the good points in the optimal cluster C∗
i , and let B = S \∪Xi be

the bad points. Lemma 1, which is similar to Lemma 14 of [BBG09], proves that
the optimum balanced k-median clustering must have the following structure:

1. For all x, y in the same Xi, we have d(x, y) ≤ αw
60ε|C∗

i |
.

2. For x ∈ Xi and y ∈ Xj �=i, d(x, y) > αw
5ε / min(|C∗

i |, |C∗
j |).

3. The number of bad points is at most b = (2 + 120/α)εn.

4.3 Proof of Theorem 1 and Additional Analysis

We next present the proof of Theorem 1. We give an outline of our arguments,
which is followed by the complete proof. We also state and prove Theorem 2.

Proof Outline. We first give an outline of our proof of Theorem 1. Our al-
gorithm expands a ball around each landmark, one point at a time, until some
ball is large enough. We use r1 to refer to the current radius of the balls, and
r2 to refer to the next relevant radius (next largest landmark-point distance).
To pass the test in line 19, a ball must satisfy |Bl| > T/r2. We choose T such
that by the time a ball satisfies the conditional, it must overlap some good set
Xi. Moreover, at this time the radius must be large enough for Xi to be entirely
contained in some ball; Xi will therefore be part of the cluster computed in line
22. However, the radius is too small for a single ball to overlap different good
sets and for two balls overlapping different good sets to share any points. There-
fore the computed cluster cannot contain points from any other good set. Points
and landmarks in the cluster are then removed from further consideration. The
same argument can then be applied again to show that each cluster output by
the algorithm entirely contains a single good set. Thus the clustering output by
the algorithm agrees with C∗ on all the good points, so it must be closer than
b + ε = O(ε/α) to CT .

Complete Proof. We next give a detailed proof of Theorem 1.
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Proof. Since each cluster in the target clustering has more than (6 + 240/α)εn
points, and the optimal balanced-k-median clustering C∗ can differ from the
target clustering by fewer than εn points, each cluster in C∗ must have more than
(5+240/α)εn points. Moreover, by Lemma 1 we may have at most (2+120/α)εn
bad points, and hence each |Xi| = |C∗

i \B| > (3+120/α)εn ≥ (2+120/α)εn+2 =
b + 2. We will use smin to refer to the (3 + 120/α)εn quantity.

Our argument assumes that we have chosen at least one landmark from each
good set Xi. Lemma 2 argues that after selecting n′ = n

smin
ln k

δ = 1
(3+120/α)ε ln

k
δ

landmarks the probability of this happening is at least 1 − δ. Moreover, if the
target clusters are balanced in size: maxC∈CT |C|/ minC∈CT |C| < c for some
constant c, because the size of each good set is at least half the size of the
corresponding target cluster, it must be the case that 2sminc ·k ≥ n, so n/smin =
O(k).

Suppose that we order the clusters of C∗ such that |C∗
1 | ≥ |C∗

2 | ≥ . . . |C∗
k |, and

let ni = |C∗
i |. Define di = αw

60ε|C∗
i |

and recall that maxx,y∈Xi d(x, y) ≤ di. Note
that because there is a landmark in each good set Xi, for radius r ≥ di there
exists some ball containing all of Xi. We use Bl(r) to denote a ball of radius r
around landmark l: Bl(r) : {s ∈ S | d(s, l) ≤ r}.

Applying Lemma 3 with all the clusters in C∗, we can see that as long as
r ≤ 3d1, a ball cannot contain points from more than one good set and balls
overlapping different good sets cannot share any points. Also, when r ≤ 3d1 and
r < di, a ball Bl(r) containing points from Xi does not satisfy |Bl(r)| ≥ T/r. To
see this, consider that for r ≤ 3d1 any ball containing points from Xi has size at
most |C∗

i | + b < 3ni

2 ; for r < di the size bound T/r > T/di = αw
40ε/

αw
60ε|C∗

i |
= 3ni

2 .
Finally, when r = 3d1 some ball Bl(r) containing all of X1 does satisfy |Bl(r)| ≥
T/r. For r = 3d1 there is some ball containing all of X1, which must have size
at least |C∗

1 | − b ≥ n1/2. For r = 3d1 the size bound T/r = n1/2, so this ball
is large enough to satisfy this conditional. Moreover, for r ≤ 3d1 the size bound
T/r ≥ n1/2. Therefore a ball containing only bad points cannot pass our test
for r ≤ 3d1 because the number of bad points is at most b < n1/2.

Consider the smallest radius r∗ for which some ball Bl∗(r∗) satisfies |Bl∗(r∗)| ≥
T/r∗. It must be the case that r∗ ≤ 3d1, and Bl∗ overlaps with some good set Xi

because we cannot have a ball containing only bad points for r∗ ≤ 3d1. Moreover,
by our previous argument because Bl∗ contains points from Xi, it must be the
case that r∗ ≥ di, and therefore some ball contains all the points in Xi. Consider
a cluster Ĉ of all the points in balls that overlap Bl∗ : Ĉ = {s ∈ S | s ∈ Bl and
Bl ∩ Bl∗ �= ∅}, which must include all the points in Xi. In addition, Bl∗ cannot
share any points with balls that overlap other good sets because r∗ ≤ 3d1, there-
fore Ĉ does not contain points from any other good set. Therefore the cluster Ĉ
entirely contains some good set and no points from any other good set.

These facts suggest the following conceptual algorithm for finding a clustering
that classifies all the good points correctly: increment r until some ball satisfies
|Bl(r)| ≥ T/r, compute the cluster containing all points in balls that overlap
Bl(r), remove these points, and repeat until we find k clusters. We can argue
that each cluster output by the algorithm entirely contains some good set and
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no points from any other good set. Each time we consider the clusters C ⊆ C∗

whose good sets have not yet been output, order them by size, and consider
the diameters di of their good sets. We apply Lemma 3 with C to argue that
while r ≤ 3d1 the radius is too small for the computed cluster to overlap any
of the remaining good sets. As before, we argue that by the time we reach 3d1

we must output some cluster. In addition, when r ≤ 3d1 we cannot output a
cluster of only bad points and whenever we output a cluster overlapping some
good set Xi, it must be the case that r ≥ di. Therefore each computed cluster
must entirely contain some good set and no points from any other good set.
If there are any unclustered points upon the completion of the algorithm, we
can assign the remaining points to any cluster. Still, we are able to classify
all the good points correctly, so the reported clustering must be closer than
b + dist(C∗, CT ) < b + ε = O(ε/α) to CT .

It suffices to show that even though our algorithm only considers discrete val-
ues of r corresponding to landmark-point distances, the output of our procedure
exactly matches the output of the conceptual algorithm described above. Con-
sider the smallest (continuous) radius r∗ for which some ball Bl1(r

∗) satisfies
|Bl1(r∗)| ≥ T/r∗. We use dreal to refer to the largest landmark-point distance
that is at most r∗. Clearly, by the time our algorithm reaches r1 = dreal it
must be the case that Bl1 passes the test on line 19: |Bl1 | > T/r2, and this
test is not passed by any ball at any prior time. Moreover, Bl1 must be the
largest ball passing our test at this point because if there is another ball Bl2

that also satisfies our test when r1 = dreal it must be the case that |Bl1 | > |Bl2 |
because Bl1 satisfies |Bl1(r)| ≥ T/r for a smaller r. Finally because there are
no landmark-point pairs (l, s) with r1 < d(l, s) < r2, Bl(r1) = Bl(r∗) for each
landmark l ∈ L. Therefore the cluster that we compute on line 22 for Bl1(r1)
is equivalent to the cluster the conceptual algorithm computes for Bl1(r∗). We
can repeat this argument for each cluster output by the conceptual algorithm,
showing that Algorithm 2 finds exactly the same clustering.

We note that when there is only one good set left the test in line 19 may
not be satisfied anymore if 3d1 ≥ maxx,y∈S d(x, y), where d1 is the diameter of
the remaining good set. However, in this case if we exhaust all landmark-points
pairs we report the remaining points as part of a single cluster (line 12), which
must contain the remaining good set, and possibly some additional bad points
that we consider misclassified anyway.

Using a hashed set to keep track of the points in each ball, our procedure can
be implemented in time O(|L|n log n), which is the time necessary to sort all
landmark-point pairs by distance. All other operations take asymptotically less
time. In particular, over the entire run of the algorithm, the cost of computing
the clusters in lines 21-22 is at most O(n|L|), and the cost of removing clustered
points from active balls in lines 23-28 is also at most O(n|L|). �
Theorem 2. If we are not given the optimum objective value OPT, then we can
still find a clustering that is O(ε/α)-close to CT with probability at least 1− δ by
running Landmark-Clustering-Min-Sum at most n′n2 times with the same set of
landmarks, where the number of landmarks n′ = 1

(3+120/α)ε ln k
δ as before.
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Proof. If we are not given the value of OPT then we have to estimate the thresh-
old parameter T for deciding when a cluster develops. Let us use T ∗ to refer to
its correct value (T ∗ = αOPT

40εn ). We first note that there are at most n · n|L|
relevant values of T to try, where L is the set of landmarks. Our test in line 19
checks whether the product of a ball size and a ball radius is larger than T , and
there are only n possible ball sizes and |L|n possible values of a ball radius.

Suppose that we choose a set of landmarks L, |L| = n′, as before. We then
compute all n′n2 relevant values of T and order them in ascending order: Ti ≤
Ti+1 for 1 ≤ i < n′n2. Then we repeatedly execute Algorithm 2 starting on
line 2 with increasing estimates of T . Note that this is equivalent to trying all
continuous values of T in ascending order because the execution of the algorithm
does not change for any T ′ such that Ti ≤ T ′ < Ti+1. In other words, when
Ti ≤ T ′ < Ti+1, the algorithm will give the same exact answer for Ti as it would
for T ′.

Our procedure stops the first time we cluster at least n − b points, where b
is the maximum number of bad points. We give an argument that this gives an
accurate clustering with an additional error of b.

As before, we assume that we have selected at least one landmark from each
good set, which happens with probability at least 1− δ. Clearly, if we choose the
right threshold T ∗ the algorithm must cluster at least n − b points because the
clustering will contain all the good points. Therefore the first time the algorithm
clusters at least n− b points for some estimated threshold T , it must be the case
that T ≤ T ∗. Lemma 4 argues that if T ≤ T ∗ and the number of clustered points
is at least n− b, then the reported partition must be a k-clustering that contains
a distinct good set in each cluster. This clustering may exclude up to b points, all
of which may be good points. Still, if we arbitrarily assign the remaining points
we will get a clustering that is closer than 2b + ε = O(ε/α) to CT . �

Lemma 1. If the balanced k-median instance satisfies the (1 + α, ε)-property
and each cluster in C∗ has size at least max(6, 6/α) · εn we have:

1. For all x, y in the same Xi, we have d(x, y) ≤ αw
60ε|C∗

i |
.

2. For x ∈ Xi and y ∈ Xj �=i, d(x, y) > αw
5ε / min(|C∗

i |, |C∗
j |).

3. The number of bad points is at most b = (2 + 120/α)εn.

Proof. For part 1, since x, y ∈ Xi ⊆ C∗
i are both good, they are at distance of

at most αw
120ε|C∗

i |
to c∗i , and hence at distance of at most αw

60ε|C∗
i |

to each other.
For part 2 assume without loss of generality that |C∗

i | ≥ |C∗
j |. Both x ∈ C∗

i

and y ∈ C∗
j are good; it follows that d(y, c∗j ) ≤ αw

120ε|C∗
j |

, and d(x, c∗j ) > αw
4ε|C∗

j |
because |C∗

j |d(x, c∗j ) ≥ w2(x) > αw
4ε . By the triangle inequality it follows that

d(x, y) ≥ d(x, c∗j ) − d(y, c∗j ) ≥
αw

ε|C∗
j |

(
1
4
− 1

120
) >

αw

5ε
/ min(|C∗

i |, |C∗
j |),

where we use that |C∗
j | = min(|C∗

i |, |C∗
j |).

Part 3 follows from the maximum number of points that may not satisfy each
of the properties of the good points and the union bound. �
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Lemma 2. After selecting n
s ln k

δ points uniformly at random, where s is the
size of the smallest good set, the probability that we did not choose a point from
every good set is smaller than 1 − δ.

Proof. We denote by si the cardinality of Xi. Observe that the probability of
not selecting a point from some good set Xi after nc

s samples is (1 − si

n )
nc
s ≤

(1− si

n )
nc
si ≤ (e−

si
n )

nc
si = e−c. By the union bound the probability of not selecting

a point from every good set after nc
s samples is at most ke−c, which is equal to

δ for c = lnk
δ . �

Lemma 3. Given a subset of clusters C ⊆ C∗, and the set of the corresponding
good sets X, let smax = maxCi∈C |Ci| be the size of the largest cluster in C, and
dmin = αw

60εsmax
. Then for r ≤ 3dmin, a ball cannot overlap a good set Xi ∈ X and

any other good set, and a ball containing points from a good set Xi ∈ X cannot
share any points with a ball containing points from any other good set.

Proof. By part 2 of Lemma 1, for x ∈ Xi and y ∈ Xj �=i we have

d(x, y) >
αw

5ε
/ min(|C∗

i |, |C∗
j |).

It follows that for x ∈ Xi ∈ X and y ∈ Xj �=i we must have d(x, y) > αw
5ε /

min(|C∗
i |, |C∗

j |) ≥ αw
5ε /|C∗

i | > αw
5ε /smax = 12dmin, where we use the fact that

|Ci| ≤ smax. So a point in a good set in X and a point in any other good set
must be farther than 12dmin.

To prove the first part, consider a ball Bl of radius r ≤ 3dmin around landmark
l. In other words, Bl = {s ∈ S | d(s, l) ≤ r}. If Bl overlaps a good set in Xi ∈ X
and any other good set, then it must contain a point x ∈ Xi and a point y ∈ Xj �=i.
It follows that d(x, y) ≤ d(x, l) + d(l, y) ≤ 2r ≤ 6dmin, giving a contradiction.

To prove the second part, consider two balls Bl1 and Bl2 of radius r ≤ 3dmin

around landmarks l1 and l2. Suppose Bl1 and Bl2 share at least one point:
Bl1 ∩ Bl2 �= ∅, and use s∗ to refer to this point. It follows that the distance
between any point x ∈ Bl1 and y ∈ Bl2 satisfies d(x, y) ≤ d(x, s∗) + d(s∗, y) ≤
[d(x, l1) + d(l1, s∗)] + [d(s∗, l2) + d(l2, y)] ≤ 4r ≤ 12dmin.

If Bl1 overlaps with Xi ∈ X and Bl2 overlaps with Xj �=i, and the two balls
share at least one point, there must be a pair of points x ∈ Xi and y ∈ Xj �=i

such that d(x, y) ≤ 12dmin, giving a contradiction. Therefore if Bl1 overlaps with
some good set Xi ∈ X and Bl2 overlaps with any other good set, Bl1 ∩Bl2 = ∅.

�

Lemma 4. If T ≤ T ∗ = αw
40ε and the number of clustered points is at least n− b,

then the clustering output by Landmark-Clustering-Min-Sum using the threshold
T must be a k-clustering that contains a distinct good set in each cluster.

Proof. Our argument considers the points that are in each cluster that is output
by the algorithm. Let us call a good set covered if any of the clusters C1, . . . , Ci−1

found so far contain points from it. We will use C̄∗ to refer to the clusters in
C∗ whose good sets are not covered. It is critical to observe that if T ≤ T ∗ then
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if Ci contains points from an uncovered good set, Ci cannot overlap with any
other good set.

To see this, let us order the clusters in C̄∗ by decreasing size: |C∗
1 | ≥ |C∗

2 | ≥
. . . |C∗

j |, and let ni = |C∗
i |. As before, define di = αw

60ε|C∗
i |

. Applying Lemma 3
with C̄∗ we can see that for r ≤ 3d1, a ball of radius r cannot overlap a good set
in C̄∗ and any other good set, and a ball containing points from a good set in
C̄∗ cannot share any points with a ball containing points from any other good
set. Because T ≤ T ∗ we can also argue that by the time we reach r = 3d1 we
must output some cluster.

Given this observation, it is clear that the algorithm can cover at most one
new good set in each cluster that it outputs. In addition, if a new good set
is covered this cluster may not contain points from any other good set. If the
algorithm is able to cluster at least n − b points, it must cover every good set
because the size of each good set is larger than b. So it must report k clusters
where each cluster contains points from a distinct good set. �

5 Experimental Results

We present some preliminary results of testing our Landmark-Clustering-Min-
Sum algorithm on protein sequence data. Instead of requiring all pairwise sim-
ilarities between the sequences as input, our algorithm is able to find accurate
clusterings by using only a few BLAST calls. For each data set we first build
a BLAST database containing all the sequences, and then compare only some
of the sequences to the entire database. To compute the distance between two
sequences, we invert the bit score corresponding to their alignment, and set the
distance to infinity if no significant alignment is found. In practice we find that
this distance is almost always a metric, which is consistent with our theoretical
assumptions.

In our computational experiments we use data sets created from the Pfam
[FMT+10] (version 24.0, October 2009) and SCOP [MBHC95] (version 1.75,
June 2009) classification databases. Both of these sources classify proteins by
their evolutionary relatedness, therefore we can use their classifications as a
ground truth to evaluate the clusterings produced by our algorithm and other
methods. These are the same data sets that were used in the [VBR+10] study,
therefore we also show the results of the original Landmark-Clustering algorithm
on these data, and use the same amount of distance information for both algo-
rithms: 30k queries for each data set, where k is the number of clusters. In order
to run Landmark-Clustering-Min-Sum we need to set the parameter T . Because
in practice we do not know its correct value, we use increasing estimates of T
until we cluster enough of the points in the data set; this procedure is similar
to the algorithm for the case when we don’t know the optimum objective value
OPT and hence don’t know T . We set the k parameter using the number of
clusters in the ground truth clustering. In order to compare a computationally
derived clustering to the one given by the gold-standard classification, we use
the distance measure from the theoretical part of our work.
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Because our Pfam data sets are so large, we cannot compute the full dis-
tance matrix, so we can only compare with methods that use a limited amount
of distance information. A natural choice is the following algorithm: uniformly
at random choose a set of landmarks L, |L| = d; embed each point in a d-
dimensional space using distances to L; use k-means clustering in this space
(with distances given by the Euclidian norm). This procedure uses exactly d one
versus all distance queries, so we can set d equal to the number of queries used
by the other algorithms. For SCOP data sets we are able to compute the full
distance matrix, so we can compare with a spectral clustering algorithm that
has been shown to work very well on these data [PCS06].

From Figure 2 we can see that Landmark-Clustering-Min-Sum outperforms
k-means in the embedded space on all the Pfam data sets. However, it does
not perform better than the original Landmark-Clustering algorithm on most of
these data sets. When we investigate the structure of the ground truth clusters in
these data sets, we see that the diameters of the clusters are roughly the same.
When this is the case the original algorithm will find accurate clusterings as
well [VBR+10]. Still, Landmark-Clustering-Min-Sum tends to give better results
when the original algorithm does not work well (data sets 7 and 9).

Figure 3 shows the results of our computational experiments on the SCOP
data sets. We can see that the three algorithms are comparable in performance
here. These results are encouraging because the spectral clustering algorithm
significantly outperforms other clustering algorithms on these data [PCS06].

Fig. 2. Comparing the performance of k-means in the embedded space (blue),
Landmark-Clustering (red), and Landmark-Clustering-Min-Sum (green) on 10 data
sets from Pfam. Datasets 1-10 are created by uniformly at random choosing 8 families
from Pfam of size s, 1000 ≤ s ≤ 10000.
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Fig. 3. Comparing the performance of spectral clustering (blue), Landmark-Clustering
(red), and Landmark-Clustering-Min-Sum (green) on 10 data sets from SCOP. Data
sets A and B are the two main examples from [PCS06], the other data sets (1-8)
are created by uniformly at random choosing 8 superfamilies from SCOP of size s,
20 ≤ s ≤ 200.

Moreover, the spectral algorithm needs the full distance matrix as input and
takes much longer to run. When we examine the structure of the SCOP data
sets, we find that the diameters of the ground truth clusters vary considerably,
which resembles the structure implied by our approximation stability assump-
tion, assuming that the target clusters vary in size. Still, most of the time the
product of the cluster sizes and their diameters varies, so it does not quite look
like what we assume in the theoretical part of this work.

We plan to conduct further studies to find data where clusters have different
scale and there is an inverse relationship between cluster sizes and their diam-
eters. This may be the case for data that have many outliers, and the correct
clustering groups sets of outliers together rather than assigns them to arbitrary
clusters. The algorithm presented here will consider these sets to be large diam-
eter, small cardinality clusters. More generally, the algorithm presented here is
more robust because it will give an answer no matter what the structure of the
data is like, whereas the original Landmark-Clustering algorithm often fails to
find a clustering if there are no well-defined clusters in the data. The Landmark-
Clustering-Min-Sum algorithm presented here also has fewer hyperparameters
and is easier to use in practice when we do not know much about the data.

6 Conclusion

We present a new algorithm that clusters protein sequences in a limited informa-
tion setting. Instead of requiring all pairwise distances between the sequences as
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input, we can find an accurate clustering using few BLAST calls. We show that
our algorithm produces accurate clusterings when compared to gold-standard
classifications, and we expect it to work even better on data who structure more
closely resembles our theoretical assumptions.
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Abstract. This paper demonstrates the derivation of a clustering model
for paired comparison data. Similarities for non-Euclidean, ordinal data
are handled in the model such that it is capable of performing an inte-
grated analysis on real-world data with different patterns of missings.

Rank-based pairwise comparison matrices with missing entries can be
described and compared by means of a probabilistic mixture model de-
fined on the symmetric group. Our EM-method offers two advantages
compared to models for pairwise comparison rank data available in the
literature: (i) it identifies groups in the pairwise choices based on simi-
larity (ii) it provides the ability to analyze a data set of heterogeneous
character w.r.t. to the structural properties of individal data samples.

Furthermore, we devise an active learning strategy for selecting paired
comparisons that are highly informative to extract the underlying rank-
ing of the objects. The model can be employed to predict pairwise choice
probabilities for individuals and, therefore, it can be used for preference
modeling.

1 Introduction

Objects oa, ob, . . . of a given set of objects O can be characterized in the most
elementary form by a preference relation. Such pairwise comparisons, that yield
so-called paired comparison data, encode the preferences of objects in many
different contexts. Comparing two objects oa and ob with an operator <, i.e.
measuring whether object oa is bigger, higher, more preferred, ... than object ob

endows an otherwise unstructured pair of objects with a very elementary piece
of information (1-bit). Neither the actual difference between the two objects is
important nor are there any compulsary restrictions placed on the operator (e.g.
transitivity). The data type is a comparison matrix, where objects oa, ob, . . . , om

are compared pairwise to each other:

X = (xab) ∈ B
m×m = {0, 1}m×m

The comparison operator can be specified dependent on the application at hand.
Here, we focus in particular on preference data.

A data set consists of i = 1, . . . , n samples:

X =
{
X(i)
}

=
{
(xab)(i)

}
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In this work, we aim at finding structure in pairwise comparison rank data. A
famous simple model for pairwise comparisons is the Babington Smith model (a
thorough overview is provided in [19]).

Many data arise as pairwise comparisons (rather than as points in an Eu-
clidean vector space Rn). Suppose we have a number of objects oa, ob, ... which
are to be considered according to some common quality. If the quality is mea-
surable in some objective way, the objects yield variate values, and the problem
is amenable to treatment by standard machine learning methods. However, it
may happen for either theoretical or for practical reasons that the quality is
not measurable or cannot be measured robustly. We then have to rely for a
discussion of the variation of the quality based on a comparison of the objects
among themselves. The method of pairwise comparisons provides reliable and
informative data about the relative quality1.

A widely used methods of comparison ranks the object according to a suit-
able application criterion. The objects are arranged in the order in which they
possess the quality under consideration (total order). The ranking method is not
appropriate [14] when the quality considered is not known to be representable by
a linear variable. It is not necessarily unreasonable that object oa < ob, ob < oc

and oc < oa, if the objects deal for example with tastes in music, eatables or
film stars; and in practice this in not uncommon [14]. Such “inconsistent” in-
formation can never appear in a ranking for if oa is preferred to ob and ob to
oc, then oa must automatically be shown as preferred to oc. The use of rankings
thus destroys what may be valuable information.

When preference relations are evaluated under a single criterion, there is one
dominant total order (ranking assumption). However, noise can result in proba-
bilistically intransitive data. In this paper, we consider a probabilistic model for
pairwise comparison data, establishing a probability distribution over rankings.
The model allows for intransitivities and places equal probability mass on all
rankings that are equally consistent with the given pairwise comparisons. Noisy
real-world data can be handled in a meaningful way.

1 Data derived from paired comparison experiments: Many situations naturally pro-
duce pairwise comparisons such as sporting events which involve two teams (e.g.
football, basketball). The records of wins and losses for the teams constitute the
data. In other situations, such as food tasting, pairwise comparisons are helpful be-
cause of the difficulty of distinguishing preferences when more than two objects are
considered simultaneously. Though direct rankings are popular to elicit preferences
e.g. in music, movies, and food, giving a ranking for more than, say, 5 objects is quite
a difficult and time-consuming task for an interviewee to complete. Deciding between
just 2 objects at a time is easier than infering complete rankings and thus, pairwise
comparison generates data of superior quality. An alternative to asking someone to
rank the m objects is to have the ranker choose which of each pair of objects is
preferred. With many objects being up for consideration (e.g. products), we must
expect the stated pairwise preference data to have missings. Pairwise comparison
matrices might be incomplete because respondents do not express all preferences or
are indifferent.
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We derive a mixture model for cluster analysis and provide an EM algorithm
for parameter estimation (unsupervised inference). The model and parameter
estimator can tolerate missings in the data, incase not all paired comparisons
are made or available to the data analyst.

We also devise a strategy for automatically selecting paired comparisons that
are “significant” to extract a ranking.

The model framework introduced above is instantiated for the application of
preference modeling. Cluster analysis of paired comparison data attempts to find
groups of preference choices. Preference data of surveys often suffer from missing
values since respondents might answer to only a few paired comparisons, possibly
a different set of paired comparisons for each respondent causing heterogeneity
in the data. We present a mixture approach for similarity-based pattern analysis
of such discrete, non-Euclidean, and inhomogeneous preference data by a single
probabilistic model. The usefulness of the method is demonstrated by that pre-
dictions (=recommendations) for individuals can be made based on the cluster
solution.

This paper is organized as follows: A model for heterogeneous paired com-
parison data comprising different clusters and missings is presented in Sec. 3,
and its algorithmic estimation from data in Sec. 4. Sec. 5 proposes a strategy
for selecting pairwise comparisons. In Sec. 6, we point out that the method is
helpful for predicting preferences. Experimental results are reported in Sec. 7.

2 Relevant Work

Learning to rank and ordinal regression are presently popular research topics. In
[7], the problem of learning how to order instances, given feedback in the form
of preference judgments, is tackled. Another supervised approach to learning a
preference function is [10]. Here, the training information consists of samples
with partial and possibly inconsistent information about their associated rank-
ings. From these, a ranking function is induced. Learning a preference function,
defined over pairs, for producing a ranking is also presented in [2]. An approach
to ensemble learning is introduced in [15], which takes ranking rather than clas-
sification as fundamental. Multiple input rankings are combined according to the
degree of expertise that each ranker has. A supervised pairwise/listwise approach
to ranking is developed in [6], and in [21], the problem of consensus finding for
a group of rankers is considered.

Unsupervised learning on rank and pairwise data is mostly considered in the
context of Collaborative Filtering (see [23] for a survey of techniques). A model
for the cluster analysis of rank-type data is developed in [4], which is now re-
laxed to accomodate for paired comparison data. Learning Mallows models with
pairwise preferences was very recently developed in [17].
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3 Modeling Paired Comparison Data

When modeling paired comparison data there are two options: i) To model the
pairwise comparison process (physical/mechanical/behavioral/neurological pro-
cesses). ii) To model the population of n pairwise comparison givers (compara-
tors). Here, we focus in this second, data-analytic approach.

Suppose there are m objects, also called items. By permuting the objects one
can form all m! possible rankings. Considering the simplex Pm!, we wish to
define a probability model, i.e. a family of probability distributions, i.e. a subset
of Pm!, parametrized by θ in a space Θ: {P (θ)|θ ∈ Θ} ⊂ Pm!, where P (θ) is a
function from Θ to Pm!. The set of possible rankings of m objects has a group
structure and is referred to as the symmetric group of order m, denoted Sm.
The distribution on Sm will be given through its density Pπ(θ) = P [Π = π; θ],
π ∈ Sm, θ ∈ Θ.

Please note that a ranking π ∈ Sm is a permutation of the object indices,
i.e. indicating the ranks. Inverting a ranking gives the corresponding ordering
� ∈ Tm. An ordering lists the objects according to their order.

In sufficient statistic models, the parameter θ “touches the data π” only
through functions s(π). Section 9E of [8] motivate the exponential family distri-
butions : if s = (s1, s2, . . . , sp), then:

Pθ(π(1), . . . , π(n)) = exp(
p∑

j=1

θjsj − nψ(θ)).

We now look at an exponential family model using the pairwise comparisons
I[πa < πb] implied by a ranking π as sufficient statistics. I[πa < πb] is the 0/1
indicator variable indicating whether the rank of object oa is smaller than the
rank of object ob in the ranking π (meaning that object oa is bigger/higher/more
preferred/...). The model assumes that the structure resides in the pairwise com-
parisons. The general model is based on the

(
m
2

)
× 1 parameter p whose indices

ab, a < b are ordered. The pab is interpreted as the probability object oa would
be preferred to object ob if only that comparison were to be made. Note that
pba = 1 − pab.

A ranking is obtained by making independently all the pairwise comparisons
using those probabilities. The probability that the pairwise comparisons are
consistent with an ordering � ∈ Tm is

Z(p) =
∑


∈Tm

∏
a<b

p
a
b

The probability of an ordering � given that the pairwise comparisons are consis-
tent is the probability that the comparisons yield � divided by the probability
they are consistent. The Babington Smith model [19] thus has the density

Pp(�) =
1

Z(p)

∏
a<b

p
b
b
.
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Remark: A Babington Smith model has weak stochastic transitivity, if for a, b,

pab ≥
1
2

and pbc ≥ 1
2
⇒ pac ≥ 1

2

and has strong stochastic transitivity if

pab ≥
1
2

and pbc ≥
1
2
⇒ pac = max{pab, pbc}

We now write down the exponential model defined over the space of rankings,
where the sufficient statistics consist of the m̄ =

(
m
2

)
pairwise comparisons xab

for a < b. The model is

M(π|θ) = exp(θ′X(π) − ψ(θ)), π ∈ Sm (1)

where θ = (θ12, θ13, . . . , θm−1,m),
X(π) = Xπ with X = (x12, x13, . . . , xm−1,m),
xπ

ab = I[πa < πb] (the pairwise comparisons implied by the ranking π),
1 ≤ a < b ≤ m;
ψ is the normalizing constant.

Note that the symmetric group (of rankings) is the model space, whereas the
data space consists of all pairwise comparisons (matrices). The model enforces
transitivities by comparing the measured, possibly intransitive choices with rank
induced pairwise choices. Objects are ranked by determining the maximum like-
lihood ranking. Rankings with equal maximal likelihood are averaged.

The choice parameters p are related to the θ’s through

pab =
exp(−θab)

1 + exp(−θab)
, a, b ∈ O. (2)

The quantity X(π) plays the role of a dissimilarity measure. The model exem-
plifies the derivation of a suitable similarity information for non-Euclidean data
that can be used in order to perform learning.

Given a sample of size n, the maximum likelihood estimator exists if and only
if 0 < x̂ab < 1 for all a < b. If x̂ab = 0 (= 1), then set θ̂ab = +∞ (−∞). Let
H = {(a, b)|a < b, 0 < x̂ab < 1} be the set of pairs remaining, and S

∗
m be the

subset of rankings that conform to the sample, i.e.
S∗

m = {π ∈ Sm|πa < (>) πb if x̂ab = 0 (= 1)}.
The loglikelihood is

l∗(θ, X̂) =
∑
a<b

(a,b)∈H

nθabx̂ab − nψ∗(θ) (3)

with
exp(ψ∗(θ)) =

1
m!

∑
π∈S∗

m

exp(
∑
a<b

(a,b)∈H

θabI[πa < πb]) (4)
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3.1 Model-Based Clustering

For cluster analysis, the observed paired comparison data is assumed to consist
of K groups. Each group is modeled by a Babington Smith distribution (cf.
equation 1):

M(k)(π|θ(k)) = exp(θ(k)′X(π) − ψ(θ(k))), π ∈ Sm

The component distributions are joined in a mixture model,

M(π) =
K∑

k=1

c(k)M(k)(π|θ(k)), (5)

with the mixture weights (c(1), . . . , c(K)) forming a partition of 1. Model parame-
ters can be estimated with an expectation-maximization (EM) algorithm [20], or
more sophisticated latent variable estimation algorithms such as Deterministic
Annealing [11].

3.2 Missings

When measuring paired comparison data (e.g. elicit pairwise preferences in a
survey), we have to expect that the pairwise comparison matrices may contain
missings. That is, at position (a, b) in a matrix we do not have the information
0 or 1 but rather a ∗ indicating that this paired comparison is missing.

To further complicate the problem, in both cases below the pattern of missings
might vary between the n pairwise comparison matrices constituting the samples.

Missings may occur for different reasons. The number of pairwise comparisons
between m objects is m(m−1)

2 . Instead of insisting on having all paired compar-
isons, the analyst might only measure/ask for a subset of the paired comparisons
in order to make the experiment more cheap or comfortable. For example, he
might query each pair with a probability pq so that the number of necessary
paired comparisons is only a fraction of all pairs.

A further reason for missings in a paired comparison dataset is that – though
all paired comparisons are queried – some are not available. Some measurements
might be unavailable, whether occuring by chance or built into the design of
the experiment (e.g. to save costs or in an industrial experiment some results
are missing because of mechanical breakdowns unrelated to the experimental
process). Respondents in a survey might not answer all questions because they
are indifferent w.r.t. to a paired comparison (i.e. object oa and ob are seen equally
preferred; in an opinion survey some interviewees may be unable to express a
preference for one object over another) or respondents get tired and are not
willing to answer all the questions posed.

Sometimes it is natural to treat the values that are not observed as missing,
in the sense that there are true underlying values that would have been observed
if the industrial equipment had been better maintained or survey techniques had
been better. Sometimes, however, it is less clear that a well-defined preference
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has been masked by the nonresponse. Instead, the lack of a response is essentially
an additional point in the sample space.

Excluding units that have missing values is generally inappropriate, since the
investigator is usually interested in making inferences about the entire target
population and since the removal of a subsample of common characteristic might
cause a systematic bias.

In the following, an option for handling heterogeneous (i.e.: different patterns
of missings within the samples) data in a probabilistic model is given. The per-
formance of any missing-data method depends heavily on the mechanisms that
lead to missing values. Data missing completely at random (MCAR) means that
the missingness is not related to the data under study. Data can be missing
at random (MAR, missingness is related to the observed data but not to the
missing data) and there are also nonignorable missing-data mechanisms. For a
thorough review of statistical analysis with missing data see the book of [16].

Notation:
Mis(i) = {(a, b)| paired comparison between (a, b) missing in sample i}
is the set of missings in sample i.

Model-based completion
Assuming that there are “true” values underlying at the missing matrix positions
which are just masked (i.e. for each sample there is an unobservable complete
pairwise comparison matrix), we can try to estimate these unobserved true val-
ues. We can explicitly estimate a maximum likelihood completion to a partial
pairwise comparison matrix by treating the missing pairwise comparisons as la-
tent information, and assuming complete pairwise comparison matrices to be
distributed according to the model, e.g. the Babington-Smith model. An esti-
mate of the full pairwise comparison matrix is obtained with an EM-type al-
gorithm (latent variable estimation algorithm), which alternatingly reestimates
the model parameters from current completion estimates, and then reestimates
completions based on the current model (estimate the true frequencies of the
full pairwise comparison matrices in the sample, then maximize the resulting
likelihood).

In the E-step, the current parameter estimates are used to estimate the ex-
pected value of the sufficient statistics for the complete data. In the M-step, the
estimated sufficient statistics are used to obtain maximum likelihood estimates
of the model parameters.

This iterative EM procedure naturally suits into the clustering EM algorithm
announced in section 3.1 and detailed in section 4. Having missings in the data
adds more latent variables besides the unknown cluster assignments. The method
can be used as basis for partial paired comparison data clustering, by performing
completions based on the data currently assigned to a cluster during the clus-
tering E-step, and performing maximum likelihood estimation for the mixture
components given the current completion estimates during the M-step. Model-
based completions can be performed based on the current cluster solution.
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4 Model Inference

Heterogeneous, partial paired comparison data drawn from K distinct groups
can now be described by a mixture model. The generative model for the data is

M(π|c, θ) =
K∑

k=1

c(k) 1
m!

exp(θ(k)′X(π) − ψ∗(θ(k), Mis(π))), π ∈ Sm (6)

with the normalizing constant ψ depending on the cluster-specific θ(k) and the
sample-specific pattern of missings Mis(π) by

exp(ψ∗(θ(k), Mis(π))) =
1
m!

∑
ρ∈S∗

m

exp(
∑
a<b

(a,b)∈H

∑
(a,b)/∈Mis(π)

θ
(k)
ab I[ρa < ρb]).

For inferencebasedonmaximumlikelihood (ML)estimation, for themixturemodel
describedabove, the overallMLestimator of themodel parameters is approximated
with an expectation-maximization (EM) algorithm [20]. In this section, we derive
estimation equations for the heterogeneous data model, and discuss the implemen-
tation of an efficient EM algorithm for paired comparison data.

For data X(i), i = 1, . . . , n and K clusters, define cluster assignments
q(i) = (q(i)(1), . . . , q(i)(K)). If X(i) is assigned to cluster k, then q(i)(k) = 1 and
all other entries are 0. These assignment probabilities q(i)(k) (q(i)(k) ∈ [0, 1],∑

k q(i)(k) = 1) are hidden variables of the EM estimation problem.
The E-step of the algorithm computes estimates of the assignment probabil-

ities conditional on the current parameter configuration of the model. For sam-
ples that are only partially available, we want to make the cluster assignments
maximally non-committal w.r.t. missings (i.e. paired comparisons not given). This
involves establishing a uniform probability distribution over the missing values
(maximum entropy argument), i.e. the restricted model assigns equal probabili-
ties to all paired comparison matrices consistent with the given values regardless
of what actual values the missings might have (uniform distribution over the miss-
ings). The maximum entropy approach avoids hidden assumptions about missing
pairwise comparison entries.To summarize, for computing cluster assignments, the
lack of knowledge about some paired comparisons is handled by substituting with
the set of pairwise comparison matrices consistent with the given pairwise com-
parisons. The parameters θ are comparable for paired comparison matrices with
different pattern of missings. Formally, this holds because the model is a distribu-
tion on the consistent completions (all possible matrices that are consistent with
the given pairwise comparisons form an equivalence class).

Given estimates of the component parameter θ(k) and the mixture weight c(k)

for each cluster k, assignment probabilities are estimated as

q(i)(k) =
c(k)M(π(i)|θ(k))∑K

k′=1 c(k′)M(π(i)|θ(k′))
.

In the M-step, assignment probabilities are assumed to be given. For each cluster,
the parameters to be estimated are c(k) and θ(k). As for any mixture model
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EM algorithm, the mixture weights are straightforwardly computed as c(k) =
1
n

∑n
i=1 q(i)(k).

For ML estimation of the component parameters θ(k), consider the Newton-
Raphson method. To find the estimates of the θ

(k)
ab for each mode, the Newton-

Raphson method can be applied to the negative log-likelihood:

− l∗(θ(k), X̂) =
∑
a<b

(a,b)∈H

n∑
i=1

q(i)(k)θ
(k)
ab x̂

(i)
ab −

n∑
i=1

q(i)(k)ψ∗(θ(k)) (7)

In practice, the normalizing constants ψ∗(θ(k), Mis(π)) can be expensive to com-
pute if m is large. We therefore derived a MCMC sampler to approximate l∗(θ(k))
and ψ∗(θ(k), Mis(π)).

Suppose that θ0 is close to the ML estimate. A sample of rankings
πs1 , πs2 , . . . , πss ∼ M(π|θ0) is a random sample of rankings from the distri-
bution defined by the paired comparison model with parameter θ0. Make use of
the law of large numbers to estimate an expectation (ML estimate in exponential
families is the value θ̂0 for which the expected value of the statistics is equal to
the observed value) by a sample mean ≈ 1

s

∑s
r=1 exp((θ − θ0)′X(πsr )) (further

details of derivation omitted).

E-step: At the current parameter value θ(k), a Monte Carlo simulation of the
Markov ranking is made; this simulation is used to estimate cumulants (or mo-
ments) of the distribution. The approximated log-likelihood for cluster k is:

l∗(θ(k), X̂) ≈
n∑

i=1

q(i)(k)
{
− ln{1

s

s∑
r=1

exp((θ(k) − θ
(k)
0 )′(X(π(k)

sr
) − X(π(i))))}

}
(8)

For sampling, simulate a discrete-time Markov chain whose stationary distri-
bution is the distribution we want to sample from. Change (or not) the cur-
rent ranking, according to some rule dependent on θ0. Begining with an initial
ranking, the elements of this ranking are stochastically updated, the updating
mechanism circles through the ranking again and again, this defining a stochas-
tic process which is a Markov chain. Approximate random draws e.g. by Gibbs
sampling or Metropolis-Hastings.

Details for a Metropolis-Hastings type of sampler: As an elementary change,
we define a transposition in the ranking, i.e. two random ranks are exchanged.
πτ denotes the ranking with transposition. The change takes effect with proba-
bility ∼ min(1, pτ ), with pτ = exp(θ0)′(X(πτ ) − X(π)), otherwise the change is
discarded.

5 Selection of Comparisons

As pointed out in section 3.2, we should not rely on having all paired comparisons
available, since the number of pairwise comparisons grows quadratically with
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the number m of objects. Sometimes we have no control on which pairwise
comparisons we can measure or get a response to. In other settings, however,
we are able to select pairwise comparisons that data is aquired for. In a survey,
for example, instead of asking for all pairwise comparisons, the interviewer can
choose a subset of questions. It is thus reasonable to think of a strategy for the
selection of comparisons.

We here again assume that there is a ranking underlying the paired compar-
isons (otherwise we see no argument why some paired comparisons are more
“informative” than others). Under this transitivity assumption, the task reduces
to the problem of sorting a partially ordered set (poset; the partial order induced
by the paired comparisons). That is, like with any comparison-based sorting al-
gorithm, one constructs a linear order (ranking) by queries “<” on pairs of
objects. The two differences to standard sorting are: (i.) the query operation
(“<”) might be expensive (e.g. time-consuming measurement, limited attention
of respondents in surveys); (ii.) the query operation (“<”) might be noisy (e.g.
flipped with a probability pError). We now give a method for selecting paired
comparisons ensuring that the first paired comparisons queried are the most in-
formative to construct the ranking. The method might not be robust to errors in
the paired comparisons, in particular if errors occur between distant objects. For
an error bound analysis for QuickSort with noisy comparison operation (resp.
intransitivities) we refer to [1]. Probabilistic QuickSort always needs O(n log n)
calls to the comparison oracle and, moreover, it is not clear whether the first
queries yield the most valuable information about the ranking.

Let us try to make sure that the gain of information (for the ranking) is
monotonically decreasing in the sequence of paired comparisons that are queried.
The motivation is that only a limited number of comparisons can be queried due
to cost or time constraints; for example, in a survey the interviewer does not
even know when the interviewee will stop answering the questions. Technically,
the problem rephrases as: Each additional comparison that is queried should
reduce most the cardinality of the set of rankings (total orders) consistent with
the partial order, since finally we would like to identify the single one underlying
ranking. The method below is thus based on the theory of linear extensions [13].

Let P denote a poset (here: paired comparisons acquired so far) and |E(P )|
is the set of its linear extensions (here: all rankings consistent with the paired
comparisons given). Suppose that we can choose any pair oa, ob ∈ {o1, . . . , om}
and ask an oracle to compare them. Having gotten the answer, say oa precedes
ob, we add the relation a < b and all its transitive consequences to P and obtain a
new partial order P 1 = P&[a < b]. We call the oracle again and ask it to compare
a new pair of objects as long as |E(P q)| > 1. In a finite number q of queries
we sort the original poset P , i.e. obtain a total linear order P q = π ∈ E(P ).
Clearly, one has the information theory worst-case lower bound q ≥ log2 |E(P )|
on the number of queries. For any poset P with |E(P )| > 1 linear extensions
there exists a pair of objects a, b ∈ {1, . . . , m} such that:

max{ |E(P&[a < b])|
|E(P )| ,

|E(P&[b < a])|
|E(P )| } ≤ β (9)
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The inequality (9) says that in any poset P there exists a comparison a, b which
decreases the number of linear extensions by at least β. β is conjectured to
be 2/3 and it is known [12] that inequality (9) holds with β = 8/11. The latter
result implies that using 8/11-balanced test comparison one can sort an arbitrary
poset P in at most q ≤ 2.2 log2 |E(P )| queries. [12] also show that computing the
“balancing constants” βab = |E(P&[a < b])|/|E(P )| = Prob{a < b in E(P )} is
#P-hard. However, one can compute approximations to the balancing constants
in time O(T ), where T is the complexity of nearly uniform generation of linear
extensions of P . Therefore, a well-balanced comparison in a given poset can
also be found with high probability in time O(T ). Now, the following fact [12]:
Let ra = 1

|E(P )|
∑

π∈E π(a) be the average rank of a ∈ {1, . . . , m} over the set of
linear extensions of P , then an arbitrary pair a, b of objects such that |ra−rb| < 1
is an 8/11-balanced comparison in K. The strategy is to minimize |r̂a − r̂b|
over a, b ∈ {1, . . . , m}. Intuitively, this approach favors comparing objects that
are close to each other. This is particularly helpful to refine the underlying
ranking, while it is – for exactly the same reason – of disadvantage for estimating
a pairwise model, since comparisons between objects that are far apart (high
absolute value of θab) are more discriminative.

For averaging the ranks r̂a of objects we need a nearly uniform generator of
linear extensions of the poset (Markov chain with uniform stationary distribution
for combinatorial object “linear extension”). For algorithm and details, please
consult [13].

6 Application: Preference Prediction

Finally, we like to stress the usefulness of the probabilistic paired comparison
model for preference modeling. A powerful approach to preference elicitation is
the use of rankings, where the members of a population order items, values,
or products according to their degree of preference or importance. The task of
ranking, however, can be tedious. Deciding between just two items at a time is
easier, and such pairwise preference data often naturally or implicitly arises (e.g.
a dog is presented with two feeding dishes. The one that the dog eats first is the
more preferred one).

Identifying Groups of Choices: The mixture model defined above expresses
the separation of the comparators observed in the data into different groups or
types, each of which exhibits a “typical” preference behavior. The interpretation
of the θab’s for each group is that a positive value codes a preference of object
oa over ob by the group (when θab → ∞: oa is always preferred to ob). A value
of 0 means indifference or neutrality w.r.t. to the two objects at hand, whereas
a negative value of θab indicates that object oa is seen as less preferable than ob.
The soft preference probabilities pab between objects can be used to construct
the utility weights (as described in [22], for example) that a society and its groups
assign to the different objects/options oa, ob.

Recommendations: The method is helpful to estimate preference relations on
the set of objects, i.e. to predict the choice probabilities between two objects for
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Table 1. Estimation errors on synthetic data with K = 2 and K = 3 clusters. The
distances between the cluster centers and the cluster overlaps are varied.

Setting Results

K τd λ / p errorL2 θ̂

6 1.0 / 0.73 0.43 ± 0.10
2

3 1.0 / 0.73 0.55 ± 0.12
0.5 / 0.62 0.52 ± 0.17

l-approximation: 0.94 ± 0.60

4-5 1.5 / 0.82 1.14 ± 0.423

2-4 1.5 / 0.82 0.84 ± 0.27
0.5 / 0.62 0.74 ± 0.13

an individual. The prediction of the preference between objects oa and ob for
individual i based on the cluster solution is given by the posterior:

p
(i)
ab =

K∑
k=1

q(i)(k) exp(−θ
(k)
ab )

1 + exp(−θ
(k)
ab )

(10)

7 Experimental Results

The experiments include synthetic and real-world paired comparison data de-
rived from rankings. The mixture analysis with artificial data drawn from a
density with known parameters is conducted to check the method’s capability
of recovering parameters from paired comparison data. Additional experiments
are conducted on a data set from a study on change in mass politics described
in [3], where Germans expressed their preference regarding political goals. All
experiments are performed with the EM algorithm described in section 4.

7.1 Synthetic Data

Synthetic pairwise comparison data observations were derived from rankings
drawn at random from a mixture of Mallows models [18]. Sample experiments
for m = 4 objects and K = 2 and 3 clusters are shown in Tab 1. τd are the
mutual Kendall distances between the cluster centers; λ is an inverse spread (a
lower value resulting in an higher overlap between the clusters) and 1− p is the
inverse flip probability of a pairwise comparison. In the setting of 2 equally sized
clusters n = 150 samples were used, for the 3 clusters, including a small one,
n = 300 samples were used. The quality of parameter estimates is reported as the
L2 error to the true θ. The Bayesian Information Criterion (BIC) [20] estimate
of the number of clusters was correct except for very near cluster centers and/or
broad cluster overlaps.

With the distance between the cluster centers decreasing, the estimation errors
increase. The estimation errors become smaller when the cluster have a higher
spread (small λ). Approximating the likelihood by sampling generally increases
the estimation error.
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Fig. 1. Missings in the data set: Estimation error of θ versus different sorts of incom-
plete data

We also measured the parameter recovery error depending on different types
of missings in the data, i.e. with the paired comparison matrices only partially
available in the sample (here: n = 500). The value of the method being capable
of handling missings is illustrated in Fig. 1, where from left to right the num-
ber of missings increases (Remark: thereby, the effective sample size is reduced,
may possibly reduce e.g. the costs of measuring or time of surveying!). First,
the algorithm sees all pairwise comparisons (the full information is available). In
the second scenario, in each pairwise comparison matrix, each entry is available
with probability 0.9. It is a genuine advantage of the proposed model that it can
handle samples containing different patterns of missing at the same time. Previ-
ously, when the data analyst was confronted with such heterogenous data it was
often common practice that he had to delete incomplete samples or to analyse
them separately. Next, random 80% and 70% of the pairwise comparisons got
accessible to the inference procedure. Finally, we used the method described in
section 5 to automatically determine the subset of paired comparisons for ranking
construction. As expected, the error is significantly higher compared to random
selection for the reason given at the end of section 5: comparisons between near
objects are helpful to refine the underlying ranking, while for discriminating
between clusters distant objects are more helpful.

7.2 Political Goals German Data

The political goals data set of real-world rankings from a study on change in mass
politics: A sample of 2262 Germans expressed their preference on four political
goals based on their perceived personal importance: Order, Say, Prices, Freedom.
We analyzed the paired comparisons by EM estimation of the above mixture
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Table 2. Political Goals: Preference probabilities for the two clusters found: “Materi-
alism” and “Post-materialism”

Pair (oa, ob) → (O,S) (O,P) (O,F ) (S,P) (S,F ) (P,F )

p̂
(Mat.)
ab 77% 48% 86% 29% 53% 76%

p̂
(Post−mat.)
ab 43% 37% 29% 58% 57% 49%

model and found two clusters in agreement with the original classification by
[3] of the goals into Materialist and Post-materialist (see Tab. 2). The analysis
in [19] by a simple Babington Smith model “lefts a significant proportion of
the data unexplained”. We measured the prediction quality of our method by
deleting 10% random subsamples of the paired comparisons. The trained model
was able to predict the capped paired choice probabilities with a prediction
error of 8.65% ± 0.78%. To the best of our knowledge, there does not exist
an alternative method for comparison that is able to make predictions on this
granularity of individual paired choices.

8 Conclusion

A probabilistic mixture model for the analysis of inhomogeneous paired com-
parison data was introduced. Our modeling approach permits the integration of
data with different patterns of missings by estimating a model-based distribu-
tion on the subset of matrices consistent with the information given and thus
can combine estimate contributions in a meaningful way.

The assumption throughout this line of work is that there is a ranking un-
derlying the order relation. A ranking (or total order) orders objects according
to some criterion, neglecting any ”distance” between the objects. In practice,
paired comparisons (or partial orders) are sometimes easier to acquire. In fact,
when rankings are distributed according to the well-known Mallows model with
modal ranking σ and inverse spread λ, the flip probabilities of the induced paired
comparisons directly relate to the spread of the rank model. An advantage of
models based on ranks is that parameters can be tied in order to reduce the
number of free parameters (see [9,4]).

The underlying ranking assumption is valid as long as there is a single criterion
under which the objects are evaluated, or the objects map to a linear scale.
What can be done in case of intransitivities (oa < ob, ob < oc, and oc < oa)
that arise systematically due to conflicting multiple criteria? Intransitivities can
be consistently resolved and used to estimate utility weights for multicriteria
decision making ([5]).
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Abstract. When objects cannot be represented well by single feature
vectors, a collection of feature vectors can be used. This is what is done
in Multiple Instance learning, where it is called a bag of instances. By
using a bag of instances, an object gains more internal structure than
when a single feature vector is used. This improves the expressiveness of
the representation, but also adds complexity to the classification of the
object. This paper shows that for the situation that not a single instance
determines the class label of a bag, simple bag dissimilarity measures
can significantly outperform standard multiple instance classifiers. In
particular a measure that computes just the average minimum distance
between instances, or a measure that uses the Earth Mover’s distance,
perform very well.

Keywords: pattern recognition, multiple instance learning, dissimilar-
ity representation.

1 Introduction

Standard pattern recognition assumes that objects are represented by a feature
vector, containing measurements on the objects that are informative for the
class separability [7]. Unfortunately, for complex real world objects this is often
insufficient. By using a single feature vector, much of the internal structure of
the object is lost. Take for instance an image, that can contain several regions
with very different characteristics: a person, a face, a tree in the background, a
blue sky. It is a priori not clear how important each region is for the classification
problem at hand. Only when a very clear classification task is requested, suitable
features may be selected and extracted. Otherwise, the representation should be
flexible enough to encode all information in the image, and let the classifier
optimize its model to get a good performance.

When the representation requires more flexibility, the single feature represen-
tation may be replaced by a collection of feature vectors. For instance in the
case of image classification or image retrieval, it is customary to segment the
image in more-or-less homogeneous subparts, and to represent the full image by
a collection of feature vectors. This is what is called Multiple Instance Learn-
ing (MIL)[5]. Objects are represented by a set (called bag) of feature vectors
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(called instances), and each object can belong to the positive or negative class.
Typically, it is assumed that objects from the positive class contain at least one
instance from a so-called concept. The task of a classifier is then to identify if one
of the instances belong to the concept, and label the object then to the positive
class. Many MIL algorithms therefore contain an optimization strategy to search
for the most informative instance per bag, and create a model of the concept
[20,13,22,1].

For the situation that no clear concept can be defined, or the situation that
most instances in a bag actually contribute to the class discrimination, a more
global approach in comparing bags can be defined. Instead of focusing on the
single most informative instance in a bag, a similarity measure between sets
of feature vectors is defined [9,15,2,12]. In most cases the goal is to define a
Mercer kernel between the bags, such that a standard support vector classifier
can be trained. By this one tries to implicitly reduce the complexity of a bag of
instances back to a simple vector representation. The advantage is that the well
understood procedures of pattern recognition can be applied, but the drawback
is that a part of the representational power is lost.

When the demand for Mercer kernels is relaxed, more powerful dissimilarity
measures can be defined. Actually, any (dis)similarity can be constructed, as long
it may be informative for the class separability [17]. This is at the expense that
it cannot be directly plugged into the support vector classifier. The alternative
is then to apply a classifier that can operate on distances, like the k-nearest
neighbor classifier or a nearest mean classifier, or to use a dissimilarity space
approach [8,14]. In a dissimilarity space approach the dissimilarities are treated
as new features, such that any classifier can be trained on these features. The
distance character of the dissimilarities is then not used, but as features they
can still contribute to a good class separation.

In this paper we propose a few simple dissimilarity measures between bags,
based on pairwise dissimilarities between instances. These dissimilarities capture
a more global differences between instance distributions of bags. This is done in
section 2. We show in section 4 that for quite some multiple instance problems,
the more global dissimilarity measures are very informative in that the classifiers
trained on top of them give very good classification performance. In section 5
we conclude and have a bit more discussion on the results.

2 Bag Dissimilarities

Assume an object i is represented by a bag Bi = {xik, k = 1, ..., ni} containing ni

instances, where each instance is represented by a vector x ∈ Rd. In the training
set {(Bi, yi), i = 1, ..., N} each bag is labeled positive yi = +1 or negative
yi = −1. Given the bag of instances, a classifier has to predict its class label
ŷi = f(Bi). First define the pairwise dissimilarities of instances in the bags Bi

and Bj :
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Dij = D(Bi, Bj) =

⎛⎜⎜⎜⎝
D(xi1,xj1) ... D(xi1,xjnj )
D(xi2,xj1) ... D(xi2,xjnj )

...
...

D(xini ,xj1) ... D(xini ,xjnj )

⎞⎟⎟⎟⎠ , (1)

where D(xik,xjl) defines the distance between instance k from bag Bi and in-
stance l from bag Bj . In principle, any distance D(xi,xj) can be used, but in
this paper the squared Euclidean distance is used.

The classic approach for the classification of a bag B is to first identify a
concept C ∈ Rd, and to check for each instance if it is member of this concept.

f(Bi) =

{
+1, if ∃xik ∈ C

−1, otherwise
(2)

In section 3 a few approaches using concepts are explained in more depth.
Instead of focussing on the single most informative instance from a bag, a

bag can be described by its full distribution of its instances. This assumes that
all instances in a bag are informative about the bag label and not a single
instance can determine the class label. It is then possible to define a dissimilarity
matrix dij = d(Bi, Bj) between bags, that is measuring the difference between
(or overlap in) the distributions of Bi and Bj .

A drawback may be that the distances obtained in such manner may not be
euclidean, or even metric. Therefore only methods that directly operate on dis-
tances can be applied, for instance a k-nearest neighbor (k-nearest bag) classifier
would be suitable. The alternative approach is to interpret the distances to the
other bags as new features, and to train classifiers on this new dissimilarity space
[14]:

f(Bi) = f((di1, di2, ..., diR)) (3)

Typically, the distances to all training bags can be used so R = N , but reductions
in complexity and computational requirements can be obtained when a smaller
representation set is chosen R << N .

We did not specify the dissimilarity dij between bags yet. In this paper we
consider two approaches, the first using bag distribution dissimilarities (section
2.1) and the second using the pairwise instance dissimilarities (section 2.2).

2.1 Bag Distribution Dissimilarities

To characterize bag differences in terms of differences between distributions of
the instances would mean that for each bag a probability density has to be
estimated, and next the difference between the distributions of two bags. It is
not only very hard to estimate a high dimensional probability density function
in a high dimensional feature space, it is also very computational demanding
to estimate the difference, or overlap, of two distributions. Therefore approxi-
mations are made, and the following approximate distribution comparisons are
considered:
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Mahalanobis Distance. The distribution of each bag is approximated by a
single Gaussian distribution with mean μ and covariance matrix Σ. The
difference between two Gaussian distributions is computed using the Maha-
lanobis distance:

dij = (μi − μj)T

(
1
2
Σi +

1
2
Σj

)−1

(μi − μj) (4)

Note that the averaged covariance matrix is used of the covariance matrices
Σi and Σj of the two bags. That means that when the number of instances
per bag is low, and the feature dimensionality is high, it can become hard
(or, in fact, impossible) to invert the averaged covariance matrix.

Earth Mover’s Distance. The Earth Mover’s distance measures the dissim-
ilarity between two distributions pi and pj by measuring the effort to turn
one distibution pi, one ’pile of earth’, into another one pj . [16] In case of
a discrete probability mass, the probability has to be moved over distances
Dij(k, l) as defined in (1). For the MIL bag similarity that we consider, we
assume that each instance in bag Bi contains 1/ni of the total probability
mass. The Earth Mover’s distance is defined by the minimum amount of
work that is needed to transform distribution pi into pj :

dij = min
fkl

∑
k,l

fklDij(k, l) (5)

where fkl defines the flow between instance k and instance l, and with the
additional constraints that fkl ≥ 0, ∀k, l,

∑
l fkl ≤ 1/ni,

∑
k fkl ≤ 1/nj and∑

kl fkl = 1.

2.2 Pairwise Instance Dissimilarities

Instead of modeling full probability densities, the empirical distances between
instances can be used.

To get a single dissimilarity measure between bags Bi and Bj , the matrix in
(1) has to be reduced to a single scalar. A collection of operations O1, .., O5 is
defined that first reduce the rows and columns of the matrix to (two) vectors,
and then reduces the vectors to a scalar. In figure 1 a graphical representation
of the general family of operations on the dissimilarity Dij is shown. The first
two operations perform a row and column wise reduction:

d̃i = O1(D(xi1,xj1), ..., D(xini ,xj1)) (6)

d̃j = O2(D(xi1,xj1), ..., D(xi1,xjnj )) (7)

where the individual operators reduce a vector to a scalar: Oi : Rn → R. On
these reduced vectors, the final bag dissimilarity is defined:

dij = O5(O3(d̃i), O4(d̃j)). (8)
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O1

O2

O3

O4

O5

D d̃j

d̃i dij

ni

nj

Fig. 1. The operations that can be performed on a general dissimilarity matrix D
between bags Bi and Bj

(Note that dij contains a single scalar dissimilarity, while Dij contains the full
instance dissimilarity matrix.) Often a symmetric dissimilarity matrix is pre-
ferred, dij = dji, and therefore the operations are defined in a symmetric way:
O1 = O2 and O3 = O4.

This reduction of the full dissimilarity matrix using these operations gener-
alizes many approaches, depending on the choices for Oi. This results in well-
known and new bag similarity measures:

Overall Minimum. O1 = O2 = min, O3 = O4 = min, O5 = min: Use the
overall minimum pairwise distance between instances. This is expected to be
quite noisy because a single instance determines the final distance between
bags. When the number of instances per bag is low, and there is a very dense
concept C, i.e. it is covering a small area in the feature space, this measure
may actually work.

Mean Minimum Distance. O1 = O2 = min, O3 = O4 = mean, O5 = mean
The mean minimum distance between bags, where for each instance the
closest instance in the other bag is found, and where the minimum distances
are averaged over all the instances. This is certainly not as noise sensitive as
the overall minimum, and captures more of the general similarity between
the distributions of the two bags. This does not work if there is a single
instance that determines the class label.

Standard Haussdorf Distance. O1 = O2 = min, O3 = O4 = max, O5 =
max: The standard Haussdorf distance between bags, where for each in-
stance the closest instance in the other bag is found, and from all the closest
matches, the lastest distance is used to define the bag distance. The advan-
tage is that the Haussdorf distance defines a metric, but it is sensitive to a
single outlier instance, that can dominate the full bag distance.

Modified Haussdorf. O1 = O2 = min, O3 = O4 = max, O5 = min: The
modified Haussdorf distance between bags [6] that is less sensitive to single
outliers.
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2.3 Linear Assignment Dissimilarity

The operations that are defined in (8) matches instances independently of each
other; each element in (6) or (7) are computed individually. By performing a
linear assignment [11], instances in bag Bi are matched to bag Bj . When one
bag is larger than the other, instances of the largest bag are not matched, and
will not contribute to the distance between the two bags. Define Ikl = 1 when
instances k and l are matched, and Ikl = 0 otherwise, then the bag dissimilarity
is defined as:

dij =
∑
k,l

IklDij(k, l). (9)

3 Standard MIL Classifiers

The original model proposed by [5] was an axis-parallel rectangle that was grown
and shrunk to best cover the area of the concept. Several parameters determine
the optimization of the rectangle, and one of them (τ) defines a slight extrapola-
tion around to box to become a bit resistant against noise. It is applied to a drug
discovery problem where molecules have to be distinguished based on their shape
into active and inactive molecules. It appears that this rectangular model fits well
with the molecule shape classification, but it is less successful in other applications.

A probabilistic description of the MIL problem was given by [13]. The concept
is modeled by a general probabilistic model, where typically an axis-parallel Gaus-
sian is used. Unfortunately, the optimization of the parameters requires a compu-
tationally expensive maximization of an likelihood that is adapted to include the
constraint that at least one of the instances in a positive bag has a high concept
probability.Because the error landscape is verywild, several random initialisations
are tried, and the solution with the highest likelihood is used.

Newer methods often avoid the modeling of the concept by a density model,
and try to separate concept instances from background instances using a dis-
criminative approach. Two of them include the MISVM [1] and the MiBoost
[19]. The first uses a support vector classifier, in which one instance from each
positive bag is selected as being the ‘witness’, i.e. each bag is reduced to its most
positive member. The second is a variant of boosting, where in each boosting
step a weight per instance is updated. The weight indicates how informative this
instance seems to be in the prediction of the class label of the bag.

The abovementionedmethods assume the presence of a concept.Othermethods
avoid this assumption, and try to apply standard pattern recognition techniques
directly to the MIL problem. The first approach is to extract features from the bag
of instances, like the average instance, or the minimum and maximum feature val-
ues that appear in the bag, and train a standard classifier on this feature vector
[9]. A second approach is to ignore the MIL problem and to label all instances ac-
cording to their bag label. [21] Then a standard classifier can be fitted to the fully
labeled instance dataset. To classify a new bag of instances, first all instances are
classified, and then a simple combining rule like taking the maximum, or majority
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voting is applied. Finally, an idea similar to the bag of words in the natural lan-
guage processing can be applied. In particular, in MILES [4] all instances in the
training set are considered words (or potential concepts), and new bags are repre-
sented by their similarity to each of the words. On these long similarity vectors a
sparse classifier is fitted to select the most informative words.

4 Experiments

To show the benefits and limitations of the bag similarities, classification exper-
iments are performed on some standard real world MIL datasets. The datasets
often deal with image classification, where with different procedures segments
are extracted, different features per segment are computed and different classes
are defined. [3,1,4]. Two non-image problems are the classical drug discovery
problems Musk1 and Musk2, in which molecules are described by 166 shape fea-
tures [5], and the webpage classification, in which webpages are described by a
collection of pages that have links to the original page. In table 1 some character-
istics are shown of the datasets that are considered in this paper. The datasets
are chosen to show some variability in the number of features, the number of
bags, and the average number of instances per bag.

Table 1. Some characteristics of the standard MIL datasets used in this paper

pos. neg. min. median max.
dataset nr.inst. dim. bags bags inst/bag inst/bag inst/bag

MUSK 1 [5] 476 166 47 45 2 4 40
MUSK 2 [5] 6598 166 39 63 1 12 1044
Corel African [4] 7947 9 100 1900 2 3 13
Corel Historical [4] 7947 9 100 1900 2 3 13
SIVAL AjaxOrange [10] 47414 30 60 1440 31 32 32
Web atheism [23] 5443 200 50 50 22 58 76
Web motorcycles [23] 4730 200 50 50 22 49 73
Web mideast [23] 3373 200 50 50 15 34 55
Corel Fox [1] 1320 230 100 100 2 6 13
Corel Tiger [1] 1220 230 100 100 1 6 13
Corel Elephant [1] 1391 230 100 100 2 7 13

In tables 2, 3 and 4 the results of the classifiers mentioned in Section 2 are
shown. Three different types of classifiers are used: the standard MIL classifiers in
the top block, the k-nearest neighbor that is directly operating on the distances
defined in Section 2 given in the middle block, and finally classifiers that use the
distances as features in the last block.

For the Axis-parallel Rectangle classifier (APR) the τ parameter is varied,
because that appears to have the most significant influence on the performance.
The other parameters are fixed. For the Diverse Density 100 random restarts of
the optimization is chosen. In the miBoost the number of boosting runs was set
to M = 100. For the MI-SVM and MILES the kernel was chosen to be an RBF
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kernel, where the width parameter σ was roughly optimized (using 5 candidates).
For the MI-SVM the linear kernel was also applied for comparison.

The more simple MIL classifiers includes first the Linear Discriminant Anal-
ysis (LDA) trained on all instances, with a maximum combination rule to get
from instance to bag labels. The next two classifiers represent a bag of instances
by the mean instance (where the feature values are averaged) or the minimum
and maximum feature value, respectively. On this new feature vector a LDA is
trained. The last simple MIL classifier applies a bag of words approach, where
first k cluster centers are obtained by applying k-means clustering on all in-
stances, next the bags are represented by the number of instances that are as-
signed to each cluster, and finally a (linear) support vector classifier is trained
on the histograms.

The standard MIL classifier are compared to the classifiers that work with the
bag dissimilarities. Five different dissimilarities are considered here, the ’Overall
Minimum’ (minmin.) dissimilarity, the ’Mean Minimum’ (mindist) distance, the
’Hausdorff’ (haussd.) distance, the Mahalanobis (mahal.) distance, the Earth
Mover’s distance (emd) and, finally, the linear assignment (lin.ass.) distance.
The classifier that is used for classifying distance data is the k-nearest neighbor.
The k is optimized on the training set using leave-one-out crossvalidation.

Furthermore, all classifiers are implemented, trained and evaluated using a
Matlab toolbox [18]. In quite some cases the performance as mentioned in the
literature could not be reproduced. This might be caused by the fact that the
optimization of the free parameters in the methods was not so extensive as in
the original papers. In this paper a reasonable range of parameters was chosen
and an internal crossvalidation was used to find the final optimal value. In some
cases (in particular the Diverse Density) the optimization was so slow, that just a
fixed parameter setting was chosen. Furthermore, all features have been rescaled
to zero mean and unit variance on the training set. The reported performance
is the area under the ROC curve (×100). A performance of 50.0 means that the
two classes are not separated at all, a performance of 100.0 is perfect.

From the results in Tables 2, 3 and 4 several things can be concluded:
Datasets that contain a clear concept often do not gain much by the use of

bag similarities. That is visible in datasets Musk 1, Musk 2, AjaxOrange, Corel
Tiger and Corel Elephant. For datasets in which many instances contain some
information about the class label, like in the webpage classification, but also a bit
in Corel African, Corel Historical and Corel Fox, the bag dissimilarity measures
are informative.

It is not always the case that using a nearest neighbor classifier on the dis-
tances gives the highest performance. In particular on the webpage classification
problems significant improvements can be made by using a k-nearest neighbor
classifier (or a Parzen classifier) in the dissimilarity space. On the other hand,
on the Corel African and Corel Historical datasets, training a classifier in the
dissimilarity space slightly deteriorates the results. This is probably caused by
the fact that the dissimilarity space is quite large here because the number of
training bags is high: 90% of 2000 = 1800D.
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Table 2. AUC performances (100×) of the classifiers on datasets Musk1, Musk2, Corel
African and Corel Historical. Results are obtained using five times 10-fold stratified
crossvalidation. Results (1) cannot be obtained because some bags in Musk2 are too
large to compute the Earth Mover’s distance between bags.

classifier Musk 1 Musk 2 Corel African Corel Historical

Standard MIL classifiers

APR τ = 0.999 81.8 (1.3) 82.5 (1.2) 50.5 (0.0) 50.5 (0.1)
APR τ = 0.995 78.9 (1.7) 80.8 (2.3) 57.4 (0.8) 61.4 (0.4)
Diverse Density (100 restarts) 89.4 (1.3) 93.2 (0.0) 85.6 (0.1) 83.4 (0.7)
MiBoost (M = 100 rounds) 80.3 (3.1) 49.3 (3.7) 68.0 (0.0) 80.4 (1.6)
MI-SVM (linear kernel) 70.3 (3.0) 81.5 (2.1) 63.4 (2.0) 78.9 (0.6)
MI-SVM (RBG kernel) 92.9 (1.3) NaN (0.0) NaN (0.0) 90.8 (1.0)
MILES (RBF kernel) 92.8 (1.4) 95.3 (1.5) 58.9 (9.2) 60.8 (12.8)
Simple MIL with LDA, max-comb. 72.9 (3.4) 76.7 (3.4) 68.8 (0.2) 74.4 (0.2)
LDA on mean-inst 85.7 (1.4) 87.6 (2.8) 77.2 (0.3) 86.2 (0.1)
LDA on extremes 92.4 (1.9) 88.9 (4.0) 88.5 (0.1) 85.3 (0.2)
BagOfWords (k=10)+linear SVM 72.7 (4.7) 63.7 (6.1) 75.1 (3.2) 78.4 (3.9)
BagOfWords (k=100)+linear SVM 78.7 (5.5) 71.2 (3.1) 83.4 (1.8) 85.6 (2.6)

Distance-based classifiers on bag dissimilarities

minmin+k-NND 90.1 (1.4) 84.0 (1.9) 86.6 (0.4) 84.1 (1.2)
mindist+k-NND 86.3 (2.0) 83.2 (1.6) 92.7 (0.7) 90.7 (1.1)
haussd.+k-NND 89.0 (1.6) 84.2 (0.8) 86.7 (0.9) 88.5 (1.0)
mahal.+k-NND 61.8 (2.8) 65.7 (5.7) 67.3 (0.7) 63.2 (1.2)

emd+k-NND 90.1 (2.7) (1) 92.0 (0.7) 88.8 (1.7)
lin.ass.+kNND 84.7 (1.6) 76.5 (2.7) 69.9 (0.6) 87.8 (0.4)

Standard classifiers on bag dissimilarity space

minmin.+Parzen Classifier 94.7 (3.0) 92.3 (2.7) 90.4 (0.6) 84.0 (0.6)
mindist.+Parzen Classifier 61.2 (6.0) 50.0 (0.0) 83.4 (0.9) 86.0 (0.5)
haussd.+Parzen Classifier 86.9 (0.7) 92.1 (2.5) 79.1 (0.6) 84.3 (0.5)
mahal.+Parzen Classifier 52.1 (0.9) 65.8 (2.4) 46.3 (2.4) 52.4 (1.3)

emd+Parzen Classifier 87.4 (3.4) (1) 89.4 (0.4) 85.4 (0.7)
lin.ass.+Parzen Classifier 83.3 (2.7) 72.2 (2.9) 83.5 (0.7) 86.2 (0.5)
minmin.+k-NN 93.3 (1.5) 90.7 (3.9) 88.7 (0.8) 83.5 (1.3)
mindist.+k-NN 88.8 (3.0) 83.8 (1.4) 81.7 (1.1) 85.5 (1.0)
haussd.+k-NN 89.2 (2.7) 91.6 (1.0) 77.0 (0.7) 80.0 (1.3)
mahal.+k-NN 72.0 (3.1) 61.6 (2.7) 53.3 (1.6) 57.0 (0.8)

emd+k-NN 92.4 (1.4) (1) 86.9 (1.1) 79.6 (1.5)
lin.ass.+k-NN 88.6 (2.1) 72.6 (3.7) 81.5 (1.4) 84.7 (1.4)
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Table 3. AUC performances (100×) of the classifiers on datasets SIVAL AjaxOrange,
webpage Atheism, webpage Motorcycles and webpage Mideast. Results are obtained
using five times 10-fold stratified crossvalidation. Results (2) cannot be obtained be-
cause the linear programming optimizer required more than 128GB of memory, which
was not available.

classifier AjaxOrange alt.atheism rec.motorcycles politics.mideast

Standard MIL classifiers

APR τ = 0.995 48.4 (0.8) 50.0 (0.0) 50.0 (0.0) 49.8 (0.4)
Diverse Density (100 restarts) 55.5 (2.9) 52.2 (2.4) 46.4 (2.9) 40.2 (2.5)
MiBoost (M = 100 rounds) 56.5 (2.4) 50.0 (0.0) NaN (0.0) 50.3 (1.5)
MI-SVM (linear kernel) 93.6 (2.6) 69.8 (2.8) 76.4 (4.0) 79.8 (2.3)
MI-SVM (RBG kernel) NaN (0.0) 45.5 (7.1) 49.7 (5.4) 46.1 (2.4)

MILES (RBF kernel) (2) 47.1 (4.5) 44.7 (4.8) 54.1 (1.8)
Simple MIL with LDA, max-comb. 89.3 (0.3) 81.6 (1.2) 80.4 (2.1) 75.0 (3.1)
LDA on mean-inst 82.3 (0.9) 83.7 (2.1) 84.4 (1.8) 78.1 (1.7)
LDA on extremes 90.3 (0.3) 50.0 (0.0) 51.2 (0.4) 65.0 (1.8)
BagOfWords (k=100)+linear SVM 81.2 (2.5) 54.0 (0.0) 65.2 (9.3) 58.6 (6.8)

Distance-based classifiers on bag dissimilarities

minmin+k-NND 53.6 (1.2) 50.0 (0.0) 50.0 (0.0) 52.8 (2.2)
mindist+k-NND 62.9 (1.3) 59.2 (1.9) 58.4 (0.5) 53.4 (1.1)
haussd.+k-NND 72.4 (1.3) 72.8 (3.0) 68.7 (3.2) 67.1 (1.8)
mahal.+k-NND 64.0 (1.6) 47.7 (4.4) 45.0 (3.4) 58.5 (6.0)
emd+k-NND 77.6 (2.6) 56.0 (1.2) 60.8 (0.4) 57.2 (1.3)
lin.ass.+kNND 71.6 (1.4) 69.2 (1.7) 53.7 (2.9) 58.5 (3.2)

Standard classifiers on bag dissimilarity space

minmin.+Parzen Classifier 55.7 (1.6) 49.8 (0.4) 50.0 (0.0) 50.4 (2.3)
mindist.+Parzen Classifier 78.0 (1.3) 78.9 (2.8) 78.4 (0.5) 75.2 (1.9)
haussd.+Parzen Classifier 71.8 (0.9) 73.8 (2.0) 82.0 (2.2) 73.8 (0.9)
mahal.+Parzen Classifier 75.3 (0.9) 54.2 (3.3) 43.7 (3.5) 61.9 (1.8)
emd+Parzen Classifier 78.7 (1.1) 89.7 (1.3) 77.6 (1.5) 87.8 (1.1)
lin.ass.+Parzen Classifier 78.9 (0.6) 80.1 (2.4) 84.2 (2.8) 84.3 (3.1)
minmin.+k-NN 56.0 (1.6) 50.0 (0.0) 50.0 (0.0) 47.8 (2.7)
mindist.+k-NN 70.6 (2.6) 84.9 (1.6) 86.6 (2.0) 82.2 (1.5)
haussd.+k-NN 68.9 (1.9) 85.6 (2.1) 89.2 (3.5) 77.2 (3.2)
mahal.+k-NN 70.8 (1.5) 51.2 (3.6) 56.3 (3.8) 55.8 (4.6)
emd+k-NN 72.0 (2.4) 90.0 (1.4) 86.7 (0.7) 82.6 (1.7)
lin.ass.+k-NN 70.1 (0.8) 82.1 (2.3) 82.9 (2.4) 80.8 (3.8)
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Table 4. AUC performances (100×) of the classifiers on datasets Corel Fox, Corel
Tiger, and Corel Elephant. Results are obtained using five times 10-fold stratified
crossvalidation.

classifier Corel Fox Corel Tiger Corel Elephant

Standard MIL classifiers

APR τ = 0.995 55.2 (1.2) 57.9 (1.6) 74.6 (3.2)
Diverse Density (100 restarts) 66.5 (1.6) 79.3 (0.2) 90.8 (0.0)
MiBoost (M = 100 rounds) 53.5 (1.4) 74.2 (1.3) 88.9 (1.3)
MI-SVM (linear kernel) 54.4 (1.5) 80.1 (1.1) 84.1 (1.3)
MI-SVM (RBF kernel) 69.6 (1.4) 86.5 (1.4) 91.1 (1.2)
MILES (RBF kernel) 69.8 (1.7) 87.2 (1.7) 88.3 (1.1)
Simple MIL with LDA, max-comb. 57.9 (1.4) 83.4 (1.3) 90.8 (1.6)
LDA on mean-inst 58.5 (2.8) 86.5 (1.2) 89.7 (1.3)
LDA on extremes 62.9 (3.0) 84.8 (1.0) 91.3 (1.3)
BagOfWords (k=10)+linear SVM 51.8 (4.6) 71.2 (4.0) 73.0 (1.9)

Distance-based classifiers on bag dissimilarities

minmin+k-NND 65.7 (1.3) 83.4 (1.2) 83.4 (1.1)
mindist+k-NND 63.9 (1.5) 76.4 (1.3) 87.9 (1.7)
haussd.+k-NND 63.5 (3.0) 80.9 (1.2) 80.9 (2.2)
mahal.+k-NND 58.8 (2.9) 58.8 (2.9) 66.3 (4.1)
emd+k-NND 61.3 (2.1) 85.5 (0.9) 86.8 (2.3)
lin.ass.k+NND 57.5 (4.1) 78.9 (2.4) 72.8 (2.5)

Standard classifiers on bag dissimilarity space

minmin.+Parzen Classifier 61.2 (4.0) 74.3 (2.8) 86.7 (0.7)
mindist.+Parzen Classifier 62.3 (1.9) 70.7 (1.2) 74.9 (4.2)
haussd.+Parzen Classifier 59.8 (1.7) 66.9 (2.2) 73.2 (1.1)
mahal.+Parzen Classifier 68.9 (3.4) 68.9 (3.4) 64.9 (1.7)
emd+Parzen Classifier 54.3 (2.1) 67.8 (1.5) 76.5 (2.2)
lin.ass.+Parzen Classifier 64.4 (1.9) 64.6 (1.4) 69.6 (2.1)
minmin.+k-NN 67.0 (1.4) 78.6 (1.4) 87.8 (1.1)
mindist.+k-NN 59.6 (3.1) 73.7 (1.3) 76.0 (1.8)
haussd.+k-NN 56.7 (3.8) 70.6 (1.9) 77.8 (0.9)
mahal.+k-NN 75.0 (3.8) 75.0 (3.8) 65.6 (1.1)
emd+k-NN 61.4 (0.9) 76.5 (0.6) 76.3 (1.0)
lin.ass.+k-NN 65.0 (3.1) 68.7 (2.9) 71.8 (2.3)
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5 Conclusions

In some MIL problems not a single instance may be decisive, but the full dis-
tribution of all the instances in a bag. For these situations bag dissimilarities
are defined that characterize the difference in distribution between bags. For the
webpage classification problem this resulted in very good performances, while
for other problems, where a single concept can be expected, the bag dissimilarity
is far less successful. It seems that most webpages that link to another webpage,
contain information about the linked-to webpage, and therefore selecting just
one single most informative webpage is not optimal. For other problems, like
the image classification problem, the different segments appear to be more in-
dependent, in that detecting the single most informative segment is often best.
This effect is also enhanced by the fact that in the image classification problems
images often do not have many segments (around 3-6), so it is hard to treat
these few instances as a distribution.

When the given the bag dissimilarities are interpreted as new features to rep-
resent the bag, a classifier can be trained on these distance features. In this paper
only the k-nearest neighbor and the Parzen classifier are considered. Although
the choice of the classifier has some influence on the final performance, the choice
of the bag dissimilarity is more important. One well-performing dissimilarity is
using the Earth Mover’s Distance.

Acknowledgments. We acknowledge the financial support from the FET pro-
gramme within the EU FP7, under the project ”Similarity-based Pattern Anal-
ysis and Recognition - SIMBAD” (contract 213250).
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Abstract. In many data analysis tasks, one is often confronted with
very high dimensional data. The feature selection problem is essentially a
combinatorial optimization problem which is computationally expensive.
To overcome this problem it is frequently assumed either that features
independently influence the class variable or do so only involving pairwise
feature interaction. In prior work [18], we have explained the use of a
new measure called multidimensional interaction information (MII) for
feature selection. The advantage of MII is that it can consider third or
higher order feature interaction. Using dominant set clustering, we can
extract most of the informative features in the leading dominant sets in
advance, limiting the search space for higher order interactions. In this
paper, we provide a comparison of different similarity measures based on
mutual information. Experimental results demonstrate the effectiveness
of our feature selection method on a number of standard data-sets.

1 Introduction

High-dimensional data pose a significant challenge for pattern recognition. The
most popular methods for reducing dimensionality are variance based subspace
methods such as PCA. However, the extracted PCA feature vectors only capture
sets of features with a significant combined variance, and this renders them rel-
atively ineffective for classification tasks. Hence it is crucial to identify a smaller
subset of features that are informative for classification and clustering. The idea
underpinning feature selection is to a) reduce the dimensionality of the feature
space, b) speed up and reduce the cost of a learning algorithm, c) obtain the fea-
ture subset which is most relevant to classification. Mutual information provides
a principled way of measuring the mutual dependence of two variables, and has
been used by a number of researchers to develop information theoretic feature
selection criteria. For example, Batti [1] has developed the Mutual Information-
Based Feature Selection (MIFS) criterion, where the features are selected in a
greedy manner. Given a set of existing selected features S, at each step it locates
the feature xi that maximize the relevance to the class I(xi; C). The selection is
regulated by a proportional term βI(xi; S) that measures the overlap informa-
tion between the candidate feature and existing features. The parameter β may
significantly affect the features selected, and its control remains an open prob-
lem. Peng et al [11] on the other hand, use the so-called Maximum-Relevance
Minimum-Redundancy criterion (MRMR), which is equivalent to MIFS with
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β = 1
n−1 . Yang and Moody’s [15] Joint Mutual Information (JMI) criterion is

based on conditional MI and selects features by checking whether they bring
additional information to an existing feature set. This method effectively rejects
redundant features. Kwak and Choi [8] improve MIFS by developing MIFS-U
under the assumption of a uniform distribution of information for input features.
It calculates the MI based on a Parzen window, which is less computationally
demanding and also provides better estimates.

However, there are two limitations for the above MI feature selection meth-
ods. Firstly, they assume that each individual relevant feature should be de-
pendent with the target class. This means that if a single feature is considered
to be relevant it should be correlated with the target class, otherwise the fea-
ture is irrelevant [3]. So only a small set of relevant features is selected, and
larger feature combinations are not considered. The second weakness is that
most of the methods simply consider pairwise feature dependencies, and do not
check for third or higher order dependencies between the candidate features
and the existing features. To overcome the above problem, Zhang and Han-
cock [18] introduce the so called multidimensional interaction information (MII)
I(F ; C) = I(f1, . . . , fm; C) to select the optimal subset of features. The main
reason for using I(F ; C) as feature selection criterion is that: because I(F ; C)
is a measure of the reduction of uncertainty in class C due to the knowledge of
feature vector F = {f1, . . . , fm}, selecting features that maximize I(F ; C), from
an information theoretic perspective, translates into selecting those features that
contain the maximum information about class C.

In prior work[18], we have proposed a graph-based method to feature selection.
In this feature selection scheme, the original features are clustered into different
clusters based on dominant-set clustering and each cluster just includes a small
set of features. As dominant set clustering can group most of the informative
features into the leading dominant set based on suitable similarity measure, this
allows us to limit the search space for further feature selection. The similarity
measure used for clustering is based on mutual information. We compare the
similaity measure with other two well known alternative measures of similarity,
namely Pearson’s correlation coefficient (ρ) which based on distance and the
Least square regression error (e) is made. Using the Parzen window for proba-
bility distribution estimation, we then apply a greedy strategy to incrementally
select the features that maximizes the multidimensional mutual information be-
tween the already selected features and the output class set.

2 Dominant-Set Clustering Algorithm

There are several different methods for clustering features, well-known examples
are: k-means algorithm [9] is built for all sample, but requires a user to supply
the number of clusters in advance. In addition, it can not detect clusters of
arbitrary shapes. The Self Organizing Map(SOM) [14] is a type of artificial
neural network which can produce a low-dimensional space for the input data
objects using a neighborhood function to cluster nodes. As same with k-means
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algorithm, it does not explicitly optimize any measure of the total dissimilarity
to locate clusters. Again, it requires the number of clusters as user input. In
this paper, we use dominant set clustering which is suitable for both subspace
and high dimensional data clustering. In addition, it does not require the user
to provide the number of clusters and can also handle outliers efficiently. Most
importantly, it can group most of the informative features into cluster based on
a suitable similarity measure.

2.1 Concept of Dominant Set

The dominant set[10], is a combinational concept in graph theory that generalizes
the notion of a maximal complete subgraph from simple graphs to edge-weighted
graphs. In fact, dominant sets turn out to be equivalent to maximal cliques. The
definition of the dominant set simultaneously emphasizes internal homogeneity
and together with external inhomogeneity. Thus it is can be used as a general
definition of a ”cluster”. To provide an example, assume there are N training
samples, each having 5 feature vectors. In order to capture the dominant fea-
tures from these 5 features (represented as F1, . . . , F5), we construct a graph
G = (V, E) with node-set V , edge-set E ⊆ V × V and edge weight matrix W
whose elements are in the interval [0, 1]. Each vertex represents a feature and
the edge between two features represents their pairwise relationship. The weight
on the edge reflects the degree of relevance between two features. Therefore, we
represent the graph G with the corresponding edge-weight or weighted relevance
matrix. In our example, in Fig. 1, features {F1, F2, F3} form the dominant set,
since the edge weights “internal” to that set (0.6, 0.7 and 0.9) are larger than
the sum of those between the internal and external features (which is between
0.05 and 0.25).

For the graph G = (V, E) above, we can locate the dominant set by finding
the solutions of a quadratic program that maximizes the functional

f(x) =
1
2
xT Wx . (1)

Fig. 1. The subset of features {F1, F2, F3} is dominant
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subject to x ∈ �, where � = {x ∈ Rn : x ≥ 0and
∑n

i=1 xi = 1} and W is the
relevance weight matrix between features. The dominant set corresponds in the
strict sense with solutions of the quadratic program. Let u denote a strict local
solution of the above program. It has been proved by [10] that σ(u) = {i|ui > 0}
is equivalent to a dominant set of the graph represented by the edge-weight
matrix W. In addition, the local maximum of f(u) indicates the “cohesiveness”
of the corresponding cluster. The replicator equation can be used to solve the
program using the iterative update equation:

xi(t + 1) = xi(t)
(Wx(t))i

x(t)T Wx(t)
. (2)

where xi(t) corresponded to the i− th feature vector at iteration t of the update
process.

2.2 Dominant-Set Clustering Algorithm

Pavan et al have demonstrated that the concept of a dominant set provides an
effective framework for iterative pairwise clustering. Consider a set of features
represented by an undirected edge-weighted graph with no self-loops. Let the
graph be denoted by G = (V, E, ω) where V = 1, . . . , n is the vertex set, E ⊆
V × V is the edge set, and ω is the weight function. Each vertex represents
a feature and the weight residing on the edge between two nodes represents
the pairwise affinity of the corresponding features. To cluster the features into
coherent groups, a dominant set of the weighted graph is iteratively located,
and then removed from the graph. This process is repeated until the node-set
of the graph is empty. The main property of a dominant set is that the overall
similarity among the internal features is greater than that between the external
features and the internal features.

3 Feature Similarity Measure

There are different similarity measure methods that can be used for cluster-
ing and different methods may lead to different cluster results. As a result, we
need to carefully select the most suitable measure to use. In general, the Eu-
clidean distance is widely used as the distance or similarity measure for clustering
[7]. However, Euclidean distance only accounts for a data which follows a par-
ticular distribution [16], it is not effective to reflect functional similarity such
as positive and negative correlation and interdependency. Rao [12] introduced
two approaches to measure the linear dependency between variables, namely,
a)Pearson’s correlation coefficient (ρ), b) Least square regression error (e).

Pearson’s Correlation Coefficient (ρ): The Correlation coefficient (ρ) be-
tween two random variables x and y is defined as:

ρ(x, y) =
cov(x, y)√

var(x)var(y)
. (3)
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where var() denotes the variance of a variable and cov(x, y) is the covariance be-
tween two random variables. From the above definition, we can see that Pearson’s
correlation coefficient quantifies the linear dependency between two variables x
and y. When the ρ(x, y) is large (i.e. 1 or -1), this implies that variable x and
variable y are closely related, otherwise, when ρ(x, y) is equal to 0, this means
that two variables are totally unrelated. As a result, the method can be used
to detect positive and negative correlation. However, there are two limitations
which unsuit the utility of Pearson coefficient to used for dominant set clustering.
First, it is not robust to outliers and as a result it may assign a high similarity
score to a pair of dissimilar features. Second, as it is sensitive to rotation and
invariant to scaling, the two pairs of variables having different variances may
give the same value of the similarity measure.

Least Square Regression Error (e): The dependency of two variables x and
y can be modeled by the linear model, y = a + bx. As a result, the degree of
dependency between them can be measure by the error in predicting y from the
linear model. The parameters of the model a and b can be learned by minimizing
the mean square error as follows:

e(x, y)2 =
1
n

∑
(e(x, y)i)2 . (4)

where e(x, y)i = yi − a − bxi, a = ȳ, b = cov
(x,y)var(x) and e(x, y) = var(y)(1 −

ρ(x, y)2). From this definition, we can see that the least square regression error
(e) quantifies the amount of variance of y unexplained by the linear model. As
with Pearson’s correlation coefficient (ρ), it is sensitive to rotation and scaling.

4 Feature Selection Using Dominant-Set Clustering

In this paper we aim to utilize the dominant-set clustering algorithm for feature
selection. Using a graph representation of the features, there are three steps to
the algorithm, namely a) computing the relevance matrix W = (wij)n×n based
on the mutual information between feature vectors, b) dominant-set clustering to
cluster the feature vectors and c) selecting the optimal feature set from leading
dominant set using the multidimensional interaction information (MII) criterion.
In the remainder of this paper we describe these elements of our feature selection
algorithm in more detail.

4.1 Computing the Similarity Matrix

Instead of using the Euclidean distance, Pearson’s correlation coefficient (ρ) or
the least square regression error (e), our similarity measure employs an mutual
information measure to evaluate the interdependence of features. The use of this
mutual information measure allows dominant set clustering to discover the in-
formative features and group them into cluster. In accordance with Shannon’s
information theory [13], the uncertainty of a random variable Y can be mea-
sured by the entropy H(Y ). For two variables X and Y , the conditional entropy
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H(Y |X) measures the remaining uncertainty about Y when X is known. The
mutual information (MI) represented by I(X ; Y ) quantifies the information gain
about Y provided by variable X . The relationship between H(Y ), H(Y |X) and
I(X ; Y ) is I(X ; Y ) = H(Y ) − H(Y |X).

As defined by Shannon, the initial uncertainty for the random variable Y is
expressed as:

H(Y ) = −
∑
y∈Y

P (y) log P (y) . (5)

where P (y) is the prior probability density function over Y . The remaining un-
certainty in the variable Y if the variable X is known is defined by the conditional
entropy H(Y |X)

H(Y |X) = −
∫

x

p(x){
∑
y∈Y

p(y|x) log p(y|x)}dx . (6)

where p(y|x) denotes the posterior probability for variable Y given another ran-
dom variable X . After observing the variable vector x, the amount of additional
information gain is given by the mutual information (MI)

I(X ; Y ) = H(Y ) − H(Y |X) =
∑
y∈Y

∫
x

p(y, x)log
p(y, x)

p(y)p(x)
dx . (7)

From the above definition, we can see that mutual information quantifies the in-
formation which is shared by two variables X and Y . When the I(X ; Y ) is large,
this implies that variable X and variable Y are closely related, otherwise, when
I(X ; Y ) is equal to 0, this means that two variables are totally unrelated. There-
fore, in our feature selection scheme, the relevance of pairs of feature vectors is
computed using mutual information. Suppose there are N training samples, each
having K feature vectors. The kth feature vector for the lth training sample is
f l

k, so we can represent the kth feature vector for the N training samples as the
long vector Fk = {f1

k , f2
k , . . . , fN

k }. The entropy of the feature vector Fk where
(k = 1, 2, . . . , K) can be computed using Equation (3). For two feature vectors
Fk1 and Fk2, their mutual information I(Fk1, Fk2) can be computed by Equa-
tion (5). The relevance degree between two feature vectors Fk1 and Fk2 can be
defined as [17]:

W(Fk1, Fk2) =
2I(Fk1, Fk2)

H(Fk1) + H(Fk2)
. (8)

where k1, k2 ∈ K and the higher the value of W(Fk1, Fk2) the more relevant
are the features Fk1 and Fk2. Otherwise, if W(Fk1, Fk2) = 0, the two
features are totally unrelated. In addition, for the above computation, we use the
Parzen-Rosenblatt window method to estimate the probability density function
of random variables Fk1 and Fk2 [11]. The Parzen probability density estimation
formula is given by: p(x) = 1

N φ(x−xi

h ), where φ(x−xi

h ) is the window function
and h is the window width. Here, we use a Gaussian as the window function,
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so φ(x−xi

h ) = 1

(2π)
d
2 hd|Σ|

1
2

exp( (x−xT
i )Σ−1(x−xi)
−2h2 ), where Σ is the covariance of

(x − xi), d is the length of vector x. When d = 1, p(x) estimates the marginal
density and when d = 2, p(x) estimates the joint density of variables such as Fk1

and Fk2.

4.2 Dominant-Set Clustering

The dominant-set clustering algorithm commences from the relevance matrix and
iteratively bi-partitions the features into a dominant set and a non-dominant set.
It therefore produces the dominant-set progressively and hierarchically. The clus-
tering process stops when all the features are grouped into one of the dominant-
sets. We can formulate the dominant-set clustering algorithm in the following:
a) Initialize Wt by the similarity matrix W, where t = 1. b) Calculate the local
solution of Equation(1) by Equation(2): ut and f(ut). c) Get the dominant set:
DSt = σ(ut). d) Split out DSt from Wt and get a new similarity matrix Wt+1.
e) If Wt+1 is not empty, Wt = Wt+1 and t = t + 1, then go to step b; else exit

4.3 Selecting Key Features

In accordance with Shannon’s information theory [13], the uncertainty of a ran-
dom variable Y can be measured by the entropy H(Y ). For two variables X and
Y , the conditional entropy H(Y |X) measures the remaining uncertainty about Y
when X is known. The mutual information (MI) represented by I(X ; Y ) quan-
tifies the information gain about Y provided by variable X . The relationship
between H(Y ), H(Y |X) and I(X ; Y ) is I(X ; Y ) = H(Y ) − H(Y |X).

As defined by Shannon, the initial uncertainty for the random variable Y is
expressed as:

H(Y ) = −
∑
y∈Y

P (y) log P (y) . (9)

where P (y) is the prior probability density function over Y . The remaining un-
certainty in the variable Y if the variable X is known is defined by the conditional
entropy H(Y |X)

H(Y |X) = −
∫

x

p(x){
∑
y∈Y

p(y|x) log p(y|x)}dx . (10)

where p(y|x) denotes the posterior probability for variable Y given another ran-
dom variable X . After observing the variable vector x, the amount of additional
information gain is given by the mutual information (MI)

I(X ; Y ) = H(Y ) − H(Y |X) =
∑
y∈Y

∫
x

p(y, x)log
p(y, x)

p(y)p(x)
dx . (11)

In addition, for the above computation, we use Parzen-Rosenblatt window method
to estimate the probability density function of random variables Fk1 and Fk2 [11].
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The Parzen probability density estimation formula is given by: p(x) = 1
N φ(x−xi

h ),
where φ(x−xi

h ) is the window function and h is the window width. Here, we use a

Gaussian as the window function, so φ(x−xi

h ) = 1

(2π)
d
2 hd|Σ|

1
2

exp( (x−xT
i )Σ−1(x−xi)
−2h2 ),

where Σ is the covariance of (x − xi), d is the length of vector x. When d = 1,
p(x) estimates the marginal density and when d = 2, p(x) estimates the joint
density of variables such as Fk1 and Fk2.

The multidimensional interaction information between feature vector F =
{f1, . . . , fm} and class variable C is:

I(F ; C) = I(f1, . . . , fm; C) =
∑

f1,...,fm

∑
c∈C

P (f1, . . . , fm; c)

× log
P (f1, . . . , fm; c)

P (f1, . . . , fm)P (c)
. (12)

The main reason for using I(F ; C) as a feature selection criterion is that: because
I(F ; C) is a measure of the reduction of uncertainty in class C due to knowledge
of the feature vector F = {f1, . . . , fm}, from an information theoretic perspective
selecting features that maximize I(F ; C) translates into selecting those features
that contain the maximum information about class C. In practice and as noted in
the introduction, locating a feature subset that maximizes I(F ; C) presents two
problems: 1) it requires an exhaustive “combinatorial” search over the feature
space, and 2) it demands large training sample sizes to estimate the higher
order joint probability distribution in I(F ; C) with a high dimensional kernel [8].
Bearing these obstacles in mind, most of the existing related papers approximate
I(F ; C) based on the assumption of lower-order dependencies between features.
For example, the first-order class dependence assumption includes only first-
order interactions. That is it assumes that each feature independently influences
the class variable, so as to select the mth feature, fm, P (fm|f1, . . . , fm−1, C) =
P (fm|C). A second-order feature dependence assumption is proposed by Guo
and Nixon [5] to approximate I(F ; C), and this is arguably the most simple yet
effective evaluation criterion for selecting features. The approximation is given
as

I(F ; C) ≈ Î(F ; C) =
∑

i

I(fi; C) −
∑

i

∑
j>i

I(fi; fj)

+
∑

i

∑
j>i

I(fi; fj|C) . (13)

By using Î(F ; C) instead of I(F ; C), it is possible to locate a subset of informative
features by implementing a greedy “pick-one-feature-at-a-time” selection proce-
dure. Given K features, out of which m are to be selected (m < K), this involves
two steps: 1) select the first feature f ′

max that maximizes I(f ′; C), and 2) select
m−1 subsequent features that maximize the criterion in Equation (8), i.e., select
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the second feature f ′′
max that maximizes I(f ′′; C)− I(f ′′; f ′

max)+ I(f ′′; f ′
max|C),

select the third feature f ′′′
max that maximizes I(f ′′′; C) − I(f ′′′; f ′

max) −
I(f ′′′; f ′′

max) + I(f ′′′; f ′
max|C) + I(f ′′′; f ′′

max|C) and so on.
Although an MII based on the second-order feature dependence assumption

can select features that maximize class-separability and simultaneously minimize
dependencies between feature pairs, there is no reason to assume that the final
optimal feature subset is formed by pairwise interactions between features. In
fact, it neglects the fact that third or higher order dependencies can be lead to
an optimal feature subset.

The primary reason for using the approximation Î(F ; C) for feature selection
instead of directly using multidimensional interaction information I(F ; C) is that
I(F ; C) requires estimation of the joint probability distribution of features using
a large training sample. Consider the joint distribution P (F ) = P (f1, . . . , fm),
by the chain rule of probability

P (fi, . . . , fm) = P (f1)P (f2|f1) × P (f3|f2, f1) · · ·P (fm|f1, f2 . . . fm−1) , (14)
P (F ; C) = P (f1, . . . fm; C) = P (C)p(f1|C)P (f2|f1, C)P (f3|f1, f2, C)

×P (f4|f1, f2, f3, C) · · ·P (fi|f1, . . . , fm, C) . (15)

In our feature selection scheme, the original features are clustered into differ-
ent dominant-sets based on dominant-set clustering and each dominant-set just
includes a small set of features. Therefore, for each dominant set, we do not
need to use the approximation Î(F ; C). Instead, we can directly use the multidi-
mensional interaction information I(F ; C) criterion for feature selection. Using
Parzen windows for probability distribution estimation, we then apply the greedy
strategy to select the feature that maximizes the multidimensional mutual in-
formation between the features and the output class set. As a result the first
feature f

′
max maximizes I(f

′
, C), the second selected feature f

′′
max maximizes

I(f
′′
, f

′
, C), the third feature f

′′′
max maximizes I(f

′′′
, f

′′
, f

′
, C), and so on. For

each dominant set, we repeat this procedure until |S| = k.

5 Classification

After finding the discriminating features, we apply the variational EM (VBEM)
algorithm [2] to fit a mixture of Gaussians model to the selected feature subset.
After learning the mixture model, we use the a posteriori probability, see Equa-
tion(16), to classify sample. Given a sample, we first compute its selected feature
vector b through feature selection. Then we compute its a posteriori probabilities
rc, the mean vectors b̂c, and the precision matrices Λc, where c ∈ c1, . . . , cl and
l is the number of class for the data. For example, in binary class, if rc1 > rc2

then the sample is classified as class c1. Otherwise, the sample is classified as c2.
The posterior probabilities are given by

rnk ∝ πk|Λk|
−1
2 exp{1

2
(xn − μk)T Λk(xn − μk)} . (16)
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where k = 1, . . . , K is the mixture component, n = 1, . . . , N denotes the data
index. Model parameters πk, μk and Λk are respectively a priori probability, the
mean of selected feature vectors and precision matrices of the kth component. In
the variational Bayesian EM (VBEM) algorithm, all of these model parameters
are characterized by hyper-parameters, which take into account the uncertainty
in the parameter estimation. The parameters rnk are called posteriori probability
because they represent the responsibility the kth component takes in explaining
the nth observation. The posteriori probability can be arranged into a matrix
R = (rnk) and will have to satisfy the following conditions:

0 ≤ rnk ≤ 1 . (17)

6 Experiments and Comparisons

The data sets used to test the performance of our proposed algorithm are the
benchmark data sets from the NIPS 2003 feature selection challenge and the
UCI Machine Learning Repository. Table. 1 summarizes the properties of these
data-sets. Our proposed feature selection method (referred to as the DSplusMII
method) (which utilizes the multidimensional interaction information (MII) cri-
terion and dominant-set clustering for feature selection) involves grouping a set
of informative features into cluster from the original feature set by dominant-set
clustering and then applying MII criterion into the cluster for feature selection.
In order to examine the performance of our proposed method DSplusMII, we
need to know how meaningful the cluster obtained based on mutual information
is and what more useful information they contain. In view of this, we should
first examine how discriminative the features in the leading dominant set. Next,
we could use the extracted features for classification to check the performance.
Our proposed scheme for evaluation and comparison can be outlined as follows:
a) the study of the cluster performance obtained by different similarity measure
methods(i.e., the Pearson’s correlation coefficient (ρ) and Least square regres-
sion error (e) ). b) the study of classification results based on the selected feature
subset captured by MII in the dominant sets and compared with other MI-based
criterion methods(i.e., the MRMR algorithm [11] and the MIFS algorithm [1]).

6.1 Cluster Performance Evaluation Using Different Similarity
Measures

As we mentioned before, our proposed algorithm is capable of grouping infor-
mative features in the leading dominant set by dominant set clustering based on
a suitable similarity measure. Different similarity measures will lead to differ-
ent clustering results, which means that an unsuitable similarity measure may
group less informative features into a cluster. Therefore, we should carefully
select which similarity measure to use. Here, we study the clustering results
obtained by using three different similarity measures for dominant-set cluster-
ing(DS). In order to examine the discriminability of the features grouped in the
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Table 1. Summary of UCI and NIPS benchmark data sets

Data-set Examples Features Classes

Madelon 2000 500 2

Breast cancer 699 10 2

Pima 768 8 2

Australian 690 14 2

Table 2. J value comparisons of dominant set using different feature similarity measure

Data-set Similarity Measure:MI Similarity Measure: (ρ) Similarity Measure: (e)

Madelon 1.1082 1.0024 1.0094

Breast cancer 5.1513 5.1513 5.1513

Pima 1.3716 1.3716 1.0177

Australian 2.2546 2.2006 1.2090

leading dominant set, we will use the multidimensional interaction information
(MII) criterion. Then, a criterion function is used to measure the discrimination
of the selected key features. This is a well known measure of class separability
introduced by Devijiver and Kittler [4], and given by

J(Y ) =
|Sw + Sb|

|Sw|
=

d∏
k=1

(1 + λk) . (18)

where Y denotes the feature set, λk, k = 1 . . . d, are the eigenvalues of matrix
S−1

w Sb, and Sw and Sb are the between and within class scatter matrices. Table. 2
shows the comparative cluster results of our mutual information based similarity
measure with other two similarity measures in terms of the measured J value.
The subset obtained by our mutual information based similarity measure is more
discriminative, giving the highest J value.

6.2 Classification Results Using Selected Feature Subset

After obtaining the discriminating features, we apply a variational Bayesian
EM(VBEM) algorithm to learn a Gaussian mixture model on the selected feature
subset for the purpose of classification. We compare classification results from
our proposed feature selection method (referred to as the DSplusMII method)
(which utilizes the multidimensional interaction information (MII) criterion and
dominant-sets for feature selection) with those obtained using k-means algorithm
[9] and alternative existing MI-based criterion methods, namely a) Maximum-
Relevance Minimum-Redundancy (MRMR), b) Mutual Information Based Fea-
ture Selection (MIFS).

Based on the feature subsets selected by our proposed DSplusMII method, We
first examine the classification performance using different sized feature subsets
by selecting the top k features ranked by their incremental gain. In the classi-
fication performance evaluation process, we employ a posteriori probability, see
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Equation(16), to perform classification, we got the classification accuracy by the
percentage of the data, which are predicted correctly. For the purpose of com-
parison, we repeated the feature selection process using the k-means algorithm,
MRMR algorithm and MIFS algorithm.

The Madelon data set is a 2 classes problem originally proposed in the
NIPS’2003 feature selection challenge [6]. The data points grouped into 32 clus-
ters placed on the vertices of a five dimensional hypercubes. As a result, there
are only 5 informative features, but 15 redundant features and 480 probes. In
Fig. 2, we present the top 14 features ranked by the incremental gain calculated
by MII. The classification accuracies obtained on different feature subsets are
shown in the right hand side of Fig. 2. From the figure, it is clear that using the
leading 6 features (476, 339, 379, 154, 443, 456), we achieve 90% classification
accuracy. Because of the unsupervised nature of the VBEM algorithm and the
gaussian mixture model, the classification accuracy of 90% demonstrates the ad-
equate separability provided by the selected feature subset. For comparison, we
also visualize the classification results of using the feature subset obtained by
MRMR;

(a) Top-ranked Features by Incremental
Gain

(b) Classification result

Fig. 2. The result on Madelon data set for our algorithm. The values of the Incremental
gain for the top 14 features are presented in the left part along with the feature indices,
while the classification accuracies are plotted in the right part.

In Fig. 3, the top-ranked features ranked by MRMR are presented in the
left hand part, and the classification accuracies using the top-ranked features
incrementally are presented in the right hand part. The best result is about
63.1% using 9 features, which is much worse than the result of our algorithm as
shown in Fig. 2. The poor classification performance may be explained by our
observation that most of the selected top features are not in the 1st dominant
set and ranked very low by DSplusMII. On the other hand, we find that for
MRMR there is a tendency to overestimate the redundancy between features,
since they neglect the conditional redundancy term I(xi, S|C). As a result some
important features can be discarded, which in turn leads to information loss.
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(a) Top-ranked Features by Relevance
Score

(b) Classification result

Fig. 3. The result on Madelon data set using MRMR for feature ranking. The values
of the relevance score for the top 14 features are presented in the left part along with
the feature indices, while the classification accuracies are plotted in the right part.

Table 3. The classification accuracy on the top features selected by different methods
in the Breast Cancer data set

No.of Features Selected DSplusMII MRMR MIFS

2 88.84% 88.84% 88.84%

3 96.3% 87.98% 84.4%

4 96.3% 87.55% 82.51%

The experimental results in Table. 3, 4 and 5 show that DSplusMII is, by
and large, superior to the other feature clustering and feature selection methods
by selecting a smaller set of discriminative features than the others as reflected
by the classification results. As shown by the results, DSplusMII outperforms
MIFS and MRMR algorithms in all cases except in the Pima dataset, in which
all the four methods yield a comparable classification rate. It is interesting to
note that the performance achieves a 96.3% when using the 3 features selected
by DSplusMII and maintain at the same accuracy even when more features are
selected(see Table. 3). Similaly, 83.77% is achieved when 3 features are selected
by DSplusMII and its performance remains at this level even when more features
are selected(see Table. 5). This implies that the discriminative information exists
in a small set of features which can be used to fit the mixture Gaussian models
to the data. In addition, in breast cancer, we find out that the leading 4 selected
features are all from the first dominant set found by dominant set clustering.
This again supports the fact that the first dominant set captures the greatest
number of informative features. From Table. 4, it is clear that using the leading
three features, then all the four methods achieve 75.91% classification accuracy,
which is higher than that obtained using other sized feature subsets. Using fewer
or more features both deteriorate the accuracy. This implies that classification
of samples is based on a very few of the most important features.
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Table 4. The classification accuracy on the top features selected by different methods
in the Pima data set

No.of Features Selected DSplusMII MRMR MIFS

2 74.09% 74.09% 74.09%

3 75.91% 75.91% 75.91%

4 72.79% 70.31% 70.31%

Table 5. The classification accuracy on the top features selected by different methods
in the Australian data set

No.of Features Selected DSplusMII MRMR MIFS

3 83.77% 68.84% 64.35%

4 83.77% 69.13% 64.35%

5 83.77% 69.28% 83.62%

7 Conclusions

This paper has presented a new graph theoretic approach to feature selec-
tion. The proposed feature selection method offers two major advantages. First,
dominant-set clustering can capture the most informative features based on MI-
based similarity measure. Second, the MII criteria takes into account high-order
feature interactions, overcoming the problem of overestimated redundancy. As a
result the features associated with the greatest amount of joint information can
be preserved.
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4 Istituto Italiano di Tecnologia (IIT), Genova, Italy

Abstract. In kernel-based machine learning algorithms, we can learn a
combination of different kernel functions in order to obtain a similarity
measure that better matches the underlying problem instead of using
a single fixed kernel function. This approach is called multiple kernel
learning (MKL). In this paper, we formulate a nonlinear MKL variant
and apply it for nuclei classification in tissue microarray images of re-
nal cell carcinoma (RCC). The proposed variant is tested on several
feature representations extracted from the automatically segmented nu-
clei. We compare our results with single-kernel support vector machines
trained on each feature representation separately and three linear MKL
algorithms from the literature. We demonstrate that our variant obtains
more accurate classifiers than competing algorithms for RCC detection
by combining information from different feature representations nonlin-
early.

Keywords: multiple kernel learning, renal cell carcinoma, support vec-
tor machines.

1 Introduction

Empirical success of kernel-based machine learning algorithms such as support
vector machines (SVMs) is very much dependent on the kernel function used.
Kernel selection is generally handled by choosing the best-performing kernel
function among a set of kernel functions on a separate validation set. Instead of
using a single fixed kernel function, multiple kernel learning (MKL) algorithms
learn a combination of different kernel functions in order to obtain a similarity
measure that better matches the underlying problem [8].

Most of the MKL algorithms proposed in the literature combine the kernels
linearly (i.e., linear sum, convex sum, and conic sum) [1,12,14]. Similar to non-
linear classifier combination rules, we can also combine kernels nonlinearly to
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obtain better kernels [5,7,13]. We formulate a nonlinear MKL variant derived
from [5] and test it on cell nucleus classification of renal cell carcinoma (RCC)
using tissue microarray (TMA) images by comparing it with single-kernel SVMs
and linear MKL algorithms. Our experiments demonstrate that although it is
more costly to use the proposed nonlinear MKL approach, the increase in accu-
racy is worth its computational complexity.

The paper is organized as follows: Section 2 introduces the data set used in this
study. We explain the methods applied in Section 3 and give our experimental
results in Section 4. We conclude the paper in Section 5.

2 Data Set

Cancer tissue analysis consists of several consecutive estimation and classifi-
cation steps which require intensive laboratory practice. The TMA technology
enables studies associating molecular changes with clinical endpoints [11]. In this
technique, 0.6 mm tissue cylinders are extracted from primary tumor blocks of
hundreds of different patients, and are subsequently embedded into a recipient
paraffin block. Such array blocks can then be used for simultaneous analysis of
primary tumors on DNA, RNA, and protein level.

In this work, we consider the computer based classification of tissue from RCC
after such a workflow has been applied. The tissue has been transferred to an
array and stained to make the morphology of cells and cell nuclei visible. Current
image analysis software for TMAs requires extensive user interaction to prop-
erly identify cell populations on the TMA images, to select regions of interest
for scoring, to optimize analysis parameters and to organize the resulting raw
data. Because of these drawbacks, pathologists typically collect the TMA data
by manually assigning a composite staining score for each spot. Such manual
scoring can result in serious inconsistencies between data collected during differ-
ent microscopy sessions. Manual scoring also introduces a significant bottleneck
that limits the use of TMAs in high-throughput analysis.

The manual rating and assessment of TMAs under the microscope by pathol-
ogists is quite inconsistent due to the high variability of cancerous tissue and
the subjective experience of humans, as shown in [6]. Therefore, decisions for
grading and/or cancer therapy might be inconsistent among pathologists. With
this work, we want to contribute to a more generalized and reproducible system
that automatically processes the TMA images and thus helps pathologists in
their daily work.

In a previous study, an automated pipeline of TMA processing was already
proposed, concentrating on the investigation of various image features and asso-
ciated kernels on the performance of an SVM classifier for cancerous cells [15].
In this work, we follow this workflow (see Fig. 1) and extend the nucleus clas-
sification using different MKL strategies to combine information from multiple
sources (in our case different representations). By considering different types of
features, in Section 4, we show that nonlinear MKL reaches significantly better
accuracies than linear MKL algorithms and single-kernel SVMs.
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Fig. 1. One key point in the automatic TMA analysis for RCC is the nucleus classifi-
cation. Nuclei are eosin stained and visible in the TMA image as dark blue spots. We
want to do the classification of cell nuclei into cancerous or benign, which is recently
done by trained pathologists with their eyes. The automatic approach comprises nu-
cleus detection on the image, the segmentation of the nuclei and the classification, all
based on training data labeled by two human experts.

2.1 Tissue Micro Arrays

Tissue Micro Arrays comprise several hundreds of roundish 1mm spots on one
carrier plate. Each spot is a small piece of tissue, consisting of several hundreds
cancerous and healthy cells. The morphological structure of the cells is made
visible under light microscope by eosin staining. Further, proliferating cell nuclei
expressing the protein MIB-1 (Ki-67 antigen) are immunohistochemically made
visible by brown staining.

The TMA spots are scanned and stored for processing. The images are three
channel color images of size 3000 px × 3000 px. The labeled dataset comprises
eight tissue spots from eight patients, each showing 100–200 cells (see Fig. 2).

The TMA images are independently labeled by two pathologists [6]. Therefore,
locations and disease states (cancer/non cancer) of each cell in the TMA image
are known. From eight labeled TMA images, we extracted 1633 nuclei-patches
of size 80 px × 80 px. Each patch shows a cell nucleus in the center (see Fig. 3).
1273 (78 per cent) from the nuclei form our data set, where the two pathologists
agree on the label: 891 (70 per cent) benign and 382 (30 per cent) malignant
nuclei.

2.2 Image Normalization and Patching

To minimize illumination variances among the scans, the TMA images were
adjusted in contrast. For classification of the individual nuclei, we extracted
patches from the whole image such that each 80 px × 80 px patch has one
nucleus in the center (see Fig. 3).
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Fig. 2. Top: One 1500 px × 1500 px quadrant of a TMA spot from a RCC patient.
Bottom: A pathologist exhaustively labeled all cell nuclei and classified them into
malignant (black) and benign (red).
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2.3 Segmentation

For graphcut segmentation [3], the gray intensities were used as unary potentials.
As cell nuclei tend to be roundish, the binary potentials were linearly weighted
based on their distance to the center to prefer roundish objects (see Fig. 3). The
border of the segmented nuclei was used to calculate several shape features as
described in the following section.

Fig. 3. Two examples of nucleus segmentation. The original 80 px × 80 px patches are
shown, each with the corresponding nucleus shape found with graphcut.

2.4 Feature Extraction

For training and testing the various classifiers, we extracted several histogram-
like features from the patches (see Table 1).

3 Methodology

The main idea behind SVMs [16] is to transform the input feature space to
another space (possibly with a greater dimension) where the classes are linearly
separable. After training, the discriminant function of SVM becomes f(x) =
〈w, Φ(x)〉 + b, where w is the vector of weights, b is the threshold, and Φ( · )
is the mapping function. Using the dual formulation and the kernel trick, one
does not have to define this mapping function explicitly and the discriminant
function can be written as

f(x) =
N∑

i=1

αiyik(xi, x) + b

where k(xi, xj) = 〈Φ(xi), Φ(xj)〉 is the kernel function that calculates a simi-
larity measure between data instances. Selecting the kernel function is the most
important issue in the training phase; it is generally handled by choosing the
best-performing kernel function among a set of kernel functions on a separate
validation set.

In recent years, MKL methods have been proposed [8], for learning a combi-
nation kη of multiple kernels instead of selecting only one:

kη(xi, xj ; η) = fη({km(xm
i , xm

j )P
m=1}; η) (1)
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Table 1. Features extracted from patch images for training and testing. All features
are histograms.

Name Feature Description

ALL Patch Intensity: A 16-bin histogram of gray scaled patch.

FG Foreground Intensity: A 16-bin histogram of nucleus.

BG Background Intensity: A 16-bin histogram of background.

LBP Local Binary Patterns: This local feature has been shown to bring con-
siderable performance in face recognition tasks. It benefits from the fact
that it is illumination invariant.

COL Color Feature: The only feature comprising color information. The col-
ored patch (RGB) is rescaled to size 5 × 5. The 3 × 25 channel intensities
are then concatenated to a feature vector of size 75.

FCC Freeman Chain Code: The FCC describes the nucleus’ boundary as a
string of numbers from 1 to 8, representing the direction of the boundary
line at that point [9]. The boundary is discretized by subsampling with
grid size 2. For rotational invariance, the first difference of the FCC with
minimum magnitude is used. The FCC is represented in a 8-bin histogram.

SIG 1D-Signature: Lines are considered from the object center to each bound-
ary pixel. The angles between these lines form the signature of the shape [9].
As feature, a 16-bin histogram of the signature is generated.

PHOG Pyramid Histograms of Oriented Gradients: PHOGs are calculated
over a level 2 pyramid on the gray-scaled patches [2].

where the combination function fη forms a single kernel from P base kernels
using the parameters η. Different kernels correspond to different notions of simi-
larity and instead of searching which works best, the MKL method does the pick-
ing for us, or may use a combination of kernels. MKL also allows us to combine
different representations possibly coming from different sources or modalities.

3.1 Linear Multiple Kernel Learning

There is significant work on the theory and application of MKL and most of the
proposed algorithms use a linear combination function such as convex sum or
conic sum. Fixed rules use the combination function in (1) as a fixed function
of the kernels, without any training. Once we calculate the combined kernel, we
train a single kernel machine using this kernel. For example, we can obtain a
valid kernel by taking the mean of the combined kernels.

Instead of using a fixed combination function, we can also have a function
parameterized by a set of parameters and then we have a learning procedure to
optimize these parameters as well. The simplest case is to parameterize the sum
rule as a weighted sum:
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kη(xi, xj ; η) =
P∑

m=1

ηmkm(xm
i , xm

j )

with ηm ∈ R. Different versions of this approach differ in the way they put
restrictions on the kernel weights: [1,12,14]. For example, we can use arbitrary
weights (i.e., linear combination), nonnegative kernel weights (i.e., conic combi-
nation), or weights on a simplex (i.e., convex combination).

3.2 Nonlinear Multiple Kernel Learning

A linear combination may be restrictive and nonlinear combinations are also
possible [5,7,13]. [5] developed a nonlinear kernel combination method based
on kernel ridge regression (KRR) and polynomial combination of kernels. The
nonlinear combination can be formulated as

kη(xi, xj) =
∑
q∈Q

ηq1q2...qP k1(x1
i , x

1
j )

q1k2(x2
i , x

2
j)

q2 . . . kP (xP
i , xP

j )qP

where Q = {q : q ∈ ZP
+,
∑P

m=1 qm ≤ d} and ηq1q2...qP ≥ 0. The number of
parameters to be learned is too large and the combined kernel is simplified in
order to reduce the learning complexity:

kη(xi, xj) =
∑
q∈R

ηq1
1 ηq2

2 . . . ηqP

P k1(x1
i , x

1
j)

q1k2(x2
i , x

2
j)

q2 . . . kP (xP
i , xP

j )qP

where R = {q : q ∈ ZP
+,
∑P

m=1 qm = d} and η ∈ RP . For example, when d = 2,
the combined kernel function becomes

kη(xi, xj) =
P∑

m=1

P∑
h=1

ηmηhkm(xm
i , xm

j )kh(xh
i , xh

j ). (2)

The combination weights are optimized by solving the following min-max opti-
mization problem:

mininimize
η∈M

maximize
α∈RN

y�α − 1
2
α�(Kη + λI)α

where M is a positive, bounded, and convex set. Two possible choices for the
set M are the �1-norm and �2-norm bounded sets defined as

M1 = {η : η ∈ R
P
+, ‖η − η0‖1 ≤ Λ} (3)

M2 = {η : η ∈ R
P
+, ‖η − η0‖2 ≤ Λ}

where η0 and Λ are two model parameters. A projection-based gradient-descent
algorithm can be utilized to solve this min-max optimization problem. At each
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iteration, α is obtained by solving a KRR problem with the current kernel matrix
and η is updated with the gradients calculated using α while considering the
bound constraints on η due to M1 or M2.

We formulate a variant of this method by replacing KRR with SVM as the
base learner. In that case, the optimization problem becomes

mininimize
η∈M

Jη = maximize
α∈A

1�α − 1
2
α�((yy�) � Kη)α

where � denotes the element-wise product between matrices and A is defined as

A = {α : α ∈ R
P
+, y�α = 0, α ≤ C}.

Note that the simultaneous optimization of η and α is not possible. Hence, we
use a two-step optimization strategy to optimize them alternatively even though
it is prone to sticking at local optima. We solve this optimization problem again
using a projection-based gradient-descent algorithm. When updating the kernel
parameters at each iteration, the gradients of Jη with respect to η are used.
These gradients can be written as

∂Jη

∂ηm
= −1

2

P∑
h=1

ηhα�((yy�) � Kh � Km)α.

4 Experiments

4.1 Experimental Methodology

1273 nuclei samples were divided into ten folds with stratification. We then
trained single-kernel SVMs with different kernels for each feature representation
and combined the feature representations using four different MKL algorithms
on these folds. In our experiments, we used three different kernel functions: the
linear kernel (LIN), the second-degree polynomial kernel (POL), and the Gaussian
kernel (GAU). Using a rule of thumb, the width parameter of the Gaussian kernel
was chosen as

√
D where D is the dimensionality of the corresponding feature

representation.
We implemented single-kernel SVM and four MKL algorithms in MATLAB

and solved the canonical SVM optimization problems with the LIBSVM soft-
ware [4]. SVM denotes the single-kernel SVMs trained on each feature represen-
tation separately. RBMKL denotes the rule-based MKL algorithm that trains an
SVM with the mean of the combined kernels. SimpleMKL is the iterative algo-
rithm of [14] that uses projected gradient updates and trains single-kernel SVMs
at each iteration. GLMKL denotes the group Lasso-based MKL algorithms pro-
posed by [10,17]. In our implementation, we used �1-norm on the kernel weights
and learned a convex combination of the kernels. NLMKL denotes the nonlinear
MKL variant derived from [5], which uses the quadratic kernel given in (2) and
selects the kernel weights from the set M1 in (3). In our implementation, η0 is
taken as 0 and Λ is assigned to 1 arbitrarily.
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As a summary, we have eight representations (ALL, FG, BG, LBP, COL, FCC, SIG,
and PHOG), three kernels (LIN, POL, and GAU), and five algorithms (SVM, RBMKL,
SimpleMKL, GLMKL, and NLMKL).

4.2 Results

Table 2 reports the single-kernel SVM accuracies for all feature representation
and kernel function pairs. We see that the best performance was obtained as
76.9 per cent using (PHOG, GAU) pair. Independent of the kernel function used,
feature representations BG and PHOG gave consistently higher accuracies than
other representations.

Table 2. Single-kernel SVM accuracies

LIN POL GAU

ALL 70.0±0.2 71.9±2.9 68.7±2.9
FG 70.0±0.2 71.2±3.7 65.9±4.3
BG 70.2±0.6 72.7±3.8 69.6±3.1
LBP 70.0±0.2 63.6±2.7 68.4±6.3
COL 70.2±3.0 62.9±3.5 67.2±3.4
FCC 70.0±0.2 69.8±0.7 62.9±5.5
SIG 70.0±0.2 69.6±3.4 66.0±3.0
PHOG 76.0±3.4 70.5±3.3 76.9±2.7

Next, using four different MKL algorithms, we combined eight kernels cal-
culated on the feature representations with the same kernel function. Table 3
lists the results of best single-kernel SVMs and four MKL algorithms trained.
We can achieve an accuracy of 83.3 per cent by combining eight GAU kernels
with NLMKL. This result is better than all other MKL settings and single-kernel
SVMs. In the last column of Table 3, the results of combining all possible feature
representation and kernel function pairs (i.e., 24 kernels) in a single learner are
shown. NLMKL is still the best MKL algorithm even though the average accuracy
decreases to 83.1 per cent.

To give a feel of complexity, we also measured the time required to run each
method. Table 4 gives the running times in seconds. We can see that NLMKL takes
more time because of the second order dependency to the number of kernels in

Table 3. MKL accuracies

LIN POL GAU LIN+POL+GAU

SVM 76.0±3.4 72.7±3.8 76.9±2.7 NA

RBMKL 77.3±4.0 77.2±2.4 82.7±3.6 81.8±3.8
SimpleMKL 77.1±3.3 77.3±2.3 81.8±3.8 81.6±3.9
GLMKL 77.1±3.5 76.5±3.2 81.8±4.3 81.8±3.8
NLMKL 77.9±3.9 79.2±3.8 83.3±3.6 83.1±3.5



Combining Data Sources Nonlinearly for Cell Nucleus Classification of RCC 259

Table 4. Time required for each method (in seconds). Single kernel time measurements
are summed over all representations.

LIN POL GAU LIN+POL+GAU

SVM 4.45 5.81 3.52 NA

RBMKL 1.56 0.87 1.35 2.57
SimpleMKL 35.55 11.07 11.71 32.81
GLMKL 11.11 4.61 5.20 14.27
NLMKL 45.25 39.21 44.28 323.83

the gradient computations. This difference becomes more apparent when we
increase the number of combined kernels. The running time can be reduced by
caching the element-wise products between the kernel matrices.

4.3 Discussion

In this paper, we formulated a nonlinear MKL algorithm derived from [5] and
we have seen that proposed algorithm performs better than single-kernel SVMs
and three linear MKL algorithms. When we were combining linear kernels on
the feature representations, we observed that linear MKL algorithms achieved to
outperform single-kernel SVMs, whereas the nonlinear MKL algorithm improved
the average accuracy most thanks to the nonlinearity in kernel combination.
Even though the kernels were nonlinear when we were combining polynomial
and Gaussian kernels, the nonlinear MKL algorithm got better accuracies than
single-kernel SVMs and linear MKL algorithms. We have seen that when we use
the nonlinear MKL algorithm, we achieved 6.4 per cent improvement in accuracy
compared to single-kernel SVMs.

5 Conclusion

In this paper, we formulate a nonlinear MKL algorithm variant and use it for
the classification of nuclei in TMA images of RCC. We used SVMs extensively
through different feature sets in our previous work [15]. This study extends our
previous work using several feature sets in a nonlinear MKL setting and compares
the results with single-kernel SVMs and several linear MKL algorithms.

We have seen that the nonlinear MKL algorithm performs better than single-
kernel SVMs and linear MKL algorithms in all of the experiments. The proposed
nonlinear MKL variant learns a better similarity measure than linear MKL algo-
rithms by combining the input kernels nonlinearly. In this work, we used image-
based feature sets for creating multiple feature representations. In a further
application of this scenario, the use of other modalities or other features (e.g.,
SIFT) extracted from these images as well as the incorporation of complemen-
tary information of different modalities to achieve better classification accuracy
is possible.
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Abstract. In this work we study the problem of supervised tract seg-
mentation from tractography data, a vectorial representation of the brain
connectivity extracted from diffusion magnetic resonance images. We re-
port a case study based on a dataset where for each tractography of
three subjects the segmentation of eight major anatomical tracts was
manually operated by expert neuroanatomists. Domain specific distances
that encodes the dissimilarity of tracts do not allow to define a positive
semi-definite kernel function. We show that a dissimilarity representation
based on such distances enables the successful design of a classifier. This
approach provides a robust encoding which proves to be effective using a
linear classifier. Our empirical analysis shows that we obtain better tract
segmentation than previously proposed methods.

1 Introduction

Brain connectivity analysis involves the investigation of the connections between
different brain areas. Anatomical connectivity refers to the structural links be-
tween different areas that develops in the white matter of the brain. Functional
connectivity investigates the correlation between the brain activity of anatomi-
cally remote areas. Effective connectivity is concerned with finding a causal link
between different brain structures. In this work we are interested in anatomical
connectivity.

Diffusion MRI (dMRI) is a magnetic resonance imaging technique [3,24] that
allows to reconstruct white matter fiber tracts as a set of streamlines by means
of deterministic tractography algorithms [13]. A streamline is a vectorial repre-
sentation of thousands of neuronal axons expressing structural connectivity. The
whole set of streamlines of a brain is called tractography (see Figure 1) and given
that the resolution of modern MRI scanners is in the order of 1mm3, a full brain
tractography consists of ≈ 3 × 105 streamlines.

The segmentation of the network of neuronal links into known anatomically
structures is a task of interest in neurological studies, for example for the study
of Alzheimer disease [6]. Neuroanatomy and neuroscience research study brain
tracts through both invasive brain dissection and non-invasive MRI techniques.
Segmenting a given tract from a tractography is a difficult task because of the
variability of the brain anatomy among different subjects. The segmentation
process is slow and requires an expert neuroanatomist.

M. Pelillo and E.R. Hancock (Eds.): SIMBAD 2011, LNCS 7005, pp. 261–274, 2011.
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Fig. 1. A tractography (whole set of polylines) made of ≈ 3×105 streamlines (polylines)
describes the pathways of neural axons within the brain. Only 3% of the streamlines are
shown to improve readability. Colors represents the main direction of each streamline.

From the point of view of algorithmic approaches, this segmentation task has
traditionally been addressed with unsupervised techniques over only diffusion
data [26]. Such techniques often rely on expert-crafted streamline-streamline
distance functions encoding informative relationships for the segmentation task,
then followed by a clustering algorithm (agglomerative, k-means, Gaussian mix-
ture model, etc. see [25] for a recent brief review).

Supervised tract segmentation instead aims at learning how to segment the
tractography from expert-made examples provided as input. Supervised tract
segmentation has received little attention so far in the literature. To the best of
our knowledge only a few different approaches have been proposed. The first is
based on a B-spline representation of the streamlines followed by classification
via the nearest-neighbor algorithm with respect to an atlas (see [12]). The second
is based on spectral clustering [15] and the most recent on hierarchical Dirichlet
processes [25]. A related work to this problem is [17] where both structural and
functional connectivity are studied jointly in a pairwise approach with the goal of
assessing the contributions of structural information and functional information
when segmenting the tracts.

Similarly to [12], in this work we propose to address the supervised segmen-
tation problem as a classification problem. A novel contribution of this work is
to leverage the expert-crafted streamline-streamline distance functions available
from the literature and to use them in a dissimilarity based [20] representation
of the problem. Moreover we note that the widely adopted kernel-based classi-
fication algorithms cannot directly embed such distance functions into a kernel
because the kernel would violate the necessary assumption of being positive
semi-definite [20,7,23].
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This paper is structured as follows. In Section 2 we formally introduce the
problem of supervised tract segmentation, we illustrate the most common
streamline-streamline distance functions. We briefly discuss the issue with em-
bedding such distance functions into kernels. We then introduce the dissimilarity
based representation and describe how we use it for the tract segmentation prob-
lem. In Section 3 we present an application of the proposed dissimilarity-based
approach on a real dataset of dMRI-based tractographies from three subjects.
We illustrate both the single subject and the across-subject segmentation results
on multiple tracts and compare the result with a nearest neighbor approach pro-
posed in [12]. In Section 4 we discuss the results supporting the claim that the
dissimilarity-based approach is straightforward and effective for the tract seg-
mentation task.

2 Methods

Segmenting a given tractography is the task of partitioning it into subsets of
streamlines. Supervised segmentation is the task of partitioning according to
provided examples. An example is an expert-made assignment of streamlines to
categories of interest, like neuroanatomic fiber tracts. Supervised segmentation
uses examples to guide the segmentation of further tractography data. In this
work we restrict the segmentation task to segmenting a single specific fiber tract
of interest at a time and we assume to have available examples. In this setting
each streamline can be class-labeled as being member of the fiber tract of interest
or not. For this reason the supervised segmentation problem becomes a binary
classification problem.

The proposed method comprises two steps, namely an alignment/registration
step, that is meant to bring tractography data from different subjects to a com-
mon space, and the actual segmentation step. Once a segmentation of the fiber
tract of a given subject is made available, the task is to segment the same fiber
tract in the tractography of a new subject. While the registration step aims to
reduce the variance of the tractography between two subjects, the segmentation
step aims to generalize the pattern of a specific neuroanatomic fiber tract.

2.1 Basic Definitions and Notation

Let the polyline s = {x1, . . . , xns}, where x ∈ R3, be a streamline reconstructed
from dMRI data by means of deterministic tractography algorithms [13]. Let
T = {s1, . . . , sM} be the tractography defined as a set of streamlines. We assume
that T is sampled according to a probability distribution T which incorporates
the variance of data related to the dMRI measurement process and the variabil-
ity of subjects. Current dMRI techniques operated on adult humans generate
tractographies of size in the order of 3×105 streamlines. Let τ be an anatomical
fiber tract of interest, e.g. the arcuate fasciculus (see Figure 3), and let t ⊂ T be
its corresponding streamline-based approximation within given the tractography.
A neuroanatomist segmenting a tract t from the tractography T corresponds to
a mapping f : T �→ {0, 1} where
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f(s) =
{

1 if s in t
0 otherwise (1)

In the machine learning terminology the function f is called classifier and each
pair (s, f(s)) is a class-labeled example. In practice f is not available and the
problem is then to infer an approximation g from data. We may have many
samples of t for the same fiber tract τ , e.g. the arcuate fasciculus, when the
annotation is operated by different neuroanatomists. The labeling is prone to
error and has to be considered an approximation of the true fiber tract.

A classifier g is learned from examples by training a classification algorithm
which optimize a loss function L. Common classification algorithms are the k-
nearest neighbor (kNN) [8] and the Support Vector Machines (SVMs) [5]. A
usual loss function is the 0−1 loss L(s, g(s) = I(s, g(s)) where I is the indicator
function.

2.2 Evaluation Criteria

Claiming that a segmentation algorithm is effective requires evidence of the
goodness of its results. An evaluation criterion is necessary to assess its effec-
tiveness. A traditional measure of the quality of predictions of a classifier is its
generalization error which is its expected loss

ε = EPXY [L(g(x), y)]. (2)

Note that classification algorithms do not minimize ε directly because PXY is
not available in practice. The goal is then to control it indirectly by minimization
of accessible quantities, like the empirical error

εemp =
1
n

∑
i=1...n

L(g(xi), yi) (3)

where {(xi, yi)}i=1...n is the train set. The empirical error on an independent
test set is a popular and unbiased point estimate of ε.

Many other general evaluation criteria can be adopted [22] but for the specific
application of tractography segmentation the following score was proposed by
the board of an international brain connectivity competition (PBCC) held in
2009 1

r =
TP − FP

TP + FP
(4)

where TP is the number of true positive streamlines, i.e. the correctly predicted
streamlines which expert defined as being part of the given tract of interest.
Conversely FP is the number of false positive streamlines which are predicted
as being part of the tract of interest but actually do not. This score can be
rewritten as the difference between two known scores, i.e. precision and false
positive rate (FPR)
1 http://pbc.lrdc.pitt.edu/?q=2009a-staff

http://pbc.lrdc.pitt.edu/?q=2009a-staff
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r =
TP

TP + FP
− FP

TP + FP
= precision− FPR. (5)

The actual definition of the PBCC2009 score takes into account a small amount
of uncertain streamlines, about which different experts might disagree and that
lie at the border between t and its neighboring streamlines. For simplicity we refer
in the following only to the streamlines labeled with high degree of confidence
by the experts.

2.3 Distances

The main body of the literature about tract segmentation (see Section 1) refers
to distances between pair of streamlines as a leading way to incorporate domain
specific information when clustering streamlines. See [26] for a recent survey
about these distances. A popular group of distances is the modified Hausdorff
distances [9] and among the most popular [26] are

– d1(sA, sB) = 1
nsA

∑nsA

i=1 d(xA
i , sB)

– d2(sA, sB) = mini=1,...,nsA
d(xA

i , sB)
– d3(sA, sB) = maxi=1,...,nsA

d(xA
i , sB)

where (see Figure 2)

d(xA
i , sB) = min

j=1,...,nsB

||xA
i − xB

j ||2 (6)

which can be combined in order to get the symmetric versions:

– ha(d, sA, sB) = d(sA,sB)+d(sB ,sA)
2

– hb(d, sA, sB) = min(d(sA, sB), d(sB, sA))
– hc(d, sA, sB) = max(d(sA, sB), d(sB , sA))

Note that all distances defined above are not metric [9] because d(sA, sB) = 0
does not imply that sA = sB. This fact has consequences when trying to incor-
porate these domain-specific distances in classification algorithms as explained
in the following sections.

2.4 Classification Algorithms and Feature Space

Among the many classification algorithms available in the literature [4] we are
interested in those that can exploit the distances introduced in Section 2.3. Two
leading class of algorithms are the nearest neighbor (NN) and the kernel-based
classification algorithms, like support vector machines (SVMs).

The k-nearest neighbor (k-NN) algorithm is among the simplest and most
studied distance-based classification algorithm [11]. Given a dataset Dtrain of
class-labeled streamlines and a distance function d, the k-NN is instantiated as
a classifier and predicts the class-label c of new streamline s from majority vote
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Fig. 2. Many distances between two streamlines, sA and sB (solid line), that are pro-
posed in the literature are based on the set of minimum distances between each point
of sA to sB. The set of minimal distances is represented here as dotted lines.

among k nearest neighbors 2 streamlines of s in Dtrain. The optimal value of
the structural parameter k can be defined from prior knowledge or it can be
estimated from data as explained for example in [16]. For metric distances k-
NN is asymptotically optimal in the Bayes sense [8]. k-NN is known to suffer
limitations due to the impact of noisy examples [19].

Kernel-based classification algorithms define an extremely popular class of
algorithms which is characterized by a mapping φ of the data from the original
space into a new, possibly infinite-dimensional, Euclidean feature space, x →
φ(x), x ∈ X . The mapping is meant to enhance the linear separability of the
data among the classes. The kernel function k : X × X �→ R corresponds to
the inner product of elements in this new feature space, k(x, x′) = 〈φ(x), φ(x′)〉
where x, x′ ∈ X .

Kernels can be interpreted as similarity functions between objects. Not every
similarity function is a kernel because the similarity might lack the inner product
representation. The availability of the mapping φ for a kernel is equivalent to
being a positive semi-definite (psd) function [23]. It is common practice to derive
kernels from problem-specific distance function [23]. In this case a necessary
condition for a valid kernel is that the underlying distance function is a metric,
i.e. it has the reflectivity, positivity, symmetry and triangle inequality properties.
Violating this requirement leads to an indefinite kernel.

Indefinite kernels present several issue for empirical risk minimization-based
(ERM) classification algorithms like SVM. The first is non-convexity of the opti-
mization problem, which suffers the problem of local minima. Even adopting ad-
hoc optimization algorithms (e.g., sequential minimal optimization (SMO) [21])
the amount of computation could be greatly increased and lead to saddle points
which does not guarantee the usual generalization properties. See [7].

In the application of tractography segmentation discussed in this paper the
domain-specific distances described in Section 2.3 are not metrics. This means
that it is not straightforward to derive a valid kernel from them.

2 Ties are broken at random.
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Numerous solutions have been proposed to learn from indefinite kernels by
operating directly on the kernel matrix. Unfortunately each solution is usually
based on strong assumptions which are difficult to ascertain in practical cases.
See [7] for a detailed discussion and references.

2.5 Dissimilarity Space

A generalization of the traditional kernel approach is the use of dissimilarity-based
representation spaces [20,2]. This representation requires only a generic similarity
or dissimilarity function d : X×X → R and a representation setR = {x1, . . . , xn},
where xi ∈ X , i = 1, . . . , n are called prototypes or landmarks. A mapping ψR :
X → Rn is defined such that v = ψR(x) = [d(x, x1), . . . , d(x, xn)]T ∈ Rn. Given a
dataset D = {x1, . . . , xm} where xi ∈ X , i = 1, . . . , m, its dissimilarity represen-
tation is D = {ψR(x1), . . . , ψR(xm)} = {v1, . . . , vm} and vi ∈ Rn, i = 1, . . . , m.
In [2] ψR is called empirical similarity map and R ⊆ D.

The dataset in the new representation can be processed by the vast majority of
the classification algorithm in the literature. Successful attempts were reported
when using k-NN, Fisher Linear Discriminant, Support Vector Classification
with linear kernel, Linear Programming machines and the linear and quadratic
normal density classifiers [20,19].

An open problem of the dissimilarity based representation is the definition
of the set of prototypes. Even though many heuristics were proposed [19], the
random selection among the available data has been proved effective, robust
and simple. Moreover theoretical results about the goodness of selecting random
prototypes was presented in [2].

In this work we adopt the dissimilarity space approach for the tractography
segmentation problem. The dissimilarity function is defined as the symmetric
version of d1 introduced in Section 2.3. We define the dissimilarity function δ as

δ(sA, sB) = d1(sA, sB) + d1(sB, sA). (7)

Moreover we select prototypes at random from the set of streamlines available
in the dataset. Further details are presented in Section 3. After mapping the
dataset to Rn by means of the dissimilarity representation we train a classifier
to perform the segmentation task as described in Section 3.

2.6 Fiber Tract Segmentation

We propose a two steps method to segment a given fiber tract within a the
tractography of a new/unseen subject. The first step is registration, the second
is segmentation.

The registration step comprises the projection of the tractography in a com-
mon reference space takes place by two subsequent registrations, global one and
local one. The tractography is first warped in MNI space [10]. MNI is a reference
brain representation built by a process of averaging more than 300 MRI scans.
We call this step global registration across subject. The second step is to com-
pute a local registration specific of the tract of interest. Target tractography is
transformed by an affine transformation in order to match the source tract.
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After the registration we assume that all available streamlines belong to the
same distribution in order to match the definitions in Section 2.1. Segmenting
the tract of interest τ on the new subject is then reduced to bringing all trac-
tographies to a common space and then training a classifier from the streamlines
segmented by the expert and predicting the class label of unlabeled ones.

The segmentation of tract τ suffers scalability issues. The first obvious reason
is the size of the tractography |T | ≈ 3 × 105. A preliminary improvement to
reduce this issue is to focus the segmentation of the fiber tract τ to a subset of
T which is a superset of t. We denote this superset as S. This initial reduction
of the problem can be performed in several ways. A first solution is to let the
neuroanatomist manually select the superset from the tractography. Another
approach is to automatically select the superset by collecting all streamlines
within a certain distance from few landmarks defined by prior knowledge. As
it will be illustrated in detail in Section 3.1 the results that we present are
based on expert-made supersets whose size lie in the range of |S| ≈ 3000− 8000
streamlines.

3 Experiments and Results

This Section is organized as follows: a first part is devoted to introduce the
dataset; in the second part we illustrate the experimental setup and the results
for the classification of streamlines on a single subject; the last part reports the
results for the segmentation of the tracts across subjects.

3.1 Dataset: PBCC2009 Spring Edition

The dataset used in our study was released by the University of Pittsburgh as
materials for the Pittsburgh Brain Connectivity Competition 20093. In Spring
2009 the scientific board of the competition proposed an open public contest to
the scientific community about mapping the human connectome. The idea was
to encourage researchers coming from different areas of expertise to work on a
common task and be evaluated on the same data.

The contest was organized around four different challenges. Our focus here
is restricted to challenge 2: supervised fiber tract segmentation. The data dis-
tributed as competition materials included MRI images such as structural, dif-
fusion (dMRI) and functional (fMRI) together with expert annotations. Those
data were acquired on three different subjects. The deterministic tractography
was reconstructed in DSI space [14], using the Diffusion Toolkit TrackVis 4.

All the data mentioned above were accessible to a committee of experts that
manually annotated a collection of fiber tracts for each of the subjects involved
in the experiments. The manual annotation concerned 8 different fiber tracts:
arcuate fasciculus, cingulum, corticospinal tract, forceps, fornix, inferior optical
frontal fasciculus (ioff), subcallosal fasciculus, uncinate fasciculus. Some of them
3 http://www.braincompetition.org
4 http://www.trackvis.org

http://www.braincompetition.org
http://www.trackvis.org
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Fig. 3. The tracts of PBCC 2009 dataset, spring edition: arcuate fasciculus (A), cingu-
lum (B), corticospinal tract (C), forceps major (D), fornix (E), inferior optical frontal
fasciculus (ioff) (F), subcallosal fasciculus (G), uncinate fasciculus (H)

were annotated on the same hemisphere for all subjects (fornix, ioff, forceps
and uncinate) while others were annotated on different hemisphere in different
subjects (arcuate, cingulum, corticospinal and subcallosal) Figure 3 illustrates
the patterns of the different tracts, while Table 1 reports the quantitative aspects.

Table 1. PBCC2009 Spring Edition Dataset: the size of the annotated tracts for each
subject together with to which hemisphere, either left or right, they belonged to

tract Subj 0 Subj 1 Subj 2

A Arcuate 96 L 406 R 228 R
B Cingulum 539 L 185 R 194 L
C Corticospinal 175 R 331 L 243 L
D Forceps 366 - 385 - 263 -
E Fornix 54 L 109 L 47 L
F Ioff 433 L 266 L 282 L
G Subcallosal 27 R 18 R 34 L
H Uncinate 82 R 80 R 122 R

For each tract and of each subject two sets of streamlines were annotated. The
first set is made of the streamlines that actually comprise the tract; the second set
is a sample of streamlines, called superset, which includes a large neighborhood
of the tract. These supersets contain on average 3000-8000 streamlines while the
tracts comprise only tens to hundreds of streamlines.

3.2 Single Subject Segmentation

A first experiment was designed to investigate the supervised segmentation task
of each given fiber tract on a single subject. In this experiment we assumed to
have part of the tractography already partitioned by an expert neuroanatomist
and the task is to segment the remaining part. Even though this task is of
minor neuroscientific interest it aimed to assess the goodness of the dissimilarity
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representation for the supervised tract segmentation without the bias introduced
by the coregistration.

In Table 2 we present the PBCC2009 score averaged over 4 datasets created
by drawing n = 100 prototypes at random without replacement. The classifier
used on these dataset was SVM with linear kernel. The score estimation process
was 10-fold CV.

Table 2. PBCC 2009 Spring Edtion: PBCC2009 score for single subject segmentation
(std-mean ≈ 0.02) using the dissimilarity-based representation and linear SVM

tract Subj1 Subj2 Subj3

arcuate 0.94 0.96 0.93

cingulum 0.85 0.89 0.92

corticosp. 0.94 0.95 0.92

forceps 0.98 0.94 0.92

fornix 0.81 0.86 0.72

ioff 0.70 0.72 0.90

subcall. 0.92 0.83 0.87

uncinate 0.84 0.75 0.63

3.3 Predictions Cross-Subjects

A second experiment was designed to evaluate the proposed approach when
segmenting a tract on the tractography of an unseen subject after training a
classifier on the same tract annotated on a different subject. We restricted our
analysis to learning from only one annotated tract.

We followed the pipeline explained in Section 2.6 for each tract and for each
pair of subjects. We first coregistered the tractographies of each subjects in the
pair, then we encoded the training dataset with the dissimilarity representation.
The dataset for the training step was designed considering all the streamlines
belonging to the given tract and an equal number of streamlines in the neighbor-
hood of the tract. For both sets of streamlines the corresponding representation
in the dissimilarity space was computed. Two learning process were performed
by training the 1-NN classifier in the euclidean space and the linear SVM in
the dissimilarity space. After the training stage, the test was performed on the
superset of the tract from the tractography of the target subject. Finally the
PBCC2009 score was computed according to the definition in Section 2.2.

We report the results for the following tracts: arcuate, corticospinal, forceps
major and inferior occipito-frontal cortex. We discarded all the other tracts from
this second experiment because the expert-made segmentations varied exces-
sively across subjects both from the point of view of the size (see Table 1) and
the shape. This issue is due to the anatomical variability across subjects that
cannot be significantly reduced by the current coregistration procedure. Another
possible explanation is that the variability across segmentations is due to unclear
guidelines for the manual annotation.
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Table 3. Cross-Subject Segmentation of the arcuate fasciculus. For each pair of sub-
jects the PBCC2009 score is computed both for 1-NN (baseline) and the proposed
method based on the dissimilarity representation and linear SVM.

train �→ test 1-NN dis.+LinSVM

1L �→ 2R 0.224 0.328
1L �→ 3R 0.338 0.711
2R �→ 1L −0.021 0.333
2R �→ 3R 0.697 0.860
3R �→ 1L 0.260 0.792
3R �→ 2R 0.229 0.187

Table 4. Cross-Subject Segmentation of the corticospinal tract. For each pair of sub-
jects the PBCC2009 score is computed both for 1-NN (baseline) and the proposed
method based on the dissimilarity representation and linear SVM.

train �→ test 1-NN dis.+LinSVM

1R �→ 2L 0.402 0.767
1R �→ 3L 0.091 0.387
2L �→ 1R 0.446 0.749
2L �→ 3L 0.852 0.588
3L �→ 1R 0.417 0.869
3L �→ 2L 0.459 0.698

4 Discussion

The results illustrated in Section 3 provide empirical evidence that the dissimi-
larity space representation is effective for the supervised fiber tract segmentation.
The proposed approach allows to exploit the domain knowledge by encoding of
the appropriate distance measures defined by the domain experts. Results in Ta-
ble 2 shows that accurate classification is attained on single subject experiments
where the anatomical variability across subject is not present as a confound.

For the most challenging task of supervised fiber tract segmentation across
subject, we focus the analysis on the comparison between a dissimilarity based
and a distance based approaches. The empirical results in Table 3, 4, 5 and 6
show that the dissimilarity-based representation provides a more robust encoding
of the problem since a linear classifier, i.e. linear SVM, performs even better than
the non-linear classifier 1-NN (proposed in [12]) in 20 over 24 cases.

In some cases the poor score results could be related to a large variance of
the tract annotated on different brains. As discussed in Section 3.3 the major
sources of variance are the anatomical variability among subjects and the process
of annotation among different experts. Currently the training process relies on a
single tract segmentation even though encoded as several streamlines. In order
to capture the more general pattern of a tract across the population of subjects
it is then necessary to rely on annotations from more subjects.
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Table 5. Cross-Subject Segmentation of the forceps major. For each pair of subjects
the PBCC2009 score is computed both for 1-NN (baseline) and the proposed method
based on the dissimilarity representation and linear SVM.

train �→ test 1-NN dis.+LinSVM

1 �→ 2 0.732 0.506
1 �→ 3 0.323 0.194
2 �→ 1 0.158 0.544
2 �→ 3 0.658 0.726
3 �→ 1 0.014 0.347
3 �→ 2 0.366 0.743

Table 6. Cross-Subject Segmentation of the inferior occipito-frontal fasciculus (ioff).
For each pair of subjects the PBCC2009 score is computed both for 1-NN (baseline)
and the proposed method based on the dissimilarity representation and linear SVM.

train �→ test 1-NN dis.+LinSVM

1L �→ 2L −0.853 0.323
1L �→ 3L −1.170 0.567
2L �→ 1L −0.095 0.189
2L �→ 3L −0.025 0.415
3L �→ 1L 0.090 0.229
3L �→ 2L −0.049 0.203

The results of this work support the efficacy of the dissimilarity-based repre-
sentation with respect to other approaches. Nevertheless the tract segmentation
problem across subjects still presents major issues related to the high variability
of the tracts across subjects. In order to obtain an accurate cross-subject seg-
mentation of the fiber tracts the step of coregistration between tractographies
must be improved. A possible improvement along this direction is the use of
non-affine transformations such as voxel-based morphometry [1]. It is an ad-
vance techniques for the coregistration of MRI brain images. From the pattern
recognition side the adaptation of the classifier to a test set with a slightly dif-
ferent underlying distribution is addressed by the literature on transfer learning
and domain adaptation [18].
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Abstract. Person re-identification is the task of recognizing an individ-
ual that has already been observed over a network of video-surveillance
cameras. Methods proposed in literature so far addressed this issue as a
classical matching problem: a descriptor is built directly from the view
of the person, and a similarity measure between descriptors is defined ac-
cordingly. In this work, we propose a general dissimilarity framework for
person re-identification, aimed at transposing a generic method for per-
son re-identification based to the commonly adopted multiple instance
representation, into a dissimilarity form. Individuals are thus represented
by means of dissimilarity values, in respect to common prototypes. Dis-
similarity representations carry appealing advantages, in particular the
compactness of the resulting descriptor, and the extremely low time re-
quired to match two descriptors. Moreover, a dissimilarity representation
enables various new applications, some of which are depicted in the pa-
per. An experimental evaluation of the proposed framework applied to
an existing method is provided, which clearly shows the advantages of
dissimilarity representations in the context of person re-identification.

Keywords: person re-identification, dissimilarity representation, multi-
ple instance.

1 Introduction

In video-surveillance, it is often desirable to recognize a person who has already
been observed over a network of camera sensors. Such task, commonly referred to
as “person re-identification”, is useful for a number of practical security applica-
tions, both online (i.e. tracking a person over different, non-overlapping cameras)
and offline (i.e. retrieval of all the video sequences which contain an individual
of interest given as query).

Typically, the low resolution of the frames taken by the sensors of the network,
and the variety of possible poses, makes face recognition techniques ineffective
(see Fig. 1). A common approach is thus to look at the global appearance of the
individual, building a descriptor that represents the whole body.

Person re-identification has been modeled so far as a classical matching prob-
lem: a descriptor is built directly from the blob containing the person, and some
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Fig. 1. Example of image pairs representing the same individual taken from two dif-
ferent non-overlapping views, extracted from the ViPER benchmark dataset [7]

distance measure between descriptors is defined accordingly. The problem of how
to build a suitable descriptor has been addressed in various ways. In fact, there
is not an agreement on what features provide the best discriminant capabilities.
Many of the existing methods, however, are based on the common idea of rep-
resenting the human body as a bag of instances, defined as a set of randomly
taken image patches or strips, or a set of interest points [14].

Regardless of the chosen features, often the descriptors of different people
share a lot of redundant information. Their images can indeed contain simi-
lar instances, tipically associated to similar characteristics of their clothes (see
Fig. 2). Our intuition is based on the above premise; instead of creating the
descriptor of a person directly from its image, we propose to represent an indi-
vidual by means of a vector of dissimilarity values between the bag of instances
drawn from its image, and a number of pre-defined bags of instances named
visual prototypes, each corresponding to some specific “visual” characteristics
obtained from a given set of template users.

Dissimilarity-based representations for pattern recognition is a recently
introduced and very promising research field [11]. In the context of person
re-identification, a dissimilarity representation carries appealing advantages. In
particular, in terms of the compactness of the descriptor, and of the computational
requirements of thematchingphase,which canbe implementedas a comparisonbe-
tween vectors. We point out that, to the best of our knowledge, this work is the first
attempt to exploit a dissimilarity representation in a matching task, in which only
one (or a few) example per class is given, that is the case of person re-identification.
The adopted representation is somewhat similar to that used in the so-called “vi-
sual words” methods, largely used in scene categorization (see for instance [17]).
In visual words methods, a visual codebook is built offline, and then every sam-
ple is described in terms of the frequency (count of the occurrences) of every vi-
sual word. However, differently from visual words approaches, in the dissimilarity
paradigmthewhole sample is comparedwith every prototype,while in visualwords
approaches one looks for all the occurrences of every visual word inside the sam-
ple. Moreover, in a visual words method, for each visual concept the occurrences
are simply counted,without considering the degree of presence, represented instead
by a dissimilarity value. Note that a similar way to consider prototypes has been
exploited in [3] for the specific task of image classification.
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Fig. 2. An example of two pedestrians sharing clothing characteristics. Some of the
instances of pedestrian #1 are similar to some of the instances extracted from pedes-
trian #2. Instances are represented by coloured dots. Here, only the upper body part
is considered.

A dissimilarity representation also enables several new applications. An in-
teresting one is people grouping, i.e. clustering individuals in the dissimilarity
space so that each cluster contains only people of similar appearance, or that
share the same visual characteristics. People grouping can be useful to reduce
the number of candidates to be matched against a specific query, thus greatly
lowering computational requirements when the number of individuals is huge,
and to automatically group people in a scene, whose “role” can be inferred from
their appearance (i.e. policemen, members of a sport team).

Moreover, representing individuals with vectors allows one to easily switch
from a matching to a learning paradigm, where a classifier can be learned from
a set of vectors of the same individual, for example representing different view
points and poses, or of a group of individuals which share some common charac-
teristic. A classifier is potentially able to generalize an appearance model of the
individual (or group), and may represent an effective way to accumulate views
taken by different frames, instead of keeping in memory all the feature vectors
representing the same individual and matching every query against all of them.

The aimof thiswork is to provide a general dissimilarity framework for person re-
identification, which we named “Multiple Component Dissimilarity” (MCD). This
framework builds upon a recently proposed framework for person re-identification
methods, the Multiple Component Matching (MCM) framework [14], which em-
beds the concept of multiple instances representation. MCM is able to frame, par-
tially or completely, the great part of the existing methods. We will show how a
genericmethod that canbe framed inMCMcanbe turned into adissimilarity-based
form.Wewill also apply ourMCDframework to an existing person re-identification
method, and provide a preliminary experimental evaluation.

The paper is organized as follows. In Sect. 2 we briefly survey previous works on
person re-identification, and provide details on the Multiple Component Matching
framework. Then, in Sect. 3 the proposed dissimilarity framework is presented. We
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apply the proposed framework to an existing person re-identification method in
Sect. 4 and provide an experimental evaluation. Finally, in Sect. 5 we sum up the
proposed work and provide future research directions.

2 Background

In this Section, first an overview of the approaches to person re-identification
available in literature is provided, then we describe the Multiple Component
Matching framework for person re-identification.

2.1 Previous Works on Person Re-identification

As mentioned in Sect. 1, person re-identification has been considered in literature
as a matching problem, where the task consists in associating an individual from
a probe gallery to the corresponding identity in a template gallery.

In [5], the human body is subdivided with respect to its symmetry proper-
ties: anti-symmetry separates torso and legs, while symmetry is divides left and
right parts. The descriptor is made up of three local features: colour histograms,
maximally stable colour regions (MSCR) and recurrent high-structured patches
(RHSP), all extracted from torso and legs separately. To obtain MSCR and
RHSP, several patches are sampled at random, mainly near symmetry axes; then,
clustering algorithms are used to find the most significant ones. The matching
distance is a combination of the distances computed on the individual features.

In [2], an human body parts detector is used to find in the body of each
individual fifteen non-overlapping square cells, that have proven to be “stable
regions” of the silhouette. For each cell a covariance descriptor based on colour
gradients is computed. Descriptor generation and matching is performed through
a pyramid matching kernel.

In [1] two methods were proposed. In the first, Haar-like features are extracted
from the whole body, while in the second the body is divided into upper and
lower part, each described by the MPEG7 Dominant Colour descriptor.

An approach based on harvesting SIFT-like interest points from different
frames of a video sequence is described in [9]. Different frames are used also in
[6], where two methods are proposed. The first one is based on interest points.
The second one exploits a part subdivision of the human body based on de-
composable triangulated graphs and dynamic programming to find the optimal
deformation of this model for the different individuals.

In [8] the problem of defining the best descriptor for person re-identification
is addressed. Different features are extracted, and their weights are computed
by a boosting algorithm. Features are computed from randomly taken strips.

The approach proposed in [15] is based of global color descriptors (histograms,
spatiograms, color/path-length) computed from the whole blob containing the
person. A graph-based method is then used to reduce the dimensionality of the
descriptors.
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Fig. 3. An example of the MCM representation. Considering the individual in (a), a
toy subdivision in two parts, upper-body (in green) and lower-body (in red), is applied
(b). Every part is composed by several instances, or components (c), here represented
by coloured dots.

In [13] person re-identification is considered as a relative ranking problem,
exploiting a discriminative subspace built by means of an Ensemble RankSVM.
Colour and texture-based features are extracted from six fixed horizontal regions.

Despite the methods summarised above exhibit many differences, it can be
noted that many of them are based on a multiple instance representation, by tak-
ing several patches, strips, interest points. In addition, most works exploit some
part-based model of the body, which is divided accordingly into regions/parts.
These two concepts, multiple instance representation and part subdivision, pro-
vide the foundation for the Multiple Component Matching Framework [14],
which is depicted in the following subsection.

In [14] the authors also proposed a direct implementation of their framework,
where a two-part subdivision is adopted (torso-legs) and each part is described
by a set of random and partly overlapping patches. Each patch is represented
by its colour histogram.

2.2 The Multiple Component Matching Framework

In this section we describe the Multiple Component Matching (MCM) framework
for person re-identification. This framework has been presented in [14], and aims
to provide a common foundation for existing and future methods for person
re-identification. It is able to provide an unique view for the great part of the
methods proposed so far in literature. Therefore, we have chosen to adopt MCM
as the underlying paradigm for our proposed dissimilarity framework.

MCM is based on concepts that have found to underly most previous works,
namely multiple instance representation, and part subdivision. The individual
is represented by means of bags of instances, or “set of components” in MCM
terminology. Such components can be any kind of local features: patches, strips,
interest points. To take into account the peculiarities of the human body, MCM
also embeds the concept of part subdivision. For each part, a different set of
components is considered.
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Formally, let T = {T1, . . . ,TN} be the template gallery, each corresponding
to an individual. Every template Ti is represented as an ordered sequence of a
predefined number of M sets, corresponding to the M parts into which an image
is subdivided:

Ti = {Ti,1, . . . , Ti,M} (1)

Following a multiple-instance representation, every part Ti,j is a set of an arbi-
trary number ni,j of components (a simple example is depicted in Fig. 3), and
is described by the corresponding feature vectors tk

i,j :

Ti,j = {t1
i,j , . . . , t

ni,j

i,j }, tk
i,j ∈ X, (2)

where X denotes the feature space (assumed the same for all sets, for the sake of
simplicity, and without losing generality). Given a probe Q, which is represented
as a sequence of parts as described above, the task of MCM is to find the most
similar template T∗ ∈ T , with respect to a similarity measure D(·, ·):

T∗ = arg min
Ti

D(Ti,Q). (3)

The similarity measure D between sequences is defined as a combination of
similarity measures d(·, ·) between sets:

D(Ti,Q) = f
(
d(Ti,1, Q1), . . . , d(Ti,M , QM )

)
. (4)

D can be any combination of the set distances, like a weighted average in which
the coefficients reflect the relevance of the corresponding regions. Concerning
the similarity measure d, it can be any distance measure betwen sets. A possible
measure is the k-th Hausdorff Distance proposed by Wang and Zucker [16],
which has been used in [14]. It is defined as the k-th ranked distance of the
minimum distances between each element of one set and each element of the
other. Comparing two sets X = {xi} and Y = {yi}, we have

dH(X, Y ) = max
(
hk(X, Y ), hk(Y, X)

)
(5)

where

hk(X, Y ) = k-th
x∈X

min
y∈Y

(‖x − y‖) (6)

Note that another metric has to be defined, namely the distance measure ‖x−y‖
between the components of the sets.

Conveniently choosing the parameters of the MCM framework (part subdivi-
sion adopted, components extracted and corresponding representation, and the
distance measures d and D), different specific implementations can be obtained.
In particular, many of the existing methods for person re-identification can be
described, fully or partially, by means of this framework.
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3 The Multiple Component Dissimilarity Framework for
Person Re-identification

Here we illustrate the proposed Multiple Component Dissimilarity (MCD) frame-
work for person re-identification. This framework builds upon the MCM frame-
work described above, and aims at defining a dissimilarity-based version of a
generic method for person re-identification which can be framed into MCM.

Consider a generic target MCM method which adopts a multiple instances
representation and (possibly, but not necessary) a part subdivision, and assume
that a template gallery T = {T1, . . . ,TN} is given. A probe individual Q, which
can be any element of the probe gallery, is given as well. As in MCM, the task is
to find the most similar template to Q. The proposed MCD framework requires
four steps:

1. define a set of prototypes for each body part;
2. represent each element of T via dissimilarity vectors, one for each part;
3. represent Q via dissimilarity vectors, one for each part;
4. find the element of T which is most similar to Q in the dissimilarity space.

The first three steps are aimed at transposing the original problem into a dis-
similarity space, while the fourth step corresponds to Eq. 3 in MCM, where this
time we compare dissimilarity vectors.

Step one is to define a distinct set of visual prototypes for each body part.
These prototypes will be used to build a dissimilarity vector for each part of
each element of T , and of Q. The prototypes are extracted from the template
gallery T .

In MCM, each individual is represented as a set of components for each of
its parts. We chose to represent each visual prototype as a set of components as
well. Accordingly, the dissimilarity between a visual prototype and an individual
can be computed by means of the same distance measure d between sets of
components adopted by the target method (Eq. 4). This allows one to easily and
directly define a dissimilarity version of any method framed in MCM, without the
need of defining a new dissimilarity measure between descriptors and prototypes.

Considering the m-th body part, the procedure for defining the corresponding
prototypes is the following. First, all the components belonging to the m-th part
of every element of T are put together forming a single set of components. Then,
a clustering algorithm is applied to this set; prototypes will be defined as the
clusters found.

Any clustering method can be adopted, for example the well known K-Means
algorithm. To reduce computational and memory requirements, it may be prefer-
able to have prototypes made up by a reduced number of components. Thus, one
can also define a two-stage clustering procedure: first, the components belonging
to each individual are separately clustered; then, a second clustering is carried
out on the centroids obtained at the first-stage. Note that many other algorithms
to find out prototypes have been proposed in literature (see for example [12]).
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This procedure ends up with a prototype gallery P , made by M sets of pro-
totypes, one set for each body part:

P = {P1, . . . ,PM} (7)

with the m-th set of prototypes having a cardinality NP,m

Pm = {Pm,1, . . . , Pm,NP,m} (8)

It turns out that the parameters of the clustering algorithm, which govern the
number of prototypes NP,m for each part, are important, but not crucial: as will
be shown in Sect. 4, performance does not vary drastically in respect to NP,m.

Fig. 4 sums up the process of prototypes generation in a case where the number
of parts is two.

Once prototypes have been defined, we can build a dissimilarity representation
of each element of T , and of Q. Such dissimilarity representation is made up of a
different dissimilarity vector for each part. More formally, given an individual I
composed by m parts I1, . . . , Im, the dissimilarity representation is the following:

IDis = {IDis
1 , . . . , IDis

m } (9)

where each IDis
i is a vector of dissimilarity measures corresponding to the i-th

part:

IDis
i =

[
d(Ii, Pi,1) . . . d(Ii, Pi,NP,i)

]
(10)

By means of Eq. 9 and Eq. 10, all the elements Ti of the template gallery T can
be described via their dissimilarity representation TDis

i.
Once the data has been transposed into a dissimilarity space, the problem of

finding the best match in the template gallery given a query Q can be addressed
similarly to Eq. 3 of MCM:

TDis∗ = arg min
TDis

i

D(TDis
i,Q), (11)

where the superscript Dis indicates a dissimilarity representation. D can be the
same fusion rule of Eq. 4, this time applied to distance measures dDis between
dissimilarity vectors. Considering a generic dissimilarity template TDis and a
probe QDis, we have therefore:

D(TDis,QDis) = f
(
dDis(T Dis

1 , Q1), . . . , dDis(T Dis
M , QM )

)
. (12)

The distance measure dDis, can be defined as any distance measure between
vectors, for example the euclidean distance.

The proposed dissimilarity representation exhibits clear advantages. First, in
place of a complex descriptor, for each individual we have a set of a limited number
of dissimilarity vectors, one for each part of the body, thus saving a great amount
of memory for descriptors storage. Note that also the prototypes need to be stored,
however the number of their elements can be conveniently reduced, for example
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Fig. 4. Generation of the prototype gallery in MCD. Considering a template gallery
of three individuals, represented as a set of components for each part according to
MCM (a), all the components corresponding of each part are put together (b), then a
clustering operator is applied and a number of prototypes is generated for each part
(c). In this example, two parts are considered, upper (in green) and lower (in red) body.

by adopting a two-stage clustering scheme as explained previously. Furthermore,
the matching becomes as simple as computing a distance between vectors, which is
almost an immediate operation with modern CPUs. Such extremely fast matching
can lead to several useful applications, like finding the identity of an individual
among a huge number of candidates, almost in real-time.

The MCD framework we proposed can be used to define a dissimilarity version
of any method which can be framed in MCM. In particular, in the following
Section we apply MCD to the implementation of MCM proposed in [14].

4 Application of MCD

In this section, we provide a preliminary analysis of the application of MCD to
an existing person re-identification method. We have chosen MCMimpl, a direct
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implementation of MCM proposed in [14] which has shown to attain state-of-
the-art performance.

In MCMimpl, first the mask which separates the individual from the back-
ground is obtained by a STEL generative model [10]. The body is then divided
into two parts, torso and legs, exploiting the anti-symmetry properties of the
human silhouette. From each part, random and partly overlapping patches are
extracted and described via a colour histogram in the HSV colour space. The
distance between two sets corresponding to the same part is evaluated by the
k-th Hausdorff Distance (which has been introduced in Sect. 2.2), while the final
matching distance is the average of the distances of the parts.

To apply MCD, first a proper clustering algorithm to find the prototypes must
be chosen. We adopted a two-stage clustering scheme, where at first patches be-
longing to every template are clustered with the Mean-Shift clustering algorithm
[4], which does not make any assumption on the shape of the distribution nor the
number of clusters. The only parameter of Mean-Shift is the bandwidth BW ,
which governs how spread is each cluster. The resulting centroids (actually, the
real patch nearest to each centroid) are put together and clustered again, this
time via the classical K-Means method. Here, the only parameter is the number
of clusters K. We have chosen to adopt K-Means for the second clustering stage,
since applying Mean-Shift resulted in too unbalanced clusters (many of which
composed by only 1 or 2 elements). Instead, Mean-Shift has proven to be more
effective in clustering the patches of a single individual.

Fig. 5 shows the result of applying this clustering algorithm to patches ex-
tracted accordingly to MCMimpl. A set of 10 individuals is considered, taken
from the ViPER dataset [7]. Note that some prototypes look quite similar; how-
ever, all the different visual characteristics are reasonably well captured in dis-
tinct prototypes.

Concerning the dDis distance measure (Eq. 12) between dissimilarity vectors,
we adopt the euclidean distance. Finally, the overall matching distance (D in
Eq. 12) is the average of the distances of the single parts.

Preliminary Evaluation

A preliminary experimental evaluation of the dissimilarity version of the target
method, MCMimpl, is provided in the following. The dissimilarity version is
denoted as MCMimplDis.

We changed the parameters of MCMimpl originally used in [14], reducing
the size of the patches and increasing their number, thus obtaining an higher
granularity, that we have found to be more effective in capturing the visual
characteristics. We extracted 300 random rectangular patches from each part,
whose width and height are in the range [8%, 12%] of the width and the height
of the part.

The bandwidth parameter of Mean-Shift clustering was set to BW = 0.3 for
all the experiments.
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Table 1. Short comparison between MCMimpl and its dissimilarity version
MCMimplDis. The size of the descriptor is computed considering 32 bit floats val-
ues, and for MCMimplDis is referred to a number of prototypes of 80 for both torso
and legs. Matching time is evaluated on a 2.4 GHz CPU, and refers for both methods
to a non-optimized C++ implementation.

MCMimpl MCMimplDis

Size of the descriptor 96KB 640B
Average matching time 28.6ms < 0.01ms

In Table 1, a short comparison between the original method and its dissim-
ilarity version is provided. In particular, we reported the size of the descriptor
and the average time required for matching.

As can be seen, the size of the descriptor for MCMimplDis is reduced by two
orders of magnitude: the original descriptor, in fact, is made up of 300 different
local patches for each part (torso and legs), every patch being represented by a
vector of 40 features (see [14] for further details). The dissimilarity descriptor,
instead, is composed by a vector of NP elements for each part, NP being the
number of prototypes (assumed the same for all the parts).

The matching time has been evaluated as the average of 6300 single compar-
isons, and, as can be seen, it is also greatly reduced, being almost immediate,
and leads to a matching rate of over 105 candidates per second.

We evaluated also the matching performance of MCMimplDis. Given a tem-
plate gallery and a probe gallery, a common way to assess the performance of
a person re-identification method is the Cumulative Matching Characteristics
curve, that is, the average probability of finding the correct match of the el-
ements of the probe gallery, in the template gallery. Here, we build both the
template and the probe gallery from a sub-set of the ViPER benchmark dataset
[7], made up of the first 126 pedestrian. In this dataset, for every person two
non-overlapping views are available. The template gallery is made up of the first
view of each pedestrian, while the probe gallery is built by each second view.

In Fig. 6 we report the average CMC curve over 10 different folds of 63 pedes-
trians. The CMC curve of the original method MCMimpl is also plotted in blue,
as reference.

Performance vary in respect to the number of prototypes NP , which in these
experiments is the same for all the body parts. In Fig. 7 the performance versus
NP is evaluated by means of the area of the first 20% of the CMC curve (denoted
as AUC20%). We chose to consider the first part of the curve only, since in real
application scenarios the interest is usually on the first ranks. The plot of Fig. 6
corresponds to a NP = 80.

The proposed framework is aimed at taking advantages related to the compact-
ness of the dissimilarity representation, rather than incrementing the pure match-
ing performance. We point out that such advantages do not depend to the specific
target method considered. However, note that performance attained by the dis-
similarity version are comparable to that of the original method. Furthermore, the
dissimilarity version slightly outperforms the original method in the first part of
the curve, which as stated previously is usually the most interesting.



286 R. Satta, G. Fumera, and F. Roli

Fig. 5. Patch clustering results, for a set of 10 individuals. In green, prototypes related
to the torso body part; in red, prototypes related to the legs body part. The number
of prototypes is set to 8 for both the parts.
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Fig. 6. Average Cumulative Matching Characteristics curve over 10 runs on a sub-set of
the ViPER dataset. In blue, performance attained by the reference method MCMimpl;
in red, performance attained by its dissimilarity version MCMimplDis.



Exploiting Dissimilarity Representations for Person Re-identification 287

20 40 60 80 100 120
0.635

0.64

0.645

0.65

0.655

0.66

0.665

0.67

0.675

Nr. of prototypes

A
U

C
20

%

 

 

MCMimplDis

MCMimpl

Fig. 7. AUC20% attained by MCMimplDis in respect to the number of prototypes (in
red). The blue line depicted as reference is the AUC20% of MCMimpl.

5 Conclusions and Future Work

In this paper, we proposed a framework, named “Multiple Component Dissimi-
larity” (MCD), aimed at transposing a generic method for person re-identification
to a dissimilarity-based form. MCD is completely general, and does not impose
constraints on the specific features used by the target method considered. It only
requires that the target method exploits a multiple instances representation.

Dissimilarity representations carry interesting benefits to the problem of per-
son re-identification. The first one is the compactness of the resulting dissimi-
larity descriptors; regardless of the complexity of the local features adopted by
the target method, the dissimilarity descriptor will be as compact as a vector
of dissimilarities. The second advantage is then obvious, as once samples are
described in such form, a comparison between descriptors is almost immediate,
being the computation of differences between vectors extremely cheap in terms
of computational requirements.

The proposed MCD framework has been applied to an existing person re-
identification method, and an experimental evaluation in respect to this method
has been provided. Future studies shall include a more comprehensive analysis
which consider different person re-identification approaches. Methods depicted
in [5,9,6] are good candidates to apply MCD.

A dissimilarity representation can be exploited to enable several interesting
applications. Here, we briefly describe some of them.

The first possible application is people grouping. Once we have a set of individ-
uals described by dissimilarity vectors, we can cluster them in the dissimilarity
space, so that we obtain clusters of people sharing a similar appearance. Since it
is reasonable that every individual shares different characteristics with different
groups of people, a “fuzzy” of “soft” clustering should be adopted, which does
not hardly assign every individual to a single cluster.

People grouping can be useful in a number of tasks. For example, it can be used
as a preprocessing phase to reduce the number the candidates prior to perform
matching: we can first find clusters that the query is more likely to belong to,
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then perform matching only against templates belonging to these clusters. This
can lead to a great reduction of computational requirements when the cardinality
of the template gallery is huge. Note that only the first phase (grouping) exploits
dissimilarity representations, while the second phase (matching inside a single
group) can be run using any person re-identification method. We can also use
people grouping to perform tasks that are not strictly related to the classic
person re-identification problem. For example, we can exploit it to find people
that share similar appearance in a scene. Individuals whose role can be assigned
in respect to their appearance (for instance, policemen, vigilantes, firemen) can
be therefore grouped automatically.

Another application that a dissimilarity representation can enable, is appear-
ance learning, i.e. learn the appearance of an individual from a series of dissim-
ilarity vectors. A great practical problem in person re-identification is how to
accumulate different frames of the same person in a single descriptor. Most of
the techniques proposed so far deal with only one template image per person,
while the few methods that consider different images adopt approaches that vary
from harvesting all the information obtained from all the frames, to clustering
techniques aimed at reducing the number of local features that build the final
descriptor. A classifier could be a great way to build a descriptor of an individual
starting from a series of frames. In fact, each frame can be described as a dis-
similarity vector, and these vectors can form a training set. Then, we can train a
one-class or an one-versus-all classifier to learn the appearance of the individual.

The appearance of people that show similar visual characteristics (for
example policemen, firemen, sport teams) can also be learned. Furthermore,
appearance learning could be applied in scenarios not related to security and
surveillance, for example to recognize different traditional dressings in cultural
heritage applications.
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Abstract. In this paper we address a voting mechanism to combine clustering
ensembles leading to the so-called co-association matrix, under the Evidence Ac-
cumulation Clustering framework. Different clustering techniques can be applied
to this matrix to obtain the combined data partition, and different clustering strate-
gies may yield too different combination results. We propose to apply embedding
methods over this matrix, in an attempt to reduce the sensitivity of the final parti-
tion to the clustering method, and still obtain competitive and consistent results.
We present a study of several embedding methods over this matrix, interpreting
it in two ways: (i) as a feature space and (ii) as a similarity space. In the first
case we reduce the dimensionality of the feature space; in the second case we
obtain a representation constrained to the similarity matrix. When applying sev-
eral clustering techniques over these new representations, we evaluate the impact
of these transformations in terms of performance and coherence of the obtained
data partition. Experimental results, on synthetic and real benchmark datasets,
show that extracting the relevant features through dimensionality reduction yields
more consistent results than applying the clustering algorithms directly to the
co-association matrix.

Keywords: clustering ensembles, co-association matrix, evidence accumulation
clustering, embedding methods.

1 Introduction

Clustering is one of the central problems in Pattern Recognition and Machine Learn-
ing. Given a set of unlabeled data, its typical goal is to group objects into clusters, such
that objects within a cluster are similar, and objects in distinct clusters are dissimilar.
Assuming that clusters are disjoint, the clustering process leads to a data partition. Hun-
dreds of clustering algorithms exist, handling differently issues such as cluster shape,
density, noise. k-means is one of the most studied and used algorithms [9,18].

Recently, taking advantage of the diversity of clustering solutions produced by clus-
tering algorithms over the same dataset, an approach known as Clustering Ensemble
methods, has been proposed and gained an increasing interest [4,16,10,1]. Given a set
of data partitions - a clustering ensemble (CE) - these methods propose a consensus
partition based on a combination strategy, having in general a leveraging effect over the
single data partitions in the CE.

We can generate clustering ensembles following two approaches: choice of data rep-
resentation or choice of clustering algorithms or algorithmic parameters. In the first
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case, we can get different representations of objects by applying different preprocess-
ing mechanisms or feature extraction techniques, or just by sampling the data a number
of times. We can also have clustering ensembles if we use several clustering algorithms
or just the same algorithm with different parameter values.

Fred and Jain [5] proposed a clustering ensemble approach based on the combina-
tion of information provided by a set of different partitions of a given dataset, through
the Evidence Accumulation method. To combine all the different partitions, Fred and
Jain [5] proposed a voting scheme, which leads to a pairwise relationships matrix, called
“co-association matrix”. The final data partition is obtained by applying a clustering al-
gorithm over the co-association matrix. One main advantage of this voting scheme is
that it can deal with partitions having different number of clusters and different data
representations.

The application of different clustering techniques to this matrix may yield different
solutions. We propose to use embedding methods (also called dimensionality reduction
(DR) methods) over this matrix, in an attempt to reduce the sensitivity of the combined
data partition to the clustering method, and obtain better and more consensual results.
We present a study of the performance and coherence of the solutions when different
clustering techniques are applied to the resulting data representations. To obtain those
representations we will follow two approaches: interpret the co-association matrix as a
feature space, and as a similarity space.

The first approach is similar to the one proposed by Kuncheva et al. [11]: we will
view the co-association matrix as a feature space, but instead of using the full feature
space, we will reduce its dimension using several dimensionality reduction (DR) meth-
ods. These DR techniques aim to take a set of data points in a high-dimensional space
and output a new set of data points in a lower-dimensional space, in a way that preserves
the topology of the high-dimensional data. This new data representation is commonly
called an embedding of the original dataset. We will empirically show that the use of
DR methods to remove redundant features improves the quality and consistency of the
final partition for different clustering techniques.

In the other approach we view the co-association matrix as a similarity space, as
in [5]. However, instead of applying directly the clustering techniques to this matrix,
we will first apply DR methods to it. Many DR methods take as input some distance
measure between points (usually in a distance matrix whose (i, j) entry contains the
distance between data points i and j). Therefore, if one converts the similarity measures
in the co-association matrix into distance (or dissimilarity) measures, one can input this
dissimilarity matrix into the DR methods directly. The resulting low-dimensional data
points are then clustered with several clustering techniques. Again, we intend to study
if there exists consistency and an improvement in the quality of the solutions.

The dimensionality reduction methods used have different characteristics such as:
linear vs. nonlinear; preserving local structure vs. preserving global structure; preserve
spatial distances vs. preserving graph distances. This means that different embedding
strategies may influence differently the solutions; we intend to study if there exists a
class of embedding methods suitable for certain types of datasets (well separate clusters,
touching clusters).
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This paper is organized as follows: Section 2 gives a brief explanation of the em-
bedding algorithms used in the study. Section 3 explains the evidence accumulation
approach, including the construction of the co-association matrix. Section 4 explains
the new methodology proposed in this paper and the two interpretations we give to this
matrix. Section 5 describes the datasets used in this study and the experimental results
for the two interpretations of the co-association matrix: feature space (section 5.2) and
similarity space (section 5.3). We summarize and discuss the main findings in Section 6.
Conclusions are drawn in Section 7.

2 Embedding Methods

To perform embeddings we will use several unsupervised DR methods: Locality
Preserving Projections (LPP) [7]. Neighborhood Preserving Projections (NPE) [6],
Sammon’s mapping [15], Curvilinear Component Analysis (CCA) [3], Isomap [17],
Curvilinear Distance Analysis (CDA) [13], Locally Linear Embedding (LLE) [14] and
Laplacian Eigenmap (LE) [2]. We now briefly introduce each of these algorithms.

2.1 Nonlinear Methods

The Locally Linear Embedding (LLE) [14] assumes that the data manifold is smooth
and sampled densely enough such that each data point lies close to a locally linear sub-
space on the manifold. In other words, the manifold smoothness and sampling should
be enough to locally approximate the manifold by a hyperplane. LLE makes a locally
linear approximation of the whole data manifold; it first estimates a local coordinate sys-
tem for each data point from its k-nearest neighbors. To produce the embedding, LLE
finds low-dimensional coordinates that preserve the previously estimated local coordi-
nate systems as well as possible. Technically, LLE first minimizes the reconstruction
error E(W) =

∑
i ‖xi −

∑
j Wi,jxj‖2 with respect to the coefficients Wi,j , under the

constraints that Wi,j = 0 if i and j are not neighbors, and
∑

j Wi,j = 1. After finding
these weights, the low-dimensional configuration of points is next found by minimizing
E(Y) =

∑
i ‖yi −

∑
j Wi,jyj‖2 with respect to the low-dimensional representation

yi of each data point.
The Laplacian Eigenmap (LE) [2] uses a graph embedding approach. An undirected

k-nearest neighbor graph is formed, where each data point is a vertex. Points i and j
are connected by an edge with weight Wi,j = 1 if j is among the k nearest neighbors
of i, otherwise the edge weight is set to zero; this simple weighting method has been
found to work well in practice [2]. To find a low-dimensional embedding of the graph,
the algorithm tries to put points that are connected in the graph as close to each other as
possible and does not care what happens to the other points. Technically, it minimizes
1
2

∑
i,j ‖yi − yj‖2Wi,j = yT Ly with respect to the low-dimensional point locations

yi, where L = D−W is the graph Laplacian and D is a diagonal matrix with elements
Dii =

∑
j Wi,j . This cost function has an undesirable trivial solution: having all points

in the same position would have a cost of zero, which would be a global minimum
of the cost function. In practice, the low-dimensional configuration is found by solving
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the generalized eigenvalue problem Ly = λDy [2]. The smallest eigenvalue corre-
sponds to the trivial solution, but the eigenvectors corresponding to the next smallest
eigenvalues yield the desired LE solution.

Isomap [17] is a variant of Multidimensional Scaling (MDS) [12], which finds a
configuration of output coordinates matching a given distance matrix. Isomap does not
compute pairwise input-space distances as simple Euclidean distances but as geodesic
distances along the manifold of the data (technically, along a graph formed by connect-
ing all k-nearest neighbors). Given these geodesic distances the output coordinates are
found by standard linear MDS. When output coordinates are found for such input dis-
tances, the manifold structure in the original data becomes unfolded; it has been shown
that this algorithm is asymptotically able to recover certain types of manifolds.

Curvilinear component analysis (CCA) [3] is a variant of MDS [12] that tries to pre-
serve only distances between points that are near each other in the embedding. This is
achieved by weighting each term in the MDS cost function by a coefficient that depends
on the corresponding pairwise distance in the embedding. In our case, this coefficient
is simply 1 if the distance is below a predetermined threshold and 0 if it is larger. This
approach is similar to Isomap but the determination of whether two points are neighbors
is done in the output space in CCA, rather than in the input space as in Isomap.

Curvilinear distance analysis Curvilinear Distance Analysis (CDA) [13] is an exten-
sion of CCA. The idea is to replace in MDS the Euclidean distances in the original space
with geodesic distances in the same manner as in the Isomap algorithm. Otherwise the
algorithm is similar to CCA.

2.2 Linear Methods

Locality Preserving Projections (LPP) [7] is a linear dimensionality reduction method
that preserves local neighborhood information. It shares many properties of nonlinear
techniques such as Laplacian Eigenmaps or Locally Linear Embedding, since it is a
linear approximation of the nonlinear Laplacian Eigenmaps.

Neighborhood Preserving Projections (NPE) [6] is a linear dimensionality reduction
method that preserves the local structure of the data. It has similar properties to LPP,
but it is a linear approximation of Locally Linear Embedding (LLE), which means that
it has properties similar to that method.

3 Evidence Accumulation: The Co-association Matrix

Let X = {x1, x2, . . . , xn} be a set of n objects or samples represented in a feature
space or some other data representation. A clustering algorithm takes X as input and
groups the n patterns into k clusters, forming a partition P . A clustering ensemble, P,
is a set of N different partitions of the data X :

P = {P 1, P 2, . . . , PN} (1)

P 1 =
{
C1

1 , C1
2 , . . . , C1

k1

}
...

PN =
{
CN

1 , CN
2 , . . . , CN

kN

}
,
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where Ci
j is the jth cluster in data partition P i, which has ki clusters and ni

j is the

cardinality of Ci
j , with

∑ki

j=1 ni
j = n, i = 1, . . . , N .

The evidence accumulation approach, proposed by Fred and Jain [5], is a three-step
cluster ensemble method: 1- build the clustering ensemble (CE); 2- combine evidence
in the CE, mapping it into a co-association matrix; 3- extract the consensus partition
by applying a clustering algorithm over the co-association matrix. The basic idea is
that patterns belonging to a “natural” cluster are very likely to be assigned to the same
cluster in different data partitions. Taking the co-occurrences of pairs of patterns in the
same cluster as votes for their association, the N data partitions of n patterns yield a
n × n co-association matrix:

C(i, j) =
nij

N
, (2)

where nij is the number of times the pattern pair (i, j) is assigned to the same cluster
among the N partitions.

In its normalized form, as per expression (2), matrix C can be given different inter-
pretations, either probabilistic or simply as pairwise similarity. Another issue is how to
address and use this matrix for clustering purposes. In the following we propose a novel
methodology by applying DR techniques.

4 Dimensionality Reduction in Evidence Accumulation Clustering

We propose a new methodology called Dimensionality Reduction in Evidence Accumu-
lation Clustering (DR-EAC), which is based on the Evidence Accumulation Clustering
(EAC) method described above. As said before, the evidence accumulation approach is
a three-step cluster ensemble method; we now propose a four-step method. We build
the clustering ensemble (step 1) and the co-association matrix (step 2) similarly to the
evidence accumulation approach. However, instead of applying a clustering algorithm
directly to the co-association matrix, we apply a DR technique to it (which is now step
3). As detailed below, we propose two ways to do this, depending on how one interprets
the co-association matrix. This DR technique outputs a low-dimensional dataset, which
is then fed into a clustering algorithm (which is now step 4). We now discuss each of
these four steps in more detail.

1) Build the Clustering Ensemble. As referred before, there are several ways to produce
a clustering ensemble. In this study we build a clustering ensemble by running the
k-means algorithm to produce a total of N = 200 data partitions, each one with k
clusters, k being an integer randomly drawn between kmin = max{

√
n/2, n/50} and

kmax = kmin + 20, where n is the number of samples of the dataset.

2) Obtain the co-association matrix. We begin by computing the co-association matrix
according to equation (2). Then, we interpret this matrix in one of two possible ways:

– Co-associations viewed as Features: One way to look at matrix C is to say that its
i-th row represents a new set of features for the i-th data point, an idea originally
proposed by Kuncheva et al. [11]. Thus, each pattern is now represented by how
many times it was grouped together with all other patterns.
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– Co-association viewed as Similarities: We can transform the co-association ma-
trix C, which is a similarity matrix, into a dissimilarity matrix (or distance matrix).
Since many DR methods can take as input a matrix of pairwise distances (or dissim-
ilarities), if we transform this matrix of similarities into a matrix of dissimilarities
we can exploit this property. Since the elements of C lie between 0 and 1, we use
a very simple transformation: the new dissimilarity matrix has the element (i, j)
given by 1 − C(i, j).

3) Apply Dimensionality Reduction techniques. We apply DR techniques to obtain a
new representation of the data, preserving the topology of the original data. For the
DR methods we need to choose a target dimension to reduce the data to and, in some
cases, we also have to choose a parameter of the method (usually the number of nearest
neighbors to consider). In all cases we let each algorithm choose the most suitable
parameter and dimension by an intrinsic criterion. This intrinsic criterion can be the
value of the cost function that each algorithm has to minimize, or the reconstruction
error. For example, in Isomap we chose the parameter (which is the number of nearest
neighbors used to construct a graph) which minimizes the residual variance [17]. It is
beyond the scope of this paper to detail how these parameters should be chosen; the
relevant information can be found in the references cited in Section 2.

4) Extract the consensus partition. After we get the embedded data, we apply eight
well-known clustering algorithms: k-means, single-link, complete-link, average-link,
Ward-link, centroid-link, median-link and weighted-link [9].

4.1 Quality Measures

We use two quality measures to assess the results: consistency index (CI) and normal-
ized mutual information (NMI).

The CI simply measures the fraction of patterns correctly grouped together compared
to the ground-truth labeling. It takes values between 0 and 1, and it is a measure of the
accuracy of the clustering.

The NMI [16] is a symmetric measure of the information shared between two par-
titions. Consider the partition P a, which describes a labeling of the n patterns in the
dataset X into ka clusters. If one takes frequency counts as approximations for probabil-

ities, the entropy of the data partition P a is given by H(P a) = −
∑ka

i=1
na

i

n log
(

na
i

n

)
,

where na
i represents the number of patterns in cluster Ca

i ∈ P a. The agreement between
two partitions P a and P b is given by their mutual information:

I(P a, P b) =
ka∑
i=1

kb∑
j=1

nab
ij

n
log

⎛⎝ nab
ij

n

na
i

n · nb
j

n

⎞⎠ ,

whith nab
ij the number of shared patterns between clusters Ca

i ∈ P a and Cb
j ∈ P b.

The NMI is then defined by

NMI(P a, P b) =
I(P a, P b)√
H(P a)H(P b)

.
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It is similar to the widely used mutual information, but normalized to be in the interval
[0, 1]. For each DR method, we compute the NMI between all 28 pairs of clustering
algorithms1. We then take the average of these 28 NMI values to obtain the average
NMI for that DR method. This average NMI will measure how consistent the partitions
are among the 8 clustering algorithms after applying that DR method.

5 Experimental Results

We will apply the new methodology described in section 4 to several datasets, in an
attempt to improve the quality and robustness of the solutions, compared to the evi-
dence accumulation approach. We will apply the clustering algorithms mentioned in
section 4 to the co-association matrix directly (in both interpretations), an approach
we will denote by EACF (Evidence Accumulation Clustering in the feature space) and
EAC (Evidence Accumulation Clustering in the sense presented by [5]). The idea is
to verify empirically whether the use of embedding methods and subsequent cluster-
ing algorithms is advantageous relative to the application of clustering algorithms on
the co-association matrix directly. Also, we will try to find some correspondence be-
tween pairs of embedding and clustering methods suitable for some types of data. In
that sense, we will study synthetic data and real data, with the synthetic data divided in
two broad meta-sets: datasets with separate clusters and datasets with touching clusters.

5.1 Data

We used 18 datasets: 10 synthetic datasets (5 well-separated and 5 with touching clus-
ters), and 8 real datasets from the UCI Machine Learning Repository2. The synthetic
datasets were chosen to take into account a wide variety of situations: well-separated
and touching clusters; gaussian and non-gaussian clusters; arbitrary shapes; and diverse
cluster densities. These synthetic datasets are shown in figure 1. The Iris dataset con-
sists of three species of Iris plants (Setosa, Versicolor and Virginica). This dataset is
characterized by four features and 50 samples in each cluster. Std Yeast is composed of
384 samples (genes) over two cell cycles of yeast cell data. This dataset is characterized
by 17 features and consisting of five clusters corresponding to the five phases of the cell
cycle. The Pima dataset is composed of 768 samples (genes) from National Institute of
Diabetes and Digestive and Kidney Diseases, it has 8 features and two clusters. Wine
consists of the results of a chemical analysis of wines grown in the same region in Italy
divided into three clusters with 59, 71 and 48 patterns described by 13 features. Optdig-
its is a subset of Handwritten Digits dataset containing only the first 100 patterns of each
digit, from a total of 1000 data samples characterized by 64 attributes. The Wisconsin
Breast-Cancer dataset consists of 683 patterns represented by nine features and has two
clusters. The House Votes dataset consists of votes for each of the U.S. House of Repre-
sentatives Congressmen on the 16 key votes identified by the Congressional Quarterly
Almanac. It is composed by two clusters and only the patterns without missing values

1 28 is the number of off-diagonal elements in the upper triangular part of the matrix containing
the NMI between pairs of clustering algorithms, which is an 8-by-8 matrix.

2 http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml
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Fig. 1. Synthetic datasets

were considered, for a total of 232 samples (125 democrats and 107 republicans). The
Crabs dataset consists of 200 patterns represented by 5 features and has two classes.
Pima, House Votes, Crabs and Wine were normalized to have unit variance.

5.2 Experiment 1: Feature Space

In this section we interpret the co-association matrix as a new feature space, as described
in Section 4. The application of clustering algorithms directly to the co-association
matrix viewed as a feature space, is here denoted by EACF .

Analyzing the average NMI in figure 2 over all clustering algorithms used to obtain
the final partition, we notice that LE and LPP are the ones that produce more coherent
solutions for the synthetic datasets with separate clusters (figure 2 top), which indicates
that they are robust to the extraction algorithm. CCA and CDA are the algorithms with
the most dispersion in the solutions for all datasets. Unlike for separate clusters, the
NMI for datasets with touching clusters (figure 2 middle) shows that no DR algorithm
is robust to the choice of the clustering algorithm. In the real datasets, LE is the most
consistent DR algorithm in half of the datasets (Wine, Std Yeast, Optdigits and Iris).

Even if the NMI is high, it is not necessarily true that we have a high CI (i.e. that
the results of the clustering algorithms are good), it only means that the clustering al-
gorithms obtained similar final partitions. However, the use of that measure is a good
indicator that the embedded space yields good clustering results regardless of the clus-
tering algorithm. This is an advantage, since we do not know a priori which is the most
suitable clustering algorithm for a certain kind of data.

Table 1 contains the best CI values (first row of each dataset) and the corresponding
clustering algorithm used for that solution; it also presents the average CI over all the
clustering algorithms (second row of each dataset). Based on figure 2 we have claimed
that LE and LPP are the ones that produce the most coherent solutions for the synthetic
datasets with separate clusters; Table 1 corroborates these findings, since LE and LPP
usually yield maximum CI for several clustering algorithms.

In synthetic datasets with separate clusters, LE and LPP, which are local algorithms,
combine well with multiple hierarchical clustering algorithms. Isomap and Sammon,
which are global and nonlinear, combine well with single-link, which is also the best
clustering algorithm for EACF .
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Fig. 2. Mean and standard deviation of Normalized Mutual Information over the clustering algo-
rithms for each dataset and each embedding method. The co-association matrix was interpreted as
features. Top: Synthetic datasets with separate clusters. Middle: Synthetic datasets with touching
clusters. Bottom: Real datasets.
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The analysis of the CI values for the synthetic datasets with touching clusters, shown
in Table 1, shows that LPP, Isomap and LE are, on average values, better than EACF .
In terms of maximum values, EACF outperforms the DR-based methods only in one
dataset (R-2-new), and still by a very small margin; while it is outperformed in all
remaining datasets.

The best DR-clustering algorithm pairs, for synthetic datasets with touching clusters,
are LPP with k-means, Sammon with Ward-link and CDA with k-means. The overall
best DR is Isomap, which is in first place in maximum CI for 4 out of 5 datasets.

The analysis of CI values for real datasets (see Table 1), shows that all DR meth-
ods do relatively well when compared to EACF , except for CCA and CDA. Isomap
and Sammon are the two best DR algorithms when compared to the remaining DR
techniques, especially in the Optdigits dataset. CCA and CDA are the worst overall
methods, especially in the Std Yeast and Optdigits datasets.

These results show the advantage of performing DR over using EACF . In fact, from
Table 1, using DR gives in general the best CI in all datasets, both in terms of maximum
CI and of average CI.

Overall, for both synthetic and real datasets, there is no DR algorithm which is al-
ways robust in terms of NMI. However, LE and LPP (which is a linear version of LE),
seem to have this property, especially in synthetic datasets with separate clusters. For
the real datasets, LPP and LE present the best results, except in the Optdigits dataset,
which yields better results with a global DR method (like Isomap and Sammon), instead
of a local method.

5.3 Experiment 2: Similarity Space

In this section we interpret the entries of the co-association matrix as similarity values.
We transform these into dissimilarity values, as described in Section 4. We plug-in this
dissimilarity matrix into the embedding methods and will add “EA-” (from “Evidence
Accumulation”) before the acronyms of the DR methods to emphasize the dependency
of this matrix.

The analysis of NMI values for the synthetic datasets with separate clusters, shown
in Figure 3, shows that EA-LE and EA-LLE yield the most coherent clustering results,
except for the Half-rings dataset. For the Mixed Image 2 dataset, local algorithms (EA-
LPP, EA-NPE, EA-LLE and EA-LE) and global algorithms that preserve “geodesic”
distances (EA-Isomap, EA-CDA) have very coherent results. However, the analysis of
the CI values (Table 2) immediately shows that results are not good for that dataset.
This suggest that the co-association matrix might not be the best clustering ensemble
approach for this dataset.

Similar to the feature space, the analysis of NMI values for synthetic datasets with
touching clusters (figure 3 middle) suggests that no DR algorithm is robust to the choice
of clustering algorithm; except the EA-Sammon in the Mixed Image 3. For the real
datasets (figure 3 bottom) EA-LE is the DR algorithm with the most consistent results,
except for the Pima, Crabs and Breast cancer datasets.

The best overall DR methods, for the synthetic datasets with separate clusters, are
EA-LE and EA-LLE. EA-Isomap, EA-CCA, EA-CDA and EA-LE yield the best results
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Table 1. Consistency index (%) for co-association matrix interpreted as features. (First row) Best
CI and clustering algorithm(s) which yield that CI value. Legend: (1) k-means, (2) single-link, (3)
complete-link, (4) average-link, (5) Ward-link, (6) centroid-link, (7) median-link, (8) weighted-
link. (Second row) Average CI (%) over all clustering methods. The gray cells correspond to the
best NMI presented in figure 2 and the best average CI are shown in bold.

EACF LPP NPE Sammon CCA Isomap CDA LLE LE
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te

cl
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te
rs

Rings 100 100 61.25 100 50.00 100 52.00 85.50 100
(2) (1-8) (1) (2) (2) (2) (4) (5) (2-8)

65.28 100 55.13 64.78 43.00 73.56 45.75 66.06 99.47
d1 100 100 82.00 100 70.00 100 70.50 72.50 100

(2-8) (2-8) (6) (2,4-8) (2,6) (2) (2) (2) (2,8)
98.44 98.19 65.25 91.75 54.75 65.31 50.13 69.69 85.88

d2 100 93.50 51.00 100 59.00 69.00 60.50 50.50 67.00
(2) (7) (7) (2) (6) (2) (4) (2) (3,4,6)

76.31 73.87 42.56 73.00 49.87 59.56 49.25 44.88 61.69
Half-rings 100 100 69.75 100 81.75 100 74.75 100 100

(2) (1,2,4-8) (2,4-8) (2) (5) (1,2) (2,6,7) (2) (2,4-8)
72.19 93.31 65.81 72.09 66.19 59.87 63.56 88.28 86.63

Mixed Image 2 65.70 71.80 36.60 71.60 22.90 71.40 23.70 47.00 71.60
(2) (2) (5) (2) (6) (2) (1) (5) (3)

54.44 63.69 32.50 51.90 21.10 57.45 22.61 38.52 70.66
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Bars 99.25 99.25 79.25 99.25 59.50 99.25 73.75 76.00 96.00
(5) (4,5) (1) (5) (1) (2,3) (1) (7) (1)

68.19 75.25 64.78 68.19 53.09 90.16 58.78 62.84 76.84
Circs 99.50 100 58.75 99.50 63.00 100 84.50 59.00 99.50

(2,5,8) (1-6,8) (1) (2,8) (5) (1,8) (1) (8) (5)
80.00 96.16 54.94 80.56 55.62 91.37 62.31 55.31 66.91

R-2-new 90.20 77.40 44.40 89.20 50.40 82.80 51.20 57.20 78.60
(4) (1) (2) (4,5) (6) (4) (7) (5) (1)

66.60 73.95 40.55 70.52 39.52 71.22 42.57 51.67 71.52
Mixed Image 3 84.90 71.90 66.80 74.60 54.80 89.50 74.80 55.30 83.80

(5) (1) (3) (5) (8) (3) (1) (3,5) (4)
61.52 67.10 58.16 61.59 52.15 73.42 55.59 53.17 74.92

Spiral 2 77.67 77.67 64.33 77.67 58.67 85.00 51.67 85.00 85.00
(2) (2) (8) (2) (1) (2) (1) (1-8) (2,5,7,8)

63.50 70.96 56.54 61.12 52.50 82.54 50.75 85.00 81.33

R
ea

ld
at

a

Wine 96.07 98.31 90.45 96.07 72.47 96.63 84.27 61.24 96.63
(8) (3) (3) (5) (1) (5,6) (1) (5) (1)

75.91 94.03 77.18 71.07 46.49 88.48 58.43 47.68 94.66
Std Yeast 60.94 63.80 58.07 61.20 37.24 61.20 35.94 60.16 71.35

(4) (1) (7) (8) (4) (3) (6) (5) (3,5,7)
54.88 58.36 50.10 54.10 33.33 57.19 32.49 51.14 66.83

Pima 64.71 64.71 65.36 66.02 65.10 64.71 65.23 64.71 64.58
(2,7) (1,2,4,6-8) (2) (7) (4) (2) (2,7) (5) (2)
56.95 64.34 63.95 57.86 60.90 60.12 60.16 64.49 57.03

Optdigits 87.90 49.60 52.00 85.40 22.50 84.10 17.60 46.30 55.90
(8) (5) (5) (1) (5) (3) (1) (3) (5)

69.75 31.06 39.34 74.42 17.46 71.18 14.53 43.91 38.61
Iris 84.00 90.67 70.67 90.67 58.67 94.00 49.33 53.33 90.67

(5,8) (3) (3) (2,8) (1) (1) (1) (2,4-8) (1-3,7,8)
63.17 84.83 62.08 68.42 45.17 86.58 39.75 53.00 90.42

Crabs 65.00 56.00 58.00 65.00 57.00 70.50 54.00 67.00 70.50
(2) (3) (1,5) (2) (5) (2) (3) (7) (4,6)

59.94 53.12 53.31 57.37 52.50 55.87 51.56 58.00 62.81
Breast Cancer 62.96 68.81 58.13 64.86 64.86 94.58 74.23 75.55 68.67

(2) (5) (2,3,7,8) (2-4,6-8) (2,6,7) (4-8) (1) (8) (1)
56.81 61.11 56.44 61.68 60.65 86.09 64.81 67.84 60.45

House Votes 89.22 88.36 81.90 87.93 81.47 87.07 61.21 64.66 74.14
(1) (1) (5) (1) (1) (3) (5) (1) (1)

74.52 71.28 63.31 73.81 59.37 69.34 54.69 57.81 62.88
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Fig. 3. Mean and standard deviation of Normalized Mutual Information over the clustering algo-
rithms for each dataset and each embedding method. The co-association matrix was interpreted
as similarities. Top: Synthetic datasets with separate clusters. Middle: Synthetic datasets with
touching clusters. Bottom: Real datasets.
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Table 2. Consistency index (%) for co-association matrix interpreted as similarities. (First row)
Best CI and clustering algorithm(s) which yield that CI value. Legend: (1) k-means, (2) single-
link, (3) complete-link, (4) average-link, (5) Ward-link, (6) centroid-link, (7) median-link, (8)
weighted-link. (Second row) Average CI (%) over all clustering methods. The gray cells corre-
spond to the best NMI presented in figure 3 and the best average CI are shown in bold.

EAC EA-LPP EA-NPE EA-Sammon EA-CCA EA-Isomap EA-CDA EA-LLE EA-LE

Sy
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w
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Rings 100 74.00 74.00 77.50 77.50 63.25 79.00 81.00 100
(2,4,8) (2) (2) (1) (2) (7,8) (1) (7,8) (1-8)
74.79 58.69 56.59 70.41 68.44 61.47 72.53 73.50 100

d1 100 100 90.50 100 100 100 100 90.00 100
(2,4-8) (2,4) (2) (2) (2) (2) (2,7) (2) (2)
94.07 74.31 69.06 59.62 61.31 67.62 77.06 87.81 71.75

d2 100 100 61.50 66.50 100 88.50 100 100 79.00
(2) (2) (2) (4) (2) (2) (2) (2) (2)

70.21 59.87 48.56 59.31 60.75 60.06 59.94 56.50 64.50
Half-rings 100 94.75 88.00 81.75 93.25 100 100 100 100

(2,4,8) (4) (8) (2) (6) (2) (2) (1-8) (2,4-8)
82.86 81.06 80.12 64.59 68.69 79.62 72.41 100 90.84

Mixed Image 2 72.40 67.50 67.70 60.00 70.80 71.00 70.80 66.90 68.10
(8) (6) (2) (1) (2) (2) (2) (2) (2-4,6-8)

53.34 60.10 61.46 50.72 60.31 63.45 62.81 64.09 67.05

Sy
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da
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te
rs

Bars 99.25 100 75.25 69.75 99.50 99.50 74.00 99.00 99.25
(4) (5,8) (1) (4,6) (6) (3,5) (1) (4) (5)

74.25 88.69 65.53 61.00 77.53 90.28 61.84 77.66 69.84
Circs 99.50 81.00 78.75 82.25 71.00 99.50 99.50 78.75 99.50

(2,4,5) (3) (5) (1) (3) (1,4-6) (2) (5) (2,5)
76.54 63.50 62.47 66.22 61.37 88.97 73.78 63.37 76.47

R-2-new 89.20 58.80 58.80 65.80 60.60 63.20 79.80 59.80 80.60
(5) (2) (2) (2) (2) (2) (2) (2) (8)

65.77 44.32 47.55 60.32 45.62 45.12 44.92 53.77 67.80
Mixed Image 3 88.70 92.40 75.00 50.10 85.10 89.60 91.90 82.60 76.10

(5) (5) (5) (1-8) (5) (4) (3) (1) (5)
67.14 82.00 66.34 50.10 68.42 79.95 82.00 60.31 68.12

Spiral 2 85.00 56.33 55.67 65.33 77.67 84.00 91.33 60.33 85.00
(2) (4,5,7) (5,8) (1) (2) (1,5) (7,8) (7) (2,5,7,8)

63.43 54.29 53.67 58.54 61.00 79.25 81.92 54.75 78.79

R
ea
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at

a

Wine 93.82 98.31 73.03 97.75 97.19 94.94 94.94 91.01 91.57
(8) (3) (5) (1) (1) (5) (4,6) (2) (3-6)

72.12 92.84 61.45 70.86 68.40 82.80 82.94 85.74 86.24
Std Yeast 67.71 72.14 72.14 72.92 72.40 67.45 72.40 51.04 63.28

(4) (8) (5) (4) (4) (7) (3) (5) (4-6,8)
51.79 63.38 59.89 50.13 52.11 60.03 60.87 41.89 61.36

Pima 65.10 71.35 65.63 64.71 68.49 64.71 64.71 65.76 64.71
(6,7) (7) (6) (2,4) (4) (2,3,6-8) (2) (7) (2-4,6-8)
62.91 65.74 61.95 60.81 60.03 62.04 58.41 64.13 63.49

Optdigits 80.70 56.60 23.60 81.90 82.70 82.60 80.90 47.10 72.00
(5) (5) (1) (5) (5) (5) (5) (5) (5)

55.41 43.86 20.92 70.91 64.61 70.74 72.30 36.24 60.35
Iris 90.67 90.00 95.33 89.33 90.67 94.67 90.67 79.33 90.67

(2,4,5,8) (4,6) (1,3,8) (5) (2) (1) (2) (1) (1-8)
75,62 83.92 88.75 70.75 67.75 91.17 71.83 57.25 90.67

Crabs 71.00 54.00 88.00 70.50 71.00 71.00 71.00 66.00 74.50
(2) (1) (1,4-6) (5) (2) (2) (2) (3) (5)

57.56 52.06 78.31 56.13 56.87 56.87 56.44 62.12 63.44
Breast Cancer 69.84 95.75 81.41 94.29 85.65 97.07 97.22 88.43 96.05

(3) (1,4) (1) (1) (4) (1) (1) (5) (1)
62.12 88.54 71.34 75.35 65.96 92.22 92.90 72.29 64.79

House Votes 88.36 90.09 90.09 89.22 94.40 88.36 89.22 59.91 66.81
(4) (1) (4-6) (3,4) (4) (3) (1) (3) (1-8)

68.53 84.80 88.79 72.90 70.53 81.14 85.67 59.54 66.81
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with single-link. For the synthetic datasets with touching clusters, the best DR methods
are EA-Isomap and EA-LE, when used with the appropriate clustering algorithm.

For the Std Yeast dataset the worst results correspond to nonlinear local DR methods
(EA-LLE and EA-LE). For the Optdigits dataset, the worst results correspond to local
methods (EA-LPP, EA-NPE, EA-LLE and EA-LE), while nonlinear global methods
perform very well. In the House votes dataset, the best DR algorithms in average CI are
linear methods (EA-LPP and EA-NPE) and nonlinear global methods that preserves
“geodesic” distances (EA-Isomap and EA-CDA). These last two algorithms also have
very good results for the Breast cancer dataset.

From Table 2, we notice that there exists at least one DR method that outperforms or
equals EAC for each dataset, showing that there is an advantage in performing DR.

Like in the feature space, single-link is the best extraction method, except for real
datasets. In real datasets, k-means and Ward link work better.

Overall, nonlinear methods are more suitable for this space, with local methods
working better in synthetic data with separate clusters.

6 Discussion

There are some interesting findings to draw from all the above data. First, there is an
advantage in using DR techniques on the co-association matrix to improve clustering re-
sults. However, care must be taken in choosing the right DR technique for each dataset.

Second, the use of DR techniques usually improves the average consistency index
(CI) values over the co-association matrix. This suggests that using DR makes the clus-
tering results less dependent on the choice of the specific clustering algorithm.

Although no DR algorithm consistently outperforms all the others, some algorithms
do well in specific circumstances. Good results are obtained from datasets with sepa-
rate clusters using LPP and LE (local DR methods). For datasets with touching clusters,
Isomap and LE (nonlinear DR methods) yield the overall best results. Importantly, in
real datasets no DR algorithm stood out from the others, and considerable variability
was detected from dataset to dataset, again stressing out that the choice of the appropri-
ate DR technique is crucial.

To further investigate this aspect, we have computed the measures N13 and silhouette
for the real datasets studied in this paper. Those values are presented in table 3. Datasets
Std Yeast and Pima stand out for having high values of N1, and in those datasets local
DR methods yield the best clustering results in terms of average CI. On the other hand,
datasets Optdigits and Breast Cancer stand out for having low values of N1 and the
best results in those datasets come from global DR methods. Also, Crabs and Std Yeast
have low values of the silhouette index and local DR methods perform well with these
datasets. Given the relatively small number of datasets and DR methods used in this
paper, we present these associations not as proven rules, but rather as temporary guide-
lines. We will actively research these types of associations using more datasets and
more DR methods in the future.

3 As explained in [8] “This method constructs a class-blind minimum spanning tree over the
entire dataset, and counts the number of points incident to an edge going across the two classes.
The fraction of such points over all points in the dataset is used as the N1 measure.”
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Table 3. N1 and Silhouette measures for the real datasets studied in this paper, and type of DR
method that yields the best average CI for both types of spaces (feature and similarity spaces).
The question mark (?) indicates datasets where the best DR type is different in the two spaces.

Real Datasets N1 Silhouette Best DR type
Wine 0.118 0.4368 local
Std Yeast 0.388 0.2274 local
Pima 0.438 0.1524 local
Optdigits 0.059 0.2892 global
Iris 0.100 0.6565 ?
Crabs 0.160 0.0442 local
Breast Cancer 0.057 0.7178 global
House Votes 0.159 0.4471 ?

There are some differences between using the co-association matrix as features or
as similarities. For example, CCA and CDA perform poorly in the former case but
considerably better in the latter. On the other hand, Sammon performs better in the
feature space relative to the similarity space.

It is interesting to note that the DR algorithms which have the highest NMI values for
each dataset are very often the ones which have also the highest average CI values. In
other words, it seems that the DR algorithms which yield the most consistent partitions
also yield the best partitions. Furthermore, for each dataset, the highest NMI between
the feature space and the similarity space very often corresponds to the highest average
CI as well. This suggests that NMI (a measure which does not need to know the true
partition) can help predict the CI (which does use the true partition).

7 Conclusions

This study shows that the use of dimensionality reduction (DR) techniques in clustering
ensembles presents interesting advantages in accuracy and robustness. Future work is
needed to study the influence of different strategies to construct the clustering ensemble,
and the influence of parameter choice for the DR and clustering algorithms.

We also reported some interesting associations between types of datasets and appro-
priate DR methods; however, further work is needed to draw conclusive information.
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Abstract. Classification of spectral data has raised a growing interest
in may research areas. However, this type of data usually suffers from
the curse of dimensionality. This causes most statistical methods and/or
classifiers to not perform well. A recently proposed alternative which can
help avoiding this problem is the Dissimilarity Representation, in which
objects are represented by their dissimilarities to representative objects of
each class. However, this approach depends on the selection of a suitable
dissimilarity measure. For spectra, the incorporation of information on
their shape, can be significant for a good discrimination. In this paper,
we make a study on the benefit of using a measure which takes shape of
spectra into account. We show that the shape-based measure not only
leads to better classification results, but that a certain number of objects
is enough to achieve it. The experiments are conducted on three one-
dimensional data sets and a two-dimensional one.

Keywords: Object representation, classification,small sample size, di-
ssimilarity representation, spectral data.

1 Introduction

Classification of unknown objects is one of the main problems in many research
areas. Object representation plays an important role in this task. In practical
classification problems, the number of training samples is usually very small,
represented by a very large number of features which are not always the best to
describe them. Many studies have been done on this issue; when only a certain
number of objects is available, a peaking phenomenon occurs in the classification
accuracy as the number of features is increased. This is known as the curse of
dimensionality [1, 2, 3]. Hence, the ideal situation in order to obtain a good
classifier would be to have at least as many samples as features. It appears to
be difficult to achieve this in a number of real-world problems.

A type of data which has raised a growing interest in advanced approaches to
its automatic analysis is the spectral data. It is due to the increasing possibilities
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of the different research fields e.g. chemometrics and signal processing, to obtain
it, and the usefulness of the spectral information to describe and differentiate
samples of different classes. This is the type of application where data sets are
small because the cost to obtain them is very high, and they are usually much
smaller than the dimensionality of the space. The traditional way of representing
spectra is by sampling, as a sequence of individual observations made on the
objects. The higher the sampling resolution, the more accurate the spectrum is
described, which implies a representation in a high-dimensional space. However,
this way of representation is not good for traditional procedures. It makes them
suffer the curse of dimensionality. Furthermore, discriminative knowledge about
spectra e.g. the continuity between the measured values, shape, is not taken into
account in the traditional high-dimensional feature-based representation. Thus,
it does not help avoiding the problem.

Recent works have studied alternative object representations instead of fea-
tures, demonstrating that the curse of dimensionality can be avoided [3]. A
recently developed alternative in the field of pattern recognition is the Dissimi-
larity Representation (DR) [4]. It is based on the important role that pairwise
dissimilarities between objects play. Classifiers may be built in the dissimilarity
space generated by a representation set. In this way, the geometry and the struc-
ture of a class are determined by a user defined dissimilarity measure, in which
application background information may be expressed. It is important to remark
that, any traditional classifier that is defined on feature spaces can also be used
in the dissimilarity space.

With the DR, the problem of building classifiers in high-dimensional spaces
can be tackled, as the dimensionality will depend now on the size of the represen-
tation set (usually smaller or equal to the size of the training set). However, the
main issue in this approach is the selection of a suitable measure for the problem
at hand. The more discriminative information we take into account when design-
ing the dissimilarity measure, the more compact the classes are. The centroid of
the data should remain approximately the same and the average distance to this
mean should decrease or be constant [3], requiring less samples for its description
and a good classification accuracy.

Due to benefits that the DR has shown, it has been explored in several ap-
plications like the discrimination of spectral data [4, 5, 6, 7]. In this paper, we
will make an exhaustive experimental study on the DR for spectral data. We
will focus on the usefulness of taking the shape of the curve into account in the
dissimilarity measure. It will be shown that this can help achieving good classi-
fication results in small sample size problems. Recently, the use of the DR was
also extended to 2D spectral data i.e. objects represented by matrices, where two
types of spectral features are described [8]. Thus, the study will be generalized
to this type of data. We will use three one-dimensional spectral data set and a
2D spectral one. In the experiments we compare the classification accuracy in
measures which do not take shape into account with a measure which does. This
analysis is done for several training set sizes and representation set sizes, to see
how the measures influence the results. Moreover, for the measure which takes
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shape into account, we study the sensitivity of the results to the optimization of
the parameters (Gaussian filter parameter). The paper is structured as follows.
In Section 2, a brief introduction to the DR will be done. Also, the 1D and 2D
measures to be used in the experiments are referenced. Following, the data sets
and experiments will be described in Section 3. Finally, a discussion and the
drawn conclusions will be presented in Section 4.

2 Introduction to Dissimilarity Representation Approach

The Dissimilarity Representation (DR) [4] was proposed as a more flexible rep-
resentation of the objects than the feature representation, with the purpose of
having more information about the structure of the objects. It is seen as a link
between the statistical and structural approaches, as both types of patterns can
be described by the (dis)similarity measure. The DR is also based on the role
that (dis)similarities play in a class composition. Objects from the same class
should be similar and objects from different classes should be different (com-
pactness property). Hence, it should be easier for the classifiers to discriminate
between them.

Using the DR, classifiers are trained in the space of the proximities between
objects, instead of the traditional feature space. Thus, in place of the feature
matrix X ∈ Rn×q, where n runs over the objects and q over the variables, the
set of objects is represented by the matrix D(X,R). This matrix contains the
dissimilarity values d(xi, rj) between each object xi of X and the objects rj of
the representation set R(r1, ..., rh). We build from this matrix a dissimilarity
space. Objects are represented in this space by the column vectors of the dissi-
milarity matrix. Each dimension corresponds to the dissimilarities with one of
the representation objects.

When an object is represented by a matrix Y ∈ Rm×l, the theory of the DR is
the same [8]. In fact, one of the advantages of the DR is that it can be generated
from any representation of the objects e.g. vectors of numbers, graphs, as long
as we have a proper dissimilarity measure. Hence, to obtain the dissimilarity
space, a mapping φ(·, R) : Rm×l → Rh is defined, such that for every object
Y, φ(Y, R) = [d(Y, r1), d(Y, r2), ..., d(Y, rh)]. Classifiers are then built in this
space, as in any feature space.

The elements of R are called prototypes, and have preferably to be selected
by a prototype selection method [4]. These prototypes are usually the most
representative objects of each class, R ⊆ X or X itself, resulting in a square
dissimilarity D(X,X). R and X can also be chosen as different sets. As dissimi-
larities are computed to R, a dimensionality reduction is reached if a good, small
set can be found, resulting in less computationally expensive classifiers.

2.1 1D and 2D Dissimilarity Measures for Spectral Data

A general dissimilarity measure for all types of data does not exist. Thus, the
selection of the suitable measure for the problem at hand is the key issue in
the DR approach. In recent studies, some 1D [6, 9] and 2D [8] measures have
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been studied and proposed for spectral data. Such is the case of the very well
known Manhattan (L1-norm) and Euclidean distances. However, although the
previous dissimilarities are of the most used measures in the comparisons of
chemical spectral data, the connectivity between the measured variables and/or
shape, is not taken into account in neither of them. The variables could be easily
reordered and the same dissimilarity value is obtained.

In [6], the authors propose to compute the Manhattan measure on the first
Gaussian derivatives (See Eq. 1) of the curves (Shape measure). Thereby, the
shape information that can be obtained from the derivatives is taken into ac-
count:

d(x1, x2) =
m∑

j=1

|xσ
1j − xσ

2j |, xσ =
d
dj

G(j, σ) ∗ x (1)

The expression of xσ corresponds to the computation of the first Gaussian
(that is what G stands for) derivatives of spectra. A smoothing (blurring) is done
by a convolution process (∗) with a gaussian filter and σ stands for the smoothing
parameter. Good performances have been obtained for chemical spectral data
with this measure [6, 9].

For the 2D representation of objects, generalizations of the Manhattan and
Euclidean distances have also been proposed. Assume that two objects ya and
yb ∈ Rm×l, where m and l are the number of variables in each of the two
directions respectively; ∀j = 1, 2, . . . , m and k = 1, 2, . . . , l. Then, the AMD
measure [10] is defined as:

dAMD(ya, yb) =

⎛⎜⎝ l∑
k=1

⎛⎝ m∑
j=1

(ya,j,k − yb,j,k)2

⎞⎠p/2
⎞⎟⎠

1/p

(2)

The power p is used to emphasize either small or large differences between
the elements, depending on the problem at hand. If p < 1, all the differences
are reduced, thus the larger ones do not interfere much in the measure. On the
other hand, if p > 1, the larger differences will be more pronounced, resulting
in a heavy influence on the measure. This measure is a generalization of the
Frobenius [11] and Yang [12] distance measures. When p = 1 in AMD, it is the
same as the Yang distance, and for p = 2 is then the Frobenius distance.

These measures could be a good option when the spectral (functional) infor-
mation can be assumed to be present in the data representation. However, this is
not the case. Recently, considering the results obtained with the Shape measure
for simple spectra, a new version for 2D spectral data (2Dshape measure) was
introduced [8]:

1. Compute the matrix D1

D1
a,b =

⎛⎜⎝ l∑
k=1

⎛⎝ m∑
j=1

(yσ
a,j,k − yσ

b,j,k)2

⎞⎠p1/2
⎞⎟⎠

1/p1

, yσ
i,j,· =

d
dj

G(j, σ) ∗ yi,j,·
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2. Compute the matrix D2

D2
a,b =

⎛⎝ m∑
j=1

(
l∑

k=1

(yσ
a,j,k − yσ

b,j,k)2
)p2/2

⎞⎠1/p2

, yσ
i,·,k =

d
dk

G(k, σ) ∗ yi,·,k

3. Combine both dissimilarities matrices D = α1D
1 + α2D

2

The variables yi,j,· and yi,·,k, stand for the k-th columns and the j-th rows of the
i-th matrix (object); ∀i = 1, 2, . . . , n. Their expressions correspond to the com-
putation of the first Gaussian (that is what G stands for) derivatives of spectra,
as in the 1D measure. The dissimilarities in step 1 and step 2 correspond to the
first and second directions respectively, as indicated by the notation e.g. spectra
and time. This measure can also be used in three-way data where there are no
variations in shape in one of the directions. In this case, it is enough to use the
AMD measure in step 1 or step 2 only, such that only the differences in area
are compared. With this measure, the connectivity between the measured points
can be taken into account as well as the shape of the spectra.

The previously mentioned measures, which have been used for spectral data,
will be used for the purpose of this paper.

3 Experimental Section

For the purpose of this paper, a set of experiments were conducted on small
sample size data sets in high-dimensional spaces. Only one of them does not
suffer from this problem, but still we want to show how also in this case, with
the selection of a suitable dissimilarity measure, a reduced number of training
samples can be enough to obtain good classification results with the DR. All of
them consist of two-class classification problems. The data sets are described in
the following subsection.

3.1 Data sets

The first data set, named Tecator, originates from the food industry [13]. It
consists of 215 near infrared absorbance spectra of meat samples, recorded on
a Tecator Infratec Food and Feed Analyzer. Each observation consists in a 100
channel absorbance spectrum in the 850-1050 nm wavelength range. It is asso-
ciated to a content description of meat sample, obtained by analytic chemistry.
The classification problem consists in separating 77 meat samples with a high
fat content (more than 20%), from 138 samples with a low fat content (less than
20%). Original spectra are preprocessed, each spectrum is reduced to zero mean
and unit variance.

The second data set is a real-world data set, which was obtained from a
cooperation with the Oil Industry in Cuba. It consists of 31 fuel samples of
Fourier Transform Infrared (FT-IR) transmittance spectra in a wavelength range



A Study on the Influence of Shape in Classifying Small Spectral Data Sets 311

of 600-4000 cm−1. A base line correction and smoothing were performed on the
data. The classification problem consists in determining the fuel type of the
samples: regular gasoline (16 samples) and especial gasoline (15 samples).

The third data set is another fuel real-world data set of 44 samples measured
at 127 wavelengths in a range of 275-220 nm, but this time measures have been
taken by a Ultra-Violet Visible (UV) spectrofotometer. The classification prob-
lem consists also in determining the fuel type of the samples: regular gasoline
(23 samples) and especial gasoline (21 samples).

The fourth and last data set is a three-dimensional array, composed of objects
naturally represented by 2D arrays. It is a public domain data set and the
description has been taken from the website [14, 15] for a better understanding
of this paper. It consists of samples of red wine belonging to different geographical
areas and producers. They were analyzed by means of HS-GC-MS (headspace
gas chromatography/mass spectrometry). Separation of aroma compounds was
carried out on a gas chromatography system (2700 columns from the scans of
chromatographic profile). For each sample, a mass spectrum scan (m/z: 5-204)
measured at the 2700 elution time-points was obtained, providing a data cube of
size 44×2700×200 i.e. samples (objects) in first direction, elution time points in
second direction and mass spectrum in third direction. The data set is composed
of samples from 2 different geographical areas: South America (21 samples) and
Australia (12 samples).

3.2 Experiments and Discussion

A set of experiments are conducted on the four data sets. A Fisher classifier
is built on the dissimilarity space obtained for the two dissimilarity measures
which do no take shape information into account (Manhattan and Euclidean)
and also for the Shape measure. For the later, several experiments are shown,
with different values for parameter σ. In the figures, learning curves are shown
for various sizes of training and representation sets. The main idea of this ex-
perimental set up is to show how the use of a suitable measure e.g. measures
shape in spectral data, can influence not only in the classifiers accuracy, but on
the sample size problem.

Training and test objects were randomly chosen from the total data sets in
a 10-fold cross-validation process, when the size of the training set allowed it.
When the sizes of the training set was too small, a leave-one-out cross-validation
was done. Experiments were repeated 10 times. For the training set of different
sizes, a random selection of [25, 30, 40, 50, 60, 70, 80 and 90%] is done from the
total dissimilarity matrix. Different sizes for the representation set were also
randomly selected [10, 30, 50, 70 and 80%] of the total data set. When using the
Shape measure on the one-dimensional spectral data, the following values of σ
were applied [0.5, 1, 2, 3, 5, 7].

In the case of the Wine 2D spectral data, in the mass direction the classes
only differ because they have different components. Therefore, the only thing we
will see is the absence/presence of the peak or some differences in the concentra-
tion of the mass fragments. The other difference that we can find between these
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classes is related to the shape changes between the eluded components in the
chromatogram i.e. how the concentration of one of the peaks varies with respect
to the others, for the several classes. Thus, for the Wine data set we will use
the 2Dshape measure. The D1 matrix will be computed for the chromatography
direction. The Gaussian derivatives are applied to take into account the shape
in the changes of concentration in the neighboring components. In this case, the
following values of σ were applied [1, 2, 5 and 8]. However, for the D2 matrix
from the mass spectra mode, we will only compute the overall sum of the differ-
ences between the concentration of the mass fragments. The use of derivatives
is meaningless, because there is no continuity between the mass fragments.
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Fig. 1. Average cross-validation error (in %) for Tecator data set with (a) Manhattan
and (b) Euclidean measures. The classifiers accuracy is analyzed for nine training set
sizes and five representation set sizes.

In Figure 1 we can observe the same behavior for both measures:
Manhattan(1(a)) and Euclidean (1(b)). Classifiers may perform better some-
times in one or the other. However, for both of them the classification error
decreases as the training set and representation sets increase. When the training
sets are too small, the errors are far higher that for larger training sets. On the
other side, for larger training sets, the classification accuracy does not differ that
much for different sizes (taking the standard deviation into account). There is
even a point, where results are better or the same with 90% of the data, that
with the full data set. Nevertheless, due to the so-called peaking phenomenon,
when the number of prototypes starts reaching the size of the training set, the
errors will increase.

Let us take a look at the results with the Shape measure (See Figure 2). Results
have improved with respect to the dissimilarity measures which do not take the
shape information into account. Of course, this is not for all values of σ. the opti-
mization of the parameter does influence the results. From Figures 2(a) to 2(d), we
can see that results are pretty much stable for all sizes of the training set. Although
for σ = 2 and σ = 3, the classification errors start increasing. It seems that the
parameter σ is better fixed to the data in the first two. Here, if we take the stan-
dard deviation of the ten repetitions (around 0.5 the highest) into account, there is
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Fig. 2. Average cross-validation error (in %) for Tecator data set with Shape distance
and different values of sigma for (a) sigma=0.5, (b) sigma=1, (c) sigma=2, (d) sigma=3,
(e) sigma=5 and (f) sigma=7. The classifiers accuracy is analyzed for nine training set
sizes and five representation set sizes.

not much difference between using the smallest and the largest sample size. Thus,
it seems that with this measure, a small training set is enough to reach even better
results thanwith the othermeasures. In fact, in this case, the best results are always
achieved with the smallest size of the training set. However, the results with 30%
of the data are the highest, which could be influenced by the random selection of
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Fig. 3. Average cross-validation error (in %) for Fuel (UV) data set with (a) Manhattan
and (b) Euclidean measures. The classifiers accuracy is analyzed for nine training set
sizes and five representation set sizes.
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Fig. 4. Average cross-validation error (in %) for Fuel (FT-IR) data set with (a) Man-
hattan and (b) Euclidean measures. The classifiers accuracy is analyzed for nine train-
ing set sizes and five representation set sizes.

the samples. For the last two values of σ, the results keep increasing a lot, it can be
due to the data is so smooth, that the measure starts failing. Thus, the importance
of the optimization of the parameter.

With respect to the representation set, for all values of σ, the error always
increases while the training set decreases, with the smallest representation set.
It seems that the representation set is not representative enough. However, from
that point on, the errors always start decreasing, until reaching the size of the
training set, where they start increasing again due to the peaking phenomena.

With the two fuel data sets, we are facing a very complicated classification
problem: discrimination of special and regular fuel, thereby the classification
accuracy is not very good. Moreover, these are both affected by the small sample
size problem. In Figures 3 and 4, we can observe the same phenomena as in the
first figure. The errors decreasing while the size of the training set increases. In
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both cases, the results with the smallest sample size are far much higher; in this
case the number of samples is really small.

However, if we take a look at Figure 5, we can see that with the Shape measure,
for some values of σ parameter, the classifiers perform a lot better than for the
Manhattan and Euclidean measures. With respect to the size of the training set,
the behavior is a bit different. For the smaller sample sizes, the errors are very
high, as in Figure 3. In this case, it can be explained by the fact that the original
data suffers already from the small sample size problem. Thus, it would be too
much to expect an improvement with so little samples. Nevertheless, from 60%
of the data on, if we take the standard deviation into account, the results are
very similar (for the σ with which the better results are obtained).

For the Fuel data set from FT-IR, we can see a bigger improvement by using
the Shape measure than with the UV. This could be determined by the charac-
teristics of the instrumental technique. It seems that the information obtained
from the FT-IR spectra is more discriminative than that of UV-VIS. However,
due to the small sample size problem, with the smallest training sets the results
are still high. There is no sufficient data. Again, for the best σ values, the errors
for the larger training sets, start behave very similar (taking standard devia-
tion). It can also be noticed that for 40% of the whole data set, the best results
are always achieved. It could be due to in the selection process, noisy data that
could be affecting the results are no included.

The next data set is the three-way Wine data, where samples are represented
by high-dimensional 2D matrices. In this case, we also compared the measures
which take the shape information into account with does which do not. This
is also a small sample size problem, in a very high-dimensional space. When
analyzing the AMD measure with different values of p, which are the homolo-
gous for the Manhattan and Euclidean measures for one-dimensional data, the
behavior is similar(See Figure 7). Although in this case the learning curve are a
bit rough, we can see how the error decreases meanwhile the size of the training
set increases.

In this case, although there is no shape information in both directions, it can
be seen that the results also improve (See Figure 8) when taking this information
into account (in the needed direction). If we take a look at the learning curve
for all training set sizes, the best results are for σ = 5, so it seems to be the
best value for this parameter, in the range experimented. For this type of data,
we can also observe, how by including certain discriminative knowledge in the
measure i.e. shape, the results improve. With very small sample sizes the errors
are still high (the available data is not enough to learn well). But, when the size
of the training sets start increasing, the errors are similar for most sizes (taking
standard deviation into account). In which seems to be the best value for σ, the
best results are achieved again, with only 50% of the total data set. Maybe, some
noisy data which are influencing the results, are removed.
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Fig. 5. Average cross-validation error (in %) for Fuel (UV) data set with Shape distance
and different values of sigma for (a) sigma=0.5, (b) sigma=1, (c) sigma=2, (d) sigma=3,
(e) sigma=5 and (f) sigma=7. The classifiers accuracy is analyzed for nine training set
sizes and five representation set sizes.
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Fig. 6. Average cross-validation error (in %) for Fuel (FT-IR) data set with Shape
distance and different values of sigma for (a) sigma=0.5, (b) sigma=1, (c) sigma=2,
(d) sigma=3, (e) sigma=5 and (f) sigma=7. The classifiers accuracy is analyzed for
nine training set sizes and five representation set sizes.
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Fig. 7. Average cross-validation error (in %) for Wine three-way data set with (a)
Yang (AMD p=1) and (b) Frobenius (AMD p=2) measures. The classifiers accuracy
is analyzed for nine training set sizes and five representation set sizes.
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Fig. 8. Average cross-validation error (in %) for Wine three-way data set with Shape
distance and different values of sigma for (a) sigma=1, (b) sigma=2, (c) sigma=5, (d)
sigma=8, (e) sigma=10 and (f) sigma=15. The classifiers accuracy is analyzed for nine
training set sizes and five representation set sizes.
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4 Discussion and Conclusions

The small sample size problem in high-dimensional spaces is very common in
spectral data. Many statistical methods and classifiers fail with this type of data.
Alternative representations for such data, to improve classification accuracy, have
been explored. Such is the case of the Dissimilarity Representation. However,
the key issue of this approach relies on the selection of a suitable dissimilarity
measure for the problem at hand. In the case of spectral data, a discriminative
feature is the knowledge about the connection between the neighboring points
and shape.

In our experimental study, we showed the importance of taking the shape of
the curve into account for the success of the DR. Even when we are facing small
sample size problems, if we use the shape information, a few samples are enough
for classifiers to learn better. For all data sets, there is some size for the training
set (usually smaller than the original data size), from which adding new objects
will not make much of a difference. This was also experimented, in a not so small
data set, and we reached the same conclusions. In this case, we also benefit from
lowering the computational complexity of the classifier. This behavior is not the
same for measures which do not take discriminative information into account
i.e. Manhattan, Euclidean or AMD for 2D data. In this case, the errors are
smaller the larger the training set, so we are not solving a small sample size
problem, as we would need more samples for the classifiers to learn better.

From the experiments with the measures which take shape into account i.e.
Shape and 2Dshape, we can also observe the influence of the optimization of
the Gaussian filter parameter. There is always a value of σ for which the clas-
sification results are better than without measuring shape. It also stabilizes the
learning curves of the different sizes of training set, which are around the same
performance.

The representation set is also very important. In all experiments we can ob-
serve that even with the large data set (Tecator) the error always increases while
the training set decreases, with the smallest representation set. It seems that the
representation set is not representative enough. However, from that point on, the
errors always start decreasing, until reaching the size of the training set, where
they start increasing again due to the peaking phenomena. However, these exper-
iments are all based on two-class classification problems; for multi-class problems,
further studies should be done.

In conclusion, the incorporation of shape information in the dissimilarity rep-
resentation is important for the discrimination of spectral data. It helps avoiding
the curse of dimensionality problem, allowing classifiers to perform well in small
sample size situations.
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Feature Point Matching Using a Hermitian
Property Matrix

Muhammad Haseeb and Edwin R. Hancock

Department of Computer Science, The University of York, UK

Abstract. This paper describes the computation of feature point correspondences
using the spectra of a Hermitian property matrix. Firstly, a complex Laplacian
(Hermitian) matrix is constructed from the Gaussian-weighted distances and the
difference of SIFT [10] angles between each pair of points in the two images to
be matched. Matches are computed by comparing the complex eigenvectors of
the Hermitian property matrices for the two point sets acquired from the two im-
ages. Secondly, we embed the complex modal structure within Carcassoni’s [12]
iterative alignment method to render it more robust to rotation. Our method has
been evaluated on both synthetic and real-world data.

Keywords: Graph matching, Feature point correspondence, Complex Laplacian,
Hermitian matrix, EM algorithm.

1 Introduction

Feature-point matching is one of the most important tasks in computer vision. The
problem of feature correspondence matching is to find a one-to-one correspondence be-
tween feature points in a pair of images. Graph spectral techniques solve the problem
using the eigenvectors and eigenvalues based on the adjacency matrix or the Lapla-
cian matrix (degree minus adjacency) for the point set arrangement. Correspondence
matchings are computed by embedding the graphs into a common eigenspace using an
eigen-decomposition of the point-proximity matrices, where correspondences are com-
puted by closest point matching in this eigenspace.

Recently, there have been many attempts to use spectral graph theory both in graph
matching and point-set matching problems. The work of Umeyama [13] is one of the
earliest to use eigen-decomposition of the adjacency matrix for graphs of the same size
to locate the correspondence matching. The optimum matching between two weighted
graphs is found by locating the least-square permutation matrix. Scott and Longuet-
Higgins [6] developed an algorithm to match 2D feature-points in two images. They
used singular value decomposition on a Gaussian-weighted point association matrix
between points from two different images. This method copes with 2D translations,
expansion and shears. (i.e. affine distortions). However, since this algorithm does not
include the structural information within the image and gives equal importance to all
the feature points, it fails to correctly match the points especially, where there is a large
inter-image rotation. Pilu [4] improved Scott and Longuet-Higgins method by adding
the similarity information to compute the point association matrix. Similarity infor-
mation is computed as the normalized correlation between each pair of point neigh-
borhoods. To overcome the problems of Scott and Longuet-Higgins method, Shapiro
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and Brady [9] developed a method, which uses the intra-image point proximity matrix
rather than the inter-image point association matrix. The eigenvectors of the proximity
matrices are compared to calculate the correspondence across a pair of images. Caelli
and Kosibov [3] have improved Shapiro’s method by re-normalizing the eigenvectors
and locating the correspondences by maximizing the inner-product of the normalized
eigenvectors. Tang et al. [11] have used Gaussian weighted Laplacian property matrix
to calculate correspondence matching from the eigenvectors of the Laplacian matrix.

Several authors have attempted to extend the utility of graph spectral methods using
the complex property matrices. This is a natural way of incorporating angular or di-
rectional information with the proximity representation. Wilson, Hancock and Luo [5]
extended the Laplacian matrix to the complex domain. Veltkamp et al. [8] developed a
shape retrieval method using a complex Fielder vector of a Hermitian property matrix.

Although spectral methods are robust they are sensitive to noise and structural er-
rors. To cope with this problem several researchers have used the statistical framework
of EM algorithm. One of the earliest examples of using EM algorithm for feature cor-
respondence matching is the work of Cross and Hancock [1]. They extend the standard
EM algorithm by introducing structural consistency constraints to the correspondence
matches. This is done by gating contributions to the expected log-likelihood function
according to their structural consistency. This so-called dual step EM algorithm simulta-
neously locates point correspondence and parameters of the affine or perspective trans-
formation matrix underlying the motion. Since this method uses a dictionary based
approach to compute the correspondence probabilities, it is very time consuming. Car-
cassoni and Hancock [12] later improved the efficiency of the dual step EM algorithm
by using the eigenvalues of the point proximity matrix to compute the gating weights.

In this paper we aim to perform the correspondence matching of point-sets by using
a Hermitian property matrix. First, we compute the SIFT angles at the extracted feature
points from the two images to be matched, we use the point locations and their angles
to construct a complex Laplacian (Hermitian) matrix. Then we compute the complex
eigenvectors of the Hermitian property matrix. Correspondence matching is calculated
by comparing the complex eigenvectors. We show how to use the Hermitian matrix to
render Carcassoni’s EM algorithm more robust to noise and point jitter. We compare
our results with Shaprio-Brady’s and Carcassoni’s original alignment methods.

2 Complex Laplacian (Hermitian) Matrix

A Hermitian matrix H (or self-adjoint matrix) is a square matrix with complex ele-
ments that remains unchanged under the joint operation of transposition and complex
conjugation of the elements. That is, the element in the ith row and jth column is equal
to the complex conjugate of the element in the jth row and ith column, for all indices
i and j, i.e. ai,j = aj,i. Complex conjugation is denoted by the dagger operator † i.e.
H† = H . Hermitian matrices can be viewed as the complex number extension of the
symmetric matrix for real numbers. The on-diagonal elements of a Hermitian matrix
are necessarily real quantities. Each off-diagonal element is a complex number which
has two components, and can therefore represent a 2-component measurement.

To create a positive semi-definite Hermitian matrix of a graph, there should be some
constraints applied on the measurement representations. Let {x1, x2, ..., xn} be a set of
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measurements for the node-set V and {y1,2, y1,2, ..., yn,n} be the set of measurements
associated with the edges of the graph, in addition to the graph weights. Each edge then
has a pair of observations (Wa,b, ya,b) associated with it. There are a number of ways in
which the complex number Ha,b could represent this information, for example with the
real part as W and the imaginary part as y. However, here we follow Wilson, Hancock
and Luo [5] and construct the complex property matrix so as to reflect the Laplacian. As
a result the off-diagonal elements of H are chosen to be Ha,b = −Wa,be

ιya,b . The edge
weights are encoded by the magnitude of the complex number Ha,b and the additional
measurement by its phase. By using this encoding, the magnitude of the number is the
same as the original Laplacian matrix. This encoding is suitable when measurements
are angles, satisfying the conditions −π ≤ ya,b < π and ya,b = −ya,b to produce
a Hermitian matrix. To ensure a positive definite matrix, Haa should be greater than
−Σb�=a|Hab|. This condition is satisfied if Haa = xa + Σb�=aWa,b and xa ≥ 0. When
defined in this way the property matrix is a complex analogue of the weighted Laplacian
matrix for the graph.

For a Hermitian matrix there is an orthogonal complete basis set of eigenvectors
and eigenvalues i.e. Hφ = λφ. The eigenvalues λi of Hermitian matrix are real while
the eigenvectors φi are complex. There is a potential ambiguity in the eigenvectors,
in that any multiple of an eigenvector is a solution of the the eigenvector equation
Hφ = λφ. i.e. Hαφ = λαφ. Therefore, we need two constraints for them. Firstly,
make each eigenvector of unit length vector i.e. |φi| = 1, and secondly impose the
condition arg

∑
i φij = 0.

Given two images I and I ′ with m and n feature points respectivly. We commence by
creating complex proximity matrices H and H ′ for both set of feature points. Besides
the (x, y) coordinates of the feature points in the input images, we also calculate the
angles at each of the feature points. We use SIFT [10] feature extraction algorithm
to acquire angles at these points. The diagonal elements of H are calculated using a
Gaussian-weighting function as:

Hij = −e−r2
ij/2σ2

eι(θi−θj) (1)

where r2
ij = ‖xi − xj‖2 is the squared Euclidian distance between each pair of feature

points. The parameter σ2 controls the interaction between features and (θi − θj) is
the difference between each pair of angles within the same image. The on-diagonal
elements are given by the sum of the real parts of the elements in the same row or in the
same column of the matrix and hence are real numbers.

Hii =
∑
i�=j

e−r2
ij/2σ2

(2)

Once we have H and H ′ to hand we perform the eigen decomposition, i.e. H = V ΛV T

and H ′ = V ′Λ′V ′T where V and V ′ are the modal matrices of the images I and
I ′ respectively, with complex eigenvectors in its columns, Λ and Λ′ are the diagonal
matrices with real eigenvalues along their principal diagonals. Each row of the modal
matrix V is a feature vector Fi, while each row of the modal matrix V ′ is a feature
vector F ′

j .
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V =

⎡⎢⎢⎢⎣
F1

F2

...
Fm

⎤⎥⎥⎥⎦ , V ′ =

⎡⎢⎢⎢⎣
F ′

1

F ′
2
...

F ′
n

⎤⎥⎥⎥⎦
The least significant |m − n| eigenvectors and feature vectors are removed from the
larger modal matrix, in the case where V and V ′ are of different sizes.

The next step is to calculate the correspondence probabilities matrix ζ from the
feature vectors Fi of the image I and F ′

j of the image I ′ by taking the Euclidian
distances between each pair of feature vectors of both images using the following bi-
nary decision.

ζij =

{
1, if j = argminj′‖Fi − F ′

j′‖2

0, otherwise

i = 1...|m − n|, j = 1...|m − n|. However, the permutation of feature points in the
input images changes the direction of the eigenvectors. Therefore, until the eigenvector
direction for both modal matrices are not consistent, a direct comparison of the eigen-
vectors causes an error in the correspondence matching. If we take the matrix V as a
reference matrix and correct the signs of the column in matrix V ′ as

φ′
i :=

{
φ′

i, if ‖φi + φ′
i‖ > ‖φi − φ′

i‖
−φ′

i, otherwise

where φi are the columns of V and φ′
i are the columns of V ′. Matches between the pair

of points are given by the elements of association matrix Z which are maximum in their
respective row and column.

3 Expectation Maximization

Suppose Φ(n) is the geometric transformation that best aligns a set of image feature
points −→w with the feature points −→z in a model. Each point is encoded in homogeneous
co-ordinates. i.e. −→w i = (xi, yi, 1)T and −→z j = (xj , yj, 1)T . Carcassoni and Hancock
[12] EM algorithm matches point-features across a pair of images. They have shown
how structural constraints can be embedded in an EM algorithm for point alignment
under affine and perspective distortion. Graph-spectra are used to compute the required
correspondence probabilities. Point correspondence matching and the parameters of the
affine transformation matrix underlying the motion are simultaneously computed, so as
to maximize the expected log-likelihood function:

Q(Φ(n+1)|Φ(n)) =
∑
i∈D

∑
j∈M

P (−→z j |−→w i, Φ
(n))ζ(n)

i,j × ln p(−→w i|−→z j , Φ
(n+1)) (3)

where D is the set of data feature points −→w i, M is the set of data feature points −→z j . The
measurement densities p(−→w i|−→z j , Φ

(n+1)) model the distribution of error-residuals be-
tween the two point sets. The log-likelihood contributions at iteration n+1 are weighted
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by the a posteriori measurement probabilities P (−→z j |−→w i, Φ
(n)) computed at the previ-

ous iteration. The individual contributions to the expected log-likelihood function are
gated by the structural matching probabilities ζ

(n)
i,j . Under the assignment of Gaussian

alignment errors, in the point positions, the correspondence probability matrix is give
as

ζ
(n)
i,j =

∑o
l=1 exp[−μ ‖ V

(n)
D (i, l) − VM (j, l) ‖2]∑

j′∈M

∑o
l=1 exp[−μ ‖ V

(n)
D (i, l)− VM (j′, l) ‖2]

(4)

where o = min(|D|, |M |)

3.1 E-Step

In the E step of the algorithm the a posteriori probabilities of the points −→z j are updated.
The a posteriori probabilities can be written in terms of the conditional measurement
densities.

P (−→z j |−→w i, Φ
(n)) =

α
(n)
j p(−→w i|−→z j , Φ

(n+1))∑
j′∈M α

(n)
j′ p(−→w i|−→z j′ , Φ(n+1))

(5)

where the mixing proportions are calculated as α
(n+1)
j = 1

|D|Σi∈DP (−→z j |−→w i, Φ
(n))

The conditional measurement densities p(−→w i|−→z j , Φ
(n)) can be defined in terms of a

multivariate Gaussian distribution.

p(−→w i|−→z j , Φ
(n)) =

1
2π
√
|Σ|

×exp
[
−1

2
(−→z j − Φ(n)−→w i)T Σ−1(−→z j − Φ(n)−→w i)

]
(6)

3.2 M-Step

The dual step EM algorithm iterates between the two interleaved maximization steps.
The first step maximizes the a posteriori probability correspondence estimating cor-
respondence assignments. The second one locates maximum likelihood for alignment
parameters estimation. The update formula to maximize the a posteriori probability of
the structural match is

fn+1(i) = argmax
j∈M

P (−→z j |−→w i, Φ
(n))ζ(n)

i,j (7)

The maximum-likelihood affine transformation parameters φ
(n+1)
k,l for k=1,2 and l=1,2,3

are found by solving the following saddle-point equations, which can be solved using
matrix inversion.

∂Q(Φ(n+1)|Φ(n))

∂φ
(n+1)
k,l

= 0 (8)

Φ(n+1) =

⎡⎣∑
i∈D

∑
j∈M

P (−→z j |−→w i, Φ
(n))ζ(n)

i,j
−→w iU

T−→w T
i Σ−1

⎤⎦−1

×

⎡⎣∑
i∈D

∑
j∈M

P (−→z j |−→w i, Φ
(n))ζ(n)

i,j
−→z jU

T−→w T
i Σ−1

⎤⎦
(9)
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where Σ is the variance-covariance matrix for the position errors. The element of the
matrix U are the partial derivatives of the affine transformation matrix with respect to
the individual parameters, i.e.

U =

⎛⎝1 1 1
1 1 1
0 0 0

⎞⎠ (10)

4 Experimental Results

In this section, we provide some experimental investigation of the correspondence
matching using the complex Laplacian. We focus on its use in two different settings.
The first is an investigation of using the standard proximity matrix and its Hermitian
counterpart in the Shapiro-Brady [9] algorithm. The second is a similar investigation
for the Carcassoni-Hancock [12] algorithm. In both settings, we experiment with syn-
thetic and real world data.

Table 1. Performance on the CMU/VASC house sequence. The first image frame has been
matched against the 20th, 40th, 60th, 80th and 100th frame.

Number of incorrect matches

Frame 1-20 1-40 1-60 1-80 1-100

Scott 0 0 4 7 18
Carcassoni 0 1 3 5 8
Hermitian 0 0 1 3 5

(a)

(b)

(c)

(d)

Fig. 1. Correspondence matching with Gaussian noise added in point positions using (a)Shapiro-
Brady method σ = 0.1 (b)Shapiro-Brady method σ = 0.2 (c)Hermitian matrix σ = 0.1
(d)Hermitian matrix σ = 0.2,
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(a) Matching the 1st and 20th frame

(b) Matching the 1st and 40th frame

Fig. 2. Comparisons between Carassoni, Scott and Longuet-Higgins and Our approach
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(c) Matching the 1st and 60th frame

(d) Matching the 1st and 80th frame

Fig. 2. (Continued)
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(e) Matching the 1st frame and 100th frame

Fig. 2. (Continued)

Our synthetic data is generated as follows. We took 30 equally spaced points along
the silhouette of a bottle. We then generated noise corrupted images by adding Gaussian
noise to the original point set. Correspondence results of both Shapiro-Brady algorithm
and its Hermitian counterpart are shown in Fig. 1. The left column of (Fig 1(a) and
Fig1(c)) shows the point matchings using the Hermitian matrix. The right column of
(1(a) and 1(c)) shows the matching using Shapiro-Brady method. The upper and lower
rows has noise of σ = 0.1 and σ = 0.2 added respectively. For real-world data we
evaluate our approach on images from the CMU/VASC model-house sequence.

We have compared our method (referred to as Hermitian) with other spectral point
matching methods i.e. Scott and Longuet-Higgins (referred to as Scott). and Carcassoni’s
EM point alignment algorithm. Forty feature points are extracted using KTL [7] feature
point extractor from each image. Correspondences are calculated between the 1st frame
and the 20th, 40th, 60th, 80th and 100th frames. Fig 4 compares the three different meth-
ods. The correspondences are shown in Fig. 4. In Fig. 2(a), 2(b), 2(c), 2(d) and 2(e) the
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(a)

(b)

Fig. 3. Experimental results: Correspondence matching of the 1st and 10th frame (a)using spec-
tral information only (b)using EM alignment along with spectral information

Fig. 4. Effect of noise in point positions
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Fig. 5. Effect of viewing angle on correspondence matching

first pair of frames (top) are the results of Scott and Longuet-Higgins[6]. The second
pair(middle) are the results of the Carcassoni and Hancock’s EM algorithm and the third
pair (bottom) are the results obtained when the Hermitian matrix is embedded in Carcas-
soni and Hancock’s algorithm. The same results have been summarized in Table.1 also.
Fig. 3 shows the matching between the 1st frame and the 10th frame of the CMU/VASC
sequence. There are 6 incorrect matches using only spectral information. However, there
is not any wrong matches when EM alignment algorithm is incorporated along with the
complex spectral information.

Fig. 4 shows the fraction of correct correspondence against the level of noise added
to a randomly generated set of 50 points. We compare the results of Shapiro-Brady’s
method, the Hermitian method (our approach) and Tang et al. [11] method (referred to
as Laplacian), show that our method is more robust to the noise added in point positions.

5 Conclusions

In this paper we have investigated how the correspondence method of Shapiro and
Barady [9] can be improved using complex eigenvector coefficients of a Hermitian
property matrix. Secondly, we used the complex eigenvectors to calculate the corre-
spondence probabilities matrix to render Carcassoni’s EM algorithm more robust to
large viewing angle change between the images being matched. Synthetic data and real
world data both indicate that our approach works with a relatively higher accuracy.
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