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Preface 

Smart materials, perhaps the most fascinating category of materials developed in 

the 20
th

 Century, possess responsive capabilities to external stimuli, enabling them 

to change their physical properties according to the stimulus. The feedback 

functions within the materials are combined with the properties and functions of 

the materials. Smart materials can be either “active” or “passive”. Active smart 

materials, one hand are those which possess the capacity to modify their geometric 

or material properties under the application of electric, thermal or magnetic fields, 

thus acquiring an inherent capacity to transduce energy. Piezoelectric materials, 

shape memory alloys, electro-rheological fluids and magneto-strictive materials 

are active smart materials which can be used as force transducers and actuators. 

Additionally, piezoelectric materials can convert mechanical force into electrical 

energy, enabling them as sensors or energy harvesters. Passive smart materials, on 

the other hand, lack the inherent capability to transduce energy, e.g., fiber optic 

material. Such materials can act as sensors but not as actuators. This book 

examines both active and passive smart materials in structural health monitoring 

(SHM), control and bio-mechanics. The book starts with the fundamentals and 

takes the readers gradually through the mathematical formulations and experimental 

details. 

Chapters 1 to 7 of the book are primarily concerned with the lead zirconate 

titanate (PZT) piezoelectric material and the electro-mechanical impedance (EMI) 

technique for SHM. The different impedance models, derived by the book’s 

authors, for health monitoring and damage quantification using PZT transducers 

are presented. This includes three approaches: extraction of structural mechanical 

impedance from signatures; identification of higher natural frequencies from 

signatures; and the use of evolutionary programming. Furthermore, strength and 

damage assessment of concrete using both surface-bonded and embedded PZT 

transducers are examined. The extracted equivalent stiffness is used in a 

framework of fuzzy set theory to spell out a damage quantification approach for 

real-world concrete structures. An approach to integrate the EMI technique with 

global vibration techniques is also presented. It is shown that the same PZT patch 

can serve as the sensor for both techniques. Whereas incipient-level damages can 

be identified using the EMI technique, the global vibration response of the 
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structure acquired from the same patch with minimal hardware and data 

processing tools can facilitate the detection, localization and quantification of 

moderate to severe damage. Finally, several practical issues involving the 

application of PZT transducers and EMI technique for SHM such as sensing 

region and load monitoring are discussed. 

Chapters 8 to 10 of this book focuse on the control and excitation of structural 

vibration using piezoelectric transducers. Analytical and semi-analytical solutions 

for vibration control of smart beams, subjected to axial loads, are derived under 

different control strategies. The integrated optimization of the control system for 

smart plates and shells is then formulated and implemented using a modified 

genetic algorithm (GA). Numerical results illustrate that vibration suppression 

could be significantly enhanced with the appropriate distribution of piezoelectric 

transducers and selection of control parameters. Subsequently, the optimal 

excitation of plates and shells using PZT transducers is demonstrated and a simple, 

yet general, procedure to determine the optimal excitation locations of the PZT 

actuators is presented. Finally, the dynamic response of a fully coupled hybrid 

piezo-elastic cylindrical shell with piezoelectric shear actuators is presented, 

followed by investigation of the active vibration control of the cylindrical shell. 

Use of the passive smart material, fiber optic, as sensors for SHM is covered in 

Chapters 11 to 13. After a presentation of the theoretical details, real-life 

applications of fiber Bragg grating (FBG) sensors—the most successful type of 

fiber optic sensor in the health monitoring of highway bridges and rock and 

underground structures—are presented. In addition, comparisons between 

monitoring of rock and underground structures using FBG and electrical strain 

gauges (ESGs), and FBG and PZT are made. 

Use of another active smart material, ionic polymer-metal composite (IPMC), 

in bio-mechanics is discussed in Chapters 14 to 16. The bending capacity of IPMC 

is first derived and validated under both dynamic and static electric potentials, 

followed by the modeling of an IPMC beam on human tissue, an IPMC ring with 

elastic medium and an IPMC shell with flowing fluid, which represent possible 

applications of IPMC materials in biomedical engineering. Examples are also used 

to illustrate the viability of the models. Lastly, application of PZT transducers as 

bio-medical sensors to characterize bones is presented. The study is verified with 

finite element (FE) simulation of the EMI technique on bones. 

Chapter 17 completes the book by looking into the future use of smart 

materials. Based on preliminary works done by the book’s authors, the future 

application of IPMC as artificial muscles and organs, and the future application of 

PZT, macro-fiber composite (MFC) and IPMC for harvesting of ambient energy 

are envisaged. 
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1 

Introduction 

S. Bhalla
*

, C. K. Soh 

*

Department of Civil Engineering, Indian Institute of Technology Delhi,  

Hauz Khas, New Delhi 110016, India  

Tel: 91-11-2659-1040; Fax: 91-11-2658-1117 
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1.1� Overview 

Civil infrastructures are important long-term investments of a nation which are 

crucial in supporting the nation’s economic and social activities. Therefore, it is 

vital to continuously monitor the performance and condition of all civil 

infrastructures, especially the critical ones such as bridges and power plants so 

that any adverse changes in their performance or condition can be detected in a 

timely fashion and mitigated. In addition, instrumenting the structures at the time 

of construction, and their monitoring thereafter, could help in validating key 

design parameters as well as providing valuable insight into their behavior and 

performance under actual loadings. Ironically, whereas vast economic resources 

are mobilized for the construction of civil infrastructures, structural engineers in 

general are not too concerned with their post-construction behavior. 

During the last one and a half decades, the idea of monitoring structures 

through appropriate instrumentation has gained wide acceptance. The approach is 

similar to monitoring the critical parameters of an aircraft during flight or an 

automobile on the road, so that any malfunctions can be detected early, thereby 

facilitating pre-emptive action. Hence, the need for structural health monitoring 

(SHM) has become widely acknowledged. Generally, SHM is defined as the 

measurement of the operating environment and critical responses of a structure to 

track and evaluate the symptoms of operational incidents, anomalies, and 

deterioration or damage indicators that may affect operation, serviceability, safety 
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or reliability (Aktan et al., 2000). It implies continuous monitoring, acquisition, 

validation and analysis of technical data to facilitate life-cycle management 

decisions (Kessler et al., 2002). A subset of SHM is condition assessment, which 

is defined as the periodic or one-time establishment of the current conditions, 

specifically aimed at assessing fitness for purpose. Several bridges have been 

instrumented for SHM or condition assessment in recent years. Most notable 

among them are the I-40 bridge in New Mexico (Farrar and Jauregui, 1998), the 

Second Link bridge connecting Malaysia and Singapore (Moyo, 2002), the Tsing 

Ma suspension bridge in Hong Kong (Lynch et al., 2003) and the Boujnah bridge 

of the Tunis-Msaken Highway (El-Borgi et al., 2005).  

Several algorithms have been proposed to locate and determine the severity of 

damage in bridge structures based on their vibration response. In these techniques, 

essentially the test-structure is subjected to low-frequency excitations, either 

harmonic or impulse, and the resulting vibration responses (displacements, 

velocities or accelerations) are picked up at specified locations along the structure. 

The vibration pick-up data are processed to extract the first few mode shapes and 

the corresponding natural frequencies of the structure, which, when compared 

with the corresponding data for the healthy state, yield information pertaining to 

the locations and the severity of the damage. Application of this principle for 

damage detection can be found as early as in the 1970s (e.g. Adams et al., 1978). 

Subsequently, this concept was employed for structural system identification, a 

mathematical model of the structure from the experimental input-output data (e.g. 

Yao, 1985; Oreta and Tanabe, 1994; Loh and Tou, 1995). It should be mentioned 

that several of these techniques consist of “updating” a numerical model of the 

structure from test measurements. In the 1990’s, with the development of 

improved sensors, testing hardware, and data acquisition and processing 

techniques, many “quick” algorithms have been proposed (mainly for bridge type 

structures), such as the change in curvature mode shape method (Pandey et al., 

1991), the change in stiffness method (Zimmerman and Kaouk, 1994), the change 

in flexibility method (Pandey and Biswas, 1994) and the damage index method 

(Stubbs and Kim, 1994). A comparative evaluation of these algorithms on an 

actual bridge structure, by Farrar and Jauregui (1998), revealed the damage index 

method to be the most sensitive among these methods. However, only limited 

studies have been conducted on buildings and offshore structures (Thompson and 

Harper, 2004; Sun et al., 2007), which exhibit a behavior of far greater complexity. 

The search for more durable and cost-effective sensors and hardware is far from 

over on account of the limitations of existing technologies and methods, especially 

when applied on real-life structures (Catbas et al., 2007). The main limitations of 

the global dynamic techniques can be summarized as follows: 

(1) These techniques typically rely on the first few mode shapes and the 

corresponding natural frequencies of structures, which, being global in nature, are 

not sensitive enough to be altered by localized incipient damages. For example, 

Pandey and Biswas (1994) reported that a 50% reduction in the Young’s modulus 

of elasticity, over the central 3% length of a 2.44 m long beam (as an example), 
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only resulted in about 3% reduction in the first natural frequency. Changes of such 

a small order of magnitude may not be considered as reliable damage indicators 

for real-life structures, in view of the experimental errors of approximately the 

same order of magnitude.  

(2) These techniques demand expensive hardware and sensors, such as inertial 

shakers, self-conditioning accelerometers and laser velocity meters. Typically, the 

cost of a single accelerometer ranges from approximately $500 to $1,000. For a 

large structure, the overall cost of such sensor systems could easily run into 

millions of dollars. To cite an example, the Tsing Ma suspension bridge in Hong 

Kong was instrumented with only 350 sensors in 1997 yet cost over US$8 million 

(Lynch et al., 2003).  

(3) A major limitation of these techniques is the interference caused by the 

ambient mechanical noise, in addition to the electrical and the electromagnetic 

noise associated with the measurement systems themselves. On account of low 

frequency, the techniques are highly susceptible to ambient noise, which also 

happens to be in the low frequency range, typically less than 100 Hz. 

(4) For miniature structural components (such as precision machinery or 

computer parts), the sensors involved in these techniques are not only bulky, but 

also likely to interfere with structural dynamics owing to their own mass and 

stiffness. Laser vibrometers are suitable for small structures, but are expensive and 

need to scan the entire structure to measure mode shapes, which proves very 

tedious (Giurgiutiu and Zagrai, 2002).  

(5) The pre-requisite of a high fidelity “model” of the test structure restricts 

the application of the techniques to structures with relatively simple geometries 

and configurations. As evaluation of stiffness and damping at the supports (which 

often rust during service) is extremely difficult, reliable identification of a 

“model” is quite difficult in practice. 

(6) Often, the performance of these techniques deteriorates in multiple damage 

scenarios (Wang et al., 1998). 

In addition to the vibration-based SHM techniques described above, a few 

static response-based techniques have also been proposed. Banan et al. (1994) 

proposed the static displacement technique for structural identification. This 

involves applying static forces at specific nodal points and measuring the 

corresponding displacements. Although conceptually feasible, measurement of 

static displacements on large structures is somewhat impractical. It warrants the 

establishment of a frame of reference, which, for contact measurement, could 

necessitate the construction of a secondary structure. As an alternative, Sanayei 

and Saletnik (1996) put forward the static strain measurement technique. For 

structural components, surface strains, which result from axial, bending and shear 

deformations, can capture the component’s response to external loads quite well. 

Unlike displacements, strains can be measured without having to establish any 

secondary frame of reference. 

In summary, the global techniques (static/dynamic) provide little information 

about local damages unless very large numbers of sensors are employed. They 
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also require intensive computations to process the measurement data. Little 

information about the specifics of location/type of damage can be inferred without 

the use of high fidelity numerical models and intensive data processing. 

Another category of damage detection approaches is the so-called local 

techniques, which, as opposed to the global techniques, rely on localized structural 

interrogation for detecting damages. Some of the techniques in this category are 

ultrasonic techniques, acoustic emission, eddy currents, impact echo testing, 

magnetic field analysis, penetrant dye testing and X-ray analysis. Table 1.1 

summarizes the typical damage sensitivities of several of the local non-destructive 

evaluation (NDE) techniques. The most common limitation of the local techniques 

is that usually, probes, fixtures and other equipment need to be physically moved 

around the test-structure when recording data. Often, this not only prevents 

autonomous application of the technique, but may also demand the removal of 

finishes or covers such as false ceilings. As moving the probe everywhere is 

impractical, these techniques are often applied at selected probable damage 

locations (often based on preliminary visual inspection or past experience), which 

is almost tantamount to knowing the damage location a priori. Generally, they 

cannot be applied while the component is under service, such as in the case of an 

aircraft during flight. X-ray techniques, due to their high equipment cost, are thus 

limited to high performance components only.  

 

Table 1.1� Sensitivities of common local NDE techniques (adapted from (Boller, 2002), with 

permissions of ISSS and SPIE) 

Technique 

Minimum detectable 

crack length 

High probability 

(>95%) detectable 

crack length  

Remarks 

Ultrasonic 2 mm 5 – 6 mm 

Dependent upon structure 

geometry and material 

Eddy currents 

(low-frequency) 

2 mm 4.5 – 8 mm 

Suitable for thickness  

<12 mm only 

Eddy currents 

(high-frequency) 

2 mm (surface) 

0.5 mm (bore holes) 

2.5 mm (surface) 

1.0 mm (bore holes) 

 

X-ray  4 mm 10 mm 

Dependent upon structure 

configuration. Better for 

thickness >12 mm 

Magnetic particle 2 mm 4 mm (surface)  

Dye penetrant 2 mm 10 mm (surface)  
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1.2� Concept of Smart Systems/Structures for SHM 

The techniques described earlier are the conventional SHM techniques. They 

typically rely on the measurement of stresses, strains, displacements, accelerations 

or other related physical responses to identify damages. The conventional sensors, 

which these techniques employ, are passive, often bulky, and can only extract 

secondary information such as load and strain history, which may not lead to any 

direct information about damages (Giurgiutiu et al., 2000).  

However, the past two decades have witnessed the emergence of “smart” 

materials, systems and structures, which have shown new possibilities for SHM 

and NDE. Smart materials, powered by their inherent “smartness” (which work on 

fundamentally different principles from the conventional materials), exhibit 

greater sensitivity to any changes in their surrounding environment. This section 

briefly describes the principles and the recent developments in SHM/NDE based 

on smart materials and structures.  

The definition of smart structures was a topic of controversy from the late 

1970s to the late 1980s. In order to arrive at a consensus for major terminology, a 

special workshop was organized by the US Army Research Office in 1988, in 

which “sensors”, “actuators”, “control mechanism” and “timely response” were 

recognized as the four qualifying features of any smart system or structure (Rogers 

et al., 1988). The following definition of smart systems/structures was formally 

adopted in the workshop (Ahmad, 1988):  

A system or material which has built-in or intrinsic sensor(s), actuator(s) and 

control mechanism(s) whereby it is capable of sensing a stimulus, responding to it 

in a predetermined manner and extent, in a short/appropriate time, and reverting 

to its original state as soon as the stimulus is removed. 

According to Varadan and Varadan (2002), “smart system” refers to a device 

which can sense changes in its environment and can make an optimal response by 

changing its material properties, geometry, mechanical or electromagnetic 

response. Both the sensor and the actuator must function with their appropriate 

feedback properly integrated. It should also be noted that if the response is too 

slow or too fast, the system could lose its application effectiveness or could be 

dangerous (Takagi, 1990). Although the workshop distinguished the terms “smart” 

and “intelligent”, the two have still been used almost interchangeably. 

In conjunction with smart structures, Rogers (1990) defined the following 

additional terms, which are meant to classify smart structures further, based on the 

level of sophistication:  

(1) Sensory Structures: These structures possess sensors that enable the 

determination or monitoring of system states/characteristics;  

(2) Adaptive Structures: These structures possess actuators that enable the 

alteration of system states/characteristics in a controlled manner;  

(3) Controlled Structures: These result from the intersection of the sensory 
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and the adaptive structures. They possess both sensors and actuators integrated in 

feedback architecture for the purpose of controlling the system states/characteristics;  

(4) Active Structures: These structures possess both sensors and actuators 

that are highly integrated into the structure and exhibit structural functionality in 

addition to control functionality;  

(5) Intelligent Structures: These structures are basically active structures 

possessing highly integrated control logic and electronics that provide the 

cognitive element of distributed or hierarchic control architecture. 

It should be noted that the sensor-actuator-controller combination can be 

realized either at the macroscopic (structure) level or microscopic (material) level. 

Accordingly, we have smart structures and materials respectively.  

1.3� Smart Materials 

Smart materials possess adaptive capabilities to external stimuli, such as loads or 

the environment, with inherent intelligence. In the US Army Research Office 

Workshop, Rogers et al. (1988) defined smart materials as materials which 

possess the ability to change their physical properties in a specific manner in 

response to specific stimulus input. The stimuli could be pressure, temperature, 

electric and magnetic fields, chemicals or nuclear radiation. The associated 

changeable physical properties could be shape, stiffness, viscosity or damping. 

This kind of “smartness” is generally programmed by material composition, 

special processing, introduction of defects or by modifying the micro-structure, 

to facilitate adaptation to various levels of stimuli in a controlled fashion. Like 

smart structures, the terms “smart” and “intelligent” are used interchangeably 

for smart materials too. Takagi (1990) defined intelligent materials as those 

responding to environmental changes at the most optimum conditions and 

manifest their own functions according to the environment. The feedback 

functions within the materials are combined with the properties and the 

functions of the materials.  

Smart materials include optical fibers, piezoelectric polymers and ceramics, 

electro-rheological (ER) fluids, magneto-strictive materials and shape memory 

alloys (SMAs). Fig. 1.1 shows the associated “stimulus” and “response” of the 

more common smart materials. Due to their special ability to respond to stimuli, 

numerous applications in the field of sensors and actuators are being found. A 

detailed description of smart materials is covered by Gandhi and Thompson 

(1992). 
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Fig. 1.1� Common smart materials and associated stimulus-response 

 

Smart materials can be either active or passive. Fairweather (1998) defined 

active smart materials as those materials which possess the capacity to modify 

their geometric or material properties under the application of electric, thermal or 

magnetic fields, thereby acquiring an inherent capacity to transduce energy. 

Piezoelectric materials, SMAs, ER fluids and magneto-strictive materials are 

active smart materials, and as such, can be used as force transducers and actuators. 

The SMAs, for example, have a large recovery force of the order of 700 MPa 

(Kumar, 1991), which can be utilized for actuation. Similarly, piezoelectric 

materials can convert electrical energy into mechanical force. Smart materials, 

which are not active, are described as passive. Although smart, they lack the 

inherent capability to transduce energy. Fiber-optic material is a good example of 

a passive smart material. Such materials can act as sensors but not as actuators or 

transducers. 

1.4� Piezoelectricity and Piezoelectric Materials  

Since Part I of this book is primarily concerned with piezoelectric materials, a 

brief description of the phenomenon and related information is presented here. The 

word “piezo” is derived from a Greek word meaning “pressure”. The phenomenon of 

piezoelectricity was discovered in 1880 by Pierre and Paul-Jacques Curie. It 

occurs in non-centrosymmetric crystals, such as quartz (SiO
2
), Lithium Niobate 

(LiNbO
3
), PZT (Pb(Zr

1–x
Ti

x
)O

3
) and PLZT ((Pb

1–x
La

x
)(Zr

1–y
Ti

y
)O

3
), in which 

electric dipoles (and hence surface charges) are generated when the crystals 

undergo mechanical deformations. The same crystals also exhibit the converse 
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effect, that is, they undergo mechanical deformations when subjected to electric 

fields. In centrosymmetric crystals, the act of deformation does not induce any 

dipole moment, as shown in Fig. 1.2. However, in non-centrosymmetric crystals, 

this leads to a net dipole moment (Fig. 1.3). Similarly, the act of applying an 

electric field induces mechanical strains in the non-centrosymmetric crystals. 

 

Fig. 1.2� Centrosymmetric crystals: the act of stretching does not cause any dipole moment (μ = 

Dipole moment) 

 

 

Fig. 1.3� Non-centrosymmetric crystals: the act of stretching causes dipole moment in the 

crystal (μ = Dipole moment) 

 

The constitutive relations for piezoelectric materials, under small field conditions 

are (IEEE standard, 1987; Ikeda, 1990): 

m

d

imj

T

iji
TdED += ε � � � � � � � � � � � (1.1) 

m

E

kmj

c

jkk
TsEdS += � � � � � � � � � � � (1.2) 

Eq. (1.1) represents the so called direct effect (i.e., stress induced electrical 

charges) whereas Eq. (1.2) represents the converse effect (i.e., electric field 

induced mechanical strains). Sensor applications are based on the direct effect and 

actuator applications on the converse effect. When the sensor is exposed to a stress 

field, it generates proportional charge in response which can be measured. On the 

other hand, when the actuator is bonded to the structure and an external field is 

applied, an induced strain field results. Generally, Eqs. (1.1) and (1.2) can be 

rewritten in the tensor form as (Sirohi and Chopra, 2000b): 
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where [D]
 (3×1)

 (C/m
2

) is the electric displacement vector, [S]
 (3×3)

 the second order 

strain tensor, [E]
 (3×1)

 (V/m) the applied external electric field vector and [T]
 (3×3)

 

(N/m
2

) the stress tensor. Accordingly, [
Tε ] (F/m) is the second order dielectric 

permittivity tensor under constant stress, [d
d

] (C/N) and [d
c

] (m/V) the third order 

piezoelectric strain coefficient tensors, and [
E

s ] (m
2

/N) the fourth order elastic 

compliance tensor under constant electric field. Taking advantage of the symmetry 

of the stress and the strain tensors, these can be reduced from a second order (3×3) 

tensor form to an equivalent vector form, (6×1) in size, i.e., 

T

123123332211
],,,,,[][ SSSSSSS =  and similarly, 

T

123123332211
],,,,,[][ TTTTTTT = . 

Accordingly, the piezoelectric strain coefficients can be reduced to second order 

tensors (from third order tensors), as [d
d

] (3×6) and [d
c

] (6×3). The superscripts 

“d” and “c” indicate direct and converse effects, respectively. Similarly, the fourth 

order elastic compliance tensor [
E

s ] can be reduced to (6×6) second order tensor. 

The superscripts “T” and “E” indicate that the parameter has been measured at 

constant stress (free mechanical boundary) and constant electric field (short-

circuited), respectively. A bar above any parameter signifies that it is complex in 

nature (i.e. measured under dynamic conditions). The piezoelectric strain 

coefficient 
c

jk
d  defines mechanical strain per unit electric field under constant 

(zero) mechanical stress, and 
d

im
d  defines electric displacement per unit stress 

under constant (zero) electric field. In practice, the two coefficients are 

numerically equal. Furthermore, in 
c

jk
d  or 

d

im
d , the first subscript denotes the 

direction of the electric field and the second, the direction of the associated 

mechanical strain. For example, the term d
31

 signifies that the electric field is 

applied in direction “3” and the strain is measured in direction “1”. For a sheet of 

piezoelectric material (Fig. 1.4), the poling direction is usually along the thickness 

and is denoted as 3-axis. The 1-axis and 2-axis are in the plane of the sheet. The 

matrix [d
c

] depends on the crystal structure: for example, it is different for PZT 

and quartz, as given by Zhu (2003): 
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where the coefficients d
31

, d
32

 and d
33

 relate the normal strain in 1, 2 and 3 

directions, respectively, to an electric field along the poling direction 3. For PZT 

crystals, the coefficient d
15

 relates the shear strain in the 1–3 plane to the field E
1
 

and d
24

 relates the shear strain in the 2–3 plane to the electric field E
2
. It is not 

possible to produce shear strain in the 1–2 plane purely by the application of an 

electric field, since all terms in the last row of the matrix [d
c

] are zero (see Eq. (1.4)). 

Conversely, shear stress in the 1–2 plane does not generate any electric response. 

In all poled piezoelectric materials, d
31

 is negative and d
33

 is positive. For a good 

sensor, the algebraic sum of d
31

 and d
33

 should be maximum and at the same time, 

the electric permittivity and the mechanical loss factor should be minimum 

(Kumar, 1991). 

 

Fig. 1.4� A piezoelectric material sheet with conventional 1, 2 and 3 axes 

 

The compliance matrix has the form: 
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Owing to energy considerations, the compliance matrix is symmetric, which 

leaves only 21 independent coefficients. Furthermore, for isotropic materials, there 

are only two independent coefficients, as expressed below (remaining terms are 

zero): 

E

EEE

Y

sss

1

332211
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E

EEEEEE

Y

ssssss

ν−======
323123211312

� � � � � � (1.7) 
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E
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G

sss

1

665544
=== � � � � � � � � � � (1.8) 

where 
E

Y is the complex Young’s modulus of elasticity (at constant electric field), 

E

G the complex shear modulus (at constant electric field) and ν the Poisson’s 

ratio. It should be noted that the static moduli, Y
E

 and G
E

, are related by: 

)1(2 ν+
=

E

E
Y

G � � � � � � � � � � � � (1.9) 

The electric permittivity matrix is also symmetric, which reduces the number 

of independent coefficients to 6. Typically, it takes the following simple forms for 

monoclinic, cubic and orthorhombic crystals (Zhu, 2003): 
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monoclinic� �    orthorhombic� �    � cubic 

(e.g. PZT) 

It should be noted that Eqs. (1.1) and (1.2) are valid under low electric fields 

only. At high electric fields, the second order terms in electric fields make 

significant contributions. This effect is called the electrostrictive effect. Typically, 

inclusion of this effect will render Eq. (1.1) to 

nmmnm

d

imj

T

iji
EEMTdED ++= ε

� � � � � � � � (1.11) 

where M
mn

 is the electrostriction coefficient, and is independent of the direction of 

the electric field (Sirohi and Chopra, 2000a). A very common electrostrictive crystal 

is PMN (Pb(Mg
1/3

Nb
2/3

)O
3
). The main advantage of electrostrictive materials is 

that they exhibit negligible hysteresis (which is significant in piezoelectric crystals), 

making them the first choice for high voltage applications or where precision 

positioning of components is warranted (Zhu, 2003). In addition, because of non-

linear dependence, they can generate larger motions. It is for this reason that PMN 

has found its place in actuators used in the Hubble space telescope.  

In initial studies, piezoelectric crystals, which are brittle and heavy, were used. 

However, commercial piezoelectric materials are now available as ceramics or 

polymers, which can be cut into a variety of convenient shapes and sizes, and can 

be easily bonded. PZT is the most widely used piezoceramic. It is a solid solution 

of lead zirconate and lead titanate, doped with other materials to obtain specific 

properties. It is manufactured by heating a mixture of lead, zirconium and titanium 

oxide powders to approximately 800 to 1,000 
o

C, to obtain a perovskite PZT 
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powder, which is then mixed with a binder and sintered into the desired shape. 

The resulting unit cell is elongated in one direction and exhibits a permanent 

dipole moment along this axis. However, since the ceramic consists of numerous 

randomly oriented domains, it has no net polarization. Application of a high 

electric field aligns the polar axes of the unit cells along the applied electric field, 

thereby reorienting most of the domains. This process is called poling and it 

imparts a permanent net polarization to the crystal. A permanent mechanical 

distortion is also created, since the polar axis of the unit cell is longer than the 

other two axes. Through this process, the material becomes piezoelectrically 

transversely isotropic in the plane normal to the poling direction, i.e. d
31

 = d
32

 ≠ 

d
33

; d
15

 = d
24

, but remains mechanically isotropic (Sirohi and Chopra, 2000b).  

PZT is a very versatile smart material. It is chemically inert and exhibits high 

sensitivity of about 3 μV/Pa, which warrants nothing more sophisticated than a 

charge amplifier to buffer the extremely high-source impedance of this largely 

capacitive transducer. It demonstrates competitive characteristics such as light 

weight, low cost, small size and good dynamic performance. It also exhibits a 

large range of linearity (typically up to an electric field of 2 kV/cm (Sirohi and 

Chopra, 2000a)), fast response, long term stability and high energy conversion 

efficiency. PZT patches can be manufactured in any shape, size and thickness 

(from finite rectangular shapes to complicated microelectromechanical system 

(MEMS) shapes) at a relatively low cost compared with the other smart materials, 

and can be easily used over a wide range of pressures without serious non-linearity. 

PZT material is also characterized by a high elastic modulus (comparable to 

aluminum). However, it is somewhat fragile because of its brittleness and low 

tensile strength. Tensile strength measured under dynamic loading is much lower 

(approximately one-third) than that measured under static conditions. Typically, 

G1195 (Piezo Systems Inc., 2003) has a compressive strength of 520 MPa and a 

tensile strength of 76 MPa (static) and 21 MPa (dynamic). PZT materials have 

negative d
31

, which implies that a positive electric field (in the direction of 

polarization) results in compressive strain on the PZT sheet. If heated above a 

critical temperature, (the Curie temperature), the crystals lose their piezoelectric 

effect. The Curie temperature typically varies from 150 to 350
o

C for most commercial 

PZT crystals. In addition, if exposed to high electric fields (>12 kV/cm), opposite 

to the poling direction, PZT will lose most of its piezoelectric capability. This is 

called depoling and is accompanied by a permanent change in the dimensions of 

the sample. Owing to high stiffness, PZT sheets are good actuators. They also 

exhibit high strain coefficients, and hence good sensors too. These features make 

PZT materials well suited for use as collocated actuators and sensors. Their uses 

include in deformable mirrors, mechanical micropositioners, impact devices and 

ultrasonic motors, sonic and ultrasonic sensors, filters and resonators, signal 

processing devices, igniters and voltage transformers. For achieving large 

displacements, multi-layered PZT systems can be manufactured, as stack, moonie 

and bimorph actuators. However, PZT sheets, being brittle, cannot withstand 

bending and also exhibit poor conformability to curved surfaces. Furthermore, 

PZT materials show considerable fluctuation of electrical properties with 
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temperature. The act of soldering wires to the electroded piezoceramics requires 

special skill, otherwise broken elements, unreliable connections or localized 

thermal depoling of the elements may result. As a solution to these problems, 

active piezoceramic composite actuators (by Smart Materials Corporation), active 

fiber composites (by Massachusetts Institute of Technology) and macro fiber 

composites (MFCs) (by NASA, Langley Centre) have recently been developed; 

MFCs have been commercially available since 2003. These new types of PZT 

materials are low-cost, damage tolerant, can conform to curved surfaces and are 

embeddable. Moreover, Active Control eXperts, Inc. (ACX), now owned by Mide 

Technology Corporation (2004), has developed a packaging technology in which 

one or more PZT elements are laminated between sheets of polymer flexible 

printed circuitry. This provides them with robustness, reliability and ease of use. 

The packaged sensors are commercially called QuickPack
®

 actuators (Mide 

Technology Corporation, 2004). These are now widely used as vibration dampers 

in sporting goods, buzzer alerts, drivers for flat speakers and more recently in 

automotive and aerospace components (Pretorius et al., 2004). However, these are 

currently several times more expensive than the raw PZT patches. 

Contrary to piezoceramics, piezopolymers are very flexible in nature. The 

most common commercial piezopolymer is the Polyvinvylidene Fluoride (PVDF). 

It is made up of long chains of repeating monomer (-CH
2
-CF

2
-), each of which has 

an inherent dipole moment. PVDF film is manufactured by solidification from the 

molten phase, then stretched in a particular direction, and poled. The stretching 

process aligns the chains in one single direction. Combined with poling, this 

imparts a permanent dipole moment to the film. As a result of stretching, the 

material is rendered piezoelectrically orthotropic, that is d
31

 ≠ d
32

, where “1” is the 

stretching direction. However, it still remains mechanically isotropic. The PVDF 

material is characterized by low stiffness (Young’s modulus typically 1/12
th

 that 

of aluminum). Hence, PVDF sensors are less likely to modify the stiffness of the 

host structure through their own stiffness. Also, PVDF films can be shaped as 

desired according to the intended application. Being a polymer, and being flexible, 

it can be formed into very thin sheets and adhered to curved surfaces. These 

characteristics make PVDF films more attractive for sensor applications, in spite 

of their low piezoelectric coefficients (approximately 1/10
th

 of PZT). It has been 

shown by Sirohi and Chopra (2000b) that shear lag effect (caused by the finitely 

thick bond layer between the patch and the host structure) is almost negligible in 

PVDF sensors.  

Traditionally, piezoelectric materials have been well-known for their use in 

accelerometers, strain sensors, emitters and receptors of stress waves, vibration 

sensors, actuators and pressure transducers. In the last decade, piezoelectric 

materials, their derivative devices and structures have been increasingly employed 

in turbo-machinery actuators, vibration dampers and active vibration control of 

stationary/moving structures (e.g. helicopter blades). They have been shown to be 

very promising in active structural control of lab-sized structures and machines 

(e.g. Manning et al., 2000; Song et al., 2002). Structural control of large structures 

has also been attempted (e.g. Kamada et al., 1997). Other new applications 



1� Introduction 14 

include underwater acoustic absorption, robotics, precision positioning and smart 

skins for submarines (Kumar, 1991). Skin-like tactile sensors utilizing the 

piezoelectric effect for sensing temperatures and pressures have been reported. 

Piezoelectric materials have also been employed to produce micro- and nano-scale 

systems and wireless inter digital transducers (IDT) using advanced embedded 

system technologies, which are expected to find numerous applications in micro-

electronics, bio-medical and SHM. In the field of SHM, the most striking 

application of piezoelectric materials has been in the form of the electro-

mechanical impedance (EMI) technique. This is the main focus of Part I, and the 

details are covered in Chapters 2 to 7. 
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2.1� Introduction 

This chapter focuses on the theoretical and the practical aspects of the EMI 

technique for SHM/NDE. In principle, this technique is similar to the conventional 

global dynamic techniques described in Chapter 1. The main difference is the 

frequency range employed: the EMI technique typically employs 30 to 400 kHz 

whereas the global dynamic techniques employ less than 100 Hz. 

In the EMI technique, a PZT patch is usually bonded to the surface of the 

structure (to be monitored) by means of a high strength epoxy adhesive, and 

electrically excited by means of an LCR (Inductance L, Capacitance C, and 

Resistance R) meter or an impedance analyzer. The LCR meter measures the 

electro-mechanical (EM) admittance of the bonded PZT patch (consisting of the 

real part, conductance, and the imaginary part, susceptance) in the user-set 

frequency range, at specified intervals, in sweep mode. When plotted as functions 

of frequency, these measurements constitute a unique signature of the structure, to 

be altered only by any physical change in the structure. At any future point of time, 

whenever the condition of the structure is to be assessed, the signatures are 

acquired and compared with the baseline signature. Consistency of the signature 

indicates the well being of the structure. Any change in the signature indicates an 

occurrence of damage. 

Basically, the LCR meter applies a harmonic voltage signal across the PZT 

patch at a particular frequency. As a result, deformations are produced in the patch 

as well as in the local area of the host structure around it. The response of this area 
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to the imposed mechanical vibrations is transferred back to the PZT patch in the 

form of an electrical response, as conductance and susceptance signatures. As a 

result of this interaction, the structural characteristics are reflected in the 

signatures. Any damage to the structure alters the structural characteristics, and 

hence modifies the signatures. 

Fig. 2.1 illustrates an application of the EMI technique on a steel beam. A PZT 

patch was bonded to the structure (a steel I-beam) at the mid-point of the bottom 

flange (Bhalla, 2001). The conductance signature of the patch was acquired using 

a HP 4192A impedance analyzer (Hewletl Packard, 1996) in the frequency range 

of 140 to 150 kHz, at intervals of 100 Hz. Damage was simulated by drilling a 

5 mm diameter hole along section AA (Fig. 2.1(a)). The effect of the damage is 

shown on the conductance signature in Fig. 2.1(b). Although the induced damage 

was small (amounting to only 0.015% mass loss), the effect on the signature was 

very marked and easily recognizable. This demonstrates the high order of 

sensitivity of the technique. The following sections of this chapter cover the 

theoretical and practical aspects of the EMI technique. 

 

Fig. 2.1� (a) A steel beam instrumented with a PZT patch; (b) Effect of damage on conductance 

signature 

2.2� Mechanical Impedance of Structures 

A harmonic force acting on a structure can be represented by a rotating phasor on 

a complex plane to differentiate it from a vector (Fig. 2.2). Let F
o
 be the 

magnitude of the phasor, and let it be rotating anti-clockwise at an angular 

frequency ω (same as the angular frequency of the harmonic force). At any instant 

of time t, the angle between the phasor and the real axis is ωt.  The instantaneous 

force (acting on the structure) is equal to the projection of the phasor on the real 

axis, i.e. F
o
cosωt. The projection on the “y” axis can be deemed as the “imaginary” 
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component. Hence, the phasor can be expressed using complex notation as: 

t

FtFtFtF

ωωω j

ooo
esinjcos)( =+= � � � � � � � (2.1) 

The resulting velocity response, u� , at the point of application of the force, is 

also harmonic in nature. However, it lags behind the applied force by a phase 

angle φ due to damping inherent in the structure. Hence, velocity can also be 

represented as a phasor (Fig. 2.2), and expressed as: 
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The mechanical impedance of a structure, at any point, is defined as the ratio 

of the driving harmonic force to the resulting harmonic velocity, at that point, in 

the direction of the applied force. Mathematically, the mechanical impedance Z 

can be expressed as: 
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Fig. 2.2� Representation of harmonic force and velocity by rotating phasors 

 

For a pure mass m, from Newton’s second law of motion, 

umF ��= � � � � � � � � � � � � � (2.4) 

For a harmonic motion, uu ��� ωj= , the mechanical impedance of the system can 

be computed as: 

m

u

F

Z ωj==
�

� � � � � � � � � � � � (2.5) 
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Similarly, for a pure spring k, from Hooke’s law: 

kuF = � � � � � � � � � � � � � (2.6) 

Note that, uu ωj=� , the mechanical impedance is thus given by 

ω
k

u

F

Z

j−==
�
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For a pure damper c, the mechanical impedance can be directly obtained as Z 

= c from the fact that ucF �= . For a parallel combination of ‘n’ mechanical 

systems, noting that velocity has to be equal for all the elements, the equivalent 

mechanical impedance can be derived as: 

∑
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Similarly, for a series combination, owing to the transmission of the same 

force, 
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                                             (2.9) 

As an example, the resultant mechanical impedance of the system shown in 

Fig. 2.3 can be determined as: 
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Eqs. (2.8) and (2.9) are analogous to the equations for series and parallel 

combinations of ‘electrical impedances’ in the theory of classical electricity. The 

main advantage of the impedance approach is that the differential equations of 

Newtonian mechanics are reduced to simple algebraic equations, and a black-box 

concept is introduced. Hence, only critical forces and velocities at one or two 

points of interest need to be considered; the need for a complex analysis of the 

system is thereby eliminated. 

 

Fig. 2.3� A parallel combination of spring (k), mass (m) and damper (c) 
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2.3� Impedance Modeling for EMI Technique 

In the EMI technique, the PZT patch is typically surface bonded onto the host 

structure using a high strength epoxy adhesive, and excited under harmonic 

voltage. In this configuration, the patch essentially behaves as a thin bar 

undergoing axial vibrations and interacting with the host structure (Fig. 2.4(a)). 

The PZT patch host-structure system can be modeled as a mechanical impedance 

(of the host structure) connected to an axially vibrating thin bar (the patch) as 

shown in Fig. 2.4(b). Here, the patch expands and contracts dynamically in 

direction “1” under a uniform alternating electric field E
3
 (

y

E

x

E

∂
∂=

∂
∂

33

= 0) which 

is applied in direction “3” by a LCR meter. The patch has half-length “l
 

”, width 

“w” and thickness “h”. The host structure is assumed to be a skeletal structure, i.e., 

composed of one-dimensional (1D) members with their sectional properties (area 

and moment of inertia) lumped along their neutral axes.  Therefore, the vibrations 

of the PZT patch in direction “2” can be ignored. At the same time, the PZT 

loading in direction “3” is neglected by assuming the frequencies involved to be 

much less than the first resonant frequency for thickness vibrations. The vibrating 

patch is assumed to be infinitesimally small and of negligible mass and stiffness as 

compared to the host structure. The structure can therefore be assumed to possess 

uniform dynamic stiffness over the entire bonded area. The two end points of 

the patch can thus be assumed to encounter equal mechanical impedance, Z, 

from the structure (Fig. 2.4(b)). Under this condition, the PZT patch has zero 

displacement at the mid-point (x=0), irrespective of the location of the patch on 

the host-structure.  

 

Fig. 2.4� Modeling of PZT-structure interaction. (a) PZT patch bonded to structure under electric 

excitation; (b) Interaction model of PZT patch and host structure 
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Under these assumptions, the piezoelectric constitutive relations (Eqs. (1.1) 

and (1.2)) can be simplified as:  

1313333
TdED

T += ε                                      (2.11) 
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where D
3
 is the electric displacement over the PZT patch, S

1
 the strain in direction 

“1”, d
31

 the piezoelectric strain coefficient and T
1
 the axial stress in direction “1”. 

)j1( η+= EE

YY is the complex Young’s modulus of elasticity of the PZT patch at 

a constant electric field, and )j1(
3333

δεε −= TT

 the complex electric permittivity (in 

direction “3”) of the PZT material at a constant stress, where 1j −= . Here, η 

and δ denote respectively the mechanical loss factor and the dielectric loss factor 

of the PZT material.  

The EM admittance formulation was analytically derived by Liang et al. 

(1994). They considered a small element of the PZT patch of length δx, situated at 

a distance x from the centre of the patch (Fig. 2.5), under dynamic equilibrium. 

 

Fig. 2.5� An infinitesimal element of PZT patch under dynamic equilibrium 

 

The infinitesimal element has a mass of 

xhwm δρ=d                                                (2.13) 

where ρ is the density of the patch, w its width and h its thickness.  

Let u(x) be the displacement at any point in the actuator. Thus, application of 

the D’Alembert’s principle on the infinitesimal element yields 
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Substituting Eq. (2.13) into Eq. (2.14) and solving, we obtain: 
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From Hooke’s Law, 
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Substitution of Eq. (2.16) into Eq. (2.15) yields 
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Solution of the governing wave equation, by the method of separation of 

variables, yields  

t

xBxAu

ωκκ j

e)cossin( +=                                 (2.18) 

where κ, the wave number, is related to the  angular frequency of excitation ω by  

E

Y

ρωκ =                                               (2.19) 

Application of the boundary condition that at x=0, u=0 implies B=0. By 

definition, the mechanical impedance Z of the structure can be expressed as 

)()( lxlx
uZF == −= �                                          (2.20) 

The use of a negative sign here simply implies that a positive u gives rise to a 

force in the opposite direction (compressive in nature) from the mechanical 

system. From Eq. (2.18), and making use of the fact that uu ωj=� (due to harmonic 

excitations), we get 

j
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j sin( )e
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x l

F A Z l

ωω κ= = −                                  (2.21) 

Furthermore, the strain in the PZT patch can be derived as 
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t
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Substituting Eqs. (2.21) and (2.22) into Eq. (2.12) for the case of x=l, noting 

that 
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=(V/h), where V is the potential difference across the PZT 

patch, we get 
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At this juncture, the mechanical impedance of the PZT patch, similar to that of 

the structure is introduced. As a general practice, the mechanical impedance of the 

PZT patch is determined in short circuited condition (Fig. 2.6), so as to eliminate 

the piezoelectric effect and only invoke pure mechanical response. If F is the force 

applied on the PZT patch, then from Eq. (2.3), the short-circuited mechanical 

impedance of the patch, Z
a
, can be determined as:  
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Using Eq. (2.22) for S
1
 and Eq. (2.18) for u, an expression can be derived for 

Z
a
 as: 
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Hence, upon solving, Eq. (2.23) yields, 
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Under general electric field conditions (that is E
3
 ≠ 0), the stress T

1
 in the PZT 

patch is given by Eq. (2.12). Using Eqs. (2.22) and (2.26), with 
t

VV

ωj
o
e= , an 

expression for T
1
 can be derived as: 
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Fig. 2.6� Determination of mechanical impedance of a PZT patch 

 

Substituting Eq. (2.27) into Eq. (2.11) and noting that E
3
=(V/h) = 

t

hV

ωj
o

e)/( , 

an expression can be obtained for the  electric charge density on the surfaces of 

the actuator as: 
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The electric current can be obtained by integrating the rate of change of the 

electric charge density over the surface of the PZT patch, that is, 
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Substituting Eq. (2.28) and solving, 

⎥

⎥

⎦

⎤

⎢

⎢

⎣

⎡

−+
+

= )(

tan

)(

je2
2

3133

2

31

j

o ET

a

E

a

t

Yd

l

l

ZZ

YdZ

h

wlV

I ε
κ
κωω

               (2.30) 

Since VV

t =ωj
0
e , the admittance 

V

I

Y =  is given by 
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This equation is the same as that derived by Liang et al. (1994), except with a 

multiplication factor of two, which comes into picture since the limits of 

integration are from –l to +l, contrary to Liang et al. (1994), who had considered 

only one half (the right one) of the patch. 

In the EMI technique, this electro-mechanical coupling between the 

mechanical impedance Z of the host-structure and the EM admittance Y is utilized 

in damage detection. Z is a function of the structural parameters—the stiffness, the 
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damping and the mass distribution. Any damage to the structure will cause these 

structural parameters to change, and consequently alter the drive point mechanical 

impedance Z. Assuming that the PZT parameters remain unchanged, the EM 

admittance Y  will undergo change and this serves as an indicator of the state of 

health of the structure. Measuring Z directly may not be feasible, but Y  can be 

easily measured using any commercial electrical impedance analyzer or LCR 

meter. The common damage types which can alter Z include cracks, debondings, 

corrosion and loose connections (Esteban, 1996), to which the PZT admittance 

signatures show high sensitivity. Contrary to the low-frequency vibration 

techniques, damping plays a more significant role in the EMI technique due to the 

involvement of ultrasonic frequencies. Most conventional damage detection 

algorithms (in the low-frequency dynamic techniques), on the other hand, are 

based on damage related changes in structural stiffness and inertia, but rarely in 

damping (Kawiecki, 2001). 

It is worthwhile mentioning that, in the early days, a complicated circuit was 

recommended by Dosch et al. (1992) for achieving self-sensing. An actuating 

signal was first applied, and the sensing signal was then picked up and separated 

from the actuating signal. Due to the high voltage and strong dependence of the 

capacitance on temperature, the signal was mixed with the input voltage as well as 

noise and was therefore not very accurate. The EMI technique, on the other hand, 

offers a much hassle free, simplified, and more accurate self-sensing approach.  

At low frequencies (<1/5 of the first resonant frequency of the PZT patch), the 

term (

l

l

κ
κtan

) tends to be close to unity. This is called “quasi-static sensor 

approximation” (Giurgiutiu and Zagrai, 2002), and for this condition, Eq. (2.31) 

can be simplified as:  
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The EM admittance Y  (unit Siemens or ohm
–1

) consists of the real (conductance, 

G) and imaginary (susceptance, B) parts. A plot of G over a sufficiently wide band 

of frequency serves as a diagnosis signature of the structure and is called the 

conductance signature or simply signature. 

The signature of the bonded PZT patch is usually acquired by means of 

commercially available impedance analyzers, such as the HP 4192A impedance 

analyzer (Hewlett Packard, 1996) or the new version Agilent 4980 LCR meter 

(Agilent Technologies, 2009). The impedance analyzer/LCR meter imposes an 

alternating voltage signal of 1 volt rms (root mean square) to the bonded PZT 

patch over the user-specified preset frequency range (for example, 140 to 150 kHz 

in Fig. 2.1). The magnitude and phase of the steady state current are directly 

recorded in the form of conductance and susceptance signatures in the frequency 

domain, thereby eliminating the requirements of domain transforms. In addition, 
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no amplifying device is necessary. In fact, Sun et al. (1995) reported that higher 

excitation voltage has no influence on the conductance signature, though it may be 

helpful in amplifying the weak structural modes and increasing the sensing region. 

Fig. 2.7 shows the typical conductance and susceptance plots for a PZT patch 

bonded on to the bottom flange of the steel beam shown in Fig. 2.1. The sharp 

peaks in the conductance signature correspond to the structural modes of vibration. 

This is how the conductance signature identifies the local structural system (in the 

vicinity of the patch), hence constituting a unique health-signature of the structure 

at the point of attachment.  The imaginary part, on the other hand, is marked by 

very small peaks and is relatively flat. Owing to stronger interaction with the 

structure, the real part is traditionally preferred over the imaginary part in SHM 

applications. In the early days, it was believed that the imaginary part (susceptance) 

has very weak interaction with the structure. Therefore, most researchers 

considered it redundant, and solely utilized the real part (conductance) in SHM 

applications. However, as illustrated in the later part of this chapter, the imaginary 

part can also supplement the information provided by the real part in improving 

damage diagnosis of structures. 

 

Fig. 2.7� Conductance and susceptance plots of a PZT patch bonded to the bottom flange of a 

steel beam 

2.4� Mechanical Impedance of PZT Patches 

The mechanical impedance of a PZT patch, which is a function of frequency, is a 

complex quantity and can be expressed as: 

j
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On substituting ⎟
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simplifying, we can obtain the following expressions for x
a
 and y

a
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The resonant frequency of the PZT patch can be determined from the 

condition: 
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where n is any positive integer. At these frequencies, the term tan(κl) assumes an 

infinitely large value, thereby reducing Z
a
 close to zero. Denoting 

E

Y/ρ
 

(which 

is a complex number) by (C
r
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j), and replacing ω
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 by 2πf

res
, the following 

expression can be derived for the resonant frequency 
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Similarly, at frequencies where    

πnl =κ                                                  (2.37) 

the term tan(κl) approaches zero, thereby rendering the magnitude of Z
a
 infinitely 

large. This phenomenon is called “anti-resonance”, and such frequencies appear as 

sharp peaks in the plot of |Z
a
|. The anti-resonance frequencies are related to the 

corresponding resonant frequencies by  
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Fig. 2.8 shows a plot of the real part (x
a
), the imaginary part (y

a
) and the 

absolute value |Z
a
| (=

22

aa

yx + ) against frequency for a PZT patch which 

possesses the PZT parameters (except η) shown in Table 2.1. Two different values 

of mechanical loss factor, η = 0 and η = 3%, have been considered. The points of 

resonance are apparent as sharp valleys in the plot of |Z
a
|. Using Eq. (2.36), the 

first resonance is determined as 14.123 kHz for η = 0 and at 14.126 kHz for η = 

3%. Using Eq. (2.38), the first anti-resonance frequency is found to be 28.246 kHz 

for η = 0 and to be 28.252 kHz for η = 3%. 
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Table 2.1� Key parameters of PZT patch 

S. No. Physical parameter Value 

1 Young’s modulus at constant electric field,  Y  6.3×10  N/m

2 Piezoelectric strain coefficient,                      d –166×10  m/V 

3 Electric permittivity at constant stress,          
T

33
ε  1.5×10  Farad/m 

4 Density,                                                           ρ 7,650 kg/m

5 Dielectric loss factor,                                      δ 0.012 

6 Mechanical loss factor,                                   η 0.001 

7 Length of PZT patch,                                      l 0.0508 m 

8 Width of PZT patch,                                       w 0.0254 m 

9 Thickness of PZT patch,                                 h 2.54×10  m 

 

 

 

Fig. 2.8� Variation of actuator impedance with frequency. (a) Real part vs. frequency; (b) Imaginary 

part vs. frequency; (c) Absolute value of impedance vs. frequency 

 

2.5� PZT-Structure Interaction 

Fig. 2.9 shows a single degree of freedom (SDOF) system driven by a PZT patch, 

with parameters as listed in Table 2.1. The system has mass m=2 kg, damping 
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constant c=125.7 N·s/m (damping ratio ξ
d
 = 0.01) and stiffness k=1.974×10

7

 N/m. 

This SDOF system has a natural frequency (undamped) which equals to 500 Hz. 

Its complex mechanical impedance, Z=x+yj (x = real part and y = imaginary part) 

can be determined using Eq. (2.10). The conductance and susceptance plots for 

this system will be those given by Eq. (2.31) divided by a factor of 2 (since only 

one half of the patch has been considered here).  

 

Fig. 2.9� A PZT patch coupled to a spring-mass-damper system 

 

The structural parameters, c, k and m can be altered individually: c increased 

by 20%, k reduced by 20%, and m increased by 20%, so as to simulate different 

types of “damages” in the system. Figs. 2.10(a) and (b) respectively show the plots 

of conductance (G) and susceptance (B) for the pristine state as well as for the 

various damage states. Figs. 2.10(c) and (d) respectively show the real part (x, x
a
) 

and the imaginary part (y, y
a
) of the mechanical impedances of the structure and 

the PZT patch. Fig. 2.10(e) shows the variation of the absolute mechanical 

impedance, |Z| of the structure and |Z
a
| of the PZT patch. 

It can be observed from Fig. 2.10(a) that the G-plot for the pristine state 

exhibits a peak at the frequency 593 Hz. At this point, it can also be observed from 

Fig. 2.10(d) that a special condition “y = –y
a
” occurs, i.e., the imaginary components 

of the mechanical impedance of the host-structure and of the patch counteract each 

other. At 593 Hz, the imaginary part of (Z+Z
a
) in Eq. (2.31) vanishes and thus 

G-plot exhibits a peak. 

Furthermore, any variation in the structural parameters viz. k, c or m (i.e., any 

“damage” inflicted on the host structure) causes detectable changes in the G-plot 

as well as in the B-plot. Whereas any reduction in k or any increase of m manifests 

itself as a leftward shift of the peaks of the G-plot and B-plot, any increase in “c” 

reflects as a suppression of the peak response. Increase in c also leads to marginal 

increase in the peak frequency, though hardly discernible from the figures. It 

should be noted that the absolute value of Z (Fig. 2.10(e)), is of comparable 

magnitude to that of Z
a
 in the frequency range under consideration.  
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Fig. 2.10� Signatures for SDOF: m=2.0 kg, k=1.974×10  N/m, c=125.7 N·s/m. (a) Conductance 

vs. frequency; (b) Susceptance vs. frequency; (c) Real impedance vs. frequency (pristine); 

(d) Imaginary impedance vs. frequency (pristine); (e) Absolute impedance vs. frequency 

 

It should also be noted that the peak of the G-plot occurs at a frequency higher 

than the structural resonant frequency (500 Hz). This shifting of “system natural 

frequency” from 500 Hz to 593 Hz is due to the additional stiffness and mass 

contributed by the PZT transducer, since the dynamic stiffness of the PZT patch 

(or the mechanical impedance) is comparable to that of the structure. 

Consider another SDOF system driven by the same PZT patch, with the 

following parameters: m=200 kg, c=12,566.4 N·s/m (damping ratio, ξ
d
 =0.01) and 

k=1.974×10
9

 N/m. This system also exhibits a resonant frequency of 500 Hz. The 

interaction plots for this case are shown in Fig. 2.11. Fig. 2.11(e) demonstrates that 

the magnitude of the structural impedance is much higher than that of the PZT 
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patch. However, Fig. 2.11(d) shows the condition y=–y
a
 does occur at a frequency 

almost equal to 500 Hz. Since the magnitude of y exhibits a large fluctuation 

compared with y
a
, the condition y= –y

a
 occurs at a frequency only slightly higher 

than the resonant frequency of the system (500 Hz). It is at this frequency that the 

G-plot exhibits a sharp peak (Fig. 2.11(a)). 

 

Fig. 2.11� Signatures for SDOF: m=200 kg, k=1.974×10  N/m, c=12,566.4 N·s/m; (a) Conductance 

vs. frequency; (b) Susceptance vs. frequency; (c) Real impedance vs. frequency (pristine); (d) Imaginary 

impedance vs. frequency (pristine); (e) Absolute impedance vs. frequency 

 

For all practical purposes, the system natural frequency is equal to that of the 

host structure because of the negligible additional stiffening effect caused by the 

PZT patch (note from Fig. 2.11(e) that |Z| > |Z
a
|). This is highly desirable in real-

world applications so that the peak of the G-plot can accurately signify the 
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resonant frequency of the structure.  

The effect of variation in the structural parameters (due to damage) on the  

G-plot and B-plot is also shown in the figure. The variations in the G-plot caused 

by the damages (Fig. 2.11(a)), are of a similar nature to the first case study. 

Conversely, the imaginary part B (Fig. 2.11(b)), is largely insensitive to damages. 

This is because the excessive capacitive contribution of the PZT patch 

camouflages the structural impact on the signatures. 

By rearranging the various terms, Eq. (2.31) can be rewritten as:  
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From this equation, it can be observed that whereas the first part depends 

solely on the parameters of the PZT patch, the second part depends partly on the 

structural parameters and partly on the parameters of the PZT patch. Furthermore, 

Part II represents the EM coupling between the structure and the PZT patch (since 

both Z and Z
a
 appear in the expression of Part II). Hence, Eq. (2.39) can be written 

as: 

AP
YYY +=                                                (2.40) 

where 
P

Y denotes the PZT contribution and 
A

Y  represents the contribution arising 

from the PZT-structure interaction. 
A

Y can be termed the “active” component 

since it represents the coupling between the structure and the patch. Also, it is 

sensitive (or responsive) to any damage to the structure (any change in Z) in the 

vicinity of the patch. On the contrary, 
P

Y  can be regarded as the ‘passive’ 

component since it is not affected by any damage in the vicinity of the patch. 
P

Y  

can be decomposed into real and imaginary parts by expanding )j1(
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EE η+= and substituting in Part I of Eq. (2.39), which results in  
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or  
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Part I Part II 
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where G
P
 and B

P
 are the real and the imaginary components of 

P
Y . B

P
 has a large 

magnitude (comparable to B) whereas G
P
 has a small magnitude, due to the 

presence of δ and η, which are of very small order of magnitude (Table 2.1). In 

the measured susceptance signature, B
P
 camouflages the active component, 

which is why the raw-susceptance signature is traditionally not considered suitable 

for SHM. 

Early investigations employed the raw conductance signatures directly for 

SHM/NDE. The susceptance signature has been deemed redundant, considering 

the high contribution arising out of the patch (Sun et al., 1995). However, as the 

PZT parameters are known, the contribution can be filtered off. From Eq. (2.40), 

)j()j(
PPPA

BGBGYYY +−+=−=                         (2.43) 

or  

j)()(
PPA

BBGGY −+−=                                 (2.44) 

Thus, the active conductance G
A
 and the active susceptance B

A
 can be 

determined as 

G
A
 = G – G

P
                                          (2.45) 

and 

        B
A
 = B – B

P
                                          (2.46) 

Fig. 2.12 shows the plot of B
A
 for the SDOF system of Fig. 2.11. On comparison 

with Fig. 2.11(b), it can be observed that the plots have changed significantly 

after the removal of the PZT patch’s passive contribution. Raw-susceptance (Fig. 

2.11(b)), hardly reflects any information regarding the structure but after 

filtering the passive component (Fig. 2.12), it reflects the structural characteristics 

as prominently as the real component. Previously, the B-plot was unable to 

capture any damage; however the plot of B
A
 exhibits identifiable response to 

damages. Hence, the active components are more realistic representations of 

structural behavior. Also, signature decomposition can facilitate the utilization 

of the imaginary part. It is possible to derive useful information from the 

susceptance signature, which could be utilized for improved structural 

identification as well as SHM/NDE. 
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Fig. 2.12� Active-susceptance plot for SDOF system of Fig. 2.11 

2.6� Practical Aspects of EMI Technique 

In the EMI technique, the same PZT patch usually has to serve both actuating and 

sensing functions.  It should therefore be sufficiently stiff in addition to being 

sensitive. Fig. 2.13 shows a typical, commercially available PZT patch suitable for 

this particular application (PI Ceramic, 2003). The characteristic feature of the 

patch is that the electrode from the bottom edge is wrapped around the thickness, 

so that both the electrodes are available on one side of the PZT patch, while the 

other side is bonded to the host structure. PZT patches of sizes ranging from 5 to 

15 mm and thicknesses of 0.1 to 0.3 mm are best suited for most structural 

materials such as steel and reinforced concrete (RC). Such thin patches usually 

have a thickness resonance frequency in the order of a few MHz. Therefore, the 

frequency response signature in the kHz frequency range is characteristic of the 

structure only. 

  

Fig. 2.13� A typical commercially available PZT patch 
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As far as the operating frequency range is concerned, it must be maintained in 

hundreds of kHz so that the wavelength of the resulting stress waves is smaller 

than the typical size of defects to be detected (Giurgiutiu and Rogers, 1997). 

Typically, for such high frequencies, the generated stress waves have a wavelength 

as small as a few mm. Contrary to the large wavelength stress waves generated in 

low frequency vibration techniques, these are substantially attenuated by the 

occurrence of any incipient damages (such as cracks) in the local vicinity of the 

PZT patch. Sun et al. (1995) recommended that a frequency band containing 

major vibrational modes of the structure (i.e., a large number of peaks in the 

signature; Fig. 2.1b) serves as a suitable range. Larger number of peaks signifies 

greater dynamic interaction between the structure and the PZT patch. Park et al. 

(2003) recommended a frequency range from 30 to 400 kHz for PZT patches 5 to 

15 mm in size. According to Park et al, a higher frequency range (>200 kHz) is 

favorable in localizing the sensing range, while a lower frequency range (<70 kHz) 

covers a larger sensing area. Furthermore, frequency ranges higher than 500 kHz 

are found to be unfavorable since they render the sensing region of the PZT patch 

too small, with the result that the signature shows adverse sensitivity to patch’s 

own bonding condition rather than to any damage to the monitored structure. It 

should also be noted that the piezo-impedance transducers do not behave well at 

frequencies less than 5 kHz. Below 1 kHz, the EMI technique is not recommended 

(Giurgiutiu and Zagrai, 2002).  

As impedance transducers, the PZT patches have a localized sensing zone of 

influence. This is because, vibrating at high frequencies, the patch excites ultrasonic 

modes of vibration of the structure which are essentially local in nature. In 

addition, damping is much more significant at high ultrasonic frequencies, leading 

to localization of the waves generated by the vibrating PZT patch. Esteban (1996) 

carried out extensive numerical modeling based on wave propagation theory, and 

conducted comprehensive parametric studies to identify the sensing zone of the 

piezo-impedance transducers. At such high frequencies, exact quantification of 

energy dissipation proved very difficult and the sensing zone could not be exactly 

identified. However, it was found that this zone depends on the material of the 

host structure, its geometry, excitation frequency and the presence of structural 

discontinuities. It was concluded that structural discontinuities acting as the 

sources of multiple reflections cause maximum attenuation to the propagating 

waves. Thereafter, based on experimental data from a large number of case studies, 

Park et al. (2000a) claimed that the sensing radius of a typical PZT patch might 

vary from 0.4m on composite reinforced structures to about 2m on simple metal 

beams. Naidu (2004) reported the sensing range to be greater than 1m in his 

experiments on thin aluminum beams. Therefore, for effective damage localization, 

in general, the structures must be instrumented with an array of PZT patches. 

Owing to a localized sensing region, the technique shares a rare ability to detect 

damages without being affected by the far field boundary conditions, external 

loading or normal operating conditions. However, this advantage comes at the cost 
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of a limited sensing area. More details on PZT sensing region are covered in Chapter 7. 

The conductance signatures of piezo-impedance transducers have been found 

to be temperature sensitive. Therefore, in real situations, the effects of damage and 

temperature are bound to mix. This necessitates a method to decouple the two. 

Fortunately, over a small frequency band, the overall effect of temperature has 

been observed to be a superposition of uniform horizontal and vertical translations 

of the signature. This is entirely different from the signature deviation resulting 

from damage, which causes an abrupt local variation in the signature. It was 

observed by Pardo De Vera and Guemes (1997) that the horizontal shift is non-

uniform and depends on frequency. However, if the frequency band is narrow, it 

can be assumed to be uniform.  

Park et al. (1999) proposed a statistical cross-correlation-based method for 

temperature compensation. Bhalla (2001) studied temperature effects using finite 

element simulation. It was found that the major effects of temperature on the 

signatures are the horizontal shift due to change in the host material’s Young’s 

modulus, and the vertical shift due to variations in ε
33

 and d
31

 of the PZT patch 

resulting from temperature change. All the shifts were found to vary linearly with 

temperature over narrow frequency bands. Of these, the most prominent is the 

vertical shift due to change in ε
33.

 A simple temperature compensation method was 

proposed which required the acquisition of baseline signatures at two different 

temperatures. These facilitated determination of the average horizontal/ vertical 

shifts caused by unit temperature change. To apply the proposed approach in a 

real-life scenario, a two-step method was suggested: 

(1) Transform the current signature to a temperature of the baseline signature 

(if the two are different), through vertical/ horizontal shifts. 

(2) Compare the transformed current signature with that of the undamaged structure. 

More details on temperature effect and other practical issues are presented in 

Chapter 7.  

Most low-frequency vibration-based SHM/ NDE techniques for real structures 

are likely to encounter the presence of noise. The noise could be (a) mechanical 

noise caused by sources such as vehicle movement or wind; (b) electrical noise 

generated by variations in the power supply; or (c) electromagnetic noise caused 

by communication waves which affect the signal acquisition and transmission 

through cables and other susceptible circuitry (Samman and Biswas, 1994a). With 

this background, the greatest benefit of the high frequency EMI technique is that 

the signal (in a few hundred kHz frequency range) is not likely to be affected by 

mechanical noise, since this type of noise is dominant in the low-frequency ranges 

(typically less than 100 Hz). Park et al. (2000a) demonstrated that the EMI 

technique is indeed insensitive to distant boundary condition changes, distant mass 

loading and arbitrary ambient inputs to the structure. This is very important, 

especially for the monitoring of aircrafts or bridges, while in service. However, it 

should be noted that care must be exercised in applying the EMI technique on 

structures which are instrumented with ultrasonic transducers for purposes of NDE. 
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The high frequency excitations from these transducers could generate high 

frequency noise for the EMI technique: be sure to turn them off before applying 

the EMI technique.  

Electrical noise is not crucial in the EMI technique either, since the power 

required by each PZT patch is in the low milli-watt range which does not call for 

the deployment of high-power generating sets. Rather, it makes possible the 

development of battery operated sensors (Park, 2000). The only possible noise 

could be electromagnetic noise, which can be minimized by using coaxial cables. 

Another source of error could be the parasitic electrical admittance of the 

connection wires. It can be accounted for by performing zero-correction in the 

impedance analyzer, prior to taking measurements. However, it could be 

problematic for large arrays where each PZT patch may have a different wire-

length. It is recommended that the same set of connection wire be used for 

recording both the baseline signature as well as the signature at any future point of 

time, so that the residual admittance (if not properly accounted for in the zero 

correction) is the same in both cases. Thus, the change in signature, if any, will be 

due to structural damage alone. It should also be noted that extensive experimental 

study by Raju (1998) found that the technique can still work satisfactorily inspite 

of variable test wire-lengths. 

Since the EMI technique is essentially acousto-ultrasonic in nature, the number 

of sensors needed depends upon the geometry and material of the component to be 

monitored. The number of sensors required for thin beams and plates is small 

because acoustic waves can easily travel long distances through such material 

medium. However, in complex structures with holes, notches, discontinuities and 

thickness variations, a large number of sensors may be required because of greater 

losses due to energy dissipation. Also, the same would be true for materials such 

as composites or concrete, which are characterized by high material damping. In 

such scenarios, it is important to have multi-sensor architecture with built-in 

redundancy for tolerating the failure of one or more sensors without rendering the 

entire system ineffective (Boller, 2002). Additionally, it is important to consider 

issues like sensor validation, data pre-processing, feature extraction and pattern 

recognition.  

Suitable locations for bonding the patches can be easily determined from the 

geometry and loading conditions, by preliminary structural analysis, to which the 

structure is likely to be subjected during the course of its service. It is recommended 

to locate the patches at the points of maximum bending moments and shear, which 

can be ascertained by the theory of structures (Soh et al., 2000). It should be 

mentioned here that, given an array of PZT patches, it can either be excited in self-

impedance fashion (the EMI technique) or transfer impedance fashion (Esteban, 

1996). In the transfer function method, one PZT patch acts as an actuator and 

emits acoustic signals into the structure. The signals are picked up by another 

patch acting as a sensor. The main advantage of the transfer impedance approach 

is that it provides a greater sensing range and therefore reduces the number of 

sensors required. Furthermore, it also enables determination of the mechanical 

properties of the monitored component. The impedance analyzer can be easily 
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utilized for the transfer impedance approach too. However, the “gain” levels 

attained in the transfer impedance approach are much smaller since the waves 

have to travel longer distances, as well as encounter higher noise (Park et al., 

2003).  Increasing the excitation level could help overcome this problem, allowing 

the two techniques to supplement each other since the same sensor array can be 

utilized for both the techniques. 

2.7� Signal Processing Techniques and Conventional Damage 

Quantification 

The prominent effects of structural damages on the conductance signatures are the 

appearance of new peaks in the signatures and lateral and vertical shifting of the 

peaks, which are the main damage indicators. Samman and Biswas (1994a, b) 

reported several pattern recognition techniques to quantify the variations occurring 

in the structural signatures caused by damages, such as the waveform chain code 

(WCC) technique, signature assurance criteria (SAC), the equivalent level of 

degradation system (ELODS) and adaptive template matching (ATM). Similar 

statistical techniques were employed in early research studies on the EMI technique 

e.g., the root mean square deviation (RMSD) (Giurgiutiu and Rogers, 1998), relative 

deviation (RD) (Sun et al., 1995; Ayres et al., 1998), the difference of transfer function 

between damaged and undamaged conditions (Pardo de Vera and Guemes, 1997) 

and the mean absolute percentage deviation (MAPD) (Naidu, 2004). 

Giurgiutiu et al. (1999) defined the RMSD index as: 
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 measurement point and 
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the corresponding pre-damage value. Similarly, RD is based on the sum of mean 

square algorithm, normalized with respect to an arbitrarily chosen maximum amount 

of damage, and is defined for the i
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where the numerator represents the mean square deviation at the i
th

 location and 

the denominator represents the deviation for the chosen reference maximum 

damage location “1”.  

The MAPD index is defined by Naidu (2004) as: 
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The covariance (Cov) and correlation coefficient (CC) are respectively defined as: 
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where σ
0
 and σ

1
 are, respectively, the standard deviations of the baseline signature 

and the signature after damage. 
0

G and 
1

G  are, respectively, the mean values of 

the baseline signature and the signature after damage.  

Of all the statistical indices, RMSD is the one most widely employed  by 

researchers. Although the statistical methods are easy to implement, their main 

drawback is that they do not provide any clear picture of the associated damage 

mechanism or any change in the mechanical parameters of the structure under 

question. The indices defined above are typically the so-called non-parametric 

statistical damage indices. These do not have any relation with the absolute 

structural parameters as they merely measure the deviation from the baseline 

signature. It is assumed therefore that the greater the damage extent, the greater 

the resulting damage index. However, in many situations, incipient damage and 

high order damage may lead to an RMSD index of the same order of magnitude. 

As such, the particular “threshold value” demanding an alarm could vary from 

structure to structure (Soh et al., 2000). In such situations, reliance on the slope of 

the RMSD curve rather than its absolute magnitude may be employed. However, 

this may also not work in all situations, as evident from the practical experience of 

the authors. The need for better indices was highlighted by Giurgiutiu et al. (2002), 

who remarked that further work was required to systematically investigate the 

most appropriate damage metric that can be used for processing frequency spectra 

successfully. In addition, all these statistical approaches only focused on the real 

part (conductance) of the admittance signature, ignoring the information carried 

by the imaginary part. 



2.8 Major Technological Developments During the Last One and a Half Decades 41 

Chapter 4 of this book considers the work done by the authors towards rational 

parametric damage quantification, based on the mechanical impedance of the 

structure rather than the raw signatures.  

2.8� Major Technological Developments During the Last One 

and a Half Decades 

From its inception, several research groups across the world have been working in 

the field of the EMI technique, engaging in both theoretical and hardware issues. 

This section summarizes the major developments and contributions in this field.  

The EMI technique resulted from the concerted efforts of Liang and co-

workers at the Virginia Polytechnic Institute and State University during the early 

1990s. Liang et al. (1994) proposed the first 1D analytical model for the coupled 

electro-mechanical phenomenon associated with the EMI technique. Later, Zhou 

et al. (1996) followed and extended the formulation to 2D case. 

Application of the EMI technique for SHM on a lab-sized truss-structure was 

first reported by Sun et al. (1995). This study was then extended to a large-scale 

prototype truss-joint by Ayres et al. (1998).  

Lopes et al. (1999) trained neural networks using statistical damage quantifiers 

(area under the conductance curve, root mean square (RMS) of the curve, RMSD 

between damaged and undamaged curves, and CC) based on experimental data 

from a bolted joint structure. The trained neural networks were found to be able to 

successfully locate and quantify the damages inflicted on the test-structure in 

different experiments.  

Park et al. (2000a) reported proof-of-concept extension of the EMI technique 

on civil-structural components such as composite reinforced masonry walls, steel 

bridge joints and pipe joints. The technique was found to be very tolerant to 

mechanical noise and also to small temperature fluctuations. Park (2000) further 

extended the EMI technique to high temperature components (typically >500
o

C), 

such as steam pipes and boilers in power plants. Additionally, he formulated a 

statistical cross-correlation-based method for temperature compensation. 

Soh et al. (2000) established the damage detection and localization ability of 

piezo-impedance transducers on real-life RC structures. They did this by successfully 

monitoring a 5m span RC bridge during its destructive load testing (Fig. 2.14). 

This is the first ever reported demonstration of the EMI technique on a RC structure.  
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Fig. 2.14� Health monitoring of RC bridge using EMI technique (Soh et al., 2000). (a) The 

instrumented 5 m RC bridge; (b) Shifts of conductance signatures of a few of the instrumented 

PZT patches 

 

Park et al. (2000b) integrated the EMI technique with wave propagation 

modeling for thin beams (1D structures) under “free-free” boundary conditions, 

utilizing the axial modes. The conventional statistical indices of the EMI 

technique were used for locating the damages in the frequency range 70 – 90 kHz. 

The damage severity was determined by spectral finite element-based wave 

propagation approach, in the frequency range 10 – 40 kHz. However, this 

combination necessitated the use of some additional hardware and sensors, such as 

accelerometers, which are not accurate at ultrasonic frequencies.  

Post-2000, numerous papers were published in leading journals demonstrating 

successful extension of the technique on sophisticated structural components such 

as re-strengthened concrete members (Saffi and Sayyah, 2001) and jet engine 

components under high temperature conditions (Winston et al., 2001). Inman et al. 
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(2001) utilized the same PZT patch for health monitoring as well as vibration 

control. Until this time, the main focus of research was on investigating the 

potential of the EMI technique on a particular type of component, with few works 

devoted to the aspects of modeling or parametric damage quantification. 

Abe et al. (2002) proposed a new stress monitoring technique for thin 

structural elements (such as strings, bars and plates) by applying wave propagation 

theory to the EMI measurement data in the moderate frequency range (1 – 10 kHz). 

They used the fact that a tension T increases the natural frequency of a thin bar 

from ω
o
 to ω

1
, as given by  

( )
α
αωωω 00

1

+= T

                                    (2.52) 

where )/( AEI ρα = (E is Young’s modulus; I is moment of inertia; ρ is density; 

and A is cross-sectional area). Abe et al. (2002) demonstrated that lower 

frequencies increase under tension, from which the tension in the element could be 

estimated using Eq. (2.52). This made it possible for the application of the EMI 

technique on load monitoring as well as damage detection. Owing to localized 

wave propagation, the technique is insensitive to the boundary conditions and can 

make accurate stress identification. However, the suitable frequency band for this 

application is very narrow, and generally difficult to identify. In addition, the 

results reported were not accurate for 2D components. 

Giurgiutiu et al. (2002) combined the EMI technique with a wave propagation 

approach for crack detection in aircraft components. While the EMI technique was 

employed for near-field damage detection, the guided ultrasonic wave propagation 

technique (pulse echo) was used for far-field damage detection. 

Conventionally, the EMI technique employs an impedance analyzer (or LCR 

meter) which typically costs between $20,000 to $41,000, and is thus beyond the 

budget of small- and medium-sized companies. Peairs et al. (2004) proposed a low 

cost electrical admittance measurement technique based on an FFT analyzer 

(which typically costs about $10,000) in place of the impedance analyzer. Fig. 

2.15 shows the electrical circuit employed by Peairs et al. It essentially consists of 

a small resistance (<200 Ω), connected in series with the PZT patch bonded to the 

structure to be monitored. Upon applying an input voltage 
i

V  across the combination 

through the FFT analyzer, the electric current I flows through the circuit, as given 

by  

R

V

I
o=                                                      (2.53) 

where 
o

V  is the output voltage across the sensing resistor R, fed into the 
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measurement channel of the FFT analyzer. Taking into consideration that the 

electrical impedance of the PZT patch is very large as compared with the resistor 

R, the coupled EM admittance Y  of the bonded patch can be approximated as: 

i

o

i
VR

V

V

I

Y =≈                                                 (2.54) 

 

Fig. 2.15� Circuit employed by Peairs et al. (2004) 

 

The measurement of the phase difference between 
o

V  and 
i

V  enables the 

determination of the real and imaginary components, G and B of Y . This 

measurement approach is much more cost-effective than the conventional impedance 

analyzer-based approach. However, it involves fast Fourier transformation (FFT) 

of the time domain data, unlike the steady state measurements of an LCR meter/ 

impedance analyzer. Therefore, it faces bandwidth restrictions and could not be 

relied upon for frequencies greater than 100 kHz.  

Bhalla and Soh (2004a, b) introduced a new 2D PZT-structure electro-elastic 

interaction model based on the concept of “effective impedance”. The proposed 

model, is not only simpler than that of Zhou et al. (1996), but can be employed to 

extract the mechanical impedance of any unknown structure, enabling parametric 

damage quantification. The model was further extended to include shear lag 

effects introduced by the finitely thick adhesive bond layer (Bhalla and Soh, 

2004c), strength and damage prediction of concrete (Soh and Bhalla, 2005), and 

damage assessment of rock (Yang et al. 2007).  More details on this model are 

covered in Chapters 3 and 4 of this book. 

Xu et al. (2004) focused on quantification of damage, i.e., identification of 

damage location and intensity, by integrating the EMI technique with hybrid 

evolutionary programming. Low-frequency range (<30 kHz) was preferred since 

repeated structural analysis was required during the back calculation procedure in 

the evolutionary programming. Annamdas and Soh (2007) extended the 2D EMI 

model to 3D case, which is particularly useful for embedded PZT transducers. Hu 

and Yang (2007) developed a wave propagation model to determine the sensing 
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region of PZT transducers. Their theoretical and experimental works showed that 

the sensing region of the PZT transducers could be between 2.5 to 3.0 m in 

metallic materials and 0.4 m to 0.5 m in concrete material. More details on these 

works are covered in Chapters 3, 4 and 7.  

Overly et al. (2008) made major hardware progress in the development of a 

miniaturized wireless sensor node using a low-cost integrated circuit chip that 

could measure and record the electrical impedance of the PZT patch, a 

microcontroller which could perform local computing, and a telemetry with 

wireless signal transmission, as illustrated in Fig. 2.16. However, their 

measurement from the sensor node differed several times in magnitude from the 

measurements of the impedance analyzer. 

 

Fig. 2.16� Wireless impedance device developed by Overly et al. (2008); reproduced with 

permission from IOP and Dr. G. Park of LANL 

 

Recently, Bhalla et al. (2009) proposed an ultra-low-cost adaptation of Peair’s 

approach, using the set-up illustrated in Fig. 2.17. A combination of function 

generator and digital multimeter replaced the FFT analyzer. Together, the cost of 

the minimum hardware was reduced to about $2,500 only. 

 

Fig. 2.17� Circuit for self impedance approach (Bhalla et al., 2009) 
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2.9� Advantages of EMI Technique 

The major advantages of the EMI technique over the prevalent global and local 

SHM techniques are summarized below: 

(1) The EMI technique shows far greater damage sensitivity than the 

conventional global techniques. Typically, the sensitivity is of the order of the 

local ultrasonic techniques (Park et al., 2003). Yet the technique is very 

straightforward to implement on large structures. It does not warrant expensive 

hardware like the ultrasonic techniques nor any probe to be physically moved 

from one location to another. The data acquisition is much more simplified as 

compared to the traditional accelerometer-shaker combination used in the global 

vibration techniques, since the measurement made is directly in the frequency 

domain. Thus, the EMI technique provides an appropriate interface between the 

global vibration based techniques and the local ultrasonic techniques. 

(2) The PZT patches are bonded non-intrusively on the structure, and they 

possess negligible weight and demand low power consumption. Small and non-

intrusive sensors can monitor the inaccessible locations of the structures and their 

components. Therefore, this could save time and effort involved in dismantling the 

machines and structural components for inspection purposes. Easy installation (no 

sub-surface installation) makes the piezo-impedance transducers equally suitable 

for existing as well as to-be-built structures. 

(3) The use of the same transducer for actuating as well as sensing saves the 

number of transducers and associated wiring.  

(4) The limited sensing area of the PZT patch helps in isolating changes due to 

far-field variations such as boundary conditions and normal operational vibrations. 

Also, multiple damages in different areas can be detected easily. 

(5) The technique is virtually immune to mechanical, electrical and electro-

magnetic noise. This makes the technique suitable for implementation during 

operating conditions, such as in-flight aircrafts. 

(6) The PZT patches are commercially available at very low costs, typically $1 

to $10, in contrast to the conventional force balance accelerometers which may be 

as expensive as $1,000 and at the same time bulky and narrow-banded.  

(7) The technique is very favorable for autonomous and online implementation 

since the requirements for data processing are minimal. 

(8) The technique can be implemented at any time in the life of a structure. For 

example, the PZT patches can be installed on structures after an earthquake to 

monitor growing cracks or loosening connections. Other SHM techniques might 

warrant installation of the sensors at the time of construction and hence are not 

suitable for existing structures. However, it should be noted that the PZT patches 

would only be able to detect any structural damages appearing in the post-

installation period. Thus, they cannot detect “pre-existing” damages in the 

structures. 

(9) Being non-model based, the technique can be easily applied to complex 

structures. 



2.10� Limitations of EMI Technique 47 

(10) The PZT patches are orders of magnitude lower in stiffness and mass as 

compared with the monitored structures. Therefore, the dynamics of the host-

structure are not modified and accurate structural identification is possible. 

(11) PZT sensors are non-resonant devices with wide-band capabilities and 

exhibit a large range of linearity, fast response, light weight, high-conversion 

efficiency and long-term stability 

Clearly, therefore, the EMI technique has emerged as a universal SHM/ NDE 

method, applicable to almost all engineering materials and structures. If the 

damage location could be predicted in advance (i.e., where to expect damage), the 

EMI technique would be the most powerful technique in such applications (Park et 

al., 2003).  

2.10� Limitations of EMI Technique 

In spite of the many advantages over other techniques, the EMI technique has the 

below limitations: 

(1) The PZT patch is only sensitive to structural damages over a relatively 

small sensing zone, depending on the material and geometrical configuration. 

Though sufficient for monitoring miniature components and mechanical/ 

aerospace systems, the small sensing zone warrants the deployment of several 

thousands of PZT patches for real-time monitoring of large infrastructures, such as 

bridges or high-rise buildings. Hence, critical locations must be judiciously 

decided based on the theory of structures. 

(2) Since all civil and mechanical structures are statically indeterminate, 

cracking of a few joints may not necessarily affect the overall safety and stability 

of the monitored structure. Thus, a drawback of the EMI technique compared with 

global SHM techniques is its inability to assess overall structural stability. In this 

respect, global SHM techniques and the EMI techniques should complement each 

other, as will be illustrated in Chapter 6.  
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Exercise 2.1 

Fig. Ex 2.1 shows a 2D steel structure. The PZT patch is assumed to be 10 mm 

long and 0.2 mm thick, and extends along the width of the host structure. Assume 

the patch to possess the properties listed in Table 2.1. Model the structure using 

any commercial finite element solution package. Obtain the mechanical 

impedance by computing the drive point harmonic velocity corresponding to a 
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finite harmonic actuating force (e.g., 1 N), using the dynamic harmonic finite 

element method (FEM). Use the MATLAB program listed in Appendix A to 

obtain G and B in the frequency range of 100 to 200 kHz at an interval of 1 kHz. 

Consider the Rayleigh damping coefficients α = 0.001 and β = 2×10
–8

. Draw 

figures similar to Figs. 2.10 and 2.11.  

What are the new observations as compared with the SDOF system? What are 

the similarities or differences between the plots of x (real part of Z) and G, and y 

(imaginary part of Z) and B? 

NOTE: Take advantage of symmetry, and only model one half of the structure. 

 

Fig. Ex 2.1 
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3.1� Introduction 

This chapter reviews the sequential evolution of PZT-structure interaction models 

starting from 1D models, followed by 2D and 3D PZT-structure electro-

mechanical formulations. In all these models, impedance is defined as 1D, 2D and 

3D equations depending on the nature of host structure to be monitored, size of 

PZT patch and adhesive layer. In addition, direct use of coupled field element in 

conjunction with finite element method (FEM) is covered.  

3.2� Early PZT-Structure Interaction Models 

PZT-structure interactions were first modeled using the static approach. This 

approach, proposed by Crawley and de Luis (1987), assumes the PZT transducer 

to exert a frequency-independent force on the host structure. The PZT patch is 

assumed to be a thin bar (length l, width w and thickness h), under static 

equilibrium with the structure, which is represented by its static stiffness K
S
, as 

illustrated in Fig. 3.1. The actuation force can be determined from static 

equilibrium and strain compatibility between the transducer and the structure. In 



3� Impedance Models for Structural Health Monitoring Using Piezo-

Impedance Transducers 

54 

this configuration, owing to the static condition, the imaginary component of the 

complex terms in the PZT constitutive relations (Eqs. (2.11) and (2.12)) can be 

dropped. Hence, the axial force in the PZT patch can be expressed as 

E

P
YEdSwhwhTF )(

33111
−==                               (3.1) 

 

Fig. 3.1� Modeling of PZT-structure interaction by static approach 

 

Similarly, the axial force in the structure can be determined as 

1
lSKuKF

SSS
−=−=                                      (3.2) 

The negative sign indicates that a positive displacement u causes a compressive 

force in the spring (the host structure). Force equilibrium in the system implies 

that F
P
 and F

S
 should be equal, which leads to the equilibrium strain, S

eq
, given by 
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Hence, from Eq. (3.2), the magnitude of the force in the PZT (or the structure) 

can be expressed as 
eqSeq

lSKF = . In order to determine the response of the 

system under an alternating electric field, the static approach simply recommends 

that a dynamic force with amplitude 
eqSeq

lSKF =  be applied to the host structure, 

irrespective of the frequency of actuation.  

Since the static approach only employs the static PZT properties, the effects of 

damping and inertia, which significantly affect the PZT output characteristics, are 

completely ignored. Because of these reasons, the static approach leads to 

significant errors, especially near the resonant frequency of the structure or PZT 

patch (Liang et al., 1993; Fairweather, 1998). 

In order to alleviate this inaccuracy, the impedance approach was proposed by 

Liang et al. (1993), based on dynamic equilibrium rather than static equilibrium, 

which rigorously includes the dynamic PZT properties and structural stiffness. In 
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this approach, the host structure is represented by structural impedance Z, rather 

than a pure spring, as depicted in Fig. 2.4. The force-displacement relationship for 

the structure (Eq. (3.3)) is replaced by an impedance-based force-velocity 

relationship (Eq. (2.20)). Furthermore, instead of the actuator’s static stiffness, the 

impedance approach considered actuator impedance Z
a
, similar in principle to the 

structural impedance. The impedance model-based electro-mechanical formulation 

for 1D structures has already been presented in Chapter 2 (Eq. (2.31)). Although 

the formulation of Liang et al. is more accurate than the static approach, they 

ignored the 2D or higher order effects associated with PZT vibrations. Therefore, 

their formulation is valid for skeletal structures only; for other structures where 2D 

coupling is significant, Liang’s model might introduce serious errors. 

To address this problem, Zhou et al. (1995, 1996) extended Liang’s 1D 

impedance approach to model the interactions of a generic PZT element coupled 

to a 2D host structure. The analytical model of Zhou et al. is schematically shown 

in Fig. 3.2. The structural impedance is represented by direct impedances Z
xx

 and 

Z
yy

, and the cross impedances by Z
xy

 and Z
yx

, which are related to the planar forces 

F
1
 and F

2
 (in directions 1 and 2 respectively) and the corresponding planar 

velocities 
1
u�  and 

2
u�  by 
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Fig. 3.2� Modeling PZT-structure 2D physical coupling by impedance approach (adapted from 

(Zhou et al., 1995), with permission from SAGE Publications) 

 

Applying D’Alembert’s principle along the two principal axes and after 

imposing the boundary conditions, Zhou et al. (1995) derived the following 

expression for the electro-mechanical admittance across PZT terminals: 
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where κ, the 2D wave number, is given by  

E

Y

)1(
2νρωκ −=                                           (3.6) 

and N is  a 2×2 matrix, given by 
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where Z
axx

 and Z
ayy

 are the two components of the mechanical impedance of the 

PZT patch in the two principal directions, derived using similar 1D impedance 

approach (Liang et al., 1994) and expressed in Eq. (2.25). 

Although the analytical derivations of Eqs. (3.4) – (3.7) are accurate by 

themselves, practical difficulties prohibit their direct application for extraction of a 

host structure’s mechanical impedance. For example, using the EMI technique, 

only two quantities—G (conductance) and B (susceptance) can be measured. For 

complete information about the structure, Eq. (3.5) needs to be solved for 4 

complex unknowns—Z
xx

, Z
yy

, Z
xy

, Z
yx

 (or 8 real unknowns). Thus, the system of 

equations is highly indeterminate (8 unknowns with only 2 equations). As such, 

the model could not be employed for experimental determination of drive point 

mechanical impedance. 

To alleviate the shortcomings inherent in the existing models, Bhalla and Soh 

(2004a) introduced the concept of “effective impedance”. The next section provides 

the theory and step-by-step derivation of plane-stress-based electromechanical 

admittance across the PZT terminals. This formulation aimed to bridge the gap 

between the 1D model of Liang et al. (1993) and the 2D model of Zhou et al. 

(1995).  

3.3� 2D Effective Mechanical Impedance 

Conventionally, the mechanical impedance at a point on the structure is defined as 

the ratio of the driving harmonic force (acting on the structure at the point in 

question) to the resulting harmonic velocity at that point. The existing impedance 

models are based on this definition where the points considered are the end points 

of the PZT patch. The corresponding impedance is called the “drive point 

mechanical impedance”. However, the mechanical interaction between the patch 

and the host structure is not restricted to the end points alone; rather, it extends 
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over two principal directions along the length and width of the PZT patch. 

Bhalla and Soh (2004a) therefore introduced a new definition of mechanical 

impedance based on “effective velocity” rather than “drive point velocity”. In their 

derivations, it is assumed that the force transmission between the PZT patch and 

the host structure occurs along the entire boundary of the patch, and that plane-

stress conditions exist within the patch. In addition, the patch is assumed to be 

square-shaped and infinitesimally small as compared with the host structure, so as 

to possess negligible mass and stiffness. Opposite edges of the patch therefore 

encounter equal dynamic stiffness from the structure, irrespective of the location 

of the patch on the host structure. Hence, the nodal lines invariably coincide with 

the two axes of symmetry of the PZT patch. At the same time, the effects of the 

patch’s vibrations in the thickness direction are ignored, assuming the frequency 

range of interest to be much lower than the dominant modes of thickness vibration. 

In Fig. 3.3, a finite-sized square PZT patch, surface bonded to an unknown host 

structure is subjected to a spatially uniform electric field E
3
 along axis 3 

⎟
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0
33
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E
, undergoing harmonic variations with time. The patch has half-

length equals to “l
 

”. Its interaction with the structure is represented in the form of 

boundary traction “f ” per unit length, varying harmonically with time.  

 

Fig. 3.3� A PZT patch bonded to an “unknown” host structure 

 

This planar force causes planar deformations in the PZT patch, leading to 

variations in its overall area. The “effecive mechanical impedance” of the patch is 

hereby defined as:  

                                         (3.8) 
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where nˆ  is a unit vector normal to the boundary and “F
 

” represents the overall 

planar force (or effective force) causing area deformation in the PZT patch. u
eff

 = 

δA/p
o
 is defined as “effective displacement”, where δA is the change in surface 

area of the patch and p
o
 its perimeter in the undeformed condition. More precisely, 

p
o
 is equal to the summation of the lengths of “active boundaries”, i.e., the 

boundaries undergoing mechanical interaction with the host structure. Differentiation 

with respect to time of effective displacement yields the effective velocity, 
eff

u� . It 

should be noted that in order to ensure overall force equilibrium, 

 

                                                (3.9) 

The effective drive point (EDP) impedance of the host structure can also be 

defined along similar lines. However, for determining structural impedance, forces 

need to be applied on the surface of the host structure (without the patch) along 

the boundary of the proposed location of the PZT patch. 

3.4� 2D Formulation Based on Effective Impedance 

In Fig 3.4, a square PZT patch is shown, under in-plane excitation by a spatially 

uniform electric field, which varies harmonically at an angular frequency ω. Since 

the nodal lines coincide with the axes of symmetry, it suffices to consider the 

interactions of one quarter of the patch with the corresponding one quarter of host 

structure, as it is only the ratio of the two mechanical impedances (Eq. (2.31)) that 

governs the electrical admittance across the terminals of the PZT patch. 

 

Fig. 3.4� A square PZT patch under 2D interaction with host structure 
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Let the PZT patch be mechanically and piezo-electrically isotropic in the xy 

plane. Hence, 
EEE

YYY ==
2211

 and 
3231

dd = . Therefore, the PZT constitutive 

relations (Eqs. (1.1) and (1.2)) can be reduced to  

)(
21313333

TTdED

T ++= ε                                      (3.10) 

331

21

1
Ed

Y

TT

S

E

+−= ν
                                         (3.11) 

331

12

2
Ed

Y

TT

S

E

+−= ν
                                         (3.12) 

where ν  is the Poisson’s ratio of the PZT patch. By algebraic manipulation, 
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If the PZT patch is in short-circuited condition (i.e. zero electric field), Eq. 

(3.13) can be reduced to 
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As derived by Zhou et al. (1996), the displacements of the PZT patch in the 

two principal directions are given by 
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where the wave number κ is given by Eq. (3.6), and A
1
 and A

2
 are constants to be 

determined from the boundary conditions. The corresponding velocities can be 

obtained by differentiating these equations with respect to time. Hence, 
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Similarly, corresponding strains can be obtained by differentiation with respect 

to x and y, that is, 
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From Fig. 3.4, the effective displacement of the PZT patch, considering 
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displacements at the active boundaries of one-quarter of the patch (the boundaries 

along the nodal axes are “inactive” boundaries), can be deduced as:  
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where u
1o

 and u
2o

 are the edge displacements (Fig. 3.4). Differentiating with 

respect to time, the effective velocity can be obtained as:  
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From Eqs. (3.8) and (3.19), we can obtain the short-circuited effective mechanical 

impedance of the quarter PZT patch as: 
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Making use of Eq. (3.14), we obtain 
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Substituting the values of the velocities and strains (Eqs. (3.16) and (3.17) 

respectively) at the two active edges of the PZT patch, and upon solving, we obtain 
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The overall planar force (or the effective force), F, is related to the EDP 

impedance of the host structure by 

                                     (3.23) 

As in the 1D case, the negative sign signifies that a positive effective displacement 

causes compressive force on the patch (due to reaction from the host structure). 

Since a square patch is being considered here, Eq. (3.23) can be simplified as:  
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Making use of Eq. (3.13), we obtain 
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Substituting the expressions for (
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2
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 and (S
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 from Eqs. (3.16) and 

(3.17) respectively, and with E
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The electric displacement (or the charge density) over the surface of the PZT 

patch can then be determined from Eq. (3.10). Substituting Eq. (3.13) into Eq. 

(3.10) and with E
3
 = (V

o
/h)e

jωt
, we get 
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The instantaneous electric current (the time rate of change of charge) can be 

derived as 
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Substituting D
3
 from Eq. (3.27) and S

1
 and S

2
 from Eq. (3.17), and integrating 

from –l to +l with respect to both x and y, we obtain 
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where 
t

o

VV

ωj
e=

 

is the instantaneous voltage across the PZT patch. Thus, the 

complex electro-mechanical admittance of the PZT patch is given by 
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which is the desired coupling equation for a square PZT patch. It should be noted 

that a factor of four is introduced in the final expression since l represents half-



3� Impedance Models for Structural Health Monitoring Using Piezo-

Impedance Transducers 

62 

length of the patch. In the previous models (1D – Liang et al., 1994 and 2D –

 Zhou et al., 1996), only one half and one quarter of the PZT patch respectively 

(from the nodal point to the end of the patch) were considered as the generic 

elements (See Fig. 3.2). The governing equations in those models (such as Eq. 

(3.5)) correspond to one-half and one-quarter of the patch only. 

The main advantage of the effective impedance approach introduced here is 

that a single complex term for Z
s,eff

 accounts for the 2D interactions of the PZT 

patch with the host structure. This makes the equation simple enough to be utilized 

for extracting the mechanical impedance of the structure from Y , which can be 

measured at any desired frequency using commercially available impedance 

analyzers/LCR meters. The related computational procedure is presented in the 

next chapter. 

3.5� Experimental Verification 

3.5.1� Details of Experimental Set-up 

Fig. 3.5 shows the experimental test set-up used to verify the effective impedance-

based electro-mechanical formulations. The test structure was an aluminum block, 

48 mm×48 mm×10 mm in size, conforming to grade Al 6061-T6. Table 3.1 lists 

the major physical properties of Al 6061-T6. The test block was bonded to a much 

larger, stiffer base plate to simulate fixed-base support. The test block was instrumented 

with a PZT patch, 10 mm×10 mm×0.3 mm in size, conforming to grade PIC 151 

(PI Ceramic, 2006). Table 3.2 lists the key properties of PIC 151. The patch was 

bonded to the host structure using RS 850 – 940 epoxy adhesive (RS Components, 

2003), and was wired to a HP 4192A impedance analyzer (Hewlett Packard, 1996) 

via a 3499B multiplexer module (Agilent Technologies, 2003). In this manner, the 

electro-mechanical admittance signatures, consisting of the real part (G) and the 

imaginary part (B), were acquired in the frequency range 0 – 200 kHz. 

 

Fig. 3.5� Experimental set-up to verify effective impedance-based electro-mechanical formulations 
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Table 3.1� Physical Properties of Al 6061-T6 

Physical parameter Value 

Density (kg/m ) 2,715 

Young’s modulus, Y  (N/m ) 68.95×10

Poisson ratio 0.33

 

Table 3.2� Key properties of PZT patch (PI Ceramic, 2006) 

Physical parameter Value 

Density (kg/m ) 7,800 

Electric permittivity, ε  (Farad/m) 2.124×10

Piezoelectric strain coefficient, d  (m/V) –2.10×10

Young’s modulus, Y  (N/m ) 6.667×10

Dielectric loss factor, δ  0.015 

3.5.2� Determination of Structural EDP Impedance by FEM 

Before using Eq. (3.30) to derive the theoretical signatures for comparison with 

the experimental signatures, we need to evaluate the effective mechanical 

impedance of the PZT patch (Z
a,eff

) as well as the EDP impedance of the structure 

(Z
s,eff

). Though a closed-form expression has been derived for Z
a,eff

 (Eq. (3.22)), it 

is not possible to derive such a closed-form expression for Z
s,eff

, especially for 

complex structural systems characterized by non-trivial 3D geometries. This holds 

true for most real-life structures and systems where NDE is of prime importance. 

Therefore, a numerical approach based on 3D dynamic finite-element analysis was 

used to determine the EDP impedance of the host structure. The main strength of 

the FEM lies in its ability to accurately model complex shapes and boundaries. It 

should be noted that FEM was solely employed for verifying the new impedance 

formulations derived above. In actual application of the formulations for SHM, no 

numerical analysis is required, as will be illustrated in the next chapter.  

The excitation of this system by a harmonic electric field is a typical case of 

linear steady-state forced vibrations. Investigations by Makkonen et al. (2001) 

showed that reasonably accurate results can be obtained for dynamic harmonic 

problems by FEM, even for frequencies in the GHz range, if there is an 

appropriate degree of mesh refinement. In FEM, the physical domain (such as the 

aluminum block) is discretized into elementary volumes called elements. Fig. 3.6 

shows the finitely discretized volume of the aluminum block. Owing to symmetry 

about the x and y axes, it suffices to perform computations using only one 

quadrant of the actual structure. Appropriate boundary conditions were imposed on 

the planes of symmetry, i.e., the x and the y components of displacements were set 

to zero on the yz and the zx planes of symmetry respectively. In addition, the 

displacements at the bottom of the block were set to zero to simulate bonding with 

the base plate. The finite-element meshing was carried out using the preprocessor 

tool of ANSYS (ANSYS, 2004), with 1.0 mm sized linear 3D brick elements 
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(solid 45), possessing three degrees of freedom (DOFs) at each node. Since the 

stiffness and damping of the PZT patch were separately lumped in the term Z
a,eff

 

(Eqs. (3.22) and (3.30)), the PZT element need not be included in the finite 

element mesh.  

 

Fig. 3.6� Finite element model of one-quarter of test structure 

 

In general, for a forced harmonic structural excitation, as in the present case, 

the Galerkin finite element discretization of the 3D domain leads to 

][]][[]][[]][[ FuKuCuM =++ ���                                   (3.31) 

where [K] is the stiffness matrix, [M] the mass matrix, [C] the damping matrix, 

][F the force vector and ][u the displacement vector (the bar above a quantity 

indicates the quantity to be complex in nature).  

The continuous field quantities, i.e., the mechanical displacements, are 

approximated in each element through linear sums of the interpolation functions 

or shape functions (linear in the present case). The natural boundary conditions are 

included in the load vector, and the essential boundary conditions are imposed by 

adjusting the load vector and the stiffness matrix (Bathe, 1996). The simplest 

approach to determine the structural EDP impedance is to apply an arbitrary 

harmonic force (at the desired frequency) on the surface of the structure (along the 

boundary of the PZT patch), perform dynamic harmonic analysis by FEM, and 

obtain the complex displacement response at those points. The applied mechanical 

load can be expressed as  

t

FFF

ωj
21

e]j[][ +=                                    (3.32) 

The resulting displacements, which are also harmonic functions of time (at the 
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same frequency as the loads) can be similarly expressed as  

t

juuu
ωj

21
e][][ +=                                        (3.33) 

Substituting Eqs. (3.32) and (3.33) into Eq. (3.31), and noting that ][j][ uu ω=�

 

and ][][
2

uu ω−=�� , we obtain  

{ ][][j][
2

MCK ωω −+ } ]j[]j[
2121

FFuu +=+                  (3.34) 

which can be written in a form similar to the static analysis as 

][]*][[ FuA =                                            (3.35) 

The only difference from the static case is that all the terms are complex. Eq. 

(3.35) can be decomposed into two coupled equations involving real numbers only, 

and written as 
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This set of equations can be solved to obtain the displacement components 

][
1
u  and ][

2
u . This solution method is called the full solution method. The 

reduced solution method is another approach, but is not as accurate as the full 

solution method. It should be noted that computing the frequency response 

requires solution of the FEM equations at each desired frequency throughout the 

range of interest. 

If the boundary of the PZT patch consists of N equal divisions on each 

adjacent edge (N = 5 in the present case, as shown in Fig. 3.6), the effective 

displacement can be obtained as 

o

eff

p

A

u

δ=                                                  (3.37) 

Substituting the expressions for δA and p
o
, we get 
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Rewrite Eq. (3.38) as 

)(

2

1

,, yeffxeffeff
uuu +=                                   (3.39) 

where 
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Furthermore, by splitting the real and the imaginary terms, we can 

alternatively write, 

)j(

2

1

,, ieffreffeff
uuu +=                                     (3.42) 

The structural EDP impedance can then be obtained from Eq. (3.8), noting 

that .j
effeff

uu ω=�  If a uniformly distributed planar force, with an effective 

magnitude j
ir
FFF +=  is applied, from Eqs. (3.8) and (3.42), the structural EDP 

impedance can be derived as: 
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The computations can be simplified by applying a pure real force (F
i
 = 0), in 

which case, the effective impedance will be given by 
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This procedure enables the determination of structural EDP impedance using 

any commercial FEM software, without any adjustment or warranting the 

inclusion of electric degrees of freedom in the finite element model.  
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3.5.3� Modeling of Structural Damping 

In most commercial FEM software, the damping matrix is determined from the 

stiffness and mass matrices as:  

][][][ KMC βα +=                                             (3.45) 

where α is the mass-damping factor and β the stiffness-damping factor. This type 

of damping is called Rayleigh damping. Further simplification can be achieved by 

defining damping as a function of stiffness alone, that is  

⎟

⎠

⎞

⎜

⎝

⎛=
ω
η

][C [K]                                               (3.46) 

Then, after substituting in Eq. (3.34), this simplification renders the stiffness 

matrix complex, as given by  

])[j1(][ KK η+=                                             (3.47) 

where η is called the mechanical loss factor of the material. Its equivalent 

Rayleigh damping coefficients are α = 0 and ωηβ /= . This type of damping is 

frequency independent. The present analysis considered α = 0 and β = 3×10
–9

, resulting 

in η ≈ 0.002 on an average for the frequency range considered (0 – 200 kHz). 

3.5.4� Wavelength Analysis and Convergence Test 

In dynamic harmonic problems, to obtain accurate results, a sufficient number of 

nodal points (3 to 5) per half wavelength should be present in the finite element 

mesh. In order to ensure this requirement, modal analysis was additionally 

performed on the model (Fig. 3.6). The frequency range 0 – 200 kHz was found to 

contain a total of 24 modes. The modal frequencies are listed in Table 3.3, computed 

for four different element sizes – 2 mm, 1.5 mm, 1 mm and 0.8 mm. The table 

shows that good convergence of the modal frequencies is achieved at an element 

size of 1 mm (the element size used in the present analysis). Thus, reasonably 

accurate results are expected from the present analysis using FEM. In addition, 

Figs. 3.7(a), 3.7(b) and 3.7(c) show the plots of the displacements u
x
, u

y
 and u

z
, 

respectively for the 24
th

 mode (the highest excited mode), over the top surface of 

the block (z = 10 mm). Also, the displacements in the three principal directions are 

plotted for the edge AB (Fig. 3.6) to illustrate that there are sufficient numbers of 

nodes per half wavelength, to ensure accuracy of the analysis. 
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Fig. 3.7� Examination of mode 24 to check adequacy of mesh size of 1 mm. (a) Displacements 

in x direction on surface z = 10 mm; (b) Displacements in y direction on surface z = 

10 mm; (c) Displacements in z direction on surface z = 10 mm; (d) Displacements in principal 

directions along the line defined by the intersection of surfaces y = 24 mm and z = 10 mm (see 

Fig. 3.6) 
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Table 3.3� Details of modes of vibration of test structure 

Modal frequency (kHz) 

Mode 

2 mm 1.5 mm 1 mm 0.8 mm 

Description of mode 

1 81.710 81.480 81.320 81.256 Thickness shear (diagonal) 

2 89.354 89.105 88.944 88.884 Face shear 

3 90.991 90.765 90.610 90.547 Thickness shear (diagonal) 

4 106.667 106.335 106.101 106.016 Face shear + flexure 

5 123.847 123.125 124.623 124.464 Thickness flexure 

6 139.579 138.916 138.521 138.367 Bending about diagonal 

7 139.910 139.227 138.845 138.691 Bending about diagonal + rotation 

8 142.425 141.406 140.745 140.525 Thickness flexure 

9 146.653 143.852 143.420 143.249 Flexure 

10 148.645 148.017 147.624 147.484 Flexure 

11 150.387 149.511 149.000 148.801 Flexure 

12 156.807 153.576 154.882 154.623 Flexure 

13 157.744 156.706 156.119 153.905 Flexure + thickness extension 

14 163.482 164.333 163.660 163.417 Flexure 

15 168.217 166.960 166.207 163.941 Flexure 

16 176.823 174.370 172.701 172.186 Thickness flexure 

17 181.411 180.035 179.145 178.841 Flexure 

18 183.001 181.943 181.222 180.984 Flexure 

19 183.590 183.573 182.242 181.808 Flexure 

20 191.910 189.760 188.364 187.902 Flexure 

21 192.133 190.116 188.776 188.345 Flexure 

22 193.335 193.208 191.869 191.424 Flexure 

23 196.805 194.432 192.986 192.519 Flexure 

24 200.887 199.026 197.845 197.457 Flexure 

 

3.5.5� Comparison between Theoretical and Experimental Signatures 

After computing the structural EDP impedance by FEM, the admittance functions 

were derived using Eq. (3.30). The values of 
T

33
ε  and δ for the PZT patch were 

determined experimentally. The Poisson’s ratio of the patch was assumed to be 0.3. 

The MATLAB program (The MathWorks Inc., 2009) listed in Appendix B was 

used to perform the computations. Fig. 3.8 shows a comparison between the 

experimental and theoretical signatures, based on the proposed approach as well as 

the model of Zhou et al. (1995). The predictions by the proposed method are very 

close to that of Zhou’s model. However, these formulations are much easier to 

apply than Zhou’s as is evident from the highly complex nature of their governing 

equations (Eqs. (3.5) – (3.7). Furthermore, the effective impedance model facilitates 

the solution of inverse problems (such as obtaining the structural mechanical 

impedance from the measured signatures, which will be shown in the next 

chapter). 
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Fig. 3.8� Comparison between experimental and theoretical signatures. (a) Conductance 

plot; (b) Susceptance plot 

 

A good agreement clearly exists between the experimental and the theoretical 

plots of the real part- conductance, predicted by the proposed model (Fig. 3.8(a)). 

Major peaks are reasonably well predicted, though the experimental spectrum 

contains a few unpredicted peaks (mainly due to edge roughness and the inability 

of FEM to accurately model solid-air interactions at the boundaries). However, in 

the susceptance-plots (Fig. 3.8(b)), a large discrepancy is clearly evident, especially 

the difference in slopes of the curves. This discrepancy is attributed to the 

deviation of PZT behavior from the ideal behavior predicted by Eq. (3.22). In 

addition, several parameters of the PZT patch could deviate from the values 

provided by the manufacturer. Fortunately, the admittance signatures of the PZT 

patch in “free-free” condition were recorded prior to bonding it on the structure. 

Hence, it was possible to investigate the behavior of the free PZT patch and use 

this information to obtain more accurate plots. The next section describes the 

investigations in detail. 

3.6� Refining the 2D Impedance Model 

The properties of piezoceramics are strongly dependent upon the process route, 

and they exhibit statistical fluctuations within a given batch (Giurgiutiu and Zagrai, 
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2000). The fluctuations are caused by inhomogeneous chemical composition, 

mechanical differences in the forming process, chemical modification during 

sintering and the polarization method (Sensor Technology Ltd., 1995). A variance 

of the order of 5% – 20% in properties is not uncommon. In the EMI technique, 

we solely depend upon the PZT patches to obtain the mechanical impedance 

spectra of the structures. Hence, it is very important to accurately model the 

behavior of PZT patches when using the formulations derived in the previous 

sections. For this purpose, it is recommended that the signatures of PZT patches 

be recorded in the “free-free” condition prior to their bonding to the host structure.  

From Eq. (3.30), for a free (unbonded) PZT patch, the complex electro-mechanical 

admittance can be derived (by substituting Z
s,eff

 = 0 and simplifying) as: 
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Substituting )j1( η+= EE
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(“f ” being the frequency of vibrations in Hz), and simplifying, we get 

j
ff

free BGY +=                                     (3.49) 

where 

{ }
⎥

⎥

⎦

⎤

⎢

⎢

⎣

⎡

+−
−

−= tr

Yd

h

fl

G

E

T

f
)1(

)1(

2π8

2

31

33

2

η
ν

δε                    (3.50) 

{ }
⎥

⎥

⎦

⎤

⎢

⎢

⎣

⎡

−−
−

+= tr

Yd

h

fl

B

E

T

f
η

ν
ε )1(

)1(

2π8

2

31

33

2

                    (3.51) 

Furthermore, under very low frequencies (typically < one-fifth of the first 

resonance frequency of the PZT patch), 1

tan →
l

l

κ
κ

(i.e. r→1, t→0) (Liang et al., 

1993), thereby leading to the quasi-static sensor approximations (Giurgiutiu and 

Zagrai, 2002) 
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Rearranging the various terms, Eqs. (3.52) and (3.53) can be rewritten as: 
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From Eqs. (3.54) and (3.55), the electrical constants 
T

33
ε  and δ can be 

computed as the slopes of the frequency plots of 
*

,qsf
B  (unit S/m) and 

*

,qsf
G  (unit 

S/F) for sufficiently low frequencies (typically <10 kHz for 10 mm long PZT 

patches). Fig. 3.9 shows the typical plots of these functions in the frequency range 

0 – 10 kHz for two PZT patches, labeled as S2002-5 and S2002-6. 

PZT patch S2002-5 was used as the piezo-impedance transducer in the 

experiment described in the previous section. From these plots, 
T

33
ε  is worked out 

to be 1.792×10
–8

 F/m and 1.733×10
–8

 F/m respectively for S2002-5 and S2002-6, 

against a value of 2.124×10
–8

 F/m supplied by the manufacturer. Similarly, δ
 
is 

worked out to be 0.0238 and 0.0225 respectively, against a value of 0.015 

supplied by the manufacturer. 

 

Fig. 3.9� Plots of quasi-static admittance functions of free PZT patches to obtain electric permittivity 

and dielectric loss factor. (a) B  vs. frequency; (b) G  vs. frequency 

 

Using Eqs. (3.50) and (3.51) and the above PZT parametric values, respective 

conductance and susceptance signatures of PZT patches S2002-5 and S2002-6 are 

derived in the “free-free” condition in the frequency range 1 – 1,000 kHz. These 

are then compared with the experimental free PZT signatures in Fig. 3.10. 

Although the figures suggest reasonable agreement between the analytical and 

experimental signatures, there are some underlying discrepancies which need closer 

examination. A closer look at frequency range 0 – 300 kHz (Figs. 3.10(a) and 

3.10(c)) shows an unpredicted mode at around 240 kHz. In the case of S2002-5 

(Fig. 3.10(a)), twin peaks can be observed in the experimental spectra around each 
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of the prominent resonance frequencies. A general observation is that the 

experimental resonance frequency is slightly higher than the theoretical frequency.  

The twin peaks are due to deviation, during manufacturing, in the perfect 

square shape of the PZT patch. This leads to somewhat partly-independent 

resonance peaks corresponding to the two slightly unequal edge lengths. The 

unpredicted modes in the admittance spectra are due to edge roughness induced 

secondary vibrations. Higher experimental natural frequency suggests additional 

2D stiffening, which is unaccounted for in the present model. A similar 

comparison was reported by Giurgiutiu and Zagrai (2000), but considering 1D 

vibrations only. They assumed the patch to possess widely separated values for 

length, width and thickness so that the length, width and thickness vibrations are 

practically uncoupled. Their analytical predictions only matched the experimental 

results for aspect ratios higher than 2.0. 

 

Fig. 3.10� Experimental and analytical plots of free PZT signatures. (a) S2002-5: Conductance 

(G) vs. frequency; (b) S2002-5: Susceptance (B) vs. frequency; (c) S2002-6: Conductance (G) vs. 

frequency; (d) S2002-6: Susceptance (B) vs. frequency 
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Here, the frequency range of interest is 0 – 200 kHz. The unpredicted modes 

do not come into play in this frequency range. In order to further “update” the 

model of the PZT patch, with respect to peaks, a correction factor is introduced in 

the term 

kl

kltan

. In the case of PZT patch S2002-5, where twin peaks are observed, 

this term may be replaced by 
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By trial and error, values of C
1
 = 0.94 and C

2
 = 0.883 are found to update the 

model of the PZT patch. Furthermore, the following values of the PZT parameters 

are determined from the experimental plots using the technique of curve fitting. 
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 and η = 0.03 

On the contrary, the value of K based on data supplied by the manufacturer 

worked out to be 8.4×10
–9

 NV
2

. Using these values and the correction factors C
1
 

and C
2
, the free PZT signatures were re-worked for the frequency range 0 – 200 kHz. 

Figs. 3.11(a) and 3.11(b) compare the updated signatures with the experimental 

signatures, which agree significantly with one another.  

 

Fig. 3.11� Plots of free-PZT admittance signatures using the updated PZT model. (a) S2002-5: 

Conductance (G) vs. frequency; (b) S2002-5: Susceptance (B) vs. frequency; (c) S2002-6: 

Conductance (G) vs. frequency; (d) S2002-6: Susceptance (B) vs. frequency 
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Similarly, for PZT patch S2002-6, the value of the coefficient C is computed 

as 0.885, such that the term 

kl

kltan

, when replaced by 

Ckl

Ckl)tan(

, yields good 

agreement between the experimental and analytical plots of free PZT signatures. 

Further, K is computed to be 4.63×10
–9

 N/V
2

 and η again worked out to be 0.03 by 

curve fitting. Figs. 3.11(c) and 3.11(d) compare the analytical and experimental 

plots. Again, the experimental signatures and the analytical signatures agree well 

using the updated PZT model. 

Through these adjustments in the analytical model, aided by experimental 

measurements, the results have significantly improved in the frequency range 0-

200 kHz. However, this approach is unable to yield any further improvement 

beyond 200 kHz. At the same time, unpredicted peaks, such as the one at around 

220 kHz cannot be accounted for. The later parts of this chapter will demonstrate 

how numerical modeling, especially coupled field analysis, could be of further aid 

in predicting twin peaks as well as accounting for the peak around 220 kHz.  

Considering the necessity of updating the model of the PZT patch, Eq. (3.30) 

is modified as 
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where the term T  is the complex tangent ratio (ideally 

kl

kltan

), which can be 

expressed as 
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(C
2
 = 0 in the case of single peak). Furthermore, the corrected actuator effective 

impedance (Eq. (3.22)) can be written as 
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As previously mentioned, PZT patch S2002-5 is bonded to the host structure 

shown in Fig. 3.3. The theoretical signatures for this test structure were re-worked 

using the updated PZT model (Eqs. (3.56), (3.57) and (3.58)). The MATLAB 

program listed in Appendix C was used to perform the computations. Fig. 3.12 

compares the theoretical signatures (obtained using the updated PZT model) with 

the experimental signatures. This time, a much better agreement is found between 

the two. A comparison of Figs. 3.8(b) and 3.12(b) reveals that improvement is 

especially significant in the case of the susceptance.  
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Fig. 3.12� Comparison between experimental and analytical signatures based on updated PZT 

model; (a) Conductance (G) vs. frequency; (b) Susceptance (B) vs. Frequency 

 

Fig. 3.13(a) compares the idealized and the corrected effective impedance for 

PZT patch S2002-5. The influence of twin peaks is clearly reflected in the plot of 

the updated impedance. If the idealized model of PZT patch was solely employed 

to identify the structure, significant errors could have been introduced, as clearly 

observed in Fig. 3.13(b), which shows the plot of |Z
s,eff

|
–1

. Furthermore, Fig. 3.13(c) 

shows the plots of |Z
s,eff

| and |Z
a,eff

| obtained from the measured signatures (the 

computational procedure will be explained in detail in Chapter 4.  

 

 

Fig. 3.13� (a) PZT effective impedance, based on idealized and updated models; (b) Error in 

extracted structural impedance in the absence of updated PZT model; (c) Relative magnitudes of 

structure and PZT impedances 
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It should be noted that Giurgiutiu and Zagrai (2002) also evaluated the electro-

mechanical admittance across PZT terminals using analytical and numerical methods. 

However, they could only model simple structures, such as thin beams, under 

simple boundary conditions, e.g., “free-free”. There were orders of magnitude of 

error between the experimental and analytical impedance spectra. Our formulations, 

on the other hand, are more general in nature and are valid for all types of 

structures. The agreement between the analytical and experimental results is also 

much better as compared to the previous models. Our approach is thus a semi-

analytical approach since it first uses numerical models to compute Z
s,eff

, and then 

an analytical formulation to obtain the complex electro-mechanical admittance. 

However, as already stated, numerical computation of Z
s,eff

 will not be required, as 

shall be illustrated in the next chapter. 

3.7� 3D Interaction of PZT Transducer with Host Structure 

3.7.1� Necessity of 3D Formulation 

The 2D model described in Sections 3.4 to 3.6 assumes that the PZT patch 

vibrates along the length and width only (Fig. 3.4). This limits the application of 

the 2D plane model to surface-bonded thin PZT patches as it does not consider the 

thickness vibration of the PZT, which produces longitudinal actuation that is vital 

in the thick or confined/embedded PZT patches. Thus, the 2D model has limited 

applications for laminated and concrete structures, where critical zones to be 

monitored are usually within the structure. Moreover, issues like bonding layer 

and protection using adhesive layer are additional requirements for effective PZT-

structure interaction models. Therefore, there is a need for a 3D impedance model. 

3.7.2� Issues in 1D and 2D Impedance Models 

Liang et al. (1993) developed the 1D PZT-structure impedance model utilizing 

only 1D actuation of PZT patch along the length direction. Zhou et al. (1996), 

Bhalla and Soh (2004a) and Yang et al. (2005) extended it to 2D plane stress 

models by considering the extensional actuations in the length and width 

directions of the patch. Annamdas and Soh (2006a) further extended it to a 2D 

plane-strain model by considering the extensional actuation along the length and 

the longitudinal actuation along the thickness direction of PZT patch. More 

recently, taking into consideration the limitations of existing 1D and 2D models 

such as restrictions on PZT shape, size and isotropy, Annamdas and Soh (2007) 

derived a 3D model utilizing 3D actuations of PZT transducers. 
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However, these 2D and 3D formulations do not consider the situation of 

multiple PZT patches bonded on the same host structure. In practical SHM 

problems, many PZT patches have to be used on the structure to be monitored. 

Moreover, the thin adhesive layer, which is employed to bond these PZT patches, 

does not adequately protect the patch from the environmental conditions. Thus, 

bonded PZT patches have to be further protected using protective covers or by 

wrapping adhesives. Additionally, the adhesive underneath the PZT patch plays a 

vital role in constraining the strain transfer from PZT patch to host structure and 

subsequently influences the EMI signatures. Hence, the practical applications of 

EMI technique warrant a 3D multiple PZT-structure interaction model with 

consideration of the wrapper or thick adhesive bond. 

All these are considered by Madhav and Soh (2007a) in their 3D impedance 

model, which treats both the PZT patch and the bonding adhesive as integral parts 

of the host structure. Thus, it avoids any additional compensation factors to 

counter the problem of thick adhesive bonding. Furthermore, this 3D model is 

applicable for both embedded as well as surface bonded PZT-structure interaction. 

3.7.3� Issues to Consider in 3D Impedance Model 

�� Inclusion of Adhesive Layer 

The two main factors which influence the admittance signatures are (1) external 

factors like continuous loading, presence of acid or base, magnetic field, electric 

field, humidity, rain, heat, etc., and (2) internal factors like the electrical and 

mechanical properties of the PZT patches. There are two ways of arresting these 

influencing factors; either by compensation using correction factors or by 

protecting the PZT by wrapping. PZT material is very brittle and vulnerable to 

breaking especially when embedded; thus protection (such as wrapping) for the 

PZT becomes necessary (Fig. 3.14).  

 

Fig. 3.14� Epoxy wrapped PZT patch 
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However, epoxy wrap has influence on the admittance signatures as illustrated 

in Fig. 3.15. The figure compares the conductance signatures of a free PZT patch 

(grade A PZT of size 10 mm×10 mm×2 mm) and a wrapped PZT patch (same 

PZT grade and size) under a free-free boundary condition. The properties of the 

PZT patches and the adhesive used in the study are listed in Table 3.4. It is 

apparent that the peaks are larger in magnitude for the free PZT patch than for the 

wrapped PZT patch. Moreover, the slope of the wrapped PZT patch is different 

from that of the free PZT patch due to mass effect of the wrapper on the PZT 

patch. It is essential therefore to better understand the 3D behavior of a wrapped 

PZT as the interaction is between the PZT patch and the bonding adhesive with 

the host structure instead of only between the PZT patch and the structure. 

 

Table 3.4� Properties of PZT and epoxy adhesive 

Physical property PZT Epoxy 

Density (kg/m ) 7,800 1,180 

Young’s modulus (N/m ) 6.667×10  2×10  

Poisson ratio 0.33 0.4 

Electric permittivity, ε  (Farad/m) 

Grade A: 2.124×10  

Grade B: 0.98×10  

Grade C: 1.70×10  

Piezoelectric strain coefficient in  

direction X, Y:   d  or d  (m/V) 

–2.10×10  

direction Z : d  (m/V) 4.50×10  

Dielectric loss factor, δ 

Mechanical loss factors η 

0.015 

0.023 

 

 

Fig. 3.15� Conductance signatures of “free” PZT and epoxy wrapped PZT 

 

Bhalla and Soh (2004b) presented two types of PZT-adhesive-structure 

interactions for PZT patches bonded with thicker epoxy adhesive. One is based on 
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changing “mechanical impedance Z
S
” of the structure (see Section 3.4) by 

introducing compensation for the ‘shear lag’ caused by thicker epoxy adhesive. 

The other is based on reduced or equivalent surface dimensions of PZT (L-dl, W-

dw) as shown in Fig. 3.16(a). The limitations are that Z
S
 can only be obtained for 

square and electrically-isotropic PZT patches, and that the thickness actuation is 

not included in the formulation; thus limiting its application to 2D plane stress.  

 

Fig. 3.16� PZT-structure interaction: (a) Equivalent dimensions of PZT patch; (b) Actual dimensions 

of PZT patch 

 

�� Inclusion of Mass of PZT Patch 

The previous PZT-structure interaction models have ignored the mass and 

thickness of adhesive. Even if they were considered, the applications would be 

limited to 1D or 2D. Such non-inclusion can be tolerated if the mass of a PZT 

patch is small compared with the host structure. However, several practical SHM 

involve heavy or multiple PZT patches, where the influence of mass of PZT patch 

may become significant for light structures. Cheng and Lin (2005) developed a 

multiple PZT-structure model considering the “mass” of the patches; but the 

model is limited to 2D. Hence, there exists a need for the formulation of a 3D 

model which considers both the mass of PZT patch and the adhesive layer 

(beneath the PZT) for implementation in practical applications. 

��Actual Dimensions of PZT Patch and Adhesive 

This 3D model includes the actual dimensions of the PZT patch and the adhesive 

(L, W and 2H
E
) in its formulation, without any necessity for shear lag 

compensation; where L, W and 2H are the actual dimensions of the PZT patch and 

2H
E
 is the thickness of the adhesive beneath the patch. Thus, this impedance 

model utilizes all 3D actuations of the PZT patch and includes the mass/ thickness 

of both PZT patch and adhesive. In addition, there is no restriction on the 

boundary conditions of the host structure, i.e., the model is applicable for all 

boundary conditions of the host structure. Moreover, this 3D model does not 
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impose any restriction on the shape (square or rectangular), size (thin or thick) or 

electrical properties (isotropic or anisotropic) of the PZT transducer. The model 

was then experimentally verified for two case studies with different thicknesses of 

adhesive. Therefore, the model is expected to be applicable for the NDE of most 

engineering structures as the model is generic. 

3.8� 3D Model in Presence of Thick Adhesive Bonding 

3.8.1� Impedance Formulation 

Let E
1
, E

2
 and E

3
 represent the electric fields along directions X, Y and Z for the 

3D PZT transducer shown in Fig. 3.17. The PZT patch in the presence of E
1
 and 

E
2
 produces shear actuations (d

15
, d

24
), and in the presence of E

3
 produces 

extensional actuations (d
31

, d
32

) and longitudinal actuation (d
33

) (Raja et al., 2004). 

Note that d
3j

 is the strain displacement coefficient related to the normal strain in 

the presence of E
3
, and the subscript j denotes either the direction X, Y or Z. d

15
 

and d
24

 are the strain displacement coefficients related to the shear strains  in the 

XZ and YZ planes developed due to the fields E
1
 and E

2
 respectively. However for 

EMI models, only electric field E
3
 is applied along the Z direction, thus the PZT 

patch produces extensional and longitudinal actuations but not shear actuation.  

 

Fig. 3.17� Actuations of PZT patch 

 

Fig. 3.18 depicts the multiple PZT-host structure interaction in the X, Y and Z 

directions, along the length, width and thickness of the PZT patch. Let L
s
, W

s
 and 

2H
s
 be the global dimensions of the host structure, and C

2
 (0, 0, 0) be the global 

centre or reference point of the host structure. Let L
k
, W

k
 and 2H

k
 be the local 

dimensions of the K
th

 PZT patch, and 2H
KE

 be the thickness of the adhesive 

beneath the K
th

 PZT patch. 
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The (distributed) forces are developed due to the extensional actuations along 

directions X and Y, and the longitudinal actuation along direction Z of the multiple 

PZT patches. At any instant of time, the forces developed due to the actuations 

correspond respectively to expansion in the X and Y directions, and shrinkage in 

the Z direction; and vice versa. The forces take into consideration the alternate 

signs of d
31

 (or d
32

) and d
33

, as listed in Table 3.4. Due to the opposite signs of d
31

 

(or d
32

) and d
33

, expansion of the patch in the X and Y directions is accompanied 

by shrinkage in the Z direction; and vice versa. It should be noted that expansion 

and shrinkage of PZT patches generate vibrations in the adhesive layer first 

followed by the host structure.  

 

Fig. 3.18� PZT-adhesive-structure interaction model. (a) PZT-structure interaction; (b) K  PZT 

forces 

 

The impedance of multiple PZTs-structure is given by Annamdas and Soh 

(2006b) as the sum of the linear impedances along the X, Y and Z directions, and 
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the cross impedances in the XY, YZ and XZ planes of the multiple patches. 

However, it should be noted that, in the presence of thick epoxy adhesive layers 

between the structure and the PZT patches, the collective impedance response (Z
AS

) 

of the structure and adhesive is used instead of the impedance of structure (Z
S
) 

alone. This is obtained by adding all the impedances acting on all faces, as shown 

in Fig. 3.18, which resulted in the following equation. 

132312321
222

AAAAAAAS
ZZZZZZZ −−+−+=−           (3.59) 

The negative sign indicates reaction to the applied forces. Positive and 

negative signs are in accordance with expansion along the X and Y directions and 

contraction along the Z direction, and vice versa.  

If there are N patches surface-bonded to the host structure and if only M 

(M≤ N) are excited in parallel for a desired frequency range, (Fig. 3.18(a)), only 

the M functioning PZT patches are considered in the formulation. As the mass of 

the remaining N-M patches contribute only towards the dead load at respective 

locations on the host structure, they are not considered in the formulation. 

The linear collective impedances are given by 
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where the total force due to the M functioning PZT patches on Face I is 

∑
=

=
M

K

IKI
FF

1

 and the total velocity is given by ∑
=

=
M

K

IKI
uu

1

�� . Subscript K 

represents the K
th

 PZT patch, and I represents the face number (4 sides + 1 top + 1 

bottom = 6 faces) of the PZT patch (Fig. 3.18(b)). 
IK

F  and 
IK

u�  are the single 

patch force and single patch velocity of the K
th

 PZT patch on Face I. u, v and w are 

the total relative displacements of the patches along directions X, Y and Z axes. It 

should be noted that the PZT patches exert forces on the host structure through the 

adhesive layer. 

Fig. 3.19 shows the normal stresses σ
X
, σ

Y
 and σ

Z
 acting on the K

th

 PZT patch 

along directions X, Y and Z respectively; τ
XY

, τ
YZ

 and τ
ZX

 are the shear stresses 

acting on planes XY, YZ and ZX respectively; and I
x
, I

y
 and I

z
 are the inertial forces 

of the PZT patch along directions X, Y and Z respectively. The inertial forces of 

the adhesive are not considered as it is only a passive component fixed to the 

vibrating PZT patch. C1 is taken as (0, 0, 0) in the local reference of the 

differential element.  
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Fig. 3.19� Interaction stresses and forces. (a) Schematic representation of stresses acting on a 

differential element; (b) Force excitation points of PZT patch 

 

The total patch forces acting on the faces are given as  
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The collective cross impedances due to the shear forces (or stresses) acting on 

planes XY, YZ and ZX are empirically given by 
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Substituting Eqs. (3.60a) and (3.61) into Eq. (3.59), we obtain 

)(
332211 CACACAAS

ZZZZ λλλ −+=−                              (3.62) 

where 
21

,

CC
λλ  and 

3C
λ  are the collective response factors along directions X, Y 

and Z respectively of the functioning M PZT patches, and are given as  
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Eq. (3.62) contains all the unknowns, and moreover, there is no close-form 

solution to determine the collective response factors (
1C

λ , 
2C

λ  and 
3C

λ ) and 

collective impedances (Z
A1

, Z
A2

 and Z
A3

). Therefore, a numerical method is used, 

details of which are presented later.  

Substituting Eq. (3.60) into Eq. (3.62), we get  
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where 
1
σ ,

2
σ  and 

3
σ  are the semi-analytical directional stresses (Annamdas and 

Soh, 2006b) given as:  
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3.8.2� Stress-Strain Relationship of PZT Patch Subjected to 3D 

Loading 

Consider the coordinate system shown in Fig. 3.19, the stress-strain relationship in 

terms of induced strains can be expressed as  
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where 
R

Y , R and r are the simplification parameters given as 
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Y  is the complex Young’s modulus of elasticity of the 3D PZT patch at zero 

electric field, Y is the static Young’s modulus of elasticity of the PZT material, 

and η is the mechanical loss factor. ν  is the Poisson’s ratio of the PZT patch, and 

X
ε , 

Y
ε and 

Z
ε  are the normal strains along the X, Y and Z directions. 

XY
τ ,

YZ
τ  

and 
ZX
τ are the shear stresses, and γ

XY
, γ

YZ
 and γ

XY
 are the shear strains. 

The induced strains in terms of total relative displacements are given as 
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where 
x

D =

x∂
∂

, 
y

D =

y∂
∂

 and 
z

D =

z∂
∂

. 

3.8.3� 3D Differential Equations  

Consider the differential element of the K
th

 PZT patch shown in Fig. 3.19. Let ρ  

be the mass density of the patch. The force equilibrium along directions X, Y and Z 

can be written as 

( ) ( ) ( )d d d d d d d d d

         d d d d d d 0

D x y z D y x z D z x y

y z x z x y I

σ σ τ τ τ τ

σ τ τ

+ + + + +

− − − − =
        (3.69a) 

( ) ( ) ( )d d d d d d d d d

         d d d d d d 0

D y x z D x y z D z x y

x z y z x y I
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( ) ( ) ( )d d d d d d d d d

         d d d d d d 0

D z x y D x y z D y x z

x y y z x y I

σ σ τ τ τ τ

σ τ τ
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− − − − =
       (3.69c) 
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The inertial forces I
x
, I

y
 and I

z
 are given by  

uzDyxI
ttx

dddρ= , vzDyxI
tty

dddρ=  and wzDyxI
ttz

dddρ=       (3.70) 

Eq. (3.69) can be written as: 
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Substituting Eqs. (3.66) and (3.68) into Eq. (3.71), we get     
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where 
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2

2

t

D
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∂
∂= . 

3.8.4� Solution to 3D Differential Equations 

The exact solutions for Eqs. (3.72) to (3.74) are difficult to obtain. Hence, each 

differential equation is split into two equations relating the approximated relative 

displacements (
A

u , 
A

v  and 
A

w ) of the patches instead of the total relative 

displacements (u, v and w), that is,  

AttAxxR
uDuDY ρ=}{ , 

AttAyyR
vDvDY ρ=}{  and 

AttAzzR
wDwDY ρ=}{

 

 (3.75) 

0)}()({ =+++++
AxzAxyAzzAyyAxzAxyR

wDvDuDuDrwDvDRY        (3.76a) 
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0)}()({ =+++++
AyzAzzAxxAxyAyzAxyR

wDvDvDuDrwDuDRY      (3.76b) 

and   0)}()({ =+++++
AyyAxxAyzAxzAyzAxzR

wDwDvDuDrvDuDRY       (3.76c) 

The solutions to Eq. (3.75) is in the form of a 3D wave acting along directions 

X, Y and Z, which are given as  
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                                     (3.77) 

A, B, C, D, E and F are the coefficients to be determined, and k is the wave 

number given as: 

)1(

)21)(1(

ν
ννρω

−
−+=

Y

k                                          (3.78) 

where ω  is the angular frequency of excitation. 

However, the exact total relative displacements, i.e., solutions to Eqs. (3.72) to 

(3.74) can be assumed to be in the form of approximated solutions (Eq. 3.75) as 
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where f, g and h are the unknown wave functions in space, and 
1
φ , 

2
φ and 

3
φ  are 

the unknown wave functions in space and time. The unknown wave functions can 

be approximately obtained from the first derivative of the total relative 

displacements (Eq. 3.79) with respect to space and time.  

The first derivatives of the total relative displacements with respect to space (x, 

y and z) are given as 
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The first derivatives of the total relative displacements with respect to time are 

given as: 
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(3.81) 

3.8.5� Active Part of Solution  

“Active” and “passive” are terms referring to “the part considered” and “the part 

not considered” in the formulation. They are formulated based on trial and error, 

and the closed-form solution is used in the present model (see later sections for 

verification of this model). 

There could be many possible solutions to the 3D differential equations, Eqs. 

(3.72) to (3.74), of the total relative displacements; but in this study, only one 

solution is considered. All the possible solutions, using Eq. (3.79), assume that the 

coefficients 0≠≠≠≠≠≠ FEDCBA  and the propagating waves generated by 

the applied sinusoidal electric field (along direction Z) are in the form of 3D sine 

wave patterns in space and time. It is also assumed that the solutions contain 

active and passive components, and are approximated to represent only the active 

part. Thus, the final unknown coefficients have only three coefficients A, C and E. 

After approximation, the first derivatives of the total relative displacements with 

respect to space (Eq. (3.80)) are modified as  
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Similarly, Eq. (3.81) is modified as: 
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Therefore, the unknown coefficients left to be solved are A, C and E. 

3.8.6� Stress-Strain Relationships in Presence of Electric Fields 

The stresses of the PZT patch in the presence of small electric fields along 

directions X, Y and Z are obtained by introducing electric fields and strain 

displacement coefficients into Eq. (3.66), as given by Sirohi and Chopra (2000): 
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The subscript e represents the presence of electric fields. 

The normal and shear strains are obtained using Eqs. (3.68) and (3.82): 
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However, in the present approach, the basic requirement is that all functioning 
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PZT patches are excited in parallel at a desired frequency range in the presence of 

electric field E
3
 (along direction Z) only, (Fig. 3.17 and Fig. 3.18(a)). The 

excitations produce extensional actuations along the length and width, and 

longitudinal actuation along the thickness of the patch. These actuations in turn 

produce structural responses in the form of electro-mechanical admittance 

signatures, which are the basis for damage detection in SHM. The electric field E
3
 

along direction Z for patches 1, 2, …, K and M are given in terms of applied 

voltage (V) and amplitude of voltage (V
0
) as 

K
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=  and 
t
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e=                                   (3.86) 

where the subscript K represents the K
th

  patch. 

Substituting Eq. (3.84) into Eq. (3.65), the semi-analytical directional stresses 

in the presence of an electric field can be written as 
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The unknowns A, C and E of Eqs. (3.82) and (3.83) and the unknowns
1A

Z , 

2A
Z , 

3A
Z , 

1C
λ , 

2C
λ  and 

3C
λ  of Eq. (3.62) are dependent on the host structure, 

and are determined using numerical analysis. 

3.8.7� Formulation of Structural Responses and Impedances  

Summation of the M-functioning PZT patches is used in the formulation of 

response, which would need input from numerical analysis. Let   
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Substituting Eq. (3.88) into Eq. (3.83), the rates of change of the total relative 

displacements are given as 
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Substituting Eqs. (3.60b), (3.64), and (3.85 to 3.88) into Eq. (3.60a), we obtain 

the collective linear impedances along directions X, Y and Z in the presence of an 

electric field  
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Rearranging Eq. (3.90a), one obtains 
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Let 
1
a , 

2
a , 

3
a  and 
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a be substitution variables given by 
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Substituting Eq. (3.92) into Eq. (3.91), one obtains 

4030201
aEaCaAa =++                                     (3.93) 

Similarly, the linear impedances (
2A

Z  and
3A

Z ) along directions Y and Z in 

the presence of an electric field are given as:  

4030201
bEbCbAb =++  and 

4030201
cEcCcAc =++          (3.94) 

where       
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Z
A1

 is determined using ANSYS 8.0 software, as a ratio of the sum of 

distributed load to the sum of velocities produced at the points/nodes of 

consideration (see later sections). From Eq. (3.60), F
1
 = –F

3
; therefore, the 

collective linear impedance along direction X can be expressed as 
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Further to this, Eq. (3.96) can be deduced to 
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(3.97) 

where j01......
1

+=====
MDKDD

FFF  are the unit forces applied on all the 

distributed points on Face 1 of each of the M-functioning PZT patches (Fig. 

3.19(b)). P(K) and α(K) represent the distributed points of the K

th

 PZT patch on 

Faces 1 and 3 respectively (Figs. 3.18(b) and 3.19(b)). The total number of 

distributed points on Face 1 of M-functioning PZT patches is the same as on Face 
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3, i.e. P(1) = α(1), P(2) = α(2), …, P(K) = α(K) ... P(M) = α (M). 
KD
x�  and 

KD
y�  

are the obtained velocities of the K

th

  PZT patch at the D
th

 distributed point of Face 

1 and Face 3 respectively. Similarly ∑
=

)(

1

KP

D

KD
x�  and ∑

=

)(

1

K

D

KD
y

α
� are the single patch 

velocities of the K

th

 PZT which are respectively equal to 
k

u
1

�

 

and 
k

u
3

� .  

Finally, Eq. (3.97) is reduced to 
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where ,,...,

111 K
uu �� and 

M
u
1

�  are the sum of velocities on Face 1 of PZT 1, ..., K, 

and M. Similarly ,,...,

331 K
uu �� and 

M
u
3

�  are the sum of velocities on Face 3 of 

PZT 1, ..., K, and M. 
K

F
1

is the total unit force applied (equal to single patch force) 

on Face 1 of the K
th

 PZT. Similarly, the linear impedances along direction Y (i.e., 

2A
Z  using Faces 2 and 4) and direction Z (i.e., 

3A
Z using Faces 5 and 6) are 

determined using ANSYS 
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where ,,...,

221 K
uu �� and 

M
u
2

�  are the sum of velocities on Face 2 of PZT 1, 

2,. . .K,…, and M. Similarly ,,..,

441 K
uu �� and 

M
u
4

�  are the sum of velocities on Face 

4 of PZT 1,...,K, and M. ,,..,

551 K
uu �� and 

M
u
5

�  are the sum of velocities on Face 5 

of PZT 1,…,K, and M. ,,...,

661 K
uu �� and 

M
u
6

�  are the sum of velocities on Face 6 of 

PZT 1,…,K, and M. 
K

F
2

 and
K

F
5

are the total unit forces applied on Faces 2 and 5 

of the K
th

 PZT. 

Substituting Eq. (3.98) into Eq. (3.92), Eqs. (3.99) and (3.100) into Eq. (3.95), 

and using Eqs. (3.93) and (3.94) for
0

A ,
0

C  and 
0

E  one obtains 
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The unknowns A, C and E can be obtained by substituting Eq. (3.101) into 

Eq. (3.87). 
1C

λ , 
2C

λ  and 
3C

λ  can be obtained using Z
A1

 (Eq. (3.98)), Z
A2

 (Eq. (3.99)) 

and 
3A

Z  (Eq. (3.100)) in Eq. (3.63). Therefore, all the unknowns which cannot be 

determined using the analytical equations can be determined using numerical 

analysis.  

3.8.8� EM Admittance Formulation for M-Functioning PZT Patches 

The “total” electric displacements (or “total” charge density),
3

D , (where the subscript 

3 refers to the electric field in direction Z) over the top or bottom surface of  the 

functioning PZT patches  (Fig. (3.18)) can be written as  

( )
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33
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            (3.102) 

where 
33
ε = )j1(

33
δε − is the complex electric permittivity of the PZT at zero stress, 

δ  is the dielectric loss factor, 
33
ε  is the static electric permittivity of the PZT 

patch, and ( )
K

D
3

 is the charge density of the K
th

 PZT patch. 

Eq. (3.102) is referred to as the “sensor” equation by Sirohi and Chopra (2000), 

and it serves as the basis for obtaining the admittance equation. 

Substituting Eq. (3.86) into Eq. (3.102), we obtain the charge density of the K
th

 

PZT patch as 
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where 
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2
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3

st = ( ) ][
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Substituting Eqs. (3.84) and (3.85) into Eq. (3.103a), one obtains 
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Electric current I is the rate of change of the total electric charge over the 

surface area SA (
∑∑
==

==
M

K

KK

M

K

K
WLA

11

) of the M-functioning PZT patches (Fig. 

3.18). Mathematically, it can be represented as 
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where 
3

D
�

 is the time rate of change of charge and 
K
I is the electric charge over 

the surface area 
K

A of the K
th

 PZT patch. Substituting Eq. (3.103b) into Eq. 

(3.104), one obtains the electric charge of the K
th

 PZT patch as 
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Electrical admittance (

A

Y ) is the ratio of the electric current (I) to the applied 

instantaneous voltage across the functioning PZT patches (V), which is, 
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1

. 

A

KY  is for the K
th

 PZT patch, and is obtained using 

Eqs. (3.86), (3.88) and (3.105). 
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     (3.106) 

where G and B are, respectively, the cumulative conductance and susceptance 

signatures of M-functioning PZT patches. 
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Eq. (3.106) can be simplified, depending on the dimensions of the functioning 

PZT patches. If all the functioning PZT patches are of equal dimensions, i.e., 

lengths of all patches are L, widths are W and heights are H, the final admittance 

can be written as 
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        (3.107) 

Eq. (3.107) can be further reduced for square PZT patches, i.e., where the 

lengths and widths of the patches are both equal to L, by changing W to L in the 

equation. Eq. (3.106) serves as the basis for predicting EM admittance, which is 

generic and can be used for an unlimited number of functioning PZT patches. If 

all the bonded patches are functioning, simply replace M by N (the total number of 

PZT patches). 

By changing the value of M, i.e. between 1 to N, different admittance 

signatures can be obtained for the same structure, which leads to the situation of 

multiple (m) admittance signatures. These m
p
-admittance signatures of before and 

after damage states can help to locate the damage faster than the existing single 

PZT-structure interaction models. Thus, the developed interaction model of any 

functioning PZT-adhesive-host structure for predicting admittance signatures is 

generic and can be used for different boundary conditions and types of host 

structure. There is no restriction on the thickness of adhesive and number of PZT, 

i.e., the model is applicable for cases where the PZT and adhesive are either of 

negligible or considerable mass. Furthermore, it is applicable for one-quarter or 

one-half of the PZT patch; this interesting aspect of using the model for one-

quarter of a PZT is presented in one of the case studies (see below). 

The formulations can be modified depending on the type of problems and their 

requirements, as adopted in the following case studies. 

3.8.9� Modifications of Linear Impedance Formulations for Case 

Studies 

Two cases were used to verify the model: I) Multiple PZT patches bonded to a 

host structure (one specimen) with thin epoxy layers, and II) PZT patches bonded 

one each to three different host structures (three specimens) with different epoxy 

layers, (Figs. 3.20 and 3.21). Table 3.5 lists the details of the specimens used in 

the model. 
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��  General Description 

In Case I, an aluminum plate of grade A1 6061-T6 (Table 3.1) was surface bonded 

with 4 PZT patches of grade B at locations 1 to 4 using epoxy adhesive (Table 

3.4). Three of the patches (at locations 2 to 4) were considered functioning, and 

the other (at location 1) non-functioning, i.e., acting as a dead load (Fig. 3.20(a)). 

Thus, in this case, M=3 and N=4 for one-quarter of the aluminum plate. All 

dimensions are given in Table 3.5. 

 

Table 3.5� Dimensions of epoxy, aluminum and PZT 

Cases Specimen Epoxy (mm) Aluminum (mm) PZT (mm) 

I M Negligible 525×75×2 

S-1 Negligible 

S-2 10×10×0.5 II 

S-3 10×10×1.0 

100×100×2 

10×10×0.3 

 

The whole specimen “M” was modeled with the boundary conditions shown in 

Fig. 3.21(a), i.e., the x and y components of displacements were set to zero at the 

YZ and the ZX planes respectively. In addition, at the bottom of the plate, which is 

at C2 (Figs. 3.20 and 3.21), the z component of displacement was set to zero. The 

finite-element meshing was carried out using discretized 3D brick elements (solid 

45) which possess 3 DOFs at each node with suitable meshing size for aluminum 

(1 mm×1 mm×1 mm) and PZT (1 mm×1 mm×0.3 mm). The adhesive was not 

included in the model as it was assumed to be negligible in thickness. The linear 

impedances and response factors were obtained as explained previously. The 

admittance signatures were predicted using Eq. (3.107); but the experimental 

verification for this case (specimen m) was not simple since the modeled boundary 

conditions could not be achieved. Hence, the verification was carried out using a 

4-times larger symmetric host structure bonded with 16 PZT patches, and for a 

“free-free” boundary condition (Fig. 3.20(a)). In the experiment, 12 PZT patches 

were actuated in parallel and 4 PZT patches acted as dead loads. The obtained 

experimental signatures were divided by 4 to obtain the actual experimental 

signatures for the considered specimen. 

In Case II, PZT patch of grade C (Table 3.4) was employed. The main 

difference between this case and the previous case lies in number of PZT patches 

and the specimen size. In this case only one PZT patch is considered so its mass 

effect in the formulations is ignored. However, the adhesive beneath the PZT 

patch is relatively heavier and hence adhesive mass is considered in the 

formulations. However, as explained before, depending on the number of PZT 

patches and their mass, the boundary conditions and symmetric conditions of the 

host structure, modifications were needed for the impedance and force equations 

to reduce simulation time. In this case, three identical PZT patches bonded with 

three different thicknesses of adhesive on three identical aluminum plate 

specimens were considered, i.e., one PZT on each host structure. The PZT patch 

was placed centrally on top of the adhesive at the centre of the host aluminum 

plate as shown in Fig. 3.20(b).  
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In the cases studied, the PZT patch mass was neglected, and the actuating 

forces of the PZT patch were transferred on to the top surface of the adhesive 

(Fig. 3.20). At any instant of time, the forces developed due to the actuations 

correspond respectively to expansion in the X and Y directions, and shrinkage in 

the Z direction, and vice versa. 

 

Fig. 3.20� Specimens used in case studies. (a) Case I; (b) Case II 

��Modifications of Linear Impedances and PZT Forces 

Case I: 

(a) Necessary Modifications: The impedance (Z
AS

) of the host structure bonded 

with adhesives at various locations is defined as the sum of the linear impedances 

and the cross impedances of the functioning patches (Eq. (3.60a)). However, in 

this case study, only forces acting on 5 of the 6 faces were considered (Fig. 3.20).  

It should be noted that the 6
th

 face along direction –Z was not considered 

because the PZT patches were assumed to be thinner and lighter than both the 

epoxy adhesive and the host structure. Therefore, the modified linear impedances 

(Eq. (3.60a)) are: 
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where the total force transferred on Face I, ∑
=

=
M

K

T

IK

T

I
FF

1

, and the superscript T 

represents forces transferred from the PZT patches. The total transferred velocity 

(produced as a result of transferred force) is ∑
=

=
M

K

T

IK

T

I
uu

1

�� . M represents the total 

number of PZT patches, and subscript I represents the face number (4 sides + 1 

top = 5 faces) of the PZT patch (Fig. 3.20). 
T

IK
F  and 

T

IK
u�  are the single PZT 

transferred force and single PZT transferred velocity of the K
th

 PZT patch on Face 

I. u, v and w are the total relative displacements obtained as a result of transferred 

forces along directions X, Y and Z of the PZT patches. 

The total transferred forces acting on the faces are: 

⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

−=

⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

=−=
⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

=−=

∑

∑∑

=

==

M

K

KKZ

T

M

K

KY

TT

M

K

KX

TT

LWF

HLFFHWFF

1

5

1

42

1

31
2   ,2

σ

σσ

   (3.109) 

The modifications (Eq. (3.108) and Eq. (3.109)) are valid for M-functioning 

PZT patches of negligible mass but with considerable adhesive mass. The rest of 

the formulation remains the same. Therefore, Eq. (3.107) can be used for this case. 

(b) Numerical Analysis: The numerical analysis was performed using 

ANSYS 8.0 software to obtain the linear impedances and response factors (A
o
, B

o
 

and C
o
), for use as input to the analytical Eqs. (3.96) to (3.101)), to predict the 

admittance signatures. The unit-distributed loads were applied along the three 

principal directions of the PZT patches in accordance with the extensional and 

longitudinal actuations of the patches (Figs. 3.21 (b)–(c)). The structure was then 

subjected to harmonic analysis in the frequency range of interest, which resulted 

in displacements (u, v and w) at the locations of applied unit-distributed loads. The 

displacements were used to determine the velocities jωu which were used in 

calculating the impedances (Eqs. (3.96)–(3.101)) and finally predicting the 

admittance using Eqs. (3.106) and (3.107). Note that accuracy of the model largely 

depends on the adopted suitable mesh size and boundary conditions.  

 

Case II:  

(a) Specimens: The specimens S-1, S-2 and S-3, with dimensions given in 

Table 3.5, were assumed to rest freely on foam, and therefore the boundary 

condition of “free-free” was assumed to prevail.  

As each specimen has only one PZT, i.e., M = N = 1, the modifications below 

were needed. 

(b) Necessary Modifications for Impedances: The three specimens were 

symmetric about directions X and Y, and free-free boundary conditions were 
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assumed. Because of symmetry, only one quadrant of each specimen, adhesive 

and patch was considered in the formulation (Fig. 3.20). Hence, the total 

transferred force acting on each face of the quadrant is given as 

)25.0(  and 

)2]5.0([),2]5.0([
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Forces on Faces 3 and 4 were not considered in the formulation because of the 

symmetry of the specimen. Similarly, the linear impedances (Eq. (3.108)) are 

modified as below 
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The rest of the formulation, except admittance, remains the same.  

(c) Modification of Admittance Signature: Eq. (3.107) is modified as 
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        (3.112) 

Moreover, only “one-quarter of the specimen” was modeled. Thus, Eq. (3.112) 

is further modified for 1/4
th

 of the PZT patch as 

AA

Q YY 25.0=                                           (3.113) 

where 

A

QY  is the one-quarter admittance of the considered one-quarter specimen. 

The unknowns (coefficients A
0
, C

0
 and E

0
 and the response factors) obtained 

from the numerical analysis were substituted in Eq. (3.112) to obtain 

A

QY  from Eq. 

(3.113). However, to obtain the complete admittance signature of the complete 

structure, 

A

QY  needs to be multiplied by 4.  

Additionally, for S-1, one quarter of the aluminum plate with one quarter of 

the PZT patch surface bonded (Fig. 3.20) with negligible thickness of adhesive 

was modeled (Fig. 3.21(b)). For S-2, one quarter of the plate with one quarter of 

PZT patch surface bonded with 0.5 mm thick epoxy adhesive was modeled (Fig. 

3.21(c)). Similarly for S-3, one quarter of the plate with one quarter of PZT patch 

surface bonded with 1 mm thick adhesive was modeled.  

(d) Numerical Analysis: In the numerical analysis, the host structure and the 

adhesive layer were discretized into finite elements (Figs. 3.21(b) and 3.21(c)). 

The unit-distributed patch forces were then applied on the host structure (Fig. 
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3.21(b)) and on the adhesive layer (Fig. 3.21(c)) along the three principal directions 

in accordance with the extensional and longitudinal actuations of the patches. The 

specimens were discretized into 3D brick elements (solid 45, possessing 3 DOFs 

at each node) with differential element mesh size (i.e., different sizes for different 

layers, viz., aluminum and epoxy layer). The details of the mesh sizes are given in 

Table 3.6. Fig. 3.21 shows the FE model of S-1 and S-2. The model for S-3 is the 

same as for S-2. Appropriate boundary conditions were imposed on the planes of 

symmetry for all the 3 specimens, i.e., the x and y components of displacement 

were set to zero on the YZ and ZX planes of symmetry, respectively. In addition, at 

the centre of the plate, C2 (Figs. 3.20 and 3.21), the z component of displacement 

was set to zero. If the structure is non-symmetrical, the complete structure should 

be modeled by considering appropriate boundary conditions. In order to determine 

the impedance at a particular frequency, an arbitrary harmonic force was applied 

on the edges (Figs. 3.21(a) and 3.21(b)). Using ANSYS 8.0, the dynamic 

harmonic analysis was performed and the complex displacement responses at the 

points of force application were obtained for the frequency range of 50 kHz. The 

results obtained were then used as input to the newly formulated 3D EMI model to 

determine the structural responses. Fig. 3.21(b) – (c) shows the FE mesh of host 

structure for specimens S-1 and S-2. The admittance signatures were obtained 

using Eqs. (3.110) and (3.111), and then multiplied by “4”, as the numerical model 

is a quarter of the experimental specimens. 

 

       

                                          (b)                                                                                               (c) 

Fig. 3.21� Numerical models for (a) Case I, (b) Case II: S-1 and (c) Case II: S-2 
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Table 3.6� Mesh sizes for case II 

3.8.10� Results and Discussions  

The predicted and experimentally obtained signatures are compared in Fig. 3.22, 

and the closeness of signatures is satisfied in the range considered. 

 

Fig. 3.22� Admittance signatures for Case I. (a) Conductance; (b) Susceptance 

 

In Case II, the mass of the adhesive was considered as the epoxy adhesive was 

modeled for S-2 and S-3. For S-1, the epoxy adhesive was ignored in the model 

and the PZT patch forces were directly transferred to the host structure. S-2 and 

Mesh size (mm ) 

Specimen 

Epoxy Al 

S-1 – 

S-2 1×1×0.5 

S-3 1×1×1.0 

1×1×1 
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S-3 reflected more realistic applications since, in-order to protect the PZT from 

external factors, it is important to wrap the PZT with epoxy or another adhesive 

which may be heavier than the PZT. So, in practice, the mass of the protective 

cover will be heavier than the PZT. Thus, in our model, this feature of mass 

consideration was successfully implemented. Comparisons between the predicted 

and experimental signatures for the considered frequency range (0 – 50 kHz) are 

shown in Figs. 3.23 and 3.24. It can be seen that there are around 12 peaks in the 

experimental conductance signatures (Fig. 3.23) which were successfully 

predicted by the model. Similar trends and occurrence of peaks at the same 

locations in the predicted conductance signatures prove the successful formulation 

of the 3D impedance model. Moreover, the susceptance signatures also matched 

satisfactorily. However it should be noted that unlike the 2D models, the 

satisfactory matching is not the identical replication of experimental and predicted 

signatures but predicting similar signatures to the closest possible extent. The 

dimension of the host structure in this model is much larger compared with those 

of the 2D model; therefore, exact predictions of experimental signature is difficult. 

However, there exists satisfactory agreement between the experimental and the 

predicted signatures. 

 

Fig. 3.23� Case II conductance signatures. (a) Experimental; (b) Predicted 
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Fig. 3.24� Case II susceptance signatures. (a) Experimental; (b) Predicted 

 

In specimens S-1 to S-3, the PZT patches were the same but the mass of the 

epoxy varied. Therefore, the changes in signatures of S-1 to S-3 show that the 

adhesive has to be considered. 

Consequently, in a structure, if there are N bonded PZT patches and only M 

(≤ N) are functioning, by varying M, (i.e., M=1, 2, 3, …) one can obtain different 

admittance for the same structure. This will lead to multiple admittance signatures 

which, when obtained before and after the damage states, can help to locate the 

damage faster than the existing single PZT-structure interaction models. In addition, 

the 3D impedance model of any functioning PZT-adhesive-structure for predicting 

admittance signatures is generic and can be used for different boundary conditions 

and types of host structure. There are no restrictions on the mass of PZT and 

adhesive, i.e., the model is applicable for both negligible and considerable mass of 

both PZT and adhesive. Furthermore, there is no limitation on the number of PZT 

patches. The satisfactory matching of both conductance and susceptance signatures 

of the experimental with the predicted signatures shows the reliability of the 

model, which is potentially useful in the NDE of most engineering structures. 

3.9� FE Modeling of EMI Technique Using Coupled Field Element 

3.9.1� Review on FE Modeling of PZT-Structure Interaction 

Lalande (1995) provided an insightful review of the FE modeling approaches for 



3.9 FE Modeling of EMI Technique Using Coupled Field Element 107 

the simulation of PZT-structure interactions. They could be broadly classified into 

3 categories, namely direct formulation of elements for specific application, 

utilization of a thermoelastic analogy, and the use of commercially available FE 

analysis (FEA) codes incorporated with piezoelectric element formulation. 

Lalande attempted the dynamic FEA of ring and shell structures using the 

commercially available software ANSYS 5.6. Good agreement was found 

between the FE results and results from impedance-based model. 

Fairweather (1998) developed an FEA-based impedance model for the 

prediction of structural response to induced-strain actuation. The model utilizes 

FEM to determine the host structure’s impedance. In his model, he computed the 

frequency response of a structure based on eigenvalues and mass-normalized 

eigenvectors. This operation could be performed by most commercial FE solvers. 

The simplicity of this model is reflected in the fact that modeling of the actuator 

(PZT patch) is not required as it is represented by a force or moment. The driving 

point mechanical impedance could be derived by evaluating the ratio of force to 

velocity. 

Initial applications of the above-mentioned models were mainly focused on 

relatively low frequency of excitation, typically lower than 1 kHz. The FEA-based 

impedance models were later applied to the EMI technique, which involved much 

higher frequency of excitation, in the order of tens to hundreds of kHz. Several of 

the impedance models have been discussed in the previous sections. 

Bhalla (2001) simulated a concrete FE model with damages incorporating 1D 

FEA-based impedance model. Lim (2004) showed reasonably good comparison of 

mechanical impedance between experiment and 1D FEA-based impedance model 

for aluminum beam, truss and concrete cube. Bhalla (2004) improved the model 

by incorporating 2D effective impedance. Furthermore, the FEA-based impedance 

model is a semi-analytical model incorporating the impedance-based analytical 

model into the FE model. This model makes use of the robustness of the FEM in 

modeling a complex system while retaining the simplicity of an impedance-based 

analytical model to obtain the admittance signatures from the mechanical 

impedance. 

At a low frequency of excitation, simplification of the PZT patch into a force 

or moment is normally acceptable. However, at a high frequency of excitation 

such as in the application of the EMI technique, such simplification could lead to 

considerable loss of accuracy (which will be discussed later). Liu and Giugiurtiu 

(2007) compared the real part of impedance from both the FEA-based impedance 

model (non-coupled) and coupled field FE model of a 1D narrow beam structure 

with that of the experiment. The coupled field FE model exhibited closer 

agreement with the experimental results. Madhav and Soh (2007b) presented a 

semi-analytical 3D PZT-structure interaction model incorporating the adhesive. In 

their model, the effect of the bonding layer is incorporated collectively in the 

impedance of the structure by adding additional impedance terms for the bonding 

layer. 

Makkonen et al. (2001) showed that fairly accurate results could be obtained 

for dynamic harmonic problems by FEM, up to GHz frequency range. Therefore, 
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the ability of FEM to predict the behavior of the PZT-structure interaction system 

in the EMI technique should not be questioned, provided that the simulation is 

appropriately performed. 

3.9.2� Inclusion of Induced Strain Actuator in FE Model 

There are several commercially available software packages offering piezoelectric 

analysis which allow modeling of the PZT-structure interaction to include the 

induced strain actuator (PZT patch). An example is ANSYS version 8.1, which the 

authors found to be very useful. 

In ANSYS version 8.1, piezoelectric analysis comes under the category of 

coupled field analysis which considers the interaction or coupling between two or 

more disciplines of engineering (ANSYS, 2004). The piezoelectric analysis caters 

for the interaction between structural and electric fields, and static, modal, 

harmonic and transient analyses could be performed. Other coupled field analyses 

include thermal-stress, fluid-structure, magnetic-thermal, magneto-structural and 

MEMS. 

Coupled field analysis derives solutions to problems not possible with the 

usual FEM, by simplifying the modeling of coupled-field problems. However, this 

leads to other problems such as increased wavefront, inefficient matrix 

reformulation and large storage requirements. 

Piezoelectric analysis makes use of the direct coupling method, which 

involves just one analysis with the use of one coupled-field element containing all 

necessary DOFs. The FE formulation used for developing the matrix equations is 

the strong coupling method (ANSYS, 2004): 
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where X
1
 and X

2
 are two different types of DOF. The coupled effect is taken into 

account by the off-diagonal sub-matrices [K
12

] and [K
21

]. Using this method, 

coupled response could be obtained after one iteration. 

With the linear electromechanical constitutive equations incorporated into the 

general equation of motion for a forced structural system, the FE discretization 

can be performed by establishing nodal solution variables and element shape 

functions over an element domain, in which the solution could be approximated. 

With the application of variational principle and FE discretization, the coupled FE 

matrix for one element model can be expressed as: 
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in which {V} is the vector of nodal electric potential where the dot above variables 

denotes time derivative, {L} is the vector of nodal, surface and body charges, [K
z

] 

is the piezoelectric coupling matrix and [K
d

] is the dielectric conductivity. 

This formulation is convenient for evaluating admittance signatures as it is 

measured by the impedance analyzer in the EMI technique. The complex 

admittance signature, which is the ratio of electric current to voltage, can be 

expressed as: 

V

I

Y =                                                  (3.116) 

where V is the voltage applied by impedance analyzer and I  is the modulated 

current, with the bars above variables indicating complex terms. 

The complete modeling technique which includes the PZT patch and preferably, 

the bonding layer, should yield a more accurate result, especially at high 

frequency of excitation. Moreover, the outcome acquired, which is the electric 

current, can be directly compared with the admittance signature from the EMI 

technique. This obviates the difficulty of converting the mechanical impedance 

into electrical admittance through the impedance-based electromechanical 

coupling equation as required in the FEA-based impedance model. 

3.9.3� Comparison of FE Model with Existing Impedance-Based 

Analytical Model and Experimental Tests 

��FE Modeling of Freely Suspended PZT Patch 

In order to better understand piezoelectric analysis, modeling of a freely suspended 

PZT patch was first performed without the presence of the host structure. In our 

study, 3D modeling was performed using both Solid 5 and Solid 226 elements 

available in ANSYS 8.1. Solid 5 element is a coupled field solid with eight nodes 

and up to six DOFs at each node. Solid 226, on the other hand, has 20 nodes with 

up to four DOFs per node. 

A freely suspended PZT patch with size 10 mm×10 mm×0.3 mm was modeled 

as depicted schematically in Fig. 3.25. The material properties used are tabulated 

in Table 3.7. An alternating (sinusoidal) voltage of 1 volt was applied across the 

patch for excitation along the Z direction. Owing to symmetry of both the 

geometrical shapes and loadings, only one-quarter of the patch was modeled. The 

interfacial nodes along the YZ plane were restrained in the X direction and those 

along the ZX plane were restrained in the Y direction (Fig. 3.25).  

 

 



3� Impedance Models for Structural Health Monitoring Using Piezo-

Impedance Transducers 

110 

Table 3.7� Piezoelectric properties of PIC 151 (PI Ceramics, 2006). 

Parameters Symbols Values Unit 

Density Ρ 7800 kg/m  

Dielectric loss factor tanδ 0.02 — 

s  15.0 

s  = s  19.0 

s  = s  –4.50 

s  = s  –5.70 

s  = s  –5.70 

s  = s  39.0 

Compliance 

s  49.4 

10  m /N 

T

11
ε  1.75 

T

22
ε  1.75 

Electric permittivity 

T

33
ε  

2.12 

10  F/m 

d  –2.10 

d  –2.10 

d  5.00 

d  5.80 

Piezoelectric strain coefficients 

d  5.80 

10  m/V 

or 

10  C/N 

 

 

Fig. 3.25� Isometric view of one-quarter of PZT patch modeled in ANSYS 8.1 workspace 
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Convergence of the solutions was tested in two ways. First, as recommended 

by Makkonen et al. (2001) to ensure sufficient accuracy, the size of the element 

should typically lie between three to five nodal points (i.e., two or three elements) 

per half wavelength for harmonic analysis. In this case, with a mesh size of 

0.2 mm as the smallest element size achievable within the available computing 

facility, the maximum frequency allowable was estimated to be approximately 610 

kHz. In addition, convergence was also tested by performing several analyses with 

reduced element sizes for each analysis.  

Convergence was reached at Solid 5 element size 0.2 mm and Solid 226 

element size 0.5 mm, even at very high frequency (such as resonance peak near to 

800 kHz), (Fig. 3.26). Thus, it was deduced that element size of 0.5 mm using 

Solid 5 element would be sufficiently fine for the modeling of PZT-structure 

interaction in the EMI technique, which normally would not exceed 200 kHz. 

 

 

Fig. 3.26� Admittance signatures vs. frequency plot for numerically simulated PZT patch with 

different element sizes. (a) Conductance signatures; (b) Susceptance signatures 
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��1D and 2D Analytical Model for Free-Ended PZT Patch 

An analytical model of the free-ended PZT patch can be conveniently obtained by 

setting the mechanical impedance of the host structure to zero in the impedance-

based electromechanical coupling equations. For the 1D free PZT patch model, the 

impedance-based electromechanical coupling equation (Liang et al., 1994) can be 

reduced (when Z = 0) to: 
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where ω is the angular frequency of the driving voltage, j is the imaginary number, 

and w, l and h are the width, half length and thickness of the PZT patch 

respectively, 
T

33
ε is the complex dielectric permittivity, d

31
 is the piezoelectric 

strain coefficients, 
Y

is the complex Young’s modulus and κ is the wave number.  

Rearranging the terms, and expressing them as real and imaginary parts: 
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where f is the frequency, 
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 with δ 

and η indicating the electrical loss factor and mechanical loss factor respectively. 

In the case of a 2D model based on cross impedance using the equation 

proposed by Zhou et al. (1995), free PZT vibration can be modeled by setting all 4 

terms related to the structural mechanical impedance to zero. The equation can 

thus be reduced to: 
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where ν  is the Poisson ratio. 

Again, rearranging and expressing in complex notations:  
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where 

w

w

TR

κ
κtan

j =+ . 

Similarly, setting the effective structural impedance to zero in the 2D effective 

impedance modeling equation (Bhalla, 2004) yields 
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Further rearranging and expressing in complex notations:  
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��Experimental Results, Comparisons and Discussions 

The admittance signatures of two freely-suspended PZT patches (size 10 mm× 

10 mm×0.3 mm), as shown in Fig. 3.27, were acquired using an impedance 

analyzer. As both patches possessed almost identical admittance signature plots, 

only one of the signatures was used for comparison. 

 

Fig. 3.27� Freely suspended PZT patches 

 

The admittance signatures obtained analytically, numerically and experimentally 

from a free-ended PZT patch are compared in Fig. 3.28. The numerical results 

were obtained using Solid 226 elements, with mesh size of 0.5 mm and stiffness 

damping multiplier (of Rayleigh damping) of β = 3×10
–9

. As the analytical 

outcome of the 2D models based on cross impedance and effective impedance 

yielded exactly the same results, only one is plotted to represent both. 
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Fig. 3.28� Conductance signatures vs. frequency plot for free ended PZT patch. (a) Experimental 

vs. numerical (100 – 900 kHz); (b) Experimental vs. analytical (100 – 900 kHz) 

 

It is apparent from Fig. 3.28 that both the numerical and analytical methods 

provided reasonably good predictions on the actual (experimental) vibrational 

behavior of the PZT patch as the major resonance peaks were well predicted. 

However, in the frequency range 100 – 600 kHz, the analytical models were 

unable to predict two resonance peaks and a twin peak as indicated in Fig. 3.28(b). 

On the other hand, the twin peaks and two smaller resonance peaks were 

successfully predicted by the numerical model as shown in Fig. 3.28(a).  

The reason is that for the 1D and 2D analytical models, the PZT patch is either 

simplified as a 1D (1 point interaction) or 2D (4 points or perimeter interaction) 

structure. This simplification causes some minor modes of resonance not to be 

excited. However, the 3D coupled field model used in this study is a 
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comprehensive model which is able to account for all the vibration modes. 

This outcome indicated the robustness and capability of FEM through ANSYS 

8.1 in simulating the dynamic motion of PZT patch under high frequency of 

excitation, up to hundreds of kHz.  

With adjusted stiffness, another numerical model was constructed based on 

PZT patch of size 15 mm×15 mm×0.5 mm under similar free-ended condition. 

Comparing with the signatures obtained from the experiment (Fig. 3.29), a very 

good match was achieved even for the minor peaks. Both cases showed that the 

adjusted stiffness is applicable in the frequency range less than 600 kHz; above 

this, accuracy decreases.  

Despite the higher accuracy in predicting the resonance peaks, one limitation 

of the numerical method is reflected in Figs. 3.28(a) and 3.29, where the 

magnitudes of the predicted peaks differ significantly from the experimental peaks. 

Adjustment of peak height was difficult as it depends largely on trial and error of 

different parameters such as damping ratio. Damping ratio, on the other hand, 

varies for the different frequency ranges.  

 

Fig. 3.29� Conductance signatures vs. frequency plot for experimental test and numerical model 

of PZT patch 

3.9.4� FE Modeling of PZT-Structure Interaction 

With the successful FE modeling of freely suspended PZT patches under 

harmonic excitation of up to 1,000 kHz, the FE model was extended to simulate 

the PZT-structure interaction, inclusive of the interfacial adhesive layer. The 

outcome of simulation is compared with the experimental test of an identical lab-

size structure. 

In the subsequent sections, all the PZT patches were modeled with Solid 5 

elements instead of Solid 226 since the Solid 5 element possesses fewer nodes, 
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which are more convenient for modeling multiple structural interactions.  

��Simple Beam 

A simple rectangular aluminium beam of dimensions 231 mm×21 mm×2 mm was 

used as the test specimen in this study. A 10 mm×10 mm×0.2 mm PZT patch was 

bonded at the middle of the beam. The test specimen was modeled in ANSYS 8.1 

workspace (Fig. 3.30). To be more realistic, the bonding layer (measuring 0.03 

mm) was also simulated.  

The Young’s modulus and Poisson ratio of the bonding layer were taken as 

5.1×10
9

 N/m
2

 and 0.4 respectively, as recommended by Ong (2003). The material 

properties of the aluminium beam and adhesive are listed in Table 3.8. 

 

 

Fig. 3.30� Isometric view of one-quarter of aluminium beam bonded with PZT patch 

Thin bonding layer 
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Table 3.8� Material properties for aluminum beam and adhesive 

Parameters Symbols Materials Values Unit 

Aluminium 2,715 

Density Ρ 

Epoxy 1,000 

kg/m  

Aluminium 0.3 

Poisson ratio V 

Epoxy 0.4 

— 

Aluminium 68.95 Young’s modulus 

(Isotropic) 

Y 

Epoxy 5.1 

10  N/m  

Aluminium 1×10  Constant stiffness 

multiplier 

Β 

Epoxy 6×10  

— 

 

Solid 45 element of size 0.5 mm was used to model both the bonding layer and 

aluminium beam. This element, with eight nodes and three DOFs per node, is 

suitable for modeling solid structures. Solid 5 element of size 0.5 mm was used to 

simulate the PZT patch. 

The numerical outcome was compared with the experimental results in Fig. 

3.31 for two different frequency ranges. From the figure, it can be concluded that 

the simulation was successful as apparent from the close matching of the slope of 

the curve, modal frequencies and the peaks’ magnitudes, even up to a frequency as 

high as 100 kHz.  

 

Fig. 3.31� Admittance signatures vs. frequency plot for experimental test and numerical model 

of aluminium beam specimen. (a) Conductance signatures (30 – 60 kHz); (b) Susceptance signatures 

(80 – 100 kHz) 
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Comparing the other models used in the EMI technique, this numerical model 

exhibited exceptional robustness. For instance, most of the models studied by 

other researchers, either purely analytical through impedance-based modeling or 

semi-analytical through FEA-based impedance modeling, were often either unable 

to model the minor peaks (Zagrai and Giurgiutiu, 2001), exhibited large variation 

in magnitudes (Bhalla 2001; Lim 2004; Giurgiutiu and Zagrai, 2000) or showed 

low accuracy when the frequency range exceeded 60 kHz (Ong et al., 2002). 

These shortcomings are attributed to a number of reasons. Firstly, it should be 

noted that the actual interaction between the PZT patch and host structure through 

the bonding layer involves the entire finite area of the patch. At high frequency of 

excitation, the mode shapes of the excited structure are numerous and complex. 

Simplification of the finite area interaction into point forces or moments would 

render some vibrational modes unexcited as well as giving inaccurate predictions 

of certain modal frequencies. Modeling the PZT patch as a coupled field element, 

on the other hand, overcame the above-mentioned limitation by allowing more 

points of interactions throughout the entire area. The accuracy of the results also 

increases with finer mesh. 

Secondly, the basic assumption which neglected the effect of bonding (ideal 

bonding) in other researchers’ models is not realistic at high frequency on account 

of highly localized actuation. The effect of shear lag is usually not negligible 

unless the bonding film is sufficiently thin. Some researchers (Ong et al., 2002; 

Xu and Liu, 2003; Bhalla, 2004) introduced modification to the impedance-based 

electromechanical coupling equation (Liang et al., 1994; Bhalla, 2004) by 

incorporating the effect of bonding. However, simplification of the point 

interaction remains. 

This numerical model is similar to the semi-analytical model proposed by 

Madhav and Soh (2007b). The main difference is that this model is fully 

numerical with the coupled field element used to represent the PZT patch, whereas 

the semi-analytical model uses unit-distributed loads to represent the patch. The 

advantage of this numerical model is that the electrical admittance signatures can 

be obtained directly from the FEA output as if measured experimentally from an 

impedance analyzer, without the need to convert the mechanical impedance which 

is necessary for all the analytical or semi-analytical models. 

��Modeling of Bonding Film 

One of the inherent advantages exhibited by FE modeling of PZT-structure 

interaction is the ability to physically model the bonding film, which is essential 

for strain transfer. This section presents a numerical study on the effect of bonding 

thickness on the admittance signatures acquired from surface bonded PZT patches. 

A lab-size rectangular aluminium beam (50 mm×2 mm×2 mm) with properties 

similar to the previous test specimen was bonded with a PZT patch (10 mm× 

10 mm×0.3 mm) at the middle of the beam. In this study, a smaller beam was 

purposely selected to reduce the computational time as the frequency involved 



3.9 FE Modeling of EMI Technique Using Coupled Field Element 119 

was relatively wider, ranging from 0 to 1,000 kHz.  

The actual bonding thickness was measured to be 0.03 mm. The numerical 

model, incorporating this bonding thickness was generated and analyzed using 

ANSYS 8.1. Mesh size of 0.5mm was adopted globally. The numerical and 

experimental results are shown in Fig. 3.32.  

 

Fig. 3.32� Conductance signatures vs. frequency plot for experimental test and numerical model 

of aluminium beam specimen. (a) Numerical; (b) Experimental 

 

The admittance signature plots indicate that those structural peaks below 500 

kHz and the two PZT peaks occurring at 600 kHz and 850 kHz were satisfactorily 

simulated by the numerical model. This outcome again shows that the overall 

vibrational behavior of the test specimen was satisfactorily simulated through 

FEM for a frequency of up to 1,000 kHz. 

Subsequently, models with different bonding thicknesses were further simulated 

and analyzed. The admittance signatures were plotted against frequency (Fig. 3.33), 

and the relative phase differences of the first PZT resonances are summarized in 

Table 3.9. From Fig. 3.33(a), the progressive leftward shift of PZT peaks with 

increasing bonding thickness indicates the increasingly dominating PZT patch’s 

resonances. However, at moderate frequency of excitation (less than 200 kHz), 

increase in bonding thickness did not affect the modal frequency of the host 
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structural resonance (Fig. 3.33b).  

This is a general observation for various peaks at frequency lower than 200 

kHz. It could be inferred that at moderate frequency range (less than 200 kHz), the 

structural modal frequencies (reflecting the host structure) are not significantly 

affected by the bonding thickness. However, the adverse effect of bonding on 

overall magnitudes of signatures caused by leftward shifts of PZT peaks was 

inevitable when bonding thickness is 0.2 mm (larger than one-third of the PZT 

patch’s thickness). Above 200 kHz, the domination of PZT peaks rendered the 

structural peaks more susceptible to contamination, for example, due to 

temperature variation. Therefore, at moderate frequency of excitation, the 

assumption of neglecting the effect of bonding is acceptable if the peaks’ 

magnitudes are not the major concern but the modal frequencies, which are 

applicable in the EMI technique. The numerical results showed satisfactory 

agreement with the experimental observations presented by Yang et al. (2008). 

 

Fig. 3.33� Conductance signatures vs. frequency plot for numerically simulated surface-bonded 

PZT patch with varying bonding thickness on aluminium beam specimen. (a) 0 – 1000 kHz; 

(b) 40 – 60 kHz 
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Table 3.9� Summary of phases’ information of first PZT resonance 

Numerically simulated surface-bonded PZT patch with varying bonding thickness (Fig. 3.33a) 

 

First PZT resonance 

occurrence (kHz) 

Phase reduction w.r.t.  

“No bonding” (kHz) 

No bonding 688 0 

t = 0.03 mm 634 54 

t = 0.1 mm 558 130 

t = 0.2 mm 512 176 

 

Numerically simulated PZT patch B4 with temperature varying from 30 ºC – 60 ºC (Fig. 3.36a) 

 

First PZT resonance 

occurrence (kHz) 

Phase reduction w.r.t.  

“30 ºC” (kHz) 

30ºC 280 0 

40ºC 263 17 

50ºC 250 30 

60ºC 215 65 

 

Experimental PZT patch B4 with temperature varying from 30 ºC – 60 ºC (Fig. 3.36b) 

 

First PZT resonance 

occurrence (kHz) 

Phase reduction w.r.t.  

“30 ºC” (kHz) 

30ºC 273 0 

40ºC 256 17 

50ºC 231 42 

60ºC 204 69 

 

��Modeling of More Complex Structures 

In addition to the ability to realistically simulate the bonding film, FE simulation 

possesses another inherent advantage over the analytical model, namely, the ability 

to simulate irregular shapes with complicated boundary conditions normally 

impossible to have a closed-form solution. This section reports the feasibility of 

simulating an L-shaped aluminium beam (l = 200 mm, w = 20 mm, t = 1 mm) of 

identical properties as the previous test specimens and with a PZT patch (10 mm× 

10 mm×0.3 mm) surface bonded at its inner center, as represented schematically 

in Fig. 3.34. The numerically predicted admittance signatures are compared with 

the experimentally acquired signatures in Fig. 3.35. 

In this case, reasonable accuracy between the two was achieved as most of the 

resonance peaks were predicted. However, the matching of resonance peaks was 

not as accurate as in the previous case for the simple beam. One of the reasons 

could be due to some distortion in the L-shaped beam, from its ideal shape, caused 

by imperfect hand cutting during preparation of the specimen. Another reason 

could be the nature of the specimen having a more complex shape resulting in 

more complex mode shapes during vibration. The presence of numerous local 

peaks could not be fully simulated by FEM unless a highly accurate model is 

simulated or a more perfect specimen is used. 
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Fig. 3.34� Isometric view of one-half of free-ended L-shaped aluminium angle bonded with 

PZT patch 

 

 

Fig. 3.35� Conductance signatures vs. frequency plot for numerical and experimental results 

of a PZT patch surface-bonded on an L-shaped aluminium beam specimen. (a) Numerical; 

(b) Experimental 
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��Effect of Temperature 

In this section, the FEM simulation is brought a step further to include the effect 

of temperature. It is known that change in temperature would affect certain 

properties of the host structure, the bonding layer and the PZT patch (Yang et al., 

2008). However, at frequencies higher than 200 kHz, the horizontal shifts of 

PZT’s resonances are dominated by the stiffness of the bonding layer. 

A lab-sized structural beam (331 mm×31 mm×6 mm) was used for both 

experimental and numerical study on the effect of temperature (Yang et al., 2008). 

The properties of PZT patch and aluminium beam susceptible to temperature 

variations were simulated according to recommendations from the manufacturer 

(PI Ceramic, 2006) and other relevant sources. The stiffness (Young’s modulus) of 

the bonding layer was obtained through trial and error for each temperature of 

interest as the relevant data were not available from the manufacturer. 

 

Fig. 3.36� Conductance signatures vs. frequency plot for experimental test and numerical 

simulation of aluminium beam bonded with PZT patch at varying temperature. (a) Numerical; 

(b) Experimental 
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Fig. 3.36 compares the numerically predicted and experimentally acquired 

admittance signatures at different temperatures. There is a high degree of 

consistency between the numerical and experimental results for the first PZT 

resonance over the frequency range of 0 – 400 kHz. The frequency of occurrence 

of the first PZT resonance and the relative phase shift at different temperatures are 

tabulated in Table 3.9. The gradual shift of the first resonance of the PZT patch to 

the left against the progressive elevating temperature was satisfactorily simulated. 

It was found that this phenomenon was mainly caused by a reduction of stiffness 

of the bonding layer against rising temperature. It should be noted that the 

alteration in stiffness of the host structure (aluminium beam) against elevated 

temperature plays a minor role in this case because it mainly affects the structural 

peaks. 

It is also worth mentioning that the dense structural peaks were absent in the 

numerical plot because the frequency steps used for numerical simulation (5 kHz) 

were significantly larger than the experimental counterparts (0.1 kHz), and were 

thus unable to reflect the closely-spaced structural peaks. A wide frequency step 

was chosen for the simulation to reduce the computational time as the structural 

peaks are not the focus of this study. 

This promising outcome once again verified the robustness and versatility of 

FEM in simulating PZT-structure interaction in the application of EMI technique 

inclusive of the effects of bonding layer and temperature change, which is 

unattainable in the conventional analytical model.  
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Exercise 3.1 

Consider an aluminium structure bonded with a PZT transducer, as shown in Fig. 

Ex 3.1. The PZT patch is 10 mm square by 0.3 mm thick, with properties listed in 
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Table 3.2. Model the structure using any commercial FEM software to obtain the 

effective mechanical impedance using dynamic harmonic finite-element approach. 

(Consider a 2D plane stress model). 

(a) Use the program listed in Appendix B to obtain the conductance, G and 

susceptance, B signatures in the frequency range 0 – 200 kHz at an interval of 1 

kHz (consider Rayleigh damping coefficients α = 0, β = 2×10
–9

). Plot the obtained 

G and B signatures as shown in Fig. 3.8.  

(b) Repeat the computations using the program listed in Appendix C. 

Comment on the differences between the plots of (a) and (b). 

 

Fig. Ex 3.1 

Exercise 3.2 

Consider the same aluminium structure shown in Fig. Ex 3.1. The PZT patch of 

grade C is 10 mm square by 0.25 mm thick, and possesses the properties listed in 

Table 3.4. Assume a 1.0 mm thick bonding adhesive beneath the patch. Model one 

quarter of the structure using any commercial FEM software.  

(a) Obtain the G and B signatures using the program given in Appendix D for 

a frequency range of 0 – 100 kHz at an interval of 0.5 kHz (Rayleigh damping 

coefficients: for aluminium α = 0, β
M

 
= 1.5923×10

–7

, and for epoxy α = 0, β
M

 = 

1.5923×10
–9

). Plot the obtained G and B signatures as shown in Fig. 3.31. 

Compare these signatures with the signatures of Ex. 3.1 (2D stress model). 

(b) Modify the program in Appendix D so that it can be used to model one 

quarter of the structure with a rectangular PZT patch of dimensions 12 mm× 

10 mm×0.25 mm. (Consider modifying UX or UY or UZ). 

(c) Plot the G and B signatures for the PZT patch with thicknesses of 0.3 mm, 

0.4 mm and 0.5 mm.  

(d) Plot the G and B signatures for the adhesive with thicknesses of 0.25 mm, 

0.5 mm and 0.75 mm. 
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Exercise 3.3 

(a) Analyze a freely suspended PZT patch using coupled field element in any 

commercial FEM software, and compare it with the experimental results. Try PZT 

patches of different sizes and shapes. Start with a coarser mesh and gradually 

refine to seek for convergence. Discuss these results with experimental results as 

well as any limitations.  

(b) Analyze a lab-size simple beam, inclusive of the PZT patch and adhesive 

layer, using any commercial FEM software. Study the PZT-structure interaction 

and compare it with the experimental results. Try different beam materials such as 

concrete and aluminium. Compare the accuracy of the results. 
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4.1� Extraction of Structural Mechanical Impedance from 

Admittance Signatures 

This section outlines a computational procedure to extract the mechanical impedance 

of the host structure from the EM admittance signatures of the surface-bonded 

PZT patches. As in the case of the 1D impedance model (see Chapter 2), the EM 

admittance given by Eq. (3.30) can be separated into active and passive 

components as  
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or  

AP
YYY +=                                              (4.2) 

where 
A

Y  is the “active” component and 
P

Y  the “passive” component. 
P

Y can be 

Passive Active 
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broken down into real and imaginary parts by expanding )j1(
3333

δεε −= TT

 and 

)j1( η+= EE

YY , and expressed as 
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G
P
 and B

P
 can be predicted with reasonable accuracy if the conductance and 

susceptance signatures of the PZT patch are recorded in “free-free” condition prior 

to its bonding to the host structure (as illustrated in Chapter 3). Hence, the PZT 

contribution can be filtered off from the raw signatures, and the active component 

deduced as 

PA
YYY −=                                                  (4.7) 

or 

)j()j(
PPA

BGBGY +−+=                                    (4.8) 

Thus, the active components (G
A
 and B

A
) can be derived from the measured 

raw admittance signatures (G and B) as 

PA
GGG −=                                              (4.9) 

and 

PA
BBB −=                                            (4.10) 

In the complex form, the active component can be expressed as 
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It has been demonstrated in Chapter 2, using 1D interaction models, that 

elimination of the passive component renders the admittance signatures more 

sensitive to structural damages. The same holds true for the 2D PZT-structure 

interaction considered in this chapter. This section outlines a computational 

procedure for the more general class of structures, based on the new EM 

admittance formulations.  

Substituting )j1( η+= EE

YY  and jtrT +=  into Eq. (4.11), and rearranging 

the various terms, the following can be obtained 
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Further expanding j
,

yxZ
effS

+=  and j
, aaeffa

yxZ += , and upon solving, the 

real and imaginary components of the EDP structural impedance can be obtained 

as 
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In all these computations, the term T  (which plays a significant role) depends 

on 

tan l

l

κ
κ

 as given by 
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where κl is a complex number. It is essential to determine this quantity precisely. 
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Furthermore, it is desirable that |x|>|x
a
| and |y|>|y

a
| in order to ensure smooth 

computations and accurate identification of the structural resonance frequencies.  

The simple computational procedure outlined above, results in the determination 

of the drive-point mechanical impedance of the structure, Z
s,eff

 = x+yj, at a 

particular frequency ω, from the active admittance signatures. Following this 

procedure, “x” and “y” can be determined for the entire frequency range of interest. 

This procedure is employed to extract the structural EDP impedance of the 

aluminium block used for validating the new impedance model described in 

Chapter 3. The MATLAB program listed in Appendix D is used to perform the 

computations. Fig. 4.1 shows a plot of |Z
eff

|
–1

, derived by this procedure, 

comparing it with the plot determined using FEM (as discussed in Chapter 3). 

Reasonable agreement can be observed between the two. The main reason for 

plotting |Z
s,eff

|
–1

 (instead of Z
s,eff

) is that the resonant frequencies can be easily 

identified as peaks of the plot.  

As will be demonstrated in the forthcoming sections, this procedure enables us 

to “identify” any unknown structure without needing any a priori information 

governing the phenomenological nature of the structure. The only requirement is 

an “updated” model of the PZT patch, which can be derived from the preliminary 

specifications of the PZT patch, and by recording its admittance signatures in the 

“free-free” condition, prior to bonding it to the host structure. The next section 

will present a simple procedure to derive equivalent system parameters from the 

structural EDP impedance. 

 

Fig. 4.1� Comparison between |Z |  obtained experimentally and numerically

4.2� System Parameter Identification from Extracted Impedance 

Spectra 

The structural EDP impedance, extracted by means of the procedure outlined 

earlier, carries information about the dynamic characteristics of the host structure. 
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This section presents a general approach to “identify” the equivalent structural 

system. Before considering any real-life structural system for this purpose, it 

would be worthwhile to observe the impedance pattern of a few simple systems. 

Fig. 4.2 shows plots of the real and imaginary components of the mechanical 

impedance of basic structural elements—the mass, the spring and the damper 

(refer to Eqs. (2.4) to (2.7)). These basic elements can be combined in a number of 

different ways (series, parallel or a mixture) to evolve complex mechanical systems. 

Table 4.1 shows the impedance plots (real part, x, and imaginary part, y, vs. 

frequency) for some possible combinations of the basic elements. The expressions 

for x and y can be derived using Eqs. (2.8) and (2.9) (Hixon, 1988).  

In general, for any real-life structure, the x and y components of the extracted 

EDP impedance may not display ideal behavior (e.g., a pure mass or pure stiffness 

or pure damper). The real and imaginary terms may vary with frequency similar to 

a combination of the basic elements. From the nature of the plots of x and y (and 

taking note of the systems listed in Table 4.1), the “unknown” structure can thus 

be identified as an “equivalent” structure (series or parallel combination of basic 

elements), and the equivalent system parameters can thereby be determined. 

To demonstrate this approach, let us consider an aluminium block (grade Al 

6061-T6), 50 mm×48 mm×10 mm in size, representing an unknown structural 

system. The PZT patch S2002-6 (10 mm×10 mm×0.3 mm in size), whose updated 

model was derived in the preceding chapter, was bonded to the surface of this 

specimen. An HP 4192A impedance analyzer was used to acquire the raw 

admittance signatures (conductance and susceptance) of this PZT patch. The 

passive components were filtered off from the raw signatures, and the structural 

EDP impedance extracted using the MATLAB program listed in Appendix E 

(considering the parameters of patch S2002-6 to be derived experimentally). A 

close examination of the extracted impedance components in the frequency range 

25 – 40 kHz suggested that the system behavior is similar to a parallel spring-

damper (k-c) combination (System 1 in Table 4.1), which represents the widely 

known Kelvin-Voigt model. For this system, 

 

Fig. 4.2� Impedance plots of basic structural elements—spring, damper and mass: (a) Real part, 

x, vs. frequency; (b) Imaginary part, y, vs. frequency 
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Table 4.1� Mechanical impedance of combinations of spring, mass and damper (based on Hixon, 

1988, from Shock and Vibration Handbook, edited by C. M. Harris, © The McGraw-Hill 

Companies, 1988)
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cx =  and 

ω
k

y −=                                     (4.18) 

Using Eq. (4.18) and the actual impedance plots, the average “equivalent” 

system parameters are worked out as c = 36.54 N·s/m and k = 4.18x10
7

 N/m. The 

analytical plots of “x” and “y” obtained by these equivalent parameters match well 

with their experimental counterparts (Fig. 4.3).  

 

Fig. 4.3� Mechanical impedance of equivalent system (System 1 in Table 4.1): (a) Real part, x, 

vs. frequency; (b) Imaginary part, y, vs. frequency

 

Similarly, in the frequency range 180 – 200 kHz, the system behavior is found 

to be similar to a parallel spring-damper (k-c) combination, in series, with mass m 

(System 11 in Table 4.1). For this combination,  
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and the peak frequency of the x-plot is given by 

k

c

m

k

o
2
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=ω                                           (4.20) 

If the peak magnitude x = x
o
 occurs at frequency ω = ω

o
 and a value x = x

1
 

(somewhat less than the peak magnitude) at frequency ω = ω
1
 (<ω

o
), using Eqs. 

(4.19) and (4.20), the system parameters, namely m, c and k can be determined as 
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From the above equations, the system parameters are computed as c=1.1×10
–3

 

N·s/m, k=4.33×10
5

 N/m and m=3.05×10
–7

 kg. These values produced an 

impedance pattern similar to the experimental plot (Fig. 4.4). Further refinement is 

achieved by adding a spring K
*

=7.45×10
7

 N/m and a damper C
*

=12.4 N·s/m in 

parallel, to make the equivalent system appear as shown in Fig. 4.5. Hence, 

Eq. (4.19) can be refined as: 
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Fig. 4.4� Mechanical impedance of equivalent system (System 11 of Table 4.1). (a) Real part; 

(b) Imaginary part 
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Fig. 4.5� Refinement of equivalent system by introduction of additional spring K  and additional 

damper C  

 

Fig. 4.6 compares the experimental plots with the analytical plots for this 

equivalent system. A much better agreement can be observed between the plots 

obtained experimentally and those pertaining to the equivalent system. Hence, the 

structural system is identified with reasonably good accuracy. The next section 

explains how this method can be used to quantify damages in aerospace and 

mechanical structures. 

 

 

Fig. 4.6� Mechanical impedance of refined equivalent system (shown in Fig. 4.5). (a) Real part; 

(b) Imaginary part 

 

4.3� Damage Diagnosis in Aerospace and Mechanical Systems 

This section describes a damage diagnosis study, carried out on the same 

aluminium block specimen as described in the previous section. This is a typical 

small-sized rigid structure, characterized by high natural frequencies in the kHz 

range. Several critical aircraft components, such as turbo engine blades, are small 

and rigid, and are characterized by typically high natural frequencies in the kHz 

range (Giurgiutiu and Zagrai, 2002), thereby exhibiting similar dynamic behavior.  

Damage was induced in the test structure by drilling holes, 5 mm in diameter, 

through the thickness of the specimen. Three levels of damage were induced–
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incipient, moderate and severe (Figs. 4.7(b), (c) and (d) respectively). The number 

of holes was increased from two to eight in three stages, so as to simulate a 

gradual growth of damage from the incipient to the severe level. After each 

damage, the admittance signatures of the PZT patch were recorded and the 

equivalent structural parameters were worked out in the 25 – 40 kHz and 180 – 

200 kHz ranges. 

 

 

Fig. 4.7� Levels of damage induced on test specimen: (a) Pristine state; (b) Incipient damage; 

(c) Moderate damage; (d) Severe damage 

 

Fig. 4.8 shows the effect of these damages on the real and imaginary components 

of the extracted mechanical impedance in the frequency range 25 – 40 kHz. Fig. 

4.9 shows the effect of the damages on the identified structural parameters. As 

expected, with damage progression, the stiffness can be observed to reduce and 

the damping to increase. The stiffness was found to reduce by about 12% and the 

damping to increase by about 7% after the incipient damage. Thereafter, with 

further damage propagation, very small reductions/increases were observed in 

these parameters. However, it should be noted that the incipient damage was 

captured reasonably well. 
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Fig. 4.8� Effect of damage on extracted mechanical impedance in 25 – 40 kHz range. (a) Real 

part, x, vs. frequency; (b) Imaginary part, y, vs. frequency 

 

 

 

Fig. 4.9� Effect of damage on equivalent system parameters in 25 – 40 kHz range. (a) Equivalent 

damping constant; (b) Equivalent spring constant 

 

 

Fig. 4.10 shows the effect of these damages on the impedance spectra in the 

frequency range of 180 – 200 kHz. Equivalent lumped system parameters were 

determined for each damage state using the procedure outlined in the preceding 

section. 

Fig. 4.11 compares the experimental impedance plots with the plots based on 

the equivalent system parameters for each damage state. A high degree of agreement 

between the two demonstrates reasonably accurate structural identification for the 

damaged structure also. 
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Fig. 4.10� Effect of damage on extracted mechanical impedance in 180 – 200 kHz range. 

(a) Real part, x, vs. frequency; (b) Imaginary part, y, vs. frequency 



4.3� Damage Diagnosis in Aerospace and Mechanical Systems 141 

Fig. 4.11� Plot of mechanical impedance in 180 – 200 kHz range for various damage states: 

(a) Incipient damage: Real part; (b) Incipient damage: Imaginary part; (c) Moderate damage: Real 

part; (d) Moderate damage: Imaginary part; (e) Severe damage: Real part; (f) Severe damage: 

Imaginary part 

 

The effect of damages on the equivalent parameters for 180 – 200 kHz range is 

shown in Fig. 4.12. Again, the trend is highly consistent with expected behavior and 

much more prominent than for the frequency range 25 – 40 kHz. With damage 

progression, the mass and stiffness can be seen to reduce and the damping to 

increase. The stiffness reduced gradually: 17% for incipient damage, 31% for 

moderate damage and 47% for severe damage. Similarly, the mass was also found 

to reduce with damage severity: 16% for incipient damage, 28% for moderate 

damage and 42% for severe damage. The damping values (c and C
*

) were found 

to increase with damage (Figs. 4.12(c) and (e)), though “c” displayed a slight 

decrease after the incipient damage. The only exception is found in the parallel 

stiffness K
*

, which remains largely insensitive to all the levels of damage.  

Contrary to the 25 – 40 kHz range, the 180 – 200 kHz range was found to 



4� Damage Quantification Using EMI Technique 142 

diagnose the damages much better, as demonstrated by the significant variation in 

the parameters for the moderate and severe damages, in addition to the incipient 

damages. 

 

Fig. 4.12� Effect of damage on equivalent system parameters in 180 – 200 kHz range. (a) Equivalent 

spring constant; (b) Equivalent mass; (c) Equivalent damping constant; (d) Equivalent additional 

spring constant; (e) Equivalent additional damping constant 

 

Fig. 4.13 shows a plot between the area of the specimen, “A” (a measure of the 

residual capacity of the specimen) and the equivalent spring stiffness “k” identified 

by the PZT patch. Using regression analysis, the following empirical relation was 

found between the two 
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29

1002.20021.02.1874 kkA

−×−+=                      (4.28) 

This demonstrates that it is possible to calibrate the damage-sensitive-system 

parameters with damage, and to employ them for damage diagnosis in real situations.  

 

Fig. 4.13� Plot of residual specimen area versus equivalent spring constant 

 

The higher sensitivity of damage detection in the frequency range 180 – 200 

kHz (as compared with 25 – 40 kHz range) is due to the fact that, with increase in 

frequency, the wavelength of the induced stress wave becomes smaller and is 

therefore more sensitive to any defects and damages. This is also due to the 

presence of a damage-sensitive anti-resonance mode in the frequency range 180 – 

200 kHz (Fig. 4.10) and the absence of any major resonance/ anti-resonance mode 

in the 25 – 40 kHz range (Fig. 4.8). This agrees with the recommendation of Sun 

et al. (1995) that the frequency range must contain prominent vibration modes to 

ensure high sensitivity to damages. However, it should be noted that in spite of the 

absence of any major resonance mode in the frequency range 25 – 40 kHz, the 

damage was still effectively captured at the incipient stage, although severe 

damages were not well differentiated from the incipient damage. 

This study demonstrates that the proposed method can evaluate and quantify 

structural damages in aerospace components reasonably well. Besides miniature 

aerospace gadgets, the method is also ideal for identifying damages in precision 

machinery components, turbo machine parts and computer parts such as hard disks. 

These components are quite rigid and exhibit a dynamic behavior similar to the 

test structure studied in this section. The piezo-impedance transducers, because of 

their miniature characteristics, are unlikely to alter the dynamic characteristics of 

these miniature systems. Thus, they are preferred over the other sensor systems 

and techniques (Giurgiutiu and Zagrai, 2002).  

In Fig. 4.12(b), it is clear that by using this method, it is possible to detect 

“mass loss” in critical space shuttle components (e.g., reinforced carbon-carbon 

panels), which is commonly encountered. This type of damage is presently 

difficult to identify using other prevalent NDE techniques, and was the main 
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reason for the collapse of the space shuttle Columbia during its re-entry into the 

earth’s atmosphere on 1 February 2003 (CAIB, 2003). 

4.4� Extension to Damage Diagnosis in Civil-Structural Systems 

In order to demonstrate the feasibility of the proposed methodology for monitoring 

large civil-structures, the data recorded during the destructive load test on a prototype 

reinforced concrete (RC) bridge was utilized. The test bridge consisted of two 

spans of about 5m, instrumented with several PZT patches of size 10 mm×10 mm × 

0.2 mm and grade PIC 151 (PI Ceramic, 2003). The bridge was subjected to three 

load cycles in order to induce damages of increasing severity. Details of the 

instrumentation as well as loading can be found in Bhalla (2001) and Soh et al. 

(2000). RMSD index was used to evaluate the damages. This section uses the 

approach based on extracted impedances to carry out damage assessment. 

Fig. 4.14 shows a view of the top surface of the bridge deck after subjecting it 

to a maximum load of 40 kN during the first cycle. The PZT patches detected the 

presence of surface cracks much earlier than the global condition indicators, such 

as the load-deflection curve (Soh et al., 2000). Patch 4 (Fig. 4.14) was selected as 

a representative PZT in the present analysis. Fig. 4.15 shows the impedance 

spectra of the pristine structure as identified by Patch 4 in the frequency range 120 – 

145 kHz. This figure shows that the PZT patch has “identified” the structure as a 

parallel spring-damper combination (Kelvin-Voigt system); the average identified 

parameters being k=9.76×10
7

 N/m and c=26.1823 N·s/m. The equivalent 

parameters were also determined for the damaged bridge after one more cycle, 

subjecting the bridge to a load of 64 kN. 

 

Fig. 4.14� Damage diagnosis of a prototype RC bridge using proposed methodology 
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Fig. 4.15� Mechanical impedance of RC bridge in 120 – 140 kHz frequency range. (a) Real part, 

x, vs. frequency; (b) Imaginary part, y, vs. frequency

 

The associated damage mechanism can be observed from Fig. 4.16: k tends to 

reduce and c to increase with damage progression. Reduction in the stiffness and 

increase in the damping are well known phenomena associated with crack 

development in concrete. Damping increased by about 20% after cycle I and about 

33% after cycle II. This correlated well with the appearance of cracks in the 

vicinity of this patch after cycles I and II. After cycle II, stiffness was found to 

reduce marginally by about 3%, indicating the higher sensitivity of damping to 

damage compared with stiffness. 

 

Fig. 4.16� Effect of damage on equivalent system parameters of RC bridge. (a) Equivalent 

damping constant; (b) Equivalent spring constant 

 

Thus, the proposed methodology can be easily extended to large civil-

structures as well. However, it should be noted that owing to the large size of 

typical civil-structures, the patch can only “identify” a localized region of the 

structure, frequently representative of the zone of influence of the patch. For large 

structures, complete monitoring warrants an array of PZT patches. The patches 

can be monitored on a one-to-one basis and can effectively localize as well as 

evaluate the extent of damages. The next chapter will present how the identified 

system parameters can be calibrated with extent of damage for concrete. 

This section has presented a diagnostic approach for the identification and 

NDE of structures based on the equivalent system “identified” by means of the 
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EMI technique. It makes use of the real as well as the imaginary components of 

the admittance signature for determining damage sensitive equivalent structural 

parameters. In order to make full use of the proposed methodology, it is necessary 

to calibrate the identified system parameters with damage progression. This could 

serve as an empirical phenomenological model for the component concerned. The 

piezo-impedance transducers can be installed on inaccessible parts of crucial 

machine components, an aircraft’s main landing-gear fitting or turbo-engine 

blades, reinforced carbon-carbon panels of space shuttles and civil structures to 

perform continuous real-time SHM. The equivalent system (the structural model) 

is identified from the experimental data alone. No analytical/numerical model is 

required as a prerequisite. The approach is not only simple to apply but also 

provides an essence of the associated damage mechanism. In addition to NDE, the 

proposed model can be employed in numerous other applications, such as 

predicting a system’s response, energy conversion efficiency and system power 

consumption. 

4.5� Identification of Higher Modal Frequencies from Conductance 

Signatures 

In this part of the chapter, the changes in natural frequencies for higher modes 

(identified from conductance signatures) and the corresponding mode shapes of 

the undamaged structure are used to locate damage. This method, proposed by 

Naidu and Soh (2004a, 2004b), only requires the information of natural frequency 

changes of the damaged structure and the mode shapes of the undamaged structure. 

Natural frequency shifts for higher modes can be found experimentally from the 

peak frequency changes in the conductance signatures of PZT transducers bonded 

on to the host structure. To experimentally estimate the higher mode shapes would 

require a large number of sensors, which is often not practical. Therefore, this 

method circumvents this difficulty using only the undamaged state mode shapes of 

the structure, from a “well-refined” finite element (FE) model.  

Let the natural frequencies (in Hz) and mode shape vectors of the host 

structure be  
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Let damage be introduced in one of the elements, resulting in frequency shifts 

as given by 

{Δf }= {Δf
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Additionally, a function, Max [{Δf}, m] is defined such that from the set {Δf}, 

it chooses a subset of highest m natural frequency changes, in descending order, 

that is 

{Δf }
m

 = Max [{Δf }, m] = {Δf 
1

, Δf 
2

, Δf 
3

, …, Δf 
i

, …, Δf 
m

}             (4.32) 

The superscript, i (i = 1 to m) is the i
th

 entity of the set and does not denote 

power of the quantity. It should also be noted that 

|Δf 
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i

| > …  > |Δf 
m

|                       (4.33) 

In general, Δf 
i

 > 0 for all i = 1 to m. Also, the values of Δf 
i

 are usually larger 

for the higher modes compared with the lower modes. For example, the frequency 

shifts of modes between 21 and 25 will most likely be larger than the frequency 

shifts of modes 1 – 5. However, when comparing consecutive modes, e.g., the 21
st

 

– 25
th

, depending on the location of the damage, a lower mode, e.g., the 22
nd

, may 

have a larger frequency shift value than a higher mode, e.g., the 25
th

. Corresponding 

to the frequencies in Eq. (4.33), the mode shapes for the undamaged structure are 

chosen from Eq. (4.30) and are similarly ordered as 
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The mode shape vectors can be split into their individual translation and rotational 

components, in the way most FE packages provide, as: 
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where the subscripts x, y and r represent the x component, the y component and 

the rotational component, respectively. 

Next, the element deformation parameter, {ΔE}, for each element is determined 

from the above mode shape vectors as 
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where the subscript, p, is the element number ranging from 1 to 
e

n  (
e

n  is the total 
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number of elements in the FE model). {ΔE
x
}

i

 refers to the longitudinal 

deformations of the elements in the longitudinal vibration mode. Similarly, {ΔE
y
}

i

 

and {ΔE
r
}

i

 respectively refer to the average curvatures and effective rotation of the 

elements in the bending vibration mode. The superscript, i, is the indicator of the 

mode number. For example, consider beam element number 3, which has two 

nodes numbered 3 and 4: the element deformation parameters are evaluated as  

{ΔE
3x

}
i

 = longitudinal displacement of node 4 for mode i – longitudinal 

displacement of node 3 for mode i. 

{ΔE
3y

}
i

 = ½ x {curvature value of node 3 for mode i + curvature value of node 

4 for mode i}. 

{ΔE
3r

}
i

 = rotation of node 4 for mode i – rotation of node 3 for mode i. 

The values of the longitudinal displacements, curvature and rotation for the 

nodes are obtained from the mode shape vectors, {φ
x
}

i

, {φ
y
}

i

 and {φ
r
}

i

 from Eq. 

(4.35). For the longitudinal mode, the greater the elongation of the element, the 

larger the frequency shift for that particular mode. Similarly, for bending modes, 

the greater the curvature of the element, the larger the frequency shift for that 

mode. Curvature of the beam element is the second derivative of the elastic curve 

or displacement profile. Thus, by twice differentiating the mode shape vector, 

{φ
y
}

i

, the mode shape curvature vector can be obtained. This differentiation can be 

performed numerically using the central difference approximation (Salawu and 

Williams, 1994). The damage indicator or damage metric, DI, for each element is 

defined as: 
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where the index p is the element number and i is one of the chosen mode shapes. 

The damage indicator for an element is the weighted average of the element 
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deformation parameters, EΔ , over the chosen m modes, which have the largest 

frequency changes. The damaged element is identified as that which has the 

maximum value of the damage metric DI.  

An associated question with this approach is that if the mode shapes change 

after damage, how can the undamaged state mode shapes be used for identifying 

the damage location? To answer this question the following is considered. For any 

particular longitudinal or bending mode shape, there are elements with almost zero 

deformation or zero average curvature values. If one such element is damaged, the 

corresponding mode shape of the damaged beam will not change much compared 

with the undamaged beam (Farrar and Jauregui, 1998). On the other hand, if the 

damaged element has a non-zero deformation or average curvature for that 

particular mode, the damaged state mode shape only changes near the location of 

the damage (Salawu and Williams, 1994). It is readily deducible that such an 

element will necessarily have significant deformation (in longitudinal mode) or 

average curvature value (in bending mode) even in the mode shape of the 

undamaged state; otherwise, frequency reductions for that mode would not be 

observed. The proposed damage identification method automatically considers 

such an element as one of the probable damaged elements. Thus, the information 

about changes of the mode shapes is not considered necessary. As for accuracy, it 

may also be noted that since the mode shape changes are very small after damage 

(Farrar and Jauregui, 1998), the undamaged state mode shapes from the FE model 

will be accurate for identification of incipient damages. Mode shapes of the 

damaged structure will significantly change only in the cases when the damage is 

severe enough, for example, if one or more of the following conditions occur:  

(a) Stiffness of the whole structure is altered, which means that the crack or 

the damage has propagated throughout the structure. 

(b) Boundary conditions are altered, such as some support constraints being 

released. 

(c) The region around the damage zone crosses the yield limit and plastic 

collapse mechanism begins to occur. 

In such cases, using undamaged mode shapes for damage location 

identification will certainly be erroneous. However, since the main interest of 

health monitoring systems using smart sensors is to detect and locate damages at 

its incipient stage so as to take preventive measures against future catastrophe, the 

use of undamaged mode shapes will suffice. The most important requirement for 

accuracy is that the FE model should correctly represent the structure’s dynamic 

characteristics. This can be ensured by comparing the natural frequencies of the 

FE model with the natural frequencies of the test structure from the conductance 

signatures. In real-life situations, if the frequencies from the model and the actual 

structure do not match, the FE model can be updated to match the actual structure 

using the well known model updating techniques (Doebling et al., 1998; Xia, 

2002). 

In general, in order to derive accurate mode shapes using the FEM, there 

should be at least five nodes (or four elements) per half wavelength. For mesh 

densities of two to four elements per half wavelength, somewhat distorted mode 



4� Damage Quantification Using EMI Technique 150 

shapes will be obtained. Below the density of two elements per half wavelength, 

the distortions in mode shapes are severe. Thus, if the mode shape of mode n is to 

be predicted accurately by the FE model, the minimum number of elements should 

be 4n. This was proven by Naidu and Soh (2004a) using numerical examples. 

4.6� Numerical Example 

Consider a 60 element FE model of an aluminium beam of length 300 mm, width 

20 mm and depth 2 mm, as shown in Fig. 4.17. The support conditions are 

assumed to be pin-pin at both ends. The material properties considered are: 

Young’s modulus 6.9×10
10

 N/m
2

, density 2,600 kg/m
3

 and Poisson’s ratio 0.33. 

Since the pin-ended beam is symmetric in geometry about its centre, all the mode 

shapes are either symmetric or anti-symmetric. Hence, the element deformations 

and average curvature values are equal in magnitude for the elements located 

symmetrically about the centre of the beam. As such, equal damage metric values 

are expected for the elements located symmetrically. Therefore, in all the results to 

follow, only half of the elements of the beam are shown. 

 

Fig. 4.17� Numerical model of pin-pin supported beam for illustration of damage detection 

algorithm of Naidu and Soh (2004a) 

 

In the damage identification method, only the maximal deformations and 

average curvatures are considered for the few chosen “sensitive modes”, i.e., the 

modes that have large frequency shifts. As such, all the elements will necessarily 

have non-zero damage metric values. From the mode shapes that are unity 

normalized, it is estimated that for the first mode shape, at least two-thirds of the 

length has displacement values greater than 0.5. In fact, most of the elements are 

likely to display damage metric values of about 66.67%, when several sensitive 

modes are considered. Therefore, for an element to be considered as the probable 

damaged element, a minimum damage metric value of 70% is chosen as the 

threshold value. In all the results to follow, the damage metric values are 

illustrated from 70% to 100%. It should be noted that the determination of damage 

location is based on the largest damage metric. A non-zero damage metric value 

for an element does not necessarily means it is damaged. 
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Figs. 4.18 and 4.19 present the damage metric values for the 60 element beam, 

evaluated using the bending modes and the longitudinal modes, respectively, for 

various damage locations. Damage was simulated by reducing the Young’s 

modulus of elasticity by 20% in one element at a time. Figs. 4.18(a), (b) and (c) 

correspond to damage in Elements 31, 44 and 50 respectively. In all the cases, the 

frequency shifts are only considered up to the first ten modes, and of these, four 

sensitive modes are chosen. In all three damage cases, the elements near the end 

supports show the largest damage metric values. If these are ignored, the elements 

at the correct damage locations (i.e., Elements 31, 44 and 50) will have the highest 

damage metrics, and hence be correctly identified.  

The reason for this error at the edges is investigated as follows. In all of the 

modes, it is observed that at least one of the nodes of Element 58 has a high or 

even maximum value of curvature. This is unlike the elements in the mid-span. 

For example, if we consider the mid-span node, for every anti-symmetric mode, 

the displacement is zero in the mode shape, which means it is a vibration nodal 

point. Furthermore, the curvature value is zero at that point. When average 

curvature is computed for the elements on either side of this mid-span node, it is 

again very small. Thus, every anti-symmetric mode will yield somewhat low 

average curvature values around the mid-span. But in the case of Element 58, for 

almost every mode, the average curvature value is high. Since the damage metrics 

are based on average curvature, when bending modes are considered, invariably 

one such element near the edge will have a high damage metric value, whether the 

element is damaged or not. 

The longitudinal modes are now considered. In the longitudinal mode shapes, 

the same magnitudes of nodal displacements are present in the longitudinal 

direction (U
x
) as in the lateral direction for the bending mode shapes. It is 

observed that the node next to the end support always has significant displacement. 

It will never be zero, like the nodes in the middle span of the beam for some 

modes. So, it can be concluded that the end element in the longitudinal mode 

shapes will definitely have non-zero or even the highest value for deformation 

(relative displacement of nodes). Since the damage metrics are based on 

deformation values for longitudinal modes, invariably the element next to the edge 

will have large damage metric values, whether or not the element is damaged. 

This limitation of obtaining erroneous damage predictions at the edges is 

because we did not use the change in mode shapes as a damage indicator; rather, 

we used the undamaged mode shapes as they were. Even for refined meshes, this 

difficulty cannot be overcome since there would be some elements close to the 

boundary displaying the same phenomenon. Hence, a corrective reduction factor is 

introduced at the edges to circumvent this inherent error at the boundaries. The 

probability that the elements near the edges have deformation and average 

curvature parameters greater than the threshold value of 0.7 is evaluated using the 

chosen mode shape vectors shown in Eq. (4.34). The probability is found to be 

about 90% – 100%, which means for the elements near the edges, 9 or 10 out of 

every 10 mode shapes have deformation and curvature values greater than the  
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Fig. 4.18� Damage metric values for elements of the 60-element beam using bending modes—

for 20% stiffness reduction introduced in: (a) Element 31; (b) Element 44; (c) Element 50 
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Fig. 4.19� Damage metric values for elements of the 60-element beam using longitudinal modes— 

for 20% stiffness reduction introduced in: (a) Element 31; (b) Element 44; (c) Element 50 
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threshold. For the elements in the rest of the span, these probabilities are between 

40% to 60%. Thus, the probabilities of elements at the edges are corrected to be 

on a par with the other elements. Therefore, in all the results that followed, this 

correction factor at the edges is included. 

In order to study the case of damage in two adjacent elements, 20% stiffness is 

simultaneously reduced in Elements 49 and 50. The damage metric values are 

evaluated using the bending and longitudinal mode shapes, and are presented in 

Fig. 4.20. The damage locations are correctly identified, as the damage metric 

values of Elements 49 and 50 have the largest magnitudes. Thus, if the size of the 

damage is greater than the element size, the location can still be accurately 

detected. However, it is also found that the location can only be accurately 

detected up to three or four consecutive damaged elements. It was found that when 

more than 4 consecutive elements are simultaneously damaged, the locations 

cannot be accurately identified. 

 

Fig 4.20� Damage metric values for damage in Elements 49 and 50 using: (a) bending modes; 

(b) longitudinal modes 
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4.7� Experimental Verification 

This section presents the experimental verification of the damage detection 

algorithm introduced in the preceding sections. The setup for the data acquisition 

system, consisting of an impedance analyzer, a multiplexer and a personal 

computer, is shown in Fig. 4.21. For the experimental verification, the aluminium 

beams were chosen to have the same geometric and material properties as the FE 

model of Fig. 4.17. In the test, the beams were excited in pure bending by out-of-

phase excitation of two PZT transducers bonded to the top and bottom surfaces of 

the specimen. Three aluminium beams of the same dimensions were tested. Two 

PZT transducers were bonded on each beam as follows (Fig. 4.22): 

(1) Specimen-1: At the mid-span of the beam; damage was induced by drilling 

a 5 mm diameter hole at 50 mm distance from the edge. 

(2) Specimen-2: At 90 mm distance from one edge of beam; a 5 mm diameter 

hole was drilled at 50 mm distance from the other edge. 

(3) Specimen-3: At 90 mm distance from one edge of beam; a 5 mm diameter 

hole was drilled at 80 mm from the other edge. 

 

 

Fig. 4.21� Set-up of the impedance data acquisition system 
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Fig. 4.22� Simply-supported aluminium beam specimen bonded with PZT transducers 

 

For Specimen-1 and Specimen-2, the hole 50 mm from the edge corresponded 

to Element 50 in the 60-element beam mesh. For Specimen-3, the hole 80 mm 

from the edge corresponded to Element 44. For each specimen, before and after 

drilling the hole, the PZT transducers were excited in the bending mode and the 

admittance signatures were acquired. The frequency shifts in the peaks of the 

damaged state signatures were noted, and the corresponding modes in the FE 

model were identified. Using the mode shapes from the FE modal analysis and the 

natural frequency shifts obtained experimentally, the damage location was 

determined using the proposed method. 

The pin-ended boundary conditions were ensured by supporting the ends of 

the beam on thin metallic edges. A pin-ended support has both horizontal and 

vertical movements constrained at the edges of the beam, and the rotation 

unconstrained. To achieve these conditions, the edges were lightly bonded to the 

supports using cellotape, running from the top surface of the beam to the 

supporting metallic edge. The horizontal or longitudinal movements were not fully 

restrained by this arrangement, which is confirmed by a few unidentified or 

erroneous peaks in the admittance signatures of the transducers for longitudinal 

modes. But, for pure bending excitation of the beam, since the amplitude of the 

longitudinal motion was very small, lack of proper constraints at the boundary did 

not significantly affect the bending modes. However, the vertical movements were 

effectively restrained and free rotation was also allowed, which was evident by 

obtaining the natural frequencies with reasonable accuracy (Table 4.2). 

The chosen frequency range for acquiring the signatures was 1 – 60 kHz. 

Beginning from mode number 5, approximately 30 bending modes were expected 

in this range. The first 20 natural frequencies obtained experimentally for the 
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undamaged beam specimens in bending mode are presented in Table 4.2. For 

Specimen-1, the PZT transducers were bonded at the midpoint of the beam, where, 

for every alternative mode, there was a vibration nodal point. Therefore, only 

alternate resonant peaks were observed in the conductance signature. For the other 

two specimens, the PZT patches were placed 90 mm from one of the edges. As 

such, most of the natural frequencies of the beam, correspondingly, had peaks in 

the conductance signatures. There was some discrepancy in mode 17, where one 

specimen showed no peak, while the other showed a resonant peak. Other than 

this, the modes were clearly identifiable and were fairly accurate. Fig. 4.23 shows 

the conductance signatures for Specimen-1 in the bending mode, which can be 

correlated with Table 4.2. The shifts in the resonant frequencies after damage are 

also clearly shown.  

 

Fig. 4.23� Conductance signatures for Specimen 1: (a) bending mode, 1 – 20 kHz; (b) bending 

mode, 20 – 40 kHz 
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Table 4.2� Natural frequencies obtained experimentally for the undamaged beam specimens 

(bending mode) 

Natural frequency 

Experiment 

Bending 

mode no. Analytical (kHz) 

Specimen 1 (kHz) Specimen 2 (kHz) Specimen 3 (kHz) 

1 0.052 — — — 

2 0.207 — — — 

3 0.467 — — — 

4 0.830 — — — 

5 1.297 1.240 1.400 1.355 

6 1.867 *** 2.000 1.955 

7 2.542 2.420 *** *** 

8 3.320 *** 3.400 3.310 

9 4.202 4.050 4.300 4.220 

10 5.187 *** 5.290 5.175 

11 6.277 6.030 6.300 6.225 

12 7.470 *** 7.520 7.435 

13 8.767 8.430 8.800 8.545 

14 10.167 *** 10.100 10.690 

15 11.671 11.000 11.600 11.350 

16 13.279 *** 13.200 13.510 

17 14.991 13.950 *** 14.400 

18 16.807 *** 16.600 16.685 

19 18.726 16.900 18.400 18.420 

20 20.749 *** 20.300 19.120 

Note: “—” and “***” Both essentially mean that “No experimental data”. 

4.7.1� Damage Location Identification 

The natural frequency shifts obtained experimentally and the corresponding mode 

shapes obtained numerically were then input into the proposed damage 

identification method. As only a few natural frequency shifts were obtained for 

Specimen-1 because of alternatively missing peaks in the conductance signature, 

the damage was not successfully located. It was also observed from this test that 

accuracy of the method is dependent on where the PZT transducers are bonded on 

the beam. Ideally, the transducers should be bonded where most of the frequency 

peaks can be captured.  

Figs. 4.24(a) and (b) show the results for Specimens 2 and 3, respectively, 

obtained using the 60-element beam mesh. From the range of modes 5 to 15 (i.e., 

between 1 – 12 kHz), 8 sensitive modes (i.e., modes with largest frequency shifts) 

were selected. The damages in both specimens were located accurately.  
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Fig. 4.24� Damage metric values using bending modes of 60-element beam: (a) Specimen-2; 

(b) Specimen-3 

4.7.2� Effect of Number of Sensitive Modes 

For Specimen-3, using the 60-element mesh, the number of sensitive modes 

chosen was varied from 4 to 7. Fig. 4.25 shows the plots of the damage metric 

values for the elements. It should also be noted that the preceding Fig. 4.24(b) 

shows the result for the same specimen with 8 sensitive modes. It can thus be seen 

that when fewer sensitive modes are chosen, the damage metric values are higher. 

However, other than the actual location (Element 44), a number of other non-

damaged elements also have large damage metric values above the threshold. 

With increase in the sensitive modes, the damage metric values decrease; but, the 

actual damage location becomes more distinguishable as the values for the other  



4� Damage Quantification Using EMI Technique 160 

 

Fig. 4.25� Damage metric values using the 60-element FE mesh for Specimen-3: (a) for 4 

sensitive modes; (b) for 5 sensitive modes; (c) for 6 sensitive modes; and (d) for 7 sensitive 

modes 
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non-damaged locations reduce considerably. The decrease in damage metric 

values is due to the weighted average of the element average-curvature value from 

a large number of modes. When a large number of modes is included, in several 

mode shapes, the element curvature value will be small, which contributes to the 

decrease in the weighted average. Finally, with 8 sensitive modes, this 

phenomenon can be clearly observed in Fig. 4.24(b). Thus, with the increase in the 

number of sensitive modes the damage location identification becomes clearer. 

4.7.3� Effect of Frequency Range 

Using the same 60-element mesh, 8 sensitive modes were chosen; the frequency 

range for these 8 sensitive modes was then varied. Specimen-2 was considered, 

with the damage located at Element 50. Figs. 4.26(a), (b) and (c) show the results 

for frequency ranges 1 – 12 kHz (5 – 15 modes), 1 – 35 kHz (5 – 25 modes) and 

1– 50 kHz (5 – 30 modes), respectively. It was earlier noted that to obtain “n” 

accurate mode shapes using an FE mesh, the minimum number of elements 

required is 4n. If the elements chosen are between 2n and 4n, the distortion of 

mode shapes is not severe; but, if the number of elements is less than 2n, the 

distortion in the mode shapes can be severe.  

Thus, while choosing a 60-element mesh, the first 15 mode shapes would be 

accurate; between 15 to 30 modes, the distortion in the mode shapes (compared 

with the analytical solution) exists but is not severe. However, the mode shapes 

near and beyond the 30
th

 mode would be severely distorted. Therefore, the choice 

of frequency range from which the resonant frequency shifts are evaluated will 

affect the results, and this is illustrated in Fig. 4.26, which also shows that when 

only the first 15 modes were used (which are correctly predicted by the FE model), 

the damage location is clearly distinguishable. In Fig. 4.26(b), the correct damage 

location was identified, but there are many other elements having almost equal 

damage metric values. This is because the modes between 16 and 25 were used, 

which were not quite accurately predicted by the FE model. However, when the 

frequency range was such that most of the modes were not accurately predicted by 

the 60-element mesh, the damage location was not identifiable (Fig.4.26(c)). This 

implies that the FE model needs to be accurate at least within the chosen 

frequency range. Conversely, for a chosen FE mesh, the frequency range for 

extracting the impedance signatures has to be within the accuracy of the FE model, 

to achieve satisfactory damage identification. 
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Fig. 4.26� Damage metric values using the 60-element mesh for Specimen-2: (a) for modes 5 – 

15; (b) for modes 5 – 25; (c) for modes 5 – 30 
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4.8� Advantages of Modal Approach 

The modal damage location identification method has the following advantages: 

(1) A single PZT transducer or a transducer pair is sufficient to locate the 

damages in small structures, or structural members, with homogenous materials. 

This method can be exploited for economical health monitoring of structures such 

as trusses and can be further developed for monitoring aircraft wings and railway 

tracks. 

(2) The knowledge of mode shape changes for the damaged structure is not 

required. This significantly reduces the experimental complexity involved in 

extracting mode shapes using the conventional methods.  

(3) PZT transducers, being light-weight and non-intrusive to the structures, do 

not significantly affect the natural frequencies of the system, as was observed 

from the experimental results.  

(4) The mesh refinement requirements for the successful working of the 

damage detection technique are not stringent. Without requiring highly refined 

meshes, accurate solutions can be obtained for even reasonably small-sized FE 

meshes. 

(5) Clearly, the sensitivity of the method to incipient damages is high on 

account of its operation in the higher frequency range. This method can be used 

where the conventional vibration-based methods fail. 

4.9� Limitations and Concerns of Modal Approach 

Despite its advantages, for more effective damage identification with the proposed 

method, the following limitations and concerns need to be considered:  

(1) For symmetric structures, the damage location identification is not unique. 

This is because only frequency changes are considered, which are not spatially 

specific. Nonetheless, this problem is not likely to occur in non-symmetric 

structures.  

(2) The limitation of using only the undamaged state mode shapes is that, for 

most of the modes, the element deformations (in longitudinal mode) and average-

curvature (in bending mode) at the edges have large values. For refined FE meshes, 

this gives an erroneous damage prediction at the edges, even when there is no 

damage. If the damage identification were to be based on changes in mode shapes, 

this problem would not occur. But to determine the mode shape changes for such 

high frequencies is not practically feasible using conventional sensors. A 

sophisticated instrument like the Scanning Doppler Laser Vibrometer (SDLV) can 

accurately measure mode shapes at high frequencies (Winston et al., 2001). 

Therefore, in the proposed method, correction factors need to be assigned to the 

elements at the edges in order to make their damage probability on a par with the 

other elements. This correction of modal error at the edges can also be effectively 
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tackled by a knowledge-based reasoning network (Naidu et al., 2006) 

(3) Accurate FE models can easily be obtained for structures with homogeneous 

material properties and regular geometries. However, for complex structures and 

those with non-homogeneous materials like concrete, where accurate FE models 

are difficult to derive, application of the method can be difficult. Meaningful 

application of the method is restricted to structures which have accurate FE 

models. 

4.10� Damage Identification Using EMI and Evolutionary 

Programming 

The previous study mainly focused on high frequency (typically higher than 30 

kHz) to ensure high sensitivity to incipient damage. However, at such a high 

frequency, system identification techniques are difficult, if not impossible, to 

apply because of the necessity of repeated structural analysis, which is time 

consuming. Thus, the damage was previously assessed by a damage index, which 

is statistically calculated by comparing the amplitudes of the two spectra 

(damaged vs. pristine). RMSD, mean absolute percentage deviation, covariance 

change and correlation coefficient deviation have been used as damage indices (as 

outlined in Chapter 2). However, it is not enough to use these overall-statistics 

damage indices for damage assessment, i.e., it is not possible to locate and 

quantify the damage simultaneously, since a severe damage far from the measured 

point and a minor damage close to the point could have the same damage index. 

Moreover, values of various criteria may need to be determined to predict the 

failure for different structures. 

This section applies the EMI-based SHM technique at relatively lower 

frequency so that precise structural analysis is possible. In addition, the system 

identification techniques can be more conveniently employed to simultaneously 

locate and quantify the damage. The EMI spectra were predicted using the generic 

model presented by Yang et al. (2005), and the vibration of the damaged structure 

was analyzed using the Ritz method. Acceptable matches with minor differences 

between the predictions and measurements were obtained. The differences were 

caused by the inaccuracy in representing the real structure using the Ritz method-

based numerical model. Owing to the sensitivity of the back-calculated results to 

the input data, such minor differences will affect the final results. A special fitness 

function was therefore designed to further reduce the effect of these differences, 

which are unavoidable no matter what analytical or numerical model is used.  

Another difficulty of using system identification techniques is that there are 

many local optima existing in the search space. The traditional optimization 

techniques may not be able to find the global optimum effectively. Thus, a hybrid 

evolutionary programming was employed in our method as a global search 

technique to identify the damage.  
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4.11� EMI of PZT Transducers 

Yang et al. (2005) analyzed the in-plane vibration of 1D and 2D PZT patches 

(Figs. 4.27 and 4.28). All the boundaries of the PZT patches are assumed to be 

bonded to the host structure. By representing the effect of the structure with 

mechanical impedance at the corresponding points, the EMI of the PZT patches 

was calculated. The predicted results coincide well with the experimental 

measurements. The results are summarized as follows.  

For the 1D model, the EM admittance Y is  
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where j symbolizes the imaginary part and ω  the input angular frequency. The 

subscript p denotes the variables corresponding to the PZT transducer; l, w and h 

are the length, width and thickness, respectively; d
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where 
str

Z  is the mechanical impedance of the structure (Fig. 4.27). 

 

 

Fig. 4.27� Generic 1D structure-PZT interacting system 
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Fig. 4.28� Generic 2D structure-PZT interacting system 

 

The force output of the PZT transducer is a pair of forces with the same 

amplitude but in opposite directions: 

( ) ( )[ ]
2111
xxxxFF −−−= δδ                             (4.40) 

where x is the coordinate system established for the structure, and x
1
 and x

2
 are the 

coordinates of the PZT transducer (Fig. 4.29). 

 

Fig. 4.29� Beam actuated by a pair of PZT patches 

 

For the 2D model, the admittance is calculated as: 
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where 
p

ν  is the Poisson’s ratio; 
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d  and 
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d  are the strain coefficients; 
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coefficients A′ and C′ are calculated by: 
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with 
11

Z  and 
22

Z  being the direct mechanical impedances, and 
12

Z  and 
21

Z  

being the cross impedances of the structure (Fig. 4.28). 

The output forces of the 2D PZT transducer can be described as: 
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where x-y is the coordinate system established for the structure; and x
1
, x

2
, y

1
 and 

y
2
 are the coordinates of the PZT transducer (Fig. 4.30). 

 

Fig. 4.30� Plate actuated by a pair of PZT patches 

4.12� Mechanical Impedance of Damaged Structure 

Eqs. (4.38) and (4.41) indicate that the EMI depends on both the properties of the 
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PZT transducer and the mechanical impedance of the structure. They are general 

expressions to predict the EMI for 1D and 2D cases since no restriction has been 

imposed on the host structure so far. In this section, for simplicity, beam and plate 

are selected to simulate 1D and 2D structures, respectively. The length, width and 

thickness of the structure are denoted as a, b and t, respectively.  

Assume that two PZT patches are bonded to the beam and the plate, at the 

same location but on the opposite sides of the structure (Figs. 4.29 and 4.30), so 

that only bending vibration is actuated. The transverse displacement of the 

structure is denoted as w
s
, and the rotation angles are described as 

x

w
s
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for the beam and the plate, respectively. From Eqs. (4.40) and (4.44), the applied 

moment on the structure can be described as 
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for the beam and the plate, respectively. 

Yang et al. (2005) calculated the mechanical impedances of an undamaged 

beam and an undamaged plate using the p-version Ritz method. The p-version 

Ritz method is able to analyze plates with general shapes and boundary conditions. 

Moreover, using polynomial as the shape functions enables precise differentiation 

and integration processes, and enhances computational accuracy (Liew et al., 

1998). Thus, in this section, the p-version Ritz method is employed to analyze the 

vibration of both the beam and the plate with damages. 

The damage can be simulated by the change of Young’s modulus in the 

damaged area. The change of mass density caused by the damage is neglected. 

The potential and kinetic energy for the beam and the plate with damage can be 

expressed as 

( )
∫∫ ⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

∂
∂−−

⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

∂
∂=

L

s

d

a

sb

x

x

w

btEEx

x

w

EbtU d

24

1

d

24

1

2

2

2

3

0

2

2

2

3

     (4.47a) 

∫
=

a

s

b

xwbtT

0

2

d

2

1

�ρ                               (4.47b) 



4.12� Mechanical Impedance of Damaged Structure 169 

( ) ( )

( )
( ) ( )

2 1 d

24 1

     2 1 d

24 1

w w w w wEt

U A

x yx y x y

E E t w w w w w

A

x yx y x y

ν
ν

ν
ν

⎧ ⎫⎡ ⎤
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎪ ⎪

⎢ ⎥= + − − −⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂ ∂ ∂− ⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤− ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎪ ⎪
⎢ ⎥− + − − −⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂ ∂ ∂− ⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∫

∫

 (4.48a) 

∫
=

A

s

p

AwtT d

2

1
2

�ρ                                     (4.48b) 

where the superscripts b and p denote beam and plate, respectively; E is the 

Young’s modulus; the subscript d represents damage; ν  is the Poisson’s ratio; 
d

L  

is the length of the damaged element in the beam; and 
d
A  is the damaged area in 

the plate.  

For small damage, the following approximation is adopted 

( )d ( )f x x f x L= ×∫                                  (4.49a) 

( , )d ( , )f x y A f x y A= ×∫                             (4.49b) 

where f(x) and f(x,y) are the integrands in Eqs. (4.47a) and (4.48a), respectively; 

and 
c

x  and 
c

y  are the coordinates of the center of the damage. 

Without loss of generality, the following non-dimensionalized relationships 

are introduced 

1

2 −=
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xξ                                           (4.50a) 

1

2 −=
b

yη                                          (4.50b) 

such that 11 ≤≤− ξ  and 11 ≤≤− η . 

Thus, Eqs. (4.47) and (4.48) can be rewritten as 
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In the p-version Ritz method, the transverse displacement is approximated as 
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for the beam and the plate, respectively; where N is the degree set of polynomial 

space; C  is the coefficient vector; φ  is the shape function vector; 
tωj

e  stands for 

harmonic vibration; and m is set as 

( )( )
i

qq −++
2

21

 for the plate. 

Following Liew et al. (1998), the shape function is designed as 

Ni

i

i
,,2,1,

0
�== φξφ  and 

( )( )
2

21

,,2,1,
0

++== − NN

i

iqi

i
�φηξφ  for the beam 

and the plate, respectively, where ∏=
n

r

n

ψφ
0

, and 
n

ψ  is the function of the 

boundary, i.e., 1±ξ  for the beam and 1 ,1 ±± ηξ  for the rectangular plate. The 

shape function must satisfy the geometric boundary conditions; so, 
n

r  is 

dependent on the constraints on the corresponding boundary, e.g., 0=
n

r  for a 

free boundary. 

Thus, the stiffness and mass matrices can be calculated as 
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Nki ,,1,0, �=  for the beam; and 

( 1)( 2)

, 0,1, ,

2

N N

i k

+ += �  for the plate. 

By solving the equation ( ) 0λ− =K M C , the natural frequencies and mode 

shapes can be calculated as 

mm

λω =  and φC
T

m

n

nmnm
c ==∑ φΦ  

where 
m

C  is the eigenvector corresponding to the m
th

 eigenvalue; and the 

superscript T denotes transpose. 

Assuming that the actuated vibration is a superposition of different vibration 
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and considering the orthogonality of the mode shapes, the modal participation 

factor can be calculated as 
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beam and the plate, respectively. 

The relative rotation angle at the opposite boundaries of the PZT transducer 

can be calculated as: 
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  for 2D vibration 

where 
pq

Q  is the relative angle under a unit moment pair with the first and 

second subscripts representing the directions of the displacement and the moment 

pair, respectively. 

The mechanical impedance of the beam can be calculated as 
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Similarly, the mechanical impedance of the plate can be expressed as: 
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The admittance of the PZT patch bonded on the beam or the plate can be 

obtained from Eq. (4.38) or (4.41) after the mechanical impedance of the structure 

is calculated from Eq. (4.58) or (4.59). 
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4.13� Damage Identification Method 

If the frequency of the applied electrical voltage is near to the natural frequencies 

of the structure, because of resonance, the mechanical impedance of the structure 

will be minor. From Eqs. (4.38), (4.39), (4.41), (4.42) and (4.43), peak values of 

the admittance will appear at the natural frequencies. Change of mechanical 

properties in the structure affects the natural frequencies, and thus leads to shifts in 

the admittance peaks. Different damages cause different shifts. Therefore, the 

damage identification problem can be mathematically stated as 

Find SD ⊂ , such that ( )→Df minimum                            (4.60) 

where D is a trial solution of the damage; S is the feasible domain which contains 

all possible damages; and ( )Df  is the fitness function to assess the correctness of 

the trial solution. From the above formulation, the damage identification problem 

is essentially an optimization problem. 

It is noted that the formulation (Eq. 4.60) may have a number of local minima 

in the region S, which would cause difficulty for the traditional local optimization 

strategies to find the global optimum. In the past decades, evolutionary 

programming (EP) has been developed for global optimization (Fogel, 1962). The 

robustness of EP in finding the global optimum has been convincingly proven 

(Mcdonnell et al., 1995; Fogel et al., 1996; Angeline et al., 1997). EP has also 

been employed to solve inverse problems in civil engineering (Minster et al., 1995; 

Soh and Dong, 2001). In our study, a hybrid EP proposed by Yang et al. (2006) 

was selected to find the damage in structures. 

4.13.1� EP Algorithm 

By simulating natural evolution, EP has been developed into a powerful global 

search and optimization technique. The basic EP method has four steps: 

(1) A pool of trial solutions (called chromosomes) is randomly selected from 

the feasible region; 

(2) Each chromosome (parent) generates an offspring by mutation; 

(3) All chromosomes are assessed by computing their fitness; and  

(4) Typically, a stochastic tournament selection is performed to select a half of 

the parent and offspring chromosomes to be retained for the next population. 

Steps 2, 3 and 4 are repeated until a threshold for iteration is exceeded or an 

adequate solution is obtained. 
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Fig. 4.31� Flowchart of hybrid EP algorithm 

 

When applying an EP algorithm for damage identification, iterative structural 

analysis has to be performed in Step 3, which is time consuming. Two specially 

designed mutation operators, namely, macro mutation (MM) operator and local 

mutation (LM) operator, plus a crossover operator, were implemented in the 

hybrid EP algorithm (Yang et al., 2006) to improve the search efficiency. The 

MM operator was designed to explore the whole search space by enabling the 

mutated chromosome to reach any point in the feasible region, while the LM 

operator was designed to exploit the neighborhood of the parental chromosomes to 

find better offspring. The LM operator can find the optima in a small region 

rapidly, and the MM operator and the crossover operator can prevent the evolution 

from being trapped in local optima. The process of the hybrid EP algorithm is 

illustrated in Fig. 4.31. The following parameters are adopted in this section for 

the hybrid EP algorithm: population size=50, maximum generation number=100, 

tournament size=10, and probabilities of the MM, LM and crossover are 0.6, 0.2 

and 0.2, respectively. 

4.13.2� Fitness Function 

The traditional non-destructive evaluation techniques directly compare the 

differences between the predicted and measured data to assess the trial solution 

( ) ( )[ ]∑ −=
i

m

i

n

i
PPf DD                                       (4.61) 



4.14� Experimental Setup 175 

where P represents the peaks of the admittance, and the superscripts n and m 

represent the numerical predictions and measurements, respectively. 

In real applications, no matter how careful the structural analysis models are 

designed, they can never exactly represent the real structures. Thus, differences 

always exist between the predicted and measured data. For SHM, the final results 

are usually sensitive to the input data. These differences may lead to dramatically 

different results from the correct solution. In order to reduce the effect of such 

differences, a special fitness function is designed in our study: 

( ) ( ) ( )( ) ( )[ ]∑ −−−=
i

md

i

mu

i

nd

i

nu

i
PPPPf DDD                    (4.62) 

where the superscripts u and d represent the variables of the undamaged structure 

and the damaged structure, respectively. 

With this fitness function, the measured data for the damaged structure are 

compared with the recording of the undamaged structure, and the predicted data 

based on the structural model with presumed damage are compared with the 

predicted data based on the undamaged structural model. Consequently, only 

changes caused by the damage are counted in the fitness function. Thus, any 

inaccuracy in the numerical simulation of the real structure is reduced. 

4.14� Experimental Set-up 

The experimental setup included the test specimens, an electrical impedance 

analyzer, a multiplex terminal, electrical wire connections, and a personal computer 

(PC) equipped with data acquisition software and a PC-analyzer interface cable, as 

shown in Fig. 4.32. A beam and a plate were selected to simulate 1D and 2D 

structures, respectively.  

Standard installation procedure was employed to bond a pair of PZT transducers 

to the specimens at the same location but on opposite sides (Figs. 4.29 and 4.30). 

RS159-3957 high-strength epoxy adhesive was used in the bonding. Free boundary 

conditions were simulated by resting the specimens on soft paper for the plate 

specimen (Fig. 4.32). The properties of the specimens and the PZT transducers are 

listed in Table 4.3. 
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Fig. 4.32� Schematic sketch of experimental setup 

 

Table 4.3� Properties of specimens and PZT patches 

Specimen Beam Plate 

Length (mm) 300 101 

Width (mm) 20 101 

Height (mm) 2 2 

Young’s modulus (N/m ) 6.65E+10 6.65E+10 

Mass density (kg/m ) 2600 2800 

Damping ratio 0.01 0.005 

Poisson’s ratio N/A 0.33 

Radius (mm) 2.8 2.8 

H
o
s
t
 
s
t
r
u
c
t
u
r
e
 

Damage 

Location (mm) X =227.3 x =80.4, y =21.0 

Dimension (l×w×h) (mm ) 20×20×0.2 10×10×0.2 

Location (mm) 

x =80,

x =100 

x =30, x =40, 

y =70.5, y =80.5 

Young’s modulus (N/m ) 6.67E+10 6.67E+10 

Loss factor 0.03 0.005 

Mass density (kg/m ) 7800 7800 

Strain constant d (m/V) d =–2.10E–10 d =d =–2.10E–10 

Permittivity (Farad/m) 2.14E–08 1.93E–08 

P
Z

T
 

Dielectric loss factor 1.85E–02 1.50E–02 
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Through the multiplex terminal, an electrical field was applied on the PZT 

transducer with opposite directions so that pure bending vibration was actuated on 

the specimens. The actuating frequencies of the electrical field range were 1 – 10 

kHz and 5 – 30 kHz for the beam and the plate, respectively. Considering that the 

damage will cause very minor change in the EMI, the intervals of the actuating 

frequencies were selected to be as small as 1 Hz. The EMI spectra were recorded 

by an HP4192A impedance analyzer. The control and acquisition of the 

experimental data were achieved through the multiplex terminal and the GPIB 

interface card installed in the computer (Fig. 4.32). Damages were simulated by 

drilled holes in the specimens. The position and radius of the holes are also listed 

in Table 4.3.  

4.15� Experimental Results and Numerical Predictions 

In the numerical prediction, the hole in the beam was simulated by an element 

with the same width and height as the beam but with different elastic constant. 

The length of the damaged element was defined as 
dd
rL 6=  based on Saint 

Vienan’s principle, and the Young’s modulus in this area was approximated by: 

( ) ( )23333

π2

12

2

12

d
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dddd

L

dd
rbr

t

ErL

bt

Ex

bt

EL

bt
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∫

   (4.63) 

The damage in the plate was simply considered as 
2

π
dd
rA =  and 0=

d
E . 

The measured and predicted admittances are illustrated in Figs. 4.33 and 4.34 

for the beam and plate specimens, respectively. Good matches between them 

confirm the validity of the impedance model. However, some predicted peaks 

cannot be measured because of damping, and there are some measured minor 

peaks which were not predicted by the impedance model. These peaks were 

probably caused by machine noise or accidental disturbance of the specimens. 

Even for those peaks that appear in both the prediction and the measurement, there 

are still some small differences between them, as shown in Table 4.4 and Table 

4.5 for the beam and plate specimens, respectively. These differences are 

unavoidable because of the inaccuracy in numerical simulation of the real 

structure, e.g., the specimens were not strictly homogeneous and isotropic, and the 

boundary conditions were not completely free. 
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Fig. 4.33� Comparison between experiment and prediction of beam specimen. (a) Undamaged; 

(b) Damaged 

 

 

Fig. 4.34� Comparison between experiment and prediction of plate specimen. (a) Undamaged; 

(b) Damaged 

 

 

Table 4.4� Measured and predicted peaks for beam specimen (in kHz) 

Experimental measurement Numerical prediction 

Undamaged Damaged Shift Undamaged Damaged Shift 

1.508 1.507 0.001 1.447 1.447 0 

2.102 2.095 0.007 2.079 2.073 0.006 

3.614 3.61 0.004 3.557 3.552 0.005 

4.523 4.519 0.004 4.443 4.443 0 

5.507 5.495 0.012 5.599 5.583 0.016 

6.615 6.59 0.025 6.656 6.633 0.023 

7.867 7.854 0.013 7.766 7.751 0.015 

9.116 9.106 0.010 9.131 9.13 0.001 
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Table 4.5� Measured and predicted peaks for plate specimen (in kHz) 

Experimental measurement Numerical prediction 

Undamaged Damaged Shift Undamaged Damaged Shift 

5.465 5.452 0.013 5.401 5.389 0.012 

5.762 5.735 0.027 5.672 5.647 0.025 

6.126 6.102 0.024 6.068 6.041 0.027 

7.029 7.018 0.011 6.996 6.987 0.009 

7.460 7.458 0.002 7.427 7.426 0.001 

7.862 7.864 -0.002 7.784 7.78 0.004 

9.257 9.254 0.003 9.165 9.164 0.001 

9.459 9.443 0.016 9.403 9.388 0.015 

9.902 9.891 0.011 9.844 9.818 0.026 

11.263 11.263 0.000 11.23 11.227 0.003 

11.8 — — — — — 

12.937 12.915 0.022 12.97 12.925 0.045 

13.404 13.397 0.007 13.388 13.384 0.004 

— — — 13.583 13.58 0.003 

13.969 13.962 0.007 13.89 13.889 0.001 

14.239 14.208 0.031 14.178 14.158 0.02 

— — — 15.565 15.565 0 

15.9 — — 15.987 15.972 0.015 

16.672 16.655 0.017 16.741 16.701 0.04 

17.988 17.958 0.030 18.082 18.057 0.025 

19.189 19.182 0.007 19.214 19.206 0.008 

19.777 19.749 0.028 19.889 19.886 0.003 

20.564 20.548 0.016 20.806 20.727 0.079 

20.982 20.969 0.013 21.123 21.115 0.008 

21.356 21.326 0.030 21.577 21.541 0.036 

23.110 23.105 0.005 23.389 23.387 0.002 

23.530 23.49 0.040 23.808 23.774 0.034 

25.087 25.01 0.077 25.364 25.343 0.021 

25.667 25.656 0.011 25.983 25.946 0.037 

26.536 26.488 0.048 27.045 27.038 0.007 

26.896 26.897 -0.001 27.329 27.329 0 

27.340 27.332 0.008 27.792 27.772 0.02 

29.305 29.296 0.009 29.883 29.878 0.005 

29.648 29.618 0.030 30.491 30.45 0.041 

 

It is also observed that the appearance of damages in both structures has 

caused shifts in the admittance peaks, as expected. A typical shift is shown in Figs. 

4.35 and 4.36 for the beam and the plate specimens, respectively. Although 

inaccuracy exists in representing the beam or the plate specimen with an Euler 

beam or a Kirchhoff plate, the shifts in the admittance peaks caused by the same 

damage are similar for both measurements and predictions. 
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Fig. 4.35� Typical peak shift for beam specimen 

 

 

 

Fig. 4.36� Typical peak shift for plate specimen 

 

Figs. 4.37 and 4.38 illustrate the changes in admittance peaks for the beam and 

the plate, respectively, with only those peaks which can be both detected in 

experiment and predicted in numerical simulation under consideration. Since the 

proposed fitness function counts only the shifts in the admittance peaks caused by 

the damage, the above similarity indicates that it is possible to identify damages 

with the system identification technique and the proposed fitness function. 
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Fig. 4.37� Shifts of EMI peaks for beam specimen 

 

 

Fig. 4.38� Shifts of EMI peaks for plate specimen 

 

4.15.1� Damage Identification Results 

The damages in the structure were detected using the hybrid EP algorithm. For the 

beam, the damage was defined by three variables:
d

E , 
c

x  and 
d

L . Since the level 

of 
d

E  is much larger than the other variables, it will force the search to converge 

to a solution that can only produce a good estimate of 
d

E . To overcome this 
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problem, the variables were non-dimensionalized as 

E

E
d

, 

a

x
c

 and 

a

L
d

, so that 

the search space was constrained in 10 <<
E

E
d

, 10 <<
a

x
c

 and 1.00 <<
a

L
d

. 

The upper bound of the third variable was set at 0.1 because in this research the 

damage was considered minor. The admittance peaks, ranging from 1 to 10 kHz, 

were used as input information for optimization. The optimization process is 

illustrated in Fig. 4.39. After 100 generations, the center of the damage was found 

at 75828.0=
a

x
c

 (x
c
 = 227.48 mm). The distance from the predicted damage 

center to the exact position (x
c
 = 227.3 mm) was less than 0.2mm. The other two 

variables were obtained as 86247.0=
E

E
d

 and 02579.0=
a

L
d

. By substituting 

these solutions into Eq. (4.63), the radius of the hole was calculated to be r
d
 = 2.6 

mm, which is only 0.2 mm less than the exact solution (r
d
 = 2.8 mm), i.e., a 

difference of only 7%.  

 

 

Fig. 4.39 � Evolutionary process of damage detection for beam specimen: (a) Fitness; 

(b) Young’s modulus; (c) Damage location; (d) Damage length 
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For the plate, the damage was defined by three variables, 
c

x , 
c

y  and 
d
r , 

which satisfied 10 <<
a

x
c

, 10 <<
a

y
c

, and 1.00 <<
a

r
d

. The admittance peaks 

range from 5 to 30 kHz. The evolutionary process for damage identification is 

shown in Fig. 4.40. After 100 generations, the center of the hole was identified to 

be at 85008.0=
a

x
c

 and 20642.0=
a

y
c

 (i.e., x
c
 = 85.86 mm, y

c
 = 20.85 mm), 

which is 5.46 mm from the exact position (x
c
 = 80.4 mm, y

c
 = 21.0 mm). The 

radius of the hole was obtained as 02544.0=
a

r
d

 (i.e., r
d
 = 2.57 mm). The 

difference with the exact radius r
d
 = 2.8 mm is only 0.23 mm or about 8%. From 

the comparison, it can be concluded that the damage has been successfully 

identified using the hybrid EP algorithm. 

 

 

Fig. 4.40 � Evolutionary process of damage detection for plate specimen: (a) Fitness; 

(b) Damage location; (c) Damage radius 
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4.15.2� Summary 

Damages in beam and plate have been successfully identified from the changes in 

the admittance spectra using a hybrid EP algorithm. The EMI-EP combined 

technique is based on relatively lower frequencies so that accurate structural 

analysis is possible. The hybrid EP method was employed as a global search 

technique to back-calculate the damage. A special fitness function was designed to 

effectively reduce the inaccuracy in representing the real structure with analytical 

or numerical models. Experiments performed on a beam and a plate have 

demonstrated the effectiveness and reliability of the proposed SHM technique. 

Compared with the previous application of the EMI method for damage 

identification, this proposed technique can obtain more detailed information of the 

damage, i.e., both its location and extent. 
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Exercise 4.1 

(a) Consider the 3D aluminium structure shown in Fig. Ex 3.1. Using 3D FEM, 

obtain a plot of x and y in the frequency range 100 – 300 kHz at an interval of 1 

kHz. Idealize the structure as a suitable combination of the basic elements k, c and 

m which produce matching plots of x and y. 

(b) Obtain the plots of G and B using the MATLAB program listed in 

Appendix C. What is common between the plots of G and x and those of B and y? 

(c) Induce damage in the structure by reducing the Young’s modulus of 

elasticity by 20% for the four top corners of size 20 mm×20 mm×20 mm each. 

Repeat Step 1 and determine the values of k, c and m after this simulated damage. 

What difference can be observed? 

Exercise 4.2 

Repeat the exercise of Section 4.6 on a beam with both the ends fixed. All the 

other geometric as well as material properties may be considered to be the same. 

What are the similarities and differences compared with the results of Section 4.6? 

 



5 

Strength and Damage Assessment of Concrete 

S. Bhalla
* 

, V. G. M. Annamdas,  C. K. Soh 

*

Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz 

Khas, New Delhi 110016, India  

Tel: 91-11-2659-1040; Fax: 91-11-2658-1117 

Email: sbhalla@civil.iitd.ac.in 

5.1� Introduction 

A method is presented in Chapter 4 to “identify” system parameters and to predict 

system behavior using the EM admittance signatures of surface bonded piezo-

impedance transducers. However, it is equally important to relate the identified 

impedance parameters with physical parameters such as strength and stiffness, and 

to calibrate changes in these parameters with damage progression in the host 

structure. This is the main objective of this chapter, which covers both surface-

bonded and embedded PZT patches. 

5.2� Conventional NDE Techniques for Concrete 

In general, when considering NDE, concrete technologists are interested in (i) 

concrete strength determination, and (ii) concrete damage detection. Special 

importance is attached to strength determination of concrete because its elastic 

behavior and, to some extent, service behavior can be easily predicted from its 

strength characteristics. Although direct strength tests, which are destructive in 

nature, are excellent for quality control during construction, their main limitation 

is that the tested specimens may not truly represent the concrete in the constructed 

structure. The destructive tests reflect more the quality of the supplied materials 
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rather than the constructed structures. Delays in obtaining results, lack of 

reproducibility and high costs are some of the other drawbacks. NDE techniques, 

on the other hand, aim to measure the strength of concrete in constructed 

structures. However, these cannot be expected to yield absolute values of strength. 

They measure some properties of concrete from which an estimation of its 

strength, durability and elastic parameters can be obtained. Below are very brief 

descriptions of some of the common techniques for concrete strength estimation.  

��Surface Hardness Techniques 

These techniques are based on the principle that strength of concrete is proportional 

to its surface hardness. Surface hardness is measured using the indentation test, 

which involves impacting the specimen surface with a standard mass, activated by 

a given energy, and measuring the size of the resulting indentation. Although there 

is little theoretical relationship between indentation size and strength, several 

empirical correlations have been established, which give a reasonable estimation 

of strength within a 20% – 30% error. Most common indentation devices are 

William’s testing pistol, the Frank spring hammer and the Einbeck pendulum 

hammer. The main limitation of these tests is that the devices need frequent 

calibration; the results are also highly dependent on the type of cement, aggregates, 

age and moisture content of the specimen, and are not very reproducible.  

��Rebound Hammer 

The rebound hammer technique predicts concrete strength based on the rebound of 

a hardened steel hammer dropped on the specimen surface. The rebound hammer, 

also known as the Schmidt rebound hammer, was invented by Ernst Schmidt in 

1948. Empirical correlations have since been established between rebound number 

and concrete strength. In spite of a quick and inexpensive estimation of strength, 

the results are influenced by surface roughness, type of specimen (shape and size), 

age, moisture content, type of cement and aggregates. 

��Penetration Techniques 

These techniques are based on measuring the depth of penetration of a standard 

probe, impacted on the surface of a concrete specimen, with a standard energy. 

The penetration is performed mechanically in the case of the Simbi hammer and 

by gunpowder blast in the case of the Spit pin hammer and Windsor probe. The 

main drawback of penetration techniques is that they leave a minor damage on a 

small area of concrete (for example, the Windsor Probe leaves an impression of 

about 8 mm diameter). Furthermore, the calibration is strongly dependent on the 
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source and type of aggregates used, and large variations in strength prediction are 

observed.  

��Pullout Test 

This test measures the force required to pull out a specially shaped steel rod from 

the concrete where the rod has an enlarged end cast into the concrete. A high 

degree of correlation exists between the pullout force and the compressive 

strength. The pullout tests are, in general, reproducible with a high degree of 

accuracy. The major drawback, however, is that the test will cause a small amount 

of damage to the concrete surface, which must be repaired. Another drawback is 

that, since the pullout assemblies need to be incorporated into the form work 

before concreting, the tests have to be planned in advance.  

��Resonant Frequency Technique 

This technique is based on the principle that the velocity of sound traveling 

through a structure is proportional to the natural frequency of the structure, which 

in turn is proportional to the Young’s modulus of elasticity (and hence strength) of 

the medium. This technique has been standardized by the American Society for 

Testing and Materials (ASTM). The velocity of sound in concrete is obtained by 

determining the fundamental resonant frequency of vibration of a standard 

specimen, which is usually a cylinder (150 mm diameter by 300 mm high) or a 

prism (75 mm×75 mm×300 mm). An electronic audio oscillator generates the 

required electrical audio frequency voltages, which are converted into mechanical 

pulses by the transmitter. As the waves travel through the concrete, they are 

picked up by a piezo-electric crystal acting as receiver at the other end of the 

specimen. The frequency of the oscillator is tuned until maximum deflection is 

displayed in the meter, which indicates resonance. From the measured frequency, 

the dynamic Young’s modulus is determined, which in turn is correlated 

empirically with concrete strength. The main disadvantage of this technique is that 

it can only be carried out on small laboratory-sized specimens rather than 

structural members in the field. The test demands the availability of two opposite 

free surfaces on the specimen.  

��Ultrasonic Pulse Velocity Technique 

This technique is based on a principle similar to the resonant frequency technique. 

The difference is that the velocity of sound is determined by measuring the time of 

travel of electronically-generated longitudinal waves (15 – 50 kHz) through concrete, 

using a digital meter or a cathode ray oscilloscope. The pulse generation and 

reception are carried out using piezo-crystals. This test has also been standardized 
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by ASTM. Commercially available test equipment includes soniscope, ultrasonic 

concrete tester and portable ultrasonic non-destructive digital indicating tester 

(PUNDIT). The pulse velocity measurements are correlated with strength, and the 

error is typically less than 20%. As the velocity of the pulses is independent of the 

geometry of the component (depending on its elastic properties alone), the 

technique is suitable in both laboratory and field environments. It is typically used 

to test the quality of concrete in bridge piers, road pavements and concrete 

hydraulic structures up to 15 m in thickness (Malhotra, 1976). However, the main 

limitation of the technique is that the transducers must always be placed on the 

opposite faces of the structure for accurate results. Often, this is not possible, 

thereby limiting the technique’s application. Also, the correlation between 

strength and velocity is highly dependent on the type of cement and aggregates. 

5.3� Concrete Strength Evaluation Using EMI Technique 

In Chapter 3, Eq. (3.56) was derived to calculate the electrical admittance across 

the terminals of a square PZT patch, surface-bonded to a structure possessing an 

effective mechanical impedance Z
s,eff

. From this relationship, admittance spectra 

can be obtained for a “free” and a “clamped” PZT patch, by substituting Z
s,eff

 equals 

0 and ∞ respectively. Fig. 5.1 displays the admittance spectra (0 – 1,000 kHz) 

corresponding to these boundary conditions for a grade PIC 151 PZT patch of size 

10 mm×10 mm×0.3 mm (PI Ceramic, 2003). It is apparent from this figure that 

the three resonance peaks, corresponding to “free-free” planar PZT vibrations, 

vanish on clamping the patch. The act of bonding a PZT patch to the surface of a 

structure also tends to similarly restrain the PZT patch. However, in real situations, 

the level of clamping is expected to be intermediate between these two extreme 

situations and therefore the admittance curves are likely to lie in-between the 

curves corresponding to these extreme situations, depending on the stiffness (or 

strength) of the component. 

 

Fig. 5.1� Admittance spectra for free and fully clamped PZT patches. (a) Conductance vs. 

frequency; (b) Susceptance vs. frequency 
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In order to test the feasibility of predicting concrete strength using this 

principle, Soh and Bhalla (2005) bonded identical PZT patches of size 10 mm× 

10 mm×0.3 mm and grade PIC 151 onto the surface of 150 mm concrete cubes. At 

the time of casting, the proportions of various constituents were adjusted such that 

different characteristic strengths could be achieved. After casting, a minimum 

curing period of 28 days was observed for all the specimens, except two, which 

were kept one week only so as to achieve a lower strength at the time of the 

testing. In order to achieve identical bonding conditions, the same thickness of RS 

850-940 epoxy adhesive layer (RS Components, 2006) was applied between the 

PZT patches and the concrete surfaces. To ensure this, two optical fiber pieces, 

0.125 mm in diameter, were first laid parallel to each other on the concrete surface 

(Fig. 5.2(a)). A layer of epoxy was then applied onto the concrete surface and the 

PZT patch placed on top. A light pressure was maintained over the assembly using 

a small weight. The set-up was left undisturbed under these conditions at room 

temperature for 24 h to enable full curing of the adhesive. The optical fiber pieces 

were left permanently in the adhesive layer. This procedure ensured a uniform 

bonding layer thickness of 0.125 mm in all the specimens. 

 

Fig. 5.2� (a) Optical fiber pieces laid on concrete surface before applying adhesive; (b) Bonded 

PZT patch 

 

Fig. 5.3 shows the conductance and susceptance plots of the PZT patches 

bonded to concrete cubes of five different strengths. The strengths indicated on the 

figure were determined experimentally by subjecting the cubes to cyclic loading 

on a universal testing machine (the test procedure will be covered in the next 

section). The figure also shows the analytical curves for the PZT patches in free as 

well as clamped conditions. 



5� Strength and Damage Assessment of Concrete 192 

 

Fig. 5.3� Effect of concrete strength on first resonant frequency of PZT patch. (a) Conductance 

vs. frequency; (b) Susceptance vs. frequency 

 

The figures show that the first peak frequency (Fig. 5.3(a)) gradually shifts in 

the right direction as the strength of concrete increases. This shifting is caused by 

the additional stiffening action due to bonding with concrete (the level of 

stiffening being related to the concrete strength). Fig. 5.4 shows a plot between the 

observed first resonant frequency and the measured concrete strength for data 

pertaining to a total of 17 PZT patches. The free PZT curve was used to obtain the 

data point corresponding to zero strength. 
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Fig. 5.4� Correlation between concrete strength and first resonant frequency 

 

From regression analysis, the following empirical relationship is found between 

concrete strength (S) and the observed first resonant frequency  

94.1966657.20089.0)MPa( 
2 +−= ffS                    (5.1) 

where the resonant frequency, f, is measured in kHz. This empirical relationship can 

be used to evaluate concrete strength, non-destructively, for low-to-high strength 

concrete (10 MPa < S < 100 MPa).  

It should be mentioned that a good correlation is not found between concrete 

strength and the second and third peaks (Fig. 5.1). The most probable reason is 

that at frequencies higher than 500 kHz, the PZT patches become sensitive to their 

own conditions rather than the conditions of the structure they were bonded to, as 

pointed out by Park et al. (2003). 

Although the tests reported in this study were carried out on 150 mm cubes, 

the empirical relationship represented by Eq. (5.1) can be conveniently used for 

real structures since, in concrete, the zone of influence of PZT patches is usually 

very small. However, it should be noted that the strength considered in our study 

was obtained by cyclic compression tests, which was expected to be lower than 

that obtained by the standard testing procedure. Also, the relationship will depend 

on the type of aggregates and the type of cement used, and on the type and size of 

the PZT patches and type and thickness of the bonding layer. Hence, Eq. (5.1) 

cannot be considered as a universal relationship. It is therefore recommended that 

similar calibration should be established first in the laboratory for the particular 

concrete under investigation before using the method in the field. 

The main advantage of the EMI-based approach is that there is no requirement 

of the availability of two opposite surfaces, unlike the resonant frequency method 

and the ultrasonic pulse velocity method. Also, no expensive transducers or 

equipment are required.  
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5.4� Extraction of Damage-Sensitive Concrete Parameters from 

Admittance Signatures 

The test specimens were 150 mm concrete cubes instrumented with square PZT 

patches of size 10 mm×10 mm×0.3 mm and grade PIC 151 (Fig. 5.5). Using the 

procedure outlined in Chapter 3, updated “models” were obtained for five 

representative PZT patches of the test set. Table 5.1 lists the key averaged PZT 

parameters obtained experimentally for the patches. 

 

Fig. 5.5� Concrete cube to be “identified” by piezo-impedance transducer 

 

Table 5.1� Averaged parameters of PZT patches 

Physical Parameter Value 

Electric Permittivity, 
T

33
ε  (Farad/m) 1.7785×10

Peak correction factor, C 0.898 

)1(

2

ν−
= Yd

K
  (N/V ) 

5.35×10

Mechanical loss factor, η 0.0325

Dielectric loss factor, δ  0.0224 

 

Using the computational procedure outlined in Chapter 4, the impedance 

parameters of the concrete cubes were extracted from the admittance signatures of 

the bonded PZT patches in the frequency range 60 – 100 kHz. The MATLAB 

program listed in Appendix E, incorporating the parameters listed in Table 5.1, 

was employed to perform the computations. The real and imaginary components 

of the extracted mechanical impedance were found to exhibit a response similar to 

that of a parallel spring-damper combination (Kelvin Voigt model), as shown in 

Fig. 5.6. Typically, for a concrete cube with a strength of 43 MPa (designated as 

C43), the system parameters were identified to be k = 5.269×10
7

 N/m and c = 

12.64 N·s/m. Fig. 5.7 compares the experimental impedance spectra with the 

corresponding parallel spring-damper combination, with k = 5.269×10
7

 N/m and 

c = 12.64 N·s/m. A good agreement can be observed between the two.  
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Fig. 5.6� Equivalent system “identified” by PZT patch 

 

Fig. 5.7� Impedance plots for concrete cube C43. (a) Real component of mechanical impedance, 

x, vs. frequency; (b) Imaginary component of mechanical impedance, y, vs. frequency 

 

The cubes were then subjected to cyclic loading in an experimental set-up 

(Fig. 5.8). The PZT patches instrumented on the cubes were wired to an impedance 

analyzer; which was controlled using the personal computer (PC) labeled as PC1 

in the figure. The strain gauge was wired to a strain-recording data logger, which 

was in turn connected to another PC, marked PC2, which also controlled the 

operation of the universal testing machine (UTM). The cube was then loaded in 

compression at a rate of 330 kN/min until it reached the first predetermined load. 

It was then unloaded and the conductance and susceptance signatures were 

acquired. In the next cycle, the cube was loaded to the next higher level of load 

and the signatures were again acquired after unloading. 

This loading, unloading and signature acquisition process was repeated until 

failure. Thus, the damage was induced in a cyclical fashion. Typical load histories 

for four cubes designated as C17 (Strength = 17 MPa), C43 (Strength = 43 MPa), 

C52 (Strength = 52 MPa) and C86 (Strength = 86 MPa) are shown in Fig. 5.9. 

It can be observed from Fig. 5.9 that the secant modulus of elasticity 

progressively diminishes as the number of load cycles gradually increases. The 

loss in secant modulus was worked out after each load cycle. At the same time, the 

extracted equivalent spring stiffness, worked out from the recorded PZT 

signatures, was found to diminish proportionally. 
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Fig. 5.8� Experimental set-up for inducing damage on concrete cubes 

 

 

Fig. 5.9� Load histories of four concrete cubes. (a) C17; (b) C43; (c) C52; (d) C86 
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Fig. 5.10 plots the loss of secant modulus against the loss of equivalent spring 

stiffness for four typical cubes C17, C43, C52 and C86. A good correlation can be 

observed between the loss in secant modulus and the loss in equivalent stiffness as 

identified by the PZT transducers. From these results, it is evident that equivalent 

spring stiffness can be regarded as a damage sensitive parameter and can be 

utilized for quantitatively predicting the extent of damage in concrete (it should be 

noted that the equivalent spring stiffness was obtained solely from the signatures 

of the PZT transducers. No information about concrete specimen is warranted a 

priori). 

 

Fig. 5.10� Correlation between loss of secant modulus and loss of equivalent spring stiffness 

with damage progression: (a) C17; (b) C43; (c) C52; (d) C86 

 

It should also be mentioned that the extracted equivalent damping was found 

to increase with damage. This was as expected, since damping is known to 

increase with the development of cracks in concrete. Fig. 5.11 shows the typical 

plot for the increase in equivalent damping with damage progression for cube C43. 

Also shown is the progressive loss in the equivalent stiffness with load ratio. 

However, in most other cubes, no consistent pattern was found with respect to 

damping. Only an exceedingly large increase near failure was observed. For this 

reason, the equivalent stiffness was selected as the damage sensitive parameter 

because of its progressive decrease with damage progression and consistent 

performance. 
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Fig. 5.11� Changes in equivalent damping and equivalent stiffness for cube C43 

 

Section 5.6 covers the development of an empirical damage model based on 

the equivalent spring stiffness. 

5.5� Monitoring Concrete Curing Using Extracted Impedance 

Parameters 

In order to evaluate the feasibility of the “identified” spring stiffness in monitoring 

concrete curing, a PZT patch of size 10 mm×10 mm×0.3 mm and grade PIC 151 

was instrumented on a 150 mm concrete cube (Fig. 5.12). Again, a bond layer 

thickness of 0.125 mm was achieved with the aid of optical fiber pieces. The 

instrumentation was implemented three days after casting the cube. The PZT patch 

was periodically interrogated for the acquisition of electrical admittance signatures, 

and this continued for a period of one year.  

 

Fig. 5.12� Monitoring concrete curing using EMI technique 
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Figs. 5.13 and 5.14, respectively, show the short-term and long-term effects of 

ageing on the conductance signatures in the frequency range 100 – 150 kHz. It can 

be observed that with ageing, the peak shifts towards the right and, at the same 

time, becomes sharper. This trend is opposite to the trend for compression tests, 

where the peaks usually shift towards the left. The shifting of resonance peak 

towards the right, in the present case, indicates that the stiffness (and hence the 

strength) increased with curing time. The phenomenon of peaks becoming sharper 

with time suggests that the material damping was reducing (concrete was initially 

“soft”). Damping in concrete is known to occur mainly in the matrix, some in the 

interfacial boundaries and a small fraction in the aggregates. Moisture in the 

matrix is the major contributor to damping (Malhotra, 1976). Hence, with curing, 

as moisture content drops, the damping in concrete tends to reduce.  

It should be noted that the particular peak in this figure is the resonance peak 

of the host structure. It should not be confused with the resonance peak of the PZT 

patch, such as that shown in Fig. 5.3. As concrete strength increases, the resonance 

peak of the PZT patch subsides owing to the predominance of structural 

interaction (Fig. 5.3). However, the structural resonance peak (Figs. 5.13 and 5.14) 

tends to become sharper. In other words, increasing structural stiffness tends to 

“dampen” PZT resonance and “sharpen” the host structure’s resonance peak. 

 

 

Fig. 5.13� Short-term effect of concrete curing on conductance signatures 
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Fig. 5.14� Long-term effect of concrete curing on conductance signatures 

 

In order to quantitatively describe the phenomenon, the equivalent spring 

constant of the cube was worked out in the frequency range 60 – 100 kHz using 

the signatures of the bonded PZT patch. The results are presented in Fig. 5.15, 

which shows that as the curing progresses, the equivalent spring stiffness increases, 

reaching an asymptotic value of about 115% higher than the first recorded value 

(four days after casting). After 28 days, the increase in the equivalent spring 

stiffness is about 80%. Comparing with similar monitoring, using the ultrasonic 

pulse velocity technique, our approach is seen to be much better in monitoring 

concrete curing. For example, Malhotra (1976) reported an increase of only 7% in 

the ultrasonic pulse velocity between days 4 and 10 (after casting). On the other 

hand, in our experiment, a much higher increase of 60% was observed between 

days 4 and 10. This establishes the superior performance of the EMI-based 

approach for monitoring concrete curing. This technique can be applied in the 

construction industry to decide the time of removal of the form work. It can also 

be employed to determine the time of commencement of pre-stressing operations 

in the construction of pre-stressed structures. Numerous other industrial processes 

which involve curing of materials (other than concrete) can also benefit from this 

technique.  
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Fig. 5.15� Effect of concrete curing on equivalent spring stiffness 

5.6� Establishment of Impedance-Based Damage Model for 

Concrete  

5.6.1� Definition of Damage Variable 

It has been shown that, in the frequency range 60 – 100 kHz, concrete essentially 

behaves as a parallel spring damper (Kelvin Voigt) system. The equivalent 

stiffness k has been established as a damage sensitive system parameter since it 

was found to exhibit a reasonable sensitivity to any changes taking place in the 

system on account of damages. This section deals with calibrating k against 

damage using the data from compression tests on concrete cubes of strengths 

ranging from moderate to high values.  

In general, any damage to concrete causes reduction in the equivalent spring 

stiffness as identified by the piezo-impedance transducer surface-bonded to it. At 

the i
th

 frequency, the associated damage variable, D
i
, can be defined as 

oi

di

i

k

k

D −=1                                            (5.2) 

where K
oi

 is the equivalent spring stiffness at the i
th

 measurement point in the 

pristine state, and K
di

 the corresponding value after damage (note: 0 < D
i
 < 1; thus, 

D
i
 measures the extent of “softening” of the identified equivalent stiffness due to 

damage). D
i
 is expected to increase in magnitude with damage severity, and the 

host structure is deemed to fail if it exceeds a critical value D
c
. However, from 

comprehensive tests on concrete cubes, it was found that it is not possible to 

define a unique value of D
c
. This is due to unavoidable uncertainties related to 

concrete, its constituents and the PZT patches. On this account, Soh and Bhalla 

(2005) proposed to define the critical value of the damage variable using the 

theory of fuzzy sets.  
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Mathematical statistics is mainly concerned with random variables, that is, 

variables which can assume different values due to unpredictable factors. For 

example, the damage variable D
i
 defined earlier is a random variable. Within a 

given excitation frequency range (60 – 100 kHz in the present case), it usually 

carries random values. In general, a random variable can be either discrete or 

continuous. The mean value of a sample consisting of N values (x
1
, x

2
, x

3
, ..., x

n
) of 

a random variable “x” is defined by 

∑
=

=
N

j

j
x

N

1

1μ                                               (5.3) 

and the variance, s
2

, is defined by 

∑
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The square root of s
2

 is the standard deviation and is denoted by σ. Most 

random experiments (involving a random variable) exhibit statistical regularity or 

“stability”. If D is a random event, there exists a number p(D) (0 ≤ p(D) ≤ 1) 

called the probability of D, such that if the experiment is performed repeatedly, it 

is almost certain that the relative frequency of occurrences of D is approximately 

equal to p(D).  

For a continuous random variable “x”, the probability density function, p(x), is 

a function which defines the probability of the variable over the possible range of 

values the variable can attain, satisfying the following condition 

1d)( =
∫

∞=

−∞=
xxp

x

x

                                       (5.5) 

The distribution function or cumulative distribution function, F(x), of such a 

continuous variable is defined as  

∫

=

−∞=
=

xv

v

vvpxF d)()(                                    (5.6) 

where the integrand is continuous, except possibly at multiple finite values of ν. 

Differentiating Eq. (5.6) with respect to x, one obtains 

F'(x) = p(x)                                           (5.7) 

The mean of a continuous distribution is defined by 
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Eqs. (5.5) to (5.8) can be easily modified to suit a discrete random variable by 

replacing the integration by summation (Kreyszig, 1993). 

Given a data set x
1
, x

2
, x

3
, ..., x

N
 of independent observations, the empirical 

cumulative distribution function can be obtained by 

∑
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i
n

N
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                                     (5.9) 

where n
i
 is the frequency of x

i
 in the data set. This provides an empirical estimate 

of F(x).  

The distribution of a random variable encountered in real situations may 

conform to any of the standard distributions, such as the normal, the Binomial, the 

hypergeometric or the Poisson distribution. Table 5.2 lists the probability 

distribution function for these distributions. Details of other standard distributions 

are covered by Kreyszig (1993). Whether a given random variable has a 

distribution, conforming to a standard distribution, can be ascertained by means of 

the Kolmogorov-Smirnov “goodness-of-fit” test. For this purpose, the empirical 

distribution, )(
ˆ

xF
n

, needs to be worked out using Eq. (5.9). The unknown distribution 

F(x) is said to fit the specified distribution F
o
(x) with a confidence level of (1–α) 

(where 0 ≤ α ≤ 1, typically 10 to 15%) if  

α≤− )()(
ˆ

max xFxF
on

                                 (5.10) 

Table 5.2� Common probability distributions 

Distribution Probability density function  f(x) 
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Note: C  = Number of possible combinations of x objects out of n 
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5.6.2� Damage Variable Based on the Theory of Fuzzy Sets 

Scientists and engineers describe complex physical systems by simple mathematical 

models, often making considerable idealization in the process. A practical 

approach to simplify a complex system is to tolerate a reasonable amount of 

imprecision, vagueness and uncertainty during the modeling phase. It was this 

logic which Zadeh (1965) employed when he introduced the notion of fuzzy sets. 

This principle of scientifically accepting a certain loss of information has turned 

out to be satisfactory in many knowledge-based systems. Fuzzy systems are 

widely used to model information that is afflicted with imprecision, vagueness and 

uncertainty.  

A fuzzy set is defined as a class of objects with continuum grades of 

membership. Such a set is characterized by a membership (or characteristic) 

function, which assigns to each object a grade of membership ranging from 0 to 1. 

Let X be a space of objects with the generic element of X denoted by “x”. When A 

is a set in space X in the ordinary sense of terms, its membership function can take 

only two values 1 and 0, according to whether “x” does or does not belong to X. 

On the other hand, a fuzzy set (or class) A
f
 in X is characterized by a membership 

function f
m
(x), which associates with each object in “x” a real number in the 

interval [0,1] representing the “grade of membership of x” in A. The nearer the 

value of f
m
(x) to unity, the higher the grade of membership of “x” in A. For 

example, let X be the real line R and let A
f
 be a fuzzy set of numbers which are 

“much” greater than “1”. A precise, albeit subjective, value of characterization of 

A by specifying f
m
(x), can then be given. The representative values of such a 

function might be f
m
(0) = 0, f

m
(10) = 0.1 and f

m
(100) = 1.0, and so on. In general, 

fuzzy sets have merely an intuitive basis as a formal description of vague data and 

are generally specified directly by experts intuitively.  

Fuzzy sets were first used in civil engineering in the late 1970s (e.g. Brown, 

1979), and Chameau et al. (1983) suggested several potential applications for 

them in civil engineering. Typically in structural analysis, a number of basic 

variables are involved such as geometry and dimensions, material parameters, 

boundary conditions, loads and the methods of modeling and analysis. Some of 

these variables show randomness, some show fuzziness and some are characterized 

by both. The element of randomness is due to the uncertainty of the loads, 

modeling uncertainties and statistical uncertainties (due, in turn, to the use of 

limited information). The fuzziness-related uncertainty is due to the definition of 

internal parameters such as structural performance. Many innovative applications 

of fuzzy logic and fuzzy sets in civil engineering can be found in the literature, 

such as Dhingra et al. (1992), Valliappan and Pham (1993), Soh and Yang (1996), 

Wu et al. (1999) and Yang and Soh (2000). 

The membership functions represent the subjective degree of preference of a 

decision maker, as well as the most controversial part of applying the theory of 

fuzzy sets for solving engineering problems. In engineering applications, the most 

commonly used shapes are linear, half concave, exponential, triangular, trapezoidal, 
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parabolic, sinusoidal and the extended π-shape (Valliappan and Pham, 1993; Wu 

et al., 2001), several of which are shown in Fig. 5.16. The choice of a particular 

shape depends on the opinion of the expert, since there is no hard and fast rule to 

ascertain which shape is the most realistic. 

 

Fig. 5.16� Different types of membership functions for fuzzy sets 

 

If p(D) is the probability density function for describing a structural failure 

event D, the failure probability may be expressed as 

∫
=

S

f
DDpP d)(                                        (5.11) 

where S is the space of the structural failure event. However, by the use of fuzzy 

set theory, a failure event can be treated as a “fuzzy failure event”. If the failure 

space is a fuzzy set with a membership function f
m
(D), Wu et al. (1999) defined 

the fuzzy failure probability as 

∫
=

S

mf
DDpDfP d)()(                              (5.12) 

This principle has been used in evaluating concrete damage. 

Returning to damage diagnosis in concrete, Fig. 5.17 shows the equivalent 

spring stiffness worked out at various load ratios (applied load divided by failure 

load) for five cubes labeled C17, C43, C52, C60 and C86. Damage variables were 

computed at each frequency in the interval 60 – 100 kHz, corresponding to each 

load ratio, for all the five cubes. 
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Fig. 5.17� Effect of damage on equivalent spring stiffness (LR: Load Ratio): (a) C17; (b) C43; 

(c) C52; (d) C60; (e) C86 

 

The mean and standard deviation of damage variables were then evaluated at 

each damage ratio. Statistical examination of the data pertaining to the damage 

variables indicated that it followed a normal probability distribution (Table 5.2). 

To verify this, Fig. 5.18 shows the empirical cumulative probability distribution of 

D
i
 and also the theoretical normal probability distribution for all the cubes at or 

near failure. It was found that the damage variables statistically fitted very well 

into the normal distribution. The adequacy of the normal distribution was 

quantitatively tested by the Kolmogorov-Smirnov “goodness-of-fit” test technique 

and the normal distribution was found to be acceptable under an 85% confidence 

limit for all the cubes. Similarly, damage variables for all the other damage states 

were also found to follow the normal probability distribution reasonably well.  
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Fig. 5.18� Theoretical and empirical probability density functions near failure: (a) C17; (b) C43; 

(c) C52; (d) C60; (e) C86 

5.6.3� Fuzzy Probabilistic Damage Calibration of Piezo-Impedance 

Transducers 

From the theory of continuum damage mechanics, an element can be deemed to 

fail if D>D
c
. As mentioned earlier, rather than defining a unique value of the 

critical damage variable D
c
, we employed a fuzzy definition to account for 

uncertainties. Using the fuzzy set theory, a fuzzy region can be defined in the 

interval (D
L
, D

U
) where D

L
 and D

U
, respectively, represent the lower and upper 

limits of the fuzzy region. D>D
U
 represents a failure region with 100% failure 

possibility and D<D
L
 represents a safe region with 0% failure possibility. Within 

the fuzzy, or transition region, that is D
L
<D<D

U
, the failure possibility can vary 

between 0% and 100%. A characteristic, or membership function, f
m
, can be 

defined (0<f
m
(D)<1) to express the grade of failure possibility within the region 

(D
L
, D

U
). The fuzzy failure probability can then be determined from Eq. (5.10), as 
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∫
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where p(D) is the probability density function of the damage variable D, which in 

the present case complies with normal distribution. Based on observations during 

concrete cube compression tests, D
L
 and D

U
 are chosen as 0.0 and 0.40 

respectively. Further, sinusoidal membership function given by the following 

equation is adopted 
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This function is chosen since it reflects the observed trend in transducer 

response (in terms of damage variable based on “identified” equivalent stiffness) 

with damage growth. It has been observed that the damage variable typically 

follows the trend of an S-curve, i.e. initially rising steeply with damage 

progression before attaining saturation. This is represented very well by the 

sinusoidal membership function. Making use of this membership function, the 

fuzzy failure probability (FFP) was worked out for the five concrete cubes at each 

load ratio. It should be mentioned that Wu et al. (1999) used similar principles to 

carry out fuzzy probabilistic damage prediction of rock masses subjected to 

explosive loads.  

A load ratio of 0.4 can be regarded as incipient damage since concrete is 

expected to be under “working loads”. All concrete cubes were found to exhibit a 

fuzzy failure probability of less than 30% at this load ratio. Similarly, after a load 

ratio of 0.8, the concrete cubes can be expected to be under “ultimate loads”. For 

this case, all the cubes exhibited a fuzzy failure probability of greater than 80% 

irrespective of their strength (Fig. 5.19). Fig. 5.20 shows the FFP of the cubes at 

intermediate stages during the tests. Based on minute observations during these 

tests, the following classification of damage is recommended based on FFP:  

(1) FFP < 30% Incipient Damage (Micro-cracks) 

(2) 30% < FFP < 60% Moderate damage (Cracks start opening up) 

(3) 60% < FFP < 80% Severe damage (Large visible cracks) 

(4) FFP > 80% Failure imminent. 

Thus, the fuzzy probabilistic approach quantifies the extent of damage on a 

uniform 0 – 100% scale. This can be employed to evaluate damage in real-life 

concrete structures.  



5.6� Establishment of Impedance-Based Damage Model for Concrete 209 

 

Fig. 5.19� Fuzzy failure probabilities of concrete cubes at incipient damage level and at failure 

stage 

 

Fig. 5.20� Fuzzy failure probabilities of concrete cubes at various load levels 

 

All the PZT patches exhibited more or less uniform behavior with damage 

progression in concrete, although the strength of concrete cubes varied from as 

low as 17 MPa to as high as 86 MPa. Hence, the PZT patches were subjected to a 

wide range of mechanical stresses and strains during the tests. At a load ratio of 

1.0, almost the same order of FFP was observed, irrespective of the absolute load 

or stress level (for example 17 MPa for C17 and 86 MPa for C86). In general, the 

PZT material showed very high compressive strength, typically over 500 MPa and 

it essentially exhibited a linear stress-strain relationship up to strains as high as 

0.006 (Cheng and Reece, 2001). In the experiments conducted on concrete cubes, 

the strain level never exceeded 0.003 (50% of the linear limit).  

It was also observed that in all the cubes tested, the damage typically initiated 

near the edges of the cube and migrated to regions near the PZT patch with 

increasing load ratios. After failure of the cubes, all the PZT patches were found 

intact. Fig. 5.21 shows close-up views of the cubes after the tests. The results 

showed that the sensor response reflected the damage to the surrounding concrete 

more than damage to the patches themselves. 
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Fig. 5.21� Cubes after the test: (a) C17; (b) C43; (c) C52; (d) C60; (e) C86 

 

In general, we can expect such good performance in materials like concrete, 

characterized by low strength, compared with the PZT patches. Thus, damage to 

concrete is likely to occur first, rather than to the PZT patch. Furthermore, though 

the cubes were tested in compression, the same fuzzy probabilistic damage model 

can be expected to hold good for tension too.  

5.7� Embedded PZT Patches and Issues Involved 

Typically, surface-bonded PZT patches are more effective when they are stiffer 

than the host structure, and embedded PZT patches are more efficient when they 
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are less stiff than the host structure. It is much simpler to bond PZT patches onto 

the host structure though embedment is advantageous as it offers durability and 

protection from surface finish, vandalism and environmental attack (Annamdas 

and Soh, 2007). Additionally, embedded PZT patches can be more effective in 

monitoring the crucial areas inside the structure, whilst not interfering with the 

aesthetic appearance of the structure.  

However, embedment of PZT patches in the structure is not as simple as 

surface bonding. Primarily, the host structure must be made of materials which 

allow PZT patches to be embedded, such as concrete, laminates or polymers. Next, 

the embedded PZT patches must be non-reactive with the host structure’s 

materials. Hence, the embedded PZT patches must be properly isolated using inert 

materials to make them chemically stable, yet properly bonded to the host 

structure. It should not increase the stiffness or strength of the host structure, i.e. 

not influence the original design of the host structure. It should be reliable during 

electrical and mechanical loading, and should withstand the combined mechanical 

and electrical cyclical loading (Mall, 2002). The interface between the PZT patch 

and the host structure needs to have reliable electrical conduction and bonding, 

and therefore needs sound inter-connectors (Hagood et al., 1988, Paget et al., 

2002). Additionally, if the host structure is made of concrete (as in the present 

case), the embedded patch must withstand the vibration induced in the casting 

process. Moreover, it must withstand the curing pressures and temperatures of the 

host material (Annamdas, 2007).  

5.8� Experimental Set-up 

The experimental set-up required for embedded PZT patch-based EMI technique 

is the same as that for the surface-bonded PZT patch described in Section 4.7. The 

concrete specimen, through the embedded PZT patch, is connected to the HP 

Impedance analyzer (Hewlett Packard, 1996) through the Agilent Multiplexer 

(Agilent Technologies, 2007).  

5.8.1� Methods to Fabricate Embeddable PZT 

Several configurations of embedded PZT patches are described in the literature. 

The basic design constitutes a PZT transducer, inter connectors (wires), bonding 

adhesive and bonding fibers/layers assembled into an embeddable PZT patch. 

Researchers such as Paget et al. (2002), Chen et al., (2004), Annamdas (2007) and 

Wen et al., (2007) used embedded PZT patches where the PZT transducers were 

sandwiched inside layers of rubber or cardboard. However, all these embeddable 

PZT patches, assembled by different fabrication methods, are not general purpose 
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and are mostly application-based, e.g., an embeddable patch prepared for axial 

load monitoring is neither useful nor appropriate for transverse load monitoring. 

Researchers such as Elspass et al. (1995) and Paget et al. (2002) chose design 

constituents such as glass-fiber-reinforced thermoplastics (GFRP-plies) or carbon-

fiber-reinforced thermoplastic (CFRP) composite plies, inter connectors and PZT 

transducers. The assembly was achieved by cutting the composite plies and fitting 

the PZT transducer into the laminated composites. The materials for the inter 

connectors were the same as that of the composite. The two inter connectors were 

placed on each side of the PZT transducer. Cut-outs in the GFRP or CFRP were 

made to allow electrical contact between the terminals and the embedded PZT 

transducer. Elspass et al. (1995) achieved electrical insulation from the upper and 

lower inter connectors by two CFRP. Hagood et al. (1988) used a cut-out window 

of approximately the same dimension as the PZT transducer, and slits were cut in 

the plies directly above and below the PZT transducer to allow the inter 

connectors to be drawn in or out. Hence, the design and fabrication of such lay-

ups are complex. Chen et al. (2004) sandwiched their PZT transducer between two 

circular rubber layers. The PZT transducer had the same dimension as the rubber 

layers, where the upper/lower inter connectors were sandwiched between the PZT 

surfaces and the upper/lower rubber layers. Fig. 5.22 shows our design where the 

PZT transducer was completely encapsulated to ensure better protection, unlike 

the design of Chen et al. (2004). However, the PZT transducer was not circular 

but square, and a part of the inter connectors was inside the rubber composite. 

 

Fig. 5.22� Embeddable PZT patch using encapsulation of silicon rubber 

 

In general, the fabrication method of embeddable PZT patches is case-specific, 

and depends on the type of composite or materials into which the PZT patches 

need to be embedded (Paget, 2001) which limits their application. Furthermore, 

embedded PZT patches can fail if they are not properly assembled, e.g., two out of 

three PZT patches, from our design, failed to function after a few days of their 

embedment in three similar concrete cubes (150 mm×150 mm×150 mm). A more 

robust method of PZT embedment was thus later presented by Annamdas et al. 

(2009). The new method assembled the embeddable PZT patch in four steps, and 

at every step the admittance signatures were recorded to observe the changes and 
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check whether the PZT patch was functioning normally without incurring any 

damage during the fabrication process. The method is presented below to show the 

ease in assembling a robust embeddable PZT patch for damage monitoring. 

5.8.2� Fabrication of Robust Embeddable PZT Patch 

Step 1: “Free” PZT Patch 

Two PZT transducers of size 10 mm×10 mm×2.0 mm and grade PIC 151 are 

selected for assembly into two embeddable PZT patches. Two 1 m length electrical 

wires are soldered to the electrodes of each PZT transducer. The soldered wires 

are then connected to the impedance analyzer via the switch box for recording the 

admittance signatures for the desired frequency ranges. Admittance signatures for 

the two free (un-bonded and un-embedded) PZT patches are recorded.  

Step 2: PZT Patch Wrapped with Epoxy  

A two-part RS 850-940 epoxy adhesive consisting of equal proportions of 

hardener and resin is thoroughly mixed, and a thin layer of the epoxy adhesive 

mix is wrapped around the PZT patch (Fig. 3.14). A nominal pressure is applied 

over the wrapped PZT patch to ensure a thin uniform thickness of epoxy layer 

around the PZT patch. This epoxy wrap will seal the PZT patch from all the 

chemical, mechanical and electrical effects. The wrapped PZT patch is then 

allowed to cure at room temperature for 24 h. The irregular shape of the epoxy 

wrap is later trimmed. The admittance signatures are again recorded to check for 

any damage (e.g., cracks or breaks in the PZT patch) incurred during the wrapping 

process. 

Fig. 3.15 shows the representative admittance signatures of a “free” and an 

epoxy-wrapped PZT patch. The free PZT signatures are found to be slightly 

inconsistent and the variations (<10%) could be due to the heterogeneous 

chemical composition and mechanical differences during the formation and 

polarization process. If there is any abnormality in the signature of the epoxy 

wrapped PZT patch (because of the epoxy wrap), it would be regarded as a failure, 

occurring during Step 2, and so a new PZT transducer would need to be used, 

repeating Steps 1 and 2. The major peaks observed, compared with the “free” PZT 

signature (Step 1), are quite similar but with different magnitudes and slight 

leftward shifts due to the changes in its mass, stiffness and dampness. It should be 

noted that admittance signatures are generally sensitive to shear lag effect of the 

bonding epoxy wrap, causing some vertical and horizontal shifts of signatures 

(Ong et al., 2002). Therefore, if the epoxy wrap is consistent and homogenous 

throughout, the differences in variation of the signatures could be minimized. 

Step 3: Robust Embeddable PZT Patch 

A cardboard mould (40 mm×40 mm×15 mm) is prepared, and a Portland cement 

paste of 1:2 cement-to-sand ratio is then poured into the cardboard mould in three 

layers. The epoxy-wrapped PZT patch is positioned after the first layer, followed 
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by wire mesh positioned after the second layer. This arrangement is to reinforce 

the vicinity of the patch to provide strong bonding between the patch and host 

structure. Finally, the third layer is poured, as shown in Fig. 5.23(a). The function 

 

Fig. 5.23� Robust embeddable PZT patch - preparation and alignments. (a) Layering sequence; 

(b) Embeddable PZT patch; (c) Mould for cube; (d) Mould for beam 
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of the wire mesh is to ensure effective bonding upon inclusion of the embedding 

PZT patch in the concrete specimen. Hence, a wire mesh with an off-set of 2 cm 

on all sides of the embeddable PZT patch is provided (Fig. 5.23(b)). The 

embedded PZT patch is then left to cure for 24 h at room temperature. The 

admittance signatures are again recorded to identify any damage incurred during 

this step. If there is any abnormality in the signatures, other than appearances of 

new modes (because of surrounding material), they would be regarded as a failure 

incurred during this step and a new PZT transducer would have to be used, 

repeating steps 1, 2 and 3. 

All the embeddable robust PZT patches are fabricated using the same dimension 

cardboard moulds. After completion of step 3, the embeddable patch can be used 

for embedment in concrete specimens. Figs. 5.23(c) – (d) show the ready-to-use 

embeddable PZT patches located at a central position inside the concrete moulds 

of dimension 150 mm×150 mm×150 mm for cube and dimension 500 mm×100 mm× 

100 mm for beam. 

Fig. 5.24 shows the representative conductance signatures for steps 2 and 3. 

The magnitudes of the major peaks are reduced, with rightward shifts. More peaks 

can be observed which are due to the cement casing and the wire mesh (mass, 

stiffness and damping of the casing and mesh).  

 

Fig. 5.24� Conductance signatures of epoxy-wrapped and robust PZT patches 

 

Step 4: Application of Embeddable Patches in Concrete Specimens 

After the robust embeddable PZT patches are placed in the centre of the 

concrete moulds, the moulds are filled with concrete. The concrete mix is in 

accordance to the “Design of normal concrete mixes”, British Standard 8110 

(1885). The specimens are then allowed to cure for 24 hours at room temperature, 

after which time the admittance signatures are recorded to check the functionality 

of the embedded PZT patch, and to obtain the required pristine state (undamaged) 

signatures of the concrete specimens. C25 grade concrete is used to prepare the 

concrete cubes and beams. Fig. 5.25 compares the conductance for an “embeddable 
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PZT patch” inside a concrete cube. Major peaks occurred within the same 

frequency range; however, the magnitude of the peaks (at frequency <150 kHz) is 

reduced on account of the high damping effect of concrete.  

 

Fig. 5.25� Effect of robust PZT patch in C25 grade cube 

5.9� Efficiency of Embedded PZT 

The experimental study was extended to include a comparison test and monitoring 

test in order to determine the efficiency of an embedded PZT patch, with respect 

to a surface-bonded PZT patch. 

5.9.1� Comparison Test 

A PZT patch of size 10 mm×10 mm×2.0 mm and grade PIC 151 was surface-

bonded on a concrete cube using a thin epoxy adhesive (Fig. 5.12). An admittance 

signature of the unprotected, surface-bonded PZT patch was first recorded. The 

PZT patch was then sealed using a silicon coating as protection, and again the 

admittance signature recorded. Signatures of the unprotected, the protected and the 

embedded PZT patch are compared in Fig. 5.26. All three admittance signatures 

are similar up to a frequency of 300 kHz; differences are then noticed up to 500 kHz. 

There is large variation after 500 kHz which is probably caused by the extremely 

localized sensing area. The figure shows that the embedded patch has slightly 

shorter peaks than the surface-bonded patch because of the greater damping effect 

inside the concrete. Taller and sharper peaks imply greater dynamic interaction 

over that frequency range. However, the embedded patch is still highly sensitive to 

minor cracks on the surfaces for frequencies less than 500 kHz. 
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Fig. 5.26� Conductance signatures of surface-bonded and embedded PZT patches 

5.9.2� Monitoring Test 

Fig.5.27 shows the conductance signatures of concrete during curing, monitored 

using an embedded PZT patch. The peak shifted rightwards and became 

progressively sharper with time. The shifting of the peaks suggests that the 

stiffness increased with the gain in concrete strength. The signatures for the 

embedded PZT patch can be correlated with those for the surface-bonded PZT 

patch (Fig 5.13) as there is a similar shift in peaks with an increase in curing 

period. This demonstrates the possibility of monitoring concrete curing using both 

embedded and surface-bonded PZT patches. 

 

Fig. 5.27� Conductance signatures of C25 grade concrete specimens with embedded PZT patch. 

(a) Cube; (b) Beam 
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5.10� Damage Analysis Using Statistical Method 

Two types of damages, D1 and D2, were induced on the concrete specimens to 

study the changes in admittance signatures. In the first type, four edges of the 

concrete cube specimen were chipped off one after another using a hammer to 

create loss of mass (disturbance to structure integrity) (Fig. 5.28(a)). The second 

type of damage was created by inducing four cuts (line damages) 5 mm deep with 

a spacing of 50 mm on the upper surface of the concrete beam specimen (Fig. 

5.28(b)). Each crack-line represented a new damaged state. The locations of 1, 2, 3 

and 4 crack-lines were 200 mm, 150 mm, 100 mm and 50 mm respectively from 

the embedded transducer at the centre of the beam.  

 

Fig. 5.28� Plan view of two damage types. (a) D1 in cube; (b) D2 in beam 

 

As explained in Section 2.7, in EMI-based SHM, the key indicator of damage 

is the change in the admittance signature with respect to the damage-free condition, 

and there are several statistical measures to quantify it.  

RMSD index was used to evaluate the deviations in admittance signatures 
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during the damaged states. The signature of each damaged state was compared 

with the signature of the undamaged state (baseline). Fig. 5.29 shows the RMSD 

variations for D1 and D2 types of damages respectively. As the number of 

damaged states (intensity of damage) increases, the RMSD value increases 

gradually, which is indicated by the linear regression (trend) line. The selection of 

frequency range for determining the damage index was achieved by extensive 

observation of the signatures over a wide range of frequency. 

 

Fig. 5.29� RMSD variations. (a) Concrete cube; (b) Concrete beam 

 

Fig. 5.29(a) depicts the RMSD values for the damaged state signatures in 

different concrete grades obtained in a frequency range of 80 – 100 kHz. The 

lowest RMSD value is 1.7% for the first damage, and the largest RMSD value is 

3.5% for the fourth damage; for the same excitation, the lowest RMSD value is 

1.0% for the first crack-line (200 mm away from the PZT patch) and the largest 

RMSD value is 1.5% for the fourth crack-line (50 mm away from the PZT patch). 

The trend has an upward (positive) slope, and a linear relationship between the 

RMSD value and the damage. The damage progression leads to an increase in the 

RMSD value. The upward trend in RMSD was because of the increase in overall 

damage, and also because the damaged states were approaching the PZT patch 

(Fig. 5.29(b)). 

Analysis of both types of damages demonstrates the feasibility of using robust 

embeddable PZT patches in concrete structures. The embedded PZT patch was 

able to detect damage as far away as 200 mm, which is similar to that of surface-

bonded PZT patches (see Sections 5.3 – 5.6). Smaller-sized PZT patches have 

better representation for progressive damage in both the cube and beam specimens 

(Annamdas et al., 2009). The maximum RMSD value of the cube and beam 

specimens were about 7.4% and 7.0% respectively in the frequency range of 80 – 

100 kHz, as observed by Annamdas et al. (2009). 
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6.1� Introduction 

The global vibration techniques, which rely on changes in the first few natural 

frequencies and the corresponding mode shapes of the structure for damage 

detection and severity assessment, have been experimented on several real-life 

structures across the world. Their limitations have been well acknowledged 

(Catbas et al., 2007). In general, it is not practical to use the global techniques, 

which are tedious due to long interrogation and computation times, for checkups 

over short periods. This shortcoming can be easily alleviated by using the EMI 

technique alongside the global vibration techniques, as will be demonstrated in 

this chapter. 

As pointed out in Chapter 2, in principle, the EMI technique is essentially 

similar to the global vibration techniques. Whereas the global vibration techniques 

are considered good for overall condition assessment of the structures, the EMI 

technique is capable of interrogating the remote regions and can capture damage at 

microscopic level. This chapter presents the integration of the EMI technique with 

global vibration techniques, using the same set of PZT transducers. In the 

integrated approach, the presence and location of incipient damage are ascertained 

by the EMI technique, and for moderate to severe damages the global vibration 

techniques are used. With no additional sensors required and with minimum 

hardware, the benefits of the two techniques, so far applied independently, are 

harnessed more efficiently. 
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6.2� Piezoelectric Materials as Dynamic Strain Sensors  

If a PZT patch surface bonded on a structure is designated to be used as a sensor 

only (with no external electric field applied across its terminals), its governing 

equation (Eq. (2.11)) can be reduced to 
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, based on the Hooke’s law. From the theory of parallel 

place capacitors, the charge density can be expressed as 
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where V is the potential difference across the terminals of the PZT patch of 

thickness h. Therefore, from Eqs. (6.1) and (6.2), the voltage measured across the 

terminals of the PZT patch can be expressed in terms of the strain in the patch 

(and hence on the surface of the structure) as  
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The output voltage can be easily measured by an oscilloscope aided by 

conditioning circuit or directly using modern digital multimeters.  

Strictly speaking, Eq. (6.3) is valid only for skeletal structures (such as beams) 

where the PZT-structure interaction is essentially 1D in nature. For a PZT patch 

bonded to a 2D-structure (such as plates), the behavior will be governed by Eqs. 

(3.10) to (3.13), with the charge density (for use as sensor only) expressed as 
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where 
1
S  and 

2
S  are the strains along the two principal directions, respectively, and 

ν  is the Poisson’s ratio. Similar to the 1D case, following relation can be derived 

for the voltage output across a PZT patch bonded to a 2D-structure 
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Hence, for the 2D case, the voltage measured across the PZT sensor is 

proportional to the sum of the two principal strains. Fig. 6.1 shows the typical 

voltage signal generated across a PZT patch bonded to an aluminium beam of size 

300 mm×22 mm×3 mm, which was excited to free vibrations. The response was 

measured using an Agilent 34411A digital multimeter (Agilent Technologies, 

2009) at a sampling interval of 1 ms, with the set up shown in Fig. 6.1(a). Fig. 

6.1(b) shows the time response whereas Fig. 6.1(c) the frequency response. From 

the plots, it may be noted that the signal to noise ratio is excellent, facilitating easy 

capturing of the natural frequencies. Detailed experimental studies by Bhalla et al. 

(2009) have demonstrated that the performance of the surface-bonded patches is 

as good as the expensive accelerometers. 

It should be noted that, as strain sensors, PZT patches are suitable for 

measuring dynamic strains and not static strains. This is because the charges 

developed on account of static forces tend to dissipate quickly in the dissipative 

elements of the measurement circuit. Through experimental studies, it has been 

found that frequencies as low as 1 Hz can be captured by PZT patches employed 

as dynamic strain sensors (Khokker, 2009).  

The next sections describe the integration of global dynamic response 

technique with EMI technique as originally proposed by the authors and covered 

in detail in related publication (Shanker et al., 2011). 

 

Fig. 6.1� Response from PZT sensor as a dynamic strain sensor. (a) Experimental set-up; 

(b) Time domain response; (c) Frequency domain response 
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6.3 � Determination of Strain Mode Shapes Using Surface-

Bonded PZT Patches 

The general equation of motion for a dynamic system is  

[ ]{ } [ ]{ } [ ]{ } { })(tFuKuCuM =++ ���                              (6.6) 

where [M] is the mass matrix, [C] the damping matrix, [K] the stiffness matrix, 

{ }u�� , { }u�  and { }u  the acceleration, the velocity and the displacement vectors, 

respectively, and { })(tF  the force vector. For free vibration, { })(tF  is zero, then  

[ ]{ } [ ]{ } [ ]{ } 0=++ uKuCuM ���                                 (6.7) 

The roots 
2

n

ω of Eq. (6.7) are known as the eigen values. For every natural 

frequency ω
i
, there corresponds a mode shape vector Φ

i
 satisfying Eq. (6.7). 

Corresponding to the i
th

 natural frequency ω
i
, there are N independent displacements 

which make up the mode shape Φ
i
, which is the displacement profile of the 

structure (at the N points) vibrating at the frequency ω
i
. In general, for a vibrating 

structure, the displacement at any point can be expressed as the summation of the 

displacement due to all modes. If the displacement is measured, the relative 

contribution of each mode can be separated by fast Fourier Transform (FFT).  

In this chapter, an experimental approach is outlined to obtain the curvature or 

the strain mode shapes directly using the surface bonded PZT patches. For a  

linear structure, by Betti’s theorem, the response at  point “a” due to a unit load 

acting  at point “b” equals the response at point “b” due to a unit load acting at 

point “a”. This theorem facilitates measuring responses along the entire structure 

using a few (even a single) sensors. By varying the point of application of that 

fixed load, the response of the sensor (fixed at a particular point) is equivalent to 

the response at the point of application of the force (to a force applied at the point 

of the sensor). Plotting the ordinates of the FFT curve corresponding to that 

frequency for all measurement points represents the mode shape of the structure 

corresponding to a particular frequency. 

Fig. 6.2 shows the experimental setup. The test structure was a 4 m long 

simply supported steel beam (ISBM 150 as per Indian Standards). It was 

instrumented with a PZT patch at a distance of 120.4 cm from the right support. 

The beam was divided into 12 parts (that is 11 inner nodes), at each of which a 

standard excitation was made by dropping a steel ball of 0.2 kg from a fixed 

height of 1.5 m. The voltage response of the PZT sensor patch was recorded for a 

period of 2 s using the Agilent 34411A digital multimeter at a sampling interval of 

200 µs, automatically through programs running in VEE PRO (Agilent Technologies, 

2009). The recorded time-domain data were transformed into frequency domain 

by carrying out FFT in MATLAB (The Mathworks, 2009) environment. Fig. 6.3 

shows a typical FFT response from the PZT patch. From this plot, the first three 
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experimental bending frequencies of the steel beam can be identified as 45 Hz, 

190 Hz and 410 Hz. Applying this procedure, frequency plots were determined by 

making impact at each of the 13 nodes which, by Betti’s theorem, amounted to 

response at these nodes for an impact at the location of the PZT patch. The 

ordinates of the FFT curves were noted corresponding to the first three bending 

frequencies for all the nodes, through which the first three bending mode shapes 

were plotted, as shown in Fig. 6.4.  

 

Fig. 6.2� Experimental setup for strain mode shapes 

 

Fig. 6.3� Typical FFT of response from PZT patch attached to steel beam 

 

Keeping in mind Eq. (6.3), it will be noted that the voltage output from the 

PZT patch is a function of the strain at the point of measurement. Hence, the mode 

shapes so derived are strain or curvature mode shapes since curvature y ′′  (the 

second derivative of displacement) is related to strain by 

d

y

ε=′′                                                      (6.8) 

where d is the distance of the PZT patch from the neutral axis.  
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Fig. 6.4� Experimental curvature mode shapes of beam. (a) Mode 1; (b) Mode 2; (c) Mode 3 

 

Similarly, Fig. 6.5 shows the strain mode shapes of a mild steel plate of 

dimensions 1260 mm×630 mm×6.5 mm, simply supported on the four edges, 

obtained using a PZT sensor patch located at a distance of 378 mm along the X 

axis and 252 mm along the Y axis from the top right corner, as shown in Fig. 

6.5(a). The plate was divided into a 5×10 grid (size 126 mm in both directions), 

resulting in interior 36 (4×9) nodes, as shown in Fig. 6.5(b). The PZT patch was 

also located at one of the resulting nodes. In order to excite the plate, a weight of 
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1 kg was dropped at each node from 1.5 m height. Figs. 6.5(c), (d) and (e) show 

the first three strain mode shapes of the plate obtained using the same procedure as 

for the beam. The first three natural frequencies of the plate were measured as 

20 Hz, 230 Hz and 490 Hz. 

Through this measurement approach, the number of mode shapes extracted 

will depend on the minimum sampling interval of measurement. In general, the 

first few (2 – 3) mode shapes, if accurately determined, will be sufficient from 

SHM considerations. Accuracy of the mode shape depends on how many nodes 

the structure is divided into. The more number of measurement points, the higher 

is the accuracy. 

 

Fig. 6.5� Extraction of strain mode shapes for steel plate. (a) Top view of plate; (b) Grid 

showing points of excitation; (c) Mode 1; (d) Mode 2; (e) Mode 3 
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6.4� Identification and Localization of Incipient Damage  

As pointed out earlier, the major drawback of the global vibration techniques is 

that they cannot detect any incipient damage, leave alone ascertaining its location. 

The incipient level damage, if gone unnoticed, could be detrimental for structures 

such as precision machine parts and aerospace components. This section describes 

the utilization of the EMI technique for identification and localization of incipient 

level damages. This is illustrated using the 4 m long steel beam shown in Fig. 6.2. 

The beam was instrumented with a total of 11 equally spaced PZT patches on the 

top face, as shown in Fig. 6.6. Artificial damages were induced in the beam at a 

section situated 800 mm from the left support in seven stages of gradually 

increasing severity, as detailed in Fig. 6.7.  

 

Fig. 6.6� Experimental set up for damage detection using PZT patches 

 

 

Fig. 6.7� Various stages of damage severity in steel beam 

 

The first three damages shown in Fig. 6.7 were introduced by drilling holes of 

6 mm diameter. In the fourth stage, a cut of 6.5 cm length was made through the 
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entire thickness of the flange, starting from the left corner and extending to the 

middle of the flange. To induce the fifth stage damage, the cut was extended 

across the entire width of the flange. In the sixth stage, the severity of the damage 

was enhanced by extending the cut to one forth depth of the web.  In the seventh 

and the final stage, the cut was extended till the middle of the web.   

After each damage, the modal frequencies as well as the corresponding mode 

shapes, the parameters associated with the global vibration techniques, were 

derived for the beam as described in the previous section. Table 6.1 lists the first 

three frequencies for all the seven damage stages. From this table, the first two 

damage stages could be treated as incipient since the frequencies changed 

negligibly (less than 0.5%), which cannot be taken as a definite indication of 

damage. As far as the EMI technique is concerned, the admittance signatures of all 

the 11 PZT patches were acquired for each damage scenario using the Agilent 

4980 LCR meter (Agilent Technologies, 2009) in the frequency range 100 – 160 

kHz. The PZT patches were found to identify the structure as a Kelvin-Voigt 

(parallel spring-damper, see Table 4.1) system. Equivalent stiffness and damping 

were then worked out using the computational approach described in Chapter 4 

(also refer to Appendix E).  

 

Table 6.1� First three natural frequencies of steel beam after each damage stage 

S. No. 

Damage 

stage 

First natural 

frequency 

(% change) 

Second natural 

frequency 

(% change) 

Third natural 

frequency 

(% change) 

1 Undamaged 45 (–) 190 (–) 410 (–) 

2 Stage-1 45 (0.0%) 189 (0.52%) 410 (0.00%) 

3 Stage-2 45 (0.0%) 189 (0.52%) 408 (0.49%) 

4 Stage-3 41 (8.9%) 185 (0.97%) 402 (1.95%) 

5 Stage-4 39 (13.3%) 182 (4.21%) 399 (2.68%) 

6 Stage-5 37 (17.8%) 179 (5.79%) 392 (4.39%) 

7 Stage-6 36 (20.0%) 174 (8.42%) 387 (5.61%) 

8 Stage-7 34 (24.4%) 170 (10.52%) 380 (7.32%) 

 

Fig. 6.8 shows the typical plot of conductance (G) for PZT patch 6 (see Fig. 

6.6) in the frequency range 100 – 120 kHz for the pristine beam and the first three 

damage stages. It is observed that, contrary to the first three natural frequencies, 

the conductance signatures changed significantly at the first damage stage itself. 

The shifting of the major frequency peak clearly indicates the presence of damage. 

Table 6.2 lists the equivalent stiffness k identified by the PZT patches for the first 

three damage stages. It can be observed from the table that the value of k increased 

with damage severity. At such high frequencies, a local damage may soften a few 

modes but at the same time stiffen a few others, and not much can be predicted 

theoretically. This phenomenon leads to lateral shifting of the peaks in the 

conductance signature. The point to note here is that, unlike the first three natural 

frequencies identified by the global vibration techniques, the indication provided 

by the identified k was very concrete in nature, with the changes observed being as 
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high as 11% (PZT patch 3) even after the first damage stage, which was a small 

hole of 6 mm diameter only.  

 

Fig. 6.8� Conductance signatures of PZT patch 6 for first three damage stages 

 

Table 6.2� Percentage variation of equivalent stiffness k identified by PZT patches 

Damage Stage 1 Damage Stage 2 Damage Stage 3 

PZT No. 

Undamaged 

k (10  N/m) 
k 

(10  N/m)  

Change 

(%) 

k 

(10  N/m) 

Change 

(%) 

k 

(10  N/m) 

Change 

(%) 

PZT 1 6.56 6.86 4.7 6.97 6.3 7.44 13.5 

PZT 2 8.67 9.47 9.2 9.73 12.3 10.54 21.6 

PZT 3 7.65 8.51 11.2 8.83 15.5 9.53 24.6 

PZT 4 5.97 6.41 7.4 6.67 11.6 7.20 20.7 

PZT 5 8.45 8.92 5.6 9.26 9.7 10.03 17.5 

PZT 6 6.78 7.04 3.9 7.28 7.4 7.70 13.6 

PZT 7 8.56 9.44 3.3 9.09 6.2 9.37 9.5 

PZT 8 6.53 6.73 2.9 6.83 5.4 6.83 7.2 

PZT 9 8.56 8.65 1.1 8.66 1.2 8.66 1.2 

PZT 10 6.63 6.68 0.8 6.69 0.9 6.69 0.9 

PZT 11 7.89 7.92 0.4 7.92 0.4 7.92 0.4 

 

It can further be observed from Table 6.2 that, in relative terms, there was very 

small change in k identified by PZT patches 9, 10 and 11, which were located very 

far from the damage location (see Fig. 6.6). In general, the data of Table 6.2 

suggest that the percentage change of k increased with damage severity and 

decreased with distance of the PZT patch from the damage location. This fact can 

be better appreciated from Fig. 6.9, which shows the plot of the change of k of 

various sensors for three damage stages. To locate the damage, the PZT patches 

corresponding to the first two largest variation of k were identified, which, shown 

in Fig. 6.9, boil down to patches 2 and 3 after damage stage 1. The same trend was 

observed for damage stages 2 and 3. Hence, it can be concluded that the damage 

location was between sensors 2 and 3, which is correct (see Fig. 6.6).  
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Fig. 6.9� Variation of k for all PZT sensors bonded to steel beam 

 

Once the damage was traced to be between two sensors, its more precise location 

can then be predicted through statistical interpolation. Let the damage be traced to 

be between the i
th

 and (i+1)
th

 PZT sensors located at a distance x from each other. 

If the observed percentage change in k for the two sensors is Δk
1
 and Δk

2
,
 

respectively, the 
 
approximate location of damage from the i
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 sensor is given by 
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Using Eq. (6.9), the location of damage was determined as 18.28 cm from PZT 

patch 2 after stage 1, which compares well with the actual value of 13.34 cm. In 

the same way, the damage location after the second and the third damage stages 

was determined as 18.58 cm and 17.73 cm, respectively. Hence, using the EMI 

technique, the incipient damage can be detected, and at the same time reasonably 

located. The greater the density of the sensor network, the greater will be the 

accuracy of damage localization. 

Although the EMI technique performed well in identifying and locating the 

incipient level damage, it was not able to distinguish very well the moderate and 

the severe damage stages. This fact, which has been pointed out by several 

researchers (e.g., Naidu, 2004), can be well appreciated in light of Table 6.3, 

which lists the values of k for PZT patch 8 for all seven damage stages. 

Apparently, after damage stage 4, any further change of the identified parameters 

became negligible. This may be compared with changes in the first three 

frequencies (obtained from global vibration technique) listed in Table 6.1. As the 

severity of damage increased (especially from damage stage 4 onwards), the 

distinguish ability provided by the global technique increased, as evidenced by 

much higher percent changes in the first three natural frequencies. Hence, when 

the EMI technique failed to provide any new information, global technique began 

to act more efficiently. Thus, the two techniques complemented each other. The 

incipient damage can be detected at the very initial stage using the EMI technique, 

and the moderate to severe damages using the global technique. Another 
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advantage of the integrated approach is that the same PZT patches are used as 

sensors in both techniques. 

The next section outlines an approach for locating and quantifying moderate to 

severe damages using the global vibration techniques. 

 

Table 6.3� Equivalent k and c identified by PZT patch 8 for each damage. 

% change 
S. 

No. 

Damage 

stage 

Equivalent 

stiffness (k) 

(N/m) 

Equivalent 

damping (c) 

(N·s/m) 
k c 

1 Undamaged 6.53×10  8.94 0 0 

2 Stage-1 6.73×10  8.50 2.9 4.9 

3 Stage-2 6.83×10  8.45 5.4 5.5 

4 Stage-3 7.04×10  8.39 7.2 6.2 

5 Stage-4 7.05×10  8.35 7.4 6.6 

6 Stage-5 7.06×10  8.32 7.5 6.9 

7 Stage-6 7.09×0  8.30 7.8 7.2 

8 Stage-7 7.09×10  8.30 7.8 7.2 

6.5� Localization of Moderate and Severe Damages Using Global 

Vibration Techniques  

6.5.1� For 1D Structures (Beams) 

The previous section demonstrates how the EMI technique can detect an incipient 

level damage in structures. Corrective action can be taken at that stage itself if the 

structure type demands so. However, in most structures, incipient level damage 

does not pose any serious risk. In such scenarios, it would be more cost-effective 

to closely monitor the damage growth and wait till the damage grows to moderate 

or severe nature. This section explains how moderate to severe damage types can 

be monitored using the global vibration techniques. The global vibration 

techniques may also provide a back up to capture any damages that were missed 

being detected during the incipient stage due to any unavoidable reasons.  

Fortunately, the experimental strain (or curvature) mode shapes of the 

structure obtained using the PZT patches, as explained in Section 6.3, can be 

directly utilized. If an element undergoes damage, its flexural stiffness, namely EI 

(product of Young’s modulus and moment of inertia) reduces, thereby increasing 

its curvature. In the case of 1D structures such as a beam, the damage index for 

each element can be defined as  

( )∑
=

−=
N

n

undamageddamaged
CCID

1

..                           (6.10) 
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where C
undamaged

 is the curvature before damage, C
damaged

 is the curvature after 

damage and N is the number of modes considered.  

After the section of the experimental steel beam (considered in the previous 

sections) underwent damage in seven stages, the first three strain mode shapes of 

the beam were determined using the experimental procedure described earlier for 

all the seven damage stages. These are shown in Fig. 6.10. Compared to the 

undamaged structure, the mode shapes appear to change significantly. In fact, a 

closer inspection of the first mode clearly point towards the damage location.  

 

Fig. 6.10� First three bending mode shapes of steel beam for various damage stages. (a) Mode 1; 

(b) Mode; 2 (c) Mode 3 
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It should be highlighted that the mode shapes were determined directly using a 

single PZT patch. Other sensors, such as accelerometers, are not only expensive 

but also require much larger computational effort in the numerical integration and 

differentiation to derive the data which can be used in SHM. 

Next, the damage index was determined using Eq. (6.10) for all the damage 

stages. A plot of the damage index versus the element number is shown in Fig. 

6.11. It can be observed from the figure that, at all damage stages, the damage 

index was highest at the damaged element as compared to the other elements. The 

index increased numerically as the damage severity increased. Thus, the damage 

was correctly identified. It should also be noted that the damage index of the 

adjacent elements is comparable to that of the damaged element. Hence, at the 

location of the damage, it appears like an umbrella-shaped structure.  

For a single damage scenario, the greatest value of the damage index will 

indicate the location of damage. Since it represents value for the whole element, if 

greater accuracy is desired, the distance between the nodes can be further 

subdivided into suitable number of elements, which can be treated as new nodes 

and the process be repeated until damage is located with the desired accuracy. 

There is no requirement to determine the damage index for the other elements 

which exhibited lesser damage index in the previous cycle of measurements. 

 

Fig. 6.11� Plot of damage index for beam structure 

6.5.2� For 2D Structures (Plates) 

The damage index for 2D structures, such as plates, can be similarly defined. The 

plate can be divided into suitable number of elements using a grid, such as the one 
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shown in Fig. 6.5(b). Considering a typical plate of N
x
, N

y
 elements along the X 

and Y directions, the following terms can be defined 

[ ] ),(at  damage before ordinate shape modestrain  Normalized 
th

, kjix kj

i =  (6.11) 

[ ] ),(at  damageafter  ordinate shape modestrain  Normalized 
th

, kjiX kj

i =   (6.12) 

The average curvatures for an element along the X and Y directions for the 

undamaged and the damaged cases are respectively given as 
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Similarly, the average curvatures before and after damage along the Y axis 

respectively can be defined as 
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Now, a damage index can be defined for the nodes for change in curvature 

along the X and Y directions as  
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and 

( ) 2/
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where 

=x

kj
B

,

 Damage index for node (j, k) using change in curvature along X axis, 

=y

kj
B

,

 Damage index for node (j, k) using change in curvature along Y axis, 

=
kj

B
,

Damage index for node (j, k) using combined change in curvature. 

Finally, the damage index for the element can be defined by summing up the 

nodal damage indices of the four nodes, i.e., 
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where 

=x

kj
D

,

 Damage index for element (j, k) using change in curvature along X axis, 

=y

kj
D

,

 Damage index for element (j, k) using change in curvature along Y axis, 

=
kj

D
,

Damage index for element (j, k) using combined change in curvature in 

curvature along both X and Y axis.  

Damage location is identified as the location with the maximum value of D. 

In order to demonstrate the approach, an artificial damage was induced in the 

plate of Fig. 6.5(a) by drilling a hole of diameter 55 mm in the plate at a distance 

of 300 mm along the X axis and 200 mm along the Y axis from the bottom left 

corner, as shown in Fig. 6.12. This represents the first stage of damage. Thereafter, 

another artificial damage was induced by drilling a hole of diameter 55 mm in the 

plate at a distance of 200 mm along the X axis and 300 mm along the Y axis from 

the right corner, marking the second stage damage. Finally, diameter of the second 

hole was increased to 100 mm to enhance the severity of damage to the third stage. 

The first three mode shapes were obtained similar to those of the beam. The 

damage indices of all the elements were determined using Eq. (6.22), and plotted 

in Fig. 6.13. From the figure, it is obvious that the damage location, which is the 

element corresponding to the maximum damage index, is correctly identified. 

Furthermore, it is clear from Figs. 6.13(b) and (c) that multiple damage scenarios 

can also be tackled very well by the proposed approach. 
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Fig. 6.12�  Damage induction in experimental steel plate 

6.6� Severity of Damage 

In Eq. (6.7), let the amplitude of motion be denoted by the generalized coordinate 

Z(t). Hence, the displacement at any point can be expressed as 

)()(),( tZxtxy φ=                                        (6.23) 

where )(xφ  is the shape function. This effectively reduces the structure to a single 

degree of freedom (DOF) system, if we consider the continuous system as one 

with infinite DOF. Thus, the harmonic variation of the generalized coordinate in 

free vibration can be expressed as 

tZxtxy ωφ sin)(),(
0

=                                   (6.24) 

This equation expresses the assumption that the shape of the vibrating beam 

does not change with time, but only the amplitude of motion varies; that is, it 

varies harmonically in a free-vibration condition. At the point of maximum 

displacement,  

tZtxy ωsin),(
0

=                                      (6.25) 

The strain energy of this flexural system is given by 
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Fig. 6.13� Plot of damage indices for plate. (a) Damage stage 1; (b) Damage stage 2; (c) Damage 

stage 3 
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where L is the length of the beam, E the Young’s modulus of the material of the 

structure and I the moment of inertia. Thus, substituting the assumed shape 

function and letting the displacement amplitude take its maximum value lead to 
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2
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= φ                        (6.27) 

In general, the total energy of the system will be distributed into various mode 

shapes. However, 80% – 90% of the energy is normally distributed among the first 

few (3 to 5) mode shapes alone. If the structure is damaged, it is assumed that 

there is no significant change in the distribution of the energy in various modes if 

the excitation force and the boundary conditions remain unchanged. This is true in 

the context of the experiments reported in this chapter. The total strain energy is 

the same in both the damaged and undamaged cases due to the fact that the height 

of free fall of the mass used for excitation during the test was constant. If there 

occurs any damage/crack in the structure at any location, the Young’s modulus of 

elasticity will reduce more at that location than at any other parts. This change 

reflects the severity of damage. In the present approach, only the average value of 

“EI” of the whole structure has been determined.  

If any element of the structure is damaged, the tendency of that element is to 

undergo greater displacement than in the undamaged case. However, due to the 

inertia and the adhesive forces, the neighboring elements, which are less damaged, 

will oppose and also undergo somewhat greater displacement to balance the 

equilibrium. Hence, this affects the entire mode shape of the structure, which 

reflects the presence of damage. As the severity of damage increases, the strain at 

the damaged section increases further. Due to increase of deflection at the damage 

point, it will also increase the value of Z
0
.
 
By conservation of energy for any mode, 
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Solving Eq. (6.27), we can derive
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where η represents the ratio of the current stiffness of structure to the undamaged 
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stiffness and )(x''φ
 

denotes the second derivative of the mode shape (i.e. mode 

shape curvature). In the case of PZT sensors and the measurement approach 

described herein, )(x''φ  is obtained directly from measurement. Clearly, this 

circumvents the necessity of numerical differentiation, which would otherwise 

have to be performed if the other sensor types, say accelerometers, were employed.  

Using the first three experimental damaged and undamaged mode shapes of 

the steel beam and plate, at different damage stages, the average percentage 

change of stiffness was determined using the above formula. From Eq. (6.29), 

integration of 
2

)]([ xφ ′′ with respect to x gives the area of square of the mode shape. 

Hence, the damage severity can be determined in terms of the original stiffness 

after drawing the experimental mode shape of structure and the computed area of 

square of the mode shape and the maximum relative amplitude Z
0
.  

This approach was applied to the steel beam as well as to the steel plate. The 

severity of damage increased in all seven damage stages in the steel beam, and 

only three damage stages in the steel plate, as explained earlier. The severity of all 

damage stages of the steel beam is listed in Table 6.4. In the same way, the 

severity of damage for the mild steel plate is listed in Table 6.5. It is observed that, 

as the damage severity increases, η decreases and this is clearly visible from the 

two tables. The main advantage is that the severity is determined in terms of the 

ratio of the residual stiffness with the original stiffness, which provides the most 

direct estimate of the overall damage severity of the structure.  

 

Table 6.4� Variation of stiffness ratio with damage for steel beam 

S. No. Damage stage η = ratio of current stiffness with undamaged stiffness 

1 State-1 0.97 

2 State-2 0.94 

3 State-3 0.92 

4 State-4 0.88 

5 State-5 0.85 

6 State-6 0.83 

7 State-7 0.81 

 

Table 6.5� Variation of stiffness ratio with damage for steel plate 

S. No. Damage stage η = ratio of current stiffness with undamaged stiffness 

1 Stage-1 0.98 

2 Stage-2 0.93 

3 Stage-3 0.83 

 

Thus, from the experimental demonstrations described in this chapter, it is 

established that the EMI technique can be suitably integrated with the global 

vibration techniques for improved SHM, without warranting any additional 

sensors.  
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7.1� Sensing Region of PZT Patches 

7.1.1� Introduction 

Despite various successful applications of EMI technique for SHM, the fundamental 

research work on determining the PZT patch’s sensing region has not received 

much attention, partially due to the difficulty in modeling PZT-generated wave 

propagation in different materials.  

The waves generated by PZT actuators carry the information of the host 

structure, and thus can be used to identify the existence and nature of the damage. 

The application of wave propagation method has been used for damage detection 

in various engineering structures (Wang and Huang, 2001; Giurgiutiu et al., 2004; 

Yang and Qiao, 2005). In order to ensure high sensitivity to incipient structural 

damage, the elastic waves should be generated by actuators at high frequencies, 

typically hundreds of kHz, so that the wavelength of the resulting stress waves is 

smaller than the typical size of the defects to be detected (Giurgiutiu and Rogers, 

1997). The high frequency excitation provided by PZT actuators ensures the 

detection of minor changes in the monitored structure, but it also limits the sensing 

area to a region close to the PZT source. This is because the PZT patch vibrating 

at high frequencies excites ultrasonic modes of vibration of the structure, which 
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are essentially local in nature. Besides, damping is much more significant at high 

frequencies, leading to wave localization. Based on wave propagation approach, 

Esteban (1996) made an effort to identify various factors that affect PZT sensing 

region. A number of experiments have been conducted on several engineering 

structures to determine the PZT patch’s sensing region (Park et al., 2000). 

However, neither theoretical nor numerical model has been established to identify 

the sensing region of PZT transducers. Before a broad use of PZT transducers for 

SHM using EMI technique, fundamental research work on determining PZT 

transducers’ sensing region is necessary. 

Vibration of elastic structures, such as strings, beams and plates, can be 

described in terms of wave propagation and attenuation in waveguides (Rose, 

1999). A waveguide directs the wave energy along its length, and is reflected and 

transmitted when the incident waves encounter discontinuities such as boundaries, 

general point supports, externally applied forces and moments, and damages. The 

wave propagation method provides a concise and systematic approach to the 

analysis of built-up structures. The practical application of such an approach relies 

on the knowledge of detailed propagation, reflection and transmission characteristics 

of waves. The reflection and transmission matrices of waves in Euler-Bernoulli 

beams and Timoshenko beams corresponding to various discontinuities were 

derived by Mace (1984) and Mei and Mace (2005), respectively. However, in their 

analysis, the effects of material damping and energy dissipation were not taken 

into account, which will be considered in this section. 

The localization of PZT patch’s sensing region is primarily due to energy 

dissipation mechanisms, among which material damping in the structure is of 

significant influence. Since the excitation is at high frequency, the effect of 

damping is prodigious. For convenience in structural analysis, damping is usually 

assumed to be viscous in nature, which is the cause of dissipative force. Many 

viscoelasticity problems can be reduced to mathematically equivalent elasticity 

problems by using the correspondence principle. This procedure has been used to 

solve several structural damping problems effectively (Kalyanasundaram et al., 

1987; Kinra and Yapura, 1992). Therefore, it is used in this section to solve the 

wave propagation problem in a Timoshenko beam. 

7.1.2� Theoretical Modeling  

● Wave Propagation Modeling 

Due to the high frequency range employed, Timoshenko beam theory including 

the effect of rotary inertia and transverse shear deformation is used to model the 

beam structure. The equations of motion of Timoshenko beam are expressed in 

terms of the transverse displacement y  and the angle of rotation ψ  as 
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where κ=π
2

/12 denotes the shear correction factor; ρ the mass density; A the cross 

sectional area; I the moment of inertia; E the Young’s modulus; G the shear 

modulus; and q(x,t) the distributed load on the beam. In Eq. (7.1), there are two 

modes of deformation and the coupled governing equations represent the physical 

coupling that occurs between them. One mode of deformation is simply the 

transverse deflection of the beam as measured by y(x,t). The other mode is the 

transverse shearing deformation as measured by the difference ψ−
∂
∂
x

y

. 

The shear force V(x,t) and bending moment M(x,t) at any section of the beam 

are related to the transverse deflection y(x,t) and the slope ψ(x,t) by 
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Considering the free vibration problem where no external force is applied, the 

differential equation of motion can be obtained by eliminating ψ(x,t) from Eq. (7.1) as 
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Using fast Fourier transformation, the spectral solution for primary displacement 

can be expressed as 
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where ω
n
 is the frequency. Substituting Eq. (7.4) into Eq. (7.3) and suppressing the 

time dependence term 
tωj
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Assuming the solution of the form 

kx

Yy
j

eˆ
−=                        (7.6) 

and substituting Eq. (7.6) into Eq. (7.5), the dispersion equation can be expressed 

as 
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The solution to the dispersion equation gives a set of wave numbers that are 

functions of frequency ω
n
 and properties of the structure, namely, 
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where the coefficients are related to the bending stiffness, shear stiffness and 

rotational effects as 
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According to Eq. (7.8), there are four values for k. Therefore, the solution can 

be expressed as 
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For convenience of expression, Eq. (7.8) is separated as 
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Depending on the frequency, there are either two propagating waves (one 

positive-going and one negative-going) plus two evanescent (near-field) waves or 

four propagating waves (two positive-going and two negative-going). The cut-off 

frequency for the second flexural mode, obtained by setting 0
2
=k , is  

r

s

c

C

C=ω .                       (7.12) 

When 
cn

ωω < , the resulting expression for yˆ  is 
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A similar solution would hold for ψˆ  with arbitrary coefficients that are not 

independent but related. Thus, the solution for ψˆ  can be expressed as 
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The wave amplitudes Y  of )(ˆ xy  and Ψ  of )(ˆ xψ  are related to each other 

through Eq. (7.1). For example, the amplitude of a positive-going propagating 

transverse deflection wave component 
+
1
Y  is related to that of a positive-going 

propagating bending slope wave component 
+
1

Ψ  as 
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From Eq. (7.14) we have 
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The relations between the coefficients of wave components of )(ˆ xy  and those 

of )(ˆ xψ  are listed as 
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Therefore 
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The boundary conditions of the beam can be used to determine any four independent 

coefficients in Eq. (7.13) and the rest can be calculated using Eq. (7.16). 

● Wave Reflection and Transmission 

The wave approach provides a concise and systematic vibration analysis of a 

build-up structure. The amplitudes of waves can be expressed in terms of a series 

of matrices. When the propagation, reflection, transmission and excitation matrices 

are known, the structural vibration solutions involving a series of matrix operations 

can be derived. For the beam structure shown in Fig. 7.1, the discontinuities which 

lead to wave reflection and transmission involve a free boundary at point A and 

the bending moments at points B and C generated by a pair of PZT actuators. It is 

worth mentioning that the purpose of the double-sided application of PZT actuators 

is to ease the modeling work. However, the conclusions drawn are applicable for 

both double-sided and single-sided applications.  

 

 

Fig. 7.1� A semi-infinite beam model 
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The positive-going and negative-going wave vectors at points A, B and C are 

denoted as a
+

, b
+

, c
+

, d
+

, g
+

 and a
–

, b
–

, c
–

, d
–

, respectively. The beam is assumed to 

be infinitely long at the right hand side. At point C, the amplitudes of the waves 

propagating along the positive and negative directions before and after this point 

can be related as 

g
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+
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After propagating a distance of length l
p
, the amplitudes of the waves become 
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where the propagation matrix is 
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At point B, the beam structure is subjected to another point moment with the 

same amplitude but in the opposite direction as that at point C. The relationship of 

the waves before and after point B can be expressed as 
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The positive-going and the negative-going waves between points A and B can 

be related as 
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For the free boundary at point A, the amplitudes of the incipient waves and the 

reflected waves are related via the following relationship 

a
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R
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a

–
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where the reflection matrix R
free

 has been described by Mei and Mace (2005) as 
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After a series of substitutions and calculations, the amplitudes of the waves 

propagating in the beam at the right hand side of point C can be expressed in the 

form of external moments as: 

( ) mΛffRffffRffg ⋅+−+=+ )()()()()()()()(
1111 pppp

lLLllLLl
��������

  (7.30) 
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and m can be expressed as 
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with M
ˆ

 being the amplitude of the external moment. 

Substituting Eqs. (7.31) and (7.32) into Eq. (7.30), we can express Eq. (7.30) 

in terms of the external moment as 
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where 
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The transverse displacement and the bending slope of the beam at the right 

hand side of point C can be denoted as 
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● PZT-Structure Coupling Effect 

The coupling relationship between PZT actuator and structure has been investigated 

by Sirohi and Chopra (2000). The force exerted at point C is given by 

( )
0

ˆ εε −=
mechA

lKF                       (7.36) 

where 
A

K =

l

whY

E

p

 is the static stiffness of PZT; 
0
ε =

h

Vd
ˆ

31

 is the free strain; 

mech
ε  is the mechanical strain of the structure at the actuator’s location; V

ˆ

 is 

the amplitude of electric voltage applied to the PZT; l, w and h are the length, 

width and thickness of the PZT patch, respectively; and d
31

 and 
E

p
Y  are the 

constants of the PZT material. 

As shown in Fig. 7.2, when two PZT patches bonded to the beam at the same 

location but on the opposite sides are simultaneously subjected to opposite 

voltages, pure bending moment is excited on the beam. 

 

Fig. 7.2� Pure bending excitation generated by a pair of PZT patches 

 

The bending moment generated by these two PZT patches and the force 

exerted by one of them have the following relation  

FhhM
b

ˆ
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ˆ +=                      (7.37) 

where h
b
 is the thickness of the beam. The mechanical strain ε

mech
 at the PZT 

location can be calculated from the following relationship 

x

h
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mech ∂
∂= ψε

2

                     (7.38) 

Substituting Eq. (7.35b) into Eq. (7.38), we obtain the mechanical strain at 

point C in the form of M
ˆ

 as 
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From Eqs. (7.36), (7.37) and (7.39), the amplitude of the moment generated by 

the two PZT patches is obtained as  
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The transverse displacement and the bending slope at any location along the 

beam can be calculated by solving the spectral coefficients. For example, the 

transverse displacement and the bending slope of the beam at the right hand side 

of point C are 
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Only )(ˆ xy  and )(ˆ xψ  at the right hand side of point C are of interest, 

because sensors will be placed at the right hand side of point C to determine the 

PZT sensing region. 

● Viscoelastic Solutions 

Generally, damping is the primary reason for energy dissipation in vibrating 

systems. Several damping constants are defined in relation to the method used to 

measure them (Graesser and Wong, 1992). The specific damping capacity used 

here is 

W

WΔ=ϕ                        (7.42) 

where ΔW is the mechanical energy dissipated during one cycle of strain and W is 

the maximum stored elastic strain energy during the cycle. The specific damping 

capacity can also be written as 

φϕ tanπ2=                       (7.43) 

where φ  is the so-called loss-tangent, i.e. the phase by which the strain lags the 
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stress.  

The elastic response of an isotropic material is governed by two independent 

elastic constants, namely, the Young’s modulus E and the shear modulus G. The 

correspondence principle can be used to convert elastic solutions to viscoelastic 

solutions. The two corresponding complex moduli, E
*

 and G
*

, governing the 

response of a viscoelastic material can be expressed as 

EEEE ′′+′= j�e
tan j** φ

                 (7.44a) 

GGGG ′′+′== je
tan j** φ

                 (7.44b) 

Using the correspondence principle of linear viscoelasticity, the elastic 

solution can be readily extended to the corresponding viscoelastic solution simply 

by replacing E by E
*

, and G by G
*

. 

For a Timoshenko beam, the dispersive relation as described before is 

( ) [ ]2
1

2

1

4

2

22

2

2

2

22

1

4

11

2

1

K

C

C

CCC

C

C

k

b

r

sbb

r

s

±=
⎥

⎥

⎥

⎦

⎤

⎢

⎢

⎢

⎣

⎡

⎥

⎥

⎦

⎤

⎢

⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+±
⎥

⎥

⎦

⎤

⎢

⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

±= ωωωω  

 (7.45) 

where K is defined as the dynamic elastic stiffness of the structure. Based on this 

equation, we can observe that the wave number k is proportional to the square root 

of the dynamic elastic stiffness K of the structure, and the phase lags between 

them have the following relationship 

( ) ( )
Kk

Kk φφ jexpjexp =                   (7.46) 

Therefore, 

kK
φφ 2=                         (7.47) 

Substituting Eq. (7.47) into the expression of damping capacity, Eq. (7.43), 

and assuming a small phase lag, we have  

k

k
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where k' and k" are the real and imaginary parts of k, respectively. 
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The next task is to derive the imaginary part of k. In the first step, we calculate 

k' by using the implicit expression of the perfectly elastic beam, Eq. (7.7), given 

by 
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422224 =++−−= ωρωκρωκρκ IkEGIAGEIkGGEkf    (7.49) 

Next, if all the moduli are viscoelastic, the dispersion relation becomes 
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By carrying out a Taylor expansion on Eq. (7.50), we obtain 
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The viscoelastic solutions can then be directly derived from the elastic 

solutions as  
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where 
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● PZT Sensing Voltage 

For the viscoelastic solutions, the mechanical strain at the PZT sensor location can 

be calculated from Eqs. (7.38) and (7.54b) as 
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According to the constitutive equations of piezoelectric materials, the electric 

displacement of PZT sensor is given by 
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The charge on the sensor is 
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The output voltage 
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V  across the sensor electrodes is related to the capacitance 
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 of the sensor as 
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Therefore, the sensor voltage versus the actuation voltage can be expressed as 
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It can be observed from the above equality that V
sensor

/V
actuator

 is a function of 

the material properties, the thicknesses of PZT and structure, the frequency of 

actuation, and the distance between the actuator and sensor.  

It is worth mentioning that the same PZT patch can be used as both actuator 



7  Sensing Region, Load Monitoring and Practical Issues 258 

and sensor in the EMI technique. However, for the purpose of determining PZT 

sensing region, we need to use different PZT patches as actuators and sensors, 

where the sensors are placed in certain distances away from the actuators. 

7.1.3� Experimental Verification 

In order to verify the developed theoretical model, an experiment was carried out 

on an aluminum beam bonded with a number of PZT patches, two of which served 

as actuators and the rest as sensors. The specimen used in this experiment is 

shown in Fig. 7.3 and the equipments used are the same as shown in Fig. 4.21.  

 

Fig. 7.3� Configuration of beam specimen 

 

The HP4192A analyzer was used to excite the PZT actuators and simultaneously 

record the signatures received by the PZT sensors. The switch box was used to 

make multiple connections between the analyzer and the sensors. The right end of 

the beam specimen was inserted into a box filled with sands to achieve negligible 

wave reflection at the boundary, simulating a semi-infinite beam condition. In 

order to facilitate automation of testing, the program VEE Pro v.6.01 was used to 

control the analyzer via a GPIB interface card installed in the PC. Fig. 7.4 

schematically shows the overall experimental setup. 

Two PZT patches were bonded to one end of the beam specimen, at the same 

location but on the opposite sides. These two PZT patches were counter connected 

to the input slot of the analyzer to work as actuators. A sinusoidal sweep voltage 

with an amplitude of 1 Volt was applied to these actuators to excite pure bending 

vibration in the beam over various frequency ranges. Another five PZT patches 

were bonded to the beam specimen at different distances from the actuators. These 

five PZT patches worked as sensors which were connected to different channels of 

the switch box. The switch box was then connected to the output slot of the HP 

4192A analyzer to record the signals received by the PZT sensors. The properties 

and locations of the PZT patches are listed in Tables 7.1 and 7.2, respectively. The 

properties of the beam specimen are listed in Table 7.3. 
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Fig. 7.4� Experiment setup 

 

Table 7.1� Material property of PZT patches 

Young’s 

modulus Y 

(GPa) 

Loss 

factor 

η  

Mass 

density 

ρ (kg/m ) 

Strain 

constant 

d  (m/V) 

Permittivity 

T

33
ε (F/m) 

Dielectric 

loss 

factor δ 

66.7 0.005 7,800 –2.10E–10 1.93E–08 1.50E–02 

 

Table 7.2� Dimensions and locations of PZT patches 

 Actuators Sensors 

Dimensions (mm) l = w = 20, h = 0.2 l = 5, w = 20, h = 0.15 

Locations (mm) 50 mm from the left end x = 200, x = 500, x = 1,500, x = 2,100, x = 2,900 

(measured from the left end of the beam) 

 

Table 7.3� Property of Timoshenko beam specimen 

Length 

(mm) 

Width 

(mm) 

Thickness 

(mm) 

Young’s 

modulus 

(GPa) 

Poisson’s 

ratio 

Mass 

density 

(kg/m ) 

Damping 

ratio 

3,000 250 45 66.5 0.33 2,800 0.049 

7.1.4� Results and Discussions 

According to the theoretical model, the sensing voltage of each sensor along the 

beam structure can be calculated, which simulates the signal detected by the 

sensor. Five sensors were employed in this study, which were located at 0.2 m, 

0.5 m, 1.5 m, 2.1 m and 2.9 m away from the actuators, respectively. The theoretical 

results of sensor output voltage versus excitation frequency are illustrated in Fig. 

7.5. It can be observed that, as the distance between the sensor and the actuator 

increases, the sensor output voltage decreases. This indicates that the waves 



7  Sensing Region, Load Monitoring and Practical Issues 260 

generated by the actuators attenuated while propagating through the beam; and 

this effect is especially obvious at higher excitation frequencies. It can also be 

observed that peaks appear when the excitation frequencies approach the beam’s 

natural frequencies due to resonance. However, not all the peak values coincide 

well with the basic observation that the output voltage decreases as the distance 

between the sensor and the actuator increases. This is attributed to the fact that the 

sensor may be situated at the anti-nodes of certain vibration modes. If this happens, 

the sensor output voltage will be very small. 

 

Fig. 7.5� Signatures of predicted output voltages of PZT sensors 

 

For clarity, several peaks were selected and presented in Fig. 7.6, where the 

peak values of each sensor at certain frequencies, namely, 119 kHz, 155 kHz and 

187 kHz, are marked. At these three frequencies, the theoretical peak values for 

the five sensors are listed in the first rows of Tables 7.4 – 7.6, respectively. It is 

obvious that the larger the distance, the smaller the peak values. Therefore, the 

phenomenon of wave attenuation along the beam length is clear. In this analytical 

model, attenuation of the waves is mainly caused by the material and structural 

damping.  

Fig. 7.7 shows the experimental output voltages of the five PZT sensors 

sequentially bonded to the beam specimen. Again, as expected, the phenomenon 

of wave attenuation is apparent. The peak values under certain excitation frequencies, 

illustrated and marked in Fig. 7.8, generally match well with those illustrated in 

Fig. 7.6. For easy comparison, the experimental peak values at three different 

frequencies are listed in the second rows of Tables 7.4 – 7.6. Good agreement 

between the theoretical predictions and experimental results is observed. The 

differences between them can be ascribed to several model assumptions as well as 

experimental errors. For example, in the theoretical model, effect of the adhesive 

layer between the PZT and the beam was not considered and the dissipation 

mechanism was assumed to be due to damping only. On the other hand, in the 

experimental test, the two PZT actuators were difficult to be pasted exactly at the 

same location, so the pure bending excitation was only an approximation. 
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Fig. 7.6� Signatures of predicted output voltages of sensors at selected frequencies. (a) Excitation 

frequency of 119 kHz; (b) Excitation frequency of 155 kHz; (c) Excitation frequency of 187 kHz 

 

Table 7.4� Theoretical and experimental peak values at 119 kHz 

 0.2 m 0.5 m 1.5 m 2.1 m 2.9 m 

Theoretical predictions (dBV) –35.611 –38.04 –40.502 –42.785 –44.242 

Experimental results (dBV) –29.08 –31.08 –36.63 –41.3 –43.36 

 

Table 7.5� Theoretical and experimental peak values at 155 kHz 

 0.2 m 0.5 m 1.5 m 2.1 m 2.9 m 

Theoretical predictions (dBV) –30.988 –32.896 –38.994 –42.975 –48.316 

Experimental results (dBV) –30.25 –32.86 –38.02 –42.45 –44.56 

 

Table 7.6� Theoretical and experimental peak values at 187 kHz 

 0.2 m 0.5 m 1.5 m 2.1 m 2.9 m 

Theoretical predictions (dBV) –31.18 –35.984 –39.772 –42.059 –44.927 

Experimental results (dBV) –31.09 –35.06 –38.85 –41.95 –44.29 
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Fig. 7.7� Signatures of experimental output voltages of PZT sensors 

   

 

Fig. 7.8� Signatures of experimental output voltages of sensors at selected frequencies: (a) Excitation 

frequency of 119 kHz; (b) Excitation frequency of 155 kHz; (c) Excitation frequency of 187 kHz 
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In order to demonstrate the attenuation tendency of the wave propagating 

along the beam, the relationship between the output voltage and the distance of the 

sensor from the actuator at different excitation frequencies, namely 119 kHz, 

155 kHz and 187 kHz, was derived using the developed theoretical model. The 

results are compared with the experimental data in Fig. 7.9. As the distance 

increases, the amplitude of waves presents a clear decay tendency; and the decay 

tendencies in the theoretical predictions and in the experimental results coincide 

well especially at longer distances. For instance, at distance farther than 1.2 m, 

differences between the theoretically predicted voltages and the experimentally 

detected ones are less than 0.005 V.  

 

 

 

Fig. 7.9� Comparison of theoretical and experimental output voltages of PZT sensors. (a) Excitation 

frequency of 119 kHz; (b) Excitation frequency of 155 kHz; (c) Excitation frequency of 187 kHz 
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Due to the material and structural damping, waves generated by the PZT 

actuator are attenuated while propagating through the structure. With increase of 

distance between the PZT actuator and sensor, the output voltage of sensor decreases. 

When the output voltage becomes too small to be detected, the PZT reaches its 

sensing limit. For the beam structure studied, the sensing region is defined as the 

maximum distance between the actuator and sensor where the sensor output 

voltage is measurable. For 2D structures such as plates, the PZT sensing region is 

defined as the circular area with a radius of that maximum distance.  

The minimal voltage that can be captured by the HP 4192A analyzer used in 

this study was 0.005 V. In order to ensure the reliability of engineering applications, 

it is reasonable to set the PZT sensing limit as 0.01 V, i.e., one percent of the 

original excitation voltage. The PZT sensing region is closely related to the 

excitation frequency. If the frequency is too high, the sensing region may become 

so small that the PZT sensors exhibit sensitivity only to their bonding conditions 

or the PZT itself rather than the behavior of the structure monitored. According to 

the above sensing limit, i.e., 0.01 V, and the typical excitation frequency range of 

100 – 200 kHz for the EMI technique, the valid sensing region of PZT sensors is 

about 2 to 2.5 m from the results shown in Fig. 7.9. Beyond this range of 2 to 2.5 

m, the output voltage received by the PZT sensors is less than 0.01 V and is 

difficult for the analyzer to steadily record this small voltage. In this situation, the 

signatures captured by the analyzer may lose some information of the host 

structure and in turn the EMI technique will lose its sensitivity to structural 

damages. Therefore, it is concluded that the PZT sensing region for EMI-based 

SHM is within 2 to 2.5 m in aluminum. This conclusion coincides with the 

experimental experience for metal specimens by Park et al. (2000), where a stable 

2 m sensing region was observed using a similar impedance analyzer. It is worth 

noting that the HP 4192A analyzer used in the experimental test has only a 

resolution of 5 mV. If a more powerful analyzer with higher precision of 

measurement is used, the PZT sensing region could be larger than 2 to 2.5 m.  

7.1.5� Summary 

Based on the wave propagation theory, this section presents a method to determine 

the sensing region of PZT sensors for their applications in SHM. The Timoshenko 

beam theory is adopted to study the waves generated by PZT actuators at high 

frequencies to ensure the high sensitivity to damages of the EMI technique. The 

developed wave propagation modeling involves only a number of matrix operations 

related to the reflection and transmission matrices at the discontinuities. After the 

elasticity solution is obtained, the viscoelasticity solution is derived directly from 

the elasticity solution according to the correspondence principle.  

The theoretical predictions and the experimental results coincide well, which 

demonstrates the applicability of the developed model. The results also show that 

the PZT sensing region is dependent on the excitation frequency. At high frequencies, 
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typically hundreds of kilohertz, the sensing region is small due to the significant 

effect of material and structural damping. The sensing region also depends on the 

experimental conditions as well as the precision of the measurement equipments. 

Under the experimental condition of this study, a reliable PZT sensing region in an 

aluminum beam is concluded to be within 2 to 2.5 m. 

To extend the study to a more general situation, the PZT sensing region for 

other materials, e.g., rock and concrete, definitely deserves further investigation. 

Moreover, for other practical structures such as ribs, tapers and joints, the 

developed wave propagation model should be modified and enhanced. For 

instance, for a joint connecting two beams, the PZT sensors can be installed on 

both beams and the wave propagation should be modeled separately for the two 

beams, taking into account the joint as one type of discontinuity. 

7.2� PZT Patches for Load Monitoring 

7.2.1� Introduction 

Civil and aerospace structural components such as slabs, beams, columns or wings 

are constantly subjected to some forms of external loadings which may or may not 

lead to any damage. Admittance signatures obtained for such constantly loaded 

structures are different from those obtained when damages are present in the 

structures. This section presents the experimental and statistical investigations 

carried out by Annamdas et al. (2007) to show the influence of loading on 

admittance signatures. In the investigation, it was also observed that susceptance 

signatures are better indicator than conductance signatures for detecting in-situ 

stresses (especially transverse loading) in the host structure. This observation was 

verified by statistical analysis. 

7.2.2� Effect of Stress in Structure 

Since the early development of the EMI technique, it has evolved as a technique 

for monitoring damage/crack. However, a few other developments have shown 

that this technique is equally capable of predicting or monitoring in-situ stresses 

associated with such damage/crack. Abé et al. (2000) first proposed the use of the 

EMI technique to identify in-situ stresses in thin structural members. Experiments 

were carried out and in-situ tensile stress was successfully identified. Ong et al. 

(2002) investigated the effects of in-situ stresses on the frequency response 

functions of beam and plate structures. In their study, the case of pure bending 

actuation which was achieved by a pair of symmetrically surface bonded PZT 
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transducers was considered. The structures were axially loaded and the electrical 

response of the PZT transducer was simulated using 1D and 2D EMI models for 

the beam and plate specimens, respectively. Moreover, it was shown from the 

simulated results that in the presence of in-situ stresses, shifts in the natural 

frequencies of the structures took place and these shifts were reflected in the 

admittance, which could be directly measured. 

7.2.3� Influence of Applied Load on EM Admittance Signatures 

From Euler-Bernoulli’s beam theory, the maximum bending stress in a beam is 

ss

IMy /−=σ                     (7.61) 

where M is the maximum bending moment, y is the distance from the neutral axis 

of the beam to the extreme surface and I
s
 is the moment of inertia. In our 

investigations, y = ½H
S
 and 12/

3

SSs
HWI =  as the beam specimens used were 

homogeneous and symmetrical. For the simply supported and centrally loaded 

beam specimens, the maximum bending moment occurs at the centre of the 

specimen, where the PZT transducers were located. In general, PZT transducers 

will function as long as they are stressed within the operational design limit (Mall, 

2002). Fig. 7.10 shows the schematic diagram of stress distribution for a beam 

with a PZT bonded at the centre. Table 7.7 lists the maximum stresses experienced 

by each of the specimen under different loadings. 

 

Fig. 7.10� Stress distribution in a typical beam specimen. (a) Elevation; (b) Section A-A  
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Table 7.7� Maximum stress values in specimens 

Maximum stress (MPa) 

Specimen I  (m )×10  

Load = 50 N Load = 100 N Load = 150 N Load = 200 N 

1 0.11 46.9 93.8 140.6 187.5 

2 0.54 20.8 41.7 62.5 83.3 

3 4.17 3.0 6.0 9.0 12.0 

 

7.2.4� Experimental Investigations and Discussions 

The experiments were conducted in such a way that they replicated a common 

real-life beam under a simplified loading and support conditions (Fig. 7.11). The 

PZT transducers were bonded on the bottom surface at the centre of the beam 

specimen. The three lab-sized aluminum beams and nine PZT patches used are 

listed in Tables 7.8 and 7.9, respectively. 

 

 

Fig. 7.11� Experimental specimens. (a) Plan view; (b) Section A-A  in absence of load; 

(c) Section A-A  in presence of applied load 
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Table 7.8� Dimensions and mechanical properties of aluminum beam specimens 

Aluminum beam 1 2 3 

Dimensions L (m)×W (m)×H (m) 0.2×0.02×0.004 0.3×0.03×0.006 0.2×0.05×0.01 

Density (kg/m ) 2,715 2,715 2,715 

Mass, m (kg) 0.043 0.147 0.272 

Young’s modulus, E  (GPa) 68.95 68.95 68.95 

Poisson’s ratio  0.33 0.33 0.33 

Stiffness, E I /L (N·m) 37.92 124.11 1,437.61 

 

Table 7.9� Dimensions and properties of PZT patches 

        PZT A/B C 

Dimensions, l (mm)×w (mm)×h (mm) 10×10×0.3/15×15×0.75 20×10×0.5 

Density (kg/m ) 7,800 7,800 

Young’s modulus, E  (GPa) 65 66.67 

Poisson’s ratio 0.33 0.33 

Mechanical loss factor 0.023 0.023 

Piezoelectric strain coefficients, d , d  (10  m/V) –1.9 –2.1 

Piezoelectric strain coefficient, d  (10  m/V) 4.18 4.5 

Dielectric loss factor 0.015 0.015 

Electric permittivity (F/m) 0.98 1.75 

 

First, three PZT patches were separately bonded on the three beams at the 

center, and the experimental tests were conducted with the admittance signatures 

recorded. After the tests, these PZT patches were removed and another three 

patches were bonded to replace the first three. The experimental tests were 

repeated with the admittance signatures recorded. The procedure was again 

repeated for another set of three PZT patches. The loads applied were proportional 

to the specimen sizes so as to limit the stresses within the elastic range for both the 

aluminum beams and the PZT patches. Therefore, static line loads of 0 N (no load, 

base-line) to 200 N at increments of 25 N were used. As the investigation 

concentrated on the influence of signatures due to applied external loadings only, 

the mass of the PZT transducers was assumed to be negligible. 

A total of nine different admittance signatures were plotted for nine combinations 

of the three beam specimens bonded with three different PZT patches, i.e., 1-A, 

1-B, 1-C, 2-A, 2-B, 2-C, 3-A, 3-B and 3-C. The trends of admittance signatures of 

transducers A, B and C bonded to specimen 1 (i.e., 1-A, 1-B and 1-C) were the 

same. Similarly, the trends of admittance signatures of transducers A, B and C 

bonded to specimen 2 (i.e., 2-A, 2-B and 2C) and specimen 3 (i.e., 3-A, 3-B and 

3-C) were the same. Thus, only three representative signatures for specimens 1 

(1-A), 2 (2-A) and 3 (3-A) are shown in Fig. 7.12; and some typical details of the 

conductance and susceptance signatures for specimen 1 (1-A) are presented in 

Figs. 7.13 and 7.14. 
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Fig. 7.12� Conductance and susceptance signatures of PZT A for specimens: (a) 1; (b) 2; (c) 3 
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Fig. 7.13� Close-up view of conductance signatures of 1-A 

 

 

Fig. 7.14� Close-up view of susceptance signatures of 1-A 
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In all the nine conductance signatures (see representative Fig. 7.13), it was 

observed that the signatures of the loaded specimens seem to shift upwards from 

the base-line signature (0 N). The magnitude of the upward shifts has some 

correlation with the magnitude of the load applied. It was also observed that the 

upward shift of the signatures increases with increase in the magnitude of applied 

load as well as increase in the frequency range (Fig. 7.12). This indicates that 

there was actually a rotation of conductance signature in the anti-clockwise 

direction about the origin. The above variations in the signatures could be 

attributed to the fact that the interaction between the PZT transducer and the host 

structure has been altered. The PZT patch, when actuated, induced waves which 

propagate through the host structure and the applied loads can be viewed as an 

external force interfering with the wave propagation (Figs. 7.11(b)–(c)). Table 

7.10 lists the values of susceptance signatures of the three specimens, about the 

origin, for various load cases bonded with PZT A. 

 

Table 7.10� Value of susceptance (S) for various load cases @ 25 kHz 

Value of susceptance (S) 

Specimen 

Load = 0 N Load = 50 N Load = 100 N Load = 150 N Load = 200 N 

1 7.40 7.60 8.00 8.38 8.80 

2 7.04 7.12 7.21 7.34 7.45 

3 6.92 6.92 6.93 6.93 6.94 

7.2.5� Efficiency of EM Admittance Signatures Using Statistical 

Index 

Most of the statistical indices were obtained based on signatures (peaks/valleys) of 

the EM admittance. However, at low frequency range of less than 15 kHz, the 

external loading has negligible influence on the conductance signatures. Thus, a 

statistical index which considers both the conductance and susceptance signatures 

(peaks/valleys) and the frequencies of excitation is needed to account for changes in 

the admittance. In this investigation, the PZT efficiency factor (PEF) was employed 

to study the effects of variations in PZT properties on EM admittance, and the 

effects of variations in load magnitudes on EM admittance (Annamdas and Soh, 

2007). 

The PEF for chosen ranges of frequency is given as: 

PEF = 
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where C
1
, C

2
, ..., C

k
, ..., C

n
 are the means of the frequency ranges (i.e., mean of sum 

of the upper and lower frequencies), and subscripts 1, 2, …, k and n are the number 

of considered frequency ranges as shown in Fig. 7.15. In Fig. 7.15, f
1
, f

3
, ..., f

2k–1
, ..., 

f
2n–1

 are the pre-peak frequencies and f
2
, f

4
, ..., f

2k
, ..., f

2n
 are the post-peak 

frequencies. The mean frequencies were calculated as the average of the pre- and 

post-peak frequencies [C
n
=(f

2n–1
+f

2n
)/2]. 

In all the nine conductances and susceptances recorded in the experimental tests, 

there were around 17 peaks observed for the different frequencies in the overall 

frequency range of 0 – 100 kHz. Details of these frequencies and frequency means 

are given in Table 7.11. 

 

 

Fig. 7.15� PEF versus mean frequencies 

 

 

In Eq. (7.62), R
1
, R

2
, R

3
 and R

4
 are the root mean square deviation (R) values for 

the considered frequency ranges. For N = 1, PEF becomes a ratio of R to R, that is, 

PEF = 1, and thus cannot be used for comparison. Therefore, N > 1 is the necessary 

condition for the application of PEF. R is given as 

R (%) = 

( )

∑

∑

=

=

−

x

xy

×100               (7.63) 

where x
i
 and y

i
 (i = 1,2,3�…,N) are the signatures obtained from the PZT transducer 

bonded to the structure for the initial and later stages of monitoring, respectively.  
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Table 7.11� PEF values for specimens 1, 2 and 3 

Conductance/ 

Susceptance 
 

PEF 

(Specimen 1) 

PEF 

(Specimen 2) 

PEF 

(Specimen 3) 

Frequency 

range 

(kHz) 

Mean of 

frequency 

(kHz) 

 

Load 

(N) 

A B C A B C A B C 

15.5 – 16.8 16.1 0 0.269 0.274 0.299 0.248 0.259 0.206 0.263 0.282 0.243 

18.9 – 21.0 20 25 0.268 0.267 0.309 0.237 0.257 0.226 0.268 0.277 0.242 

21.7 – 23.1 22.4 50 0.272 0.267 0.296 0.232 0.235 0.223 0.265 0.277 0.247 

27.2 – 28.4 27.8 100 0.268 0.265 0.288 0.23 0.226 0.245 0.26 0.254 0.253 

37.0 – 38.0 37 125 0.269 0.272 0.296 0.23 0.233 0.264 0.261 0.247 0.271 

47.0 – 49.0 48 150 0.271 0.257 0.265 0.229 0.231 0.256 0.264 0.244 0.305 

52.0 – 53.0 52.5 175 0.27 0.256 0.293 0.225 0.214 0.224 0.266 0.244 0.337 

55.7 – 56.7 56.2 

C
o
n
d
u
c
t
a
n
c
e
 
(
S

)
 

200 0.274 0.255 0.29 0.228 0.216 0.221 0.263 0.25 0.345 

59.3 – 60.3 59.8            

67.0 – 68.0 67.5 0 0.276 0.256 0.292 0.227 0.217 0.219 0.311 0.237 0.261 

68.1 – 69.1 68.6 25 0.273 0.255 0.285 0.225 0.211 0.217 0.297 0.235 0.257 

70.6 – 71.7 71.2 50 0.271 0.255 0.282 0.22 0.212 0.217 0.292 0.233 0.257 

71.8 – 73.6 72.7 100 0.267 0.254 0.284 0.218 0.211 0.215 0.291 0.234 0.257 

79.0 – 81.0 80 125 0.266 0.255 0.286 0.215 0.211 0.214 0.29 0.232 0.255 

94.4 – 85.7 85 150 0.263 0.254 0.284 0.213 0.21 0.211 0.29 0.232 0.253 

91.8 – 92.5 92.1 175 0.26 0.253 0.283 0.211 0.21 0.209 0.291 0.232 0.253 

92.6 – 94.2 93.4 

S
u
s
c
e
p
t
a
n
c
e
 
(
S

)
 

200 0.258 0.252 0.282 0.21 0.211 0.208 0.285 0.23 0.253 

 

Fig. 7.16 plots the PEFs of the nine conductance and susceptances signatures 

tabulated in Table 7.11. It is apparent that, for all the specimens, there is a decrease 

in trend of the susceptance PEFs as the magnitude of load increases, unlike there is 

no obvious trend for the conductance PEFs. For example, in the conductance plot, 

PEFs of PZT C bonded to specimens 1, 2 and 3 can either increase or decrease with 

the increase in magnitude of loading. On the other hand, in the susceptance plot, 

PEFs of PZT A bonded to specimens 1, 2 and 3 constantly decrease with the 

increase in load magnitude. The point to note is that there exists an inverse 

relationship between the load magnitude and the susceptance PEF. 

The above statistical results show that in-situ stress has larger influence on the 

susceptance signatures than on the conductance signature, indicating that susceptance 

could be a more efficient indicator than conductance for detecting in-situ stress in 

the structure. Since stress levels in the structure are related to the structural stiffness, 

which depends on the mechanical properties, it can be deduced that the mechanical 

properties of the structure have a larger influence on the imaginary part of the 

admittance signature than the real part when the structure is loaded.  
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Fig. 7.16� PEF of signatures for specimens 1, 2, 3. (a) PZT A; (b) PZT B; (c) PZT C 
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7.2.6� Summary 

The effects of external loading on admittance signatures were investigated. Experimental 

tests were conducted on different sizes of PZT and host structures for various 

magnitudes of loading. It was observed that the influence of stress levels is more 

noticeable in the susceptance signature making it better than conductance in stress 

monitoring. This observation has more relevance in practical applications, 

especially for SHM of compressed or stretched structural members that are more 

likely to undergo simultaneous variations in stress level and occurrence of damage. 

The observation was verified using statistics based PEF of the conductance and 

susceptance signatures. Therefore, it is concluded that the parametric indices, e.g., 

RMSD and PEF, which have been widely applied to conductance signatures by 

many researchers, can be extended to susceptance signatures to acquire more 

meaningful and comprehensive conclusions. 

7.3� Practical Issues Related to Application of EMI Technique 

in SHM 

7.3.1� Introduction 

The EMI technique possesses distinct advantages such as the ability to detect incipient 

damage, use of non-intrusive transducers and potentially low-cost applications. 

However, most of the researches conducted so far are laboratory-based, under 

well-controlled environment, and most of the idealized assumptions may not be 

practical in real-life applications (Lim et al., 2006). Hence, there exist practical 

application issues such as durability of both the transducers and bonding layers to 

ensure consistency in monitoring signatures and their resistances towards harsh 

environmental effects such as rain and sunlight as well as fluctuating temperature. 

In addition, their ability to sustain continuous and long term monitoring is also 

essential. Therefore, various problems related to real-life applications (Yang et al., 

2008) including workability, reliability, durability and applicability of the EMI 

technique ought to be circumvented before actual field applications. 

Giurgiutiu (2008) investigated the effect of cyclic temperature change (oven 

test), climatic factors (outdoor tests) and operational fluids (immersion tests) on 

the durability of EMI technique. No significant changes were reported on the 

impedance spectrum. Park et al. (1999) investigated the effect of temperature on 

the signatures acquired and proposed a statistics-based compensation method. 

This section presents our investigations into the long term repeatability of the 
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admittance signatures acquired from PZT patches under various environmental 

conditions. Protection of the PZT patches from wear and tear and environmental 

attack were also studied. Reliability of the EMI technique, in terms of long term 

consistency of the measured electrical admittance signatures under various 

foreseeable environmental conditions, was experimentally investigated with 

different level of protections applied on the piezo-impedance transducers. Effects 

of bonding layer on the EMI technique, especially under varying temperature, 

were investigated experimentally. 

7.3.2� Consistency of Admittance Signatures Acquired from PZT 

Patch 

The electrical admittance signatures are directly affected by the PZT patch, the 

bonding layer and the host structure. Under normal working condition, the 

consistency of piezoelectric properties is relatively high. Aging rate of the key 

piezoceramic properties is generally lower than 5% per decade (PI Ceramic, 2006). 

Endurance test conducted on piezoceramics showed that the material performed 

consistently even after several billion of cycles. Therefore, deterioration of the 

PZT patch itself is not a major concern under normal use. However, this may not 

be true when the patch is surface-bonded on civil structures which may be 

constantly exposed to harsh environment. The following section elucidates a series 

of experimental studies conducted to investigate the consistency of signatures 

acquired under different environmental conditions. 

��Experimental Investigation 

Three lab-size aluminum beam specimens of grade Al 6061-T6 were surface-bonded 

with PZT patches of grade PIC-151, as shown in Fig. 7.17, for the experimental 

study. The bonding adhesive used was two-part high strength epoxy, RS 159-3957. 

Dimensions of the specimens, the PZT patches and relevant exposed environmental 

conditions are tabulated in Table 7.12. The admittance signatures of the PZT 

patches were monitored at selected time intervals up to a period of one and a half 

years.  
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Fig. 7.17� Aluminum beam bonded with PZT patches (Identical configurations for all specimens: 

B1, B2 & B3) 

 

Only three of the patches are discussed as the extra patches served as reserves. 

All three specimens, B1, B2 and B3, were identical. Both specimens B1 and B2 

were placed outdoor. Specimen B1 was exposed to air while specimen B2 was 

buried under clayey soil (placed inside a bucket). These two samples were 

however prevented from direct exposure to sunlight and rain. They were in contact 

with water only during heavy rain. This was an attempt to simulate the situation of 

nominal construction site or in-service civil structures. Situation of extreme harsh 

environment was not considered in this study. Specimen B3 was placed inside the 

laboratory (room condition). 

 

Table 7.12� Details of aluminum beam specimens for consistency test 

Specimen 

labels 

Patch 

labels 

Patch sizes 

(mm ) 

Protections 

Environmental 

conditions 

1 10×10×0.2 Silicone rubber A 

2 10×10×0.2 Silicone rubber B B1 

A 10×10×0.5 Unprotected 

Outdoor 

     

3 10×10×0.2 Silicone rubber A 

4 10×10×0.2 Silicone rubber B B2 

C 10×10×0.5 Unprotected 

Outdoor (Buried 

under dry soil) 

     

5 10×10×0.2 Silicone rubber A 

6 10×10×0.2 Silicone rubber B B3 

E 10×10×0.5 Unprotected 

Indoor 

 

In this study, a layer of silicone rubber was applied across the selected patches, 

covering a small portion of the host structure surrounding the patch as a mean of 

protection. Two types of commercially available silicone rubber, herein indicated 

as silicone rubber A (Hi-Bond, 2006) and silicone rubber B (Dow Corning 

Corporation, 2006), were used. Silicone rubber A, normally used as glass sealant, 

was much cheaper than silicone rubber B and of better quality.  

An HP 4192A impedance analyzer was used for sensing and actuation of the 



7  Sensing Region, Load Monitoring and Practical Issues 278 

PZT patches. All specimens were returned to the laboratory a few hours before 

acquiring the signatures in order to eliminate the effects of temperature and 

humidity. This was to ensure the signatures were acquired under consistent 

environment (effects of temperature will be separately considered in later section). 

Thus, any deviations in the signatures were inferred to be attributed to degradation 

in the PZT patch or the bonding layer. The host structure was assumed to be 

sufficiently robust and remained intact throughout the experimental study.  

Only the conductance signatures were compared in this study as conductance 

signatures are more sensitive to damage detection (Sun et al., 1995).  

��Results and Discussions 

Figs. 7.18 and 7.19 plot the admittance signatures against frequencies, ranging 

from 10 to 100 kHz, for the different PZT patches. A summary of the RMSD 

statistical quantifier calculated for each PZT patch relative to the baseline 

signature is tabulated in Table 7.13. 

 

Specimen B1—outdoor condition 

It is obvious from Fig. 7.18 that, in spite of the different levels of protection, the 

conductance signatures remained virtually unchanged throughout the monitoring 

period for all three patches. Comparing their RMSD at different monitoring 

periods (Table 7.13), all values for the protected patches (Patches 1 and 2) were 

well within 5%, while the values for the unprotected patch (Patch A) were slightly 

higher. The RMSD values fluctuated faintly throughout the period of monitoring 

but showed no increasing trend against time. Minor fluctuation in RMSD values 

may be attributed to slight variation in humidity and temperature as well as 

possible minor inconsistency during calibration of the impedance analyzer. Higher 

fluctuation in the unprotected patch could be due to some degradation in the 

bonding layer. The absence of variation in modal frequency (no horizontal shift in 

resonance peaks) indicated no sign of structural deterioration. 

However, an initially unforeseen problem arose in the unprotected patch (Patch 

A) as one of the wires soldered onto its terminal was jerked off due to wear and tear 

after six months. Alternatively, it can be viewed as the silicone rubber provided 

good protection to the soldered wires from being disconnected easily. Monitoring of 

this sample was forced to be terminated on the eighth month when it was spoiled by 

some mischievous passerby who plucked out all the wires and caused damages on 

the patch terminals. This happened to all other samples placed outdoor. However, 

the specimens placed in the lab remained intact and functional till the end of the 

experimental study. 
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Fig. 7.18� Conductance signatures for Specimen B1 (10 – 100 kHz): (a) Patch A (unprotected); 

(b) Patch 1 (protected with silicone rubber A); (c) Patch 2 (protected with silicone rubber B) 
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Fig. 7.19� Conductance signatures for Specimen B2 (10 – 100 kHz): (a) Patch C (unprotected); 

(b) Patch 3 (protected with silicone rubber A); (c) Patch 4 (protected with silicone rubber B) 
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Table 7.13� RMSD values (%) calculated from admittance signatures (10 – 100 kHz) at different 

stages in comparison to baseline signatures 

Specimen B1 (Outdoor)  Specimen B2 (Soil)  Specimen B3 (Indoor) Stage 

(month) 
Patch 1 Patch 2 Patch A  Patch 3 Patch 4 Patch C  Patch 5 Patch 6 Patch E 

1 3.41 1.93 3.03  7.45 8.15 16.91  2.19 2.05 3.28 

2 3.29 2.99 6.30  7.93 8.97 17.94  2.06 2.05 3.75 

3 3.33 3.25 4.39  11.20 13.52 23.62  3.65 3.04 5.65 

4 3.84 3.12 3.82  7.03 8.01 18.69  1.38 1.46 2.12 

6 4.54 3.55 8.94      2.32 2.13 2.81 

8         3.71 2.88 4.20 

11         3.06 4.29 4.32 

15         3.30 2.81 4.86 

Avg. 3.68 2.97 5.30  8.40 9.66 19.29  2.71 2.59 3.88 

 

 

Specimen B2—buried under dry soil 

For the specimen buried under soil, visible fluctuations in admittance signatures 

throughout the monitoring period can be observed in Fig. 7.19. Visually, 

signatures from all three patches suffered similar amount of disturbance. The 

average RMSD values throughout the four months computed for the patch 

protected with silicone rubber B, silicone rubber A and the unprotected patch were 

8.40%, 9.66% and 19.29%, respectively. This proved that the silicone layers, 

especially silicone rubber B which was more expensive than A, provided better 

protection to the patches.  

The reason of variations was attributed to the gradual loss of humidity in the 

soil especially during the first two months (the specimen was buried in soil 

contained in a bucket which originally contained some moisture). The monitoring 

was again terminated prematurely when the sample was removed and the soil 

thrown away by unknown vandal. 

The experiment also exposed an implicit weakness of the RMSD approach. 

The RMSD approach calculates the relative vertical difference between two 

signatures at all frequencies. However, damage on host structure is mainly 

reflected through the horizontal shift of resonance peaks. Therefore, in the case 

where there were substantial vertical shifts caused by environmental factors, the 

change in RMSD values would give a false impression of damage. 

 

Specimen B3—indoor condition 

The signatures acquired from the patches placed under room condition showed 

even higher consistency (with an average RMSD value = 2.72%) than those under 

outdoor conditions (specimen B1, average RMSD = 3.98%). No sign of degradation 

was seen on the specimen placed in the room after one and a half years of monitoring.  
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PZT Patches 

All the unprotected PZT patches bonded on the various specimens performed 

excellently throughout the period of monitoring, despite showing slightly higher 

fluctuations than the protected patches. The unprotected patch buried in dry soil 

remained workable without significant degradation. Constant fluctuating humidity 

and even in contact with rain water did not degrade the patches nor affected their 

signatures acquired as long as they were dried before the signature acquisition. 

This demonstrated the robustness of the EMI technique against the outdoor 

environment. Hence, with further protection using either silicone A or B, the PZT 

patches should function well in the normal construction sites. 

7.3.3� Effects of Bonding Layer and Temperature 

If a PZT patch is surface bonded onto a structure, the bonding adhesive will form 

the only interface for strain transfer between them. Generally, the bonding layer is 

much softer than the patch and the structure. The stiffness could be further 

reduced at elevated temperature. Temperature changes could lead to changes in 

the mechanical and electrical properties of all components, including the PZT 

patch, the bonding layer and the host structure. However, previous researches have 

mainly focused on the effects of temperature on the PZT patch and the structure 

(Sun et al., 1995, Park et al., 1999), but often omitted the bonding layer.  

This section first reviews some relevant previous works and summarizes 

the necessity and focus of further study. Detailed experimental investigation 

on the effect of bonding layer variation on the admittance signatures acquired, 

with special attention paid to the influences of varying temperature, is then 

presented.  

��Review of Relevant Studies 

Bonding layer 

Crawley and de Luis (1987) proposed a static-based model, and Ha et al. (1992) 

proposed a dynamic FE model for the PZT-structure interaction. Both methods 

ignored the excitation frequency. This is highly impractical for the EMI technique, 

which utilizes high frequency of excitation. Xu and Liu (2003) incorporated the 

effect of bonding into the 1D impedance-based EM model (Liang et al., 1994) 

by simplifying the bonding layer into a single spring-mass-damper system. 

However, no investigations were carried out on its application using the EMI 

technique. 
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Nguyen et al. (2004) studied the actuation efficiency of PZT patches under 

varying ambient temperature and adhesive thickness. It was found that increase in 

bonding thickness would cause more losses in terms of actuation power than 

increase in temperature. They unveiled that reduction of adhesive hardness due to 

higher temperature or increase in bonding thickness would reduce the local 

stiffening effect of the actuators on the host structure and the overall stiffness of 

the system. However, their study was based on low frequency of actuation (<4 kHz) 

which may not be representative for the case of the EMI technique. 

Bhalla and Soh (2004) proposed a 2D effective impedance-based model 

inclusive of the bonding layer, and concluded that the effect of bonding could be 

omitted for engineering models with thin bonding layer and under stable ambient 

temperature. 

Temperature 

Sun et al. (1995) discovered that the variations in electrical impedance caused by 

thermal drift and damage differ significantly. Effect of rise in temperature could be 

viewed as an effect of softening which reduces the overall stiffness of the host 

structure. Krishnamurthy et al. (1996) investigated the temperature effect on free 

PZT patch. Schulz et al. (2003) reported that piezoelectric properties decreased 

with increasing temperature but recovered each time the sensor was cooled.  

Park et al. (1999) illustrated that temperature change imposed major effect on 

the dielectric constant and piezoelectric coupling constant of the PZT patch. They 

also discovered that the real part of signatures acquired from free PZT patch 

changed negligibly with temperature. Therefore, the real part of signatures was 

preferred over the imaginary part in the EMI technique.  

Overall, in depth investigations into the effect of bonding layer especially 

under varying temperature on the admittance signatures have so far been omitted. 

However, this is essential in the practical applications of the EMI technique. 

��Experimental Study 

As shown in Fig. 7.20, an aluminum beam, an aluminum plate and two freely 

suspended PZT patches were prepared in a similar manner as previously described. 

The details of each specimen including size of the structure and the bonding 

thicknesses are summarized in Table 7.14. The dimensions of all PZT patches used 

in this study were 10 mm×10 mm×0.3 mm.  
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Fig. 7.20� Lab-sized specimens surface-bonded with PZT patches. (a) Aluminum beam; 

(b) Aluminum plate; (c) Freely suspended PZT patches 

 

The patches bonded on both the aluminum beam and plate were carefully 

arranged in a symmetrical manner. This enabled the comparison of admittance 

signatures for different bonding thicknesses but with identical PZT-structure 

interactions.  

According to recommendation by Bhalla (2004), when the thickness of 

bonding is smaller than one third of the thickness of PZT patch, the effect of 

bonding is negligible. In this case, one third of the PZT’s thickness was 0.1 mm. 

Therefore, from Table 7.14, patches b1, b2, p1 and p2 fell under the category of 

“less than one third” (hereafter denoted as “thin”) whereas patches B3, B4, P3 and 

P4 were within the category of “more than one third” (hereafter denoted as 

“thick”). 
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Table 7.14� Details of PZT patches and specimens 

Host 

structures 

Size of 

structures 

Patch 

labels 

Measured 

bonding 

thicknesses 

(mm) 

Descriptions 

b1 0.04 

b2 0.03 

Thin bonding 

Placed symmetrically (inside) 

   

B3 0.14 

Aluminum 

beam 
331 mm×31 mm×6 mm 

B4 0.22 

Thick bonding 

Placed symmetrically (ends) 

p1 0.05 

p2 0.06 

Thin bonding 

Placed symmetrically 

   

P3 0.13 

Aluminum 

plate 
302 mm×201 mm×4 mm 

P4 0.21 

Thick bonding 

Placed symmetrically 

��Results and discussions 

Bonding Layer 

As depicted in Fig. 7.21(a), high repeatability of the conductance signatures can 

be observed for patches bonded on symmetrical locations on the plate specimen 

but with different bonding thicknesses. In other words, they possessed identical 

PZT-structure interactions even with different bonding thicknesses. All resonance 

peaks can be accurately matched indicating that the PZT patches were consistent 

in the process of actuating and sensing, despite minor variations in magnitude 

caused by different bonding thicknesses. This further confirmed the consistency 

and reliability of the EMI technique.  

However, slight variations were expected especially in the higher frequency 

range as some of the local peaks were not repeatable. At high frequency range, the 

sensitivity of admittance signatures to local changes was very high. Slight 

difference in bonding thickness or PZT location would change the admittance 

signature. When the frequency exceeded 100 kHz, the situation became worse as 

shown in Fig. 7.21(b). The repeatability of the resonance peaks was less obvious. 

Moreover, it was observed that the overall signature for patch P3 (thicker bond) 

shifted significantly upwards with increase in frequency. This effect has also been 

observed by Bhalla (2004) and Ong et al. (2002). 

The reason for this phenomenon can be readily explained by Fig. 7.22 where 

the frequency spectrums of patches with different bonding thicknesses are plotted 

for a larger bandwidth (0 – 1,000 kHz). Observing the frequency plot for the free 

PZT patch (no bonding) in Fig. 7.22(c), there are a number of strong PZT 

resonance peaks within the range of plot. When compared to those bonded on the 

structure (Figs. 7.22(a) and 7.22(b)), resonance peaks of the free PZT patch are 

much smoother (no structural peaks) and occurred at significantly lower 

frequencies. This is attributed to the fact that when the PZT patch was bonded on 

the structure, it was significantly stiffened by the structure. Therefore, the peaks of 
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the bonded PZT patches were shifted to the right, indicating the effect of stiffening. 

Table 7.15 summarizes the frequency at which the first PZT resonance occurred 

for all 3 cases as well as the relative phase difference. 

 

Fig. 7.21� Conductance signatures for PZT patches bonded on plate specimen with different 

bonding thicknesses. (a) 10 – 20 kHz; (b) 240 – 260 kHz 

 

On the other hand, comparing Figs. 7.22(a) and 7.22(b), the PZT resonances of 

P3 occurred earlier (i.e., at lower frequencies) than p2. This phenomenon can be 

explained by the decrease in strain transfer efficiency (due to more significant 

shear lag effect) with thicker bonding thickness, thus “isolating” the PZT patch 

from the structure. Furthermore, comparing the thin bonding with the thick 

bonding in Figs. 7.22(a) and 7.22(b), the thick bonding caused leftward shift of the 

PZT resonances and forced the structural resonance peaks in between 100 – 300 

kHz vertically upwards.  
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Fig. 7.22� Conductance signatures for PZT with different bonding thicknesses (0 – 1,000 kHz). 

(a) Patch p2 (bonding thickness = 0.06 mm); (b) Patch P3 (bonding thickness = 0.13 mm); 

(c) Patch F1 (no bonding, freely suspended patch) 
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Table 7.15� Summary of phases’ information of first PZT resonance 

PZT patches with different bonding thicknesses (Fig. 7.22) 

 

First PZT resonance 

occurrence (kHz) 

Phase reduction w.r.t. 

“p2” (kHz) 

Patch p2 (Bonding thickness = 0.06 mm) 450 0 

Patch P3 (Bonding thickness = 0.13 mm) 310 140 

Patch F1 (Freely suspended) 160 290 

 

PZT patch b2 with temperature varying from 30 °C – 80 °C (Fig. 7.24a) 

 

First PZT resonance 

occurrence (kHz) 

Phase reduction w.r.t. 

“30 °C” (kHz) 

30 °C 406 0 

40 °C 404 2 

50 °C 403 3 

60 °C 401 5 

80 °C 392 14 

 

PZT patch B4 with temperature varying from 30 °C – 80 °C (Fig.7.24(b) and 7.25(a)) 

 

First PZT resonance 

occurrence (kHz) 

Phase reduction w.r.t. 

“30 °C” (kHz) 

30 °C 270 0 

40 °C 250 20 

50 °C 230 40 

60 °C 205 65 

80 °C 175 95 

 

PZT patch B4 of healthy and damage states at 30 °C (Fig. 7.25(b)) 

 

First PZT resonance 

occurrence (kHz) 

Phase reduction w.r.t. 

“30 °C” (kHz) 

Healthy 278 0 

Damaged 272 6 

 

The above observations were similarly obtained for the beam specimen; thus 

not presented here. Hence, the recommendation by Bhalla (2004) stating that the 

bonding thickness shall not exceed one-third of the PZT patch’s thickness was 

further verified. In this case, thick bonding should be avoided to reduce 

contamination of the structural resonance peaks by the PZT resonances. 

On the other hand, it can be concluded that the frequency range used in the 

EMI technique (for surface bonded patches) should preferably be lower than 200 

kHz, unless a sufficiently thin bonding could be assured. The requirement would 

be more stringent at elevated temperature as the abovementioned adverse effect 

would be significantly amplified, which will be discussed in the later sections. 

There is another phenomenon noted in Fig. 7.22. At very high frequency range, 

for thick bonding, significantly localized actuation of the PZT patch caused a PZT 

peak to occur between 700 – 800 kHz (Fig. 7.22(b)), which is at the same location 

as its counterpart of the free PZT (Fig. 7.22(c)). This indicates that the PZT 

actuation on the host structure at this frequency range was highly inefficient. The 

patch was almost vibrating independently. 
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Temperature 

All the specimens described in the previous section (Fig. 7.20 and Table 7.14) 

were reused for investigation on the effects of temperature. The admittance 

signatures of the PZT patches were acquired at various predetermined ambient 

temperatures. Starting from room temperature, 30 °C (baseline), temperature in 

the chamber was gradually increased to 40 °C, 50 °C, 60 °C and 80 °C in an 

attempt to simulate the foreseeable temperature range normally experienced by 

civil structures in the tropical region. 

Fig. 7.23 shows that, at high temperature, the admittance signatures acquired 

from patches of thicker bonding layer exhibited more severe deviation than those 

with thinner bond. With similar PZT-structure interaction, signature acquired from 

Patch B4 with bonding thickness of 0.22 mm (Fig. 7.23(b)) undergone significant 

upward shift when compared to the one from Patch B3 with bonding thickness of 

0.14 mm (Fig. 7.23(a)). This phenomenon was again caused by the leftward shift 

of the first PZT resonance peak, similar to the case of increase in bonding thickness. 

The leftward shift in the first PZT resonance peak (Fig. 7.23(c)) forced up the 

signatures representing the host structural vibration near its left end. With thick 

bonding (>1/3 of PZT patch thickness), the effect was significant and undesirable.  

Plotting on the same scale in Fig. 7.24, the momentous adverse effect of 

temperature on admittance signatures became obvious, especially for the thick 

bonding layer (Fig. 7.24(b)). However, the deviation was not that significant for 

the thin bonding layer (Fig. 7.24(a)). A temperature difference as large as 50 °C 

(between 30 °C and 80 °C) caused only minor distortion of up to 150 kHz. In 

comparison with Fig. 7.24(b), significant deviation occurred even with a mere 

difference of 10 °C. The frequency of occurrence and relative phase shift of the 

first PZT resonance is summarized in Table 7.15. The amount of phase shift for 

thick bonding was almost ten times that of the thin bonding at various 

temperatures. 

Similar to the previous case on increase in bonding thickness, the leftward 

shift of the resonance peak can be inferred to have been controlled by the bonding 

layer. In this case, the softening of bonding layer with increase in temperature 

reduced the stiffness of bonding, thus amplifying the shear lag effect. This, in turn, 

diminished the stiffening effect caused by the host structure and isolated the PZT 

patch, thus inducing the leftward shift of the PZT resonance peak. From previous 

study by Park et al. (1999), it is known that the real part of electrical impedance 

from a freely suspended PZT patch is negligibly affected (in terms of phase 

difference) by moderate changes in temperature. Thus, in this case, the PZT patch 

did not contribute to the shifting. On the other hand, the temperature effect on host 

structure affected mainly the dense structural peaks rather than the PZT peaks. 

Therefore, it is sensible to conclude that the leftward shift of the first PZT 

resonance was caused mainly by the softening of bonding layer. 
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Fig. 7.23� Conductance signatures of PZT bonded on beam specimen with ambient temperature. 

(a) Patch B3 (90 – 100 kHz); (b) Patch B4 (90 – 100 kHz); (c) Patch B4 (0 – 1,000 kHz) 
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Fig. 7.24� Conductance signatures for PZT bonded on beam specimen with ambient temperature. 

(a) Patch b2; (b) Patch B4 

 

Hence, in practical applications of the EMI technique, the use of normal 

adhesive such as the two-part epoxy with thick bonding is highly undesirable. 

Also, the frequency range used for the EMI technique is preferably lower than 100 

kHz for a more reliable and efficient application. The problem may be alleviated 

with the use of temperature insensitive adhesive but the adverse effect is expected 

to be similar. 

7.3.4� Differentiating Temperature-Induced and Damage-Induced 

Signature Deviations 

In this study, an interesting observation was made, which can potentially be used 
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as a method to differentiate between temperature-induced and damage-induced 

signature deviations. This was achieved by observing the admittance signatures at 

high frequency range (200 – 1,000 kHz), as exemplified in Fig. 7.25. 

Temperature-induced deviation triggered the shift of PZT resonance peaks at 

higher frequency range (Fig. 7.25(a)), but was negligible in the case of damage- 

induced deviation. Fig. 7.25(b) shows that the high frequency range was virtually 

unaffected by damages caused by drilling three holes with diameter of 5 mm and 

cutting a notch on the host structure. The frequency spectrum at the higher end 

remained unaffected in spite of serious damage inflicted on the host structure. The 

relative phase shift of the first resonance frequency for both cases is tabulated in 

Table 7.15. Hence, such observation could serve as a quick guide to differentiate 

actual damage from temperature effect by a mere glance at the admittance 

signature plots for the high frequency range.  

 

Fig. 7.25� Conductance signatures for PZT patch B4 bonded on aluminum beam specimen. 

(a) Temperature varying from 30 °C to 60 °C; (b) Damages induced at 30 °C 
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7.3.5� Differentiating Damage in Host Structure and in PZT Patch 

Fig. 7.26 plots the admittance signatures against frequency for PZT patch inflicted 

with different levels of damage by cutting the patch using a pen knife. Level S1 

indicated a cut from the center of the PZT to one of the corners, whereas level S2 

was inflicted with a more severe cut from the center to the other two corners 

leaving only the corner with electrode intact. Visually, the PZT patch appeared to 

be severely spoiled after damage level S2 as some fragments of the patch has 

fallen off. However, both wires remained connected to the electrodes. 

 

Fig. 7.26� Conductance signatures for PZT patch b1 bonded on aluminum beam specimen with 

different level of damages (S1 and S2) induced in PZT patch. (a) Frequency range 70 – 80 kHz; 

(b) Frequency range 0 – 1,000 kHz 

 

It was found that the admittance signatures remained practically the same 

within the lower frequency range (<150 kHz), which is usually used for damage 

detection, despite the second level of damage (S2) being inflicted on the PZT 
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patch (Fig. 7.26(a)). However, the damage on the patch could be differentiated 

from Fig. 7.26(b) in the higher frequency range (>200 kHz) as significant 

deviation in the PZT’s resonance peaks indicated that serious damage has been 

inflicted on the patch. 

Therefore, as long as the location of the PZT patch and its actuation capability 

remained the same, the structural modes excited below 200 kHz would be the 

same. However, the structural resonance peak heights were reduced by damage in 

the PZT patch (Fig. 7.26(a)) due to reduction in the actuation energy caused by 

reduction in the patch’s surface area.  

7.3.6� Summary 

This section addresses the practical issues faced by real-life applications of the 

EMI technique, especially in the health monitoring of civil structures. Various 

issues related to the actual applications including consistency of signatures for 

long term monitoring, environmental effect, temperature effect and bonding effect 

were investigated. The studies conducted on these topics are mainly based on 

experiments and are qualitative in nature.  

Through the experimental study, it is found that the repeatability of admittance 

signatures, in terms of modal frequency and magnitudes of resonance peaks, from 

the PZT patches surface bonded on lab-sized aluminum structures under various 

environmental conditions is excellent for a monitoring period of up to one and a 

half years. This is true even for patches without any protection.  

Various experimental case studies conducted on PZT patch sized 10 mm×10 mm× 

0.3 mm showed that the effect of bonding could be neglected even for thickness 

up to 2/3 of the PZT patch’s thickness, provided the excitation frequency does not 

exceed 100 kHz. Above this frequency, the adverse effect of thick (larger than 1/3 

of PZT thickness) bonding is obvious. With thick bonding and at high frequency 

of excitation, the PZT resonance will dominate the structural resonance as a result 

of localized actuation and sensing, rendering contamination to the admittance 

signatures and reduction in the damage detection capability. The effect of increase 

in temperature on the admittance signatures is found to be similar to the increase 

in bonding thickness.  

An observation was made, which could potentially be developed as a quick 

guide to differentiate the effect of temperature from actual damage. This is to 

compare the admittance at high frequency range (200 – 1,000 kHz) as temperature 

change triggers the shift of PZT resonance peaks but not in the case of damage.  

In addition, damage inflicted on PZT patch can also be distinguished from 

structural damage by observing the admittance signatures at high frequency range 

(200 – 1,000 kHz). Damage inflicted on PZT patch (as long as the patch is still 

functional) will not affect the modal frequency of the structural resonances (below 

200 kHz) though it may affect its peak height.  
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8.1� Introduction 

One of the key challenges in structural engineering is to find better ways to control 

structural vibrations so as to better protect the structures from vibration-induced 

damages. Structural control methods can be classified into two main groups: 

passive control and active control. The basic role of passive control is to absorb or 

consume a portion of the input energy, thereby reducing the energy dissipation 

demand on the primary structural members and minimizing possible structural 

damage. On the other hand, in active control, the motion of a structure is controlled 

or modified by means of the action of a control system, which usually consists of 

sensors, actuators and controller, through certain external energy supply. 

Comparing with passive control, research and development of active structural 

control technology has a more recent origin. In active control, the effects of 

undesirable forces are counteracted by an auxiliary mechanism either embedded in 

or bonded to the structures. The mechanism typically uses electromechanical or 

electromagnetic actuators, such as piezoelectric actuators. Due to the converse 

piezoelectric effects, a polarized piezoelectric device, when activated by applying 

a voltage along its polarization direction, develops compressive or extensional 

strains, depending upon the orientation of the applied voltage; whereas due to the 

direct piezoelectric effect, it generates a voltage if mechanically deformed (Ikeda, 

1990). The converse and direct piezoelectric effects enable the piezoelectric 

materials to serve as both actuator and sensor. 

Owing to its enhanced control effectiveness and significant advantages in 
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comparison with passive control, active vibration control of structures has 

attracted much attention in recent years. In particular, with the rapid development 

of piezoelectric materials in the past two decades, there has been extensive 

research on the application of piezoelectric materials as actuators and/ or sensors 

to actively control structural vibrations. These works include solving problems in 

the fields of civil, mechanical and aerospace engineering, especially for structural 

elements like beams, plates and shells. 

In 1985, Bailey and Hubbard introduced a novel technique which allowed all 

modes of a cantilever beam to be controlled using a spatially, uniformly distributed 

PVDF actuator. A linear constant-gain controller, a nonlinear constant-amplitude 

controller and a Lyapunov controller were designed in their study, and the first two 

were implemented experimentally (Bailey and Hubbard, 1985). Gaudenzi et al. 

(1997) demonstrated the feasibility of vibration suppression in aluminum and 

composite cantilever beams by a simple single-input single-output control system 

that utilized PZT patches as actuator and sensor. Librescu and Na (1998a; 1998b) 

dealt with the problem of controlling bending oscillations of a cantilever beam 

modeled as closed cross-section thin-walled beam and incorporating a number of 

non-classical effects, such as transverse shear, secondary warping, and heterogeneity, 

through a combined feedback control method.  

Shih (2000) presented a mathematical model to study the effectiveness of 

active vibration control of a simply supported piezoelectric laminated curved 

beam. The model included the mass and stiffness of sensor/actuator for a more 

accurate representation of the actual system. Sun and Huang (2001) derived an 

analytical formulation for modeling the behavior of laminated composite beams 

with integrated piezoelectric sensor and actuator. Their model was based on the 

first-order shear deformation theory (Mindlin plate theory) and included the 

coupling between mechanical and electrical deformations.  

Gardonio and Elliott (2005) theoretically studied the flexural vibration of a 

beam with a control system which implemented direct velocity feedback using 

either an ideal collocated force actuator or a closely located piezoelectric patch 

actuator. They found that, as the control gain increased, the vibration of the beam 

initially reduced at resonance frequencies because of the active damping effect. 

However, when the control gain passed an optimal value, the vibration of the 

beam rearranged into a new set of lightly damped resonance frequencies since the 

control system imposed new boundary conditions at the control position on the 

beam. Vasques and Rodrigues (2005) developed a fully coupled electromechanical 

FE formulation of a three-layered smart beam with two piezoelectric layers acting 

as sensors or actuators. A partial layer-wise theory was considered for the 

approximation of the displacement field of the core and piezoelectric layers, and 

an electrical model for different electric boundary conditions was adopted. 

Lin and Liu (2006) designed a novel resonant fuzzy logic controller (FLC) to 

minimize structural vibration using collocated piezoelectric actuator/sensor pairs. 

The fuzzy controller increased the damping of the structures to minimize certain 

resonant responses. The vibration absorber was experimentally examined using a 

cantilever beam for impulse and near-resonant excitation cases. Karami-Mohammadi 
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and Sadri (2009) also studied the active vibration control of a smart cantilever 

beam using a fuzzy control method. Their elastic beam consisted two piezoelectric 

layers bonded on its upper and lower surfaces, and was excited by base motion. 

Kayacik et al. (2008) included the viscous and Kelvin-Voigt (strain rate) damping 

to the Euler-Bernoulli beam model of transverse vibrations to study active 

vibration control under damping. More research on active control of beams can be 

found in literatures like Lin et al. (1999), Wang and Quek (2000), Manning et 

al. (2000), Yang et al. (2003), Hong et al. (2006) and Nbendjo (2009). 

A recent application of active vibration control using piezoelectric materials as 

actuators and/or sensors is flutter suppression in aerospace engineering. Han et 

al. (2006) presented numerical and experimental investigations on active flutter 

suppression of a sweptback cantilevered lifting surface using piezoelectric actuation. 

A FE method, a panel aerodynamic method, and the minimum state-space realization 

were involved in the development of the equation of motion in state-space. 

Piezoelectric actuators, bonded symmetrically on the plate, were optimally grouped 

into two equivalent actuator sets using genetic algorithms (GAs) to enhance 

controllability. Fazelzadeh and Jafari (2008) developed an active optimal integral/ 

feed-forward control for a supersonic panel under gust disturbance effects with 

piezoelectric actuators. The optimal control problem was set up to minimize panel 

deflection using a linear quadratic regulator (LQR). Simulation results showed 

that the controller model was effective for flutter suppression and gust alleviation 

for various piezo-configurations. More applications of piezoelectric material for 

flutter suppression can be found in Sadri et al. (2002), Moon and Kim (2003), and 

Sebastijanovic et al. (2007). 

Of the abovementioned studies, many are on the active vibration control of 

beams and beam-like structures. However, the case of applying an axial force on 

the beam has seldom been studied; in particular, closed-form solutions for the 

dynamic response of actively controlled columns have not been reached. In 

addition, the influence of axial force on the control effectiveness of piezoelectric 

actuators and the effect of axial force on the transverse vibration control have not 

yet been systematically studied. 

In recent years, several researchers reported some results on the active control 

of columns; for example, Kamada et al. (1998) experimentally investigated the 

effectiveness of bending moment control and axial force control of columns using 

a building model for a four-storey frame structure. Rao and Singh (2001) proposed 

a new method to increase the buckling load of columns by using the follower 

forces, which can be applied by employing piezoelectric actuators. Chen et 

al. (2002) considered the dynamic stability of a laminated composite beam with 

piezoelectric layers subjected to axial periodic compressive loads. Sloss et 

al. (2003) studied the effect of axial force in the vibration control of beams by 

means of an integral equation formulation, which facilitated the numerical 

solution of the problem of finding the eigen-frequencies and eigen-functions of a 

freely vibrating beam controlled by piezo patch sensors and actuators. Mukherjee 

and Chaudhuri (2005) investigated the effect of tip masses on the vibration control 

of piezo-laminated columns that have adhesively bonded piezoelectric skins on 
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substrates. Their experiments demonstrated the efficacy of the piezoelectric 

materials in vibration control of column structures. The increased tip mass 

increased the natural periods of the structure; however, the damping coefficient 

only increased marginally with an increase in tip mass. 

One of the cases for which a beam is subjected to axial loads is that the beam 

rotates about an axis perpendicular to the beam axis, for example, the rotorcraft 

blades. Fung and Yau (2004) investigated the vibration behavior and control of a 

clamped-free rotating flexible cantilever arm with fully covered active constrained 

layer damping (ACLD) treatment, which is typically a three-layer composite 

consisting of a passive visco-elastic material (VEM) layer sandwiched between an 

active piezoelectric actuator layer and a piezoelectric sensor layer. Their model 

took into account the effects of centrifugal stiffening due to the rotation of the 

beam and the potential energies of the VEM due to extension and bending. The 

vibration frequencies and damping factors of the closed-loop beam/ACLD system 

were obtained numerically, after solving the characteristic complex eigen-value 

problem. Chandiramani et al. (2004) designed an optimal vibration control of a 

rotating composite beam with distributed piezoelectric sensing and actuation. 

They studied the effect of the location and weight of piezo patches on the 

controlled response of the rotating beam. Liu et al. (2007) studied the dynamic 

characteristics and vibration control of a rotating cantilever plate with fully 

covered ACLD treatments. The effects of different rotating angular velocities on 

modal characteristics of regular, passive constrained layer damping (PCLD) and 

ACLD treated-plate systems were investigated. Their numerical simulation results 

showed that ACLD is an effective means for suppressing the vibration of rotating 

cantilever plates.

This chapter describes the application of piezoelectric materials as actuators 

for the active vibration control of a cantilevered column. Two feedback control 

strategies, displacement feedback control and velocity feedback control, are 

adopted to derive the analytical and semi-analytical formulae for the dynamic 

response of the column. The closed-form formulae obtained are verified using 

numerical examples. The control effectiveness of the piezoelectric actuator is 

investigated by comparing the dynamic responses of the column under various 

control gains. The influence of axial force on the control effectiveness is studied 

by comparing the dynamic responses of the cantilevered column subjected to 

different axial forces with those of a cantilevered beam without any axial force. 

8.2� Analysis of a Column Coupled with Distributed Piezoelectric 

Actuator 

In the analysis, treatment of the flexure behavior of the column is based on the 

Euler-Bernoulli theory, which takes into account the inertia force due to transverse 

translation, but neglects the effect of shear deflection and rotary inertia. In the 
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Euler-Bernoulli theory, any cross-section of the column is assumed to remain as a 

plane during flexure. 

The influence of time-invariant axial load is considered in the analysis. In 

general, the presence of an axial load will lead to coupling between the flexural 

and axial vibrations. The motion equations in such a case are coupled and their 

solutions are quite complex (Humar, 1990). In this study, the motion equations for 

the transverse vibration of cantilevered column are derived with consideration of 

an axial force; however, the axial deformation is assumed to be negligible. This is 

reasonable provided the axial rigidity is large as compared to the flexural rigidity, 

so that the axial deformations are comparatively small.  

The effect of damping resistance on the structural response is included in the 

analysis. This damping is represented by a distributed viscous damping mechanism, 

with a damping coefficient c(x) per unit length. The damping forces are proportional 

to the magnitude of the velocity, and opposite to the direction of motion. The 

piezoelectric-bonded column is considered as an under-damped system in the analysis. 

8.2.1� Motion Equations 

The uniform column of length L, width b and height h shown in Fig. 8.1(a) is 

studied. It is bonded with a piezoelectric actuator layer of thickness h
p
 on its top 

surface. The piezoelectric layer is assumed to be perfectly bonded to the column, 

and its thickness is assumed to be much smaller than that of the column. Physical 

properties of the bonding material and mechanical properties of the piezoelectric 

layer are neglected because their contributions to the dynamic response are small 

compared with those of the elastic column. A time-invariant axial force N(x) is 

applied along the longitudinal axis of the column. The axial force is assumed to 

remain in its direction during vibration, but may arbitrarily vary along the length L. 

The axial force N(x) is positive if the load is compressive, while negative if the 

load is tensile. 

Fig. 8.1(b) depicts a differential element of the column, of length dx, with the 

acting forces indicated. m  is the mass per unit length of the column, and p(x,t) 

and w(x,t) are the transverse loading and the transverse displacement of the 

column, respectively. The motion equations of the column are established by 

considering the equilibrium of the differential element. First, the force equilibrium 

in the vertical direction yields 
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Fig. 8.1� Column bonded with distributed piezoelectric actuator. (a) Column model; (b) Forces 

acting on a differential element 

 

The vertical force ),( txV  has two components: a shear force, 
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a component arising from the presence of the axial load, 

x

txw

xN

∂
∂ ),(

)( . Thus, the 

following motion equation of the column is obtained by differentiating Eq. (8.2) 

with respect to x and substituting the result into Eq. (8.1) 
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It should be noted that, in Eq. (8.3), the term of moment ),( txM  includes the 

contribution of the distributed piezoelectric actuator, i.e., 

p
M

x

txw

YItxM −
∂

∂=
2

2

),(

),(                 (8.4) 

where Y is the Young’s modulus of the column; I is the moment of inertia of the 

cross-sectional area with respect to the neutral axis; and M
p
 is the contribution of 

the distributed piezoelectric actuator. 

According to the converse piezoelectric effect, the strain in the piezoelectric 

layer is  

11

p

U

d

h

ε = −                        (8.5) 

where U is the voltage applied to the piezoelectric actuator and d is the 

piezoelectric constant. The stress in the piezoelectric layer is then obtained from 

Hooke’s law: 
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Y d
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σ = −                        (8.6) 

where Y
p
 is the Young’s modulus of piezoelectric material. From this, contribution 

of the distributed piezoelectric actuator to the moment can be obtained as 

(Preumont, 1997) 
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Introducing Eq. (8.4) into Eq. (8.3), Eq. (8.3) is reduced to 
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(8.8) 

Eq. (8.8) is the generic motion equation of a uniform column, including the 

effects of the piezoelectric actuator, the axial force and the damping force. When 

focusing on the free vibration of the cantilevered piezoelectric column, the 

externally applied transverse loading vanishes, i.e., p(x,t)=0. It is assumed that the 

axial force remains constant during the vibration, and the viscous damping 

coefficient is uniformly distributed along the length of the column. These 
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assumptions, when introduced into Eq. (8.8), lead to 
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which is the motion equation for the free vibration of a uniform column. 

In the following sections, the designed displacement feedback and velocity 

feedback controls are presented. The analytical and semi-analytical solutions for 

Eq. (8.9) are obtained under these two control strategies, respectively. Details of 

the derivation can be found in Yang et al. (2003).  

8.2.2� Analytical Solutions for Displacement Feedback Control 

In the displacement feedback control strategy, the tip displacement of the column 

w(L,t) is amplified by a control gain, g
d
, as the feedback voltage U is applied to the 

piezoelectric actuator. Hence 

( , )
d

U g w L t=                      (8.10) 

The induced control moment M
p
 is then obtained from Eq. (8.7) as 
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Resulting from the uniformly distributed feedback voltage applied to the 

piezoelectric actuator layer, the control moment M
p
 is uniform along the length of 

the column. Thus, Eq. (8.9) can be reduced to 
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The solution of Eq. (8.12) is found by the method of separation of variables. It is 

assumed that the solution may be expressed as a product of the function of position 

Φ(x) and function of time f(t), that is, 

)()(),( tfxtxw Φ=                    (8.13) 

Substituting Eq. (8.13) into Eq. (8.12) gives the following two differential 

equations: 
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2ω  is a constant. 

Solution for the Shape Function Φ(x)  

By introducing a solution of the form Φ(x)=Ge
sx

 into Eq. (8.14), we can obtain the 

characteristic equation of Eq. (8.14) 
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Thus, the solution of Eq. (8.14) is found to be 
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where A, B, C and D are integration constants that can be evaluated by the 

boundary conditions of the column. 

For a cantilevered column that is fixed at x = 0 and free at x = L, the boundary 

conditions are zero displacement and slope at the fixed end, and zero bending 

moment and vertical force at the free end. Therefore, at the fixed end (x = 0),  

0),0( =tw                         (8.19) 

and 
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At the free end (x=L), from Eq. (8.4), 
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These boundary conditions, Eqs. (8.19) to (8.22), imply the following 

conditions on the shape function after Eqs. (8.11) and (8.13) are used, 
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Substituting Eq. (8.18) into the boundary conditions of Eqs. (8.23) to (8.26), 

we obtain 
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To obtain a nontrivial solution of Eq. (8.27), it is required that the determinant 

of the square matrix Q is equal to zero, thus giving the frequency equation of the 

cantilevered piezoelectric column as 
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For given C
d
, β

2

 and L, the solution of Eq. (8.28) can be obtained by a 

numerical method which will lead to an infinite number of values for a  and 

hence the frequency ω, where 
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Corresponding to each value of a, a solution can be obtained for the shape 

function Φ(x) by substituting a into Eq. (8.27) and solving for the coefficients A, B, 

C and D, and then substituting the resultant values into Eq. (8.18). 

However, in this procedure, not all four coefficients A, B, C and D can be 

uniquely determined; and any three of them may be expressed in terms of the 

fourth. For example, when express A, C and D in terms of B from Eq. (8.27) and 

substituting them into Eq. (8.18), the solution for the shape function is 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−+−= )sinh(sin)cosh(cos)(
1

1

2

212
xp

p

p

xpxpxpBx
nnn

σΦ   (8.30a) 

where  

LppLpp

Lpp

p

p

Lpp

n

1

22

12

22

2

1

22

1

2

1

2

22

2

cosh)(cos)(

sinh)(sin)(

ββ

ββ
σ

++−

+−−
=      (8.30b) 

In Eq. (8.30a), the fourth constant B
n
 cannot be directly evaluated in a 

free-vibration analysis because it represents an arbitrary amplitude of the shape 

function Φ(x). If a numerical value is given to B
n
, say B

n
 = –1, then 

)sinh(sin)cosh(cos)(
1

1

2

212
xp

p

p

xpxpxpx
nn

−−−−= σΦ    (8.31) 
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In fact, it will be found later that the constant B
n
 is absorbed by the other 

constants in the time-dependent function f(t). 

In Eq. (8.28), if set C
d
 = 0, which means g

d
 = 0, and let U=0 and M

p
=0, we get 

⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

−−=+ LpLpLpLp

aa

LpLp
1212

2

2

2

2

12
sinhsincoshcos

2

coshcos1

ββ
  (8.32) 

This is actually the frequency equation of a conventional cantilevered beam 

subjected to axial forces. It has the same form as the results given by Bokaian (1988; 

1990) and Maurizi and Belles (1991). Eq. (8.32) integrates the influences of both 

compressive and tensile axial forces into one formula. If further assumed that N=0 

in Eq. (8.32), which implies β
2

=0 and p
1
=p

2
=a, the well-known frequency equation 

for a conventional cantilevered beam can be obtained, 

0coshcos1 =+ aLaL                      (8.33) 

Solution for the Time-Dependent Function )(tf  

By substituting f(t) = He
rt

 into Eq. (8.15), the general solution of the time- 

dependent function f(t) is given by the superposition of two possible solutions, 

namely, 

trtr

HHtf ee)(
21

+=                      (8.34) 

where H
1
 and H

2
 are integration constants to be determined. Considering the 

piezoelectric-bonded column as an under-damped system, we get 
1,2

j
D

r ξω ω= − ±  

with 

ω
ξ

m

c

2

=  as the damping ratio of the system and 
2

1
D

ω ω ξ= − . 

Expressing the exponential functions in Eq. (8.34) in terms of trigonometric 

functions, we can obtain 

( ) e ( cos sin )
t

D D
f t E t F t

ξω ω ω−= +               (8.35) 

where E  and F  are integration constants to be determined from the initial 

conditions. 

Solution for the Dynamic Response 

Upon substituting Eq. (8.35) into Eq. (8.13), a normal mode of vibration is given 

by 
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( , ) ( )e ( cos sin )
t

n n n nD n nD
w x t x E t F t

ξωΦ ω ω−= +          (8.36) 

Here, it is assumed that E
n
 and F

n
 absorbed the undetermined coefficient B

n
 in 

Eq. (8.30) by considering 
nnn

EBE =  and 
nnn

FBF = . Then, the general solution 

of the motion equation, Eq. (8.12), is the sum of all the normal modes of vibration, 

Eq. (8.36), that is, 

1

( , ) ( )e ( cos sin )
t

n n nD n nD

n

w x t x E t F t

ξωΦ ω ω
∞

−

=
⎡ ⎤= +
⎣ ⎦

∑        (8.37) 

The initial conditions together with the orthogonality property of the normal 

modes can be used to determine the unknown coefficients E
n
 and F

n
. 

The initial conditions are assumed to be given by the initial displacement and 

initial velocity, and are expressed as 

)()0,( xuxw =                        (8.38) 

for the initial displacement, and 

)(

d

)0,(d

xv

t

xw =                       (8.39) 

for the initial velocity. 

Substituting these initial conditions into the general solution of the motion 

equation, Eq. (8.37), multiplying both sides of the equation by Φ
m
(x), integrating 

from 0 to L, and introducing the orthogonality property of the normal modes, 

)(  0d)()(

0

srxxmx

L

sr
≠=

∫
ΦΦ                (8.40) 

The coefficients E
n
 and F

n
 can be obtained: 

xx

xxux

E

L

n

L

n

n

d)(

d)()(

0

2

0

∫

∫
=

Φ

Φ
                   (8.41) 

and  
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0

2 2
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( )d 1
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x v x x

F E

x x

Φ ξ
ω Φ ξ
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∫

∫

               (8.42) 

Finally, the solution for the dynamic response of the cantilevered piezoelectric 

column subjected to a displacement control strategy can be obtained by substituting 

Eqs. (8.31), (8.41) and (8.42) into Eq. (8.37). The derivative of Eq. (8.37) with 

respect to time t gives the vibration velocity of the cantilevered column. 

8.2.3� Semi-Analytical Solutions for Velocity Feedback Control 

In the velocity feedback control strategy, the tip velocity, i.e., the first derivative of 

the tip displacement with respect to time, 

t

tLw

∂
∂ ),(

, of the column is amplified by 

a control gain, g
v
, as the feedback voltage U is applied to the piezoelectric actuator. 

Hence 

( , )

v

w L t

U g

t

∂=
∂

                               (8.43) 

The induced control moment M
p
 can be obtained from Eq. (8.7), 

M
p

( , )

2

p

p v

h h w L t

Y db g

t

+ ∂= −
∂

                      (8.44) 

The control moment M
p
 is also uniform along the length of the column. Thus, 

Eq. (8.9) can be reduced to 

0

),(),(),(),(

2

2

2

2

4

4

=
∂

∂+
∂

∂+
∂

∂+
∂

∂
t

txw

c

t

txw

m

x

txw

N

x

txw

YI        (8.45) 

Note that Eq. (8.45) is the same as the motion equation of the column under 

displacement feedback control, i.e., Eq. (8.12). Furthermore, for the four boundary 

conditions, three of them are the same as the conditions in the displacement 

feedback control. Only the one involving the feedback control moment is different. 

For clarification of derivation, all the boundary conditions are rewritten here 

0),0( =tw                                 (8.46) 
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0
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and  

0
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3
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=
∂

∂+
∂

∂
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N

x

tLw

YI                        (8.49) 

After substituting Eq. (8.44) into Eq. (8.48), we obtain 

0

),(),(

2

2

=
∂

∂−
∂

∂
t

tLw

C

x

tLw

v

                        (8.50) 

where 

2

p

v p v

h h

C Y db g

YI

+
= −  

��Discretization of the Motion Equation 

In the velocity feedback control, the boundary condition, Eq. (8.50), is time-dependent. 

As it is difficult to obtain full-analytical solutions for problems with time-dependent 

boundary condition, a semi-analytical solution is deduced for this velocity feedback 

control case by adopting the central difference formulae to approximate the partial 

derivatives with respect to the spatial variable x in the motion equation. Then the 

partial differential equation, Eq. (8.45), is reduced into a series of ordinary 

differential equations with derivatives, with respect to the time variable t. 

A mesh along the length of the column, with mesh points x
i
=iΔ (i=1,2,...,n), is 

introduced; where, 

L

n

Δ =  is the mesh size and n is the number of mesh points. 

Using Taylor series expansions, we obtain 

2 2

2

3 43 4

3 4

d ( , ) d ( , )

( , ) ( , )

d 2d

d ( , ) d ( , )

6 24d d

i i

i i

i i

w x t w x t

w x t w x t

x x

w x t w x t

x x

ΔΔ Δ

Δ Δ

± = ± +

± + ±�
       (8.51, 8.52) 

Subtracting Eq. (8.52) from Eq. (8.51) and neglecting the terms of order higher 

than 2, 
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d ( , ) ( , ) ( , )

d 2

i i i
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Δ Δ
Δ
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=                    (8.53) 

Adding Eqs. (8.51) and (8.52), and dropping the terms of order higher than 3: 
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i i i i
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Δ Δ
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Using Eqs. (8.53) and (8.54), we derive 

3

3 3

d ( , ) ( 2 , ) 2 ( , ) 2 ( , ) ( 2 , )
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i i i i i
w x t w x t w x t w x t w x t
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and 
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Δ

+ − + + − − + −
=  

(8.56) 

Substituting Eqs. (8.54) and (8.56) into Eq. (8.45), and denoting w(x
i
+2Δ,t), 

w(x
i
+Δ,t), w(x

i
,t), w(x

i
–Δ,t) and w(x

i
–2Δ,t) by w

i+2
(t), w

i+1
(t), w

i
(t), w

i–1
(t) and w

i–2
(t), 

respectively, result in 

( ) ( )
( ) ),,2,1(0)()(4

)(26)(4)()()(

21

12

nitwatwba

twbatwbatwatwctwm

ii

iiiii

�

���

==++−+

−++−+++

++

−−
      (8.57) 

where 
4

YI

a

Δ
= , 

2

N

b

Δ
=  and the overdots indicate derivatives with respect to 

time. 

Using the above derived difference formulae, the boundary conditions become 

0)(
0

=tw                              (8.58) 

)()(
11
twtw =−                            (8.59) 

2

1 1
( ) ( ) 2 ( ) ( )

n v n n n

w t C w t w t w tΔ+ −= + −�                (8.60) 

and 
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Writing Eq. (8.57) in a matrix form and substituting the boundary conditions, 

Eqs. (8.58) to (8.61), into it, we obtain 

[ ]{ } [ ]{ } [ ]{ } {0}M w C w K w+ + =�� �                 (8.62) 
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��Solution for the Dynamic Response 

The state equation of Eq. (8.62) can be written as 

}]{[}{ rHr =�                        (8.63) 

where { }
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, I
n
 is the n×n identity matrix, 
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and [M]
–1

 is the inverse of [M].  

The solution of this state equation can be written in the form 

{ } { } st

r eγ=                        (8.64) 

where {γ} is a constant vector and s  a complex number. Substituting Eq. (8.64) 

into Eq. (8.63), gives 

[ ]( ){ } }0{
2

=− γ
n

sIH                     (8.65) 

where I
2n

 is the 2n×2n identity matrix.  

Eq. (8.65) has nontrivial solutions for {γ} if and only if 

[ ]( ) 0det
2
=−

n

sIH                     (8.66) 

Eq. (8.66) represents a characteristic equation, which is a real polynomial of 

order 2n in s. It has 2n solutions for the characteristic value s, and 2n corresponding 

vectors for {γ}. The general solution to Eq. (8.63) is the superposition of the 2n 

solutions obtained by substituting s and {γ} into Eq. (8.64): 

{ } { } tsk

n

k

k
r e

)(

2

1

γη∑
=

=                    (8.67) 

where η
k
 are constants determined by the initial conditions that are also given by 

Eqs. (8.38) and (8.39). However, in this case, the initial conditions should be 

substituted in a discrete form 

),,2,1()()0( nixuw
ii

�==                 (8.68) 

and 

),,2,1()()0( nixvw
ii

�� ==                (8.69) 

Actually, the values of s
k
 must be either real or in complex conjugate pairs since 

the coefficient matrix in Eq. (8.66) is real. For an under-damped structural system, 

all the characteristic values must be in complex conjugate pairs with a negative real 

part; then the solutions of Eq. (8.64) represent an oscillating exponential 

convergence. s
k
 can be expressed as 

kDkk
ns ωj±−=                      (8.70) 

The k
th

 natural frequency of the column is given by 
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22

kDkk
n ωω +=                     (8.71) 

��Consideration of the Tip Mass 

In the above derivation, it is assumed that the value of the tip displacement or tip 

velocity is available for feedback. However, in practical situations, measurements 

for these variables are needed. Considering the situation that an accelerometer is 

placed on the tip of the column to monitor the vibration, a tip mass m
t
 has to be 

included in the model. In this case, the boundary condition Eq. (8.49) becomes 
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            (8.72a) 

Accordingly, the mass matrix [M] in Eq. (8.62) becomes 

[ ]

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎤

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

+

=

2

t

mm

m

m

m

m

M

�

            (8.72b) 

8.2.4� Effects of Feedback Strategies on Motion Equations 

In Eq. (8.28), it can be observed that the value of a changes with the value of C
d
, 

which reflects the effect of the displacement feedback control. This indicates that 

the displacement feedback control influences the natural frequencies of the 

structure. In fact, if the central difference method used in the velocity feedback 

control is applied to the motion equation for the displacement feedback control case, 

we can obtain an equation, which has the same form as Eq. (8.62), but with different 

expressions for the matrices [M], [C] and [K]. As the procedure of applying the 

central difference method to the motion equation of the displacement feedback 

control is similar to solving the velocity feedback control, the expressions for the 

mass matrix, damping matrix and stiffness matrix are therefore given below without 

their derivation, 
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It can then be found that variable C
d
 appears only in the stiffness matrix [K], 

which leads to the change of the natural frequencies of the structure. However, from 

Eq. (8.62), it can be found that the velocity feedback control does not affect the 

mass matrix [M] or the stiffness matrix [K]. It only affects the damping matrix [C] 

since the variable C
v
, which reflects the effect of the velocity feedback control, only 

appears in the matrix [C]. This variation in damping will accelerate the decay of 

vibration of the structure. 

Therefore, we can conclude that the effect of displacement feedback control is 

to change the stiffness of the structure while the effect of velocity feedback control 

is to increase the damping of the structure. 

8.3� Numerical simulations 

This section presents the numerical examples used to study the control effectiveness of 

piezoelectric actuator and the influence of axial force on the vibration characteristics of 

a column structure. In the examples, the solutions obtained in the previous section 

are applied to a steel column bonded with a PVDF actuator layer on one of its 

surfaces. The physical properties of the column and PVDF layer are given in 

Tables 8.1 and 8.2, respectively (Yang et al., 2003). 

The cases studied are for zero initial velocity, i.e., v(x)=0, and with the initial 

displacement given. The initial displacement of the column is given as 

u(x)=0.01Φ
1
(x), where Φ

1
(x) is the first mode shape function of a conventional 

cantilevered beam under free vibration. With this initial displacement, the tip 

deflection of the column is 0.02 m. Damping is considered by assuming a 
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damping ratio 0015.0=ξ , which is a reasonable value for this steel column 

(Bailey and Hubbard, 1985). The vibration characteristics, such as natural 

frequencies, mode shapes and dynamic responses of the column are calculated for 

different values of axial forces and control gains. In the following discussion, 

2

2

4

π

L

YI

P
cr

=  is the buckling load of the cantilevered column. 

 

Table 8.1� Properties of the steel column 

Young’s modulus Y 210×10  N/m  

Length L 0.146 m

 

Thickness h 0.381 mm

 

Width b 1.27 cm

 

Density ρ 7,800 kg/m

 

 

Table 8.2� Properties of the PVDF layer 

Young’s modulus Y  2.0×10  N/m  

Length L 0.146 m

 

Thickness h  28×10  mm 

Width b 1.27 cm

 

Piezoelectric Constant d 22×10  m/V 

8.3.1� Numerical Results for Displacement Feedback Control 

Fig. 8.2 shows the variation of natural frequencies with the displacement feedback 

control gains g
d
 for the first three vibration modes. For each mode, different 

values of axial force N are considered. It is apparent from Fig. 8.2 that all the 

natural frequencies have the tendency to increase with an increase in the control 

gain g
d
; however, this tendency is not significant, especially for the higher modes. 

This indicates that the lower vibration modes are more affected by the 

piezoelectric actuator than the higher modes. It can also be observed from Fig. 8.2 

that the natural frequencies increase with the change of axial force from 

compressive to tensile. This agrees with Bokaian’s work (Bokaian, 1988; 1990) 

for the conventional beam. Another observation is that the variations of curves for 

the highly tensioned column are less than the others, which implies that it is much 

harder to change the natural frequencies of a highly tensioned column through 

displacement feedback control. 
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Fig. 8.2� Variation of natural frequency with control gain g
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Fig. 8.3� Variation of natural frequency with axial force N 
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The variations of natural frequencies with the axial forces are shown in Fig. 8.3. 

As expected, the compressive axial force has the effect of decreasing the natural 

frequencies while the tensile force has the converse effect. For example, the first 

natural frequency of the structure decreased from 265 to 154, 94, 74, and 44 rad/s 

with the change of axial force from –10.0P
cr

 to –2.0P
cr

, 0, 0.4P
cr

, and 0.8P
cr

, 

respectively. It is also observed from Fig. 8.3 that the displacement feedback 

control cannot effectively change the natural frequencies of the column because all 

the curves with different control gains almost completely overlapped with each 

other. This indicates that, although the effect of displacement feedback control is to 

change the stiffness of the structure, the variation of stiffness caused by 

piezoelectric actuator is very minor for the steel column studied herein. 

The influences of axial force and displacement control gain on the vibration 

mode shapes are studied by plotting the first three mode shapes of the column for 

different axial forces (N = 0.8P
cr

, 0.4P
cr

, 0, –2.0P
cr

, and –10.0P
cr

) and different 

displacement control gains (g
d
 = 0, 10

4

, 10
5

, and 10
6

 V/m). Figs. 8.4 and 8.5 show 

the typical variations of the normalized amplitude against the column length. Fig. 

8.4 indicates that the effect of piezoelectric actuator on the mode shapes is minor 

even though a very high feedback voltage is applied (e.g. g
d
 = 10

6

 V/m). In Fig. 8.5, 

the effect of axial force on the mode shapes is also minor for the second and third 

modes, unless a large tensile force (e.g. N≤–10.0P
cr

) is applied. In fact, the 

influence of axial force on the mode shapes higher than the third mode is more 

negligible. However, this effect on the first mode shape is more significant than on 

the other mode shapes. Note that the initial conditions do not arise in the above 

procedure for computing the natural frequencies and mode shapes. 

Using the obtained closed-form expression for the dynamic responses of the 

piezoelectric column, the displacement and velocity of the column are computed. 

Table 8.3 lists some of the tip displacements of the column at t = 10 s for different 

control gains g
d
 and axial forces. It is found that the control effectiveness of the 

displacement feedback control is very weak. Actually, when control gain g
d
 = 10

5

 

V/m, the feedback voltage is very high, even higher than the breakdown voltage of 

the piezoelectric material. Hence, the displacement feedback control method is not 

applicable in practice, but it provides a way to theoretically study the influence of 

piezoelectric materials on the natural frequencies and mode shapes. 
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Fig. 8.4� Variation of mode shape with control gain g  (for N = 0.8P ) 
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Fig. 8.5� Variation of mode shape with axial force N (for g  = 10  V/m) 

 

Table 8.3� Tip displacements (mm) for different control gains g  and axial forces N (at t = 10 s) 

g  (V/m)

  

N = 0.8P

 

N = 0.4P

 

N = 0
 

N = –2.0P  N = –10.0P

 

 

g  = 10

 

5.12 4.92 4.89 4.65 4.43 

g  = 10

 

5.19 4.98 4.88 4.64 4.34 

g  = 10

 

5.23 5.02 4.94 4.69 4.35 

g  = 0

 

5.18 4.97 4.94 4.67 4.36 
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8.3.2� Numerical Results for Velocity Feedback Control 

The numerical simulations for the velocity feedback control focused on the dynamic 

responses of the structure for various sets of axial force (N = 0.8P
cr

, 0.4P
cr

, 0, 

–2.0P
cr

, and –10.0P
cr

) and velocity feedback control gain (g
v
 = 0, 10, 20, 30, and 

40 V·s/m). In the simulations, 1,000 mesh points were used to calculate the natural 

frequencies of the column, and the first 10 vibration modes were superposed to 

obtain the dynamic responses. A convergence study showed that accuracy of the 

numerical results increases with the increase in mesh points, and that the cut-off 

number of mesh points depends on how many vibration modes are used for the 

superposition of the dynamic responses. In this example, the cut-off number of 

mesh points is about 100 when the first 10 vibration modes are considered; hence 

1,000 mesh points are adequate for the required accuracy of results. 

Figs. 8.6 to 8.9 depict the typical dynamic responses of the tip displacement 

and velocity of the column under velocity feedback control with axial forces N = 

0.8P
cr

 and –2.0P
cr

, respectively. It is apparent that the piezoelectric actuator 

effectively damped the vibration of the structure in the velocity feedback control. 

For instance, for the case with a compressive axial force N = 0.8P
cr
, the tip displacements 

of the column at t = 10 s are 5.16 mm for g
v
 = 0 and 4.26 mm for g

v
 = 40 V·s/m in 

Figs. 8.6 and 8.7, respectively. It means that the velocity feedback control caused 

17.4% reduction in the vibration amplitude. The corresponding maximum tip 

velocities in these two figures are 0.33 and 0.24 m/s, respectively. This indicates 

that the vibration slowed down by 27.3% due to the feedback control. The value of 

the feedback voltage is obtained from the tip velocity of the column; which fell in 

an acceptable range, for example, for the case of N = –2.0P
cr

 and g
v
 = 40 V·s/m, 

the maximum feedback voltage U is about 150 V. 

Table 8.4 lists the tip displacements of the column for different velocity 

feedback control gains g
v
 and different axial forces N, where the percentages in the 

brackets are the decrements of the tip displacement as compared with the result for 

g
v
 = 0, under the same axial force. Fig. 8.10 is the graphical illustration of Table 

8.4. From Fig. 8.10(a), it can be observed that, at a certain time (t = 10 s in this 

example), the tip displacement of the tensioned column is smaller than that of the 

compressed column under the same feedback control gain g
v
, and that the value of 

the tip displacement decreases with increase in the tensile axial force, but 

increases with increase in the compressive axial force. This indicates that a tensile 

axial force can depress the vibration of the column, while a compressive axial 

force has a converse effect. Furthermore, from Fig. 8.10(a), the relation between 

the tip displacement and control gain g
v
 can be treated as a linear function for 

certain axial force. However, the absolute value of the slope of the line for 

compressive axial force is larger than that for the tensile axial force. It implies that 

the vibration characteristics of a tensioned column are harder to be affected by the 

piezoelectric actuator than those of a compressed column. From Fig. 8.10(b), it 

can be seen that the larger the control gain g
v
, the smaller the variation of the tip 

displacement curves. This means that it is difficult for the axial force to affect the 

vibration of the column applied with a large control force. 
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Fig. 8.6� Dynamic responses for N = 0.8P  and g  = 0 

 

Fig. 8.7� Dynamic responses for N = 0.8P  and g  = 40 V·s/m 
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Fig. 8.8� Dynamic responses for N = –2.0P  and g  = 0

 

 

Fig. 8.9� Dynamic responses for N = –2.0P  and g  = 40 V·s/m  
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Table 8.4� Tip displacements (mm) for different control gains g and axial forces N (at t = 10 s) 

g  (V·s/m)

  

N = 0.8P

 

N = 0.4P

 

N = 0
 

N = –2.0P  N = –10.0P

 

 

g  = 0

 
5.16 4.99 4.86 4.61 4.36 

      

g  = 10

 4.93 

(4.46%) 

4.8 

(3.81%) 

4.68 

(3.70%) 

4.52 

(1.95%) 

4.25 

(2.52%) 

      

g  = 20

 4.73 

(8.33%) 

4.55 

(8.82%) 

4.51 

(7.20%) 

4.38 

(4.99%) 

4.1 

(5.96%) 

      

g  = 30

 4.48 

(13.18%) 

4.37 

(12.42%) 

4.33 

(10.91%) 

4.26 

(7.59%) 

4.05 

(7.11%) 

      

g  = 40

 4.26 

(17.44%) 

4.18 

(16.23%) 

4.17 

(14.20%) 

4.12 

(10.63%) 

3.97 

(8.94%) 

 

 

Fig. 8.10� Tip displacements for different control gains and axial forces (at t = 10 s). (a) Tip 

displacements for different velocity control gains g ; (b) Tip displacements for different axial 

forces N 
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8.4� Conclusions and Recommendations 

8.4.1� Conclusions 

In this chapter, a cantilevered piezoelectric column is investigated. First, the 

differential equations governing the transverse deflection of the column, with the 

presence of external axial loads, are derived. Second, two control strategies, 

namely, displacement feedback and velocity feedback control, are designed to 

control the vibration of the column. The analytical and semi-analytical solutions 

for the governing equations are obtained under these two control methods, 

respectively. Finally, the solutions are applied to a steel column bonded with a 

PVDF layer. 

The numerical results show that the displacement feedback control method did 

not perform well on the vibration control of the structure; however, it provided a 

way to theoretically study the influence of piezoelectric materials on the natural 

frequencies and mode shapes. The study indicated that the compressive axial force 

has the effect of decreasing the natural frequencies while the tensile force has the 

converse effect, and that the natural frequency has a tendency to increase with the 

increase of the displacement feedback control gain g
d
 although this tendency is not 

significant. As for the mode shape, it is observed that the effect of piezoelectric 

actuator on the mode shapes is minor, and that the effect of axial force on the 

mode shapes is also minor, unless a large tensile force (e.g., N≤–10.0P
cr

) is 

applied. 

On the other hand, the velocity feedback control is able to provide a satisfactory 

control effect on the vibration; i.e., it successfully damped the vibration of the 

column under an acceptable feedback voltage range. It is also shown that a tensile 

axial force can depress the vibration of the column, while a compressive axial 

force has a converse effect, and that the vibration characteristics of a tensioned 

column are harder to be affected by the piezoelectric actuator than those of a 

compressed column. 

8.4.2� Recommendations 

The work presented in this chapter primarily focuses on the analytical study of 

vibration control of a cantilevered column bonded with piezoelectric actuator. 

Hence, the recommendations are mainly given in the following directions.  

(1) All the presented solutions and discussions center around columns with 

clamped-free boundary conditions as the other boundary conditions have not been 

studied. However, the developed method can be extended to columns with the 

other boundary conditions, such as clamped-pinned, pinned-pinned, sliding-pinned, 



8� Smart Beams: A Semi-Analytical Method 330 

sliding-free, and so on. 

(2) The influences of piezoelectric materials and axial loads on the vibration 

control of structures are theoretically studied. Some experimental studies should 

be carried out to verify the analytical solutions, although it would be difficult to 

fulfill all the conditions adopted in the analytical study. Especially, the axial load 

would be difficult to be applied along the longitudinal axis of the column while it 

is vibrating. 

(3) All the derivations are for free vibration. Transverse load should also be 

included in the model so that the solutions will have a wider application in 

practice. The introduction of transverse load will make the computation much 

more complicated. For the displacement feedback control, analytical or 

semi-analytical solutions may be obtained if certain mathematical techniques, such 

as modal analysis, are adopted. However, for the velocity feedback control, only 

numerical solution may be obtained due to the time-dependent boundary 

conditions 
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9.1� Optimal Vibration Control using Genetic Algorithms 

9.1.1� Introduction 

Smart structures for vibration control of flexible space structures have attracted 

considerable amount of research in recent years. The development of smart 

structures with piezoelectric sensor/actuators (S/As) offers great potential for use 

in advanced aerospace, nuclear and automotive structural applications. The smart 

structure, which contains the main structure and the distributed piezoelectric S/As, 

can sense the excitations induced by its environment and can also generate control 

forces to either eliminate the undesirable effects or to enhance the desirable effects. 

Application of smart structures to vibration control may be traced to Bailey and 

Hubbard (1985), who used polyvinylidene fluoride (PVDF) as a distributed 

actuator on a cantilever beam to control its vibration. Subsequently, the modeling, 

basic equations, control laws, FE analysis methods, and experiments for smart 

structures have been investigated by several other researchers such as Wang and 

Rogers (1991), Chandrashekara and Agarwal (1993) and Song et al. (2002).  

Smart shell structures with integrated piezoelectric S/A laminae have been 

widely investigated in the past decades. Cylindrical shells are extensively used in 

engineering structures, such as oil tanks and bodies of aircraft and space shuttles. 

Vibration control of cylindrical shells was first initiated to solve the cabin noise 
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problem, and has been an area of active research. The research has mainly been 

focused on modeling, FE formulation and vibration control of the smart shells 

(Qiu and Tani, 1995; Chee et al., 1998; Henry and Clark, 1999). 

To utilize the advantages of piezoelectric transducers, it is necessary to select 

appropriate positions for the transducers and to select the sensor signals to be fed 

back to the actuators. The problems of finding the optimal placement and sizing of 

the S/As as well as the feedback gains are very challenging. Crawley and de Luis 

(1987) were the first to address the criterion for finding the optimal location of a 

piezoelectric actuator for a cantilever beam. Since then, several other researchers 

like Baz and Poh (1988), Devasia et al. (1993), Aldraihem et al. (2000), Qiu et al. 

(2007), and Kumar and Narayanan (2007) have done a great deal of study on the 

optimal control of beam and plate structures. However, investigation of the 

optimal vibration control of shell structures has seldom been carried out. 

Furthermore, most attention has been paid to the geometric optimization of S/As 

such as their placement, size and thickness. The integrated control system 

optimization considering the geometric distribution of the piezoelectric patches 

and the feedback control gains of the control system has rarely been investigated. 

Sun and Tong (2001) have carried out modal control of a smart cylindrical shell 

by optimizing the discretely distributed piezoelectric transducers, but the 

integrated optimization of control system and the effect of the number of 

piezoelectric patches have never been investigated. 

In this section, integrated optimization of the control system for the cylindrical 

shell structures is formulated and implemented, in which the geometric distribution 

of the piezoelectric S/As and the feedback gains are considered as design variables. 

The energy dissipation method (Lee and Chen, 1994), which is essentially a 

negative velocity feedback control method, is employed as the criterion for 

optimizing the control system based on maximization of the dissipated energy due 

to the control action. 

Genetic algorithms (GAs), as an optimization technique different from the 

conventional methods, have been applied to the vibration control of smart 

structures (Han and Lee, 1999; Zhang et al., 2000). In this section, a modified 

real-encoded GA dealing with various constraints is employed for the integrated 

optimization of the control system. First, the state-space equation is formulated for 

smart cylindrical shells. Then, formulation of the integrated optimization of the 

control system is obtained based on the criterion of maximization of energy 

dissipation. Numerical examples of a simply supported plate, a simply supported 

cylindrical shell and a clamped-simply supported plate are presented to 

demonstrate the feasibility of this method and the effectiveness of vibration 

suppression. The results illustrate that vibration suppression could be significantly 

enhanced with the appropriate distribution of piezoelectric S/As and selection of 

feedback control gains. Furthermore, for specific controlled vibration modes, 

optimal distribution of the piezoelectric S/As should be located at the areas 

separated by the nodal lines to achieve optimal control effect. 
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9.1.2� Sensing and Actuating Equations 

Fig. 9.1 shows a generic shell continuum defined in a tri-orthogonal curvilinear 

coordinate system, with α
1
 and α

2
 defining the shell neutral surface and α

3
 the 

normal direction. The shell continuum has a constant thickness h which is 

relatively thin with respect to its radii of curvatures R
1
 and R

2
. Generic deflections, 

U
1
, U

2
 and U

3
, in the three principal directions, α

1
, α

2
 and α

3
, are assumed to be 

sufficiently small with respect to the first power so as to allow the second and 

higher powers to be neglected. Furthermore, the transverse normal stresses are 

small compared with the other normal stresses in the shell and hence can be 

neglected. In addition, a line, originally normal to the shell reference surface, will 

remain normal to the deformed reference surface and will remain unstrained or 

unstretched. This is referred to as the Kirchhoff’s hypothesis. 

 

 

Fig. 9.1� A generic shell continuum 

 

Consider a thin cylindrical elastic shell with N
p
 pairs of collocated piezoelectric 

patches bonded on its surfaces as discretely distributed S/As (Fig. 9.2), where R, h, 

L and β
*

 are the radius, thickness, length and curvature angle of the cylindrical 

shell, respectively. The patches on the upper surface are the actuators and those on 

the lower surface (not shown) are the sensors. The tri-orthogonal curvilinear 

coordinate system with axes x, β, and α
3
, in which x  defines the longitudinal 

direction (length), β the circumferential direction, and α
3
 the transverse direction, 

is also schematically shown in Fig. 9.2. Assume that the piezoelectric patches are 

much thinner than the host shell, and are perfectly bonded to the shell surfaces. 

The effects of the bonding material on the properties of the whole structure are 

neglected. 
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Fig. 9.2� A cylindrical shell with distributed piezoelectric patches 

 

9.1.2.1� Sensing Equations 

For the general thin shell configuration, only the transverse electric field E
3
 is 

considered so that the strains and dielectric displacement D
3
 are independent of α

3
. 

The voltage across the electrodes can be obtained by integrating the electric field 

over the thickness of the piezoelectric sensor, i.e., 

dEϕ α= −∫                                         (9.1) 

where h
s

 denotes the piezoelectric sensor thickness. Based on the governing 

equations for piezoelectric effects, we get  

)(
333232131

Dhhh

sss βεεφ −+=                             (9.2) 

where 
s

1
ε  and 

s

2
ε  are the normal strains in the 

1
α  and 

2
α  directions, respectively; 

and h
31

 and h
32

 are piezo-constants. The superscript “s” denotes the distributed 

sensor.  

Rearranging Eq. (9.2), we can write the electric displacement D
3
 as:  

)(

1

232131

33

3
s

ss

h

hhD

φεε
β

−+=                            (9.3) 

Since D
3
 is defined as the charge per unit area, we can integrate Eq. (9.3) over 

the electrode surface S
e
 to estimate the total surface charge. An open-circuit 

voltage 
sφ  condition can be obtained by setting the charge zero, i.e., 
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2121232131
dd)( ααεεφ AAhh

S

h
ss

S

e

s

s +=
∫

                         (9.4) 

Substituting the strains of the sensor into Eq. (9.4) yields the distributed sensor 

output in terms of displacements and other system parameters. 
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where u
1
,u

2
 and u

3
 are the displacements of the neutral surface of the shell in the 

three principal directions; r
s

 denotes the distance measured from the neutral 

surface of the shell to the mid-plane of the sensor; and A
1
 and A

2
 are the Lame 

parameters. 

As 
33313231

/εehh == , where 
33
ε  is the permittivity constant and e

31
 is the 

piezoelectric stress constant, substituting them into Eq. (9.5), we get similar 

expression of the sensor output as Tzou and Bao (1996): 
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Eq. (9.6) can be simplified for the cylindrical shell shown in Fig. 9.2, for A
1
=1, 

A
2
=R, R

1
=∞ and R

2
=R. Considering that the transverse component is much more 

prominent than the other two in-plane displacement components, we can simplify 

the sensor signal equation into the following form: 
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Using the modal decomposition method, the transverse response u
3
(t) of the 

shell can be expressed as the summation of all vibration modes 
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where U
mm

(x,β) is the mode shape function and η
mm

(t) is the modal participation 

factor. 

The output voltage of the i
th

 sensor, ranging from x
i l

 to x
i 2

 in the x-direction, 

and from β
i1

 to β
i2

 in the β-direction, can thus be written as 
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��Actuating Equations  

For the actuators bonded on the shell surface, the induced strains due to imposed 

control voltages, i.e., the converse piezoelectric effect, are used to counteract the 

shell oscillation. The induced strains and the resultant effect are illustrated in Fig. 

9.3. Note that these strains are generated in the distributed actuator which is 

located a distance away from the shell neutral surface. Thus, these strains 

introduce counteracting control moments to the shell structure. The sign of the 

feedback voltage should be carefully controlled so that the induced moments will 

counteract the shell oscillation. 

�

Fig. 9.3� Distributed control by a distributed piezoelectric actuator 
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When external charges are exerted on the piezoelectric actuators, the 

differential equations of motion for the cylindrical shell can be expressed as 
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where E, ρ and μ are the Young’s modulus, mass density and Poisson’s ratio of the 

shell, respectively; and 
a

i
F
1

,
a

i
F
2

 and 
a

i
F
3

 are the forces induced by actuator i, 

which can be written as 
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where d
31

 and E
p
 are the piezoelectric strain constant and the Young’s modulus of 

the actuators, respectively; 
a

i
V  is the voltage applied to actuator i; and r

a
 denotes 

the distance measured from the neutral surface of the cylindrical shell to the mid-

plane of the actuator.  

The voltage distribution of actuator i can be expressed as 

)]()()][()()[(),,(
2121 iiii

a

i

a

i
HHxxHxxHtVtxV βββββ −−−−−−=    (9.12) 

in which )(⋅H  is the Heaviside function. 
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Using the modal expansion technique and the modal orthogonality, and 

substituting Eqs. (9.8), (9.11) and (9.12) into Eq. (9.10c), we can derive the 

transverse modal vibration equations with distributed actuators as: 
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where ω
mn

 is the mn
th

 natural frequency of the shell; 
mn

ς  is the damping ratio of 

the mn
th

 vibration mode; and 
∫ ∫

=
0 0

2

dd

β
β

L

mnmn
xRUN . 

9.1.2.3� State-space Equations 

Assuming that the first N=m×n vibration modes are taken into account and 

introducing the state vector
T

2121
],,,,,,,[

NN
ηηηηηη �����=χ , the sensing and 

actuating equations can be transformed into the state-space equation as 
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in which i=1,2,...,Np; k=n·(p–1)+q; p=1,2,...,m; q=1,2,...,n; 
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in which ω
k
=ω

pq
; k=n·(p–1)+q; p=1,2,...,m; q=1,2,...,n; 

k
ς  is the damping ratio of 

the k
th

 vibration mode of the shell; and the natural frequency ω
pq

 is the smallest 

value of the solutions of the following equation 
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��Simplification for Smart Plates 

Consider the smart plate model shown in Fig. 9.4. The collocated piezoelectric 

patches, polarized along the z-axis, are bonded to the lower and upper surfaces of 

the plate as the S/As. Because the i
th

 sensor is bonded to the lower surface of the 

plate, which cannot be visually seen from the angle of view, it has not been shown 

in this figure. 

The differential vibration equations of the plate can be derived from those of 

the cylindrical shell by the simplifications of R→∞ and y=R·β. Substituting the 

above expressions into the equations of motion of the cylindrical shell, i.e., Eq. 

(9.10), we obtain the vibration equations of the plate as: 
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Similarly, the transverse oscillation of the plate is of primary interest in this 

study. The output voltage of the i
th

 sensor, ranging from x
i1

 to x
i2
 in the x-direction, 

and from y
i1

 to y
i2

 in the y-direction, can be expressed as 

yx

y

U

x

U

rt

S

eh

m n

y

y

x

x

mnmns

mn
e

i

s

s

i
dd)(

1 1

2

2

2

2

33

31

∑∑ ∫ ∫

∞

=

∞

= ⎥

⎥

⎦

⎤

⎢

⎢

⎣

⎡

⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

∂
∂+

∂
∂−= η

ε
φ    (9.24) 

�

Fig. 9.4� Plate model with sensors and actuators 

 

Also, the transverse modal vibration equations with distributed actuators can 

be expressed as 
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where d dN U x y= ∫ ∫ . 

Following the same derivation procedures, we obtain the state-space 

equations of the smart plate in the same form as Eq. (9.14). The difference is that 

the coefficients in the state matrix have the following forms: 
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9.1.3� Energy-Based Approach for Integrated Optimal Design 

The most attractive methodology that accounts for transient vibration responses is 

characterized by the maximization of the dissipation energy extracted by the 

feedback control system. Lee and Chen (1994) applied this optimization method to 

a beam model and presented an integrated determination of the S/A locations and 

feedback gains. In this section, this method is also applied to the cylindrical shell 

structures. 

The crucial consideration of optimal control design is the selection of an 

appropriate criterion for finding the most desirable performance. This criterion 

depends on how the system’s physical requirements are translated into 

mathematical formulation. For the vibration suppression of flexible systems, the 

total energy stored in the system can be considered as a representation of the 

vibration response. The advantage of this representation is that the phenomenon of 

vibration can be expressed as a scalar. Clearly, the time behavior of the total 
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energy is a scalar function with respect to time. This time behavior of the scalar 

function can be used to evaluate the effectiveness of vibration suppression. 

The input control vector can be expressed as follows, when considering a 

constant negative velocity feedback 

χφ �

�

GCGV

sa −=−=                                           (9.28) 

where G is the feedback gain matrix.  

The corresponding closed-loop state-space equation is 

χχ A=�                                                       (9.29) 

where the closed-loop system matrix A  is given as 
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ΩςΩ 2

2

CGB

I

A

NNNN
0

                                   (9.30) 

The objective of optimization is to maximize the energy dissipated by the 

active controller. The more the energy is dissipated by the control system, the 

lesser the energy is stored in the system. This can be used to simultaneously 

optimize the geometry of the S/As and the values of the feedback gains. The 

integrated total energy stored in the system can be written as 

dW tχ χ
∞

= ∫ �

Q                                           (9.31) 

where Q

~

 is defined as 

⎥

⎥

⎦

⎤

⎢

⎢

⎣

⎡

=
×NN

I

Q

0

0

2

~ Ω
. 

Application of the standard state transformation techniques to Eq. (9.31) yields 

)()(
00

T

ttW χχ P−=                                     (9.32) 

where )(
0
tχ  is the initial state and P  is the solution of the following Lyapunov 

equation 

QAPPA

~

T =+                                         (9.33) 
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9.1.4� General Formulation and Modified Real-Encoded GA 

��Problem Formulation 

In order to optimize the placement and size of the piezoelectric patches and the 

feedback control gains, the locations of the N
p
 pieces of S/As x

il
, x

i2
, β

il
, β

i2 

(i=1,2,...,Np) and the feedback gain matrix G are defined as the design variables. 

In general, this optimization problem can be expressed in the following form 

Minimize )()(),(
00

T

ttGW χχ PX −=
�

                     (9.34) 

subject to:  

(1) variable limits: 

Lxx
ii
≤≤

21
,0 , 

*

21
,0 βββ ≤≤

ii
, '0 GG

ij
≤≤ ;              (9.35) 

(2) static constraints: 

21 ii
xx ≤ , 

21 ii
ββ ≤ ;                                (9.36) 

(3) dynamic constraints which avoid overlap of piezoelectric patches, where 

X

�

 is the vector of the Np4  design variables x
i1

, x
i2

, β
il
, and β

i2
; G

ij
 is the element 

in the feedback gain matrix G; and i, j=1,2,...,Np.  

In the above formulation, the significance of the variable limits and the static 

constraints is straightforward. The dynamic constraint means that this kind of 

constraints will dynamically appear during the computation process. Different 

from the variable limits and static constraints which will constantly exist during 

the whole computation process, the dynamic constraints will emerge unpredictably 

in the offspring generated by the genetic operators, e.g., crossover and mutation. 

The possible geometric distributions of two piezoelectric patches are illustrated in 

Fig. 9.5. Assume that the location of Patch i is fixed, a feasible design of Patch j 

can be located at the region including Locations 1 to 8. However, the region 

including Location 9 should be avoided to prevent overlap. 
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Fig. 9.5� Possible geometric distributions of two piezoelectric patches 

 

To achieve the feasible designs, one or two of the following four constraints 

must be satisfied:  

(1) 
21 ij

xx > , for region including Locations 1, 2 and 3;  

(2) 
12 ij

xx < , for region including Locations 5, 6 and 7;  

(3) 
21 ij

ββ > , for region including Locations 3, 4 and 5;  

(4) 
12 ij

ββ < , for region including Locations 7, 8 and 1. 

Since during the computation process, the emergence of infeasible designs, 

e.g., Patch i and Patch j at Location 9, is inevitable, the dynamic constraints 

should be imposed to avoid such “illegal” designs. Therefore, the dynamic 

constraints can be expressed as 

21 ij
xx > , or 

12 ij
xx < , or 

21 ij
ββ > , or 

12 ij
ββ <  ),,,2,1,( jiNpji ≠= �  (9.37) 

Any feasible design should satisfy one or two of the above constraints. If none 

of the constraints is satisfied, it implies an infeasible design has been generated 

with the piezoelectric patches overlapped. For instance, for Location 9, Patches i 

and j may overlap partially or completely, depending on their sizes and relative 

positions. A penalty function is introduced to deal with such situation. The details 

will be discussed in the next section. 

��Constraint Handling and Modified Real-Encoded GA 

A modified real-encoded GA is used to solve the problem formulated in Eqs. 
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(9.34) – (9.36). The fundamental mechanisms leading the GA search process are 

the equivalents of natural selection, crossover and mutation. GA deals with a 

population that is a collection of individuals and the chromosome of each 

individual represents a candidate solution. For any GA, a chromosome 

representation is needed to describe each individual in the population of interest. 

Each individual or chromosome is made up of a sequence of genes from a 

certain alphabet such as binary digits, floating point numbers, integers, etc. For 

the present problem, a chromosome in GA population consists of design 

variables X

�

 and G, as shown in Fig. 9.6. The length of the chromosome is 

)4(4 NpNpNpNpNp +=×+× .  

�

Fig. 9.6� A chromosome in modified real-encoded GA 

 

An option to deal with all the constraints in this problem, i.e., the variable 

limits, the static constraints and the dynamic constraints, is to adopt the penalty 

method. However, due to the large quantity of constraints, it is very time-

consuming and the efficiency and accuracy cannot be guaranteed. Therefore, a 

modified GA with specific genetic operators designed to handle the variable limits 

and the static constraints and a penalty function to deal with the dynamic 

constraints is developed. 

Different from the standard GA, in this study, a whole arithmetical crossover 

is used and a uniform mutation is modified to make the offspring of the parents 

satisfy inequalities (9.35) and (9.36). The whole arithmetic crossover produces 

two complimentary linear combinations of the parents as 

YrXrYYrXrX +−=−+= )1(

~

  ,)1(

~

, where )1,0(∈r                   (9.38) 

This will always guarantee that the offspring X

~

and Y

~

 satisfy all the variable 

limits and the static constraints if their parents X  and Y  do. The mutation 

operator is also quite different from the traditional ones with respect to the 

mutation range. A traditional mutation is performed within the static domains 

for all genes; however, our proposed mutation is performed within the 

dynamic domains. For a chromosome s=<x
11

,x
12

,...,x
i1

,x
i2

,...,G
11

,...,G
NpNp

>, if a 

random gene x
i1

 of the chromosome is selected, the result of this mutation is 

>=<
NpNpii

GGxxxxs ,,,,,,,,

112

*

11211
��� , where 

*

1i
x  is a random value in the 

dynamic range of ],0[
2i

x . If 
2i

x  is selected, the result of this mutation 

is >=<
NpNpii

GGxxxxs ,,,,,,,,

11

*

211211
��� , where 

*

2i
x  is a random value in the 

dynamic range of ],[
1
Lx

i
. By these genetic operators, the offspring can satisfy all 



9� Smart Plates and Shells 348 

the variable limits and the static constraints. 

For the dynamic constraints, a penalty function is introduced to penalize the 

items which violate the constraints appearing with the optimization. For Patches i 

and j shown in Fig. 9.5, the penalty function can be expressed as  

ji

overlap

ijij

AA

A

rP

+
⋅= , Npji ,,2,1, �=                         (9.39) 

where A
overlap

 is the area overlapped between Patches i and j, A
i
 and A

j
 are the 

areas of Patches i and j, respectively, and r
ij
 is the penalty parameters. Thus, 

evaluation of the objective function can be represented by ),( GX

�

ϕ  in the 

following form 

),( GX

�

ϕ =W +),( GX

�

∑∑
=

≠
=

Np

i

Np

ij

j

ij
P

1 1

                           (9.40) 

When r
ij
��, the solution of Eq. (9.40) tends to be the solution of the original 

problem defined in Eq. (9.34). 

The general process of the modified GA can be briefly described as follows. 

First, the initial generation comprising the individuals which satisfy all the 

variable limits and static constraints is randomly generated. The whole arithmetic 

crossover and the uniform mutation are then applied to generate the next 

generation with all the individuals satisfying inequalities (9.35) and (9.36). 

Meanwhile, if applicable, the penalty function will be activated for the dynamic 

constraints. This will significantly reduce the infeasible individuals which breach 

the constraints, and avoid spending too much time to evaluate the infeasible 

individuals. In the procedures of performing genetic operators, better individuals 

have higher probability to be selected. The above process continues until the 

maximum number of generations is reached. More details can be found in Yang et 

al. (2006). 

9.1.5� Numerical Examples 

In this section, the optimal design of vibration control system based on the 

proposed approach is carried out and the simulation is implemented for a simply 

supported plate, a simply supported cylindrical shell, and a plate with three edges 

simply supported and one edge clamped. 
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��Simply Supported Plate 

Consider a plate with four edges simply supported onto which collocated S/As are 

bonded (Fig. 9.4). The material properties and geometric configuration of the 

system are listed in Table 9.1. The parameters are quoted from Yang et al. (2006). 

 

Table 9.1� Plate and piezoelectric patch specifications 

Item Plate Actuators Sensors 

Mass density (kg/m ) 7800 7600 1780 

Young’s modulus (GPa) 210 63 2 

Poisson’s ration 0.3 0.3 0.3 

Piezo-constant d  (m/V)  37×10  30×10  

    

Piezo-constant e  (N/(V·m))  2.331 0.06 

Permittivity constant ε  (F/m)   8.85×10  

    

Thickness (m) 

Length (m) 

Width (m) 

Damping ratio 

0.001 

1.0 

2.0 

0.01 

0.0004 

 

 

 

0.0004 

 

 

 

 

Substituting the mode shape functions )/πsin()/πsin( ayqLxpU
pq
=  into Eqs. 

(9.26) and (9.27), we obtain the coefficients of the simply supported plate in the 

state matrix as 

pqi

a

ki
T

pa

q

qL

p

h

er

B ⋅
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+=
22

31
4

ρ
                          (9.41) 

pqi
e

i

ss

ik
T

pa

qL

qL

pa

S

ehr

C ⋅
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+=
33

31

ε
                           (9.42) 

in which  

)]/πcos()/π)][(cos(/πcos()/π[cos(
2121

ayqayqLxpLxpT
iiiipqi

−−=  

For simplicity, only the first four vibration modes of the plate and the shell 

have been taken into account because, generally, the first few vibration modes 

approximately reflect the exact vibration status. The initial conditions denoted by 

the generalized coordinate vector are given by: 

]2.03.04.05.0[)0(  ],0000[)0( == ηη � . 

The optimization problem, as previously formulated, is a non-linear optimization 

with constraints. In this case, besides the geometric constraints, a simple bound is 
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imposed on the feedback control gain matrix G, i.e., 0 < G
ij
 � 100. In order to 

ensure the system is asymptotically stable, an additional constraint is needed, 

det(G) � 0, where det(G) represents the determinant of the matrix G. 

Using the modified GA, for the simply supported plate, three cases with one to 

three pieces of piezoelectric patches are studied. The control parameters for the 

GA run are as follows. The population size, the crossover probability, the 

mutation probability and the maximum number of generations are set as 200, 0.8, 

0.05 and 300, respectively. The optimization results are shown in Table 9.2. The 

time behaviors of the vibration modes without control and with control using one 

to three pieces of piezoelectric patches are shown in Figs. 9.7 – 9.10. From Table 

9.2 and Figs. 9.7 – 9.10, it can be observed that the speed of decay of the vibration 

increases when more patches are used, which implies that the vibration of the 

structure can be controlled more effectively by using more patches with the 

optimized placement and size, as well as the feedback control gains. 

 

Table 9.2� Optimal S/As positions and feedback gains for simply supported plate 

Locations of patches 

N  

21 ii
xx − ������������������

21 ii
yy −  

Feedback gain matrix 

Objective function 

),( GX

�

ϕ  

1 0.0857–0.6925m, 0.1573–1.1902m �100� 0.1320 

    

2 

0.0985–0.4971m, 0.1658–1.3037m 

0.4971–0.8821m, 0.1540–1.1062m 
⎥

⎦

⎤

⎢

⎣

⎡

10017.40

74.96100

 
0.0690 

    

3 

0.0863–0.5021m, 0.1454–1.3409m 

0.5021–0.8226m, 0.1322–1.1908m 

0.8226–0.8227m, 0.5847–0.6026m ⎥

⎥

⎥

⎦

⎤

⎢

⎢

⎢

⎣

⎡

40.6574.2291.37

100100100

14.12100100

 

0.0497 

 

 

�

Fig. 9.7� Time response of 1  mode with different numbers of patches for simply supported plate 
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Fig. 9.8� Time response of 2  mode with different numbers of patches for simply supported plate 

 

Fig. 9.9� Time response of 3  mode with different numbers of patches for simply supported plate 

 

Fig. 9.10� Time response of 4  mode with different numbers of patches for simply supported plate 
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In order to investigate the distribution of the piezoelectric patches, different 

cases based on different controlled vibration modes are studied. In these cases, 

the feedback control gain matrix G  is set as a constant 10.0 to emphasize the 

optimal distribution of the piezoelectric patches. The first six vibration modes 

are considered with the initial conditions η(0)
T

=[0   0   0   0   0   0] and 

T

)0(η� =[0.5   0.4   0.3   0.2   0.2   0.1]. The optimal geometric distributions of the 

piezoelectric patches are shown in Table 9.3. The schematic illustration of Table 

9.3 is graphically shown in Fig. 9.11, in which the dashed line denotes the nodal 

line of the vibration modes and the areas filled with diagonals represent the 

piezoelectric patches bonded to the plate. In Table 9.3 and Fig. 9.11, the case of 

m=i, n=j, (i=1,2, j=1,2,3) means that i×j vibration modes are simultaneously 

considered. From the results, we can find that, for specific controlled vibration 

modes, the optimal distribution of piezoelectric S/As is located in the areas 

separated by the nodal lines to achieve optimal control effect. This implies that, 

for specific controlled modes, certain number of piezoelectric patches is needed to 

achieve optimal control effect. For example, for the case of m=1, n=1, i.e., only 

the first vibration mode is considered, one patch is adequate as the number of 

areas formed by the nodal lines is one; and for the case of m=2, n=3, i.e., 6 

vibration modes are considered, eight patches are required as there are eight areas 

formed by the nodal lines. The above finding is hereafter referred to as “nodal line 

separating patch.” 

In order to show that it is better to position the piezoelectric patches within the 

areas separated by the nodal lines and support the above two explanation points,  a 

design with two pieces of piezoelectric patches which are asymmetric and located 

across the nodal line, is investigated to compare the control effect with the case of 

m=2 and n=1. Assume the x coordinates of the edges of the two patches are 

x
11

=0.1130 m, x
12

=0.7 m, and x
21

=0.7 m, x
22

=0.8871 m, respectively. The y 

coordinates are the same as those obtained using the optimization method shown 

in Table 9.3. These two patches are schematically shown in Fig. 9.12. The 

objective function value for the case with piezoelectric patches located across the 

nodal line is 0.3117. However, for the case with piezoelectric patches located 

within the areas separated by nodal lines, the objective function value is 0.2982. 

From the objective function values, it is apparent that the latter is better. The time 

behaviors of the second vibration mode with the two piezoelectric patch designs 

are shown in Fig. 9.13. It can be seen that the vibration can be suppressed more 

effectively when the piezoelectric patches are located within the area separated by 

the nodal lines compared with the design that the piezoelectric patches are located 

across the nodal lines. 
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Table 9.3� Optimal S/A positions with various controlled modes for simply supported plate 

m=1 m=2 

n 

21 ii
xx − , 

21 ii
yy −  

21 ii
xx − , 

21 ii
yy −  

1 0.1290–0.8710 m, 0.2580–1.7420 m 

0.1130–0.5017 m, 0.2580–1.7420 m 

0.5017–0.8871 m, 0.2580–1.7420 m 

   

2 

0.1290–0.8710 m, 0.1919–1.0141 m 

0.1290–0.8710 m, 1.0141–1.8087 m 

0.1189–0.5015 m, 0.1908–1.0056 m 

0.1189–0.5015 m, 1.0056–1.8075 m 

0.5015–0.8811 m, 0.1908–1.0056 m 

0.5015–0.8811 m, 1.0056–1.8075 m 

   

3 

0.1290–0.8710 m, 0.1503–0.6807 m 

0.1290–0.8710 m, 0.6807–1.0667 m 

0.1290–0.8710 m, 1.0667–1.3948 m 

0.1290–0.8710 m, 1.3948–1.8568 m 

0.1150–0.5089 m, 0.1354–0.6578 m 

0.1150–0.5089 m, 0.6578–0.9894 m 

0.1150–0.5089 m, 0.9894–1.3263 m 

0.1150–0.5089 m, 1.3263–1.8540 m 

0.5089–0.8844 m, 0.1354–0.6578 m 

0.5089–0.8844 m, 0.6578–0.9894 m 

0.5089–0.8844 m, 0.9894–1.3263 m 

0.5089–0.8844 m, 1.3263–1.8540 m 

 

 

Fig. 9.11� Optimal geometric distributions of piezoelectric patches for different vibration modes 

of simply supported plate 
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Fig. 9.12� Two pieces of piezoelectric patches which are asymmetric and located across the 

nodal line (m = 2 and n = 1) 

 

Fig. 9.13� Time response of the second vibration mode of the simply supported plate for the two 

piezoelectric patch designs 

 

��Simply Supported Cylindrical Shell 

Consider the cylindrical shell shown in Fig. 9.2 with four edges simply supported. 

The material properties and dimensions of the system are listed in Table 9.4, 

which are cited from Yang et al. (2006). 

Substituting the mode shape functions )/πsin()/πsin(),(
*βββ qLxpxU

pq
=  

into Eqs. (9.18) and (9.19), we obtain the coefficients of the simply supported 

cylindrical shell in the state matrix as 

pqiaki
T

Rp

q

qL

p

r

Rpqh

e

B ⋅
⎪
⎭

⎪

⎬
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⎩
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pqi

s

e

i

s

ik
T

R

L

p

q

L

R

q

p

r

pq

L

S

eh

C ⋅
⎥

⎥

⎦

⎤

⎢

⎢

⎣

⎡

⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

++=
*

*

2

*

33

31

π β
ββ

ε
               (9.44) 

in which )]/πcos()/π)][cos(/πcos()/π[cos(
*

2

*

121
ββββ

iiiipqi
qqLxpLxpT −−= . 

 

Table 9.4� Cylindrical shell and piezoelectric patch specifications 

Item Shell Actuators Sensors 

Mass density (kg/m ) 7800 7600 1780

Young’s modulus (GPa) 210 1.6 1.6 

Poisson’s ration 0.3 0.3 0.3 

Piezo-constant d  (m/V)  6×10  30×10  

    

Piezo-constant e  (N/(V·m)) 

Permittivity constant ε  (F/m) 

 

0.0096 

 

0.048 

8.85×10  

    

Thickness (m) 

Length (m) 

Curvature angle (rad) 

Radius (m) 

Damping ratio 

0.001 

1.0 

π/3 

1.2 

0.01 

0.0004 0.0004 

 

Similar to the simply supported plate model, the first four modes are 

considered to be the controlled modes. The initial conditions and the control 

parameters for the modified GA are the same as those for the plate model. 

Again, three cases with one to three pieces of piezoelectric patches are studied. 

The optimization results are shown in Table 9.5. The time behaviors of the vibration 

modes without control and with control using one to three pieces of piezoelectric 

patches are shown in Figs. 9.14 – 9.17. From Table 9.5 and Figs. 9.14 – 9.17, 

similar conclusion can be drawn that the control effect can be significantly 

enhanced when more pieces of patches are used. 

 

Table 9.5� Optimal S/A positions and feedback gains for simply supported cylindrical shell 

Location of the patches 

Np 

21 ii
xx − ,           

21 ii
ββ −  

Feedback 

gain matrix 

Objective 

Function 

),( GX

�

ϕ  

1 0.0879–0.7185 m, 0.0767–0.5514 rad �100� 0.0052 

    

2 

0.0866–0.7045 m, 0.0851–0.5130 rad 

0.3514–0.9175 m, 0.5130–0.9615 rad 
⎥

⎦

⎤

⎢

⎣

⎡

1000

68.1100

 
0.0034 

    

3 

0.0962–0.7660 m, 0.0870–0.5035 rad 

0.3769–0.8042 m, 0.5036–0.9880 rad 

0.8042–0.8693 m, 0.5606–0.8623 rad ⎥

⎥

⎥

⎦

⎤

⎢

⎢

⎢

⎣

⎡

98.998.9827.1

10010017.0

58.019.0100

 0.0027 
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Optimal geometric distributions of the piezoelectric patches for specific 

controlled vibration modes are also calculated. The results are listed in Table 9.6 

and plotted in Fig. 9.18. It is observed that, similar to the simply supported plate 

model, for specific controlled vibration modes the optimal distribution of 

piezoelectric S/As is located in the areas separated by the nodal lines to achieve 

optimal control effect; that is, the conclusion of “nodal line separating patch” is 

applicable. 

 

Fig. 9.14� Time response of 1  mode with different numbers of patches for simply supported 

cylindrical shell 

 

Fig. 9.15� Time response of 2  mode with different numbers of patches for simply supported 

cylindrical shell 
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Fig. 9.16� Time response of 3  mode with different numbers of patches for simply supported 

cylindrical shell 

 

 

 

Fig. 9.17� Time response of 4  mode with different numbers of patches for simply supported 

cylindrical shell 
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Table 9.6 � Optimal S/A positions with various controlled modes for simply supported 

cylindrical shell 

m=1 m=2 

n 

21 ii
xx − , 

21 ii
ββ −  

21 ii
xx − , 

21 ii
ββ −  

1 0.1290–0.8710 m, 0.1352–0.9121 rad 

0.0992–0.5000 m, 0.1351–0.9121 rad 

0.5000–0.9009 m, 0.1351–0.9121 rad 

   

2 

0.1290–0.8710 m, 0.0741–0.5221 rad 

0.1290–0.8710 m, 0.5252–0.9731 rad 

0.1133–0.5005 m, 0.0751–0.5237 rad 

0.5005–0.8866 m, 0.0751–0.5237 rad 

0.1133–0.5005 m, 0.5237–0.9721 rad 

0.5005–0.8866 m, 0.5237–0.9721 rad 

   

3 

0.1290–0.8715 m, 0.0787–0.3564 rad 

0.1290–0.8715 m, 0.3564–0.5585 rad 

0.1290–0.8715 m, 0.5585–0.7303 rad 

0.1290–0.8715 m, 0.7303–0.9722 rad 

0.1190–0.4967 m, 0.0418–0.3346 rad 

0.4967–0.8832 m, 0.0418–0.3346 rad 

0.1190–0.4967 m, 0.3346–0.5190 rad 

0.4967–0.8832 m, 0.3346–0.5190 rad 

0.1190–0.4967 m, 0.5190–0.6897 rad 

0.4967–0.8832 m, 0.5190–0.6897 rad 

0.1190–0.4967 m, 0.6897–0.9638 rad 

0.4967–0.8832 m, 0.6897–0.9638 rad 

�

Fig. 9.18� Optimal geometric distributions of piezoelectric patches with different vibration 

modes of simply supported cylindrical shell 

9.1.5.3� Clamped-Simply Supported Plate 

One similarity of the previous two examples is that the boundary conditions are 

symmetric. In this example, un-symmetric boundary conditions are considered to 

examine whether the above finding of “nodal line separating patch” is still applicable.  

Consider a plate with un-symmetric boundary conditions, i.e., three edges 

simply supported and one edge clamped (Fig. 9.4) where the edge y=a is clamped. 
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The material properties and dimensions of the system are identical with the simply 

supported plate, as listed in Table 9.1. 

In order to investigate the optimal geometric distributions of the piezoelectric 

patches for specific vibration modes, the first six vibration modes with the 

following initial conditions are considered: 

]5.04.03.02.02.01.0[)0(

]000000[)0(

T

T

=

=

η

η
�

 

The feedback control gain matrix G is set as a constant 100.0 to emphasize the 

optimal distribution of the piezoelectric patches. 

The mode shape function U
pq

 of the clamped-simply supported plate can be 

expressed as: 

)/πsin()]sinh()[sin( LxpyryU
pqpqpqpq

⋅⋅−= νλ ,               (9.45) 

where 
22222

/π Lp
pqpq
−= βλ ; )sinh(/)sin( aar

pqpqpq
⋅⋅= νλ ; 

22222

/π Lp
pqpq
+= βν ; 

0

2

/ Dh
pqpq

ρωβ = ; )]1(12/[
23

0
μ−= EhD ; and 

pq
β  satisfies the following 

frequency equation: 

pq

pq

pq

pq
ava

νλ
λ )tanh()tan(

=                                       (9.46) 

Substituting Eq. (9.45) into Eqs. (9.26) and (9.27), the coefficients in the state 

matrix are obtained as: 

pqi

pq

a

ki
T

hN

er

B ⋅−=
ρ

31

 and 
pqi

e

i

ss

ik
T

S

Lehr

C ⋅=
33

31

ε
                  (9.47) 

where  

4/)1()8/()2sinh()8/()2sin(        

)/()]sinh()cos(        

)sin()cosh([

22

22

−+−+

+⋅

−⋅=

pqpqpqpqpqpq

pqpqpqpq

pqpqpqpqpqpq

raara

aa

aarN

ννλλ

νλνλ

λλνν

        (9.48) 

}/)]cosh()[cosh(        

/)]cos(){[cos(        

)]/πcos()/π[cos()π/(

21

21

21

2

pqipqipqpq

pqipqipq

iipqpqi

yyr

yy

LxpLxppT

ννν
λλλ

β

−−

−⋅

−⋅=

                           (9.49) 

Using the above coefficients, optimal geometric distributions of the piezoelectric 

patches for specific controlled vibration modes are calculated. The results are 
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listed in Table 9.7 and plotted in Fig. 9.19. Similar to the simply supported plate 

and shell models, it is found that the conclusion of “nodal line separating patch” is 

still applicable to the un-symmetric boundary conditions studied in this example.  

 

Table 9.7� Optimal S/A positions with various controlled modes for clamped-simply supported plate 

m=1 m=2 

n 

21 ii
xx − , 

21 ii
yy −  

21 ii
xx − , 

21 ii
yy −  

1 0.1290–0.8710 m, 0.2324–1.5421 m 

0.0678–0.4679 m, 0.2415–1.6184 m 

0.5322–0.9322 m, 0.2415–1.6184 m 

2 

0.1290–0.8710 m, 0.1246–0.8585 m 

0.1290–0.8710 m, 0.9832–1.6828 m 

0.0695–0.4852 m, 0.1301–0.9072 m 

0.0695–0.4852 m, 0.9733–1.7294 m 

0.5148–0.9305 m, 0.1301–0.9072 m 

0.5148–0.9305 m, 0.9733–1.7294 m 

3 

0.1290–0.8710 m, 0.0996–0.6230 m 

0.1290–0.8710 m, 0.6230–0.9140 m 

0.1290–0.8710 m, 0.9140–1.2396 m 

0.1290–1.8710 m, 1.2396–1.7293 m 

0.0668–0.4579 m, 0.0990–0.6179 m 

0.0668–0.4579 m, 0.6179–0.9121 m 

0.0668–0.4579 m, 0.9121–1.2531 m 

0.0668–0.4579 m, 1.2531–1.7842 m 

0.5423–0.9332 m, 0.0990–0.6179 m 

0.5423–0.9332 m, 0.6179–0.9121 m 

0.5423–0.9332 m, 0.9121–1.2531 m 

0.5423–0.9332 m, 1.2531–1.7842 m 

�

�

Fig. 9.19� Optimal geometric distributions of piezoelectric patches with different vibration 

modes of clamped-simply supported plate 

 

This phenomenon could be physically explained by the following two points. 

First, at both sides of the nodal line, the signs of the strains of the vibration mode 

are opposite (the strain is related to the second order derivative of the vibration 

mode). Fig. 9.20 illustrates the second mode shapes of the simply supported plate, 

simply supported cylindrical shell and clamped-simply supported plate, and the 
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corresponding second order derivatives with respect to y (or β) which are related 

to the strains at the y (or β) direction. It can be observed that at both sides of the 

nodal line, the signs of the strains are opposite for all these structures. If a 

piezoelectric sensor locates across the nodal line, the output voltage which 

depends on the integration of strain over the surface of the sensor will decrease 

because the two sides of the nodal line will generate opposite charges over the 

sensor, which counteract each other. Thus, the sensor signal fed back to the 

actuator will decrease or even become nil. Accordingly, the control force 

generated by the actuator will become smaller and the control effect will be 

impaired. Second, at both sides of the nodal line, the vibration of the structure has 

opposite directions (Fig. 9.20). If a piezoelectric actuator locates across the nodal 

line, the control force generated by the actuator will suppress the vibration at one 

side, but accelerate the vibration at the other side. Thus the entire control effect 

contributed by the control force is weakened.  

�

Fig. 9.20� 2  modal shapes and corresponding 2  order derivatives with respect to y (β). 

(a) Simply supported plate; (b) Simply supported cylindrical shell; (c) clamped-simply supported 

plate 
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The conclusion that the optimal distribution of piezoelectric S/As is located in 

the region separated by the vibration nodal lines for the simply supported plate, 

simply supported cylindrical shell and clamped-simply supported plate structures 

provides a meaningful and referable criterion for practical positioning of 

piezoelectric patches. However, applicability of the above conclusion for other 

types of plates/shells with different boundary conditions needs further 

investigation. 

9.2� Optimal Excitation of Piezoelectric Plates and Shells 

9.2.1� Introduction 

The applications of piezoelectric materials are usually associated with a host 

structure, such as beam or plate. Several analytical and numerical models have 

been introduced in the literature to describe the behaviors of structures with 

piezoelectric actuators. In addition to the extensive studies on the interactions 

between S/As and host structures, an important issue is how to optimally place the 

sensors and actuators on the host structures. Appropriate placement of actuators 

would promote system efficiency, improve controllability and observability, as 

well as save material and energy. As mentioned in Section 9.1.1, several 

researchers have studied the optimal placement of piezoelectric S/As from the 

vibration control perspective. 

In many engineering applications, due to the assembly process, plates are 

placed on elastic media which act as elastic foundations, and subjected to in-plane 

forces. Furthermore, previous researches on optimal placement of sensors and 

actuators have focused on beam and plate vibration control. In certain applications, 

excitation of vibration is desirable. Therefore, it is meaningful to study the optimal 

placement of actuators from the perspective of maximizing the plate/shell 

vibration. However, in the literature, this kind of optimal placement of PZT 

actuators has received little attention.  

In this section, an analytical model of a simply supported rectangular plate 

subjected to in-plane forces, resting on an elastic foundation and actuated by a 

PZT actuator, is introduced. The formulation and solution procedures are then 

applied to a simply supported cylindrical shell on an elastic foundation actuated by 

a pair of collocated PZT actuators. Based on the analytical solutions obtained, the 

optimal placement of PZT actuator in terms of maximizing the plate/shell 

deflection is calculated and discussed. A simple yet general procedure to 

determine the optimal excitation locations of the PZT actuator is presented. 
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9.2.2� Piezoelectric Actuated Plates 

��Problem Formulation 

Fig.9.21 shows a rectangular plate with length a, width b
 
and thickness h, bonded 

on an elastic foundation. The plate is bonded with a PZT actuator of thickness h
p
 

on the surface. The PZT actuator is assumed to be perfectly bonded and its 

stiffness is neglected due to its limited contribution to the dynamic behavior of the 

plate. x, y and z are the global coordinates defined in the mid-plane of the plate, 

and ξ and η are the normalized coordinates in the xy plane. 

Under plane stress condition, the constitutive relations of the plate are 

1 0

1 0

1

0 0 1

v

E

v

v

σ ε
σ ε

ν
σ ε

⎡ ⎤ ⎡ ⎤
⎡ ⎤

⎢ ⎥ ⎢ ⎥
⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥−

⎢ ⎥ ⎢ ⎥
⎢ ⎥−
⎣ ⎦

⎣ ⎦ ⎣ ⎦

            (9.50) 

where σ
xx

, σ
yy

 and σ
xy

 are the normal stress in the x direction, normal stress in the y 

direction and shear stress in the xy plane, respectively; ε
xx

, ε
yy

 

and ε
xy

 are the 

corresponding normal and shear strains; E is the Young’s modulus of the plate; 

and ν is the Poisson’s ratio of the plate. 

 

Fig. 9.21� (a) Plate and PZT actuator system; (b) Plate and PZT actuator coordinate system 
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The strain-displacement relations of von Karman’s plate theory are 

1

( )

2

1

( )

2

2

u w w

z

x xx

v w w

z

y yy

u v w w w

z

y x x y x y

ε
ε
ε

⎡ ⎤∂ ∂ ∂− +⎢ ⎥

∂ ∂∂⎢ ⎥⎡ ⎤

⎢ ⎥⎢ ⎥ ∂ ∂ ∂= − +⎢ ⎥⎢ ⎥ ∂ ∂∂⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ∂ ∂ ∂ ∂ ∂
⎢ ⎥+ − +
∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

                    (9.51) 

where u, v and w are the displacements of mid-plane of the plate in the x, y and z 

directions, respectively. 

Using the Hamilton’s principle, the governing equations of the plate can be 

derived as (Yang and Zhang, 2006) 

( , , )

2(1 ) 2(1 )1

Eh u Eh u Eh v u

h q x y t

x yx y t

ρ
ν νν

∂ ∂ ∂ ∂− − − + = −
+ − ∂ ∂− ∂ ∂ ∂

    (9.52) 

( , , )

2(1 ) 2(1 )1

Eh v Eh v Eh u v

h q x y t

x yy x t

ρ
ν νν

∂ ∂ ∂ ∂− − − + = −
+ − ∂ ∂− ∂ ∂ ∂

    (9.53) 

         ( , , )

w w w w

D w N N N N

x x y y y x x y

w w

h c kw q x y t

tt

ρ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞∇ − − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∂ ∂+ + + = −
∂∂

   (9.54) 

where ρ  is the material density of the plate; c is the plate damping per unit area; k 

is the stiffness of elastic foundation; / [12(1 )]D Eh ν= −  is the bending rigidity 

of the plate; dN zσ
−

= ∫ , dN zσ
−

= ∫  and dN zσ
−

= ∫  are the stress 

resultants in the x, y directions and the xy plane, respectively. The in-plane forces 

( , , )q x y t  and ( , , )q x y t  applied by the PZT actuator are 

( , , ) ( )[ ( ) ( )] [ ( ) ( )]q x y t E d V t x x x x H y y H y yδ δ= − − − − ⋅ − − −      (9.55) 

( , , ) ( )[ ( ) ( )] [ ( ) ( )]q x y t E d V t H x x H x x y y y yδ δ= − − − − ⋅ − − −      (9.56) 

where E
p
 is the Young’s modulus of the PZT actuator; d

31
 is the piezoelectric 

constant; V(t) is the voltage applied on the PZT actuator; x
1
, x

2
, y

1
 and y

2
 are the 

coordinates of the four corners of the PZT actuator (Fig.9.21); ( )δ ⋅  is the Dirac 

delta function and ( )H ⋅  is the Heaviside function; ( , , )

M M

q x y t

x y

∂ ∂
= +

∂ ∂
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with M
px

 and M
py

 being the moments applied by the PZT actuator which can be 

expressed as 

( ) [ ( ) ( )] [ ( ) ( )]

2

h h

M E d V t H x x H x x H y y H y y

+
= − − − − ⋅ − − −    (9.57) 

( ) [ ( ) ( )] [ ( ) ( )]

2

h h

M E d V t H y y H y y H x x H x x

+
= − − − − ⋅ − − −    (9.58) 

Since the transverse vibration is the main concern of this study, by assuming 

that the plate is subjected to constant in-plane forces N N= , N N=  and 

N
xy

=0, Eq.(9.54) can be simplified as: 

( , , )

w w w w

D w N N h c kw q x y t

tx y t

ρ∂ ∂ ∂ ∂∇ − − + + + = −
∂∂ ∂ ∂

         (9.59) 

The above equation can be normalized by letting 

x

a

ξ = , 

y

b

η =  and

a

b

β = , 

2

( , , )

NNw w w w w

a a

D D

q th w c w k

a a a w a

D D t D Dt

β β β
ξ ξ η η ξ η

ξ ηρ

∂ ∂ ∂ ∂ ∂+ + − −
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂+ + + = −
∂∂

               (9.60) 

where  

( , , )

( )( )

{[ ( ) ( )] [ ( ) ( )]

2

[ ( ) ( )] [ ( ) ( )]}

M M

q t

a a

E d V t h h

' ' H H

a

' ' H H

ξ ηβ
ξ η

ξ η

δ ξ ξ δ ξ ξ η η η η

β δ η η δ η η ξ ξ ξ ξ

∂ ∂
= +

∂ ∂
− +

= − − − ⋅ − − −

+ − − − ⋅ − − −

      (9.61) 

ξ ,ξ ,η  and η  are the normalized coordinates of the four corners of the PZT 

actuator (Fig. 9.21); and ( )'δ ⋅ is the derivative of the Dirac delta function. 

The governing equation of Eq. (9.60) is applicable to all thin plates regardless 

of the boundary conditions. Eq. (9.60) can be solved by the method of separation 

of variables. In this method, the solution can be assumed to be the product of a 

function of position ( , )Φ ξ η  and a function of time ( )f t . For a simply supported 

plate, the solution can be expressed as 

( , , ) sin( π )sin( π ) ( )w t m n f tξ η ξ η
∞ ∞

= =

=∑∑             (9.62) 
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Substituting the solution into Eq. (9.60), multiplying both sides with 

sin( π )sin( π )d dm nξ η ξ η∫ ∫  and using the mode orthogonality, we get 

( ) ( )

( ( π 2 π π ) π π )

4

( ) ( , , )sin( π )sin( π )d d

c

f t f t

h

ka D m m n n a N m a N n

a h

f t q t m n

h

ρ
β β β

ρ

ξ η ξ η ξ η
ρ

+

+ ⋅ + + + +
+

× = − ∫ ∫

�� �

 (9.63) 

Letting ,m m n n= = , 

2

c

h

Ω
ρ

= ,  

1

[ ( π 2 π π )

        ( π π )]

ka D m m n n

a h

a N m a N n

ω β β
ρ

β

= + ⋅ + +

+ +
                (9.64) 

and  

4

( , , ) ( , , ) sin( π )sin( π )d dQ t q t m n

h

ξ η ξ η ξ η ξ η
ρ

= − ∫ ∫           (9.65) 

Eq. (9.63) can be rewritten in a simple form as 

( ) 2 ( ) ( ) ( , , )f t f t f t Q tΩ ω ξ η+ + =�� �

                    (9.66) 

where ω
mm

 is the natural frequency of the plate and Q
mn

(ξ,η,t) represents the 

excitation force provided by the PZT actuator. 

The homogeneous solution to Eq.(9.66) is  

e e 0

( )

( )e 0

C C

f t

C C t

Ω Ω ω Ω Ω ω

Ω

Ω ω
Ω ω

− − − − + −

−

⎧ + − ≠⎪= ⎨
+ − =⎪⎩

   (9.67) 

If the PZT actuator is driven by a sinusoidal voltage, i.e., V(t)=V
0
sin(ωt) and 

Q
mn

(ξ,η,t)=Q
mn

(ξ,η)sin(ωt), the particular solution can be written as: 

( ) sin( ) cos( )f t C t C tω ω= +                             (9.68) 

where ω is the angular driving frequency of the PZT actuator. 
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Substituting Eq. (9.68) into Eq. (9.66), we obtain 

2

( ) sin cos

R

f t R t t

Ωωω ω
ω ω

= +
−

                    (9.69) 

where  

( , )

4 / ( )

Q

R

ξ η
ω ω Ω ω ω ω

=
− + −

                       (9.70) 

Substituting ( ) ( ) ( )f t f t f t= +  into Eq. (9.66) and incorporating the 

initial conditions of the problem shown below: 

d

0,   0

d

f

f

t
= == =                           (9.71) 

C
1
 and C

2
 become 

( , )

2 (2 2 )

Q

C

ω ξ η
Ω ω Ω ω ω Ω Ω ω

−
=

− + − + −
                  (9.72) 

( , )

2 (2 2 )

Q

C

ω ξ η
Ω ω Ω ω ω Ω Ω ω

=
− + − − −

                 (9.73) 

Thus, the final solution ( ) ( ) ( )f t f t f t= +  can be obtained from Eqs. 

(9.67), (9.69), (9.70), (9.72) and (9.73). 

If the damping of plate is negligible, i.e., c=0, we have Ω=0; thus 

0Ω ω− < . For this case, the plate deflection is  

( , )

sin( π )sin( π ) [sin sin ]

 

Q

w m n t t

ξ η ωξ η ω ω
ωω ω

∞ ∞

= =

= −
−∑∑       (9.74) 

The steady-state response of the deflection is  

( , )

sin( π )sin( π ) sin

Q

w m n t

ξ ηξ η ω
ω ω

∞ ∞

= =

=
−∑∑                  (9.75) 

From Eq. (9.65), ( , )Q ξ η  in Eq.(9.75) is  
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4

( , ) {[ ( ) ( )] [ ( ) ( )]

               [ ( ) ( )] [ ( ) ( )]}

               sin( π )sin( π )d d

M

Q ' ' H H

a h

' ' H H

m n

ξ η δ ξ ξ δ ξ ξ η η η η
ρ

β δ η η δ η η ξ ξ ξ ξ
ξ η ξ η

−
= − − − ⋅ − − −

+ − − − ⋅ − − −
×

∫ ∫

   (9.76) 

where ( ) / 2M E d V h h= − + . 

After integration, we obtain  

4

( , ) (cos( π ) cos( π ))(cos( π ) cos( π ))

M m n

Q m m n n

n ma h

βξ η ξ ξ η η
ρ

⎛ ⎞

= + − −⎜ ⎟

⎝ ⎠

   (9.77) 

By using the trigonometric formulas, the expression of the modal force can be 

transformed into 

16

( , ) sin( π )sin( π )sin( π )sin( π )

M m n

Q m n m r n r

n ma h
ξ η

βξ η ξ η
ρ

⎛ ⎞

= + ⋅ ⋅⎜ ⎟

⎝ ⎠

      (9.78) 

where ( ) / 2ξ ξ ξ= + , ( ) / 2η η η= + , ( ) / 2rξ ξ ξ= −  and ( ) / 2rη η η= − . 

ξ
0
 and η

0
 are the coordinates of the center of the PZT actuator in the ξ ��η plane, 

and r
ξ
 and r

η
 are the half dimensions of the PZT actuator in the ξ and η directions, 

respectively. 

Therefore, the steady-state solution to Eq. (9.60) with negligible plate damping 

is  

16 sin

( )sin( π )sin( π )

      sin( π )sin( π )sin( π )sin( π )

M t m n

w m n

n ma h

m r n r m nξ η

ω β ξ η
ρ ω ω

ξ η

∞ ∞

= =

= +
−

× ⋅ ⋅

∑∑
           (9.79) 

If 0N N= =  and 0k = , Eq. (9.79) remains unchanged in form, which is 

the steady solution to the forced vibration of a simply supported plate without in-

plane forces and elastic foundation. However, the natural frequency in Eq. (9.79) 

becomes ( π 2 π π ) / ( )D m m n n a hω β β ρ= + + , which is identical with 

Leissa’s formula (Leissa, 1973). This result implicitly validates our solution. 

��Illustrative Example 

With the solution given in Eq. (9.79), we can obtain the plate deflection at any 

specified time. Figs. 9.22 and 9.23 depict the deflections of a rectangular plate 
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with a=0.15m and β =1.5 excited by one PZT actuator at two different locations 

on the plate. The upper limits of m  and n  in Eq. (9.79) are set to be m=150 and 

n=50. The upper limits are chosen according to the convergence study as shown in 

Fig. 9.24. Figs. 9.22 and 9.23 are plotted for the time when the sinusoidal electric 

potential reaches its maximum value of 10 volts. The in-plane tensile force is 

N N= =10 N/m and the foundation stiffness is 7 10k = × N/m
3

. The material 

properties used in the calculation are listed in Table 9.8. 

 

Fig. 9.22� Deflection of rectangular plate actuated by one PZT actuator at center (ω=18849.6 rad/s) 

�

Fig. 9.23� Deflection of rectangular plate actuated by one PZT actuator at ξ=η=0.3 (ω=18849.6 rad/s) 
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�

Fig. 9.24� Convergence of Eq. (9.79) vs. m and n
 

 

Table 9.8� Material properties and constants for plate and PZT 

 

Young’s 

modulus 

(N/m ) 

Material 

density 

(kg/m ) 

Poisson’s 

ratio 

Dimension 

(mm) 

Electric 

potential (V) 

d

(m/V) 

Plate 7.03×10  2700 0.34 

a = 150 

h = 2 

N.A. N.A. 

       

PZT 7.94×10  N.A. 0.30 

l  = 0.1a 

l  =0.1aβ 

h  =0.2 

10 –1.3×10  

Note: N.A. means “not applicable” 

9.2.3� Piezoelectric Actuated Cylindrical Shell 

After solving the vibration problem of piezoelectric actuated plate, the formulation 

and solution procedure can be readily extended to piezoelectric actuated shell 

structures. Consider a thin cylindrical shell segment of length L, radius R, total 

cutout angle Φ and thickness h. The shell is bonded on an elastic foundation with 

stiffness k, and bonded with a pair of collocated PZT actuators with length l
p
, 

width Rθ
p
 and thickness h

p
, which are driven by equal but opposite electric fields. 

The PZT actuators are assumed to be small and perfectly bonded, and thus their 

stiffness can be neglected. 
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Fig. 9.25� Stress resultants on a shell element 

 

Fig.9.25 illustrates the stress resultants acting on a differential element of the 

cylindrical shell, where Q
x
 and Q

φ
 are the shear force resultants of shear stresses 

τ
xz

 and τ
φz

, respectively; N
x
, N

φ
 and N

xφ
 are the membrane forces in the x,

 
φ 

directions and the xφ plane, respectively; w is the transverse displacement of the 

shell; ρ is the material density; t is time; and M
x
, M

xφ
 and M

φ
 are the bending 

moments in the φz plane, twisting moment in the xφ plane and bending moment in 

the zx plane, respectively. 

According to equilibrium of the shell element in the radial direction, we have 

0

QQ w

R N R h Rkw

x t

ϕ
ϕ ρ

ϕ
∂∂ ∂+ + − − =

∂ ∂ ∂
                         (9.80) 

1 MM

Q

x R

ϕ

ϕ
∂∂

= +
∂ ∂

                                      (9.81) 

1M M

Q

x R

ϕ ϕ
ϕ ϕ

∂ ∂
= − +

∂ ∂
                                   (9.82) 

Substituting Eqs. (9.81) and (9.82) into Eq. (9.80), and considering that the 

moments M
x
 and M

φ
 and the force N

φ
 should include the contribution of the PZT 

actuators bonded on the shell, we obtain 

( )( ) 1

2

0

M M MM M

R N N

x Rx

w

R h Rkw

t

ϕ ϕ ϕ
ϕ ϕϕ ϕ

ρ

∂ ∂ −∂ −
+ + + −

∂ ∂∂ ∂
∂− − =
∂

          (9.83) 

where M , Mϕ  and Nϕ  are the bending moments and in-plane force provided 
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by the PZT actuators. Since the PZTs are collocated and driven by equal but 

opposite electric fields, the membrane force 0Nϕ = . 

Using the Donnell-Mushtari’s shell theory and considering the displacement 

relations for pure bending, 

w

u z

x

∂= −
∂

 and 

z w

v

R ϕ
∂= −
∂

, the motion equation can 

be obtained from Eq. (9.83) as 

1 6

2

2 2 2

2

w w w w R w R

R w h kw

D Dx x R x h t

R

F

D

ν ρ
ϕ ϕ

∂ ∂ ∂ ∂ ∂+ + − + + +
∂ ∂ ∂ ∂ ∂ ∂

= −

       (9.84) 

where 

1 MM

F

x R

ϕ

ϕ
∂∂

= +
∂ ∂

; 

12(1 )

Eh

D

ν
=

−
; and E  and ν  are the Young’s 

modulus and Poisson’s ratio of the shell, respectively. 

Letting x Lξ= and ϕ θΦ= , Eq. (9.84) can be normalized as 

2 1 2 6

2 2

2

R w w w w R w R

w h kw

D DL L R L h t

R

F

D

ν ρ
ξ Φ ξ θ Φ θ ξ
∂ ∂ ∂ ∂ ∂+ + − + + +
∂ ∂ ∂ ∂ ∂ ∂

= −

   (9.85) 

where  

1M M

F

L R

ξ θ

ξ Φ θ
∂ ∂

= +
∂ ∂

                                   (9.86) 

and  

2 [ ( ) ( )] [ ( ) ( )]eM M H H H H

ω
ξ ξ ξ ξ ξ ξ θ θ θ θ= − − − ⋅ − − −              (9.87) 

2 [ ( ) ( )] [ ( ) ( )]eM M H H H H

ω
θ θ θ θ θ θ ξ ξ ξ ξ= − − − ⋅ − − −               (9.88) 

Mξ  and Mθ  are the amplitudes of distributed moments in the x  and ϕ  directions, 

respectively, and can be expressed as ( ) / 2M M M E d V h hξ θ= = = + , where 

E
p
 is the Young’s modulus of PZT actuators; d

31
 is the piezoelectric constant; V is 

the voltage applied on the PZT actuators; ω  is the angular frequency of the 

electric field; and ξ , ξ , θ  and θ  are the normalized coordinates of the four 

corners of the PZT actuators. 
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Eq. (9.85) can also be solved by the method of separation of variables. For 

simply supported shell, the solution can be expressed as 

sin( π )sin( π )ew C m n

ωξ θ
∞ ∞

= =

=∑∑                          (9.89) 

Substituting Eq. (9.89) into Eq. (9.85), multiplying both sides by 

sin( π )sin( π )m nξ θ  and integrating on the shell domain, the solution to Eq. (9.85) 

is obtained as:  

4 sin( π )sin( π )

sin( π )sin( π )e

B n m

w m n

ωθ ξ ξ θ
ω ω

∞ ∞

= =

=
−∑∑          (9.90) 

where 

2 π π 2 π 6D m n m

k

h L R R L R h

νω
ρ Φ

⎡ ⎤
⎛ ⎞

⎢ ⎥= + + + +⎜ ⎟

⎢ ⎥⎝ ⎠
⎣ ⎦

 is the natural frequency 

of the shell; 

4

sin π sin π

2 2

lM m n

B m n

h nL mR Φ

ξ θ
ρ

⎛ ⎞⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

; ( ) / 2ξ ξ ξ= + ; 

( ) / 2θ θ θ= + ; lξ ξ ξ= − ; and θ θ θ= − .  

Eq. (9.90) is the solution of the radial displacement of the cylindrical shell 

actuated by a pair of collocated piezoelectric actuators. It is evident that Eq. (9.90) 

has the same form as Eq. (9.79). 

Fig. 9.26 shows the deformation of a cylindrical shell actuated by a pair of 

collocated PZT actuators located at the center of the shell. The radial displacement 

is in the order of 10
–3

 mm.  

 

Fig. 9.26� Deformation of cylindrical shell segment actuated by a pair of PZT actuators at 

center (ω = 5,155 rad/s) 
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9.2.4� Optimal Placement of PZT Actuator on Plate 

In this section, the optimal placement of PZT actuator in terms of maximizing the 

plate deflection is studied. When the electric potential reaches its maximum value, 

the maximum plate deflection may be positive or negative. To eliminate this effect, 

the absolute value of plate deflection |w| is considered. A computer program is 

implemented to calculate the plate deflection according to Eq. (9.79). In the 

calculation, a 19×19 grid is used to represent the PZT locations. The PZT actuator 

can be located at any of the grid node, and at each location, the maximum plate 

deflection is calculated. After obtaining the maximum deflections corresponding 

to all the 361 PZT actuator locations, the relationship between the maximum plate 

deflection and PZT actuator locations is revealed. The parameters used in the 

calculation are listed in Table 9.8. 

��Driving Frequencies Close to Natural Frequencies 

Numerical Results of PZT Optimal Locations 

Fig. 9.27 shows the results when the driving frequencies are close to the resonant/ 

natural frequencies of the first nine vibration modes. The driving frequencies are 

set to be 5 Hz less than the natural frequencies. The contour plots in Fig. 9.27 

illustrate the relationship between the maximum plate deflection and the PZT 

actuator location. This relationship is associated with the optimal location pattern 

of the PZT actuator. For a specific PZT actuator location, the maximum plate 

deflection is represented by the color of this location which can be read from the 

color bar. Fig. 9.28 shows the first nine vibration mode shapes with the absolute 

values of mode shapes being adopted. Comparing Fig. 9.27 with Fig. 9.28, it can 

be observed that the pattern of optimal location of the PZT actuator with driving 

frequency close to the natural frequency of mode (m,n) is identical with the 

vibration mode shape ( , )m n , for , {1, 2,3}m n∈ .  
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m 1 2 3 

1 

2 

3 

 

Fig. 9.27� Optimal location patterns of a PZT actuator on a rectangular plate with β = 1.5 at 

driving frequencies close to natural frequencies 

 

m 1 2 3 

1 

2 

3 

 

Fig. 9.28� First nine mode shapes of rectangular plate 

n�

n�
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Combined Position Mode Function (CPMF) 

The process of finding the optimal locations of the PZT actuator is essentially 

equivalent to maximizing the plate deflection |w| by altering the four variables 

, ,ξ η ξ  and η , the values of which can be determined from the following 

equations: 

πcos( π )sin( π )sin( π )sin( π ) 0

w

A m m n m nξ η ξ η
ξ

∞ ∞

= =

∂ = =
∂ ∑∑           (9.91) 

πsin( π )cos( π )sin( π )sin( π ) 0

w

A n m n m nξ η ξ η
η

∞ ∞

= =

∂ = =
∂ ∑∑            (9.21) 

πsin( π )sin( π ) cos( π )sin( π ) 0

w

A m m n m nξ η ξ η
ξ

∞ ∞

= =

∂ = =
∂ ∑∑            (9.93) 

πsin( π )sin( π )sin( π )cos( π ) 0

w

A n m n m nξ η ξ η
η

∞ ∞

= =

∂ = =
∂ ∑∑            (9.94) 

where 

16 sin

sin( π )sin( π )

M t m n

A m r n r

n ma h

ξ η
ω β

ρ ω ω
⎛ ⎞

= + ⋅ ⋅⎜ ⎟−
⎝ ⎠

.  

Subtracting Eq. (9.91) from Eq. (9.93), and Eq. (9.92) from Eq. (9.94), we obtain  

πsin( π )sin( π )sin( π( )) 0A m n n mη η ξ ξ
∞ ∞

= =

− =∑∑              (9.95) 

πsin( π )sin( π )sin( π( )) 0A n m m nξ ξ η η
∞ ∞

= =

− =∑∑               (9.96) 

Since sin( π )n η  and sin( π )n η  should not be zero when |w| reaches maximum, 

it is evident that, for any A
mn

, Eq. (9.95) holds only for /K mξ ξ− = , where K
m
 

is an integer in domain ( , )m m− . From Eq. (9.96), /K nη η− =  can also be 

concluded, where K  is an integer in domain ( , )n n− . By adding Eq. (9.91) to Eq. 

(9.93), and Eq. (9.92) to Eq. (9.94), another set of relations can be obtained as 

/K' mξ ξ+ =  and /K' nη η+ = , where K'  and K'  are integers in 

domains (0,2m) and (0,2n), respectively. The two sets of relations result in four 

combinations of possible values of ( , )ξ η , which are ( / , / )K m K nξ η+ + , 

( / , / )K m K' nξ η+ − , ( / , / )K' m K nξ η− +  and ( / , / )K' m K' nξ η− − . 
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Substituting these relationships into |w|, the maximum plate deflection can be 

expressed as 

( 1) sin ( π )sin ( π )w A m nξ η
∞ ∞

+

= =

= −∑∑                    (9.97) 

( 1) sin ( π )sin ( π )w A m nξ η
∞ ∞

+ −

= =

= −∑∑                 (9.98) 

( 1) sin ( π )sin ( π )w A m nξ η
∞ ∞

+ −

= =

= −∑∑                 (9.99) 

( 1) sin ( π )sin ( π )w A m nξ η
∞ ∞

+ −

= =

= −∑∑              (9.100) 

The maximum of Eqs. (9.97) to (9.100)� is the equation that the optimal 

locations of PZT actuator should satisfy. Since Eqs. (9.97) to (9.100) also satisfy 

the inequality of  

sin ( π )sin ( π )w A m nξ η
∞ ∞

= =
≤∑∑                      (9.101) 

where the equal sign holds only when all coefficients of  sin ( π )sin ( π )m nξ η  

in Eqs. (9.97) to (9.100)� have the same sign. Thus, the optimal locations of PZT 

actuator is governed by 

sin ( π )sin ( π )w A m nξ η
∞ ∞

= =
=∑∑                    (9.102) 

The PZT actuator location ( , )ξ η  which maximizes Eq. (9.102) is the optimal 

locations of the PZT actuator. Since the term sin ( )sin ( )m nχ πξ πη=  in Eq. 

(9.102) is a function of locations of the PZT actuator, it is hereby named as the 

“position mode function” (PMF). 

For a rectangular plate, a natural frequency ω
mn

 generally corresponds to a 

unique vibration mode (m,n). Thus, when the PZT driving frequency ω approaches 

ω
mn

, only one PMF sin ( π )sin ( π )m nχ ξ η=  is amplified. Neglecting all the 

other terms that are not amplified in Eq. (9.102), the optimal locations of PZT 

actuator can be found by  
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0   and   0

χ χ
ξ η

∂ ∂
= =

∂ ∂
                                 (9.103) 

in the conditions of 0

χ χ
ξ η ξ
χ χ

ξ ηη

∂ ∂
∂ ∂ ∂

<
∂ ∂

∂ ∂∂

, 0

χ
ξ

∂
<

∂
 and 0

χ
η

∂
<

∂
.  

The solutions are 

4 1

2

N

m

ξ ±=  and 

4 1

2

N

n

η ±= , where N=0,1,2,…, and 0<ξ
0
, 

η
0
<1. These solutions coincide with the optimal locations shown in Fig.9.27. For 

example, if the driving frequency is close to the natural frequency of vibration 

mode (1,2), the optimal locations of the PZT actuator are (1/2,1/4) and (1/2,3/4), 

which are consistent with the results shown in Fig. 9.27.  

The optimal locations are actually identical with the anti-nodes of the 

respective vibration modes. This observation agrees with the FE analysis results of 

optimal positions of a piezoelectric patch on a simply supported rectangular plate 

obtained by Ip and Tse (2001). Their optimal locations were obtained from the 

controllability perspective, in which the objective function of controllability was 

equivalent to maximizing the maximum transverse vibration of plate, which is also 

the focus of this section. The difference lies in the methods used. Ip and Tse used 

FEM to study this problem while in this section an analytical method is employed. 

For certain rectangular plates, two or more different vibration modes, 

(m
1
,n

1
),(m

2
,n

2
), ..., (m

N
,n

N
), may have the same or very close natural frequency. 

When the driving frequency approaches this natural frequency, all these 

vibration modes will be amplified. For this case, the optimal locations of PZT 

can be found through a combination of PMFs of these vibration modes, i.e., 

...A A AΨ χ χ χ= + + + , which is named as the combined 

position mode function (CPMF). The optimal locations of the PZT actuator can be 

obtained by  

0   and   0

Ψ Ψ
ξ η
∂ ∂= =
∂ ∂

                                    (9.104) 

in the conditions of 0

Ψ Ψ
ξ η ξ
Ψ Ψ

ξ ηη

∂ ∂
∂ ∂ ∂

<
∂ ∂

∂ ∂∂

, 0

Ψ
ξ
∂ <
∂

 and 0

Ψ
η
∂ <
∂

. 

Generally, the analytical solution to Eq. (9.104) is not attainable. However, the 

CPMF can be plotted in the ξ η -plane, through which the PZT optimal locations 

can be identified. 
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Fig. 9.29 illustrates an example for such a case. The natural frequency of 

vibration mode (2,2) is equal to that of vibration mode (4,1), which is 45294.85 

rad/s. It is observed that the optimal location patterns are neither similar to 

vibration mode (2,2) nor vibration mode (4,1). Nevertheless, the plot of CPMF, 

Ψ=χ
22

+χ
41

, as shown in Fig. 9.30, agrees well with the pattern obtained by the 

computer program when A
22

=A
41

, as shown in Fig. 9.29. 

 

Fig. 9.29� Optimal locations of a PZT actuator on rectangular plate with driving frequency close 

to natural frequency of vibration modes (2,2) and (4,1) 

 

Fig. 9.30� Plot of CPMF Ψ χ χ= +  
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As a special case of rectangular plate, any two symmetric vibration modes of a 

square plate share the same natural frequency. Therefore, the CPMF for a square 

plate can be expressed as Ψ=|A
mn

|χ
mn

+|A
nm

|χ
nm

. Since r
ξ 
= r

η
 and ω

mn
=ω

nm
 for the 

square plate, A
mn

=A
nm

. Thus, the CPMF can be simplified as Ψ=χ
mn

+χ
nm

. Fig. 9.32 

shows the contour plots of the CPMFs for m,n�{1,2,3}. Compared with the 

results from the computer program (Fig. 9.31), it is evident that the patterns 

indicated in Fig. 9.32 are almost the same as those in Fig. 9.31 and the optimal 

locations in Fig. 9.32 are exactly the same as those determined from Fig. 9.31. 

This means that the CPMFs can be used to determine the optimal placement of the 

PZT actuator.  

 

m 1 2 3 

1 

 

2 

3 

 

Fig. 9.31� Optimal location patterns of a PZT actuator on a square plate at driving frequencies 

close to natural frequencies 

 

n�



9.2� Optimal Excitation of Piezoelectric Plates and Shells 381 

 

m 1 2 3 

1 

2 

3 

 

Fig. 9.32� Plots of CPMFs for square plate 

 

For the square plate, the mode shapes are identical to those shown in Fig. 9.28. 

It is worth noting that, for a vibration mode (m,n), the optimal location pattern in 

Fig. 9.31 or Fig. 9.32 is different from the mode shape in Fig.9.28 for m n≠ , and 

they are the same for m=n, unlike the rectangle plate where the optimal location 

patterns are always identical with their corresponding mode shapes (Figs. 9.27 

and 9.28). This observation can be explained as follows. For the rectangular 

plate, the optimal location pattern can be determined from a single PMF 

sin ( π )sin ( π )m nχ ξ η=  which has the same plot as the mode shape (m,n). 

However, for the square plate, the optimal location pattern is determined by the 

CPMF Ψ χ χ= + = sin ( π )sin ( π ) sin ( π )sin ( π )m n n mξ η ξ η+  which 

has different plot from the mode shape (m,n) when m n≠ , and has the same as the 

mode shape when m=n.  

��Driving Frequencies Not Close to Natural Frequencies 

In most situations, the driving frequencies may not be close to any natural 

frequency. In order to study the optimal locations of PZT actuator on rectangular 

plate for such situations, three frequencies within the interval of two adjacent 

natural frequencies are selected to be the driving frequencies. These three 

n�
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driving frequencies are ( ) / 4ω ω ω ω= + − , ( ) / 2ω ω ω= +  and 

3( ) / 4ω ω ω ω= + − , where ω  and ω  are the two adjacent natural 

frequencies and ω ω< .  

From Eq. (9.102), when the driving frequency ω is not close to any natural 

frequency and ω ω ω< < , where ω  and ω  are the two adjacent 

natural frequencies, the two adjacent PMFs χ  and χ  will have the largest 

weights and contribute the most to the deflection. Thus, the pattern of optimal 

locations can be approximately determined by the CPMF, 

A AΨ χ χ= + . 

Fig. 9.33 shows the results of optimal locations of the PZT actuator for these 

three driving frequencies. For a specific mode in Fig. 9.33, the first row shows the 

optimal location patterns calculated by the computer program while the second 

row presents the predictions obtained from the CPMFs. It is apparent from Fig. 

9.33 that the patterns of optimal locations are similar to each other within two 

adjacent natural frequencies. Transitions can be observed with driving frequencies 

changing from ω
1
 to ω

3
. The optimal patterns of ω

1
 are similar to the previous 

resonance patterns while the optimal patterns of ω
3
 are similar to the next 

resonance patterns. It can also be observed that, in the second row of each 

vibration mode, the optimal locations predicted by the CPMFs match well with 

those obtained by the computer program. Although the patterns are not exactly the 

same, the major optimal locations are quite similar. The same conclusion can be 

drawn for the square plate, where the results are shown in Fig. 9.34. Both 

Figs. 9.33 and 9.34 indicate that the CPMFs can successfully identify the optimal 

locations of the PZT actuator driven by non-resonant frequencies.  

 

(m,n) 

Close to natural 

frequency 
4

ω ω
ω

−
+  

2

ω ω+
 

3( )

4

ω ω
ω

−
+  

(1,1) 

 

Fig. 9.33� Optimal location patterns of a PZT actuator on a rectangular plate with driving 

frequencies not close to natural frequencies (Non-dimensional scales are used as in Figs. 9.31 

and 9.32) 
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(2,1) 

 

(1,2) 

(3,1) 

 

(1,3) 

Fig. 9.33 Contiuned 
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(2,3) 

 

(4,2) 

 

(5,1) 

(3,3) 

 

Fig. 9.33 Contiuned 
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(m,n) 

Close to natural 

frequency 
4

ω ω
ω

−
+  

2

ω ω+
 

3( )

4

ω ω
ω

−
+  

(1,1) 

 

(1,2) 

(2,2) 

(1,3) 

Fig. 9.34 � Optimal location patterns of a PZT actuator on a square plate with driving 

frequencies not close to natural frequencies (Non-dimensional scales are used as in Figs. 9.31 

and 9.32)�
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(2,3) 

(1,4) 

(3,3) 

 

Fig. 9.34 Contiuned 

��General Procedure to Determine PZT Optimal Locations via CPMF  

In summary, the optimal location pattern of the PZT actuator can be represented 

by the CPMF, ...A A AΨ χ χ χ= + + + . When the driving 

frequency is close to a natural frequency, the CPMF is the sum of all PMFs at 

resonance. When the driving frequency is not close to any natural frequency, the 

CPMF is composed of two PMFs whose corresponding natural frequencies are 

adjacent to the driving frequency. If more than one vibration modes share the 

same natural frequency, the corresponding PMFs should be added in the CPMF. 

Therefore, the general procedure to determine the optimal locations of a PZT 

actuator on a rectangular/ square plate can be summarized as follows. 

(1) Determine the natural frequencies of the plate by using Eq. (9.64), and find 

whether there are more than one vibration modes that share the same natural 

frequency.  
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(2) Construct the CPMF. If the driving frequency ω is close to a natural 

frequency ω , the CPMF will consist of the corresponding PMF, i.e., 

Ψ χ= . If two or more different vibration modes, (m
1
,n

1
),(m

2
,n

2
),...,(m

N
,n

N
) 

share the same natural frequency, the CPMF can be expressed as 

...A A AΨ χ χ χ= + + + . If the driving frequency ω is not 

close to any natural frequency, i.e., ω ω Δ− > , where i,j are arbitrary natural 

numbers and Δ  is an empirical quantity, say 31.4 (10 Hz) for the examples in this 

section, and ω ω ω< < , where ω  and ω  are the two adjacent natural 

frequencies, then the CPMF is A AΨ χ χ= + . If there are other 

modes sharing the same natural frequency as ω  or ω , the corresponding 

PMFs should be added in the CPMF. 

(3) Finally, plot the CPMF in the ξ
0
η
0
-plane, and the locations with the 

maximum values on the CPMF plot are the optimal locations of the PZT actuator 

on the plate. 

The computer program mentioned earlier in this chapter uses Eq. (9.79) to 

calculate the plate deflections for all the possible PZT locations, where the natural 

frequencies must be obtained beforehand. Using the proposed general procedure, 

which only requires calculation of the natural frequencies of the plate and the 

CPMF, the computational cost can be significantly reduced.  

9.2.5� Optimal Placement of PZT Actuator on Shell 

After determining the optimal locations of PZT actuator on plate, the procedure 

developed in Section 9.2.4 can be readily used for the optimal placement of PZT 

actuator on shell. The radial vibration solution of a simply-supported cylindrical 

shell actuated by a pair of collocated PZT actuators has been obtained in Eq. 

(9.90). This solution is similar in form to the solution of plate vibration. Thus, the 

following relationship can be used,  

sin ( π )sin ( π )ew A n m

ωθ ξ
∞ ∞

= =

=∑∑              (9.105) 

where 
2 π π 2 π 6D m n m

h L R R L R h

νω
ρ Φ

⎡ ⎤
⎛ ⎞

⎢ ⎥= + + +⎜ ⎟

⎢ ⎥⎝ ⎠
⎣ ⎦

 is the natural frequency of 

the shell; 
16

sin π sin π

2 2

lM m n

A m n

h nL mR

ξ θ
ω ω ρ Φ

⎛ ⎞⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

; ( ) / 2ξ ξ ξ= + ; 

( ) / 2θ θ θ= + ; lξ ξ ξ= − ; and θ θ θ= − .  
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The CPMF for shell vibration is 

A AΨ χ χ= +                          (9.106) 

By plotting Eq. (9.106), the optimal locations of the PZT pair can be 

determined. An example is calculated for illustration. The parameters used are 

listed in Table 9.9.  

 

Table 9.9� Material properties and constants for shell and PZT 

 

Young’s 

modulus 

(N/m ) 

Material 

density 

(kg/m ) 

Poisson’s 

ratio 

Dimension 

(mm) 

Electric 

potential (V) 

d

(m/V) 

Shell 7.03×10  2700 0.34 

L = 500 

R = 1,000 

Φ = π/3 

h = 2 

N.A. N.A. 

       

PZT 7.94×10  N.A. 0.30 

l  = 50 

θ  =π/30 

h  = 0.5

 
10 –1.3×10  

 

Figs. 9.35 and 9.36 show the optimal locations of the PZT pair on the 

cylindrical shell determined by the computer program and the CPMF, respectively. 

It is evident that all the six optimal locations determined by the computer program 

are also identified by the CPMF with reasonable accuracy. These results indicate 

that the CPMF is valid to be used to determine the optimal placement of PZT 

actuators on shell structures. 

 

Fig. 9.35� Numerical results of optimal location pattern of a pair of collocated PZTs when ω = 

5,155 rad/s 
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Fig. 9.36� Optimal location pattern of a pair of collocated PZTs when ω = 5,155 rad/s 

determined by Eq. (9.106)� 

9.2.6� Discussions 

��Driving Frequency Lower than the First Natural Frequency 

When the driving frequency is lower than the natural frequency of the first 

vibration mode, the optimal location pattern at very low driving frequency, i.e., 

near static condition, should be considered.  Fig. 9.37 shows the optimal locations 

of PZT when the driving frequency is 0.01 Hz. It can be seen that the optimal 

locations of the PZT are located near the boundaries. Fig.9.38 shows the optimal 

location pattern of a PZT actuator when the driving frequency is 4,000 Hz. It can 

be observed that the two figures are similar. However, it can also be observed that 

in most regions of the plate, the maximum plate deflection is not very sensitive to 

the location of the PZT actuator. The changes of maximum plate deflection with 

different PZT actuator locations are limited in a very small range.  
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�

Fig. 9.37� Optimal locations when driving frequency is near zero (ω = 0.0628 rad/s) 

 

 

Fig. 9.38� Optimal locations when driving frequency lower than the first natural frequency  

(ω = 25,133 rad/s) 
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��Effect of PZT Size 

According to the solution of Eq. (9.79), when the dimensions of the PZT actuator 

are set at certain values, some vibration modes will vanish; that is, certain 

vibration modes can be suppressed by varying the size of the PZT actuator. For 

example, when 

N

r

m

ξ =  and/or 

N

r

n

η = , the deflection of mode ( , )m ∗  or ( , )n ∗  

becomes zero, where 1,2,3,...,N = and “ ∗ ” stands for any positive integer. 

Similar observation was reported by Dimitriadis et al. (1991), who drew the 

conclusion from some numerical examples. This finding may be useful for 

vibration control with PZT actuators. 

��Effects of Material Properties, Foundation Stiffness and In-plane Forces 

From the above discussion, it is observed that the key factors determining the 

optimal locations of a PZT actuator on a rectangular plate are the driving 

frequency of PZT and the natural frequencies of plate. Since the natural 

frequencies of plate are determined by the material properties, foundation stiffness 

as well as the in-plane forces, as indicated in Eq. (9.64), variations in these 

parameters will cause changes in the natural frequencies. However, because the 

general procedure is based on the relations between the driving frequency and the 

natural frequencies, these variations will not affect the applicability of the 

proposed general procedure to determine the optimal locations of the PZT actuator. 

Thus, the proposed general procedure is applicable to any plate with given 

material properties, foundation stiffness and in-plane stresses based on the von 

Karman’s plate theory where the general procedure is derived.  

9.2.7� Summary  

In this section, optimal placements of a PZT actuator in terms of maximizing the 

plate and shell vibration are discussed. It has been found that the optimal locations 

of the PZT actuator are dependent on the driving frequency of the actuator and the 

natural frequencies of the plate. The optimal locations of the actuator could be 

identified by the CPMF no matter whether the driving frequency is close to the 

natural frequencies or not. It has also been found that the geometry of PZT 

actuator has the capacity of suppressing certain vibration modes. These findings 

provide guidelines for exciting plates and shells on elastic foundations by PZT 

actuators. It is worth mentioning that the solution procedure presented in this 

section is not only applicable to the simply supported plates or cylindrical shells 

but also to the plates and shells with other boundary conditions, such as clamped 

plates and cantilevered plates provided that the mode shape functions in the 

derivation are changed accordingly. 
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10.1� Introduction 

Due to the advantage of having properties such as rapid response, high resolution, 

low power consumption and large bandwidth, piezoelectric materials have in 

recent years been employed as actuators and sensors in many structures for noise 

reduction, vibration control, shape control and health monitoring. In the 

applications of piezoelectric actuators, the electromechanical interactions between 

them and their host structures must be fully understood. Generally, the 

piezoelectric actuators bonded to the surface of an adaptive structure are thin 

elements which have been poled in the thickness direction. When an electric field 

is applied in the thickness direction of a piezoelectric actuator, longitudinal strains 

are induced in the actuator, forcing the host structure to deform. Such actuation 

mechanism of piezoelectric actuators is known as extensional actuation. So far, the 

majority of research work on the applications of piezoelectric actuators in smart 

structures is based on such extensional mechanism (Rao and Sunar, 1999). 

In order to achieve the most effective actuation and control, extensional 

piezoelectric actuators are usually placed on the surface of a structure at selected 

optimal locations (Jin et al., 2005; Yang and Zhang, 2006). However, this subjects 

the actuators to high longitudinal stresses which may be detrimental to the 

actuators as they are made of brittle piezoceramics. To avoid such problems, Sun 

and Zhang (1995) proposed a laminated structure incorporating an axially poled 

piezoelectric core sandwiched between two elastic layers. The application of an 

electric field along the thickness direction will induce transverse shear 
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deformation of the core, which in turn will deform the structure. The piezoelectric 

actuators poled in such a way, where the polarization direction is perpendicular to 

the electric field in the thickness direction to generate transverse shear deformation, 

are called shear actuators. Presently, various piezoelectric shear actuators (PSAs) 

are commercially available, for example from Morgan Matroc (2006). 

Zhang and Sun (1996) presented an analytical model to predict the static 

behavior of an adaptive sandwich beam with a shear-mode actuator. Benjeddou et 

al. (1997) developed an FE model for a sandwich beam with extension and shear 

mode piezoelectric patches. Benjeddou et al. (2001a, 2001b) also proposed a 

theoretical formulation and its FE implementation for an adaptive sandwich shell 

of revolution that uses the transverse shear response of a piezoelectric core 

sandwiched between two elastic layers. Khdeir and Aldraihem (2001) presented 

solutions for deflections of first-order and higher-order beams with one PSA. They 

also developed the exact solutions for beams with multiple PSAs (Aldraihem and 

Khdeir, 2003). Raja et al. (2002) developed a control scheme based on the linear 

quadratic regulator and the independent modal space control method, and utilized 

it to estimate the active stiffness and damping induced by the shear and 

extension-bending actuators. Baillargeon and Vel (2005) discussed the active 

damping of composite plates with PSAs. They also studied the static deformation 

and active damping of simply supported hybrid cylindrical shells with embedded 

PSAs (Vel and Baillargeon, 2005). Li et al. (2004) obtained the static solutions for 

multilayered cylindrical shells with embedded PSAs. Trindade and Benjeddou 

(2008) studied the refined sandwich model for vibration of beams with embedded 

shear piezoelectric actuators and sensors. Kant and Shiyekar (2008) used a higher 

order shear and normal deformation theory to study cylindrical bending of 

piezoelectric laminates. 

In this chapter, exact solutions are presented for the dynamic response of a 

fully coupled hybrid piezo-elastic cylindrical shell with PSAs. Section 10.2 

develops the governing equations of a multi-laminated cylindrical shell. Section 

10.3 presents a set of eight first-order homogeneous ordinary differential equations 

with variable coefficients obtained through expanding the response quantities of 

each layer into the double Fourier series and using the state-space approach. 

Solutions to the differential equations derived by the Frobenius method are also 

discussed. Section 10.4 describes an active vibration control model for a simply 

supported laminated cylindrical shell with piezoelectric shear sensor and actuator 

layers established using the negative velocity feedback control method. The 

detailed derivations can be found in Li and Yang (2007). Numerical results of 

responses are presented in Section 10.5 to illustrate the effects of thickness ratio 

and location of PSAs on the shell response for both mechanical and electric 

loadings. Other numerical examples are also included in Section 10.5 to verify the 

feasibility of the control model. Finally, summary and conclusions are given in 

Section 10.6. 
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10.2� Governing Equations 

Fig. 10.1 shows a piezo-elastic laminated cylindrical shell. Each lamina of the 

N-layer laminated shell is either an orthotropic piezoelectric layer or an orthotropic 

elastic layer. The global cylindrical coordinate system (x,θ,r) and the local 

coordinate system for each layer (x,θ,r) (0≤z≤h

(i)

) are related by r=r
i
+z, where r

i
 

and h

(i)

 are the radius of the inner surface and the thickness of the i

th

 layer, 

respectively. As indicated in Fig. 10.1, L, R and H are the length, the radius of the 

middle surface and the total thickness of the shell, respectively. The principal 

material directions are assumed to coincide with the coordinate axes, and the 

poling direction of the piezoelectric layers is along the x axis.  

 

Fig. 10.1� A piezo-elastic laminated cylindrical shell 

 

The constitutive relationships for the i
th

 lamina in the local coordinate system 

(x,θ,z) are 

( ) ( ) ( ) ( )

( )i

z

x

ii

x

xz

z

zz

xx

ii

x

xz

z

z

x

E

E

E

e

e

e

e

e

s

s

s

s

s

s

c

c

c

ccc

ccc

ccc

⎪

⎭

⎪

⎬

⎫

⎪

⎩

⎪

⎨

⎧

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎤

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

−

⎪

⎪

⎪

⎪

⎭

⎪
⎪

⎪

⎪

⎬

⎫

⎪

⎪

⎪

⎪

⎩

⎪
⎪

⎪

⎪

⎨

⎧

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎤

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

=

⎪

⎪

⎪

⎪

⎭

⎪
⎪

⎪

⎪

⎬

⎫

⎪

⎪

⎪

⎪

⎩

⎪
⎪

⎪

⎪

⎨

⎧

θ

θ

θ

θθ

θ

θ

θ

τ
τ
τ
σ
σ
σ

00

00

000

00

00

00

00000

00000

00000

000

000

000

26

35

13

12

11

66

55

44

332313

232212

131211

(10.1) 

( ) ( )

( )

( ) ( )i

z

x

i

i

x

xz

z

zz

xx

ii

z

x

E

E

E

s

s

s

s

s

s

e

e

eee

D

D

D

⎪

⎭

⎪

⎬

⎫

⎪

⎩

⎪

⎨

⎧

⎥

⎥

⎥

⎦

⎤

⎢

⎢

⎢

⎣

⎡

+

⎪

⎪

⎪

⎪

⎭

⎪
⎪

⎪

⎪

⎬

⎫

⎪

⎪

⎪

⎪

⎩

⎪
⎪

⎪

⎪

⎨

⎧

⎥

⎥

⎥

⎦

⎤

⎢

⎢

⎢

⎣

⎡

=
⎪

⎭

⎪

⎬

⎫

⎪

⎩

⎪

⎨

⎧

θ

θ

θ

θθ

θ

ε
ε

ε

33

22

11

35

26

131211

00

00

00

00000

00000

000

  (10.2) 



10� Cylindrical Shells with Piezoelectric Shear Actuators 398 

where { }( )i
xxzzzx θθθ τττσσσ ,,,,, , { }( )i

xxzzzzxx
ssssss θθθθ ,,,,, , { }( )i

zx
DDD ,, θ  

and { }( )i
zx

EEE ,, θ  are the stress, strain, electric displacement and electric field 

components of the i
th

 lamina, respectively; and 
( )i
jk

c , 
( )i
jk

e  and 
( )i
jj
ε  are the elastic 

stiffness constants, piezoelectric stress constants and dielectric constants, 

respectively. For brevity, the superscript i, signifying quantities for the i
th

 lamina, 

is omitted in the following derivations. 

The mechanical strain and the displacements {u,v,w}, as well as the electric 

field components and the electric potential φ , are related by the following 

equations.  
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The motion equations are 
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where ρ represents the mass density of the material. 

The charge equation of electrostatics is  
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10.3� Non-Damping Vibration of Simply Supported Shell 

To obtain meaningful solutions, the two ends of the cylindrical shell x=0 and L are 

assumed to be mechanically simply supported and electrically insulated, that is 

0===
x

wv σ , 0=
x

D                     (10.7) 

The steady response solutions satisfying the above boundary conditions are 

expanded in the following double Fourier series: 
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where α
m
=mπ/L; ω is the excitation frequency of the external force or the applied 

electric field; and 
mn

U , 
mn

V , 
mn

W , 
xmn

σ , 
mnθσ , 

zmn

σ , 
zmnθτ , 

xzmn

τ , 
mnxθτ , 

xmn

D , 
mn

Dθ , 
zmn

D  and Φ
mn

 are the unknown amplitudes which are only 

dependent on z. 

The vector of fundamental unknowns R, which consists of amplitudes of 

response quantities associated with the i
th

 layer and a pair of harmonics (m,n), is 

defined as 

( ) T

])}(),(),(),(),(),(),(),([{
mnzzxzz

zDzzzzzWzVzUz θττσΦ=R      (10.9) 

where the superscript T denotes transposition. 

Using the constitutive relationships Eqs. (10.1) and (10.2) to eliminate σ
x
, σ

θ
, 

τ
xθ

, D
x
 and D

θ
 from the equations of motion and the electric charge equation, i.e., 

Eqs. (10.5) and (10.6), eight state-space equations associated with a pair of 

harmonics (m,n) for each layer are obtained and expressed in the below 

vector-matrix differential equation: 
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( ) ( ) ( ) ( ) 0
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where A(z)=A
0
+A

1
z+A

2
z

2

 and B(z)=B
0
+B

1
z+B

2
z

2

. The expressions of matrices A
j
 

and B
j
 (j=0,1,2) are given in Appendix F. Eq. (10.10) represents a set of 

homogeneous ordinary differential equations with variable coefficients, which can 

be solved by the Frobenius method.  

The continuous conditions at the interface between the outer surface of the i
th

 

layer and the inner surface of the (i+1)
 th 

layer can be specified as follows. 

(1) If the interface is just a mechanical interface between the two laminas, the 

continuous conditions can be written in the following form: 

( )( ) ( ) ( )( )iii

hRR =+
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1

                   (10.11) 

(2) If the interface is electroded, the electric potential can be assumed to be a 

known function 
mn0

Φ . The normal component of the electric displacement 
zmn

D  

need not be continuous across this interface; thus, the continuous conditions are 
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Using the Frobenius method, the solution to Eq. (10.10) can be expressed as 

( )
0

0

yFR

⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

= ∑
∞

=k

k

k
zz                   (10.13) 

where ( ) ( )[ ]{ }
2212110

1

01
1

1

1

−
−

+ +−+++
+

−=
kk-kk

kk

k

FBFABFABAF , �,2,1,0=k ; 
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FF ; 

0
F  is the identity matrix; and 

0
y  is a constant vector to be 

determined by the boundary conditions and the interface continuous conditions. 

Eq. (10.13) consists of a set of 8 simultaneous linear algebraic equations in 

terms of the 8 unknown amplitudes y
0j
 (j=1,...,8) for each layer. Considering 

8(N–1) continuous conditions and a total of 8 boundary conditions at the outer and 

inner surfaces of the shell, a total of 8N unknown amplitudes 
( )i
j0

y  (i=1,2,...,N; 

j=1,...,8) can be determined. After these amplitudes are obtained, the responses of 

displacement, stress, electric potential and electric displacement can be computed 

at any location within the laminate. 

The in-plane components of response quantities for the i
th

 layer can be defined 
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as 

( ) ( ) ( ) ( ) ( ) ( ){ }[ ]T
mnxxx

zDzDzzzz θθθ τσσ ,,,,=P           (10.14) 

Vector P(z) can be expressed in terms of vector R(z) as: 

( ) ( )zz TRP =                         (10.15) 

where the explicit form of matrix T is given in Appendix F. 

10.4� Active Vibration Control of Cylindrical Shell with PSAs 

The closed-loop control method is employed to control the transverse vibration of 

the shell-PSA system. Based on the negative velocity feedback control, the 

active vibration control model shown in Fig. 10.2 is proposed. To dampen the 

response of the system, the potential applied to the actuator is used as the control 

variable. 

 

Fig. 10.2� An active control model of cylindrical shell 

 

For sensing purpose, there exist two conditions for the piezoelectric laminae: 

the close circuit (Lee and Moon, 1990) and the open circuit (Tzou, 1993) 

conditions. Here, the open circuit condition is considered where the electric 

displacement D
z
 on the boundaries is zero. Thus, the output voltage V across the 

top and bottom electroded surfaces of the sensor are obtained by integrating the 

electric field over the thickness of the piezoelectric sensor layer as 
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where the superscript s denotes the components associated with the sensor layer. 

The above equation depicts the relationship between the output voltage of the 

sensor with the vibration of the laminate. According to the negative velocity 

feedback control method, the control voltage 
a

φ  is calculated as 
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where κ  is the gain of feedback. Substituting the expressions of the displacements 

in Eq. (10.8) into Eq. (10.17), the following is obtained 
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The above expression can be regarded as the equivalent active damping. 

Hence, the solutions for other active vibration control problems can be similarly 

solved using the method presented in Section 10.3, with the electric potential on 

the surface of the piezoelectric actuator replaced by the control voltage 
a

φ . 

10.5� Numerical Results and Discussions 

The cylindrical shell studied has four graphite-epoxy layers as host structure and 

two piezoelectric layers, one as sensor and the other as actuator (Fig. 10.3). A total 

of three different configurations are considered. The graphite-epoxy is assumed to 

be orthotropic. The piezoelectric layer, PZT-5A, is transversely isotropic with the 

x axis as the axis of transverse isotropy and the poling direction. The material 

properties of graphite-epoxy and PZT-5A are listed in Table 10.1.  
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Fig. 10.3� Three different shell configurations 

 

 

Table 10.1� Material properties of graphite-epoxy layer and PZT-5A shear actuator 

Property Graphite-epoxy Shear PZT-5A 

C  (GPa) 183.443 86.856 

C  (GPa) 11.662 99.201 

C  (GPa) 11.662 99.201 

C  (GPa) 4.363 50.778 

C  (GPa) 4.363 50.778 

C  (GPa) 3.918 54.016 

C  (GPa) 2.870 22.593 

C  (GPa) 7.170 21.100 

C  (GPa) 7.170 21.100 

e  (cm ) 0 15.118 

e  (cm ) 0 –7.209 

e  (cm ) 0 –7.209 

e  (cm ) 0 12.322 

e  (cm ) 0 12.322 

ε  (10 F/m) 153.0 153.0 

ε  (10 F/m) 153.0 153.0 

ε  (10 F/m) 153.0 153.0 

ρ (kg/m ) 1,590 7,750 

 

 

The radius of the middle surface and the length of the shell are R=1 m and 

L=1 m, respectively. Each graphite-epoxy layer has the same thickness and the 

total thickness of four layers is h
e
=0.4 m. The two PZT-5A layers also have the 

same thickness, with h
p
 denoting their total thickness. 

10.5.1� Steady-State Response Analysis 

An example is used to illustrate the effects of thickness ratio h
p
/h

e
 and the 

position of the piezoelectric layer on the steady-state response of the shell. Two 
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different loads are applied to the shell: (1) the transverse mechanical load 

( ) t

Lxq
ωθ i

0
esinπsin  on the outer surface of the shell, and (2) the electric 

potentials ( ) t

Lx

ωθφ i

0
esinπcos  on the inner surface of No. 1 PZT-5A layer and 

( ) t

Lx

ωθφ i

0
esinπcos−  on the outer surface of No. 2 PZT-5A layer. The excitation 

frequency ω  is set as 1 kHz. The mechanical displacement, stress, electric 

displacement and electric potential are normalized as [ ]
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for the applied electric 

load. C
0
=22.583 GPa and e

0
=12.322 cm

–2

 are the typical values of the elastic and 

piezoelectric moduli for PZT-5A, respectively.  

Fig. 10.4 compares the amplitude of transverse response wˆ  along the thickness 

direction of the shell, under mechanical loading, for all three configurations and 

for two different thickness ratios, h
p
/h

e
=0.02 and h

p
/h

e
=0.2. It is apparent that, for 

the small thickness ratio h
p
/h

e
=0.02, the distributions of displacement responses 

wˆ  in the thickness direction for the three configurations are almost the same. 

However, for the large thickness ratio h
p
/h

e
=0.2, the displacement responses for 

the three configurations are significantly different, where the amplitude for 

Configuration A is the smallest and that for Configuration C the largest.  

 

Fig. 10.4� Amplitude of transverse response under mechanical loading. (a) h /h  = 0.02; 

(b) h /h  = 0.2 
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The above observation could be explained as follows. When the shell is only 

subjected to mechanical loading, the mechanical properties are the dominant 

parameters affecting the response. For the small thickness ratio, the total structural 

stiffnesses are almost the same for all three configurations, resulting in marginal 

differences in their responses. For the large thickness ratio, the stiffnesses of the 

three configurations are quite different from one another. Since PZT-5A is stiffer 

than graphite-epoxy, the configuration with PZT-5A layers closer to the middle 

surface of the shell is stiffer than those with PZT-5A further away. Thus, 

Configuration A has the largest stiffness and Configuration C has the smallest 

resulting in Configuration A with the smallest absolute value of deformation and 

Configuration C with the largest. 

Figs. 10.5 and 10.6 compare the transverse responses of the three shell 

configurations under electric loading. From Fig. 10.5, it is apparent that for both 

thickness ratios, the response of Configuration A is the largest and that of 

Configuration C is the smallest. These results are established on the shear 

actuation mechanism of piezoelectric materials, where the application of electric 

potential produced transverse shear deformation in the piezoelectric layers which 

in turn caused the structure to deflect in the transverse direction. The closer are the 

two piezoelectric layers, the greater is the shear strain. Therefore, the response of 

Configuration A is greater than those of the other two configurations.  

 

Fig. 10.5� Amplitude of transverse response under electrical loading. (a) h /h  = 0.02; (b) h /h  = 

0.2 

 

The above results are different from those of a hybrid shell with extension 

piezoelectric layers, where the extension-mode actuators provided the longitudinal 

strains and supplied the bending load. The nearer are the two piezoelectric layers, 

the smaller is the bending load and the smaller is the response induced in the shell. 
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Therefore, if large transverse deformation of the shell is desired by applying 

electric potential on the PSAs, the PSAs should be arranged close to each other. 

Conversely, if the extension piezoelectric actuators are used, they should be 

arranged as far as possible from each other to generate large transverse 

deformation in the shell. 

 

 

Fig. 10.6� Distribution of transverse response for different thickness ratios under electrical 

loading. (a) Configuration A; (b) Configuration B; (c) Configuration C 

 

Fig. 10.6 depicts the distribution of transverse responses for different thickness 

ratios for the three shell configurations subjected to electric loading, where s=h
p
/h

e
 

represents the thickness ratio. It can be seen that when the thickness of 

piezoelectric layer increases, the deformation of the entire composite shell 
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decreases for both Configurations A and B (Figs. 10.6a and 10.6b), but that of 

Configuration C increases (Fig. 10.6c). The phenomenon for Configurations A and 

B can be explained as follows. The shear strain induced by the electric potential is 

proportional to the derivative of electrical potential with respect to thickness. 

Therefore, for a given electric load, a thinner piezoelectric layer generated larger 

shear strain, subsequently inducing larger deformation of the shell.  

However, the situation is different for Configuration C because the shear strain 

is affected not only by the electric potential, but also by the shear stress. In 

Configuration C, the piezoelectric layers are placed on the outer and inner surfaces 

of the shell. To satisfy the free shear stress boundary condition, the level of shear 

stress in the piezoelectric layers is low because they are in the vicinity of the 

boundaries. Therefore, the shear strain is smaller when the piezoelectric layer is 

thinner, thus inducing smaller response of the shell. 

10.5.2� Active Vibration Control 

When no load is applied on the shell, Eq. (10.13) can be used to calculate the 

natural frequencies of the shell. Again, Configurations A, B and C with two 

different thickness ratios are considered. Table 10.2 lists their natural frequencies 

that are below 10 kHz. 

 

Table 10.2� Natural frequencies of three shell configurations 

h /h  Configuration A Configuration B Configuration C 

0.02 5,303.85 

7,572.16 

5,294.19 

7,566.77 

5,241.50 

7,540.63 

0.2 4,839.40 

7,169.40 

4,754.75 

7,145.41 

9,844.22 

4,415.30 

6,971.28 

8,659.90 

 

The control model shown in Fig. 10.2 is used. For all three configurations, 

No.1 PZT-5A layer functioned as a sensor and No.2 PZT-5A layer as an actuator. 

All the three configurations are subjected to the transverse mechanical loading 

( ) t

Lxq
ωθ j

0
esinπsin  on their outer surfaces. Figs. 10.7 and 10.8 show the amplitude 

of response wˆ  versus the excitation frequency under different feedback gains. It 

is obvious from both figures that the response can be effectively reduced by 

increasing the feedback gainκ in the vicinity of the natural frequencies. However, 

when the excitation frequency is not close to any natural frequencies, the 

reduction in response by increasingκ is very small.  

Fig. 10.9 plots the control voltage versus the excitation frequency under 

different feedback gains for the control shown in Fig. 10.8(a), i.e., Configuration 
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A. The control voltage for the other two configurations is similar to that for 

Configuration A and thus not shown. It is obvious from Fig. 10.9 that, as expected, 

large feedback gainκ corresponds to high control voltage and that the control 

voltage increases rapidly near the natural frequencies in order to suppress the 

resonant responses. 

 

 

Fig. 10.7� Amplitude of transverse response under different feedback gains, for thickness ratio 

h /h  = 0.02. (a) Configuration A; (b) Configuration B; (c) Configuration C 
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Fig. 10.8� Amplitude of transverse response under different feedback gains, for thickness ratio 

h /h  = 0.2: (a) Configuration A; (b) Configuration B; (c) Configuration C 

 

Fig. 10.9� Control voltage under different feedback gains for Configuration A 
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10.6� Summary 

The analysis of dynamic response of a fully coupled piezo-elastic cylindrical shell 

with embedded PSAs is presented in this chapter. Numerical examples are used to 

illustrate the effects of thickness ratio and location of PSAs on the transverse 

response for both the mechanical and electric loadings. It is observed that the 

response of the shell subjected to mechanical loading is mainly determined by the 

mechanical properties of the structure. For the electric loading, the response of 

shell with embedded PSAs is larger than that of the shell with surface-mounted 

PSAs. Furthermore, for the shell with embedded PSAs, thinner piezoelectric layer 

rendered larger response, and for the shell with surface-mounted PSAs, thicker 

piezoelectric layer generated larger response. 

Based on the negative velocity feedback control method, an active vibration 

control model for a simply supported cylindrical shell with piezoelectric shear 

sensor and actuator layers is presented. The numerical results showed that the 

vibration of the shell can be effectively suppressed in the vicinity of the resonant 

zone by increasing the feedback gain. This presents a possible way for PSAs to 

actively reduce the harmful effect of resonance in the cylindrical shells.  
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11.1� Introduction 

Fiber optics has emerged as a promising sensing technology over the past two 

decades. Fiber optic sensors (FOS) have generated great interest due to their small 

size, immunity to electro-magnetic interference and radio frequency (RF) interference, 

inherent safety, and accuracy. A sensor based on intensity modulation of light 

propagating in an optical fiber was first reported in the early 1980’s (Giallorenzi et 

al., 1982). Soon after, sensors based on phase modulation were also reported 

(Mellberg, 1983). However, both the intensity-modulated and the phase-modulated 

FOSs are susceptible to changes in the light intensity received by the detector. The 

change in light intensity could be a result of fiber loss due to scattering, absorption 

or bending, losses at fiber couplers or source intensity fluctuations. The intensity 

losses in the fiber caused by external force variations often require time averaging 

to assess and map the spatial changes in the loss or scattering coefficients along 

the fiber. As a result, the induced noise of the received signal increases, thus 

complicating the signal processing of the system. On the other hand, a FOS using 

fiber Bragg grating (FBG) provides an absolute wavelength measurement that is 

independent of the overall system light levels and dependent only upon the strain 

and temperature effects acting on the sensor. In this chapter, FBG sensor 

technology, which provides an absolute measurement, is described. This technique 

is wavelength encoded to avoid problems with scale resetting and signal intensity 

variation that plague the intensity and phase modulated sensors. FBG is a 
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wavelength modulated element, making the signal immune to losses. This chapter 

presents the fundamental concept of FBG and dwells upon FBG-based pressure/ 

strain and shear force sensors. 

11.2� History of FBG 

Hill et al. (1978) first reported the photosensitivity of germanosilicate optical fiber 

and its application for fabrication of reflection filters. These filters were formed by 

exposure of the photosensitive core of the fiber to intense contra-directionally 

propagating coherent beams. The resulting standing wave pattern in the fiber core 

formed a periodic perturbation that comprised the filter. Subsequently, Lam and 

Garside (1981) found that the grating strength increases as the square of the 

writing power (i.e. the laser power), indicating a two-photon phenomenon 

involved in grating formation. 

Meltz et al. (1989) reported the transverse holographic method for fabrication 

of grating. In this technique, the Bragg grating was written in germanosilicate 

optical fibers, by exposing the core through the side of the cladding, to a coherent 

ultra-violet (UV) two-beam interference pattern. Later, Hill et al. (1993) reported 

the fabrication of fiber grating by the phase mask technique, where the 

interference pattern formed between the beams diffracted in the ±1 order, is 

exposed to the fiber core through the side of the cladding. This technique is now 

widely used and has been found to be a very efficient and quick way of fabricating 

FBGs. 

Fiber Bragg grating is essentially a wavelength-selective filter. A fiber Bragg 

grating will reflect light that has a wavelength corresponding to twice its period, 

multiplied by the effective refractive index of the fiber that the propagating mode 

observes. This is called the Bragg condition, given by (Kersey et al., 1997), 

Λλ
effb

n2=                         (11.1) 

where λ
b
 is the Bragg wavelength that will be reflected back, n

eff
 the effective 

refractive index of the fiber core, and Λ the period of the grating. Light at other 

wavelengths will be transmitted without significant attenuation. In other words, 

the grating operates as a narrow-band wavelength notch filter.  The transmission 

and reflection spectra of a FBG are shown in Fig. 11.1 (Hao et al., 2003). 

The fundamental cause of grating inscription in the fiber core is the 

photosensitivity of the material (Salik et al., 2000; Zhang and Raghavachari, 1997; 

Nagamo et al., 1991; Williams et al., 1993; Kashyap, 1999; Malo et al., 1993a).  

Initially, special photosensitive fiber such as high concentration germanium-doped 

or boron-codoped fibers were used for grating fabrication. Later, Lemaire et al. 
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(1993) reported a simple and cost-effective process of photosensitizing the 

communication fibers. In this technique, hydrogen molecules are diffused into the 

fibers at high pressure (Atkins et al., 1993; Poumellec et al., 2003; Lou et al., 

2003). This technique ensures higher photosensitivity with cost effectiveness. The 

stability issue (Guan et al., 2000; Atkins and Espindola, 1997) of the gratings 

written in both the doped and hydrogenated fibers (Riant and Poumellec, 1998) 

has been discussed by Patrick et al. (1995) and it is found that annealing the 

gratings written in hydrogenated fiber could lead to a much longer FBG lifetime 

(Limberger and Varelas, 1999). Later, Kohnke et al. (1999) and Canning (2000) 

reported enhancement of photosensitivity of hydrogen loaded, germanium or 

phosphor doped fiber by pre-UV treatment. Chen and Herman (2003) reported 

photosensitivity locking in standard telecom fiber, where a strong and permanent 

UV photosensitivity enhancement was locked into standard optical fiber 

pre-treated with above-bandgap, 157-nm F2-laser radiation.  

 

Fig. 11.1� Transmission and reflection spectra of FBG (Hao et al., 2003) 

 

FBG is now extensively used in optical communication (Giles, 1997; Yankov 

et al., 2003) and covers the major part of the fiber optic sensing technology. The 

following section discusses the characteristic of FBG as a sensor and its 

advantages over other sensors. 

11.3� Fabrication of FBG 

FBGs can be formed by exposing a photosensitive optical fiber to a 3D fringe 

pattern created by two interfering high-energy UV beams, which is known as the 

holographic technique (Meltz et al., 1989); or by the transmission pattern from an 

appropriate diffractive optical element, which is called the phase mask technique 

(Malo et al., 1993 b). The phase mask technique involves the use of a +1/−1 order 

phase mask (Fig. 11.2). Irradiation of the silica fiber with bright portions of the 

UV pattern, spurred by the presence of defect centers, creates a permanent 

modulation of refractive index of the core. 
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Fig. 11.2� Phase mask photo- imprinting of fiber Bragg grating (Hao, 2001) 

 

The phase mask is optimized to diffract the UV light equally into the ±1 order. 

Self-interference between these two orders creates an interference pattern into the 

core of the photosensitive fiber with the grating period at half the pitch size of the 

phase mask. Additional zeroth order and higher order noises are highly suppressed 

by the phase mask. A typical phase mask is shown in Fig. 11.3. 

 

Fig. 11.3� A typical phase mask (picture reproduced with permission from http://www.qpscom. 

com/pages/phasemask-1.htm) 

 

Fiber can be rendered photosensitive by doping the core with germanium, 

phosphorous or boron during fabrication. The photosensitivity of all fibers can be 

boosted by loading them with hydrogen under temperature and/or pressure, that is, 

by putting them in a chamber filled with hydrogen gas (Juma, 1996, Lemaire et al., 

1993). Another technique known as “flame brushing” is also sometimes used 

(Bilodeau et al., 1993). The highly germanium-doped fiber is able to reduce the 

magnitude of short wavelength loss commonly observed in FBGs. It has similar 

numerical aperture (0.11±0.02) and mode field diameter (10.5±1.5 μm @1550 nm) 

as the standard single mode communication fiber at 1550 nm. High reflectivity 

gratings (at least 20 dB) without hydrogen loading can be easily fabricated in less 

than two minutes (SpecTran, 2001). The UV-induced refractive index change (Δn) 
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is found to exhibit temperature dependent decay of Δn with time after inscription. 

Erdogan et al. (1994) reported the measurement of thermally induced decay of 

gratings fabricated in erbium co-doped germanosilicate fibers. The decay in 

reflectivity is characterized by the power law, which is a function of time, 

exhibiting a rapid initial decay followed by a decreasing rate of decay. Briefly, this 

behavior is consistent with the thermal depopulation of the trapped states occupied 

by carriers that are photo excited from their original band locations by the UV 

irradiation. Thermally exciting carriers out of shallow traps cause the observed 

decay in the refractive index, and residual carriers that are not excited out of the 

traps lead to the “stable” portion of the index change. 

Canning and Sceats (1995) demonstrated photosensitivity at 193-nm in 

phosphosilicate fibers fabricated by the flash condensation technique (Cater et al., 

1992). Strasser et al. (1995) showed for the first time that strong (>3 nm spectral 

width) UV-induced Bragg gratings could also be written in phosphorus-doped 

silica material. This grating was produced by a 10-minute exposure at 30 Hz and 

90 mJ/cm
2

 pulse. Thermal erasure of a grating written in a phosphosilicate channel 

waveguide at 193-nm has been demonstrated by Malo et al. (1994). The 

immediate advantages of using 193-nm channel waveguide are (1) a reduction of 

laser-induced damage to the fiber when using a phase mask and (2) a higher 

spatial resolution in diffraction-limited applications, such as point-by-point writing. 

Also, Bragg gratings fabricated at 193 nm irradiation appear to develop much 

stronger reflectivity than at 248 nm under similar excitation conditions. Dong et al. 

(1996) also observed that the grating growth is much faster at 193 nm than at 

248 nm.  

11.4� Optical Properties of Grating  

The optical properties of a fiber grating are essentially determined by the variation 

of the induced index change along the fiber axis. The types of gratings include 

uniform, chirped, discrete phase-shifted, superstructure, short period, long period, 

symmetric, tilted, cladding-mode and radiation-mode coupling gratings. Uniform 

FBG is commonly used for most sensor applications. Therefore, only the optical 

behavior of uniform FBG is discussed in this chapter. 

A fiber grating is simply an optical diffraction grating inscribed in the core of 

an optical fiber. It is well established that the effect of light incident on a 

diffraction grating at an angle θ
1
 can be described by grating equation (Erdogan, 

1997)  

Λ
λθθ mnn +=

12
sinsin                   (11.2) 

where θ
2
 is the angle of the diffracted wave, n stands for the refractive index of the 
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fiber core, the integer m determines the diffraction order, λ is the wavelength, 

and Λ is the grating period (see Fig. 11.4). Eq. (11.2) not only predicts the 

direction θ
2
 into which the constructive interference occurs, but is also capable of 

determining the wavelength at which the fiber grating couples light between the 

two modes efficiently. 

 

Fig. 11.4� The diffraction of a light wave by a grating (Erdogan, 1997, ©1997 IEEE) 

 

In general, fiber gratings can be broadly classified into two types:  

(1) Bragg gratings: Reflection grating or short period grating, in which 

coupling occurs between contra-propagating modes; and 

(2) Transmission gratings: Long period grating, where coupling occurs between 

modes propagating co-directionally. 

Fig. 11.5 illustrates the reflection of a mode by a grating with a reflection 

angle θ
1
 into the same mode travelling in the opposite direction with a reflection 

angle of θ
2
=−θ

1
.  

 

Fig. 11.5� Ray-optic illustration of a core-mode Bragg reflection by an FBG (Erdogan, 1997, 

©1997 IEEE) 

 

The mode propagation constant β is given by 

eff
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⎠
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β π2

                      (11.3) 



11.4� Optical Properties of Grating 419 

where n
eff

 is the effective index given by 

θsin
coeff

nn =                         (11.4) 

where n
co

 is the refractive index of the fiber core. We may rewrite Eq. (11.2) for 

the guided mode as 

Λ
ββ π2

12
m+=                         (11.5) 

For the first order diffraction, which usually dominates in a fiber grating, m = 

–1. This condition is illustrated on the β axis shown below the fiber in Fig. 11.5. 

The solid circles represent the bound core modes (n
cl
 < n

eff
 < n

co
), the open circles 

represent the cladding modes (1< n
eff

 < n
cl
) while the hatched regions represent the 

continuum of radiation modes. Here, n
cl
 is the refractive index of the cladding. 

Negative values of β signify modes propagating in the –z direction. Using 

Eq. (11.5) and β
2
 < 0 (i.e. a negative value of β

2
, which indicates propagation in 

the –z direction) the resonant wavelength for reflection of a mode of index n
eff,1 

into a mode of index n
eff,2

 can be obtained as: 
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which implies 

Λλ )(
2,1, effeffb

nn +=                    (11.8)  

If the two modes are identical, i.e., 
2,1, effeff

nn = , Eq. (11.8) is reduced to 

Λλ
effb

n2=                          (11.9) 

This forms the basic governing equation for FBG. The grating reflectivity for a 

given mode at the centre wavelength is given by (Morey et al., 1989), 

⎥

⎦

⎤

⎢

⎣

⎡

=
b

V

nLR

λ
η )(

Δπtanh
2

                  (11.10) 

where L is the length of the grating, Δn is the magnitude of the index perturbation 



11� Fiber Bragg Grating 420 

and η(V) is a function of the fiber V parameter, which represents the fraction of the 

integrated mode intensity contained in the core. 

11.5� Thermal Properties of FBG 

FBGs are periodic structures that couple light from one fiber mode to another. A 

change in the grating period will result in a change in the reflected wavelength. 

For this reason, FBGs are susceptible to any externally applied thermal-mechanical 

loads that affects the grating period.  

Strain shifts the Bragg wavelength through expansion or contraction of the 

grating periodicity and the strain-optic effect, which is attributed to the strain-optic 

tensors and the Poisson ratio of the grating fiber. In addition, temperature change 

affects the Bragg response through thermal expansion and contraction of the grating 

periodicity and the thermo-optic effect (the thermal modulation of the refractive 

index of the fiber core). These effects are well understood and, when adequately 

modeled, provide a means for predicting these changes. The shift in Bragg 

wavelength Δλ
B
, with strain and temperature can be expressed as (Kersey et al., 

1997): 
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where n is the refractive index of the core, ε is the applied strain, P
ij
 are the 

Pockel’s (piezo) coefficients of the stress-optic tensor, ν is the Poisson’s ratio, α is 

the coefficient of thermal expansion (CTE) of the fiber material (e.g., silica), and 

ΔT is the temperature change. The factor {(n
2

/2)[P
12

–ν(P
11

+P
12

)]} is found to have 

a numerical value of about 0.22 (Kersey et al., 1997). 

The measured strain response at constant temperature can be reduced to  

16

με 1078.0

δ

δ1 −−×=
ε
λ

λ
B

B

                (11.12) 

This responsivity gives a “rule-of-thumb” measure of Bragg wavelength shift 

with strain equals to 1 nm per 1000 με at 1.3 μm wavelength. In silica fibers, the 

thermal response is dominated by the 

T

n

d

d

 effect (change of refractive index with 

temperature), which accounts for nearly 95% of the observed shift. The 

normalized thermal responsivity at constant strain is (Kersey et al., 1997) 
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Typical values of the dependence of Bragg wavelength on fiber strain and 

temperature are 1.15 pm/με and 13 pm/°C, respectively for FBG at 1550 nm 

(Morey et al., 1991). 

11.6� Mechanical Properties of FBG 

Since FBGs are essentially optical fibers made of silica (glass), they should not be 

subjected to mechanical stress in excess of the limit that could cause them to be 

permanently deformed and damaged. The mechanical and strength properties of 

FBGs are determined using identical characterization techniques associated with 

grating fibers. Failure test performed on Bragg gratings manufactured by 3M 

(1996) showed the mean failure strength to be in excess of 1.38 GPa (200 ksi). 

When mechanical pressure is applied to an FBG, the internal microstructure of 

the FBG is disturbed. As a result, there is a variation of the refractive index 

determined by the pressure distribution in the FBG. The strain response of the 

grating arises from the physical elongation of the sensor, leading to a fractional 

change in the grating pitch, with a corresponding change in the fiber index 

because of the photoelastic effect. 

A pressure change of PΔ leads to a corresponding wavelength shift 
P
λΔ

 
of 

(Othonos and Kalli, 1999),  
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In the case of a single-mode fiber, the fractional change in the fiber diameter 

resulting from the applied pressure is negligible as compared to the change in the 

physical length and refractive index, for which 
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L ν21Δ −−=                    (11.15) 
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             (11.16) 

where E is the Young’s modulus and ν the Poisson’s ratio. ρ
ij
 are the strain-optic 
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constants. Given that ΛΛ /Δ/Δ =LL , the normalized pitch pressure and the 

index-pressure coefficients are given by 
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Therefore, the wavelength-pressure sensitivity is given by 
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11.7� Maximun Reflectivity of Bragg Grating 

The reflectivity of a uniform fiber grating of length L can be found by assuming a 

forward-going wave incident from z= –∞ and requiring that no backward-going 

wave exist for z ≥ L/2, as given by  
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where σˆ  is a general “dc” (period-averaged) - coupling coefficient, k is the 

“AC” coupling coefficient and N is the total number of grating periods (N=L/Λ, 

chosen here to be N=10000). 

Typical example of power reflectivity r for uniform gratings with kL=2 and 

kL=8 are shown in Fig. 11.6, where the reflectivity is plotted against the 

normalized wavelength. λ
max

 is the wavelength at which maximum reflectivity 

occurs. It may also be noted that the normalized wavelength is given by 

N

L

π

ˆ

1

1

max

σλ
λ

+
=                      (11.21) 
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Fig. 11.6� Reflection spectra versus normalized wavelength for Bragg reflection in uniform 

grating kL=2 (dashed line) and kL=8 (solid line) (Erdogan, 1997, ©1997 IEEE) 

 

If N is varied, i.e., larger or smaller, the reflection bandwidth would be 

narrower or broader, respectively. For a given value of coupling constant kL, the 

maximum reflectivity r
max

 for a Bragg grating is  

)(tanh
2

max
kLr =                      (11.22) 

and it occurs when σˆ =0, or at the wavelength given by 

D

eff

eff

n

n

λ
δ

λ
⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

+= 1
max

                   (11.23) 

where λ
D 
≡

 
2n

eff
Λ is the “design wavelength” for Bragg scattering resulting from 

an infinitesimally weak grating (
eff
nδ → 0) with a period Λ . 

11.8� Full Width at Half Maximum 

The spectra width of a light source is measured by its full-width at half-maximum 

(FWHM). As the term implies, FWHM is defined as the bandwidth of the signal at 

half the power (–3 dB) of the peak wavelength. For weak gratings or low 

reflectivity gratings, Erdogan (1997) found that 
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where 
nδυ is simply the “AC” part of the induced index change. The bandwidth 

of weak grating is said to be “length limited”, and the Δλ (or FWHM) for weak 

gratings with kL<2.3 can be approximated by (Archambault, 1994), 

2
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44.0

Δ kL
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eff

b += λλ                 (11.25) 

On the other hand, for strong gratings,  

NLn
eff
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D

eff

λδυ <<          (11.26) 

For this case, light does not penetrate the full length of the grating. The 

bandwidth is thus independent of length and directly proportional to the induced 

index changes (Erdogan, 1997). 

11.9� FBG Sensors 

Since FBGs are sensitive to both strain and temperature, it becomes logical to use 

them as either strain sensors or temperature sensors or both, depending on the 

need. Indeed, these are the two most common uses of FBG sensors to date. This 

section describes the use of a bare FBG for force sensing which is termed as 

“direct sensing” as compare to “indirect sensing” where the FBG is embedded 

between layers of suitable materials. 

11.9.1� Direct Sensing Using FBG 

For direct sensing, the perturbation is applied directly onto the bare FBG. For 

experimental demonstration (Hao et al., 2003), the effect of the normal force 

(perpendicular to the fiber axis) on bare FBG was taken into account. The 

measured wavelength shift was converted into axial strain based on the 

information that 1 µε strain corresponds to 1.2 pm wavelength shift. The deduced 

axial strain and the standard deviation are plotted against the applied force as 

shown in Fig. 11.7. The graph shows a non-linear response of axial strain with 

respect to the applied normal/perpendicular force.  
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Fig. 11.7� Axial strain versus perpendicular force applied on a bare FBG (Hao et al., 2003) 

 

The non-linearity between the axial strain and the perpendicular force may be 

due to changes in polarization as a result of stress-induced birefringence. The 

non-linearity may also be due to the heterogeneity of the FBG material, the 

varying environmental effects such as temperature drifts, typically around 13 

pm/°C at 1.55 μm gratings, instability of the applied force or changes in the 

contact position (Morey et al., 1991; Grattan and Meggitt, 1995; Hao et al., 2003; 

Burger, 1987; Sirkis, 1993; Morey et al., 1989; Melle et al., 1991). 

From visual inspection and repeated experiments, it was found that permanent 

deformation of the FBG occurs when the applied force exceeded 10 N. This can 

also be seen from the detected non-recoverable Bragg wavelength, which shifted 

to 1550.06 nm as measured from the optical spectrum analyzer (OSA), which is 

equivalent to a wavelength shift of 144 pm. Fractures started to occur at 

approximately 18 N and no reflected signal could be detected beyond that, 

suggesting that the FBG is permanently damaged. In summary, the non-linear 

response and the limited force sensing range makes direct sensing using bare 

FBGs impractical. 

11.9.2� Indirect Sensing by Embedded FBG  

To minimize problems faced by the direct sensing technique, grating fiber 

embedded into carbon/epoxy composite material (to form a reinforced laminate) is 

employed for sensing. This technique is known as indirect sensing. A force applied 

on the laminate is transferred from the composite matrix to a longitudinal strain 

onto the fiber. The laminate used in our experiment is a carbon epoxy laminate 

called Fiberdux (913C-XAS) available in prepreg form. It comprised a modified 

epoxy resin pre-impregnated into unidirectional carbon fibers.  The longitudinal 

Young’s modulus of the carbon fiber is 147.5 GPa and the Poisson’s ratio is 0.306. 
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Since the optical fiber has considerably larger diameter than the composite 

reinforcements, the physical dimension of the grating fiber in comparison with the 

thickness of the composite ply is important. It has been known that small diameter 

(smaller than the thickness of the composite ply) fibers will actually disrupt the 

adjacent layers of the composite to a lesser degree than the larger diameter (larger 

than the thickness of the composite ply) fibers (Leka and Bayo, 1989). Less ply 

disruption occurs when the optical fiber runs in parallel with the reinforcement, as 

compared to when the optical fiber is oriented in any other direction (Davidson, 

1990). Early work (Jensen and Pascual, 1990) also suggested that acrylate-coated 

fibers can seriously degrade the mechanical properties of the Carbon-Fiber 

Reinforced Plastic (CFRP).  

For indirect sensing, an FBG with 10 μm polyimide coating was employed. 

The polyimide-coated FBG not only provided an excellent interface to glass (bare 

FBG) but also bonded well with the epoxies. It also gave an added advantage of 

minimizing the chemical or mechanical degradation during the epoxy curing 

process. The FBG used was 1 cm in length, with a peak reflectivity of 85% at a 

center wavelength of 1539.62 nm. It was embedded rectilinearly between layers of 

unidirectional carbon-epoxy laminate with grating fiber parallel to the carbon 

fibers. This structure is commonly termed as 0° uni-ply laminate. 

In order to measure the performance of the embedded FBG, a range of normal 

force from 0 N up to 60 N were applied to the sensor (Hao et al., 2003). It can be 

seen from Fig. 11.8 that excellent linear relationship exists between the axial strain 

and the applied normal force. The regression coefficient, R, is equal to 0.999. The 

embedded FBG sensor remained in an excellent state all the way up to an applied 

force of 60 N. Hence, the indirect sensing ensures a larger force sensing range as 

well as excellent linearity.

 

Fig. 11.8� Axial strain performance when the FBG is embedded within layers of composite 

material (Hao et al., 2003) 
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In the following section, a detailed discussion of FBG sensors based on 

indirect sensing technique is presented. 

11.10� FBG-based Pressure/Strain Sensor 

The effect of the position of rectilinearly embedded FBG within composite material, 

such as that shown in Fig. 11.9, can be explained using simple mechanics. With 

rectilinearly embedded FBG, when a normal force is applied, the layers above the 

neutral layer are compressed. Hence, when the FBG is embedded above the neutral 

layer, the period of grating decreases, resulting in a blue-shift of the reflected 

spectrum. On the other hand, the layers below the neutral layer will be under 

tension. Thus, when FBG is embedded below the neutral layer, it will be under 

tension resulting in an elongation of the fiber and hence a red-shift of the reflected 

wavelength. The experimental results are shown in Fig. 11.10. It can be seen that 

when the FBG is embedded above the neutral layer, the FBG is compressed and 

exhibits a sensitivity of –1.61 pm/N, whereas when it is embedded below the 

neutral layer, the FBG is elongated and exhibits a sensitivity of 3.96 pm/N. 

Therefore, for force sensing, the FBG should be embedded below the neutral layer 

for higher force sensitivity.  

 

Fig. 11.9� Effect of FBG position on sensor performance (Hao et al., 2003) 

 

Fig. 11.10� Axial strain performance of the embedded sensor when FBG is embedded above/ 

below the neutral layer (Hao et al., 2003) 
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For the embedded FBG sensor, the polyimide-coated grating fiber bonds well 

with the parallel-aligned carbon fibers after curing. Moreover, the grating fiber is 

too small to degrade the mechanical properties of the laminate. The grating fiber 

described here was embedded within eight layers of unidirectional carbon-epoxy 

laminate. Since the FBG is located between layers 7 and 8 (which is below the 

neutral layer, which lies between layers 4 and 5), tension is developed along the 

carbon fibers when a perpendicular force is applied on the top layer. The carbon 

fibers adjacent to the FBG transfer the tensile strain to the FBG in the longitudinal 

direction causing the grating period to increase. 

An important feature of the carbon fiber materials of high-modulus or high 

strength types is that they have very large range of elastic linearity (Gill, 1972). 

Therefore, the shift in wavelength is linearly proportional to the axial strain for an 

embedded FBG before it deforms, which explains the linear response obtained 

between axial strain and perpendicular force. The birefringent effect resulting 

from lateral and radial strain on the FBG is considered to be negligible. It is also 

reasonable to ignore small temperature fluctuations due to comparably low 

thermal expansion coefficient (0.73×10
-6 °C) of the carbon fiber laminates.  

By comparing the performances of direct sensing (using bare FBG) and 

indirect sensing (using embedded FBG), the indirect sensing method provides 

better linearity, stability and wider force sensing range. By using different types 

and configurations of embedding materials, it is possible to extend the sensing 

range of the sensor. As mentioned before, in our experiment, the grating fiber was 

embedded within eight layers of unidirectional carbon-epoxy laminate with the 

FBG oriented parallel to the carbon fibers at layers 7 and 8. With this combination, 

a linear force sensing range from 0 to 60 N (pressure from 0 to 4.66×10
5 

N/m
2

) is 

obtained with a resolution of 0.5 N (3885.6 N/m
2

). It may be noted that the 

resolution of 0.5 N is limited due to the noise during the experiment, and does not 

represent the resolution of the fiber optic pressure sensor. As mentioned before, 

the FBG should be embedded below the neutral layer in order to achieve higher 

sensitivity. Furthermore, the response of the embedded fiber shows better stability 

with respect to time as compared to the bare FBG used in the direct sensing technique. 

Since the FBG is embedded away from the neutral layer of the laminates, the 

FBG undergoes either tension or compression, depending on the direction of the 

applied force. Hence, by tracking the change of FBG wavelength from zero force 

condition, the sensor is able to determine both the magnitude and direction (force 

applied from which side) of the applied force. This property proves to be critical in 

assessing structural deformation as will be explained in more detail in the next 

chapter. 

11.11� FBG-based Shear Force Sensor 

For shear force measurement, the FBG is embedded at a small angle between the 
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upper and lower layers of carbon composite material (CCM) with a deformable 

layer of silicon rubber between them. This embedding technique is known as non- 

rectilinear embedding (Suresh et al., 2004). With this embedding technique, a 

relative motion between the upper and lower layers occurs when shear force is 

applied to the upper layer of CCM. The upper layer will move in the direction of 

the applied shear force with respect to the lower layer. This relative motion will 

stretch the fiber embedded in between. Hence, the applied shear force results in a 

change of fiber length and thus changing the reflected Bragg wavelength. 

Therefore, this embedding technique ensures the transformation of shear strain to 

the axial strain of the fiber. 

Fig. 11.11 schematically explains the concept of the sensor. Fig. 11.11(a) 

shows the sensor when no shear force is applied, and Fig. 11.11(b) shows the 

sensor under an applied shear force. The solid line shows the unstrained fiber and 

the dashed line shows the stretched fiber under the applied shear force (Tjin et al., 

2004).  

An analytical model of this sensor is also developed (Fig. 11.12), which leads 

to an explicit relationship between the applied shear force and wavelength shift. 

(Tjin et al., 2004; Suresh et al., 2004; Suresh and Tjin, 2005). The main 

parameters taken into consideration for this model are the applied shear force, the 

induced axial strain in the fiber and the reflected wavelength. It is assumed that 

the fiber is embedded along the diagonal of the deformable layer matrix. This 

approximation is justified since the horizontal length (length of the fiber 

embedded directly in the CCM layer at opposite sides) of the fiber (shown as x
h 
in 

Fig. 11.12) is small compared to the overall length of the fiber. 

 

Fig. 11.11� Basic sensor structure and sensing concept (a) in absence of applied shear force and 

(b) with applied shear force (Tjin et al., 2004, © 2004 IEEE) 
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Besides this assumption, the CCM layer has been ignored and only the silicon 

rubber matrix of the deformable layer has been considered in this model. This 

assumption is realistic taking into consideration the very high stiffness of CCM 

layer as compared to that of the deformable layer matrix. Only the part of the 

sensor with the fiber embedded in the silicon rubber matrix is taken into 

consideration for this model (see Fig. 11.12(a)). The dimension of the sensor has 

also been reduced accordingly. The reduced dimensions of the sensor are termed 

as the “effective dimensions”. The idealized model of the sensor is shown in Fig. 

11.12(b). 

It should be noted that the length is much greater than the thickness of the 

sensor. However, for the sake of clarity, the thicknesses are exaggerated in the 

figures. Also, the dependence of the reflected Bragg wavelength on temperature 

has been neglected in the present model as the experiments were performed under 

temperature-controlled laboratory conditions. 

 

Fig. 11.12� Theoretical model of the sensor. (a) Part of the sensor taken into consideration; 

(b) Extended view (Tjin et al., 2004, © 2004 IEEE) 

 

For the sensor shown in Fig. 11.12, let the total applied shear force be F, the 

force carried by the deformable layer matrix be F
1
 and the force carried by the 

fiber be F
2
. In this analysis, the fiber and the deformable layer matrix are 

considered individually and the individual effects are then superimposed. This is 

reasonable since both the matrix and the fiber are considered linearly elastic in 

nature. Let δH
1 

and δH
2
 be the horizontal deformation in the deformable layer 

matrix and the fiber respectively, as shown in Fig. 11.12(b). The effective sensor 

dimensions are length l, width b and thickness h. By definition, shear stress for 

deformable layer is  

bl

F

Area

Force

×
== 1τ                      (11.27) 

where l×b

 

is the surface area.  
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For the deformable layer matrix, the shear strain is 

Gbl

F

G ××
== 1

τγ                     (11.28) 

where G is the shear modulus of the deformable layer. It is known that  

h

H
1

δ=γ                         (11.29) 

Thus, equating Eqs. (11.27) and (11.28), we get 
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We know that the shear modulus can be written as 

)1(2
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=                      (11.31) 

where E
m 

and ν
m
 are the Young’s modulus and Poisson’s ratio of the deformable 

layer matrix, respectively. Solving Eqs. (11.30) and (11.31), we can obtain the 

horizontal elongation of the matrix as 
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where k
m 

denotes the stiffness of the deformable layer matrix, which can be 

expressed as 
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If δf is the elongation of fiber along the diagonal, then it can be written in 

terms of the horizontal elongation of the fiber, δH
2
, as (Fig. 11.12b) 

fH δcosδ
2

=θ                      (11.34) 

The horizontal force shared by the fiber is F
2
. This force component can be 

written in terms of the diagonal force F
f
 as 
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2
cos FF

f
=θ                       (11.35) 

Although the angle θ changes with the applied force, we have assumed θ to be 

a constant since the change in value of cosine of the angle θ is very small (a 

change of even 10 times in the angle θ shows negligible change in the cosine 

value for small values of θ used in the fabrication of the sensor). Thus, the cosine 

value is assumed constant (i.e. θ≈φ, see Fig. 11.12(b)), which is true only when l 

>> h; i.e. the thickness is very small compared to the length, as is in the present 

case. Elongation along the diagonal can thus be written as 

f

f

k

F

f =δ                         (11.36) 

where k
f
 denotes the longitudinal stiffness of the fiber, and can be expressed as 
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where E
f
 and A

f
 are the Young’s modulus and cross-sectional area of the fiber, 

respectively. Solving Eqs. (11.34), (11.35), and (11.36), the horizontal elongation 

of the fiber can be derived as 
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As we know from the compatibility condition, the horizontal elongation of the 

fiber δH
2 
(shown as length CC

/

 in Fig. 11.12(b)) and the deformable layer matrix 

δH
1
 should be the same (i.e., 

21
δδ HH = ). Thus, from Eqs. (11.32) and (11.38) 
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21
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F =                      (11.39) 

The total applied force F is the sum of the forces carried by the matrix F
1
, and 

the force carried by the fiber F
2
, i.e., 

FFF =+
21

                       (11.40) 

Solving Eqs. (11.38) to (11.40), we can obtain the horizontal elongation of the 

fiber as:  
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)cos(

δ
2

2 θ
fm

kk

F
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+
=                   (11.41) 

Thus, the elongation of the fiber along the diagonal is given by 

)cos(

cos

cosδδ
2

2 θ
θθ

fm
kk

F
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+
==              (11.42) 

Now, the axial strain in the fiber (ε = elongation/original length) is given as 

22

δ

hl

f

+
=ε                     (11.43) 

Hence,  

( )θ
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222
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From Eqs. (11.33), (11.37) and (11.44), we obtain 
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As we know, the wavelength shift with the strain can be expressed as 

( ){ }[ ]
121112

2
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          (11.46) 

Using Eqs. (11.45) and (11.46), the variation of the Bragg wavelength with the 

applied shear force is given by  
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This can be further simplified as 

FK
s

b

b ×=Δ
λ
λ

                    (11.48) 

where  
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It should be noted that K
s 
has the unit of N

−1

. Eqs. (11.47) to (11.49) show that 

the wavelength shift depends on the sensor dimensions (l, b, h) and the material 

properties of the deformable layer matrix (E
m
, ν

m
). The material parameter values 

of silicon rubber used in this model are listed in Table 11.1 (RS Components, 

2003). 

 

Table 11.1� Key specification of silicon rubber used in this study (RS Components, 2003) 

Parameter Value 

Young’s modulus, E 1.5×10  N/m  

Poisson’s ratio, ν 0.48 

Temperature range –50 °C to +250 °C 

 

An experiment was performed to verify the above theoretical model. The 

silicon rubber parameters given in Table 11.1 were used. We considered the fiber 

parameters as: cross sectional area A
f
 =

 
1.23×10

−8

 m
2

; Young’s modulus E
f
 = 

7.245×10
10 

N/m
2

; effective index of core n
eff

 = 1.448; strain-optic coefficients P
12 

and P
11 

are 0.270 and 0.121, respectively, and Poisson’s ratio ν
f 
=0.17 (Seo and 

Kim, 1999). Considering the effective dimensions of the sensor as length l = 4.15 cm, 

width b=2.162 cm and thickness h=1 mm, the value of K
s
 is obtained as 

0.000039787 N
–1

. Thus, Eq. (11.48) can be written as 

b
Fλλ )000039787.0(=Δ                   (11.50) 

The reference Bragg wavelength for this sensor was 1553.83±0.001 nm, and 

the FBG was fabricated using the phase mask technique. The experimental setup 

consisted of a tunable laser source (TLS, ANDO) with center wavelength 1554 nm 

and span (tuning or scanning range) 10 nm, an optical spectrum analyzer (ANDO 

6317) with a wavelength accuracy of ±0.001 nm, a circulator and a shear force 

device. Analytical and experimental results of this sensor are shown in Fig. 11.13, 



References 435 

where it can be observed that good agreement between the experimental and 

theoretical model is obtained. The analytical model shows a sensitivity of 62 pm/N 

whereas the experimental result shows a sensitivity of 67 pm/N, which are 

comparable.  

 

Fig. 11.13� Comparison of analytical and experimental results of the sensor 

 

Using the experimental results as a reference, the difference between the 

experimental and theoretical results is found to be only 7%, which is in good 

agreement; thus verifying the analytical model. This small difference may be 

attributed to the experimental errors as well as the idealized assumptions made in 

the theoretical model. As expected, the theoretical results show a linearity of 100% 

(with a regression coefficient of R=1). However, the experimental plot shows 

small non-linearity (R=0.998, indicating a non-linearity of 0.2%). This can be 

attributed to two causes: (1) the friction of the device used to apply shear force, 

which is unavoidable and; (2) the slight non-linear nature of the deformable layer 

matrix. The elastomeric silicon rubber, which was used as the deformable layer 

matrix, shows small non-linearity of less than 5% (Panek and Cook, 1984). It 

should be noted that due to the assumptions of linear elastic behavior of the fiber 

and the matrix, this model fits well in the linear region only and cannot explain the 

failure point of the sensor. This can be done by non-linear material modeling, 

which is however beyond the scope of present treatment. 
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12.1� Introduction 

The basic concepts and fabrication of optical FBG-based strain, directional force 

or pressure, and shear force sensors have been presented in Chapter 11. It is noted 

that the response to external stimulus is non-linear when direct sensing technique 

is applied to the FBG. However, excellent linearity and larger sensing range are 

observed with indirect sensing technique, where the FBG is embedded within 

layers of composite materials. In this Chapter, the applications of these FBG-

based sensors are covered. 

12.2� Pressure Monitoring at Foot Sole of Diabetic Patients 

Foot is an important part of human anatomy as it supports the entire body weight 

and provides leverage for walking, running and standing. It consists of several 

bones connected together in the form of an arch. This provides the flexibility to 

adapt to uneven surfaces. In addition, the foot also serves as a resilient spring to 

absorb shocks during activities like running and jumping.  

There are many bones that make up a foot, but the bones that experience the 

most pressure when standing, walking or running are the first to fifth metatarsals 

(the balls behind toe) and the calcaneum (the heel bone). In addition to bones, the 

foot is also made up of four layers of muscles, nerves and blood vessels (Basil and 

Wilson, 1988). Fig. 12.1 shows the pressure distribution on a normal foot (symbol ⊗ 
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indicates the pressure points). 

 

 

Fig. 12.1� Pressure distribution on a normal foot 

 

Research conducted by Simoneau et al. (1994) on diabetic patients confirmed 

that the control of posture is mainly contributed by the somatosensory system, and 

the loss of sensory perception secondary to diabetic distal symmetrical sensory 

neuropathy has a markedly detrimental effect on postural stability. People with 

diabetes are more likely to experience foot problems because of nerve damage and 

circulatory problems caused by this chronic disease. As a result, the patient may 

not be aware of excessive pressure exerted on a particular area of their feet in the 

course of their normal daily activities. This may result in inflammation and 

erosion of the fibers connecting the muscles to the bones and hence damaging the 

plantar of the heels. In particular, patients with incorrect posture while standing, 

walking or running are prone to ulcerations at the sole which may lead to 

amputation if the condition is not treated timely. Hence, a foot pressure sensor will 

be useful for orthopedic surgeons to map the pressure distribution on the patient’s 

plantar surface through the gait cycle and provide a dynamic measurement that 

takes into account the influence of the leg. With FBG pressure sensor, the 

orthopedic surgeons and doctors can determine the actual force exerted at the key 

pressure points under the patients’ feet as well as the total applied force along with 

its center (Hao et al., 2003). These tests will also assist the doctors to study the 

posture of a patient, hence correcting the patient’s way of walking and standing. A 

customized orthopedic shoe suitable for the individual patient can then be 

designed, thus enabling proper rehabilitative programs to be carried out. 

Orthopedic surgeons, doctors in sports medicine and shoe manufacturers can 

benefit substantially from this kind of foot pressure sensor system. 

Based on the performance of the embedded FBG sensor mentioned in the 

previous chapter, it is possible to make a foot pressure sensor in the shape of an 

insole by embedding a single strand of grating fiber into carbon/epoxy laminates. 

FBGs with different wavelengths can be written onto a single strand of fiber for 

monitoring pressure at different points. A simplified pressure distribution on the 

planar surface of a normal foot is depicted in Fig. 12.2(a), where five FBGs with 

five different Bragg wavelengths (1,536.96 nm, 1,541.47 nm, 1,546.69 nm, 

1,550.77 nm and 1,556.36 nm) are employed. Fig. 12.2(b) shows the reflection 

spectrum of the five FBGs used in the experiment.  
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Fig. 12.2� (a) A simplified pressure distribution on a normal foot; (b) The reflection spectrum of 

the five FBG sensors; (c) An overview of a foot pressure sensor pad (Hao et al., 2003) 

 

The FBGs were embedded between ten layers of carbon/epoxy laminate, cut 

into the shape of a footpad, with eight layers at the top, i.e. the FBGs were below 

the neutral layer. The five FBGs were spatially placed at the five main pressure 

points and orientated parallel to the carbon fiber to avoid any delamination or 

warping that could significantly affect the sensors’ performance.  

An overview of the footpad, with a thickness of 1.25 mm and weighs merely 

30 g, is shown in Fig. 12.2(c). Locations of the five FBGs are clearly marked in 

the figure. 

To use the FBG-based pressure sensor, the normal applied force of the FBG 

sensor must be properly calibrated against the axial strain. For this purpose, normal 

force was applied onto each of the embedded FBG one at a time, leaving the rest 

of the four FBGs to be force-free. Fig. 12.3 shows a typical calibration graph for 

one of the FBG sensors, with a linear regression coefficient of 0.99. From the 

slope, the sensitivity of the sensor is determined to be approximately 700 pm/MPa.  

 

Fig. 12.3� Calibration of the foot pressure sensor 
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From the linear fitting coefficient obtained for the calibration results, the 

following relations are obtained 

)με( *36.0)N( StrainForce =  (Strain � 0 με)                    (12.1) 

)με( *09.166)Pa( Strainpressure =    (Strain � 0 με)              (12.2) 

Thus, by measuring the force induced strain, we are able to determine the 

amount of force or pressure exerted on each of the five pressure points beneath the 

foot. Using this FBG foot pressure sensor pad, we conducted few simple tests on a 

26-year-old male subject with a body weight of 60 kg. The pressure distribution of 

the normal standing gait (with both feet firmly on the ground and carrying the total 

body weight) and the abnormal standing gait (an unbalanced standing posture with 

only one foot bearing most of the body weight) are depicted in Figs. 12.4 and 12.5 

respectively. 

 

Fig. 12.4� Foot pressure distribution of a normal standing gait 

 

Fig. 12.5� Foot pressure distribution of an abnormal standing gait 
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With the normal standing gait, it is observed that the first metatarsal near 

hallux (big toe, great toe, or thumb toe) seems to experience most of the pressure, 

while the fifth metatarsal head appears to experience the least pressure (Fig. 12.4). 

For the abnormal standing gait, the pressure distribution deviates from a typical 

distribution pattern as depicted in Fig. 12.5. Initial tests were also performed on 

some other volunteers and a statistical force distribution of a normal standing gait 

is plotted in Fig. 12.6. This could provide useful diagnostic references for orthopedic 

surgeons. The resolution of the foot pressure sensor is measured by sampling the 

data over a period of 1 hour. The average standard deviation of each sensor is 

around 5.35 pm at a data acquisition rate of 33 Hz. This gives a resolution of 0.93 

pm/√Hz (equivalent to 0.40 N/√Hz or 3108 Pa/√Hz). The sensitivity of the foot 

pressure sensor is 5.44 pm/N or 700 pm/MPa (Hao et al., 2003).  

 

Fig. 12.6� Force distribution of a normal standing gait and measurement obtained from an 

abnormal standing gait 

12.3� Pressure and Temperature Monitoring in a Dental Splint 

Sleep apnea, defined as repeated episodes of obstructive apnea and hypopnea 

during sleep, together with daytime sleepiness or altered cardiopulmonary 

function, is a common condition that plagues many adults (Strollo and Rogers, 

1996). The most common form of sleep apnea is known as obstructive sleep apnea, 

which involves an obstruction or occlusion of the upper airway during sleep. This 

is mainly a result of an anatomical abnormality, which could be either a narrow 

airway or excessive tissue in the upper airway that causes a blockage during the 

deeper stages of sleep when the body is most relaxed. Instead of a partial collapse 

of the air passage in the throat associated with snoring, patients suffering from 



12�  Applications of Fiber Bragg Grating Sensors 446 

sleep apnea experience a complete or near complete obstruction to the airflow 

through the windpipe during their sleep. This phenomenon causes great 

discomfort or even choking while the patient is asleep. The more serious and 

adverse cases can be fatal when the obstructed airway cannot recover itself. 

Several techniques have since been developed to help patients suffering from 

sleep apnea in reducing the likelihood of snoring. One such technique is to use a 

device known as a splint, which the patient can wear during his/her sleep. This 

device helps to hold the tongue back to prevent it from collapsing into the airway 

and hence keep the air passage open. The purpose of our application is to develop 

a sensor system that helps doctors monitor the proper use of splint by sampling the 

pressure exerted on the dental splint as it is worn. 

Since FBG is sensitive to both temperature and strain, we can embed two 

FBGs into the splint to carry out the sensory functions. One FBG is used as a 

pressure sensor while the other as a temperature sensor. The reading obtained 

from the temperature sensor will be subtracted from that of the pressure sensor to 

obtain the temperature compensated pressure reading.  

12.3.1� Structure of FBG-based Splint Sensor 

The two FBGs (one for pressure sensing and another for temperature sensing) 

were first embedded in glass fiber composite material to protect the FBGs and also 

to linearly transfer the normal load into axial strain in the fiber. All the FBG 

sensors were calibrated individually. Fig. 12.7 shows the schematic of the splint 

with embedded FBG sensors (Tjin et al., 2001a). 

 

Fig. 12.7� Schematic diagram of splint with embedded FBG sensors (Tjin et al., 2001a) 
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The FBG pressure sensor is placed in between the upper jaw and the lower jaw, 

as illustrated in the cross-sectional view of the splint. The FBG temperature sensor 

is placed away from the FBG pressure sensor to prevent the former from picking 

up pressure disturbances. The layout of the FBG splint sensor is shown in Fig. 12.8. 

 

Fig. 12.8� Outlook of the splint with embedded FBG sensors (Hao, 2001) 

12.3.2� Experimental Results and Discussions 

Experiments were carried out on four patients with each patient wearing the dental 

splint for approximately 45 minutes per session. Within this period, the 

temperature and pressure measurements were constantly acquired by the 

interrogation system at a rate of 30 readings per second. The wavelength of the 

FBG after the splint material was fully cured was taken as the reference 

wavelength or the “zero” wavelength. After the experiments, the recorded pressure 

and temperature data were plotted against time, as shown in Fig. 12.9, to illustrate 

their relationship. These graphs also reflect the monitoring ability of the sensor 

system. 
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Fig. 12.9� Measurements on Patient 1 (Tjin et al., 2001a). (a) Temperature results; (b) Pressure 

results 

 

Fig. 12.9(a) shows the temperature results of Patient 1. It was observed that 

the temperature in the mouth did not vary much once it has stabilized. Hence, as 

long as the splint remains in the mouth, the temperature remains somewhat constant. 

The pressure results of Patient 1 are shown in Fig. 12.9 (b). One graph shows the 

pressure results before temperature compensation and the other the temperature-

compensated pressure results. When the splint is not in the mouth, no force is 

exerted on the sensor, and the FBG sensor reflects a low strain value. The pressure 

data indicates a rise when the splint is positioned in the mouth. This is because as 

the patient’s teeth grip on to the splint, force is exerted on the FBG sensors.  

For the entire trial period, the changes in pressure were monitored closely. The 

data are important and relevant for doctors in monitoring the usage and effectiveness 

of the splint. The same conclusion was drawn for the other three patients. Figs. 

12.10(a) and (b) respectively show the temperature and pressure results of Patient 2.  

 

Fig. 12.10� (a) Temperature results of Patient 2; (b) Pressure results of Patient 2 (Tjin et al., 2001a) 

 

The above results show that the pressure exerted on the splint can be 

monitored continuously over a long period. Therefore, the FBG sensor monitoring 

system used in the dental application successfully proved to be a novel idea.  
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12.4� Monitoring Civil Structures 

12.4.1� Sensing Approach 

Reinforced concrete (RC) is a ubiquitous construction material that is formed from 

several components, such as cement, aggregate, steel reinforcement and various 

chemical additives. As a result, it exhibits complex processes, most of which are 

initiated or occur beneath the surface. When a bare FBG is embedded in the 

concrete, the alkali nature of concrete may damage the silicon in the glass. The 

FBG sensor must therefore be protected by some inert material before being 

embedded in the concrete. The laminated FBG will become part of the structure 

and serves to monitor any premature failure in the concrete. The embedded FBG 

sensor is reliable due to its good linearity, high sensitivity and wide load sensing 

range. 

In the experiments, a series of full field load tests on concrete beams were 

performed. The FBG sensors were either surface mounted or embedded in the 

concrete beams using the approaches described in the following sections. 

12.4.2� Symmetrically Bonded FBG Sensor Arrays on Rebars  

The FBG sensor arrays are symmetrically bonded onto the top surface of the RC 

beam’s reinforcement bar (rebar) prior to pouring and curing of the concrete. This 

allows the reaction of the structure to the external loads to be measured. Fig. 12.11 (a) 

illustrates a rebar that is placed below the neutral layer of the RC beam. When a 

load is applied perpendicularly to the top surface of the beam, a bending induced 

tension will cause the grating period to increase and hence a red shift in the 

spectrum of the reflected light. However, when the rebar is above the neutral layer, 

as shown in Fig. 12.11(b), an application of load perpendicularly to the top surface 

of the beam causes a bending induced compression on the FBG and hence a blue 

shift of the reflection spectrum (Hao, 2001). In the following, two cases are 

covered: surface bonded sensors and embedded sensors. 
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Fig. 12.11� FBG sensor array embedded on (a) bottom rebar; (b) top rebar 

● Surface Mounted FBG Sensor Array  

The FBG sensors can be mounted on the surface of the structure using suitable 

epoxies, as illustrated in Fig. 12.12. This configuration was tested and compared 

with the case where the sensors were embedded within the concrete. For the test, 

the load was gradually applied onto the RC beams all the way to failure whereby 

physical cracking of the concrete occurred. It was observed that as long as 

cracking does not occur, the reflected wavelengths from each sensor are linearly 

proportional to the applied load, but with different gradients. The closer the sensor 

is from the load point, the steeper is the response, and vice versa. These results are 

expected since when the sensor is placed in close proximity to the load, the 

bending stresses are higher, and the resulting change in the grating period is 

maximum. By further increasing the load, the response becomes nonlinear since 

permanent deformation occurs in the sensor region due to the crack. As the crack 

becomes more severe, the bending induced strain disappears because the sensor 

detaches from the concrete surface and the FBG wavelength returns to its original 

wavelength value. The behavior of the wavelength shift versus applied load 

follows the same trend as the stress-strain curve of concrete. The detailed 

experimental results are discussed in Section 12.4.2 (c). 

 

Fig. 12.12� FBG sensor arrays attached onto the surface of the concrete beam 
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● Embedded FBG Sensor Array 

Two cascaded carbon fiber laminated FBG sensor arrays were embedded in two 

separate 5 meter long RC beams to monitor the strain at different locations along 

the rebar during the loading test. Since the load was applied on top of the beam, 

the effect was symmetrical on both sides of the beam. Hence, only one side of the 

beam was monitored. Fig. 12.13 schematically shows the structure of the beam. 

The rebars are in groups of 4, placed inside the wooden formwork before the 

concrete was poured in.  

 

Fig. 12.13� The concrete beam. (a) Isometric view; (b) Cross-sectional view 

 

Fig. 12.14 depicts the layout of the two cascaded FBG sensor arrays embedded 

in the two beams with one on the top rebar and another on the bottom rebar. Each 

sensor array consisted of four FBGs spatially distributed along a single strand of 

optical fiber, which was well protected by heat shrinkable sleeves. These FBGs 

were sandwiched within 10 layers of uni-ply carbon/epoxy laminates, with a dimension 

of 20 mm×5 mm×1.25 mm, with a stacking sequence of 0/0/0/0/0/0/0/0/0/FBG/0. 

The grating fiber was attached to a 25 mm long polished surface of the rebar in the 

longitudinal direction, as shown in Fig. 12.14. Similarly, two conventional strain 

gauges were also embedded in the top and bottom of the beam to collect strain 

readings for comparison with the readings obtained by the FBGs. 
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Fig. 12.14� FBG sensor array mounted in RC beam on the (a) top rebar; (b) bottom rebar 

 

● Experiments 

The experimental setup is shown in Fig. 12.15. The RC beam was supported on 

both ends and secured by two holders. The load was applied at the center of the 

beam to cause bending in the x-z plane. Due to the two holders at the ends of the 

beam, the strain distribution along the rebar was much more complicated than that 

with the two ends free. The RC beam experienced compression or expansion at 

different location along the z-axis. The internal and external strains of the beam 

were monitored during the loading and unloading stages. An FBG interrogation 

system was used to acquire and process the reflected Bragg wavelength from the 

FBG sensor array. A computer was connected to the interrogation system enabling 

the measured readings to be displayed and saved as data files for post-processing 

(Wang et al., 2000).  
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Fig. 12.15� Setup of the load test on RC beam. (a) Schematic drawing; (b) Application of loading 

on the beam (Hao, 2001) 

 

The loading and unloading tests were performed in two parts, i.e. cyclic test 

and failure test. In the cyclic test, a relatively small force was applied on the beam 

and this force was gradually increased to ensure a recoverable deformation in the 

RC beam (Jensen and Koharchik, 1991). For small forces, the deformation 

undergone can be assumed to be elastic and linear. The corresponding force range 

is dependent on the structure of the beam. Cracks appearing on the beam set the 

maximum force for the linear region. When maximum force was reached, the 

unloading process was initiated to complete the test cycle of loading and 

unloading. The second part of the load test was the failure test. In order to perform 

the failure test, the forces were increased beyond the linear range. This maximum 

force was also gauged visually by the number of cracks appearing on the surfaces 

of the beam. After it reached a significant number, the beam was deemed to have 

failed, i.e. in an unrecoverable state.  

Results of the load tests are presented in Fig. 12.16 to Fig. 12.18 (Hao, 2001). 

The maximum applied force was 40 kN. The strain readings in Fig. 12.16 and 
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Fig. 12.17 have comparable values but opposite signs. This shows that the FBGs 

on the top rebar were compressed, while the FBGs at the bottom were stretched. 

Although the data points obtained from the unloading process shows that after 

removal of the loads, the beam was trying to recover to the initial state, they do 

not overlap completely with the data points obtained during the loading process. 

This hysteresis profile in the curves implies that there is permanent deformation in 

the concrete beam. The strain distribution obtained along the top surface of the 

beam is shown in Fig. 12.18. 

 

Fig. 12.16� Strain distribution along the top rebar under cyclic test 

 

Fig. 12.17� Strain distribution along bottom rebar under cyclic test 
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Fig. 12.18� Strain distribution on surface of the concrete beam under cyclic test 

 

Comparison of the strain readings obtained from FBG1 to FBG4 shows that 

FBG4 was picking up most of the strain reading whereas FBG1 was picking up 

the least strain. The results are in agreement since FBG1 was closer to the end 

where minimum bending occurred in the beam, whereas FBG4 was closer to the 

loading bar where the maximum bending occurred. Fig. 12.19 shows the strain 

measured by the electrical resistive strain gauges.  

 

Fig. 12.19� Strain readings obtained from conventional resistive strain gauges mounted on the 

top and bottom surface of concrete beam during cyclic test 

 

From the strain readings obtained by the FBG (Fig. 12.16) mounted on the top 

rebar and the strain readings obtained using the conventional resistive strain 
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gauges mounted on the top surface of the RC beam (Fig. 12.19), we can conclude 

that a contraction occurred in the position of FBG4. Furthermore, comparing the 

bottom strain readings from the FBG mounted at the bottom rebar (Fig. 12.17) 

with the conventional strain gauge mounted on the bottom surface of the beam 

(Fig. 12.19), a similar trend is observed suggesting that the strain readings 

obtained from the embedded FBGs are reliable.  

Results of the failure test are shown in Fig. 12.20 to Fig. 12.22 (Hao, 2001). 

Fig. 12.20 shows that the strain reading saturated at a threshold force of about 50 

kN. We termed this force range as the “saturation” region. When the loading force 

increased beyond 80 kN, the strain readings started to rise as the number of cracks 

on the beam increases steeply, and this region is termed the “failure” region. 

When the loading force exceeded 110 kN, Fig. 12.20 (top rebar) shows an abrupt 

change in the strain reading which may be due to a major crack within the RC 

beam, reaching the “breakdown” region. When the loading force was totally 

removed, the strain readings did not return to the original state. This implies a 

permanent deformation in the beam, and hence the region is termed the 

“deformed” region.  

Hence, as depicted in Fig. 12.20, the entire loading can be divided into regions 

classified as “Safe”, “Saturation”, “Failure” and “Breakdown”. Broadly speaking, 

a structure can be considered as “healthy” if the measured strain readings are well 

within the “Safe” region. On the other hand, when the strain readings approach the 

“Failure” and “Breakdown” regions, the structure is considered to be “unhealthy” 

and dangerous. The ability to assess the “state of health” of the structure requires 

regular strain measurements to be taken to identify sudden changes in trends. 

 

Fig. 12.20� Strain distribution along  top rebar under failure test 
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There was however no indication of major abrupt change in the strain readings 

in Fig. 12.21 (bottom rebar) and Fig. 12.22 (surface) even though the applied load 

exceeded the 110 kN limit. A possible explanation for this is that the beam broke 

into two parts at 110 kN, causing the bottom rebar to bounce back to the initial 

strain-free condition, resulting in a sudden “hop back” to the initial strain-free 

state as shown in Fig. 12.21 and Fig. 12.22. This is supported by the physical 

observation that when the applied load reached 110 kN, the concrete in the middle 

section already gave way and could no longer provide resistance to the applied 

force. Based on the plot from Fig. 12.20 to Fig. 12.22, it can be confirmed that the 

concrete beam broke when loaded to around 110 kN.  

 

Fig. 12.21� Strain distribution along bottom rebar under failure test 

 

Fig. 12.22� Strain distribution on top surface of RC beam under failure test  
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Fig. 12.23 shows the top and bottom strain readings obtained from the 

conventional resistive strain gauges during the failure test. The bottom strain 

readings indicate a steady strain measurement until failure started to occur at about 

90 kN. At about 110 kN, the bottom strain readings “hop back” to the load-free 

state with an unrecoverable offset from the initial strain value. This offset could be 

caused by a permanent deformation in the RC beam. For the top strain gauge, the 

strain readings indicate a steady strain measurement until failure started to occur at 

about 80 kN. At about 110 kN, the top strain readings “hop back” to the load-free 

state with an offset from the initial strain reading. Similarly, this offset could be 

caused by a permanent deformation in the RC beam. Nevertheless, for both cases, 

it was shown from the strain gauge measurement that the beam broke at about 

110 kN. 

 

Fig. 12.23� Strain readings obtained from conventional resistive strain gauges mounted on the 

top and the bottom surfaces of the RC beam during failure test 

12.4.3� Contact Force Measurement at Beam-Column Joint 

In the design of any structure, the structure needs to be analyzed for different load 

conditions such as dead loads, superimposed loads, earthquake/wind loads and 

their possible load combinations. In such an analysis and design, the shear force 

between different structural components also needs to be considered. Furthermore, 

after construction, forces in the structure need to be monitored for verification of 

the design assumptions and also for the purpose of structural health monitoring 

(Soh et al., 2000; Bhalla and Soh, 2004). Shear force measurement is an important 
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aspect of structural health monitoring. In this study, FBG-based shear force sensor 

have been used for contact force measurement between different structural 

components. A beam-column joint was fabricated by connecting a 160 mm long 

concrete beam between two concrete cubes (Suresh et al., 2005). At the interfaces 

of the beam and the cubes, shear force sensors (fabrication covered in Chapter 11) 

were embedded. The sensors were first embedded between two aluminum plates 

and these plates were attached at the beam-column interface using epoxy (RS 850-

940). Fig. 12.24 shows the schematic layout of this model. Fig. 12.25 depicts the 

complete experimental setup (Suresh et al., 2005, © IOP).  

 

Fig. 12.24� Schematic arrangement of the experimental model for the measurement of contact 

force at two different structural components (Suresh et al., 2005, © IOP) 

 

Fig. 12.25� Experimental model of beam-column joint (Suresh et al., 2005, © IOP) 

 

A force in the range of 0 – 25 N was applied at approximately the midpoint of 

the beam. The responses of the sensors at the ends were recorded. The responses 

obtained at the two sensors are shown in Fig. 12.26. This data was used for 

calibration of the two sensors. Later, an unknown force was applied at an 
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unknown position along the length of the beam and using the reference calibration 

data, the magnitude as well as the location of the applied force was determined. 

Table 12.1 provides a comparison between the experimentally measured 

magnitude and location with the actual values.  

 

Fig. 12.26� Calibration of shear force sensors (Suresh et al., 2005) 

 

Table 12.1� Measurement of unknown applied force and location (Suresh et al., 2005, © IOP) 

S. No. 

Applied 

force  

(N) 

Measured  

force 

(N) 

Error in 

measured  

force (%) 

Location of 

applied  

force (cm) 

Calculated 

location 

(cm) 

Error in  

calculated  

location (%) 

1 9 8.75 2.7 5 6.24 7.94 

2 9 9 0 6 6.93 5.98 

3 9 9 0 7.8 7.8 0 

4 9 9 0 9.6 8.23 4.9 

5 12 11.75 2.08 5 5.97 6.24 

6 12 11.5 2.16 6 6.68 5.01 

7 12 12 0 7.8 7.8 0 

8 15 14 6.6 4 5.2 8.2 

9 15 14.5 3.3 6 6.7 4.6 

10 15 14 6.6 9.6 8.07 9.7 

 

From the table, the applied force is determined with an average error of 2.5% 

and the location of force application is monitored within an average error of 5%. 

The small error, which is in acceptable range, is attributed to experimental error 

such as slight non-prismatic nature of the cast beam. 

12.5� Multi-Component Force Measurement 

Multi-component force measurement is important in several engineering applications 

such as robotic gripper, where information is needed about the normal and shear 

forces at the contact surfaces between the gripper and the object for secure 
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grasping (Chappell and Elliott, 2003). Another example of multi-components 

existing together is in the foot sole, where simultaneous measurement of the shear 

and pressure components will provide complete information of 3D stress 

distribution at discrete points along a diabetic patient’s foot sole, so as to enable 

suitable rehabilitative programs to be adopted (Thomas et al., 2004). 

Although the concept of multi-component force measurement is important, 

very few sensors have been fabricated so far (Kim and Lee, 2003; Kang, 2001; Liu 

and Tzo, 2002; Kim et al., 1999; Peiyu et al., 2005; Aiquo et al., 2007). Most of 

these sensors are prone to electromagnetic interference, which may lead to inaccuracy 

in the measurement. Using FBG for multi-component force measurement will make 

the sensor system immune to electromagnetic interference. Fernandez et al. (2001) 

reported a FBG strain sensor based multi-component force sensor, which was 

based on Maltese cross-shaped transducer, for measurement of the three 

components of a force. Although a linear response was obtained in the sensor, a 

large number of FBG strain sensors (8 FBG-based strain sensors) were needed and 

rigorous analysis is required to determine the various components.  

In the previous chapter, FBG-based pressure and shear force sensors have been 

presented. The two concepts are utilized together to form a sensor that 

simultaneously measures the two components of force, namely the normal force 

and the shear force. This sensor structure is further modified to measure all the 

three components of the applied force: (i) the normal force (and hence, pressure) 

(ii) the longitudinal shear force, and (iii) the transverse shear force. 

The following sections discuss the basic structure and the test results of a 

FBG-based multi-component force sensor.  

12.5.1� Basic Concept 

FBG-based shear and pressure sensors have been discussed in the previous chapter. 

It is explained that for pressure measurement, the FBG is embedded rectilinearly 

(parallel), above or below the neutral layer, within the layers of composite 

material. When embedded at the neutral layer, the FBG is immune to the applied 

pressure. However, for shear force measurement, the FBG is embedded at the 

neutral layer non-rectilinearly. Hence, shear force sensor should be immune to the 

applied pressure while pressure sensor should be immune to the applied shear 

force.  

Experiments were carried out to study the response of shear force sensor under 

pressure. The results of these experiments are shown in Fig. 12.27. The maximum 

wavelength shift under a normal force of 20 N is found to be 10 pm (compared to 

approximately 1500 pm in the case of applied shear force of 20 N), which is still 

within the error range of the interrogation system (OSA: Optical spectrum 

analyzer; accuracy ± 10 pm). Resolution of the OSA used was 10 pm. Thus, the 

sensor shows negligible response to applied pressure. Under uniform pressure, the 
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fiber, which is embedded at a very small angle, becomes slightly more horizontal. 

The force component along the fiber is likely to be very small and hence, the axial 

strain in the fiber is also expected to be very negligible. This configuration thus 

becomes similar to embedding the fiber at the neutral layer (Suresh and Tjin, 

2005a). As it is known, if the fiber is embedded at the neutral layer, there is no 

effect of the applied pressure on the sensor and hence no noticeable wavelength 

shift was observed under uniform pressure (Fig. 12.27(a)). This is consistent with 

what is expected. 

 

Fig. 12.27� Response of shear FBG to pressure. (a) Uniform pressure; (b) Localized pressure for 

small sensor thickness 

 

When the thickness of the shear force sensor is small (≈1 mm), the embedded 

FBG becomes more horizontal under applied localized pressure as well. This is 

similar to embedding the FBG at the neutral layer and hence immune to the 

applied pressure (Fig. 12.27(b)). However, if the thickness of the sensor is large, 

the shear FBG will not be completely immune to pressure. In this case, it does not 

resemble embedding at the neutral layer and hence, it will show pressure 

sensitivity. In the experiments, small sensor thicknesses were used to ensure that 

the shear FBG is immune to the applied pressure.  

Based on this observation, two-component and eventually three-component 

force sensors are fabricated for the measurement of magnitude and direction of the 

applied force in 2D and 3D space. The following sections describe the two- and 

three-component force sensors (Suresh and Tjin, 2005b; Suresh et al., 2009).  

12.5.2� Two-Component Force Measurement 

As discussed above, the layers of embedding material show deformation under 

applied pressure. However, for small sensor thickness, the FBG embedded non-

rectilinearly in the deformable layer remains insensitive to pressure. In this 

situation, if another FBG is embedded rectilinearly in the upper layer of the CCM, 

axial strain will be transferred to this FBG. Hence, this FBG can measure the 
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applied normal force and hence, pressure. Thus, both the shear and normal forces 

can be measured simultaneously. The resultant of the normal and shear forces 

gives the magnitude of the applied force in 2D plane, and the direction of 

application of this force can thus be obtained. Hence, for two components force 

measurement (i.e. one shear and one normal), two FBGs are embedded (one in the 

deformable layer which is the shear FBG and one in the CCM layer which is the 

normal force/pressure FBG) as shown in Fig. 12.28. 

 

Fig. 12.28� Schematic of the embedding technique for two-component force sensor (Suresh et 

al., 2009) 

 

The shear FBG is embedded within the deformable layer non-rectilinearly with 

the CCM layer, and the normal force FBG is embedded rectilinearly within the 

upper layer of CCM. The working principle of this sensor is illustrated in 

Fig. 12.29. 

 

Fig. 12.29� Schematic diagram of the two-component force sensor under applied normal force 

(Suresh et al., 2009) 

 

Under applied pressure, the CCM will deform since it is not at the neutral 

layer. This deformation of CCM will cause stretching/compression of the pressure 

FBG (which is embedded in the CCM). This stretching/compression will 

eventually cause the Bragg wavelength to shift, which is a measure of the applied 

pressure. Under applied pressure, the shear FBG (which is embedded non-

rectilinearly in the deformable layer) will become almost horizontal resembling 
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the embedding of FBG at the neutral layer, and thus is immune to the applied 

pressure. 

Under applied shear force, the normal force FBG is unaffected, since in this 

case, the horizontal movement of the upper layer will displace the pressure 

sensing fiber without any stretching or compression (rigid body motion of the 

normal force FBG). Thus, the wavelength of the normal force FBG will remain 

unaffected whereas the shear FBG will be stretched and will undergo a 

wavelength shift proportional to the applied shear force. Hence, this two-

component force sensor is able to measure both the shear and pressure 

components simultaneously.  

For experimental verification of this sensor, two sets of reference data were 

collected; one set under applied shear force and the other under applied pressure. 

Fig. 12.30 shows the response characteristic of the sensor under applied shear 

force.  

 

Fig. 12.30� Response characteristic of two-component force sensor under applied shear force 

(Suresh et al., 2009) 

 

From the measurements, a shear force sensitivity of 135 pm/N was obtained. It 

is apparent that the pressure FBG was not affected by the applied shear force, 

which is in agreement with the above discussion. Similarly, the response 

characteristic of the sensor under applied normal force (both under compression 

and tension) was also evaluated. The result of this experiment is shown in Fig. 

12.31, which shows that the shear FBG was immune to the applied pressure.  
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Fig. 12.31� Response characteristic of sensor under applied pressure. (a) pressure FBG under 

compression (b) pressure FBG under tension (Suresh et al., 2009) 

 

The normal force FBG shows a higher shift in the Bragg wavelength while 

only a small negligible shift was observed in the wavelength of the shear FBG as 

the FBG is embedded almost at the neutral layer. 

It should be noted that the normal force FBG displays a non-linear shift in the 

wavelength since the deformable layer may have borne part of the applied force; 

thus the applied pressure may not be transferred fully to the pressure FBG. 

Another possible reason for the non-linearity could be due to the non-linear 

characteristics of the silicon rubber under compression as well as the associated 

geometric non-linearity. In the first experiment, the normal force was applied from 

the top so that the normal force FBG was under compression; thus showing a blue 

shift in the reflected wavelength (Fig. 12.31(a)). Another experiment was 

performed to obtain the response curve of the sensor when the pressure was 

applied from the bottom so that the pressure FBG was under tension. The result is 

shown in Fig. 12.31(b)). In this case, the pressure FBG shows a red shift in the 

wavelength as explained in Chapter 11. The response is again found to be non-

linear due to factors explained above. Under both conditions, similar magnitudes 

of wavelength shift are expected since the embedding is at the same location 

above and below the neutral layer under pure bending. However, under point 

load/non-uniform load, where the stress distribution is complex, lesser 

compressive strain is observed as compared to the tensile strain at corresponding 

location below the neutral layer. 

From Fig. 12.31, we observed that the shear FBG is almost insensitive to the 

applied pressure (the small shift obtained is negligible). The results of these 

experiments serve as a reference calibration data for the measurement of the 

unknown applied force. The following is the description of 2D force 

measurements.  
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12.5.3� 2D Force Measurement 

From the measured shear (S) and normal force (P), the unknown applied force or 

the resultant force can be obtained as 

22

PSF +=                                             (12.3) 

The direction of the applied force (w.r.t sensor orientation) can be measured as 
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arctanθ                                               (12.4) 

Based on the above analysis, experiments were performed for the 2D force 

sensor. A digital force gauge was employed to determine the magnitude of the 

applied force in the vertical direction, while a metal stage of different orientation 

in 2D was used to keep the sensor at different angles with respect to the force 

gauge.  

Forces of different magnitudes were applied at different angles. The results of 

this experiment are summarized in Tables 12.2 and 12.3. The measured forces and 

angles are calculated using Eqs. (12.3) and (12.4) respectively. 

Table 12.2 shows the measurement of the direction of the applied force, and 

Table 12.3 shows the magnitude of the applied force.  

 

Table 12.2� Measurement of direction of the applied force in 2D (Suresh et al., 2009) 

S. No. Applied angle (Degree) Measured angle (Degree) Normalized error (%) 

1 90.0 90.0 0.0 

2 88.0 85.7 2.6 

3 80.0 79.1 1.1 

4 75.0 71.5 4.6 

 

 

Table 12.3� Measurement of magnitude of the applied force (Suresh et al., 2009) 

S. No. Applied force (N) Measured force (N) Normalized error (%) 

1 0.0 0.0 0.0 

2 5.0 5.4 8.2 

3 10.0 9.2 8.2 

4 15.0 13.7 8.6 

 

The results show that the applied angle can be measured within an average 

error of about 2%, and the magnitude can be measured within an average error of 

about 6%. This 2D force measurement can be extended for measuring 3D forces, 

as detailed in the following section. 
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12.5.4� 3D Force Measurement 

An arbitrarily applied force in space can be resolved into three mutually 

orthogonal components. Out of the three components, two components 

(longitudinal and transverse shear components) always fall in the same plane but 

at mutually perpendicular directions, with the third component (normal 

force/pressure component) being perpendicular to the corresponding plane. Thus, 

the longitudinal and transverse shear forces correspond to the mutual orthogonal 

shear component of the force.  

It has been explained earlier that, for small sensor thickness, the FBG which is 

embedded non-rectilinearly in the deformable layer is insensitive to the applied 

normal force and hence, pressure. Another experiment was carried out to 

determine the response of the longitudinal shear FBG under applied transverse 

shear force. The result of this experiment is shown in Fig. 12.32 (Suresh and Tjin, 

2005a, 2005b; Suresh et al., 2009). It was observed that the FBG in the shear force 

sensor shows highest sensitivity to the longitudinal applied shear force and 

negligible sensitivity to the transverse shear force since the component of the 

applied transverse shear force along the fiber is small. Hence, the transverse shear 

force has little effect on the fiber.  

 

Fig. 12.32� Response of longitudinal shear FBG under transverse shear force (Suresh et al., 2009) 

 

A wavelength shift of around 80 pm under a transverse shear force of 20 N is 

observed. On the other hand, under longitudinal shear force of 20 N, a wavelength 

shift of 1500 pm is observed. Thus, it is verified that the transverse shear FBG 

shows high sensitivity to longitudinal shear force but low sensitivity to transverse 

shear force. In the two-component sensor structure, if another FBG is embedded in 

the deformable layer in the transverse direction, this will be sensitive to the 

transverse shear force and almost insensitive to the longitudinal shear force. Based 

on this principle, a three-component force sensor can be fabricated. The schematic 

design of this sensor is shown in Fig. 12.33. For measurement of the three force 

components, another FBG is embedded non-rectilinearly within the deformable 
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layer (which is shown as transverse FBG in Fig. 12.33) in the orthogonal direction 

of the longitudinal shear FBG. The pressure FBG is embedded in the CCM layer. 

 

 

Fig. 12.33� Schematic diagram of 3D force sensor (Suresh et al., 2009) 

 

The applied force in 3D can be resolved in three mutually orthogonal 

components, namely (i) the normal force, (ii) the longitudinal horizontal 

(longitudinal shear) force and (iii) the transverse horizontal (transverse shear) 

force. The longitudinal shear FBG will show highest sensitivity to the longitudinal 

shear component of the applied force. Similarly, the transverse shear FBG will 

show highest sensitivity to the transverse shear component since the transverse 

shear component will appear in the longitudinal direction of this FBG. The normal 

force FBG will be sensitive only to the normal component of the applied force. 

Thus, under the applied normal force, only the normal force FBG would be 

responding, whereas under the applied longitudinal or transverse shear force, the 

corresponding FBG will show large wavelength shift; the other two will be almost 

immune (though not completely) to the orthogonal components.  

For experimental verification of this sensor, three sets of reference data were 

recorded; one under the applied normal force and the other two under the applied 

co-planar shear forces (longitudinal and transverse shear). The following section 

discusses the experiments in detail. 

From here on, the normal force FBG will be addressed as P, the longitudinal 

shear FBG as S
1
 and the transverse shear FBG as S

2
. 

● Effect of Applied Normal Force 

Experiments were carried out to investigate the response of the three FBGs under 

applied pressure. A normal force of 0 – 20 N was applied on the sensor, such that 

the upper layer of the CCM was under compressive stress. The response of the 
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three FBGs is shown in Fig. 12.34. Here, the term “sensor” refers to the composite 

structure containing CCM, the deformable layer and the three FBGs. 

The result in Fig. 12.34(a) shows that only the normal force FBG responded to 

the applied normal force, which is in agreement with the earlier discussions. This 

result will be used as reference for measurement of the magnitude and direction of 

the unknown applied force.  

In this experiment, the normal force was applied from the top, so that the 

corresponding FBG was under compression, thereby showing a blue shift in the 

reflected wavelength. Another experiment was performed to obtain the response 

curve of the sensor when the normal force was applied from the bottom where the 

corresponding FBG was under tension. The result is shown in the Fig. 12.34(b), 

which again verifies that under normal force, only the corresponding FBG (P) 

shows noticeable wavelength shift. The sensors S
1
 and S

2
 show negligible shifts. 

 

Fig. 12.34� Response of S
1
, S

2
 and P FBGs of three-component force sensor under 

applied normal force. (a) Normal force FBG under compression; (b) Normal force FBG under 

tension (Suresh et al., 2009) 

 

It is observed that the two shear FBGs (S
1
 and S

2
) show negligible sensitivity 

to the applied normal force, which is again in agreement with the earlier 

discussions. Small shift in the wavelength was obtained for the two shear FBGs 

since the shear FBGs were not embedded exactly at the neutral layer. Under 

applied normal force, the two FBGs will become more horizontal but not 

completely, so they will not be exactly at the neutral layer, hence will only exhibit 

negligible wavelength shift. This small sensitivity can be further reduced either by 

reducing the thickness of the deformable layer or by increasing the stiffness of the 

deformable layer (Suresh and Tjin, 2005a). 

In a similar way, the responses of the FBGs to the longitudinal and transverse 

shear forces were investigated. The results of the experiments are discussed in the 

following sections. 

● Effect of Applied Longitudinal Shear Force 

The response characteristic of the three-component force sensor under applied 
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longitudinal shear force is shown in Fig. 12.35. It was found that S
1
 shows the 

highest sensitivity to the applied longitudinal shear force. P and S
2
 show 

negligible sensitivity, which is in agreement with the theoretical prediction that 

only S
1 
will be sensitive to the applied shear force in the longitudinal direction. 

 

Fig. 12.35� Response of S , S  and P FBGs of three-component force sensor under applied 

longitudinal shear force (Suresh et al., 2009) 

● Effect of Applied Transverse Shear Force 

The response characteristic of the sensor under applied shear force in the 

transverse direction is shown in Fig. 12.36 (Suresh and Tjin, 2005b; Suresh et al., 

2009).  

It is found that only S
2
 shows sensitivity to the applied transverse shear force. 

The pressure (P) and the longitudinal FBG (S
1
) show negligible sensitivity, which 

is again found to be in agreement with the theoretical conclusion that only the 

transverse shear FBG (S
2
) will be sensitive to the applied transverse shear force. 

 

Fig. 12.36� Response of three-component force sensor under applied transverse shear force 

(Suresh et al., 2009) 
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The results obtained in these basic characterization experiments were then 

used for actual measurement of the three force components. The wavelength shifts 

of the three FBGs will give the respective force component and hence, the 

resultant force can be determined. The resultant of the three components measures 

the actual force applied in 3D. In the experiment conducted, as a simplification, 

instead of changing the direction of the applied force, the surface on which the 

sensor was mounted was adjusted (with resolution 0.5 degrees). Forces of various 

magnitudes were applied (measured using a digital force gauge with resolution of 

0.5 N). A 3D stage was used to secure the sensor so that the force can be applied 

to the sensor in various directions. 

The results of this experiment are summarized in Table 12.4, which shows the 

measurement of the magnitude as well as the direction of the applied force in 3D. 

 

Table 12.4� Measurement of magnitude and direction of applied force in 3D (Suresh et al., 2009) 

 

It was found that the sensor could measure the magnitude and direction of the 

applied force within an average error of 10%. Although the error is apparently 

large, this work demonstrates the feasibility of using FBGs for determining 3D 

forces. Part of this error is attributed to experimental error, which includes 

measurement of the actual angles at which the force was applied.  

The magnitude and direction of the applied force characterize the applied force 

vector completely in 3D. Hence, two- and three-component force sensors have 

been successfully fabricated and tested. The two-component force sensor 

measures the normal force/pressure and the longitudinal shear force and hence, 

measures the magnitude and direction of the applied force in 2D. For the three-

component force sensor, three FBGs are embedded within the CCM layer. This 

sensor measures the normal force/pressure, longitudinal shear and transverse shear 

components of the force and hence, measures the magnitude and direction of the 

applied force in 3D. From Tables 12.2, 12.3 and 12.4, it may be noted that the 

accuracy of measurement increases with the angle as well as magnitude. Presently, 

the cross-coupling effects are present, though in small magnitude. So far, sensor 

with thickness approximately 1 mm has been found to be insensitive to normal 

force (Suresh and Tjin, 2005a). To minimize cross-coupling between the transverse 

and the longitudinal shear FBGs, highly orthotropic material may be used for 

embedding. Although, carbon composites is one such material, however no 

Parameter Actual value 

Experimentally 

measured value 

Normalized Error (%) 

2.0 1.8 9.0 

4.0 3.7 6.5 Force (N) 

6.0 5.9 1.6 

38.4 37.5 2.3 

35.0 31.4 10.4 

Angle at horizontal plane (φ) 

(Degree) 

37.0 32.0 13.5 

8.0 7.0 12.5 

10.5 9.2 12.3 

Angle from horizontal (θ) 

(Degree) 

11.6 12.2 5.4 
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complete immunity to orthogonal shear component has been achieved so far.  

The advantage of this multi-component force sensor over other reported sensor 

is that, in this sensor, only 3 FBGs are required (as compared to 8 FBGs reported 

by Fernandez et al., 2001). Hence, less signal processing is needed. For shear 

force sensor, the sensitivity dependence on the sensor parameters has been well 

established (Suresh and Tjin, 2005a). The dependence of sensitivity/accuracy/force 

sensing range on the sensor parameters such as sensor dimension and material 

parameters is apparent. Hence, based on the requirement of practical applications, 

such as higher sensitivity or larger sensing range, sensor for particular applications 

can be fabricated. As the FBGs are embedded within the CCM layers, the whole 

sensor may be embedded within composite structures for strain monitoring, if 

required. However, this sensor has not been tested for such applications. For 

practical application, advanced signal processing is required as well. 

12.6� Simultaneous Measurement of Pressure and Temperature 

In general, all strain sensors, including FBG-based sensors, are subjected to both 

pressure and temperature simultaneously. For FBG-based strain sensors, 

measurement of the reflected wavelength shift obtained from a single grating does 

not facilitate discrimination of the sensor’s response to the two perturbations. Thus, 

special technique is required to separate the information corresponding to the two 

measured parameters. This section presents an FBG-based sensor which is 

configured in such a way that the pressure and temperature can be measured 

simultaneously and independently. Along with the inherent temperature 

independent measurement of the pressure, this sensor is also able to indicate the 

direction of the applied pressure, which is the added advantage of this sensor over 

the other reported sensors (Jincheng et al., 2008; Liu et al., 2007; Tian et al., 2005; 

Huang et al., 2003). 

12.6.1� Sensor Configuration and Working Principle 

The sensor consists of two FBGs which are embedded within the layers of CCM. 

One FBG is embedded above while the other below the neutral layer at equal 

distances, as shown in Fig. 12.37(a). The reflection spectra of the FBGs are 

sufficiently separated as shown in Fig. 12.37(b) (Tjin et al., 2009).  

For ease of explanation, we have embedded the FBG with lower Bragg 

wavelength above the neutral layer while the other FBG with a higher Bragg 

wavelength is embedded below the neutral layer. When pressure is applied from 

the top, the FBG embedded above the neutral layer is compressed and the FBG 

below the neutral layer is stretched. The reflected Bragg wavelengths shift towards 
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the shorter and longer wavelengths for the compressed and the stretched FBGs, 

respectively. Under this condition, the separation between the two FBG spectra 

increases. This shift of the separation of the FBG spectra is a function of the 

applied pressure. Fig. 12.37(b) shows the spectra of the FBGs when no pressure is 

applied. With the application of pressure, the FBGs show shifts toward the 

shorter/longer wavelengths as shown in Fig. 12.37(c). When pressure is applied 

from the bottom, the peak wavelength of the FBG embedded above the neutral 

layer (which is the FBG with lower Bragg wavelength) shifts toward longer 

wavelength while the peak wavelength of the FBG embedded below the neutral 

layer shifts toward shorter wavelength. In other words, the separation between the 

two peak wavelengths decreases (Fig. 12.37(c)). Thus, an increase or decrease of 

the spectral separation indicates the direction of the applied pressure while the 

magnitude of the separation is proportional to the magnitude of the applied 

pressure. 

 

Fig. 12.37� Sensor structure for measurement of temperature and pressure. (a) Block diagram; 

(b) FBG spectra; (c) Variation of the shift of two spectra with pressure (Tjin et al., 2009) 

 

When the temperature varies, both the FBGs spectra shift either towards 

longer wavelengths (for increase in temperature) or shorter wavelengths (for 

decrease in temperature) in equal amounts since both FBGs are exposed to the 

same temperature variation and have the same temperature sensitivity. The 

separation between the two spectra peaks remains unchanged. Fig. 12.38 shows 

the behavior of the sensor with increasing temperature, where the spectra of the 

two FBGs at room temperature and at increased temperature are shown.  
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Fig. 12.38� Sensor under increasing temperature: Separation of the spectra remains unchanged 

(Tjin et al., 2009) 

 

With the variation of temperature, the two spectral peaks will shift by equal 

magnitudes, while the peak separation will remain the same. Though the shift of 

individual peak gives a measure of the temperature, the shift of both the spectra 

should be measured so that the average of the two can be used to determine the 

temperature. When the sensor is exposed to both temperature and pressure, the 

separation between the two FBG spectra gives a measure of the applied pressure 

while the average of the shift of individual peak gives a measure of the 

temperature (Fig. 12.39).  

 

 

Fig. 12.39� Simultaneous measurement of temperature and pressure (Tjin et al., 2009) 
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12.6.2� Sensor Fabrication and Experimental Procedure 

Two FBGs with Bragg wavelengths 1554.754 nm and 1561.700 nm were used for 

sensor fabrication. The FBGs were written using the phase mask technique, and 

have reflectivity of more than 90%. The FBGs were embedded within the CCM. 

Tunable laser source (TLS) was used as the light source and optical spectrum 

analyzer (OSA) was used to analyze the FBG spectra. The experiments were 

performed in three stages. Following is a discussion of the various steps.  

(a) Response of Sensor at Variable Temperatures Under Constant Pressure  

As discussed earlier, with temperature variations, the individual FBG peak shifts 

while the separation between the two FBG spectra remains unchanged. An 

experiment was performed to verify this concept. The sensor was placed in an 

oven, and the temperature was varied between 20 °C to 60 °C with pressure kept 

constant at 5 MPa. The individual Bragg wavelengths and the separation between 

the two spectra were measured. The results of this experiment are shown in the 

Fig. 12.40. Fig. 12.40(a) shows the shift of individual peaks whereas Fig. 12.40(b) 

shows the change in separation between the two spectra with temperature.  

 

Fig. 12.40� Response of the sensor under temperature. (a) Shift of individual peak; (b) Shift of 

separation of the two FBG spectra (Tjin et al., 2009) 

 

Note that the individual wavelength changes linearly with temperature while 

the separation of the two spectra remains approximately constant. The separation 

of the two spectra was approximately 6,925 pm at a temperature of 22 °C and a 

pressure of 5 MPa. A shift of the spectral separation of approximately 3 pm was 

obtained with increasing temperature of up to 60 °C. This shift is small as 

compared to the 10 pm accuracy of the OSA. Hence, this shift of spectral 

separation can be considered as negligible.  
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(b) Response of Sensor at Constant Temperature Under Variable Pressure 

Another experiment was carried out to verify that the change of separation 

between the two FBG spectra gives a measure of the applied pressure. Pressure in 

the range of 0 to 10 MPa was applied from the top/bottom of the sensor with the 

temperature kept constant at 20 
o

C. The reflected Bragg wavelengths of the two 

FBGs were measured, and the separation of the spectra was determined. The result 

of this experiment is shown in Figs. 12.41 and 12.42.  

Fig 12.41 shows the shift of individual wavelength. Figs. 12.42(a) and 12.42(b) 

show the shift of separation between the two spectra for the pressure applied from 

the top and from the bottom. It can be observed that separation of the two spectra 

increases/decreases when the pressure is applied from the top/bottom respectively. 

The magnitude of shifts of the two spectra gives a measure of the magnitude of 

applied pressure. The increase/decrease of the spectral shift represents the 

direction of application of pressure.  

 

 

Fig. 12.41� Response of the sensor under applied pressure: wavelength shift of the two FBGs 

(Tjin et al., 2009) 

 

 

Fig.12.42� Separation of spectra when pressure is applied from (a) top and (b) bottom (Tjin et 

al., 2009) 
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● Simultaneous Measurement of Pressure and Temperature 

Based on the individual temperature and pressure measurements obtained so far, 

the feasibility of simultaneous measurement of temperature and pressure was 

experimentally verified. The sensor was placed in an oven, and pressures of 

various amplitudes were applied. The oven temperature was also varied. The 

results of this experiment are summarized in Tables 12.5 and 12.6.  

 

Table 12.5� Measurement of pressure (Tjin et al., 2009) 

Actual applied pressure (MPa) Measured pressure (MPa) Normalized error (%) 

2 2 0 

5 4.65 7 

10 10.2 2 

 

Table 12.6� Measurement of temperature (Tjin et al., 2009) 

Actual temperature (°C) Measured temperature (°C) Normalized error (%) 

35.2 36 2.2 

45 46.4 3.1 

55 54.25 1.4 

 

Tables 12.5 and 12.6 show the results for the measurement of pressure and 

temperature, respectively. It was observed that using the proposed embedding 

technique, the temperature and pressure can be measured simultaneously within 

acceptable error limits. The average of the individual shifts gives a measure of the 

temperature with error within 5%, while the shift of the separation of the two FBG 

spectra gives a measure of the magnitude and direction of the applied pressure 

within an error of 7%. This embedding technique allows simultaneous 

measurement of the magnitude and direction of the applied pressure as well as the 

temperature. 

12.7� Summary 

Several applications of embedded FBG sensor array are described in this chapter. 

In biomedical applications, the development of a foot pressure sensor to monitor 

the foot pressure distribution of patients suffering from diabetics was covered. The 

lost of sensory feedback as a result of illness may cause the patients to exert 

excessive pressure on a particular area of their foot unknowingly. Over prolonged 

period of time, if the condition is left untreated, the nerves may get damaged and 

the potential of developing gangrene and later amputation of the limb increases. 

Hence, the foot pressure sensor serves as an external sensory feedback system to 

both patients and doctors, providing them information that can help correct the 

patients’ gait.  

Another biomedical application of FBG sensors described in this chapter is its 
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use for recording compliance of dental splint in obstructive sleep apnea through 

the measurement of pressure and temperature. The sensors fabricated using FBGs 

have advantages over the conventional force and temperature monitoring sensors 

in that they do not carry any electrical current and hence, pose no risk to the 

patient. In addition, the two sensors were fabricated on the same optical fiber, with 

both working independently of the other. The sensors are also much flatter than 

most conventional sensors and, hence more appropriate for sensing within a 

confined area (Tjin et al., 2001b).   

In civil engineering applications, “smart structures” are structures which 

provide information on the “state of health” of the structure much like our body’s 

nervous system providing pain signals to warn us of possible internal ailments. In 

an experiment to demonstrate the concept of “smart structures” using FBGs, two 

separate sensor arrays, comprising four FBGs each, were embedded in an RC 

beam. The beam was supported on both sides and a perpendicular force was 

gradually applied to the center of the beam. The strain readings obtained from the 

sensor arrays show a contraction on the top and an expansion at the bottom of the 

concrete beam. The FBGs that are closer to the center of the beam were more 

sensitive to the applied force, while the FBGs closer to the supported end were 

less sensitive to the applied force. When the applied loading on the beam exceeded 

the damage threshold, the strain readings from the sensors went in the reverse 

direction even though the applied pressure was increased. The plot in Fig. 12.21 

illustrates different regions of measurement. This is useful when the “health” of 

the structure is to be classified into “healthy” or “unhealthy” state, based on the 

strain readings obtained from the embedded sensors. 

Fabrication and testing of two- and three-component force sensors has also 

been covered. The two-component force sensor measures the normal 

force/pressure and the longitudinal shear force. The three-component force sensor 

measures the normal force/pressure, and the longitudinal and transverse shear 

forces. Hence, it can measure the magnitude as well as the direction of the applied 

force in 3D space. This sensor has potential applications in fields such as 

aerospace, defense and robotics. 

Finally, the embedding technique for simultaneous measurement of temperature 

and pressure is presented. A proof of concept has also been performed to 

demonstrate that the temperature and pressure can be measured simultaneously 

within acceptable error limits. It is also found that along with the magnitude, this 

sensor also determines the direction of the applied pressure, which is an advantage 

compared with the other reported sensors.  
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13.1 � Introduction 

This chapter discusses the feasibility of employing the new generation fiber optic 

and piezoelectric sensor systems for comprehensive monitoring of rocks, covering 

load history monitoring/retrieval as well as damage assessment. In several major 

cities across the world, city planners are paying serious attention to the 

development of usable underground space in the form of caverns and tunnels due 

to continuously depleting land availability (Zhao et al., 1999). In addition, 

underground structures are considered safer compared to surface structures against 

earthquakes and hurricanes, and are less prone to noise pollution (Goel, 2001). 

However, they demand huge resources for construction and maintenance, and any 

collapse could be detrimental to the nation’s economy in terms of lives and 

properties. This necessitates their comprehensive monitoring on a regular basis to 

check the onset of damages. Damages might occur due to environment-induced 

degradation, fatigue, excessive/unpredicted loads, and underground blasts. In 

addition, instrumentation and monitoring of the underground structures during 

construction and operation can facilitate validation of key design assumptions. 

This is especially pertinent to the underground structures, since quite often, many 

geotechnical and environmental complexities cannot be accurately considered at 

the design stage. Comprehensive instrumentation can pave the way for long-term 

monitoring of external loads, stress distributions and deflections, which can be 
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useful for comparing the predicted and the actual responses as well as detecting 

the occurrence of structural damage in real-time, thereby ensuring a high level of 

safety. In addition, the database generated could economize future constructions.  

In general, structural monitoring should cater for two requirements in the 

underground structures: (i) monitoring external loads (due to construction, vehicle 

movement, blasts, shocks and environmental effects) and corresponding 

deflections/strains, which can be termed as load history retrieval (LHR); and (ii) 

monitoring the occurrence of damages, that is, SHM. This chapter illustrates, 

using rock specimens, how PZT transducers can be utilized for SHM and FBG-

based sensors for LHR simultaneously. 

13.2� Conventional Versus Smart Material Based Sensor Systems 

for LHR and SHM of Underground Structures 

Strain gauges are the most widely used sensors for LHR. The conventional strain 

gauges are based on vibrating wire or electrical resistance principle. Vibrating 

wire strain gauges (VWSGs) involve measuring the frequency of vibration of a 

pre-tensioned wire (whose ends are fixed to the monitored component) from 

which strain in the component is deduced. They are considered reliable for long-

term strain monitoring, as demonstrated by Bakker (2000) on tunnels and Moyo 

(2002) on bridges. However, they are suitable for measuring static strains only, 

and are highly susceptible to mechanical noise from ambient vibrations. In 

addition, they are bulky and expensive. The electrical strain gauges (ESGs), which 

are based on stress dependence of a conductor’s resistance, offer a low-cost 

alternative to VWSGs. On the other hand, the ESGs tend to be unstable over long 

periods of time due to decay, and hence are suitable for short-term monitoring 

only. Furthermore, they can be easily deteriorated by water and hence can be 

problematic if employed for monitoring underground rock structures such as 

caverns where damp conditions commonly occur. In general, both VWSGs and 

ESGs warrant separate cables from each sensing unit, which implies many wires 

for handling. At the same time, for long distance monitoring, these cables suffer 

from electro-magnetic interference and electrical noise, which further 

contaminates the measured strains. 

In addition to strain gauges, extensometers are commonly employed for 

measuring displacements in underground structures, especially in newly 

constructed rock caverns. Generally, two types of extensometers are employed- 

tape extensometers and multiple point borehole extensometers. A tape 

extensometer consists of a telescopic rod, an invar bar, and a tape under constant 

tension placed between two measuring points, such as on the surface of a rock 

cavern. Hence, it measures relative displacements (convergence/divergence) 

between the two points. Multiple point borehole extensometers work on similar 

principle but can measure relative displacements between several points, such as 
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at various depths along a borehole. Both types of extensometers have been 

extensively employed for monitoring large caverns in Singapore (Zhao et al., 

2002). However, the main limitation of the conventional extensometers is that 

they entail manual recording of data, which can be tedious. In tape extensometers, 

slight loosening of the convergence pins can severely affect the accuracy of the 

measurement since the displacements to be measured are in the range of a few 

millimeters. In addition, they tend to obstruct the usable area of the cavern. A 

more detailed review of sensors available for SHM can be found in Bhalla et al. 

(2005). 

As far as SHM is concerned, several local and global techniques are currently 

under practice or are being investigated in several parts of the world, as explained 

in Part 1 of this book. However, these have so far not been applied on any 

underground structures. Similarly, not much research has been devoted to 

applying these materials to LHR and SHM of rocks. Following sections describe 

our study on the application of smart optical fiber and smart piezo-electric ceramic 

materials on LHR and SHM of rocks, respectively.  

13.3� Experimental Investigations on Rocks 

The experimental tests were performed by Yang et al. (2007) on three cylindrical 

specimens, each 50 mm in diameter and 100 mm in length, cored out from the 

Bukit Timah granite site in Singapore. Fig. 13.1 shows the instrumentation details 

of these specimens. Specimens 1 and 2 were instrumented with two ESGs (of a 

gauge length of 60 or 3 mm), two multiplexed FBG sensors (one for sensing strain 

and the other for temperature) and one PZT patch. Specimen 3 was instrumented 

with a PZT patch only. The ESGs were manufactured by Tokyo Sokki Kenkyujo 

Co, Ltd. (TML, 2004). They were bonded to the rock surface using quick set RS 

850-940 epoxy adhesive (RS Components, 2004).  

The two FBG-based strain gauges, manufactured by the Institute of Infocomm 

Research (I
2

R) Singapore, had a length of 50 mm each. One of them was 

employed to record surface strain and the other for temperature compensation. The 

strain sensing FBG and the temperature sensing FBG were multiplexed. 

Temperature compensation is essential because FBG has relatively high sensitivity 

to temperature, measuring about 13 pm/°C against 1 pm for a micro-strain. 

Accordingly, the strain measuring FBG sensor was physically bonded to the 

specimen surface whereas the temperature measuring sensor was kept 

mechanically free. High strength epoxy adhesive RS 159-3957 (RS Components, 

2004) was used for bonding the strain measuring FBG sensor for specimen 1 and 

quick set epoxy adhesive RS 850-940 was utilized for specimen 2. The PZT 

patches bonded to the specimens were 10 mm×10 mm×0.3 mm in size, conformed 

to grade PIC 151 (PI Ceramic, 2004), and were bonded to the rock specimens 

using the quick set epoxy adhesive RS 850-940.  
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Fig. 13.1 � Typical installation details of ESGs, FBG sensors and PZT patches on rock 

specimens. (a) ESG and FBG sensors; (b) PZT transducer 

 

Fig. 13.2 shows the experimental setup for loading the test specimens and for 

measuring the responses of the ESG sensors and the PZT transducers. The PZT 

patch instrumented on the rock specimen was wired to a HP 4192A impedance 

analyzer (Hewlett Packard, 1996), which was controlled by a personal computer. 

The ESG sensors were wired to a strain recording data logger. The FBG sensors 

were wired to a micron-optics interrogator that was controlled by a notebook 

computer, as shown in Fig. 13.3. 

 

Fig. 13.2� Experimental setup showing compression testing machine, data logger (for ESGs) 

and impedance analyzer (for PZT transducers) 
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Fig. 13.3 � Experimental setup showing compression testing machine and micron-optics 

interrogator (for interrogating FBG sensor) 

 

Each rock specimen was compressed at a rate of 330 kN/min until the first 

predetermined load. It was then unloaded to zero load level at the same rate. 

Readings from the ESGs and FBGs were both recorded during loading and 

unloading at fixed intervals. After complete unloading, the conductance and 

susceptance signatures (real and imaginary components of admittance Y ) were 

acquired from the bonded PZT patch. In the next cycle, the specimen was 

compressed to the next higher level of load and the signatures of the PZT patch 

were acquired after unloading, as in the first cycle. This loading, unloading and 

signature acquisition process was repeated until failure. Thus, damage was 

induced to the rock specimens in a cyclic fashion. 

13.4� LHR by ESG and FBG Sensors 

13.4.1� Specimen 1 

Fig. 13.4 shows the stress-strain history of specimen 1 obtained using the 3-mm 

ESG, the 60-mm ESG and the FBG-based strain sensors. From this figure, it is 

evident that the strain history retrieved by the 60-mm ESG (Fig. 13.4(b)) is similar 

to that by the FBG strain sensor (Fig. 13.4c). However, the strain measured by the 

3-mm ESG is quite different from the other two strain gauges. This is because the 

3-mm strain gauge tends to measure the local surface strain due to its small gauge 

length. The 60-mm ESG and 50-mm long FBG strain sensors, on the other hand, 

measure the overall surface strain and hence exhibit similar stress-strain plots. Fig. 

13.5 compares the recordings from the 60-mm ESG and 50-mm FBG strain gauge 

for each load cycle. The load histories match quite well for cycles III, IV and V. 
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Fig. 13.4� Stress-strain histories for specimen 1 obtained using: (a) 3-mm ESG, (b) 60-mm ESG; 

(c) FBG based strain gauge 
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Fig. 13.5� Measurements of ESG (60 mm) and FBG (50 mm) sensor for each cycle for specimen 1. 

(a) Cycle I; (b) Cycle II; (c) Cycle III; (d) Cycle IV; (e) Cycle V 

13.4.2� Specimen 2 

Fig. 13.6 shows the stress-strain histories for specimen 2 obtained from the 3-mm 

ESG, the 60-mm ESG and the FBG-based strain sensors. Again, as in the case of 

specimen 1, strain history retrieved by the 60-mm ESG (Fig. 13.6(b)) is similar to 

that for the FBG strain sensor (Fig. 13.6(c)) but quite different from that for the 3-

mm ESG (Fig. 13.6(a)). Fig. 13.7 compares the recordings of the 60-mm ESG and 

50-mm FBG strain gauge for each load cycle. The load histories match very well 

for cycles IV, V and VI. Incidentally, both the 60-mm ESG and the FBG-based 

strain sensors failed prematurely during Cycle VI, well before failure of the 

specimen, which occurred during Cycle VIII. 
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Fig. 13.6� Stress-strain histories for specimen 2 obtained using (a) 3-mm ESG; (b) 60-mm ESG; 

(c) FBG based strain gauge 
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Fig. 13.7� Measurements of ESG (60 mm) and FBG (50 mm) sensor for each cycle for specimen 2. 

(a) Cycle I; (b) Cycle II; (c) Cycle III; (d) Cycle IV; (e) Cycle V; (f) Cycle VI 

 

13.5� SHM by PZT Transducers 

13.5.1� Specimen 1 

Fig. 13.8 shows the conductance signatures acquired by the PZT patch bonded to 

specimen 1 at various stages during the loading process (in unloaded condition, 

after loading it to a specific load and then unloading). The signatures were 

acquired in a frequency range of 60 – 100 kHz at an interval of 100 Hz. In this 

figure, “load ratio” refers to the stress imposed on the specimen divided by the 
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ultimate stress (recorded at failure of the specimen). As shown in Fig. 13.4, the 

specimen was subjected to five load cycles and it failed during Cycle V, after 

withstanding a maximum stress of 154.3 MPa (corresponding to a load ratio = 1.0). 

During the loading process, when loaded up to load ratios of 0.33 and 0.66, the 

conductance plot underwent upward shifts. At the same time, major peaks shifted 

to the left, as shown in Fig. 13.9 for a frequency range of 90 – 100 kHz for load 

ratios of 0.0 and 0.33. 

 

Fig. 13.8� Conductance signatures of PZT patch bonded to specimen 1 at various loading stages 

 

Although the damage was incipient at a load ratio of 0.33, the conductance 

peaks underwent noticeable leftward shifts. Since the peaks represent structural 

resonance, leftward shifting of the peaks indicates loss of structural stiffness. 

Although visually no detectable damage was observed until a load ratio of 0.66, 

clear indication was however provided by the piezo-impedance signatures at a 

load ratio of 0.33. Furthermore, as apparent from Fig. 13.8, at a load ratio of 0.82, 

there is a very significant shift in the conductance signature indicating the 

occurrence of severe damage in the specimen. Careful examination of the 

specimen revealed the presence of a vertical crack running longitudinally across 

the specimen. Thus, by carefully observing the raw conductance signatures, it is 

possible to qualitatively infer the nature and magnitude of damage occurring in the 

host structure. Rigorous calibration for quantitative prediction is carried out in the 

next section. The PZT patch was found broken at the failure load, so conductance 

signature could not be recorded at a load ratio of 1.0. 
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Fig. 13.9� Shifting of peaks of conductance signatures for PZT patch on specimen 1 

 

13.5.2� Specimen 2 

Fig. 13.10 shows the conductance signatures of the PZT patch bonded to specimen 

2. As clearly observed from the figure, the conductance signature underwent 

consistent drifts with increasing load ratios. Fig. 13.11 shows the shifts in the 

peaks with damage progression in the frequency range of 92 – 93 kHz. These 

figures demonstrate that it is possible to detect both incipient and severe damages 

using PZT transducers. The PZT patch was able to sustain high strains of up to 

2,000 micro-strain and was functioning well even after failure of the specimen.  

 

Fig. 13.10� Conductance signatures of PZT patch bonded to specimen 2 at various loading stages 
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Fig. 13.11� Shifting of peaks of conductance signatures for PZT patch on specimen 2 

13.5.3� Specimen 3 

Fig. 13.12 shows the conductance signatures acquired by the PZT patch bonded to 

specimen 3 at various loading stages. Leftward shift of the resonance peaks (and 

hence indication of stiffness loss) is clearly evident from the figure. Similar to 

specimens 1 and 2, the results of specimen 3 also confirm the high sensitivity of 

the PZT transducers to the occurrence of damage. This specimen withstood a 

stress of 101.9 MPa (load ratio = 1.0) during Cycle VI. During Cycle VII, it failed 

at a stress of 50.9 MPa (corresponding signature marked as “after failure” in 

Fig. 3.12).  

 

Fig. 13.12� Conductance signatures of PZT patch bonded to specimen 3 at various loading stages 
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13.5.4� Extraction of Structural Mechanical Impedance  

Although it is possible to detect and qualitatively predict the level of damage from 

raw conductance signatures, as shown in Chapter 4, the real and imaginary 

components of the admittance signature can together be utilized to identify the 

host structural system as well as quantify damage more realistically. The first step 

is to extract the host structure’s mechanical impedance from the admittance 

signatures, as outlined in Chapter 4. A close look at the variations of “x” and “y” 

(real and imaginary components of the extracted mechanical impedance) indicates 

a system behavior similar to a series combination of spring, damper and mass 

(system 7 of Table 4.1), for which the following relations hold true (Hixon, 1988) 
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Using these equations, the system parameters are derived at each measurement 

point within the frequency range and the average values then obtained. For 

specimen 1, the average parameters were found to be: c = 46.8813 N·s/m, k = 

2.8776×10
7

 N/m and m = 1.7851×10
–4

 kg. Fig. 13.13 compares the experimental 

plots of x and y with those of the equivalent system based on the computed 

average values of the parameters k, c and m. Reasonable agreement can be 

observed from the figure. The parameters were similarly worked out at various 

load ratios for specimen 1 as well as specimen 2.  
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Fig. 13.13� Comparison between experimental and equivalent system impedance plots for 

specimen 1. (a) x vs. frequency; (b) y vs. frequency 

13.5.5� Calibration of Extracted Parameters for Damage Quantification 

Chapter 5 establishes an impedance-based damage model for concrete based on 

the identified stiffness parameter k. In the frequency range 60 – 100 kHz, concrete 

essentially behaves as a parallel spring-damper combination. On the other hand, in 

the case of rock specimens, the PZT patches identified the structure as a series 

combination of m, k and c (Fig. 13.13). A similar trend with respect to k is 

observed for the rock specimens. The identified stiffness is found to gradually 

reduce with damage. This is evident from the plots of k shown in Fig. 13.14, 

corresponding to different load ratios, for specimens 1 and 2. For specimen 1, 

there is slight increase at small load ratios but at higher load ratio, there is an 

overall reduction. For specimen 2, on the other hand, a very consistent reduction is 

observed.  

At j
th

 frequency, a damage variable, D
j
, can be defined in terms of the 

identified stiffness, similar to the case of concrete (Chapter 5), as 

oj

dj

j

k

k

D −= 1  (0 < D
j
 < 1)                               (13.6) 

where k
oj

 is the equivalent spring stiffness at the j
th

 measurement point in the 

pristine state, and k
dj

 represents the corresponding value after damage. From the 

theory of continuum damage mechanics, an element can be deemed to fail if D > 

D
c
. However, it is not possible to define a unique value of D

c
 due to unavoidable 

uncertainties related to rock and PZT patches. The damage variable is computed at 

each frequency in the interval 80 – 100 kHz, corresponding to each load ratio for 

specimens 1 and 2. Statistical examination of the data indicates that the damage 

variable follows a normal probability distribution. This is evident in Fig. 13.15, 

which shows the empirical cumulative probability distribution of D and also the 

theoretical normal probability distribution for specimens 1 and 2 at or near failure. 
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The normal distribution is found to be acceptable under 85% confidence limit for 

both specimens. 

 

 

Fig. 13.14� Variation of identified spring stiffness with damage progression. (a) Specimen 1; 

(b) Specimen 2 



13� Monitoring of Rocks and Underground Structures Using PZT and FBG Sensors 496 

 

Fig. 13.15� Theoretical and empirical cumulative probability distributions near failure. (a) Specimen 1; 

(b) Specimen 2 

 

Using the fuzzy set theory, a fuzzy region may be defined in the interval (D
L
, 

D
U
). D > D

U
 represents a failure region with 100% failure possibility and D < D

L 

represents a safe region with 0% failure possibility. Within the fuzzy or the 

transition region, that is, D
L
< D < D

U
, the failure possibility could vary between 

0 and 100%. A characteristic or a membership function f
m 

can be defined (0 < f
m
(D) 

<1) to express the grade of failure possibility within the region (D
L
, D

U
). The 

fuzzy failure probability (FFP) can then be determined by Eq. (5.12) as in the case 

of concrete. Based on observations made during the tests, D
L 

and D
U
 were chosen 

as 0.0 and 0.12, respectively. Furthermore, the sinusoidal membership function 

given by Eq. (5.14) is adopted as in the case of concrete.  

Using this membership function, the fuzzy failure probability (FFP) was 

worked out for the two specimens at each load ratio. At a load ratio of 0.7, which 

can be regarded as a state of severe damage, both specimens exhibited a fuzzy 

failure probability of greater than 70%. Fig. 13.16 shows the FFP of the specimens 

at various stages during the tests.  

 

Fig. 13.16� Fuzzy failure probability of specimens 1 and 2 at various load ratios. (a) Specimen 1; 

(b) Specimen 2 

 

Based on minute observations made during the tests on rock specimens, the 

following classification of damage is recommended based on FFP. 

(1) FFP < 30% Incipient Damage (Micro-cracks); 
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(2) 30% < FFP < 50% Moderate damage (Cracks opening up); 

(3) 50% < FFP < 70% Severe damage (large visible cracks); 

(4) FFP > 70% Failure imminent. 

Thus, the fuzzy probabilistic approach quantifies the extent of damage on a 

uniform 0 – 100% scale, which can be employed to evaluate damage in real-life 

rock structures, such as caverns and tunnels.  

13.6� Robustness of PZT Transducers and FBG-based Strain Gauges 

In our experimental study, three types of sensors were evaluated for their 

application on rocks, namely, PZT transducers, ESGs and FBG-based strain 

sensors. Fig. 13.17 shows close-up views of the three specimens after failure. The 

PZT patches were found to be intact and functioning well in specimens 2 and 3. 

However, the PZT patch bonded to specimen 1 broke at a load ratio of 0.826 

because the failure crack passed directly through the location of the PZT patch, as 

shown in Fig. 13.17(a). In spite of this fracture, no debonding was observed 

between the PZT patch and the host rock surface. Hence, RS 840-950 epoxy 

adhesive  is suitable for bonding PZT patches on rock surfaces. As observed from 

Figs. 13.17(c) and (e), the PZT patch was intact in both specimens 2 and 3. 

The 60 mm long ESGs worked well until failure in specimen 1 (Fig. 13.17(a)), 

but failed prematurely at a load ratio of 0.868 in the case of specimen 2 (Fig. 

13.17(d)). However, some debonding was noticed between the specimen and the 

sensor in the case of both specimens 1 and 2, as seen in Figs. 13.17(b) and 13.17(d). 

The FBG sensors performed well at low loads in the case of specimen 1, but 

failed prematurely during Cycle VI (somewhere prior to failure of the ESG) in the 

case of specimen 2. As noticed from Figs. 13.17(b) and 13.17(d), significant 

debonding occurred between the rock surface and the FBG sensor prior to 

specimen failure. Hence, future tests need to be conducted to find a more robust 

adhesive for these sensors. 

13.7� Potential Applications of Smart Sensors on Rock Structures 

This chapter has demonstrated the feasibility of employing smart piezo-impedance 

transducers for SHM and FBG-based strain sensors for LHR of rock structures. 

PZT transducers show long-term durability and fast dynamic response, have low 

cost, exhibit negligible aging, and are immune to ambient noise. They facilitate 

direct estimation of damage without warranting analytical/numerical modeling. 

They can be used for wide ranging applications on rock structures such as 

assessing the condition of rocks after underground blasts, detection of cracks in 

caverns during the convergence period, monitoring the condition of rock bolts, 
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rock quality/strength assessment and measurement of dynamic strains. The results 

confirm that they are reliable damage indicators, and can warn of any imminent 

damage before it could be physically visible. The fuzzy probabilistic damage 

model quantifies damage realistically, and could be employed for damage 

diagnosis of real-life rock structures such as caverns and tunnels. 

 

Fig. 13.17� Condition of specimens after failure. (a) Specimen 1: PZT patch; (b) Specimen 1: FBG 

and ESG; (c) Specimen 2: PZT patch; (d) Specimen 2: FBG and ESG; (e) Specimen 3: PZT patch 
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FBG sensors are characterized by long-term stability, are chemically inert and 

small sized, and carry the potential of eliminating cables that are troublesome in 

data transmission and retrieval. In rock structures, in addition to monitoring the 

static and dynamic strains in tunnels, caverns and rock bolts, these could be 

employed for precise measurement of cavern deflections/convergence, and long-

term soil/rock movements. Thus, as PZT patches can perform SHM well and FBG 

sensors can facilitate LHR, they complement each other in structural monitoring. 
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14.1� Introduction 

14.1.1� History and Characterizations 

Compared to piezoelectric materials and fiber optics, ionic polymer-metal 

composite (IPMC) is a relatively new smart material. IPMC, also known as ionic 

conducting polymer gel film (ICPF), was initially found in fuel cell research. In 

the early 1990’s, Sadeghipour et al. (1992) found the sensing ability of ionic 

polymer. Later, the converse process of charge storage mechanism associated with 

fuel cell, i.e., actuation capacity, was found by Oguro et al. (1992). Ever since 

then, ionic polymer has been attracting more and more attention from researchers.  

IPMC is a type of wet electro-active polymers (EAPs) in that salt solution is 

required for its actuation. As shown in Fig. 14.1, an IPMC consists of a thin 

polyelectrolyte membrane and a type of noble metal, such as platinum and gold, 

chemically plated on both sides of the membrane. The typical polyelectrolyte 

membranes used in IPMC are Nafion, Flemion and Aciplex.  
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Fig. 14.1� Structure of a typical IPMC sample 

 

Fig. 14.2 illustrates the microstructure of a platinum electrode surface, and Fig. 

14.3 shows the chemical structures of the three types of membranes.  

 

Fig. 14.2� Microstructure of platinum electrode surface 

 

Fig. 14.3� Chemical structures of polyelectrolyte membrane used in IPMC. (a) Nafion; (b) Flemion; 

(c) Aciplex 
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As shown in Fig. 14.1, the microstructures of IPMC membrane are in the form 

of interconnected clusters in which the anions are covalently fixed to the backbone 

of the polymers while the cations and their associated solvent molecules are free 

to move within or out of the clusters. Thus, when an electric potential is applied to 

the electrode, the free cations and the associated solvent molecules will migrate 

under electric field from anode to cathode. As illustrated in Fig. 14.4, due to the 

charge redistribution process, two layers near the electrodes are formed, i.e., the 

cation dominant cathode boundary layer and the anion dominant anode boundary 

layer. Due to the imbalance of electrostatic stresses and other chemical stresses 

developed within the two layers, IPMC will bend under electric potential. 

IPMC can undergo a fast and large bending motion when a low electric 

potential is applied to its electrodes. Conversely, IPMC can generate a measurable 

electric potential when it is subjected to sudden bending. Thus, IPMC can serve as 

both actuators and sensors. When IPMC is subjected to a constant voltage, 

IPMC’s fast bending motion is generally followed by a slow relaxation. The 

relaxation direction is dependent on the membrane type. For Nafion, the relaxation 

direction is reverse to the initial bending direction, while for Flemion, the 

relaxation is in the same direction as that of the initial bending. The phenomenon 

can be explained by the cation charge redistribution and the following solvent 

diffusion within the polyelectrolyte membrane.  

14.1.2� Experimental Study and Physical Modeling 

One of the common questions asked, when considering a smart material for 

certain applications, is how much effect the material can provide. For IPMC 

materials, the bending capacity of IPMC is usually a first concern when they are 

used as actuators. Thus, the actuation mechanism of IPMC materials should be 

studied. Some models have been developed based on experiments and/or 

theoretical analyses. These researches provide a basis for further understanding of 

IPMC materials. 

Asaka et al. (1995) experimentally studied the bending response of a solid 

polymer electrolyte membrane-platinum (SPM-Pt) under various electric stimuli 

waveforms. They represented the bending response of SPM-Pt as a function of 

current flow between two electrodes. Asaka and Oguro (2000a) proposed a kinetic 

model of SPM-Pt bending response. Comparisons were made between their 

experimental and theoretical results. Their theoretical model included the effect of 

interfacial stress between the Pt electrode and the membrane. The bending 

behavior after the characteristic time was explained successfully by this model, 

including the interfacial effect. Asaka and Oguro (2000b) reported the oscillatory 

bending responses of SPM-Pt. The oscillations took place when the anodic 

oxidations of formaldehyde or sodium formate in aqueous sulfuric acid solutions 

happened on a plated Pt electrode. The frequency and the waveform of the 
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oscillations were dependent on the concentration of the organic compounds and 

the direct current applied. Shahinpoor and Kim (2001, 2004, 2005) and Kim and 

Shahinpoor (2003) presented a series of review papers on the fundamental 

properties and characteristics of IPMC, manufacturing techniques, phenomenological 

modeling of actuation and sensing mechanism, and potential applications. Nemat-

Nasser and Li (2000) presented a micromechanical model based on electrostatic 

interaction of ion transport. Central to their theory was the recognition that the 

interaction between an imbalanced charge density and the backbone polymer 

could be represented by an eigenstress field. Their theory was able to explain 

IPMC bending under electric field and also generative charges when bent. Their 

comparisons showed a good match between theoretical predictions and 

experimental results. Later, Nemat-Nasser (2002) studied the micromechanics of 

IPMC materials and proposed a nano-scale hybrid model incorporating 

electrostatic, osmotic and elastic effects in the actuation process. This model is 

able to account for both the static and dynamic behaviors of IPMC. Newbury and 

Leo (2002) presented a linear, two-port model to represent the electromechanical 

(EM) transduction in ionic polymer actuators. The model parameters were 

determined by fitting the simulated responses of Laplace domain transfer 

functions to experimental data of Nafion-based actuator. Shahinpoor and Kim 

(2002) investigated the mass transfer induced actuation of IPMC, and developed a 

technique to minimize water leakage and to increase the force density of IPMC.  

Tamagawa et al. (2002) proposed a simple method to estimate the time-

dependent nominal Young’s moduli and generated force of IPMC. IPMC 

cantilevered beams were tested and numerically simulated to validate the proposed 

method. Taking into account the viscoelastic property of polymer material, 

Newbury and Leo (2003a) developed a linear EM model based on equivalent 

circuit for IPMC transducers. A series of experimental tests were conducted to 

verify the model (Newbury and Leo, 2003b). Nemat-Nasser and Wu (2003) 

carried out extensive experimental studies on IPMC with different backbone 

ionomers and various cation forms. Experimental results on both Nafion and 

Flemion-based IPMC with alkali-metal or alkyl-ammonium cations were reported. 

It was observed that Flemion-based IPMC with fine dendritic gold electrodes had 

higher ion-exchange capacity, better surface conductivity, higher hydration 

capacity and higher longitudinal stiffness than Nafion-based IPMC. Under the 

same voltage, Flemion-based IPMC displayed greater bending actuation. Yagasaki 

and Tamagawa (2004) studied the viscoelastic properties of IPMC. An 

experimental method was proposed to estimate the general time-dependent elastic 

moduli of IPMC. A viscoelastic model for IPMC beam was presented and 

validated by experimental tests. Farinholt and Leo (2004) presented a model for 

charge sensing due to imposed deformation in IPMC. An expression for charge 

density, electric field and electric potential under short-circuit conditions was 

developed from the electrostatic field equations. This model predicted that the 

induced stress would produce a capacitive discharge in the polymer. Experimental 

results verified the basic form of the model, and also demonstrated that the 

geometric scaling predicted in the model agreed with the measured data. Two of 
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the primary limitations of IPMC are unstable operation in air due to vaporizing 

solvent and low solvent breakdown voltage. To overcome these limitations, 

Bennett and Leo (2004) proposed using highly stable ionic liquids to serve as 

solvent of IPMC instead of the commonly used water. Ionic liquids have certain 

advantages over water such as low vapor pressure and greater electrochemical 

stability. A 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid 

was used in their study. Their experimental results indicated that the use of ionic 

liquid improved the stability of Nafion transducers. The major limitation 

associated with the use of ionic liquid was the slow speed of response as compared 

to the case of water as solvent. Later, Akle et al. (2006) studied the electrode 

composition for IPMC with ionic liquid as solvent. The electrode composition was 

studied as a function of the surface to volume ratio and conductivity of the metal 

particulates. Their results showed that the surface to volume ratio of the metal 

particulate was critical to increasing the capacitance of the IPMC transducer. 

Increased conductivity of the metal particulates improved the IPMC response at 

frequencies higher than 10 Hz. By increasing the capacitance of IPMC, more than 

2% strain can be achieved at voltage level of 3 V. More recently, Bennett et al. 

(2006) examined the mechanism of EM transduction in ionic liquid-swollen 

Nafion-based IPMC. The morphology and relevant ion associations within the 

membranes were investigated by using small angle X-ray scattering, Fourier 

transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. 

Their results indicated that ionic liquid interacted with the membrane in very 

much the same way as water did, and the counter ions of the Nafion membrane 

were the primary charge carriers in the ionic liquid-swollen transducers. Bonomo 

et al. (2005) developed a system to experimentally characterize IPMC membranes 

as motion sensors. Their system was built to study the IPMC reaction under 

mechanical bending in a wide frequency range. Toi and Kang (2005) presented a 

2D FE formulation based on Galerkin method to model the electrochemical-

mechanical behaviors of IPMC beams with two pairs of electrodes. The 

electrochemical solutions for the case of unidirectional voltages agreed well with 

that of the 1D solutions by finite difference method. The 2D electrochemical 

response and 3D deformation for bidirectional voltage were qualitatively 

reasonable. Akle and Leo (2005) studied the relationship between ion conduction 

and EM coupling of IPMC through a series of experiments on three types of 

ionomeric materials. An approximate linear correlation between the strain 

response of the ionomeric transducer and the capacitance of the transducer was 

found. This correlation was independent of the polymer composition and the 

plating parameters. A strong relationship between surface charge accumulation 

and mechanical deformation in ionomeric actuators was concluded from this 

correlation. Weiland and Leo (2005a) developed a computational micromechanics 

model to assess the impact of uniform ion distribution on spherical clusters of 

IPMC ionomer. They also employed a Monte Carlo approach to study the effects 

of pendant chain stiffness and charge balance of the equilibrium state of a single 

cluster in ionic polymer (Weiland and Leo, 2005b). Matthews et al. (2006) 

presented a multiscale modeling approach for the prediction of material stiffness 
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of Nafion polymer. The simulation model was developed by combination of 

traditional rotational isomeric state theory and Monte Carlo method. The 

probability density function was estimated and used as an input parameter to 

enhance the existing energetics-based models. Nemat-Nasser and Wu (2006) 

presented novel methods to tailor the EM response of IPMC to optimize the 

actuation performance. Optimal actuation activities were identified by introducing 

various monovalent or multivalent cations and cation combinations. Their 

experimental results showed a good accord with the nano-scaled physical model. 

It was found that the bending motion could be tailored by proper changing of the 

time-variation function of the applied potential. For Nafion-based IPMC, the 

initial bending towards the anode could be controlled and eliminated by linearly 

increasing the electric potential at certain rate. The tip displacement of Flemion-

based IPMC was found to be always linearly related to the cation charge 

accumulation at the cathode. Nemat-Nasser and Zanami (2006a, 2006b) studied 

the effect of various solvent on the behavior of IPMC. A series of tests were 

conducted on both Nafion- and Flemion-based IPMC with various organic 

solvents such as ethylene glycol, glycerol and crown ethers (Nemat-Nasser and 

Zanami, 2006a). By employing these solvents, higher operational voltages and 

hydration rate were obtained compared with the condition with water as solvent. 

They could work in air for longer time and at low temperature environment. Their 

slow responses allowed better observation of physical characteristics of the 

actuation process. Nemat-Nasser and Zanami (2006b) applied the nano-scale 

hybrid actuation model proposed by Nemat-Nasser (2002) to model the initial fast 

motion and subsequent relaxation of Nafion-based IPMC under various solvents. 

The model successfully matched the experimental observations both qualitatively 

and quantitatively. Bufalo et al. (2008) presented a mixture theory framework for 

the mechanical actuation of IPMC materials where the IPMC was viewed as a 

mixture of backbone polymer matrix, solvent and mobile ions. 

Although much effort has been devoted to understanding the actuation and 

sensing mechanism of IPMC materials, the actuation mechanism of IPMC has not 

yet been fully understood. Nevertheless, the existing models have already cast 

important insights into the mechanism research. Of all the first principle models 

developed, Nemat-Nasser (2002)’s hybrid model has been proven to be useful for 

IPMC with different cation and solvent types (Nemat-Nasser and Zamini, 2006b). 

The model parameters can be determined through experiments. This hybrid model 

has set up the framework of mechanism research towards a complete 

understanding of IPMC’s working mechanism. However, Nemat-Nassar’s hybrid 

model does not provide an explicit bending moment expression. A computer 

program is generally required to perform the calculations. The inconvenience of 

computation hinders the practical application of this model. In view of this, in this 

chapter, Nemat-Nasser’s hybrid actuation model is studied and simplified. Explicit 

bending moment expressions are derived based on this model by certain 

simplifications. The obtained bending moment expressions are applicable for both 

static and dynamic electric potentials.  
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14.1.3� Implemented and Potential Applications 

Although the mechanism of IPMC has not yet been fully understood, research on 

applications of IPMC has attracted considerable attention from various disciplines. 

IPMC offers many advantages over the conventional EAP materials, such as 

compliance, light weight, low operation voltage and capability of working in 

aqueous environments. These properties make it promising for numerous 

applications in biomedical, naval, robotic and microelectromechanical system 

(MEMS) engineering. Shahinpoor (1992) proposed using ionic polymer gel for 

autonomous swimming robotic structures. A conceptual design for such structures 

was presented followed by a discussion on the kinematics and dynamics of such 

structures. Shahinpoor and Kim (2005) presented many potential applications of 

IPMC such as heart compression band, four-finger gripper and artificial fish. 

Paquette and Kim (2004) investigated potential applications of IPMC for naval 

applications. Comparisons were made between IPMC and other smart materials 

for biomimetic propulsor applications. Yamakita et al. (2004) developed an 

artificial muscle linear actuator using IPMC for biped walking robot application. 

The linear actuator effectively transforms bending motion of IPMC into 

longitudinal motion. Zhang and Yang (2007) and Yang and Zhang (2008) 

investigated the actuation characteristics of IPMC as beams and rings on human 

tissues, respectively. More applications can be found in references Bar-Cohen 

(2004, 2006) and the WorldWide Electroactive Polymer Webhub established by 

Dr. Bar-Cohen at http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/EAP-web.htm. 

14.2� Bending Moment Capacity of IPMC 

14.2.1� Charge Redistribution 

Although the mechanism of IPMC remains unclear, it is known that the cation 

motion under applied electric field is the key issue. The microstructure of the 

polyelectrolyte membrane of an IPMC sample is in the form of interconnected 

nano-scale clusters as shown in Fig. 14.1. The nano-scale clusters are composed of 

the backbone perfluorinated copolymer of polytetrafluoroetheylene with perfluorinated 

vinyl ether sulfonate pendants for Nafion-based IPMC, and perfluorinated propyl 

ether carboxylate pendants for Flemion-based IPMC. When an IPMC sample is 

solvated, the cations are free to move within or out of the clusters while the anions 

are covalently fixed to the clusters. Thus, when an electric potential is applied to 

the electrodes of IPMC, the cations will migrate to the cathode while the anions 

remain stationary as shown in Fig. 14.4. Two boundary layers will form due to the 

cation movement, characterized as the anion dominant anode boundary layer 



14� Ionic Polymer-Metal Composite and its Actuation Characteristics 508 

(ABL) and the cation dominant cathode boundary layer (CBL) (Nemat-Nasser, 

2002). The two boundary layers will effectively balance the electric field applied, 

resulting in the region between the two layers being shielded. Stresses will 

develop in the two layers, leading to the deformation of the IPMC material. It is 

the ABL and CBL that primarily contribute to the bending motion of IPMC. 

Therefore, it is essential to determine the thickness of the ABL and CBL prior to 

calculating the bending moment. To achieve this, the cation redistribution under 

an electric field should be considered first.  

 

 

Fig. 14.4� IPMC under electric potential 

 

Consider an IPMC sample with thickness H and length L, as shown in Fig. 

14.5. The thickness of membrane part is h. The IPMC sample is driven by time-

dependent electric potentials applied at the electrodes. It is assumed that the top 

electrode is the cathode and the bottom electrode is the anode. The electric 

potentials applied at the cathode and the anode are φ
1
(t) and φ

2
(t), respectively. 

When electric potentials are on, due to the cation movement within the IPMC 

membrane, the IPMC will vibrate at the driving frequency with certain phase lag. 
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Fig.14.5� Schematic cross-section of an IPMC sample 

 

The cation flux ( , )J z t

+
 of ion species i due to diffusion, migration and 

convection is determined by the Nernst-Planck equation as 

( , ) ( , ) ( , )

( , ) ( , )

C z t v C z t F z t

J z t D C z t

z RT z

ϕ υ
+ + +

+ + +⎡ ⎤∂ ∂= − + +⎢ ⎥∂ ∂
⎣ ⎦

       (14.1) 

where the species i refers to a particular type of ion in the membrane, such as Na
+

 

or K
+

, marked as the i
th

 type ion; D
+

 is the cation diffusivity coefficient of 

species i; v
+

 is the valence of cations of species i; φ(z,t) is the electric potential; F 

is the Faraday’s constant; R is the gas constant; T is the temperature and υ is the 

solvent velocity. The solvent velocity υ can be determined by the Darcy’s Law as 

[ ( , ) ]

p

D v C FE z t

z

υ − − ∂= −
∂

                                   (14.2) 

where D  is the hydraulic permeability coefficient, v
−

 and C
−

 are the valence 

and density of anions, respectively, ( , )E z t  is the electric field and p  is the fluid 

pressure. C
−

 is approximately considered as constant since anions are fixed to the 

polymer backbone. 

Since only one type of cations is considered, the subscript i in Eq.(14.1) can be 

dropped. Rewriting Eq. (14.1), we obtain, 

( , ) ( , ) ( , )

( , ) ( , )

C z t v C z t F z t

J z t D C z t

z RT z

ϕ υ
+ + +

+ + +⎡ ⎤∂ ∂= − − +
⎢ ⎥∂ ∂⎣ ⎦

          (14.3) 

The time variation of cation concentration can be described by the continuity 

equation, which is 
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( , ) ( , )C z t J z t

t z

+ +∂ ∂= −
∂ ∂

                                    (14.4) 

Substituting Eq. (14.3) into Eq. (14.4), the following equation is obtained, 

( , ) ( , ) ( , ) ( , ) ( , )

( , )

C z t C z t v F C z t z t z t

D D C z t

t RT z zz z

ϕ ϕ+ + + +
+ + +⎡ ⎤∂ ∂ ∂ ∂ ∂= − +

⎢ ⎥∂ ∂ ∂∂ ∂⎣ ⎦

  (14.5) 

The basic electrostatic equations associated with the problem are 

( , )

( , )

z t

E z t

z

ϕ∂= −
∂

                                         (14.6) 

( , )D E z tκ=                                               (14.7) 

D

z

ρ∂ =
∂

                                               (14.8) 

( ( , ) )v C z t v C Fρ + + − −= −                                   (14.9) 

where κ
e
 is the electric permittivity; D is the electric displacement; and ρ

c
 is the 

net charge density.  

The relationship between cation concentration and electric potential can be 

derived from Eqs. (14.6) to (14.9), which is the Poisson’s equation, as 

( , )

( ( , ) )

z t F

v C z t v C

z

ϕ
κ

+ + − −∂ = − −
∂

                         (14.10) 

Eqs. (14.5) and (14.10) are the governing equations of the cation transportation 

within the IPMC membrane. Integrating Eq. (14.10) with respect to z , the electric 

field due to charge concentration can be obtained as 

( , )

( ( , ) )d ( )

z t F

v C z t v C z A t

z

ϕ
κ

+ + − −∂ = − − +
∂ ∫                   (14.11) 

The time-dependent function A in Eq. (14.11) can be viewed as the electric 

field induced by the electric potential applied on the IPMC membrane. Thus, Eq. 

(14.11) can be rewritten as 
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( ) ( )( , )

( ( , ) )d

t tz t F

v C z t v C z

z h

ϕ ϕϕ
κ

+ + − −

−

−∂ = + − −
∂ ∫          (14.12) 

Substituting Eq. (14.12) into Eq. (14.5), we obtain 

( ) ( )( , ) ( , )

( , ) ( , ) ( , )

              1 d ( , ) 1

t tC z t C z t D

D

t hz v C F

v C z t C z t D v C z t

z C z t

zv C v C

ϕ ϕε+ + +
+

− −

+ + + + + +
+

− − − −−

−∂ ∂ ⎧= + ⎨∂ ∂ ⎩

⎫⎛ ⎞ ⎛ ⎞∂⎪− − − −⎬⎜ ⎟ ⎜ ⎟∂⎪⎝ ⎠ ⎝ ⎠⎭

∫

�

�

   (14.13) 

where 

RT

v v n F

ε
+ − −=�  is a natural length scale. 

The boundary and initial conditions for the problem are 

d 0zρ
−

=∫                                             (14.14) 

( / 2, ) ( ),   ( / 2, ) ( )h t t h t tϕ ϕ ϕ ϕ= − =                         (14.15) 

( / 2, ) 0J h t

+ ± =                                           (14.16) 

(0) 0, (0) 0, ( ,0) 0zϕ ϕ ρ= = =                            (14.17) 

Passing t and z to the new variables t and 

( ) ( )

d

t tv F

z z D t

RT h

ϕ ϕ+
+ −

= + ∫ , a 

simpler equation can be obtained as 

( , ) ( , ) ( , ) ( , )

1 d

( , )

                 ( , ) 1

C z t C z t D v C z t C z t

D z

t z v C z

D v C z t

C z t

v C

+ + + + + +
+

− −

+ + +
+

− −

⎛ ⎞∂ ∂ ∂= − −⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞

− −⎜ ⎟

⎝ ⎠

∫
�

�

  (14.18) 

Introducing the normalized charge density, which is 

( , )

( , ) 1

v C z t

Q z t

v C

+ +

− −= −                                     (14.19) 

Eq. (14.18) can be written as an equation of ( , )Q z t  as 
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( , ) ( , ) ( , )

( , )d

               [1 ( , )] ( , )

Q z t Q z t D Q z t

D Q z t z

t z z

D

Q z t Q z t

+
+

+

∂ ∂ ∂= −
∂ ∂ ∂

− +

∫
�

�

.  (14.20) 

Assuming ( , ) ( , )dn z t Q z t z= ∫ ,  

( , ) ( , ) ( , )

( ) { ( , ) ( , )}

n z t n z t D n z t D

D n z t n z t

tz z z z

+ +
+∂ ∂ ∂ ∂ ∂= − −

∂∂ ∂ ∂ ∂� �
   (14.21) 

Eq. (14.21) can be solved using numerical method. Thus, the normalized 

charge density ( , )Q z t  can be finally determined, and the thicknesses of ABL and 

CBL can be calculated as (Nemat-Nasser, 2002) 

( , )dL Q z t z

−
= ∫                                           (14.22) 

( , )d

2

2

z Q z t z
h

L

L

⎛ ⎞⋅
⎜ ⎟= −
⎜ ⎟
⎜ ⎟

⎝ ⎠

∫
                                   (14.23) 

With Eqs. (14.22) and (14.23), the bending moment due to the electric 

potential can subsequently be derived. In the following section, explicit bending 

moment solutions are obtained based on Nemat-Nasser’s (2002) hybrid actuation 

model. 

14.2.2� Bending Moment  

Since the axial strain of IPMC is related to the water uptake in the membrane 

clusters, the bending moment rate can be expressed as a function of water uptake 

as (Nemat-Nasser, 2002) 

1 ( , )

( ) d d

3 1 ( , )

w z t

M t Y z z Y z z

w z t

ε
− −

= ⋅ = ⋅
+∫ ∫

�

�

�                (14.24) 

where Y  is the effective Young’s modulus of boundary layers in IPMC, i.e., the 

Young’s modulus of polyelectrolyte membrane; ε
x
 is the axial strain in the x 

direction; w(z,t) is the function accounting for the water uptake in the clusters; and 
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the dot above all symbols denotes the first derivative with respect to time. 

Completing the integration at the right hand side of Eq. (14.24) by considering 

the thickness of ABL and CBL and neglecting the small terms, the bending 

moment rate can be written as 

( , )( , )

( )

6 1 ( , ) 1 ( , )

Y h w z tw z t

M t L L

w z t w z t

⎛ ⎞

= − −⎜ ⎟+ +
⎝ ⎠

��

�

                     (14.25) 

where w
A
 and w

C
 are the water uptakes at ABL and CBL, respectively.  

Integrating both sides of Eq. (14.25) over time and considering the initial 

condition M
e

(0)=0 when w
A
(z,0)=w

C
(z,0)=w

0
, where w

0
 is the initial water uptake 

before the application of electric potential, the bending moment for the beam with 

width b is obtained as: 

{ln[1 ( , )] ln[1 ( , )] (1 ) ln(1 )}

6

Y bhL

M w z t w z t wβ β= − + − + + − +     (14.26) 

where /L Lβ = . 

Since the bending strain is small, the change of water uptake in the clusters is 

also small. Thus, the bending moment can be approximated by expanding the right 

hand side of Eq. (14.26) at w
0
 using Taylor’s series with the higher-order terms 

neglected, as 

[( ( ) ( )) (1 ) ]

6(1 )

Y bhL

M w t w t w

w

β β= − − − −
+

                (14.27) 

Once the water uptakes w
A
 and w

C
 are obtained, the bending moment due to 

electric potential can be determined by Eq. (14.27). The water uptakes at ABL and 

CBL are governed by the following two equations (Nemat-Nasser, 2002) 

( , )

1 ( , )

w z t

D t

w z t

=
+
�

                                   (14.28) 

( , )

1 ( , )

w z t

D t

w z t

=
+
�

                                 (14.29) 

where D
A
 and D

C
 are the constant coefficients accounting for the diffusion in ABL 

and CBL, respectively; t  and t  are the pressure in the clusters in ABL and CBL, 

respectively, which are defined as 
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( , )t p p a tσ= Π + + +                             (14.30) 

( , )t p p a tσ= Π + + +                            (14.31) 

where Π
A
(t), p

AA
, p

ADD
 and σ

r
(a

0
,t) are the osmotic pressure, anion-anion 

electrostatic stress, dipole-dipole interaction stress and elastic stress in the 

polymer matrix in ABL, respectively; and Π , p , p  and ( , )a tσ  are the 

average values of osmotic pressure, dipole-cation interaction stress, dipole-dipole 

interaction stress and  elastic stress in the polymer matrix in CBL, respectively. 

They are defined as follows 

( ) [2 ( )]

( )

Q K

t g t

w t

φ −

Π = −                                  (14.32) 

( )( )

18 [ ( )]

Q Rg t

p

w tκ

−

=                                      (14.33) 

[ ( )]1 ( )

( )

3 [ ( )]
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p Q
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α
κ

−±−=                          (14.34) 

( )

( ) [2 ]

( )

Q K g t

t
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φ
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−

Π = +                                  (14.35) 

2( ) ( )

( )

9 [ ( )]
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α
κ

−

=                                 (14.36) 

[ ( )]( )

[1 ( )]

3 [ ( , )]

tQ

p g t

w x t

α
κ

− ±
= −                           (14.37) 

and  

( , ) ( / )a t p K w wσ −= − +                              (14.38) 

where  

( )

w

p K p

w

−= +                                        (14.39) 
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1
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w

K p

w

w I

w
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−

                                     (14.40) 

[ ( )] ( )

3

v Q K t Q

p

w k w

φ α− −±
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1 2 1 2
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w I A

n wn An A

+ += = − = −
− + +

           (14.42) 

φ  is the osmotic factor; g(t) is the time variation function; and Q
−

 is the anion 

charge density of the dry bare membrane defined as 

F

Q

EW

ρ− =                                                (14.43) 

where ρ
B
 is the density of bare membrane and EW

ion
 is the equivalent weight of 

ion content, 

1.008EW FW

EW

SF

+ − +
=                                 (14.44) 

EW
H+

 is the equivalent weight of the dry ionomer in proton form, FW
ion

 is the 

formula weight of the cation used and SF  is a scaling factor accounting for added 

electrode mass; 

RT

K

F

= ; R  is the initial cluster size in dry condition; κ  and 

κ
C
 are the effective electric permittivity of the cluster in ABL and CBL 

respectively; α
A
(t) and α

C
(t) are the effective dipole length at ABL and CBL, 

respectively, which are governed by the following equation:  

[ ( )] 7 6

( ) ( )

7 6

a w a m CN

t f

a w a m CN

f

α
+ ≤⎧

⎪± = +⎨± + >
⎪ −⎩

                  (14.45) 

where a
1
 and a

2
 are coefficients; w is the water uptake; m

w
 is the number of mole 

water per mole ion within a cluster defined as: 

18

EW w

m

vρ
=                                              (14.46) 
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and  

m CN

f

m

−
=                                          (14.47) 

where CN is the coordination number; N
0
 is the initial porosity of dry membrane; 

and v = 2. Detailed definitions of the above notations can be found in (Nemat-

Nasser, 2002). 

It is difficult to solve Eqs. (14.28) and (14.29) due to their nonlinearity. By 

transferring [1 ( , )w z t+ ] and [1 ( , )w z t+ ] to the right hand sides of Eqs. (14.28) 

and (14.29), respectively, and expanding their right hand sides at w  using 

Taylor’s series with higher order terms neglected, two linear partial differential 

equations can be obtained,  

( , )

( , ) ( , ) ( )

w z t

F w t F w t w w

t

∂
= + ⋅ −

∂
                (14.48) 

( , )

( , ) ( , ) ( )

w z t

F w t F w t w w

t

∂
= + ⋅ −

∂
               (14.49) 

where ( , ) (1 ) ( , )F w t D w t w t= + ; 

( , )

( , ) |

F w t

F w t

w

=
∂

=
∂

;  

( , ) (1 ) ( , )F w t D w t w t= + ; and 

( , )

( , ) |

F w t

F w t

w

=
∂

=
∂

. 

The solutions of w
A
 and w

C
 can be obtained from Eqs. (14.48) and (14.49) as 

s ( , ) e ( e ( )d )w z t C F F w t

−
∫ ∫= ⋅ + ⋅ −∫                (14.50) 

( , ) e ( e ( )d )w z t C F F w t

−
∫ ∫= ⋅ + ⋅ −∫                (14.51) 

where C
1
 and C

2
 are the integration constants. After simplification, the solutions of 

water uptakes are 

1

( , ) ( ) ( ) d

( )

f f f

w z t C t t t w

f f t

⎡ ⎤

= − − +⎢ ⎥

⎣ ⎦

∫� �
�

             (14.52) 

1

( , ) ( ) ( ) d

( )

f f f

w z t C t t t w

f f t

⎡ ⎤

= − − +⎢ ⎥

⎣ ⎦

∫� �
�

           (14.53) 
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where  

( ( ))( ) ( )

(1 )

18 3

Q K R wQ Q

f D w

w w w

φ α
κ κ

− − −
⎡ ⎤±

= + − + −⎢ ⎥

⎣ ⎦

        (14.54) 

[ ( )]2( ) 2( )

{(1 )

27 3

( ) d [ ( )]

      | ( , )}

d3

Q K R wQ Q

f D w

w w w

Q w

t w t

ww

φ α
κ κ

α
κ

− − −

−

=

⎡ ±
= + − +⎢

⎣

⎤±
− +⎥

⎦

      (14.55) 

4

(1 ) ( )

3

w

f D w K

w w

−⎡ ⎤

= + −⎢ ⎥

⎣ ⎦

                       (14.56) 

( ) ( ( ))2( ) ( )

(1 )

9 3

Q K R w wQ Q

f D w

w w w

φ α α
β κ κ

− − −
⎧ ⎫±
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⎩ ⎭

   (14.57) 
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4

(1 ) ( )

3

w

f D w K

w w

−⎡ ⎤

= + −⎢ ⎥

⎣ ⎦

                           (14.59) 

( ) et

• •+
•

∫=�                                      (14.60) 

where the dot in the subscript stands for either A or C.  

As f•  is negative, with the increase of time, ( )t•�  will diminish. For the 

steady state, i.e., when t is sufficiently large, the following relation stands, 

1

( ) d e /

( )

t t f

t

Ω −•

Ω

• •
•

= −∫�
�

                            (14.61) 
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Using the approximation of Eq. (14.61), Eqs. (14.52) and (14.53) can be 

further simplified as 

( , ) ( ) [e 1]

f

w z t C t w

f

Ω −

Ω= + − +�                   (14.62) 

( , ) ( ) [e 1]

f

w z t C t w

f

Ω −

Ω= + − +�                 (14.63) 

Considering the initial conditions: 

( ,0) ,   ( ,0) ,  and  (0) 0w z w w z w g= = =                 (14.64) 

the coefficients C
1
 and C

2
 can be obtained from Eqs. (14.47) and (14.48) as 

[e 1] / (0)

f

C

f

−

Ω= − − �                         (14.65) 

[e 1] / (0)

f

C

f

−

Ω= − − �                        (14.66) 

As ( )t•�  will diminish with time, for the steady state vibration, ( )C t�  and 

( )C t�  will eventually vanish. Finally, the solutions of water uptake functions are 

( , ) [e 1]

f

w z t w

f

Ω −

Ω= − +                         (14.67) 

( , ) [e 1]

f

w z t w

f

Ω −

Ω= − +                        (14.68) 

Since the time variation of ( , )w z t  and ( , )w z t should be e
Ω −

, Eqs. 

(14.67) and (14.68) can be approximated as 

( , ) (e 1)e

f

w z t w

f

Ω −Ω= − +                      (14.69) 

( , ) (e 1)e

f

w z t w

f

Ω −Ω= − +                     (14.70) 
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Using the solutions of water uptake in Eqs. (14.69) and (14.70), the bending 

moment generated by the IPMC can be obtained from Eq. (14.27). 

(e 1) (e 1) e

6(1 )

Y bhL ff

M

w f f

β Ω −Ω Ω
⎡ ⎤

= − − − −⎢ ⎥+
⎣ ⎦

          (14.71) 

It is worth noting that Eq. (14.71) is an explicit expression of bending moment 

which includes the effects of osmotic, electrostatic and elastic stresses of IPMC. 

This equation provides a convenient way to estimate the bending moment of 

IPMC at a given hydration rate. The frequency of the applied electric potential Ω  

appears in the expression of bending moment. It is evident that, with the increase 

of driving frequency Ω , the generative bending moment and therefore the 

vibration amplitude of IPMC decreases. This conclusion agrees with the 

experimental observations by Shahinpoor and Kim (2001). In addition, a phase lag 

between the bending moment and the input signal is observed, i.e., δ
0
=π/2. It is 

noted that this phase lag is obtained without considering the viscous properties of 

solvent. For different solvent, the phase lag should vary. To include the effect of 

viscous property of solvent in the IPMC, Eqs. (14.24), (14.28) and (14.29) need 

modifications. The effect of viscosity of solvent can also be reflected in the overall 

damping coefficient of an IPMC sample, which can be evaluated through 

experiments. 

Since the thicknesses of ABL and CBL are derived from the condition of static 

electric potential and multiplied by the time variation function, they may be 

inaccurate for a high frequency electric field, especially for the CBL. This may 

result in an overestimation of bending moment from Eq. (14.70) since the time 

required for cation redistribution is neglected. However, as the time required for 

cation redistribution is very short, for low driving frequency, the cations should 

have ample time to achieve a quasi-equilibrium state. Thus, Eq. (14.71) is more 

accurate for low frequency electric fields. 

When Ω  is very small; e.g., when a direct current (DC) signal is applied, Eq. 

(14.71) is not applicable anymore. However, the bending moment for this case can 

be easily obtained by setting the time variation function g(t) in Eqs. (14.48) and 

(14.49) to unity. The bending moment under a DC signal is  

(e 1) (e 1)

6(1 )

Y bhL ff

M

w f f f f

β ++⎡ ⎤

= − − − −⎢ ⎥+ + +
⎣ ⎦

   (14.72) 

For the transverse vibration of an IPMC beam, Eq. (14.71) should be used. For 

static signal input, the bending moment can be calculated from Eq. (14.72).  
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14.3� Validation and Discussions 

In Section 14.2, small strain is assumed in the actuation process of IPMC to 

reduce the nonlinearity of Eqs. (14.28) and (14.29). Analytical solutions are 

obtained based on this assumption through the Taylor’s series expansion. 

Therefore, it is important to compare the results of the analytical solutions with the 

numerical solutions of Eqs. (14.28) and (14.29), and verify whether the 

assumption is valid. As Eqs. (14.28) and (14.29) have the same format, so do Eqs. 

(14.69) and (14.70); hence, only Eqs. (14.28) and (14.69) are calculated and 

compared. The numerical solution of Eq. (14.28) is obtained by using the 

MATLAB function ode45. Fig. 14.6 shows the results of water uptakes obtained 

from Eqs. (14.69) and (14.28). The parameters considered are listed in Table 14.1. 

It is evident that the analytical solution of Eq. (14.69) and the numerical solution 

of Eq. (14.28) match well, except that the peak values are slightly different. A lag 

of π / 2 is also observed by comparing the driving signal and the water uptake 

solution. This result indicates that the simplification procedure is valid. 

 

Fig. 14.6� Comparison between analytical and numerical solutions 

 

Before the above solutions can be used, the bending moment solution obtained 

in Section 14.2 should first be validated by comparing the tip displacement of a 

cantilevered beam with the results obtained by Nemat-Nasser (2002). Consider a 

Nafion-based cantilevered IPMC beam in Li
+

 form with a length of 18 mm, a 

width of 2 mm and a thickness of 224 μm (Fig. 14.7). The plating metal is 

platinum, and the thickness of electrode is 6 μm for both the top and bottom 

surfaces of the IPMC beam. Assume that the initial water uptake of IPMC is 

0.533w =  and the electric potential is a 1-V DC signal. For simplicity, the 
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viscous damping of the IPMC is set as zero. Other material properties considered 

in the calculation are listed in Table 14.1. All the above parameters are the same 

as in (Nemat-Nasser, 2002). 

 

Table 14.1� Parameters, symbols and values for an IPMC sample with Li  as cation 

Parameter Symbol Value Parameter Symbol Value 

IPMC density ρ

 

3,385 kg/m  Temperature T
 

300 K 

Gas constant R
 

8.3143 J/(mol·K) Initial porosity n

 

0.01 

Faraday’s 

constant 

F
 

96,485 C/mol 

Inner radius of 

cluster at w  

a
 

1.6×10
 
m

 

Bare membrane 

density 

ρ

 

2.01×10  kg/m
 Capacitance per unit 

area 

Cap

 

12 F/m  

Platinum 

density 

ρ

 

21.45×10  kg/m
 Effective permittivity 

at ABL 

κ

 

1.7852×10
 
F/m

 

Effective 

permittivity at 

CBL 

κ

 

5.31×10
 
F/m

 Osmotic coefficient φ  1 

Coordination 

Number of Li  

CN
 

6 

Equivalent weight 

of bare Nafion in 

proton form 

EW

 

1,100 g/mol 

Formula weight 

of Li  

FW

 

6.94 g/mol 

Effective dipole 

length coefficient 

a

 

1.728×10
 

Effective dipole 

length 

coefficient 

a

 

–0.0778×10  Concentration factor A

 

0.5 

Coefficient D

 

1.0×10  Solvation number SN
 

0 

Young’s 

modulus of 

platinum 

Y

 

1.50×10  N/m  Mass scaling factor SF
 

0.623 

 

 

Fig. 14.7� Configuration of an IPMC cantilevered beam 



14� Ionic Polymer-Metal Composite and its Actuation Characteristics 522 

Since the signal is DC, the bending moment can be obtained from Eq. (14.72). 

The normalized tip displacement of the cantilevered beam can be expressed as 

2

u M L

L YI

= ,                                                  (14.73) 

where Y is the Young’s modulus of the IPMC beam and I is the moment of inertia. 

Fig. 14.8 compares the normalized tip displacements obtained using Eqs. 

(14.72) and (14.73) with the results given in Nemat-Nasser (2002). It can be seen 

that the present model is in accordance with the data given in Nemat-Nasser (2002) 

at the initial deformation stage. The final displacements after a long time span also 

closely match each other. Since Eq. (14.72) does not take into account the 

relaxation of the IPMC beam, the relaxation stage does not match well, but this 

does not affect the accuracy of Eq. (14.71) as it accounts for the continuous 

vibration of IPMC beam where the relaxation effect is negligible.  

 

Fig. 14.8� Comparison between calculated displacement and data in Nemat-Nasser (2002) 

 

Besides the tip displacement of an IPMC cantilevered beam, the blocked force 

is another parameter of interest to evaluate the actuation performance of IPMC. 

The blocked force can be defined as a force required to prevent any deflection. 

The blocked force for an IPMC cantilevered beam can be estimated by 

considering the beam subjected to a point force at the tip. The blocked force will 

balance the bending moment caused by the electric field such that the tip 

displacement will be zero. Using Castigliano’s theorem, the blocked force can be 

derived as 
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3

2

M

F

L

=                                                      (14.74) 

For the 1-V DC potential, the maximum blocked force is equivalent to 0.033 g, 

which is about 1.211 times the self-weight of the IPMC beam. When the electric 

potential increases to 5 V, the ratio of the blocked force to the beam weight is 4.37. 

This ratio is comparable with the experimental result obtained by Shahinpoor and 

Kim (2005) for the thin gold electrode IPMC. In their experiment, a 2 mm thick 

IPMC strip with a weight of 0.24 g developed a 1.2-g force under 5-V potential, 

where the force-weight ratio is 5.0. This comparison indicates that the results 

obtained are reasonable. 

The above calculation validates the bending moment expression for static 

electric potential. To validate the bending moment expression for dynamic 

condition, consider a Nafion-based IPMC cantilevered beam with a length of 30 

mm and a thickness of 224 µm. The applied electric potential is a 1-V sinusoidal 

signal with a frequency of 0.25 Hz. The cation type is Na
+

 and the solvent is water. 

The damping ratio c is set as zero. The other parameters considered are shown in 

Table 14.2. 

 

Table 14.2� Parameters, symbols and values for an IPMC sample with Na+ as cation 

Parameter Symbol Value Parameter Symbol Value 

Young’s modulus 

of hydrated 

polymer 

Y

 

89 MPa Temperature T
 

300 K 

Young’s modulus 

of IPMC 

Y
 

0.186 Gpa Initial porosity n

 

0.01 

IPMC Density ρ

 

3385 kg/m  Radius of cluster a
 

1.65 nm 

Gas constant R
 

8.3143 J/mol 

K 

Capacitance per 

unit area 

Cap

 

15 F/m  

Faraday’s constant F
 

96485 C/mol Effective 

permittivity at 

anode boundary 

κ

 

2.1462×10  

F/m 

Effective 

permittivity at 

cathode boundary 

layer 

κ

 
5.31×10  

F/m 

Formula weight 

of Na  

FW

 

23 g/mol 

Bare membrane 

density 

ρ

 

2010 kg/m Equivalent 

weight of proton 

FW

 

1100 g/mol 

Osmotic 

coefficient 

φ  1 Diffusion 

coefficient 

D

 

10  

Effective dipole 

length coefficient 

a

 

1.5234×10  Effective dipole 

length 

coefficient 

a

 

–0.0703×10  

Coordination 

number 

CN 4.5 Solvation 

number 

SN 0 
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The transverse vibration of a cantilevered beam is governed by the following 

motion equation: 

( , )

w w w

YI A c f x t

tx t

ρ∂ ∂ ∂+ + =
∂∂ ∂

                            (14.75) 

where ρ is the material density; A is the cross section area; c is the damping ratio 

and f(x,t) is the load effect due to IPMC actuation which is 

( , ) [ ( 0) ( )]ef x t M ' x ' x Lδ δ Ω= − − − ,                     (14.76) 

where M
0
 is the time independent part of Eq. (14.71). 

Eq. (14.75) can be solved by the method of separation of variables. It is 

assumed that the solution is in the following form: 

( )ew A X x

∞
Ω

=

=∑ ,                                       (14.77) 

where ( ) [cos( ) cosh( )] [sin( ) sinh( )]X x k x k x k x k xσ= − − − ;  

cos( ) cosh( )

sin( ) sinh( )

k L k L

k L k L

σ +
=

+
 and k  is determined by the frequency equation  

cos( )cosh( ) 1k L k L = −                                    (14.78) 

Substituting Eq. (14.77) into Eq. (14.75) and using the orthogonal properties 

of normal mode, the solution to the IPMC cantilever beam vibration can be 

obtained as 

2 ( 1) [ sin( ) sinh( ) (cos( ) cosh( ))]

( )e

( )

M k k L k L k L k L

w X x

L YIk A j c

σ
ρ

∞
Ω

=

⋅ − + − − + −
=

− Ω + Ω∑

  (14.79) 

Fig. 14.9 shows the deflection curves of the IPMC cantilever beam at three 

different time points, t = 1/(12f
 

), t = 1/(6f
 

) and t = 1/(4f
 

), where f is the driving 

frequency which is 0.25 Hz. It is observed that the maximum tip displacement is 

4.2% of the beam length. In Nemat-Nasser and Wu (2006), the experimental test 

showed that the maximum tip displacement of a cantilever beam of the same 

dimension under the same electric potential is 3.6% of the beam length. 

Considering the length of beam, the difference in vibration amplitude is only 

0.18 mm. As the experimental data of IPMC generally vary a lot from case to case, 

the calculated result can be viewed as acceptable and thus validates the proposed 

model. 



14.4� Frequency Dependent Characteristics 525 

 

Fig. 14.9� IPMC cantilever beam deflections at t = 1/(12f), t = 1/(6f) and 1/(4f) 

14.4� Frequency Dependent Characteristics 

After validating the theoretical model presented in Section 14.2, the dynamic 

characteristics of IPMC can be investigated. One of the significant characteristics 

of IPMC is their frequency-dependent behaviors. Although it has been widely 

observed in experimental studies (Shahinpoor and Kim, 2001; 2004; Nemat-

Nasser and Wu, 2006) that, with increase in driving frequency, the vibration 

amplitude of an IPMC sample would decrease even though the electric potential 

was kept unchanged, the effect of driving frequency on the actuation 

characteristics of IPMC has not been investigated theoretically. In this section, the 

effect of driving frequency on the actuation characteristics of IPMC is investigated 

using the model presented in Section 14.2. 

Consider a Nafion-based IPMC cantilevered beam with a length of 18 mm and 

a thickness of 224 µm. The thickness of membrane part is 212 µm. The applied 

electric potential is 1-V sinusoidal signal with frequency varying from 0.15 to 1 

Hz. The cation type is Na
+

 and the solvent is water. The damping ratio c  is also 

set as zero. The other parameters used are shown in Table 14.2.  

Using Eqs. (14.71) and (14.79), vibration of the IPMC sample in frequency 

domain can be calculated. Fig. 14.10 shows the relationship between the 

normalized tip displacements of the IPMC cantilevered beam and the driving 

frequency. It is evident that, with increase in driving frequency, the vibration 
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amplitude decreases dramatically. The experimental data presented in Fig. 14.10 

are extracted from Nemat-Nasser and Wu (2006). It can be seen that the results 

obtained by the model match reasonably well with the experimental data. The 

difference between the model and experimental data may be due to the limited 

frequency-dependent variables considered in the model. Several parameters used 

in the model are actually not constant but frequency-dependent on the actuation 

process. However, it is difficult to assign frequency-dependent values to these 

parameters due to their complicated or unclear relationships with frequencies.  

 

Fig. 14.10� Normalized tip displacement of IPMC beam vs. frequency 

 

Fig. 14.11 shows the decrease of axial strains with increase of frequency in 

ABL and CBL. Fig. 14.12 illustrates the reduction of actuation stresses in ABL 

and CBL against driving frequency. It can be observed that both the strains and 

stresses decrease dramatically with increase in driving frequency. Hence, Figs. 

14.10 – 14.12 demonstrate the strong frequency-dependent characteristics of 

IPMC material under actuation. 

When the range of driving frequency is further expanded to 1 – 10 Hz, 

resonance of the IPMC cantilevered beam can be observed. By comparing with 

the experimental results, the material properties, especially the damping ratio of 

IPMC can be calibrated.  
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Fig. 14.11� Strains at ABL and CBL vs. frequency 

 

Fig. 14.12� Stress reduction at ABL and CBL vs. frequency 

 

Experimental tests are also conducted on an IPMC cantilevered beam excited 

by sinusoidal signals. The IPMC sample is a Nafion-based IPMC with sodium as 

counter ions. The dimensions of the sample are 50 mm long, 7.5 mm wide and 0.3 

mm thick. The equipments used are a Polytec scanning laser vibrometer, model 

0FV-056, with a function generator and a computer with Polytec measurement 
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software (Fig. 14.13). The scanning laser vibrometer can scan from 1 to 10 Hz, 

with a resolution of 0.01 Hz, and records the vibration amplitudes at the tip of the 

cantilevered beam for each frequency point. After scanning, the results are plotted 

in a diagram (Fig. 14.14) to show the dynamic responses of the IPMC cantilevered 

beam under 1- and 2-V signals in frequency domain, respectively. It is evident that 

the first resonance occurs at around 6.72 Hz. This information is used to determine 

the damping ratio c, which is set as –0.174j. By using the parameters given in 

Table 14.2, the vibration of the IPMC cantilevered beam in frequency domain can 

be calculated using Eq. (14.79). 

 

Fig. 14.13� Experimental setup for dynamic tests of IPMC 

 

Fig. 14.14� Vibrations of an IPMC cantilever beam in frequency domain 
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Fig. 14.15 compares the model predictions with the experimental results. It can 

be observed that the model predictions and the experimental results for 1-V signal 

match well in most regions of the frequency domain except for the peak values at 

resonant frequency. However, for the 2-V signal, the peak values at the resonant 

frequency match well but have large discrepancies at the non-resonant regions. 

This implies the existence of some frequency-dependent parameters, which were 

considered as frequency-independent values in the model. However, given the 

large variation of experimental tests on IPMC materials from case to case, the 

model predications are deemed acceptable.  

 

Fig. 14.15� Comparisons of model predictions and experimental results 

14.5� Summary 

In this chapter, explicit bending moment expressions are derived from the Nemat-

Nasser’s hybrid actuation model for both dynamic and static electric potentials. 

Comparisons with the numerical solutions and the experimental results available 

in the literature show that our derived model is reasonably accurate. By using the 

bending moment expressions, the frequency dependent characteristics of IPMC 

samples are investigated and discussed. It is found that the model presented in this 

chapter is capable of modeling the dynamic behaviors of IPMC in frequency 

domain. The bending moment expressions derived in this chapter provide an easy 

way to estimate the bending capacity of IPMC materials at a given hydration rate. 

These expressions are used in the next chapter to model IPMC-based structures for 

biomedical applications.  
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15.1� Introduction 

Ionic polymer-metal composite (IPMC) as an ionic electro-active polymer (EAP) 

offers many advantages over the conventional smart materials, such as good 

compliance, light weight, low operation voltage and capability of working in 

aqueous environments. These properties make IPMC promising for numerous 

applications in biomedical, naval, robotic and microelectromechanical system 

(MEMS) engineering (Paquette and Kim, 2004; Shahinpoor and Kim, 2005; 

Yamakita et al., 2004; Bar-Cohen, 2006; Zhang and Yang, 2006; 2007; Yang and 

Zhang, 2008). One of the important applications of IPMC is in the biomedical 

related instruments which come in contact with human organs or tissues, such as 

artificial ventricular muscles, surgical tools and active scleral bands. The 

configurations of IPMC materials for such applications could be in various forms 

including bands, rings or shells.  

In this chapter, possible applications of IPMC materials for biomedical 

engineering are explored. Three prototype models, i.e., an IPMC beam on human 

tissues, an IPMC ring with elastic medium and an IPMC cylindrical shell with 

flowing fluid, are developed. The explicit bending moment expressions obtained 

in Chapter 14 are used in the modeling process. Examples are presented for 

illustration. 
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15.2� IPMC Beam on Human Tissues 

One of the important applications of smart materials in biomedical engineering is 

the minimally invasive surgical (MIS) tools which come in contact with human 

tissues or organs. These surgical tools are generally expected to apply forces on 

tissues and organs, or change shapes to adapt to small incisions. Many of the MIS 

tools are in the form of strips or beams, and operated in dynamic electric potentials. 

In this section, an analytical model is developed to depict the vibration 

response of a simply-supported IPMC beam bonded to an elastic foundation under 

an alternative electric field. Elastic foundation is employed to simulate the effect 

of human tissues. Eq. (14.71) is incorporated into the motion equation to account 

for the applied alternative electric field. A closed-form solution is obtained to 

describe the transverse vibration of the IPMC beam subjected to the applied 

electric field. Based on this solution, the pressure generated on human tissue is 

calculated by numerical integration. To maximize the beam deflection and the 

total pressure generated, the optimal location and length of the single electrode on 

the IPMC beam are discussed. To increase the flexibility of the IPMC beam and 

the variety of beam motion, multiple-electrodes on the IPMC beam are also 

considered. The deflection curve and generative pressure of the IPMC beam with 

multiple electrodes are obtained. The developed model is useful not only for the 

biomedical devices that employ IPMC materials but also for any other 

applications that utilize the vibration of IPMC materials.  

15.2.1� Modeling of IPMC Beam on Human Tissues 

As shown in Fig. 15.1, a Nafion-based IPMC beam of length L, thickness H and 

width b is studied. The IPMC beam is chemically plated with platinum electrode 

on both sides, and x
1
 and x

2
 are the coordinates of the two ends of the electrode. 

The thickness of the Nafion part of IPMC is denoted as h. The IPMC beam is 

assumed to be simply supported on the human tissue. The effect of the tissue is 

modeled as a Winkler foundation with stiffness k. Assume that the alternative 

electric potentials at the top and bottom surfaces are –φ
0
e
jΩt

/2 and φ
0
e
jΩt

/2, 

respectively, where φ
0
 is the time-independent magnitude of electric potential, Ω 

is the angular frequency and j is the imaginary unit. Due to the redistribution of 

cations and associated water under the applied electric field, the IPMC beam will 

vibrate at a frequency equal to that of the applied electric potential. 
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Fig. 15.1� Configuration of an IPMC beam on human tissue 

 

The motion equation of the beam can be obtained from Euler-Bernoulli’s 

beam theory as (Soedel, 2004) 

( , ) ( , )[ ( , ) ( , )]

( , ) 0

u x t u x tM x t M x t

A c k u x t

tx t

ρ ∂ ∂∂ − + + + ⋅ =
∂∂ ∂

     (15.1) 

where M(x,t) is the bending moment in the IPMC beam; M
e

(x,t) is the bending 

moment due to the electric field; ρ is the material density of the IPMC beam; A is 

the cross-sectional area of the beam; c
v
 is the viscous damping coefficient of the 

IPMC beam; and u
3
(x,t) is the transverse displacement of the beam. 

Transferring the term due to electric field to the right hand side and utilizing 

the strain-stress and strain-displacement relationships, the following equation can 

be obtained 

( , )u u u M x t

YI A c ku

tx t x

ρ∂ ∂ ∂ ∂⋅ + + + =
∂∂ ∂ ∂

                    (15.2) 

where Y and I are the Young’s modulus and moment of inertia of the beam, 

respectively.  

Since the IPMC beam will undergo pure bending at the frequency of the 

applied electric potential, M
e

(x,t) can be expressed as  

( , ) [ ( ) ( )]eM x t M H x x H x x

δΩ −= ⋅ − − −                     (15.3) 

where H(·) is the Heaviside function; M
0
 is the time-independent amplitude of 

bending moment; and π/2δ =  is the phase difference between bending moment 

and applied electric potential which can be determined using Eq. (14.71).  

Using the method of separation of variables, the solution of Eq. (15.2) can be 

derived as 

π π

2 π [cos( ) cos( )]
π

( , ) sin( )e

(1 / ) [ / ( )]

m x m x

m M

m x
L L

u x t

L
AL c A

δ

ρ ω ω ρ ω

∞
Ω −

=

−
= −

−Ω + Ω
∑     (15.4) 
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where ( ( π ) / ) /YI m L k Aω ρ= ⋅ +  is the natural frequency of the beam for 

zero damping; and 
1

0 2 2

/

tan
v

m

m

c Aρδ δ
ω

− Ω
= +

−Ω
 is the phase lag due to viscous 

damping.  

With the solution of Eq. (15.4), the total force generated by the IPMC beam 

can be readily obtained by 

( )dp k u H u x= ⋅ ∫ .                                       (15.5) 

Computation of the total pressure can be implemented by numerical integration. 

15.2.2� Illustrative Examples and Discussions 

�� Illustrative Examples 

Consider a Nafion-based IPMC beam in Li
+

 form with a length of 18 mm, a width 

of 2 mm and a thickness of 224 μm. The plating metal is platinum and the 

electrode thickness is 6 μm for both the top and bottom surfaces of the IPMC 

beam. Assume that the initial water uptake of IPMC is w
0
 = 0.533 and the electric 

potential is a 1-V AC signal. For simplicity, viscous damping of the IPMC is set 

as zero. The other material properties used are as listed in Table 14.1.  

The AC signal is a 1-volt sinusoidal potential with a frequency of 0.25 Hz. The 

stiffness of tissue is set as 15 kPa, which is within the range of experimental data 

of the passive stiffness of hamster trabecula (Abe et al., 1996). Using Eq. (15.4), 

the beam deflection curve at any time can be obtained. The total terms of 

summation used in Eq. (15.4) is m = 100. Fig. 15.2 and Fig. 15.3 respectively 

illustrate the IPMC beam deflection and the pressure distribution on human tissue 

when the electric potential is at its maximum. It can be observed that the 

maximum deflection of IPMC beam is in the order of 0.01 mm and the maximum 

pressure is around 120 Pa. The total pressure can be evaluated by Eq. (15.5), 

which is 0.2298 gram for the pressure distribution in Fig. 15.3. This pressure is 

equivalent to 0.4693 mmHg on the human tissue beneath the beam. Fig. 15.4 and 

Fig. 15.5 show the beam deflection and pressure distribution for the tissue 

stiffness varying from 0 to 20 kPa. It is evident that the displacement reduces with 

increase of stiffness. The maximum deflection of beam for zero foundation 

stiffness is about 0.45 mm. However, for the pressure distribution, the higher the 

tissue stiffness, the larger the maximum pressure value. It is also noted that the 

displacement curve of beam for low stiffness (0 and 1 kPa) is different from that 

of high stiffness (above 5 kPa).  
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Fig. 15.2� Deflection of IPMC beam under 1-V sinusoidal potential (k=15 kPa) 

 

Fig. 15.3� Pressure distribution on human tissue under 1-V sinusoidal potential (k=15 kPa) 

 

Fig. 15.4� Displacements vs. tissue stiffness 
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Fig. 15.5� Pressure vs. tissue stiffness 

��Optimal Electrode Length  

It is evident from Eq. (15.4) that, for different values of x
1
 and x

2
, which determine 

the position and length of the electrode, the maximum transverse displacement and 

therefore the generative pressure is different. For biomedical applications of IPMC, 

maximum deflection and maximum generative pressure may be required for 

different purposes. For examples, maximum pressure is needed for heart 

compression bands and maximum deflection is sometime necessary for surgical 

tools. To generate the maximum deflection or pressure, optimal values of 

coordinates of x
1
 and x

2
 can be calculated using the developed model. For ease of 

computation, we assume that the stiffness of beam does not change due to changes 

in the electrode location and length. In Chapter 9, the optimal placement of a PZT 

actuator on a rectangular plate in terms of maximizing vibration amplitude has 

been studied. The natural frequency is used as a measure to determine the optimal 

location of PZT actuator. As IPMC is generally actuated at low frequency, far 

below the first natural frequency of the beam, the predominant vibration mode is 

the first mode. Therefore, to maximize the first vibration mode, the values of x
1
 

and x
2
 should maximize the absolute value of 

π π

cos cos

x x

L L

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

, where 

x
1
≠x

2
, and x

1
, x

2
�[0, L]. It is obvious that the solutions are x

1
=0 and x

2
=L or vice 

versa.   

However, when the elastic foundation beneath the IPMC beam is stiff, all 

vibration modes will have similar, small contributions to the overall vibration. In 

this condition, the first mode may not appear to be dominant, such as the 

deflection curve in Fig. 15.2. Fig. 15.6 shows the influence of the electrode 

coordinates x
1
 and x

2
 on the maximum beam deflection for the case of Fig. 15.2. 
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The maximum beam deflection of any (x
1
, x

2
) combination is denoted by the color 

of the point, which can be read from the color bar at the right. It is observed that 

the optimal location of the electrode is at either end of the beam with the electrode 

lengths of 0.25L to 0.39L, i.e., 4.5
 
to 7.0

 
mm. For higher foundation stiffness, say 

40 kPa, the value of optimal length reduces. Fig. 15.7 shows the relationship 

between the electrode coordinates and the maximum beam deflection for this case. 

The optimal electrode position is also close to either end of the beam with 

electrode lengths of 0.22L to 0.27L. Fig. 15.8 shows the optimal electrode 

coordinates for the IPMC beam with foundation stiffness of 0.9 kPa. It is obvious 

that the optimal length of electrode is equal to the length of beam. 

 

Fig. 15.6� Relationship between electrode coordinates and maximum beam deflection (k=15 kPa) 

 

Fig. 15.7� Relationship between electrode coordinates and maximum beam deflection (k=40 kPa) 
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Fig. 15.8� Relationship between electrode coordinates and maximum beam deflection (k=0.9 kPa) 

 

Therefore it can be concluded that, for soft foundations, the electrode should 

cover the entire beam surface; while for stiff foundations, the electrode should be 

located near either end of the beam but the length of the electrode need not 

necessarily cover the entire beam.  

Another issue is the optimal location and length of the electrode in terms of 

maximizing the total pressure. Figs. 15.9 – 15.11 illustrate the relationships between 

the electrode coordinates and the generative pressure for foundation stiffnesses of 

0.9, 15 and 40 kPa, respectively. All the results indicate that the optimal electrode 

length is equal to the length of the beam. Thus, IPMC beam with fully covered 

electrode will generate the largest force compared with the other electrode 

configuration for the simply supported condition. 

 

Fig. 15.9� Relationship between electrode coordinates and pressure (k=0.9 kPa) 



15.2� IPMC Beam on Human Tissues 541 

 

Fig. 15.10� Relationship between electrode coordinates and pressure (k=15 kPa) 

 

Fig. 15.11� Relationship between electrode coordinates and pressure (k=40 kPa) 

15.2.3� Multiple Electrodes 

If the IPMC beam is discretely plated with multiple electrodes and the applied 

electric potentials are different for each electrode, the IPMC beam will be more 

flexible. In such situation, the IPMC beam will be able to produce larger pressure 

or displacement on the human tissue. For this case, Eq. (15.4) should be modified as 

π π

2 π cos cos

π

( , ) sin ( )

(1 / ) [ / ( )]

m x m x

m M

L L m x

u x t f t

LAL c Aρ ω ω ρ ω

∞

= =

⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎜ ⎟ ⎜ ⎟⎢ ⎥

⎛ ⎞⎝ ⎠ ⎝ ⎠⎣ ⎦= −
⎜ ⎟

⎝ ⎠−Ω + Ω
∑∑   (15.6) 
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where s is the total number of discrete electrodes and f
n
(t) is the time variation 

function of the electric potential applied to the n
th

 electrode. From Eq. (15.6), it 

can be deduced that larger transverse displacement can be achieved by multiple 

electrodes. However, multiple electrodes imply complexity and difficulty in 

operating the control system.  

A 2-electrode IPMC beam is studied (Fig. 15.12). The two electrodes with the 

same length of 0.35L are located at the two ends of the beam. To avoid 

computational difficulty due to change of beam stiffness, the region in between 

the electrodes is also considered to be plated with platinum but is isolated from the 

electrodes by a negligible small interval. This can be achieved by chemical 

etching. The foundation stiffness is set as 15 kPa. Figs. 15.13 and 15.14 illustrate 

deflections of the beam under identical and opposite electric potentials, 

respectively. It is found that opposite electric potential can produce larger 

transverse displacement. However, calculation shows that the generative pressure 

for Figs. 15.13 and 15.14 are 0.2935 g and 0.1895 g, respectively. This means that, 

when the two electrodes are controlled by identical potentials, greater pressure 

will be generated on the human tissue. 

 

 

Fig. 15.12� Configuration of two discrete electrodes 

 

 

Fig. 15.13� Deflection of beam with two electrodes under identical potentials 
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Fig. 15.14� Deflection of beam with two electrodes under opposite potentials 

 

15.3� IPMC Ring with Elastic Medium 

Shahinpoor and Kim (2005) proposed using an IPMC ring structure to serve as a 

heart compression band and scleral band to apply supplementary pressure to 

human organs. In this section, an IPMC ring filled with elastic medium is 

investigated. An analytical model is developed for an IPMC circular ring filled 

with elastic medium, where the elastic medium is used to model human tissues or 

organs. A closed-form solution is obtained to depict the vibration response of the 

IPMC ring. Based on this solution, the characteristics of vibration are discussed. 

To increase the flexibility of the IPMC ring, a segmented IPMC ring is also 

considered. 

15.3.1� Problem Formulation 

Consider a thin IPMC circular ring with outer radius R, inner radius r and width b 

(Fig. 15.15). The electrode is located between θ
1
 and θ

2
. The motion equation for a 

circular ring can be deduced from Love’s shell theory as (Soedel, 2004) 

( ) ( )1 1

0

N N M M u

h

R R t

θθ θθ θθ θθ θρ
θ θ

∂ − ∂ − ∂
+ − =

∂ ∂ ∂
                 (15.7) 
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( )1

0

M M N N u

kw h

RR t

θθ θθ θθ θθ ρ
θ

∂ − − ∂
− − − =

∂ ∂
             (15.8) 

where Nθθ  and Nθθ  are the membrane force resultants in the circumferential 

direction; and Mθθ  and Mθθ  are the corresponding bending moments. The 

superscript  e  denotes the membrane force or bending moment due to the applied 

electric potential; ρ  is the material density of IPMC; H=R–r is the thickness of 

the IPMC ring; uθ  and u
3
 are the displacements in the circumferential and radial 

directions, respectively; k is the elastic foundation stiffness; and t is time. 

 

Fig. 15.15� A circular IPMC ring filled with elastic medium 

 

Transferring the terms due to electric field to the right hand side, Eqs. (15.7) 

and (15.8) can be converted to  

1 1 1 1N M u N M

H

R RR t R

θθ θθ θ θθ θθρ
θ θ θ θ

∂ ∂ ∂ ∂ ∂
+ − = +

∂ ∂ ∂ ∂∂
                (15.9) 

1 1M N u M N

ku H

R RR t R

θθ θθ θθ θθρ
θ θ

∂ ∂ ∂
− − − = −

∂ ∂ ∂
            (15.10) 

The membrane forces and the corresponding bending moments in Eqs. (15.9) 

and (15.10) are defined by 

dN zθθ θθσ−
= ⋅∫                                        (15.11) 
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dM z zθθ θθσ−
= ⋅∫                                     (15.12) 

where θθσ  is the normal stress in the circumferential direction. 

For a thin circular ring, the stress-strain relation under plain stress condition is  

Yθθ θθσ ε= ⋅                                           (15.13) 

where Y  and θθε  are the Young’s modulus and the normal strain in  the 

circumferential direction, respectively. The strain-displacement relation can be 

expressed as 

1 u u uz

u

R R

θ θ
θθε θ θ θ

⎛ ⎞∂ ∂ ∂⎛ ⎞= + + −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

                       (15.14) 

Substituting Eqs. (15.13) and (15.14) into Eqs. (15.9) to (15.12), the motion 

equation can be written in a matrix form as 

uL L f

uL L f

θ θ⎡ ⎤⎡ ⎤ ⎡ ⎤

⋅ =
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

                               (15.15) 

where  

( )

K D

L H

R R t

ρ
θ
∂ ∂= + −
∂ ∂

                                 (15.16) 

D K

L

R R θθ
∂ ∂= − +

∂∂
                                      (15.17) 

D K

L

R R θθ
∂ ∂= −

∂∂
                                        (15.18) 

D K

L H k

R R t

ρ
θ
∂ ∂= − − − −
∂ ∂

                            (15.19) 

1 1

1

N M

f
R R

f M N

RR

θθ θθ

θ

θθ θθ

θ θ

θ
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+⎢ ⎥

⎡ ⎤ ∂ ∂
⎢ ⎥=

⎢ ⎥
⎢ ⎥∂⎣ ⎦ −⎢ ⎥∂⎣ ⎦

                                  (15.20) 
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,   /12K YHb D Y H b= = ⋅                                   (15.21) 

The governing equation Eq. (15.15) can be solved by the method of modal 

expansion.  

Since the IPMC ring vibrates in a pure bending mode when actuated, 0Nθθ =  

can be assumed. Considering that the bending moment of IPMC is uniform within 

the regions of the electrodes, the moment distribution of IPMC ring can be 

expressed as 

[ ( ) ( )]eM M H Hθθ θ θ θ θ Ω= − − −                         (15.22) 

where M
0
 is the time independent part of Eq. (14.71), expressed as 

exp 1 exp 1

6(1 )

Y bhL f ff f

M

w f f

β⎧ ⎫⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞⎪ ⎪= − − − −⎨ ⎬⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟+ Ω Ω⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

         (15.23) 

According to Eq. (15.20), the force vector is 

1

[ ( ) ( )]

e

1

[ ( ) ( )]

M
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θ
δ θ θ δ θ θ

δ θ θ δ θ θ

Ω

⎡ ⎤− − −
⎢ ⎥⎡ ⎤

= ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ − − −
⎢ ⎥⎣ ⎦

               (15.24) 

15.3.2� Displacement Solutions  

For a closed circular ring, the solution can be found in below form: 

( , ) sin( )eu t A nθ θ θ ϕ
∞

Ω

=

= +∑                                     (15.25) 

( , ) cos( )eu t B nθ θ ϕ
∞

Ω

=

= +∑                                    (15.26) 

where ϕ  is a phase angle.  

When 0ϕ = , the natural modes of the ring can be expressed as 

sin( )eU A nθ θ Ω=                                          (15.27) 
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cos( )eU B nθ Ω=                                       (15.28) 

For a complete solution, another orthogonal mode should be taken into 

account.  

When π/(2 )nϕ = , 

cos( )eU A nθ θ Ω=                                      (15.29) 

sin( )eU B nθ Ω=                                      (15.30) 

For 0ϕ = , the modal force vector is 

[sin( ) sin( )]

π
e

[sin( ) sin( )]
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n n
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θ θ

θ θ

Ω

⎡ ⎤− −
⎢ ⎥

= ⎢ ⎥

⎢ ⎥−
⎢ ⎥
⎣ ⎦

F                         (15.31) 

The coefficients in Eqs. (15.27) and (15.28) can be obtained as: 

[sin( ) sin( )]

π
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π
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A H s s R
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⎢ ⎥
⎣ ⎦

        (15.32) 

where  

K D

s n

R R

⎛ ⎞= +
⎜ ⎟

⎝ ⎠

                                        (15.33) 

D K

s s n n

R R

= = − −                                 (15.34) 

D K

s n k

R R

= + +                                      (15.35) 

Similarly, for π/(2 )nϕ = , the coefficients in Eqs. (15.29) and (15.30) are 

[cos( ) cos( )]

π

[sin( ) sin( )]

π
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A H s s R

B nMs H s
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−
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⎢ ⎥
⎣ ⎦

      (15.36) 
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Using Eqs. (15.32) and (15.36), the final solution of the IPMC ring vibration 

can be expressed as: 

( , ) sin( ) 0

e

( , ) 0 cos( )

cos( ) 0

               e

0 sin( )

u t An

Bu t n
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θ θ θ
θ θ
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=

∞
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⎡ ⎤ ⎡ ⎤⎡ ⎤

=
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤

+
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

∑

∑

                  (15.37) 

The corresponding total force generated on the elastic medium inside the ring 

can be calculated as: 

( ) ( , ) ( )dp t k u t H uθ θ= ⋅ ⋅∫                             (15.38) 

More detailed derivation of the above formulation can be found in Yang and 

Zhang (2008).  

15.3.3� Illustrative Examples 

Assume a Nafion-based IPMC ring in Na
+

 form with mean radius of 50 mm and 

thickness of 0.224 mm. The IPMC ring consists of Nafion membrane and 

platinum electrodes. The thickness is 212 µm for the Nafion membrane and 6 µm 

for the electrode on each surface. The applied electric potential is a 1.5-V 

sinusoidal signal with a frequency of 0.25 Hz. The calculated thicknesses of anode 

boundary and cathode boundary are 9.78L = �  and 2.84L = � , respectively, 

where 0.862=�  µm. The other model parameters considered are listed in Table 

14.2.  

Figs. 15.16 – 15.22 show the deformations of the IPMC ring for different 

electrode area with zero stiffness of elastic medium. As the elastic deformation of 

the IPMC ring is of interest, the rigid body motion due to the first vibration mode 

is not included in the calculation, i.e., the lower limit of the summation in Eq. 

(15.37) is 2n = . It is observed that the maximum deformation of the IPMC ring 

varies for different electrode areas. As shown in Fig. 15.18 and Fig. 15.20, the 

IPMC ring has the largest deformation for electrode areas of π/2  and 3π/2 . In Fig. 

15.22, when the IPMC is fully plated with electrodes, the deformation is zero. 

This is true because the bending moment cancels each other at each point. By 

changing the area of electrode, larger deformation can be achieved. This 

conclusion is meaningful for reducing the cost of IPMC materials.  
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Fig. 15.16� Deformation of IPMC ring with electrode area of π/6  

 

Fig. 15.17� Deformation of IPMC ring with electrode area of π/3  

 

Fig. 15.18� Deformation of IPMC ring with electrode area of π/2  
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Fig. 15.19� Deformation of IPMC ring with electrode area of π  

 

Fig. 15.20� Deformation of IPMC ring with electrode area of 3π/2  

 

Fig. 15.21� Deformation of IPMC ring with electrode area of 1.9π  
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Fig. 15.22� Deformation of IPMC ring with electrode area of 2π  

 

Table 15.1 summarizes the largest deformation of the IPMC ring for different 

electrode areas. It is evident that the largest radial displacement occurs when the 

electrode area is around π/2  and 1.5π.  To further identify the electrode area 

corresponding to the largest radial deformation, a computer program is developed 

to find the relation between the electrode area and the maximum radial displacement. 

This computer program calculates the maximum radial displacement of the ring 

with different length of electrode. A figure is plotted for the maximum radial 

displacements vs. the length of electrode (Fig. 15.23). It is observed that, when the 

electrode area is around π/2  or 3π/2 , maximum radial displacement can be achieved. 

 

Table 15.1� Maximum radial displacements for different electrode areas 

Electrode area π/6
 

π/3
 

π/2
 

π
 

1.5π
 

1.9π
 

2π
 

Maximum deformation (m) 0.0019 0.0037 0.0047 0.0011 0.0045 0.0019 0 

 

Fig. 15.23� Electrode areas vs. maximum radial displacements 
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If the ring is assembled by two or more IPMC strips and electric potentials are 

applied independently to the electrodes, the vibration of the ring will vary 

significantly. The solution for this case can be obtained by the superposition of Eq. 

(15.37) for different coordinates of electrodes. Fig. 15.24 illustrates an IPMC ring 

with segmented electrodes. Of the four segments, two opposite segments are set to 

be the electrodes. Both electrode areas are π/2.  

 

Fig. 15.24� Configuration of two active electrode areas of IPMC ring 

 

Fig. 15.25 illustrates the IPMC ring deformation with two electrodes. Compared 

to the deformation of one electrode with area of π/2 (Fig. 15.18) the deformation is 

increased. The maximum radial displacement is 0.0082 m, which is 1.74 times the 

maximum radial displacement for single electrode. 

The stiffness of the elastic medium in the above examples is set to zero. When 

the stiffness is not zero, the displacements are small as compared to the scale of 

the ring. The total pressure generated on the elastic medium by the ring can be 

evaluated by Eq. (15.38). 

 

Fig. 15.25� Deformation of IPMC ring with two electrodes 
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Fig. 15.26 shows the relationship between the maximum radial displacement 

of the IPMC ring and the electrode area for six different elastic media. The 

stiffnesses of these elastic media are 0.3, 0.5, 1.0, 1.5, 2.33 and 3 kPa. It is found 

that, to achieve the largest displacement, the optimal electrode area is around 0.2-

0.4 radian for the elastic media concerned. The higher the stiffness of the elastic 

medium, the smaller should be the active electrode area so as to achieve the 

largest displacement. Fig. 15.27 illustrates the pressure distribution of the IPMC 

ring for the two electrodes, as configured in Fig. 15.24, for the six different media. 

The pressure distribution (in N/m) is the distribution of generated pressure (in Pa) 

along the circumference of the ring, which is obtained by integrating the generated 

pressure along the width of the ring. It is observed that with the increase of 

stiffness of the elastic medium, the peak value of pressure also increases. For the 

elastic medium with stiffness of 2.33 kPa, the peak value of pressure distribution 

is 0.0707 N/m. Using Eq. (15.38), the overall force is calculated to be 0.0312 N, 

which is equivalent to 3.18 g of weight. 

 

Fig. 15.26� Electrode area vs. maximum radial displacement for different elastic media 

 

 



15� IPMC-Based Biomedical Applications 554 

  -0.05

  0

  0.05

  0.10

0.3 kPa

0.5 kPa

1.0 kPa

1.5 kPa

2.33 kPa

3.0 kPa

N/m

 

Fig. 15.27� Pressure distribution of IPMC ring with two electrodes 

 

15.4� IPMC Shell with Flowing Fluid 

In some applications, the IPMC may be fabricated in the form of cylindrical shell. 

This kind of IPMC structure can function as artificial vessels which are useful for 

biomedical practices. This section presents a study on an infinite IPMC cylindrical 

shell filled with steady-flow fluid. Vibrations of the shell-fluid coupled system 

occur when an electric potential is applied onto the electrodes of the IPMC. 

Analytical solutions are derived using the wave propagation method for the 

displacement of the cylindrical shell, the pressure in the liquid and the axial 

velocity of the liquid due to the electric potential excitation. The developed model 

will be useful for devices using IPMC cylindrical shell structures with or without 

contained fluid. 

15.4.1� Problem Formulation 

��Motion Equation of Cylindrical Shell  

Consider a segment of an infinite IPMC cylindrical shell with a discrete electrode 
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(Fig. 15.28). The mean radius of the shell is R, the thickness of the shell wall is H 

and the thickness of the polyelectrolyte membrane part is h. The electrode of the 

shell covers the entire circumferential direction and locates between x
1
 and x

2
 in 

the axial direction. 

 

Fig. 15.28� Configuration of IPMC cylindrical shell filled with fluid 

 

Assume that the IPMC cylindrical shell is completely filled with an inviscid 

and incompressible fluid, and an alternative electric potential is applied to the 

electrode on the IPMC shell. Due to the internal cation movement under electric 

field, the IPMC shell will vibrate at a frequency same as that of the applied 

electric potential, resulting in the contained fluid being disturbed. According to the 

thin shell theory, the following equations can be derived (Soedel, 2004), 

( ) 1

0

N N N u u

c H

x R t t

θ ρ
θ

∂ − ∂ ∂ ∂
+ − − =

∂ ∂ ∂ ∂
                  (15.39) 

( )1 1
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        0
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∂ ∂ ∂
∂ − ∂ ∂
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             (15.40) 

( ) ( )2 1

                        0

M M M M M N N

R x Rx R

u u

c H p

t t

θ θθ θθ θθ θθ
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∂ ∂
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∂ ∂

    (15.41) 
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where N
xx

, N
θx

, N
xθ

, N
θθ

, M
xx

, M
xθ

 and M
θθ

 are the membrane force resultants and 

bending moments in their respective directions; the superscript e denotes the effect 

due to electric potential; c
v
 is the damping coefficient of the IPMC shell; ρ is the 

material density of the shell; u
1
, u

2
 and u

3
 are the displacements of middle surface 

of the shell in the axial, circumferential and radial directions, respectively; and p
p
 

is the perturbation pressure of fluid on the inner shell surface, which will be 

determined in Section 15.4.1.2. 

Using the strain-stress and strain-displacement relationships of Flügge’s shell 

theory (Soedel, 2004), the equation of motion can be obtained as 

L L L u f

L L L u f

L L L u f

γ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                           (15.42) 

where L  ( 1,2,3p =  and 1,2,3q = ) are the differential operators defined as 
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(15.43) 

where 

12

H

k

R

=  is a non-dimensional thickness parameter; μ  is the Poisson’s 

ratio; 

(1 )R

EH

μγ −=  and f , f  and f  are the external loads in the axial, 

circumferential and radial directions, respectively, which can be expressed as 
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                                       (15.45) 

1

f

M M N

Rx R

θθ θθ

θ
=
∂ ∂

+ −
∂ ∂

                                (15.46) 

��Fluid Perturbation 

Consider the fluid contained in the infinite cylindrical shell. Assume that the 

initial axial flow velocity is v
0
. When the IPMC shell vibrates due to the electric 

potential, the fluid inside the shell will be disturbed. The disturbed velocity field 

of the contained fluid is composed of two parts, the steady axial flow v
0
 and the 

perturbation velocity due to the oscillation of the shell. Expressing the 

perturbation velocity as a function of perturbation potential Φ , the total velocity 

field can be written as 

1
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v
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                                              (15.47) 

The governing equation of the irrotational potential flow can be described by 

the Laplace equation (Paidoussis, 2004) as 

1 1

0

r rr r xθ
∂ Φ ∂ Φ ∂ Φ ∂Φ+ + + =

∂∂ ∂ ∂
                              (15.48) 

The impermeability condition of the shell surface requires that the radial 

velocity of the fluid on the shell surface matches the instantaneous rate of change 

of the shell displacement in the radial direction. This boundary condition implies a 

permanent contact between the shell surface and the fluid boundary layer, which 

can be expressed as 

| |

u u

v v

r t x

= =
∂ ∂∂Φ= = +
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                                (15.49) 
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The dynamic condition on the interface of the fluid and shell can be 

determined by the Bernoulli’s equation for the disturbed motion as 

0

2

v v v

p

t

ρ ρ + +∂Φ + + =
∂

                            (15.50) 

where ρ  is the density of the contained liquid. 

With Eqs. (15.47) and (15.50), the perturbation pressure on the fluid-shell 

interface can be obtained as 

( )p v

t x

ρ ∂Φ ∂Φ= − +
∂ ∂

                                 (15.51) 

Note that the higher order terms in Eq. (15.51) can be neglected. 

The velocity potential Φ  can be expressed as 

( , , , ) ( )er x t r

λ θθ + +ΩΦ = Λ                              (15.52) 

where ( )rΛ  is a function to be determined; j  is the imaginary unit; λ  is a 

complex coefficient; n  is the circumferential wave number; Ω  is the angular 

frequency and t is time. 

Substituting Eq. (15.52) into Eq. (15.48), the following equation can be 

obtained  

d 1 d

( ) 0

dd

n

r rr r R

λΛ Λ+ − + Λ =                            (15.53) 

Eq. (15.53) can be solved in terms of the modified Bessel functions of the first 

and second kind:  

( ) ( / ) ( / )r D I r R D K r Rλ λΛ = +                       (15.54) 

where D  and D  are coefficients; and I  and K  are the n
th

 order modified 

Bessel functions of the first and second kind, respectively. To derive a finite 

solution, D  should be zero for the internal flow as ( / )K r Rλ  is singular at 

0.r =  Similarly, D  should be zero for the external flow as ( / )I r Rλ  approaches 

infinity when r → ∞ .  

From Eqs. (15.51), (15.52) and (15.54), the perturbation pressure can be 

obtained as 
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p p p= − ,                                               (15.55) 

where p  is the internal pressure on the inner surface and p  is the external 

pressure on the outer surface.   
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( ) / ( )

R

p v u

n I I t x

ρ
λ λ λ+

∂ ∂= − +
+ ∂ ∂

                   (15.56) 
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ρ
λ λ λ+

∂ ∂= − +
− ∂ ∂

                (15.57) 

where ρ  and ρ  are the density of internal and external flow, respectively.  

As the IPMC shell is in pure bending deformation under the electric potential, 

assumptions can be made that 0N Nθθ= = , and the bending moments in the two 

orthogonal direction are identical, i.e., M Mθθ= , due to the homogeneous nature 

of IPMC. Consider that the bending moments are developed uniformly within the 

region of electrode,  

e[ ( ) ( )][ ( 0) ( 2π)]M M H x x H x x H Hθ θ Ω −= ⋅ − − − − − −     (15.58) 

e[ ( 0) ( 2π)][ ( ) ( )]M M H H H x x H x xθθ θ θ Ω −= ⋅ − − − − − −     (15.59) 

where M  is the time-independent part of Eq. (14.71). Thus, the force vector in 

Eq. (15.42) can be determined as 

0

0
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⎢ ⎥⎢ ⎥ − − −⎣ ⎦ ⎣ ⎦

                          (15.60) 

where ( )'δ ⋅  is the derivative of Dirac-delta function with respective to x. 

15.4.2� Wave Propagation Solutions 

The solution of displacement field to Eq. (15.42) can be written in the below form 

of traveling wave: 
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e
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                                  (15.61) 

where A, B and C are complex coefficients.  

Substituting Eq. (15.61) into Eq. (15.42) and equating the left-hand side to 

zero, a linear homogeneous equation can be obtained for free vibration as 
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where 
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For non-trivial solution, the determinant of the coefficient matrix in Eq. (15.62) 

should be zero, i.e., 
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Through Eq. (15.63), the coefficient λ  can be obtained for a given 

circumferential wave number n . Due to the transcendental nature of λ , there are 

infinite roots of λ  for Eq. (15.63). Therefore, the complete solution of 

displacement field can be expressed as 

e
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∑                           (15.64) 

where the coefficients α
i
 and γ

i
 can be determined from Eq.(15.62) with the 

eigenvalue λ
i
. However, since the available boundary conditions are generally not 

infinite, it is impossible to include infinite λ
i
 in Eq. (15.64). Moreover, the values 

of λ
i
 that contribute most to the modal shapes are those with small modulus. Thus, 

it is possible to use truncated set of λ
i
, say four or eight, to represent the 

displacement field with acceptable accuracy. In this section, only eight λ
i
 are used 

for the calculation. 

The values of C
i
 can be determined through the boundary conditions. There 

are four internal forces in the shell wall in the axial direction, which are the axial 

force N
xx

, the bending moment M
xx

, the transverse shear force S
xx

 and the torsional 

shear force T
xx

, expressed as 
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At x
1
 and x

2
, the following boundary conditions apply 
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( , ) 0N x x x= =                                             (15.69) 

( , )M x x x M= = −                                          (15.70) 

( , ) 0S x x x= =                                             (15.71) 

( , ) 0T x x x= =                                             (15.72) 

Substituting Eq. (15.64) into Eqs. (15.69) to (15.72) and utilizing Eqs. (15.65) 

to (15.68), the following equation can be obtained, 
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where  

( j j )eb n k

λ θα λ μγ μ λ += + + +
 

( j j )eb n n

λ θλ μ μγ α λ += − − − −  

( j j )eb n n

λ θλ μ μγ α λ += − − − −  

[ j j(2 ) (3 ) / 2 (1 ) / 2 ]eb n n n

λ θλ μ λ μ γ λ μ α α λ += − − − + − − − +
 

[ j j 3 ( j )]eb n n k n

λ θα γ λ γ λ λ += + + + , 1,2,3,4s =  

and 

( j j )eb n k

λ θα λ μγ μ λ += + + +  

( j j )eb n n

λ θλ μ μγ α λ += − − − −  

[ j j(2 ) (3 ) / 2 (1 ) / 2 ]eb n n n

λ θλ μ λ μ γ λ μ α α λ += − − − + − − − +
 

[ j j 3 ( j )]eb n n k n

λ θα γ λ γ λ λ += + + + , 5,6,7,8m =  

The coefficient C
i
, i = 1,2,…,8, can be solved from Eq. (15.73) as 
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Therefore, for eight eigenvalues of λ , the displacement field is  
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The corresponding velocity field of the contained fluid can be obtained from 

Eqs. (15.75), (15.52) and (15.49) as 
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15.4.3� Illustrative Example and Discussion 

To illustrate how the calculation procedure is carried out, assume a Nafion-based 

IPMC cylindrical shell in Na
+

 form with mean radius of 15 mm and thickness of 

224 µm. The IPMC cylindrical shell is composed of Nafion membrane and 

platinum electrode. The thickness of Nafion membrane is 212 µm and the 

thickness of electrode is 6 µm on each surface. The contained fluid is water with a 

density of 10
3

 kg/m
3

, and the initial axial velocity is assumed to be 0.9 m/s. The 

applied electric potential is a 1.5-V sinusoidal signal with a frequency of 0.25 Hz. 

The coordinates of electrode are x
1
=–0.005 m and x

2
=0.005 m. The calculated 

thickness of anode boundary and cathode boundary are L
A
=9.78 �  and L

C
=2.84 � , 

respectively, where 0.862 μm=� . The damping coefficient c  is set to zero to 
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ease the computation. The other model parameters used are as listed in Table 14.2.  

Fig. 15.29 shows the deformation of the IPMC shell when the electric potential 

is at its maximum. The radial deformation of the shell is amplified 10 times for 

clearer illustration. It is observed that the waves are propagating symmetrically 

away from the electrode. The maximum axial velocity for this case is 0.9195 m/s, 

which is 2.17% larger than the initial flow. For v
2
 and v

3
, the maximum velocities 

are 0.0592 and 0.0055 m/s, respectively. It is evident that the velocity components 

v
2
 and v

3
 are negligible for this case. The maximum shell deformation is about 

0.4 mm. 

 

Fig. 15.29� Amplified shell deformation at electric signal of 1.5 V/0.25 Hz (10 times) 

 

Compared to the initial axial velocity, the change in axial velocity is quite 

small for 1.5-V electric potential. However, the axial velocity can be increased by 

applying larger electric potential. For a 3-V signal, the maximum axial velocity is 

calculated to be 1.236 m/s, which is about 37.3% increase of the initial flow. This 

increase of axial flow is significant as compared to that under 1.5-volt signal. Fig. 

15.30 shows the shell deformation in this condition without amplification. The 

maximum deformation of the shell is around 4.992 mm. It is worth mentioning 

that under such large deformation, Eq. (15.42) may not be valid. In addition, the 

IPMC material has become unstable under such high voltage. However, this 

example provides the approximate order of magnitude of shell deformation and 

maximum increase of axial flow, which is meaningful for future study. 
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Fig. 15.30� Shell deformation at electric signal of 3 V/0.25 Hz 

 

Due to the limitation of solvent electrolysis, the applied electric potential 

generally cannot be too high for IPMC, e.g., 3 volts (electrolysis begins beyond 

1.23 V) for water as solvent. Alternatively, the axial velocity can be increased by 

utilizing multiple electrodes as shown in Fig. 15.31. By individually exciting the 

different electrodes, it is possible to generate a wave that could significantly 

amplify the axial velocity of flow. The solutions for multiple electrodes can be 

obtained by the superposition of the results of single electrode obtained in this 

section. For other special cases, the developed model can be reduced to the 

solutions of IPMC shell with quiescent fluid or without fluid.  

 

Fig. 15.31� Cylindrical shell with multiple electrodes 

15.5� Summary  

In this chapter, three models of IPMC-based structures, i.e., an IPMC beam on 

human tissues, an IPMC ring with elastic medium and a fluid-filled IPMC 

cylindrical shell, are developed for possible biomedical applications. Analytical 

solutions are derived to account for the effect of IPMC actuation. The 

characteristics of structural response under IPMC actuation are presented and 
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discussed, with examples solved for illustration.  

For the IPMC beam on human tissues, the beam deflection curve and the 

pressure distribution generated on human tissue are calculated. The optimal 

electrode location and length in terms of maximizing the deflection and generative 

pressure are discussed. It is found that, to achieve maximum deflection, the 

electrode should be located at either end of the beam, and to achieve higher total 

pressure, full length electrode should be used. The deflection curve and generative 

pressure for a multiple discrete electrode IPMC beam are also obtained. The 

developed model is useful not only for IPMC-related biomedical instruments 

interacting with human tissues but also for any other devices that utilize IPMC 

materials. 

For the IPMC ring with elastic medium, the deformation of IPMC ring under 

different electrode areas and the pressure generated on elastic medium inside the 

ring are calculated. Multiple electrodes are also considered for the IPMC ring. 

From the results given in the illustrative examples, it is found that the largest 

radial displacement is dependent on the stiffness of the elastic medium. For zero 

stiffness, the largest ring displacement occurred when the electrode area was 

around π/2 and 1.5π for the IPMC with single electrode. While for the stiffness of 

elastic medium ranging from 0.3 to 3 kPa, the optimal electrode area was within 

0.2 – 0.4 rad. The peak value of the pressure generated on the elastic medium is 

found to increase with the stiffness of the elastic medium. The IPMC ring with 

multiple electrodes is shown to be capable of producing larger deformation and 

pressure than the IPMC ring with single electrode. This model provides a general 

procedure for modeling the dynamic behavior of IPMC ring structure with elastic 

medium. 

For the fluid-filled IPMC shell, the vibration response of the shell and the 

velocity field of the contained fluid under applied electric potential are obtained 

by the wave propagation method. An illustrative example is presented and the 

results show that the flow velocity could be enhanced by the application of electric 

potential on the IPMC shell. It is also possible to further increase the axial flow by 

multiple electrodes, and the solutions obtained can be extended to multiple 

electrode analysis.  

By examining the modeling results, it is found that the bending capacity of 

IPMC materials is not sufficient to be used directly for biomedical applications. 

The force generation capacity of IPMC materials needs to be improved by nano or 

chemical fabrication methods. Another alternative is to replace the IPMC 

materials with other stronger EAPs to generate sufficient force or bending moment 

for practical use. The results obtained in this chapter provide guidelines for further 

modeling and experimental tests of these models. 
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16.1� Introduction 

Bones form the main load carrying structure of the human body. Their well being 

is vital for our functionality at a satisfactory level. However, no direct techniques 

are available to characterize the mechanical properties of bones in situ in a non-

destructive manner. The mechanical properties of bones undergo changes after an 

injury and during the healing phase. They also change during diseased conditions, 

such as osteoporosis, which shows incidence in middle aged women and older 

men, and is a leading cause of functional loss among the elderly. This chapter 

demonstrates the possibility of employing miniaturized PZT patches as bio-

medical sensors to assess the condition of bones by detecting changes occurring in 

them. The previous chapters of the book have mainly focused on the use of piezo-

impedance transducers as “damage sensors”. This chapter, on the other hand, 

explores their application to monitor the reverse phenomenon, that of healing, in 

the case of bones. 

Recently, there has been a growing interest in the bio-medical community to 

utilize the direct and converse effects of PZT patches for clinical applications.  

Bender et al. (2006) reported the use of embedded PZT patches to monitor capsule 

formation around soft tissue implants in Sprague-Dawley rats, via the EMI 

technique. Interestingly, their observations are similar to those of Soh and Bhalla 

(2005), who demonstrated the use of piezo-impedance transducers for monitoring 
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strength, damage and curing of concrete. Christopoulou et al. (2006) reported the 

measurement of modal damping of bones of adult female Wistar rats using 

accelerometers. However, compared to accelerometers, the PZT patches, as will 

be demonstrated in this chapter, have several advantages such as low-cost, 

negligible weight and the ability to be permanently implanted in bone-like 

structures. Additionally, they are also not likely to alter the subject’s dynamic 

properties by their own added mass. Special interest has been associated with the 

mechanical properties of bones since the condition of bones can be easily 

determined from their mechanical properties (Ritchie et al., 2006). Bones undergo 

slow but continuous restructuring as a normal biological process as well as under 

diseased conditions, such as osteoporosis, which is accompanied by the loss of 

bone density, especially near the ends. 

Bhalla and Bajaj (2008) successfully demonstrated PZT patches as actuator-

sensor pair to detect changes in the mechanical properties of bones by conducting 

an experiment on a 12.5 cm long fresh chicken femur, as shown in Fig. 16.1(a). 

The actuator patch was excited into vibrations using a sinusoidal voltage signal of 

5 V amplitude by means of a function generator, and the voltage response across 

the sensor patch was measured using the Agilent 34411A digital multimeter 

(Agilent Technologies, 2009). The frequency was varied from 0.5 kHz to 23 kHz 

at small intervals, and the measurements made at each frequency. A plot of 

voltage gain (voltage sensed by the sensor patch divided by the voltage applied 

across the actuator) as a function of frequency, shown in Fig. 16.1(b), served as a 

frequency response function (FRF). From this plot, the first two modal frequencies 

are identified as 4.95 kHz and 14.3 kHz. 

 

Fig. 16.1� Experiment by Bhalla and Bajaj (2008). (a) Chicken femur instrumented with PZT 

actuator-sensor pair; (b) FRF in form of gain vs frequency 

 

Considering axial vibrations, the natural frequencies of the bone can be 

determined as (Mukhopadhyay, 2006) 
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)12( −=                                       (16.1) 

where E represents the Young’s modulus of the bone, ρ the density, n the mode 

number and l the distance of the nodal point (here, the centre of the PZT actuator 

patch) from the farther end of the bone.  Note that the use of the distance from the 

centre of the PZT patch to the nearer end will also determine peaks, but of 

proportionally higher frequencies. 

With the substitution of E = 20 GPa, ρ = 2000 kg/m
3

 (Erickson et al., 2002) 

and l = 0.1 m, the first two natural frequencies resulted as 7.91 kHz and 23.72 kHz 

respectively, which are somewhat higher than the experimental frequencies, 

indicating difference in the mechanical properties from the assumed values. 

Thereafter, the bone was allowed to dry for one week, after which a small incision 

was made in between the actuator-sensor pair. Fig. 16.2 compares the FRF of the 

pristine bone with that after these changes. The overall effect was an increase in 

the natural frequencies. 

 

Fig. 16.2� Effect of change in condition of bone on FRF 

 

In addition to natural frequencies, damping can also be determined from the 

FRF. In the SHM community, modal damping has been shown to be suitable for 

damage detection and localization (Kawiecki, 2001). In the bio-medical community, 

Christopoulou et al. (2006) demonstrated its use in detecting bone related ailments.  

Bhalla and Bajaj (2008) determined the modal damping of their test bone as 0.04 
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from the FRF, which is of the typical order reported by Christopoulou et al., who 

determined it using an accelerometer. Furthermore, the damping ratio reduced 

from 0.04 to 0.035 (a reduction of 12.5%) as a result of the process of drying. 

These initial results prompted systematic studies reported in the following sections. 

The next sections highlight studies on the possibility of employing the EMI 

technique to detect changes in bone density, monitoring their healing process, and 

their FE modeling as reported by Bhalla and Suresh (2011). 

16.2� Monitoring Changes in Bone Density 

A 403 mm long human femur was chosen to conduct a specific study on the 

possibility of detecting changes in bone density by means of surface-bonded PZT 

patches. Two PZT patches were bonded approximately in the middle, as shown in 

Fig. 16.3; the patch marked “A” using two part epoxy araldite  (Huntsman 

International, 2010) and the patch marked “C” using cynoacrylate (CN) adhesive 

(TML, 2009). Both PZT patches were covered with silicon rubber manufactured 

by Pidilite Industries Ltd. (2010) so as to safeguard them from moisture. 

 

Fig. 16.3� Test bone for study on detecting changes in bone density 

 

Signatures of the two patches were recorded using the Agilent E4980 LCR 

meter (Agilent Technologies, 2009). The bone was then made to absorb moisture 

so as to increase its density, by covering its ends with wet clothes for a period of 

two days. Care was taken that water does not come in direct contact with the PZT 

patches (even though covered with silicon rubber). The act of wetting the bone for 

two days increased its density by 6.2%. The signatures were then recorded in the 

wet state. The bone was thereafter dried for a period of two days in open air, 

which reduced its density to 1.01% of the density in the original dry state, after 

which, the signatures were again recorded. This was followed by the final drying 

for three additional days, which also included periodic use of a lamp for mild 

heating, which restored the  bone’s density to 0.288% of the original value, after 
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which, the final signatures were recorded.  

Fig. 16.4 shows the conductance signatures of the bone for the four conditions: 

dry, wet, dried for two days and dried for five days, for the PZT patch bonded 

using the araldite adhesive. It can be observed from the figure that marked 

changes are induced in the signature due to increase in density. At the same time, 

as the density restores back to the original value, the signature also restores back 

to the original. Similarly, Fig. 16.5 shows the corresponding signatures for the 

PZT patch bonded using the CN adhesive. For this patch, results similar to the 

patch bonded with araldite adhesive are observed, except that the additional drying 

pushes the signature further downwards, which is unexpected and calls for 

exploration of susceptance to check for debonding. 

Fig. 16.6 shows the pattern of RMSD variation with change in bone density. 

The RMSD index went up by more than 30% after the bone absorbed moisture 

causing 6.2% increment in density. As the density restored back to the normal 

value, the RMSD index also gradually fell back reaching a value of less than 5% 

after five days of drying. However, the final RMSD index for the PZT patch 

bonded using the CN adhesive provides a misleading signal, contrary to physical 

effect. Careful physical examination of this particular patch revealed debonding. 

This is also confirmed by the large variation of the imaginary component, as 

shown in Fig. 16.7 for the PZT patches corresponding to the two adhesives. 

Whereas the patch bonded using araldite exhibits very small variations of B, the 

patch bonded using the CN adhesive shows large variations, indicative of  

debonding and degradation, in accordance with the diagnostic test recommended 

by Park et al. (2006). Hence, CN adhesive does not form good bonding between 

bone and PZT patch.  

Overall, the results of this experiment show that even small variations in 

bone’s density can be detected using the EMI technique. The PZT patches, 

therefore, could possibly aid in the detection of the condition of osteoporosis in 

bones. 

 

Fig. 16.4� Effect of bone density on conductance signature of PZT patch bonded with araldite 
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Fig. 16.5� Effect of bone density on conductance signature of PZT patch bonded with CN adhesive 

 

 

 

Fig. 16.6� Variation of RMSD (%) with bone density 

 

 

 

Fig.16.7� Variation of susceptance (B). (a) PZT patch bonded using araldite; (b) PZT patch bonded 

using CN adhesive 
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16.3� Monitoring Healing Process in Bones 

This section explores the possibility of employing the EMI technique to monitor 

healing process in bones after fracture. In order to experimentally simulate the 

phenomenon, three rabbit bones were utilized. Each bone was instrumented with a 

PZT patch using the araldite adhesive. After acquiring the baseline signature, the 

bones were fractured by an impact and the signatures were re-acquired. The parts 

of the fractured bones were joined back using araldite epoxy adhesive and cured 

for over 24 hours under room temperature. Finally, the signatures of the rejoined 

bones were acquired. Figs. 16.8 to 16.10 show the concerned bones as well as the 

signatures in the three states, namely the intact, fractured and rejoined states. From 

the signatures, it is apparent that after the fracture, the signature underwent change. 

However, after the parts were joined back, the signature changed again, this time 

shifting towards the original intact state. 

 

Fig. 16.8� Results for first rabbit bone. (a) Fractured bone; (b) Rejoined bone; (c) Conductance 

signatures for three states 
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Fig. 16.9� Results for second rabbit bone. (a) Intact bone; (b) Fractured bone; (c) Rejoined bone; 

(d) Conductance signatures for three states 

 

 

Fig. 16.10� Results for third rabbit bone. (a) Intact bone; (b) Fractured bone; (c) Rejoined bone; 

(d) Conductance signatures for three states 
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Fig. 16.11 shows the variation of the RMSD index for the three bones for the 

two cases-fractured and rejoined. The reduction in RMSD index provides a clear 

indication of the healing process. It may be noted that the restoration of signatures 

to that of the original intact state is not one hundred percent since the healing 

process simulated in the present context is grossly crude in nature, adopted only 

due to ease of experimentation. Much better results are expected in the case of 

natural healing where the joining is normally more perfect. This is however, 

beyond the scope of the study reported here. 

 

Fig. 16.11� Variation of RMSD (%) with fracture and rejoining 

16.4� FE Simulation of EMI Technique on Bones 

This section outlines simulating the signatures of the PZT patches bonded on 

bones using finite element (FE) approach and detecting occurrence of cracks and 

fracture using EMI technique. For this purpose, the 403 mm long human femur 

(covered in Section 16.2), with “free-free” boundary condition, as shown in Fig. 

16.12(a), was chosen. Fig. 16.12(b) shows the 2D FE model of the femur 

generated using plane 42 elements of ANSYS 12 FE software, considering 

Young’s modulus as 12 GPa (Erickson et al., 2002) and density as 1600 kg/m
3

. 

The conductance signature of the bone was obtained using the 1D impedance 

model covered in Chapter 2 (see also Appendix A). For this purpose, the 

mechanical impedance Z of the bone was determined by applying a pair of equal 

and opposite harmonic forces F on the bone at the points of attachment of the PZT 

patch, determining the displacement response u through dynamic harmonic FE 

analysis, and computing the mechanical impedance Z through the relation 
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From Z, the EM admittance was computed using Eq. (2.31). Fig. 16.13 shows 

a comparison of conductance signature obtained using the Agilent E4980 LCR 

meter (Agilent Technologies, 2009) with that derived through the FE approach in 

the frequency range 0 – 200 kHz. Due to the use of 2D modelling, the magnitudes 

of the experimental and the FE derived signatures do not match. However, the 

general trend is similar. In order to gain a deeper insight, active components of the 

signature were determined, since it is well established (see Chapter 2), that active 

components have higher sensitivity to damage. The active conductance signatures 

are compared in Fig. 16.14. Contrary to the raw conductance, both the 

experimental and the FE signatures are agreeable to a greater degree, capturing 

well the first axial mode of vibrations. The magnitudes of the conductance are not 

comparable due to 2D nature of the FE modeling.   The raw conductance signature 

(Fig. 16.13) in itself is not able to capture the essence of the structure, since it is 

camouflaged by the passive component. 

 

Fig. 16.12� (a) Real bone; (b) FE model 

 

Fig. 16.13� (a) Experimental signature; (b) Numerical signature 

 

Fig. 16.14  (a) Experimental active-conductance signatures; (b) Numerical active-conductance 

signatures. 
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In order to induce damage, a cut was made through the bone as shown in Fig. 

16.15(a). This cut was then extended throughout the bone to generate fracture, as 

shown in Fig. 16.15(b). The same phenomenon was also simulated numerically, 

by reducing the Young’s modulus of elasticity of the elements along crack to 

negligibly small values, as shown in Fig. 16.15(c). Fig. 16.16 shows the active 

conductance signatures- both experimental as well as numerical for the three 

states- intact bone, bone with cut and fractured bone. The effect of crack and 

fracture is also comparable for the two cases- experiment and numerical 

simulation. The major peak tends to shift to the left after damage, which matches 

with expectations. Detection of crack/fracture, as illustrated here, is not 

unexpected taking into view the already established high sensitivity of the EMI 

technique to damage. The major new outcome is the successful demonstration of 

the fact that FE approach can suitably model the dynamic phenomenon of bone-

PZT interaction. The FE modelling could possibly substitute experiments and 

could aid in preliminary studies related to the application of the EMI technique to 

bones. 

 

Fig. 16.15� (a) Bone with crack; (b) Bone with fracture; (c) Simulation of crack 
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Fig. 16.16� (a) Experimental active-conductance signatures; (b) Numerical active-conductance 

signatures 

 

In a nutshell, this chapter illustrates the potential of the EMI technique (which 

is conventionally employed for SHM) for monitoring the condition of bones, 

including the healing process. However, before the EMI technique could be used 

in the field, several questions remain to be answered, such as what kind of PZT 

patches could be potentially bonded to the bone, the bio compatibility of the 

sensor, and the acquisition of the signatures. Through the recent advances in nano-

technology, it could be possible to implant nano-sized PZT patches on bones 

requiring monitoring. The advances in wireless telemetry could further facilitate 

remote signature acquisition, without necessitating the wires. The authors are also 

exploring the possibility of a piezo-fibre band, which could be tied on the limb 

externally, without necessitating surgical intervention. The chapter only provides a 

proof-of-concept. Clinical trials need to follow so as to further establish the 

technique in real-life subjects. 
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17.1� Past and Future Developments of IPMC 

The success of a new material is usually dependent on its applications. When ionic 

polymer-metal composites (IPMC) were first invented, the potential application 

areas were identified as biomedical and robotics, due to their resemblance to 

biological muscles in both properties and performances. Thus, IPMC is sometimes 

referred to as artificial muscles. Throughout the years, a large number of biomedical 

applications have been proposed, including the applications presented in Chapter 

15. Recent developments in the applications of IPMC include Braille displays 

(Kato et al., 2007), active guide-wire system for cardiac catheterization (Fang et 

al., 2010) and biomimetic micro-collector for collection of particles in chronic 

total occlusion disease (Cho and Lee, 2009). However, continuous improvement 

on the controllability, stability and actuation effects of IPMC are still essential for 

their future applications in solving practical engineering problems. 

In 1999, Dr. Yoseph Bar-Cohen of the Jet Propulsion Lab posed a scientific 

challenge to the worldwide research and engineering community to develop a 

robotic arm, actuated by electroactive polymers (EAP), to wrestle with a human 

arm (Fig. 17.1). However, humans have been winning in all the competitions so 

far, implying that continuous efforts are still needed for the practical applications 

of EAP, including IPMC.  
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Fig. 17.1� Grand challenge for EAP arm wrestling with human arm 

(Web: http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/EAP-armwrestling.htm; 

Courtesy of Yoseph Bar-Cohen, Jet Propulsion Laboratory/Caltech/NASA) 

 

In addition to the applications that have been implemented so far, it is 

envisioned that IPMC could also contribute to the following areas due to their 

characteristic strength as both sensors and actuators. 

Energy Harvesting in Aqueous Environments 

Like most other smart materials, IPMC is also a natural energy transducer which is 

capable of energy conversion between mechanical and electrical domains. The 

unique property of IPMC, which needs solvent for both sensing and actuating, 

makes them ideal for energy harvesting in aqueous environments. The fluctuations 

in aqueous environments, ranging from sea waves to blood flows, provide a wide 

arena for energy harvesting with IPMC for various applications. A recent paper by 

Aureli et al. (2010) advocated the possibility of using IPMC in aqueous 

environments to harvest vibration energy.  

MEMS Actuators 

IPMC is usually fabricated either by casting dispersing solution and evaporating 

the solvent, or by hot molding. Thus, IPMC can be easily fabricated in any shape 

and dimension. By miniaturization of the IPMC-based components, they can be 

employed as MEMS actuators. Their low operational voltage, large deformation 

and compliance property make them good candidates as actuators in MEMS 

devices, especially those devices which work with solvents.  

Humanoid and Underwater Bionic Robots 

As a type of artificial muscles, IPMC has attracted much attention in robotic 

engineering (Bar-Cohen, 2001; Kim and Tadokoro, 2007). IPMC has been used in 

both humanoid robots and underwater bionic robots. It is expected that great 

developments in human-like robots and miniaturized bionic robots with IPMC and 

other EAP can be seen in the coming decade. 
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17.2� PZT/ MFC in Energy Harvesting 

The concept of capturing the ambient energy surrounding a system and converting 

it into electrical energy is termed energy harvesting. Different energy sources from 

residual heat to mechanical vibration are available in the environment. For an 

environment where a thermal gradient or a varying temperature exists, 

thermoelectric or pyroelectric materials are best options for energy harvesting. 

One successful implementation of thermoelectric energy harvesting is a wrist 

watch developed by Seiko (Kishi et al., 1999), capable of operating from skin 

thermal gradients. For vibration energy harvesting, piezoelectric materials are 

prevalently used as the conversion mechanism for their high energy density 

compared with the other conversion mechanisms (Roundy et al., 2003). Interest in 

the application of piezoelectric energy harvesters has increased dramatically in 

recent years (Anton and Sodano, 2007). A great amount of work published in the 

literature focuses on the maximum achievable power by theoretical modeling and 

laboratory tests. Although some prototypes of piezoelectric energy harvesters are 

available, several limitations still exist, such as limited bandwidth, hindering their 

way to practical deployment. 

17.2.1� Current Research in Energy Harvesting using Piezoelectric 

Materials 

Since mechanical vibration is ubiquitous in the environment, from low-frequency 

human motions to machinery and vehicles, a great amount of research interest is 

attracted on vibration energy harvesting using piezoelectric materials. Current 

efforts in this field can be divided into two groups, accurate modeling of piezoelectric 

energy harvesters and developing efficiency improvement approaches. 

��Modeling Issues 

In the past few years, theoretical modeling of piezoelectric energy harvesters is 

approaching higher accuracy, from single degree-of-freedom systems to 

distributed-parameter models, from uncoupled models to electromechanical (EM) 

coupled models and from analytical derivations to the Rayleigh-Ritz scheme 

(Sodano et al., 2004; duToit et al., 2005; Chen et al., 2006; Erturk and Inman, 

2008). Besides, numerical approach for modeling piezoelectric energy harvesters, 

such as the FEM, has been established in literature, which is capable of dealing 

with energy harvester with complicated profiles (De Marqui et al., 2009). 

However, both the theoretical and FE methods predict achievable power by 

attaching a pure resistor. To consider the practical energy storage and conditioning 
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circuits, some researchers devoted their efforts to developing the equivalent circuit 

model (ECM) of piezoelectric transducer (Elvin and Elvin, 2009; Yang and Tang, 

2009), so that the entire energy harvesting system could be modeled in an electric 

simulator, such as SPICE (2010). It should be mentioned that, although the above 

models or approaches are validated by experiments or by each other, they were 

derived based on the linear piezoelectricity and linear deformation assumptions. 

��Efforts in Efficiency Improvement 

Besides the modeling issues in piezoelectric energy harvesting, several researchers 

have attempted to develop schemes for efficiency improvement. Although the 

power consumption is decreasing dramatically with the advancement of circuitry 

technologies, the efficiency of piezoelectric energy harvesting is still required to 

improve so as to match the power requirement of most current electronics. 

Generally, the efforts in improving energy harvesting efficiency can be divided 

into two groups: (1) optimization of piezoelectric configuration and structural 

configuration, and (2) development of adaptive energy harvesting circuits for 

charge extraction.  

Optimal Piezoelectric and Structural Configuration 

Various piezoelectric materials can be used for energy harvesting, such as the 

quick pack (QP) actuators or the macro-fiber composites (MFC) rather than the 

traditional PZT (Sodano et al., 2005; Yang et al., 2009). Besides, various 

structural configurations have been proposed by the researchers to improve their 

efficiency, such as the initial curved PZT (Danak et al., 2003), the increasing-

trapezoidal shaped cantilever (Roundy et al., 2005) and the piezoelectric “cymbal” 

(Kim et al., 2004). Furthermore, another potential way to improve energy 

harvesting capability is to utilize multiple pieces of piezoelectric element or to 

stack a large number of piezoceramic wafers together, termed as multilayer or 

stack configuration. It was found that both the voltage output and the matching 

load are much more manageable for a PZT stack than a monolithic configuration, 

making the stack configuration a more attractive option in energy harvesting 

applications (Platt et al., 2005). 

Adaptive Energy Harvesting Circuit for Charge Extraction 

Rather than the standard energy harvesting circuit in which the battery is charged 

directly, the adaptive circuit developed by Ottman et al. (2002) maximized the 

power flow from the piezoelectric energy harvester. A switch-mode DC-DC 

converter was added to the standard circuit and an adaptive control algorithm was 

developed to continuously implement optimal power transfer by tuning the duty 

cycle of DC-DC converter. The basis of such circuit is to tune the load impedance 
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to match the internal impedance of the piezoelectric harvester. Recently, 

techniques such as “synchronous electric charge extraction” (SECE) (Lefeuvre et 

al., 2005) and “synchronous switch harvesting on inductor” (SSHI) (Lefeuvre et 

al., 2006) were proposed by researchers from electrical engineering. Different 

from the control circuit in the impedance adaptation, SECE and SSHI focus on 

synchronizing the charge extraction with the mechanical vibrations of the system. 

It was claimed that the maximum available power by SECE is nearly 400% of that 

by the impedance adaptation standard circuit, and the maximum available power 

by SSHI is even up to 17 times of the standard circuit. 

17.2.2� Main Concerns for Future Practical Applications  

Although energy harvesting using smart materials, especially piezoelectric materials 

for harnessing vibration energy, has evoked tremendous research interests and 

some evaluation prototypes have been developed, practical deployment of the 

energy harvesting technologies using piezoelectric materials for autonomous 

sensing systems is still far from ready. 

��Bandwidth for Energy Harvesting 

One main concern for piezoelectric energy harvester is the frequency bandwidth. 

Although many efforts have sought to increase the power output, most of the 

developed energy harvesters can only exploit the vibrations occurring very near 

their resonance frequencies. If the vibration does not occur at the right resonance 

frequency, the power output will dramatically decrease and it will be useless in 

powering the sensor. Unfortunately, the vibrations existing in the environment are 

random or frequency variable. Hence, in practice, the energy harvesting devices 

have to be designed to operate over a wide range of frequency. This will be the 

next research hotspot in the field of energy harvesting. 

Multi-Modal Energy Harvesting 

In order to effectively harvest energy from the ambient environment, the concept 

of multi-modal energy harvesting is being pursued, i.e., different energy 

harvesting schemes are combined into one system. A suitable example of multi-

modal energy harvesting device is a system that combines both electromagnetic 

and piezoelectric mechanisms (Priya and Inman, 2009), as shown in Fig. 17.2. The 

advantage of this design is that, at constant acceleration, the output power from 

electromagnet is much higher at lower frequencies (first transversal resonance 

mode), whereas the output from piezoelectric is higher at higher frequencies 

(second transversal resonance mode). Since the frequency content of a random 
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vibration is wide, such a device can utilize multiple frequency spectra, making 

energy harvesting more effective. However, such design still requires further 

investigation on its feasibility. The electromagnetic energy harvesting induces 

additional damping effect, which in turn affects the vibration and the efficiency of 

piezoelectric energy harvesting. The form factor of such device may also be a 

limitation in small-scale applications. 

 

Fig. 17.2� Handheld multi-modal energy harvester (Copyright: Springer; Priya and Inman, 2009) 

 

Resonance Tuning 

Another idea to broaden the bandwidth is to tune the resonant frequency of a 

piezoelectric harvester to match the frequency of the ambient vibrations. Leland 

and Wright (2006) developed a novel tunable-resonance vibration energy 

harvester. In this device, a compressive axial preload is used to alter the 

structure’s stiffness and hence the resonance could be adjusted straightforwardly. 

It was determined that a compressive axial preload could reduce the resonance 

frequency of a vibration energy harvester by up to 24%. Challa et al. (2008) 

proposed a magnetic force technique in which the applied magnetic force alters 

the effective stiffness of the harvester (Fig. 17.3). Four magnets are used in this 

device, and placed such that attractive and repulsive magnetic forces can be 

applied on the beam. The distance between the magnets can be controlled to alter 

the magnetic force, which induces additional stiffness on the vibrating beam and 

in turn alters its resonance frequency. However, since these designs do not include 

the actuator and closed-loop controller, the frequency tuning is achieved manually. 

Hence, such devices cannot be tagged as “smart harvester”. The ideal piezoelectric 

energy harvester should be self-tuning, and it is expected that “self-tuning 

harvester” will attract more research attention in the future. The main concern for 

developing self-tuning technique is that the power required to tune the frequency 

should not outweigh the increase in power output. 
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Fig. 17.3� Schematic of resonance frequency tunable energy harvesting device (Copyright: 

IOPP; Challa et al., 2008) 

 

Energy Harvester with Cantilever Array 

Rather than resonance tuning, using multiple piezoelectric cantilevers (i.e. 

cantilever array) is another idea for broadband energy harvesting. Shahruz (2006) 

designed such a completely passive energy harvesting system. The device consists 

of multiple piezoelectric cantilevers with various lengths and tip masses attached 

to a common base, thereby capable of resonating at various frequencies without 

the need for any adjustment. Each cantilever has a unique resonant frequency, the 

combination of which into a single device creates the so-called “mechanical band-

pass filter” (Fig. 17.4(a)). By properly selecting the length and tip mass of each 

beam, the overall device is designed to provide voltage response over a wider 

frequency range (Fig. 17.4(b)). However, such design results in significant 

increase in both size and cost. Moreover, the power density is sacrificed since 

most of the cantilever beams are inactive at a given point of time. Hence, the 

number of cantilevers, the tip masses and the other parameters of such device 

should be carefully selected according to vibration sources and the form factor 

requirements. Additionally, a more complex electric circuit is needed to extract 

energy from each piezoelectric beam. 

 

Fig. 17.4� (a) band-pass filter (dimension of the beams and tip masses are chosen appropriately) 

and (b) its transfer function (Copyright: Elsevier, Shahruz, 2006) 
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��Nonlinear Effects 

Current research efforts, as discussed in the previous sections, are based on the 

assumption of linearity, i.e., linear deformation and linear piezoelectric theory. 

However, in some scenarios with low vibration frequency (<10 Hz) and large 

vibration amplitude, the deformation of the harvester at resonance could be too 

large to apply the linear deformation assumption. This is especially so for some 

piezoelectric materials such as MFC and PVDF which are characterized by their 

flexibility and bearability. In addition, nonlinearity exists in the piezoelectric 

material properties, as illustrated in Fig. 17.5, which shows the experimental 

values of the piezoelectric constant d
31

 by Crawley and Anderson (1990). It is 

noted that d
31

 exhibits significant dependence on the induced strain in the material. 

However, only few previous works considered the nonlinear piezoelectric constitutive 

relations in the modeling. These non-linear phenomena and their effects on energy 

harvesting performance are worth more investigation in the future. 

 

Fig. 17.5� Dependence of d  on induced strain by linear approximation-nonlinear model by 

Triplett and Quinn (2009) and experimental test by Crawley and Anderson (1990) (Copyright: 

SAGE) 

��Storage and Power Conditioning Circuit 

The energy generated by smart materials is usually insufficient to directly power a 

sensor or other electronics. Therefore, the fragment energy captured should firstly 

be accumulated or stored for later use. Developing efficient methods for storing 

energy will continue to be one of the main issues in energy harvesting. In practical 

applications, the storage medium, electronics and other parameters should be 

selected and designed carefully to ensure that the time required to store sufficient 

energy for one operation (for example, transmitting signal once by a sensor) can 

match with the operation duty cycle. 
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Furthermore, in the SECE and SSHI techniques for piezoelectric energy 

harvesting, the key issue is the voltage peak searching for synchronization. When 

the peak is found, the charge will be suddenly released from the piezo element. 

However, this process will generate a pulse force because of the EM coupling, 

which will in turn affect the beam’s original vibration and cause difficulty in peak 

searching. In the setup of Lefeuvre et al. (2005, 2006), the beam was clamped at 

one end and the force or displacement loading was applied at the other end. Such 

configuration can suppress the extra vibration induced by EM coupling. However, 

in practical application, the cantilever setup is more favorable. In such case, the 

feasibility of these nonlinear circuit techniques is worth further investigation in the 

future. 

17.3� Futuristic Applications of Smart Materials 

It is envisaged that smart materials will have enormous potential applications in 

our day-to-day lives in the future. With active research in energy harvesting 

underway worldwide, some day, the energy harvesting devices would become an 

indispensable part of our daily lives. It could be a reality in the near future that we 

use piezo-based devices embedded in our shoes to harvest energy associated with 

our daily movements to power personal devices such as mobile phones, watches, 

i-pods and even laptop computers. These could also become an essential part of 

bridges by harvesting generated energy to power the diagnostic systems for bridge’s 

health. Such a self-sufficient low-maintenance system would substantially 

increase the infrastructures’ overall performance. Such energy harvesting devices 

could even provide sufficient energy to power light emitting diode (LED) based 

lighting systems for bridges and streets. In addition, piezo materials have potential 

to be part of the diagnostic systems for assessment of the condition of bones after 

an injury or during their healing, as illustrated in the preceding chapter. Micro-

sized piezo-based devices could be permanently implanted on diseased persons to 

do real time diagnosis of several ailments, similar to the concept of SHM of 

structures. Piezo-actuators could also enable near actual movements to artificial 

limbs in the persons suffering from various kinds of disabilities. 

The fiber optic sensors, which can transmit light over long distances, could 

possibly tap sunlight, transmit it to the interiors of buildings, and emit it just like 

bulbs. This could be the most environment friendly lighting system posing no risk 

of global warming. The advances in shape memory alloys (SMA) could enable 

retractable structures for day-to-day uses. These could be sort of packaged 

structures, which could be initially confined to small spaces/enclosures. When 

needed, they may be simply heated to erect temporary light weight structures for 

multiple purposes such as gatherings, expositions and other events. After use, they 

may simply be collapsed and packed back into small volumes. SMA could also 
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enable self-healing in structures in synergy with the piezo-transducers. Whereas 

the piezo-transducers could aid in detecting and locating damages, SMA could be 

activated to close existing cracks. In principle, crack mitigation by SMA has 

already been investigated by Song et al. (2006) on lab sized reinforced concrete 

structures. It could be a reality that all the reinforcement bars in RC structures may 

be based on SMA, paving way for structural control, diagnostics and self repair. In 

a nutshell, there is no end to contemplating about the future use of smart materials. 
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Appendix 

(A) 

MATLAB program to derive conductance and susceptance plots from results 

of dynamic harmonic analysis using any commercial finite element software, 

such as ANSYS. This program is based on 1D impedance model of Liang et al. 

(1994), covered in Chapter 2. Input file should be a text file, each line should 

have frequency (Hz), real part of applied force (Fr), imaginary part of 

applied force (Fi), real part of displacement (Ur) and imaginary part of 

displacement (Ui), separated by tab, and the file to be named as “input.txt”. 

 

All units in the SI system 

 

% Definition of constants (user may set these according to the specification of 

the PZT patch available from  

% the manufacturer) 

LA = 0.005 %Length of PZT patch’ 

WA = 1.0 %Width of PZT patch (considered unit value  

 normal to plane of excitation) 

HA = 0.0002 %Thickness of PZT patch’ 

RHO = 7650 %Density of PZT’ 

D31 = –0.000000000166 %Piezoelectric strain coefficient’ 

Y11E = 63000000000 %Young’s modulus of PZT’ 

E33T = 0.000000015 %Electric permittivity of PZT’ 

ETA = 0.001 %Mechanical loss factor’ 

DELTA = 0.012 %Electric loss factor’ 

 

% Definition of key variables 

%  f  ‘Frequency in Hz’ 

%  k_real ‘Real component of wave number’ 

%  k_imag ‘Imaginary component of wave number’ 

% x, y  ‘Real and imaginary components of structural mechanical   

  impedance’ 
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%  xa, ya ‘Real and imaginary components of PZT mechanical impedance’ 

%  r, t  ‘Real and imaginary components of tankl/kl’ 

% G, B  ‘Real and imaginary components of admittane’ 

% Fr, Fi, Ur, Ui ‘Real and imaginary components of force and displacement’ 

 

%Main program 

data=dlmread('input.txt','\t'); %Data-matrix, stores the input to the program  

 

f  = data(:,1);  %Frequency in Hz 

Fr = data(:,2);  %Real component of effective force 

Fi = data(:,3);  %Imaginary component of effective force 

Ur = data(:,4);  %Real component of effective displacement 

Ui = data(:,5);  %Imaginary component of effective %displacement 

 

N=size(f);     %No of data points 

 

for I = 1:N, 

 

%Calculation of structure impedance 

div(I) = 2 * 3.14 * f(I); %Temporary variable 

Big_U(I) = Ur(I) * Ur(I) + Ui(I) * Ui(I); 

x(I) = (Fi(I)*Ur(I)-Fr(I)*Ui(I))/(div(I) * Big_U(I)); 

y (I) = (-1.0) * (Fr(I) * Ur (I)+ Fi(I) * Ui(I)) / (div(I) * Big_U(I)); 

 

%Calculation of  wave number kl 

w(I)  = 2.0 * 3.14 * f(I); % Angular frequency in rad/s 

cons = sqrt(RHO/(Y11E * (1 + ETA * ETA))); %Temporary constant 

rl(I)= cons * w(I)*LA; 

im(I) = cons * w(I)  * (-0.5 * ETA)*LA; 

 

%Calculation of  (tankl/kl) 

% Temporary variables   a, b, c, d, u, v, q  

 

a(I) = (exp(-im(I)) + exp(im(I))) * sin(rl(I)); 

b(I) = (exp(-im(I)) - exp(im(I))) * cos(rl(I)); 

c(I) = (exp(-im(I)) + exp(im(I))) * cos(rl(I)); 

d(I) = (exp(-im(I)) - exp(im(I))) * sin(rl(I)); 

u(I) = c(I) * rl(I) - d(I) * im(I); 

v(I) = d(I) * rl(I) + c(I) * im(I); 

h(I) = u(I)^2 + v(I)^2; 

r(I) = (a(I) * u(I) - b(I) * v(I)) / h(I); 

t(I) = (-1.0) * (a(I) * v(I) + b(I) * u(I)) / h(I); 

 

%Calculation of  actuator impedance 

multia(I)  = (WA * HA * Y11E) / (2 * 3.14 * LA * f(I)); %Temporary 
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variable 

Big_rt(I) = r(I)  * r(I) + t(I)  * t(I); %Temporary variable 

xa(I) = multia(I)  * (ETA * r(I)  - t(I)) / Big_rt(I) ; %Temporary variable 

ya(I) = multia(I)  * (-1.0) * (r(I)  + ETA * t(I)) / Big_rt(I); %Temporary variable 

 

%Calculation of complex admittance 

% p, q, Big_p, Big_q, Big_R, Big_T, Big_pq;  %Temporary variables 

 % temp_r, temp_i;  %Temporary variables 

p(I)  = x(I)  + xa(I); 

q(I) = y(I)  + ya(I); 

Big_p(I)  = xa(I)  * p(I)  + ya(I)  * q(I); 

Big_q(I)  = ya(I)  * p(I)  - xa(I)  * q(I); 

Big_R(I)  = r(I)  - ETA * t(I); 

Big_T(I)  = ETA * r(I)  + t(I); 

Big_pq (I) = p(I) * p(I)  + q(I)  * q(I);  

temp_r(I)  = (Big_p(I)  * Big_T(I)  + Big_q(I)  * Big_R(I)) / Big_pq(I); 

temp_i(I)  = (Big_p(I)  * Big_R(I)  - Big_q(I)  * Big_T(I)) / Big_pq(I); 

t_r (I) = ETA - temp_r(I); %Temporary variables 

t_i (I) = temp_i(I)  - 1; %Temporary variables 

multi(I)  = (WA * LA * 2.0 * 3.14 * f(I)) / HA;  

G(I)=2* multi(I)  * (DELTA * E33T + t_r(I)  * D31 * D31 * Y11E); 

 %Conductance 

B (I)=2* multi(I)  * (E33T + t_i(I)  * D31 * D31 * Y11E);  

 %Susceptance 

end; 

 

% Plotting of final result 

subplot(2,1,1); 

plot(f,G); 

subplot(2,1,2); 

plot(f,B); 

(B) 

MATLAB program to derive conductance and susceptance plots from results 

of dynamic harmonic analysis using any commercial finite element software, 

such as ANSYS. This program is based on 2D effective impedance model of 

Bhalla and Soh (2004a), but without any correction factor for the PZT patch. 

Input file should be a text file, each line should have frequency (Hz), real part 

of applied effective force (F
r
), imaginary part of applied effective force (F

i
), 

real part of effective displacement (U
r
) and imaginary part of effective 

displacement (U
i
), separated by tab, and the file to be named as “input.txt” 
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All units in the SI system 

 

data=dlmread('input.txt','\t'); %Data-matrix, stores ANSYS output 

 

% The symbols declared below carry same meaning as in Appendices A 

% User may set these according to the specification of the PZT patch 

available from % the manufacturer 

  

LA=0.005; HA= 0.0003; RHO=7800; D31= -0.00000000021;mu=0.3; 

Y11E= 66700000000; E33T=1.7919e-8; ETA= 0.035; DELTA= 0.0238; 

 

f  = data(:,1);      %Frequency in Hz 

Fr = data(:,2);      %Real component of effective force 

Fi = data(:,3);      %Imaginary component of effective force 

Ur = data(:,4);      %Real component of effective displacement 

Ui = data(:,5);      %Imaginary component of effective  

        %displacement 

 

N=size(f);           %No of data points 

 

for I = 1:N, 

 %Calculation of structural impedance 

 omega(I) = 2* pi * f(I);  %Angular frequency in rad/s 

 Big_U(I)= Ur(I)*Ur(I) + Ui(I)*Ui(I); 

 x(I) = 2*(Fi(I) * Ur(I) - Fr(I) * Ui(I)) / (omega(I) * Big_U(I)); 

 y(I) = 2*(-1.0) * (Fr(I)*Ur(I)+Fi(I)*Ui(I))/(omega(I) * Big_U(I)); 

 

 %Calculation of wave number 

 cons = (RHO *(1-mu*mu)/ (Y11E * (1 + ETA * ETA)))^0.5; 

 k_real(I) = cons * omega(I); 

 k_imag(I) = cons * omega(I) * (-0.5 * ETA); 

 rl(I) = k_real(I) * LA; 

 im(I) = k_imag(I) * LA; 

 

 %Calculation of tan(kl)/kl 

 a(I) = (exp(-im(I)) + exp(im(I))) * sin(rl(I)); 

 b(I) = (exp(-im(I)) - exp(im(I))) * cos(rl(I)); 

 c(I) = (exp(-im(I)) + exp(im(I))) * cos(rl(I)); 

 d(I) = (exp(-im(I)) - exp(im(I))) * sin(rl(I)); 

 u(I) = c(I) * rl(I) - d(I) * im(I); 

 v(I) = d(I) * rl(I) + c(I) * im(I); 

 h(I) = u(I)^2 + v(I)^2; 

 r(I) = (a(I) * u(I) - b(I) * v(I)) / h(I); 

 t(I) = (-1.0) * (a(I) * v(I) + b(I) * u(I)) / h(I); 
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 %Calculation of actuator impedance 

 multia(I) = (HA * Y11E) / (pi * (1-mu)* f(I)); 

 Big_rt(I) = r(I) * r(I) + t(I) * t(I); 

 xa(I) = multia(I) * (ETA * r(I) - t(I)) / Big_rt(I); 

 ya(I) = multia(I) * (-1.0) * (r(I) + ETA * t(I)) / Big_rt(I); 

 

 %Calculation of conductance and susceptance 

 p(I) = x(I) + xa(I); 

 q(I) = y(I) + ya(I); 

 Big_p(I) = xa(I) * p(I) + ya(I) * q(I); 

 Big_q(I) = ya(I) * p(I) - xa(I) * q(I); 

 Big_R(I) = r(I) - ETA * t(I); 

 Big_T(I) = ETA * r(I) + t(I); 

 Big_pq(I) = p(I) * p(I) + q(I) * q(I); 

 temp_r(I) = (Big_p(I)*Big_T(I)+ Big_q(I)* Big_R(I)) / Big_pq(I); 

 temp_i(I) = (Big_p(I)*Big_R(I)- Big_q(I)* Big_T(I)) / Big_pq(I); 

 t_r(I) = ETA - temp_r(I); 

 t_i(I) = temp_i(I) - 1; 

 multi(I) = (LA * LA * omega(I)) / HA; 

 K = 2.0 * D31 * D31 * Y11E /(1 - mu); 

 G(I) = 4*multi(I) * (DELTA * E33T + K * t_r(I)); 

 B(I) = 4*multi(I) * (E33T + K * t_i(I)); 

end 

 

%Plotting of results 

subplot(2,1,1); 

plot(f,G); 

subplot(2,1,2); 

plot(f,B); 

(C) 

MATLAB program to derive conductance and susceptance plots from results 

of dynamic harmonic analysis using any commercial finite element software, 

such as ANSYS. This program is based on 2D effective impedance model of 

Bhalla and Soh (2004a), considering correction factor for the PZT patch 

(twin-peak case). Input file should be a text file, each line should have 

frequency (Hz), real part of applied effective force (F
r
), imaginary part of 

applied effective force (F
i
), real part of effective displacement (U

r
) and 

imaginary part of effective displacement (U
i
), separated by tab, and the file to 

be named as “input.txt” 



Appendix 600 

 

NOTE: Single-peak case can also be dealt with by using cf1 = cf2  

 

All units in the SI system 

 

%PZT parameters covered below are based on measurement. 

data=dlmread('input.txt','\t'); 

%Data-matrix, stores the ANSYS output 

 

%PZT parameters based on updated model derived by experiment 

%Symbols for following variables carry same meaning as Appendices A,B 

LA=0.005; HA= 0.0003; RHO=7800; D31= -2.1e-10;mu=0.3; 

Y11E= 6.67e10; E33T=1.7919e-8; ETA= 0.03; DELTA= 0.0238; K =5.16e-9; 

 

f  = data(:,1);    %Frequency in Hz 

Fr = data(:,2);    %Real component of effective force 

Fi = data(:,3);    %Imaginary component of effective force 

Ur = data(:,4);    %Real component of effective displacement 

Ui = data(:,5);    %Imaginary component of effective displacement 

N=size(f);      %No of data points 

cf1 = 0.94;    %Correction factors for PZT peaks 

cf2 = 0.883;    %For single peak case, Cf1 = cf2 

 

for I = 1:N, 

             

 %Calculation of structural impedance 

 omega(I) = 2* pi * f(I);     %Angular frequency in rad/s 

 Big_U(I)= Ur(I)*Ur(I) + Ui(I)*Ui(I); 

 x(I) = 2*(Fi(I) * Ur(I) - Fr(I) * Ui(I)) / (omega(I) * Big_U(I)); 

 y(I) = 2*(-1.0) * (Fr(I)*Ur(I) + Fi(I)*Ui(I))/(omega(I)* Big_U(I)); 

 

 %Calculation of wave number 

 cons = (RHO *(1-mu*mu)/ (Y11E * (1 + ETA * ETA)))^0.5; 

 k_real(I) =  cons * omega(I); 

 k_imag(I) =  cons * omega(I) * (-0.5 * ETA); 

 

 %Calculation of tan(kl)/kl 

 rl(I) = k_real(I) * LA * cf1; 

 im(I) = k_imag(I) * LA * cf1; 

 

 a(I) = (exp(-im(I)) + exp(im(I))) * sin(rl(I)); 

 b(I) = (exp(-im(I)) - exp(im(I))) * cos(rl(I)); 

 c(I) = (exp(-im(I)) + exp(im(I))) * cos(rl(I)); 

 d(I) = (exp(-im(I)) - exp(im(I))) * sin(rl(I)); 

 u(I) = c(I) * rl(I) - d(I) * im(I); 
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 v(I) = d(I) * rl(I) + c(I) * im(I); 

 h(I) = u(I)^2 + v(I)^2; 

 r1(I) = (a(I) * u(I) - b(I) * v(I)) / h(I); 

 t1(I) = (-1.0) * (a(I) * v(I) + b(I) * u(I)) / h(I); 

 

 rl(I) = k_real(I) * LA * cf2; 

 im(I) = k_imag(I) * LA * cf2; 

 

 a(I) = (exp(-im(I)) + exp(im(I))) * sin(rl(I)); 

 b(I) = (exp(-im(I)) - exp(im(I))) * cos(rl(I)); 

 c(I) = (exp(-im(I)) + exp(im(I))) * cos(rl(I)); 

 d(I) = (exp(-im(I)) - exp(im(I))) * sin(rl(I)); 

 u(I) = c(I) * rl(I) - d(I) * im(I); 

 v(I) = d(I) * rl(I) + c(I) * im(I); 

 h(I) = u(I)^2 + v(I)^2; 

 r2(I) = (a(I) * u(I) - b(I) * v(I)) / h(I); 

 t2(I) = (-1.0) * (a(I) * v(I) + b(I) * u(I)) / h(I); 

 

 r(I) = 0.5 * (r1(I)+r2(I)); 

 t(I) = 0.5 * (t1(I)+t2(I)); 

 

 %Calculation of actuator impedance 

 multia(I) = (HA * Y11E) / (pi * (1-mu)* f(I)); 

 Big_rt(I) = r(I) * r(I) + t(I) * t(I); 

 xa(I) = multia(I) * (ETA * r(I) - t(I)) / Big_rt(I); 

 ya(I) = multia(I) * (-1.0) * (r(I) + ETA * t(I)) / Big_rt(I); 

 

 %Calculation of conductance and susceptance 

 p(I) = x(I) + xa(I); 

 q(I) = y(I) + ya(I); 

 Big_p(I) = xa(I) * p(I) + ya(I) * q(I); 

 Big_q(I) = ya(I) * p(I) - xa(I) * q(I); 

 Big_R(I) = r(I) - ETA * t(I); 

 Big_T(I) = ETA * r(I) + t(I); 

 Big_pq(I) = p(I) * p(I) + q(I) * q(I); 

 temp_r(I) = (Big_p(I) * Big_T(I)+ Big_q(I) * Big_R(I)) / Big_pq(I); 

 temp_i(I) = (Big_p(I)* Big_R(I) - Big_q(I) * Big_T(I)) / Big_pq(I); 

 t_r(I) = ETA - temp_r(I); 

 t_i(I) = temp_i(I) - 1; 

 multia(I) = (LA * LA * omega(I)) / HA; 

 G(I) = 4*multia(I) * (DELTA * E33T + K *t_r(I));  %Conductance 

 B(I) = 4*multia(I) * (E33T + K *t_i(I));     %Susceptance 

End 

 

%Plotting of results 
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subplot(2,1,1); 

plot(f,G); 

subplot(2,1,2); 

plot(f,B); 

(D) 

MATLAB program to derive conductance and susceptance plots from results 

of dynamic harmonic analysis using any commercial finite element software, 

such as ANSYS. This program is based on 3D effective impedance model of 

Annamdas and Soh (2007). See Fig 3.21. There should be six faces along three 

directions: +x, -x, +y, -y, +z and –z. There should be input files for each face: 

X_100.txt, X_100_E.txt, Y_100.txt, Y_100_E.txt, Z_100.txt and Z_100_E.txt. 

These input files should be text file, each line should have frequency (Hz), 

real part of effective displacement (UX_odd number) or (EQX_odd number) 

and imaginary part of effective displacement (UX_even number) or 

(EQX_even number), separated by tab. Input files should be prepared for all 

faces. The dimensions and properties of PZT patch can be varied easily. The 

number of data points on X or Y faces, and Z considered in this program are 

6 and 20. These data points can be varied easily.   

 

All units in the SI system 

 

L=0.005;   % Half Length of PZT patch, Patch Length = 10 mm = 0.01 m 

WD=0.005;  % Half Width of PZT patch (considered unit value normal to  

        plane of excitation) 

H=0.000150;  %Thickness of PZT patch 

DELTA=0.015; %Electric loss factor 

EP33 =1.70E-8; %Electric permittivity of PZT 

D31 =-2.1E-10; %Piezoelectric strain coefficient in Direction X or 1 

D32 =-2.1E-10; %Piezoelectric strain coefficient in Direction y or 2 

D33=4.5e-10; %Piezoelectric strain coefficient in Direction Z or 3 

Y11=6.667E+10; %Young’s modulus of PZT 

EETA=0.0250; %Mechanical loss factor 

DE=7800;   %(SUPPLIER VALUES) %Density of PZT 

 

YC11=(1+EETA*j)*Y11; EPC33=(1-DELTA*j)*EP33; DD=D31*D31*YC11;  

 

MU=0.33;  % Poisson Ratio 

 

M=dlmread('X_100.txt');  % Input file for Face +X, for considered distributed points 

F=M(:,1); 
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%ZX impedance % Data points are 6, hence 6 pairs of displacements (real and 

imaginary ), data can be easily varied by  adding or subtracting 

UX_1=M(:,2); 

UX_2=M(:,3); 

UX_3=M(:,4); 

UX_4=M(:,5); 

UX_5=M(:,6); 

UX_6=M(:,7); 

UX_7=M(:,8); 

UX_8=M(:,9); 

UX_9=M(:,10); 

UX_10=M(:,11); 

UX_11=M(:,12); 

UX_12=M(:,13); 

 

EQ=dlmread('X_100_E.txt'); % For Face -X,  

F=EQ(:,1); 

%ZEX impedance 

EQX_1=EQ(:,2); 

EQX_2=EQ(:,3); 

EQX_3=EQ(:,4); 

EQX_4=EQ(:,5); 

EQX_5=EQ(:,6); 

EQX_6=EQ(:,7); 

EQX_7=EQ(:,8); 

EQX_8=EQ(:,9); 

EQX_9=EQ(:,10); 

EQX_10=EQ(:,11); 

EQX_11=EQ(:,12); 

EQX_12=EQ(:,13); 

 

M1=dlmread('Y_100.txt'); % For Face +Y,  

%UY impedance 

UY_1=M1(:,2); 

UY_2=M1(:,3); 

UY_3=M1(:,4); 

UY_4=M1(:,5); 

UY_5=M1(:,6); 

UY_6=M1(:,7); 

UY_7=M1(:,8); 

UY_8=M1(:,9); 

UY_9=M1(:,10); 

UY_10=M1(:,11); 

UY_11=M1(:,12); 

UY_12=M1(:,13); 
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EQ1=dlmread('Y_100_E.txt'); % For Face +Y,  

%UY impedance 

EQY_1=EQ1(:,2); 

EQY_2=EQ1(:,3); 

EQY_3=EQ1(:,4); 

EQY_4=EQ1(:,5); 

EQY_5=EQ1(:,6); 

EQY_6=EQ1(:,7); 

EQY_7=EQ1(:,8); 

EQY_8=EQ1(:,9); 

EQY_9=EQ1(:,10); 

EQY_10=EQ1(:,11); 

EQY_11=EQ1(:,12); 

EQY_12=EQ1(:,13); 

 

 

%UZ BOTTOM impedance %Z direction 

 

M3=dlmread('Z_100.txt'); 

UZB_1=M3(:,2); 

UZB_2=M3(:,3); 

UZB_3=M3(:,4); 

UZB_4=M3(:,5); 

UZB_5=M3(:,6); 

UZB_6=M3(:,7); 

UZB_7=M3(:,8); 

UZB_8=M3(:,9); 

UZB_9=M3(:,10); 

UZB_10=M3(:,11); 

UZB_11=M3(:,12); 

UZB_12=M3(:,13); 

UZB_13=M3(:,14); 

UZB_14=M3(:,15); 

UZB_15=M3(:,16); 

UZB_16=M3(:,17); 

UZB_17=M3(:,18); 

UZB_18=M3(:,19); 

UZB_19=M3(:,20); 

UZB_20=M3(:,21); 

UZB_21=M3(:,22); 

UZB_22=M3(:,23); 

UZB_23=M3(:,24); 

UZB_24=M3(:,25); 
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UZB_25=M3(:,26); 

UZB_26=M3(:,27); 

UZB_27=M3(:,28); 

UZB_28=M3(:,29); 

UZB_29=M3(:,30); 

UZB_30=M3(:,31); 

UZB_31=M3(:,32); 

UZB_32=M3(:,33); 

UZB_33=M3(:,34); 

UZB_34=M3(:,35); 

UZB_35=M3(:,36); 

UZB_36=M3(:,37); 

UZB_37=M3(:,38); 

UZB_38=M3(:,39); 

UZB_39=M3(:,40); 

UZB_40=M3(:,41); 

 

EQ3=dlmread('Z_100_E.txt'); 

EQZB_1=EQ3(:,2); 

EQZB_2=EQ3(:,3); 

EQZB_3=EQ3(:,4); 

EQZB_4=EQ3(:,5); 

EQZB_5=EQ3(:,6); 

EQZB_6=EQ3(:,7); 

EQZB_7=EQ3(:,8); 

EQZB_8=EQ3(:,9); 

EQZB_9=EQ3(:,10); 

EQZB_10=EQ3(:,11); 

EQZB_11=EQ3(:,12); 

EQZB_12=EQ3(:,13); 

EQZB_13=EQ3(:,14); 

EQZB_14=EQ3(:,15); 

EQZB_15=EQ3(:,16); 

EQZB_16=EQ3(:,17); 

EQZB_17=EQ3(:,18); 

EQZB_18=EQ3(:,19); 

EQZB_19=EQ3(:,20); 

EQZB_20=EQ3(:,21); 

EQZB_21=EQ3(:,22); 

EQZB_22=EQ3(:,23); 

EQZB_23=EQ3(:,24); 

EQZB_24=EQ3(:,25); 

EQZB_25=EQ3(:,26); 

EQZB_26=EQ3(:,27); 

EQZB_27=EQ3(:,28); 
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EQZB_28=EQ3(:,29); 

EQZB_29=EQ3(:,30); 

EQZB_30=EQ3(:,31); 

EQZB_31=EQ3(:,32); 

EQZB_32=EQ3(:,33); 

EQZB_33=EQ3(:,34); 

EQZB_34=EQ3(:,35); 

EQZB_35=EQ3(:,36); 

EQZB_36=EQ3(:,37); 

EQZB_37=EQ3(:,38); 

EQZB_38=EQ3(:,39); 

EQZB_39=EQ3(:,40); 

EQZB_40=EQ3(:,41); 

 

 

N100=size(F); 

 

for I = 1:N100 

 

W(I)= (2*22/7)*F(I); 

AFREQ(I)=(W(I)/(1-MU))*W(I)*DE*(1+MU)*(1-2*MU)/YC11; 

K(I)=sqrt(AFREQ(I)); 

     

 

   

U1(I)=UX_1(I)+j*UX_2(I)+UX_3(I)+j*UX_4(I)+UX_5(I)+j*UX_6(I)+UX_7

(I)+j*UX_8(I)+UX_9(I)+j*UX_10(I)+UX_11(I)+j*UX_12(I); 

   Z1(I)= 6/ (j*W(I)*U1(I)); 

    

   

U2(I)=UY_1(I)+j*UY_2(I)+UY_3(I)+j*UY_4(I)+UY_5(I)+j*UY_6(I)+UY_7(I)

+ 

j*UY_8(I)+UY_9(I)+j*UY_10(I)+UY_11(I)+j*UY_12(I); 

 

   Z2(I)= 6/ (j*W(I)*U2(I)); 

    

   U3B(I)=(UZB_1(I)+j*UZB_2(I))+(UZB_3(I)+j*UZB_4(I))+(UZB_5(I)+ 

j*UZB_6(I))+(UZB_7(I)+j*UZB_8(I))+(UZB_9(I)+j*UZB_10(I))+(UZB_11(

I)+ 

j*UZB_12(I))+(UZB_13(I)+j*UZB_14(I))+(UZB_15(I)+j*UZB_16(I))+ 

(UZB_17(I)+j*UZB_18(I))+(UZB_19(I)+j*UZB_20(I))+(UZB_21(I)+ 

j*UZB_22(I))+(UZB_23(I)+j*UZB_24(I))+(UZB_25(I)+j*UZB_26(I))+ 

(UZB_27(I)+j*UZB_28(I))+(UZB_29(I)+j*UZB_30(I)) +(UZB_31(I)+ 

j*UZB_32(I))+(UZB_33(I)+j*UZB_34(I))+(UZB_35(I)+j*UZB_36(I))+ 

(UZB_37(I)+j*UZB_38(I))+(UZB_39(I)+j*UZB_40(I)); 
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  U3B(I)=(j*W(I)*U3B(I)); %(DISPLACEMENT) 

    

  Z3(I)=-20/( U3B(I));   

 

%loop 

 

R=MU/(1-MU) ; 

R1(I)=K(I)*L*2*H; 

R2(I)=K(I)*WD*2*H; 

R3(I)=K(I)*L*WD; 

a1(I)=R1(I)*WD* cos(K(I)*WD)-Z1(I)*WD*j*W(I)*sin(K(I)*WD); 

 

a2(I)=R*R1(I)*L*cos(K(I)*L); 

a3(I)=R*R1(I)*cos(K(I)*2*H); 

a4(I)=R1(I)*(D31+R*(D32+D33)); 

b1(I)=R*R2(I)* WD*cos(K(I)*WD); 

b2(I)=R2(I)* L*cos(K(I)*L)-Z2(I)*j*W(I)*L*sin(K(I)*L); 

 

b3(I)=R*R2(I)*cos(K(I)*2*H); 

b4(I)=R2(I)*(D32+R*(D31+D33)); 

c1(I)=R*R3(I)* WD*cos(K(I)*WD); 

c2(I)=R*R3(I)*L*cos(K(I)*L); 

c3(I)=R3(I)* cos(K(I)*H)-Z3(I)*j*W(I)*sin(K(I)*2*H); 

 

c4(I)=R3(I)*(D33+R*(D31+D32)); 

          E0num(I)= ((a4(I)*b1(I)-a1(I)*b4(I))*(c1(I)*b2(I)-c2(I)*b1(I)))- 

                             ((a2(I)*b1(I)-a1(I)*b2(I))*(c1(I)*b4(I)-c4(I)*b1(I))); 

          E0deno(I)=((c1(I)*b2(I) - c2(I)*b1(I))*(a3(I)*b1(I) - a1(I)*b3(I)))- 

                             ((c1(I)*b3(I)-c3(I)*b1(I))*(a2(I)*b1(I)-a1(I)*b2(I))); 

 

E0(I)= E0num/E0deno; 

 

C0num(I)= (c1(I)*b4(I)-c4(I)*b1(I))- (c1(I)*b3(I)-c3(I)*b1(I))*E0(I); 

C0deno(I)= c1(I)*b2(I) - c2(I)*b1(I); 

 

C0(I)= C0num(I) / C0deno(I); 

 

A0(I)= (a4(I)-a2(I)*C0(I) - a3(I)*E0(I))/ a1(I); 

 

 

S31(I)=D31*((A0(I)*sin(K(I)*WD)-D31)+R*(C0(I)* sin (K(I)*L)-D32)+ 

            R*(E0(I)*K(I)*cos (K(I)*2*H)-D33)); 

S32(I)=D32*(R*(A0(I)* sin(K(I)*WD)-D31)+(C0(I)* sin (K(I)*L)-D32)+ 

            R*(E0(I)*K(I)*cos (K(I)*2*H)-D33)); 
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S33(I)=D33*(R*(A0(I)* sin(K(I)*WD)-D31)+R*(C0(I)* sin (K(I)*L)-D32)+ 

(E0(I)*K(I)*cos (K(I)*2*H)-D33)); 

 

Y_D=(1+MU)*(1-2*MU); 

Y_N=(1-MU); 

Y_CONST=Y_N / Y_D; 

AA1(I)=(Z1(I)/(Z1(I)+Z2(I)-Z3(I))); 

AA2(I)=(Z2(I)/(Z1(I)+Z2(I)-Z3(I))); 

AA3(I)=(Z3(I)/(Z1(I)+Z2(I)-Z3(I))); 

 

Y_ADMIT(I)=2*j*W(I)*(L/H)*WD*(EPC33+YC11*Y_CONST*(AA1(I)*S 

                        31(I)+AA2(I)*S32(I)+AA3(I)*S33(I))); 

 

     C1(I) = Y_ADMIT(I); 

 

      C(I)=real(C1(I)); 

      D(I)=imag(C1(I)); 

 

end; 

%Plotting of Results 

subplot(2,1,1); 

plot(F,C);  % conductance 

subplot(2,1,2);  

plot(F,D);  % susceptance 

dlmwrite('Frequency HZ.txt',F, '\n') ; %stores in a file of same folder 

dlmwrite('Conductance S.txt',C, '\n') ; %stores in a file 

dlmwrite('Susceptance S.txt',D, '\n') ; %stores in a file 

(E) 

MATLAB program to derive structural mechanical impedance from 

experimental admittance signatures, using updated PZT model (twin-peak), 

based on model of Bhalla and Soh (2004a). Input file should be a text file, 

each line should have frequency (kHz), conductance (G), and susceptance (B), 

obtained from measurement and separated by tab. The file to be named as 

“gb.txt” 

 

NOTE: For single-peak case, cf1 = cf2 

 

All units in the SI system 

 

%Inputs: Frequency (kHz), G (S), B (S) 
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%PZT parameters- based on measurement. 

data=dlmread('gb.txt','\t');     %Data-matrix,  

 

%The symbols for variables carry same meaning as in Appendices A, B and C 

LA=0.005; HA= 0.0003; RHO=7800; D31= -2.1e-10; mu=0.3; 

Y11E= 6.67e10; E33T=1.7919e-8; ETA= 0.03; DELTA= 0.0238; 

cf1 = 0.94; cf2 = 0.883;      %Correction factors for PZT peaks 

          %For single peak case, cf1 = cf2 

f  = 1000*data(:,1);       %Frequency in Hz 

G = data(:,2);        %Conductance 

B = data(:,3);        %Susceptance 

 

K = 5.16e-9;        %K = 2*D31*D31*Y11E/(1-mu); 

no=size(f);             %No of data points 

 

for I = 1:no, 

    

 %Calculation of active signatures    

 omega(I) = 2*pi*f(I); 

 multi(I) = 4*(LA * LA * omega(I)) / HA; 

 Gp(I) = multi(I) * (E33T * DELTA + K * ETA); 

 GA(I) = G(I)- Gp(I); 

 Bp(I) = multi(I) * (E33T - K); 

 BA(I) = B(I) - Bp(I); 

 

 %Calculation of M and N 

 M(I) = (BA(I)*HA)/(4*omega(I)*K*LA*LA); 

 N(I) = (-GA(I)*HA)/(4*omega(I)*K*LA*LA); 

 

 %Calculation of wave number 

 cons = (RHO * (1-mu*mu)/ (Y11E * (1 + ETA * ETA)))^0.5; 

 k_real(I) = cons * omega(I); 

 k_imag(I) = cons * omega(I) * (-0.5 * ETA); 

 rl(I) = k_real(I) * LA; 

 im(I) = k_imag(I) * LA; 

 

 %Calculation of tan(kl)/kl 

 rl(I) = k_real(I) * LA * cf1; 

 im(I) = k_imag(I) * LA * cf1; 

 

 a(I) = (exp(-im(I)) + exp(im(I))) * sin(rl(I)); 

 b(I) = (exp(-im(I)) - exp(im(I))) * cos(rl(I)); 

 c(I) = (exp(-im(I)) + exp(im(I))) * cos(rl(I)); 

 d(I) = (exp(-im(I)) - exp(im(I))) * sin(rl(I)); 
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 u(I) = c(I) * rl(I) - d(I) * im(I); 

 v(I) = d(I) * rl(I) + c(I) * im(I); 

 h(I) = u(I)^2 + v(I)^2; 

 r1(I) = (a(I) * u(I) - b(I) * v(I)) / h(I); 

 t1(I) = (-1.0) * (a(I) * v(I) + b(I) * u(I)) / h(I); 

 

 rl(I) = k_real(I) * LA * cf2; 

 im(I) = k_imag(I) * LA * cf2; 

 

 a(I) = (exp(-im(I)) + exp(im(I))) * sin(rl(I)); 

 b(I) = (exp(-im(I)) - exp(im(I))) * cos(rl(I)); 

 c(I) = (exp(-im(I)) + exp(im(I))) * cos(rl(I)); 

 d(I) = (exp(-im(I)) - exp(im(I))) * sin(rl(I)); 

 u(I) = c(I) * rl(I) - d(I) * im(I); 

 v(I) = d(I) * rl(I) + c(I) * im(I); 

 h(I) = u(I)^2 + v(I)^2; 

 r2(I) = (a(I) * u(I) - b(I) * v(I)) / h(I); 

 t2(I) = (-1.0) * (a(I) * v(I) + b(I) * u(I)) / h(I); 

 

 r(I) = 0.5 * (r1(I)+r2(I)); 

 t(I) = 0.5 * (t1(I)+t2(I)); 

 

 %Calculation of actuator impedance 

 multia(I) = (HA * Y11E) / (pi * (1-mu)* f(I)); 

 Big_rt(I) = r(I) * r(I) + t(I) * t(I); 

 xa(I) = multia(I) * (ETA * r(I) - t(I)) / Big_rt(I); 

 ya(I) = multia(I) * (-1.0) * (r(I) + ETA * t(I)) / Big_rt(I); 

 

 %Calculation of structural impedance 

 R(I) = r(I) - ETA * t(I); 

 S(I) = ETA * r(I) + t(I); 

 P(I) = xa(I) * R(I) - ya(I) * S(I); 

 Q(I) = xa(I) * S(I) + ya(I) * R(I); 

 MN(I)= M(I)^2+N(I)^2; 

 x(I) = (P(I)*M(I)+Q(I)*N(I))/MN(I) - xa(I);  %Real part of mechanical 

impedance 

 y(I) = (Q(I)*M(I)-P(I)*N(I))/MN(I) - ya(I);  %Imaginary part of mechanical 

impedance 

end 

 

%Plotting of results 

subplot(2,1,1); 

plot(f,x); 

subplot(2,1,2); 

plot(f,y); 
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(F) 

Matrices in the State-Space Equations given in Chapter 10 

For a typical layer i, the relations among matrices A
j
 and B

j
 (j=0,1,2) in Eq. (10.10) 

are  
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2D force measurement 466 

3D force measurement 467 
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AC coupling coefficient 422  

Acoustic emission 4 

Active component 33, 129 

Active conductance 34 
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Active structure 6 
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Active vibration control 401 

Actuator-sensor pair 570 

Adaptive structure 5 
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Adhesive layer 78 
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Ambient noise 497 

Angular frequency 18, 23 

Anode boundary layer (ABL) 507 
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Artificial ventricular muscle 533 
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Binomial distribution 203 
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Bonding layer 276, 282 

Bone characterization 569 

Broadband energy harvesting 589 
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Capsule formation 569 
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Compression testing machine 485 
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Conductance signature 26 

Convergence test 67 

Converse effect 8, 9, 569 
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Coupled field analysis 108 
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Cross impedance 55 

Cubic crystal 11 

Cumulative conductance 97 
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Experimental impedance spectra 194 
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Load ratio 197, 205, 206 
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Longitudinal deformations 148 

Longitudinal mode shapes 151 
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