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Abstract. In this paper we present the first investigation into the im-
plementation of a Functional Hybrid Modelling language for non-causal
modelling and simulation of physical systems. In particular, we present a
simple way to handle connect constructs: a facility for composing model
fragments present in some form in most non-causal modelling languages.
Our implementation is realised as a domain-specific language embed-
ded in Haskell. The method of embedding employs quasiquoting, thus
demonstrating the effectiveness of this approach for languages that are
not suitable for embedding in more traditional ways. Our implementa-
tion is available on-line, and thus the first publicly available prototype
implementation of a Functional Hybrid Modelling language.

1 Introduction

Functional Hybrid Modelling (FHM) [21,22] is a new approach to designing non-
causal modelling languages [4]. This class of languages is intended for modelling
and simulation of systems that can be described by Differential Algebraic Equa-
tions (DAEs). Examples primarily include physical systems, such that electrical
(see Figure 1), mechanical, hydraulic, and thermal systems. But any domain
where models can be expressed in terms of DAEs, or any combination of such
domains, is fine. Non-causal refers to treating equations as being undirected :
an equation can be used to solve for any of the variables occurring in it. This
is in contrast to causal modelling languages where equations are restricted to
be directed : only known variables on one side of the equal sign, and only un-
known variables on the other. Consequently, in a causal language, an equation
is effectively little more than a (possibly parallel) assignment statement.

The main advantage of the causal languages is that simulation is relatively
straightforward thanks to equations being directed. The advantages of the non-
causal languages over the causal ones include that models are more reusable (as
the equations can be used in many ways) and more declarative (as the modeller
can focus on what to model, worrying less about how to model it to enable
simulation) [4]. Modelica [18] is a prominent, state-of-the-art representative of
the class of non-causal modelling and simulation languages.
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Fig. 1. A simple electrical circuit

However, current non-causal languages have their drawbacks. For example, the
language designs tend to be relatively complex, being based around class sys-
tems inspired by object-oriented programming languages1. Modelling support
for hybrid systems (systems that exhibit both continuous and discrete dynamic
behaviour) is often not very declarative. To facilitate efficient simulation, the lan-
guages are designed on the assumption that the model is translated into simula-
tion code once and for all. This limits the possibilities for describing structurally
dynamic systems, where the structure evolve over time through the addition or
removal of components, and in particular highly structurally dynamic systems,
where the number of structural configurations (the modes) is large, unbounded,
or impossible to determine in advance.

The idea of FHM is to enrich a purely functional language with a few key
abstractions for supporting hybrid, non-causal modelling. By leveraging the ab-
straction power of the functional host language, much of the scaffolding of current
non-causal modelling languages becomes redundant, and it becomes possible to
describe highly structurally dynamic systems [21]. Our hypothesis is that the
FHM approach will result in non-causal modelling languages that are relatively
simple, have clear, purely declarative semantics, and, aided by this, advance the
state of the art by supporting e.g. highly structurally dynamic systems, thus
addressing the problems of current non-causal designs.

FHM is inspired by Functional Reactive Programming (FRP) [8,26], in partic-
ular Yampa [20,12]. Yampa is an Embedded Domain-Specific Language (EDSL)
[11]. The host language is Haskell, and the central domain-specific abstraction
is the signal function: first-class functions on signals (time-varying values). In
a dynamic systems setting, signal functions are essentially directed differential
equations on signals. Yampa further provides switch constructs that are capable

1 Indeed, non-causal languages are often referred to as object-oriented modelling lan-
guages, even though they do not feature central object-oriented concepts like mutable
objects and methods.
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of switching between signal functions during simulation. Yampa thus supports
causal modelling of highly structurally dynamic systems [6,5,10].

The key insight of FHM is that non-causal modelling can be supported by
enriching a functional language with first-class signal relations : relations on sig-
nals described by undirected differential equations. While the idea of FHM is
not predicated on an embedded implementation, we are currently pursuing an
EDSL approach for FHM to enable us to focus on research problems related to
non-causal modelling as opposed to functional language implementation.

This paper contributes at two levels: firstly to the area of design and imple-
mentation of declarative, non-causal modelling languages; secondly, and more
generally, to the area of EDSLs. Specifically:

– We present the first implementation of Hydra2, a language following the
FHM approach. The present implementation covers all key aspects of the
continuous3 part of the FHM paradigm.

– We describe how to translate connect constructs, a facility for composing
model fragments present in most non-causal modelling languages, into equa-
tions in the FHM setting. Our method is simpler than in other non-causal
languages like Modelica [18], although it remains to be seen to what extent
our approach can be used outside of FHM.

– We show how quasiquoting [16] makes a convenient embedded implementa-
tion of a non-causal modelling language possible, thus extending the EDSL
approach to a new class of languages and further demonstrating the effective-
ness of quasiquoting for embedding domain-specific languages, as pioneered
by Mainland et al. [17]. This approach is particularly relevant for languages
that are sufficiently different from the host language that more conventional
methods of embedding, such as combinator libraries [11], are a poor fit.

The rest of this paper is organised as follows: In Section 2 we outline fundamental
concepts of FHM and Hydra. In Section 3 we implement Hydra as a domain-
specific language embedded in Haskell. Section 4 considers related work. Finally,
we discuss future work in Section 5, notably support for highly structurally
dynamic hybrid systems, and give conclusions in Section 6.

2 Fundamental Concepts of FHM and Hydra

2.1 Signals and Signal Functions

Before turning to FHM, let us review two central concepts of Yampa: signals and
signal functions. Conceptually, a signal is a time-varying value; i.e., a function
from time to a value of some type α:

Signal α ≈ Time → α

2 The source code of the prototype is publicly available on-line
(http://cs.nott.ac.uk/~ggg/) under the open source BSD license.

3 E.g., structurally dynamic systems are not supported at present.
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Time is continuous, and is represented as a non-negative real number. The type
parameter α specifies the type of values carried by the signal. A signal function
can be thought of as a function from signal to signal:

SF α β ≈ Signal α → Signal β

However, signal functions are abstract, and to ensure that they are realisable,
they are additionally required to be temporally causal : The output of a signal
function at time t is uniquely determined by the input signal on the interval [0, t].

Signal functions are first class entities in Yampa. Signals, however, are not:
they only exist indirectly through the notion of a signal function. Programming
in Yampa consists of defining signal functions compositionally using Yampa’s
library of primitive signal functions and a set of combinators. The first class
nature of signal functions enables programming of highly structurally dynamic
systems using Yampa’s switching combinators [20].

2.2 Signal Relations

FHM generalises the notion of signal functions to signal relations. A signal rela-
tion is simply a relation on signals. Stating that some signals are in a particular
relation to each other imposes constraints on those signals. Assuming these con-
straints can be satisfied, this allows some of the signals to be determined in
terms of the others depending on which signals are known and unknown in a
given context. That is, signal relations are non-causal, unlike signal functions
where the knowns and unknowns (inputs and outputs) are given a priori. Like
signal functions in Yampa, signal relations are first class entities in Hydra.

Because a product of signals, say Signal α and Signal β, is isomorphic to
a signal of the product of the carried types, in this case Signal (α, β), unary
signal relations actually suffice for handling signal relations of any arity. We
thus introduce the type SR α for a signal relation on a signal of type α.

An ordinary relation can be seen as a predicate that decides whether some
given values are related or not. The same is of course true for signal relations:

SR α ≈ Signal α → Bool

Solving a relation thus means finding a signal that satisfies the predicate. As an
example, equality is a binary signal relation:

(=) :: SR (α, α)
(=) s ≈ ∀ t .fst (s t) ≡ snd (s t)

Hydra adopts the following syntax for defining signal relations (inspired by
the arrow notation [24]):

sigrel pattern where equations

The pattern binds signal variables that scope over the equations that follow. The
equations are DAEs stated using signal relation application (the operator �).
Signal relation application is how the constraints embodied by a signal relation
are imposed on particular signals:
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sr � s

Equations must be well typed. In this example, if sr has type SR α, s must
have type Signal α. Additionally, Hydra provides a more conventional-looking
syntax for equality between signals. For example: a ∗ x + b = 0 is equivalent to
(=) � (a ∗ x + b, 0).

2.3 The Hydra Syntax

The abstract syntax of Hydra is given below. The aspects that have not yet been
discussed, such as flow variables and the connect construct, are covered in the
following sections. Note that, because Hydra is implemented as an embedded
language, we are able to reuse Haskell for the functional part, as described in
Section 3.

〈SigRel 〉 ::= sigrel 〈Pattern 〉 where { 〈ListEquation 〉 }
〈Pattern 〉 ::= 〈PatNameQual 〉 〈Identifier 〉

| ( 〈ListPattern 〉 )
〈ListPattern 〉 ::= ε

| 〈Pattern 〉
| 〈Pattern 〉 , 〈ListPattern 〉

〈PatNameQual 〉 ::= ε
| flow

〈Equation 〉 ::= 〈SigRel 〉 <> 〈Expr 〉
| 〈Expr 〉 = 〈Expr 〉
| connect 〈Identifier 〉 〈Identifier 〉 〈ListIdentifier 〉

〈ListEquation 〉 ::= ε
| 〈Equation 〉
| 〈Equation 〉 ; 〈ListEquation 〉

〈ListIdentifier 〉 ::= ε
| 〈Identifier 〉 〈ListIdentifier 〉

〈Expr 〉 ::= 〈Expr 〉 〈Expr 〉
| 〈Expr 〉 + 〈Expr 〉
| 〈Expr 〉 − 〈Expr 〉
| 〈Expr 〉 * 〈Expr 〉
| 〈Expr 〉 / 〈Expr 〉
| 〈Expr 〉 ^ 〈Expr 〉
| − 〈Expr 〉
| 〈Identifier 〉
| 〈Integer 〉
| 〈Double 〉
| ( 〈ListExpr 〉 )

〈ListExpr 〉 ::= ε
| 〈Expr 〉
| 〈Expr 〉 , 〈ListExpr 〉
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Instead of semicolons and curly braces, the modeller can use layout syntax
in the same way as in Haskell. All examples in this paper use layout. We used
the BNF Converter [25], a compiler front-end generator taking a labelled BNF
grammar as input, to generate the lexer and parser of Hydra.

3 Embedding Hydra

In this section we implement Hydra as a domain-specific language embedded
in Haskell. The method of embedding is inspired by Mainland et al. [17] and
employs quasiquoting [16].

3.1 Why Quasiquoting?

Because of the non-causal nature of Hydra, an implementation needs the ability
to manipulate models symbolically; e.g., to solve parts of models symbolically,
to transform models into a form suitable for numerical simulation, and to com-
pile models to efficient simulation code. This suggests a deep embedding where
embedded language terms are represented as Abstract Syntax Trees (ASTs)
[13,7,1].

One way to achieve this is to design a combinator library for building ASTs
representing the embedded language terms. However, the use of combinators
implies that the domain-specific syntax fundamentally needs to conform to the
syntax of Haskell. While this can work really well in many cases (thanks to clever
use of overloading, carefully crafted infix operators, and the like), the result is
not always satisfying. Indeed, this observation has lead to proposals for syntactic
extensions of Haskell, such as the arrow notation [24], to allow certain kinds of
combinator libraries to be used in a more convenient way.

Hydra is an example of a language that does not quite fit with Haskell’s syntax
(or established extensions like the arrow syntax). Designing a clean combinator
library without sacrificing certain aspects of the desired syntax, or introduc-
ing distracting “syntactic noise”, proved to be hard. Instead, we opted to use
quasiquoting, a meta-programming feature provided by Glasgow Haskell Com-
piler (GHC) as of version 6.10, which allows us to use almost exactly the syntax
we want at the cost of having to provide our own parser. This parser takes
a string in the domain-specific concrete syntax and returns the corresponding
AST, additionally allowing for ASTs resulting from evaluating Haskell expres-
sions to be “spliced in” where needed. Our embedding of Hydra thus allows a
modeller to use a syntax that is very close to that proposed in earlier FHM-
related publications [21,22].

This embedding technique clearly separates embedded language terms (in
our case, non-causal Hydra models) from host language terms (in our case, the
genuine Haskell expressions). Specifically, signal variables in Hydra are clearly
separated from Haskell variables, which is important as signal variables must
only be used in a sigrel abstraction.
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3.2 The Haskell Embedding

Let us introduce the Haskell embedding of Hydra by modelling the circuit in
Figure 1. We first define a twoPin model: a signal relation that captures the
common behaviour of electrical components with two connectors (see Figure 2):

twoPin :: SigRel
twoPin = [$hydra|

sigrel ((flow pi, pv), (flow ni, nv), u) where
pv − nv = u
pi + ni = 0

|]
The signal variables pi and pv represent the current into the component and

the voltage at the positive pin. The signal variables ni and nv represent the
current into the component and the voltage at the negative pin. The signal
variable u represents the voltage drop across the electrical component. Signal
variables in the sigrel pattern qualified as flow are called flow signal variables.
Signal variables without any qualifier are called potential signal variables. The
distinction between flow and potential variables is central to the meaning of the
connect construct as discussed in Section 3.3.

pv − nv = u
pi + ni = 0

u

pvpi

+

nv ni

−

Fig. 2. An electrical component with two connectors

The symbols [$hydra| and | ] are the quasiquotes. At compile time, GHC ap-
plies the user-defined parsing function named in the opening quote to the text be-
tween the quotes. Here, the function is called hydra . It has type String → SigRel
and parses the concrete version of the Hydra syntax defined in Section 2.3. Val-
ues of type SigRel are ASTs representing Hydra signal relations. This enables the
embedded Hydra compiler to process them symbolically and ultimately compile
them into simulation code.

We can now use twoPin to define a model for a resistor parametrised with
respect to the resistance. Note that a parametrised model simply is an ordinary
function returning a signal relation:

resistor :: Double → SigRel
resistor r = [$hydra|

sigrel ((flow pi, pv), (flow ni, nv)) where
$twoPin$ � ((pi, pv), (ni, nv), u)
$r$ ∗ pi = u

|]
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Expressions between dollar signs are antiquoted Haskell expressions. All variables
in antiquoted expressions must be in the Haskell scope. Using this technique, a
modeller can splice in Haskell expressions in the Hydra models.

The current implementation only allows antiquoting of Haskell expressions
of type SigRel in the left hand side of signal relation applications and of type
Double in signal expressions. The result spliced in to the left in a signal relation
application is thus an entire AST representing a signal relation, as required by the
abstract syntax (see Section 2.3). Antiquoted expressions must have the correct
type, i.e SigRel and Double respectively. Type-incorrect, antiquoted expressions
are detected by GHC at compile time.

In this case, note how antiquoting is used to splice in a copy of the twoPin
model; that is, its equations are reused in the context of the resistor model.
Alternatively, this can be viewed as defining the resistor model by extending the
twoPin model with an equation that characterises the specific concrete electrical
component, in this case Ohm’s law.

To clearly see how twoPin contributes to the definition of resistor , let us
consider what happens when the resistor model is flattened as part of flattening
of a complete model, a transformation that is described in detail in Section 3.4.
Intuitively, flattening can be understood as “inlining” of applied signal relations.
Thus, the arguments of a signal relation application is substituted into the body
of the applied signal relation, and the entire application is then replaced by the
instantiated signal relation body. In our case, the result of flattening the signal
relation resistor 10 is:

sigrel ((flow pi, pv), (flow ni, nv)) where
pv − nv = u
pi + ni = 0
10 ∗ pi = u

Models for an inductor, a capacitor, a voltage source and a ground are defined
similarly:

inductor :: Double → SigRel
inductor l = [$hydra|

sigrel ((flow pi, pv), (flow ni, nv)) where
$twoPin$ � ((pi, pv), (ni, nv), u)
$l$ ∗ der pi = u

|]
capacitor :: Double → SigRel
capacitor c = [$hydra|

sigrel ((flow pi, pv), (flow ni, nv)) where
$twoPin$ � ((pi, pv), (ni, nv), u)
$c$ ∗ der u = pi

|]
vSourceAC :: Double → Double → SigRel
vSourceAC v f = [$hydra|
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sigrel ((flow pi, pv), (flow ni, nv)) where
$twoPin$ � ((pi, pv), (ni, nv), u)
u = $v$ ∗ sin (2 ∗ $π$ ∗ $f $ ∗ time)

| ]
ground :: SigRel
ground = [$hydra|

sigrel (flow pi, pv) where
pv = 0

|]

3.3 Non-causal Connections

To facilitate composition of signal relations, Hydra provides a Modelica-inspired
connect construct. Using this, a complete model for the circuit of Figure 1 can
be defined as follows:

simpleCircuit :: SigRel
simpleCircuit = [$hydra|

sigrel (flow i , u) where
$vSourceAC 1 1$ � ((acpi, acpv), (acni, acnv))
$resistor 1$ � ((rpi, rpv), (rni, rnv))
$inductor 1$ � ((lpi, lpv), (lni, lnv))
$capacitor 1$ � ((cpi, cpv), (cni, cnv))
$ground$ � (gpi, gpv)
connect acpi rpi lpi

connect acpv rpv lpv

connect rni cpi

connect rnv cpv

connect acni cni lni gpi

connect acnv cnv lnv gpv

i = acpi

u = acpv − acnv

|]

Note how the above code is a direct textual representation of how the components
are connected in the example circuit.

In the setting of Hydra, the connect construct is just syntactic sugar with
the following rules4:

– The special keyword connect takes two or more signal variables.
– A signal variable may not appear in more than one connect statement.
– Connection of flow signal variables with potential signal variables is not

allowed.
4 These rules may be relaxed in the future to allow connection of, for example, aggre-

gated signal variables.
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For connected flow variables, sum-to-zero equations are generated. In the electri-
cal domain, this corresponds to Kirchhoff’s current law. For potential variables,
equality constraints are generated. In the electrical domain, this asserts that the
voltage at connected pins is equal. The connect constructs of simpleCircuit are
thus expanded to the following equations:

acpi + rpi + lpi = 0
acpv = rpv = lpv

rni + cpi = 0
rnv = cpv

acni + cni + lni + gpi = 0
acnv = cnv = lnv = gpv

Note that the notion of flows and potentials are common to many physical
domains. For example, the Modelica standard library employs connections for
electrical, hydraulic, and mechanical applications, among others.

In Hydra, the expansion of connect constructs into the sum-to-zero and equal-
ity constraints is straightforward. In particular, note that all signal variables are
counted positively in the sum to zero equations. This is different from Modelica
[18] where a special “rule of signs” is used to determine which flow variables go
with a plus sign and which go with a minus sign. Hydra obviates the need for a
rule of signs by treating flow signal in signal relation applications specially, thus
keeping the generation of connection equations simple. The idea is to consider a
flow variable in a sigrel pattern as two variables, one internal and one external,
related by the equation

i = −i ′

where i is the internal variable and i ′ is the external variable. This way, flows
are always directed from an interface into a component, as it were, making it
possible to always count flows into connection nodes as being positive.

3.4 Model Flattening

Once the quasiquoting has been processed and the connect constructs trans-
lated into equations, the model is turned into a single system of equations
through a process called flattening. This is accomplished by substituting the
arguments of signal relation applications into the body of the applied signal
relation. The following example illustrates the process. It also shows how flow
variables are handled.

par :: SigRel → SigRel → SigRel
par sr1 sr2 = [$hydra|

sigrel ((flow pi, pv), (flow ni, nv)) where
$sr1$ � ((p1i, p1v), (n1i, n1v))
$sr2$ � ((p2i, p2v), (n2i, n2v))
connect pi p1i p2i
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p1 n1

p2 n2

p n
resistor r1

resistor r2

Fig. 3. Two resistors connected in parallel

connect pv p1v p2v

connect ni n1i n2i

connect nv n1v n2v

|]
The function par takes two models of electrical components and returns a model
where these components are connected in parallel. We use this function to model
the component in Figure 3 and show that:

par (resistor r1 ) (resistor r2 ) ≡ resistor ((r1 ∗ r2 ) / (r1 + r2 ))

First we perform the substitution of function arguments:

par (resistor r1 ) (resistor r2 ) = [$hydra|
sigrel ((flow pi, pv), (flow ni, nv)) where

$resistor r1$ � ((p1i, p1v), (n1i, n1v))
$resistor r2$ � ((p2i, p2v), (n2i, n2v))
connect pi p1i p2i

connect pv p1v p2v

connect ni n1i n2i

connect nv n1v n2v

|]
We then generate connection equations and unfold the signal relation applica-
tions:

par (resistor r1 ) (resistor r2 ) = [$hydra|
sigrel ((flow pi, pv), (flow ni, nv)) where

$twoPin$ � ((−p1i, p1v), (−n1i, n1v), u1 )
$r1$ ∗ (−p1i) = u1
$twoPin$ � ((−p2i, p2v), (−n2i, n2v), u2 )
$r2$ ∗ (−p2i) = u2
pi + p1i + p2i = 0
pv = p1v

p1v = p2v

ni + n1i + n2i = 0
nv = n1v

n1v = n2v

|]
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By further unfolding of signal relation applications we get:

par (resistor r1 ) (resistor r2 ) = [$hydra|
sigrel ((flow pi, pv), (flow ni, nv)) where

p1v − n1v = u1
(−(−p1i)) + (−(−n1i)) = 0
$r1$ ∗ (−p1i) = u1
p2v − n2v = u2
(−(−p2i)) + (−(−n2i)) = 0
$r2$ ∗ (−p2i) = u2
pi + p1i + p2i = 0
pv = p1v

p1v = p2v

ni + n1i + n2i = 0
nv = n1v

n1v = n2v

|]

We note that u = u1 = u2 = pv − nv and simplify:

par (resistor r1 ) (resistor r2 ) = [$hydra|
sigrel ((flow pi, pv), (flow ni, nv)) where

pv − nv = u
p1i + n1i = 0
$r1$ ∗ (−p1i) = u
p2i + n2i = 0
$r2$ ∗ (−p2i) = u
pi + p1i + p2i = 0
ni + n1i + n2i = 0

|]

Solving and eliminating the variables p1i, n1i, p2i and n2i yields:

par (resistor r1 ) (resistor r2 ) = [$hydra|
sigrel ((flow pi, pv), (flow ni, nv)) where

pv − nv = u
pi + ni = 0
$(r1 ∗ r2 ) / (r1 + r2 )$ ∗ pi = u

|]

This is what we expected. This example also demonstrated how the first class
nature of signal relations enables us to define a signal relation parametrised over
other signal relations. Such models are called higher-order non-causal models.
Broman et al. provide other motivating examples for the use of this modelling
technique [3].
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3.5 Simulating Hydra Models

Figure 4 illustrates the stages involved in compiling Haskell-embedded Hydra
models into executable simulation code.

In the first stage, GHC is used to compile the Haskell-embedded Hydra models
into the executable program. GHC first transforms all quasiquoted Hydra models
into the ASTs, then type checks the Haskell program, and finally produces the
executable binary.

In the second stage, the executable program is run. This compiles the Hy-
dra ASTs into a single Modelica class. The executable internally performs type
checking of the models, desugars connection statements, flattens the top level sig-
nal relation and translates it to Modelica code. For example, this type checking
ensures that the type of an applied signal relation and the signal it is applied to
agree. Separate type checking is necessary, because we have chosen not to embed
Hydra’s type system into Haskell’s type system. GHC’s Haskell type checking
phase only guarantees that Hydra’s signal relations are syntactically correct.

Quasiquoter Type-Checker Code Generator

Desugarer Evaluator Code GeneratorType-Checker

Code GeneratorType-Checker Symbolic Solver

Code GeneratorType-Checker

Haskell Code

Modelica Code

C Code Machine Code

GHC

The Haskell Program

OpenModelica

GCC/ICC

Fig. 4. The translation process in the prototype implementation from Haskell-
embedded Hydra models to executable simulation code
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This is well known issue in meta-programming using quasiquoting [16]. Because
the type errors are detected before the start of the simulation, this is not a major
drawback.

In the third phase, the OpenModelica compiler [9] is invoked to compile the
generated Modelica code into the C code that then in the forth phase is com-
piled into the executable binary using the GNU C compiler. Finally, the actual
simulation can be carried out by running this last executable.

4 Related Work

4.1 Flask

The implementation of Hydra is directly inspired by recent work on Flask [17].
Flask is a domain-specific language embedded in Haskell for programming ap-
plications for sensor networks : collections of devices with very limited compu-
tational and memory resources. The authors note that FRP is a suitable pro-
gramming model for programming such networks. However, currently available
Haskell embeddings cannot be used in this domain because that would neces-
sitate running a Haskell run-time system. Such run-time systems are too large
and heavy for typical sensor network nodes.

Flask thus uses a different embedding approach. Haskell is only used for meta-
programming, not for running the actual programs. This is accomplished through
quasiquoting. Haskell is used to manipulate program fragments written in the
object language, which can be either Red, a restricted subset of Haskell where
all functions are total and memory allocation is bounded, or nesC, a dialect of
C used for programming sensor networks. NesC is provided for easy integra-
tion with existing sensor network code. The terms in the object-languages are
composed using FRP-inspired combinators.

A Flask program is first compiled into the nesC code. This code is then com-
piled using the nesC compiler that generates code ready to be deployed on sensor
network nodes. This embedding approach caught our attention as it allows for
embedding of languages that are far removed from the host language, clearly
separates the embedded language from the host language, and makes it possible
to employ standard compiler technology to handle parsing, type checking, and
code generation.

4.2 Modelling Kernel Language

Broman [2] is developing Modelling Kernel Language (MKL) that is intended to
be a core language for non-causal modelling languages (e.g. Modelica). Broman
takes a functional approach to non-causal modelling, which is similar to the
FHM approach [21]. One of his main goal is to provide formal semantics of the
core language. Currently, the formal semantics of MKL is based on an untyped
λ-calculus.

Similarly to Hydra, MKL provides a λ-abstraction for defining functions and
an abstraction similar to sigrel for defining non-causal models. Both functions
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and non-causal models are first class entities in MKL. This enables higher-order
non-causal modelling. The similarity of the basic abstractions leads to a very
similar modelling style in both languages.

However, there are a number of differences as well. MKL introduces a special
notion of connector to state non-causal connections. This is not the case in Hydra
where the connect construct works on signal variables. As a result, both the
syntax and the semantics (generation of connection equations) of the connection
constructs of the two languages differ. In particular, in the formal semantics of
MKL the λ-calculus is extended with effectful constructs to handle non-causal
connections; i.e., functions in MKL have an effect and are not pure. In contrast,
functions in Hydra are pure and non-causal connections are also handled in a
purely functional manner. Broman’s ultimate goal, though, is to provide a pure,
declarative surface language for modelling.

4.3 FHM at Yale

Work on FHM has also been carried out at Yale by Hai Liu under the supervi-
sion of Paul Hudak [15]. This work is mostly complementary to ours, focusing on
describing the dynamic semantics of FHM, including structural changes. Addi-
tionally, Liu developed a type system for FHM with a strict separation between
ordinary variables and signal variables. This type system thus has some similar-
ities to the arrow calculus [14], but note that Liu’s work is earlier by a few years.
This similarity is to be expected as FHM was inspired by Yampa which is based
on arrows, and as the distinction between ordinary variables and arrow-bound
variables is second nature to anyone who has programmed using Paterson’s arrow
syntax [24].

4.4 Non-causal Modelling and Simulation of Hybrid Systems

As one of the goals of Hydra is to support hybrid modelling, we will briefly
survey some of the most closely related work in that area.

MOSILA is an extension of the Modelica language that supports the descrip-
tion of structural changes using object-oriented statecharts [23]. This enables
modelling of structurally dynamic systems. However, the statechart approach
implies that all structural modes must be specified in advance. This means that
MOSILA does not support highly structurally dynamic systems.

Sol is a Modelica-like language [27]. It introduces language constructs which
enable the description of systems where objects are dynamically created and
deleted, with the aim of supporting modelling of highly structurally dynamic
systems. At the time of writing, this work is in its very early stages and the
design and implementation of the language has not yet been completed.

5 Future Work

In Section 3 we demonstrated the embedding into Haskell of Hydra, an FHM lan-
guage that supports modelling with first class signal relations. The next major
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step is to design and implement switching combinators capable of switching be-
tween signal relations during the simulation. This will make modelling of highly
structurally dynamic systems possible. However, there are number of challenges
that needs to be overcome, such as state transfer during switches and simulation
code generation for highly structurally dynamic systems [21,22].

We also aim to investigate domain-specific type system aspects related to
solvability of systems of equations and consistency of models in the presence
of structural dynamism. The goal is to provide as many static guarantees at
compile time as possible [19].

We intend to pursue our current implementation approach based on embed-
ding and quasiquoting in our future work on extending Hydra as we have found
this approach quick and flexible from an implementation perspective, while also
allowing models to be written with very little syntactic “embedding noise”. How-
ever, note that neither the FHM framework, nor Hydra, are predicated on this
implementation approach. Ultimately, a stand-alone implementation may be the
way to go.

6 Conclusions

In this paper, we showed how to realise the basic FHM notion of a signal relation
and language constructs for composing signal relations into complete models as a
domain-specific, deep, embedding in Haskell. We used quasiquoting, as pioneered
by Mainland et al. [17], to achieve this, motivated by the fact that the syntax of
the embedded language is quite far removed from Haskell, and a desire to avoid
as much “syntactic embedding noise” as possible. We think quasiquoting is a
promising approach for domain-specific embeddings as it, in addition to the usual
benefits of embedded language implementations, allows standard compilation
technology to be applied for analysis and code generation, something which can
can be essential for performance reasons.

The main contribution of this paper is the first investigation into the im-
plementation of the fundamental aspects of an FHM language. The paper is
supported by the publicly available prototype implementation. It enables physi-
cal modelling with first class signal relations and can model and simulate systems
with static structure. Support of highly structurally dynamic hybrid systems is
the subject of future work, together with other topics outlined in Section 5.
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