
A. Bouguettaya, M. Hauswirth, and L. Liu (Eds.): WISE 2011, LNCS 6997, pp. 143–157, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Achieving Multi-tenanted Business Processes
in SaaS Applications

Malinda Kapuruge, Alan Colman, and Jun Han

Faculty of Information and Communication Technologies,
Swinburne University of Technology, Melbourne, Australia
{mkapuruge,acolman,jhan}@swin.edu.au

Abstract. With the emergence of Cloud Computing and maturity of Service
Oriented Architecture (SOA), the Software-as-a-Service (SaaS) delivery model
has gained popularity, due to advantages such as lower startup cost and reduced
time to market. A SaaS vendor owns and takes the responsibility of maintaining
a single application for multiple clients/tenants who may have similar but also
varying requirements. Business process modeling (BPM) approaches can be
used to package service offerings to meet these varying requirements on a
shared basis. However the customizations in those business processes can be
challenging. In this paper we discuss the challenges arising from single-instance
multi-tenancy, and present our approach to defining business processes in SaaS
applications to address those challenges.

Keywords: SaaS, Cloud, SOA, BPM, Multi-tenancy.

1 Introduction

Software-as-a-Service (SaaS) is a software delivery model that lets a customer (tenant)
remotely utilize hosted software over the internet and pay according to a certain
subscription package [1, 2]. SaaS is being increasingly adopted due to its lower startup
costs and higher reliability compared to the on-premise software development and
delivery model. In contrast to the on-premise model, a SaaS vendor [3] owns, hosts
and maintains the software application and the underlying infrastructure in the hosting
environment, freeing the tenants from those burdens [4].

It has been observed that SOA and SaaS are very closely related architectural
models [3]. Service Oriented Architecture (SOA) plays an important role in realizing
the SaaS concepts in the enterprise architecture[5]. In a SaaS delivery model the SOA
principles can be used to easily integrate existing available services to broaden
business offerings, especially when the SaaS vendor alone cannot provide all the
required functionalities. Also, in order to specify the order in which the services are
delivered and how the dependent services should be invoked, a Business Process
Modeling (BPM) mechanism is typically employed. The advantages of BPM such as
automated enactment, re-design and verification can be leveraged in delivering
Software-as-a-Service simultaneously to multiple tenants in native multi-tenant
environments[6].

Consequently, there is an interest in using BPM languages to orchestrate service
delivery in SaaS applications. However, single instance multi-tenant(SIMT)

144 M. Kapuruge, A. Colman, and J. Han

applications[7] brings additional challenges to BPM. A SaaS vendor has to capture the
commonalities in process definitions, maintain different variations as required by
tenants, and achieve effective isolation in modifications to protect the integrity of
tenants’ requirements and the application as a whole. Most work on meeting similar
challenges has occurred in providing virtual individualized data service to tenants.
However defining workflows and processes is also a key aspect of SOA, and one that
needs addressing if SOA systems are to be deployed as true multi-tenanted SaaS
applications. In this paper we discuss the relevant challenges in detail and introduce
our approach, Serendip4SaaS to defining business processes in SaaS applications to
address these challenges.

In order to analyze the problem, a motivational scenario is given in Section 2. We
will also highlight the challenges and requirements for BPM in SIMT applications. The
section 3 gives an overview of our approach. In Section 4, we discuss how our
approach is capable of meeting those challenges. Section 5 introduces our prototype
implementation. Related works are analyzed in Section 6. Finally, we conclude the
paper in Section 7.

2 Problem Analysis

In order to understand the problem and motivate the discussion, we first present an
expository scenario. We will then discuss the challenges of BPM in multi-tenant SaaS
applications based on the presented scenario.

2.1 Motivation

A Road Side Assistance service benefits motorists by providing emergency assistance
when there is a car breakdown. Software systems are being used to coordinate the
activities such as towing, repairing etc. Possible businesses that need such a service
may include insurance companies, car sellers, and travel agents, providing road side
assistance as a value added service to attract clients. For businesses whose core-
business is not Road Side Assistance, running and maintaining such a software system
and the infrastructure is an onerous task. In such situations it is cost effective and
efficient to use an external service and the underlying infrastructure of such kind on a
subscription basis [8].

In order to meet this market need, RoSaaS.com provides road side assistance as a
service. RoSaaS (Road Side Assistance as a Service) provides different service
packages for its customers depending on their requirements. RoSaaS as the SaaS
vendor contracts various third party service providers, including garages (GR), tow car
(TC) services, taxis (TX) and paramedics (PM). Other service providers such as case
handling officers (CO) could be either handled internally by RoSaaS or outsourced as
appropriate. The RoSaaS software handles the complexity of the underlying operations
such as requesting, meditating and monitoring third-party and internal services and
binding/unbinding service endpoints etc. However, tenants (e.g. car-sellers, travel
agents) can request customizations due to changing business goals.

An overall view of the RoSaaS business model is given in Fig. 1(a). The lowest
layer represents the internal and external (third party) service providers/collaborators.
Then RoSaaS.com needs to integrate these third party services according to a well-
defined choreography. Such choreography defines an acceptable ordering and

 Achieving Multi-tenanted Business Processes in SaaS Applications 145

scheduling of activities in the composition. Based on the offerings of the RoSaaS
platform different subscriptions/customizations can be delivered to its subscribing
customers. The top layer represents the end users, i.e. motorists (MM) that ultimately
use the road side assistance, e.g. a traveller or an insurance policy holder.

Fig. 1. RoSaaS: (a) Business model, (b) SaaS realization (application architecture)

2.2 Challenges and BPM Requirements

SaaS vendors as business entities have to depend on third party service providers to
provide certain functionalities (e.g. towing and repairing) as they alone might not be
able to meet all customer requirements. Such dependencies are becoming common as
more and more enterprise applications are now exposed and delivered as services [6,
9]. The SaaS realization of the RoSaaS business model is given in Fig. 1(b). The
service composition is required to combine the various third-party lower level services,
and deliver application level services in a multi-tenant environment, on demand.

In multi-tenancy one application instance is utilized by all its tenants [7]. Each
tenant interacts with the system as if they are the sole user [6]. A tenant can request
modifications to its package to suit their changed business objectives. However, these
modifications are applied on a single shared application instance. Subsequently
modifications could be available to other tenants who use the same application
instance. In some cases this might be a necessity, e.g. applying a patch/upgrade.
However, in other cases, modifying a common application instance can challenge the
integrity of the application instance, compromising the objectives of RoSaaS and other
tenants. For example, a request by the tenant, CarSellerCo to add additional pre-
condition for towing, might delay the execution and thereby hinder the objectives of
another tenant such as InsuranceCo who utilize the same application instance.
Therefore achieving effective isolation in process modifications is a must.

One naïve solution to achieve isolation of process modifications is to allocate
dedicated process definitions for each and every tenant, i.e. similar to lower level of the
maturity model [10]. However, it should be noted that tenants of a SaaS application
have common business interests. Hence, there can be significant overlapping in those
business processes. Having separate process definitions, leads to code duplication.
Such duplication deprives the SaaS vendor from exploiting the benefits of SIMT. The
SaaS vendor has to apply modifications repeatedly to these process definitions, which
is not efficient and could be error prone. Therefore the BPM approach and the
language utilized in RoSaaS should be able to capture commonalities in behavior.
These common behaviors or process segments can then be reused to define complete
road side assistance business process definitions as part of the software packages for

146 M. Kapuruge, A. Colman, and J. Han

individual tenants. As an example, the towing behavior could be common to all
customer processes and consequently the code/script can be shared among different
process definitions.

Although capturing commonalities is essential and beneficial to any SaaS vendor, it
is allied with two accompanying challenges. Firstly, while the tenants have common
business requirements, these requirements may slightly vary in practice. As such,
RoSaaS cannot assume a common code/script can continue to serve all the tenants in
the same manner. As an example, even though the abovementioned Towing Behavior
is common to all customers, during design time or runtime a tenant might request a
change in pre-conditions to start towing. Therefore the BPM approach should be able
to allow variations, while capturing the commonalities.

Secondly, capturing commonalities might lead to invalid boundary crossings. To
elaborate, suppose that tenant CarSellerCo requests a modification to the Towing
Behavior of a road side assistance process. However, this modified business process
might violate a business requirement of another tenant such as InsuranceCo, because
the InsuranceCo’s package shares the same behavior. Moreover, as the RoSaaS is a
service composition, such changes might lead to violations to the business models of
some of its collaborating third party service providers such as Tow cars and Garages.

To support business processes in single-instance multi-tenant and service oriented
applications, in general, it is essential that the following requirements are fulfilled.

Req 1. Commonalities in behavior of the SaaS application and its service delivery
should be captured to reduce redundancy.

Req 2. Variations in behavior should be allowed as tenant requirements are similar
but not the same.

Req 3. Invalid boundary crossings should be prevented. In this sense, the BPM
approach should be capable of identifying the impact of a change from one tenant
on both other tenants and the underlying collaborator services.

3 The Approach

In this section we will first give an overview of our process modeling approach. Then
we will discuss how the above objectives are achieved in the next section by providing
more details.

In order to address the above mentioned requirements, we propose an
organizational approach to modeling business processes in SaaS applications. We
envision a SaaS application instance as an organization that provides an abstraction of
the underlying collaborating services. Then we define acceptable behaviors (e.g.
Towing, Repairing) of the organization in a declarative manner on top of this
organizational structure. These declarative behaviors are then used to construct a
business process (view) in the package for each subscribing tenant in the form of an
Event-driven Process Chain (EPC) [11].

As shown in Fig. 2, we identify three layers in the SaaS application design. The
lowest layer defines the service-service interactions in the application system. We use
the ROAD [12, 13] design concepts such as contracts and roles to modularize these
interactions in a declarative manner. ROAD allows the definition of roles and the
contracts between roles in a composition/system. A role is a position description and
should be played by a business service like web services hosted in the Garages, Tow

 Achieving Multi-tenanted Business Processes in SaaS Applications 147

cars, Taxis or even a client application in Case Officers’ mobiles. The contracts among
roles capture the mutual obligations and responsibilities among these roles in terms of
allowed interactions. A Role player performs tasks by interacting with other role
players[14]. As an example, a task in the road side assistance process is Tow(), which
is an execution step carried out by a bound towing service. The towing service needs to
interact with other role players, e.g. case officer, garage services, who perform tasks
too. However the execution of these tasks needs to be ordered.

Fig. 2. Different levels of the RoSaaS organization

To achieve that, as shown in Fig. 2, we define different behaviors which we call
behavior terms on top of structured interactions in the lower organizational layer.
Each behavior term specifies an acceptable behavior (ordering of tasks) of the
organization. For example, when towing is required, the case officer (CO) should
notify the tow car (TC); upon that notification, the TC should perform towing. These
behavior terms are self-contained and group related tasks that need to be performed by
services playing roles in the organization. They also capture any constraints (behavior
constraints) that govern the order of execution of tasks. This allows ensuring that
specific orderings of tasks are not violated during runtime customizations.

At the top layer, process definitions make use of such predefined behavior terms. A
process definition (a tenant’s view of the application or organization behavior) is
allocated to each tenant’s package. Multiple process definitions can share the same
behavior term. These views can be customized at runtime to suit tenants’ changed
requirements. However such changes are applied in the same organizational structure
(single application instance) and should respect the constraints defined in related
behavior terms. A business process of a particular tenant can also add additional
constraints (process constraints) to ensure the goals of the tenant are not violated
upon runtime customizations.

Fig. 3 presents a meta-model summarizing the concepts we discussed above.

148 M. Kapuruge, A. Colman, and J. Han

Fig. 3. The Serendip4SaaS meta-model

4 Addressing Requirements

In this section we demonstrate how our approach fulfills the three requirements,
defined in section 2.2, of BPM in multi-tenant environments, namely, capturing
commonalties, allowing variations and preventing invalid boundary crossings.

4.1 Capturing Commonalities (Req 1) via Behavior Modeling

Tenants of a SaaS application will share some degree of common interest. Therefore
the business processes defined to serve the tenants naturally show a significant
overlapping in the required tasks. As in our scenario, tasks and their ordering
associated with car towing and repairing can be common to many process definitions.
As mentioned before, defining dedicated multiple business processes for each tenant
can lead to redundancy and need to be avoided. In our approach, behavior terms
provide the basis for modularity and re-use and thereby capture the commonalities
across tenants’ business processes.

Fig. 4. A sample behavior term

The sample shown in Fig. 4 presents three tasks (SendTowReq, Tow, PayTow)
associated with the Towing behavior, possibly shared by multiple process definitions.

 Achieving Multi-tenanted Business Processes in SaaS Applications 149

Each task specifies certain attributes, which includes pre-conditions (EPpre), post-
conditions (EPpost), performance properties (PerfProp) and Obligated role (Roblig).

For example, the above Tow task specifies “when the pickup location is known and
the destination is known (=EPpre), the TC role is obliged to perform task Tow within
24 hours. Once the towing is complete, it will trigger events CarTowed and
TowAcked(=EPpost)”. Note that the task dependencies are represented via events. For
example, task SendTowReq triggers event PickupLocationKnown, which is a pre-
condition of task Tow. This means task Tow should happen after task SendTowReq.
Similarly, task PayTow happens after task Tow.

A behavior term also specifies modification constraints on how these tasks should
be carried out. We use TCTL[15] to specify such constraints. As an example the first
constraint specifies that “every CarTowed event should eventually be followed by
TCPaid event”. We will discuss the use of constraints in section 4.3 in detail.

Two sample process definitions PD_Insurance and PD_Travel are shown in Fig. 5.
A process definition can refer to a behavior term using the attribute
BehaviorTermRef. As shown, both the PD_Insurance and PD_Travel re-use the
behavior terms Towing and Repairing, because both tenants InsuranceCo and
TravelCo require to provide towing and repairing for their customers i.e. policy holders
and travellers. Specifying such re-usable behavior terms allows capturing the
commonalities in different processes.

Also each process definition may specify its own process level constraints using
attribute Contraint. As an example the PD_Insurance specify specific constraint
that an end user request through InsuranceCo should be fulfilled within 5 days. Such
process level constraints protect tenants’ goals (See section 4.3).

Fig. 5. Sample process definitions

When a process definition group multiple behavior terms, the framework
dynamically constructs an EPC graph[11] to present the view of the process definition
for the corresponding tenant. The EPC graph is constructed by merging behavior terms
using the event dependencies. Fig. 6 shows a section of a complete EPC graph. As
shown, the common events (e.g. CarTowed) of two tasks are mapped together to
construct the process view.

Fig. 6. Process view (EPC) construction from declarative task definitions

150 M. Kapuruge, A. Colman, and J. Han

In summary, the key characteristic to fulfill Req1 is the re-usability and
modularity provided by the behavior terms. Furthermore, the use of events to define
task dependencies helps to achieve loose-coupling among these modularized behavior
terms.

4.2 Allowing Variations (Req 2) via Behavior Specialization

In SaaS applications it is essential to address the variations in behavior as pointed out
in section 2.2. As mentioned, process definitions can have specific behavior terms to
allow variations, while sharing some common behavior terms. However, it is likely
that during runtime these common behavior terms might fail to facilitate the
unforeseen variations. As an example, after some time, a tenant (CarSellerCo) might
require additional conditions to start tow; another tenant (TravelCo) might require a
new notification to be sent to the traveller/motorist, once the tow is complete.

To support such variations we use behavior specialization. In this sense, a behavior
term can specialize another already defined behavior term to create a new one by
specifying the additional properties or overriding existing properties. We call the new
behavior a child of the already defined parent. The parent behavior can either be a
concrete or an abstract (i.e. cannot be packaged/instantiated) behavior term.

Shown in Fig. 7 is a new behavior called Towing2, which specializes the already
defined Towing behavior, previously shown in Fig. 4. The child Towing2 term
specifies only those tasks and attributes that would override those of the parent Towing
term. As shown, the attribute EPpre has been changed to delay the tow task until the
taxi picks up the motorist as required by the tenant CarSellerCo.

By specializing (extending) Towing, the new Towing2 will inherit,

1. All the other attributes specified in task Tow. E.g., EPpost, PerfProp, Roblig.
2. All the other tasks specified in Towing, e.g., SendTowReq, PayTow.
3. All the constraints specified in Towing, e.g., c1, c2.(See Fig. 4).

Now the process definition PD_CarSeller can refer to the new behavior term Towing2
instead of Towing. The framework will identify these specializations and recognize the
inheritance hierarchy to complete the partially defined tasks and attributes of child
behavior term. Then the framework will dynamically build the process view as
mentioned in the previous subsection. The variation on the constructed EPC graph due
to switch to Towing2 is shown in Fig. 8.

Fig. 7. Specializing behavior (property change of a task)

Fig. 8. Variation in CarSellerCo’s process due to switch to Towing2

 Achieving Multi-tenanted Business Processes in SaaS Applications 151

Apart from specializing attributes of a Task, a behavior term can add additional
task(s) too. For example, if a TravelCo service requires an alert to be sent to Motorist
upon towing, apart from other usual interactions, a new behavior term Towing3, may
specify an additional Task AlertMM as shown in Fig. 9. Now instead of using Towing,
the PD_Travel may refer to Towing3. The variation is shown in Fig. 10.

Fig. 9. Specializing behavior (additional task)

Fig. 10. Variation in TravelCo’s process due to switch to Towing3

The advantage of such specialization is that a parent behavior can capture the
commonalities of behavior whilst the children specialize them to capture the
variations. This mechanism keeps the redundancy in the script to a minimum (e.g.,
behavior terms Towing2 and Towing3 only specified additional properties). Also, since
the child inherits all the properties from the parent, the modification constraints defined
in the parent can act as a guard to ensure the variation does not lead to any violations
(see next section). Furthermore, such specializations can be used in a similar fashion to
keep multiple variations consistent over variations in underlying collaborating services.

In summary, the key to achieve specialization is the declarative nature of the
behavior terms. Rather than using imperative workflow modeling languages such as
EPC [11], we use a declarative language, which made it possible to extend/override the
declaratively specified properties. Nonetheless, for visualization purposes we
dynamically construct the workflow in the form of an EPC graph by merging the
referenced behavior terms together, specialized or otherwise.

4.3 Preventing Invalid Boundary Crossing (Req 3) via Two-Level Constraints

Tenants might demand modifications to their process views as shown earlier.
However, these modifications are applied in a single application instance. Such a
modification might potentially violate a goal of another tenant or even an underlying
collaborator. We call them invalid boundary crossings. To prevent such invalid
boundary crossings, our language provides two levels of constraint specifications.

Behavior level constraints are defined in behavior terms, e.g., in Towing,
irrespective of the enclosing business processes. Once a process definition refers to the
behavior term as shown in Fig. 5, the integral modification behavior constraints (both
specified and inherited) are applicable. The goal is to ensure that the underlying
service-service collaborations are not affected by the customizations to the processes.

152 M. Kapuruge, A. Colman, and J. Han

Process level constraints are defined in business processes, e.g., in PD_Insurance.
The goal is to ensure that the modifications/patches to underlying service-service
collaborations do not affect the goal of the tenant, e.g., InsuranceCo.

For example, in Fig. 4, the behavior term Towing has a constraint: “every CarTowed
event should eventually be followed by TCPaid event”. But in some situations
additional constraints need to be defined in a much broader Process level, across
multiple aggregated behavior terms. For example in Fig. 5 the process definition
PD_Insurance defines a constraint: “the total time from car-is-towed to car-is-repaired
needs to be within 5 days”. Here the towing activities and events are defined in a
behavior term Towing while car repair activities and events are defined in another
behavior term Repairing.

Suppose the tenant CarSellerCo wants to add an additional event to the pre-
condition of tow task. However this modification results in an alteration in Towing
behavior shared by another tenant, e.g., InsuranceCo. But new pre-condition might
delay the start of tow task and thereby increase the estimated time to complete a case,
possibly violating InsuranceCo’s goals. Detecting such invalid boundary crossings
without an automated validation can be a time consuming and a tedious task.

Therefore, as shown in Fig. 11, prior to applying a modification requested by a
tenant to a behavior term β, two different types of validations are carried out by the
framework to analyze the impact of the modification.

Validation 1. All the constraints defined in the behavior β are not violated.

Validation 2. All the constraints defined in process definitions (sharing process
definitions) that share behavior term β are not violated.

Fig. 11. Two level constraint validation

To formally validate the integrity, we convert the constructed EPC into a Time-
Petrinet (TPN) [16] according to the translation rules introduced by van der Aalst et
al.[17]. A TPN is a directed bipartite graph that can specify firing intervals of
transitions. Places, transitions, firing intervals in a translated TPN are analogous to the
events, tasks and estimated time for completing tasks. We use TCTL (CTL with time
properties)[15] to specify the constraints. TCTL properties has been used to validate
TPNs previously [16]. After mapping the elements (i.e. events, time units) defined in
the constraints into the places and firing intervals of generated TPN, we validate
whether the generated Petri-net conforms to the defined set of constraints. To achieve
this, we have implemented a wrapper module for Romeo on-the-fly model checker [18]
which performs the transformation and validation on the fly. If the validation has a

 Achieving Multi-tenanted Business Processes in SaaS Applications 153

negative outcome, the change is rejected and the violated constraints are shown. Such a
validation will occur every time a change is made to the behavior terms to ensure the
integrity of the SaaS application instance is not compromised. Upon such modification
failures, RoSaaS designer might take further actions, such as looking for a possibility
of relaxing a constraint or specializing the behavior term to the client so that other
tenants are not affected.

In summary, the way we incorporate temporal constraints into behavior terms and
process definitions means only the relevant set of constraints will be considered[14].
Such well-scoped validation reduces the number of constraints that need to be
validated without unnecessarily restricting the possible modifications to behaviors.
This is an improvement compared to setting up a global set of constraints (applicable
for all the processes and collaboration behaviors) to protect the integrity of an
application.

5 Implementation

Fig. 12 presents an overview of the implementation framework for our approach to
realizing multi-tenanted business processes. Initially the SaaS designer/vendor defines
the allowed behaviors using a set of behavior terms at design time. During the
runtime, tenants can request the customizations using the Process Customization and
Visualization Tools. However, the actual customization is realized in the Model
Provider Factory (MPF), which maintains all behavior terms including their
specializations in a single runtime. The SaaS designer too can apply the patches and
upgrades to the core behaviors apart from constructing and modifying the views
during the runtime. A screenshot of the GUI of Designer tool is given in Fig. 13.

Fig. 12. Implementation Architecture

The MPF uses the Validation Module to validate the correctness of the defined
behaviors and process definitions upon modifications, i.e. both vendor’s patches and
tenants’ customizations. As mentioned in section 4.3, we use the Romeo on-the-fly
model checker[18] to validate the TCTL[15] constraints against the generated
TPN[16]. If a modification violates some constraints, i.e., goals of other tenants or
underlying collaborators, it will be rejected. Then the issue will be escalated to the
RoSaaS designer pinpointing the affected behavior terms and violated constraints.

154 M. Kapuruge, A. Colman, and J. Han

Fig. 13. A screen shot of the Designer Tool of the prototype

The Enactment Engine uses the behavior terms as grouped by process definitions
to enact and maintain process instances (as parts of the single SaaS application). For
example, the engine will enact a process instance of the definition PD_Insurance
(Fig. 5) to handle a case of a Motorist who is a policy-holder of InsuranceCo. We use
ROAD4WS [13], which is the web service realization of ROAD[12] and an extension
to Apache Axis2, for binding and interacting with third party service providers such
as web services hosted in garages, tow-car companies etc.

6 Related Work

WS-BPEL [19, 20], which is considered the de-facto standard for web service
integration, is an obvious candidate for process centric SaaS applications. However,
the imperative nature of WS-BPEL limits its adaptability and maintainability, which
are prerequisite for SaaS integration/applications. For example, in a multi-tenant
environment, supporting each tenant with a dedicated BPEL process can lead to
redundancy and potential inconsistency across the processes, compromising the
adaptability and maintainability of the SaaS application. One solution for this issue is
to use explicit opaque tokens in abstract BPEL[20]. However these abstract descriptors
need to be converted to executable BPEL processes prior to enactment. Once enacted,
the concrete process cannot be changed dynamically. Therefore the solution does not
provide the required agility of adaptation as required by a SaaS application.

More recently a few approaches have been suggested to overcome such issues.
Mietzner et al. proposes a customization process for service-oriented SaaS applications
via variability descriptors [21]. In this sense, a provided template is further customized
based on tenant requirements. Later these templates can be transformed into BPEL
processes models. Similarly the VxBPEL language extension for BPEL attempts to
allow a process to be customized based on variability points [22]. However, the
variability points are fixed via the appropriate parameters during runtime.
Furthermore, there are also many aspect oriented approaches[23, 24] that have taken
similar paths to address the issue.

These template-based or aspect-oriented approaches help to identifying the
commonalities and variations to a certain degree. For example, the aspects/rules
viewed via point-cuts in the AO4BPEL [23] represents the volatile part, while the
abstract process which defines the point-cuts represents the fixed part. Similarly in
[21], the variability points represents the volatile part while the provided template

 Achieving Multi-tenanted Business Processes in SaaS Applications 155

represents the fixed part. However, these approaches suffer from a common weakness,
i.e., they assume that the fixed part and the volatile part can be well-identified at the
design time. In contrast, our approach does not rely on such an assumption. Rather than
differentiating the volatile and fixed at the design time, we use concepts such as
behavior specialization to further customize the business processes. As such, the
customization on definitions is not limited the design time and can be carried out at
runtime. This is beneficial for SaaS vendors and tenants, who might not be able to
foresee all the variations upfront.

Inheritance has been used earlier in defining business processes[25]. However, our
use of inheritance is for specializing self-contained behaviors defined within an
organization, providing reusability and modularity at a finer-grained level. This is in
clear contrast to using inheritance for a complete workflow. A SaaS vendor can serve
the tenants with different variations of behavior by selecting the specialized behavior
terms to form processes suitable for specific tenants on-demand.

Note that the use of temporal constraints is not new[16]. Nonetheless the way we
modularize such temporal constraints using the modularization and controlled
adaptation provided by the organizational structure in order to define and enact
business processes for multiple tenants is a key difference between our approach and
the rest. This allows customizations to business processes on demand without
compromising the integrity or maintainability of the SaaS application instance. The
vendor can utilize the existing already defined behaviors to create customizations by
changing or specializing them to adjust to latest business and operating conditions but
with the necessary checking required.

A summary of comparison is given in Table 1.

Table 1. A summary of comparison

Approach
Feature

Kuo
[26]

Charfi
[23]

Graml
[24]

Michiel
[22]

Grivas
[2]

Mietzn
er[21]

Serendip
4SaaS

Customizability + + + + + + +

Process support - + + + - - +

Support for single-
instance multi-tenancy

- - - - - + +

Capturing commonalities
in behavior

- ~ ~ ~ ~ ~ +

Facilitating variability in
behavior

- ~ ~ ~ ~ ~ +

Prevent invalid boundary
crossings

- - - - - - +

+ exist, ~ exist with limitations, - does not exist/not applicable

7 Conclusion and Future Work

In this paper we have presented an approach that defines a SaaS application as an
organization-based service composition and delivers its service offerings with
variations to multiple tenants, via Business Process Modeling (BPM). Such a SaaS
application or composition (instance) utilizes third party collaborator services and
offers the tenants similar but varying functionalities, while respecting the business
rules of all the stakeholders. In particular, we have highlighted how our BPM approach
achieves single-instance multi-tenancy and meet the requirements of supporting

156 M. Kapuruge, A. Colman, and J. Han

commonalities and variations while preventing invalid boundary-crossings between
tenant processes when changes are realized. Our approach includes a process modeling
language and an implementation framework that helps SaaS vendors and tenants in
modeling and managing their applications. The work left for future includes, achieving
similar requirements in the data-flow aspects of process modeling and improving the
tool support for a better user experience.

Acknowledgments. This work is partly supported by Smart Services CRC, Australia.

References

1. Liang-Jie, Z., Qun, Z.: CCOA: Cloud Computing Open Architecture. In: IEEE
International Conference on Web Services (ICWS), pp. 607–616 (2009)

2. Grivas, S.G., Uttam Kumar, T., Wache, H.: Cloud Broker: Bringing Intelligence into the
Cloud. In: IEEE 3rd International Conference on Cloud Computing (CLOUD), pp. 544–
545 (2010)

3. Laplante, P.A., Jia, Z., Voas, J.: What’s in a Name? Distinguishing between SaaS and
SOA. IT Professional 10, 46–50 (2008)

4. Waters, B.: Software as a service: A look at the customer benefits. Digital Asset
Management 1, 32–39 (2005)

5. Sathyan, J., Shenoy, K.: Realizing unified service experience with SaaS on SOA. In:
Communication Systems Software and Middleware and Workshops, COMSWARE 2008,
pp. 327–332 (2008)

6. Mietzner, R., Leymann, F., Papazoglou, M.P.: Defining Composite Configurable SaaS
Application Packages Using SCA, Variability Descriptors and Multi-tenancy Patterns. In:
Internet and Web Applications and Services (ICIW), pp. 156–161 (2008)

7. Chang Jie, G., Wei, S., Ying, H., Zhi Hu, W., Bo, G.: A Framework for Native Multi-
Tenancy Application Development and Management. In: Enterprise Computing,
CEC/EEE, pp. 551–558 (2007)

8. Campbell-Kelly, M.: Historical reflections. The rise, fall, and resurrection of software as a
service. Communications ACM 52, 28–30 (2009)

9. Barros, A., Dumas, M.: The Rise of Web Service Ecosystems, vol. 8, pp. 31–37. IEEE
Computer Society, Los Alamitos (2006)

10. Chong, F., Carraro, G.: Architecture Strategies for Catching the Long Tail, MSDN
Library. Microsoft Corporation (2006)

11. Scheer, A.-W.: Business Process Engineering: Reference Models for Industrial
Enterprises. Springer-Verlag New York, Inc., Secaucus (1994)

12. Colman, A., Han, J.: Using role-based coordination to achieve software adaptability.
Science of Computer Programming 64, 223–245 (2007)

13. Kapuruge, M., Colman, A., King, J.: ROAD4WS – Extending Apache Axis2 for Adaptive
Service Compositions. In: Enterprise Computing Conference (EDOC). IEEE Press, Los
Alamitos (2011)

14. Kapuruge, M., Colman, A., Han, J.: Controlled flexibility in business processes defined for
service compositions. In: Services Computing (SCC), pp. 346–353. IEEE Press, Los
Alamitos (2011)

15. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge (2008)
16. Boucheneb, H., Hadjidj, R.: CTL* model checking for time Petri nets. Theoretical

Computer Science 353, 208–227 (2006)

 Achieving Multi-tenanted Business Processes in SaaS Applications 157

17. van der Aalst, W.M.P.: Formalization and Verification of Event-driven Process Chains.
Department of Mathematics and Computing Science. Eindhoven University of Technology
(1999)

18. Gardey, G., Lime, D., Magnin, M., Roux, O.: Romeo: A tool for analyzing time petri nets.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 418–423.
Springer, Heidelberg (2005)

19. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging and More. Prentice Hall PTR, Englewood Cliffs (2005)

20. OASIS: Web Services Business Process Execution Language Version 2.0. (2006),
http://docs.oasis-open.org/wsbpel/v2.0/

21. Mietzner, R., Leymann, F.: Generation of BPEL Customization Processes for SaaS
Applications from Variability Descriptors. In: Services Computing (SCC), pp. 359–366
(2008)

22. Michiel, K., Chang-ai, S., Marco, S., Paris, A.: VxBPEL: Supporting variability for Web
services in BPEL. Information and Software Technology 51, 258–269 (2009)

23. Charfi, A., Mezini, M.: Hybrid web service composition: business processes meet business
rules. In: International Conference on Service Oriented Computing, pp. 30–38. ACM, New
York (2004)

24. Graml, T., Bracht, R., Spies, M.: Patterns of business rules to enable agile business
processes. In: Enterprise Distributed Object Computing Conference, vol. 2, pp. 385–402
(2008)

25. van der Aalst, W.M.P., Basten, T.: Inheritance of workflows: an approach to tackling
problems related to change. Theory of Comp. Sci. 270, 125–203 (2002)

26. Kuo, Z., Xin, Z., Wei, S., Haiqi, L., Ying, H., Liangzhao, Z., Xuanzhe, L.: A Policy-
Driven Approach for Software-as-Services Customization. In: 4th IEEE International
Conference on Enterprise Computing, E-Commerce, and E-Services, pp. 123–130 (2007)

	Achieving Multi-tenanted Business Processes in SaaS Applications
	Introduction
	Problem Analysis
	Motivation
	Challenges and BPM Requirements

	The Approach
	Addressing Requirements
	Capturing Commonalities (Req 1) via Behavior Modeling
	Allowing Variations (Req 2) via Behavior Specialization
	Preventing Invalid Boundary Crossing (Req 3) via Two-Level Constraints

	Implementation
	Related Work
	Conclusion and Future Work
	References

