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Abstract. In the paper, authors presents a greedy algorithm for con-
struction of exact and partial decision rules for decision tables with many-
valued decisions. Exact decision rules can be over-fitted, so instead of
exact decision rules with many attributes, it is more appropriate to work
with partial decision rules with smaller number of attributes. Based on
results for set cover problem authors study bounds on accuracy of greedy
algorithm for exact and partial decision rule construction, and complex-
ity of the problem of minimization of decision rule length.
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1 Introduction

Decision tables with many-valued decisions arise often in various applications.
In contrast to decision tables with one-valued decisions, in decision tables with
many-valued decisions each row is labeled with a nonempty finite set of natural
numbers (decisions). If we want to find all decisions corresponding to a row,
we deal with the same mathematical object as decision table with one-valued
decisions: it is enough to code different sets of decisions by different numbers.
However, if we want to find one (arbitrary) decision from the set attached to a
row, we have essentially different situation.

In particular, in rough set theory [4] decision tables are considered often that
have equal rows labeled with different decisions. The set of decisions attached
to equal rows is called the generalized decision for each of these equal rows.
The usual way is to find for a given row its generalized decision. However, the
problems of finding an arbitrary decision or one of the most frequent decisions
from the generalized decision look also reasonable.

Decision rules can be considered as a way of knowledge representation. In
applications we often deal with decision tables which contain noisy data. In
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this case, exact decision rules can be over-fitted, i.e., depend essentially on the
noise. So, instead of exact decision rules with many attributes, it is more ap-
propriate to work with partial decision rules with smaller number of attributes,
which separate almost all different rows with different decisions. The problem
of construction decision rules with minimum number of attributes is NP-hard.
Therefore, we should consider approximate polynomial algorithms for decision
rule optimization.

From obtained bounds on greedy algorithm accuracy and results proved in [3]
it follows, that under some natural assumptions on the class NP , the greedy al-
gorithm is close to the best polynomial approximate algorithms for minimization
of partial decision rule length.

In the paper, we present greedy algorithm for decision rule construction for
decision table T with many-valued decisions, where each row has a set of de-
cisions. For each row and each value of decision from the set of decisions, and
α such that 0 ≤ α < 1, algorithm constructs an α-decision rule. For every row
algorithm chooses a rule with the minimum length.

We study binary decision tables with many-valued decisions but presented
approach can be used also for decision tables with k ≥ 3 values of attributes.

The paper consists of five sections. In Sect. 2, main notions are considered. In
Sect. 3, set cover problem, greedy algorithm and bounds on accuracy of greedy
algorithm for exact and partial covers are presented. Section 4 contains bounds
on accuracy of greedy algorithm for exact and partial decision rules. Section 5
contains conclusions.

2 Main Notions

A binary decision table with many-valued decisions is a rectangular table T filled
by numbers from the set {0, 1}. Columns of this table are labeled with attributes
f1, . . . , fn. Rows of the table are pairwise different, and each row r is labeled with
a nonempty finite set D(r) of natural numbers (set of decisions). Note that each
decision table with one-valued decisions can be interpreted also as a decision
table with many-valued decisions. In such table each row is labeled with a set of
decisions which has one element.

The table T is called degenerate if there is a decision d such that d ∈ D(r)
for any row r of T or T has no rows.

Let r = (b1, . . . , bn) be a row of T labeled with the set of decisions D(r) and
d ∈ D(r). By U(T, r, d) we denote the set of rows r′ from T for which d /∈ D(r′).
We will say that an attribute fi separates a row r′ ∈ U(T, r, d) from the row r
if the rows r and r′ have different numbers at the intersection with the column
fi. The pair (T, r) will be called a decision rule problem.

Let α be a real number such that 0 ≤ α < 1. A decision rule

fi1 = b1 ∧ . . . ∧ fim = bm → d (1)

is called an α-decision rule for the pair (T, r) and decision d ∈ D(r) if attributes
fi1 , . . . , fim separate from r at least (1 − α)|U(T, r, d)| rows r′ from U(T, r, d)
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(such rules will be also called partial decision rules). The number m is called the
length of the rule (1). If U(T, r, d) = ∅ then for any fi1 , . . . , fim ∈ {f1, . . . , fn}
the rule (1) is an α-decision rule for (T, r). The rule (1) with empty left-hand
side (when m = 0) is also an α-decision rule for (T, r).

For example, 0.01-decision rule means that attributes contained in the rule
should separate from row r at least 99% of rows from U(T, r, d). If α is equal to
0 we have an exact decision rule (0-decision rule) for (T, r).

We will say that a decision rule is an α-decision rule for the pair (T, r) if this
rule is an α-decision rule for the pair (T, r) and a decision d ∈ D(r).

3 Set Cover Problem

In this section, we present the set cover problem as the problem of construction of
minimum exact cover (Section 3.1) and minimum partial cover (α-cover) (Section
3.2). We consider bounds on accuracy of a greedy algorithm for the set cover
problem.

3.1 Exact Covers

Let A be a set containing N > 0 elements, and F = {S1, . . . , Sp} be a family
of subsets of the set A such that A =

⋃p
i=1 Si. A subfamily {Si1 , . . . , Sit} of the

family F will be called a cover if
⋃t

j=1 Sij = A. The problem of searching for
a cover with minimum cardinality t is called the set cover problem. It is well
known that this problem is an NP -hard problem.

U. Feige [2] proved that if NP � DTIME(nO(log log n)) then for any ε, 0 <
ε < 1, there is no polynomial algorithm that constructs a cover which cardinality
is at most (1 − ε)Cmin ln N , where Cmin is the minimum cardinality of a cover.

Now, we present well known greedy algorithm for set cover problem.
Set B := A, and COV ER := ∅.
(*) In the family F we find a set Si with minimum index i such that

|Si ∩ B| = max{|Sj ∩ B| : Sj ∈ F}.

Then we set B := B \ Si and COV ER := COV ER ∪ {Si}. If B = ∅ then we
finish the work of the algorithm. The set COV ER is the result of the algorithm
work. If B 
= ∅ then we return to the label (*).

We denote by Cgreedy the cardinality of the cover constructed by greedy al-
gorithm. We will present the following well known result without proof.

Theorem 1. Cgreedy ≤ Cmin ln N + 1.

So we have that if NP � DTIME(nO(log log n)) then the greedy algorithm is
close to the best (from the point of view of accuracy) approximate polynomial
algorithms for solving the set cover problem.
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3.2 Partial Covers

Let α be a real number such that 0 ≤ α < 1. Let A be a set containing N > 0
elements, and F = {S1, . . . , Sp} be a family of subsets of the set A such that
A =

⋃p
i=1 Si. A subfamily {Si1 , . . . , Sit} of the family F will be called an α-cover

for A, F if |⋃t
j=1 Sij | ≥ (1−α)|A|. The problem of searching for an α-cover with

minimum cardinality is NP -hard [5].
We consider a greedy algorithm for construction of α-cover. During each step

this algorithm chooses a subset from F which covers maximum number of un-
covered elements from A. This algorithm stops when the constructed subfamily
is an α-cover for A, F . We denote by Cgreedy(α) the cardinality of constructed
α-cover, and by Cmin(α) we denote the minimum cardinality of α-cover for A, F .
The following statement was obtained by J. Cheriyan and R. Ravi in [1].

Theorem 2. Let 0 < α < 1. Then Cgreedy(α) < Cmin(0) ln(1/α) + 1.

4 Decision Rules

In this section, we apply the greedy algorithm for set cover problem to construct
exact (0-decision rules) and partial decision rules (α-decision rules).

Based on results for the set cover problem we study bounds on accuracy of the
greedy algorithm for decision rule construction, and complexity of the problem
of minimization of decision rule length.

We can formulate the problem of minimization of decision rule length as
follows: for a given decision table T with many-valued decisions, row r of T ,
decision d ∈ D(r) and α such that 0 ≤ α < 1, we need to construct an α-
decision rule which has the minimum length.

4.1 Exact Decision Rules

We can apply the greedy algorithm for set cover problem to construct decision
rules for decision tables with many-valued decisions.

Let T be a table with many-valued decisions containing n columns labeled
with attributes f1, . . . , fn. Let r = (b1, . . . , bn) be a row of T , D(r) be the set of
decisions attached to r and d ∈ D(r).

We consider a set cover problem A(T, r, d), F (T, r, d) = {S1, . . . , Sn}, where
A(T, r, d) = U(T, r, d) is the set of all rows r′ of T such that d /∈ D(r′). For
i = 1, . . . , n, the set Si coincides with the set of all rows from A(T, r, d) which
are different from r in the column fi. One can show that the decision rule

fi1 = bi1 ∧ . . . ∧ fim = bim → d (2)

is a 0-decision rule for (T, r) and decision d ∈ D(r) if and only if the subfamily
{Si1 , . . . , Sim} is a cover for the set cover problem A(T, r, d), F (T, r, d).

We denote by Lmin(T, r, d) the minimum length of a 0-decision rule for (T, r)
and decision d ∈ D(r). It is clear that for the constructed set cover problem
Cmin = Lmin(T, r, d).
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Let us apply the greedy algorithm to set cover problem A(T, r, d), F (T, r, d).
It constructs a cover which corresponds to a 0-decision rule rule(T, r, d): if
the greedy algorithm constructs the cover {Si1 , . . . , Sim} then the decision rule
rule(T, r, d) coincides with (2). We denote by Lgreedy(T, r, d) the length of this
rule. By Theorem 1, Lgreedy(T, r, d) ≤ Lmin(T, r, d) ln |U(T, r, d)| + 1.

We denote by Lgreedy(T, r) the length of the rule constructed by the following
polynomial algorithm (we will say about this algorithm as about greedy algo-
rithm also). For a given decision table T with many-valued decisions and row r of
T , for each d ∈ D(r) we construct the set cover problem A(T, r, d), F (T, r, d) and
then apply to this problem the greedy algorithm. We transform the constructed
cover to the 0-decision rule rule(T, r, d). Among the 0-decision rules rule(T, r, d),
d ∈ D(r), we choose a rule with the minimum length. This rule is the output of
considered algorithm. We have Lgreedy(T, r) = min{Lgreedy(T, r, d) : d ∈ D(r)}.
It is clear that Lmin(T, r) = min{Lmin(T, r, d) : d ∈ D(r)}, where Lmin(T, r) is
the minimum length of 0-decision rule for (T, r). Let K(T, r) = max{|U(T, r, d)| :
d ∈ D(r)}. One can show that Lgreedy(T, r) ≤ Lmin(T, r) ln K(T, r) + 1. So, we
have the following statement.

Theorem 3. Let T be a nondegenerate decision table with many-valued deci-
sions and r be a row of T . Then Lgreedy(T, r) ≤ Lmin(T, r) ln K(T, r) + 1.

The next two statements follow immediately from similar ones obtained in [3]
for decision tables with one-valued decisions.

Proposition 1. The problem of minimization of decision rule length for deci-
sion tables with many-valued decisions is NP -hard.

Theorem 4. If NP /∈ DTIME(nO(log log n)) then for any ε, 0 < ε < 1, there
is no polynomial algorithm that for a given nondegenerate decision table T with
many-valued decisions and row r of T constructs a 0-decision rule which length
is at most (1 − ε)Lmin(T, r) ln K(T, r).

The comparison of Theorems 3 and 4 shows that under the assumption NP /∈
DTIME(nO(log log n)) the greedy algorithm is close to the best (from the point
of view of accuracy) approximate polynomial algorithms for minimization of
decision rule length.

4.2 Partial Decision Rules

We use the greedy algorithm for construction of α-covers to construct α-decision
rules. Let T be a table with many-valued decisions containing n columns labeled
with attributes f1, . . . , fn. Let r = (b1, . . . , bn) be a row of T , D(r) be a set of
decisions attached to r, d ∈ D(r), and α be a real number such that 0 < α < 1.

We consider a set cover problem A(T, r, d), F (T, r, d) = {S1, . . . , Sn} where
A(T, r, d) = U(T, r, d) is the set of all rows r′ of T such that d /∈ D(r′). For
i = 1, . . . , n, the set Si coincides with the set of all rows from A(T, r, d) which
are different from r in the column fi. One can show that the decision rule

fi1 = bi1 ∧ . . . ∧ fim = bim → d
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is an α-decision rule for (T, r) and decision d ∈ D(r) if and only if {Si1 , . . . , Sim}
is an α-cover for the set cover problem A(T, r, d), F (T, r, d). Evidently, for the
considered set cover problem Cmin(0) = Lmin(T, r, d), where Lmin(T, r, d) is the
minimum length of 0-decision rule for (T, r) and decision d ∈ D(r).

Let us apply the greedy algorithm to the considered set cover problem. This al-
gorithm constructs an α-cover which corresponds to an α-decision rule rule(α, T,
r, d) for decision table T , row r and decision d ∈ D(r). From Theorem 2 it follows
that the length of this rule is at most Lmin(T, r, d) ln(1/α) + 1.

We denote by Lgreedy(α, T, r) the length of the rule constructed by the follow-
ing polynomial algorithm: for a given α, 0 < α < 1, decision table T , row r of T
and decision d ∈ D(r), we construct the set cover problem A(T, r, d), F (T, r, d)
and then apply to this problem the greedy algorithm for construction of α-
cover. We transform the obtained α-cover into an α-decision rule rule(α, T, r, d).
Among the α-decision rules rule(α, T, r, d), d ∈ D(r), we choose a rule with the
minimum length. This rule is the output of considered algorithm. We denote
by Lmin(α, T, r) the minimum length of α-decision rule for (T, r). According to
what has been said above we have the following statement.

Theorem 5. Let T be a nondegenerate decision table with many-valued deci-
sions, r be a row of T , and α be a real number such that 0 < α < 1. Then

Lgreedy(α, T, r) ≤ Lmin(α, T, r) ln(1/α) + 1.

Based on results from [5] it is not difficult to prove the following statement.

Proposition 2. For any α, 0 ≤ α < 1, the problem of minimization of α-
decision rule length for decision tables with many-valued decisions is NP -hard.

5 Conclusions

We presented the greedy algorithm for construction of exact and partial decision
rules for decision tables with many-valued decisions. We studied binary decision
tables with many-valued decisions but the considered approach can be used also
for decision tables with more than two values of attributes.
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