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Abstract. In this paper we overview two feature rankings methods that
utilize basic notions from the rough set theory, such as the idea of the de-
cision reducts. We also propose a new algorithm, called Rough Attribute
Ranker. In our approach, the usefulness of features is measured by their
impact on quality of the reducts that contain them. We experimentally
compare the reduct-based methods with several classic attribute rankers
using synthetic, as well as real-life high dimensional datasets.
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1 Introduction

Contemporary applications of data mining often involve working on data de-
scribed by extremely high number of attributes. On one hand such a detailed
representation may help to capture some important aspects of the phenomena
under scope but on the other, abundance of information makes it difficult, even
for an expert, to distinguish between relevant and irrelevant features in a given
context. Unnecessary attributes can not only cripple performance of predictive
models but also increase their construction cost and hinder their interpretabil-
ity. For this reason, selecting informative features is one of the key steps during
construction of any classification model for high dimensional data ([1], [2]).

Numerous researchers have investigated the problem of feature selection for
predictive models. In a general case, attribute selection algorithms can be divided
into two separate groups, i.e. wrapper and filter methods1 ([3], [4]). The problems
of feature selection and discovery of dependencies between features have been
closely related to the rough set theory from its very beginning ([5], [6]). In a
standard rough set approach, subsets of attributes take a form of reducts. In
[7] it is shown that a decision reduct can consist only of strongly and weakly
relevant features (cf. [4]), if the available data sufficiently cover the universe.
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1 Some researchers distinguish embedded methods as a third, hybrid group ([2]).
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Approximate reducts (cf. [8]) extend this idea by considering reducts that not
necessarily discern all objects, but are less sensitive to random data disturbances.

Several feature ranking techniques that make use of the concept of reducts
have been used by the rough set community. In this paper we propose a new
one, called Rough Attribute Ranker (RAR). It utilizes the notions of approximate
reducts and discernibility measure to rank features according to their influence
on classification. We compare its performance with two other attribute ranking
algorithms that derive from the rough sets theory. In those approaches, the
ranking is based on frequencies of the attribute occurrence in the reducts. We
also compare effectiveness of the reduct-based rankers to several classic methods.
Apart from tests on synthetic data, we apply the algorithms to the gene selection
problem for three microarray datasets from different medical domains.

2 Preliminaries

Feature selection techniques aim at finding an optimal set of attributes to rep-
resent objects for a purpose of a given task. Depending on a specification of the
task, the attributes which compose the optimal set may be different. For exam-
ple, to visualize general dependencies in data one may prefer to select a small
set of the most relevant and diversified attributes, whereas for a classification
task a larger set that contains also less relevant features is usually preferred [2].

The rough set theory is an extension within the classical set theory, suitable for
describing concepts in presence of inaccurate information. A basic information
unit for the rough sets is an indiscernibility class. Some indiscernibility classes
of objects from the same decision class can be aggregated to form information
granules. For numeric data, this aggregation can be done using a discretization
heuristic that is based on a discernibility measure (see [9]).

Once data is discretized, objects can be compactly represented by features
forming a decision reduct. We use a definition of the reduct which is adapted to
the case when all the original attributes are numeric and all objects are discerned.

Definition 1. Let T = (U,A, d) be a decision system and A′ denote a set of
symbolic attributes which were obtained from numeric data by discretization. A
decision reduct RED ⊆ A′ is a set of attributes which is sufficient to discriminate
among all objects from different decision classes and there is no a ∈ RED such
that RED \ {a} would still discern all pairs of u, u′ ∈ U , d(u) �= d(u′).

It has been showed in [7] that, assuming completeness of a decision system2,
any decision reduct can consist only of relevant attributes and that all strongly
relevant attributes are shared by all decision reducts. Unfortunately, this as-
sumption is rarely met in practice. Usually the reducts also contain irrelevant
attributes and are vulnerable to disturbances in data. To overcome this issue,
several generalizations of the decision reducts have been proposed, such as the
dynamic reducts and the approximate reducts.

2 By a complete decision system we mean a decision system which contains enough
information to be representative for objects from the given universe.
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Definition 2. Let RED(T ) denote a set of all decision reducts of a decision ta-
ble T = (U,A, d) and let disc(A, T ) be a number of pairs of objects from different
decision classes of T that are discerned by an attribute set A. A set of attributes
AR will be called an ε–approximate reduct iff there exists RED ∈ RED(T ) such
that AR ⊂ RED and disc(AR, T ) ≥ (1− ε) ∗ disc(RED, T ).

Intuitively, an ε–approximate reduct is a subset of some decision reduct that is
able to discern sufficiently many objects from different decision classes of T .

3 Approximate Reduct-Based Feature Selection Methods

This section presents attribute ranking methods that utilizes a rough set tool, i.e.
a concept of approximate reducts, to measure relevance of individual features.
All of those methods are multivariate as they consider attributes in a context of
others and are able to detect dependencies between them.

In our research we needed to adjust the existing methods to better fit to the
problem of selecting relevant attributes from high dimensional decision systems
(|A| ≥ 1000). To generate approximate reducts we use an algorithm described in
[10] with a modified stopping criteria. This method makes use of random sam-
pling of the attribute set in order to discover reducts that capture diverse char-
acteristics of data and reduce the computation cost. It constructs reducts from
numeric data using the maximum-discernibility discretization heuristic ([9]).

Commonly used rough set feature ranking methods exploit the fact that the
informative attributes are usually able to discern more objects from different de-
cision classes, and thus are more likely to be present in a reduct. We examine two
frequency-based approaches to attribute ranking. We test them in combination
with approximate reducts and compare to our attribute ranking method.

Let us denote a finite set of approximate reducts of the decision system T
by ARED(T ), |ARED(T )| = m and assume that each ARi ∈ ARED(T ) was
computed using a subset of attributes Bi ⊆ A, i = 1, ...,m. The first and the
simplest of the compared methods ranks attributes by counting how many times
they appear in a given set of decision reducts:

Score1(a) = |{ARi ∈ ARED(T ) : a ∈ ARi}| . (1)

The second method considers a predictive potential of the reducts. In this ap-
proach, each ARi is assigned with a score Scr(ARi) which expresses its quality.
This value is used as a weight during computation of the frequencies:

Score2(a) =
∑m

i=1

(
Scr(ARi) ∗ χARi(a)

)
/
∑m

i=1 Scr(ARi), (2)

where χARi is a characteristic function of the attribute set ARi.
The value of Scr(ARi) could be computed using one of many heuristics. In

this paper, we propose to assess a quality of the reduct by a direct application
of the discernibility measure to objects, which ware removed from the training
set during approximate reduct assembling.
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The ranking algorithm, which we propose in this paper, is an extension to the
methods described above. It uses a discernibility-based scoring function ScrAR

to examine how particular attributes from a reduct influence the reduct’s quality.
The impact of a single attribute is estimated as an average difference in the score
assigned to the reduct after exchanging this attribute with a random probe,
which is generated by a random permutation of the attribute values. Value of
ScrAR(a) can be expressed as Scr(AR) − ∑K

i Scr(AR′
i)/K, where AR is an

approximate reduct, a ∈ AR, K is a number of random probes used for the
estimation and AR′

i, i = 1, ...,K are sets of attributes that were constructed
from AR by changing a with a random probe. The total score assigned to an
attribute a is equal to its mean impact on quality of the reducts:

ScoreRAR(a) =
∑m′

i=1 ScrARi(a) /m
′, (3)

wherem′ ≤ m is a number of the approximate reducts containing the attribute a.
This method may be seen as an analogy to the Breiman’s relevance measure for
the random forest, which assesses the importance by examining how randomiza-
tion of particular attributes influence the error rate of trees.

4 Evaluation of the Reduct-Based Ranking Methods

The three attribute ranking methods described in the previous section were em-
pirically evaluated and compared to results of several commonly used statistical
feature rankers, i.e. a correlation-based ranker, a Wilcoxon test-based ranker, the
information gain and the relief algorithm. This comparison has been performed
using two different evaluation methods on synthetic and real-life data.

In the first test a dataset containing 10000 objects described by 1000 numeric
attributes was generated from normal distribution. Three different decision at-
tributes were constructed using the first 20 features so that each of the selected
features had the same impact on the decision value:

Decision1(u) = 1 ⇔ ∑20
i=1 ai(u) ≥ 0,

Decision2(u) = 1 ⇔ a1(u)a20(u) +
∑19

i=1 ai(u)ai+1(u) ≥ 0,

Decision3(u) = 1 ⇔
(
a1(u) ∈ [−δ, δ] ∧ a20(u) ∈ (−∞,−δ) ∪ (δ,∞)

)
∨

∨
i=1,...,19

(
ai(u) ∈ [−δ, δ] ∧ ai+1(u) ∈ (−∞,−δ) ∪ (δ,∞)

)
.

The first decision depended linearly on the attribute values and as such might
be seen as the easiest one, whereas the dependency of the second and the third
decision attributes was not linear. In order to better mimic a real-life situation
additional noise was introduced to data. For each of the decision attributes 20%
of randomly selected values were rearranged by a random permutation.

The compared ranking algorithms were used to select relevant features for
each decision vector. The number of attributes that each of the algorithms should
choose was estimated using the random probes test described in [2]. Quality of
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Table 1. Results of the attribute ranking methods on the synthetic data

Decision1 Decision2 Decision3
Ranker: N Prec. Recall Fscore N Prec. Recall Fscore N Prec. Recall Fscore
CorrRank 32 0.63 1.0 0.77 14 0.07 0.05 0.06 20 0.05 0.05 0.05

Wilcoxon 28 0.71 1.0 0.83 11 0.09 0.05 0.06 19 0.05 0.05 0.05

InfoGain 27 0.74 1.0 0.85 8 0.13 0.05 0.07 16 0.56 0.45 0.5

Relief 39 0.51 1.0 0.68 19 0.16 0.15 0.15 22 0.09 0.1 0.09

ARScore1 28 0.71 1.0 0.83 10 0.0 0.0 0.0 12 0.25 0.15 0.19

ARScore2 26 0.77 1.0 0.87 10 0.0 0.0 0.0 12 0.33 0.2 0.25

RAR 29 0.69 1.0 0.82 26 0.62 0.8 0.7 21 0.48 0.5 0.49

Table 2. Results of the attribute ranking methods on the three microarray data. The
mean number of selected genes (N) and balanced accuracies are given.

acuteLymphLeukemia hepatitisC skinPsoriatic

Ranker: N BAC:kNN BAC:RF N BAC:kNN BAC:RF N BAC:kNN BAC:RF

CorrRank 6880 0.91 0.75 > 13K 0.86 0.79 > 30K 0.76 0.81

Wilcoxon 3538 0.91 0.75 6348 0.87 0.77 > 22K 0.76 0.82

InfoGain 5733 0.91 0.75 > 12K 0.86 0.78 > 24K 0.76 0.82

Relief 12054 0.92 0.82 2551 0.89 0.79 4904 0.76 0.81

ARScore1 1512 0.91 .82 1471 0.90 0.80 1492 0.78 0.83

ARScore2 2021 0.91 0.81 1696 0.90 0.80 1993 0.77 0.84

RAR 1953 0.92 0.81 2068 0.91 0.80 3186 0.77 0.84

the selected feature sets was assessed using classic measures from the information
retrieval domain – precision, recall and F-score (Table 1).

The second experiment was conducted on microarray datasets related to differ-
ent medical domains. The data was downloaded from ArrayExpress3. The acute-
LymphoblasticLeukemia dataset (190 samples, 22276 genes) describes five genetic
subtypes of acute lymphoblastic leukemia, hepatitisC (124 samples, 22276 genes)
regards a role of chronic hepatitis C virus in the pathogenesis of HCV-associated
hepatocellular carcinoma and skinPsoriatic (180 samples, 54675 genes) contains
profiles of genetic changes related to the skin psoriasis.

In this test, the compared methods were used to selected gene sets in a re-
peated 5-fold cross-validation schema. A quality of each gene set was evaluated
based on classification results achieved by two prediction models which are com-
monly used in the microarray experiments, i.e. k-NN and random forest. Due to
uneven sizes of the decision classes, the prediction accuracy was measured using
the balanced accuracy score. As in the experiment on synthetic data, the number
of genes selected in each fold of the cross-validation cycle was determined using
the random probes method. Table 2 summarizes the mean results achieved by
each ranking algorithm after 10 executions of 5-fold cross-validation tests.

The reduct-based rankers outperformed the classic algorithms in both tests.
For the synthetic data only RAR method was able to reasonably select attributes
which are relevant for the second decision vector. Interestingly, in case when the
relation between relevant features and the decision is not very complex, the
simplest, frequency based attribute rankers may yield better results. It is also
noticeable, especially for microarray data, that the frequency based approaches
tend to select less attributes than the RAR. In terms of classification accuracy,
the RAR on average performed slightly better than other algorithms but in cases
of other reduct-based rankers the difference was not statistically significant.

3 www.ebi.ac.uk/arrayexpress
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5 Conclusions

We described three attribute ranking methods that make use of reducts. The
first two are based on the intuition that relevant features more occur in reducts
than the irrelevant ones. Our Rough Attribute Ranking algorithm extends this
approach with introduction of the attribute impact measure, by an analogy to
the Breiman’s ranking method for the random forest. Performance of those al-
gorithms was empirically evaluated and compared to several classic rankers on
synthetic as well as real-life high dimensional data. The results of conducted
experiments confirm that RAR is able to detect relevant attributes even in sit-
uations when the target decision is not linearly dependent on the features.

The problem of selecting relevant attributes is extremely important in many
fields related to data analysis and should be regarded as one of the main research
directions for the rough set community. For this reason, in the future we plan
to further investigate attribute selection and feature extraction methods that
derive from the rough set theory. For example, we are interested how different
heuristics for generating decision reducts would influence quality of the proposed
ranking algorithms. We would also like to investigate a geometry of reducts from
high dimensional datasets by examining co-occurrence of particular attributes.
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