Probabilistic Similarity-Based Reduct

Wojciech Froelich and Alicja Wakulicz-Deja

Institute of Computer Science, University of Silesia,
ul.Bedzinska 39, Sosnowiec, Poland
{Wojciech.Froelich,Alicja.Wakulicz-Deja}@us.edu.pl

Abstract. The attribute selection problem with respect to decision ta-
bles can be efficiently solved with the use of rough set theory. However,
a known issue in standard rough set methodology is its inability to deal
with probabilistic and similarity information about objects. This paper
presents a novel type of reduct that takes into account this information.
We argue that the approximate preservation of probability distributions
and similarity of objects within reduced decision table helps to preserve
the quality of its classification capability.
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1 Introduction

The information system [2] is an ordered pair IS = (U, A), where U is a
nonempty, final set of objects. The nonempty, final set A consists of labels which
are the names of the attributes (i.e. features). An attribute a € A is a mapping
a: U — V,, where V, is called a value set of the attribute a. For any subset
of objects X C U, the B - indiscernibility relation: I ND(B)y is defined as:
IND (B) = {(u,u') € U? : Va € B,a(u) = a(u)}. The indiscernibility class
determined by object u on the subset B of attributes can be denoted as [u]p
and is called an elementary set E. Thus, U is partitioned into the family U/E
of elementary sets. A decision table is defined as a special case of information
system, DT = (U, A,d), where d ¢ A is the decision attribute. The Vj; is the
set of values of d. Every value of decision d determines the decision class Dy =
{v €U :d(u) =k}. The family U/d is called the classification of objects in DT
It has been noted [4] that some formulas used in the decision-theoretic approach
are in fact the estimators of the probability distributions within decision ta-
bles. Recently, a probabilistic interpretation of the variable precision rough set
(VPRS) model was investigated [7]. A survey of the known types of reducts is
given in [I].

A similarity between objects can be calculated by the function sim : U x U —
[0,1]. The properties of similarity are reflexivity sim(x,z) = 1 and symmetry
sim(x, y) = sim(y,x). For the attribute a with numeric values, similarity
can be defined [5] as simq (v, v;) =1— a‘:::zjl, where amin, @Gmaz denote the
minimum and maximum values of attribute a, respectively. For many attributes,

it is possible to use [3]: sim (z,y) = Z“G(ijZTg)(x’y), where C' C A.
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2 Assumptions

For the purpose of this paper, it is assumed that DT does not contain miss-
ing values and the values of attributes are discrete, numerical. To denote a
particular subset of objects in DT, we give the value of the representative vec-
tor, e.g. < —,2 >, where the sign “-“ stands in place of the attribute that
is not considered. The A = {Ay, Aa,...,A,} is the set of random variables,
where n = card(A). The random variables are denoted using upper letters
with the lower indexes identifying them within the set A. Lower letters are
used to denote the values of variables. The expression dom(A;) denotes the do-
main of A;. The P(A; = aj) denotes the probability of assuming the value
ar € dom(A;) by the variable A;. Suppose we have a subset B C A, and b
is a vector of values of corresponding random variables. The expression b(u)
denotes the vector of values that the object u takes on the set of random vari-
ables/attributes from B. We denote as P(B = b) the probability of assum-
ing by every variable from B the corresponding value from vector b. Suppose
D, ¢ A is a distinguished random variable, we denote as d € dom(D;) the
constant value from its domain. The P(D1|A = a) is a vector of conditional
probability distribution of D; given A = a. The matrix P(D1|A) stores a condi-
tional probability distribution of D; for all values of A. Let us also notice that:

sim(z,y) = sim(a(x), a(y)).

3 A New Type of Reduct

For every pair of decision tables < DT, DT’ >, the probabilistic decision table
PDT is defined. It possess the following attributes: L - a number of the row
within PDT, A = {A;, As, ..., A,} - the set of discrete random variables
corresponding to the attributes of DT'; the domain of the random variable A;
from PDT is the set of values of the corresponding attribute from DT, i.e.:
dom(A;) = Vg, Dy - a distinguished discrete random variable corresponding to
the decision attribute, dom(D;) = Vg, P(D1|A) - the conditional probability of
decision given the values of attributes from DT, P(A) - the prior probability of
assuming by A the combination of values given in the row of PDT, P(D1|B) -
the conditional probability of decision given the values of attributes from DT,
P(B) - the prior probability of assuming by A the combination of values given
in the row of PDT, P(A|D;) - the probabilistic distribution of indiscernibil-
ity classes existing in original DT within every decision class, SIM - the set of
attributes SIM = {SIM(dy), SIM(dz), ... , SIM(dy)}, each of which corre-
sponds to the value of the decision attribute; i.e., for every d; € dom(D1), there
is a corresponding real valued attribute SIM(d,) € R in PDT. Note that every
indiscernibility class from DT is uniquely mapped to one record in PDT. Sup-
pose that [, is a row number in the PDT. We denote as A[l.] a vector stored in
row [. using the variables from the set A. Similarly, we use notation B [l.], C[l.],
where C' = A — B.
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3.1 Probabilistic Similarity-Based Classification

Suppose that for every decision d within [u]; a similarity-weighted probabilistic
function S(d,b) = >_,cjom(a) (D1 =d|B =b) - P(A = a|Dy = d) - simd(pd =
d,pa = a,pb = b) is computed. The P(D; = d|B = b) is the conditional proba-
bility of choosing the decision d given the values b of the attributes from DT".
The P(A = a|D; = d) is the probability of asigning objects from indiscernibility
class A = a to the decision class d. Additionaly, all indiscernibility classes A = a
assigned in DT’ to D1 = d are weighted by their similarity simd(pd, pa, pb) to
the most similar class from the set of these classes that were in DT originaly
assigned to the given decision d. In order to calculate such specific similarity we
propose the function simd(pd, pa, pb). The pd is the parameter of one of the pos-
sible decisions and pa, pb are the parameters of the possible values of A and B,
respectively. The values of simd(pd, pa, pb) are stored as the values of attributes
SIM(d) of the PDT. For any given decision d and a vector b(u) a subset K C L
of rows in PDT with B = b(u) is selected. Then, it is checked whether the
corresponding to K class [u], is consistent. The function simd works in two
steps:

1. In the case of consistency of [u] 5, for every row [. € K:
— If Dy[l.] = pd, then simd = 1.
— If Dy [lc] # pd, then simd = 0.
2. In the case of inconsistency of [u]g,
(a) First, for all rows with Dy [l.] = pd, the simd = 1.
(b) Afterwards, for all the remaining in K rows (not considered in step 2a)
for which D1[l.] # pd, we use C' = A — B and the similarity measure
to compute the minimum value s = min sim(C|[l. |, C[l;]), where . is a
number of the current row in PDT and [; any other row in K for which
D1 [l;]) # pd, A = pa, B = pb and simd = 1 (computed in the Step 2a).
Then, we assign simd = s.

The classification of object w in table DT’ can be performed by selecting the
decision d’ with the maximal value of S(d, b(u)) within the indiscernibility class
represented by b(u): d'(u) = argmaxqS(d, b(u)).

3.2 Testing the Subsets of Attributes

After computing the dominant similarity-based decisions for every indiscernibil-
ity class, it is possible to calculate what part of objects is approximately correctly
classified with the use of DT”. For this purpose, we use the function ptest(DT, B)
given as: ptest (DT, B) = Zbedom(B) P(B =0)S(d’,b) , where d’ is the proba-
bilistic similarity-based dominant decision assigned for the given B = b. Note
that the number of objects that are approximately correctly classified within
DT’ can be calculated as ptest(DT, B) - card(DT'). The definition of negative,
boundary and positive regions within DT is possible (similarily as in VPRSM)
by the the introduction of appriopriate thresholds for the value of ptest(DT, B).
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3.3 The Formulation of Reduct

The probabilistic similarity-based reduct (PSBR) of the decision table DT is a
subset of attributes R C A that assures an approximate correct classification of
at least 7 € [0, 1] fraction of objects calculated as ptest (DT, R) > n, where n = A-
ptest(DT, A). The above condition should be true for R and false for any proper
subset of R. The ptest(DT, A) is a fraction of objects that are approximate
correct classified by DT with the use of all attributes A. For consistent DT the
ptest(DT, A) = 1 and n = A. The value of X is the requirement given by expert
and reflects in fact the degree in which the quality of classification is preserved.

4 An Illustrative Example

Due to the available page limit of this paper, it was possible solely to illustrate
the calculation of function ptest(DT, B), used for the evaluation of the subsets
of attributes. Without doubt, the presented simple example cannot verify the
practical effectiveness of the proposed reduct, the analysis of larger and complex
decision tables is needed. Some of the theoretical strong points of our approach
are given in section Bl A simple exemplary DT is given as Table [la). It is
assumed that A = {a1, a2}. The DT is consistent. The reduced DT" is presented
as Table [[(b) with the set of attributes B = {az}. The set C = {a;}. The
DT’ is inconsistent. Bold lines mark the borders between indiscernibility classes.
Suppose that we use the maximum distribution criterion for classification. In
this case, the reduction of attributes leads to the incorrect classification of three
objects from the original table: ug, u7 and ug. In DT”, these objects are assigned
to decision d = 1 instead of d = 0 as in DT. Misclassified in the DT’ objects
are rare in the DT e.g., P(u7) = 2/10 in DT, by reduction of the attribute
a1, P(u7) = 8/10in DT’. This situation is better then incorporating frequent
objects into the rare indiscernibility class. Note also that the object ug in DT is
less similar than objects ug or uz to any (with ag = 1) of indiscernibility classes

Table 1. Decision table

(a) DT - original (b) DT’ - reduced
U ai az d U ao d
ur 0 1 1 u 1 1
uz 0 1 1 Uz 1 1
us 0 1 1 us 1 1
ug 0 1 1 w1 1
us 1 1 1 Uus 1 1
U6 2 1 0 Ug 1 0
u7 2 1 0 ur 1 0
us 5 1 0 us 10
w 1 0 0 u 0 0
U110 1 0 0 uio 0 0
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that exist in DT and that are merged in DT’. In the context of preserving
the original similarity relations between objects (such as they were in DT'), the
incorrect classification of ug and w7 in DT” can be evaluated as better than the
misclassification of ug. For the previously presented DT and DT, we constructed
the PDT given in Table

As an example, we show how to calculate simd (pd,pa,pb) for the row I3
of PDT. The following parameters are used: min (4;) = 0,max(A4;) = 5,
max (A1) — min(4;) = 5. For the row I3 of PDT, and d = 1 we have pd =
1,pa =< 2,1 >, pb =<1 >. The most similar to I3 row with D; = 1 is the row l5.
The similarity between I3 and I3 is simd(1,< 2,1 >, <1>)=1—-((2-1)/5) =
1—1/5 = 0.8. This value is stored as S(d = 1)[l3]. For d = 0 and I3 we have:
SIM(d = 0)[l;] = simd(0,< 2,1 >,< 1 >); in this case we have D, = d ,
therefore simd = 1. After computing in PDT all values for columns: STM (d = 1)
and SIM(d = 0), we compute the dominant-similarity based decisions for every
indiscernibility class in DT’. The class < —,1 > in DT’ is inconsistent, so we
calculate: S(d=1,B=<1>)=3 214211+ 2. 2.08+3-1-02=085
Sd=0,B=<1>)=35-32:06+25-08+3-2-145-1-1=0.775
The dominant decision for the class < —,1 > is d’ = 1. For the DT’ we have:
ptest(DT,B) =0.8-(32-14+ 511+ 32-08+31-0.2)40.2-1 = 0.68+0.2 = 0.88

Table 2. PDT - probabilistic decision table

L Ay Ay Dy P(Di|A) P(A) P(D:1|B) P(B) P(A|Dy) SIM(d=1) SIM(d = 0)

Lo 1 1 1 04 5/8 08 4/5 1 0.6
1 1 1 1 0.1 5/8 08 1/5 1 0.8
32 1 0 1 0.1 3/8 08 2/3 0.8 1
lsy5 1 0 1 02 3/8 08 1/3 0.2 1
Is1 0 0 1 02 1 02 1 0 1

5 Relation to the Existing Approaches

To the best of our knowledge, all existing approaches to combining similarity
with rough sets: a) use a similarity measure to construct similarity classes that
partition U as U/S, and b) approximate the decision partition U/D using this
similarity partition, i.e. cover U/D with U/S as much as possible. In contrast, in
our approach the similarity classes on the global level of U are not constructed.
Moreover, the similarity is applied with respect to the subsets of attributes and
only for objects that changed the originally assigned decision after reduction of
attributes. By this way, the similarity between objects depends on the subsets of
reduced attributes. The maximum distribution reduct [6] preserves the dominant
decision for every indiscernibility class and thus works locally. In our approach, it
is possible that most objects from some rare indiscernibility classes will be clas-
sified incorrectly in DT’ and the maximum distribution criterion does not hold.
The advantage is that the other objects in frequent indiscernibility classes are
better classified, thus our approach works globally. The parameter-based reducts
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preserve to certain extent the conditional probability distribution P(D;|B) and
thus work globally. However, they do not take into account the probability dis-
tribution P(A|B) that makes some indiscernibility classes from DT more or less
important considering the number of correctly classified objects in DT”. This
fact is considered in our approach.

6 Final Remarks

The proposed approach for reducing attributes of decision tables exploits the
following types of information: 1) prior and conditional probability distributions
regarding indiscernibility classes, 2) conditional probability distribution of deci-
sion classes given the indiscernibility classes, and 3) similarity between objects
with respect to the reduction of attributes. The advantage of exploiting the above
information should lead to the generation of better reducts, evaluated as it was
shown within the paper, by the calculation of the fraction of objects correctly
classified by the reduced decision table. Practical verification of the above claim
requires to perform extensive experiments with real-world data, it is planned
for future research. The limitation of the above presented approach is the prior
assumption of the similarity function between objects.
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