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Abstract. The problem considered in this article is how to measure the
nearness or apartness of digital images in cases where it is important to
detect subtle changes in the contour, position, and spatial orientation of
bounded regions. The solution of this problem results from an applica-
tion of anisotropic (direction dependent) wavelets and a tolerance near
set approach to detecting similarities in pairs of images. A wavelet-based
tolerance Nearness Measure (tNM) makes it possible to measure fine-
grained differences in shapes in pairs of images. The application of the
proposed method focuses on image sequences extracted from hand-finger
movement videos. Each image sequence consists of hand-finger move-
ments recorded during rehabilitation exercises. The nearness of pairs of
images from such sequences is measured to check the extent that nor-
mal hand-finger movement differs from arthritic hand-finger movement.
Experimental results of the proposed approach are reported, here. The
contribution of this article is an application of an anisotropic wavelet-
based tNM in classifying arthritic hand-finger movement images in terms
of their degree of nearness to or apartness from normal hand-finger move-
ment images.

Keywords: anisotropic wavelets, arthritis, digital image sequence, near-
ness measure, tolerance near sets.

1 Introduction

This paper considers the problem of how to measure the nearness or apartness
of digital images in cases where it is important to detect subtle changes in the
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contour, position, and spatial orientation of bounded regions. The solution to
this problem is given in terms of an anisotropic wavelet-based, tolerance nearness
measure in classifying arthritic hand-finger movement images relative to their
degree of nearness to or apartness from normal hand-finger movement images.

In this work, we utilise near set theory informally introduced in 2002 [1]
and formally introduced in 2007 [2, 3]. Near sets were inspired by a study of the
perceptual resemblance of objects during a collaboration between Z. Pawlak and
J.F. Peters [1]. Recent research proves that near set theory can be used effectively
to define distance functions that measure the nearness of digital images [4–18].
The anisotropic wavelet-based tolerance nearness measure [9] is based on recent
work by C. Henry and J.F. Peters [4, 12, 13]. The contribution of this article is
an application of an anisotropic wavelet-based tNM in classifying arthritic hand-
finger movement images in terms of their degree of nearness to or apartness from
normal hand-finger movement images.

This paper has the following organisation. Sect. 2 gives the basic mathemat-
ics underlying the proposed classification method. Sect. 3 briefly presents the
nearness measurement method and sample experimental results.

2 Preliminaries: Anisotropic Wavelets and Tolerance
Nearness Measure

An anisotropic wavelet (i.e., dependent on the direction (angle) that is used to
define a wavelet) is constructed in a polar coordinate system as a product of
the Hann window function and the Gaussian wavelet [19]. The Hann window
function is given in (1).

ρ(α) = 0.5(1 − cos(α)), α ∈ [0, 2π), (1)

ψ(r) = −2r
(

2
π

)1/4

e−r
2
. (2)

An anisotropic wavelet ψ(α, r) is a product of a Hann window ρ(α) and trans-
lated by nr Gaussian wavelet ψ(r) represented in (3). By putting (1) and (2)
into (3), we obtain a so-called ’mother wavelet’, i.e., a wavelet function (4) that
is used to construct a wavelet set. Each wavelet in our set we calculate in (5).

ψ(α, r) = ρ(α)ψ(r), (3)
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(α, r) dα dr. (8)
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where Cψ{f}(. . . ) denotes Cψ{f}(sα, sr, nα, nr), ψ denotes a wavelet with (α, r)
a polar coordinates and where I = {sα, sr, nα, nr} denotes an index set used in
(5) to define a wavelet with an angular scale sα, radial scale sr, an angular
translation nα and a radial translation nr. In particular, it is nα that makes
(5) anisotropic, while nr is a radial distance from the pole (origin of a polar
coordinate system).

Perception-based description of an object x in near set theory is in the form
of feature vectors φ(x) containing probe function values [7, 14], where

φ(x) = (φ1(x), φ2(x), . . . , φi(x), . . . , φl(x))T (9)

where φi : O −→ [0,∞] is a probe function that represents a single object
feature. This leads to the notion of a perceptual information system.

Definition 1. Perceptual information system [7]
A perceptual information system 〈O,F〉 or more concisely, perceptual system is
a real-valued, total deterministic information system where O is a non-empty set
of perceptual objects, while F a countable set of probe functions.

Definition 2. Perceptual tolerance relation [20, 21] Let 〈O,F〉 be perceptual
system and put ε ∈ (0,∞]. For every B ⊆ F, the perceptual tolerance relation
∼=B,ε is defined as (10).

∼=B,ε= {(x, y) ∈ O ×O | φ ∈ B, ‖ φ(x) − φ(y) ‖≤ ε} (10)

where ‖ · ‖2 is the L2 norm, φ(x) = [φ1(x) . . . φi(x) . . . φl(x)]T is a feature vector
obtained using all probe functions φi ∈ B. For simplicity, we write x ∼=B y instead of
x ∼=B,ε y.

Relations with the same formal properties as similarity relations of sensations
considered by Poincaré [22] are nowadays, after Zeeman [23], called tolerance
relations.

H
∼=B,ε

(O)

X

Y

H
∼=B,ε

(X) H
∼=B,ε

(Y )

A B

Fig. 1. Sample Tolerance Near Sets

A tolerance τ on a set O
is a relation τ ⊆ O × O
that is reflexive and symmet-
ric. Transitive tolerance rela-
tions are equivalence relations.
A set O together with a tol-
erance τ is called a tolerance
space (denoted 〈O, τ〉). The
useful notion of a tolerance
preclass was first introduced
by M.J. Schroeder and M.H.
Wright [24]. A set A ⊆ O is
a τ-preclass (or briefly preclass
when τ is understood) if and only if for any x, y ∈ A, (x, y) ∈ τ . The family
of all preclasses of a tolerance space is naturally ordered by set inclusion and
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preclasses that are maximal with respect to a set inclusion are called τ-classes
or just classes, when τ is understood. The family of all classes of the space 〈O, τ〉
is denoted by Hτ (O). The family Hτ (O) is a covering of O.

Definition 3. Tolerance Near Sets [20, 21]
Let 〈O,F〉 be a perceptual system and let X,Y ⊆ O. A set X is perceptually near
a Y within the perceptual system 〈O,F〉 (i.e., (X	


F
Y )) iff there are such x ∈ X

and y ∈ Y and there is B ⊆ F such that x ∼=B,ε y. We than say that X,Y are
perceptually near each other in the tolerance sense of nearness in Def.2.

Fig. 1 points to candidate tolerance near sets. Let O denote a set of pixels
inside the rectangle. Further, assume H

∼=B,ε

(O) denotes the family of all tolerance

classes of the space 〈O,∼=B,ε〉 determined by the tolerance relation ∼=B,ε in a
covering of the nonempty set O. Let X,Y ⊂ O be represented by the shaded
ellipses in Fig. 1. In this Figure, tolerance class A ∈ H

∼=B,ε

(X) and tolerance class

B ∈ H
∼=B,ε

(Y ). For simplicity, let the set of probe functions B = {φgr}, where

φgr(o) = intensity for pixel o ∈ O. It is apparent from the greylevel intensities
in classes A and B, that these classes contain pixels with similar descriptions,
i.e., pixels with similar intensities. To determine nearness of tolerance spaces,
we consider the tolerance nearness measure tNM .

Definition 4. Tolerance Nearness Measure (tNM) [4]
The distance D

tNM
: P(O) × P(O) :→ [0,∞] is defined by

D
tNM

(X,Y ) =

{
1 − tNM∼=B,ε(A,B), if X and Y are not empty,
∞, if X or Y is empty,

where

tNM∼=B,ε
(X,Y ) =

( ∑
C∈H∼=B,ε

(Z)

|C|
)−1

·
∑

C∈H∼=B,ε
(Z)

|C|min(|C ∩X |, |[C ∩ Y |)
max(|C ∩X |, |C ∩ Y |) .

For simplicity, tNM is abbreviated NM . The details concerning NM are given
in [4, 8, 9, 13] and not repeated here.

Nearness measure values range from 0 to 1 (tNM(X,Y ) = 0 means that sets
X,Y are near (i.e., X,Y have similar descriptions), while tNM(X,Y ) = 1 means
that sets X,Y are far apart (i.e., X,Y have dissimilar descriptions)).

Example 1. Sample image features extraction using wavelet method
We study images resemblance using features obtained using a wavelet-based edge
extraction method [25]. This method is based on a anisotropic wavelet [19]. Each
edge is described by localization, orientation, wavelet coefficient proportional to
edge gradient value, object contour number and contour lengths. Fig. 2 presents
example of the use of the wavelet algorithm on an image containing a circle.
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Fig. 2. Left: Image with a ’circle’ (size 128x128 px). Right: Points where edges
were detected using the wavelet algorithm

Table 1. Results obtained for ’circle’ image in scale sr=1

Table 1 contains sample wavelet algorithm results for Figure 2. The algorithm
reveals that one contour containing 72 edges was extracted. Each edge has its
order number, position x,y, spatial orientation in radian, and wavelet coefficient.
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3 Anisotropic Wavelet-Based Tolerance Nearness

This section introduces an an application of the anisotropic wavelet algorithm
from [25] considered in the context of tolerance near sets.

3.1 Image Comparison Methodology

Fig. 3. Single images from two video sequences, left: normal hand, right:
rheumatic hand

Algorithm 1: Algorithm steps
Input : Img1,Img2 (pair of images), sr (wavelet algorithm scale), ε

(tolerance).
Output: NM (Nearness Measure value).

1 Initialize algorithm parameters:
(1.1) sr ← wavelet scale value;
(1.2) ε← Nearness Measure tolerance value;
2 Extract Img1, Img2 features using anisotropic wavelets from Sect. 2:
(2.1) Feat1←WavAlg(sr, Img1);
(2.2) Feat2←WavAlg(sr, Img2);
3 Obtain edge positions from images features:
(3.1) X ← Feat1(x, y);
(3.2) Y ← Feat2(x, y);
Compute tNM from Def. 4:
NM ← tNM∼=B,ε(X, Y );

A method that combines the original anisotropic wavelet algorithm [25] and
tolerance nearness distance tNM is summarised in Alg. 1. In this work, hand-
finger movement video recording are made during rehabilitation exercise. Se-
quences of images are extracted from those videos. For every image in an image
sequence, we extract features such us edge localization, edge spatial orientation,
wavelet coefficient proportional to edge gradient value, objects contour number
and contour lengths using a wavelet algorithm. Those features was utilized to
nearness measures evaluation of two images from sequence, i.e., first image with
second, second with third, and so on.
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3.2 Experimental Results

To measure the nearness of a pair of digital images, we utilize the tNM measure
from Def. 4. Image features are obtained using the wavelet algorithm from Sect. 2
and [25]. NM was based on edge localization, wavelet coefficient value and object
contour length features.

As was expected decreasing ε results in NM values decreasing. This is il-
lustrated in Figure 4, with the X axis marked a succession of pairs of images
from video sequence. On the Y axis, tNM values are given for pairs of images.
Each plot consists of four data series, because image features was extracted for
a different scale parameter of the wavelet algorithm.
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Fig. 4. NM values for e=0.1, e=0.05 i e=0.01 values
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Fig. 5. NM values obtained using spatial orientation feature for three different
sequences (a) normal 1, (b) normal 2, (c) arthritic

We conclude by our research, that applying such image features as edge spatial
orientation, contour number, or contour length to NM calculation results in small
difference in obtained NM values for given images sequences. Figure 5 illustrates
this, where for three images sequences with calculated NM values that are on
almost the same level.

In sum, we conclude that the best distinction between normal and arthritic
hand-finger sequences with NM based on edge localization as a image feature
occurs with tolerance value 1%.

Figure 6 presents nearness measures values for hand-finger image pairs. It
is clear that NM values for normal hand sequences are two times bigger (on
average) than arthritic hand sequences. This suggests that this the tNM dis-
tance function is able to distinguish between normal and arthritic hand-finger
movements.
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Fig. 6. NM of normal and arthritic hand sequences

4 Conclusion

This paper presents a number of research results, namely,
(result.i) We are able to apply near sets theory and the tNM measure with

wavelets in image analysis.
(result.ii) The Puzio-Walczak wavelet algorithm has utility in image edge ex-

traction for a number of parameters: position, spatial orientation,
number and length of objects contours.

(result.iii) It is possible to distinguish between normal and arthritic hand-finger
movements using the tNM distance function based on edge position
with ε = 1%.

Future work will include further work on a family of wavelet-based nearness
distance functions and classification of images containing subtly different shapes.
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