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Abstract. As a natural extension to the rough set approximations with
two decision classes, this paper provides a new formulation of multi-
category decision-theoretic rough sets. A three-way decision is added to
each class which gives the user the flexibility of making a deferred de-
cision. Different misclassification errors are treated separately with the
notion of loss functions from Bayesian decision theory. The losses in-
curred for making deferred and rejective decisions to each class are also
considered. The main objective of this paper is to tackle the limitations
of the previous related work, and therefore provide a more complete so-
lution to multi-category decision making.
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1 Introduction

In Pawlak rough set theory [5] and its generalized probabilistic approaches
[2,6,8,9,12,14,16], all decision classes are treated as the same in the interpre-
tation and applications of approximations and three regions. In other words, the
same pair of thresholds are used to defined the positive, negative and boundary
regions. As a natural extension to these original studies, rough set approxima-
tions for multi-category decision problems using different pairs of thresholds have
been discussed in several early literatures.

Yao and Zhao [13] used a method to change an m-category classification
problem into m two-category classification problems based on the framework of
decision-theoretic rough set model (DTRS) [12]. The results from two-category
classification can be immediately applied. The m pairs of thresholds can be sys-
tematically calculated based on the well established Bayesian decision theory,
and interpreted in terms of more practically operable notions such as cost, risk,
benefit etc. Some practice issues when applying Yao and Zhao’s idea to classify
new objects are further discussed by Liu et al. [4] with the aid from Bayesian
decision procedure. However, their work assumes that the losses incurred for mis-
classifying an object into any substitution classes are the same. This assumption
does not always hold in many real world applications [15]. For example, in a
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medical diagnose case, misclassifying an patient who has regular flu to cancer
costs more than misclassifying this patient to have pneumonia.

Ślȩzak [7] suggested an approach for defining the three probabilistic regions
based on pair-wise comparisons of categories. A matrix of thresholds is used,
with a pair of thresholds on the likelihood ratio of each pair of categories. Al-
though the approach is mathematically appealing and sound, it suffers from a
lack of guidelines and systematic methods on how to determining the required
thresholds, one may have difficulties in estimating all thresholds.

In the multi-category solution given in the original Bayesian decision theory,
one has the option of assigning the object to one of the m classes. In other words,
each class is associated with an action of accepting the object to be a member of
that class. Lingras et al. [3] proposed a rough multi-category decision theoretic
framework based on DTRS by building a similarity relation between each object
and an action corresponding to a subset of categories. The final classification
in both of these approaches is made by choosing the action with the minimum
expected loss. However, one has to make an immediate decision to either accept
nor reject the object to be a member of one of the classes, and the losses incurred
for making rejections to different classes are not considered.

In this paper, a probabilistic approximation for multi-category decision prob-
lems based on the three-way decision approach of DTRS [10,11] is introduced.
Instead of making an immediate accept or reject decision, a third option of mak-
ing a deferred decision is added to each class. This gives the user the flexibility
of refusing to make a decision in close cases. For example, if the doctor cannot
diagnose between a few different types of flu based on a patient’s symptoms, a
series of diagnose tests can be performed to gather more information to help the
doctor making the decision. Moreover, the losses incurred for misclassifying an
object into different substitution classes are treated differently, and the losses
incurred for making deferred and rejective decisions to different classes are con-
sidered. The goal of this paper is to tackle the limitations in the previous work
on multi-category decision making of rough set, and therefore provide a more
complete solution.

The rest of the paper is organized as follows. In Section 2, I briefly review
the three-way decisions introduced in DTRS models. Section 3 includes three
parts: I first review the existing work on multi-category classification with prob-
abilistic rough set models; a new formulation of this problem is then proposed
and its differences with other existing work are analyzed; an example is given to
demonstrate the usefulness of the new approach. Section 4 concludes the paper
and points out possible future work.

2 Three-Way Decisions with DTRS

Let R ⊆ U×U be an equivalence relation on the universe U , namely, R is reflex-
ive, symmetric, and transitive. The pair apr = (U,R) is called an approximation
space. The equivalence relation R induces a partition of U , denoted by U/R.
The basic building blocks in constructing rough set theory are the equivalence
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classes of R. For an object x ∈ U , the equivalence class containing x is given
by [x]R = [x] = {y ∈ U | xRy}; we omit the subscript R when the equivalence
relation R is understood.

In probabilistic rough set models, the degree of overlap between an equivalence
class [x] and a set of objects C is considered. A conditional probability is used
to state the degree of overlap and a pair of threshold values α and β with α > β
on the probability is used to define three probabilistic regions. Let Pr(C|[x])
be the probability of an object belonging to C given that the object is in [x].
A fundamental result of DTRS models is (α, β)-probabilistic positive, boundary
and negative regions defined by [12]:

POS(α,β)(C) = {x ∈ U | Pr(C|[x]) ≥ α},
BND(α,β)(C) = {x ∈ U | β < Pr(C|[x]) < α},
NEG(α,β)(C) = {x ∈ U | Pr(C|[x]) ≤ β}. (1)

We accept an object x to be a member of C if the conditional probability is
greater than α. We reject x to be a member of C if the conditional probability is
less than β. We neither accept nor reject x to be a member of C if the conditional
probability is between of α and β, instead, we make a decision of deferment.
The boundary region does not involve acceptance and rejection errors, but it is
associated with cost of deferment.

3 Multi-category Classification with DTRS

A probabilistic approximation of multi-category classification is given in this
section. The existing multi-category classification solutions are reviewed as com-
parisons.

3.1 Existing Work

In Bayesian decision theory [1], let Ω = {C1, C2, . . . , Cm} denote a finite set of
m classes and A = {a1, a2, . . . , am} a finite set of m possible actions. The loss
function λ(ai|Cj) is given by an m×m matrix:

C1 C2 · · · Ci · · · Cm

a1 λ11 = λ(a1|C1) λ12 = λ(a1|C2) · · · λ1i = λ(a1|Ci) · · · λ1m = λ(a1|Cm)
a2 λ21 = λ(a2|C1) λ22 = λ(a2|C2) · · · λ2i = λ(a2|Ci) · · · λ2m = λ(a2|Cm)
...

...
...

...
...

...
...

am λm1 = λ(am|C1) λm2 = λ(am|C2) · · · λmi = λ(am|Ci) · · · λmm = λ(am|Cm)

In general, the selection of the values of the loss function can be represented as:

λ(ai|Cj) =

{
0 i = j
λij i �= j,
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where λij (i, j = 1, . . . ,m) denote the loss incurred for deciding class Ci when
the true class is Cj . The expected cost associated with taking action ai is:

R(ai|[x]) =
j=m∑
j=1

λ(ai|Cj)Pr(Cj |[x]). (2)

The classifier is said to assign an object to class Ci if

R(ai|[x]) < R(aj|[x]) for all j �= i.

Inspired by the above multi-category classification solution, Yao [13] suggested
to change an m-category classification problem into m two-category classifi-
cation problems, and make a three-way decision to each class. For the finite
set of m classes Ω = {C1, C2, . . . , Cm}, the Ci’s form a family of pair-wise
disjoint subsets of U , namely, Ci ∩ Cj = ∅ for i �= j, and ∪Ci = U . For
each Ci, a two-category classification {C,Cc} can be defined, where C = Ci

and Cc = Cc
i = ∪i�=jCj . The loss function for each Ci is given by an 3 × m

matrix:

C1 C2 · · · Ci · · · Cm

aPi λP1 = λ(aPi |Cc
i ) λP2 = λ(aPi |Cc

i ) · · · λPi = λ(aPi |Ci) · · · λPm = λ(aPi |Cc
i )

aBi λB1 = λ(aBi |Cc
i ) λB2 = λ(aBi |Cc

i ) · · · λBi = λ(aBi |Ci) · · · λBm = λ(aBi |Cc
i )

aNi λN1 = λ(aNi |Cc
i ) λN2 = λ(aNi |Cc

i ) · · · λNi = λ(aNi |Ci) · · · λNm = λ(aNi |Cc
i )

m pairs of thresholds can be systematically calculated based on the given loss
functions. The results from Section 2.3 can be immediately applied. However,
the losses incurred for making any substitution errors are considered as the same
in this approach. That is,{

λP1 = λP2 = . . . = λPm = λ(aPi|Cc
i ) for all i �= j

λB1 = λB2 = . . . = λBm = λ(aBi|Cc
i ) for all i �= j

This assumption does not always hold in many real world scenario, which makes
it not practice in real applications.

Ślȩzak [7] introduced a rough Bayesian model (RB) and applied it to multi-
category classifications based on pair-wise comparisons of decision classes. For
an information table with a set of decision classes {0, . . . ,m − 1}, a matrix of
thresholds is given as:

ε =

⎡
⎢⎢⎢⎢⎣

∗ ε01 . . . ε0m−1

ε10 ∗ ...
... ∗ εm−2

m−1

εm−1
0 . . . εm−1

m−2 ∗

⎤
⎥⎥⎥⎥⎦ .

where εji ∈ [0, 1) for i �= j is called a significance threshold that expresses whether
the degree of belief is strong enough for class Ci with respect to any other class
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Cj . The three probabilistic regions are defined as follows:

POS(ε)(Ci) = {x ∈ U | ∀j:j �=iPr([x]|Cj) ≤ εjiPr([x]|Ci)},
BND(ε)(Ci) = {x ∈ U | ∃j:j �=iPr([x]|Cj) > εjiPr([x]|Ci) ∧

∀j:j �=iPr([x]|Ci) > εijPr([x]|Cj)},
NEG(ε)(Ci) = {x ∈ U | ∃j:j �=iPr([x]|Ci) ≤ εijPr([x]|Cj)}. (3)

An object x belongs to POS(ε)(Ci) if and only if Ia(x) is significantly more likely
to occur under Ci than under any other class Cj , j �= i. Object x belongs to
BND(ε)(Ci) if and only if Ia(x) is not significantly more likely under Ci than
under all other Cj but there is also no alternative class, which makes Ia(x)
significantly more likely than Ci does. object x belongs to NEG(ε)(Ci) if and
only if there is an alternative class Cj , which makes Ia(x) significantly more
likely than Ci does. However, the selection of significance thresholds can be a
subjective and difficult task without systematic guidelines.

3.2 A New Formulation

Similar to Yao’s idea, for the finite set of m classes Ω = {C1, C2, . . . , Cm}, we
make a three-way decision to each class Ci, that is, each Ci is associated with
a set of three actions A = {aPi , aBi , aNi}, where aPi , aBi , and aNi represent
the three actions in deciding x ∈ POS(Ci), x ∈ BND(Ci), and x ∈ NEG(Ci),
respectively. The loss function is given by a 3×m matrix for each Ci:

C1 C2 · · · Ci · · · Cm

aPi λP1 = λ(aPi |C1) λP2 = λ(aPi |C2) · · · λPi = λ(aPi |Ci) · · · λPm = λ(aPi |Cm)
aBi λB1 = λ(aBi |C1) λB2 = λ(aBi |C2) · · · λBi = λ(aBi |Ci) · · · λBm = λ(aBi |Cm)
aNi λN1 = λ(aNi |C1) λN2 = λ(aNi |C2) · · · λNi = λ(aNi |Ci) · · · λNm = λ(aNi |Cm)

Different to Yao’s approach, the losses incurred for making substitution errors
are considered differently. That is,{

λPi = λ(aPi|Cc
i ) for all i �= j

λBi = λ(aBi|Cc
i ) for all i �= j

The expected losses associated with taking different actions for objects in [x] can
be expressed as:

R(aPi |[x]) =
j=m∑
j=1

Pr(Cj |[x])λ(aPi |Cj),

R(aBi |[x]) =
j=m∑
j=1

Pr(Cj |[x])λ(aBi |Cj),

R(aNi |[x]) =
j=m∑
j=1

Pr(Cj |[x])λ(aNi |Cj). (4)

The Bayesian decision procedure suggests the following minimum-risk decision
rules:
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(P) If R(aPi |[x]) ≤ R(aBi |[x]) and R(aPi |[x]) ≤ R(aNi |[x]), decide x ∈ POS(Ci);

(B) If R(aBi |[x]) ≤ R(aPi |[x]) and R(aBi |[x]) ≤ R(aNi |[x]),decide x ∈ BND(Ci);

(N) If R(aNi |[x]) ≤ R(aPi |[x]) and R(aNi |[x]) ≤ R(aBi |[x]),decide x ∈ NEG(Ci).

Tie-breaking criteria should be added so that each object is put into only one
region.

Ordinarily, the loss incurred for making an error is greater than the loss in-
curred for being correct, and the loss incurred for making a deferment decision
is in between. Consider a special kind of loss functions with:

(c0). λ(aPi |Ci) ≤ λ(aBi |Ci) < λ(aNi |Ci), λ(aNi |Cj) ≤ λ(aBi |Cj) < λ(aPi |Cj),

for all j, j �= i.

That is, the loss of classifying an object x belonging to Ci into the positive region
POS(Ci) is less than or equal to the loss of classifying x into the boundary region
BND(Ci), and both of these losses are strictly less than the loss of classifying x
into the negative regionNEG(Ci). The reverse order of losses is used for classifying
an object not in Ci. Under condition (c0), we can simplify decision rules (P)-(N)
as follows. For the rule (P), the first condition can be expressed as:

R(aPi |[x]) ≤ R(aBi |[x])

⇐⇒
j=s∑

j=1

Pr(Cj |[x])λ(aPi |Cj) ≤
j=s∑

j=1

Pr(Cj |[x])λ(aBi |Cj)

⇐⇒ Pr(Ci|[x])λ(aPi |Ci) +

j=s∑

j=1,j �=i

Pr(Cj |[x])λ(aPi |Cj)

≤ Pr(Ci|[x])λ(aBi |Ci) +

j=s∑

j=1,j �=i

Pr(Cj|[x])λ(aBi |Cj)

⇐⇒ Pr(Ci|[x]) ≥
∑j=s

j=1,j �=i Pr(Cj |[x])(λ(aPi |Cj)− λ(aBi |Cj))

λ(aBi |Ci)− λ(aPi |Ci)
.

Similarly, other conditions of the three rules can be expressed as:

R(aPi |[x]) ≤ R(aNi |[x]) ⇐⇒ Pr(Ci|[x]) ≥
Pj=s

j=1,j �=i Pr(Cj |[x])(λ(aPi |Cj) − λ(aNi |Cj))

λ(aNi |Ci) − λ(aPi |Ci)
,

R(aBi |[x]) ≤ R(aPi |[x]) ⇐⇒ Pr(Ci|[x]) ≤
Pj=s

j=1,j �=i Pr(Cj |[x])(λ(aPi |Cj) − λ(aBi |Cj))

λ(aBi |Ci) − λ(aPi |Ci)
,

R(aBi |[x]) ≤ R(aNi |[x]) ⇐⇒ Pr(Ci|[x]) ≥
Pj=s

j=1,j �=i Pr(Cj |[x])(λ(aBi |Cj) − λ(aNi |Cj))

λ(aNi |Ci) − λ(aBi |Ci)
,

R(aNi |[x]) ≤ R(aPi |[x]) ⇐⇒ Pr(Ci|[x]) ≤
Pj=s

j=1,j �=i Pr(Cj |[x])(λ(aPi |Cj) − λ(aNi |Cj))

λ(aNi |Ci) − λ(aPi |Ci)
,

R(aNi |[x]) ≤ R(aBi |[x]) ⇐⇒ Pr(Ci|[x]) ≤
Pj=s

j=1,j �=i Pr(Cj |[x])(λ(aBi |Cj) − λ(aNi |Cj))

λ(aNi |Ci) − λ(aBi |Ci)
.

By introducing three parameters:
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αi =

∑j=s
j=1,j �=i Pr(Cj |[x])(λ(aPi |Cj)− λ(aBi |Cj))

λ(aBi |Ci)− λ(aPi |Ci)
,

βi =

∑j=s
j=1,j �=i Pr(Cj |[x])(λ(aBi |Cj)− λ(aNi |Cj))

λ(aNi |Ci)− λ(aBi |Ci)
,

γi =

∑j=s
j=1,j �=i Pr(Cj |[x])(λ(aPi |Cj)− λ(aNi |Cj))

λ(aNi |Ci)− λ(aPi |Ci)
. (5)

We can express concisely the decision rules (P)-(N) as:

(P) If Pr(Ci|[x]) ≥ αi and Pr(Ci|[x]) ≥ γi, decide x ∈ POS(Ci);

(B) If Pr(Ci|[x]) ≤ αi and Pr(Ci|[x]) ≥ βi, decide x ∈ BND(Ci);

(N) If Pr(Ci|[x]) ≤ βi and Pr(Ci|[x]) ≤ γi, decide x ∈ NEG(Ci).

Each rule is defined by two out of the three parameters.
The conditions of rule (B) suggest that it maybe reasonable to impose the

constraint αi > βi so that the boundary region may be non-empty. We can add
a sufficient condition on the loss function to ensure αi > βi as follow:

(c1).
λ(aNi |Ci)− λ(aBi |Ci)

λ(aBi |Cj)− λ(aNi |Cj)
>

λ(aBi |Ci)− λ(aPi |Ci)

λ(aPi |Cj)− λ(aBi |Cj)
. (6)

The condition (c0) and (c1) imply that αi > γi > βi ≥ 0. After tie-breaking, the
following simplified rules are obtained:

(P) If Pr(Ci|[x]) ≥ αi, decide x ∈ POS(Ci);

(B) If βi < Pr(Ci|[x]) < αi, decide x ∈ BND(Ci);

(N) If Pr(Ci|[x]) ≤ βi, decide x ∈ NEG(Ci).

From the rules (P), (B), and (N), the (αi, βi)-probabilistic positive, negative and
boundary regions are given, respectively, by:

POS(αi,βi)(Ci) = {x ∈ U | Pr(Ci|[x]) ≥ αi},
BND(αi,βi)(Ci) = {x ∈ U | βi < Pr(Ci|[x]) < αi},
NEG(αi,βi)(Ci) = {x ∈ U | Pr(Ci|[x]) ≤ βi}. (7)

We can extend the probabilistic approximations and regions of a single class to
a partition. Let πΩ be a partition of the universe U , defined by the decision
attribute Ω. The three regions of the partition πΩ can be defined as:

POS(α,β)(πΩ) =
⋃

1≤i≤m

POS(αi,βi)(Ci),

BND(α,β)(πΩ) =
⋃

1≤i≤m

BND(αi,βi)(Ci),

NEG(α,β)(πΩ) = U − POS(α,β)(πΩ) ∪ BND(α,β)(πΩ). (8)

It is necessary to have a further study on the probabilistic three regions of
a classification, as well as the associated rules. In general, one has to consider
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Table 1. A Loss Function Table

C1 C2 C3 C4

aP1 0 2 3 8
aB1 5 1 1 3
aN1 10 0 0 0

aP2 10 0 20 30
aB2 5 7 10 15
aN2 0 15 0 0

aP3 28 25 0 30
aB3 12 11 10 13
aN3 0 0 20 0

aP4 9 5 3 0
aB4 4 2 1 15
aN4 0 0 0 30

the problem of rule conflict resolution in order to make effective acceptance,
rejection, and abstaining decisions.

3.3 An Example

Consider a medical diagnose example, there is a set of four types of diseases Ω =
{C1, C2, C3, C4}. Each disease Ci associated with three actions A = {aPi , aBi ,
aNi}, where aPi indicates that we accept a patient to have disease Ci, aNi indi-
cates that we reject a patient to have disease Ci, and aBi indicates that we neither
accept nor reject a patient to have disease Ci, a diagnose test needs to be per-
formed in order to decide whether or not the patient having disease Ci. Suppose
the symptoms of a new patient are described by [x], the conditional probabilities
of the four diseases can be derived from historical data of the hospital as follows:
Pr(C1|[x]) = 0.4, Pr(C2|[x]) = 0.2, Pr(C3|[x]) = 0.15, and Pr(C4|[x]) = 0.25.
The loss functions for the four diseases are represented in Table 1. Suppose the four
diseases are listed in the increasing order of their severe levels, we can see that the
loss incurred for misdiagnosing a patient having disease C1 to C4 is higher than
misdiagnosing a patient having disease C1 to C2 or C3.

Based on equation (5), we can computer the pairs of thresholds (αi, βi) for
the four diseases as: α1 = 0.35, β1 = 0.22; α2 = 1.04, β2 = 0.91; α3 = 1.35,
β3 = 1.03; α4 = 0.19, β4 = 0.14. Now we can compare the conditional prob-
abilities with the corresponding thresholds. Since Pr(C1|[x]) = 0.4 > α1 and
Pr(C4|[x]) = 0.25 > α4, class C1 and C4 are in the positive region. The new
patient could have both disease C1 and C4, or either one of them. Rule conflict
resolution should be added at this point to further distinguish which disease that
the patient is more likely to have.

4 Conclusions and Future Work

This paper introduces a probabilistic rough set approximation for an information
tables with more than two decision classes. In order to emphasis the semantic
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interpretation of probabilistic rough sets with three-way decisions, our formu-
lation directly uses three pair-wise disjoint positive, boundary, and negative re-
gions instead of a pair of lower and upper approximations. This approach can
be considered as a straightforward generalization of the three-way classification
introduced in decision-theoretic rough set models. The differences between our
approach and other existing work are analyzed. One may have a further study
on three-way decision rules generated from different classes and the associated
rule conflict resolutions for real classification applications.
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