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Abstract. The paper is devoted to the study of greedy algorithm for
construction of approximate decision trees (α-decision trees). This algo-
rithm is applicable to decision tables with many-valued decisions where
each row is labeled with a set of decisions. For a given row, we should
find a decision from the set attached to this row. We consider bound on
the number of algorithm steps, and bound on the algorithm accuracy
relative to the depth of decision trees.
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1 Introduction

We consider here one more extension of the notion of decision table – decision
table with many-valued decisions. In a table with many-valued decisions, each
row is labeled with a nonempty finite set of decisions, and for a given row, we
should find a decision from the set of decisions attached to this row.

Such tables arises in problems of discrete optimization, pattern recognition,
computational geometry, etc. However, the main source of decision tables with
many-valued decisions are datasets filled by statistical or experimental data. In
such datasets, we often have groups of objects with equal values of conditional
attributes but, probably, different values of the decision attribute. Instead of
a group of objects, we can consider one object given by values of conditional
attributes. We attach to this object a set of decisions: either all decisions for
objects from the group, or k the most frequent decisions for objects from the
group, etc. As a result we obtain a decision table with many-valued decisions.

The rough set theory [2,4] is devoted mainly to the investigation of inconsistent
decision tables which have equal rows with different decisions (see, in particular,
the notion of generalized decision in rough set theory [3]). So, the study of
decision tables with many-valued decisions can give us new tools for the rough
set theory.
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The paper is devoted to the study of a greedy algorithm for construction of
approximate decision trees for decision tables with many-valued decisions. To
define the notion of approximate decision tree we fix some uncertainty measure
B(T ) for decision tables with many-valued decisions. We consider so-called α-
decision trees where α is a real number such that 0 ≤ α < 1. For a given row r
of a table T , an α-decision tree localizes it in a subtable of T with uncertainty
at most αB(T ). The notion of 0-decision tree for T coincides with the notion of
exact decision tree for T .

We prove new bound on accuracy of the greedy algorithm relative to the depth
of decision trees. As a corollary, we obtain a bound on accuracy of the greedy
algorithm presented in [1] without proof. We obtain also an upper bound on the
number of steps of the considered algorithm. From this bound it follows that, for
an arbitrary natural t, the greedy algorithm has polynomial time complexity on
tables which have at most t decisions in each set of decisions attached to rows.

As we know, the considered algorithm is the only algorithm for construction of
decision trees for decision tables with many-valued decisions that has nontrivial
bound on accuracy.

We discuss also a problem of recognition of colors of points in the plain which
illustrates the obtained bound on accuracy.

In this paper, we consider only binary decision tables with many-valued deci-
sions. However, the obtained results can be extended to the decision tables filled
by numbers from the set {0, . . . , k − 1}, where k ≥ 3.

This paper consists of six sections. In Sect. 2, main notions are discussed. In
Sect. 3, four lemmas are proved which are used in Sect. 4, that is devoted to the
study of greedy algorithm for decision tree construction. In Sect. 5, we discuss
the problem of recognition of colors of points in the plain. Section 6 contains
conclusions.

2 Main Notions

In this section, we consider definitions of notions corresponding to decision tables
with many-valued decisions.

A (binary) decision table with many-valued decisions is a rectangular table
T filled by numbers from the set {0, 1}. Columns of this table are labeled with
attributes f1, . . . , fn. Rows of the table are pairwise different, and each row is
labeled with a nonempty finite set of natural numbers (set of decisions). Note
that each (binary) decision table with one-valued decisions can be interpreted
also as a decision table with many-valued decisions. In such table, each row is
labeled with a set of decisions which has one element.

We correspond a game of two players to T . The first player chooses a row r of
T . The second player should find a decision from the set of decisions attached to
r. To this end, he can choose columns (attributes) of T and ask the first player
what is at the intersection of the row r and these columns.

We will say that T is a degenerate table if either T has no rows, or the
intersection of sets of decisions attached to rows of T is nonempty.
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A decision which belongs to the maximum number of sets of decisions attached
to rows in T is called the most common decision for T . If we have more than
one such decisions we choose the minimum one. If T is empty then 1 is the most
common decision for T .

A table obtained from T by removal of some rows is called a subtable of T .
A subtable T ′ of T is called boundary subtable if T ′ is not degenerate but each
proper subtable of T ′ is degenerate. We denote by B(T ) the number of boundary
subtables of the table T . It is clear that T is a degenerate table if and only if
B(T ) = 0. The value B(T ) will be interpreted as uncertainty of T .

Let fi1 , . . . , fim ∈ {f1, . . . , fn} and δ1, . . . , δm ∈ {0, 1}. We denote by

T (fi1 , δ1) . . . (fim , δm)

the subtable of the table T which consists of all rows that at the intersection
with columns fi1 , . . . , fim have numbers δ1, . . . , δm respectively.

A decision tree over T is a finite tree with root in which each terminal node is
labeled with a decision (a natural number), and each nonterminal node is labeled
with an attribute from the set {f1, . . . , fn}. Two edges start in each nonterminal
node. These edges are labeled with 0 and 1 respectively.

Let Γ be a decision tree over T and v be a node of Γ . We correspond to the
node v a subtable T (v) of the table T . If v is the root of Γ then T (v) = T .
Otherwise, let nodes and edges in the path from the root to v be labeled with
attributes fi1 , . . . , fim and numbers δ1, . . . , δm respectively. Then T (v) is the
subtable T (fi1 , δ1) . . . (fim , δm) of the table T .

It is clear that for any row r of T there exists exactly one terminal node v in
Γ such that r belongs to T (v). The decision attached to v will be considered as
the result of Γ work on the row r.

Let α be a real number such that 0 ≤ α < 1. We will say that Γ is an α-decision
tree for T if for any terminal node v of Γ , the inequality B(T (v)) ≤ αB(T ) holds,
and the node v is labeled with the most common decision for T (v). An α-decision
tree Γ for T can be considered as an approximate strategy for the second player:
for any row r of T , as a result of Γ work, the row r will be localized in a subtable
T (v) of T (v is a terminal node of Γ ) such that the uncertainty of T (v) is at
most α times to the uncertainty of the initial table T .

We denote by h(Γ ) the depth of a decision tree Γ which is the maximum
length of a path from the root to a terminal node. We denote by hα(T ) the
minimum depth of an α-decision tree for the table T .

Let α, β be real numbers such that 0 ≤ α ≤ β < 1. It is not difficult to show
that each α-decision tree for T is also a β-decision tree for T . Thus, hα(T ) ≥
hβ(T ).

3 Auxiliary Statements

We denote by Tab(t), where t is a natural number, the set of decision tables with
many-valued decisions such that each row in the table has at most t decisions
(is labeled with a set of decisions which cardinality is at most t).
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Lemma 1. Let T ′ be a boundary subtable with m rows. Then each row of T ′ is
labeled with a set of decisions which cardinality is at least m− 1.

Proof. Let rows of T ′ be labeled with sets of decisions D1, . . . , Dm respectively.
Then D1 ∩ . . . ∩ Dm = ∅ and for any i ∈ {1, . . . ,m}, the set D1 ∩ . . . ∩Di−1 ∩
Di+1 ∩ . . . ∩ Dm contains a number di. Assume that i �= j and di = dj . Then
D1∩. . .∩Dm �= ∅ which is impossible. Therefore d1, . . . , dm are pairwise different
numbers. It is clear that for i = 1, . . . ,m, the set {d1, . . . , dm} \ {di} is a subset
of the set Di. �	
Corollary 1. Each boundary subtable of a table T ∈ Tab(t) has at most t + 1
rows.

Therefore, for tables from Tab(t), there exists a polynomial algorithm for the
computation of parameter B(T ). For example, for any decision table T with one-
valued decisions (really, for any table from Tab(1)) the equality B(T ) = P (T )
holds where P (T ) is the number of unordered pairs of rows of T with different
decisions.

Lemma 2. Let T be a decision table with many-valued decisions, T ′ be a sub-
table of the table T , fi be an attribute attached to a column of T , and δ ∈ {0, 1}.
Then

B(T )−B(T (fi, δ)) ≥ B(T ′)−B(T ′(fi, δ)).

Proof. Denote by J (respectively by J ′) the set of boundary subtables of T
(respectively of T ′) in each of which at least one row has at the intersection
with column fi a number which is not equal to δ. One can show that J ′ ⊆ J ,
|J ′| = B(T ′)− B(T ′(fi, δ)) and |J | = B(T )−B(T (fi, δ)). �	
Let T be a decision table with many-valued decisions, which has n columns
labeled with attributes {f1, . . . , fn}. We define now a parameter M(T ) of the
table T . If T is a degenerate table then M(T ) = 0. Let now T be a nonde-
generate table. Let δ̄ = (δ1, . . . , δn) ∈ {0, 1}n. Then M(T, δ̄) is the minimum
natural m such that there exist attributes fi1 , . . . , fim ∈ {f1, . . . , fn} for which
T (fi1 , δi1) . . . (fim , δim) is a degenerate table. We denote M(T ) = max{M(T, δ̄) :
δ̄ ∈ {0, 1}n}.
Lemma 3. Let T be a decision table with many-valued decisions, and T ′ be a
subtable of T . Then

M(T ) ≥ M(T ′).

Proof. Let T have n columns labeled with attributes f1, ..., fn, fi1 , ..., fim ∈
{f1, ..., fn} and δ1, ..., δm ∈ {0, 1}. If T (fi1 , δ1)...(fim , δm) is a degenerate table
then T ′(fi1 , δ1)...(fim , δm) is a degenerate table too. From here and from the
definition of parameter M the statement of lemma follows. �	
Lemma 4. Let T be a decision table. Then

h0(T ) ≥ M(T ).



490 M. Moshkov and B. Zielosko

Proof. If T is a degenerate table then h0(T ) = 0 and M(T ) = 0. Let T be a
nondegenerate table having n columns labeled with attributes f1, . . . , fn, and
Γ be a 0-decision tree for the table T such that h(Γ ) = h0(T ). Let δ̄ =
(δ1, . . . , δn) ∈ {0, 1}n be a n-tuple for which M(T, δ̄) = M(T ). We consider a
path τ = v1, d1, . . . , vm, dm, vm+1 from the root v1 to a terminal node vm+1

in Γ which satisfies the following condition: if nodes v1, . . . , vm are labeled
with attributes fi1 , . . . , fim then edges d1, . . . , dm are labeled with numbers
δi1 , . . . , δim . Since Γ is a 0-decision tree for the table T , the subtable T (vm+1) =
T (fi1 , δi1) . . . (fim , δim) is a degenerate table. Thereforem ≥ M(T, δ̄) and h(Γ ) ≥
M(T, δ̄). Since h(Γ ) = h0(T ) and M(T, δ̄) = M(T ), we have h0(T ) ≥ M(T ). �	

4 Algorithm Uα for α-Decision Tree Construction

Let α be a real number such that 0 ≤ α < 1. We now describe an algorithm
Uα which for a given decision table with many-valued decisions T constructs
an α-decision tree Uα(T ) for the table T . Let T have n columns labeled with
attributes f1, . . . , fn.

Greedy Algorithm Uα

Step 1. Construct a tree consisting of a single node labeled with the table T
and proceed to the second step.

Suppose t ≥ 1 steps have been made already. The tree obtained at the step t
will be denoted by G.

Step (t + 1). If no one node of the tree G is labeled with a table then we
denote by Uα(T ) the tree G. The work of the algorithm Uα is completed.

Otherwise, we choose a node v in the tree G which is labeled with a subtable
of the table T . Let the node v be labeled with the table T ′. If B(T ′) ≤ αB(T )
then instead of T ′ we mark the node v with the most common decision for T ′

and proceed to the step (t + 2). Let B(T ′) > αB(T ). Then for i = 1, . . . , n, we
compute the value

Q(fi) = max{B(T ′(fi, 0)), B(T ′(fi, 1))}.
Instead of T ′ we mark the node v with the attribute fi0 where i0 is the minimum
i for which Q(fi) has the minimum value. For each δ ∈ {0, 1}, we add to the
tree G the node v(δ), mark this node with the subtable T ′(fi0 , δ), draw the edge
from v to v(δ), and mark this edge with δ. Proceed to the step (t+ 2).

First, we obtain an upper bound on the number of algorithm Uα steps.

Theorem 1. Let α be a real number such that 0 ≤ α < 1, and T be a decision
table with many-valued decisions. Then during the construction of the tree Uα(T )
the algorithm Uα makes at most 2N(T ) + 1 steps where N(T ) is the number of
rows in T .



Construction of α-Decision Trees for Tables with Many-Valued Decisions 491

Proof. One can show that for each terminal node v of the tree Uα(T ), there exists
a row r(v) of T such that r(v) belongs to T (v). It is clear that r(v1) �= r(v2) if
v1 �= v2. Therefore the number of terminal nodes in Uα(T ) is at most N(T ). It
is not difficult to prove that the number of nonterminal nodes in Uα(T ) is equal
to the number of terminal nodes minus 1. Simple analysis of the algorithm Uα

work shows that the number of steps of Uα in the process of the tree Uα(T )
construction is equal to the number of nodes in Uα(T ) plus 2. Therefore the
number of steps is bounded from above by 2N(T ) + 1. �	
From this theorem it follows that for any natural t the algorithm Uα has poly-
nomial time complexity on the set Tab(t).

Now we obtain a bound on the algorithm Uα, 0 < α < 1, accuracy (relative
to the depth of decision trees) which does not depend on B(T ).

Theorem 2. Let α be a real number such that 0 < α < 1, and T be a nonde-
generate decision table with many-valued decisions. Then

h(Uα(T )) ≤ M(T ) ln
1

α
+ 1.

Proof. Let T be a table with n columns labeled with attributes f1, . . . , fn. For
i = 1, . . . , n, denote by σi a number from {0, 1} such that B(T (fi, σi)) =
max{B(T (fi, σ)) : σ ∈ {0, 1}}. It is clear that the root of the tree U0(T ) is
labeled with the attribute fi0 where i0 is the minimum i for which B(T (fi, σi))
has the minimum value. Of course, Q(fi) = B(T (fi, σi)).

Let us show that

B(T (fi0 , σi0 )) ≤
(
1− 1

M(T )

)
B(T ).

It is clear that there exist attributes fi1 , . . . , fim ∈ {f1, . . . , fn} such that

T (fi1 , σi1 ) . . . (fim , σim)

is a degenerate table andm ≤ M(T ). Evidently, B(T (fi1 , σi1) . . . (fim , σim)) = 0.
Then

B(T )− [B(T )−B(T (fi1 , σi1))]− [B(T (fi1 , σi1))−B(T (fi1 , σi1)(fi2 , σi2 ))]

− . . .− [B(T (fi1 , σi1) . . . (fim−1 , σim−1))−B(T (fi1 , σi1) . . . (fim , σim))]

= B(T (fi1 , σi1 ) . . . (fim , σim)) = 0.

From Lemma 2 it follows that, for j = 1, . . . ,m− 1,

B(T (fi1 , σi1 ) . . . (fij , σij ))−B(T (fi1 , σi1 ) . . . (fij , σij )(fij+1 , σij+1 ))

≤ B(T )−B(T (fij+1 , σij+1 )).

Therefore B(T ) − ∑m
j=1(B(T ) − B(T (fij , σij ))) ≤ 0. Since B(T (fi0 , σi0 )) ≤

B(T (fij , σij )), j = 1, . . . ,m, we have B(T )−m(B(T )−B(T (fi0 , σi0 ))) ≤ 0 and
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B(T (fi0 , σi0 )) ≤ (1−1/m)B(T ). Taking into account that m ≤ M(T ) we obtain
B(T (fi0 , σi0 )) ≤ (1− 1/M(T ))B(T ).

Assume that M(T ) = 1. From the considered inequality and from the de-
scription of algorithm Uα it follows that h(Uα(T )) = 1. So if M(T ) = 1 then the
statement of theorem is true.

Let now M(T ) ≥ 2. Consider a longest path in the tree Uα(T ) from the
root to a terminal node. Let its length be equal to k, nonterminal nodes of
this path be labeled with attributes fj1 , . . . , fjk , where fj1 = fi0 , and edges be
labeled with numbers δ1, . . . , δk. For t = 1, . . . , k, we denote by Tt the table
T (fj1 , δ1) . . . (fjt , δt). From Lemma 3 it follows that M(Tt) ≤ M(T ) for t =
1, . . . , k. We know that B(T1) ≤ B(T )(1 − 1/M(T )). In the same way, it is
possible to prove that B(Tt) ≤ B(T )(1− 1/M(T ))t for t = 2, . . . , k.

Let us consider the table Tk−1. For this table,

B(Tk−1) ≤ B(T )(1− 1/M(T ))k−1.

Using the description of the algorithm Uα we obtain B(Tk−1) > αB(T ). There-
fore α < (1 − 1/M(T ))k−1 and (1 + 1/(M(T ) − 1))k−1 < 1/α. If we take
natural logarithm of both sides of this inequality we obtain (k − 1) ln(1 +
1/(M(T ) − 1)) < ln(1/α). It is known that for any natural p the inequality
ln(1+1/p) > 1/(p+1) holds. SinceM(T ) ≥ 2, we obtain (k−1)/M(T ) < ln(1/α)
and k < M(T ) ln(1/α) + 1. Taking into account that k = h(Uα(T )) we have
h(Uα(T )) < M(T ) ln(1/α) + 1. �	

Using Lemma 4 we obtain

Corollary 2. For any real α, 0 < α < 1, and for any nondegenerate decision
table with many-valued decisions T

h(Uα(T )) < h0(T ) ln
1

α
+ 1.

5 Problem of Recognition of Colors of Points in the Plain

Let we have a finite set S = {(a1, b1), . . . , (an, bn)} of points in the plane and a
mapping μ which corresponds to each point (ap, bp) a nonempty subset μ(ap, bp)
of the set {green, yellow, red}. Colors are interpreted as decisions, and for each
point from S we need to find a decision (color) from the set of decisions attached
to this point. We denote this problem by (S, μ).

For the problem (S, μ) solving, we use attributes corresponding to straight
lines which are given by equations of the kind x = β or y = γ. These attributes
are defined on the set S and take values from the set {0, 1}. Consider the line
given by equation x = β. Then the value of corresponding attribute is equal to
0 on a point (a, b) ∈ S if and only if a < β. Consider the line given by equation
y = γ. Then the value of corresponding attribute is equal to 0 if and only if
b < γ.
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We now choose a finite set of straight lines which allow us to construct a
decision tree with the minimum depth for the problem (S, μ). It is possible that
ai = aj or bi = bj for different i and j. Let ai1 , . . . , aim be all pairwise different
numbers from the set {a1, . . . , an} which are ordered such that ai1 < . . . < aim .
Let bj1 , . . . , bjt be all pairwise different numbers from the set {b1, . . . , bn} which
are ordered such that bj1 < . . . < bjt .

One can show that there exists a decision tree with minimum depth which
use only attributes corresponding to the straight lines defined by equations x =
ai1 − 1, x = (ai1 + ai2)/2, . . ., x = (aim−1 + aim)/2, x = aim + 1, y = bj1 − 1,
y = (bj1 + bj2)/2, . . ., y = (bjt−1 + bjt)/2, y = bjt + 1.

We now describe a decision table T (S, μ) with m+ t+2 columns and n rows.
Columns of this table are labeled with attributes f1, . . . , fm+t+2, corresponding
to the considered m + t + 2 lines. Attributes f1, . . . , fm+1 correspond to lines
defined by equations x = ai1 − 1, x = (ai1 +ai2)/2, . . . , x = (aim−1 +aim)/2, x =
aim + 1 respectively. Attributes fm+2, . . . , fm+t+2 correspond to lines defined
by equations y = bj1 − 1, y = (bj1 + bj2)/2, . . . , y = (bjt−1 + bjt)/2, y = bjt + 1
respectively. Rows of the table T (S, μ) correspond to points (a1, b1), . . . , (an, bn).
At the intersection of the column fl and row (ap, bp) the value fl(ap, bp) stays.
For p = 1, . . . , n, the row (ap, bp) is labeled with the set of decisions μ(ap, bp).

Let us evaluate the parameter M(T (S, μ)).

Proposition 1. M(T (S, μ)) ≤ 4.

Proof. Denote T = T (S, μ). Let δ̄ = (δ1, . . . , δm+t+2) ∈ {0, 1}m+t+2. If δ1 = 0,
or δm+1 = 1, or δm+2 = 0, or δm+t+2 = 1, then T (f1, δ1), or T (fm+1, δm+1), or
T (fm+2, δm+2), or T (fm+t+2, δm+t+2) is empty table and M(T, δ̄) ≤ 1. Let δ1 =
1, δm+1 = 0, δm+2 = 1 and δm+t+2 = 0. One can show that in this case there exist
i ∈ {1, . . . ,m} and j ∈ {m+2, . . . ,m+ t+1} such that δi = 1, δi+1 = 0, δj = 1,
and δj+1 = 0. It is clear that the table T (fi, δi)(fi+1, δi+1)(fj , δj)(fj+1, δj+1)
contains exactly one row. So M(T, δ̄) ≤ 4 and M(T ) ≤ 4. �	

From Corollary 1 it follows that each boundary subtable of the table T (S, μ) has
at most three rows. Thus, the following statement holds:

Proposition 2. B(T (S, μ)) ≤ |S|3.

Note that there are two types of boundary subtables of the table T (S, μ):

– With two rows labeled with disjoint sets of decisions, for example, {yellow}
and {green, red}, or {yellow} and {green}.

– With three rows labeled with sets of decisions {green, yellow}, {green, red},
and {yellow, red}.

Using this fact we can easily compute the value B(T (S, μ)):

B(T (S, μ)) = N(g)N(y) +N(g)N(r) +N(y)N(r) +N(g)N(y, r)

+N(y)N(g, r) +N(r)N(g, y) +N(g, y)N(g, r)N(y, r),
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where N(g) is the number of columns in T (S, μ) labeled with the set of decisions
{green}, N(g, r) is the number of columns in T (S, μ) labeled with the set of
decisions {green, red}, etc.

From Theorem 2 and Proposition 1 the next statement follows:

Corollary 3. For any real α, 0 < α < 1,

h(Uα(T (S, μ))) < 4 ln
1

α
+ 1.

6 Conclusions

We studied algorithm Uα, 0 ≤ α < 1, which allows us to construct α-decision
trees for decision tables with many-valued decisions. We proved that for an
arbitrary natural t, the considered algorithm has polynomial time complexity
on tables which have at most t decisions in each set of decisions attached to
rows. We obtained bound on accuracy of this algorithm which does not depend
on the uncertainty of decision tables.
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