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Abstract. Discriminant analysis is an effective methodology to deal
with the classification problem. However, most common methods includ-
ing binary logistic regression in discriminant analysis rarely consider the
semantics explanations such as losses or costs in decision rules. From the
idea of three-way decisions in decision-theoretic rough sets (DTRS), we
propose a new discriminant analysis approach by combining DTRS and
binary logistic regression. DTRS is utilized to systematically calculate
the corresponding thresholds with Bayesian decision procedure. Mean-
while, the binary logistic regression is employed to compute the condi-
tional probability of three-way decisions. An empirical study validates
the reasonability and effectiveness of the proposed approach.

Keywords: Decision-theoretic rough sets, discriminant analysis, binary
logistic regression, decision making.

1 Introduction

Discriminant analysis is a multivariate statistical method for classifications. As
an approach for classifying a set of observations into predefined classes with
respect to several variables, it requires the data in an information system sat-
isfies the conditions that the dependent variable is nonmetric and independent
variables are metric [4, 12–14]. Usually, the purpose of discriminant analysis is
to predict the classification for the observations by using discriminant functions
and rules. Nowadays, many common discriminant methodologies, such as binary
logistic regression, distance discriminant analysis, fisher discriminant analysis,
Bayesian discriminant analysis and stepwise discriminant analysis, have been
successfully and widely used in many fields, such as electricity loads [9], face
recognition [2], feature extraction [3], etc.

A decision is typically made under some risk and uncertainty. The misclassi-
fication may cause losses or costs. However, most of discriminant methodologies
rarely consider losses or costs for misclassification, except for Bayesian discrim-
inant analysis. The Bayesian discriminant analysis method only takes account
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for the misclassification costs in two scenarios, namely, the incorrect acceptance
costs and incorrect rejection costs. This method does not consider the deferment
scenario and it is actually regarded as a two-way decision [15].

Rough sets describe a set of a concept using the lower approximation and up-
per approximation [10]. The two approximations divide the universe into three
pairwise disjoint regions: the positive region, boundary region and negative re-
gion [7]. With respect to the three regions, Yao proposed a three-way decision
including the positive, boundary and negative rules. Positive rules make deci-
sions of acceptance, negative rules make decisions of rejection, and boundary
rules make deferred or non-committed decisions [15]. The three-way decision de-
pends on a pair of thresholds and conditional probability [7]. By considering the
tolerance of errors in the three-way decision, Yao et al. introduced Bayesian de-
cision procedure to propose decision-theoretic rough sets (DTRS) [15], and the
pair of thresholds can be directly calculated by minimizing the decision cost with
Bayesian theory. He pointed out that the two-way decision is the special case
of a three-way decision which considers the deferment scenario [15]. In addition,
Yao and Zhou further proposed the naive Bayesian rough sets. The conditional
probability is estimated by using the Bayes theorem with naive probabilistic
independence assumption for attributes [16], but this approach can only deal
with the discrete data. In real applications, the continuous and discrete data
may coexist in information systems. Binary logistic regression provides a way
to compute the conditional probability in this situation. In the view of seman-
tics, DTRS is utilized to systematically calculate the corresponding thresholds
by considering cost or loss. Hence, DTRS can reasonably explain the threshold
of binary logistic regression, and is complementary of binary logistic regression.
With comparison of Bayesian discriminant analysis, DTRS also adds the deferred
decision into the two-way decision. DTRS has been successfully utilized in some
learning methods, such as clustering [5] and naive Bayesian classifier [16]. In
this paper, we try to introduce the three-way decision in DTRS to discriminant
analysis and propose a new discriminant analysis method.

The remainder of this paper is organized as follows: Section 2 provides the
basic concepts of discriminant analysis and DTRS. A new discriminant analysis
approach under DTRS is proposed in Section 3. Then, a case study of corporate
failure prediction is given to illustrate our approach in Section 4. Section 5
concludes the paper and outlines the future work.

2 Preliminaries

Basic concepts, notations and results of the discriminant analysis and DTRS are
briefly reviewed in this section [4, 6, 8, 15].

2.1 Discriminant Analysis and Binary Logistic Regression

This subsection introduces the discriminant analysis to calculate the conditional
probability for objects in an information table. As a common linear discriminant
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analysis approach, binary logistic regression method is utilized to deal with the
binary classification problem because it can directly compute the probability of
occurrence of event.

In binary logistic regression model, the value domain of dependent variable
has two categories: occurrence (d = 1) and non-occurrence (d = 0). Suppose
x is an event, the probability of occurrence is denoted by Pr((d = 1)|x), and
Pr((d = 0)|x) = 1 − P ((d = 1)|x) denotes non-occurrence. The logistic function
transformation of Pr((d = 1)|x) is known as the logit transformation as follows.

θ(Pr((d = 1)|x)) = logit(Pr((d = 1)|x)) = ln(
Pr((d = 1)|x)

1 − Pr((d = 1)|x)
) (1)

where the expression of θ(Pr((d = 1)|x)) can be used by a linear function of
independent variables denoted by a1, a2, · · ·, ak, and (1) can rewrite as:

θ(Pr((d = 1)|x)) = ln(
Pr((d = 1)|x)

1 − Pr((d = 1)|x)
) = β0 + β1a1 + β2a2 + · · · + βkak(2)

where β0 denotes the intercept, and β1, β2, · · ·, βk denote the regression coeffi-
cients of a1, a2, · · ·, ak respectively. With the above analysis, the probability of
occurrence of event Pr((d = 1)|x) can be expressed as follows:

Pr((d = 1)|x) =
eθ(Pr((d=1)|x))

1 + eθ(Pr((d=1)|x))
=

eβ0+β1a1+β2a2+···+βkak

1 + eβ0+β1a1+β2a2+···+βkak
(3)

The discriminant rules are directly generated as follows.

d =
{

1 Pr((d = 1)|x) > 0.5;
0 Pr((d = 1)|x) ≤ 0.5.

2.2 Decision-Theoretic Rough Sets

In this subsection, we briefly introduce DTRS model, especially in the aspect of
the thresholds of the three-way decision.

For the Bayesian decision procedure, the DTRS model is composed of 2 states
and 3 actions [15, 16]. The set of states is given by Ω = {C,¬C} indicating that
an object is in C and not in C, respectively. And the set of actions is given
by A = {aP , aB, aN}, where aP , aB, and aN represent the three actions in
classifying an object x, namely, deciding x ∈ POS(C), deciding x should be
further investigated x ∈ BND(C), and deciding x ∈ NEG(C), respectively. The
loss function regarding the risk or cost of actions in different states is given by
the 3 × 2 matrix:

C (P ) ¬C (N)
aP λPP λPN

aB λBP λBN

aN λNP λNN
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In the matrix, λPP , λBP and λNP denote the losses incurred for taking actions of
aP , aB and aN , respectively, when an object belongs to C. Similarly, λPN , λBN

and λNN denote the losses incurred for taking the same actions when the object
belongs to ¬C. Pr(C|[x]) is the conditional probability of an object x belonging
to C given that the object is described by its equivalence class [x]. For an object
x, the expected loss R(ai|[x]) associated with taking the individual actions can
be expressed as:

R(aP |[x]) = λPP Pr(C|[x]) + λPNPr(¬C|[x]),
R(aB|[x]) = λBP Pr(C|[x]) + λBN Pr(¬C|[x]),
R(aN |[x]) = λNP Pr(C|[x]) + λNNPr(¬C|[x]). (4)

The Bayesian decision procedure suggests the following minimum-cost decision
rules:

(P) If R(aP |[x]) ≤ R(aB|[x]) and R(aP |[x]) ≤ R(aN |[x]), decide x ∈ POS(C);
(B) If R(aB|[x]) ≤ R(aP |[x]) and R(aB|[x]) ≤ R(aN |[x]), decide x ∈ BND(C);
(N) If R(aN |[x]) ≤ R(aP |[x]) and R(aN |[x]) ≤ R(aB|[x]), decide x ∈ NEG(C).

Since Pr(C|[x]) + Pr(¬C|[x]) = 1, we simplify the rules based only on the
probability Pr(C|[x]) and the loss function. By considering a reasonable kind
of loss functions with λPP ≤ λBP < λNP and λNN ≤ λBN < λPN , the decision
rules (P)-(N) can be expressed concisely as:

(P) If Pr(C|[x]) ≥ α and Pr(C|[x]) ≥ γ, decide x ∈ POS(C);
(B) If Pr(C|[x]) ≤ α and Pr(C|[x]) ≥ β, decide x ∈ BND(C);
(N) If Pr(C|[x]) ≤ β and Pr(C|[x]) ≤ γ, decide x ∈ NEG(C).

The thresholds values α, β, γ are given by: α = (λPN−λBN )
(λPN−λBN )+(λBP −λPP ) , β =

(λBN−λNN )
(λBN−λNN )+(λNP −λBP ) and γ = (λPN−λNN )

(λPN−λNN )+(λNP −λPP ) .
In addition, as a well-defined boundary region, the conditions of rule (B)

suggest that α > β, that is, (λBP −λPP )
(λPN−λBN ) < (λNP −λBP )

(λBN−λNN ) . It implies 0 ≤ β < γ <

α ≤ 1. In this case, after tie-breaking, the following simplified rules are obtained:

(P1) If Pr(C|[x]) ≥ α, decide x ∈ POS(C);
(B1) If β < Pr(C|[x]) < α, decide x ∈ BND(C);
(N1) If Pr(C|[x]) ≤ β, decide x ∈ NEG(C).

From (P1)-(N1), the threshold parameters α and β can be systematically calcu-
lated from the loss functions based on the Bayesian decision procedure, which
gives us a solid theoretical basis.

3 The New Discriminant Analysis Approach under
Decision-theoretic Rough Sets

As stated in Section 2, DTRS mainly focuses on the classification problem with
2 states Ω = {C,¬C}. Meanwhile, the binary logistic regression can also solve
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the two classification problem. Following the similarity of the two methodologies,
we point out their differences in two aspects. On the one hand, the difference
between DTRS and logistic regression is the former lends to a three-way deci-
sion and the latter lends to a two-way decision. One the other hand, the logistic
regression can compute the conditional probability in an information table, and
it is a complementary of DTRS. Therefore, we try to combine the two method-
ologies together and propose a new discriminant analysis approach under DTRS
as follows.

The binary classification corresponds to two states of C and ¬C in DTRS.
Combined with logistic regression, C is replaced by d = 1 and ¬C is replaced by
d = 0 or ¬(d = 1) simultaneously. Suppose an information table is composed of
n objects O = {o1, o2, · · · , on) and k attributes A = {a1, a2, · · · , ak). In discrim-
inant analysis, an object oi (i = 1, 2, · · · , n) is described by it’s corresponding
variable’s values ai1, ai2, · · · , aik. For simplicity, the conditional probability of
the object oi belonging to d = 1, is straightway expressed by Pr((d = 1)|oi). In
fact, some objects may have different attribute-values in the information table or
different prior information so that they may have different loss functions in the
same state. In order to meet this fact, we will construct a loss function matrix
for every object. For the object oi, the loss function regarding the risk or cost
of actions in different states is given by the 3 × 2 matrix according to expert
experience and priori information.

d = 1 (P ) ¬(d = 1) (N)

aP λ i
PP λ i

PN

aB λ i
BP λ i

BN

aN λ i
NP λ i

NN

where aP , aB, and aN represent the three actions, namely, accepting the result
of oi belonging to d = 1, the result of oi belonging to d = 1 should be further
investigated, and rejecting the result of oi belonging to d = 1, respectively. λ i

PP ,
λ i

BP and λ i
NP denote the losses incurred for taking actions of “accepted”, “further

investigated” and “rejected”, respectively, when oi belongs to d = 1. Similarly,
λ i

PN , λ i
BN and λ i

NN denote the losses incurred for taking the same actions when
oi belongs to ¬(d = 1). Furthermore, the thresholds are calculated according to
the conditions of decision rules (P1)-(N1). With above conditions, the decision
rules (P1i)-(N1i) of the object oi can be expressed as:

(P1i) If Pr((d = 1)|oi) ≥ αi, decide oi ∈ POS(d = 1);
(B1i) If βi < Pr((d = 1)|oi) < αi, decide oi ∈ BND(d = 1);
(N1i) If Pr((d = 1)|oi) ≤ βi, decide oi ∈ NEG(d = 1).

The thresholds values αi, βi are given by:

αi =
(λ i

PN − λ i
BN )

(λ i
PN − λ i

BN ) + (λ i
BP − λ i

PP )
,

βi =
(λ i

BN − λ i
NN )

(λ i
BN − λ i

NN ) + (λ i
NP − λ i

BP )
.
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Similarly, the conditional probability Pr(¬(d = 1)|oi) has the analogous decision
rules. The conditional probability Pr((d = 1)|oi) can be calculated according to
the logistic regression equation as follows.

Pr((d = 1)|oi) =
eβ0+β1ai1+β2ai2+···+βkaik

1 + eβ0+β1ai1+β2ai2+···+βkaik
. (5)

In the following, the new discriminant analysis approach consists of 5 steps shown
in Figure 1.

Fig. 1. A new discriminant analysis approach with DTRS

Step 1: Selection of the independent variables and dependent variables, then
construct the original information table.

Step 2: Application of binary logistic regression to obtain the logistic regres-
sion equation based on the original information table.

Step 3: Calculation of the conditional probability for each object belonging
to d = 1 according to logistic regression equation, i.e., Pr((d = 1)|oi) (i =
1, 2, · · · , n).

Step 4: Generation of decision rules for each object according to DTRS model.
For object oi (i = 1, 2, · · · , n), we set the loss functions of different actions in two
states (d = 1, ¬(d = 1)) according to expert experience and prior information,
and calculate the thresholds αi and βi according to (P1i)-(N1i).

Step 5: Determination of concrete action for each object. For object oi, we
compare the conditional probability Pr((d = 1)|oi) with the thresholds values
αi and βi. Then, the concrete action of oi is determined.

Remark 1. From Fig. 1, DTRS is utilized to generate decision rules and calcu-
late the thresholds for the three-way decision. On the other hand, discriminant
analysis brings us a new way on estimating the condition probability of the
three-way decision.
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4 An Illustration

In this section, a case study of corporate failure prediction [1] is given to explain
our approach proposed in Section 3. The data of this case includes 30 failed and
30 non-failed UK companies. Beynon and Peel [1] listed a total of 12 independent
variables (or condition attributes) for potential rule generation. The dependent
variable (or decision attribute) is denoted as company status (d), which is coded
zero for a non-failed firm (d = 0) and unity for a failed company (d = 1).

In order to validate the significance of logistic regression equation, we utilize
SPSS 16.0 to run binary logistic regression for the original information table in
[1]. By using backward and forward method for logistic regression, we select 3
independent variables from 12 variables and denote them as a1 (current liabil-
ities/total assets), a2 (number of days between account year end and the date
the annual report and accounts were filed at company registry) and a3 (whether
the company auditor is a Big6 auditor, coded 1 if yes, coded 0 if no). Table 1
lists the original information for the 3 attributes, and the coefficients in logistic
regression equation is shown in Table 2.

Table 1. The original information table of UK companies

O a1 a2 a3 d O a1 a2 a3 d O a1 a2 a3 d O a1 a2 a3 d

o1 0.6233 96 0 0 o16 0.3999 271 1 0 o31 0.7034 172 0 1 o46 0.4824 295 0 1
o2 1.2218 287 1 0 o17 0.1212 197 0 0 o32 0.7081 265 1 1 o47 0.2986 303 1 1
o3 0.3307 64 1 0 o18 0.2761 303 1 0 o33 1.0139 301 0 1 o48 0.7437 303 0 1
o4 0.4829 286 0 0 o19 0.5014 302 1 0 o34 0.7585 309 1 1 o49 0.4976 362 1 1
o5 0.3786 301 1 0 o20 0.406 421 1 0 o35 0.56 243 0 1 o50 0.6672 289 0 1
o6 0.3548 314 1 0 o21 0.5458 77 0 0 o36 0.7772 393 0 1 o51 0.5726 301 0 1
o7 0.7018 249 1 0 o22 0.3983 192 0 0 o37 1.2024 360 0 1 o52 0.7586 301 0 1
o8 0.4347 55 1 0 o23 0.7412 304 1 0 o38 0.7005 296 1 1 o53 0.6596 293 1 1
o9 0.6715 298 0 0 o24 0.3426 191 0 0 o39 0.6377 295 0 1 o54 0.5916 179 0 1
o10 0.1401 241 1 0 o25 0.1538 117 1 0 o40 0.4767 233 0 1 o55 0.5261 283 0 1
o11 0.4533 168 1 0 o26 0.6198 160 1 0 o41 1.4865 301 0 1 o56 0.7112 207 1 1
o12 0.5297 36 0 0 o27 0.4034 264 1 0 o42 0.3883 265 1 1 o57 0.5742 301 0 1
o13 0.7866 212 1 0 o28 1.1831 183 1 0 o43 0.8516 86 1 1 o58 0.8618 153 1 1
o14 0.6301 188 1 0 o29 0.6965 117 0 0 o44 0.7585 297 0 1 o59 0.7444 243 1 1
o15 0.5072 268 0 0 o30 0.7883 147 1 0 o45 0.656 144 0 1 o60 0.732 301 0 1

From Table 2, we find the coefficients of independent variables and constant
are significance. The binary logistic equation is shown in (6).

Pr((d = 1)|oi) =
e−3.861+3.566a1+0.010a2−1.370a3

1 + e−3.861+3.566a1+0.010a2−1.370a3
. (6)

where Pr((d = 1)|oi) denotes the conditional probability of firm oi belonging
to a failed company. In equation (6), the values of coefficients of a1 and a2 are
positive, that is, the larger values of a1 and a2, the higher probability the firm
will fail. The opposite situation happens in a3 because the value of coefficient of
a3 is negative. The importance of the three independent variables is ordered by
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Table 2. The binary logistic regression results

Coefficients B S.E. Wald df Sig. Exp(B)

a1 3.566 1.574 5.137 1 0.023 35.375
a2 0.010 0.004 5.817 1 0.016 1.010
a3 -1.370 0.629 4.745 1 0.029 0.254

Constant -3.861 1.490 6.718 1 0.010 0.021

a2, a1 and a3 according to the Wald values of the three variables. The predicted
conditional probabilities and predictions for 60 UK companies based on the
equation (6) and the discriminant rules in Section 2.1 are shown in Table 3, and
d denotes the true state for these companies.

Table 3. The predicted conditional probabilities and predictions for 60 UK companies

O d
Predicted Predicted

O d
Predicted Predicted

O d
Predicted Predicted

group Pr((d = 1)|oi) group Pr((d = 1)|oi) group Pr((d = 1)|oi)

o1 0 0 0.3368 o21 0 0 0.2416 o41 1 1 0.9885
o2 0 1 0.8806 o22 0 0 0.3731 o42 1 0 0.2325
o3 0 0 0.0319 o23 0 1 0.6118 o43 1 0 0.2086
o4 0 1 0.6734 o24 0 0 0.3257 o44 1 1 0.8601
o5 0 0 0.2956 o25 0 0 0.0290 o45 1 0 0.4799
o6 0 0 0.3051 o26 0 0 0.1947 o46 1 1 0.6925
o7 0 0 0.4412 o27 0 0 0.2404 o47 1 0 0.2435
o8 0 0 0.0419 o28 0 1 0.6941 o48 1 1 0.8610
o9 0 1 0.8200 o29 0 0 0.4486 o49 1 1 0.5415
o10 0 0 0.0895 o30 0 0 0.2791 o50 1 1 0.8039
o11 0 0 0.1264 o31 1 1 0.5912 o51 1 1 0.7674
o12 0 0 0.3519 o32 1 0 0.4866 o52 1 1 0.8649
o13 0 0 0.4245 o33 1 1 0.9409 o53 1 1 0.5134
o14 0 0 0.2493 o34 1 1 0.6379 o54 1 1 0.5101
o15 0 1 0.6525 o35 1 1 0.6383 o55 1 1 0.7001
o16 0 0 0.2511 o36 1 1 0.9450 o56 1 0 0.3491
o17 0 0 0.1889 o37 1 1 0.9825 o57 1 1 0.7684
o18 0 0 0.2290 o38 1 1 0.5571 o58 1 0 0.3483
o19 0 0 0.3964 o39 1 1 0.7967 o59 1 0 0.4639
o20 0 1 0.6060 o40 1 1 0.5426 o60 1 1 0.8535

The underlined values in Table 3 denote the inconsistent issue between pre-
dicted classification and true state for a firm. A natural idea from these incon-
sistences illustrates that the predictions with binary logistic regression need to
reconsider. In our discussions, DTRS is utilized to construct the correspond-
ing thresholds through setting the loss functions. For every firm, we have three
scenarios for determining the prediction by comparing the conditional probabil-
ity generated by logistic regression and the thresholds (α, β), namely, accept the
prediction, reject it or defer it. Our new discriminant approach provides a DTRS
based strategy to revise the predictions with binary logistic regression.
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For simplicity, we select four firms o2, o3, o32 and o54 to illustrate our dis-
criminant approach. The loss functions are carefully estimated by corresponding
experts according to the experience and prior information. The calculating re-
sults for the four firms are listed in Table 4.

Table 4. The loss functions and calculating results of the four firms (u is a unit cost)

O λ i
PP λ i

BP λ i
NP λ i

PN λ i
BN λ i

NN αi βi

o2 0 8u 14u 16u 4u 0 0.6000 0.4000
o3 0 4u 10u 25u 7u 0 0.8182 0.5385
o32 0 6.5u 13u 18u 5u 0 0.6667 0.4348
o54 0 5.5u 12.5u 19.5u 5.5u 0 0.7179 0.4400

In Table 4, we set λ i
PP = 0, λ i

NN = 0 (i = 1, 2, · · · , n) by considering the
fact that there is no cost when doing a right decision. Since the importance of
independent variables in (6) is ordered by a2, a1 and a3, and the values in o2

play higher in a1 and a2 among four firms, we put higher estimations in λ 2
BP

and λ 2
NP , but lower estimations in λ 2

PN and λ 2
BN . However, the opposite situation

happens in o3.
Finally, we compare the predicted probabilities in Table 3 with their corre-

sponding thresholds in Table 4 among the four firms. For the firm o2, Pr((d =
1)|o2) = 0.8806 > 0.6000 = α2, we take the action aP and accept the prediction.
In this case, we agree the predicted result with binary logistic regression, namely,
o2 is a failed company and we disagree the state of o2 in Table 1. Similarly, we
can discriminate the three other firms according to these criteria in our new
approach. For the firm o3, Pr((d = 1)|o3) = 0.0319 < 0.538 = β3, we take the
action aN and accept the prediction. In this case, we both agree the predicted
result with binary logistic regression and the state in Table 1. We discriminate o3

is a non-failed company. For the firm o32 and o54, the values of Pr((d = 1)|o32)
and Pr((d = 1)|o54) are between their corresponding two thresholds. Hence, we
need take the action aB for these two firms and cannot discriminate whether they
are failed companies or not at present. We need to collect more information for
the two companies to make a final decision. The temporary deferment decision
for o32 and o54 may reduce the losses or costs generated by the misclassifications
in real-life applications.

5 Conclusions

In this paper, a new discriminant analysis approach was proposed by combining
with DTRS and binary logistic regression. The two thresholds α and β generated
by DTRS were utilized to revise the predictions with discriminant analysis (bi-
nary logistic regression). A case study of corporate failure prediction validated
the rationality of the proposed method. Our future research work will focus on
the extension of the proposed method to multiple-category discriminant analysis.
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