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Abstract. This paper considers an optimization viewpoint of decision-
theoretic rough set model. An optimization problem is proposed by con-
sidering the minimization of the decision cost. Based on the optimization
problem, cost functions and thresholds used in decision-theoretic rough
set model can be learned from the given data automatically. An adap-
tive learning algorithm Alcofa is proposed. Another significant inference
drawn from the solution of the optimization problem is a minimum cost
based attribute reduction. The attribute reduction can be interpreted as
finding the minimal attribute set to make the decision cost minimum.
The optimization viewpoint can bring some new insights into the research
on decision-theoretic rough set model.

Keywords: Decision-theoretic rough set model, optimization problem,
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1 Introduction

As a kind of probabilistic rough set model, decision-theoretic rough set model
(DTRS) [4–6] can derive current several probabilistic rough set models when
proper cost functions are used, such as 0.5 probabilistic rough set model [2],
variable precision rough set model [11] and Bayesian rough set models [3]. We
study the decision-theoretic rough set model from an optimization viewpoint in
this paper, and present some new results which may increase the understanding
of the decision-theoretic rough set model.

Based on Bayesian decision procedure, decision-theoretic rough set model pro-
vides systematic methods for deriving the required thresholds on probabilities for
defining the three regions: positive region, boundary region and negative region.
One object x is classified into a certain region because the cost generated by
classifying x into the region is less than the cost generated by classifying x into
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the other two regions. All decisions are made based on the minimum cost. De-
cision cost is an important concept in decision-theoretic rough set model. From
the optimization view, we construct an optimization problem which is to min-
imize the decision cost in decision-theoretic rough set model. Through solving
the optimization problem, we can learn the thresholds and proper cost functions
from given data without any preliminary knowledge, and we also define a new
attribute reduction which is based on the minimum cost. The attribute reduc-
tion can be interpreted as finding the minimal attribute set to make the whole
decision cost minimum, which is more intuitive and reasonable.

Using proper cost functions, we can derive different thresholds and get the
corresponding probabilistic rough set models. The cost functions play an impor-
tant role in decision-theoretic rough set model. In general, the cost functions
are given by experts, and little contributions are on learning cost functions from
data. Herbert and Yao [1] have proposed an approach for using a game-theoretic
learning method to govern the modification of cost functions in order to improve
some measures, this method needs users provide some measures first and define
an acceptable levels of tolerance to stop the repeating procedure. Compared to
their method, our method based on the optimization viewpoint does not need
users’ participation, it is automatic and easy to implement.

As to the non-monotonic property of the regions in decision-theoretic rough
set model, there exist interpretation difficulties in those attribute reductions
which are defined on region preservation [10]. The attribute reduction based on
minimum decision cost does not concentrate on preserving any region. The goal
of the reduction is to help users make better decisions, which means less decision
cost.

The rest of the paper is organized as follows. In Section 2, we review the
main ideas of decision theoretic rough set model. In Section 3, we give a detailed
explanation of the optimization problem, and by solving the problem, we can
learn the thresholds and the cost functions from data. An adaptive learning
algorithm is proposed. We also define a new attribute reduction and give some
remarks on the optimization problem. Section 4 concludes.

2 Basic Notions of Decision-theoretic Rough Set Model

In this section, we present some basic definitions of decision-theoretic rough set
model [7].

Definition 1. A decision table is the following tuple:

S = (U, At = C ∪ {D}, {Va|a ∈ At}, {Ia|a ∈ At}), (1)

where U is a finite nonempty set of objects, At is a finite nonempty set of at-
tributes, C is a set of condition attributes describing the objects, and D is a
decision attribute that indicates the classes of objects. Va is a nonempty set of
values of a ∈ At, and Ia : U → Va is an information function that maps an
object in U to exactly one value in Va.
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In the decision table, an object x is described by its equivalence class under
a set of attributes A ⊆ At: [x]A = {y ∈ U |∀a ∈ A(Ia(x) = Ia(y))}. Let
πD = {D1, D2, . . . , Dm} be a partition of the universe U defined by the decision
attribute D.

Let Ω = {ω1, . . . , ωs} be a finite set of s states and let A = {a1, . . . , am} be a
finite set of m possible actions. Let λ(ai|ωj) denote the cost, for taking action ai

when the state is ωj . Let p(ωj|x) be the conditional probability of an object x
being in state ωj , suppose action ai is taken. The expected cost associated with
taking action ai is given by:

R(ai|x) =
s∑

j=1

λ(ai|ωj) · p(ωj |x). (2)

In decision-theoretic rough set model, the set of states Ω = {X, Xc}, indicating
that an object is in a decision class X and not in X , respectively. The probabil-
ities for these two complement states can be denoted as p(X |[x]) = |X∩[x]|

|[x]| and
p(Xc|[x] = 1 − p(X |[x])). With respect to the three regions, the set of actions
with respect to a state is given by A = {aP , aB, aN}, where aP , aB, and aN rep-
resent the three actions in classifying an object x, namely, deciding x ∈ POS(X),
deciding x ∈ BND(X), and deciding x ∈ NEG(X), respectively. Let λPP , λBP

and λNP denote the costs incurred for taking actions aP , aB and aN , respec-
tively, when an object belongs to X , and λPN , λBN and λNN denote the costs
incurred for taking the same actions when the object does not belong to X .

Given the cost functions, the expected costs associated with taking different
actions for objects in [x] can be expressed as:

RP = R(aP |[x]) = λPP · p(X |[x]) + λPN · p(Xc|[x]),
RB = R(aB |[x]) = λBP · p(X |[x]) + λBN · p(Xc|[x]),
RN = R(aN |[x]) = λNP · p(X |[x]) + λNN · p(Xc|[x]). (3)

The Bayesian decision procedure suggests the following minimum-cost decision
rules:

(P) If RP ≤ RB and RP ≤ RN , decide x ∈ POS(X);
(B) If RB ≤ RP and RB ≤ RN , decide x ∈ BND(X);
(N) If RN ≤ RP and RN ≤ RB , decide x ∈ NEG(X).

Consider a special kind of cost functions with λPP ≤ λBP < λNP and λNN ≤
λBN < λPN , the decision rules can be reexpressed as:

(P) If p(X |[x]) ≥ α and p(X |[x]) ≥ γ, decide x ∈ POS(X);
(B) If p(X |[x]) ≤ α and p(X |[x]) ≥ β, decide x ∈ BND(X);
(N) If p(X |[x]) ≤ β and p(X |[x]) ≤ γ, decide x ∈ NEG(X),

where the parameters α, β, and γ are defined as:

α =
(λPN − λBN )

(λPN − λBN ) + (λBP − λPP )
,
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β =
(λBN − λNN )

(λBN − λNN ) + (λNP − λBP )
,

γ =
(λPN − λNN )

(λPN − λNN ) + (λNP − λPP )
. (4)

Each rule is defined by two out of the three parameters. The conditions of rule (B)
suggest that α > β may be a reasonable constraint; it will ensure a well-defined
boundary region. If we obtain the following condition on the cost functions [7]:

(λNP − λBP )
(λBN − λNN )

>
(λBP − λPP )
(λPN − λBN )

, (5)

then 0 ≤ β < γ < α ≤ 1. In this case, after tie-breaking, the following simplified
rules are obtained:

(P1) If p(X |[x]) ≥ α, decide x ∈ POS(X);
(B1) If β < p(X |[x]) < α, decide x ∈ BND(X);
(N1) If p(X |[x]) ≤ β, decide x ∈ NEG(X).

More different conditions on cost functions were discussed in [7, 9]. By using
the thresholds, one can divide the universe U into three regions of a decision
partition πD based on (α, β):

POS(α,β)(πD|πA) = {x ∈ U |p(Dmax([x]A)|[x]A) ≥ α},
BND(α,β)(πD|πA) = {x ∈ U |β < p(Dmax([x]A)|[x]A) < α},
NEG(α,β)(πD|πA) = {x ∈ U |p(Dmax([x]A)|[x]A) ≤ β}, (6)

where Dmax([x]A) = arg maxDi∈πD{ |[x]A∩Di|
|[x]A| }.

Unlike rules in the classical rough set theory, all three types of rules may be
uncertain. They represent the levels of tolerance in making incorrect decisions.
Each rule brings corresponding cost as to its error rate. Consider the special case
where we assuming zero cost for a correct classification, namely, λPP = λNN = 0,
and let p = p(Dmax([x]A)|[x]A), the decision costs of all rules are easily defined
as [7]:

positive rule : (1 − p) · λPN ,

boundary rule : p · λBP + (1 − p) · λBN ,

negative rule : p · λNP . (7)

For a given decision table, the decision cost of the table can be expressed as:

COST =
∑

pi≥α

(1−pi)·λPN +
∑

β<pj<α

(pj ·λBP +(1−pj)·λBN )+
∑

pk≤β

pk ·λNP , (8)

where pi = p(Dmax([xi]A)|[xi]A).
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3 An Optimization Problem in Decision-Theoretic Rough
Set Model

In section 2, we have given the expression of the cost of a decision table. Accord-
ing to the Bayesian decision principle, it is better to get a smaller value of the
cost, so we propose an optimization problem with the objective of minimizing
the value of the cost, written as

minCOST. (9)

Based on the optimization problem, we can learn the thresholds and proper cost
functions from given data without any preliminary knowledge. We also define a
new attribute reduction based on the minimum cost, which can be interpreted
as finding the minimal attribute set to make the whole decision costs minimum.

From Equation(8), we know that the decision cost can be formulated by the
probabilities of given objects and the cost functions, while the cost functions can
be presented by the required thresholds. By solving the optimization problem,
firstly, we can get the thresholds and derive the cost functions; secondly, we can
find the corresponding probabilities which make the decision cost minimum and
get the proper attribute reduction from these probabilities.

3.1 Learning Thresholds and Cost Functions from Data

Based on Equation(8) and Equation(9), we can construct an optimization
problem:

min
α,β,γ

∑

pi≥α

(1 − pi) · λPN +
∑

β<pj<α

(pj · λBP + (1 − pj) · λBN ) +
∑

pk≤β

pk · λNP

s.t. 0 < β < γ < α < 1. (10)

In Equation(4), three thresholds (α, β, γ) are presented by six cost functions.
Assume λPP = λNN = 0, which means making right decisions does not bring
any cost. Now we can present the rest four cost functions by the three thresholds,
reversely.

λPN = λPN ;

λNP =
1 − γ

γ
· λPN ;

λBN =
β · (α − γ)
γ · (α − β)

· λPN ;

λBP =
(1 − α) · (γ − β)

γ · (α − β)
· λPN . (11)

Considered with Equation(11) and scaled λPN to 1, the optimization object in
Equation(10) can be reexpressed as:
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min
α,β,γ

∑

pi≥α

(1 − pi) +
∑

β<pj<α

(pj · (1 − α) · (γ − β)
γ · (α − β)

+ (1 − pj) · β · (α − γ)
γ · (α − β)

)

+
∑

pk≤β

pk · 1 − γ

γ
. (12)

We can get the three thresholds and all cost functions through solving the op-
timization problem now. It is not easy to get the optimum result as the search
space for α, β, γ is (0, 1). In this paper, we assume the search space is the set
of probabilities of all objects, then we can get the optimum result now and we
also give an adaptive learning algorithm Alcofa as follows.

The basic idea of Alcofa is explained as following. The required thresholds
are relative to three special objects, then the values of thresholds are equal to
the three special objects’ probabilities. The goal of this algorithm is to find the
corresponding three probability values. Assume the current thresholds (α, β, γ)
are learned from objects X = {x1, . . . , xi−1} in the training set, for the next ob-
ject xi coming from the training set, the probability pi is added to compute the
overall cost COSTX∪{xi} based on thresholds (α, β, γ), denoted as MinCOST.
Then replace the three thresholds by pi next in turn to find the new minimal
overall cost COST′

X∪{xi}. If COST′
X∪{xi} < MinCOST, then current thresh-

olds (α, β, γ) are updated to thresholds (α′, β′, γ′); else, (α, β, γ) are unchanged.
Same procedure is applied to deal the next object xi+1, the loop is ended until
all objects in the training set are finished. The final thresholds are the result for
getting the minimum overall cost.

The key step of the algorithm is the replacement of one threshold by the
probability. For example, let α′ = pi now, if γ < pi and β < pi, then β, γ are
unchanged. If pi ≤ β or pi ≤ γ, it is inconsistent with β < γ < α, then γ
and β will change to two smaller corresponding numbers than α, for example,
γ′ = pi · (1 − 0.01) and β′ = pi · (1 − 0.05). The new thresholds are denoted as
(α′, β′, γ′).

Table 1 shows the description of the adaptive learning algorithm.
The computational complexity of Alcofa is O(n2). For the probability of object

xi: pi, we can compute it by using the rough set method or get it from other clas-
sifiers, e.g. Naive Bayesian classifier, which makes the algorithm more robust and
practical. Yao and Zhou [8] also have proposed a Naive Bayesian rough set model
by combing Naive Bayesian classifier with decision-theoretic rough set model.

3.2 Attribute Reduction Based on Minimal Decision Cost

In paper [10], the authors proposed three problems to show the difficulties with
the interpretations of those attribute reductions which are defined based on the
positive region preservation. An important reason of producing these difficulties
is the non-monotonicity property of the regions in decision-theoretic rough set
model. The decrease of an attribute can result a decrease or an increase or
a constant of a probabilistic region(positive, boundary, or negative region). In
this section, we define a new attribute reduction which is based on the above
optimization problem solving and irrelevant to those regions.
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Table 1. Adaptive Learning COst Functions Algorithm (Alcofa)

Input: training set X = {x1, . . . , xn}.
Output: three thresholds (α, β, γ).
BEGIN

initialize α, γ, β, X = ∅, min=MAXINT;
FOR each xi ∈ X

X = X ∪ {xi};
compute the overall cost COSTX based on (α, β, γ);
min = COSTX ;
replace α by pi;
compute the overall cost COST′

X based on (α′, β, γ);
IF COST′

X < min
min = COST′

X ;
END IF
replace β by pi;
compute the overall cost COST′

X based on (α, β′, γ);
IF COST′

X < min
min = COST′

X ;
END IF
replace γ by pi;
compute the overall cost COST′

X based on (α, β, γ′);
IF COST′

X < min
min = COST′

X ;
END IF
update the thresholds (α, β, γ) to (α′, β′, γ′)

corresponding to the min value;
END FOR
return the current thresholds (α, β, γ);

END BEGIN

Based on attribute set A ⊆ C, we can rewrite the cost formulation as:

COSTA =
∑

xi∈POS(α,β)(πD |πA)

(1 − pi) · λPN

+
∑

pj∈BND(α,β)(πD|πA)

(pj · λBP + (1 − pj) · λBN )

+
∑

pk∈NEG(α,β)(πD |πA)

pk · λNP . (13)

Then the optimization problem is described as finding proper attribute set to
make the whole decision cost minimum. Based on that, an attribute reduction
definition based on minimum decision cost is given as following:
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Definition 2. In a decision table S = (U, At = C ∪ {D}, {Va}, {Ia}), R ⊆ C is
an attribute reduct if and only if

(1) R = arg minR⊆C{COSTR},
(2) ∀R′ ⊂ R, COSTR′ > COSTR.

Compared to other definitions of attribute reduction, the main difference is that
our definition is irrelevant to the positive region or non-negative region, and the
objective of the reduction is to help users make better decisions which means
the overall decision cost is minimum.

3.3 Generality of the Optimization Problem

From the definition of the decision cost, we know that the cost is composed of
three parts: cost of positive rules, cost of boundary rules and cost of negative
rules. In Equation(8), the importance of three types of costs is considered as
same. In some actual applications, it may not be suitable, e.g. a user prefers
positive rules and negative rules, which means he wants to make a direct decision.
Another user may prefer positive rules and boundary rules. For this kind of
situation, we propose a generality of the optimization problem, which will help
users get a proper result.

COST = εP ·
∑

pi≥α

(1−pi)·λPN +εB ·
∑

β<pj<α

(pj ·λBP +(1−pj)·λBN )+εN ·
∑

pk≤β

pk ·λNP ,

(14)

where εP , εB and εN denote the penalty of each kind of rules, respectively. If we
set εP = εN = 1 and εB > 1, then the resolution of the optimization problem
is prefer to make less boundary rules. More different settings can be discussed
in corresponding applications. We need more expert opinions or experiments to
decide the exact values of the three penalty functions.

4 Conclusion

In this paper we present an optimization viewpoint on decision-theoretic rough
set model. The decision cost is the basis of the model, and all rules are gener-
ated based on the minimum decision cost. From the view of that, we build an
optimization problem in decision-theoretic rough set model with the objective of
minimizing the decision cost. Through solving the optimization problem, we can
learn cost functions and thresholds from data without any preliminary knowl-
edge. This is an important attempt on learning cost functions automatically.
We also define an attribute reduction based on the optimization problem. An
attribute reduct is a minimal attribute set, and decisions generated from that
will bring minimum costs. We can see that the optimization viewpoint could
bring some new insights into decision-theoretic rough set model.
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