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Abstract. In the paper we deal with dimensionality reduction tech-
niques for a dataset with discrete attributes. Dimensionality reduction
is considered as one of the most important problems in data analysis.
The main aim of our paper is to show advantages of a novel approach
introduced and developed by Belohlavek and Vychodil in comparison of
two classical dimensionality reduction methods which can be used for
ordinal attributes (CATPCA and factor analysis). The novel technique
is fundamentally different from existing ones since it is based on another
kind of mathematical apparatus (namely, Galois connections, lattice the-
ory, fuzzy logic). Therefore, this method is able to bring a new insight to
examined data. The comparison is accompanied by analysis of two data
sets which were obtained by questionnaire survey.

Keywords: dimensionality reduction, discrete data, factor analysis, for-
mal concept analysis, fuzzy logic, matrix decomposition, principal com-
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1 Introduction

Nowadays, in many areas (such as engineering, computer science, biology or
economics) we are facing a problem of efficient processing of the large datasets.
Typical scenario is that we accomplish an experiment, questionnaire survey or
some kind of test, and as a result we gain a large tabular dataset. The rows of
such a table correspond to objects (e.g. respondents’ answers or observations),
while the columns correspond to examined attributes. Inside the table there are
stored attribute values for all objects. We can also interpret the attributes as
random variables taking on the values from certain domain.

The number of attributes that are examined on every object is called the di-
mensionality of the dataset. In many practical situations, the dimensionality of
the dataset is very high. Dimensionality reduction methods are able to trans-
form a high-dimensional space of attributes to a lower-dimensional space. The
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problem of dimensionality reduction has been studied extensively in the past
few decades and there are mainly two reasons for such a interest. First, despite
of our increased computational capability, the high-dimensional data is hard to
process efficiently. Moreover, dimensionality reduction techniques enables us to
understand given data in easier way.

In the paper we focus on dimensionality reduction methods based on vari-
ous types of matrix decompositions. We only consider methods which can be
applied to datasets with discrete (i.e. non-continuous) attribute values. Exam-
ples of discrete attributes are binary attributes which take on two values (e.g.
correct/incorrect, married/not-married), ordinal attributes which take on the
values from the ordered set (e.g. “bad” ≤ “neutral” ≤ “good”), or nominal
attributes whose values are represented by unordered categories (for instance,
“mathematics”, “physics”, “history”).

The basic methods for dimensionality reduction of the attribute value vectors
characterizing the analyzed objects are principal component analysis (PCA) and
factor analysis (FA). These methods suppose linear relationships between orig-
inal quantitative attributes and transform the original vectors to the new ones
characterized by new latent attributes. The aim of PCA is to find a real dimen-
sion of vectors. It goes from the covariance matrix. To reduce the dimensionality
of the original matrix, this one is transformed to the new coordinate system by
an orthogonal linear transformation.

For other types of attributes and relationships some other methods have been
developed. Multidimensional scaling (MDS) is generalization of factor analysis.
While factor analysis investigates relationships between attributes and is based
on the correlation matrix, MDS can be based on any matrix which expressed rela-
tionships between either attributes or objects. For ordinal attributes, coefficients
of rank correlation can be used. Non-metric MDS (NMMDS) is an alternative
approach in which only the order of values are considered.

Another approach to dimensionality reduction in case of categorical attributes
is their transformation to quantitative attributes. This is the basis of categorical
principal component analysis (CATPCA) which can include nonlinear relation-
ships between attributes.

Distinct assumptions are related with latent class (LC) models. We can mention
LC Cluster models and LC DFactor models as examples. In the former, the model
supposes a single nominal latent attribute with the number of categories equal to
the number of attribute groups. In the latter, the model can contain more latent
attributes (dichotomous or ordinal) called discrete factors. In both cases, response
attributes (indicators) can be nominal, ordinal, continuous, and/or counts.

The main contribution of this paper is to show comparison of just mentioned
classical methods with an approach which based on novel view how we can grasp
the problem of matrix decomposition. Classical methods are briefly described in
Section 2.1, while the explanation of the new approach is given in Section 2.2.
Chapter 3 focuses on using all described methods to two real datasets obtained
by questionnaire survey.



28 E. Bartl, H. Rezankova, and L. Sobisek

2 Dimensionality Reduction Methods

In this section we briefly describe two classical methods and a novel approach
of dimensionality reduction.

2.1 Classical Methods

CATPCA. The CATPCA method transforms categorical attributes (both nom-
inal and ordinal) to quantitative attributes by means of optimal scaling. This
optimization leads to obtaining optimal principal components. The iterative pro-
cess begins by assignment of a random value (object score) to each object. Let
us denote the matrix of object scores by the symbol X. Then the matrix Xw of
weighted object scores (Xw = WX) is created under the following relationships:

μTM∗WX = 0 and XTM∗WX = nwmW I,

where μ is the vector of expected values, M∗ =
∑

i Mj (Mj is a diagonal matrix
with the elements m(j)ii expressing weights vj of individual attributes for each
object; if the weight is not specified, then vj = 1), W denotes a diagonal matrix
with the elements wi expressing the weights of individual objects (for the non-
weighted objects wi = 1), nw is the sum of object weights, mw is the sum of
attribute weights.

FA. The factor analysis model is based on the correlation matrix. We can write
it in the form X = μ + ΓF + E, where μ is the vector of expected values, F
denotes the k-dimensional random vector of common factors Fi, Γ is the matrix
of factor loadings (p x k), and E is the p-dimensional vector specific factors εi
(p is the number of original attributes and k is the number of factors). One
supposes that the following assumptions are satisfied: E(Fi) = 0, E(εi) = 0,
Cov(F,E) = 0, Cov(F) = I, and Cov(E) = Ψ is a diagonal matrix.

The factors Fi are interpreted by means of correlation with original attributes.
The correlation matrix can be written in the form PXF = D− 1

2 +Γ, where D is a
diagonal matrix with elements expressing the variance of the original attributes.

2.2 The Novel Method

The novel method of dimensionality reduction introduced in [4] can be charac-
terized by the following points.

1. The attributes take on the values from a bounded scale which is equipped with
particular operations. The meaning of these operations (i.e. the way how we
compute with attribute values) is based on the theory of fuzzy logic in narrow
sense (see e.g. [7]). The bounded scale of attribute values is called complete
residuated lattice and it is often denoted by L. Binary operations defined on
L are supremum ∨, infimum ∧, multiplication ⊗ and its residuum → (mul-
tiplication and residuum are connected via adjointness property, for more
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details see [2]). If we consider ordinal attributes with values from linearly
ordered unit interval (i.e. L = [0, 1]), then supremum and infimum coincide
with maximum and minimum, respectively, multiplication is left-continuous
t-norm (e.g. usual product of real numbers), and residuum can be derived
from the multiplication using adjointness property.

2. Input dataset is interpreted as relational data. We consider a tabular data,
where X denotes the set of object, and Y denotes the set of attributes that
take on values from complete residuated lattice L. In terms of fuzzy logic, I
is a fuzzy relation between sets X and Y , i.e. I is a mapping X × Y → L.
We consider fuzzy relations as a particular case of fuzzy sets (see [2,8,10]).
Therefore, using standard fuzzy set notation we write I ∈ LX×Y . The value
Iij ∈ L (in i-th row and j-th column of the matrix I) is degree to which i-th
object has j-th attribute. To sum up, with a slight abuse of the notation,
we identify the matrix I representing tabular data with fuzzy relation I ∈
LX×Y .

3. The problem of dimensionality reduction is transformed to the problem of
matrix decomposition. Technically, for an n ×m matrix I we try to find an
n × k matrix A and a k × m matrix B such that I = A ◦ B, where ◦ is
a particular composition operator and the inner dimension k is as small as
possible. Again, we identify matrix A with fuzzy relation A ∈ LX×K , and
matrix B with fuzzy relation B ∈ LK×Y (K is a set with k elements). The
composition operator is defined as follows:

(A ◦B)ij =

k∨

l=1

Ail ⊗Blj .

In practice, we usually do not need the exact factorization. Instead, it is
sufficient to find an approximate decomposition I ≈ A◦B which even makes
the inner dimension smaller. Elements of the set K can be thought of as
factors which are able to explain original data stored in I. This justifies
our need to push the inner dimension k as much as possible. The meaning of
factorizing matrices can be then described as follows: Ail is a degree to which
l-th factor applies to i-th object, and Blj is degree to which j-th attribute
is a manifestation of l-th factor.

4. The problem of finding factors is solved using a particular method of analysis
of relational data called Formal Concept Analysis (FCA). This technique
was initiated by Wille in the paper [9]. The central notion in FCA is a
formal concept inspired by Port-Royal logic. The formal concepts represent
interesting clusters which can be found in the data. From the point of view
of Port-Royal logic, the formal concept is a couple 〈A,B〉 consisting of an
extent A ∈ LX (fuzzy set of objects covered by the concept) and an intent
B ∈ LY (fuzzy set of attributes covered by the concept). The extents can be
mathematically described as fixpoints of a closure operator ↑↓ : LX → LX

consisting of two adjoint operators ↑ : LX → LY and ↓ : LY → LX (for more
details, see [2,6]). Similarly, the intents are fixpoints of a closure operator
↓↑ : LY → LY . Set of all formal concepts is denoted by B(X,Y, I) and
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together with subsethood ordering of extents (or, equivalently, intents) forms
a complete lattice that is called concept lattice. In the end of this item, let us
mention that formal concepts have a nice geometrical meaning, particularly,
they form rectangular-shaped patterns in the input table (for more details,
refer to [4,3]).

The core of the novel method is based on the idea that formal concepts play the
role of factors. Namely, suppose a set F = {〈C1, D1〉, . . . , 〈Ck, Dk〉} ⊆ B(X,Y, I)
of several formal concepts. We denote by AF an n × k matrix such that l-th
column of this matrix coincides with vector Cl (extent of l-th formal concept
from F). Similarly, by BF we denote an k×m matrix in which l-th row coincides
with vector Dl (intent of l-th formal concept from F). It has been shown in [4]
that decomposition using formal concept is universal, i.e. for every I there exists
a set F ⊆ B(X,Y, I) of formal concepts such that I = AF ◦ BF . In addition
to that, formal concepts are optimal factors. Formally, if I = A ◦ B with inner
dimension equal to k, then there exists a set F ⊆ B(X,Y, I) of formal concepts
such that I = AF ◦BF and |F| ≤ k (i.e. number of formal concepts, which serve
as factors, is not greater than inner dimension k of the given decomposition
I = A ◦B).

Using geometrical interpetation of formal concepts, the problem of finding
F ⊆ B(X,Y, I) such that I = AF ◦BF can be reduced to the problem of finding
the smallest set of formal concepts (rectangular-shaped patterns) covering all
non-zero values in given tabular data (due to lack of space, we just refer to [3]
for more information). If we need not the exact decomposition I = AF ◦BF we
can take only few formal concepts F ′ ⊆ F . In this case, we obtain approximate
decomposition I ≈ AF ′ ◦ BF ′ , i.e. formal concepts from F ′ cover the non-zero
values in given tabular data just partly.

3 Applications

3.1 Analyzed Dataset

For illustration, we analyzed two real datasets obtained on the basis of a ques-
tionnaire survey. They concern perception of the policemen in the Czech Re-
public by young people (survey from 2006, 356 respondents). The first dataset
(named Typical policeman) includes 24 ordinal attributes characterizing a typ-
ical policeman and the second one (named Ideal policeman) includes the same
number of attributes characterizing an ideal policeman. Respondents’ answers
are coded from 1 to 7 (the value 1 means the most positive level, the value 7 the
most negative level). Four and five factors obtained by traditional factor analysis
are characterized in [5].

3.2 Analyses Using CATPCA and FA

For the comparison of the novel approach with classical methods modified for
ordinal attributes, we chose categorical principal component analysis (CATPCA)
and factor analysis (FA) based on Kendall’s coefficient of the rank correlation.
We used the SPSS system for these analyses.
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CATPCA. On the basis of our previous experiments results and for the rea-
son of comparability of different methods, we realized the analysis for four di-
mensions. As a result we obtained for example the values of these dimensions,
percentages of explained variability for each dimension, and component loadings
graphs for selected dimensions.

These graphs for the second and fourth dimensions (for the reason of the best
resolution of individual attributes) are displayed in Fig. 1. However each com-
bination of dimensions gives a little distinct view on the relationships between
variables. In this type of graph, the smaller angle means the greater similarity of
attributes. However, we do not get any information on the level of the answers,
if positive or negative features are predominant.

Results for dataset Typical policeman: Four dimensions explain almost 64%
of variance. In Fig. 1 (left) we can identify some very similar attributes, e.g.
y5 and y6 (hardness and power), y1, y2 and y3 (attributes expressing ambitious
level, fastness, and activity), or y7 and y9 (friendliness and kindness).

Results for dataset Ideal policeman: Four dimensions explain almost 60% of
variance. Contrary of the previous case, we can see in Fig. 1 (right) that at-
tributes y2 and y5 (fastness and hardness) are close. Further, attributes y4, y6
and y8 (bravery, power and cleverness) are very similar. One pair is also created
by attributes y9 and y11 (kindness and fairness).

Fig. 1. CATPCA: dataset Typical policeman (left) and Ideal policeman (right)

FA. In this case we also realized the analysis for four factors. We applied the
Varimax rotation. As a result we obtained for example the values of component
loadings, percentages of explained variability for each factor, and component
graphs for selected factors. These graphs for the second and fourth components
are displayed in Fig. 2.

Results for dataset Typical policeman: Four factors explain more than 59%
of variance. The relationships are less evident but some attributes are also close,
e.g. y7 and y9 (friendliness and kindness). We can identify groups of variables
according to quadrants. For example attributes y13, y19, y21, y23 and y24 express
moral features.
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Fig. 2. FA: dataset Typical policeman (left) and Ideal policeman (right)

Results for dataset Ideal policeman: Four factors explain more than 50% of
variance. In this case we can distinguish several groups of attributes. On one
hand, we can see attributes y4, y5 and y6 (bravery, hardness and power, i.e.
features characteristic for a man) in the top part of the graph, on the other hand
there is a separate group of attributes on the right side. There are attributes y7,
y9, y13, y19, y22 and y24 which concerns moral features and human relationships.

3.3 Analysis Using the Novel Method

First of all, we need to choose a bounded scale of attribute values with appro-
priate operations. For the purpose of analysis of given datasets we use so-called 7-
element �Lukasiewicz chain, i.e. complete residuated lattice L = {0, 16 ,

2
6 ,

3
6 ,

4
6 ,

5
6 , 1},

where ∨ = max, ∧ = min, a⊗b = max(0, a+b−1), and a → b = min(1, 1−a+b)
for all a, b ∈ L.

Since attributes values and coded respondents’ answers are different, we need
to make a simple adjustment in the preprocessing stage: Iij = 1

6 · (I ′ij − 1),
where I ′ij ∈ {1, 2, . . . , 7} is j-th coded answer of i-th respondent, and Iij ∈ L
is corresponding normalized attribute value. For instance, coded answer “3” of
attribute “ambitious-lazy” with the meaning “rather ambitious” is adjusted to
the attribute value 2

6 ∈ L.

Results for Dataset Typical Policemen. As an output of the algorithm
based on the novel method (see [3]) we obtain a collection of factors F , as de-
scribed in Section 2.2. The typical behaviour of this algorithm for exact decom-
position I = AF ◦BF is that the number of factors |F| is greater than the number
of all attributes |Y |. Particularly, in the case of dataset Typical policeman the
algorithm computes 48 factors which explain input data precisely.

On the other hand, first few factors computed by the algorithm give us a very
good approximation. Particularly, the first factor explains about 20% of the data,
first 7 factors explain about 50% of the data, and first 17 factors explain about
75% of the data (in terms of denotation used in Section 2.2, F ′ consisting of
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first 17 factors computed by the algorithm cover 75% of the input data, which
means that the three quarters of the cells in matrices AF ′ ◦ BF ′ and I contain
the same values). This phenomena directly relates to the fact that the algorithm
firstly find the factors covering an input data in maximal way (i.e. the algorithm
computes the factors according their importance).

We can lucidly depict every factor Fi ∈ F in terms of its extent and intent.
Because both extent and intent are fuzzy sets, we can draw them using a graph
(see [8], [10]). In our case, x-axis denotes objects or attributes. While y-axis
denotes degree to which Fi applies to particular object, or degree to which a
particular attribute is a manifestation of Fi. The first factor F1 is shown in
Fig. 3–4.

object

degree

0

1
6

2
6

3
6

4
6

5
6

1

Fig. 3. Dataset Typical policeman: extent of the factor F1
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Fig. 4. Dataset Typical policeman: intent of the factor F1

Now, we describe the first factor verbally. From Fig. 4 we can see that the
degree to which every attribute is a manifestation of F1 is rather high (in most
cases 4

6 ). So factor F1 represents overall bad personality traits of a typical police-
man: rather lazy, unfriendly, unfair, rude and so on. Moreover, Fig. 4 shows that
F1 applies to most of objects in high degree. In other words, many respondents
characterized a typical policeman by this factor.

Results for Dataset Ideal Policeman. Similarly as in the case of the dataset
Typical Policeman, 45 factors explain all the data. What is different is that only
the first factor explains about 50% of the data. Furthermore, first 9 and 19
factors explain about 75% and 90% of the data, respectively. So compare to the
dataset Typical policeman, we need very few factors to make considerably good
approximation.

First factor F1 is depicted in Fig. 5 and 6. Attributes y5, y7, y9, y13, y19
and y24 are manifestations of the first factor in very high degree (except the
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Fig. 5. Dataset Ideal policeman: extent of the factor F1
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Fig. 6. Dataset Ideal policeman: intent of the factor F1

attribute y7, this degree is equal to 1). Using these attributes we can say that
the first factor describes a policeman who is nonauthoritative (attribute y5:
hard-soft) and who has very bad communication skills (for instance, attributes
y7: friendly-unfriendly, y9: kind-rude or y13: peaceful-violent). Since this factor
applies to all respondents in low degree (mostly in degree 1

6 ), we can argue, that
authoritativeness and communication skills are the most desired qualities of a
policeman.

The interpretation of other factors for the datasets Typical policeman and
Ideal policeman can be made in similar way, and it will be shown in extended
version of this paper.

4 Conclusions and Future Work

In this paper we analyzed the datasets Typical policeman and Ideal policeman
using categorical principal component analysis, factor analysis and using the new
method based on formal concept analysis. All methods gives us the meaningful
factors reducing the dimensionality of the input datasets. Since the factors in the
novel method are extent-intent-based, this method is able to describe in what
degree a particular factor is applicable to all respondents. Such feature can be
viewed as one of the advantages of the novel method.

In terms of approximate decomposition, the new approach gives us two differ-
ent results for both datasets. We need 7 factors in order to explain about 50% of
dataset Typical policemen, but only 1 factor explaining 50% of the dataset Ideal
policeman. This distinction leads us to the conclusion that the respondents have
similar conception of the personality traits of an ideal policeman.
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Future work will include analyzing other datasets using the novel method in
order to obtain deeper insight to the practicability of this new approach.
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