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Abstract. We study generalized parameterized approximations, defined
using both rough set theory and probability theory. The main objective
is to study, for a given subset of the universe U , all such parameter-
ized approximations, i.e., for all parameter values. For an approximation
space (U,R), where R is an equivalence relation, there is only one type of
such parameterized approximations. For an approximation space (U,R),
where R is an arbitrary binary relation, three types of parameterized
approximations are introduced in this paper: singleton, subset and con-
cept. We show that the number of parameterized approximations of given
type is not greater than the cardinality of U . Additionally, we show that
singleton parameterized approximations are not useful for data mining,
since such approximations, in general, are not even locally definable.

1 Introduction

The entire rough set theory is based on ideas of the lower and upper approxi-
mations. Complete data sets, presented as decision tables, are well described by
an indiscernibility relation, yet another fundamental idea of rough set theory.
The indiscernibility relation is an equivalence relation. Standard lower and up-
per approximations were extended, using probability theory, to parameterized
approximations. Such approximations were studied, among others, in [1–7]. The
parameter, called a threshold and associated with the parameterized approxi-
mation, may be interpreted as a probability. The threshold is, in general, a real
number.

So far parameterized approximations were usually defined as lower and upper
approximations. As it was observed in [8], the only difference between so called
lower and upper parameterized approximations is in the choice of the value of
the threshold.

Due to the fact that we explore the set of all parameterized approximations of
a given type, the distinction between lower and upper approximations is blurred.
Therefore, we will define only one kind of parameterized approximations for an
approximation space (U,R), where U is a finite set and R is an equivalence
relation on U .
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This paper, for a given decision table and a subset of the universe explores
the set of all parameterized approximations. It is shown that the number of all
parameterized approximations is finite and quite limited.

Additionally, this paper generalizes the usual three types of approximations:
singleton, subset and concept, used for approximation spaces (U,R), where R is
an arbitrary binary relation. Similarly as for singleton standard approximations,
a singleton parameterized approximation of a subset X of the universe U is, in
general, not definable. There are two types of definability, local and global. If
the set X is globally definable, it is locally definable, the converse is, in general,
not true. Sets that is the singleton parameterized approximation of X are, in
general, not even locally definable. The idea of parameterized approximations is
applied to incomplete data sets. It is well known [9, 10] that incomplete data
sets, i.e., data sets with missing attribute values, are described by characteristic
relations, which are reflexive but, in general, neither symmetric nor transitive.

2 Equivalence Relations

In this section we will discuss data sets without missing attribute values, i.e.,
complete. Complete data sets are describable by equivalence relations. Then
we will discuss all parameterized partitions defined over a space approximation
(U,R), where U is a finite set and R is an equivalence relation.

2.1 Complete Data

Many real-life data sets have conflicting cases, characterized by identical values
for all attributes but belonging to different concepts (classes). Data sets with
conflicting cases are called inconsistent. An example of the inconsistent data set
is presented in Table 1. The data set presented in Table 1 is inconsistent since it
contains conflicting cases: the cases 2 and 4 are in conflict with the case 3 and
the case 6 is in conflict with case 8.

In Table 1, the set A of all attributes consists of three variables Temperature,
Headache and Cough. A concept is a set of all cases with the same decision
value. There are two concepts in Table 1, the first one contains cases 1, 2, 4
and 6 and is characterized by the decision value no of decision Flu. The other
concept contains cases 3, 5, 7 and 8 and is characterized be the decision value
yes.

The fact that an attribute a has the value v for the case x will be de-
noted by a(x) = v. The set of all cases will be denoted by U . In Table 1,
U = {1, 2, 3, 4, 5, 6, 7, 8}.

For an attribute-value pair (a, v) = t, a block of t, denoted by [t], is a set
of all cases from U such that for attribute a have value v. An indiscernibility
relation R on U is defined for all x, y ∈ U by

xRy if and only if a(x) = a(y) for all a ∈ A.
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Table 1. An inconsistent data set

Attributes Decision

Case Temperature Headache Cough Flu

1 normal no yes no

2 normal no no no

3 normal no no yes

4 normal no no no

5 high yes no yes

6 high yes yes no

7 high no yes yes

8 high yes yes yes

Equivalence classes of R are called elementary sets of R. An equivalence class
of R containing x is denoted [x]. Any finite union of elementary sets is called
a definable set [11]. Let X be a concept. In general, X is not a definable set.
However, set X may be approximated by two definable sets, the first one is called
a lower approximation of X , denoted by appr(X) and defined as follows

{[x] | x ∈ U, [x] ⊆ X},

The second set is called an upper approximation of X , denoted by appr(X) and
defined as follows

∪ {[x] | x ∈ U, [x] ∩X �= ∅}.

For example, for the concept [(Flu, no)] = {1, 2, 4, 6},
appr({1, 2, 4, 6}) = {1},

and

appr({1, 2, 4, 6}) = {1, 2, 3, 4, 6, 8}.

2.2 Parameterized Approximations

Let (U,R) be an approximation space, where R is an equivalence relation on U .
A parameterized approximation of the set X with the threshold α, 0 < α ≤ 1,
is denoted by apprα(X) and defined as follows

∪{[x] | x ∈ U, Pr(X |[x]) ≥ α},

where [x] is an elementary set of R and Pr(X | [x]) = |X∩[x]|
|[x]| is the conditional

probability of X given [x] and |X | denotes the cardinality of the set X .
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Table 2. Conditional probabilities

[x] {1} {2, 3, 4} {5} {6, 8} {7}

Pr({1, 2, 4, 6} | [x]) 1 0.667 0 0.5 0

Obviously, the equivalence relationR uniquely defines a partition on U defined
as the family of all elementary sets of R. Such a partition will be denoted by R∗.
For Table 1, R∗ = {{1}, {2, 3, 4}, {5}, {6, 8}, {7}}.

For the set X and all equivalence classes from R∗ we may compute the set
of all distinct conditional probabilities Pr(X | [x]) and then sort these numbers
in the ascending order. The number of all nonempty distinct parameterized ap-
proximations of X is equal to the number of distinct and positive conditional
probabilities Pr(X | [x]).

Table 2 shows conditional probabilities for all members of R∗. In Table 2 there
are three positive conditional probabilities: 0.5, 0.667 and 1. Therefore there are
only three parameterized approximations:

appr0.5({1, 2, 4, 6}) = {1, 2, 3, 4, 6, 8},
appr0.667({1, 2, 4, 6}) = {1, 2, 3, 4},

and

appr1({1, 2, 4, 6}) = {1}.
Obviously, for the concept X , the parameterized approximation of X com-

puted for the threshold equal to the smallest positive conditional probability
Pr(X | [x]) is equal to the upper approximation of X . Additionally, the param-
eterized approximation of X computed for the threshold equal to 1 is equal to
the lower approximation of X .

3 Arbitrary Binary Relations

In this section first we will study approximations defined on the approxima-
tions space A = (U,R) where U is a finite nonempty set and R is an arbitrary
binary relation. Then we will extend corresponding definitions to generalized
parameterized approximations.

3.1 Nonparameterized Approximations

First we will quote some definitions from [12]. Let x be a member of U . The
R-successor set of x, denoted by Rs(x), is defined as follows

Rs(x) = {y | xRy}.

The R-predecessor set of x, denoted by Rp(x), is defined as follows
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Rp(x) = {y | yRx}.
For the rest of the paper we will discuss only R-successor sets and corresponding
approximations.

Let X be a subset of U . The R-singleton lower approximation of X , denoted
by apprsingleton(X), is defined as follows

{x | x ∈ U,Rs(x) ⊆ X}.
The singleton lower approximations were studied in many papers, see, e.g., [9,
10, 13–20].

The R-singleton upper approximation of X , denoted by apprsingleton(X), is
defined as follows

{x | x ∈ U,Rs(x) ∩X �= ∅}.
The singleton upper approximations, like singleton lower approximations, were
also studied in many papers, e.g., [9, 10, 13, 14, 17–20].

The R-subset lower approximation of X , denoted by apprsubset(X), is defined
as follows

∪ {Rs(x) | x ∈ U,Rs(x) ⊆ X}.
The subset lower approximations were introduced in [9, 10].

The R-subset upper approximation of X , denoted by apprsubset(X), is defined
as follows

∪ {Rs(x) | x ∈ U,Rs(x) ∩X �= ∅}.
The subset upper approximations were introduced in [9, 10].

The R-concept lower approximation of X , denoted by apprconcept(X), is de-
fined as follows

∪ {Rs(x) | x ∈ X,Rs(x) ⊆ X}.
The concept lower approximations were introduced in [9, 10].

The R-concept successor upper approximation of X , denoted by
apprconcept(X), is defined as follows

∪ {Rs(x) | x ∈ X,Rs(x) ∩X �= ∅}
The concept upper approximations were studied in [9, 10, 16].

3.2 Parameterized Approximations

By analogy with standard approximations defined for arbitrary binary relations,
we will introduce three kinds of parameterized approximations for such relations:
singleton, subset and concept.
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A singleton parameterized approximation of X with the threshold α, 0 < α ≤
1, denoted by apprsingletonα (X), is defined as follows

{x | x ∈ U, Pr(X | Rs(x)) ≥ α},

where Pr(X |Rs(x)) =
|X∩Rs(x)|
|Rs(x)| is the conditional probability of X given Rs(x).

A subset parameterized approximation of the set X with the threshold α,
0 < α ≤ 1, denoted by apprsubsetα (X), is defined as follows

∪{Rs(x) | x ∈ U, Pr(X | Rs(x)) ≥ α},

where Pr(X |[x]) = |X∩Rs(x)|
|Rs(x)| is the conditional probability of X given Rs(x).

A concept parameterized approximation of the set X with the threshold α,
0 < α ≤ 1, denoted by apprconceptα (X), is defined as follows

∪{Rs(x) | x ∈ X, Pr(X | Rs(x)) ≥ α}.
The number of different R-successor sets Rs(x), where x ∈ U , is obviously not
greater than n, where n is the cardinality of U . Therefore, for a given concept
X , there is at most n different conditional probabilities Pr(X | Rs(x)). Thus,
the number of different parameterized approximations of given type (singleton,
subset or concept) is also not greater than n.

Obviously, for the concept X , the parameterized approximation of a given
type (singleton, subset or concept) of X computed for the threshold equal to
the smallest positive conditional probability Pr(X | [x]) is equal to the standard
upper approximation of X of the same type. Additionally, the parameterized
approximation of a given type of X computed for the threshold equal to 1 is
equal to the standard lower approximation of X of the same type.

3.3 Incomplete Data Sets

It is well-known that any incomplete data set is described by a characteristic
relation R, a generalization of the indiscernibility relation. The characteristic
relation is reflexive but, in general, is neither symmetric nor transitive. For in-
complete data sets R-definable sets are called characteristic sets, a generalization
of elementary sets.

We distinguish between two types of missing attribute values: lost (e.g., the
value was erased) and ”do not care” conditions (such a value may be any value
of the attribute), see [9, 10].

An example of incomplete data set is presented in Table 3.
For incomplete decision tables the definition of a block of an attribute-value

pair must be modified in the following way:

– If for an attribute a there exists a case x such that a(x) =?, i.e., the corre-
sponding value is lost, then the case x should not be included in any blocks
[(a, v)] for all values v of attribute a,
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Table 3. An incomplete data set

Attributes Decision

Case Temperature Headache Cough Flu

1 normal no * no

2 ? no no no

3 normal * no yes

4 normal no ? no

5 high yes * yes

6 high yes yes no

7 high ? yes yes

8 high yes yes yes

– If for an attribute a there exists a case x such that the corresponding value is
a ”do not care” condition, i.e., a(x) = ∗, then the case x should be included
in blocks [(a, v)] for all specified values v of attribute a.

For a case x ∈ U the characteristic set KB(x) is defined as the intersection of
the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in the following
way:

– If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x),

– If a(x) =? or a(x) = ∗ then the set K(x, a) = U .

The characteristic setKB(x) may be interpreted as the set of cases that are indis-
tinguishable from x using all attributes from B and using a given interpretation
of missing attribute values.

For the data set from Table 3, the set of blocks of attribute-value pairs is
[(Temperature, normal)] = {1, 3, 4},
[(Temperature, high)] = {5, 6, 7, 8},
[(Headache, no)] = {1, 2, 3, 4},
[(Headache, yes)] = {3, 5, 6, 8},
[(Cough, no)] = {1, 2, 3, 5},
[(Cough, yes)] = {1, 5, 6, 7, 8}.

The corresponding characteristic sets are

KA(1) = KA(4) = {1, 3, 4},
KA(2) = {1, 2, 3},
KA(3) = {1, 3},
KA(5) = KA(6) = KA(8) = {5, 6, 8},
KA(7) = {5, 6, 7, 8}.
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Table 4. Conditional probabilities

Rs(x) {1, 3, 4} {1, 2, 3} {1, 3} {5, 6, 8} {5, 6, 7, 8}

Pr({1, 2, 4, 6} | Rs(x)) 0.667 0.667 0.5 0.333 0.25

Conditional probabilities of the concept {1, 2, 4, 6} given a characteristic set
KA(x) are presented in Table 4.

For Table 3, all parameterized approximations (singleton, subset and concept)
are

apprsingleton0.25 ({1, 2, 4, 6}) = U,

apprsingleton0.333 ({1, 2, 4, 6}) = {1, 2, 3, 4, 5, 6, 8},

apprsingleton0.5 ({1, 2, 4, 6}) = {1, 2, 3, 4},

apprsingleton0.667 ({1, 2, 4, 6}) = {1, 2, 4},

apprsingleton1 ({1, 2, 4, 6}) = ∅,

apprsubset0.25 ({1, 2, 4, 6}) = U,

apprsubset0.333 ({1, 2, 4, 6}) = {1, 2, 3, 4, 5, 6, 8},

apprsubset0.5 ({1, 2, 4, 6}) = {1, 2, 3, 4},

apprsubset0.667 ({1, 2, 4, 6}) = {1, 2, 3, 4},

apprsubset1 ({1, 2, 4, 6}) = ∅,

apprconcept0.25 ({1, 2, 4, 6}) = {1, 2, 3, 4, 5, 6, 8},

apprconcept0.333 ({1, 2, 4, 6}) = {1, 2, 3, 4, 5, 6, 8},

apprconcept0.5 ({1, 2, 4, 6}) = {1, 2, 3, 4},

apprconcept0.667 ({1, 2, 4, 6}) = {1, 2, 3, 4},

apprconcept1 ({1, 2, 4, 6}) = ∅.
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3.4 Definability

Definability for completely specified decision tables should be modified to fit
into incomplete decision tables. For incomplete decision tables, a union of some
intersections of attribute-value pair blocks, where such attributes are members
of B and are distinct, will be called B-locally definable sets. A union of char-
acteristic sets KB(x), where x ∈ X ⊆ U will be called a B-globally definable
set. Any set X that is B -globally definable is B -locally definable, the con-
verse is not true. For example, the set {1} is A-locally definable since {1} =
[(Temperature, normal)]∩[(Cough, yes)]. However, the set {1} is not A-globally
definable. On the other hand, the set {1, 2, 4} = apprsingleton0.667 ({1, 2, 4, 6}) is not
even locally definable since in all blocks of attribute-value pairs containing the
case 4 contain also the case 3 as well. Obviously, if a set is not B-locally definable
then it cannot be expressed by rule sets using attributes from B. This is why it is
so important to distinguish between B-locally definable sets and those that are
not B-locally definable. In general, subset and concept parameterized approxi-
mations are globally definable while singleton parameterized approximations are
not even locally definable.

4 Conclusions

In this paper we study a set of all parameterized approximations, first for the
approximation space (U,R), where U is a nonempty finite set and R is an equiv-
alence relation, and then for the approximation space (U,R), where R is an arbi-
trary binary relation. For an arbitrary binary relation R standard definitions of
singleton, subset and concept approximations are generalized to parameterized
approximations. It is shown that the set of such parameterized approximations,
even if R is an arbitrary binary relation, is finite and quite limited. Moreover,
singleton parameterized approximations of a subset X of the universe U is, in
general, not even locally definable, so X is not expressible by a rule set. There-
fore, singleton parameterized approximations should not be used for data mining.
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