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Abstract. In rough set theory, the uncertainty of granulation and efficient feature
selection algorithms have attracted much attention in recent years. We focus on
the review of several common uncertainty measures and the relationships among
them. An efficient accelerator is developed to accelerate a heuristic process of
feature selection.
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1 Introduction

Rough set theory, as one of important models of granular computing, has become a
popular mathematical framework for pattern recognition, image processing, data min-
ing and knowledge discovery from various types of data[1, 4, 11–13, 22, 24]. In rough
set theory, the uncertainty of granulation and efficient feature selection algorithms have
aroused wide concern and research in recent years. Therefore, we focus on the re-
view of several common measures of uncertainty such as information entropy, infor-
mation granulation, axiom approach of information granulation and granular space
distance [6–9, 15–17]. Furthermore, based on the existing heuristic feature selection
algorithms[2, 3, 20], an efficient accelerated feature selection algorithm is developed to
save computational cost[14]. Finally, some further research topics in rough set theory
are presented. The main works are as follows.

2 Uncertainty in Rough Set Theory

In practices, the expression of information is usually uncertain, which comes from the
disorder, incidental, vague and approximation of information. In this section, we focus
on the review of several common measures of uncertainty in rough set theory, such as
information entropy and information granulation. And an axiom approach of informa-
tion granulation was developed, and it has been proved each of the existing definitions
of information granulation is a special instance of this axiom definition. In addition, a
notion of granular space distance, which can be also conceived as a new uncertainty
measure, is introduced to measure the divergence between granular spaces.
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2.1 Information Entropy

Many scholars have used Shannon’s entropy and its variants to measure uncertainty in
rough set theory[19, 20].

Let S = (U, A) be an information system and U/A = {R1,R2, · · · , Rm}. Shannon’s
entropy is defined as

H(A) = −
m∑

i=1

|Ri|
|U | log2

|Ri|
|U | . (1)

Let P,Q ⊆ A, U/P = {P1, P2, · · · , Pm} and U/Q = {Q1,Q2, · · · ,Qn}. Shannon’s
conditional entropy is defined as

H(Q|P) = −
m∑

i=1

|Pi|
|U |

n∑

j=1

|Pi ∩ Q j|
|Pi| log2

|Pi ∩ Q j|
|Pi| . (2)

However, Shannon’s entropy is not a fuzzy entropy, which cannot measure the fuzziness
in rough set theory. To address this issue, complementary entropy is introduced, which
can measure both randomness and fuzziness of an information system [6].

For the information system S = (U, A), complementary entropy is defined as

E(A) =
m∑

i=1

|Ri|
|U |

(
1 − |Ri|
|U |

)
. (3)

Complementary conditional entropy is defined as

E(Q|P) =
m∑

i=1

n∑

j=1

|Pi ∩ Q j|
|U |

|Pc
i ∩ Qc

j|
|U | . (4)

From the view of knowledge-content nature, we introduced a new information entropy
(combination entropy) to measure uncertainty of an information system [15].

For the information system S = (U, A), combination entropy is defined as

CE(A) =
m∑

i=1

|Ri|
|U |

⎛⎜⎜⎜⎜⎜⎝1 −
C2
|Ri |

C2
|U|

⎞⎟⎟⎟⎟⎟⎠ . (5)

Conditional combination entropy is defined as

CE(Q|P) =
m∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
|Pi|
|U |

C2
|Pi |

C2
|U|
−

n∑

j=1

|Pi ∩ Q j|
|U |

C2
|Pi∩Qj |
C2
|U|

⎞⎟⎟⎟⎟⎟⎟⎠ . (6)

In rough set theory, the uncertainty of a target concept results from its boundary re-
gion, which is called Roughness. In [12], Pawlak proposed rough degree to measure
the roughness of approximated concepts. However, for the different approximation
spaces, the rough degrees of a target concept may be identical. To address this issue, we
introduced the notion of rough entropy.
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For the information system S = (U, A) and X ⊆ U. Rough entropy of X is defined as

EA(X) = −ρA(X)

⎛⎜⎜⎜⎜⎜⎝
m∑

i=1

|Ri|
|U | log2

|Ri|
|U |

⎞⎟⎟⎟⎟⎟⎠ , (7)

where, ρA(X) is the rough degree of X. Compared with the rough degree, the proposed
rough entropy is a more accurate measurement of the roughness.

For the information system S = (U, A), rough entropy of A is defined as

Er(A) = −
m∑

i=1

|Ri|
|U | log2

1
|Ri| . (8)

Further investigations indicate that the relationship between rough entropy and
Shannon’s entropy is

Er(A) + H(A) = log2|U |. (9)

2.2 Information Granulation

Information granulation is mainly used to study the uncertainty in rough set theory. To
characterize the average measure of information granules, we presented the definition
of knowledge granulation as follows.

GK(A) =
1
|U |2

m∑

i=1

|Ri|2. (10)

And the relationships between the complementary entropy and the knowledge granula-
tion is also established in [7], which is expressed as

E(A) +GK(A) = 1. (11)

Another information granulation called combination granulation is proposed in [15],
defined as

CG(A) =
m∑

i=1

|Ri|
|U |

C2
|Ri |

C2
|U|
. (12)

And the relationships between the combination entropy and combination granulation is
expressed as

CE(A) +CG(A) = 1. (13)

Based on the above characterizations and representation of information granules, we
presented an axiom approach of information granulation in [9].

Firstly, two new binary relations are introduced, which will be used in the following.
For the information system S = (U, A) and P,Q ⊆ A. S P(xi) denotes the tolerance

class of x with respect to P, K(P) = {S P(xi)|xi ∈ U} and K(Q) = {S Q(xi)|xi ∈ U}. f ′
and f ′′ are bijective functions.
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Then, a binary relation ≈ is defined as

K(P) ≈ K(Q) ⇔ ∃ f ′ : K(P) → K(Q) such that |S P(xi)| = | f ′(S P(xi))|, xi ∈ U, just
P ≈ Q.

A binary relation �′ is defined as

K(P) �′ K(Q)⇔ ∃ f ′′ : K(P)→ K(Q) such that |S P(xi)| ≤ | f ′′(S P(xi))|, xi ∈ U, just
P �′ Q.

If K(P) �′ K(Q) and K(P) � K(Q), then K(P) ≺′ K(Q), just P ≺′ Q.

Based on above expressions, we introduce the axiom approach as follows.
For the information system S = (U, A), G be a mapping from the power set of A to

the set of real numbers. We say that G is an information granulation in an information
system if G satisfies the following conditions:

1) G(P) ≥ 0; (Non-negative)

2) ∀P,Q ⊆ A, if P ≈ Q, then G(P) = G(Q); (Invariability)

3) ∀P,Q ⊆ A, if P ≺′ Q, then G(P) < G(Q). (Monotonicity)

Note that, if K(P) = ω (ω = {{xi}|xi ∈ U}), G(P) achieves its minimum value; if
K(P) = δ (δ = {S P(xi)|S P(xi) = U}), G(P) achieves its maximum value.

As mentioned above, we have proved that some of above definitions are various
special forms of information granulation, which are as follows:

1) GK(A) is an information granulation, 1
|U| ≤ GK(A) ≤ 1.

2) CG(A) is an information granulation, 0 ≤ CG(A) ≤ 1.

3) Er(A) is an information granulation, 0 ≤ Er(A) ≤ log2|U |.
Through using this axiom definition of information granulation, one can construct new
knowledge granulations according to various opinions.

2.3 Granular Space Distance

As mentioned above, in rough set theory, information entropy and information gran-
ulation are two main approaches to measuring the uncertainty of a granular space.
However, information entropy and information granulation cannot characterize the dif-
ference between any two granular space structures in an approximation space. To ad-
dress this issue, we introduce in this section a notion of granular space distance to dif-
ferentiate two given granular structures, which aims to reveal the geometrical structure
underlying the granular spaces[16].

For the information system S = (U, A) and P,Q ⊆ A. Granular space distance
between K(P) and K(Q) is defined as

D(K(P),K(Q)) =
1
|U |

|U|∑

i=1

|S P(xi) ∪ S Q(xi)| − |S P(xi) ∩ S Q(xi)|
|U | . (14)

Note that the granular space distance satisfies the three properties of a distance space
on all granular structures induced by a given universe.
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Let P,Q,R ⊆ A. K(P), K(Q) and K(R) are granular structures on S . One can get the
following properties:

1) 0 ≤ D(K(P),K(Q)) ≤ 1 − 1
|U| ;

2) D(ω, δ) = 1 − 1
|U| , and D(K(P), ω) + D(K(P), δ) = 1 − 1

|U| ;

3) D(K(P),K(Q)) = D(¬K(P),¬K(Q));

4) If K(P) � K(Q) � K(R), then D(K(P),K(R)) = D(K(P),K(Q)) + D(K(Q),K(R));

5) If K(P) � K(Q), then D(K(P), ω) ≤ D(K(Q), ω) and D(K(P), δ) ≥ D(K(Q), δ).

Remark. Based on the analyses in above three subsections, we know that there exists
a complement relationship between information entropy and information granulation.
In other words, the bigger the entropy is, the smaller the information granulation; the
smaller the entropy is, the bigger the information granulation. The granular space dis-
tance can be used to distinguish the divergence between two granular structures with the
same information granulation (or information entropy), which characterizes the essence
of uncertainty of granular structures.

The above measures of uncertainty have a wide variety of applications, such as mea-
suring the significance of attributes, constructing decision trees and evaluating uncer-
tainty of rules, designing heuristic feature selection algorithms, etc. They will play a
significant role in further researches in granular computing.

3 Accelerator of Feature Selection

In rough set theory, feature selection (also called attribute reduction) aims to retain the
discriminatory power of original features. It plays an important role in many areas in-
cluding pattern recognition, machine learning and data mining. In the last two decades,
many techniques of attribute reduction have been developed. Skowron proposed a dis-
cernibility matrix approach to obtain all attribute reducts of an information system [18].
Kryszkiewicz proposed an approach to computing the minimal set of attributes that
functionally determine a decision attribute[5]. In addition, based on the generalized
rough set models[10, 23, 25], several reduction algorithms were introduced, such as
β−reduct, α−reduct, α−relative reduct, reduction based on decision-theoretic, etc. To
improve the time efficiency, many heuristic attribute reduction algorithms have been
developed[2, 3, 6, 7, 20]. However, quite often, the above algorithms are computa-
tionally time-consuming for large-scale data sets. To overcome this shortcoming, we
designed a accelerated mechanism, which can be used to accelerate a heuristic process
of feature selection[14].

Theorem 1. Let S = (U,C∪D) be a decision table, X ⊆ U and P = {R1,R2, · · · , Rn} be
a family of attribute sets with R1 � R2 � · · · � Rn (Ri ∈ 2C). Given Pi = {R1,R2, · · · ,Ri},
we have

POS U
Pi+1

(D) = POS U
Pi

(D) ∪ POS Ui+1
Pi+1

(D), (15)

where U1 = U and Ui+1 = U − POS U
Pi

(D).
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According to this theorem, we know that the target decision D can be positively approx-
imated by using granulation orders P on the gradually reduced universe. This mecha-
nism implies the idea of the accelerator for improving the computing performance of a
heuristic attribute reduction algorithm.

We focus on the four representative attribute reduction algorithms, which are reduc-
tion algorithms based on positive region, Shannon’s entropy, complementary entropy
and combination entropy, respectively. The significance measures of attributes in those
four reduction algorithms are as follows. For convenience, we introduced a uniform
notation EF(D|B) to denote those measures. For example, if one adopts Shannon’s con-
ditional entropy to define the attribute significance, then EF(D|B) = H(D|B).

For the decision table S = (U,C ∪ D) and B ⊆ C. ∀a ∈ B, the significance measure
of a in B is defined as

S iginner(a, B,D,U) = EF(D|B − {a}) − EF(D|B). (16)

∀a ∈ C − B, the significance measure of a in B is defined as

S igouter(a, B,D,U) = EF(D|B) − EF(D|B∪ {a}). (17)

Based on Theorem 1, we concentrate on the rank preservation of the significance
measures of attributes, which can be studied in the following theorem.

Theorem 2. Let S = (U,C∪D) be a decision table, B ⊆ C and U′ = U−POS U
B (D). For

∀a, b ∈ C − B, if S igouter(a, B,D,U) ≥ S igouter(b, B,D,U), then S igouter(a, B,D,U ′) ≥
S igouter(b, B,D, U′).

Based on the rank preservation proved in Theorem 2, a general accelerated attribute
reduction algorithm is designed. In this general accelerated algorithm framework, we
denote the evaluation function (stop criterion) by EFU(B,D) = EFU(C,D).

Algorithm 1. A general accelerated feature selection algorithm (FSPA)

Input: Decision table S = (U,C ∪ D);
Output: One reduct red.

S tep 1: red ←Ø;//red is the pool to conserve the selected attributes
S tep 2: Compute S iginner(ak,C,D,U), k ≤ |C|;
S tep 3: Put ak into red, where S iginner(ak,C,D,U) > 0;// These attributes form the

core of the given decision table
S tep 4: i← 1, R1 = red, P1 = {R1} and U1 ← U;
S tep 5: While EFUi (red,D) � EFUi (C,D) Do

{Compute the positive region POS U
Pi

(D),
Ui = U − POS U

Pi
(D),

i← i + 1,
red ← red ∪ {a0}, where S igouter(a0, red, D,Ui) = max{S igouter(ak, red,D,

Ui), ak ∈ C − red},
Ri ← Ri−1 ∪ {a0},
Pi ← {R1,R2, · · · ,Ri} };

S tep 6: return red and end.
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The proposed accelerator provides an efficient accelerated strategy for heuristic
feature selection in rough set theory. Note that each of the modified algorithms can
choose the same attribute reduct as its original version, which possesses the same clas-
sification accuracy. Experiments carried out on nine UCI data sets show that these ac-
celerated algorithms outperform their original counterparts, especially for large-scale
data sets.

4 Conclusions and Further Work

In rough set theory, uncertainty of granulation and efficient feature selection algorithms
have aroused wide concern and study. We focus on the review and analysis of sev-
eral common uncertainty measures, an axiom approach of information granulation and
granular space distance. Furthermore, an efficient accelerator is developed to accelerate
a heuristic process of feature selection.

Based on the above results, some further researches are as follows.

• Uncertainty measures for generalized rough set models.
• Feature selection for the large-scale data sets by separating and fusing data sets.
• Efficient accelerated feature selection mechanism for hybrid data sets.
• Incremental feature selection algorithms for dynamic data sets.

It is our wish that this study provides new views and thinking on dealing with large-
scale and complicated data sets in applications.
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