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Abstract. The covering generalized rough sets are an improvement of
traditional rough set model to deal with more complex practical problems
which the traditional one cannot handle. A variable precision extension
of a covering generalized rough set model is proposed in this paper. Some
properties are investigated.
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1 Introduction

Rough set theory was introduced by Pawlak [18] to account for the definability
of a concept with an approximation in an approximation space. It captures and
formalizes the basic phenomenon of information granulation. The finer the gran-
ulation is, the more concepts are definable in it. For those concepts not definable
in an approximation space, their lower and upper approximations can be defined.

Rough set theory has found practical applications in many areas such as data
mining and data analysis. Successful applications of the rough set theory depend
on the understanding of its basic notions, various views, interpretations and
formulations of the theory, and potentially useful generalizations of the basic
theory [22, 23]. There have been extensive theoretical research on rough set
theory [3–13, 15].

However, partition or equivalence relation, as the indiscernibility relation in
the traditional rough set theory, is still restrictive and it may limit the appli-
cations of the rough set models. Therefore, many generalized rough set models
are proposed. In this paper, we focus on covering-based rough sets. Extensive
research on this subject can be found in [1, 2, 14, 16, 19, 20, 24, 25, 27].

Zhang et al. combined covering rough set model with variable precision rough
set model and proposed covering rough set model based on variable precision
by using the intersection of all the minimum description set of an element (es-
sentially the concept of neighborhood) in [26]. Liu et al. gave more properties
of Zhang’s model in [17]. Sun et al. extended Zhang’s model using the con-
cept neighborhood by granular approach in [21]. The elementary granules in the
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model are the neighborhoods. In this paper, we look the elements of a covering as
elementary granules and construct a new variable precision covering generalized
rough set model by granular approach.

2 Preliminaries

Let (U, R) be an approximation space, where U is the universe and R is an
equivalence relation on U. With each approximation space (U, R), two operators
on P(U) can be defined. For any X ⊆ U , then the lower approximation of X
and the upper approximation of X are defined as:

R−(X) =
⋃

{[x]R|[x]R ⊆ X} (1)

R−(X) =
⋃

{[x]R|[x]R ∩ X �= ∅} (2)

The pair < R−(X), R−(X) > is called a rough set. X is termed definable set(also
termed exact set) in approximation space (U, R) if and only if R−(X) = R−(X).
For the sake of simplicity, the lower approximation and upper approximation are
also denoted as X and X respectively.

Let U be a finite and nonempty set called the universe, and C a finite family
of nonempty subsets of U . C is called a covering of U if it satisfies

⋃
C∈C = U ,

then the pair (U, C) is called a covering approximation space.
The covering approximation operators is an extension of Pawlak approxima-

tion operators. It can be obtained by replacing the equivalence classes with the
elements of a covering in granule-oriented definition of Pawlak approximation
operators.Consequently, the lower and the upper approximation operators are
not necessarily dual operators. Given a covering approximation space (U, C), for
any X ⊆ U , then the lower approximation of X and the upper approximation
of X are defined as [19, 20]:

X =
⋃

{K|K ∈ C, K ⊆ X} (3)

X =
⋃

{K|K ∈ C, K ∩ X �= ∅} (4)

Example 1. Let U = {u1, u2, u3, u4, u5, u6}, C = {{u1, u2}, {u1, u2, u3}, {u5,
u6}, {u1, u3, u4}, {u3, u4, u5}}. Let X = {u1, u2}, then we have

X =
⋃{K|K ∈ C, K ⊆ X }={u1, u2}

X =
⋃{K|K ∈ C, K ∩ X �= ∅} = {u1, u2} ∪ {u1, u2, u3} ∪ {u1, u3, u4} =

{u1, u2, u3, u4}.
Let Y = {u4, u5}, we get

Y =
⋃{K|K ∈ C, K ⊆ X }=∅

Y =
⋃{K|K ∈ C, K ∩ X �= ∅} = {u5, u6} ∪ {u1, u3, u4} ∪ {u3, u4, u5} =

{u1, u3, u4, u5, u6}.
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3 Variable Precision Extension for Covering Generalized
Rough Set Model

Essentially, the idea of variable precision rough set model is based on the gen-
eralization of the notion of the standard set inclusion relation [28]. Given any
nonempty subsets A and B of the universe, We say that the set A is included in
the set B with an inclusion error β:

A ⊆β B ⇐⇒ e(A, B) ≤ β

e(A, B) =

{
1 − card(A∩B)

card(A) A �= ∅
0 A = ∅

The quantity e(A, B) is called the inclusion error of A in B. The value of β
should be limited in [0 ,0.5).

Now, we will give a variable precision extension of covering generalized rough
set model.

Definition 1. Let (U, C) be a covering approximation space. For X ⊆ U , the β-
lower approximation of of X, the β-upper approximation of X, the β-boundary
region of X and the β-negative region of of X are defined as

aprβ(X) =
⋃{K|K ∈ C, e(K, X) ≤ β }

aprβ(X) =
⋃{K|K ∈ C, e(K, X) < 1 − β }

bndβ(X) =
⋃{K|K ∈ C, β ≤ e(K, X) ≤ 1 − β }

negβ(X) =
⋃{K|K ∈ C, e(K, X) ≥ 1 − β }

The lower approximation of the set X can be interpreted as the collection of the
subset blocks from the cover C that can be classified into X with the classification
error not greater than β. Similarly, the β-negative region of X is the collection
the subset blocks from the cover C that can be classified into the complement of
X with the classification error not greater than β.

Example 2. Let U = {u1, u2, u3, u4, u5, u6}, C = {{u1, u2}, {u1, u2, u3}, {u5,
u6}, {u1, u3, u4}, {u3, u4, u5}}. Let X = {u1, u2}, β = 0.3, then we have

aprβ(X) =
⋃{K|K ∈ C, e(K, X) ≤ β }={u1, u2}

aprβ(X) =
⋃{K|K ∈ C, e(K, X) < 1 − β } = {u1, u2} ∪ {u1, u2, u3} ∪

{u1, u3, u4} = {u1, u2, u3, u4}.
Example 3. Let U = {u1, u2, u3, u4, u5, u6}, C = {{u1, u2}, {u1, u2, u3}, {u5,
u6}, {u1, u3, u4}, {u3, u4, u5}}. Let Y = {u4, u5}, β = 0.4, then we have

aprβ(Y ) =
⋃{K|K ∈ C, e(K, X) ≤ β }={u3, u4, u5}

aprβ(Y ) =
⋃{K|K ∈ C, e(K, X) < 1 − β } = {u5, u6} ∪ {u3, u4, u5} =

{u3, u4, u5, u6}.
Proposition 1. If β = 0, we have

aprβ(X) = X

aprβ(X) = X.
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Proof. aprβ(X) = apr0(X) =
⋃{K|K ∈ C, e(K, X) ≤ 0} =

⋃{K|K ∈ C, 1 −
card(K∩X)

card(K) ≤ 0} =
⋃{K|K ∈ C, card(K∩X)

card(K) ≥ 1} =
⋃{K|K ∈ C, K ⊆ X} = X.

On the other hand, aprβ(X) = apr0(X) =
⋃{K|K ∈ C, e(K, X) < 1 − 0}

=
⋃{K|K ∈ C, 1− card(K∩X)

card(K) < 1} =
⋃{K|K ∈ C, card(K∩X)

card(K) ≥ 0} =
⋃{K|K ∈

C, K ∩ X �= ∅} = X.

Proposition 2. Let (U, C) be a covering approximation space. We have
aprβ(X) = negβ(∼ X)

where,∼ X = U − X.

Proof. aprβ(X) =
⋃{K|K ∈ C, e(K, X) ≤ β} =

⋃{K|K ∈ C, 1 − card(K∩X)
card(K) ≤

β} =
⋃{K|K ∈ C, card(K∩X)

card(K) ≥ 1 − β} =
⋃{K|K ∈ C, card(K∩∼X)

card(K) ≤ β}
=

⋃{K|K ∈ C, e(K, X) ≥ 1 − β} = negβ(∼ X).

Proposition 3. Let (U, C) be a covering approximation space. Let X, X1, X2 ⊆
U . We have

(1)aprβ(∅) = ∅;
(2)aprβ(∅) = ∅;
(3)aprβ(U) = U ;
(4)aprβ(U) = U ;
(5)X1 ⊆ X2 ⇒ aprβ(X1) ⊆ aprβ(X2), aprβ(X1) ⊆ aprβ(X2);
(6)aprβ(X1 ∩ X2) ⊆ aprβ(X1) ∩ aprβ(X2);
(7)aprβ(X1 ∩ X2) ⊆ aprβ(X1) ∩ aprβ(X2);
(8)aprβ(X1) ∪ aprβ(X2) ⊆ aprβ(X1 ∪ X2);
(9)aprβ(X1) ∪ aprβ(X2) ⊆ aprβ(X1 ∪ X2).

Proof. (1) aprβ(∅) =
⋃{K|K ∈ C, e(K, ∅) ≤ β} =

⋃{K|K ∈ C, 1 − card(K∩∅)
card(K) ≤

β} =
⋃{K|K ∈ C, 1 ≤ β}. Since 0 ≤ β < 0.5, we have aprβ(∅) = ∅.

(2) aprβ(∅) =
⋃{K|K ∈ C, e(K, ∅) ≤ 1 − β} =

⋃{K|K ∈ C, 1 − card(K∩∅)
card(K) ≤

1 − β} =
⋃{K|K ∈ C, 1 ≤ 1 − β}. Since 0 ≤ β < 0.5, we have aprβ(∅) = ∅.

(3) aprβ(U) =
⋃{K|K ∈ C, e(K, U) ≤ β} =

⋃{K|K ∈ C, 1 − card(K∩U)
card(K) ≤

β} =
⋃{K|K ∈ C, 0 ≤ β}. Since C is a covering, we have aprβ(U) = U .

(4) aprβ(U) =
⋃{K|K ∈ C, e(K, U) ≤ 1−β} =

⋃{K|K ∈ C, 1− card(K∩U)
card(K) ≤

1 − β} =
⋃{K|K ∈ C, 0 ≤ 1 − β}. Since C is a covering, we have aprβ(U) = U .

(5) For any x ∈ aprβ(X1), ∃K ⊆ C such that x ∈ K, e(K, X1) ≤ β. By
definition, we get e(K, X1) = 1 − card(K∩X1)

card(K) , e(K, X2) = 1 − card(K∩X2)
card(K) . If

X1 ⊆ X2,we get card(K∩X2)
card(K) ≥ card(K∩X1)

card(K) , i.e. 1− card(K∩X2)
card(K) ≤ 1− card(K∩X1)

card(K) .
It follows e(K, X2) ≤ e(K, X1). Consequently, we have x ∈ aprβ(X2). Hence,
aprβ(X1) ⊆ aprβ(X2).

Similarly, we can get aprβ(X1) ⊆ aprβ(X2).
(6)-(9)are easy to get by (5).
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Proposition 4. Let (U, C) be a covering approximation space. For X ⊆ U, 0 ≤
β1 ≤ β2 < 0.5, we have

aprβ1(X) ⊆ aprβ2(X);
aprβ2(X) ⊆ aprβ1(X).

Proof. For any x ∈ aprβ1(X), we know ∃K ∈ C, such that e(K, X) ≤ β1. Since
0 ≤ β1 ≤ β2 < 0.5, we know e(K, X) ≤ β2, i.e. x ∈ aprβ2(X). It follows that
aprβ1(X) ⊆ aprβ2(X).

For any x ∈ aprβ2(X), we know ∃K ∈ C, such that e(K, X) ≤ 1 − β2. Since
0 ≤ β1 ≤ β2 < 0.5, we know e(K, X) ≤ 1 − β2 ≤ 1 − β1, i.e. x ∈ aprβ1(X). It
follows that aprβ2(X) ⊆ aprβ1(X).

Proposition 5. Let (U, C) be a covering approximation space. For X ⊆ U, 0 ≤
β < 0.5, we have

X ⊆ aprβ(X);
aprβ(X) ⊆ X.

Proof. It is straightforward from last proposition.

4 Conclusion

In this paper, a new variable precision covering based rough set model is pro-
posed. Some properties are investigated.
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iński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 174–182. Springer,
Heidelberg (2006)

15. Lin, T.Y., Liu, Q.: Rough approximate operators: Axiomatic rough set theory. In:
Ziarko, W.P. (ed.) Rough Sets, Fuzzy Sets and Knowledge Discovery, pp. 256–260.
Springer, Berlin (1994)

16. Liu, G., Sai, Y.: A comparison of two types of rough sets induced by coverings.
International Journal of Approximate Reasoning 50, 521–528 (2009)

17. Liu, R.X., Sun, S.B., Qin, K.Y.: On variable precision covering rough set. Computer
Engineering and Application 44, 47–50 (2008) (in Chinese)

18. Pawlak, Z.: Rough Sets-Theoretical Aspects of Reasoning about Data. Kluwer Aca-
demic Publishers, Dordrecht (1991)

19. Pomykala, J.A.: Approximation Operations in Approximation Space. Bull. Polish
Academy of Sciences 35, 653–662 (1987)

20. Pomykala, J.A.: On Definability in the Nondeterministic Information System. Bul-
letin of the Polish Academy of Sciences: Mathematics 36, 193–210 (1988)

21. Sun, S.B., Qin, K.Y.: On the Generalization of Variable Precision Covering Rough
Set Model. Computer Science 35, 210–213 (2008) (in Chinese)

22. Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International
Journal of Approximation Reasoning 15, 291–317 (1996)

23. Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets. Infor-
mation Sciences 109, 21–47 (1998)

24. Yao, Y.Y.: Relational interpretations of neighborhood operators and rough set
approximation operators. Information Sciences 101, 239–259 (1998)

25. Zakowski, W.: Approximations in the space (U,Π). Demonstratio Mathematica 16,
761–769 (1983)

26. Zhang, Y.J., Wang, Y.P.: Covering Rough Set Model Based on Variable Precision.
Journal of Liaoning Institute of Technology 26, 274–276 (2006) (in Chinese)

27. Zhu, W., Wang, F.Y.: Reduction and axiomization of covering generalized rough
sets. Information Sciences 152, 217–230 (2003)

28. Ziarko, W.: Variable precision rough sets model. Journal of Computer and Systems
Sciences 46, 39–59 (1993)


	A Variable Precision Covering Generalized Rough Set Model
	Introduction
	Preliminaries
	Variable Precision Extension for Covering Generalized Rough Set Model
	Conclusion
	References




