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Abstract. Cost-sensitive learning extends classical machine learning by
considering various types of costs, such as test costs and misclassification
costs, of the data. In many applications, there is a test cost constraint due
to limited money, time, or other resources. It is necessary to deliberately
choose a set of tests to preserve more useful information for classification.
To cope with this issue, we define optimal sub-reducts with test cost con-
straint and a corresponding problem for finding them. The new problem
is more general than two existing problems, namely the minimal test
cost reduct problem and the 0-1 knapsack problem, therefore it is more
challenging than both of them. We propose two exhaustive algorithms
to deal with it. One is straightforward, and the other takes advantage of
some properties of the problem. The efficiencies of these two algorithms
are compared through experiments on the mushroom dataset. Some
potential enhancements are also pointed out.
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1 Introduction

Cost-sensitive learning has attracted much research interests in the past two
decades. Two types of costs, namely test costs and misclassification costs [1],
are more often addressed. The test cost is the measurement cost of determining
the value of an attribute a exhibited by an object [1,2]. Hence in the context of
cost-sensitive learning, an attribute is also called a test.

In some classification problems, there are many available tests, and we would
like to remove some of them to save the test cost. An ideal solution is to minimize
the test cost, and at the same time, preserve the information of the decision
system. Then we can build classifiers which are as good as the ones built on
the original decision system. This problem is called the minimal test cost reduct
(MTR) problem and has been studied in [3,4]. Unfortunately, the test cost one
can afford is limited in many applications; and one has to sacrifice necessary
information to keep the test cost under budget. Our problem is: Given a test
cost constraint, how to choose test set with which the information is preserved
to the highest degree?

This paper proposes the concept of optimal sub-reducts with test cost con-
straint (OSRT). Since our problem is to find all these sub-reducts, we call it the
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OSRT problem. The new problem is more general than both the minimal test
cost reduct problem [3] and the 0-1 knapsack problem. We propose two exhaus-
tive algorithms to deal with it. The first is obtained from the problem definition
directly. The second takes advantage of some properties of the problem, hence
it is more efficient than the first one. By our open source software Coser [5],
they can solve the OSRT problem of the mushroom dataset, which has 22 tests,
in a number of seconds. Therefore they are applicable to datasets with rational
sizes of tests. Another important use of them is to evaluate the result quality of
heuristic algorithms, which can be employed in large datasets.

2 Preliminaries

Cost-sensitive decision systems are more general than decision systems. This
paper considers the simplest though most widely used model, called test-cost-
independent decision systems (TCI-DS) [4]. It is represented by a decision table
and a test cost vector c = [c(a1), c(a2), . . . , c(a|C|)]. Free tests are not considered.

Attribute reduction has been intensively studied by the rough set society.
There are many extensions of the classical rough set model [6], such as covering-
based [7,8], decision-theoretical [9], and dominance-based [10] rough set models.
A number of definitions of relative reducts exist [11,12]. The definition based on
the conditional information entropy is given below.

Definition 1. [13] Let S = (U, C, D, V, I) be a decision system, and H(D|B) be
the conditional entropy of B ⊆ C w.r.t. D. Any R ⊆ C is a Shannon’s entropy
reduct iff:

1. H(D|R) = H(D|C), and
2. ∀a ∈ R, H(D|R − {a}) > H(D|C).

Sometimes we are interested in test sets without redundant test.

Definition 2. Let S = (U, C, D, V, I) be a decision system and R ⊆ C. R is a
sub-reduct iff ∀a ∈ R, H(D|R − {a}) > H(D|C).

The aim of the classical reduct problem is to find a minimal reduct. When the
test cost issue is involved, we are interested in reducts with minimal test costs.
Let S be a TCI-DS and Red(S) be the set of all reducts of S. Any R ∈ Red(S)
where c(R) = min{c(R′)|R′ ∈ Red(S)} is called a minimal test cost reduct [3].
The minimal test cost reduct (MTR) problem is more general than the classical
reduct problem, which is NP-hard.

The 0-1 knapsack problem appears in textbooks such as data structure, algo-
rithm design and implementation. It is NP-complete.

3 The Optimal Sub-Reducts Problem

Suppose that we are given limited amount of test cost in terms of time, money,
etc. We have to sacrifice necessary information to meet the constraint. Naturally,
we require that the selected test set has the minimal possible conditional entropy.
This consideration brings us to the following definition.
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Definition 3. Let S = (U, C, D, V, I, c) be a TCI-DS and m be the test cost
upper bound. The set of all test sets subject to the constraint is

T (S, m) = {B ⊆ C|c(B) ≤ m}. (1)

In T (S, m), the set of all test sets with the minimal conditional entropy is

MT (S, m) = {B ∈ T (S, m)|H(D|B) = min{H(D|B′)|B′ ∈ T (S, m)}}. (2)

In MT (S, m), the set of all optimal sub-reducts is

PMT (S, m) = {B ∈ MT (S, m)|c(B) = min{c(B′)|B′ ∈ MT (S, m)}}. (3)

Any element in PMT (S, m) is called an optimal sub-reduct with test cost con-
straint, or an optimal sub-reduct for brevity.

In Definition 3, Equation (1) ensures that the test cost constraint is met. This
is the basic requirement of our problem. Then Equation (2) ensures that the
test set is optimal from the viewpoint of conditional information entropy. This is
our primary optimization objective. Finally, Equation (3) ensures that the test
cost is also optimized. This is our secondary objective. Without the secondary
objective, redundant tests may exist when m is greater than the test cost of a
minimal test cost reduct.

We have assumed that no free test exists, Equation (3) also ensures the that
there is no redundant test. According to Definition 2, we know that any element
in PMT (S, m) must be a sub-reduct. This is why PMT (S, m) is called the set
of all optimal sub-reducts. The problem of constructing PMT (S, m) is called the
optimal sub-reducts with test cost constraint (OSRT) problem.

Now we analyze the relationships between the new problem and two problems
mentioned in Section 2. When the test cost is enough for a reduct, the OSRT
problem coincides with the minimal test cost reduct (MTR) problem [14]. On
the other hand, the OSRT problem is very similar to the 0-1 knapsack problem.
The key difference lies in that the value of each item is fixed, but the “value”
of each test is variable; it depends on other selected tests. Therefore, the OSRT
problem is more general, and more difficult than the 0-1 knapsack problem.

4 Exhaustive Algorithms

Due to the complexity of the new problem, exhaustive algorithms are inap-
plicable to large datasets. They are, however, important from the theoretical
viewpoint. They also help to evaluate the performance of a heuristic algorithm,
often on small datasets. In the following context we assume that m < c(R) where
R ∈ MTR(S), so that our problem does not coincide with the MTR problem.

Definition 3 has indicated an exhaustive algorithm, called the straightforward
exhaustive optimal sub-reduct algorithm (SESRA). It has three steps: Step 1,
compute T (S, m); Step 2, compute MT (S, m); and Step 3, compute PMT (S, m).
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The running time of Step 1 is exponential with respect to |C|. Step 2 is the
most time consuming, and the running time for Step 3 is neglectful. This claim
will be validated in Section 5 through experiments.

Next we discuss how to revise SESRA to provide better performance. The
following propositions help to reduce some computation.

Proposition 1. Let ∅ ⊂ B ⊂ B′ ⊆ C, H(D|B′) ≤ H(D|B).

Proposition 2. Let B′ ∈ T (S, m) and ∅ ⊂ B ⊂ B′. B ∈ T (S, m).

Proposition 1 indicates that to compute min{H(D|B)|B ∈ T (S, m)}, we do not
have to check every element in T (S, m). Any element which is a subset of another
element should be removed, and the subset to be checked is

T ′(S, m) = T (S, m) − {B ∈ T (S, m)|∃B′ ∈ T (S, m)st.B ⊂ B′)}. (4)

Proposition 2 indicates that many elements of T (S, m) may be removed, and
|T ′(S, m)| may be significantly smaller than |T (S, m)|.

According to Proposition 1 and Equation (4),

min{H(D|B)|B ∈ T ′(S, m)} = min{H(D|B)|B ∈ T (S, m)}. (5)

Similar to Equation (2), let

M ′
T (S, m) = {B ∈ T ′(S, m)|H(D|B) = min{H(D|B′)|B′ ∈ T ′(S, m)}}. (6)

We know that M ′
T (S, m) = MT (S, m) ∩ T ′(S, m) 
= ∅. Therefore M ′

T (S, m) al-
ways contains some test sets with the minimal conditional entropy. In most
cases, however, not all test sets with the minimal conditional entropy are in-
cluded in M ′

T (S, m). That is, MT (S, m) 
⊆ M ′
T (S, m). To make the matter worse,

PMT (S, m) 
⊆ M ′
T (S, m). Similar to Equation (3), let

P ′
MT

(S, m) = {B ∈ M ′
T (S, m)|c(B) = min{c(B′)|B′ ∈ M ′

T (S, m)}}. (7)

We have P ′
MT

(S, m) 
= PMT (S, m), which indicates that we may miss optimal
sub-reducts by discarding some test sets as indicated by Equation (4). The reason
lies in that an element in PMT (S, m) is included in P ′

MT
(S, m) only if no superset

of it meets the constraint.
Fortunately, we have the following propositions to amend this flaw.

Proposition 3. ∀B ∈ MT (S, m), ∃B′ ∈ M ′
T (S, m) such that B ⊆ B′.

Proof. Because B ∈ MT (S, m) ⊆ T (S, m), ∃B′ ∈ T ′(S, m) such that B ⊆ B′. On
one hand, according to Proposition 1, H(D|B′) ≤ H(D|B). On the other hand,
according to Equation (2) and B′ ∈ T ′(S, m) ⊆ T (S, m), H(D|B) ≤ H(D|B′).
Therefore H(D|B′) = H(D|B). Equation (6) assures that B′ ∈ M ′

T (S, m). This
completes the proof.

The following proposition provides an approach to compute a superset of the set
of all optimal sub-reducts.
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Algorithm 1. The SESRA∗ algorithm
Input: S = (U, C, D, V, I, c), m
Output: PMT (S, m), the set of all optimal sub-reducts
Method: SESRA-star

1: Construct test sets and at the same time, obtain T (S, m);
2: Remove elements from T (S,m) and obtain T ′(S, m);
3: Select elements with the minimal conditional entropy and obtain M ′

T (S, m);
4: Compute M ′′

T (S, m) using the exhaustive attribute reduction algorithm;
5: Select elements with the minimal test cost and obtain PMT (S,m);

Proposition 4. Let RedM (S) be the set of all minimal test cost reducts of S
and

M ′′
T (S, m) =

⋃

B′∈M ′
T (S,m)

RedM (U, B′, D, V, I, c). (8)

PMT (S, m) ⊆ M ′′
T (S, m). (9)

Proof. For any B ∈ PMT (S, m) ⊆ MT (S, m), according to Proposition 3, ∃B′ ∈
M ′

T (S, m) such that B ⊆ B′. On the other hand, B has the minimal test cost,
therefore B ∈ RedM (U, B′, D, V, I, c). This completes the proof.

According to above analysis, we obtain a new algorithm as listed in Algorithm
1. Step 2 through 4 of SESRA∗ correspond to Step 2 of SESRA.

5 Experiments

The main purpose of our experiments is to compare the performances of SESRA
and SESRA∗, which are implemented in Coser [5]. Experiments are undertaken
on the mushroom dataset, where |U | = 8124 and |C| = 22. Parameter settings
are as follows: Test costs are random numbers in [1..100]. m = 0.8× c(R∗) where
R∗ is a minimal test cost reduct. Results are digested in Table 1.

Table 1. Results on the mushroom dataset (mean values for 100 test cost settings)

SESRA SESRA∗

T (S, m) 961.01 961.01
T ′(S, m) - 254.31

Set size MT (S, m) 1.34 -
M ′

T (S, m) - 1.04
M ′′

T (S, m) - 1.04
PMT (S, m) 1.01 1.01

Candidates building 1685.73 1680.95
Run time (ms) Consistency computing 11425.12 2391.85

Total 13110.85 4072.80

“-” stands for inapplicable.
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Table 1 showed that the number of test sets with conditional entropy checked
is reduced from 961.01 to 254.31, about 1/4 of the initial value. Consequently,
the time for respective step is reduced from 11425.12 ms to 2391.85 ms, a little
more than 1/5 of the initial value. Finally, the total time is reduced to about
1/3. In general, the improvement is significant.

6 Conclusions and Further Works

Exhaustive algorithms are undoubtedly the right choice for datasets with ra-
tional sizes. In this paper, we proposed the OSRT problem and two exhaustive
algorithms to deal with it. SESRA∗ is about 2 times faster than SESRA in our
experiments. In the future we will revise SESRA∗ to support bigger datasets.
We will also develop heuristic algorithms for large datasets.
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