

IFIP Advances in Information
and Communication Technology 365

Editor-in-Chief

A. Joe Turner, Seneca, SC, USA

Editorial Board

Foundations of Computer Science
Mike Hinchey, Lero, Limerick, Ireland

Software: Theory and Practice
Bertrand Meyer, ETH Zurich, Switzerland

Education
Arthur Tatnall, Victoria University, Melbourne, Australia

Information Technology Applications
Ronald Waxman, EDA Standards Consulting, Beachwood, OH, USA

Communication Systems
Guy Leduc, Université de Liège, Belgium

System Modeling and Optimization
Jacques Henry, Université de Bordeaux, France

Information Systems
Jan Pries-Heje, Roskilde University, Denmark

Relationship between Computers and Society
Jackie Phahlamohlaka, CSIR, Pretoria, South Africa

Computer Systems Technology
Paolo Prinetto, Politecnico di Torino, Italy

Security and Privacy Protection in Information Processing Systems
Kai Rannenberg, Goethe University Frankfurt, Germany

Artificial Intelligence
Tharam Dillon, Curtin University, Bentley, Australia

Human-Computer Interaction
Annelise Mark Pejtersen, Center of Cognitive Systems Engineering, Denmark

Entertainment Computing
Ryohei Nakatsu, National University of Singapore

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First
World Computer Congress held in Paris the previous year. An umbrella organi-
zation for societies working in information processing, IFIP’s aim is two-fold:
to support information processing within ist member countries and to encourage
technology transfer to developing nations. As ist mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development, ex-
ploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and
publications. IFIP’s events range from an international congress to local seminars,
but the most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited
and contributed papers are presented. Contributed papers are rigorously refereed
and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and
papers may be invited or submitted. Again, submitted papers are stringently ref-
ereed.

The working conferences are structured differently. They are usually run by a
working group and attendance is small and by invitation only. Their purpose is
to create an atmosphere conducive to innovation and development. Refereeing is
less rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP
World Computer Congress and at open conferences are published as conference
proceedings, while the results of the working conferences are often published as
collections of selected and edited papers.

Any national society whose primary activity is in information may apply to be-
come a full member of IFIP, although full membership is restricted to one society
per country. Full members are entitled to vote at the annual General Assembly,
National societies preferring a less committed involvement may apply for asso-
ciate or corresponding membership. Associate members enjoy the same benefits
as full members, but without voting rights. Corresponding members are not rep-
resented in IFIP bodies. Affiliated membership is open to non-national societies,
and individual and honorary membership schemes are also offered.

Scott A. Hissam Barbara Russo
Manoel G. de Mendonça Neto Fabio Kon (Eds.)

Open Source Systems:
Grounding Research

7th IFIP WG 2.13 International Conference, OSS 2011
Salvador, Brazil, October 6-7, 2011
Proceedings

13

Volume Editors

Scott A. Hissam
Carnegie Mellon University, Software Engineering Institute
Pittsburgh, PA 15213, USA
E-mail: shissam@sei.cmu.edu

Barbara Russo
Free University of Bolzano-Bozen, Center for Applied Software Engineering
Piazza Domenicani 3, 39100 Bolzano-Bozen, Italy
E-mail: barbara.russo@unibz.it

Manoel G. de Mendonça Neto
Universidade Federal da Bahia, Laboratório de Engenharia de Software
Av. Adhemar de Barros, s/n, Campus de Ondina
40170-110 Salvador, Bahia, Brazil
E-mail: manoel.g.mendonca@gmail.com

Fabio Kon
University of São Paulo, Department of Computer Science
Rua do Matão, 1010, 05508-090 São Paulo, SP, Brazil
E-mail: fabio.kon@ime.usp.br

ISSN 1868-4238 e-ISSN 1868-422X
ISBN 978-3-642-24417-9 e-ISBN 978-3-642-24418-6
DOI 10.1007/978-3-642-24418-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011936863

CR Subject Classification (1998): D.2, D.3, C.2.4, D.1, K.6.3, D.2.4, H.5

© IFIP International Federation for Information Processing 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

General Chair’s Foreword

Welcome to the 7th International Conference on Open Source Systems of the
International Federation for Information Processing (IFIP) Working Group 2.13.
The people and city of Salvador, Brazil, could not have been a more generous and
exciting host for our inaugural South American venue. Within these proceedings
you will find papers, panels, and workshops of practitioners and researchers
sharing their experiences, lessons, and discoveries as they pertain to creating,
distributing, acquiring, and using software and software-based services based on
free, libre, and open source software (FLOSS).

Selecting reliability as the theme for this year’s conference was timely and
appropriate given the pervasiveness of FLOSS in seemingly everything from
academia to industry, from scientific computing to entertainment, and from
consumer electronics to safety-critical systems—the reach of FLOSS seems un-
bounded. I continue to be amazed as to where I find FLOSS, such as my televi-
sion, navigation unit, picture frame, WiFi access point, multimedia set-top box,
and smartphone. However, thinking more broadly, perhaps I should not be so
surprised. As a community that stands on the shoulders of giants, the limits of
innovations are bounded only by our imagination, evidenced by the permeation
of FLOSS today. But, for FLOSS to maintain and expand its status in these in-
dustries, as well as those not explicitly mentioned here, we as a community must
continue to reflect appropriately in order to repeat our successes, and to reach
beyond that which is comfortable and ask the hard questions so that we may
address any remaining barriers impeding trust, adoption, and use of FLOSS.

Putting together this international conference from geographically disparate
locales was very challenging. Sincere thanks go to the Organizing Chairs Fabio
Kon and Manoel G. de Mendonça Neto for their relentless drive to get every
detail just right for this conference. For filling this wonderful venue with a top-
notch technical program, I thank Barbara Russo for selecting the theme of the
conference, publishing the call for papers, and marshaling all the submissions
through the review process and selecting the best of the best for the papers
accepted this year. And without skipping a beat, I thank Imed Hammouda and
Bruno Rossi for their tireless job of assembling and preparing the conference
proceedings.

It was only possible to accomplish all this work because others took on im-
portant duties to help make this conference a success. From tutorials chaired
by Stefan Koch and Hyrum Wright, workshops chaired by Roberto Di Cosmo,
to panels chaired by Jay Kesan, John Noll, and Marcos Sfair Sunyé—thank
you. The Publicity Chair, Greg Madey, and Co-chairs who worked to spread
word of the conference, which included Africa (Imed Hammouda), Asia (An-
tonio Cerone), Central and South America (Carlos Denner Santos Jr.), East-
ern Europe (Sulayman K. Sowe), Middle East (Faheen Ahmed), and Western

VI General Chair’s Foreword

Europe and the Nordic regions (Björn Lundell), are to thank for the interna-
tional diversity of the conference. For generating industry participation, I thank
Stefano De Panfilis and Rafael Prikladnicki for their efforts. I especially would
also like to thank the Web Portal team, Antonio Terceiro, Beraldo Leal, and
Paulo Meirelles for the complete revamp of the conference website.

A very special thanks goes to the Chairs and organizers of the Doctoral Con-
sortium, Paula Bach, Charles M. Schweik, and Alberto Sillitti, for their efforts to
continue this very special and important service to newly emerging researchers
embarking on the next discoveries related to FLOSS. I specifically want to thank
Charles Schweik for obtaining National Science Foundation support for US-based
doctoral student participation in the consortium. I also thank the IFIP Working
Group 2.13 and past conference organizers for their help and advice provided
to me, Pär J. Ågerfalk, Ernesto Damiani, Björn Lundell, Greg Madey, Walt
Scacchi, Giancarlo Succi, and Tony Wasserman.

Lastly, I humbly thank the authors and members of the Program Committee
without whom there would be no technical program.

August 2011 Scott Hissam

Program Chair’s Foreword

Welcome to the proceedings of the 7th International Conference on Open Source
Systems—Open Source Systems: Grounding Research (OSS 2011)—which was
held in Salvador, Brazil!

This year we had a very polyhedral technical program originated by open
source software (OSS) reliability the major theme of the conference and intended
to ground theory on OSS. The program had a special focus on OSS adoption
in industry, as quality and reliable software has better chances of being selected
and adopted in enterprises. Quality software also provides value to the final user,
and one of the conference sessions was dedicated to OSS value and economics.
Adopting OSS needs the support of an extensive OSS technology review and
building that follow the principles of open innovation, reuse, integration, and
compliance as proposed in the first-day session of the conference. Availability
of data is the wealth of the OSS community and OSS 2011 papers on mining
software repositories illustrate this through methods, practices, and results. Fi-
nally, OSS research needs to reflect on its own evolution. A session on knowledge
and research building concluded the first day. The majority of sessions included
lightning talks. These short and focused presentations were intended to increase
the debate and research discussion at the conference.

There were three great keynotes: Linda Northrop of the Software Engineering
Institute opened the conference at the welcome reception, James Herbsleb of
Carnegie Mellon University on the first day, and Christiana Soares de Freitas of
the University of Brasilia and Corinto Meffe of the Brazilian Ministry of Planning
on the second conference day.

There were workshops, tutorials, and a doctoral consortium event collocated
with the main conference. Panels helped increase the research discussion, for
example, on education in OSS and eGovernement and OSS.

The call for research papers attracted 56 paper submissions. The review was
intensive and several online discussions increased the quality of the review pro-
cess. Four full papers underwent a major revision process. We accepted 20 papers
as full research papers, 4 as industrial full papers, and 8 lightning talks.

I would like to join Scott in thanking the authors who provided the content
for the program, expressing my sincere gratitude to the Program Committee
members and the external reviewers who volunteered time and resources to make
this program possible. Finally, I thank all the people that made this conference
a success. In particular, I sincerely thank Scott, who was great in making this
conference meet the highest standards.

We hope that you will enjoy the proceedings.

Barbara Russo

Organization

Conference Officials

General Chair
Scott Hissam Software Engineering Institute,

Carnegie Mellon, USA

Program Chair

Barbara Russo Free University of Bolzano-Bozen, Italy

Organizing Chairs

Fabio Kon University of São Paulo, Brazil
Manoel G. de Mendonça Neto Federal University of Bahia, Brazil

Proceedings Chairs

Bruno Rossi Free University of Bolzano-Bozen, Italy
Imed Hammouda Tampere University of Technology, Finland

Industry Chairs

Rafael Prikladnicki PUC-RS, Brazil
Stefano De Panfilis Engineering Ingegneria Informatica, Italy

Doctoral Consortium Chairs
Alberto Sillitti Free University of Bolzano-Bozen, Italy
Charles M. Schweik University of Massachusetts, USA
Paula Bach Microsoft, USA

Workshops Chair

Roberto Di Cosmo University of Paris, France

Tutorial Chairs
Hyrum Wright University of Texas at Austin, USA
Stefan Koch Bogazici University, Turkey

Panel Chairs
Jay Kesan University of Illinois, USA
John Noll University of Limerick, Ireland
Marcos Sfair Sunyé Federal University of Paraná, Brazil

X Organization

Publicity and Social Media Chair

Greg Madey University of Notre Dame, USA

Publicity Chairs

(Africa) Imed Hammouda Tampere University of Technology, Finland
(Asia) Antonio Cerone United Nations University Macau, SAR China
(Central and South America)

Carlos Denner Santos Jr. University of São Paulo, Brazil
(E. Europe) Sulayman K. Sowe United Nations University Institute of

Advanced Studies, Japan
(Middle East) Faheen Ahmed United Arab Emirates University,

United Arab Emirates
(W. Europe, Nordic)

Björn Lundell University of Skövde, Sweden

Web Portal
Antonio Terceiro Federal University of Bahia, Brazil
Beraldo Leal University of São Paulo, Brazil
Paulo Meirelles University of São Paulo, Brazil

Advisory Committee

Giancarlo Succi Free University of Bolzano-Bozen, Italy
Walt Scacchi University of California, Irvine, USA
Ernesto Damiani University of Milan, Italy
Scott Hissam Software Engineering Institute, USA
Pär J. Ågerfalk Uppsala University, Sweden

Program Committee

Alberto Sillitti Free University of Bolzano-Bozen, Italy
Antonio Cerone United Nations University Macau SAR, China
Barbara Russo Free University of Bolzano-Bozen, Italy
Björn Lundell University of Skövde, Sweden
Bruno Rossi Free University of Bolzano-Bozen, Italy
Charles Knutson Brigham Young University, USA
Chintan Amrit Twente University, The Netherlands
Cleidson de Souza Universidade Federal do Pará, Brazil
Cornelia Boldyreff University of East London, UK
Daniela Cruzes Norwegian University of Science and

Technology, Norway
Davide Tosi University of Milano Bicocca, Italy
Diomidis Spinellis Athens University of Economics and Business,

Greece

Organization XI

Dirk Riehle Friedrich Alexander University of
Erlangen-Nürnberg, Germany

Ernesto Damiani University of Milan, Italy
Etiel Petrinja Free University of Bolzano-Bozen, Italy
Eugenio Capra Politecnico di Milano, Italy
Fabio Kon University of São Paulo, Brazil
Francesco DiCerbo Free University of Bolzano-Bozen, Italy
Giancarlo Succi Free University of Bolzano-Bozen, Italy
Gregorio Robles Universidad Rey Juan Carlos, Spain
Gregory R. Madey University of Notre Dame, USA
Guilherme Horta Travassos Federal University of Rio de Janeiro/COPPE,

Brazil
Guy Martin CollabNET, USA
Imed Hammouda Tampere University of Technology, Finland
Jay Kesan University of Illinois at Urbana, USA
Jean-Michell Dalle University Pierre and Marie Curie, France
Jesus Gonzales Barahona Universidad Rey Juan Carlos, Spain
John Noll University of Limerick, Ireland
Joseph Feller University College Cork, Ireland
Justin Erenkrantz Apache Software Foundation, USA
Kevin Crowston Syracuse University School of Information

Studies, USA
Klaas-Jan Stol Lero Institute of University of Limerick, Ireland
Kris Ven University of Antwerp, Belgium
Leonhard Dobusch Freie Universität Berlin, Germany
Luigi Lavazza University of Insubria , Italy
Maha Shaikh London School of Economics and Political

Science, UK
Netta Iivari University of Oulu, Finland
Patrick Wagstrom IBM Research, USA
Reidar Conradi Norwegian University of Science and

Technology, Norway
Richard Torkar Blekinge Institute of Technology, Sweden
Roberto Di Cosmo University of Paris Diderot, France
Sandra Slaughter Georgia Institute of Technology, USA
Sandro Morasca University of Insubria, Italy
Tony Wasserman Carnegie Mellon Silicon Valley, USA
Walt Scacchi University of California, Irvine, USA
Witold Pedrycz University of Alberta, Canada
Yeliz Eseryel University of Groningen, The Netherlands

Table of Contents

Part I: Papers

OSS Quality and Reliability

Impact of Stakeholder Type and Collaboration on Issue Resolution
Time in OSS Projects . 1

Anh Nguyen Duc, Daniela S. Cruzes, Claudia Ayala, and
Reidar Conradi

Towards a Unified Definition of Open Source Quality 17
Claudia Ruiz and William Robinson

OSS Products

Ginga-J - An Open Java-Based Application Environment for Interactive
Digital Television Services . 34

Raoni Kulesza, Jefferson F.A. Lima, Álan L. Guedes,
Lucenildo L.A. Junior, Silvio R.L. Meira, and
Guido L.S. Filho

Developing Architectural Documentation for the Hadoop Distributed
File System . 50

Len Bass, Rick Kazman, and Ipek Ozkaya

Review of Technologies of and for OSS

Modding as an Open Source Approach to Extending Computer Game
Systems . 62

Walt Scacchi

Preparing FLOSS for Future Network Paradigms: A Survey on Linux
Network Management . 75

Alfredo Matos, John Thomson, and Paulo Trezentos

A Review of Tool Support for User-Related Communication in FLOSS
Development . 90

Aapo Rantalainen, Henrik Hedberg, and Netta Iivari

XIV Table of Contents

Knowledge and Research Building in OSS

Knowledge Homogeneity and Specialization in the Apache HTTP
Server Project . 106

Alexander C. MacLean, Landon J. Pratt, Charles D. Knutson, and
Eric K. Ringger

Building Knowledge in Open Source Software Research in Six Years of
Conferences . 123

Fabio Mulazzani, Bruno Rossi, Barbara Russo, and Maximilian Steff

OSS Reuse, Integration, and Compliance

The Importance of Architectural Knowledge in Integrating Open
Source Software . 142

Klaas-Jan Stol, Muhammad Ali Babar, and Paris Avgeriou

Successful Reuse of Software Components: A Report from the Open
Source Perspective . 159

Andrea Capiluppi, Cornelia Boldyreff, and Klaas-Jan Stol

OSS Value and Economics

License Update and Migration Processes in Open Source Software
Projects . 177

Chris Jensen and Walt Scacchi

A Historical Account of the Value of Free and Open Source Software:
From Software Commune to Commercial Commons 196

Magnus Bergquist, Jan Ljungberg, and Bertil Rolandsson

Framing the Conundrum of Total Cost of Ownership of Open Source
Software . 208

Maha Shaikh and Tony Cornford

OSS Adoption in Industry

Libre Software as an Innovation Enabler in India: Experiences of a
Bangalorian Software SME . 220

Katja Henttonen

Adoption of OSS Development Practices by the Software Industry:
A Survey . 233

Etiel Petrinja, Alberto Sillitti, and Giancarlo Succi

Table of Contents XV

Towards Improving OSS Products Selection – Matching Selectors and
OSS Communities Perspectives . 244

Claudia Ayala, Daniela S. Cruzes, Xavier Franch, and
Reidar Conradi

Mining OSS Repositories

To Fork or Not to Fork: Fork Motivations in SourceForge Projects 259
Linus Nyman and Tommi Mikkonen

An Analysis of Author Contribution Patterns in Eclipse Foundation
Project Source Code . 269

Quinn C. Taylor, Jonathan L. Krein, Alexander C. MacLean, and
Charles D. Knutson

Cliff Walls: An Analysis of Monolithic Commits Using Latent Dirichlet
Allocation . 282

Landon J. Pratt, Alexander C. MacLean, Charles D. Knutson, and
Eric K. Ringger

Part II: Lightning Talks

Package Upgrade Robustness: An Analysis for GNU/Linux R© Package
Management Systems . 299

John Thomson, Andre Guerreiro, Paulo Trezentos, and Jeff Johnson

Applying Open Source Practices and Principles in Open Innovation:
The Case of the Demola Platform . 307

Terhi Kilamo, Imed Hammouda, Ville Kairamo,
Petri Räsänen, and Jukka P. Saarinen

KommGame: A Reputation Environment for Teaching Open Source
Software . 312

Veerakishore Goduguluri, Terhi Kilamo, and Imed Hammouda

Virtual Health Information Infrastructures: A Scalable Regional
Model . 316

Ann Séror

Something of a Potemkin Village? Acid2 and Mozilla’s Efforts to
Comply with HTML4 . 320

Matthijs den Besten and Jean-Michel Dalle

Aspects of an Open Source Software Sustainable Life Cycle 325
Flávia Linhalis Arantes and Fernanda Maria Pereira Freire

Open Source and Open Data: Business Perspectives from the
Frontline . 330

Juho Lindman and Yulia Tammisto

XVI Table of Contents

Forge.mil: A Case Study for Utilizing Open Source Methodologies
Inside of Government . 334

Guy Martin and Aaron Lippold

Part III: Industry Papers

Health Informatics: The Relevance of Open Source and Multilevel
Modeling . 338

Luciana T. Cavalini and Timothy W. Cook

Open Source Software for Model Driven Development: A Case Study . . . 348
Jonas Gamalielsson, Björn Lundell, and Anders Mattsson

The Third Generation of OSS: A Three-Stage Evolution from Gift to
Commerce-Economy . 368

Toshihiko Yamakami

Standing Situations and Issues of Open Source Policy in East Asian
Nations: Outcomes of Open Source Research Workshop of East Asia 379

Tetsuo Noda, Terutaka Tansho, and Shane Coughlan

Part IV: Workshops

Towards Sustainable Open Source (Abstract) . 385
Imed Hammouda and Björn Lundell

Improving US Department of Defense Technology Acquisition and
Development with Open Source (Abstract) . 386

Guy Martin and Aaron Lippold

Author Index . 387

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 1–16, 2011.
© IFIP International Federation for Information Processing 2011

Impact of Stakeholder Type and Collaboration on Issue
Resolution Time in OSS Projects

Anh Nguyen Duc1, Daniela S. Cruzes1, Claudia Ayala2, and Reidar Conradi1

1 Norwegian University of Science and Technology, Department of
Computer and Information Science,

Trondheim, Norway
{anhn,dcruzes,conradi@idi.ntnu.no}

2 Technical University of Catalunya, Department of Service Engineering
 and Information Systems,

Barcelona, Spain
{cayala@essi.upc.edu}

Abstract. Initialized by a collective contribution of volunteer developers, Open
source software (OSS) attracts an increasing involvement of commercial firms.
Many OSS projects are composed of a mix group of firm-paid and volunteer
developers, with different motivations, collaboration practices and working
styles. As OSS development consists of collaborative works in nature, it is
important to know whether these differences have an impact on collaboration
between difference types of stakeholders, which lead to an influence in the
project outcomes. In this paper, we empirically investigate the firm-paid
participation in resolving OSS evolution issues, the stakeholder collaboration
and its impact on OSS issue resolution time. The results suggest that though a
firm-paid assigned developer resolves much more issues than a volunteer
developer does, there is no difference in issue resolution time between them.
Besides, the more important factor that influences the issue resolution time
comes from the collaboration among stakeholders rather than from individual
characteristics.

1 Introduction

Open source software (OSS) development is a highly distributed and collaborative
activity. In OSS projects, stakeholders, who are people involve in software
development project such as developers, project leader, tester and end-users,
collaborate with each other in various ways to accomplish development tasks.
Although OSS was born as a movement mainly based on contributions of volunteer
stakeholders, an increasing number of firms are getting involved in OSS projects
[21][31]. Lakhani et al. found that around 40% of programmers are paid by
companies to contribute to OSS projects [24]. Hars and Ou obtained similar results in
a survey on the developers of the Linux kernel [29]. Consequently, many open source
projects contain both types of stakeholder (firm-paid and volunteer), which have
different motivations, collaboration practices and working styles. For instance, firm-
paid developers contribute to the OSS community as part of their jobs, which provide

2 A. Nguyen Duc et al.

them a financial motivation. In addition, they often also work on proprietary software
since it constitutes a part of the business model of their sponsor firm [2][9][25].
Therefore, they have to learn the community working style and adjust to the rhythms
and the demands of OSS development [2]. In contrast, volunteer developers are
usually motivated by social or technical reasons to demonstrate or improve their
technical skills [9][25].

Several studies have investigated the potential differences among firm-paid and
volunteer developers in OSS projects [2][21][24][29][31]. However, these studies did
not address whether these differences actually have an impact on the OSS project
outcomes such as quality of the source code, productivity of developers, activeness of
the community and time to accomplish a software evolution task.

A software evolution task (or software issue) is normally referred as a unit of work
to accomplish an improvement in the system. Dealing with a software issue includes
fixing defects, implementing new feature requests and enhancing current system
features. With a large amount of issues that occur from time to time, resolving them in
a cost-effective manner is essential to achieve a high user satisfaction with less
working effort.

Besides the impact of some special characteristics of stakeholders (in the issue
resolving process, they are usually reporters and assignees), the issue resolution time
can be influenced by a collaborative working process between reporters and
assignees. Pinzger et al. mention the Coordination theory in OSS, which state that the
interaction among stakeholders can impact software quality (such as mean time
between failure) and work performance (such as defect removal effectiveness and
problem fixing time) [30]. In the issue resolving process, stakeholders often use
electronic media such as mailing list, IRC and issue tracking system to discuss,
comment and clarify about an assigned task [23][26]. The collaboration among
stakeholders, such as discussion, instruction and clarification on an issue, is important
to the completion of the issue-resolving task.

This study has three main objectives. First, we characterize the difference in the
average amount of resolved issues and issue resolution time between a volunteer
assignee and a firm-paid assignee. To best of our knowledge, there is no study that
empirically investigates the influence of volunteers versus firm-paid developers on
issue resolution time. Second, we investigate collaboration among stakeholders in
OSS projects by using Social network metrics and analysis. Last, we explore the
impact of the collaboration measures on issue resolution time. While there are several
studies using Social network metrics investigating software quality (as described in
Section 2.1), this is among the first attempts to apply these metrics on studying issue
resolution time.

The rest of the paper is organized as follows. Section 2 presents a construction of
stakeholder collaboration measure using Social network analysis (SNA). While
Section 3 states our hypotheses, Section 4 describes our case study and data collection
procedure. Section 5 provides the hypotheses testing results. Section 6 discusses the
findings and Section 7 identifies the threats to validity. The paper ends with a
conclusion and future works.

Impact of Stakeholder Type and Collaboration on Issue Resolution Time in OSS Projects 3

2 Stakeholder Collaboration Measure by Social Network Analysis
(SNA)

2.1 Impact of Collaboration on Software Development

Table 1 presents several studies exploring the impact of collaboration on software
development outcomes. Bettenburg et al. studied the impact of social structure on
software quality and find a statistical relation between a communication flow between

Table 1. Studies about collaboration

Studies Dependent
Variable

Collaboration
Variable

Exploring
Method

Test
Results

Bettenb
urg et

al.
[6]

Number of
post-released
defects

Participant reputation
(number of contributed
messages)

Multiple linear
regression
model

Increase a
predictive power
of prediction
model 11.66%

Abreu et
al. [1]

Number of
code changes

Number of messages in
mailing list
Number of messages
from high-centrality-
degree developers

Spearman’s
correlation

R = 0.1 to 0.45
p < 0.001
R = 0.06 to 0.16
p < 0.05

Bird et
al. [7]

Post-released
defect
proneness

Developer-component
network measures, e.g.:
centrality degree

Release-cross
Multiple
Logistic
regression

Recall: 0.705 to
0.859.
Precision: 0.747
to 0.827

Wolf et
al. [32]

Build failure
likelihood

Developer-developer
network measures, e.g.:
density, centrality,
betweenness and
structural holes

Bayesian
classifier

Recall:0.62,
Precision: 0.75

Pinzger
et al.
[30]

Number of
failure

Number of authors,
number of commits,
networks measures e.g.:
Freeman centrality
degree and betweenness

Spearman
correlation
Multiple linear
regression
model

R= 0.503 to
0.747, p<0.01
R2= 0.698 to
0.746

Andrew
et al. [5]

Vulnerability
of software
files

Betweenness measures,
number of developers
and number of commits

Mann-
Whitney-
Wilcoxon
(MWW) test

Higher values
for vulnerable
file,
p<0.0001

Feczak
et al.
[14]

Bug fixing
time

Stakeholder network
measures, e.g: Freeman
centrality degree

Spearman
correlation

R = 0.13 to 0.35
p <0.05

Anbalag
an et al.

[2]

Defect
resolution
time

Number of unique
participants

Spearman
correlation

R = 0.22
p < 0.0001

Guo et
al. [16]

Likelihood
of fixed
defect

Defect opener reputation,
number of defect report
editors and assignees

Chi square test
Correlation test

p < 0.0001
Not reported

4 A. Nguyen Duc et al.

developers and users and post-release defects [6]. Abreu et al. investigated Eclipse
sub-projects and found a significantly positive correlation between communication
frequency between developers and number of injected defects in the software [1].
Bird et al. showed that a socio-technical network of software modules and developers
is able to predict software failure proneness with greater accuracy than other
prediction methods [7]. Wolf et al. formed a developer-task network to explore the
impact of developer communication on software build integration fail [32]. Pinzger et
al. constructed a developer-module network to predict the software failures [30].

More relevant to our focus are studies about relationship between developer
collaboration and defect fixing time. Feczak et al. empirically validated the
Coordination theory in open source projects and found that collaboration among
stakeholders, measured by social network metrics, has a positive influence on
software defect fixing time [14]. Anbalagan et al. also found a significant correlation
between number of participants in editing a defect report and median time taken to
correct it [2]. Guo et al. used collaboration measures to predict which defect will get
fixed in Windows 7 and concluded that the defects that have more people involved in
defect report editing will be more likely to be fixed [16]. While these studies show
that developers collaboration, measured by a developer-artifact network metrics is
useful for predicting software defects and fixing time, a similar approach can be
applied to discover the impact of developers collaboration on issue resolution time.

2.2 Issue-Stakeholder Network Measures

Social network analysis (SNA) considers social relationships in term of network
theories, which focus on social nodes, such as people, groups, organizations and
measures relationships and information flows among them [15]. In this study, we
construct an undirected graph to represent a network of issue-stakeholders. The graph
employs two types of nodes: stakeholders and issues. Stakeholders include a reporter
(who reports the issue), an assignee (who is assigned to resolve the issue) or a
commenter (who comments or discuss about the issue). A link occurs only between a
stakeholder and an issue, which represents for a stakeholder’s action on the issue, such
as an issue report, a report update, a comment on the issue and an issue assignment.

To establish the issue-stakeholder network, we use a social network analysis tool,
namely ORA1. The most common measure in SNA is centrality, which denotes the
structural power position of a node in a given network. There are three centrality
measures in SNA, namely Freeman Degree Centrality, Closeness and Betweeness. In
the scope of this study, we investigate Freeman Centrality Degree since this metric is
successfully applied in relevant studies [14][30][32]. In our network, the Freeman
Degree Centrality of an issue represents the number of unique stakeholders that
involve in the issue. For each issue, the high value of a centrality degree shows a large
number of stakeholders working on it (reporting, commenting or resolving it). The
centrality degree of an issue is calculated as in Formula 1:

1 http://www.casos.cs.cmu.edu/projects/ora/

Impact of Stakeholder Type and Collaboration on Issue Resolution Time in OSS Projects 5

Fig. 1. Issue-stakeholder network in issue resolution

()
()

1

d i
Gd i

n
=

−
 (1)

with d(i) is the node degree of a issue,
n is the total number of stakeholders and issues

Similarly, the Freeman Degree Centrality of a stakeholder is the number of issues
directly linked to the stakeholder. We also want to explore whether stakeholder
centrality has an impact on issue resolution time. For each issue, we calculate the
accumulative stakeholder centrality degree (Cs) as a sum of centrality degrees of all
involved stakeholders, as in Formula 2:

() () () ()Cs i Gdass i Gdrep i Gdcom i= + +∑ (2)

with Gdass(i), Gdrep(i) and Gdcom is the centrality degree of assignee,
reporter and commenter correspondently.

The meaning of Cs(i) is that the issue is important when they are resolved by many
stakeholders and by important stakeholders, who involved in many other issues.
Illustrated by Figure 1, the Freeman centrality degree of Stakeholder 2 is 5/11 and the
degree of Stakeholder 3 is 1/11, which shows that Stakeholder 2 involves in more
issues than Stakeholder 3 does. Issue 3’s centrality degree is 3/11 and Issue 4’s
centrality degree is 1/11, which shows that Issue 3 is involved by more stakeholders
than Issue 4 is. The accumulative stakeholder centrality degree of Issue 3 is 7/11.

Stakeholder 2

Issue 2Issue 1

Issue 5

Issue 3

Stakeholder 3

Stakeholder 4
Issue 6

Issue 4Stakeholder 1

Stakeholder 5

com
m

ents

resolves

re
so

lv
es

reports

reports

com
m

entsre
po

rts

re
po

rts reports

resolves

6 A. Nguyen Duc et al.

3 Research Hypotheses

In our context, a firm-paid stakeholder is an assignee or a reporter who works for a
commercial company that uses and contributes to the development of an OSS project.
We observe that many firm-paid assignees are also core contributors in developing
the OSS product. While these core project members have significant contributions in
developing the software [12], it is interested to know whether they also significantly
contribute to resolving issues in the software evolution phase. Therefore, our first
hypothesis is that:

H1: The stakeholder’s centrality degree of a firm-paid assignee is higher than
those of volunteer assignee. (Null hypothesis: there is no difference in distribution
of stakeholder centrality degrees between firm-paid and volunteer assignees).

Since firm-paid assignees also include the core members of the projects, they are
supposed to have more knowledge and experience in developing the OSS product
than peripheral members do [12]. Therefore the resolution time should be different
between the group of volunteer assignees and the group of firm-paid assignees. Our
second hypothesis is that:

H2: There is a difference in mean issue resolution time between a firm-paid
assignee and a volunteer assignee. (Null hypothesis: there is no difference in mean
issue resolution time between firm-paid and volunteer assignees).

An issue with many stakeholders involved might relate to many different software
modules or different development tasks. Therefore, the complexity of such issues is
higher and thus, it takes the assignee longer time to resolve. Our third hypothesis is
that:

H3: The larger number of stakeholders involve in an issue is, the longer the issue
resolution time is. (Null hypothesis: there is no correlation between the number of
stakeholders involved in an issue and the issue resolution time).

A large number of comments and discussions on an issue may be caused by problems
on the issue description (which leads to confusion or dissensus among stakeholders)
or by the complexity of the resolving task and could lead to longer resolution time.
Our last hypothesis is that:

H4: The larger number of exchanged messages on an issue is, the longer the issue
resolution time is. (Null hypothesis: there is no correlation between the number of
message exchanged in an issue and the issue resolution time).

4 The Case Study

4.1 Projects Context and Selection

Three OSS projects were selected for our study, namely Qt, Qpid and Geronimo. The
reasons for selecting these projects were: (1) these projects are active and ongoing for
at least 4 years, which ensure the scale of the datasets; (2) there are similar issue

Impact of Stakeholder Type and Collaboration on Issue Resolution Time in OSS Projects 7

tracking system used in these projects, which facilitate the data collection; (3) these
projects are similar in business domain and technical level, thus reducing the
variability of the results, and, (4) these projects are significantly influenced by firm-
paid developers, which enable the investigation of the impact of different stakeholder
types.

Qt is an Open Source cross-platform framework developed by Qt Development
Framework (Nokia) based on the programming language C++. The framework offers
common components such as networking, OpenGL, multimedia and a widget toolkit2.
Qpid is an cross-platform Open Source enterprise messaging system developed
around the open standard Advanced Message Queuing Protocol (AMQP). It is
implemented in many programming languages, such as: C++, C#, Python, Ruby and
Java3. The project originated from a joint venture mostly consisting of code by Red
Hat, Iona and JP Morgan. Geronimo is a server runtime framework that pulls
together the Open Source alternatives to create runtime instances that meet the needs
of developers and system administrators and open-source, Apache-licensed4. The
project originated from IBM developers.

4.2 Data Collection and Preprocessing

All software issues were collected from JIRA repositories5 of the respective projects.
The summary of datasets was described in Table 2, with the main, owner firm of each
project, the time frame of the issues collected for analysis, the total number of issues,
number of stakeholders (assigned developers and issue reporters, who collaborated
with the project during this period), the total number of issues in the repository and
the total number of issues that we used for our analysis.

Table 2. Issue collection from cases study

Info.\ Projects Qt Qpid Geronimo
Main Firms Qt (Nokia) Red Hat, JP Morgan IBM
Time Frame 11/03-12/10

(85 months)
9/06-12/10

(51 Months)
8/03-12/10

(87 Months)
Number of Stakeholders 1568 126 405
Number of issues 16818 3016 5697
Number of selected issues 9921 2278 4787

Issue resolution time was computed by using the created time field and the issue

resolved time field. We excluded 3514 issues that are not possible to calculate the
issue resolution time. We removed 2171 issues that have the state OPEN,
DUPLICATE or INVALID. We also deleted 2838 issues that do not have reporter or
assignee information (stated as unassigned or unknown), and issues with invalid

2 Qt project - http://qt.nokia.com/
3 Qpid project - http://qpid.apache.org/
4 Geronimo project - http://geronimo.apache.org/
5 JIRA–bug, issue and project tracking system, http://www.atlassian.com/software/jira/

8 A. Nguyen Duc et al.

stakeholder information (as described below). Twenty-two data points were also taken
out by an outlier detection function implemented in the R6 package. At the end of the
data preprocessing procedure, 16986 issues were selected for further analyses, which
consumes 67% of total number of issues.

The classification of stakeholder type (firm-paid or volunteer) was manually
executed by searching stakeholder name and professional information in the Internet.
The first information source is the list of contributor and mailing list from the project
repository. We found these stakeholders with explicit company information, either as
project initiators or main contributors of the open projects. With stakeholders that
company information was not given in the project site, we determined the affiliation
by: (1) the stakeholder’s profile from social networking site such as Facebook,
LinkedIn and personal blogs, and (2) the stakeholder’s email with a private company
domain. The stakeholder company information were extracted by the time when the
stakeholder worked in the OSS project. We assumed that the group of stakeholders
(more than three) come from the same company participate in the OSS project as a
company representative and are paid by the company. The stakeholders without any
identified company information were classified as volunteers.

After collecting stakeholder information, we synchronized the stakeholder name
and alias to avoid replicated data. Table 2 describes the total number of stakeholders
that involve in the OSS projects in the time period that data are collected.
Collaboration information was extracted from issue tracking systems and the mailing
lists of OSS projects using a Perl script. For each issue, we collected comments, edits
on the issue report and issue-related messages from the project mailing list.

4.3 Descriptive Statistics

Table 3 presents the distribution of reported issues by stakeholder types in Qpid,
Geronimo and Qt correspondingly. As our expectation, stakeholders from Redhat and
JP Morgan in Qpid (53.6% of reported issues) and stakeholders from IBM in
Geronimo (60.8% of reported issues) are the main contributors in reporting issues.
However, the largest amount of reported issues in Qt comes from volunteer reporters
(44.9% of reported issues). This observation can be explained by the large amount of
end-users involved in the Qt project, who directly report their problem, in the issue
project tracking system. Table 4 shows the distribution of resolved issues by different
stakeholder types. Not surprisingly, most of the issues are resolved by developers
from the main firms such as Redhat and JP Morgan (62.4% of resolved issues) in
Qpid, IBM (71.6% of resolved issues) in Geronimo and Nokia (62% of resolved
issues) in Qt.

Figure 4 presents box plot charts of issue centrality and issue-based messages in
the three projects. In Figure 4a shows that most of issues are touched by one to three
stakeholders, other than the reporter. In Figure 4b, the average number of issue-based
messages is similar among three projects. We see that number of message exchanged
around an issue in three projects is from none to four messages, slightly vary among
projects.

6 The R Project for Statistical Computing - http://www.r-project.org/

Impact of Stakeholder Type and Collaboration on Issue Resolution Time in OSS Projects 9

Table 3. Distribution of contribution in reporting issue

Issues from Qpid Geronimo Qt
Individual 453 (19.9%) 1205 (25.0%) 4452 (44.9%)
Other company 605 (26.5%) 683 (14.2%) 1124 (11.3%)
Main Firms 1220 (53.6%) 2919 (60.8%) 4345 (43.8%)
Total 2278 (100%) 4787 (100%) 9921 (100%)

Table 4. Distribution of contribution in resolving issue

Issues from Qpid Geronimo Qt
Individual 252 (11.1%) 401 (8.4%) 2463 (24.8%)
Other company 604 (26.5%) 956 (20.0%) 1315 (13.2%)
Main Firms 1422 (62.4%) 3420 (71.6%) 6143 (62.0%)
Total 2278 (100%) 4787 (100%) 9921 (100%)

Fig. 4a, b. Descriptive of issue centrality and issue-based messages

5 Hypotheses Testing Results

5.1 H1: The stakeholder’s centrality degree of a firm-paid assignee is higher than
those of a volunteer assignee.

Due to the fact that stakeholder centrality degrees are not normally distributed as
observed from histogram and descriptive statistics, we used Wilcoxon rank-sum test
[13].

Table 5. Resolution time by volunteer vs. firm-paid assignees

Projects Median centrality of
Firm-paid

Median centrality of
Volunteer Significance level

Geronimo 0.0169 0.0049 p=0.0014
Qpid 0.0114 0.0057 p=0.0251
Qt 0.0131 0.0024 p=0.0014

10 A. Nguyen Duc et al.

All the tests are performed using the statistic package R with alpha = 0.05. The null
hypothesis H1, which stated that there is no difference in stakeholder centrality degree
between firm-paid and volunteer assignee was investigated with a one-tail test. The
results are shown in Table 5. In all cases, the median values of centrality degree in the
firm-paid groups are significantly higher than those in the volunteer groups. In
particular, the number of issues involved by a firm-paid stakeholder is at least two
times higher than ones involved by volunteer stakeholder in all projects. The p-values
in all tests allow us to reject the null hypotheses in all projects. We accept the
alternative hypothesis that the centrality degree of firm-paid stakeholders is higher
than one of volunteer stakeholders.

5.2 H2: There is a difference in mean issue resolution time between a firm-paid
assignee and a volunteer assignee

The distribution of issue resolution time between firm-paid assignee and volunteer
assignee is shown in Figure 5. From the graph, we notice that the difference between
these two groups in Qt and Qpid is very small. In Geronimo, there is a slightly higher
difference in distribution of issue resolution time between firm-paid and volunteer
assignee, but the high standard deviation could make this insignificant. To test
whether there is a difference in issue resolution time between firm-paid and volunteer
assignees, we also used the Wilcoxon rank-sum test.

The null hypothesis H2, which stated that there is no difference in issue resolution
time between firm-paid and volunteer assignee was investigated with a two-tail test.
The results are shown in Table 6. We observed that in three cases, the test with
Geronimo data revealed a significant difference in resolution time between two
groups while those with Qt and Qpid data did not. Therefore, the null hypothesis was
rejected only in Geronimo dataset at significance level 95%. In Qpid and Qt, we
accept the assumption of the null hypothesis.

Fig. 5. Issue resolution time (days) between volunteer and firm-paid stakeholder

Impact of Stakeholder Type and Collaboration on Issue Resolution Time in OSS Projects 11

Table 6. Resolution time of volunteer vs. firm-paid assignees

Projects
Median resolution
time by Firm-paid

Median resolution
time by Volunteer Significance level

Geronimo 10 18 p= 0.0000
Qpid 23 17 p= 0.1653
Qt 102 101 p= 0.4911

5.3 H3: The larger number of stakeholders involve in an issue is, the longer the
issue resolution time is, and H4: The larger number of exchanged message
on an issue is, the longer the issue resolution time is

We performed a pair-wise correlation analysis among number of message, issue
centrality degree, sum of stakeholder centrality and issue resolution time.
The correlation matrixes for Qt, Qpid and Geronimo projects are shown in Table 7,
Table 8 and Table 9 respectively. The mark “**” represents a significance level at
0.01. Referring to Hopskin interpretation of value of correlation coefficient, which
classify the value of correlation coefficient as trivial (<0.1), minor (0.1 – 0.3),
moderate (0.3-0.5), large (0.5 – 0.7), very large (0.7 – 0.9) and almost perfect (0.9 -
1.0) [22], the correlation between number of task-based messages and issue resolution
time is significant at minor level in Qt, Qpid while it is at moderate level in
Geronimo. The correlation between issue centrality and its resolution time is at a
minor level for Qt and at a moderate level for Qpid and Geronimo. Besides, the
correlation coefficient between stakeholder accumulative centrality and resolution
time is slightly higher than the one of issue centrality. All of these correlation
coefficients are significant at level 0.01, which allow us reject the null hypotheses for
H3, H4 and accept the alternative ones. It is noticed that among three variables, the
accumulative stakeholder centrality degree has the largest correlation coefficient with
issue resolution time in all projects.

Table 7. Pairwise correlation for Qt

 No of
message

Issue
centrality

Sum. Stak.
centrality

Resolution
time

Number of message 1 0.413** 0.460** 0.125**
Issue centrality 1 0.213** 0.172**
Sum. Stak. centrality 1 0.262**
Resolution time 1

Table 8. Pairwise correlation for Qpid

 No of
message

Issue
centrality

Sum. Stak.
centrality

Resolution
time

Number of message 1 0.569** 0.423** 0.243**
Issue centrality 1 0.199** 0.310**
Sum. Stak. centrality 1 0.331**
Resolution time 1

12 A. Nguyen Duc et al.

Table 9. Pairwise correlation for Geronimo

 No of
message

Issue
centrality

Sum. Stak.
centrality

Resolution
time

Number of message 1 0.491** 0.382** 0.416**
Issue centrality 1 0.251** 0.303**
Sum. Stak. centrality 1 0.409**
Resolution time 1

6 Discussion of Results

Table 10 summarizes the testing results for each hypothesis. Concerning hypothesis
H1, the statistical test results reject the null hypotheses in all cases, which show the
centrality degree of an average firm-paid assignee are significantly higher than that of
an average volunteer assignee. This finding infers the distribution of labor between
firm-paid and volunteer assignees. It indicates that in the issue-resolving process, a
firm-paid assignee involves in much more issues than a volunteer assignee does.

On testing hypothesis H2, the issue resolution time significantly varies between
firm-paid assignees and volunteer assignees in only one out of three investigated
projects. Therefore, we can conclude that the stakeholder type is unlikely an
influenced factor on issue resolution time. The data suggests that while volunteer and
firm-paid assignees participate in OSS projects with different motivation and working
approaches, these differences do not have an impact on their issue resolution time.

In the result for H3 and H4, the correlation tests reveal a positive correlation
between collaboration measures, such as number of message, number of involved
stakeholder and issue resolution time. It implies that the high collaboration level in an
issue, e.g. high number of messages exchanged or high number of involved
stakeholders indicates a longer resolution time. This may be due to the complexity of
the task that relates other issues or software modules; or the poor quality of the issue
description leads to demands of explanation and discussion. However, we are aware
that the result of correlation analysis doesn’t imply cause-effect relationship due to
the effect of compounding factors. To validate the provided hypothesis, a further
regression analysis is necessary. From the results, we also observe that there is
significant positive correlation between issue centrality and number of messages
exchanged. This observation was expected as the larger number of stakeholders
involved in an issue (i.e. editing the reports or commenting on the issue) clearly leads
to the increasing of number of comments or report edits. Therefore, these two
variables should be checked for compounding factors if they are both used in
regression models.

Table 10. Results of Hypotheses testing

Hypotheses H1 H2 H3 H4
Test Mann

Whitney U
Mann

Whitney U
Spearman
correlation

Spearman
correlation

Geronimo Accept Accept Accept Accept
Qt Accept Reject Accept Accept
Qpid Accept Reject Accept Accept

Impact of Stakeholder Type and Collaboration on Issue Resolution Time in OSS Projects 13

7 Threats to Validity

First, a major threat of the study validity lies in the division of stakeholders as
volunteer or firm-paid. Although a major amount of stakeholder’s affiliation is
identified, there are still some stakeholders with no company information. However
this group of unidentified stakeholders is responsible for a very small portion of issues
in general. Since the major portion of the issues comes from identified stakeholders,
the comparison of resolution time between groups of stakeholders would not be
significantly influenced.

Second, a main concept investigated in this study is collaboration, which is
measured by the number of comments, messages and number of issue-involved
stakeholders. Although collaboration between stakeholders can be done via other
channels, such as IRC, Skype and face-to-face discussion, issue tracking system and
mailing list are the most common discussion means. The most relevant discussion
about an issue should be found here. The other concern in the data collection process
is the quality of the issue report since the data can be randomly filled in and the
occurrence of duplicated reports. However, the quality of report is also an included
factor in this study since it might influence the issue resolution time.

Third, another threat to validity comes from the generality of the research findings.
As in many empirical studies of OSS projects, few case studies are definitely not
significant enough to generalize what we found to the population of OSS projects. In
this study, the cases were thoroughly selected to represent for an active, medium-size
and on-going OSS projects.

Last but not least, compounding factors is an unavoidable threat in a correlational
study. The high correlation between number of messages, number of stakeholders and
issue resolution time can be caused by a latent variable, not investigated in this study,
such as complexity of the issue, or dependencies among issues. Therefore, this
concern could be a subject for a future investigation.

8 Conclusion and Future Work

In this study, we investigated the impact of different stakeholder types and their
collaboration on issue resolution time in three medium-size and ongoing OSS
projects. The statistic test result provides some interesting findings for OSS
practitioners as well as OSS researchers. First, we found that in firm-involved OSS
projects, there is not only a large portion of firm-paid labor contributed to the
projects, but also a higher workload on an average firm-paid assignee than on a
average volunteer assignee. However, we did not find a difference in issue resolution
time between volunteer and firm-paid assignees. The result contributes to the
understanding of distribution of workload and resolving time between volunteer and
firm-paid assignees. Second, we found a significant impact of stakeholder
collaboration on issue resolution time. Particularly, the issue with fewer stakeholders
is resolved faster than the one with more stakeholders. The issue with fewer
comments is also resolved faster than the ones with more comments. For
practitioners, these metrics can be integrated in the issue tracking system or defect
repository to provide a recommendation for issue resolving process. Particularly, the

14 A. Nguyen Duc et al.

collaboration information collected overtime will help developers being aware of
which issue is going to take longer time to resolve. For researchers who want to
integrate collaboration measures in software quality or productivity prediction
models, they should consider of not only the usefulness of number of involved
stakeholders, number of exchanged messages but also the compounding effect
between them.

The paper contributes to fill in a gap in the literature gap by providing an empirical
investigation of firm-paid stakeholders and their cooperation with others in OSS
projects. The findings were supported by descriptive statistic and correlation analysis
and further work should employ regression analysis to validate these findings. The
study is also limited in using simple SNA metrics, such as the Freeman Centrality
Degree. In future, we will explore more SNA metrics to investigate other aspects of
stakeholder collaboration. Besides, the findings are based on only three projects, so
the analysis should be replicated with more datasets to generalize conclusions on OSS
community.

Acknowledgements. The authors would like to thank Tor Stålhane for his valuable
comments and help with checking the statistical procedures.

References

[1] Abreu, R., Premraj, R.: How developer communication frequency relates to bug
introducing changes. In: Proceedings of the Joint International and Annual ERCIM
Workshops on Principles of Software Evolution (IWPSE) and Software Evolution (Evol)
Workshops, pp. 153–158. ACM, Amsterdam (2009)

[2] Anbalagan, P., Vouk, M.: On predicting the time taken to correct bug reports in open
source projects. In: Proceedings of IEEE International Conference on Software
Maintenance (ICSM 2009), pp. 523–526 (2009)

[3] Ayala, C.P., Cruzes, D., Hauge, Ø., Conradi, R.: Five Facts on the Adoption of Open
Source Software. IEEE Software 28, 95–99 (2011)

[4] Berdou, E.: Insiders and outsiders: paid contributors and the dynamics of cooperation in
community led F/OS projects. In: Open Source Systems, pp. 201–208. Springer, Boston
(2006)

[5] Bettenburg, N., Hassan, A.: Studying the Impact of Social Structures on Software
Quality. In: Proceedings of IEEE 18th International Conference on Program
Comprehension (ICPC 2010), pp. 124–133 (2010)

[6] Bettenburg, N., Just, S., Schroter, A., Weiss, C., Premraj, R., Zimmermann, T.: What
makes a good bug report? In: Proceedings of 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESE 2008), pp. 308–318. ACM,
Atlanta (2008)

[7] Bird, C., Nagappan, N., Gall, H., Murphy, B., Devanbu, P.: Putting It All Together:
Using Socio-technical Networks to Predict Failures. In: Proceedings of 20th IEEE
International Symposium on Software Reliability Engineering (ISSRE 2009), pp. 109–
119 (2009)

[8] Bonaccorsi, A., Rossi, C.: Comparing motivations of individual programmers and firms
to take part in the open source movement: From community to business. Knowledge,
Technology & Policy 18, 40–64 (2006)

Impact of Stakeholder Type and Collaboration on Issue Resolution Time in OSS Projects 15

[9] Bonaccorsi, A., Lorenzi, D., Merito, M., Rossi, C.: Business firms’ engagement in
community projects. Empirical evidence and further developments of the research. In:
Proceedings of 1st International Workshop on Emerging Trends in FLOSS Research and
Development (FLOSS 2007), May 21, pp. 1–5. IEEE Computer Society, Minneapolis
(2007)

[10] Capra, E., Francalanci, C., Merlo, F., Rossi-Lamastra, C.: Firms’ involvement in Open
Source projects: A trade-off between software structural quality and popularity. Journal
of System and Software 84, 144–161 (2011)

[11] Crowston, K., Scozzi, B.: Bug Fixing Practices within Free/Libre Open Source Software
Development Teams. Journal of Database Management (JDM) 19(2), 1–30 (2008)

[12] Crowston, K., Wei, K., Li, Q., Howison, J.: Core and Periphery in Free/Libre and Open
Source Software Team Communications. In: Proceedings of 39th Annual Hawaii
International Conference on System Sciences (HICSS 2006), vol. 06, p. 118. IEEE
Computer Society, Los Alamitos (2006)

[13] Devore, J.L.: Probability and Statistics for Engineering and the Sciences.
Technometrics 46(4), 497

[14] Feczak, S., Hossain, L.: Measuring Coordination Gaps of Open Source Groups through
Social Networks. In: Proceedings of 11th International Conference on Enterprise
Information Systems (ICEIS 2009), pp. 84–90 (2009)

[15] Freeman, L.: The Development of Social Network Analysis. Empirical Press, Vancouver
(2006)

[16] Guo, P.J., Zimmermann, T., Nagappan, N., Murphy, B.: Characterizing and predicting
which bugs get fixed: an empirical study of Microsoft Windows. In: Proceedings of 32nd
ACM/IEEE International Conference on Software Engineering (ICSE), Cape Town,
South Africa, vol. 1, pp. 495–504 (2010)

[17] Hars, A., Ou, S.: Working for Free? - Motivations of Participating in Open Source
Projects. International Journal of Electronic Commerce 6, 25–39 (2002)

[18] Hauge, Ø., Ayala, C., Conradi, R.: Adoption of open source software in software-
intensive organizations - A systematic literature review. Journal of Information Software
and Technology 52, 1133–1154 (2010)

[19] Hauge, Ø., Sørensen, C., Conradi, R.: Adoption of Open Source in the Software Industry.
In: Open Source Development, Communities and Quality, pp. 211–221. Springer, Boston
(2008)

[20] Henkel, J.: Champions of revealing the role of open source developers in commercial
firms. Journal of Industrial and Corporate Change 18(3), 435–471 (2009)

[21] Herbsleb, J.D.: Global Software Engineering: The Future of Socio-technical
Coordination. In: Proceedings of 29th International Conference on Software
Engineering- Future of Software Engineering (ICSE), pp. 188–198 (2007)

[22] Hopkins, W.G.: A scale of magnitudes for the effect statistics. A New View of Statistics
(June 2002)

[23] Kagan, S.L.: United we stand: Collaboration for child care and early education services.
Teachers College Press, New York (1991)

[24] Lakhani, K.R., Wolf, R.: Why Hackers Do What They Do: Understanding Motivation
and Effort in Free/Open Source Software Projects. In: Perspectives on Free and Open
Source Software. MIT Press, Cambridge (2005)

[25] Martinez-Romo, J., Robles, G., Gonzalez-Barahona, J., Perez, M.: Using social network
analysis techniques to study collaboration between a FLOSS community and a company.
Open Source Development, Communities and Quality 275, 171–186 (2008)

16 A. Nguyen Duc et al.

[26] Mattessich, P.W., Murray-Close, M., Monsey, B.R.: Collaboration: What Makes it Work:
A review of Research and Literature on Factors Influencing Successful Collaboration.
Amherst H. Wilder Foundation (2001)

[27] Meneely, A., Williams, L.: Secure open source collaboration: an empirical study of linus’
law. In: Proceedings of 16th ACM Conference on Computer and Communications
Security (CCS 2009), Illinois, USA, pp. 453–462 (2009)

[28] Meneely, A., Williams, L., Snipes, W., Osborne, J.: Predicting failures with developer
networks and social network analysis. In: Proceedings of 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2008), Atlanta,
Georgia, USA, pp. 13–23 (2008)

[29] Nguyen, T., Adams, B., Hassan, A.: Studying the impact of dependency network
measures on software quality. In: Proceedings of IEEE International Conference on
Software Maintenance (ICSM 2010), pp. 1–10 (2010)

[30] Pinzger, M., Nagappan, N., Murphy, B.: Can developer-module networks predict
failures?. In: 16th ACM SIGSOFT International Symposium on Foundations of software
Engineering (FSE), Atlanta, Georgia, pp. 2–12 (2008)

[31] Rahman, M., Ruhe, G.: Resource allocation and activity scheduling: bug fixing
perspective, Technical Report, Software engineering decision support laboratory,
University of Calgary (2010)

[32] Wolf, T., Schroter, A., Damian, D., Nguyen, T.: Predicting build failures using social
network analysis on developer communication. In: Proceeding of 31st International
Conference on Software Engineering (ICSE), pp. 1–11 (2009)

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 17–33, 2011.
© IFIP International Federation for Information Processing 2011

Towards a Unified Definition of Open Source Quality

Claudia Ruiz and William Robinson

Georgia State University, Computer Information Systems Department,
35 Broad Street NW, Atlanta, GA 30303, USA

{cruiz5,wrobinson}@gsu.edu

Abstract. Software quality needs to be specified and evaluated in order to
determine the success of a development project, but this is a challenge with
Free/Libre Open Source Software (FLOSS) because of its permanently
emergent state. This has not deterred the growth of the assumption that FLOSS
is higher quality than traditionally developed software, despite of mixed
research results. With this literature review, we found the reason for these
mixed results is that that quality is being defined, measured, and evaluated
differently. We report the most popular definitions, such as software structure
measures, process measures, such as defect fixing, and maturity assessment
models. The way researchers have built their samples has also contributed to
the mixed results with different project properties being considered and ignored.
Because FLOSS projects are evolving, their quality is too, and it must be
measured using metrics that take into account its community’s commitment to
quality rather than just its software structure. Challenges exist in defining what
constitutes a defect or bug, and the role of modularity in affecting FLOSS
quality.

Keywords: open source, software, quality, measurement, literature review.

1 Introduction

Quality is extremely subjective, with as many definitions as there are people with
opinions. It is no surprise that studies evaluating the quality of FLOSS and comparing
it with traditionally developed software have produced mixed results [1], [2], [3], [4].
This is probably because of two main reasons: each study has defined quality
differently and has evaluated it using different characteristics of different FLOSS
projects. Defining quality differently will of course produce mixed results, but even
when studies define quality in similar terms, they evaluate it using dissimilar projects
and compare different project characteristics.

In order to understand what it is about certain FLOSS projects that lead them to
produce high quality software, the antecedents of FLOSS quality must be found.
There is, however, no current research on the antecedents of FLOSS quality [5].

This paper takes the first step towards addressing this issue by reviewing the
FLOSS literature order to understand how is quality being conceptualized and to
propose a unified definition of FLOSS quality.

18 C. Ruiz and W. Robinson

The rest of the paper is organized as follows: sections two and three provide a brief
background on FLOSS and software quality; section four presents the methodology
followed; section five describes the findings, and section six discusses the
implications of the findings., categorizing the findings according to research
approach, and definition of quality.

2 FLOSS

FLOSS has grown dramatically in the 2000s and is an integral part of the IT industry.
It directly supports 29% of the software that is developed in-house in the EU and 43%
in the US and could reach a 32% share of all IT services by 2010 [6].

Linux, Apache, Firefox are commonly found in many computers today and were
developed using open source models. Apache is a Web server used by 60% of
Websites worldwide [7] and 23.2% of European and 14.5% of North American Web
surfers use the Firefox Web browser [8].

This growing popularity begs the question: is FLOSS better than traditionally
developed software? Traditionally developed software projects are considered
successful if they finish on time, on budget and meet specifications. But the same
standards cannot be applied to judge the success of FLOSS projects, since they
usually have minimal budgets, are always in a state of development, do not have an
official end time, and do not have formal specifications [9].

This lack of objective measures of success has not deterred the adoption of FLOSS
products. It even has become a common assumption that FLOSS products are higher
quality than traditionally developed software [10], [11] with firms entering FLOSS
projects citing FLOSS’s “quality and reliability” as one of the main motivating
reasons for the endeavor [12].

This assumption can be traced back to Linus Torvalds, the architect of the Linux
kernel, who said that “given enough eyeballs, all bugs are shallow” [13]. Torvalds
believed that FLOSS’s public peer review and frequent releases lead to fewer bugs
because there are more people looking at the software, reporting errors, and fixing
those errors. This assumption has a kernel of truth: it has been observed that most
problem (bug) reports and solutions in FLOSS projects are contributed by periphery
community members and not so many by the core developers [14].

A FLOSS project is one that offers its software product’s license in accordance to
the Open Source Definition [15] providing for free redistribution of the compiled
software and the openly accessible source code.

A typical FLOSS project is composed by a community, whose structure has been
described as being like an “onion” with the most actively contributing members, who
are the most invested in the project and have the greatest decision power in the inner
part and the least contributing members with the least amount of decision power on
the outside. The project leader is at the center and radiating out are the core members,
the active developers, the peripheral developers, the bug fixers, the bug reporters, the
readers, and the passive users [16]. These roles are dynamic, changing as the
community evolves as the system they are building evolves [16].

 Towards a Unified Definition of Open Source Quality 19

Although each FLOSS project is different and has different development practices
and processes, The Apache project can be used as a model of a mature FLOSS
development project given its success and well documented and researched
development cycle stages. Its stages are below:

Identifying Work to Be Done. Core developers look at the bug reporting database
and the developer forums for change and enhancement requests. The core developers
need to be persuaded of the priority of the request for it to be included in the agenda
status list.

Assigning and Performing Development Work. Core developers look for
volunteers to perform the work. Priority is given to code owners (those who created
or have been actively maintaining the particular module). The developer then
identifies a solution and gets feedback from the rest of the developers.

Prerelease Testing. Each developer performs unit testing of his/her own work. There
is no integrated or systems testing.

Inspections. Each developer then commits his/her changes and the code is then
reviewed before it is included in a stable release, while changes to development
releases are reviewed after being included in the release.

Managing Releases. A core team member volunteers to be the release manager and
makes the decisions pertaining to the individual release. He or she delineates the
scope of the release by making sure that all open requests and problems are resolved
and restricts access to the code repository to avoid any more changes [17].

These development cycle stages draw a parallel to the Scrum Agile development
methodology, where a product owner creates a backlog, a prioritized list of functional
and non-functional requirements for building into the product. Development is
performed in sprints which are 30 day iterations of development activities, which
include only the highest priority backlog requirements that can be successfully
completed in the allotted time [18].

Most FLOSS development practices are very similar to Scrum Agile development
methods but less structured and more ad hoc.

3 Software Quality

The origins of software quality can be traced back to industrial engineering and
operations management and their development of product quality concepts and
quality management practices. For these fields, quality is adherence to process
specification [19], [20] in order to produce a product that meets customer
requirements with zero defects [21], [22]. In order to achieve this goal, approaches
such as TQM (total quality management) [23], [24] were developed to integrate
quality into all company activities and Six Sigma to measure for quality [25].

Industrial engineering and operations management’s view of quality can be
categorized as the manufacturing, user, and product approaches to quality as
described by [26]. Table 1 summarizes these definitions of quality as well as others
(transcendent and value). As well as categorizing definitions of quality, Garvin also
categorized the eight dimensions of product quality (Table 2) [26].

20 C. Ruiz and W. Robinson

Table 1. Garvin's quality definitions [26]

Approach Definition of Quality

Transcendent
Innate excellence that cannot be defined, only recognized through
experience.

Product Discrete and measurable product characteristics.

User Subjective consumer satisfaction.

Manufacturing Conformance to specification.

Value Conformance to specification at an acceptable cost or price.

With this legacy from industrial engineering and operations management, software

quality started with the product definition of quality by defining frameworks of
factors. The most popular were Boehm’s model of 23 factors (dimensions of quality)
[27] and McCall’s with 11 factors [28], [29] which are all listed in Table 2.

Both of these frameworks of factors left out the measure (actual thing that is
counted) for each factor. Each implementer and developer was left to define his or
her own metrics and criteria for each factor. The ISO 9126 [30] Information
technology – Software product evaluation: quality characteristics and guidelines for
their use, which is part of the ISO 9000 set of standards by the ISO (The International
Organization for Standardization) for quality management, was an attempt to
standardize the quality factors to six main factors with three sub-factors under each
one.

Table 2. Quality Factors

Model Factors
McCall Accessibility, Accountability, Accuracy, Augmentability,

Communicativeness, Completeness, Conciseness, Consistency, Device-
independence, Efficiency, Human engineering, Legibility, Maintainability,
Modifiability, Portability, Reliability, Robustness, Self-containedness, Self-
descriptiveness, Structuredness, Testability, Understandability, Usability

Boehm Correctness, Efficiency, Flexibility, Integrity, Interoperability ,
Maintainability, Portability, Reliability, Reusability, Testability, Usability

ISO 9126 Efficiency, Functionality, Maintainability, Portability, Reliability, Usability
Garvin Aesthetics, Conformance, Durability, Features, Perceived quality,

Performance, Reliability, Serviceability

While the quality factor frameworks were used to assess the software product,
process frameworks were developed to assess the quality of the process producing the
software and to accommodate the manufacturing definition of quality [26]. One such
framework is the CMMI (Capability Maturity Model Integration), which is a process
improvement framework that can be used to drive organizational change and to judge
the process maturity of another organization. CMMI has five levels, with one being
the lowest. A level five organization is one where processes are defined (level 3),
quantitatively managed (level 4), and are continually being optimized (level 5). This
maturity model lists the processes that an organization should have in order to be
considered at a certain CMMI level but it leaves the details of how to put them into
place up to the organization.

 Towards a Unified Definition of Open Source Quality 21

Quality factor frameworks come close to Garvin’s product definition of quality
because they distill quality into a set of measurable characteristics while the process
maturity models most closely resemble Garvin’s manufacturing definition of quality
because they define quality by evaluating how close an organization’s processes meet
a predetermined specification. Garvin’s user definition of quality, on the other hand,
is hard to implement for commercially offered software because a user’s satisfaction
or rather dissatisfaction with a software’s features or performance cannot be
immediately addressed. Rather, user satisfaction must be bundled with the problem
resolutions and new feature requests of all other users into a new release, patch, or
service pack, which are infrequently issued due to their cost. Because of this
limitation, software quality has become Garvin’s value definition of quality:
conformance to specification at an acceptable cost.

In contrast, FLOSS software quality most closely fits Garvin’s user definition of
quality. Users can directly log problem reports and new functionality requests directly
into the software project’s issue tracking system that is used by developers. Because
FLOSS has frequent releases, those requests can become part of the software much
more quickly than commercially offered software, thus better satisfying users.

4 Methodology

In order to answer the research question, how is quality defined in the FLOSS
literature, we performed a literature review. Since the definition of quality is very
subjective, we adopted an interpretive approach [31] to this review by applying a
grounded theory methodology [32].

We used the Straussian type of grounded theory in order to allow previous theories
and our own interpretations of quality to guide the data collection and analysis [33].

4.1 Data Collection

In order to comply with the theoretical sampling necessary in grounded theory, we
searched Google Scholar for journal articles and conference papers containing the
terms “open source” and “quality”. We retained papers that met the following
criteria: explicit definition of quality and empirical validation of the quality definition.
We decided these criteria would provide a relevant sample because the authors of
these papers would have to explicitly define quality and operationalize it in order to
empirically validate it.

This process left us with 24 papers, to which we then added 16 from the quality
and defect-fixing categories in [34] that met the above stated criteria.

This left us with 40 papers that defined quality and performed some form of
empirical validation of that definition.

4.2 Analysis

The papers of this literature review were analyzed using open, axial, and selective
coding [32]. As the papers were read, they were coded using open coding Text
segments from each of the papers were highlighted and labeled with a code to
categorize and conceptualize the data.

22 C. Ruiz and W. Robinson

The open coding phase produced 75 codes, which were used to label 637 text
segments from the 40 papers gathered. The codes reflected how the authors defined
quality, the measures used to operationalize it, the research methods used to analyze
it, and the characteristics considered in the FLOSS projects that were used to validate
their definition of quality.

The axial coding phase produced five codes which were categories containing the
codes from the open coding phase. From the 75 codes from the open coding phase,
four were discarded because they labeled few text segments and did not help explain
how quality is interpreted in FLOSS research.

Table 3 show the categories produced from the axial coding phase. The categories
were based on how the authors approached the research, how they analyzed the data,
and how they defined and operationalized quality, with the two main categories being
quality as a process and quality as a product. The final category deals with the type of
data sampled by the authors to validate their models, in this case, the characteristics of
the FLOSS projects they examined. These categories were chosen because they
follow the research process: an approach must be chosen along with an analysis
method; the phenomenon of interest must be operationalized and finally, the data
sample must be chosen.

The final phase, the selective coding phase, produced and integrated category that
narrated the conceptualization of quality by FLOSS researchers. This phase was
complete when theoretical saturation was reached, meaning, not new
conceptualizations could be obtained from the data.

Table 3. Categories from Axial Coding

Category Description Sample of codes within category
Research
approach

Approach used to analyze quality
in research study

Case study
Survey
Factor model
Maturity model

Analysis method Methodology used to analyze data Regression
Structural equation model
Machine Learning
Social Network Analysis

Quality as a
process

Quality operationalized as
processes that can be measured.

Defect fixing rate
Defect fixing time
Definition of bug
Quality assurance procedures
Process metrics

Quality as a
product

Quality operationalized as
characteristics of final software
product.

Product metrics
Number of post-release defects
Cyclomatic complexity
Halstead Volume
CBO (coupling between objects)

Examined
project

Characteristics considered of
FLOSS projects used to validate
operationalization of quality

Maturity
Popularity
Number of developers
Development time examined
Software type
Version

 Towards a Unified Definition of Open Source Quality 23

5 Findings

In this section, we describe how researchers interpret quality in FLOSS publications.

5.1 Quality as a Product

These studies defined quality as structural code quality [1], [35], [36], [37], [38], [39],
[40]. Metrics that are used to measure structural quality are number of statements [1],
[35], cyclomatic complexity [1], [35], [36], [38], [39], [41], [42], number of nesting
levels [1], [35], [38], [43], Halstead volume [1], [35], [42], coupling [35], [36], [37],
[41], [43], coding style [35], statements per function, files per directory, percentage of
numeric constants in operands [35], growth of LOC (lines of code)[38], modularity
[2], average coupling between objects, cohesion, number of children, depth of
inheritance tree, methods inheritance factor and other internal software structure
metrics [1], [35], [36], [37], [38], [39], [42].

The idea behind measuring software code structure is that well-designed software
is less complex, less likely to contain faults, and easier to maintain [42].

Measuring code structure left the researchers with more questions than answers.
The most successful projects in terms of number of downloads and popularity were
not the ones with the highest structural quality [42], [43]. Another study found that
the software modules with the highest rate of change were not the ones with the
highest structural complexity [38]. Even using machine learning algorithms with
structural quality measures in order to predict faults did not produce clear results [39].

Comparing structural quality between open and closed projects produced mixed
results with some studies finding that FLOSS projects had quality comparable to
closed projects [44] while others found that open source software did not prove to
have structural code quality higher than commercial software [1], [35].

Using structural quality to define, measure, and compare FLOSS quality has not
proven effective with different researchers achieving different results even when
using the same metrics.

5.2 Quality as a Process

5.2.1 Defect Fixing
Defect fixing [2], [3], [38], [39], [45], [46], [47], [48], [49], [50], [51], [52], [53],
[54], [55], [56], [57], [58], [59], [60], [61] is by far the most popular definition of
quality as a process in the FLOSS quality literature. Authors have done studies
defining the what constitutes the process itself in order to determine how it works
[38], [48], [49], [50], [51], [52], [53], [54], [55], [61] and developed models to test its
effectiveness [45], [62].

They have approach it in terms of total bugs fixed [37], [48], [49], [58], [59], [61]
and speed of bug resolution [3], [46], [47], [51], [61]. These approaches take into
account the evolving nature of FLOSS, which is never truly finished, but rather,
remains in a permanently emerging state. It also considers that FLOSS testing and
defect reporting and fixing is a community activity where developers, users, and
periphery members collaborate to create the software.

24 C. Ruiz and W. Robinson

However, results using this approach have been mixed. Some open source projects
resolved service requests more quickly than their closed counterparts, others did not
[3]. For other studies, software type (database, financial, game, networking) made
more of a difference in determining defect resolution speed along with number of
developers (groups with less than 15 developers were the most efficient) [47]. The
main difference with closed software is that in most FLOSS projects, bugs are only
addressed after feedback is received from users. There is no way to measure the
quality of a release pre hoc, only ad hoc [50]. However, this attitude is changing with
projects such as GNOME, Debian, and KDE forming their own Quality Assurance
teams and enforcing quality assurance tasks [57].

Even though the defect fixing approach to measure FLOSS quality considers the
evolving nature of its quality, research using it has not operationalize it in an
evolutionary manner. Most studies have looked at the bug databases of FLOSS
projects cumulatively after a certain amount of time (i.e. after six months of activity)
rather than looking at defect resolution rates per release (except for [39], [53], [58]
which did compare product releases), which is the evolutionary cycle of FLOSS
software. The studies that looked at defects per release found that FLOSS has lower
post-feature test defects than commercial software but higher post-release defects than
commercial software [58] and that release software quality is cyclical, with the
Mozilla 1.2 showing a major decrease in quality, which was improved in later releases
[39].

The cyclical nature of FLOSS quality is illustrated in a study that showed that bug
arrival rates follow a bell curve through time between releases. Whenever drastic
changes were introduced to the software, the rate would also drastically change [53].
This would suggest that defect rates and thus defect resolution rates vary across
releases depending on the changes being introduced. If the release introduces new
features, or makes major changes to the architecture of the software, many defects
will be introduced, while those that simply introduce defect fixes and enhancements,
will introduce less.

Another issue stems from the definition of bug. Bug reports in bug databases in
FLOSS project management Web sites could include anything from “failures, faults,
changes, new requirements, new functionalities, ideas, and tasks”[49]. Not to
mention duplicate bug reports, poorly defined ones, and those that are out of scope
with the product [56]. This happens because bug reporting systems are usually open
to the public, and users without enough technical skills will make mistakes writing the
bug reports [57].

Measuring defect-fixing effectiveness in FLOSS projects has provided mixed
results because different studies have defined and thus measured defects or bugs
differently. They have also calculated defect-fixing rates by looking at bug tracking
databases in the cumulative, without considering that defects are introduced and fixed
cyclically in FLOSS, per release.

5.2.2 Other Processes
FLOSS projects tend to rely on tools to enforce policies and standards [56]. Such
tools include defect tracking systems, version control, mailing lists, automatic builds,
etc. [55], [56], [57].

 Towards a Unified Definition of Open Source Quality 25

One quality assurance activity that is performed in traditional software development,
peer review, is done differently in FLOSS projects with successful results. Peer reviews
in open source were more efficient because there is no time wasted scheduling meeting
since people work asynchronously and have more detailed discussions [14]. An example
from the Apache project shows that it has three types of peer review procedures,
depending on the experience and trustworthiness of the developer [14].

Despite the successful inclusion of peer reviews into the FLOSS development
process, testing procedures have not managed to make the necessary cross over into
FLOSS. Most projects do not have a baseline test suite to support testing, this means
no regression testing can be performed [54].

Developers perform their unit testing and do sometimes better than commercial
software [58], but it is up to the users to discover bugs and defects which could be
eliminated with system or integrated testing.

5.2.3 Process Maturity Models
Maturity assessment models have been formulated to help users and integrators
evaluate the quality of a FLOSS project versus another [59], [60], [63], [64], [65],
[66], [67], [68]. These models provide a set of criteria to evaluate a FLOSS project.
Different models concentrate on different criteria, but they all provide a way to
quantify and evaluate the quality of a FLOSS product.

Maturity models use organizational trustworthiness as a proxy for product
trustworthiness and thus quality—if the product is built correctly, it will then have
high quality.

The assessments are mostly for the FLOSS integrator who must assess the risk of
adding the FLOSS product to his or her existing architecture. The assessment models
are not predictive (they do not evaluate the factors that lead to quality, nor do they
provide a construct for quality) they simply provide a set of criteria with different
scores that the integrator can then use to make the decision to adopt the FLOSS
product.

5.3 Modularity as the Enabler to FLOSS Quality

FLOSS’s paradox of having and adding more developers without compromising its
productivity (in contrast to Brook’s law that says that adding more developers
increases coordination costs and decreases performance) is due to its approach to
modularity. A FLOSS project is made up of many subprojects where only a few
developers work together without ever having to interact with the developers in other
subprojects or modules [69].

It is believed this is the reason that projects such as Linux and Apache are
considered successful. They have been able to scale because of their modularity.
Because of modularity, defects in one module, do not affect the rest [58].

However, there is no single definition of modularity. The studies that have defined
and measured it do so differently. One study used “correlation between functions
added and functions modified” to measure modularity. It then compared modularity
across a set of open and closed projects. The open projects did not prove to be more
modular than the closed ones [2].

26 C. Ruiz and W. Robinson

Another study used average component size, which was measured as program
length (sum of the number of unique operands and operators) divided by number of
statements. The study found that applications with smaller average component size
received better user satisfaction scores [1].

In terms of influencing quality, modularity has produced mixed results. A study
found that higher modularity does not lead to higher quality. This study defined
modularity as the distance of each package in a release from the main sequence.
Because higher modularity is associated with reduced software complexity, it should
result in higher structural code quality, but the authors found that the projects with
higher modularity contained the greater number of defects [37].

Yet another study contests that it is small component design that leads to low
defect density, higher user satisfaction, and easier maintenance and evolution [55].

Work distribution is another way of conceptualizing modularity. In another study,
the authors found that a lower concentration of developers making changes to a
module led to higher quality for the module. The authors speculated that this could
explain the FLOSS paradox of many developers and high productivity: at the project
level there could be many developers, but within the project, they should be organized
into small teams; this would keep the concentration of authors to code low, thus
fostering simpler code, higher quality and better maintainability [41].

The literature has defined and operationalized modularity differently using either
software structure measures (component size, distance from main sequence, etc.) or
development organizational measures such as author concentration per class, number
of authors per module, etc.

The development organizational measures have proven to be more effective at
finding a correlation between quality and modularity, but these measures are still
vaguely defined and more research needs to be performed to optimally define them
and operationalize them in order to produce a universal measure of modularity.

5.4 Characteristics of Samples

The researchers seem to have made very arbitrary choices when it came to choosing
FLOSS project to make up their samples.

By far, the most popular place to obtain data for FLOSS quality studies is the
SourceForge repository maintained by Notre Dame University. But it was not the
only place to find data; some case studies concentrated on popular projects that are
not hosted by SourceForge such as Apache [14], [58], Linux [42], and Eclipse [46].

Some projects considered software type a defining factor and only looked at
projects of the same type [40], [41], [42], [62], while the rest did not consider it a
factor. However one study did consider it and found that project category affects the
bug resolution time [47].

The development time of the projects examined by the authors was extremely
variable. There were studies that examined FLOSS project data that covered
development time for one week [48], 105 weeks [51], four months [56], six months
[46], etc. with one project capturing data from initial commit until the last commit
before the stable version was released [41].

Another factor that varied across the studies was the number of projects examined.
From four [48], to 52 [49], all the way to 140 [61], and beyond.

 Towards a Unified Definition of Open Source Quality 27

Another factor used to choose candidate was the success of the project measured in
popularity terms such as number of downloads [61] and SourceForge rank [43], [68],
which uses number of downloads and recommendations. Researchers refrained from
including failed projects and only looked at those that high success measures.

The way researchers are choosing their samples is definitely a reason why there are
mixed results in the FLOSS quality literature. They are looking at different types of
projects, examining them for different amounts of time, and only considering popular
projects.

5.5 Summary

Quality is very subjective and hard to define absolutely. With this challenge, FLOSS
researchers have used many ways to define quality. They have used product and
process metrics and have found mixed results. FLOSS software is always evolving
and one version might produce more defects than a pervious one because of some
major change in the software or the community structure.

Successful projects are those that have adopted a modular organization of their
code and their community, allowing them to grow and isolate defects. They have also
implemented tools to automate policy enforcement and adapted traditional software
development practices to their context.

There is a need to evaluate the quality of FLOSS projects, and maturity assessment
models have emerged to meet this need. However, they are hard to automate, and
their scores are hard to interpret.

An important reason as to why researchers have obtained mixed results in
researching FLOSS quality is that their samples have different characteristics in terms
of number of projects examined, software type, time evaluated, and popularity of
projects examined.

6 Discussion

The reviewed papers show that there is a need to define and quantify quality in
FLOSS development projects in order to compare them among each other and to
traditionally developed software. Identifying projects that produce high quality
products will lead to further research into understanding the factors that lead to higher
quality and the interaction of those factors in FLOSS development projects.

The development of assessment models to ascertain quality comes from the
position in traditionally developed software that established and repeatable processes
lead to the development of quality products.

6.1 FLOSS Quality as Evolving

With each release, the FLOSS software and its community change. Quality is not
linear: the tenth release of a software product might not have fewer defects than its
first. It all depends on what type of release it is; whether it is adding new features,
restructuring the entire product, restructuring the way it is developed, or simply
posting defect fixes. Which type of release of the product is a more important
determinant of its quality than its software structure, or its number of developers.

28 C. Ruiz and W. Robinson

This explains the mixed results obtained from research that only used product
measures as a measure of quality – the modules with the highest change rate and
the highest number of defects were not those with the lowest design quality or
complexity [38].

6.2 Quality as Defect Resolution Rate

Number of defects added by a release divided by the number of lines of code added
by the release would seem a good measure of software product quality [58] that
would allow comparison between open and closed software products.

But this assumption is wrong because the release of a commercial closed software
product is not the same as the one from an open source project. An open source
product release resembles the commercial software after its feature test, since there is
neither system nor regression testing in open source projects [58].

These measures do not take into account FLOSS projects’ community
development. That is why a better measure of FLOSS quality is defect resolution
rate, in terms of number of bugs resolved and average time of bug resolution. These
measures not only show the quality of the code but also the community’s
effectiveness at achieving quality.

A key issue is to define bugs as defects in the software product. Bug databases,
which are used to calculate the defect resolution rates, are riddled with non-bugs,
which must not be taken into account when calculating these rates.

6.3 Modularity as Driver of Quality

The “many eyeballs” looking at the bugs include core developers, periphery
developers, sometime contributors, and users, who can easily find their way to the
project’s publicly available bug tracking system. This group has activity rates,
contribution amounts, contributions included per release, problem reports contributed,
problem reports resolved, and download statistics. These are all metrics of the
community’s quality efforts.

But making sure that these community members can work effectively with each
other is very necessary. A modular architecture of the code and the community
allows a project to grow and attract new developers without having the defects of one
group affect another group.

That is why modularity needs to be defined in terms of technical modularity (the
coupling of the modules) and organizational modularity (the coupling of the module
managers/owners and the core project manager) [70].

However, a downside of modularity is that if a member leaves, his or her module
might become orphaned. That is why projects such as Debian are developing their
own “quality assurance” groups (http://qa.debian.org), where anyone interested can
join and help with mass bug filing and transitions, track orphan code, etc.

It seems that too much modularity might be bad for quality in the long run. It is
important to do more research to understand what the right amount of modularity
looks like.

 Towards a Unified Definition of Open Source Quality 29

6.4 Process and Product as Drivers of Quality

Product and process requirements, the traditional specific quality requirements [71]
are still relevant in driving quality in FLOSS products: they are universally
understood and any project community still needs to reach for them. But because of
this, they are sometimes taken for granted; their inclusion needs to be aided by
automation tools, such as testing tools included in the automatic build software that
calculates and posts correctness and reliability metrics and compares them with
benchmark numbers, alerting the community members if their software product falls
below the thresholds.

Relying on the “many eyeballs” to report and fix defects has helped FLOSS
achieve quality, but there is something to be said for automating the process in order
to produce a higher quality product before it is released.

6.5 FLOSS Requires Its Own Maturity Model for Quality

The development of maturity models such as QualOSS, QSOS, OpenBRR, shows the
need for a process evaluation model like CMMI but for FLOSS.

This means that quality could also be defined in terms of this process maturity
model, but for this approach to reach maturity (so that one day we might have level 5
FLOSS projects) more research needs to occur to define, if not the ideal, the most
effect FLOSS development processes.

7 Conclusion

Just like in traditionally developed software, there is little consensus in the FLOSS
literature when it comes to defining quality.

Linux and Apache are by far the most studied projects in FLOSS literature. All the
reviewed papers studied projects that they considered successful: they had released
several versions, and had high popularity rating, and download numbers. However,
failed projects also need to be studied in order to determine what led to their downfall.

FLOSS communities and their software product are emergent and need to a
measure of quality that will reflect their nature. Defect resolution rates (amount of
defects resolved, speed of resolution) are the best way to measure a community’s
commitment to quality, because they recognize that FLOSS is not a static product, but
ever evolving. These rates should be calculated per release, and not cumulatively,
because the cycle of FLOSS evolution is the release. Researchers should be careful to
only include defects and not new feature requests, duplicates, or poorly reported bugs
into their calculations.

Modularity is being touted as the main driver of FLOSS quality success, but it
needs to be further defined and studied in order to understand how it works.

References

1. Stamelos, I., Angelis, L., Oikonomou, A., Bleris, G.L.: Code Quality Analysis in Open
Source Software Development. Information Systems Journal 12, 43–60 (2002)

2. Paulson, J.W., Succi, G., Eberlein, A.: An empirical study of open-source and closed-
source software products. IEEE Transactions on Software Engineering 30, 246–256 (2004)

30 C. Ruiz and W. Robinson

3. Kuan, J.: Open Source Software as Lead-User’s Make or Buy Decision: A Study of Open
and Closed Source Quality. In: Second Conference on The Economics of the Software and
Internet Industries (2003)

4. Raghunathan, S., Prasad, A., Mishra, B.K., Chang, H.: Open source versus closed source:
software quality in monopoly and competitive markets. IEEE Transactions on Systems,
Man and Cybernetics, Part A 35, 903–918 (2005)

5. Crowston, K., Wei, K., Howison, J., Wiggins, A.: Free/Libre Open Source Software
Development: What We Know and What We Do Not Know. ACM Computing Surveys 44
(2012)

6. Ghosh, R.A.: Economic Impact of Open Source Software on Innovation and the
Competitiveness of the Information and Communication Technologies Sector in the E. U
(2006)

7. von Hippel, E., von Krogh, G.: Open Source Software and the “Private-Collective”
Innovation Model: Issues for Organization Science. Organization Science 14, 209–223
(2003)

8. Hales, P.: Firefox use continues to rise in Europe. The Inquirer (2006)
9. Scacchi, W.: Understanding Requirements for Open Source Software. In: Lyytinen, K.,

Loucopoulos, P., Mylopoulos, J., Robinson, B. (eds.) Design Requirements Engineering.
LNBIP, vol. 14, pp. 467–494. Springer, Heidelberg (2009)

10. Stewart, K.J., Gosain, S.: The Impact of Ideology on Effectiveness in Open Source
Software Development Teams. MIS Quarterly 30, 291–314 (2006)

11. Ajila, S.A., Wu, D.: Empirical study of the effects of open source adoption on software
development economics. Journal of Systems and Software 80, 1517–1529 (2007)

12. Bonaccorsi, A., Rossi, C.: Comparing Motivations of Individual Programmers and Firms
to Take Part in the Open Source Movement. Knowledge, Technology and Policy 18, 40–
64 (2006)

13. Raymond, E.: The cathedral and the bazaar. Knowledge, Technology, and Policy 12, 23–
49 (1999)

14. Rigby, P.C., German, D.M., Storey, M.-A.: Open source software peer review practices: a
case study of the apache server. In: 0th International Conference on Software Engineering
(ICSE 2008), Leipzig, Germany, pp. 541–550 (2008)

15. The Open Source Initiative, http://www.opensource.org/docs/osd
16. Ye, Y., Kishida, K.: Toward an Understanding of the Motivation of Open Source Software

Developers. In: Proceedings of the 25th International Conference on Software
Engineering, pp. 419–429 (2003)

17. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source software
development: Apache and Mozilla. ACM Trans. Softw. Eng. Methodol. 11, 309–346
(2002)

18. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press (2004)
19. Deming, W.E.: Quality, Productivity, and Competitive Position. MIT Center for Advanced

Engineering Study, Cambridge (1982)
20. Deming, W.E.: Out of the Crisis. MIT Center for Advanced Engineering Study,

Cambridge (1986)
21. Juran, J.M.: Planning for Quality. Collier Macmillan, London (1988)
22. Crosby, P.B.: Quality is Free: The Art of Making Quality Certain. McGraw-Hill, New

York (1979)
23. Feigenbaum, A.: Total quality control: engineering and management: the technical and

managerial field for improving product quality, including its reliability, and for reducing
operating costs and losses. McGraw-Hill, New York (1961)

 Towards a Unified Definition of Open Source Quality 31

24. Ishikawa, K.: What is total quality control? The Japanese way. Prentice-Hall, Englewood
Cliffs (1985)

25. Tennant, G.: Six Sigma: SPC and TQM in manufacturing and services. Gower Publishing
(2001)

26. Garvin, D.A.: What does ’Product Quality’ really mean? Sloan Management Review 1,
25–43 (1984)

27. Boehm, B.W., Brown, J.R., Lipow, M.: Quantitative evaluation of software quality. In:
Proceedings of the 2nd International Conference on Software Engineering. IEEE
Computer Society Press, San Francisco (1976)

28. Cavano, J.P., McCall, J.A.: A Framework for the Measurement of Software Quality. In:
Proceedings of the ACM Software Quality Workshop, pp. 133–139. ACM, New York
(1978)

29. McCall, J.A., Richards, P.K., Walters, G.F.: Factors in Software Quality. National
Technology Information Service 1, 2, 3 (1977)

30. ISO: ISO 9126-1:2001, Software engineering - Product quality, Part 1: Quality model
(2001)

31. Walsham, G.: The Emergence of Interpretivism in IS Research. Information Systems
Research 6, 376–394 (1995)

32. Strauss, A.L., Corbin, J.M.: Basics of Qualitative Research: Grounded Theory Procedures
and Techniques. Sage Publications, Newbury Park (1990)

33. Strauss, A., Corbin, J.: Grounded Theory Methodology - An Overview. In: Denzin, N.K.,
Lincoln, Y.S. (eds.) Handbook of Qualitative Research, pp. 273–285. Sage Publications,
Thousand Oaks (1994)

34. Aksulu, A., Wade, M.: A Comprehensive Review and Synthesis of Open Source Research.
Journal of the Association for Information Systems 11, 576–656 (2010)

35. Spinellis, D.: A Tale of Four Kernels. In: 30th International Conference on Software
Engineering, ICSE 2008, pp. 381–390. ACM/IEEE, Leipzig, Germany (2008)

36. Capra, E., Francalanci, C., Merlo, F.: An Empirical Study on the Relationship among
Software Design Quality, Development Effort, and Governance in Open Source Projects.
IEEE Transactions on Software Engineering 34, 765–782 (2008)

37. Conley, C.A.: Design for quality: The case of Open Source Software Development. Stern
Graduate School of Business Administration, vol. PhD, pp. 43. New York University,
New York (2008)

38. Koru, A.G., Tian, J.: Comparing high-change modules and modules with the highest
measurement values in two large-scale open-source products. IEEE Transactions on
Software Engineering 31, 625–642 (2005)

39. Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics on
open source software for fault prediction. IEEE Transactions on Software Engineering 31,
897–910 (2005)

40. Koru, A.G., Liu, H.: Identifying and characterizing change-prone classes in two large-
scale open-source products. Journal of Systems and Software 80, 63–73 (2007)

41. Koch, S., Neumann, C.: Exploring the Effects of Process Characteristics on Product
Quality in Open Source Software Development. Journal of Database Management 19, 31–
57 (2008)

42. Yu, L., Schach, S.R., Chen, K., Heller, G.Z., Offutt, J.: Maintainability of the kernels of
open-source operating systems: A comparison of Linux with FreeBSD, NetBSD, and
OpenBSD. Journal of Systems and Software 79, 807–815 (2006)

32 C. Ruiz and W. Robinson

43. Barbagallo, D., Francalenei, C., Merlo, F.: The Impact of Social Networking on Software
Design Quality and Development Effort in Open Source Projects. In: Proceedings of the
International Conference on Information Systems (2008)

44. Samoladas, I., Stamelos, I., Angelis, L., Oikonomou, A.: Open source software
development should strive for even greater code maintainability. Commun. ACM 47, 83–
87 (2004)

45. Ghapanchi, A.H., Aurum, A.: Measuring the Effectiveness of the Defect-Fixing Process in
Open Source Software Projects. In: Proceedings of the 44th Hawaii International
Conference on System Sciences, Hawaii, USA (2011)

46. Kidane, Y., Gloor, P.: Correlating temporal communication patterns of the Eclipse open
source community with performance and creativity. Computational & Mathematical
Organization Theory 13, 17–27 (2007)

47. Au, Y.A., Carpenter, D., Chen, X., Clark, J.G.: Virtual organizational learning in open
source software development projects. Information & Management 46, 9–15 (2009)

48. Crowston, K., Scozzi, B.: Bug fixing practices within free/libre open source software
development teams. Journal of Database Management 19, 1–30 (2008)

49. Koru, A.G., Tian, J.: Defect handling in medium and large open source projects. IEEE
Software 21, 54–61 (2004)

50. Glance, D.G.: Release Criteria for the Linux Kernel. First Monday 9 (2004)
51. Huntley, C.L.: Organizational learning in open-source software projects: an analysis of

debugging data. IEEE Transactions on Engineering Management 50, 485–493 (2003)
52. Sohn, S.Y., Mok, M.S.: A strategic analysis for successful open source software utilization

based on a structural equation model. Journal of Systems and Software 81, 1014–1024
(2008)

53. Zhou, Y., Davis, J.: Open source software reliability model: an empirical approach. In:
Proceedings of the Fifth Workshop on Open Source Software Engineering, pp. 1–6. ACM,
St. Louis (2005)

54. Zhao, L., Elbaum, S.: Quality assurance under the open source development model.
Journal of Systems and Software 66, 65–75 (2003)

55. Aberdour, M.: Achieving Quality in Open Source Software. IEEE Software 24, 58–64
(2007)

56. Halloran, T.J., Scherlis, W.L.: High Quality and Open Source Software Practices. In:
Proceedings of the 2nd Workshop on Open Source Software Engineering (ICSE 2002),
Orlando, FL, USA (2002)

57. Michlmayr, M., Hunt, F., Probert, D.: Quality Practices and Problems in Free Software
Projects. In: Scotto, M., Succi, G. (eds.) Proceedings of the First International Conference
on Open Source Systems, Genova, Italy, pp. 24–28 (2005)

58. Mockus, A., Fielding, R.T., Herbsleb, J.: A Case Study of Open Source Software
Development: The Apache Server. In: Proceedings of the 22nd International Conference
on Software Engineering, ICSE (2000)

59. Samoladas, I., Gousios, G., Spinellis, D., Stamelos, I.: The SQO-OSS Quality Model:
Measurement Based Open Source Software Evaluation. In: 4th International Conference
on Open Source Systems (OSS 2008), Milan, Italy, pp. 237–248 (2008)

60. Deprez, J.-C., Alexandre, S.: Comparing Assessment Methodologies for Free/Open
Source Software: OpenBRR and QSOS. In: Jedlitschka, A., Salo, O. (eds.) PROFES 2008.
LNCS, vol. 5089, pp. 189–203. Springer, Heidelberg (2008)

61. Crowston, K., Howison, J., Annabi, H.: Information Systems Success in Free and Open
Source Software Development: Theory and Measures. Software Process: Improvement
and Practice 11, 123–148 (2006)

 Towards a Unified Definition of Open Source Quality 33

62. Wray, B., Mathieu, R.: Evaluating the performance of open source software projects using
data envelopment analysis. Information Management & Computer Security 16, 449 (2008)

63. del Bianco, V., Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: The QualiSPo approach to
OSS product quality evaluation. In: Proceedings of the 3rd International Workshop on
Emerging Trends in Free/Libre/Open Source Software Research and Development
(FLOSS 2010), pp. 23–28. ACM, Cape Town (2010)

64. Soto, M., Ciolkowski, M.: The QualOSS open source assessment model measuring the
performance of open source communities. In: Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, pp. 498–501 (2009)

65. Deprez, J.-c., Monfils, F.F., Ciolkowski, M., Soto, M.: Defining Software Evolvability
from a Free/Open-Source Software Perspective. In: Third International IEEE Workshop
on Software Evolvability, pp. 29–35. IEEE, Paris (2007)

66. Glott, R., Groven, A.-K., Haaland, K., Tannenberg, A.: Quality Models for Free/Libre
Open Source Software–Towards the "Silver Bullet"? In: 36th EUROMICRO Conference
on Software Engineering and Advanced Applications, Lille, France, pp. 439–446 (2010)

67. Groven, A.-K., Haaland, K., Glott, R., Tannenberg, A.: Security measurements within the
framework of quality assessment models for free/libre open source software. In:
Proceedings of the Fourth European Conference on Software Architecture: Companion
Volume, pp. 229–235. ACM, Copenhagen (2010)

68. Michlmayr, M.: Software Process Maturity and the Success of Free Software Projects. In:
Proceeding of the 2005 Conference on Software Engineering: Evolution and Emerging
Technologies, pp. 3–14 (2005)

69. Schweik, C.M., English, R.C., Kitsing, M., Haire, S.: Brooks’ Versus Linus’ Law: An
Empirical Test of Open Source Projects. In: Proceedings of the 2008 International
Conference on Digital Government Research, Montreal, Canada, pp. 423–424 (2008)

70. Tiwana, A.: The Influence of Software Platform Modularity on Platform Abandonment:
An Empirical Study of Firefox Extension Developers. University of Georgia, Terry School
of Business (2010)

71. Glinz, M.: On Non-Functional Requirements. In: Proceedings of the 15th IEEE
International Requirements Engineering Conference, Delhi, India, pp. 21–26 (2007)

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 34–49, 2011.
© IFIP International Federation for Information Processing 2011

Ginga-J - An Open Java-Based Application
Environment for Interactive Digital

Television Services

Raoni Kulesza1,2, Jefferson F.A. Lima, Álan L. Guedes, Lucenildo L.A. Junior1,
Silvio R.L. Meira2, and Guido L.S. Filho1

1 Laboratory of Digital Video Application (LAVID)
Federal University of Paraiba (UFPB)

Cidade Universitaria - 58059-900,
João Pessoa/PB, Brazil

{raoni,jefferson,alan,lucenildo,
guido}@lavid.ufpb.br

2 Informatic Center (CIn)
Federal University of Pernambuco (UFPB)

Cidade Universitaria - 50740-560,
Recife/PE, Brazil

srlm@cin.ufpe.br

Abstract. This paper aims to present a Ginga-J’s reference implementation.
Although based on a particular platform, the implementation not only works as
a proof of concept, but also raised several issues and difficulties on the software
architecture project that should be taken into account to ease extensibility and
porting to other platforms. Ginga is the standard middleware for the Brazilian
DTV System. Its imperative environment (Ginga-J) is based on new JavaDTV
specification and mandatory for fixed terrestrial receptors.

1 Introduction

With arise of the Digital TV a new set of functionalities were incorporated to the
shows offered by stations as well as to the DTV’s receptors. Therefore, the TV
environment has become more interactive, as TV systems (or middleware) now offer
an environment for the execution of interactive applications. These applications can
be transmitted and executed along with multimedia content such as audio, video,
image, text, etc, thus enabling the increase of interactivity between viewers and the
television through applications such as games, polls, etc. [1]. All those services or
applications could not be possible without the support of an intermediary software
layer, called middleware, installed on each access terminal.

The execution of a same application in different devices with distinct processing
capacities and hardware architectures is achieved through the specification of well-
defined software architecture. The main role of a Digital TV middleware is to act as
an intermediary software layer between the operating system and the interactive
applications, abstracting specific characteristics of the platform and providing a series

 Ginga-J - An Open Java-Based Application Environment 35

of specific services to the above layers. Thus, it is possible the developing of portable
applications to many distinct receptors.

The main DTV middleware open specifications offer support to the execution of
interactive applications in two environments: a declarative and an imperative [2]. On
the Brazilian Digital TV System, the declarative environment is represented by the
Ginga-NCL [3][4], which supports applications based on NCL language (Nested
Context Language) and the imperative environment is represented by Ginga-J [5],
which provides support to the execution of applications written in Java language.

This paper main goal is to present the first implementation of Ginga-J, highlighting
its singularities when compared to other middleware’s implementations. On [5] is
described all the information about the Ginga-J’s functionalities specification. This
article describes the reference implementation on the GingaCDN’s1 project context in
order to serve as basis to future Ginga-J’s implementations from different
manufacturers and its platforms. Another point discussed in this article is the
evolution and validation of Ginga-J architecture's reference implementation, since it is
based on preceding work on middleware developing, realized by the same research
group from LAVID at UFPB [6] . The main results from the work shown here were:
(i) definition of a flexible architecture that allows reuse and software extensibility
and; (ii) developing of a reference implementation in conformity with the new
JavaDTV API recently adopted by the Ginga middleware.

This article is organized as follows: section 2 describes the Ginga middleware. The
section 3 presents Ginga-J’s specification history. The section 4 talks about the
implementation architecture proposed for the Ginga-J. The Section 5 details the
developed implementation. The section 6 discusses the main existing DTV’s
middleware projects for fixed terminals, performing a brief comparison between these
middlewares and the Ginga-J. And, lastly, section 7 presents the final considerations,
future and current works.

2 Ginga Middleware

Ginga is the SBTVD’s middleware specification, it resulted from the fusion of
FlexTV [6] and MAESTRO[7] middlewares, developed through a consortium led,
respectively, by UFPB and PUC-Rio on the SBTVD [8] project.

The FlexTV, procedural middleware proposed by SBTVD’s project, included an
API set compatible with other standards along with novel functionalities such as the
possibility of communication with multiple devices, allowing different viewers to
interact with the same interactive application using remote devices. The MAESTRO
was the declarative middleware proposal of SBTVD’s project. Focusing on space-
time synchronization between multimedia objects using the NCL (Nested Context
Language) declarative language combined with the functionalities of the scripting
language Lua.

1 GingaCDN Project. available on http://www.openginga.net

36 R. Kulesza et al.

Ginga combined these two solutions, now called Ginga-J and Ginga-NCL,
considering the ITU’s international recommendations [11]. Thus the Ginga middleware
is divided in two main interconnected subsystems (Figure 1), also known as Execution
Machine (Ginga-J) and Presentation Machine (Ginga-NCL). The imperative content
execution is possible through the Java Virtual Machine (JVM). Depending on the
application requirements, one programming paradigm can be more appropriate than
other.

Fig. 1. Overview of Ginga middleware

Another important aspect is that the two environments, for the execution of
interactive applications, are not necessarily independent, since that ITU’s
recommendation includes a “bridge”, which provides mechanisms for the
communication between them. This bridge API allows imperative applications to use
available services on declarative applications, and vice versa. Therefore the execution
of hybrid applications one level above the layer of execution and presentation
environments is made possible, allowing to combine the NCL language facilities of
multimedia elements presentation and synchronization with the power of the object
oriented Java language.

Ginga Common Core is the Ginga subsystem responsible for providing specific
functionalities of Digital TV common to the imperative and declarative environments,
abstracting the specific characteristics of platform and hardware for the above layers.
Some of its main functions we can mention are: media exhibition and control, system
resources control, return channel management, storage devices, access to service
information, channel tuning, among others.

3 Ginga-J Specification

The Ginga-J (Figure 2) is composed by a set of APIs, defined to provide all the
necessary functionalities for the developing of DTV applications, from the
multimedia data manipulation, to access protocols. Its specification is formed by an
adaptation of the information access API of the Japanese standard service (ISDB
ARIB B.23), the Java DTV [12] specification (which includes the JavaTV API),
besides an additional set of extensions or innovation APIs.

 Ginga-J - An Open Java-Based Application Environment 37

Fig. 2. Ginga-J overview

The additional APIs include a set of available classes for the bridge between
applications written in NCL and Java language, additional functionalities for tuning
channels, sending asynchronous messages through the interactivity channel and
integration of external devices, enabling the support to multimedia resources and
simultaneous interaction of multiple users on DTV [13] applications.

The Java DTV [12] specification is an open and interoperable platform that allows
the implementation of interactive services in Java language, which has been recently
adopted to the Ginga-J’s APIs set. Functionally, the JavaDTV replaces the APIs
collection that was previously used and defined by the GEM standard (Globally
Executable MHP), such as DAVIC (Digital Audio Video Council) and HAVi (Home
Audio Video Interoperability). The goal was to provide royalties free solution for
device manufacturers and application developers, allowing the production of TV sets
and/or set-top-boxes at an affordable cost.

Fig. 3. Ginga-J’s APIs set

38 R. Kulesza et al.

The current specification is composed by the Java DTV and JavaTV APIs, added to
the Java execution environment (Java Runtime) for embedded systems (JavaMe),
including the CDC platform (Connected Device Configuration), and the profile APIs:
FP (Foundation Profile) e PBP (Personal Basis Profile) (Figure 3). Among the main
differences of Java DTV related to the application development, we can quote the
LWUIT API (LightWeight User Interface Toolkit), responsible for defining graphic
elements, graphic extensions for DTV, layout managers and user events.

4 Reference Implementation Architecture

The specification of Ginga-J’s reference implementation architecture was based on
the FlexTV [6] architecture, which considered the J.200 ITU [11] architecture.
However, besides following a different set of APIs definitions (based on JavaDTV, not
GEM), other features were added to provide better reuse and software quality. The
Figure 4 illustrates the modularized conceptual architecture: (i) operating system, (ii)
common core layer and; (iii) Ginga-J’s execution machine. Following are described
the three stages which were adopted to define the architecture solution.

The first step for the architecture’s definition was to choose a suitable execution
platform for the characteristics and differential limitations of a Digital TV fixed
terminal. With that in mind, we chose the Linux operating system for personal
computers (x86) and the PhoneMe Java [15] virtual machine, which is an official
implementation of JavaME/CDC’s environment. The main reason of this choice was
the Linux and PhoneME availability as open platforms, and also the offer of many
development tools without additional cost. Besides, Linux supports heterogeneous
systems [16]. The aim was to allow the implementation’s development on an
environment closer to an access terminal, but that could also be available to as many
developers as possible. In this case, a personal computer, without the need to buy any
specific hardware.

Fig. 4. Conceptual Architecture

 Ginga-J - An Open Java-Based Application Environment 39

The second stage was to develop and refine FlexTV’s common core architecture.
Nearly no change was performed in the conceptual definition of these subsystem’s
modules, there was merely a refactoring in order to attain better functionalities
cohesion. The main change was to specify the common core using a component-based
approach, adopting a component model and an execution environment: FlexCM[17].

The goal was to emphasize the software modeling by decomposing the system in
functional components with well-defined interaction interfaces. In this context, a
component model defines the instantiation scheme, composition, life cycle of the
system components and an environment of software execution responsible for
managing the components ensuring the specifications defined by the respective
components’ model.

The FlexCM model follows a declarative approach, in which the components
define its dependencies explicitly (required interfaces) and the execution environment
loads and provides the dependencies through a dependencies’ injection standard. The
FlexCM model allows its components to know only the interfaces; the
implementations are treated through the execution environment. Besides the required
interfaces, the components can also declare configuration parameters which values are
also injected through the execution environment allowing the developer to easily
configure the component in the final product where it will be installed. The FlexCM’s
execution environment is capable of loading the entire system from an architectural
description file in which the connections and configurations are specified.

The adoption of the FlexCM’s components model offered a series of specific
advantages for Ginga-J’s implementation besides the commonly known advantages
for a component based development, like modularity, maintainability and reuse we
can quote: (1) knowing the architecture in model level; (2) facilities on the
configuration of individual components and; (3) on the system configuration as a
whole. Lastly, these characteristics bring the possibility of managing different
architectures also easing the execution of unit tests and integration of different
portions of the architecture. A test process proposal for the Ginga-J based on FlexCM
can be found at [18].

Fig. 5. Ginga-J Execution Layer and Common Core integration

The third and last stage was to define an integration model of the Common Core
layer with the Ginga Execution Machine. As mentioned, the Common Core is
responsible for offering services for the Ginga-J execution machine. Consequently, it

40 R. Kulesza et al.

contains native code (in C or C++ languages) and it depends on the platform’s
execution libraries. It was then important to define a communication model in order to
reduce the coupling and the dependency between these two subsystems. The adopted
solution was based on the Proxy, Facade and Adapter [19] design patterns. The idea
here was to centralize all Java execution machine use on a Controller module, which
exposes the services for the applications (Application Services). Figure 5 illustrates the
module Controller with two AS interfaces: ITunerAS and IDemuxAS. These services
are offered for the Ginga-J’s applications through JNI (Java Native Interface) callings
implemented internally through Java’s packages. The Controller calls by delegation the
component that implements the required functionality. For example, ITuner and
IDemux calls (shown on Figure 5). If a Common Core component needs another
Common Core component functionality, it can call it directly. The main advantage of
this approach is to isolate the layer(s) above the Common Core, in such way to prevent
platform dependencies, as well to decrease the coupling between Java API’s
specifications and the implementation in C/C++ code. For example, the port of a
Ginga-NCL’s presentation machine or a Java’s execution machine from another Digital
TV (GEM) system to the Common Core used in this work would be facilitated.

5 Implementation

In this section the Ginga-J’s implementation is described focusing on its Common Core
components. Figure 6 displays this subsystem overview, which contains the following
components:

Fig. 6. GingaJ’s Common Core implementation (in this case, Controller is not a component,
just a facade)

 Ginga-J - An Open Java-Based Application Environment 41

(1) Tuner - tunes and controls the access to the multiple network transport
streams; (2) SI – obtains service information from the transport stream, in other
words, which elementary streams (semantics) of audio, video and data has been
transmitted, besides information as parental rating, synopses and time scheduling; (3)
Demux – provides specific filters to select streams; (4) Media - Provide access to
media decoders (hardware and software) to manage and display the presentation of
video and audio elementary streams; (5) Data Processor – processes and
separates transmitted data (e.g. applications) in multiplexed MPEG-2 transport
streams; (6) Graphics – provides graphical user interface handling; (7) Input
Manager – handles user key events through the remote control, STB’s panel keys,
keyboard, or another input device; (8) Return Channel – provides interfaces for
the return channel’s usage, for example, through dial-up, ADSL, Ethernet, WiMax or
3G; (9) Application Manager: loads, instantiates, configures and runs applications;
(10) Persistence – manages non-volatile storage resources; (11) Security –
verifies an interactive application’s authenticity and permission; (12) Middleware
Manager – responsible for the middleware’s functional management.

As previously mentioned, for Ginga-J’s execution machine reference
implementation the RC2 version of Linux’s PhoneMe Advanced was used [15]. A
native port of the Java AWT graphic API for the DirectFB2 was performed in the
virtual machine. The generated code was based on the PhoneME built-in native
implementation in Qt. Then, it was possible to implement the JavaDTV APIs, using
the Java’s base classes, which are present in PhoneME, for example, the graphical
interface API and user events handling API. These functionalities were encapsulated
in Graphics and Input components, respectively. For functionalities not present on the
Java environment it was necessary integration with the Common Core. To allow Java
applications management, it was also necessary to integrate the JVM with the
Common Core through the Controller and ApplicationManager components.
The Controller component implemented a new proxy element, which enabled the
execution of Xlets through the ansiJavaMain() fuction (available on JVM’s
code). This function starts the JVM and runs a Java class that initiates all graphical
layers available (as specified on SBTVD’s standard), and also loads the interactive
applications’ data (Xlets) which are started as separated Threads, since Ginga allows
the execution of more than one application at the receptor.

The Tuner implements required services of the com.sun.dtv.tuner package,
using a scanning process for identifying non-blocking channels based on events and
on the Observer pattern[19].

The Demux component contains functionalities from the com.sun.dtv.filtering
package, allowing the selection of different types of elementary streams. Internally it
uses a “circular queue buffer” with different start pointers, one to feed each user, trying
to avoid that users lose their contents consumed by others.

The SI component obeys the APIs’ requirements which deals with service
information (ARIB, JavaTV and JavaDTV, besides allowing the component user to

2
 DirectFB is an open source project which provides graphic acceleration, input events
treatment, graphic layers management and reproduction of several medias through
multimedia providers: Available on: http:// www.directfb.org

42 R. Kulesza et al.

obtain final information about the stream, without the need of another processing,
since it implements a cache mechanism. All the abstractions for Service Information
provided by SBTVD’s standards [20] (Table, Descriptors and Events) can be
generated from an object factory, which uses the Factory Method pattern [19]. This
component also warns the DataProcessing to perform the signalization, execution
of applications and data carousel.

The Media component is responsible for the middleware’s processing of
continuous media (audio and video) received from Demux using the vlc
infrastructure to present the media over a DirectFB surface. Acquiring validation of
the implementation with a performance analysis [27]. This component was designed
considering the requirements of the JMF API, since it provides basic reproduction
functionalities for the Java API through the JNI calls.

The ApplicationManager offer interface abstraction for applications in your
database, this abstraction is called ApplicationProxy, witch offer the control of
the applications lifecycle (start, stop, pause, resume and destroy). A example,
JavaProxy is a child class of ApplicationProxy, that has the capabilities
to call the ansiJavaMain() function to start the a xlet. As the same, also exist the
NCLProxy that has de capabilities to start a NCL Presentation Engine [10] to start a
NCL document.

Considering the execution of the applications in deferents process, the
ApplicationProxy must use IPC(Inter Process Communications) strategy to
send commands to your engine execution, example send events received through the
InputManager or a control command.

Beside the lifecycle of the applications, the each Proxy`s interface contains
functionalities to offer communication inter applications. In Java Engine, this happens
through javax.microedition.xlet.ixc for interaction with another xlet, and
br.org.sbtvd.bridge for control NCL documents.

The Persistence and Security components work together to strictly follows
the JavaDTV[12] model to pack, authenticate and authorize the applications and file
storage. That consist in persist the jar file of the application and study the application
access permissions in platform.

The Persistence component has important interaction with the
ApplicationManger component, given that the last send destroy events when a
execution of a application is finished, this provides the trigger to Persistence
deallocate the finished application resources.

The Return Channel component implements the TCP/IP communication for
different network technologies, offering abstraction about the orientation to
connection in two types ConnectionReturnChannel(dial-up, ADSL, 3G) and
ReturnChannel(Ethernet, WiMax). The Return Channel and the Persistence
component acquired validation of your implementation by used in LARISSA
project[26]. The Figure 7 below illustrates 4 (four) use scenarios of Ginga-J’s
implementation.

The Figure 7(a) displays an Java (Xlet) application using the access APIs for
Service Information (JavaTV SI and ARIB SI) and Ginga-J’s graphic elements
(LWUIT) APIs. The Figure 7(b) shows an application displaying 3 video streams

 Ginga-J - An Open Java-Based Application Environment 43

(2 locals and 1 live) as a validation scenario for the implementation of the media’s
execution API (JMF). Now the Figure 7(c) and the Figure 7(d) illustrate the
possibility to execute a Java application from a local file (for example, USB device)
or from a transport stream, respectively. So, as on a TV set, many middleware
configurations can be modified through an OSD resident application (On Screen
Device). The two last examples supported the APIs’ validation for the lifecycle control
of the application (JavaTV), data carousel, persistence and security (JavaDTV). The
tests were conducted using a personal computer with the following specifications:
Core 2 Duo 2.16GHz processor; 1GB RAM; operating system Ubuntu 9.10 Kernel
2.6.31-14, and; a 100 GB hard drive.

A B

C D

Fig. 7. Ginga-J’s use Scenarios

6 Related Works

The main existing middleware’s implementations on the Digital TV context might be
divided in two categories: (1) declarative environments (2) imperative environment.
The first group is represented by: (i) LASeR(Lightweight Application Scene
Representation) [21]; (ii) BML (Broadcast Markup Language)[22]; (iii) GingaNCL for
portable devices[23] and; (iv) Ginga-NCL for fixed devices[24]. However, for the
second, we can quote: i) FlexTV[6] and (ii) OCAP-RI (OpenCable Application
Platform – Reference Implementation)[25].

On [23] it was presented a comparative analysis between the solutions LASeR,
BML and Ginga-NCL for portable devices. The main difference of these solutions
regarding the implementation proposed here (Ginga-J) is at the architecture project.
None of these solutions uses a component-oriented approach, not defining a model
and execution environment for the system modules. Besides, we can observe that
these environments seek to implement the following functionalities: medias’
synchronization, adaptability, support of multiple devices, supports on air edition, and

44 R. Kulesza et al.

also supports reuse. The Ginga-NCL for portable devices is the only solution that
supports multiple devices and meets reuse support standards. The solution proposed
here also attends all the requirements presented by the declarative environments, but
uses an imperative approach, through the object-oriented language Java. The use of
this kind of language is much harder and susceptible to errors and also requires a
bigger footprint from the application. Nonetheless, it carries a power of expression
larger than that offered by declarative languages. The goal is to offer more advanced
applications that need to use, for example, access and security mechanisms, finer
control to information and audio-visual content.

Fig. 8. Overview of Ginga-NCL’s fixed devices

Figure 8 displays an overview of the implementation for Ginga-NCL’s fixed
devices [24]. Ginga-NCL’s Presentation Machine is also a logic subsystem capable of
starting and controlling NCL applications. Ginga-NCL’s Common Core is responsible
for offering the previously mentioned services for Ginga-NCL’s Presentation
Machine. This solution, although attending a different set of applications, displays
further similarity on the definition of Ginga-J’s Common Core functionalities. One of
the differences is on the absence of security functionalities and a lower set of
informations about the offered service. The Tuner, DataProcessing,
ContextManager, InputOutput (IO) e InteractiveChannel (IC)
components of Ginga-NCL, are equivalent, respectively, to Tuner,
DataProcessing, ApplicationManager, Input and ReturnChannel of Ginga-J.
Media and Player of Ginga-J represent functionalities of Ginga-NCL’s Player module.
Demux and SI Ginga-J modules represent the Ginga-NCL’s TSParser. The module
System of Ginga-NCL is implemented internally on GingaJ. The main reason for
representing Ginga-J’s functionalities with more modules is to allow better cohesion
and, consequently, larger extension flexibility and code maintenance. Another
important difference concerns the implementation on the modules’ management
mechanism. On Ginga-NCL this is implemented by ContextManager and
UpdateManager (UM) and on Ginga-J a model and execution environment of
software components (FlexCM) are defined.

 Ginga-J - An Open Java-Based Application Environment 45

Table 1. Comparison between Ginga-J and Ginga-NCL for fixed devices

Table 1 displays a comparison of the solutions. On the criteria for evaluation, we
observed that the Ginga-NCL model uses an approach of object factory, imposing that
the architecture knowledge is spread through the system’s source code. This
characteristic limits the flexibility in which the architecture may be instantiated.
Besides, the lack of standardization in order to configure the components prevents an
effective management of the system modules. So it is believed that the model used on
Ginga-J’s implementation best meets the requirements for modularity, maintainability
and reuse of the project and implementation of the Common Core’s code.
The FlexTV implementation was realized by Ginga-J’s same group and the current
proposal is an evolution of the same in two points: (1) functionalities (new set of APIs
Java based on JavaDTV) and (2) architecture (adoption of a model and environment
of components execution).

OCAP-RI Moreno, F. M. A Declarative Middleware for Digital TV Systems. (Master
Thesis); PUC-Rio, DI, 2006

[25] is a proposal of imperative middleware implementation based on the American
standard of Digital Cable TV. One of the differences is on the set of offered
functionalities, fewer than Ginga-J, since OCAP’s Java APIs do not support multiple
devices nor users, management of the multimedia streams and asynchronous
messages. Another important point is related to the architecture project (Figure 9)
which is divided into: (I) OCAP Java – set of Java APIs available for applications and
defined by the TVD American standard; (ii) JVM and OCAP Native – Java’s virtual
machine and set of specific native code to implement OCAP Java’s functionalities;
(iii) MPE (Multimedia Platform Extensions) – layer that abstracts the execution
platform for the JVM and the OCAP Native code; (iv) MPEOS (Multimedia Platform
Extensions Operating System) -implements platform dependent code offering
services for the MPE, which means, MPEOS is the code that needs to be ported for
each platform and; (v) RI Platform – represents the operating system and the
hardware that runs the middleware. The MPE and MPEOS layers from OCAP-RI are
equivalent to the set of components of the Ginga-J’s Common Core, where MPE is
represented by the interfaces of Controller and MPEOS by internal implementations
of each component. As already quoted, such characteristic facilitates the port of the
Java execution machine for different platforms. However, MPE and MPEOS are
implemented using C language and do not use any model and components execution
environment. Therefore the OCAP-RI architecture does not offer any modulate
division of functionalities, making reuse and code flexibility more difficult.

46 R. Kulesza et al.

Fig. 9. OCAP-RI’s Architecture

Based on the points discussed in this section the main differences between Ginga-
J’s implementation and other proposals can be understood. The first is related to the
programming model and the set of different functionalities offered by an imperative
environment in relation to declarative environments or imperative environment based
on GEM. The second refers to the architecture project, which tried to attend reuse,
maintenance and code flexibility the best way possible. Such aspects are important for
the implementation of reference, since itself offers a starting point and can be adapted
to many platforms by manufacturers and other developers.

7 Development Process

The GingaCDN (Ginga Code Development Network) was idealized as a group of
developers and contributors (scattered across the globe) of Brazil’s Digital TV
middleware the Ginga. Among the various projects being carried out by this network
is Ginga-J reference implementation. Nowadays, the number of registered developers
reached 570 from 15 different countries on GingaCDN community site.

In order to become a distributed software development team and gain from its
benefits like reducing costs and time spent, while improving the software’s quality, it
was necessary to thwart it’s known drawbacks such as inefficient communication, loss
in coordination and providing a full vision of the project. The solution came through a
well-defined development process with roles and a proper tool (based on Redmine3
tool) to support it all.

The collaborative development process was designed to standardize agile and
objective practices as to attend the deployment of distributed component for digital
TV’s middleware. Thus, we defined roles for the collaborative team members in order
for users to know their responsibilities and have the freedom to attend their assigned
tasks independent and simultaneously. Such roles are distributed in the five phases
defined in the collaborative development process. Each phase of the process is mainly
conducted by a specific role (except for the Review phase), they are: 1) Conception,
where the Manager creates a new subproject; 2) Elaboration, when the Leader
specifies tasks to accomplish the subproject; 3) Construction, is carried out by the
Developers undertaking the tasks; 4) Review, the Reviewers review the component
and Integrators check if they integrate with the whole project; 5) Transition, the

3 Redmine Project: Available at: http://www.redmine.org

 Ginga-J - An Open Java-Based Application Environment 47

Manager once again comes along to check if the component is in accordance to what
was out lined initially.

8 Final Remarks

This work describes the Ginga-J’s reference implementation, SBTVD’s imperative
middleware. The development was based on JavaDTV’s specification, an architecture
based on software components. As a form of proposal validation, the architecture was
instantiated for the Linux environment on a personal computer. The main Java
packages of Ginga-J’s standard were implemented through the integration of basic
Java’s environment (PhoneME) functionalities as well as implementations of specific
functionalities for Digital TV (Ginga-J Common Core).

The project and implementation of a development based architecture using
components brought a series of benefits, such as: (i) knowing the architecture at the
model level; (ii) ease when configuring individual components; (iii) configuration of
the system as a whole and (iv) the possibility of managing different architectures
making the execution of unity tests and integration of different architecture portions
easier. Such aspects are very important for the implementation of reference.

As a result of this experience, many works are already being accomplished, such as
(i) port of PUC-Rio’s Ginga-NCL’s presentation machine to the Common Core; (ii)
the development of management tools for the architecture and conception of different
middleware’s versions; (iii) proposal of a conformance validation model for Digital
TV’s middleware.

Acknowledges. We thank the support of our institutions, the Laboratory of Digital
Video Application of the Federal University of Paraiba and of the Federal University
of Pernambuco, as well as the funding provided by Brazilian research agencies:
National Education and Research Network (RNP) and Science and Technology
Ministry (MCT) under the CTIC program4.

References

[1] Peng, C.: Digital Television Applications (PhD Thesis) – Helsinki University of
Technology, Espoo (2002)

[2] Morris, S., Smith-Chaigneau, A.: Interactive TV Standards: A Guide to MHP, OCAP,
and JavaTV. Focal Press (2005)

[3] ABNT NBR 15606-2 Digital terrestrial television – Data coding and transmission
specification for digital broadcasting – Part 2: Ginga-NCL for fixed and mobile receivers
– XML application language for application coding (2007)

[4] ABNT NBR 15606-5 Digital terrestrial television – Data coding and transmission
specification for digital broadcasting Part 5: Ginga-NCL for portable receivers – XML
application language for application coding (2008)

4 CTIC Program: Available at: http://www.ctic.rnp.br/

48 R. Kulesza et al.

[5] ABNT NBR 15606-4 Digital terrestrial television — Data coding and transmission
specification for digital broadcasting Part 4: Ginga-J — The environment for the
execution of procedural applications (2010)

[6] Leite, L.E.C., et al.: FlexTV – Towards a Middleware Architecture to Brazilian Digital
TV System. Journal of Computer Engineering and Digital Systems 2, 29–50 (2005)

[7] Soares, L.F.G.: MAESTRO: The Declarative Middleware Proposal for the SBTVD. In:
Proceedings of the 4th European Interactive TV Conference (EUROITV 2006), Athens
(2006)

[8] SBTVD. Brazilian Digital TV System Project, http://sbtvd.cpqd.com.br
[9] de Souza Filho, G.L., Leite, L.E.C., Batista, C.E.C.F.: Ginga-J: The Procedural

Middleware for the Brazilian Digital TV System. Journal of the Brazilian Computer
Society 12, 47–56 (2007)

[10] Soares, L.F.G., Rodrigues, R.F., Moreno, M.F.: Ginga-NCL: the Declarative
Environment of the Brazilian Digital TV System. Journal of the Brazilian Computer
Society 12, 37–46 (2007)

[11] ITU J.200. ITU-T Recommendation J.200: Worldwide common core – Application
environment for digital interactive television services (2001)

[12] JavaDTV API. Java DTV API 1.3 Specification, Sun Microsystems (2009),
http://www.oracle.com/technetwork/java/javatv/overview/inde
x.html

[13] Silva, L.D.N., et al.: Digital TV Multiuser and Multidevices Application Development
Support with Ginga. Amazonia Magazine (12), 75–84 (2007)

[14] ETSI TS 102 819: Globally Executable MHP (GEM). ETSI Standard (May 2004)
[15] Projeto PhoneME, http://phoneme.dev.java.net/
[16] Yaghmour, K.: Building Embedded Linux Systems. O’Reilly Media, Inc., Sebastopol

(2003)
[17] Miranda Filho, S., et al.: Flexcm - A Component Model for Adaptive Embedded

Systems. In: COMPSAC IEEE International Computer Software and Applications
Conference, Beijing, pp. 119–126 (2007)

[18] Caroca, C., Tavares, T.A.: Test Process Model to Ginga Common Core Components. In:
Proceedings of the 15th Brazilian Symposium on Multimedia and the Web (WebMedia
2009), Fortaleza (2009)

[19] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1994)

[20] ABNT NBR 15603-2 Digital terrestrial television — Multiplexing and service
information (SI) Part 2: Data structure and definitions of basic information of SI (August
2008)

[21] ISO 14496-20. Lightweight Application Scene Representation (LASeR) and Simple
Aggregation Format (SAF) (2006)

[22] B24 Appendix 5 – Operational Guidelines for Implementing Extended Services for
Mobile Receiving System (2004)

[23] Cruz, V.M., Moreno, M.F., Soares, L.F.: Ginga- NCL: Reference implementation for
portable devices. In: Proceedings of the 14th Brazilian Symposium on Multimedia and
the Web (WebMedia 2008), pp. 67–74. ACM, New York (2008)

[24] Moreno, F. M.: A Declarative Middleware for Digital TV Systems. (Master Thesis);
PUC-Rio, DI (2006)

[25] OCAP – Reference Implementation, http://ocap-ri.dev.java.net

 Ginga-J - An Open Java-Based Application Environment 49

[26] Oliveira, M., Cunha, P.R.F., da Silva Santos, M.E., Bezerra, J.C.C.: Implementing home
care application in Brazilian Digital TV. In: Global Information Infrastructure
Symposium (GIIS 2009), Hammamet (2009)

[27] Trojahn, T.H., Gonçalves, J.L., Mattos, J.C.B., Da Rosa, L.S., Agostini, L.V.: A Media
Processing Implementation Using Libvlc for the Ginga Middleware. In: Proceedings of
the 5th International Conference on Future Information Technology (FutureTech) (2010)

[28] Cabral, P.A., et al.: GingaCDN A Code Development Network to DTV Brazilian
Middleware. In: Proceedings of the 16th Brazilian Symposium on Multimedia and the
Web (WebMedia 2010), 1st Workshop of Interactive Digital TV, Belo Horizonte, vol. 2
(2010)

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 50–61, 2011.
© IFIP International Federation for Information Processing 2011

Developing Architectural Documentation
for the Hadoop Distributed File System

Len Bass, Rick Kazman, and Ipek Ozkaya

Software Engineering Institute, Carnegie Mellon University
Pittsburgh, Pa 15213 USA

lenbass@cmu.edu,{kazman,ozkaya}@sei.cmu.edu

Abstract. Many open source projects are lacking architectural documentation
that describes the major pieces of the system, how they are structured, and how
they interact. We have produced architectural documentation for the Hadoop
Distributed File System (HDFS), a major open source project. This paper
describes our process and experiences in developing this documentation. We
illustrate the documentation we have produced and how it differs from existing
documentation by describing the redundancy mechanisms used in HDFS for
reliability.

1 Introduction

The Hadoop project is one of the Apache Foundation’s projects. Hadoop is widely
used by many major companies such as Yahoo!, E-Bay, Facebook, and others. (See
http://wiki.apache.org/hadoop/PoweredBy for a list of Hadoop users.) The lowest
level of the Hadoop stack is the Hadoop Distributed File System [2]. This is a file
system modeled on the Google File System [1] that is designed for high volume and
highly reliable storage. Clusters of 3000 servers and over 4 petabytes of storage are
not uncommon within the HDFS user community.

The amount and extent of documentation of the architecture [3] that should be
produced for any given project is a matter of contention. There are undeniable costs
associated with the production of architectural documentations and undeniable
benefits. The open source community tends to emphasize the costs and downplay the
benefits. As evidence of this claim, there is no substantive architectural
documentation for a the vast majority of open source projects, even the very largest
ones. The existing description of the architecture of most widely used open source
systems tend to be general descriptions rather than systematic architectural
documentation targeted for the system’s stakeholders [4].

This paper describes the process we used to produce architectural documentation
with emphasis on what is different about producing documentation for open source
projects. This production was the first step in a more ambitious project that will
analyze the community for evidence as to the value of the documentation but we have
nothing to report on that front as yet.

HDFS makes two assumptions that take it out of the realm of a standard file
system: it assumes high volumes of data in primarily a write-once, read-many-times

 Developing Architectural Documentation for the Hadoop Distributed File System 51

environment. The only block size that HDFS supports is 64Mbytes. There is very
little synchronization supported since the kinds of applications for which it is
designed are primarily batch – collect data and process it later. The second
assumption that HDFS makes is that it will run primarily on commodity hardware.
With 3000 servers, hardware failures, even with all RAID devices, become a normal
occurrence. As a consequence the software was designed to handle failure smoothly.
Since the software must handle failure in any case, use of commodity hardware makes
the use of a multi-thousand server cluster much more economical.

The structure of this paper is that we will first describe our idealized process for
producing more detailed architectural documentation. We then discuss what we
actually did and how it differed from the idealized process. Throughout the paper we
use the description of the HDFS availability strategy as illustrative of both the
existing documentation and our additions to it.

2 Our Process for Developing the Documentation

When writing architectural documentation it is necessary to have an overview of what
the system components are and how they interact. When there is a single architect for
the system, the easiest route is to simply talk to this person. Most open source
projects, however, do not have a single identifiable architect—the architecture is
typically the shared responsibility of the group of committers.

The first step of our documentation process is to gain this overview. Subsequent
steps include elaborating the documentation and validating and refining it. To do this
we needed to turn first to published sources.

2.1 Gaining the Overview

HDFS is based on the Google File System and there are papers describing each of
these systems 1, 2. Both of these papers cover more or less the same territory. They
describe the main run-time components and the algorithms used to manage the
availability functions. The main components in HDFS are the NameNode that
manages the HDFS namespace and a collection of DataNodes that store the actual
data in HDFS files. Availability is managed by maintaining multiple replicas of each
block in an HDFS file, recognizing failure in a DataNode or corruption of a block,
and having mechanisms to replace a failed DataNode or a corrupt block.

In addition to these two papers, there is an eight page “Architectural
Documentation” segment on the Apache Hadoop web site [5]. This segment provides
somewhat more detail than the two academic papers about the concepts used in HDFS
and provides an architectural diagram, as shown in Figure 1.

Code level documentation (JavaDoc) is also available on the HDFS web site. What
currently exists, then, are descriptions of the major concepts and algorithms used in
HDFS as well as code-level JavaDoc API documentation.

52 L. Bass, R. Kazman, and I. Ozkaya

Fig. 1. HDFS Architecture Diagram from 5

What is missing from the existing documentation can be seen by considering how
architectural documentation is used. Architectural documentation serves three
purposes: 1) a means of introducing new project members to the system, 2) a vehicle
for communication among stakeholders, and 3) the basis for system analysis and
construction [3,6]. These uses of architectural documentation include descriptions of
the concepts and, where important, the algorithms. But architectural documentation,
to be truly useful for those who wish to modify the system, must also connect the
concepts to the code. This connection is currently missing in the HDFS
documentation. A person who desires to become a contributor or committer needs to
know which modules to modify and which are affected by a modification.
Communication among stakeholders over a particular contribution or restructuring is
also going to be couched in terms of the relation of the proposed contributions to
various code units. Finally, for system construction, maintenance, and evolution to
proceed, the code units and their responsibilities must be unambiguously identified.
Existence of such focused architecture documentation can assist contributors become
committers faster. It could also assist addressing many current open major issues. As
of April 12, 2011 out of the 834 total issues in HDFS Jira 628 of the issues are major
issues.

Architectural documentation occupies the middle ground between concepts and
code and it connects the two. Creating this explicit connection is what we saw as our
most important task in producing the architectural documentation for HDFS.

2.2 Expert Interview

Early in the process of gaining an overall understanding of HDFS, we interviewed
Dhruba Borthakur of Facebook, a committer of the HDFS project and also the author

 Developing Architectural Documentation for the Hadoop Distributed File System 53

of the existing architectural documentation posted on the HDFS web site [5]. He was
also one of the people who suggested that we develop more detailed architectural
documentation for HDFS. We conducted a three hour face to face interview where we
explored the technical, historical, and political aspects of HDFS. Understanding the
history and politics of a project is important because when writing any document you
need to know who your intended audience is to describe views that are most relevant
to their purposes [3].

In the interview, we elicited and documented a module description of HDFS as
well as a description of the interactions among the main modules. The discussion
helped us to link the pre-existing architectural concepts—exemplified by Figure 1—to
the various code modules. The interview also gave us an overview of the evolutionary
path that HDFS is following. This was useful to us since determining the anticipated
difficulty of projected changes provides a good test of the utility, and driver for the
focus, of the documentation. Figure 2 shows a snippet from our interview and board
discussions where Dhruba Borthakur described to us the three DataNode replicas in
relationship to the NameNode.

Fig. 2. Elicitation of Architectural Information

2.3 Directory Structure

A final item that proved very helpful is the directory structure of HDFS. The code is
divided cleanly into the following pieces:

• The library used by the client to communicate with the NameNode and
the DataNodes.

• The protocols used for the client communication

54 L. Bass, R. Kazman, and I. Ozkaya

• The NameNode code
• The DataNode code
• The protocols used for communication between the NameNode and the

DataNodes.

In addition, there are a few other important directories containing functionality that
the HDFS code uses, such as Hadoop Common.

2.4 Tool Support

An obvious first step in attempting to create the architectural documentation was to
apply automated reverse engineering tools. We employed SonarJ [7] and Lattix [8],
both of which purport to automatically create architectural representations of a
software product by relying on static analysis of the code dependencies. However,
neither of these tools provided useful representations although they did reveal the
complexity of the dependencies between Hadoop elements. For example, Figure 3
shows an extracted view of the most important code modules of HDFS, along with
their relationships, produced by SonarJ.

Fig. 3. Module Relationships in HDFS

What are we to make of this representation? It appears to be close to a fully
connected graph. Is the code a “big ball of mud” [9]? The answer lies in the purpose
and goals of the architecture. The main quality attribute foci of HDFS are
performance and availability. These concerns dominate the architectural decisions and
the discussions amongst the project’s committers. Of significant, but decidedly lesser
concerns, are qualities such as modifiability and portability. The process Hadoop
follows in handling modification is a planned evolutionary processes where a
committer suggests alternative design, it is vetted among the key committers, and then

 Developing Architectural Documentation for the Hadoop Distributed File System 55

planned for an agreed upon future release cycle. The goals of the project should be
aligned with the focus of the architecture. Since performance and availability were the
top goals of HDFS, it is not surprising that these concerns shaped the architectural
decisions. Since modifiability and portability were of lesser concern, it is also not
surprising that these qualities were not strongly reflected in the architectural structures
chosen.

The reverse engineering tools SonarJ and Lattix are primarily focused on these
latter concerns—modifiability and portability. They aid the reverse engineer in
determining the modular and layered structures in the architecture by allowing the
definition of design rules to detect violations for such architectural structures. We thus
see a mismatch between the goals of the tools and the goals of HDFS. For this reason,
the structures that these tools were able to automatically extract were not particularly
interesting ones, since they did not match the goals of the project and the important
structures in the architecture. HDFS does not have any interesting layering, for
example, since its portability concerns are, by and large, addressed by the technique
of “implement in Java”. The governing architectural pattern in HDFS is a master-
slave style, which is a run-time structure. And modifiability, while important, has
been addressed simply by keeping the code base at a relatively modest size and by
having a significant number of committers spending considerable time learning and
mastering this code base.

The modest code size, along with the existing publications on the availability and
performance strategies of HDFS allows us to document the architecture by tracing the
key use cases through the code. While this is not an easily repeatable process for
larger open source projects, it proved to be the most accurate and fit for purpose
strategy for creating the architecture documentation of HDFS.

This lack of attention to specific architectural structures aimed at managing
modifiability is a potential risk for the project as it grows, since it makes it difficult to
add new committers—the learning curve is currently quite steep. Our architectural
documentation is one step in addressing this risk. Another step that the HDFS
committers could take is to simplify the “big ball of mud”.

3 Elaboration

This project began Nov. 1, 2010 and the interview with Dhruba Borthakur took place
on Nov. 22, 2010. Thus, it took a month to gain an overview of HDFS. December was
devoted to exploring the architecture using the reverse engineering tools and the
month of January was devoted to writing a first version of the architectural
documentation. It is in the elaboration phase that value is added to the existing
materials.

The elaboration phase of the architectural documentation is when the
connections between the concepts and the algorithms are made manifest. Consider the
following section from the existing architectural documentation (found at
http://hadoop.apache.org/common/docs/r0.20.0/hdfs_design.html) about one of the key
mechanisms for maintaining high data availability: the heartbeat.

56 L. Bass, R. Kazman, and I. Ozkaya

Data Disk Failure, Heartbeats and Re-Replication

Each DataNode sends a Heartbeat message to the NameNode periodically. A
network partition can cause a subset of DataNodes to lose connectivity with the
NameNode. The NameNode detects this condition by the absence of a Heartbeat
message. The NameNode marks DataNodes without recent Heartbeats as dead and
does not forward any new IO requests to them. Any data that was registered to a
dead DataNode is not available to HDFS any more. DataNode death may cause
the replication factor of some blocks to fall below their specified value. The
NameNode constantly tracks which blocks need to be replicated and initiates
replication whenever necessary. The necessity for re-replication may arise due to
many reasons: a DataNode may become unavailable, a replica may become
corrupted, a hard disk on a DataNode may fail, or the replication factor of a file
may be increased.

Our elaboration of this concept, as we have produced it in the architectural

documentation, is:

Heartbeats are the mechanism by which the NameNode determines which
DataNodes are currently active. There is a heartbeat monitor thread in
NameNode that controls the management.

NameNode maintains information about the DataNodes in
DataNodeDescriptor.java. DataNodeDescriptor tracks statistics on a given
DataNode, such as available storage capacity, last update time, etc., and maintains a
set of blocks stored on the DataNode. This data structure is internal to the
NameNode. It is not sent over-the-wire to the Client or the DataNodes. Neither is it
stored persistently in the fsImage (namespace image) file.

A DataNode communicates with the NameNode in response to one of four events.

1. Initial registration. When a DataNode is started or restarted it registers with
the NameNode. It also registers with the NameNode if NameNode is
restarted. In response to a registration, NameNode creates a
DataNodeDescriptor for the DataNode. The list of the DataNodeDescriptors
is checkpointed in fsimage (the namespace image file). Only the
DataNodeInfo part is persistent, the list of blocks is restored from the
DataNode block reports.

2. In response to a heartbeat request from the NameNode. If NameNode has not
heard from a DataNode for some period of time, it sends a request for a
Heartbeat. If this request does not generate a response, the DataNode is
considered to have failed and each of the replicas it maintains must be
created on a different DataNode. When the DataNode has reported,
NameNode:

• Records the heartbeat, so the DataNode isn't timed out

• Adjusts usage stats for future block allocation

 If a substantial amount of time passed since the last DataNode heartbeat
then NameNode requests an immediate block report.

 Developing Architectural Documentation for the Hadoop Distributed File System 57

3. `In response to a blockReport() request from the NameNode. NameNode may
request the DataNode to report all of the replicas that it is currently
maintaining. NameNode does this when it has reason to believe that its list of
blocks in the DataNode is not up to date. i.e., on start up or if it has not
heard from the DataNode for some period of time.

4. Completion of a replica write. When the DataNode has successfully written a
replica, it reports this event through a blockReport().

The differences between the original documentation [5] and the new version that we
have produced are as follows:

• Much more detail. Rather than giving a general description of the
concepts, the specific interactions between a DataNode and the
NameNode are described.

• Code is explicitly named. The classes that contain the code that provides
the heartbeat responsibility are identified.

• Subtle optimizations are identified. For example, a blockReport() sent by
the DataNode to the NameNode indicates that the DataNode is alive and
there is no need for a heartbeat query to that DataNode.

At the time of writing of this paper we are also working on adding sequence diagrams
of major use cases to further highlight the architectural details mapping the
architecture documentation more explicitly to the code.

4 Validation and Refinement

The final phase of the production of the architectural documentation is to validate it.
We have now received comments on our draft from two committers of HDFS -
Dhruba Borthakur of Facebook and Sanjay Radia of Yahoo!. Based on their
comments we have modified the draft architectural documentation. At the time of
writing this paper, we are preparing the documentation for publication on the HDFS
web-site and appropriate blogs. Before doing so, we are creating baseline metrics on
the existing state of the basic metrics that we can track to architecture documentation
such as number of committers, contributors, and surveys that we will conduct with
them to establish a baseline impression of the state of the architecture for HDFS (like
actual versus perceived architecture).

5 Structure of the Documentation

The documentation that we have produced has 6 major sections. These are

1. Introduction
2. HDFS Assumptions and Goals. This section talks about the design

rationale and major quality attribute concerns for HDFS.
3. Overview of HDFS Architecture. This section introduces the three types

of processes within HDFS – the application, the NameNode, and the
DataNode.

58 L. Bass, R. Kazman, and I. Ozkaya

4. Communication among HDFS elements. This section describes the four
canonical runtime interactions between the three types of HDFS
processes. These interactions, as shown in Figure 1, are: Application
code <-> Client, Client <-> NameNode, and Client <-> DataNode,
NameNode <-> DataNode.

5. Decomposition and Basic Concepts of HDFS elements. This section
describes how each of the basic elements reacts to client requests to
create, write, read, and close files. It also describes the modes and thread
structure within NameNode and how these modes and threads are used to
manage the file systems and provide high availability.

6. Use Cases. The basic use cases of create, write, read, and close are
described in terms of sequence diagrams.

6 Discussion

We will now discuss three aspects of creating architectural documentation that are
lessons learned from this process: where to start, how to evolve the documentation,
and the use of tools. We will also discuss how the production of architectural
documentation for an open source project differs from the production of architectural
documentation for a closed project.

6.1 Where to Start

There were two documents that helped us get started in documenting HDFS: the
Google File System paper (the Google file system was the original model for HDFS)
and the existing architectural documentation on the web-site. These two documents
provided a good start on our gaining an early understanding of HDFS. What would
we have done if this level of documentation had not existed?

Whether or not there is existing documentation, our process calls for interviewing
experts. The documentation that exists is invariably out of date (if it were not, we
would not be doing this job) and much of the information that we require typically
resides in the heads of just a few individuals. These individuals are usually very busy
and without sufficient time or interest to produce the architectural documentation. For
HDFS, one interview was sufficient. If the pre-existing level of documentation is not
sufficient to gain an overview level of understanding, then more interviews may have
been necessary. The interview was quite lengthy, involved multiple drawings on a
whiteboard and, although it did not work out, we had hopes of arranging another
interview in the same trip. Although face to face interviews are difficult and
expensive to arrange, it is hard for us to image the same results from a video
conferencing meeting.

Our notes from the interview contain several photos of drawings from a white
board. It is possible that additional information could have been gained from either e-
mail or telephone conferences, but we did not feel the need for that for this case, In an
open source project, the committers are usually easy to find, although possibly
difficult to arrange time with.

 Developing Architectural Documentation for the Hadoop Distributed File System 59

To summarize, the techniques for gaining an understanding of the architecture from
dealing with the committers include face to face meetings, off line communication, and
telephone conferences.

6.2 Evolution

Systems evolve and (hopefully) more slowly, architectures evolve. This means that
the architecture documentation in an evolving system may quickly become out of
date. Using HDFS as an example, this fear seems to be overblown. The fundamental
structures of HDFS—for example, the separation and relationships between client,
DataNode, and NameNode—have not changed since its inception. Of course, the
details of each of these elements and their interactions have evolved, but at the
architectural level there was considerable stability.

A recent major change is the addition of the ability to append data to an existing
file. In architectural terms, this involved multiple classes and the addition of a major
new functionality. Yet in terms of the documentation, a search of the documentation
we produced finds several one-word references to append plus an 11 line paragraph
describing how append is different than write. Generating the additional architectural
documentation associated with append would have been the work of just a few hours.

Major changes currently being considered for HDFS are a refactoring of the code
and several different proposals being considered to break the current design of an
HDFS deployment being limited to one cluster. These two types of changes raise
different issues in terms of the evolution of the architectural documentation.

• Refactoring to simplify the code structure. Refactoring the code would not
change the concepts or the algorithms used, but it would have an impact
on the mapping of the important concepts to classes. Yet the changes to
the architectural documentation can be kept to a minimum. A refactoring
will add new classes, modify existing classes, or deleting classes. Any
major new class will be constructed from portions of existing classes. We
can match a list of classes being modified or deleted with the classes
mentioned in the documentation. For each match, the changes to the
documentation will consist of adding a class name or removing a class
name. These are minimally intrusive changes.

• Breaking the current limitation of a single cluster per deployment. This
type of change is more far reaching and will have more impact on the
documentation. Yet this type of change is not made radically or quickly.
In fact, the discussion of the proposed changes can be found in the Jira
bug-tracking system prior to the change actually taking place.

The discussion in Jira provides exactly the type of information that needs to be
captured in the architectural documentation. Consider the following example, open
issue from HDFS Jira, HDFS-1783 created March 24, 2011 by Dhruba Borthakur:

The current implementation of HDFS pipelines the writes to the three replicas.
This introduces some latency for realtime latency sensitive applications. An
alternate implementation that allows the client to write all replicas in parallel
gives much better response times to these applications.

60 L. Bass, R. Kazman, and I. Ozkaya

Although architectural documentation is created once and then needs to be maintained
and evolved, we argued here that if one considers the type of evolution that a system
like HDFS undergoes once it has become successful, the concomitant evolution to the
architectural documentation is relatively minor and painless.

6.3 The Use of Tools

Tools are most useful in the elaboration stage of the documentation. As discussed
above, tools are not much help in gaining an initial understanding of the concepts and
algorithms, and may be of limited use in understanding the module structure. But
tools can be very useful in tracking the effects of a method call or the use of a
particular class.

One tool that is particularly useful is the call graph. A call graph enables tracking
how a call to “write” by the client goes through NameNode. It is not the best way to
understand that NameNode is not involved with the data transfer, per se but it will
provide a track through the classes that allocate blocks.

As discussed above, we originally tried to create a module view with tool support
but that effort was unsuccessful. The tools that we used that support the construction
of a module view require some initial guesses as to the decomposition of the modules.
Beyond the decomposition of HDFS into the client, NameNode, and DataNode,
finding further decompositions proved unsuccessful for us. As a result, the
architectural documentation that we produced only has those three major components
identified.

6.4 Open Source Specifics

One distinction between producing architectural documentation for an open source
project and a proprietary project comes from the openness and availability of
discussions about issues. In an open source project, Jira, mailing lists and bulletin
boards become the repository of these discussions and they can be mined for rationale
information. In a closed source project we must rely upon the availability, good will,
and good memory of individuals. Although in principle there is nothing to stop closed
source projects from adopting these practices, in our experience, we have rarely seen
evidence of their existence.

There are other factors that are traditionally cited as distinctive to open source
activities—multiple eyes, requirements arising from the contributors rather than from
an explicit elicitation process, and so forth. But none of these other distinctive
characteristics of open source appears to substantially affect the process of creating
architectural documentation.

7 Next Steps

The production of the architectural documentation is the first step in a more ambitious
research project to measure the impact of architectural documentation. The current
group of committers of HDFS is stressed because of their HDFS-related workload and
would like to grow the HDFS committer community. Currently there are 221
contributors as opposed to 28 committers. Our conjecture is that the existence of

 Developing Architectural Documentation for the Hadoop Distributed File System 61

architectural documentation will shorten the learning curve for potential contributors
and committers, thus lowering the bar to entry.

To test this conjecture we have created improved architectural documentation
for HDFS, and begin disseminating it on May 19, 2011 via http://kazman. shidler.
hawaii.edu/ArchDoc.html. We announced the availability of the documentation to the
Hadoop community through HDFS Jira (issue number HDFS-1961)

In addition, we are collecting a number of project measures. We will measure the
usefulness of the documentation by tracking how often it is downloaded and how
often it is mentioned in discussion groups. We are tracking project health measures,
such as the growth of the committer group, and the time lag between someone’s
appearance as a contributor and their acceptance as a committer and other measures.
And we are tracking product health measures, such as the number of bugs per unit
time and bug resolution time.

This study is much more long-term than the production of the architectural
documentation, although it crucially depends on the documentation as a first step. We
will report on our results in due course.

Acknowledgements. The work was supported by the U.S. Department of Defense.
We would also like to thank Dhruba Borthakur and Sanjay Radia for their assistance.

References

1. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: ACM SIGOPS
Operating Systems Review - SOSP 2003, vol. 37(5), pp. 23–43 (2003)

2. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop Distributed File System. In:
IEEE 26th Symposium on Mass Storage Systems and Technologies, Incline Village, NV,
pp. 1–10 (2010)

3. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord, R.,
Stafford, J.: Documenting Software Architectures: Views and Beyond, 2nd edn. Addison-
Wesley, Reading (2010)

4. Brown, A., Wilson, G.: The Architecture of Open Source Applications (2010),
 http://www.aosabook.org/en/index.html (accessed June 6, 2011)

5. Apache Hadoop, HDFS Architecture,
http://hadoop.apache.org/common/docs/r0.19.2/hdfs_design.html (accessed April 7, 2011)

6. ISO/IEC 42010:2007 – Recommended Practice for Architectural Description of Software-
intensive Systems (2007), http://www.iso-architecture.org/ieee-1471/ (accessed June 6,
2011)

7. Sonar, J.: http://www.hello2morrow.com/products/sonarj (accessed April 9, 2011)
8. Lattix, http://www.lattix.com (accessed April 9, 2011)
9. Foote, B., Yoder, J.: Big Ball of Mud. In: Fourth Conference on Patterns Languages of

Programs (PLoP 1997/EuroPLoP 1997), Monticello, Illinois (1997)

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 62–74, 2011.
© IFIP International Federation for Information Processing 2011

Modding as an Open Source Approach to Extending
Computer Game Systems

Walt Scacchi

Institute for Software Research and
Center for Computer Games and Virtual Worlds

University of California, Irvine
wscacchi@ics.uci.edu

Abstract. This paper examines what is known so far about the role of open
source software development within the world of game mods and modding
practices. Game modding has become a leading method for developing games by
customizing or creating OSS extensions to game software in general, and to
proprietary closed source software games in particular. What, why, and how OSS
and CSS come together within an application system is the subject for this study.
The research method is observational and qualitative, so as to highlight current
practices and issues that can be associated with software engineering and game
studies foundations. Numerous examples of different game mods and modding
practices are identified throughout.

1 Introduction

User modified computer games, hereafter game mods, are a leading form of user-led
innovation in game design and game play experience. But modded games are not
standalone systems, as they require the user to have an originally acquired or licensed
copy of the unmodded game software.

Modding, the practice and process of developing game mods, is an approach to end-
user game software engineering [4] that establishes both social and technical
knowledge for how to innovate by resting control over game design from their original
developers. At least four types of game mods can be observed: user interface
customization; game conversions; machinima; and hacking closed game systems.
Each supports different kinds of open source software (OSS) extension to the base
game or game run-time environment. Game modding tools and support environments
that support the creation of such extensions also merit attention. Furthermore, OSS
game extensions are commonly applied to either proprietary, closed source software
(CSS) games, or to OSS games, but generally more so to CSS games. Why this is so
also merits attention. Subsequently, we conceive of game mods as covering
customizations, tailorings, remixes, or reconfigurations of game embodiments, whether
in the form of game content, software, or hardware denoting our space of interest.

The most direct way to become a game mod developer (a game modder) is through
self-tutoring and self-organizing practices. Modding is a form of learning – learning
how to mod, learning to be a game developer, learning to become a game
content/software developer, learning computer game science outside or inside an

 Modding as an Open Source Approach to Extending Computer Game Systems 63

academic setting, and more [5,20]. Modding is also a practice for learning how to
work with others, especially on large, complex games/mods. Mod team efforts may
also self organize around emergent software development project leaders or “want to
be” (W.T.B.) leaders, as seen for example in the Planeshift (http://www.planeshift.it/)
OSS massively multiplayer online role-playing game (MMORPG) development and
modding project [20].

Game mods, modding practices, and modders are in many ways quite similar to
their counterparts in the world of OSS development, even though they often
seemingly isolated to those unaware of game software development. Modding is
increasingly a part of mainstream technology development culture and practice, and
especially so for games, but also for hardware-centered activities like automobile or
personal computer customization. Modders are players of the games they
reconfigure, just as OSS developers are also users of the systems they develop. There
is no systematic distinction between developers and users in these communities, other
than there are many users/players that may contribute little beyond their usage, word
of mouth they share with others, and their demand for more such systems. At OSS
portals like SourceForge.net, the domain of “Games” is the second most popular
project category with nearly 42K active projects, or 20% of all projects1. These
projects develop either OSS-based games, game engines, or game development
tools/SDKs, and all of the top 50 projects have each logged more than 1M downloads.
So the intersection of games and OSS covers a substantial socio-technical plane, as
game modding and traditional OSS development are participatory, user-led modes of
system development that rely on continual replenishment of new participants joining
and migrating through project efforts, as well as new additions or modifications of
content, functionality and end-user experience [19,20,21]. Modding and OSS projects
are in many ways experiments to prototype alternative visions of what innovative
systems might be in the near future, and so both are widely embraced and practiced
primarily as a means for learning about new technologies, new system capabilities,
new working relationships with potentially unfamiliar teammates from other cultures,
and more [cf. 21].

Consequently, game modding appears to be (a) emerging as a leading method for
developing or customizing game software; (b) primarily reliant of the development
and use of OSS extensions the ways and means for game modding; and (c)
overlapping a large community of OSS projects that develop computer game software
and tools that has had comparatively little study. As such, the research questions that
follow then are why do these conditions exist, how have they emerged, and how are
they put into practice in different game modding efforts.

This paper seeks to examine what is known so far about game mods and modding
practices. The research method in this study is observational and qualitative. It seeks
to snapshot and highlight current practices that can be associated with software
engineering and game studies, as well as how these practice may be applied in CSS

1 See http://www.sourceforge.net/softwaremap/index.php, accessed 15 April 2011. The number

one category of projects is for “Development” with more than 65K OSS projects, out of 210K
projects. So OSS Development and OSS Games together represent half of the projects
currently hosted on SourceForge.

64 W. Scacchi

versus OSS game modding. Numerous examples of different game mods and
modding practices are identified throughout to help establish an empirically grounded
baseline of observations, from which further studies can build or refute. Furthermore,
the four types of game mods and modding practices identified in this paper have been
employed first-hand in game development projects led or produced by the author.
Such observation can subsequently serve as a basis for further empirical study and
technology development that ties together computer games, OSSD, software
engineering, and game studies [19,20,21,22].

2 Related Research

Two domains of research inform the study here: software extension within the field of
software engineering, and modding as cultural practice within game studies. Each is
addressed in turn.

2.1 Software Extension

Game mods embody different techniques and mechanisms for software extension.
However, the description of game mods and modding is often absent of its logical
roots or connections back to software engineering. As suggested, mods are extensions
to existing game software systems, so it is appropriate to review what we already
know about software extensions and extensibility.

Parnas [15] provides an early notion of software extension as an expression of
modular software design. Accordingly, modular systems are those whose components
can be added, removed, or updated while satisfying the original system functional
requirements. Such concepts in turn were integrated into software architectural design
language descriptions and configuration management tools [14]. But reliance on
explicit software architecture descriptions is not readily found in either conventional
game or mod development. Hentonnen and colleagues [8] examine how software
plug-ins support architectural extension, while Leveque, et al. [11] investigate how
extension mechanisms like views and model-based systems support extension, also at
the architectural level. Last, the modern Web architecture is itself designed according
to principles of extensibility through open APIs, migration across software versions,
network data content/hypertext transfer protocols, and representational state transfer
[6]. Mod-friendly networked multi-player games often take advantage of these
capabilities.

Elsewhere, Batory and associates [3] describe how domain-specific languages (for
scripting) and software product lines support software extension, and now such
techniques are used in games that are open for modding. Next, OSS development as a
complementary approach to software engineering, relies on OSS code and associated
online artifacts that are open for extension through modification and redistribution of
their source representations [21]. Finally, other techniques to extend the functionality
or operation of an existing CSS system may include unauthorized modifications that
might go beyond what the end-user license agreement might allow, and so appear to
fall outside of what software engineering might anticipate or encourage. These include
extensions via hacking methods like code injection or hooking, whose purpose is to

 Modding as an Open Source Approach to Extending Computer Game Systems 65

gain/redirect control of normal program flow through overloading or intercepting
system function calls, or provide a hidden layer of interpretation, which allow for “man
in the middle” interventions. So software extensions and extensibility is a foundational
concept in software engineering, as well as foundational to the development of game
mods. However, the logical connections and common/uncommon legacy of game
modding, OSS development, and software engineering remain under specified, which
this paper begins to address.

2.2 Modding as Cultural Practice

Game modding is a practice for user content creation that creates/networks not only
game mods but game modders. Within anthropological, behavioral, and sociological
studies of computer game play, modding has been studied as an emerging cultural
practice that mediates both game play and player interaction with other players
(including the game's developers). In some early studies, modding has been
designated as a form of “playbour” whereby player actions to create game extensions
for use by other players is observed as a form of unpaid (or underpaid) labor that
primarily benefits the financial and property interests of game development
corporations or hegemonic publishers [10,16,26].

Game modding also modifies or transforms game play experience, since what is
play and what is experience(d) are culturally situated. Examples of this may include
single player games being modded into multi-player games. So the experience of
single player versus the game environment is transformed into other situations
including player versus player, multi-player group play, or team versus team play.
Similarly, the modding of games to enable experiences other than expected game
play, like using a modded game for storytelling or film-making experiences is also a
practice of growing interest, with the emergence of a distinguishable community of
gamer-filmmakers who produce machinima (described later) as either a literary
medium, or an art form [9,12,13].

Other studies have observed that user/modders also benefit from modding as a way
to achieve a sense of creative ownership and meaning in the modded games they
share and play with others [17,19,20,23], and that game mods and modding practices
become central elements in what constitutes play with and through games [24].
Finally, as already observed, OSS project portals like SourceForge host thousands of
OSS game development projects that develop and deploy role-playing games (4.3K
projects), simulation-based games (2.6K), board games (2.3K), side-scrolling/arcade
games (2K), turn-taking strategy games (1.7K), multi-user dungeons or text-based
adventure/virtual worlds (1.6K), first-person shooters (1.6K), MMORPG (0.6K) and
more. So development of OSS games and related game development tools can be
recognized as a central element in the cultural world of computer games and game
development, as well as the world of OSS development [19,20,21].

3 Four Types of Game Mods

At least four types of game mods are realized through OSS development practices.
These include (i) user interface customizations and agents, (ii) game conversions, (iii)

66 W. Scacchi

machinima, and (iv) hacking closed source game systems. Each is examined in
turned, and each is facilitated (or prohibited) according to its copyright license.

3.1 User Interface Customizations and Agents

User interfaces to games embody the practice and experience of interfacing users
(game players) to both the game system and the play experience designed by the
game's developers. Game developers act to constrain and govern what users can do,
and what kinds of experience they can realize. Some users in turn seek to achieve a
form of competitive advantage during game play by modding the user interface
software for their game, when so enabled by game developers. These mods acquire or
reveal additional information that users believe will help their play performance and
experience. User interface add-ons subsequently act as the medium through which
game development studios support game product customization, which is a strategy
for increasing end-user satisfaction and thus the likelihood of product success [4].

Three kinds of user interface customizations can be observed. First and most
common, is the player's ability to select, attire or accessorize a player's in-game
identity. Second, is for players to customize the color palette and representational
framing borders of the their game display within the human-computer interface, much
like what can also be done with Web browsers (e.g, Firefox 4 “personas” and
“themes”) and other end-user software applications. Third, are user interface add-on
modules that modify the player's in-game information management dashboard, but do
not modify the underlying game play rules or functions. These add-ons provide
additional information about game play state that may enhance the game play
experience, as well as increasing a player's sense of immersion or omniscience within
the game world through perceptual expansion. This in turn enables awareness of game
events not visible in the player's pre-existing in-game view. Furthermore, some add-
on facilities (e.g., those available with the proprietary World of Warcraft MMORPG,
scripted in the LUA language) accommodate the creation of automated agent scripts
that can read/parse data streamed to the UI within an existing or other add-on
dashboard component, and then provide some additional value-added play experience,
such as sending out messages or status reports to other players automatically. Such
add-on agents thus modify or reconfigure the end-user play experience, rather than the
core functionality or play mechanics available to all other of the game's players.
Consequently, the first two kinds of customizations result from meta-data selections
within parametric system functions, while the third represents a traditional kind of
user-created modular extension; one that does not affect the pre-existing game's
functional requirements, nor one included in the operational source code base during
subsequent system builds or releases, unless they do alter the software's requirements
(e.g., by introducing a new security vulnerability or exploit that must be subsequently
prevented).

3.2 Game Conversions

Game conversion mods are perhaps the most common form of game mods. Most such
conversions are partial, in that they add or modify: (a) in-game characters including
user-controlled character appearance or capabilities, opponent bots, cheat bots, and

 Modding as an Open Source Approach to Extending Computer Game Systems 67

non-player characters; (b) play objects like weapons, potions, spells, and other
resources; (c) play levels, zones, maps, terrains, or landscapes; (d) game rules; or (e)
play mechanics. Some more ambitious modders go as far as to accomplish (f) total
conversions that create entirely new games from existing games of a kind not easily
determined from the originalgame. For example, one of the most widely distributed
and played total game conversions is the Counter-Strike (CS) mod of the Half-Life
(HL) first-person action game from Valve Software. As the success of the CS mod
gave rise to millions of players preferring to play the mod over the original HL game,
then other modders began to access the CS mod to further convert in part or full, to
the point that Valve Software modified its game development and distribution
business model to embrace game modding as part of the game play experience that is
available to players who acquire a licensed copy of the HL product family. Valve has
since marketed a number of CS variants that have sold over 10M copies as of 2008,
thus denoting the most successful game conversion mod, as well as the most lucrative
in terms of subsequent retail sales derived from a game mod.

Another example is found in games converted to serve a purpose other than
entertainment, such as the development and use of games for science, technology, and
engineering applications. For instance, the FabLab game [22] is a conversion of the
Unreal Tournament 2007 retail game, from a first-person shooter to a simulator for
training semiconductor manufacturing technicians in diagnosing and treating
potentially hazardous materials spills in a cleanroom environment. This conversion is
not readily anticipated by knowledge of the Unreal games or underlying game engine,
though it maintains operational compatibility with the Unreal game itself. So game
conversions can re-purpose the look, feel, and intent of a game across application
domains, while maintaining a common software product line [cf. 3].

Finally, it is common practice that the underlying game engine has one set of
license terms and conditions to protect original work (e.g., no redistribution), while
game mod can have a different set of terms and conditions as a derived work (e.g.,
redistribution allowed only for a game mod, but not for sale). In this regard, software
licenses embody the business model that the game development studio or publisher
seeks to embrace, rather than just a set of property rights and constraints. For
example, in Aion, an MMORPG from South Korean game studio NCSoft, no user
created mods or user interface add-ons are allowed. Attempting to incorporate such
changes would conflict with its EULA and subsequently put such user-modders at
risk of losing their access to networked Aion multi-player game play. In contrast, the
MMORPG World of Warcraft allows for UI customization mods and add-ons only,
but no other game conversions, no reverse engineering of the game engine, and no
activity intended to bypass WoW's encryption mechanisms. And, in one more
variation, for games like Unreal Tournament, Half-Life, NeverWinterNights,
Civilization and many others, the EULAs encourage modding and the free
redistribution of mods without fee to others who must have a licensed copy of the
proprietary CSS game, but not allowing reverse engineering or redistribution of the
CSS game engine required to run the OSS mods. This restriction in turns helps game
companies realize the benefit of increased game sales by players who want to play
with known mods, rather than with the un-modded game as sold at retail. Mods thus
help improve games software sales, revenue, and profits for the game development
studio, publisher, and retailer, as well as enable new modes of game play, learning,
and skill development for game modders.

68 W. Scacchi

3.3 Machinima

Machinima can be viewed as the product of modding efforts that intend to modify the
visual replay of game usage sessions. Machinima employ computer games as their
creative media, such that these new media are mobilized for some other purpose (e.g.,
creating online cinema or interactive art exhibition). Machinima focuses attention to
playing and replaying a game for the purpose of story telling, movie making, or
retelling of daunting or high efficiency game play/usage experience [12,13].
Machinima is a form of modding the experience of playing a specific game, by
recording its visual play session history, so as to achieve some other ends beyond the
enjoyment (or frustration) of game play. These play-session histories can then be
further modded via video editing or remixing with other media (e.g., adding music) to
better enable cinematic storytelling or creative performance documentation.
Machinima is a kind of play/usage history process re-enactment [cf. 18] whose
purpose may be documentary (replaying what the player saw or experienced during a
play session) or cinematic (creatively steering a play session so as to manifest
observable play process enactments that can be edited and remixed off-line to visually
tell a story). Machinima mods are thus a kind of extension of game software use
experience that is not bound to the architecture of the underlying game software
system, except for how the game facilitates a user's ability to structure and manipulate
emergent game play to realize a desired play process enactment history.

3.4 Hacking Closed Game Systems

Hacking a closed game system is a practice whose purpose oftentimes seems to be in
direct challenge to the authority of commercial game developers that represent large,
global corporate interests. Hacking proprietary game software is often focused not so
much on how to improve competitive advantage in multi-player game play, but
instead is focused on expanding the range of experiences that users may encounter
through use of alternative technologies [7,20]. For example, Huang's [7] study
instructs readers in the practice of “reverse engineering” as a hacking strategy to
understand both how a game platform was designed and how it operates in fine detail.
This in turn enables reconfiguration of new innovative modifications or original
platform designs, such as installing and running a Linux operating system (instead of
Microsoft's proprietary CSS offering). While many game developers seek to protect
their intellectual property (IP) from reverse engineering through end-user license
agreements (EULAs) whose terms attempt to prohibit such action under threat of
legal action, reverse engineering is not legally prohibited. Consequently, the practice
of modding closed game consoles/systems is often less focused on enabling players to
achieve competitive advantage when playing retail computer games, but instead may
encourage those few so inclined for how to understand and ultimately create
computing innovations through reverse engineering or other modifications.

Closed game system modding is a style of software extension by game modders
who are willing to forego the “protections” and quality assurances that closed game
system developers provide, in order to experience the liberty, skill, knowledge

 Modding as an Open Source Approach to Extending Computer Game Systems 69

acquisition, conceptual appropriation (“pwned”), and potential to innovate, that
mastery of reverse engineering affords. Consequently, players/modders who are
willing to take responsibility for their actions (and not seek to defraud game producers
due to false product warranty claims or copyright infringement), can enjoy the
freedom to learn how their gaming systems work in intimate detail and to potentially
learn about game system innovation through discovery and reinvention with the
support of others like-minded [cf. 20]. Proprietary game development studios may
sometimes allow for such mod-based infringement of their games. For example, the
team of modders behind the hacking and conversion of the single-player CSS game,
Grand Theft Auto, have produced an OSS (now GPL'd) game mod using code
injection and hooking cheating methods to realize a networked multi-player variant
called Multi Theft Auto, that Rockstar Games has chosen not to prosecute for potential
EULA violation, but instead to embrace as GTA fan culture [25]. Nonetheless, large
corporate interests may assert that their IP rights allow them to install CSS rootkits
that collect potentially private information, or that prevent the reactivation of
previously available OSS (e.g., the Linux Kernel on the Sony PS3 game console2) that
game system hackers seek to undo.

Finally, games are one of the most commonly modified types of proprietary CSS
that are transformed into “pirated games” that are “illegally downloaded.” Such game
modding practice is focused on engaging a kind of meta-game that involves hacking
into and modding game IP from closed to (more) open. Game piracy has thus become
recognized as a collective, decentralized and placeless endeavor (i.e., not a physical
organization) that relies on torrent servers as its underground distribution venue for
pirated game software. As recent surveys of torrent-based downloads reveals, in 2008
the top 10 pirated games represented about 9M downloads, while in 2009 the top 5
pirated games represent more than 13M downloads, and in 2010 the top 5 pirated
games approached 20M, all suggesting a substantial growth in interest in and access
to such modded game products3. Thus, we should not be surprised by the recent
efforts of game system hackers that continue to demonstrate the vulnerabilities of
different hardware and software-based techniques to encrypt and secure closed game
systems from would be crackers. However, it is also very instructive to learn from
these exploits how difficult it is to engineer truly secure software systems, whether
such systems are games or some other type of application or package.

4 Game Modding Software Tools and Support

Games are most often modded with tools providing access to unencrypted
representations of game software or game platform. Such a representation is accessed
and extended via a domain-specific (scripting) language. While it might seem the case

2 For details, see http://en.wikipedia.org/wiki/George_Hotz#Hacking_the_PlayStation_3
3 For 2008, see http://torrentfreak.com/top-10-most-pirated-games-of-2008-081204/ For 2009,

http://torrentfreak.com/the-most-pirated-games-of-2009-091227/ For 2010,
http://torrentfreak.com/call-of-duty-black-ops-most-pirated-game-of-2010-101228/

70 W. Scacchi

that game vendors would seek to discourage users from acquiring such tools, a
widespread contrary pattern is observed.

Game system developers are increasingly offering software tools for modifying the
games they create or distribute, as a way to increase game sales and market share.
Game/domain-specific Software Development Kits (SDKs) provided to users by
game development studios represent a contemporary business strategy for engaging
users to help lead product innovation from outside the studio. Once Id Software,
maker of the DOOM and Quake game software product line, and also Epic Games,
maker of the Unreal software game product line, started to provide prospective game
players/modders with software tools that would allow them to edit game content, play
mechanics, rules, or other functionality, other competing game development studios
were pressured to make similar offerings or face a possible competitive disadvantage
in the marketplace. However, the CSS versions of these tools do not provide access to
the underlying source code that embodies the proprietary game engine—a large
software program infrastructure that coordinates computer graphics, user interface
controls, networking, game audio, access to middleware libraries for game physics,
and so forth. But the complexity and capabilities of such a tool suite mean that any
one person, or better said, any game development or modding team, can now access
modding tools or SDKs to build commercial quality CSS games through OSS
extensions. But mastering these tools appears to be an undertaking likely to be only of
interest to highly committed game developers who are self-supported or self-
organized.

In contrast to game modding platforms provided by game development studios,
there are also alternatives provided by the end-user community. One approach can be
seen with facilities provided in meta-mods like Garry's Mod or the AMX Mod X mod-
making package. Modders can use these packages to construct a variety of plug-ins
that provide for development of in-game contraptions as game UI agents or user
created art works, or to otherwise create comic books, program game conversions,
and produce other kinds of user created content. But both packages require that you
own a licensed CSS game like Counter-Strike: Source, Half-Life2 or Day of Defeat:
Source from Valve Software.

A different approach to end-user game development platforms can be found arising
from OSS games and game engines. The DOOM and Quake games and game engines
were released as free software subject to the GPL, once they were seen by Id Software
as having reached the end of their retail product cycle. Thousands of games/engines,
as already observed, have been developed and released for download. Some started
from the OSS that was previously the CSS platform of the original games. However,
the content assets (e.g., in-game artwork) for many of these CSS- then-OSS games are
not covered by the GPL, and so user-developers must still acquire a licensed copy of
the original CSS game if its content is to be reused in some way4. Nonetheless, some
variants of the user-created GPL'd games now feature their own content that is
limited/protected by Creative Commons licenses.

4 For example, see http://assault.cubers.net/docs/license.html, accessed 13 April 2011.

 Modding as an Open Source Approach to Extending Computer Game Systems 71

5 Opportunities and Constraints for Modding

Game modding demonstrates the practical value of software extension as a user-
friendly approach to customizing software. Such software can extend games open to
modding into diverse product lines that flourish through reliance on domain-specific
game scripting languages, and integrated SDKs. Modding also demonstrates the
success of end-users learning how to extend software to create custom user interface
add-ons, system conversions, replayable system usage videos, as well as to discover
security vulnerabilities. Game modding therefore represents a viable form of end-user
engineering of complex software that may be transferable to other domains.

Modding is a form of OSS-enabled collaboration. It is collaboration at a distance
where the collaborators, including the game developers and game users, are distant in
space and time from each other, yet they can interact in an open but implicitly
coordinated manner through software extensions. Comparatively little explicit
coordination arises, except when CSS game developers seek to embrace and
encourage the creation of OSS game mods that rely on the proprietary CSS game
engine (and also SDK), as a way to grow market share and mid share for the
proprietary engine as a viable strategy to entry into the game industry.

However, mods are vulnerable to evolutionary system version updates that can
break the functionality or interface on which the mod depends. This can be viewed as
the result of inadequate software system design practice, such that existing system
modularization did not adequately account for software extensions that end-users
seek, or else the original developer wanted to explicitly prohibit end-users from
making modifications that transform game play mechanics/rules or unintentionally
allow for modification or misappropriation of copy protected code or media assets.

Last, one the key constraints on game modding in particular, and software
extension in general, are the rights and obligations that are expressed in the original
software EULA. Mods tend to be licensed using OSS or freeware licenses that allow
for access, study, modification, and redistribution, rather than using free software
licenses (e.g., GPLv2 or GPLv3). Software extensions that might be subject to a
reciprocal GPL style license require that the base/original software system incorporate
an explicit software architectural design that requires the propagation of reciprocal
rights across an open interface, except through an LGPL software shim [1].
Otherwise, the scope of effectiveness and copyright protections of either free or non-
free software (or related media assets) cannot be readily determined, and thus may be
subject to copyright infringement or licenses non-compliance allegations. They may
also be treated as social transgressions within a community of modders whose
perceived ownership of the game mods demands respect and honor of a virtual license
that may or may not be legally valid [2]. As the OSS community has long recognized,
software rights and freedoms are expressed through IP licenses that insure whether or
not a person has the right to access, study, modify, and redistribute the modified
software, as long as the obligation to include a free software license is included that
restates these rights in unalterable form, is included with the OSS code and its
modified distributions.

72 W. Scacchi

6 Conclusions

Modding is emerging as a viable approach for mixing proprietary CSS systems with
OSS extensions. The result is modded systems that provide the benefits of OSSD to
developers of proprietary CSS systems, and to end-users who want additional
functionality of their own creation, or from others they trust and seek to interact with
through game play.

In contrast, modding is not so good for protecting software and media/content
copyrights. Modding tests the limits of software/IP copyright practices. Some
modders want to self-determine what copy/modding rights they have or not, and
sometimes they act in ways that treat non-free software and related media as if it were
free software. Who owns what, and which copy rights or obligations apply to that
which is modded, are core socio-technical issues when engaging in modding.

This study helps to demonstrate that game modding is becoming a leading method
for developing or customizing game software, whether based on proprietary CSS or
OSS game systems. OSS-based software extensions are the leading ways and means for
modding game-based user interfaces, converting games from one style/genre to another,
for recording game play sessions for cinematic production and replay, and for hacking
closed source game systems. Finally, the development of computer game software and
tools itself represents a large community of OSS projects that has had comparatively
little study, and thus merits further attention as its own cultural world as well as one for
OSS development. This last consideration may be important as other empirical studies
of OSS development that rely on data from SourceForge will increasingly include OSS
game projects within large project samples. This study has therefore begun to address
why and how these conditions have they emerged, and how are they put into practice in
different game modding efforts. Future study should also consider whether and how
modding might be applied and adopted in other application domains where CSS can be
extended through OSS mods.

Acknowledgments. The research described in this paper has been supported by
grants #0808783 and #1041918 from the National Science Foundation, and grant
#N00244-10-1-0077 from the Naval Postgraduate School. No review, approval or
endorsement implied. The anonymous reviewers also provided helpful suggestions for
improving this paper.

References

1. Alspaugh, T.A., Asuncion, H.A., Scacchi, W.: Intellectual Property Rights Requirements
for Heterogeneously Licensed Systems. In: Proc. 17th. Intern. Conf. Requirements
Engineering (RE 2009), Atlanta, GA, September 24-33 (2009)

2. Alspaugh, T.A., Scacchi, W., Asuncion, H.A.: Software Licenses in Context: The
Challenge of Heterogeneously Licensed Systems. J. Assoc. Information Systems 11(11),
730–755 (2010)

3. Batory, D., Johnson, C., MacDonald, B., von Heeder, D.: Achieving extensibility through
product lines and domain specific languages: a case study. ACM Trans. Software
Engineering and Methodology 11(2), 191–214 (2002)

 Modding as an Open Source Approach to Extending Computer Game Systems 73

4. Burnett, M., Cook, C., Rothermel, G.: End-User Software Engineering. Communications
ACM 47(9), 53–58 (2004)

5. El-Nasr, M.S., Smith, B.K.: Learning Through Game Modding. ACM Computers in
Entertainment 4(1), Article 3B (2006)

6. Fielding, R.T., Taylor, R.N.: Principled Design of the Modern Web Architecture. ACM
Trans. Internet Technology 2(2), 115–150 (2002)

7. Huang, A.: Hacking the Xbox: An Introduction to Reverse Engineering. No Starch Press,
San Francisco (2003)

8. Henttonen, K., Matinlassi, M., Niemela, E., Kanstren, T.: Integrability and Extensibility
Evaluation in Software Architectural Models—A case study. The Open Software
Engineering Journal 1(1), 1–20 (2007)

9. Kelland, M.: From Game Mod to Low-Budget Film: The Evolution of Machinima. In:
Lowood, H., Nitsche, M. (eds.) The Machinima Reader, pp. 23–36. MIT Press, Cambridge
(2011)

10. Kücklich, J.: Precarious playbour: Modders and the digital games industry. Fiberculture (5)
(2005), http://journal.fibreculture.org/issue5/kucklich.html
(accessed April 13, 2011)

11. Leveque, T., Estublier, J., Vega, G.: Extensibility and Modularity for Model-Driven
Engineering Environments. In: 16th IEEE Conf. On Engineering Computer-Based
Systems (ECBS 2009), pp. 305–314 (2009)

12. Lowood, H., Nitsche, M. (eds.): The Machinima Reader. MIT Press, Cambridge (2011)
13. Marino, P.: 3D Game-Based Filmmaking: The Art of Machinima. Paraglyph Press,

Scottsdale (2004)
14. Narayanaswamy, K., Scacchi, W.: Maintaining Evolving Configurations of Large Software

Systems. IEEE Trans. Software Engineering SE-13(3), 324–334 (1987)
15. Parnas, D.L.: Designing Software for Ease of Extension and Contraction. IEEE Trans.

Software Engineering SE-5(2), 128–138 (1979)
16. Postigo, H.: Of mods and modders: Chasing down the value of fan–based digital game

modifications. Games and Culture 2(4), 300–313 (2007)
17. Postigo, H.: Video Game Appropriation through Modifications: Attitudes Concerning

Intellectual Property among Modders and Fans. Convergence 14(1), 59–74 (2008)
18. Scacchi, W.: Modeling, Integrating, and Enacting Complex Organizational Processes. In:

Carley, K., Gasser, L., Prietula, M. (eds.) Simulating Organizations: Computational
Models of Institutions and Groups, pp. 153–168. MIT Press, Cambridge (1998)

19. Scacchi, W.: Understanding the Requirements for Developing Open Source Software. IEE
Proceedings—Software Engineering 149(1), 24–39 (2002); Revised version in Lyytinen,
K., Loucopoulos, P., Mylopoulos, J., Robinson, W., (Eds.), Design Requirements
Engineering: A Ten-Year Perspective. LNBIP, vol. 14, pp. 467–494. Springer, Heidelberg
(2009)

20. Scacchi, W.: Free/Open Source Software Development Practices in the Game Community.
IEEE Software 21(1), 59–67 (2004)

21. Scacchi, W.: Free/Open Source Software Development: Recent Research Results and
Emerging Opportunities. In: Proc. European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Dubrovnik, Croatia,
pp. 459–468 (September 2007)

22. Scacchi, W.: Game-Based Virtual Worlds as Decentralized Virtual Activity Systems. In:
Bainbridge, W.S. (ed.) Online Worlds: Convergence of the Real and the Virtual, pp. 225–
236. Springer, New York (2010)

74 W. Scacchi

23. Sotamaa, O.: When the Game Is Not Enough: Motivations and Practices Among Computer
Game Modding Culture. Games and Culture 5(3), 239–255 (2010)

24. Taylor, T.L.: The Assemblage of Play. Games and Culture 4(4), 331–339 (2009)
25. Wen, H.: Multi Theft Auto: Hacking Multi-Player Into Grand Theft Auto With Open Source,

OSDir (May 25, 2005), http://osdir.com/Article4775.phtml Also see,
http://www.mtavc.com/andhttp://en.wikipedia.org/
wiki/MultiTheft_Auto (all accessed June 1, 2011)

26. Yee, N.: The Labor of Fun: How Video Games Blur the Boundaries of Work and Play.
Games and Culture 1(1), 68–71 (2006)

Preparing FLOSS for Future Network

Paradigms:
A Survey on Linux Network Management

Alfredo Matos, John Thomson, and Paulo Trezentos

Caixa Mágica Software
Edificio Espanha - Rua Soeiro Pereira Gomes

Lote 1 - 8 F, 1600-196 Lisboa
{alfredo.matos,john.thomson,paulo.trezentos}@caixamagica.pt

Abstract. Operating system tools must fulfil the requirements gen-
erated by the advances in networking paradigms. To understand the
current state of the Free, Libre and Open Source Software (FLOSS)
ecosystem, we present a survey on the main tools used to manage and
interact with the network, and how they are organized in Linux-based
operating systems. Based on the survey results, we present a reference
Linux network stack that can serve as the basis for future heterogeneous
network environments, contributing towards a standardized approach in
Linux. Using this stack, and focusing on dynamic and spontaneous net-
work interactions, we present an evolution path for network related tech-
nologies, contributing to Linux as a network research operating system
and to FLOSS as a whole.

1 Introduction

Free, Libre and Open Source Software (FLOSS) is often characterized by a dis-
tributed and even fractured development model. This can lead to different appli-
cations with similar purposes, where the consequence is often effort duplication.
While this can simultaneously be characterized as an advantage or handicap of
the FLOSS world, these characteristics are also observable in the networking
aspects of Linux. The Linux Kernel is very rich in terms of networking function-
ality, with a modern stack that makes it a reliable network Operating System
(OS). However, most network management1 operations are usually executed in
user-space, by distribution specific tools, which can vary across distributions.

This dichotomy is further exemplified by the networking paradigms: on one
hand, they require supporting multiple heterogeneous networks as specified by
Next Generation Networks (NGN), relating to different concurrent technologies
on the device, such as WiFi, 3G, WiMax or even Bluetooth; while on the other
1 When we consider management, we are in fact referring to bringing up devices,

selection of network attachment points, performing dynamic configurations and
the associated integration that cannot be configured statically or hard coded into
applications.

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 75–89, 2011.
c© IFIP International Federation for Information Processing 2011

76 A. Matos, J. Thomson, and P. Trezentos

hand, dynamic and spontaneous configuration require supporting peer-to-peer
interactions that operate without infrastructure support such as Zeroconf [41]
technologies and even Ad-Hoc or Mesh Networks. Therefore, as we move towards
NGN environments, where wireless connectivity is the norm rather than the ex-
ception, powered by WiFi or 3G connections, it becomes increasingly necessary
to handle all the different connectivity scenarios and technologies, without com-
promising the user experience. This creates added complexity for the OS and
network stack that must allow a seamless user experience with competing re-
quirements.

To handle these concurrent vectors, we need a consistent FLOSS network
stack that aligns the different tools and approaches, to match the needs of the
evolving network environments. To achieve this, we present a survey that looks
at the current Linux network model and existing technologies. Based on the
survey of both FLOSS tools and Linux distributions, we open the door to an
aligned network view by proposing a reference network stack that promotes
standardized approaches. This reference stack, which takes into account both
heterogeneous networks and spontaneous dynamic environments, can contribute
to the evolution of FLOSS, and especially Linux, by helping to prepare for new
and forthcoming NGN network scenarios that are being promoted in different
venues, such as the ULOOP [38] IST Project.

By promoting a common vision based on current research scenarios, it is
possible to promote Linux as a leading research platform, and simultaneously
contribute to less effort-duplication and avoiding fractures in the development
model, thus contributing to FLOSS as a whole, as is discussed in Sect. 5. This can
be achieved using the reference stack presented in Sect. 4 as a starting point.
The remainder of the paper is organized as follows: Section 2 highlights the
importance and structure of the survey, while the tools are presented in Sect. 3
and the choices of network strategy for Linux-based distributions are presented
in Sect. 4. We conclude the paper in Sect. 6 focusing on future work.

2 Tools for Evolving Paradigms

The first step towards tackling the complexity of FLOSS user-centric network
management tools is conducting a survey that reflects the current state of Linux
network management. We focus on two different aspects: heterogeneous network
support and dynamic configurations.

From the Linux operating system perspective, it is important to see how the
different technologies are handled, like WiFi, 3G or WiMax. But, heterogeneous
networking goes beyond the support of multiple technologies, and implies a seam-
less experience, where the different technologies are integrated from the user’s
perspective. It is becoming increasingly important that these technologies work
together, and managing how network selection is performed. Therefore, before
implementing complex network solutions [20], it is necessary to determine the
current state of the art, especially in FLOSS.

As a complementary aspect to network selection, we also focus on
spontaneous and dynamic configurations. It is important to analyse how dynamic

Preparing FLOSS for Future Network Paradigms 77

configurations occur, along with the benefits that they provide, especially consid-
ering wireless environments and user-centric technologies [34], regardless of
whether infrastructure support exists. In this domain, we highlight two comple-
mentary approaches: IPv6 and Zeroconf.

IPv6 has built-in mechanisms that allow automatic address configuration
and peer discovery on the local link. Stateless Address Auto Configuration
(SLAAC) [35] allows a node to generate an address for local communication
in the fe80::/10 range through an EUI64 expansion of its MAC address. Peer
discovery can be performed using special IPv6 multicast groups (e.g. all-nodes).

In IPv4, peer discovery can be achieved through Zeroconf [41], which is a
protocol suite that aims to provide a fully functional IPv4 stack without the
need for special configuration servers. It focuses on network address configu-
ration and local name resolution, without resorting to DHCP or DNS servers.
Address configuration is done through IPv4 Link-Local Addresses [9], which is
a mechanism that enables the configuration of local addresses in a special ad-
dress range (169.254.0.0/16), similar to IPv6 local link addresses. For local name
resolution, Zeroconf defines the usage of Multicast DNS (mDNS) [11]. mDNS re-
quires that each host stores its own DNS records (A,MX,SRV) locally, answering
queries sent to a specific Multicast address. Whoever knows the answer, i.e holds
the record, should respond to queries (resolve the address). This establishes a
simple protocol for DNS supported communication without a central server. Us-
ing mDNS it is possible to provide service discovery on the local link through
DNS Service Discover (DNS-SD) [10], also part of Zeroconf. Using DNS-SD, a
node can join the proper mDNS multicast group and query for well known DNS
records (SRV, TXT and PTR) that have service instances names, according to
a dns-sd.org list [19].

In the lower layers, Ad-Hoc (802.11 Independent Basic Service Set mode,
IBSS) and Mesh networking (802.11s) can provide access without centralized
infrastructure, but have limited support for dynamic configurations, which usu-
ally depends on higher layer technologies. WiFi Direct [39] is a WiFi Alliance
proposed certification that extends the Ad-Hoc support in 802.11 with better
security and simultaneous WiFi network connections. It provides the means for
establishing dynamic connections between 802.11-enabled peers and also, ac-
cording to preliminary findings, supports peer discovery on the link layer.

By focusing on heterogeneous networking and dynamic configuration tech-
nologies it is possible to evaluate the FLOSS tools, and how they are integrated
in the different distributions, which is presented over the next sections.

3 Linux Tools

The main objective of this survey is to catalogue and analyse the most important
network tools in Linux-based operating systems. To provide a thorough survey
that covers the different FLOSS tools and technological aspects, we must look
at the configuration and management tools currently available in Linux distri-
butions. We focus on those that gather information from user input (through

78 A. Matos, J. Thomson, and P. Trezentos

Network Stack

Stack
Management

Network Configuration

Fig. 1. Three-part network management stack

configuration interfaces) and translate it into the necessary commands and op-
erations that are understandable by the lower level daemons and applications
that interact with the network, and with the Linux Kernel.

Therefore we follow a top-down approach, as conceptually reflected in Fig. 1,
focusing on the tools and processes existing at each level. We start with the
connection managers in current FLOSS systems, which define how a user con-
figures and interacts with the Network Configuration. We then explore the tools
required to translate the configuration towards the system, providing Stack Man-
agement. Finally we focus on the Network Stack, defining how tools interact with
the network, mostly within the Linux Kernel.

3.1 Network Manager

In recent years, Network Manager [29] (NM), a GPLv2 project by Red Hat and
Novell, has emerged as the primary network configuration application for the
Linux desktop. Its main purpose is to provide a hassle free networking experience,
without compromising usability. This means that the focus is on reducing the
amount of manual configuration exposed to the end-user, aiming at connectivity
that “just-works”.

By integrating network configuration and management, it creates a central
control point across the entire desktop that is tightly integrated with the op-
erating system and applications. Its modular design, shown in Fig. 2, includes
several supported technologies, managing both wired and wireless connections.
NM is split into two components: a system daemon that controls the networking
infrastructure and a management application (usually graphical, e.g. network-
manager-applet [30]) that handles user interactions. In fact, the daemon is
controlled through a D-Bus [14] interface, a FreeDesktop [17] standard, allow-
ing a flexible integration with different clients. NM architecture supports both
IPv4 and IPv6, along with several access technologies, such as WiFi, WiMax,
GSM/CDMA, Mesh and even Bluetooth, as shown by its architecture. This is
achieved through different sub-systems that communicate with the main daemon
through various interfaces, such as D-Bus, Netlink Sockets, Unix sockets or sys-
tem call wrappers. The WiFi interactions are handled through the Supplicant

Preparing FLOSS for Future Network Paradigms 79

D-Bus

PPPD

Network Manager

Applet / GUI
network-manager-applet

Supported
Devices

BluezBIND

DNSMasq

dhclient
OpenVPN

dhcpcd

Internal
Plugins

External
Dependencies

Supported
Interfaces

PPTP

VPNC

WPA
Supplicant

Modem
Manager

Wireless
Events

M
od

em

netlink Unix Sockets exec()

Su
pp

lic
an

t

VP
N

DH
CP

DN
S

Bl
ue

z

PP
P

D-Bus

WiFi

WiMax

GSM

CDMA

Ethernet

OLPC Mesh

Bluetooth

Modem

External
Dependencies

Fig. 2. Network Manager internal architecture

Manager, a D-Bus interface module for WPA Supplicant (Sect. 3.3), comple-
mented by the Linux Wireless Extensions (WEXT, 3.4). 3G support is provided
by Modem Manager [28], which supports most modern 3G devices.

Concerning network selection in Network Manager, it has a static preference
list based on device types, enabling first Ethernet, WiFi, GSM, CDMA, Blue-
tooth, Mesh and finally WiMax. The connections, however, are timestamped and
network manager will always prefer the last known active connection, when two
connections of the same type exist (e.g. two wireless networks). For the actual
selection of an Access Point (AP) within an Extended Service Set Identifier (ES-
SID), network manager relies on wpa supplicant.

3.2 Connman

Connection Manager (ConnMan) [13] is a small and lightweight daemon designed
for managing network connections on Linux embedded devices. It has a plug-in
based design in order to build with as few components as possible, thus sup-
porting customized configurations. Its main target is the inclusion in the MeeGo
project [27], where it is the default network connection manager, unlike NM,
which is general purpose for every Linux-based OS. It supports most technologies
through plug-ins, namely, Ethernet, Bluetooth, WiFi, UMTS and even WiMax.
It also supports network protocols through plug-ins, such as DNS, DHCP an
VPN connections. The WiFi subsystem is composed of the main daemon and
the WiFi plug-in, which connects to wpa supplicant through a D-Bus interface
(the preferred interface type). 3G support is achieved through oFono [31].

For managing connection preferences it uses a connection list, with both dy-
namic and static preferences. Previously used networks have a favourite status

80 A. Matos, J. Thomson, and P. Trezentos

that takes precedence over new connection points. However, all things being
equal it prefers Ethernet, Bluetooth, GSM, UMTS, WiMax and WiFi. These
two combined mechanisms can be seen as a semi-static list that guides network
selection.

3.3 Wpa Supplicant and Hostapd

wpa supplicant [25] is a GPLv2 licensed WPA supplicant that supports WPA/
WPA2. It is available on most Linux-based platforms and distributions, either
directly or indirectly through NM. It implements the client component (the
supplicant) of WPA, negotiating the encryption keys towards the WPA Authen-
ticator (the server counterpart in WPA), supporting the 802.11i standard and
also EAP/802.1X. It also supports several wireless extensions, such as 802.11r,
Fast Base Station Transition (smoother roaming process between access points),
802.11w (management frame security) and even WiFi Protected Setup (WPS),
a WiFI Alliance certification that simplifies WiFi setup.

wpa supplicant interacts with NM (and similar clients) through a D-Bus
interface, which is becoming the default interface. It also features a control
(Unix) socket, which is still used by several clients (e.g. Android). In Linux,
wpa supplicant supports all drivers that use the recent mac80211 [23] stack
(Sect. 3.4, drivers which support WEXT (v19+) and several older drivers/
chipsets.

Besides the security functions, it can also control roaming between Base-
stations with the same BSSID, given the requirements for wpa supplicant to
perform scanning and associating procedures. When active, roaming decisions
follow a specific priority list: WPA/WPA2 support, privacy capability support
(a beacon bit that mandates encryption), transmission rate (if signal level is
similar) and finally signal level.

While wpa supplicant implements the supplicant in WPA, hostapd [24] (which
shares the same author and codebase, featuring similar functionality) implements
the authenticator, as well as being the most common software for running an
802.11 AP in Linux.

3.4 Wireless Communication Linux Kernel

The Linux Kernel supports all of the previous tools through device drivers and
protocol implementations. The focus on wireless technologies dictates that we
look at the Linux Kernel Wireless subsystem [2], composed of several building
blocks. Currently, the most important component of this wireless stack is the
mac80211 [23] framework. It provides a SoftMAC driver approach, i.e. most
802.11 protocol implementation (frame management) is done in software (inside
the Kernel) rather than on every driver or card individually. While there are
several advantages to this approach, the most important is that drivers share
a common 802.11 implementation, only implementing device-specific callbacks,
resulting in much simpler drivers. The main features of mac80211 include support
for 802.11a/b/g/n, 802.11d, 802.11s (Mesh) and 802.11r. Interestingly, roaming
is outsourced to user-land applications, like wpa supplicant.

Preparing FLOSS for Future Network Paradigms 81

cfg80211

mac80211

nl80211
Wireless Extensions

Legacy Drivers

Fig. 3. Linux mac80211-based Wireless stack

As shown in Fig. 3, based on [6], mac80211 is composed of three subsys-
tems: the mac80211 main block implements the 802.11 protocol, while cfg80211
implements 802.11 configuration and nl80211 implements the user-land commu-
nication through netlink sockets. However, as highlighted in Fig. 3, the mac80211
system also supports Wireless Extensions (WEXT) [36], a legacy configuration
interface that either interacts with cfg80211 or directly with the mac80211 core.
As mentioned, WEXT is a legacy wireless configuration interface (only main-
tained, not being developed) running over IOCTL (Input/Ouput Control) calls.
IOCTL have been steadily removed in favour of other transport mechanisms,
such as netlink, for user-space/kernel-space communication. However, it is still
used in different places (e.g. Android).

Recently, the Linux Kernel picked up initial WiFi Direct (or WiFi P2P) sup-
port (also supported in wpa supplicant). A key issue that has surfaced in the
process of proposing the P2P extensions is the need for a standardized API be-
tween connection managers and wpa supplicant, which in turn interacts with
mac80211 through nl80211.

3.5 Avahi

As discussed in Sect. 2, one of the most important protocols in the context
of local networking configuration is the Zeroconf suite. In Linux, Zeroconf is
implemented by Avahi [42], which is a daemon that provides service discovery
on the network through mDNS/DNS-SD and IPv4 address auto configuration
through IPv4LL. IPv4 address configuration is done on demand, in most cases
requested by NM, through a D-Bus interface. It is integrated into most Linux
distributions, including embedded efforts such as OpenWRT, as presented in the
next section.

4 Linux Network Stack

To understand how the tools are organized inside Linux, we must evaluate differ-
ent Linux-based platforms. By examining the major distributions, it is possible
to establish how most tools are organized in the Linux network stack and to de-
termine the major trends concerning network management. The identified trends
can provide insight into the best available tools, given that distributions spend
a considerable integration effort and expertise towards building the appropriate
network management stack and also consequently brings us closer to the goal of
defining a reference Linux architecture.

82 A. Matos, J. Thomson, and P. Trezentos

4.1 Linux Distributions

Looking at the Linux distribution spectrum immediately suggests that there
are several approaches towards network management. Distributions use different
management tools, either scripts or applications, resulting in a uneven landscape.
Here, we evaluate a select set of distributions, based on perceived importance [1]:
we focus on those with most derivatives, from where tools are reused in each
derivative distribution. We also focus on those with most user adoption, which
helps determine the main ways in which users interact with Linux-based systems.

Fedora. Fedora [16] is a user oriented distribution, a development effort spon-
sored by Red Hat [3]. We analysed the latest release - Fedora 14. It uses a
custom tool for the most static and standard network configurations, system-
network-config, which is part of the control panel options and provides scripts
and (python) tools for static system configurations. However, NM (v0.8.1) is
also included, superseding most of the functionality provided by system-network-
config. As expected, NM is accompanied by the required wpa supplicant for wire-
less management and security. Also, avahi is used and takes over all the Zeroconf
aspects.

CentOS. For a Red Hat Enterprise Linux (RHEL) [18] based distribution, which
is a popular yet paid-for Linux distribution, we analysed CentOS [8]. CentOS
is a free RHEL-based distribution, presenting an internal organization similar
to Fedora, except that NM is disabled by default even though it is installed.
However, NM is recommended for laptop usage [7]. In both cases, wpa supplicant
is used and avahi is running, controlling Zeroconf protocols.

Debian/Ubuntu. Debian [15] is one of the major available distributions, gen-
erating many derivatives. For static configurations it uses ifupdown, a tool that
implements scripts and configuration files to easily manage network interfaces.
The remaining setup is similar to Fedora, where the main tool is NM (v0.6.6
in Debian Lenny and v0.8.1 in Squeeze), complemented by wpa supplicant for
wireless support. This setup is seen both in Debian and Ubuntu [37] (Maverick
10.10), and in all versions, avahi runs by default, handling Zeroconf functionality.

OpenSUSE. OpenSUSE [32] and earlier SUSE systems, have historically relied
on YAST for all system configurations. YAST handles most network configura-
tions, using scripts to manage the different interfaces. In the initial interface
configuration it is possible to activate NM, consequently becoming similar to
the previous approaches, relying on NM and wpa supplicant for most of the
wireless interactions, and on avahi for Zeroconf.

Mandriva and Caixa Mágica. Mandriva [26] is the Linux distribution upon
which Caixa Mágica [22] is built. We reviewed Caixa Mágica 15, as well as Man-
driva 10.1 and 10.2, which share the same base. Mandriva, and consequently
Caixa Mágica, do not follow the same pattern as other distributions using mostly
custom tools, as seen in Fig. 4 where the Mandriva specific tools are highlighted

Preparing FLOSS for Future Network Paradigms 83

Linux Kernel Stack

Drakx Net

Drakroam

Scripts
Mandi

WPA Supplicant

D-Bus System Exec

wpa_cli iwlist

WEXT

Fig. 4. Madriva and Caixa Mágica Network Management stack

via dashed stroke. The main networking configuration tool is Drakx-net, which
is part of the Drak configuration toolset, a custom Mandriva system configura-
tion tool. Drakx-net provides a configuration manager for networking settings,
covering network interfaces and VPN.

Looking at the roaming/wireless subsystem, it is handled by Drakroam. This
Mandriva developed tool is an application composed of scripts that interact
with the OS, a graphical configuration interface, and an applet that provides a
shortcut for network configuration with special emphasis on wireless. Drakroam
uses mandi, a custom built D-Bus daemon that provides support for network
configurations. It features a plug-in system, where the wireless part is an interface
to the wpa supplicant control interface. As a fall-back, Drakroam can support
wpa cli, a command line interface application provided by wpa supplicant, and
alternatively it falls back to iwlist (using WEXT). Beyond this, Caixa Mgica
and Mandriva deploy Zeroconf mechanisms through the avahi daemon.

Other Distributions and Platforms. While we mostly explored desktop-
like distributions, it is worth considering other platforms, especially embedded
devices. We analyse Android [5], which targets mobile devices, and OpenWRT,
which targets embedded routers.

Android, aimed at mobile phones and embedded devices, has an approach
to network management that is different from the previously discussed distri-
butions. As shown in Fig. 5, it uses Connectivity Manager [12], a Java con-
nection manager, for controlling network interfaces and providing an API for
applications interacting with the Android network management infrastructure.
Similarly, WiFi is controlled through WiFi Manager [40], which has limited ca-
pabilities constrained by the Java exposed interface.

WiFi functionality is supported by a modified version of wpa supplicant
that supports additional control commands specific to Android mobile devices.
The middleware interactions with wpa supplicant are done through the socket
interface, given that there is no D-Bus support. However, because Android de-
vices do not support the mac80211 stack, wpa supplicant is limited to WEXT.

84 A. Matos, J. Thomson, and P. Trezentos

Linux Kernel Stack

Connectivity Manager

WiFi Manager

WPA Supplicant

Java Middleware

Wireless Extensions

Fig. 5. Android network management stack

Furthermore, the Android approach does not support Ad-Hoc networks [4], and
lacks a fully compliant Zeroconf tool (only a Java library for mDNS [21] exists).

OpenWRT [33] uses slimmed down versions of the applications used by most
distributions. Given that the main purpose of the distribution is acting as an
router and AP, it supports hostapd (Sect. 3.3, assuming the role of AP and
WPA Authenticator with WPA/WPA2/802.11i capabilities. It supports several
deployments, depending mostly on the hardware drivers to determine function-
ality, using the mac80211 stack as well as legacy drivers. Zeroconf can also be
supported, by installing the provided packages for the avahi daemon, which can
run on OpenWRT.

The static nature of the target deployment, implies that most network config-
urations are achieved statically through (BASH) scripts, using a flat database,
the Unified Configuration Interface (UCI) module within OpenWRT, for storage.

4.2 Reference Architecture

After analysing all the different tools and distributions, an obvious pattern
emerges, as shown in Table 1. The Linux network stack, especially consider-
ing the wireless subset, is centered mostly around Network Manager, both for
the graphical interface, as well as the system daemon. While there are some
notable alternatives in the form of ConnMan, and some distribution specific ef-
forts, there is a convergence within Linux towards the widespread use of Network
Manager on the desktop and laptop platforms. The only noteworthy exception is
Android, which uses a custom connectivity manager. Network Manager is tightly
integrated in the Linux operating system, providing not only means to config-
ure network settings, but also means for applications to determine whether an
active network connection exists, as highlighted in the top-most part of Fig. 6,
which shows the reference Linux network architecture. However, as we follow
down the proposed consolidated network stack, we observe a much clearer con-
vergence across all platforms: WPA Supplicant. The WPA Supplicant daemon
has become an expected presence on all Linux based operating systems, such
as desktop, laptop and even handheld devices, also making an appearance on
Android phones.

Preparing FLOSS for Future Network Paradigms 85

Table 1. Tools summary per distribution

Distribution
Network

Management
Wireless

Management
Wireless

Stack
Zeroconf
Support

Fedora
system-network-config
and Network Manager

wpa supplicant
mac80211
WEXT

avahi

CentOS system-network-config1 wpa supplicant
mac80211
WEXT

avahi

Debian
Ubuntu

Network Manager wpa supplicant
mac80211
WEXT

avahi

OpenSUSE
YAST and Network

Manager2
wpa supplicant

mac80211
WEXT

avahi

Mandriva
Caixa Mágica

Drakx-net and
Drakroam3 wpa supplicant

mac80211
WEXT

avahi

Android
Connectivity Mgr. and

WiFI Mgr.
wpa supplicant WEXT -

OpenWRT UCI/Scripts wpa supplicant
mac80211
WEXT

avahi4

Linux Kernel Stack

Applications

WPA Supplicant

Network Manager Interface

D-Bus

D-Bus

netlink

cfg80211

mac80211

nl80211

ioctls

Wireless Extensions

Legacy Drivers

Network Manager

Fig. 6. Linux Network Management Reference Architecture

WPA supplicant started out by handling the security aspects of WiFi network
connections, but also covers roaming between access points. It integrates with all
the network connection managers, such as NM, ConnMan, and even Android’s
Connectivity Manager.

1 Network Manager is recommended but not installed.
2 Network Manager is installed by default but is optional.
3 Requires more helper applications such as mandi, wpa cli and iwlist.
4 Not installed by default, but available for the platform.

86 A. Matos, J. Thomson, and P. Trezentos

When stepping into the actual network protocol implementations, we venture
into the Linux Kernel, as depicted by the bottom-most part of Fig. 6. The
main presented focus is on WiFi, which is handled through the new mac80211
wireless subsystem. This provides support for most modern wireless cards, but
also supports the legacy WEXT interfaces, kept for legacy support (of both user
land tools and Kernel drivers).

Beyond the presented blocks, every distribution and system complements the
network stack tools with auxiliary scripts that handle the static aspects of net-
work configurations. While this where most differences exist, it does not represent
a major divergence given that most scripts tend to be distribution specific. We
also omit from the illustration the Zeroconf tools but those which are shown in
Table 1, given that the only real alternative in Linux is avahi, which already
enjoys widespread deployment. When coupled with adequate Link Layer tools,
it can provide a interesting effort in the self-managed network environments.

5 Overview and Future Directions

By looking at the previous sections, which are mostly summarized by Table 1,
obvious trends appeared, which led to the reference architecture presented in
Fig. 6. Using this information allows us to shift the focus to the key aspects
presented in Sect. 2, concerning heterogeneous networking and autonomous con-
figurations as an evolution path for current network paradigms.

From the gathered results, it is possible to deduce that Linux-based systems
can cope with the heterogeneous networking requirements that involve multiple
technologies and dynamic environments. From a Linux perspective, most wire-
less technologies are already supported, with adequate tools to handle different
aspects of networking (e.g. NM and wpa supplicant).

However, there is an important gap concerning the control over network se-
lection. As observed in the discussed tools, most network selection mechanisms
imply static technology-based preference lists, simple pattern repetition (connect
to last successfully used network) and simple network information (e.g. signal
strength). When available networks and technologies become abundant, most of
which might even be new to the user, these selection and configuration mech-
anisms become insufficient and must be improved. Therefore, it is important
to increase the flexibility of existing control structure for network attachment.
This can be achieved using two complementary approaches: 1) provide a flexible
interactive API, exposed by the modules that directly control the network selec-
tion (e.g. wpa supplicant or NM); and 2) introduce a component that collects
the options coming from the different technologies, and provides consistent and
reliable network selection decisions, which could be a part of NM, or even an
on-demand external dependency that depends on the deployment scenario.

Concerning the autonomous configuration mechanisms and technologies that
can work without infrastructure support, we observed that Linux already has
a strong Zeroconf support, along with IPv6 and even WiFi Direct. This places
FLOSS as a front-runner when considering these types of technologies. Avahi

Preparing FLOSS for Future Network Paradigms 87

is already distributed with most Linux-based systems, and the Linux Kernel al-
ready support most modern technologies. Therefore, we can conclude that most
tools are in place, leaving FLOSS in a good position to increase the integration
of these technologies in the OS. What is missing now is the widespread adop-
tion of these techniques along with extensions that enable us to integrate them
in different applications. This is where FLOSS has the upper hand: through
open interfaces and a collaborative model, it is possible to develop and inte-
grate adoptable interfaces. This provides applications with a potential agility to
quickly take advantage of the discussed autonomous configuration mechanisms,
in different scenarios.

Following the open source model, this allows for an uncomplicated API for in-
formation sharing across different applications. The consequence is that, instead
of being bound by standards, FLOSS can use them as a launchpad towards
innovative efforts, taking advantage of local loop technologies and promoting
research through extensions/tools that benefit the end user.

Lastly, it is worth mentioning that as convergence on the network management
architecture occurs, the disadvantages of FLOSS development model get diluted,
which is what we have observed and potentially contributed to. Right now, most
fragmentation occurs only in the static configuration scripts, which are a matter
of preference, style and legacy for each distribution.

6 Conclusions

Throughout the presented survey, we attempted to explore FLOSS technologies
in the light of current and future technologies, by undertaking the effort of
investigating the current state of the art Linux tools and distributions. The result
was the proposed reference network architecture, that defines the baseline for the
Linux network stack, highlights the strengths and gaps of current approaches.

Using this reference stack it is possible to outline different approaches that
enable FLOSS to tackle the new networking environments, and also understand
what can be can expected from the current Linux networking landscape. More
importantly, by relating the current state with emerging technologies we have
uncovered an opportunity for proposing future developments, contributing to
the usefulness of open source operating systems in light of new technologies.

The two most important conclusions revolved around the need to improve
Linux network selection mechanisms, in order to tackle dynamic and mobile
heterogeneous environments, and also identified that it is necessary to place a
strong emphasis on providing new and innovative services that use autonomous
technologies, which are already available in Linux.

Nevertheless, the main contribution of a reference architecture and future
evolution path, is that it enables the reduction of divergence and repeated work
in FLOSS. This can increase the traction of existing technologies, highlighting
the potential advantages of the FLOSS model in light of future research and
development activities.

88 A. Matos, J. Thomson, and P. Trezentos

Acknowledgements. The work described in this paper was done in the scope
of IST FP7 ULOOP STREP Project. ULOOP receives funding from the Euro-
pean Community’s Seventh Framework Programme, under contract agreement
n◦257418. The views expressed in this publication are those of the authors and
do not necessarily reflect the project or the European Commission’s view on the
subject.

References

1. Distrowatch, http://distrowatch.com/ (last checked: June 2011)

2. Official linux wireless wiki, http://wireless.kernel.org/ (last checked: April
2011)

3. Red hat, http://www.redhat.com/ (last checked: April 2011)

4. Wifi: support ad hoc networking - support ticket, http://code.google.com/p/

android/issues/detail?id=82 (last checked: April 2011)

5. Android. Android mobile plaftorm, http://www.android.com/ (last checked: April
2011)

6. Berg, J.M.: Wifi control plane overview, http://wireless.kernel.org/

en/developers/Documentation/mac80211?action=AttachFile&do=get&

target=mac80211.pdf (last checked: April 2011)

7. CentOS. Centos network manager configuration, http://wiki.centos.org/

HowTos/Laptops/NetworkManager (last checked: April 2011)

8. CentOS. Rhel based linux operating system, http://www.centos.org/ (last
checked: April 2011)

9. Cheshire, S., Aboba, B., Guttman, E.: Dynamic Configuration of IPv4 Link-Local
Addresses. In: RFC 3927 (Proposed Standard) (May 2005)

10. Cheshire, S., Krochmal, M.: DNS based Service Discovery. Internet-Draft (February
2011)

11. Cheshire, S., Krochmal, M.: Multicast DNS. Internet-Draft (February 2011)

12. Connectivity Manager. Android connectivity manager developer information,
http://developer.android.com/reference/android/net/

ConnectivityManager.html (last checked: April 2011)

13. ConnMan. Network connection management daemon, http://www.connman.net

(last checked: April 2011)

14. D-Bus. D-bus system message bus, http://www.freedesktop.org/wiki/

Software/dbus (last checked: April 2011)

15. Debian. Linux-based operating system, http://www.debian.org/ (last checked:
April 2011)

16. Fedora. Linux-based operating system, http://fedoraproject.org/ (last checked:
April 2011)

17. freedesktop.org. Open source software projects working on interoperability for
x window system desktops, http://www.freedesktop.org/ (last checked: April
2011)

18. Hat, R.: Red hat enterprise linux, http://www.redhat.com/rhel (last checked:
April 2011)

19. Informal DNS-SD Service types list. Dns srv (rfc 2782) service types, http://www.
dns-sd.org/ServiceTypes.html (last checked: April 2011)

http://distrowatch.com/
http://wireless.kernel.org/
http://www.redhat.com/
http://code.google.com/p/android/issues/detail?id=82
http://code.google.com/p/android/issues/detail?id=82
http://www.android.com/
http://wireless.kernel.org/en/developers/Documentation/mac80211?action=AttachFile&do=get&target=mac80211.pdf
http://wireless.kernel.org/en/developers/Documentation/mac80211?action=AttachFile&do=get&target=mac80211.pdf
http://wireless.kernel.org/en/developers/Documentation/mac80211?action=AttachFile&do=get&target=mac80211.pdf
http://wiki.centos.org/HowTos/Laptops/NetworkManager
http://wiki.centos.org/HowTos/Laptops/NetworkManager
http://www.centos.org/
http://developer.android.com/reference/android/net/ConnectivityManager.html
http://developer.android.com/reference/android/net/ConnectivityManager.html
http://www.connman.net
http://www.freedesktop.org/wiki/Software/dbus
http://www.freedesktop.org/wiki/Software/dbus
http://www.debian.org/
http://fedoraproject.org/
http://www.freedesktop.org/
http://www.redhat.com/rhel
http://www.dns-sd.org/ServiceTypes.html
http://www.dns-sd.org/ServiceTypes.html

Preparing FLOSS for Future Network Paradigms 89

20. Jesus, V., Sargento, S., Corujo, D., Senica, N., Almeida, M., Aguiar, R.: Mobility
with qos support for multi-interface terminals: Combined user and network ap-
proach. In: IEEE Symposium on Computers and Communications (ISCC 2007),
pp. 325–332 (July 2007)

21. jmDNS. Java mdns multicast implementation, http://jmdns.sourceforge.net

(last checked: April 2011)
22. Caixa Mágica Linux. Mandriva based linux operating system, http://www.

caixamagica.pt/ (last checked: April 2011)
23. mac80211. mac80211 development documentation, http://wireless.kernel.

org/en/developers/Documentation/mac80211 (last checked: April 2011)
24. Malinen, J.: Hostapd: Ieee 802.11 ap, ieee 802.1x/wpa/wpa2/eap/radius authenti-

cator, http://w1.fi/wpa_supplicant/ (last checked: April 2011)
25. Malinen, J.: Linux wpa/wpa2/ieee 802.1x supplicant. http://w1.fi/wpa_

supplicant/ (last checked: April 2011)
26. Mandriva. Linux-based operating system, http://www.mandriva.com/ (last

checked: April 2011)
27. Meego. Meego mobile platform - linux foundation, http://meego.com (last checked:

April 2011)
28. ModemManager. Modem manager for linux, http://cgit.freedesktop.org/

ModemManager/ (last checked: April 2011)
29. Network Manager. Linux network manager, http://projects.gnome.org/

NetworkManager/ (last checked: April 2011)
30. nm applet. Network manager gnome applet, http://ftp.gnome.org/pub/GNOME/

sources/network-manager-applet/0.8/ (last checked: April 2011)
31. oFono. Open source telefony (gsm/umts), http://ofono.org (last checked: April

2011)
32. OpenSuse. Linux-based operating system, http://www.opensuse.com/ (last

checked: April 2011)
33. OpenWRT. Openwrt embedded linux. http://openwrt.org (last checked: April

2011)
34. Sofia, R., Mendes, P.: User-centricity impact on future internet architectures. In:

FIA: Future Internet Workshop 2010 (June 2010)
35. Thomson, S., Narten, T., Jimei, T.: IPv6 Stateless Address Autoconfiguration.

RFC 4862 (Proposed Standard) (September 2007)
36. Tourrilhes, J.: Linux wireless extensions, http://www.hpl.hp.com/personal/

Jean_Tourrilhes/Linux/Linux.Wireless.Extensions.html (last checked: April
2011)

37. Ubuntu. Debian based linux operating system, http://www.ubuntu.com/ (last
checked: April 2011)

38. ULoop. User-centric wireless local loop, http://www.uloop.eu (last checked: April
2011)

39. Wi-Fi Alliance. Wi-fi certified wi-fi direct: Personal, portable wi-fi technology
(2010), http://www.wi-fi.org/knowledge_center_overview.php?docid=4685

40. WiFi Manager. Android wifi manager developer information, http://developer.
android.com/reference/android/net/wifi/WifiManager.html (last checked:
April 2011)

41. Zeroconf. Zero configuration networking (zeroconf) working group, http://www.
zeroconf.org (last checked: April 2011)

42. Zeroconf. Zeroconf open source implementation, http://www.zeroconf.org (last
checked: April 2011)

http://jmdns.sourceforge.net
http://www.caixamagica.pt/
http://www.caixamagica.pt/
http://wireless.kernel.org/en/developers/Documentation/mac80211
http://wireless.kernel.org/en/developers/Documentation/mac80211
http://w1.fi/wpa_supplicant/
http://w1.fi/wpa_supplicant/
http://w1.fi/wpa_supplicant/
http://www.mandriva.com/
http://meego.com
http://cgit.freedesktop.org/ModemManager/
http://cgit.freedesktop.org/ModemManager/
http://projects.gnome.org/NetworkManager/
http://projects.gnome.org/NetworkManager/
http://ftp.gnome.org/pub/GNOME/sources/network-manager-applet/0.8/
http://ftp.gnome.org/pub/GNOME/sources/network-manager-applet/0.8/
http://ofono.org
http://www.opensuse.com/
http://openwrt.org
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.Extensions.html
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.Extensions.html
http://www.ubuntu.com/
http://www.uloop.eu
http://www.wi-fi.org/knowledge_center_overview.php?docid=4685
http://developer.android.com/reference/android/net/wifi/WifiManager.html
http://developer.android.com/reference/android/net/wifi/WifiManager.html
http://www.zeroconf.org
http://www.zeroconf.org
http://www.zeroconf.org

A Review of Tool Support for User-Related

Communication in FLOSS Development

Aapo Rantalainen, Henrik Hedberg, and Netta Iivari

Department of Information Processing Science, University of Oulu

Abstract. Free/Libre/Open Source Software (FLOSS) projects rely on
Internet tools for communication and in coordinating their work. Com-
munication between developers is well supported in FLOSS projects, but
user-developer communication has proven out to be challenging. This
paper examines the following questions: ”What kinds of means for com-
munication exist in FLOSS projects for user-developer communication?
What kinds of means should there be?” We have carried out a literature
review addressing communication in FLOSS projects, and contrasted
the findings with Human-Computer Interaction (HCI) literature on user-
developer communication. HCI literature indicates that user-developer
communication is needed during requirements construction, design and
evaluation tasks, and HCI specialists are needed for orchestrating the
communication and the user related tasks. Communication during the
evaluation task is somewhat supported in FLOSS projects, but design
and requirements construction are badly in need for support, even though
ideas have already been presented. In addition, HCI specialists are in
need of different kinds of communication support in FLOSS projects.

Keywords: Free/Libre/Open Source Software, Human-Computer In-
teraction, User-Developer Communication, Tool Support.

1 Introduction

The term FLOSS means Free/Libre/Open Source Software. It refers to free soft-
ware, defined by Free Software Foundation [28] and open source programs defined
by Open Source Initiative [51]. This software is determined by licenses. If a li-
cense allows users to modify and share software, it is considered as free software.
Practically this means users must have access to the source code, thus the name
open source. But open source is more than an available source code, it is a phi-
losophy of studying the code, improving it, customizing it, and sharing it [16].
However, free software is also an ideology and a lifestyle [65, 68].

FLOSS projects are usually described by concentric circles [19]. The most in-
ner circle represents coders who have direct write access to the official code. The
next circle represents coders who send patches. Last circles are users, first active
ones and then passive. Working is very meritocratic [64]. Contributors who have
distinguished themselves by the quality of their work are invited to join the in-
ner circle and gain more responsibility in the project [21]. FLOSS development

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 90–105, 2011.
c© IFIP International Federation for Information Processing 2011

A Review of Tool Support for User-Related Communication 91

originates in the hacker culture with highly talented developers [41, 42, 63], but
recently also non-technical users have found FLOSS solutions; e.g., Linux oper-
ating system, OpenOffice.org application suite and Mozilla Firefox web browser
are widely known and used by non-technical users. Therefore, in FLOSS projects
nowadays there are typically different stakeholders with different perspectives,
emphasizing, e.g., end user-oriented aspects or technical implementation-specific
details. The onion model describes only coders, not e.g. translators, manual writ-
ers, HCI experts nor any domain specialist [33]. Communication between these
different stakeholder groups and perspectives is a challenge [33]. Especially it has
been noticed that HCI specialists tend to remain outsiders and they do not have
any real decision making power in FLOSS development [1, 9, 12, 15, 49, 61, 62].

This paper is focused on software targeted to the end users (i.e. not sys-
tem libraries) and will examine: “What kinds of means for communication exist
in FLOSS projects for user-developer communication? What kinds of means
should there be?” Communication, generally, refers to the successful exchange
of information so that the sender and receiver understand each other [14]. We
will examine user-developer communication in FLOSS development by relying
on ideas from HCI research on user-developer communication. This literature
is contrasted with the existing research on communication in FLOSS develop-
ment. We will critically review the means already suggested for user-developer
communication.

The article is structured as follows. The next two sections cover a general
introduction to the communication means used in FLOSS projects as well as
the existing means used for user-developer communication. The fourth section
presents guidelines from HCI research on user-developer communication, and
the fifth section contrasts those with the findings related to communication in
FLOSS projects. A number of areas for improvement and associated paths for
future work are identified.

2 Existing Communication Means in FLOSS Projects

Next, few common characteristics of communication in FLOSS projects are de-
scribed, even though it is acknowledged that there is no particular, explicitly
defined FLOSS development methodology or model [46]. Although the open
source development process is not well defined, some general characteristics can
still be identified. Open-source projects attempt to ship out minimally working
prototypes at the earliest possible time [13]. The most well known principle is
“release early and release often” [54].

Almost always FLOSS projects begin by one developer scratching a personal
itch [25, 54]. Thus software might not be even planned to be used by anybody
else [58]. Typically a FLOSS project is directed and managed by the initial
creator and the requirements come from the programmers themselves. Massey
gives additional two sources of requirements: users and standards [43].

FLOSS projects have some common practices for communication, but they
have also unique practices [5, 21], as well as unique structures [20]. They are

92 A. Rantalainen, H. Hedberg, and N. Iivari

project oriented, not organization oriented like closed source projects [5]. Be-
cause FLOSS projects are often distributed [64], there is a need for methods
which support distributed development. Actually, there is a long list of existing
communication means used in FLOSS projects that indeed support distributed
development. These means are 1) email and mailing lists, 2) web sites, 3) version
control systems, 4) bug trackers, 5) real time chats, 6) wikis and 7) web forums.
[5, 26].

Often projects use only emails and mailing lists [21]. The most important
benefit of them is time independency. Developers can live different continents
and different timezones [21]. Email communication is sufficient, so it is used.
Fogel claims that a mailinglist is the most used communication channel in FLOSS
projects [26]. This kind of an open mailinglist is not scalable, however. If software
has millions of users and even a small part of them are posting, the input rate
is still bigger than any reader can handle. Therefore there must be dedicated
lists. [26].

Web sites of FLOSS projects can be one-way channels for bigger audiences
[26]. Not all projects even have other web sites than the bug tracker. Web portals
are virtual workspaces that merge several channels to a web site [31]. Ankolekar
and colleagues claim that project’s websites often have relatively little to offer
to non-technical users of the software [2].

Wiki is fast, but it isn’t a realtime communication channel. The challenges of
Wiki include cohesion of totality and duplicate working [26]. Challenges can be
minimized and quality will be better, if there are both implicit (e.g. rules and
guidelines) and explicit (e.g. discussion pages) coordination [39].

A web forum can be just an interface to a mailinglist, or it can be meant
only for a browser. Web forums are categorized and threaded by default so
they can handle more traffic than mailinglists. Forums are typically focused for
users. [26].

Bug trackers, bug repositories or issue trackers are places to store found issues
and problems. They can be part of the broader web site. They are not meant for
discussions [26], but can be used for coordinating and planning releases [26]. Bach
and colleagues criticized that bug tracker is a hidden place to do development
[5]. The amount of tickets in a bug tracker is of no value in itself. One empirical
study showed that 36 % of Eclipse bugs were invalid or duplicates [3].

Mockup pictures are easier to understand than source code, due to which there
can be more people to discuss and then also unwanted or unhelpful postings from
people who do not understand the big picture [5, 26]. As Parkinson said in 1957,
which has now come to be known as Parkinson’s Law of Triviality, “the more
trivial the topic the more conversation” [52].

3 User-Developer Communication Means in FLOSS
Projects

“Writing code isn’t the problem, understanding the problem is the problem.”
[22]. One of the main problems in software projects is the lack of domain knowl-
edge [22]. This source of error is eliminated in self-driven FLOSS projects where

A Review of Tool Support for User-Related Communication 93

domain experts write software for their own needs [45]. But when developers
are not users of the software, they need domain expertise [45]. Complex soft-
ware project’s design problems can’t be solved by individuals or by homoge-
neous groups [24]. HCI experts are needed to steer user research studies such as
surveys and interviews [53]. Communication is critical to these processes [50].
Nevertheless, “the role of the average user in FLOSS is not clear” [6].

Existing literature has indicated that there is a multitude of tools available
in FLOSS projects for user-developer communication (see section 2): users can
deliver feature requests and bug reports through these means as well as ask
questions, while developers can answer the questions as well as provide user
support [29, 40, 60, 69].

However, tools should be chosen based of on the skills of users, not the skills
of developers [57]. Despite the existence of these means, it might be that the
users are unable to communicate with the developers. They might be unable,
unwilling or scared to use these means (i.e. the mailing lists and bug trackers)
[9, 15, 48, 70]. “Non-technical users may not have the technical vocabulary val-
ued by developers” [5]. Numerous problems with bug trackers have been listed
in connection to reporting usability issues. They enable no recording, uploading,
showing, managing or commenting videos, audio or images. Minor usability is-
sues are hard to describe only verbally, and not all users have painting or drawing
tools. The existing bug trackers are also too complex and coder centric. They
ask many questions that user (or non-technical domain specialist) don’t know
how to answer. Because of these points not all users are able to use trackers at
all. [15].

The skill level of reporters may also vary and they don’t know or understand
the bug fixing process [38]. Users don’t know what is a good bug report either,
i.e. what is relevant and needed information [10]. The bug tracker should tell
a user what is relevant information and how a user can find it [10], or there
should be no open bug reporting at all, but users should use support and feature
request forums and moderators should pick up all found bugs into the internal
bug tracker [38].

Usability and overall user experience (UX) issues are different than other bugs
and issues. Bugs and UX-issues should be segregated, but they both may be vis-
ible in the same bug tracker and linked together. [5]. HCI specialists should also
be welcomed to a project [4] and they should have an acknowledged role on the
project web portal [4] which should have its own tab for UX-issues [5]. ’Confu-
sion reports’ and ‘surprise reports’ are suggested to be used additionally to bug
reports. These are reports by active, reflective users and contain descriptions
on what the user tried to do and what caused their surprise, whether derived
from confusion or not. [8]. Also groups such as ’reference’, ’core’ and ’bleeding
edge’ users are brought up. They can be used for initially testing the solution
or new features. They can be offered a more advanced tool set for providing
feedback, while all users can use some basic tools related to which some auto-
matic summaries are generated to lessen the burden for the developers to analyze

94 A. Rantalainen, H. Hedberg, and N. Iivari

the results. In addition, Open Content projects organized around using certain
FLOSS tools are brought up. During them users and developers of the tools
collaborate on the task and developers gain feedback. [60].

As mentioned, one problem related to the communication means used in
FLOSS projects is that they do not support communicating visually. Related to
usability problems and user interface design, textual descriptions are not enough
- it may not be sufficient to articulate these issues only textually or it may take
too much of effort to do it [15, 48, 49, 61]. Natural language and visualizations
should be preferred as well as cooperation during design work supported [33].
In time and location distributed development coders are happy with emails and
a version control system, because they are working with a source code, which is
text, but domain specialists and HCI experts need also other means of commu-
nication, including face to face communication [1, 15, 48, 49].

User interface design by blogs has been mentioned as a way to communicate
design solutions in a distributed environment [49, 60]. Dedicated mailing lists
for usability discussion have also been brought up [12, 48]. In addition, specific
design areas supporting brainstorming and discussion of user related issues have
been mentioned [60, 61], as well as a ’usability system’ enabling easy to use us-
ability bug reporting with the possibility to use multimedia [15, 49]. Moreover,
(remote) usability evaluation and user data gathering tools have been recom-
mended [47–49, 60].

By relying on the traditional HCI literature, the importance of paper proto-
typing during early design phases has also been highlighted [15]. There should
also be user requirements and profiles produced, and users might be interviewed
or questionnaires used to inquire them and their needs [15, 60]. It is, however,
unclear what kind of communication means there should be supporting these
activities. Another problem related to these suggestions is that they seem to
assume that the development proceeds similarly like to traditional proprietary
software development, with certain phases sequentially following each other, with
HCI experts hired to do the job.

All in all, FLOSS has many characteristics, which harness usability work.
Typically FLOSS programs, also development tools, are highly modular via plug-
ins and customizable via many configurations. This increases complexity related
to installing and using them. Documentation is fragmented over forums, personal
web pages, and source code. [62]. FLOSS development is rapid and iterative, so
rapid that it might look like one code-and-fix attempt from the outside [13], and
thus user centric design is challenging [5]. But rapid prototyping can be also
good for UX-testing [4].

The lack of coordination causes more frustration to HCI specialists than to
coders [15]. Non-hierarchical decision making is not good for HCI specialists,
because then it is hard to get their ideas accepted and implemented [15]. The
core developers typically make all the decisions related to what to include in
the code base, more peripheral developers and users having no decision-making
power regarding this [69]. HCI experts may have difficulties in being able to

A Review of Tool Support for User-Related Communication 95

affect design decisions in FLOSS projects [1, 9, 12, 15, 49, 61]. Coders work for
merit, due to which also usability/UX tasks should be made visible and merited,
so that these specialists could gain a more authoritative position [5]. Impor-
tant for HCI specialists is particularly to make themselves known and visible
in the project, educate the developers in HCI matters and offer usability feed-
back [60]. Building trust, providing opportunities to show merit and developing
a new workflow with HCI specialists’ and developers’ work integrated are im-
portant for HCI work to become accepted and practiced in FLOSS projects. The
new workflow should include a special phase for design, following users sugges-
tion or feedback, preceding actual development. The design should be iterated
until finding a satisfactory solution, users’ feedback being utilized during the
process. [5].

HCI specialists should be acknowledged and empowered by creating another
layer of roles into the traditional onion model that is used to depict the decision
making structure in FLOSS projects. While the technical stakeholders can be
identified as users, contributors, committers and core team members, the human
oriented layer introduces positions for non-technical users, usability evaluators,
usability designers and a HCI core team, respectively (note that one person can
act in several roles). Since the viewpoint to software and produced information
differs from source code, also communication means should be different within
that layer. The most important communication channel between technical and
non-technical project members is shared decision making between the technical
and HCI core teams, but it should not be limited to that. [33].

Some FLOSS projects have voting mechanism for bugs and new features that
enable users and possible HCI experts to have a say. They differ from project
to project. KDE’s and some other Bugzilla based bug tracker have “Most hated
bugs” and “Most wanted features” and each registered user can give votes to
bugs or features (https://bugs.kde.org/). Then there are also brainstorm forums
(e.g. http://brainstorm.ubuntu.com/), where users can make any suggestion
relating to requirements or design and others can comment and vote for (or
against) them. However, these solutions are derived from the FLOSS world, not
from HCI oriented research, but they are mentioned here since they somewhat
enable HCI specialists and end users to take part in the decision-making process
in FLOSS projects.

4 HCI Research Guidelines

In this paper the focus is on supporting user-developer communication, which
has been particularly addressed by the field of HCI. Generally one can say that
in HCI methods and textbooks the development of interactive systems has been
separated into three main phases: 1) requirements construction, 2) producing
design solutions, 3) evaluating the design solutions [11, 18, 44, 55]. User-developer
communication is needed during all these phases. During the requirements

96 A. Rantalainen, H. Hedberg, and N. Iivari

construction phase, developers need to be in contact with users for the purpose
of understanding the users, their needs and problems, and their context of use.
Typically, this is achieved through face-to-face contact: users are interviewed or
observed in their context of use, even though some methods also mention e.g.,
surveys as one possibility to inquire users and their needs [11, 18, 44, 55].

During the design phase, different kinds of design solutions are produced for
human-computer interaction. Developers should initially carefully redesign users
tasks or work practices, before considering software or user interface design [11,
18, 44, 55]. Part of the literature highlights the importance of user contact also
during this phase: users may be invited as design partners to produce the HCI
solutions together with developers. Typically also this is assumed to take place
in a co-located setting, utilizing representations such as scenarios or storyboards
to capture the design ideas [11, 18, 44, 55].

One should start the evaluation as early as possible. Typically this entails
the use of low-tech prototypes and such, which can be produced as well as
modified very fast and easily. On the other hand, it is also important to evaluate
the finished or almost finished solution and to check whether it is ready for
release. The evaluations typically include users as test participants. [44, 55].
Usability testing is the most widely known and used method. Typically it is
again carried out in a co-located setting, in a usability laboratory or in a field
setting, but also remote usability testing has been brought up in the literature
[32]. Studies in the actual use context after the release are also recommended.
This should be done in order to improve the next version. Methods such as
interviews, observation, surveys or focus groups can be used, implying again
user contact but not necessarily a face-to-face one. [44].

HCI literature recommends developers to cooperate with users, and also em-
phasizes that HCI experts should take part in the development and ‘represent the
users’ in the development [17, 35, 36]. Typically it is recommended that HCI ex-
perts take the responsibility of user contact during these different phases: they
observe and interview users during the requirements construction, they invite
users to take part in the design process and they organize the usability evalua-
tions involving users as test participants. However, HCI experts and users may
find it difficult to have any impact on the solution being developed [35, 37]. They
both might only be in an informative role, acting as providers of information or
in a consultative role commenting on predefined design solutions, when devel-
opers alone proceed to make all the decisions [35]. HCI literature, nevertheless,
suggests a more authoritative role for users and for HCI experts representing
them - the literature maintains that users and HCI experts should be allowed to
have a participative role, taking part in the design process and having decision
making power regarding the solution [35].

5 Recommended Communication Means for FLOSS
Projects

In this chapter our FLOSS related findings are connected to the HCI literature
presented. We acknowledge all the different phases associated with interactive

A Review of Tool Support for User-Related Communication 97

systems development, but we also emphasize that FLOSS development does not
follow the waterfall model. These phases can be found from FLOSS develop-
ment, but they do not appear sequentially, but are intertwined and overlapping.
Scacchi argues that requirements construction in FLOSS development does not
consist of the traditional steps following each other, but instead the requirements
are asserted or implied in a multitude of textual descriptions in the FLOSS en-
vironment, the descriptions being discussed, negotiated and made sense of in
a continuous, evolving manner. During the process the requirements are con-
densed, hardened and concentrated, the requirements construction being co-
mingled with design, implementation and testing. Sometimes the requirements
may actually be only implicitly produced as a by-product of implementation.
[56]. We acknowledge that requirements construction as well as HCI design and
HCI evaluation all take place in FLOSS development one way or the other, but
within the boundaries of constraints and characterizations mentioned above. We
call these tasks rather than phases due to issues mentioned above.

During the requirements construction task developers may ask for and collect
information about users and their needs, while users (or HCI experts representing
them) may provide information about these to the development. During the
HCI design task, all these parties may produce design solutions (ranging from
ideas or rough mockups to finished software) and wish to communicate those
to others. During the evaluation task, furthermore, developers may ask for and
collect feedback, while users (or HCI experts) may provide it to the development.
The actual use can not be separated from FLOSS development but instead
both continuously take place after the initial release of the software. During
it, developers may provide user support while users may ask for it, this being
already labeled as a user-centric strength of FLOSS development [40, 69].

Table 1 summarizes the results of our literature analysis on 1) What kinds of
means for communication exist in FLOSS projects for user-developer communi-
cation? and 2) What kinds of means should there be? The results were derived
by contrasting the existing FLOSS literature on user-developer communication
with prescriptive HCI literature on user-developer communication. In FLOSS
projects these tasks are overlapping and not even explicitly acknowledged.

Therefore, communication during the evaluation task is somewhat supported
in FLOSS projects, but design and requirements construction tasks are clearly
in need for further support, even though ideas have already been presented.
However, we maintain that all these tasks need to be supported future and plan
to experiment with certain solutions in the further. FLOSS development, as a
special case of distributed software development, is very tool-centric. Networked
ways to communicate, capture and manipulate information are essential to ev-
eryday work. At the same time the tools also affect the ways tasks are performed.

Furthermore, we argue that like in other development contexts, also in FLOSS
development users and HCI experts should be able to enter the participative role,
i.e. the role in which they are considered as equal partners in the design process
with decision-making power regarding the solution [23, 35]. By relying on the
model introduced by Hedberg and Iivari [33], Table 2 lists the recommended

98 A. Rantalainen, H. Hedberg, and N. Iivari

Table 1. Summary of Communication Means Provided and Required

Tasks Support provided Areas for Improvement

Requirements con-
struction (require-
ments, needs,
problems asked
for/provided)

Currently weak support.

Feature requests may be
provided in bug trackers,
mailing lists, IRC or fo-
rums, but requirements are
typically not constructed
but asserted or only implied
in the actual source code
[56].

Tools supporting dis-
tributed requirements
construction (gathering
data on users, their needs,
their contexts of use etc).

‘Confusion reports’ and
‘surprise reports’ [8],
usability and user re-
lated discussion forums
[12, 48, 61] suggested

Design (ideas, designs,
implementations asked
for/provided)

Currently weak support.

Ideas may be provided in
bug trackers, mailing lists,
IRC or forums, but lack
support for visualization or
for collaboration

Tools supporting visualiza-
tion and collaboration dur-
ing distributed design work
[30, 33].

E.g. user interface design by
blogs [49, 60], open content
projects [60], specific de-
sign areas supporting brain-
storming [49, 60], a separate
tab for usability/UX issues
[5] suggested

Evaluation (feedback
asked for/provided)

Currently some support.

Bug trackers, mailing lists,
IRC, forums etc. available
for users to provide feed-
back, but may be difficult to
use properly.

Tools supporting user and
usability feedback gather-
ing.

E.g. moderators handling
the user reported bugs [38],
bug tracker guiding users in
bug reporting [10], a tool
for usability bug reporting
[15, 49], reference/bleeding
edge/core users providing
feedback [60], open con-
tent projects [60], and re-
mote usability testing [47–
49] suggested

roles for human layer work in FLOSS projects, and connects these roles with
the recommended communication tools (and practices), listing also numerous
problems or needs they still have in connection to communication.

Even though there are communication means suggested for all the human layer
roles, also problems and needs related to each role can be identified. For example,
the UX-Tab for supporting the work of HCI core is explained in the article [5],
but never implemented. Altogether, communication, coordination and decision

A Review of Tool Support for User-Related Communication 99

Table 2. Summary of communication means and problems connected to human
layer roles

Role/Task Tools (and practices) Needs

HCI core UX-tab [5] An implementation of
the UX-tab, a means to
communicate with the
technical core, ensuring
decision-making power,
tools supporting coordi-
nation related to UX and
technical development

HCI designers blogs [49, 60], brainstorm-
ing areas [49, 60]

Support for synchronous,
collaborative, visual design
work [33], tools supporting
coordination related to UX
and technical development

HCI evaluators remote usability testing
tools [47–49]

Tools supporting coordina-
tion related to UX and tech-
nical development

Technical users
(additionally to
non-technical user)

confusion reports [8], sur-
prise reports [8], brain-
storming areas [49, 60]

Non-technical users usability-forum [12, 48, 61],
usability-tracker [15, 49],
remote usability testing
tools [47–49], open content
projects [60], moderators
[38]

More user-friendly tools
[10]

making between HCI core and technical core need tool support and thus more
investigating. Also there should be better support for coordination between the
work of HCI designers and evaluators and technical development. The technical
users in FLOSS projects are able to use the tools used by developers, but the
non-technical users need more user-friendly solutions. By providing new tools
for FLOSS development, the user-developer discussion could be facilitated, or
even forced if it is built in a tool. However, it is not an easy task, because the
FLOSS way of doing - the FLOSS philosophy - must be taken into account.

6 Conclusions

This paper examined the following questions: ”What kinds of means for commu-
nication exist in FLOSS projects for user-developer communication? What kinds
of means should there be?” The results indicate that user-developer communi-
cation during the evaluation task is somewhat supported in FLOSS projects,

100 A. Rantalainen, H. Hedberg, and N. Iivari

but design and requirements construction tasks are badly in need for further
support. Especially there is a need to support working of the HCI core team, as
well as to support the coordination between HCI designers and evaluators and
technical development.

The tools used in FLOSS development are not the best for managing user/UX
related issues. Thus it seems that there is still room for tool development. How-
ever, we emphasize in line with Wilson that practices are in a bigger role than
tools in software development [66]. Therefore, not only tool support is needed
in FLOSS projects, but also new practices for user-developer communication.
The tools can however enhance and stimulate to use those practices. Therefore,
we have presented the status quo of user-developer communication tools and
deductions on how to make the situation better by enhancing the tool set of
FLOSS development.

The FLOSS philosophy must be taken into account as well. The developers
should accept these new tools. Fogel presents two important points on the plan-
ning and taking in to use of new tools. First, it should not take too much effort.
Secondly, users must think that the additional effort is worth it [27]. If this ef-
fort is too much, the new tool (or a feature of it) is omitted. It is necessary that
new tools are not aimed to replace FLOSS practices, but to complement and
make them better. Additionally they should be as transparent as the existing
tools [21]. It seems that FLOSS developers value simple but versatile tools. Sim-
ple textual emails, wiki pages and bug tracker discussions do not dazzle with
glorious visual effects, but they simply enable functions that are really needed.

The limitation of FLOSS research is that researchers tend to focus on large
and well-known projects and communities. Small projects may not have same
issues, but they should be studied also. Common trend is to make quantitative
studies utilizing a data mass provided by FLOSS development support sites. For
small projects qualitative case studies carried out might be better. Another lim-
itation connected to this literature review is the varying terminology used in the
studies addressing user-developer communication. It was very difficult to settle
the appropriate keywords, since the studies have varyingly used terms such as
user, usability, HCI, UX, usability engineering, user-centered design to describe
their research focus. Even non-FLOSS projects are studied under FLOSS topic.

In addition to tool development, the paths for future work include looking
for existing FLOSS projects. It would be helpful to extract the best practices,
conventions and tools that have led to successful user-developer communication
in FLOSS development from real cases. Even though there are some exploratory
studies performed and enhancement ideas raised, it seems that the results are
not used in practice in FLOSS development yet.

References

1. Andreasen, M., Nielsen, H., Schrøder, S., Stage, J.: Usability in open source
software development: opinions and practice. Information Technology and
Control 35(3A), 303–312 (2006)

A Review of Tool Support for User-Related Communication 101

2. Ankolekar, A., Herbsleb, J., Sycara, K.: Addressing Challenges to Open Source
Collaboration With the Semantic Web. In: The 3rd Workshop on Open Source
Software Engineering, the 25th International Conference on Software Engineering,
ICSE, Portland OR, USA (2003)

3. Anvik, J., Hiew, L., Murphy, G.: Who Should Fix This Bug? In: Proceedings of the
28th International Conference on Software Engineering, ICSE 2006, pp. 361–370
(2006)

4. Bach, P.: Supporting the user experience in free/libre/open source software devel-
opment, Ph.D. dissertation, Pennsylvania State University (2009)

5. Bach, P., DeLine, R., Carroll, J.: Designers Wanted: Participation and the User
Experience in Open Source Software Development, Boston, MA, April 4-9, pp.
985–994. ACM, USA (2009)

6. Bach, P., Kirschner, B., Carroll, J.: Usability and Free/Libre/Open Source Software
SIG: HCI Expertise and Design Rationale. ACM, New York (2007)

7. Bach, P., Twidale, M.: Lucky Seven: How Can the Crowd Help Design?, Penn State
College of IST. University Park, PA (2007)

8. Bach, P., Twidale, M.: Involving reflective users in design. In: Proceedings of
the 28th International Conference on Human Factors in Computing Systems,
CHI 2010, April 10 - 15, ACM, New York (2040)

9. Benson, C., Müller-Prove, M., Mzourek, J.: Professional usability in open source
projects: GNOME, OpenOffice.org, NetBeans. In: Extended Abstracts of CHI 2004,
pp. 1083–1084. ACM, New York (2004)

10. Bettenburg, N., Just, S., Schrter, A., Weiss, C., Premraj, R., Zimmermann, T.:
What makes a good bug report? In: Proceedings of the 16th ACM SIGSOFT in-
ternational Symposium on Foundations of Software Engineering. ACM, New York
(2008)

11. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Sys-
tems. Morgan Kaufmann Publishers, San Francisco (1998)

12. Bødker, M., Nielsen, L., Orngreen, R.N.: Enabling User Centered Design Processes
in Open Source Communities. In: Aykin, N. (ed.) HCII 2007. LNCS, vol. 4559, pp.
10–18. Springer, Heidelberg (2007)

13. Bollinger, T., Nelson, R., Self, K., Turnbull, S.: Open Source Methods: Peering
through the Clutter. IEEE Software 16(4), 8–11 (1999)

14. Carmel, E., Agarwal, R.: Tactical approaches for alleviating distance in global
software development. IEEE Software 18(2), 22–29 (2001)

15. Cetin, G., Verzulli, D., Frings, S.: An analysis of involvement of HCI experts in
distributed software development: Practical issues. In: Schuler, D. (ed.) HCII 2007
and OCSC 2007. LNCS, vol. 4564, pp. 32–40. Springer, Heidelberg (2007)

16. Cheung, G., Chilana, P., Kane, S., Pellett, B.: Designing for discovery: opening the
hood for open-source end user tinkering. In: Proceedings of the 27th international
Conference Extended Abstracts on Human Factors in Computing Systems, CHI
2009, pp. 4321–4326. ACM, New York (2009)

17. Cooper, C., Bowers, J.: Representing the users: notes on the disciplinary rhetoric of
human-computer interaction. In: Thomas, P.J. (ed.) The Social and Interactional
Dimension of Human-Computer Interfaces, pp. 48–66. Cambridge University Press,
Cambridge (1995)

18. Cooper, A., Reimann, R.: About Face 2.0: The essentials of interaction design.
In: Information Visualization, vol. 3, pp. 223–225. New Wiley Pub., Indianapolis
(2004)

102 A. Rantalainen, H. Hedberg, and N. Iivari

19. Crowston, K., Annabi, H., Howison, J., Masango, C.: Effective work practices
for floss development: A model and propositions. In: Proceedings of the 38th
Hawaii International Conference On System Sciences, HICSS 2005, IEEE Press,
Piscataway (2005)

20. Crowston, K., Howison, J.: The social structure of free and open source software
development (2005),
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/

viewArticle/1207/1127 (retrieved on September 1, 2009)
21. Čubranić, D., Booth, K.S.: Coordinating Open-Source Software Development. In:

Proceedings of the 8th IEEE International Workshops Enabling Technologies: In-
frastructure for Collaborative Enterprises, WET ICE 1999, pp. 61–65. IEEE CS
Press, Los Alamitos (1999)

22. Curtis, B., Krasner, H., Iscoe, N.: A Field Study of the Software Design Process
for Large Systems. Communications of the ACM 31(11), 1268–1287 (1988)

23. Damodaran, L.: User involvement in the systems design process - a practical guide
for users. Behaviour & Information Technology 15(16), 363–377 (1996)

24. Fischer, G.: Communities of Interest: Learning through the Interaction of Multiple
Knowledge Systems. In: 24th Annual Information Systems Research Seminar In
Scandinavia, IRIS 24, Ulvik, pp. 1–14 (2001)

25. Fitzgerald, B., Ågerfalk, P.: The Mysteries of Open Source Software: Black and
White and Red All Over? In: Proceedings of the 38th Annual Hawaii International
Conference on System Sciences, HICSS 2005. IEEE Press, Piscataway (2005)

26. Fogel, K.: Producing Open Source Software. O’Reilly, Sebastopol (2005),
http://producingoss.com/ (retrieved on December 15, 2009)

27. Fogel, K.: Beautiful Teams: Inspiring and Cautionary Tales from Veteran Team
Leaders. ch. 21. O’Reilly, Sebastopol (2009),
http://www.red-bean.com/kfogel/beautiful-teams/bt-chapter-21.html (re-
trieved on September 1, 2009)

28. Free Software Foundation, Inc., The Free Software Definition (2008),
http://www.gnu.org/philosophy/free-sw.html (retrieved on: September 1,
2009)

29. Ge, X., Dong, Y., Huang, K.: Shared Knowledge Construction in an Open-Source
Software Development Community: An Investigation of the Gallery Community. In:
Proceedings of the International Conference on Learning Sciences, Bloomington,
IN, June27-July 1, pp. 189–195 (2006)

30. Geisler, C., Rogers, E.: Technological Mediation for Design Collaboration. In:
Proceedings of the IEEE Professional Communication Society International Pro-
fessional Communication Conference and Proceedings of the 18th Annual ACM
International Conference on Computer Documentation: Technology & Team-
work, IPCC/SIGDOC 2000. IEEE Educational Activities Department, Piscataway
(2000)

31. Halloran, T.J., Scherlis, W.L.: High Quality and Open Source Practices. Presented
at the 2nd Workshop on Open Source Software Engineering, Orlando, FL (2002)

32. Hartson, H.R., Castillo, J.C., Kelso, J., Neale, W.C.: Remote evaluation: the net-
work as an extension of the usability laboratory. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems: Common Ground, CHI 1996,
pp. 228–235. ACM, New York (1996)

http://producingoss.com/
http://www.red-bean.com/kfogel/beautiful-teams/bt-chapter-21.html
http://www.gnu.org/philosophy/free-sw.html

A Review of Tool Support for User-Related Communication 103

33. Hedberg, H., Iivari, N.: Integrating HCI Specialists into Open Source Software
Development Projects. In: Boldyreff, C., Crowston, K., Lundell, B., Wasserman,
A.I. (eds.) OSS 2009. IFIP AICT, vol. 299, pp. 251–263. Springer, Heidelberg
(2009)

34. Howison, J.: Studying Free Software with Free Software and Free methods. In:
A paper for the Australian Open Source Development Conference, Melbourne,
Australia (December 1-3, 2004)

35. Iivari, N.: Representing the User’ in software development - a cultural analysis
of usability work in the product development context. Interact. Comput. 18(4),
635–664 (2006)

36. Iivari, N.: Constructing the users’ in open source software development: An inter-
pretive case study of user participation. Information Technology & People 22(2),
132–156 (2009)

37. Iivari, N., Molin-Juustila, T.: Listening to the Voices of the Users, in Product
Based Software Development. International Journal of Technology and Human
Interaction 5(3), 54–77 (2009)

38. Ko, A., Chilana, P.: How Power Users Help and Hinder Open Bug Reporting, In. In:
Proceeding of the 28th International Conference on Human Factors in Computing
Systems, CHI 2010. ACM, New York (2010)

39. Kittur, A., Kraut, R.E.: Harnessing the wisdom of crowds in wikipedia: quality
through coordination. In: Proceedings of the 2008 ACM Conference on Computer
Supported Cooperative Work, CSCW 2008, ACM, New York (2008)

40. Lakhani, K., von Hippel, E.: How open source software works: ‘free’ user-to-user
assistance. Research Policy 32, 923–943 (2003)

41. Lievrouw, L.: Oppositional and activist new media: remediation, reconfiguration,
participation. In: Proceedings of the Participatory Design Conference, pp. 115–124.
CPSR, Palo Alto (2006)

42. Ljungberg, J.: Open Source Movements as a Model of Organising. In: Proceedings
of 8th European Conference on Information Systems, Vienna, pp. 208–216 (2000)

43. Massey, B.: Where Do Open Source Requirements Come From (And What Should
We Do About It)? In: Proceedings of the 2nd Workshop on Open Source Software
Engineering, ICSE (2001)

44. Mayhew, D.: The usability engineering lifecycle: a practitioner’s handbook for user
interface design. Morgan Kaufmann Publishers Inc., San Francisco (1999)

45. Mockus, A., Fielding, R., Herbsleb, J.: A Case Study of Open Source Software
Development: The Apache Server. In: Proceedings of the 22nd International Con-
ference on Software Engineering, ICSE 2000. ACM, New York (2000)

46. McConnell, S.: Open source methodology: ready for prime time? IEEE Soft-
ware 16(4), 6–8 (1999)

47. Nichols, D., McKay, D., Twidale, M.: Participatory Usability: supporting proactive
users. In: Proceedings of the 4th Annual Conference of the ACM Special Interest
Group on Computer Human Interaction, pp. 63–68. ACM, Dunedin (2003)

48. Nichols, D., Twidale, M.: The Usability of Open Source Software. First Mon-
day 8(1) (2003)

49. Nichols, D., Twidale, M.: Usability processes in open source projects. Software
Process Improvement and Practice 11, 149–162 (2006)

50. Ogawa, M., Ma, K., Bird, C., Devanbu, P., Gourley, A.: Visualizing Social Interac-
tion in Open Source Software Projects. In: Proceedings of Asia-Pacific Symposium
on Visualization, APVIS, pp. 25–32 (February 2007)

104 A. Rantalainen, H. Hedberg, and N. Iivari

51. Open Source Initiative, The Open Source Definition (2006),
http://www.opensource.org/docs/osd (retrieved on September 1, 2009)

52. Parkinson, C.N.: Parkinson’s law: or, the pursuit of progress / C. Northcote Parkin-
son J. Murray, London (1957)

53. Paul, C.: A Survey of Usability Practices in Free/Libre/Open Source Software. In:
Boldyreff, C., Crowston, K., Lundell, B., Wasserman, A.I. (eds.) OSS 2009. IFIP
AICT, vol. 299, pp. 264–273. Springer, Heidelberg (2009)

54. Raymond, E.: The Cathedral and the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. OReilly, US (1999)

55. Rosson, M., Carrol, J.: Usability Engineering: Scenario-Based Development of
Human-Computer Interaction. Morgan Kaufmann, New York (2002)

56. Scacchi, W.: Understanding the requirements for developing open source software
systems. IEE Proceedings - Software 149(1), 24–39 (2002)

57. Schwartz, D., Gunn, A.: Integrating user experience into free/libre open source
software: CHI 2009 special interest group. In: Proceedings of the 27th International
Conference Extended Abstracts on Human Factors in Computing Systems, CHI
2009, pp. 2739–2742. ACM, New York (2009)

58. Singh, V., Twidale, M.B., Nichols, D.M.: Users of Open Source Software - How Do
They Get Help? In: Proceedings of the 42nd Hawaii International Conference on
System Sciences, HICSS 2009, Big Island, Hawaii, January 5-8 (2009)

59. Stamelos, I., Angelis, L., Oikonomou, A., Bleris, G.: Code quality analysis in open
source software development. Information Systems Journal 12, 43–60 (2002)

60. Terry, M., Kay, M., Lafreniere, B.: Perceptions and Practices of Usability in the
Free/Open Source Software (FOSS) Community. In: Proceedings of the Conference
on Human Factors in Computing Systems, pp. 999–1008. ACM, New York (2010)

61. Twidale, M., Nichols, D.: Exploring usability discussions in open source devel-
opment. In: Proceedings of the 38th Hawaii International Conference on System
Sciences, HICSS 2005. IEEE Press, Piscataway (2005)

62. Viorres, N., Xenofon, P., Stavrakis, M., Vlachogiannis, E., Koutsabasis, P., Darzen-
tas, J.: Major HCI challenges for open source software adoption and development.
In: Schuler, D. (ed.) HCII 2007 and OCSC 2007. LNCS, vol. 4564, pp. 455–464.
Springer, Heidelberg (2007)

63. von Hippel, E., von Krogh, G.: Open source software and the “private-collective”
innovation model, Issues for organization science. Organ. Sci. 14(2), 209–223 (2003)

64. Wiggins, A., Howison, J., Crowston, K.: Social dynamics of FLOSS team commu-
nication across channels. In: Proceedings of the IFIP 2.13 Working Conference on
Open Source Software (OSS), Milan, Italy, pp. 131–142 (2008)

65. Williams, S.: Free as in Freedom: Richard Stallman and the Free: Richard Stallmans
Crusade for Free Software. O’Reilly Media, Sebastopol (2002); ISBN: 0596002874

66. Wilson, G.: Is the Open-Source Community Setting a Bad Example? IEEE Soft-
ware 16(1), 23–25 (1999)

67. Yamauchi, Y., Yokozawa, M., Shinohara, T., Ishida, T.: Collaboration with Lean
Media: how open-source software succeeds. In: Proceedings of the 2000 ACM Con-
ference on Computer Supported Cooperative Work, CSCW 2000, pp. 329–338.
ACM, New York (2000)

68. Yatani, K., Chung, E., Jensen, C., Truong, K.N.: Understanding how and why open
source contributors use diagrams in the development of Ubuntu. In: Proceedings
of the 27th International Conference on Human Factors in Computing Systems,
CHI 2009, pp. 995–1004. ACM, New York (2009)

 http://www.opensource.org/docs/osd

A Review of Tool Support for User-Related Communication 105

69. Ye, Y., Kishida, K.: Toward an understanding of the motivation of open source soft-
ware developers. In: Proceedings of the 25th International Conference on Software
Engineering (ICSE), pp. 419–422. IEEE Press, Piscataway (2003)

70. Zhao, L., Deek, F.: Improving open source software usability. In: Proceedings of the
11th Americas Conference on Information Systems, AMCIS, Omaha, NE, August
11-14, pp. 923–928 (2005)

Knowledge Homogeneity and Specialization in

the Apache HTTP Server Project

Alexander C. MacLean, Landon J. Pratt,
Charles D. Knutson, and Eric K. Ringger

Computer Science Department, Brigham Young University, Provo, Utah
{amaclean,landonjpratt}@byu.edu, {knutson,ringger}@cs.byu.edu

Abstract. We present an analysis of developer communication in the
Apache HTTP Server project. Using topic modeling techniques we ex-
pose latent conceptual sub-communities arising from developer special-
ization within the greater developer population. However, we found that
among the major contributors to the project, very little specialization
exists. We present theories to explain this phenomenon, and suggest fur-
ther research.

1 Introduction

Private information is “information possessed by a relatively small segment
of the population” [8]. For example, in development organizations certain in-
dividuals specialize and become de facto leaders within conceptual domains.
Latent roles develop and define structure and vulnerability within an organiza-
tion. In practice, these individuals become centers of private information sub-
communities and thereby control the shape and flow of information within that
sub-community. The identities of these individuals are latent in that there is
often no obvious correlation between the overt organizational structure and the
centers of knowledge within that structure.

We should be clear that private information is neither inherently good nor bad.
Instead, its influence is context specific. Private information refers to information
known to an individual or small set of individuals, not necessarily information
that is hoarded or deliberately withheld. Rather, private information exists as a
natural byproduct of organizational learning. A deeper discussion is presented
by Krein, et al [8].

1.1 Specialization

Developer specialization is a form of private information in which developers
within an organization become expert in a particular concept domain. Example
domains might include UI developers, “the database guy,” or any small group of
developers who are essential to interacting with a particular piece of the product.

Specialization is often found in large organizations where the scope of the
project is such that no single person has the time or capacity to master all

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 106–122, 2011.
c© IFIP International Federation for Information Processing 2011

Knowledge Homogeneity and Specialization 107

aspects of a product. Organizations benefit from specialization by minimizing
the overlap of skill acquisition since it can be time consuming and expensive.
Individuals benefit from specialization through job security and decreased initial
training requirements.

Although beneficial when viewed from a schedule and budget perspective,
specialization introduces risk into an organization. For example, in an organiza-
tion with two core developers, is it appropriate to put both of them on the same
plane for a business trip? Or, what contingency should the organization put into
place in the event that these two developers decide to retire? While development
organizations could certainly recover from the untimely departure of specialized
developers, and other developers exist who are capable enough to fill the roles,
could the overall organization recover from the delays imposed by the resulting
loss in productivity and stay competitive in an aggressive marketplace?

Developing a contingency plan for unexpected change is relatively straight-
forward when the specialized roles are overtly expressed in the organizational
structure or are generally understood among the developers. However, danger
arises when the roles are latent and therefore difficult to identify.

1.2 The Apache HTTP Server Project

The Apache HTTP Server (httpd) is an open-source HTTP server implementa-
tion and the leading HTTP server with 59% market share as of January 2011
[3]. The project is maintained by a group of volunteers from around the world
who collaborate through the use of online tools such as email and chat [2]. Most
importantly for this analysis, project tenets stipulate that all development and
managerial communication must happen in the publicly available mailing lists.

We are interested in this project because of its open-development philosophy
(anyone who proves their worth within the meritocracy can contribute) as well
as its success. We would like to use open source projects such as those main-
tained by the Apache Foundation as an analogue for all software development
organizations. Whereas it is difficult and rife with legal issues to obtain source
code and developer communications from closed source enterprises, it is compar-
atively trivial to obtain the same information from the Apache Foundation. If we
can show that open source projects behave like their closed source counterparts
we can circumvent this roadblock.

1.3 Reference Organizations

The authors are personally familiar with three large software development orga-
nizations that each exhibit evidence of private information. Each organization
is unique with regards to the degree of geographic distribution and size, yet all
contain easily identifiable private information. These organizations are presented
as references against which we may compare the Apache HTTP Server project.
For consistency we refer to the organizations by number, even though we also
identify Organization 2 by name.

108 A.C. MacLean et al.

For each of these organizations we note the degree of geographic distribution
in an effort to illustrate that private information exists whether or not developers
are collocated. Since the httpd project is massively distributed, it is important
to show that private information is not necessarily caused by lack of face-to-face
communication.

Organization 1. Organization 1 builds and maintains a large suite of software
products comprised of both legacy and new components. The legacy engine is
highly complex and is central to the success of the suite. Although a large orga-
nization develops the products and builds new features, only two developers may
change the legacy engine. Both of the developers have been with the company
for over twenty years. Most products in this organization target either consumer
grade computers or cloud-based computing systems.

This organization is somewhat distributed (and is growing more distributed
over time). However, a large portion of the developers are still collocated.

Organization 2. Organization 2, IBM, is large (426,751 employees, with gross
revenues of $99 billion in 2010 [1]) and builds many disparate products. Despite
well-established corporate practices, Krein, et al, still found that “loss of special-
ized information arises from both reorganization and loss of employees” and that
“employee loss. . . creates information gaps” [8]. Their study specifically targeted
extended stakeholders1, and therefore is not a direct analogue to a development
organization. However, it illustrates some of the organizational fragility that
arises from private information.

IBM is largely distributed, and has employees in more than 40 countries [1].
Many IBM employees telecommute, further increasing the distributed nature of
the organization.

Organization 3. Organization 3 is large but still smaller than both organi-
zations 1 and 2. Developers often specialize and become centers of conceptual
communities surrounding hardware interfaces, user interfaces, network commu-
nication, fault tolerance, and other product specific topics. Unlike Organization
1, this organization primarily develops software that is shipped in embedded
devices.

This organization is lightly distributed across half a dozen different locations.
However, members of individual product groups are all collocated.

1.4 Private Information

Krein, et al, presented the problem of private information, a framework for un-
derstanding communication dynamics within a distributed organization. They
studied extended stakeholders in an effort to understand how specialized in-
formation flows between stakeholders [8]. While inspired by Hayek’s work in

1 Non-developers.

Knowledge Homogeneity and Specialization 109

economics [6], Krein’s work represents the first application of the notion of pri-
vate information to software organizations. Since Krein, et al, is an introductory
study, few methods exist to aid us in practice. Still, the concept of private infor-
mation is a powerful guiding metaphor and provides a framework within which
to study knowledge homogeneity and specialization.

1.5 Goal

In order to discover pockets of private information within the Apache HTTP
Server community, and thereby identify developer specialization, we analyzed
committer email records and commit history. The goal was to identify two phe-
nomenon: 1) committers who write exclusively about a particular topic, or 2)
topics that are only discussed by a small set of committers. The first case indi-
cates committers who specialize in a particular topic. The second case indicates
topics that are dominated by particular committers.

2 Data

We gathered data for this study from the Apache Foundation during February
of 2011. Our data set consists of the commit history and email archives for the
Apache HTTP Server Project, spanning sixteen years (2/27/1995 - 1/31/2011).

2.1 Mailing Lists

The mailing list archives for the Apache Software Foundation are freely avail-
able. They consist of files stored in the mbox format that contain all of the
communication on a given channel for a particular month. For this paper we
only analyze the “dev” channel of the mailing lists for the httpd project and
refer to it as “the mailing list.” This channel should represent communication
regarding project development. It consists of 124,938 messages and 166 develop-
ers2 (see Section 3.1). The mailing lists were imported into PostgreSQL.

Developer contribution to the mailing list is not uniform. Instead, a small
subset of developers generate most of the traffic (see Figures 1 and 2). Figure 1
shows the number of messages sent per developer for the entire time period. Note
the power law distribution of developer email traffic. Figure 2 shows the same
activity in 2009, illustrating that the activity patterns are consistent regardless
of time window.

2.2 Subversion Repository

The commit history for the project consists of 46,336 revisions by 134 developers.
However, as with mailing list activity, a small group of developers committed a
majority of the changes to the project (see Figure 3). This behavior has been
demonstrated in previous studies [7].

2 Not all registered committers actually made changes to the project.

110 A.C. MacLean et al.

Fig. 1. Messages per developer. Each bar represents a single developer, sorted by num-
ber of messages.

Fig. 2. Messages per developer in 2009. Each bar represents a single developer, sorted
by number of messages.

Knowledge Homogeneity and Specialization 111

Fig. 3. Developer commits. The x-axis is individual developers, sorted by commit vol-
ume.

Fig. 4. Developer tenure. Each horizontal line represents a single developer. The length
of the line represents the span of a developer’s commits, from the first to the last.

112 A.C. MacLean et al.

3 Methods

In order to identify private information in the Apache HTTP Server community,
we first had to associate email topics with developers. To do so, we 1) mapped the
committers to email records, 2) cleaned the email records to remove extraneous
information, 3) identified topics of discussion in the resulting messages, and 4)
constructed a social network model from committers and topics.

3.1 Developer/Email Mapping

Mailing lists for the httpd project are not associated with SVN, and therefore
are generally tied to the usernames employed by the versioning software. The
only exception is contributors who send email from their Apache email addresses,
which are formatted as <svn-username>@apache.org or <svn-username>@
<project-name>.apache.org. In either case, the mailing lists simply identify con-
tributors by their email addresses, most of which are non-Apache email addresses
and therefore can’t be attributed directly to an Apache committer. In addition,
many individuals sent emails from multiple email addresses and from clients that
employ differing email formatting conventions. We used a simple algorithm to
map email addresses to committers:

if email address ends with apache.org then
use all text before the “@” symbol as the committer username

else
if from header contains a name (e.g., “John Lawrence Smith” <jls@nowhere.com>)
then

if first name and last name match those of a committer listed on the
Apache Foundation Website3 then

map the email address to the committer
else

ignore the email address
end if

else
ignore the email address

end if
end if

Due to the small number of committers registered to the project, a manual
analysis of a random subset of the email was sufficient to confirm that this
method accurately categorized the email on the mailing list.

3.2 Email Cleaning

We preprocessed the messages to extract the information contributed by the
sender and remove information contributed by others, thereby improving the

3 http://people.apache.org/committer-index.html

Knowledge Homogeneity and Specialization 113

accuracy of the identified topics. The email messages are in MIME format. Pre-
processing consisted of seven steps:
1. Remove all sections of the multipart emails that were not “text/plain.”
2. Remove all header lines.
3. Remove lines that were most likely quoted text from a previous email. We

identified four patterns that denoted quoted text (see Table 1).
4. Remove signatures by deleting all contiguous lines following --\n until en-

countering an empty line.
5. Remove all instances of the author’s name (see Section 3.3).
6. Remove a list of stopwords4.
7. Tokenize the messages such that words consist of groups of letters and un-

derscores.

Table 1. Quoted text identification

Identification Action

Lines that started with “>” Line removed

Sections that started with

-------- forwarded message

or

---------- forwarded message

Following text removed

Lines like

<so-and-so> (wrote|writes):

Line removed

Lines like

On <date> <so-and-so> (wrote|writes):

Line removed

Wang and McCallum [10] used a similar cleaning scheme but indicated that
doing so may remove inline responses. However, we found that in this dataset
inline responses were generally made to lines of text that started with “>,” and
therefore only the quoted text was removed. Of a random sample of 100 emails,
this process did not remove any lines of text that were not quotes, and only
failed to remove all of the quoted text in three instances.

3.3 Topic Identification

In order to identify latent roles and groups in the httpd community that may
suggest private information, we extracted topics from messages sent by develop-
ers on the mailing list. These topics were identified in an unsupervised/unbiased
4 Removing stopwords improves the accuracy of LDA by removing commonly occuring

terms that are not topic specific.

114 A.C. MacLean et al.

regex match pattern regexp string cmd regex t expression preg regular
register pcre posix compiled regexec regcomp library pmatch rm so
ap pregcomp

Fig. 5. The top twenty terms in the regular expression topic. Term importance de-
creases from left to right, where “regex” is the most important term.

fashion using Latent Dirichlet Allocation (LDA), a Bayesian probabilistic topic
model that clusters words from the corpus into topics [4]. “Topics” are proba-
bility distributions over the vocabulary words (terms) in the corpus, based upon
word collocation within messages. In the process of topic identification, words in
the emails are attributed to topics and a mixture of topics is deduced for each
message in a manner that depends upon collocation of words within messages.
We utilized the MALLET [9] implementation of LDA to identify 200 topics from
the email corpus and assign message topic probabilities. Figure 5 shows the top
twenty terms in the regular expression topic.

Our initial tests using LDA to identify topics from the email messages resulted
in topics that contained author names. We removed the author’s name from
each email to avoid identifying these name-heavy topics. Although grouping
author names with terms provided interesting insight into developer prominence,
including the names diluted the topics and decreased the likelihood that less
prolific developers would be associated with a given topic.

3.4 Social Network Analysis

From the topics assigned to email messages by LDA we created a two-mode
social network consisting of topic nodes and committer nodes. Connections only
exist between topic nodes and committer nodes: no inter-topic or inter-committer
edges exist. Edge weight between a topic committer and a topic is determined
by the weighted proportion of the messages attributed to the committer that
refer to the topic, where weighted proportion is

Mc∑

i=1

pt(mi) (1)

Mc: All messages attributed to committer c,
i: Message index,
mi: Message i from Mc,
pt(x): Proportion of message x attributed to topic t.

This calculation allows committers whose communications on the mailing list
are voluminous to dwarf those who contribute less frequently. This seems appro-
priate in light of the intent of the metric to identify those who have or control

Knowledge Homogeneity and Specialization 115

Fig. 6. Proportion of communication for which each topic is the dominant topic in a
message

knowledge about individual topics. However, it is worth noting that the metric
does not capture subtleties, such as committers who specialize in a particular
subject, but whose contributions to the project are relatively minor.

4 Results

If specialization exists within the httpd community, we should see distinct com-
munities develop around topics. In addition, unique groups of developers should
congregate around specialized subtopics. We examined the data from both an-
gles: topical affinity and topic communities.

4.1 LDA Results

We used LDA to identify 200 topics that summarize the communication on the
mailing list. The most prevalent topic described 2% of the text contained in
the messages. Figure 6 shows a stacked bar chart of topic proportions over the
entire corpus, where each segment of the stacked bar represents a single topic.
The median topic described 0.3% of the text contained in the messages. Notably
no topics dominated the discussion.

Despite stripping developer names from the emails, a few topics exist that
are centered around prominent committers to the project. These topics likely
result from other members of the community referring to these more prominent
members. We ignored developer-centric topics in our analysis. Although they
may indicate private information about a developer, they do not indicate private
information about the project.

4.2 Topical Affinity

One measure of developer communication is topical affinity—how much a devel-
oper discusses a particular topic. In Figure 7 we see a network that contains the

116 A.C. MacLean et al.

top 22 developers by topical affinity. Note how clusters of topics gather around
certain developers. Note also that a small number of developers discuss these
topics in such volume that most of the developers are filtered out of this net-
work. This threshold was discovered visually. There is a clear threshold at which
the network stabilizes into a small subset of prolific authors.

Regardless of the edge weight threshold, the network looks the same, albeit
more or less connected. This trend directly contradicts experience in the three
reference organizations (see Section 1.3). If private information exists we would
expect to see distinct groups appear within the network as the lower threshold
for edge inclusion increased. Instead, we see a core group of developers to whom
all topics are connected more heavily than to any specialized group.

Fig. 7. The top 22 developers on the mailing list by topical affinity. Dark nodes are
topics, light nodes are developers. Note that there are strong clusterings of topics
around certain developers.

4.3 Topic Communities

We examined the communities that form around major topics, such as voting,
SSL, licenses, security, patching, module development, CGI, configuration, reg-
ular expressions, and error handling. In each case, the resulting community was
comprised almost exclusively of the core developers. Figure 8 is indicative of the
groups that form around topics. In the network, all of the top ten developers are
attached to the topic. This pattern repeats itself for all non-developer specific
topics. In several cases concepts were split among multiple topics. However, the
communities that congregated around the combined topics were also composed
of the core developers.

Knowledge Homogeneity and Specialization 117

Fig. 8. Developers who discuss the voting topic. Proximity indicates volume of com-
munication.

4.4 Specialization

Because there are no prominent groups in our network of topics and developers,
we must conclude that there is little specialization among the core group of de-
velopers in the Apache HTTP Server project. This result is especially surprising
in light of our reference organizations which exhibit clear specialization. Instead,

Fig. 9. Each bar represents the number of times an individual was the first, second, or
third most prolific communicator in a topic in 2010. There is one bar per developer.

118 A.C. MacLean et al.

all of the core developers discuss all major topics with varying degrees of promi-
nence. This suggests that instead of specializing, the core group of developers
discuss all of the topics and make decisions as a whole.

In Figure 9 each bar represents a committer and the magnitude of the bar
indicates the number of topics for which the committer was either the first,
second, or third most prolific commenter (200 topics, 600 total first, second, or
third ranks). A small number of core developers dominate the discussions on
each topic.

5 Validation

In order to validate our findings, we contacted Dr. Justin Erenkrantz who
served as Director of the Apache Software Foundation from 2005 to 2010 and
as President from 2007 to 2010. Dr. Erenkrantz, a substantial contributor to
the httpd project, corroborated our findings that suggest that little specializa-
tion exists among the core developers. This validated our interpretation of the
distribution of topic usage in the project. In addition, his corroboration was in
stark contrast to the results obtained in the study by Krein, et al [8], where the
stakeholders were well aware of specialization and private information within the
organization.

6 Threats to Validity

Here we mention two threats to the validity of our study: minor contributors
and email text selection.

6.1 Minor Contributors

While our edge weight metric identifies those who are most vocal about a par-
ticular topic, it does not identify lesser commenters who specialize in that topic.
Further work is required to determine whether minor contributors to the project
likewise lack specialization. We suspect that developers who commit infrequently
must specialize because they don’t have enough familiarity with the system to
change multiple components without unintended consequences.

6.2 Email Text Selection

In this study we used only the “text/plain” sections of the emails. However,
developers can create emails that only contain “text/html” sections. Although
HTML was not common in this project, it could slightly bias the results against
an individual who always creates emails this way. However, this was not the
case with the most prolific contributors, and therefore should not bias the study
significantly.

Knowledge Homogeneity and Specialization 119

7 Future Work

This analysis has unearthed a multitude of additional questions, some of which
we list here.

7.1 Hidden Private Information

In this study we used topics gleaned from email messages to determine that there
was little specialization in the community and corroborated our results through
member checking. However, our results were based upon communication and
members’ impressions. To more fully explain specialization in the httpd project
we must look at the commit patterns of developers. If the commit patterns indi-
cate that the core developers work on everything, then our results are confirmed.
If they indicate the opposite, then there is an assumption by the developers of
a lack of specialization when in fact they do specialize. This result would have
fascinating social implications.

7.2 Developer Tenure

During the dot com boom, conventional wisdom maintained that the average
developer tenure in a job was 18 months. A study by Fallick, Fleischman, and
Rebitzer [5] seems to indicate that average tenure in Silicon Valley has grown to
around 4.2 years. However, their work revolved around developer mobility, not
tenure, and extrapolating 4.2 years is statistically unsound5. Nevertheless, the
numbers used in their study still cast heavy doubt on the previous figure of 18
months.

In contrast, the median tenure of developers on the Apache HTTP Server
project is 3.7 years. Is this tenure significantly different from the median tenure
of developers in traditional, closed source, closed development organizations?
Also, when a developer is employed by a company, the company can expect the
developer to spend a certain amount of time each week on assigned projects. Is
the effort exerted by volunteer6 developers analogous to that of an employee?

7.3 Topic Analysis in a Mid-Sized Organization

Only 134 developers have ever committed to the Apache HTTP Server project.
Of those 134 developers, the top 30 are responsible for 75% of the commits.
Comparing the httpd project to more traditional, closed source organizations of
comparable size would provide insight into whether or not the behavior in this
FOSS community differes significantly. Ideally this study would involve both
collocated development organizations and distributed organizations in order to
identify any effect that geographic distribution may have.
5 Fallick, Fleischman, and Rebitzer did not make this extrapolation in their paper.
6 We realize that most of the prominent developers in an open source projects are

employed by external organizations and paid to contribute to the project. However,
the question is still legitimate.

120 A.C. MacLean et al.

7.4 Cross Project Comparison in Apache

If knowledge homogeneity is a symptom of open development, we would expect
to see the same kind of knowledge distribution in other projects in the Apache
Foundation. All projects within the foundation are governed by a similar set
of rules, and all are maintained by volunteer developers. Future work should
explore the degree to which specialization appears within other projects.

7.5 Knowledge and Email Communication

In this paper we have been primarily concerned with topic specialization in email
messages in the Apache HTTP Server project. However, further work is required
to determine the degree to which analysis of topics in email messages identifies
knowledge distribution in an open source organization.

8 Conclusions

Lack of specialization within this community may result from a myriad of rea-
sons. Here we explore several factors that may perpetuate this homogeneous
knowledge base.

8.1 Organizational Resiliency

Development of the Apache HTTP Server is performed by volunteers, most of
whom are paid by external organizations to develop the product. Incentives for
the external organizations vary, but one common element holds: developers are
potentially transient. At any point a sponsoring entity may decide that a de-
veloper is required for an internal project either temporarily or permanently.
Although the developer may continue to contribute on personal time, it is un-
likely that he or she will be able to contribute anywhere near previous levels. If
that developer holds unique specialized knowledge, the knowledge is essentially
lost.

By spreading the knowledge across the core members of the organization, this
organizational threat is mitigated. We doubt that the organization consciously
promulgated a policy of knowledge homogeneity, but rather reacted to organi-
zational fluidity.

8.2 Small Group of Core Developers

A second, related factor may be the relatively small size of the core group of
developers. The question becomes: on what are the developers working? If the
core group spends much of their time working on bug fixes, then the management
of bug priority could homogenize the developer communication. If the developers
work together on new features, feature timeline could lead to a homogeneous
workgroup—all developers work on the same feature to get it out the door for
the next release.

Knowledge Homogeneity and Specialization 121

8.3 Small Project Size

A third, trivial, reason, may be that the project is simply too small to require
developer specialization. It may be the case that the conceptual domain of the
project is small enough that a single developer can, and does, comprehend that
entire space. If so, then there is no need for specialization in a project of this
size.

However, this reason seems highly unlikely. The conceptual domain contains
complicated subdomains such as SSL, user authentication, OS specific tailoring,
and transfer protocols. We don’t believe that the required depth of knowledge
in these subdomains is sufficiently shallow that developers can operate with a
broad overview of knowledge.

8.4 Voting

Lastly, organizational culture within the httpd project could require homogene-
ity. Releases and major commits to the project must be approved by a vote of
the Project Management Committe (PMC), a group of the more seasoned de-
velopers. Informed votes require that members of the PMC are familiar with all
aspects of the project and ensure that they are kept abreast of developments.

8.5 Software Engineering Taxonomy

Regardless of the reasons behind the observed knowledge homogeneity, the im-
plications are fascinating and motivate further exploration. By better under-
standing the similarities and differences between various types of development
organizations—be they open or closed source, open or closed development, ge-
ographically distributed or collocated, large or small, embedded, desktop, or
cloud—we continue to develop a working taxonomy of the software engineering
landscape. This taxonomy informs our analysis of future projects and enables
better comparison between domains.

Acknowledgements. The authors would like to thank Dr. Justin Erenkrantz
for his willingness to provide validation and insight regarding the Apache HTTP
Server community.

References

1. 2010 form 10-k, international business machines corporation. United States Secu-
rities and Exchange Commission

2. Apache http server project (April 2011)
3. January 2011 web server survey (January 2011)
4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of

Machine Learning Research 3, 993–1022 (2003)
5. Fallick, B., Fleischman, C.A., Rebitzer, J.B.: Job-hopping in Silicon Valley: Some

evidence concerning the microfoundations of a high-technology cluster. The Review
of Economics and Statistics 88(3), 472–481 (2006)

122 A.C. MacLean et al.

6. Hayek, F.A.: The use of knowledge in society. The American Economic Re-
view 35(4), 519–530 (1945)

7. Krein, J.L., MacLean, A.C., Delorey, D.P., Knutson, C.D., Eggett, D.L.: Impact
of programming language fragmentation on developer productivity: a sourceforge
empricial study. International Journal of Open Source Software and Processes
(IJOSSP) 2, 41–61 (2010)

8. Krein, J.L., Wagstrom, P., Sutton Jr., S.M., Williams, C., Knutson, C.D.: The
problem of private information in large software organizations. In: International
Conference on Software and Systems Process. ACM Press, New York (2011)

9. McCallum, A.K.: Mallet: A machine learning for language toolkit (2002),
http://mallet.cs.umass.edu

10. Wang, X., McCallum, A.: Topics over time: a non-Markov continuous-time model of
topical trends. In: Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 424–433. ACM, New York (2006)

http://mallet.cs.umass.edu

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 123–141, 2011.
© IFIP International Federation for Information Processing 2011

Building Knowledge in Open Source Software Research
in Six Years of Conferences

Fabio Mulazzani, Bruno Rossi, Barbara Russo, and Maximilian Steff

Center for Applied Software Engineering (CASE),
Free University of Bozen-Bolzano,

Piazza Domenicani, 3, 39100 Bolzano, Italy
{fmulazzani,brrossi,brusso,maximilian.steff}@unibz.it

Abstract. Since its origins, the diffusion of the OSS phenomenon and the
information about it has been entrusted to the Internet and its virtual
communities of developers. This public mass of data has attracted the interest of
researchers and practitioners aiming at formalizing it into a body of knowledge.
To this aim, in 2005, a new series of conferences on OSS started to collect and
convey OSS knowledge to the research and industrial community. Our work
mines articles of the OSS conference series to understand the process of
knowledge grounding and the community surrounding it. As such, we propose a
semi-automated approach for a systematic mapping study on these articles. We
automatically build a map of cross-citations among all the papers of the
conferences and then we manually inspect the resulting clusters to identify
knowledge building blocks and their mutual relationships. We found that
industry-related, quality assurance, and empirical studies often originate or
maintain new streams of research.

Keywords: Systematic Mapping Study, Cross-citations.

1 Introduction

Since its origins, the diffusion of the OSS phenomenon and the information about it
has been entrusted to the Internet and its virtual communities of developers. As such,
information on OSS has grown exponentially resulting in a vast quantity of data
readily available. This data has attracted the interest of researchers and practitioners
aiming at formalizing this information into a body of knowledge (e.g. [12], [13]). For
this reason, in 2005, a new series of conferences on OSS (OSS conference series1)
and, in 2009, a new journal2 have been established. These initiatives have
substantially contributed to initiate a long process to ground knowledge in OSS that
masters data from different sources and consolidates them into well-accepted
concepts and their mutual relations. As such, they represent a valuable source for
understanding how OSS knowledge has been created and how it will evolve in the
future. Our work tackles this issue proposing a systematic mapping study of the
papers of the OSS conference series.

1 International Symposium on Open Source Software initiated in 2005, in Genoa, Italy.
2 International Journal of Open Source Software and Processes, http://www.igi-global.com

124 F. Mulazzani et al.

Systematic Mapping Studies (SMS) and Systematic Literature Reviews (SRL) are
techniques of knowledge synthesis. These techniques are typically based on manual
inspections of articles ([23], [24], [25], and [37]). Manual inspection requires
significant effort in mining large sets of articles. On the other hand, a complete
automated inspection can produce inaccurate results. In our work, we propose a semi-
automated approach to mine articles’ repositories for systematic mapping studies. We
automatically inspect articles to build a map of cross-citations and then we manually
inspect the resulting clusters to identify the building blocks of knowledge in OSS and
the social network of the community maintaining it. We selected the complete
database of articles of the OSS conference series since its origin in 20053. Our choice
is driven by three criteria: 1) papers are peer reviewed - this excludes for example the
MIT repository4, Apache conferences5, OpenOffice.org conferences6, etc…; 2) the
series’ mission is to disseminate knowledge in OSS - this excludes traditional journals
in software engineering; and 3) papers report more than a group discussion - this
excludes workshops or one day events co-located with larger non OSS events. The
result of this study aims at answering two major questions:

RQ1. Is there any social network underlying the research production at the OSS
conference series?

RQ2. What are the major streams of research proposed at the OSS conference
series?

Our answer to RQ1 will identify the cornerstone papers and the links among them
across the years. Links will express the relation among the authors by means of the
connection of their research production. The analysis will reveal unexpected and
undeclared connections among authors as well as lack of connections among
conceptually related papers. This will also illustrate the self-sustainability of the OSS
conference series and the value that it provides to the OSS community. In addition,
using the results in [37], our research will also discuss how empirical studies fit the
network. An answer to RQ2 will help build the baseline for future investigations in
OSS research or to extend existing ones.

In the following section, we introduce related work and motivate our work. Section
3 presents our method of SMS and Section 4 explains our analysis methodology. In
Section 5, we explore the results of our analysis and describe the clusters of papers we
identified, followed by a summary of our findings in Section 6. We close with the
conclusions and limitations.

2 Background and Motivation

The software engineering community has been increasingly adopting Evidence-Based
Software Engineering (EBSE) approaches to build discipline-specific bodies of
knowledge such as Inspection, Testing, and Requirements Engineering ([7], [39]).
Apart from the traditional ways of doing literature review, also called ad-hoc reviews,

3 https://pro.unibz.it/staff/brusso/PapersUsed.html
4 http://opensource.mit.edu/
5 http://na11.apachecon.com/
6 http://www.ooocon.org

 Building Knowledge in Open Source Software Research in Six Years of Conferences 125

the EBSE practice uses Systematic Literature Reviews (SLRs) ([6], [24], [25], and
[26]) and Systematic Mapping Studies (SMSs) ([7], [23], and [29]) as robust
methodologies of searching, selecting, analyzing, and synthesizing literature and
aggregate evidence on a specific topic. As such, SLRs and SMSs are called secondary
studies as they aggregate research of other, so-called primary studies. SLR is “a
means of evaluating and interpreting all available research relevant to a particular
research question, topic area or phenomenon of interest” ([11], [26]). Research in SE
has provided guidelines and lessons learned for performing SLR ([5], [6], [10], [25],
and [34]). SMS is used to draw a landscape of reported research on a particular topic
([14], [23], [25], and [29]). Being less specific, SMS requires significantly less effort
than SLR; however, it provides only a course-grained overview of the published
literature. An SMS can also serve as a preparation activity before doing an SLR. SLR
and SMS in OSS has been typically used to provide evidence of practices and
methods for a more general SE research purpose Only recently, secondary studies
have been published to investigate specific areas of OSS. In 2010, Hauge et al.
performed an SLR of research on OSS adoption [16]. In 2009, Stol et al. ([36], [37])
presented an SLR on empirical papers published at the OSS conference series. To our
knowledge, the first secondary study that investigated OSS as a holistic phenomenon
is the work in [2]. In their work, the authors have published taxonomy of OSS mining
623 journal papers - excluding conference papers, though. In this context, our work
provides an SMS on OSS as a holistic phenomenon. Our work is complementary to
the work in [2] in terms of papers investigated, method of analysis, and research goal.

3 Research Method

Our method follows the concepts of a systematic mapping study [29]. In the
introduction, we illustrate our search criteria for inclusion and exclusion. Following
them, we select all the papers of the OSS conference series. In this section, we
describe how we identify and apply classification criteria on the selected papers.
Classification categories are taken from the Calls for Papers of the OSS conference
series and are used to label cross-citation clusters. In particular, we automate papers
classification to reduce effort of articles’ inspection and enable future replications.
Following [3], to increase the transparency of our method, we also detail the tools we
used and the process we follow.

Worth noticing that this approach differs from the one proposed by Kitchenham in
2010 ([23]). Kitchenham uses citations to identify most and least cited papers. We
propose here to extend this approach using citations to determine streams of research.

3.1 Creating the Directed Graph of Cross-Citations

We collected the PDF files of papers from the Springer repository. We developed an
application (PDF Analyzer7) that (a) converts the papers from the PDF format to a
textual representation, and then (b) injects this representation into an XML file with
nodes corresponding to the paper’s sections. The application allows user intervention
during the conversion process. We have also sampled part of the XML files to verify

7 Apache PDFBOX library to convert PDF to TXT and DOM4J library to create XML the file.

126 F. Mulazzani et al.

and validate the tool output. When problems occurred, we manually corrected them
with the aid of the original PDF file.

We create a Python script that 1) extracts all papers’ titles and conference years
from the XML files, 2) parses all the references for all the paper titles, 3) for every
hit, extracts conference names, and 4) goes over the references again to identify
possibly missing titles using the different variations of conferences’ names.

We noticed that conferences’ titles significantly vary in that we identified 17
different variations. At the end, we also manually further checked for missed
citations. The final output of the Python tool classifies papers by year of conference
and by citations and passes them to GraphViz8 to display the final graph (Fig. 11).

3.2 Descriptive Analysis of Cross-Citations

Before performing any inspection of the clusters, we have analyzed the citations of
the papers we found. Table 1 shows the distribution of citations over the years.
Articles refer to full and short papers if any.

Table 1. Number of articles cited by or citing another article of the OSS conference series

 2005 2006 2007 2008 2009 2010
Cited 25 15 16 15 8 -
Citing - 12 13 17 11 13
Total 83 41 51 42 28 40
Isolated 58 23 33 21 16 27
% citing/cited 31% 44% 35% 50% 43% 32%
articles cited >2 11 3 4 3 0 0

In particular, Table 1 shows that there are a good number of isolated articles in that
they do not cite other papers.

3.3 Inspecting the Graph

Fig. 11 illustrates the complete directed graph of articles that cite or are cited by other
articles. Each article is a node and citations are edges. Articles-nodes mapping is
provided at https://pro.unibz.it/staff/brusso/PapersUsed.html. We define fan in as the
number of citations to a paper and fan out as the number of citations from a paper. We
define the distributor of knowledge as a node in the graph that has at least fan-in
equals two and an attractor of knowledge a as node with at least fan-out equals two. A
pure distributor has zero fan out and a pure attractor has zero fan in. A node can also
simultaneously be a distributor and an attractor. A node that is a distributor with fan
out one is a router as it branches the knowledge of the single citation into different
articles. For example, node #107 is a router that distributes the knowledge of paper
#82 to five other articles (Fig. 2). Fig. 1 displays the types of nodes. A path is a set of
nodes connected by edges following the direction of the graph.

8 http://www.graphviz.org/

 Building Knowledge in Open Source Software Research in Six Years of Conferences 127

Fig. 1. Types of nodes

To determine a research area in OSS, we make three assumptions:

i) Pure distributors determine research areas;
ii) A path originating from a pure distributor and leading to a pure attractor or a

dead end (a paper that has only one fan out) determines an area of research in
OSS;

iii) Paths starting from a pure distributor determine a cluster.

Thus, we start from a pure distributor, for example #82, and then follow one of its
links. We follow links in opposite direction downwards in the graph until we reach a
pure attractor or a dead end. Then we aggregate all the paths from a pure distributor to
define a cluster. Finally, we add all the dead ends cited by an attractor of the cluster.
For example, the edge linking #82 to #107 determines an area of research originated
from paper #82 including the dead ends node #41 and #81. The five paths originated
by paper #82 determine a cluster.

To label paths, we have used the taxonomy of the Call for Papers (CfP) of the OSS
conference series9. Typically, a CfP includes the major topics of the conference.
Consequently, accepted papers concern topics listed in the CfP. We have also
considered the classification proposed in [37]. Unfortunately, the classification was
too high-level for our analysis.

We have identified twenty - one clusters in the graph (Fig. 11). Four are bipoles -
clusters of two articles - and two are isolated clusters. Eleven in 2005, two in 2006,
and two in 2007 originate the fifteen clusters. Thirty-four are empirical papers
according to [37]. Note that the majority of the pure distributors that originate the
largest clusters are empirical. Table 2 lists pure distributors and attractors that define
the largest clusters - papers with more than three fan-out or fan-in. It also classifies
them as empirical according to [37].

To identify the reason of the citation, we have manually looked up each citation in
the text. We have used the wording of the authors and the position of the citation
within the article structure to understand the reason for each citation. If, for example,
a citation is located in the “Background” section only and it is given to justify the
work, then we label the corresponding link as motivation of work.

9 http://ossconf.org/

128 F. Mulazzani et al.

Table 2. Major Distributors, Attractors, and Routers

Distributors and routers
2005
#5 pure distributor and empirical paper ([1]), #8 pure distributor and empirical paper ([30]), #17 pure
distributor and empirical paper ([27]), #44 pure distributor ([31]), #82 pure distributor ([22])
2006
#84 pure distributor and empirical paper ([39]), #107 router and empirical paper ([21]), #119 router ([8]),
#121 pure distributor and empirical paper ([32])
2007
#127 pure distributor ([38]), #128 pure distributor and empirical paper ([14]), #138 router and empirical
paper ([20])
2008
#180 distributor/attractor and empirical paper ([19])
2009
#234 router ([9])
Attractors
2008
#175 Platform for research ([15])
2009
#230 Framework ([33]), #233 Extensive background ([18])
2010
#305 Includes SLR ([17]), #312 Framework ([35])

4 Classification of the Articles

We have read all the articles following the patterns defined by the clusters. The
reading confirms that each path originated from a pure distributor determines a well-
defined perspective of research that takes its motivation from the distributor. In many
cases, we are also able to identify authors that contributed the most to a given
research area and determine the semantic of the cross-citations besides the motivation
of work. In the following, we report of this analysis per cluster. The number of the
pure distributor names clusters.

Fig. 2. Citations cluster originated from paper #82

 Building Knowledge in Open Source Software Research in Six Years of Conferences 129

Cluster #82. The largest cluster originates from node #82. Paper #82 introduces
the OSSmole project (later called FLOSSmole). OSSmole is a repository of data,
scripts, and analysis of data collected from OSS projects. The cluster is then branched
into five links (Fig. 2). Three links identify three major sub-clusters, defined by router
#119, router #107, and node #97. The sub-cluster defined by router #107 is generally
concerned with developer communities and social network analysis of these
communities. Links are rather strong. Paper #174 cites paper #107 to motivate its
research and the use of a metric (outdegree centrality), and cites paper #204 as
example of method of analysis. Two of the articles in this cluster focus on the same
project (Apache).

Howison and Crowston have been the major contributors. The branch ends in 2010
with the work of Conaldi and Rullani that proposes a global perspective of F/OSS
network structure mining the SourceForge repository. Paper #119 on the future
of OSS data mining starts a new branch that focuses on analyses and improvements of
project mining tools. In this sub-cluster, we found citations motivated by the use of
the same repository or the same research goals. The branch ends in 2008 with
recommendations for the design of research infrastructure in OSS by Gasser and
Scacchi (paper #175). Paper #97 originates a research branch on the analysis of code
artefacts for modelling maintenance processes and specializes over the years in bug
fixing processes. Although article #97 cites #82, it does not use OSSmole directly
mining CVS log files. The major contributors in this branch are Dalle and den Besten
and the majority of the articles focus on the Firefox community.

Cluster #44. Paper #44 introduces to practices for quality assurance in OSS
projects (Fig. 3). Paper #44 generates three sub-clusters on OSS deployment, project’s
activity, and community building and participation. Article #156 connects the last two
topics by means of increase of the community size and their activity growth. In cluster
#44, we were not able to identify major contributors as different authors contributed
to the research streams and all the citations were to motivate the work.

OSS deployment

Community building

Project’s activity Developers’ engagement

Fig. 1. Citations cluster originated from papers #44 and #8

130 F. Mulazzani et al.

Benefits, drawbacks, and risks in OSS
adoption

OSS adoption in industry

OSS adoption in industry

Role of industry in OSD

OSS in industry

Fig. 4. The four clusters #5, #24, #62, and #84

Cluster #8. Paper #8 concerns the involvement of volunteers in OS projects
(Fig. 3). A first branch defined by router #102 evolves into the topic on developers’
engagement in OS projects. Developers’ engagement is used to correlate OSS to agile
methods (#195), to evaluate the involvement of companies (#172), or to investigate
communication among developers (#235). In the majority of the subtopics, Barahona
and Robles and Capiluppi and Adams have been the major contributors. Citations
define rather strong connections among papers of this cluster. For example, articles
#102, #120, #195, #235 use data from KDE, whereas papers #304 and #301 use the
same metric of paper #177 and #102 respectively. In some of the cases, they share
some of the authors, too.

 Building Knowledge in Open Source Software Research in Six Years of Conferences 131

Cluster #5. Cluster #5 is a big cluster connected to three other sub-clusters (#24,
#84, and #62 in Fig. 4). These clusters focus on the relation between OSS and
industry. The empirical pure distributor #5 summarizes the works of an international
workshop on pros and cons of the use of OSS in industry. This paper spins off into
two contributions of people that participated in the workshop (#90) and of some of its
authors (#146 and #88). Looking at the affiliations of the authors, we call cluster #24
the industrial “Scandinavian case”: it starts with a case of interest in OSS in the
Finnish industry (#24), then includes the Swedish one in 2006 (#88) and closes with
the Norwegian one in 2008 (#180). From paper #180, Hauge, Sorensen and Conradi
initiate a new research theme on OSS adoption in industry (#233, #220, #309, #312,
and #305). Paper #62 uses the Capability Maturity Model to assess the migration from
closed to open software development in industry. This paper initiates a research
investigation on the role of industry in Open Source Development (OSD) (router
#138) and in particular, the migration of an existing business model to an open source
one (#233). It further evolves in OSS adoption in industry (#180). Cluster #84
originates from the paper of Ven and Verelst (#84) and gives impulse to the specific
perspective of OSS adoption in industry that relates to benefits, drawbacks, and risks.
The authors that contribute the most to cluster #84 are Hauge and Conradi. The
majority of the citations of the four clusters concerns motivation of work, but there
are links that connect papers by the same method of analysis (e.g. #90 and #311).
Worth noticing is that all the three papers of 2006 (#84, #88, #90) report of a case
study in industry, but only the first two are as empirical according to [37].

Software Evolution OSS security

Fig. 5. Clusters #17 and #20_2

Cluster #17. Cluster #17 is originated by the work on software evolution by Koch
(Fig. 5). The research has developed into software evolution as total growth of
software (Riehle et al., #179, #187, and #225) and evolution of OS communities as
measure of their governance (#230). An independent sub-cluster (originated by paper

132 F. Mulazzani et al.

#28) is connected with the software evolution theme as it deals with the analysis of
commits in distributed development. The link is provided by a chain of citations in
2008 that connects the work of Gasser and Scacchi (#175) on a research framework
for multi-disciplinary studies in OSS (including the “laws of software evolution”)
with the study of continuous integration in OS development as an example of mining
multiple data sources (#187). In this cluster, we identify a citation from the paper of
Sirkkala et al. (#230) that have used part of the approach in Weiss et al. (#115) and a
citation from Deshpande and Riehle (#179) that uses the results of another work of
them (#187) to validate their conclusions on total growth of software.

Cluster #20 and #2. Two pure distributors (#2 and #20) originate this cluster (Fig.
5). We call it the “Italian case” as the major contributors are Ardagna, Damiani, Frati
and other Italians. In their three works, they deal with security of OSS. In the last two
years, the area has evolved to the larger problem of selecting and integrating OSS for
industry (#233 and #312) where security is especially relevant (like telecom
applications).

Models of OSS quality

Process modelling

Fig. 6. Clusters #127 and #73

Cluster #127. Cluster #127 (Fig. 6) originated in 2007 with the results of the
European project QualiPSo and enforced with the results on OSS trustworthiness
(router #234). The majority of the works proposes and compares frameworks and
comparative models of OSS quality. Major contributors are Morasca, Lavazza, and
Taibi, members of the above project. In this cluster, the majority of the papers and in
particular, all those in 2010 cite #127 and #234 to use the model defined there.

Cluster #73 and Cluster #121. These clusters (Fig. 6 and 7) concern process
modelling and they are connected through the paper of Jensen and Scacchi in 2007 on
guiding the discovery of OSS processes with a reference model (#139). Two branches

 Building Knowledge in Open Source Software Research in Six Years of Conferences 133

derive from the pure distributor #73: on modelling communication and information
exchange in processes and on modelling the process as a whole. Paper #139 motivates
its research citing the problem of managing information in distributed development
(#73) and issues in creating theoretical models of OS processes (#104, #18, and
#121). The research goal is organizing knowledge in OSD and providing guidance in
allocating resources, selecting tools, and performing activities of OSD. Following
Cluster #121, the research culminates in 2009 into an investigation of the selection of
OSS products in industry as indication of reuse (#220).

Social structure in OSS communities

Modelling ODS

Fig. 7. Clusters #128, #121

Cluster #128. A study of network analysis on SourgeForge originates this cluster
(Fig. 7). The cluster concerns social structures of OSS communities, as membership
networks or communication networks. In particular, Gasser and Scacchi propose an
infrastructure for research in social networks of OSS communities whereas Balieiro et
al. introduce a study on the meso-level structure of OSS development as collaboration
environment. Papers are authored by various members of the OSS research
community and are connected by a net of citations that concerns mainly the
motivation of work.

Isolated Clusters. There are six isolated clusters on the right of Fig. 11 (Fig. 8).
The four bipoles concern innovation (#164 - #193), adoption (#149 - #181), services
(#87 - #137) and requirements (#211 - #241). In all but the bipole on adoption, the
two papers share part or all of the authors. Cluster #7 concerns measures of success of
OS projects. Over the years, the concept of success evolves from a static meaning –
e.g. number of hits of web searches - to an evolutionary perspective of development
efficiency as the code produced over time. All the citations motivate the work and no
specific author can be uniquely associated to the cluster. Cluster #68 concerns
teaching OSS at university level. All the citations motivate the work.

Social structure in OSS communities

Modelling ODS

134 F. Mulazzani et al.

Measures of success of
OSS project

Fig. 8. Isolated Clusters

Major Pure Attractors. Pure attractors play a fundamental role to connect clusters
and to summarize to some extent existing knowledge for a given purpose. As
synthesizers of research, we select those pure attractors that cite more than four
articles: #139, #175, #230, #233, #305, and #312 (Table 2). In #139, Jensen and
Scacchi present a reference model to discover OSS processes. Paper #312 presents a
framework that compares methods for evaluating OSS. Paper #305 includes a
systematic literature review to identify benefits and drawbacks of OSS (Fig. 9). Paper
#230 builds a conceptual framework for planning release processes of OSS. Paper

Fig. 2. Major Pure Attractor #305

 Building Knowledge in Open Source Software Research in Six Years of Conferences 135

#175 defines the design of a platform for investigating the OSS phenomenon through
multidisciplinary research. This work also provides recommendations and critical
issues in OSS research. Paper #233 includes an extensive background section that
motivates the work.

4.1 Inter-cluster Connections

There are several interlinks among clusters (Figure 10). We mark a link between two
clusters if there is a node that directly connects them, i.e. a pure attractor citing papers
of two clusters. Connections among clusters describe mutual influence among topics
and have the potential to converge to a single cluster10. The major findings in Figure
10 show that:

1. “Tools for data mining” is a cross cutting topic connecting various research
areas, from the analysis of social structures and networks of OSS
communities and their developers’ engagement, software evolution, OSS
security, and models of OSS quality.

2. OSS in industry specifies into “adoption in industry,” “role of industry,”
“case studies in industry” and a stream in “benefits, risks, and drawbacks of
OSS.”

Fig. 10. Links between research streams

10 Figure 10 does not show papers that connect clusters. This information is accessible at

https://pro.unibz.it/staff/brusso/LinkingPapers.html

136 F. Mulazzani et al.

F
ig

. 1
1.

 T
he

 d
ir

ec
te

d
gr

ap
h

of
 c

iti
ng

 a
rt

ic
le

s
w

ith
in

 th
e

O
SS

 c
on

fe
re

nc
e

se
ri

es
. G

re
y

no
de

s
ar

e
em

pi
ri

ca
l p

ap
er

s
ac

co
rd

in
g

to
 [

37
].

 Building Knowledge in Open Source Software Research in Six Years of Conferences 137

5 Discussion

Our analysis reports of well-scoped clusters of citations that highlight major areas of
research in OSS and their evolution across the six years of OSS conferences. We
report of a lively social network of citations (RQ1), and several streams of research
established across years (RQ2).

In particular, we have found that the creation of a big repository for data mining
(FLOSSmole) has originated research in social network analysis, tools for data
mining, and analysis of code artefacts to understand maintenance processes,
specifically bug fixing. The topic “tools for data mining” also appears to be a cross-
cutting theme that connects several other research areas.

Quality assurance is another hot topic. It motivates studies on community building
(as a means for QA), OSS deployment (as a factor to consider in QA), project's
activity (as a measure of QA) and on comparative models (for QA).

A specific concern at the OSS conference series is the perception of OSS in
industry. Research has focused on the role of industry in OSS development and after
2008 on OSS adoption. A report of a large workshop in OSS that joined researchers
and practitioners of the industry in 2005 initiated this research.

A good number of papers at the OSS conference series have been dedicated to
developers’ engagement. Developers’ engagement is used to correlate OSS methods
to agile methods, to evaluate the involvement of companies, or to investigate
communication among developers. This topic is also cited in works on software
evolution and community building and participation.

There are themes still little cited that might have some future potential: OSS
process (meta-) modelling, OSS security, Agile and OSS development methods, and
teaching OSS in universities.

We have found the majority of large clusters to have a group of authors that
contribute to the research stream over the years. Clusters also reveal authors’
interrelations that define informal research groups and outline social network
structures, like in the “Scandinavian case.”

Large clusters are initiated by empirical papers with the only exception being the
paper on the FLOSSmole repository.

Papers with a large number of citations are synthesizers of research often
presenting a framework or a platform to guide research in OSS.

As a final remark, we want to stress that we are aware that the sample we selected
does not include all the crucial papers that may have contributed to ground knowledge
in OSS. Some of the relevant contributions have been published in journals not
dedicated to OSS or have simply been reported on the Internet. History of knowledge
synthesis is full of such examples as illustrated by the FODA paper [28], a technical
report cited more than 1500 times although not peer reviewed. Our future work will
extend this analysis to OSS article hubs like for example http://flosshub.org or
http://pascal.case.unibz.it or the MIT repository.

We also acknowledge that fact that cross-citations are indicators of research
connections, but are not unique and not necessarily the best ones. A textual similarity
analysis could give finer results. Namely, we have already applied some known
algorithms (e.g. cosinus, Jaro Winkler) for text similarity on the XML sections of the
papers. Despite some preliminary good results on titles and authors, for longer

138 F. Mulazzani et al.

sections the algorithms proved to be inaccurate. We plan to use more sophisticated
techniques of string similarity and a better data cleansing to get finer results.

6 Conclusions

In our research, we aim at understanding the major research topics outlined in six
years of conferences dedicated to OSS. We have clustered articles by their cross-
citations and inspected each single cluster to search for major research themes,
evolution of research topics, and major initiators or synthesizers of research in OSS.

We have also introduced a social network underlying the research production. This
network assumes that authors are connected by their common research interest
revealed by citations as a community of practice. This network is different from a
social network defined by co-authorship. In this case, links may be transversal to
research topics and are generated by existing collaborations. Differently, our network
may reveal hidden and potential collaborations among researchers.

Finally, we have used a semi-automated approach for systematic mapping studies
that automatically creates clusters from cross-citations and manually inspect the
clustered papers. Our research has identified cornerstone papers and links among
them revealing unexpected and undeclared connections among authors as well as lack
of connection among potentially connected topics. Large clusters are mostly initiated
and sustained by empirical papers. Since 2008, synthesizers of research have
introduced frameworks and platforms to perform OSS research paving the way for
future work. The analysis of non-cited papers indicates that significant research has
not been exploited, yet. Therefore, we recommend the OSS community to exploit
further the potential provided by the OSS conference series while maintaining the
interest in its major research streams.

Acknowledgements. We would like to thank Muhammad Ali Babar and Klaas Jan
Stol and the reviewers for their valuable comments.

References

1. Ågerfalk, P.J., Deverell, A., Fitzgerald, B., Morgan, L.: Assessing the Role of Open
Source Software in the European Secondary Software Sector: A Voice from Industry. In:
Proceedings of the 1st International Conference on Open Source Systems (OSS 2005),
Genoa, Italy, pp. 82–87 (2005)

2. Aksulu, A., Wade, M.R.: A Comprehensive Review and Synthesis of Open Source
Research. Special Issue, Journal of Association for Information Systems 11(11), 576–656
(2010)

3. Anel, J.A.: The Importance of Reviewing the Code. Communication of the ACM, 40–41
(May 2011)

4. Ayala, C., Hauge, Ø., Conradi, R., Franch, X., Li, J., Velle, K.S.: Challenges of the Open
Source Component Marketplace in the Industry. In: Boldyreff, C., Crowston, K., Lundell,
B., Wasserman, A.I. (eds.) OSS 2009. IFIP AICT, vol. 299, pp. 213–224. Springer,
Heidelberg (2009)

 Building Knowledge in Open Source Software Research in Six Years of Conferences 139

5. Biolchini, J., Mian, P. G., Natali, A. C. C., Travassos, G. H.: Systematic Review in
Software Engineering, University of Rio de Janeiro:TR-ES 679/05 (2005)

6. Brereton, P., Kitchenham, B., Budgen, D., Turner, M., Khalil, M.: Lessons from applying
the systematic literature review process within the software engineering domain. Journal
of Systems and Software 80, 571–583 (2007)

7. Budgen, D., Charters, S., Turner, M., Brereton, P., Kitchenham, B., Linkman, S.:
Investigating the applicability of the evidence-based paradigm to software engineering. In:
Proceedings of the 2006 International Workshop on Workshop on Interdisciplinary
Software Engineering Research, Shanghai, China, May 20 (2006)

8. Conklin, M.: Beyond Low-Hanging Fruit: Seeking the Next Generation in FLOSS Data
Mining. In: Proceedings of the 2nd International Conference on Open Source Systems
(OSS 2006), Como, Italy, pp. 47–56 (2006)

9. Del Bianco, V., Lavazza, L., Morasca, S., Taibi, D.: Quality of Open Source Software:
The QualiPSo Trustworthiness Model. In: Boldyreff, C., Crowston, K., Lundell, B.,
Wasserman, A.I. (eds.) OSS 2009. IFIP AICT, vol. 299, pp. 199–212. Springer,
Heidelberg (2009)

10. Dybå, T., Dingsøyr, T.: Applying Systematic Reviews to Diverse Study Types: An
Experience Report. In: Proceedings of the Proceedings of the First International
Symposium on Empirical Software Engineering and Measurement (2007)

11. Dybå, T., Kitchenham, B., Jorgensen, M.: Evidence-Based Software Engineering for
Practitioners. IEEE Software 22, 58–65 (2005)

12. Feller, J., Fitzgerald, B.: Understanding Open Source Development. Addison-Wesley,
Reading (2001)

13. Feller, J., Fitzgerald, B., Hissam, A.S., Lakhani, K.R.: Perspectives on Free and open
Source Software. MIT Press, Cambridge (2007)

14. Gao, Y., Madey, R.G.: Network Analysis of the SourceForge.net Community. In:
Proceedings of the 3rd International Conference on Open Source Systems (OSS 2007),
Limerick, Ireland, pp. 187–200 (2007)

15. Gasser, L., Scacchi, W.: Towards a Global Research Infrastructure for Multidisciplinary
Study of Free/Open Source Software Development. In: Proceedings of the 4th
International Conference on Open Source Systems (OSS 2008), Milano, Italy, pp. 143–
158 (2008)

16. Hauge, Ø., Ayala, C.P., Conradi, R.: Adoption of open source software in software-
intensive organizations - A systematic literature review. Information & Software
Technology 52(11), 1133–1154 (2010)

17. Hauge, Ø., Cruzes, D., Conradi, R., Sandanger Velle, K., Skarpenes, T.A.: Risks and Risk
Mitigation in Open Source Software Adoption: Bridging the Gap between Literature and
Practice. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey, G.R., Noll, J.
(eds.) OSS 2010. IFIP AICT, vol. 319, pp. 105–118. Springer, Heidelberg (2010)

18. Hauge, Ø., Ziemer, S.: Providing Commercial Open Source Software: Lessons Learned.
In: Boldyreff, C., Crowston, K., Lundell, B., Wasserman, A.I. (eds.) OSS 2009. IFIP
AICT, vol. 299, pp. 70–82. Springer, Heidelberg (2009)

19. Hauge, Ø., Sørensen, C., Conradi, R.: Adoption of Open Source in the Software Industry.
In: Proceedings of the 4th International Conference on Open Source Systems (OSS 2008),
Milano, Italy, pp. 211–221 (2008)

20. Hauge, Ø., Sørensen, C., Røsdal, A.: Surveying Industrial Roles in Open Source Software
Development. In: Proceedings of the 3rd International Conference on Open Source
Systems (OSS 2007), Limerick, Ireland, pp. 259–264 (2007)

140 F. Mulazzani et al.

21. Howison, J., Inoue, K., Crowston, K.: Social Dynamics of Free and Open Source Team
Communication. In: Proceedings of the 2nd International Conference on Open Source
Systems (OSS 2006), Como, Italy, pp. 319–330 (2006)

22. Howison, J., Conklin, M., Crowston, K.: OSSmole: A collaborative repository for FLOSS
research data and analyses. In: Proceedings of the 1st International Conference on Open
Source Systems (OSS 2005), Genoa, Italy, pp. 54–60 (2005)

23. Kitchenham, B.: What’s up with software metrics? - A preliminary mapping study.
Journal of Systems and Software 83(1), 37–51 (2010)

24. Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman, S.:
Systematic literature reviews in software engineering – A systematic literature review.
Information and Software Technology 51, 7–15 (2009)

25. Kitchenham, B., Charters, S.: Guidelines for Performing Systematic Literature Reviews in
Software Engineering, Keele University, UK EBSE-2007-1 (2007)

26. Kitchenham, B.: Procedures for Performing Systematic Reviews, Keele University
Technical Report TR/SE-0401 (2004)

27. Koch, S.: Evolution of Open Source Software Systems – A Large-Scale Investigation. In:
Proceedings of the 1st International Conference on Open Source Systems (OSS 2005),
Genoa, Italy, pp. 148–153 (2005)

28. Kyo, C.K.: FODA: Twenty years of Perspectives on feature Models. In: Keynote at 13th
International Product Line Conference, SPLC (2009)

29. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software
engineering. In: Proceedings of the 12th International Conference on Evaluation and
Assessment in Software Engineering, pp. 71–80 (2008)

30. Robles, G., Gonzales Barahona, J.M., Michlmayr, M.: Evolution of Volunteer
Participation in Libre Software Projects: Evidence from Debian. In: Proceedings of the 1st
International Conference on Open Source Systems (OSS 2005), Genoa, Italy, pp. 100–107
(2005)

31. Rossi, B., Scotto, M., Sillitti, A., Succi, G.: Criteria for the non invasive transition to
OpenOffice. In: Proceedings of the 1st International Conference on Open Source Systems
(OSS 2005), Genoa, Italy, pp. 250–253 (2005)

32. Simmons, G.L., Dillon, T.S.: Towards an Ontology for Open Source Software
Development. In: Proceedings of the 2nd International Conference on Open Source
Systems (OSS 2006), Como, Italy, pp. 65–75 (2006)

33. Sirkkala, P., Aaltonen, T., Hammouda, I.: Opening Industrial Software: Planting an Onion.
In: Boldyreff, C., Crowston, K., Lundell, B., Wasserman, A.I. (eds.) OSS 2009. IFIP
AICT, vol. 299, pp. 57–69. Springer, Heidelberg (2009)

34. Staples, M., Niazi, M.: Experiences using systematic review guidelines. Journal of
Systems and Software 80, 1425–1437 (2007)

35. Stol, K., Ali Babar, M.: A Comparison Framework for Open Source Software Evaluation
Methods. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey, G.R., Noll, J.
(eds.) OSS 2010. IFIP AICT, vol. 319, pp. 389–394. Springer, Heidelberg (2010)

36. Stol, K.-J., Ali Babar, M.: Reporting empirical research in open source software: The state
of practice. In: Boldyreff, C., Crowston, K., Lundell, B., Wasserman, A.I. (eds.) OSS
2009. IFIP AICT, vol. 299, pp. 156–169. Springer, Heidelberg (2009)

37. Stol, K.J., Ali Babar, M., Russo, B., Fitzgerald, B.: The use of empirical methods in Open
Source Software research: Facts, trends and future directions. In: ICSE Workshop on
Emerging Trends in Free/Libre/Open Source Software Research and Development, pp.
19–24 (2009)

 Building Knowledge in Open Source Software Research in Six Years of Conferences 141

38. Taibi, D., Lavazza, L., Morasca, S.: OpenBQR: a framework for the assessment of OSS.
In: Proceedings of the 3rd International Conference on Open Source Systems (OSS 2007),
Limerick, Ireland, pp. 173–186 (2007)

39. Ven, K., Verelst, J.: The Organizational Adoption of Open Source Server Software by
Belgian Organizations. In: Proceedings of the 2nd International Conference on Open
Source Systems (OSS 2006), Como, Italy, pp. 111–122 (2006)

40. Zennier, C., Melnik, G., Maurer, F.: On the success of empirical studies in the
international conference on software engineering. In: Proceedings of the 28th International
Conference on Software Engineering (ICSE 2006), Shanghai, China, pp. 341–350 (2006)

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 142–158, 2011.
© IFIP International Federation for Information Processing 2011

The Importance of Architectural
Knowledge in Integrating

Open Source Software

Klaas-Jan Stol1, Muhammad Ali Babar2, and Paris Avgeriou3

1 Lero—The Irish Software Engineering Research Centre
University of Limerick, Ireland

2 IT University of Copenhagen, Denmark
3 University of Groningen, the Netherlands

klaas-jan.stol@lero.ie, malibaba@itu.dk, paris@cs.rug.nl

Abstract. Open Source Software (OSS) is increasingly used in Component-
Based Software Development (CBSD) of large software systems. An important
issue in CBSD is selection of suitable components. Various OSS selection
methods have been proposed, but most of them do not consider the software
architecture aspects of OSS products. The Software Architecture (SA) research
community refers to a product’s architectural information, such as design
decisions and underlying rationale, and used architecture patterns, as
Architecture Knowledge (AK). In order to investigate the importance of AK of
OSS components in integration, we conducted an exploratory empirical study.
Based on in-depth interviews with 12 IT professionals, this paper presents
insights into the following questions: 1) what AK of OSS is needed? 2) Why is
AK of OSS needed? 3) Is AK of OSS generally available? And 4) what is the
relative importance of AK? Based on these new insights, we provide a research
agenda to further the research field of software architecture in OSS.

Keywords: Open Source Software integration, component-based development,
architectural knowledge, software architecture, OSS Integrator, survey.

1 Introduction

Software development organizations can adopt Open Source Software (OSS) in
various ways [1]. One way is to integrate OSS components in Component-Based
Software Development (CBSD), which has become a standard way of building large-
scale systems. In such a setting, a software development organization has the role of
OSS integrator [2]. Building systems from externally and independently developed
components is not without risks. Garlan et al. reported their experiences of using only
four components and experienced significant integration problems. They identified
the root cause of their problems to be architectural mismatch [3]. The increasing use
of OSS components as an alternative to Commercial Off-The-Shelf (COTS)
components in CBSD [4] can result in more architectural mismatch challenges for
OSS integrators. Despite the common concerns about OSS licenses and a lack of

 The Importance of Architectural Knowledge in Integrating Open Source Software 143

support and documentation, the use of OSS offers various benefits such as access to
the source code and low costs [5], which means that industry is likely to continue to
use OSS products.

Various authors have reported studies of CBSD with OSS products [6-9], or more
generally with Off-The-Shelf (OTS) components (both OSS and COTS) [10, 11].
Most of these studies focus on evaluation and selection of components, which is a
critical aspect in CBSD. While software architecture (SA) has long been recognized
as an important success factor in CBSD [12], little attention has been paid so far to
architectural aspects of OSS components, such as a component’s architectural styles
or patterns, and architectural design decisions and their rationale. This type of
information is called Architectural Knowledge (AK) [13]. We assert that AK of OSS
products can provide valuable insights to integrators, not only during the evaluation
and selection phase, but also in later phases of the software lifecycle. However, there
is no empirical evidence about the AK needs of OSS integrators. This motivated us to
carry out an empirical study to investigate this topic. The contributions of this paper
are an empirical understanding of:

• The architectural knowledge needs of OSS integrators;
• Why architectural knowledge is needed and how it can help OSS integrators;
• The availability of architectural knowledge to OSS integrators;
• The relative importance of architectural knowledge.

Based on these results, we also identify a number of opportunities for further research
to bridge the gap between the OSS and SA research communities.

This paper proceeds as follows. Section 2 presents background and motivation of
this study. Section 3 presents the design of this study. Section 4 presents results.
Section 5 presents discussion and conclusion of this paper.

2 Background and Motivation

In this section, we present relevant related work and motivate our study. Section 2.1
provides an overview of CBSD with OSS. Section 2.2 introduces the field of SA and
AK. Section 2.3 provides an overview of the research on SA in the context of OSS.

2.1 Component-Based Development with Open Source Software

OSS products have become more commercially viable as an alternative to COTS
products [14]. In the last decade or so, OSS has been increasingly used by software-
development organizations in CBSD [1]. While OSS components are often used as if
they were closed-source components [11], there are some differences from an
integrator’s point of view. The availability of the source code eases component
integration and allows white-box testing [15]. Di Giacomo reviewed the activities of
CBSD and concludes that these activities need to be extended to accommodate the
different nature of OSS [16]. Furthermore, the relationship with the supplier (COTS
vendor versus OSS community) is different; one reason is the fact that the OSS
integrator does not pay an OSS community [17].

144 K. Stol, M. Ali Babar, and P. Avgeriou

Li et al. list three main phases in the CBSD lifecycle: selection, integration, and
maintenance [11]. The remainder of this subsection briefly reviews the literature on
OSS-based CBSD according to these lifecycle phases.

Component Selection. A critical success factor in CBSD is the selection of
appropriate OSS products, and both researchers and industry have proposed a variety
of OSS evaluation and selection methods [18]. However, studies have also shown that
practitioners typically do not use these “normative” selection methods [19, 20]. Hauge
et al. observed a first fit rather than a best fit strategy [19].

Component Integration. The source code’s availability allows direct modification
by the OSS integrator [16], or “glue code” can be written to make integration easier.
However, integrators typically do not make changes to the source code, for various
reasons [11]. One obstacle is that it often requires an in-depth knowledge of the
component to be able to make useful changes [11].

Component Maintenance. Once OSS components are integrated, they must be
maintained as part of an application. If custom changes were made during the
integration phase, these may have to be separately maintained if the changes are not
incorporated back into the source base that is maintained by the OSS community [21].
An OSS integrator can choose to actively participate in the development or roadmap
planning of the OSS product [17, 21].

2.2 Software Architecture and Architectural Knowledge

The field of SA has emerged as an important sub-discipline within the research area
of software engineering [22]. SA as a product has been recognized as an important
design artifact in software development activities, including analysis, design and
evaluation activities as well as implementation and evolution [23]. A system’s SA
typically constitutes the design decisions about a system [24], such as the use of
certain architectural styles or patterns [22], e.g., layers or model-view-controller
(MVC). Architecture patterns are common solutions to recurring system design
problems [25], and affect the system-wide quality attributes (QAs, sometimes referred
to as a system’s “ilities”) such as performance and reliability [26]. For instance, a
“layered” architecture is likely to improve maintainability, as it facilitates a clear
separation of concerns. However, passing large numbers of “messages” (e.g., function
calls) up and down a layer “stack” may negatively impact performance. Various
patterns have been documented in detail, for instance, in [25].

Information such as used patterns, design decisions, etc. is referred to as AK. We
note that there is no commonly accepted definition of AK. In recent years, the SA
research community has recognized the value of AK and has started to focus on
recording, managing and sharing AK1 [13].

2.3 Software Architecture in Open Source Software Research

Software architecture has received little attention in OSS research. The remainder of
this section presents a brief overview of research on SA in the context of OSS.

1 We are aware of the semantic difference between “knowledge” and “information”. Even

though “information” may be the appropriate term, we use the term “knowledge” as is
custom in the software architecture community.

 The Importance of Architectural Knowledge in Integrating Open Source Software 145

Tran et al. [27] presented an experience report on “architectural drift”, when
concrete architecture (implementation) differs from the conceptual architecture
(design). They argue that a system can be more easily understood by developers if its
architecture is repaired and demonstrate their approach to architectural repair for two
OSS products. Nakagawa et al. presented a case study of an OSS web-based system,
and also found that the architecture had drifted after approximately two years of
development [28]. They highlight that the architecture affects the product quality, and
propose architecture refactoring to repair the architecture.

Capiluppi and Knowles report on architecture recovery of three OSS products in
the same domain (instant messaging) [29] and found that a common architecture for
these products had emerged. They argue that architecture recovery may facilitate OSS
developers to understand the design as well as a sharing of tacit knowledge of other
OSS developers.

Merilinna and Matinlassi investigated the state of the art and practice of OSS
integration [20]; while they did not specifically focus on SA, they found that
architectural mismatch was either preempted by selection of OSS components from a
list of “fluently integrating” components, or that practitioners were not aware of the
concept of architectural mismatch.

Matinlassi performed a survey to investigate the role of SA as perceived by 15
OSS communities, and found that “architecture” was mostly considered to be a high-
level, coarse grained abstraction of the system’s structure [30]. Modularity was
considered to be the most important QA of an SA, whereas other QAs such as
performance and ease of integration were not considered important by most
respondents.

Ali Babar et al. [31] argued that organizations may be able to more confidently use
OSS components in a software product line if OSS communities pay more attention to
the architectural aspects during development and evolution of those components.
Previously, researchers and practitioners have organized SA-related workshops [32]
to draw attention to this topic in OSS, and proposed research roadmaps [33, 34].
Recently, AK Management (AKM) in OSS projects is discussed from the perspective
of OSS developers [35].

So far, there have only been a few empirical studies on the role and importance of
SA in OSS. These mostly focused on architectural repair and recovery. However,
there has been no study that has focused on OSS integration from the OSS
integrator’s point of view, and in particular with respect to a component’s AK.

2.4 Research Objectives

Hauge et al. identified a lack of empirical research in the OSS research area and
highlighted the need for studies related to integration of OSS components [1]. The
objective of our study was to empirically explore the observations and experiences of
OSS integrators for gaining and disseminating insights into the architectural aspects
of OSS integration.

Much of the literature on OSS selection highlights the importance of evaluation
criteria such as the OSS license, support, functionality, and so on. However, there are
few studies from the perspective of OSS integrators. Since software architecture plays

146 K. Stol, M. Ali Babar, and P. Avgeriou

an important role in component integration, it is important to investigate what
architectural knowledge OSS integrators need. Therefore, research question one is:

RQ1: What AK of OSS Products Do Integrators Need?

Besides an understanding of what AK is needed, it is also useful to understand how
AK can help OSS integrators. Hence, our second research question is:

RQ2: Why Do Integrators Need AK of OSS Products?

Furthermore, it is also important to find out whether the required AK about OSS
component is usually available. Hence, our third research question is:

RQ3: Is AK of OSS Products Generally Available to Integrators?

In this paper, we assert that AK about an OSS product is important. However, it is
equally important to find out OSS integrators’ perceived importance of AK in
integration. In order to get an empirically-based understanding of the importance of
the role of architecture in OSS integration, we defined the fourth research question:

RQ4: What Is the Relative Importance of AK of OSS Components?

3 Research Design

3.1 Research Method and Data Collection

Since the role and importance of software architecture in OSS is still a largely
unexplored research area in its nascent phase, a qualitative research approach is
appropriate [36]. We decided to conduct an in-depth exploratory, qualitative survey
using semi-structured interviews to collect data from practitioners. The use of
interviews gives a researcher the flexibility to go deeper into unforeseen types of
information that may emerge during an interview [37].

We invited IT practitioners through our professional network to participate in our
study; our sample was therefore a convenience sample [38]. Table 1 lists background
information of the participants. All but one participant worked at organizations
located in different countries in Europe; P5 was located in the USA. We do not report
on specific details for confidentiality reasons. Two participants (P3 and P4) worked
both at organization C, but at different branches or departments. We indicated this by
a number suffix (i.e., C1, C2). The participants at organization E were contacted
through our professional contact at this organization, who was also one of the
participants. The participants had various positions, and all had extensive experience
in the field. In total, we drew data from 12 participants who worked at five different
organizations. Though participants P6-P12 all worked at organization E, they worked
in different teams or departments (E1 to E6).

The participants worked at organizations in different domains that integrate OSS
products in various degrees. Organization A is a large consultancy organization that
develops business process support systems. Organization B develops mostly
embedded software. Organization C is a research and innovation institution that
develops both proof-of-concept prototypes and final products for customers.
Participant P5 (organization D) is an independent consultant, and works on business

 The Importance of Architectural Knowledge in Integrating Open Source Software 147

Table 1. Participants of our study

ID Position Experience Org. Domain Interview
P1 Software architect 13 years A Business Phone
P2 Software developer 5 years B Embedded Face-to-face
P3 R&D developer 13 years C1

Telecom
Phone

P4 R&D developer 13 years C2 Face-to-face
P5 Independent consultant 10 years D Business Instant messenger
P6 Software architect 20 years E1

Safety
critical
systems

Face-to-face
P7 Project leader 26 years E2 Face-to-face
P8 Sr software designer 10 years E3 Face-to-face
P9 Team leader* 25 years E4 Face-to-face
P10 Software architect 12 years E5 Face-to-face
P11 Technology manager 25 years E2 Face-to-face
P12 Team leader* 15 years E6 Face-to-face

* Participants have also experience as a software architect.

process support systems. Organization E develops hardware and software for safety
critical systems.

Prior to conducting the interviews, we designed an interview guide [39]. All face-
to-face interviews were conducted at the premises of the participants’ organizations.
All but one interview lasted approximately one hour; the interview with P5 (through
instant messenger (IM)) lasted approximately two hours. We digitally recorded all
face-to-face and phone interviews with the participants’ consent. All interviews were
transcribed verbatim by the interviewer (the transcript of the interview with P5 was
recorded by the IM client), resulting in more than 120 pages text (A4 size).

3.2 Data Analysis

Due to the qualitative nature of the collected data, we chose to analyze the data using
qualitative data analysis methods [37]. We thoroughly read all interview transcripts,
during which we extracted phrases of interest that were relevant to one of our research
questions. The extracted data was stored in a spreadsheet, along with the page number
of the source transcript that allowed us to trace back phrases to their original context.
We annotated each entry with a code that reflected the contents of the entry. After
this, the data were sorted and grouped based on the codes. Per group, we used the
constant comparison technique [37] to identify common themes for answering our
research questions.

4 Results

4.1 RQ1: Architectural Knowledge Needs of OSS Integrators

We identified four categories of information that integrators would like to have. Table
2 presents an overview of the findings using the categories that emerged from the
coding of the participants’ answers. It is interesting to note that the first type of AK
(N1) affects the other three types of AK (N2-N4); for instance, a component’s

148 K. Stol, M. Ali Babar, and P. Avgeriou

Table 2. Types of architectural knowledge needed by OSS integrators

ID Description Reported by
N1 Component structure. Patterns, partitioning, structure P1, P2, P3, P4, P5,

P6, P7, P10, P12
N2 Quality attributes and behavior. Information about

performance, e.g., bottlenecks, processor usage, disk usage, and
other resources; reliability, stability, robustness, predictability,
use of tactics.

P2, P4, P5, P6, P7,
P8, P10, P11

N3 Architectural fit. Ease of integration, interface, API
compliance, dependencies

P2, P3, P4, P5, P6,
P7, P8, P10, P11

N4 Component usage. Insight in how the component can be used
and how it performs the task

P2, P4, P10

structure directly affects its quality attributes and behavior. We address this in more
detail in Section 5.

4.1.1 Component Structure
Most participants were interested in the internal structure of components. When
speaking of a component’s internal structure, participants often spoke of ‘pattern’. In
particular, some participants mentioned the presence of patterns such as layers and
model-view-controller to be interesting for their purpose. One participant stated:
“Well, the first thing that I would do is to look at the documentation, in which they
explain the structure there, preferably in pictures. And when those are not available,
then it's a matter of extracting a zip file [jar file] and see how the directory structure
would look like.” (P4).

4.1.2 Quality Attributes and Behavior
Several participants explicitly indicated specific runtime QAs, such as performance,
reliability and stability. Like the literature on QAs, the participants also agreed that
these QAs are directly affected by a component’s behavior related to the use of
resources (e.g., memory, processor, interrupts, database connections). Integrators
consider it to be important to understand how a component behaves regarding these
system resources; one participant reported to have used a “sandbox” to measure
performance, processor usage, disk usage, and similar parameters.

One factor that affects a component’s behavior is the use of architectural tactics
[26, 40]. A tactic is a common technique to achieve a certain quality attribute. For
instance, in order to improve the performance of software that connects to a database
system, a developer may apply the “connection pooling” tactic. Such information is
valuable to integrators, as one participant described: “if it is a component that uses
relatively expensive or limited system resources, then you'd like to know the strategy
of those components to deal with resources. If I'm integrating it and it's using 10 out
of 11 available database connections […] that's certainly handy to know.” (P10).

We did not quantitatively analyze the most important quality attributes such as in
[41], as our sample size was limited, and QAs are likely to be dependent on the
domain in which software operates.

 The Importance of Architectural Knowledge in Integrating Open Source Software 149

4.1.3 Architectural Fit
The most common concern of participants was the architectural fit of a component; in
other words, does a component fit in the existing architecture? One participant
described it clearly: “[I look at] whether it can be used in the architecture that I had
envisioned. To what extent do I need to adapt my own software in order to be able to
use that product? [And] if I have to make certain changes in an OSS product, in order
to be able to use it, how much.” (P3).

Participants used the term “architectural fit”, but also referred to the interface and
API of a component. It was interesting to find that a large majority of the participants
distinguished a component’s architectural fit from its internal structure or used
patterns (see subsection 4.1.1), and generally considered the former to be more
important than the latter. This confirms common knowledge that patterns have a
direct influence on a component’s architectural fit [42].

4.1.4 How to Use a Component
A few participants mentioned the need to understand how they can use a component.
Besides insight in whether the component fits (see subsection 4.1.3), practitioners
need to understand how it can be used within the system they build, and how to access
the functionality provided. The participants prefer to have examples of how to use the
software, or even the availability of a test environment that demonstrates how a
component can be used, as one participant suggested: “If the component came
together with a sort of test environment, a sort of test application, that could show
how the components can be used, and how it performs the tasks that it is supposed to
do. That would help a lot.” (P2).

4.2 RQ2: Why Is Architectural Knowledge Needed?

The previous section addressed the question what AK integrators need; in this section
we addresses the question why integrators need AK. We identified a number of
different reasons how such knowledge can help integrators. Table 3 presents an
overview of the findings to answer this question.

Table 3. Reasons why architecture knowledge is important to integrators

ID Description Reported by
W1 Quality assessment. Architecture, partitioning and patterns

indicate certain maturity and qualities and help to analyze a
component from a performance and functional perspective.

P2, P5, P7, P8,
P10

W2 Assess architectural fit. Internal structure and patterns indicate
what architecture is used and whether it fits in the existing
architecture

P1, P2, P3, P6,
P7, P10

W3 Improve maintainability. Patterns improve maintainability and
replacing of components

P1, P2, P7, P8,
P10, P12

W4 Help to use component. Architectural information and patterns
help you to use the component in a useful way

P1, P10

150 K. Stol, M. Ali Babar, and P. Avgeriou

4.2.1 Quality Assessment
An important use of AK is that it can be used in the assessment of a component with
respect to its quality attributes. Participants particularly referred to the structure and
patterns used in this context. Patterns are common solutions with predictable effects
on a component’s QAs. This could refer to a product’s runtime attributes, such as
performance and reliability, but also with respect to its build-time properties, such as
the ease of integration. One participant explained: “[Information of internal structure
is] certainly very useful information, because such a pattern indicates what kind of
architecture was used, and such a pattern indicates a certain quality. That could be
configurability, but also the ease of integrating, those patterns secure a certain
stability.” (P7).

4.2.2 Architectural Fit Assessment
Several participants indicated that architectural information provides useful insights
into whether or not an OSS product is compatible at the architectural level with the
main system in which it may be integrated. As noted by one participant: “Well at
least it indicates what style is being used, and what are the fundamental concepts, and
your own product, or platform in our case, also has certain styles, and then you can
see, whether it fits together. Does it make sense to try to put it together, or will we
need a whole lot of glue code to be able to use it. And if so, is it worth our while, or is
it easier to develop ourselves. At a high level it indicates whether something is a good
match with your product, with the existing software.” (P10).

4.2.3 Maintenance and Evolution
A number of participants indicated that knowledge of the patterns used in a
component could help in the maintenance phase of a product, including defect fixing.
Patterns increase the understandability of how a component is constructed, which
makes it easier to change the component. One participant described this as follows:
“If you have some OSS that's constructed using good patterns, then of course it'll help
you to make changes. If you get OSS that's constructed in an ad-hoc manner,
organically grown, and you decide to make changes to make it fit better, then that's
completely useless. The more it is structured, thought about it in terms of layers and
standard structures, the easier it will be to adopt it and change it.” (P12).

While the actual presence of patterns improves a product’s maintainability, it is
important to understand which patterns have been used, in order to make changes that
do not degrade the pattern’s integrity and consistency.

4.2.4 Using the Component
A good knowledge of architectural aspects of a component can help an integrator to
understand the appropriate use of that component. During our study, a few
participants also indicated that AK such as the patterns used provides valuable
insights into whether or not a component will be suitable in the context of a given
system and how to use that component. One of the participants explained: “if you
wouldn't know those [architectural concepts and patterns], it's difficult to use such a
framework in a useful way. So in that case it would be difficult to find everything in
the code, so at least you'd like to see some high level descriptions of the concepts and
design patterns.” (P10).

 The Importance of Architectural Knowledge in Integrating Open Source Software 151

4.3 RQ3: The Availability of Architectural Knowledge

In this section, we address the question whether or not AK is usually available to OSS
integrators. We identified two themes, namely (1) the general availability of AK and
(2) how integrators deal with the lack of AK. We decided to present this analysis in a
descriptive way, rather than a tabular representation as used in 4.1 and 4.2.

4.3.1 Availability Differs Per Product
The results indicate that whether or not AK is available, depends on the product. One
participant highlighted that: “[for] open source it's quite easy to figure out how it fits
into my architecture. If I look at Spring, how does this fit into my architecture, is it
MVC or part of MVC… I also think that is indirectly a big plus for OSS, because they
actually need to be compatible, they need to be able to integrate with other parts at
the architecture level, otherwise they wouldn't survive.” (P1). This suggests that AK
is sufficiently available. Another participant confirmed that for well-known
frameworks such as the Spring framework2, this information is indeed quite easily
available, however, this may not be the case with other components: “in case of
Spring yes, but in other components not so much, and you just have to look in the
documentation and in some cases even in the implementation.” (P3).

Participants P5 and P7 explicitly claimed that there is typically not much AK of
OSS products available. One participant emphasized that a good design will result in
good quality code, and makes the component author’s intents clear: “I don't usually
have much architectural info when investigating an OSS component, unless it's in the
docs, on the website etc. Historically, there hasn't been a focus on architecture
patterns by OSS component authors. It's not a best practice to include architectural
patterns information.” (P5)

4.3.2 How Integrators Deal with a Lack of Architectural Knowledge
The participants of our study mentioned different approaches to deal with a lack of
AK of an OSS product. We present the main findings under the following categories:

Look at Others. One way to assess the quality of a product’s QAs, is to look at other
customers of the component, as explained by one participant: “Our line of thought
with respect to the ‘ilities’ was, as long as a rather large group of people uses it, you
may assume that most of the trouble with the ‘ilities’ are solved.” (P6).

Assume the Worst. Another approach to deal with a component’s characteristics,
such as security, is to assume the worst, and make sure that the rest of the system
compensates for its shortcomings: “I don't think I would try to understand whether a
certain OSS product, whether it's secure enough. I think I would assume that it's not
secure enough and then I would make sure that the environment in which the software
is run takes care of the security.” (P3).

Try to Recover. If architectural information in the documentation is missing, then the
only solution to this is to look into the implementation or to ask the community for

2 http://www.springsource.org/

152 K. Stol, M. Ali Babar, and P. Avgeriou

more information. However, in such a case, the time to get a reply was considered to
be very important due to development schedules and deadlines. Furthermore, while
studying the implementation was mentioned as a solution, it should be considered as a
last resort: “When you have to go into the code to know how it works, then I do think
you have a problem. […] I think open source has much potential but the investment in
knowledge is quite an issue.” (P9).

4.4 RQ4: The Relative Importance of Architectural Knowledge

Our last research question investigates the participants’ perceived importance of AK.
This puts the need for AK in perspective compared to other selection criteria, which
are known to be important, such as availability of support and license. One participant
considered AK as just one type of information that is needed, but stated that: “the
more you know, the better” (P10). As for RQ3, we identified a few themes, which we
discuss next.

4.4.1 Missing AK Hinders Usage
In subsection 4.3.1, participant P1 indicated that the availability of AK of an OSS
product is important for the project’s survival. Three participants explicitly indicated
that the lack of an OSS component’s AK means that it drops on the list of candidates,
and hinders its usage. This means that a lack of AK negatively affects the selection
decision of whether to use the OS product. One participant explained: “Well, then
you're making a big investment if you do that. So I can think it can hinder you in using
it. When you have to go into the code to know how it works, then I do think you have a
problem.” (P9).

4.4.2 Need for AK Depends on Product Type and Size
A recurring factor that influenced the participants’ interest in having AK of an OSS
product is the type and size of the component. The information needs heavily depend
on whether it is a library that provides functionality or non-critical parts, such as
graphical widgets, or that it is a central component that makes up an important part of
a system. One participant described it as follows: “If I'm looking for an MVC
framework, then yes [I’ll be interested in architectural information]. But if I'm
looking for a foo-munging module, and there are 12, then the last 3 release dates,
smoke reports, browsing source, etc., are likely more important.” (P5).

A few participants explicitly highlighted the architectural impact that an OSS
component may have on the existing system architecture. One participant described:
“But for instance the reporting engine, if we choose product A or B, that was more of
a feature level, and not typically on the architecture level, even if we would pick
product A or B, it wouldn't ruin our existing architecture because this is more on the
side.” (P1).

Related to this issue is whether practitioners value a component’s functionality or
architecture. On the one hand, some participants highlight the focus on functional
compliance; one participant explained this concisely: “My software MUST meet the
functional requirements, and MAY have a good architecture.” (P5, emphasis by
participant in IM transcript).

 The Importance of Architectural Knowledge in Integrating Open Source Software 153

Furthermore, practitioners’ interest in a component’s functionality or architecture
also depends on the type of the component. One participant explained: “Well, frankly
it's always been the functionality for us than that we're looking at the architecture.
That may have to do with the type of components that we integrate. They're typically
not complete subsystems, but rather limited libraries. Just those things that don't
really count.” (P10).

On the other hand, some participants preferred a well-designed component with a
good architecture to the functionality provided by the component. Extensibility and
size of the component are decisive factors, as one participant explained: “I would tend
to choose for good quality and architecture, but perhaps a lack of functionality. But
there should be a good possibility to extend that functionality, and when that's not
there, then I may decide to take a chance and select the thing with all functionality but
less quality, and to fix that thing myself. That also depends on the size by the way,
when it's a huge project, then I won't start on that.” (P4).

4.4.3 The Relative Importance of Architectural Knowledge
So far, the answer to the question whether or not AK is an important factor is: “it
depends”. Factors are the type and size of a component (e.g., library versus
framework). In general, the participants of our study seem to be quite interested in a
component’s AK, which can provide valuable insights that may affect the decision to
use the component. One participant summarized this as follows: “It depends on what
it is, but I think if it is something that you're interested in anyway, in how it's
constructed, which can be part of the evaluation of the piece of open source, then it's
certainly interesting. It can give you a good feeling that people have thought about it.
It fits or doesn't fit with what we have. So yes, it's certainly valuable.” (P10).

The participants generally agreed that the quality of a component can have many
aspects, but that the critical selection factors depend on the context. One participant
highlighted the importance of the implementation language in these words: “The use
of patterns in OSS components played some part when considering their use, but the
flexibility of Perl allows integration of widely-varying programming models, so for
Perl components, the test coverage, documentation and community support were
more important.” (P5).

5 Discussion and Conclusion

In Section 4, we have identified the types of AK of OSS needed by OSS integrators
and the main reasons for why the AK is important. It is interesting to note that the
categories identified in Section 4.1 (what AK is needed) and 4.2 (why is AK needed)
are quite similar. Participants indicated the need of understanding a component’s
structure, its quality attributes and behavior regarding e.g., system resources, whether
or not components are an architectural “fit” with the main system’s design, and how
to use a component. Following are the main reasons why OSS integrators consider
architectural knowledge of a component to be valuable:

• Assess the quality of the component;
• Assess the architectural fit of the component;
• Affect the maintainability of the component;
• Understand how the component can be used.

154 K. Stol, M. Ali Babar, and P. Avgeriou

Knowledge of a component’s structure (including its patterns) seems to be the most
important aspect for integrators. While the participants indicated a desire to know a
component’s QAs, its architectural fit (compatibility), and how to use it, it seems that
the architectural structure of a component is valuable input to satisfy most AK needs.
A component’s architecture structure, including its patterns, directly affects its QAs,
architectural compatibility, and can provide insight on how to use the component.

The four categories of why an integrator would like to have AK of a component
can be mapped to the three main phases in CBSD briefly outlined in Section 2.1.
Quality assessment and assessment for architectural fit are both activities that are
performed in the Evaluation phase, when components are evaluated and selected.
Understanding of how to use a component is important in the Integration phase, when
components are integrated into a product. Finally, having AK to improve a
component’s maintainability supports the Maintenance phase of OTS integration,
after the main system has been deployed. Therefore, we can conclude that AK can
support the OSS integrator in all three phases of CBSD.

However, in Section 4.3 we found that availability of AK of OSS products may
vary, and just how much AK is needed also varies. When AK is not available, OSS
integrators typically do not try to recover it, which means they have to take a different
strategy to deal with such lack of information. From Section 4.4 it has become clear
that practitioners do consider AK to be valuable, but that depends on the type and size
of the product. A lack of AK, however, was shown to be a potential obstacle for using
a component. These results highlight the importance to investigate how OSS
integrators can be supported. We suggest a research agenda along the following lines:

• We found that the type and size of a product affect whether or not an OSS
integrator needs to acquire AK of the product. It would be valuable to gain a
deeper insight into how these characteristics affect the need for AK, what other
factors are at play, and to develop a systematic method to assist OSS integrators
in identifying what AK is needed and how AK can be identified in an effective
way.

• Some OSS projects are more successful in publishing AK of the product than
others, and one of our participants suggested that it is vital for a project’s
survival. What factors affect whether a community makes such AK available, and
how can other OSS communities be supported in this activity?

• Our results suggest that if AK is not available, OSS integrators do not try hard to
recover it. Furthermore, looking into the source code seemed to be the only
solution. However, it would be valuable to, based on a larger scale survey, get
better insights into whether OSS integrators recover AK, how they use this AK,
whether they store it, and whether this AK is contributed back to the OSS
community.

• Related to using OSS components is the integration of so-called “Inner Source
Software” (ISS); ISS is closed-source software developed within an organization
that has adopted OSS development methods, a phenomenon known as “Inner
Source” [43]. In Inner Source, departments can be consumers and producers in an
internal software market (“bazaar”). It would be very informative to understand
what kind of AK integrators need and have available in Inner Source, and what
lessons can be drawn from Inner Source to use in OSS integration (and vice
versa).

 The Importance of Architectural Knowledge in Integrating Open Source Software 155

5.1 Limitations of This Study

We are aware of a few limitations of this study. Firstly, we based this paper on data
gathered through 12 interviews, which is insufficient to draw general conclusions.
However, since the role of SA has not been studied extensively in the context of OSS
integration, we decided to perform an exploratory study. Once this field has matured
and specific hypotheses have been defined based on initial findings, we argue that
other types of studies with larger numbers of participants will be more appropriate,
such as questionnaire-surveys.

Secondly, our sample of participants was a convenience sample, which means
there is a selection bias. Participants were contacted through our professional
network. Furthermore, seven participants worked at one organization that is active in
a safety critical domain; this may have biased the participants’ views towards certain
concerns. However, we did not find significant differences with respect to the
participants’ opinions and needs of AK. We argue that, since this is an exploratory
study, these results can be used as input to identify hypotheses to design studies based
on larger samples of participants from a variety of product domains.

5.2 Conclusion

This paper presents the results of an exploratory interview-based survey of software
architects and other IT professionals to investigate the importance of architectural
knowledge (AK) in the integration of OSS products CBSD. In particular, this paper
presents a classification of different types of AK that is considered to be useful, why
AK is needed, whether AK is available, and the relative importance of AK in the
integration of OSS components. Knowledge of a component’s partitioning and its
patterns used seems to be particularly important to satisfy the various reasons of why
AK is needed (e.g., assessment of quality, architectural fit, etc.).

Despite an increasing attention for SA in software engineering, SA has received
little attention in the OSS research community. This paper provides empirical findings
to demonstrate that integrators have a need for AK of OSS products. Based on our
findings, we suggested a number of open research questions in order to bridge the gap
between the OSS and SA research communities.

Acknowledgements. This work is partially funded by IRCSET under grant no.
RS/2008/134 and by Science Foundation Ireland grant 03/CE2/I303_1 to Lero
(www.lero.ie). We are grateful to the participants of our study for their time and
enthusiasm.

References

[1] Hauge, Ø., Ayala, C., Conradi, R.: Adoption of Open Source Software in Software-
Intensive Organizations - A Systematic Literature Review. Information and Software
Technology 52(11), 1133–1154 (2010)

[2] Hauge, Ø., Sørensen, C.-F., Røsdal, A.: Surveying Industrial Roles in Open Source
Software Development. In: Feller, J., Fitzgerald, B., Scacchi, W., Sillitti, A. (eds.) Open
Source Development, Adoption and Innovation, pp. 259–264. Springer, Heidelberg
(2007)

156 K. Stol, M. Ali Babar, and P. Avgeriou

[3] Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch: why reuse is so hard.
IEEE software 12(6), 17–26 (1995)

[4] Hissam, S.A., Weinstock, C.B.: Open Source Software: The Other Commercial Software.
In: Feller, J., Fitzgerald, B., van der Hoek, A. (eds.) 1st Workshop on Open Source
Software Engineering, ICSE (2001)

[5] Morgan, L., Finnegan, P.: Benefits and Drawbacks of Open Source Software: An
Exploratory Study of Secondary Software Firms. In: Feller, J., Fitzgerald, B., Scacchi,
W., Sillitti, A. (eds.) Open Source Development, Adoption and Innovation, pp. 307–312.
Springer, Heidelberg (2007)

[6] Ayala, C., Hauge, Ø., Conradi, R., Franch, X., Li, J., Velle, K.S.: Challenges of the Open
Source Component Marketplace in the Industry. In: Boldyreff, C., Crowston, K., Lundell,
B., Wasserman, A.I. (eds.) OSS 2009. IFIP AICT, vol. 299, pp. 213–224. Springer,
Heidelberg (2009)

[7] Chen, W., Li, J., Ma, J., Conradi, R., Ji, J., Liu, C.: An empirical study on software
development with open source components in the chinese software industry. Software
Process: Improvement and Practice 13(1), 89–100 (2008)

[8] Jaaksi, A.: Experiences on Product Development with Open Source Software. In: Feller,
J., Fitzgerald, B., Scacchi, W., Sillitti, A. (eds.) Open Source Development, Adoption
and Innovation, pp. 85–96. Springer, Heidelberg (2007)

[9] Madanmohan, T.R., De, R.: Open source reuse in commercial firms. IEEE
Software 21(6), 62–69 (2004)

[10] Ayala, C., Hauge, Ø., Conradi, R., Franch, X., Li, J.: Selection of third party software in
Off-The-Shelf-based software development: An interview study with industrial
practitioners. The Journal of Systems and Software 84(4), 620–637 (2011)

[11] Li, J., Conradi, R., Slyngstad, O.P.N., Bunse, C., Torchiano, M., Morisio, M.:
Development with Off-the-Shelf Components: 10 Facts. IEEE software 26(2), 80–87
(2009)

[12] Bosch, J., Stafford, J.A.: Architecting Component-Based Systems. In: Crnkovic, I.,
Larsson, M. (eds.) Building Reliable Component-Based Software Systems. Artech House
Publishers, Norwood (2002)

[13] Ali Babar, M., Dingsøyr, T., Lago, P., van Vliet, H.: Software Architecture Knowledge
Management: Theory and Practice. Springer, Heidelberg (2009)

[14] Fitzgerald, B.: The transformation of open source software. MIS Quarterly 30(3), 587–
598 (2006)

[15] Mäki-Asiala, P., Matinlassi, M.: Quality Assurance of Open Source Components:
Integrator Point of View. In: Proceedings of the 30th Annual International Computer
Software and Applications Conference (COMPSAC), pp. 189–194 (2006)

[16] Di Giacomo, P.: COTS and open source software components: Are they really different
on the battlefield? In: Franch, X., Port, D. (eds.) ICCBSS 2005. LNCS, vol. 3412, pp.
301–310. Springer, Heidelberg (2005)

[17] Norris, J.S.: Mission-critical development with open source software: Lessons learned.
IEEE Software (2004)

[18] Stol, K., Ali Babar, M.: A Comparison Framework for Open Source Software Evaluation
Methods. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey, G.R., Noll, J.
(eds.) OSS 2010. IFIP AICT, vol. 319, pp. 389–394. Springer, Heidelberg (2010)

[19] Hauge, Ø., Østerlie, T., Sørensen, C.-F., Gerea, M.: An Empirical Study on Selection of
Open Source Software - Preliminary Results. In: Capiluppi, A., Robles, G. (eds.) 2nd
workshop on Emerging Trends in FLOSS Research and Development (ICSE),
Vancouver, Canada (2009)

 The Importance of Architectural Knowledge in Integrating Open Source Software 157

[20] Merilinna, J., Matinlassi, M.: State of the Art and Practice of Open Source Component
Integration. In: Proceedings of the 32nd Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), pp. 170–177 (2006)

[21] Ven, K., Mannaert, H.: Challenges and strategies in the use of Open Source Software by
Independent Software Vendors. Information and Software Technology 50(9-10), 991–
1002 (2008)

[22] Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discpline.
Prentice-Hall Inc., New Jersey (1996)

[23] Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Ali Babar, M.: A comparative study of
architecture knowledge management tools. Journal of Systems and Software 83, 352–370
(2010)

[24] Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions.
In: 5th Working IEEE/IFIP Conference on Software Architecture (WICSA), Pittsburgh,
PA, USA, pp. 109–120 (2005)

[25] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-oriented
Software Architecture - A System of Patterns. J. Wiley and Sons Ltd., Chichester (1996)

[26] Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Boston (2003)

[27] Tran, J.B., Godfrey, M.W., Lee, E.H.S., Holt, R.C.: Architectural repair of open source
software. In: Proceedings of the 8th International Workshop on Program Comprehension,
IWPC (2000)

[28] Nakagawa, E., de Sousa, E., de Brito Murata, K., de Faria Andery, G., Morelli, L.,
Maldonado, J.: Software Architecture Relevance in Open Source Software Evolution: A
Case Study. In: Proceedings of the 32nd International Computer Software and
Applications Conference (COMPSAC), pp. 1234–1239 (2008)

[29] Capiluppi, A., Knowles, T.: Software engineering in practice: Design and architectures of
FLOSS systems. In: Boldyreff, C., Crowston, K., Lundell, B., Wasserman, A.I. (eds.)
OSS 2009. IFIP AICT, vol. 299, pp. 34–46. Springer, Heidelberg (2009)

[30] Matinlassi, M.: Role of Software Architecture in Open Source Communities. In:
Proceedings of the Sixth Working IEEE/IFIP Conference on Software Architecture
(WICSA), Mumbai, India (2007)

[31] Ali Babar, M., Fitzgerald, B., Ågerfalk, P.J., Lundell, B.: On the Importance of Sound
Architectural Practices in the Use of OSS in Software Product Lines. In: Second
International Workshop on Open Source Software and Product Lines, collocated with the
11th International Software Product Line Conference (2007)

[32] Ali Babar, M., Lundell, B., van der Linden, F.: A Joint Workshop of QACOS and
OSSPL. In: Boldyreff, C., Crowston, K., Lundell, B., Wasserman, A.I. (eds.) OSS 2009.
IFIP AICT, vol. 299, pp. 357–358. Springer, Heidelberg (2009)

[33] Lennerholt, C., Lings, B., Lundell, B.: Architectural issues in Opening up the advantages
of Open Source in product development companies. In: Proceedings of the 32nd Annual
IEEE International Computer Software and Applications Conference, pp. 1226–1227.
IEEE Computer Society, Washington, DC, USA (2008)

[34] Arief, B., Gacek, C., Lawrie, T.: Software architectures and open source software-where
can research leverage the most? In: Feller, J., Fitzgerald, B., van der Hoek, A. (eds.) 1st
Workshop on Open Source Software Engineering, Collocated with the 23rd International
Conference on Software Engineering, ICSE (2001)

[35] Stamelos, I., Kakarontzas, G.: AKM in Open Source Communities. In: Ali Babar, M.,
Dingsøyr, T., Lago, P., van Vliet, H. (eds.) Software Architecture Knowledge
Management: Theory and Practice, pp. 199–215. Springer, Heidelberg (2010)

158 K. Stol, M. Ali Babar, and P. Avgeriou

[36] Edmondson, A.C., McManus, S.E.: Methodological Fit in Management Field Research.
Academy of Management Review 32(4), 1155–1179 (2007)

[37] Seaman, C.B.: Qualitative methods in empirical studies of software engineering. IEEE
Transactions on Software Engineering 25(4), 557–572 (1999)

[38] Robson, C.: Real World Research: A Resource for Social Scientists and Practitioner-
Researchers, 2nd edn. Blackwell Publishing, Malden (2002)

[39] Taylor, S.J., Bogdan, R.: Introduction to Qualitative Research. John Wiley & Sons, New
York (1984)

[40] Harrison, N.B., Avgeriou, P.: How do architecture patterns and tactics interact? A model
and annotation. The Journal of Systems & Software 83(10), 1735–1758 (2010)

[41] Ameller, D., Franch, X.: How Do Software Architects Consider Non-Functional
Requirements: A Survey. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS,
vol. 6182, pp. 276–277. Springer, Heidelberg (2010)

[42] Shaw, M.: Architectural issues in software reuse: it’s not just the functionality, it’s the
packaging. SIGSOFT Softw. Eng. Notes, 20 (SI), 3-6 (1995)

[43] Wesselius, J.: The Bazaar inside the Cathedral: Business Models for Internal Markets.
IEEE Software 25(3), 60–66 (2008)

Successful Reuse of Software Components:

A Report from the Open Source Perspective

Andrea Capiluppi1, Cornelia Boldyreff1, and Klaas-Jan Stol2

1 University of East London, United Kingdom
2 Lero—the Irish Software Engineering Research Centre

University of Limerick, Ireland
{a.capiluppi,c.boldyreff}@uel.ac.uk, klaas-jan.stol@lero.ie

Abstract. A promising way of software reuse is Component-Based Soft-
ware Development (CBSD). There is an increasing number of OSS prod-
ucts available that can be freely used in product development. However,
OSS communities themselves have not yet taken full advantage of the
“reuse mechanism”. Many OSS projects duplicate effort and code, even
when sharing the same application domain and topic. One successful
counter-example is the FFMpeg multimedia project, since several of its
components are widely and consistently reused into other OSS projects.
This paper documents the history of the libavcodec library of compo-
nents from the FFMpeg project, which at present is reused in more than
140 OSS projects. Most of the recipients use it as a black-box component,
although a number of OSS projects keep a copy of it in their reposito-
ries, and modify it as such. In both cases, we argue that libavcodec is
a successful example of reusable OSS library of components.

Keywords: Software reuse, OSS components, component-based soft-
ware development.

1 Introduction

Reuse of software components is one of the most promising assets of software
engineering [5]. Enhanced productivity (as less code needs to be written), in-
creased quality (since assets proven in one project can be carried through to the
next) and improved business performance (lower costs, shorter time-to-market)
are often pinpointed as the main benefits of developing software from a stock of
reusable components [35,31].

Although much research has focused on the reuse of Off-The-Shelf (OTS)
components, both Commercial OTS (COTS) and OSS, in corporate software
production [25,36], the reusability “of” OSS projects “in” other OSS projects
has only started to draw the attention of researchers and developers in OSS
communities [22,28,8]. A vast amount of code is created daily, modified and
stored in OSS repositories, yet, software reuse is rarely perceived by OSS devel-
opers as a critical success factor in their projects or processes. For different and
composite reasons [34], using other OSS projects as components is typically not

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 159–176, 2011.
c© IFIP International Federation for Information Processing 2011

160 A. Capiluppi, C. Boldyreff, and K.-J. Stol

considered as a way to build new OSS products. As an example, a search for
the “FTP client” topic in the SourceForge repository1 results in more than 350
different projects, each implementing similar features in the same domain. As a
result, much functionality is duplicated in similar products, with little sharing
of existing components.

The interest of practitioners and researchers in the topic of software reuse
has focused on two predominant questions: (1) how to select an OSS component
to be reused in another (potentially commercial) software system, and (2) how
to provide potential re-users with a level of objective “trust” in available OSS
components. This interest is based on a sound reasoning; given the increasing
amount of source code and documentation created and modified daily, it starts
to be a (commercially) viable solution to browse for components in existing code
and select existing, working resources to reuse as building blocks of new software
systems, rather than building them from scratch.

Among the reported cases of successful reuse within OSS systems, components
with clearly defined requirements, and hardly affecting the overall design (i.e.,
the “S” and “P” types of systems following the original S-P-E classification by
Lehman [24]) have often proven the typical reused resources by OSS projects.
Reported examples include the “internationalization” component (which pro-
duces different output text depending on the language of the system), or the
“install” module for Perl subsystems (involved in compiling the code, test and
install it in the appropriate locations) [28]. Little is known about successful cases
of OSS reuse, and an understanding of internal characteristics of what makes a
component reusable in the OSS context is lacking.

The main focus of this paper is to report on the successful reuse of the com-
ponents of the FFMpeg project. This project is a cornerstone component in the
multimedia domain; several dozens of OSS projects reuse parts of FFMpeg, and
this wide-spread of reuse is mostly based upon the libavcodec library of com-
ponents. In the domain of OSS multimedia applications, this library is now
established as the most widely adopted and reused audio/video codec (coding
and decoding) resource. Its reuse by other OSS projects is so widespread since it
represents a cross-cutting resource for a wide range of systems, from single-user
video and audio players to converters and multimedia frameworks.

This paper makes two contributions: first, it establishes that the libavcodec
component (contained in FFMpeg) is an “evolving and reusable” component (an
“E” type of system [24]), and as such it poses several interesting challenges
when other projects integrate it. Second, it presents two scenarios that have
emerged in the reuse of this resource: on the one hand, the majority of the cases
the libavcodec component is reused as a “black-box”, as such incurring into
the synchronization issues due to the co-evolution “project+component”. On
the other hand, a subset of OSS projects apply a “white-box” reuse strategy,
by maintaining a private copy of libavcodec. The latter scenario is empirically
analyzed in order to obtain a better understanding of how the component not
only is reused, but also integrated into the main system. The two scenarios are

1 http://sourceforge.net/

http://sourceforge.net/

Successful Reuse of Software Components 161

summarized in Figure 1: as an example, the MPlayer project keeps a “copy”
of the library in its repository (white-box reuse), while the VLC project, at
compilation time, requires the user to provide the location of an up-to-date
version of the FFMpeg project (black-box reuse).

Fig. 1. Black-box and white-box reuse

This paper proceeds as follows. Section 2 provides an overview of the related
work on software components and OSS systems. Section 3 provides the defini-
tions and the empirical approach used throughout the paper. Section 4 presents
the results of the empirical study of the OSS projects showing a white-box reuse
strategy of the libavcodec component. Section 5 discusses the threats to validity
of this study. Section 6 concludes.

2 Background and Related Work

The OSS approach to software development has gained much attention in the
empirical Software Engineering research community, mostly due to the availabil-
ity of software and non-software artifacts (e.g., bug tracking systems and mailing
lists). Although the majority of published works have a non OSS-related ratio-
nale, some researchers have started to collect evidence specifically related to OSS
systems. Among these late emerging areas, the topics of OSS components and
architectures have been investigated both within research works [27,18,7,25],
and through specifically funded EU projects (QualiPSo2 – Quality Platform for
Open Source Software and QUALOSS3 – QUALity in Open Source Software).
This research directly responds to the need of identifying and extracting ex-
isting OSS components [2], or of providing options for choosing the best OSS
component for inclusion in a software system [18].

This work is also related to the study of software architectures, in the forms
of hierarchical and coupling views. Previous works ([19,21,38]) have defined and
used different views of architecture of a software system. For example, Kruchten
[21] refers to a “4+1” view model to describe a system involving logical, process,
physical, development views, and use-cases. This model defines different per-
spectives for different stakeholders; the present work uses the concepts of logical

2 http://www.qualipso.org/
3 http://www.qualoss.org/

http://www.qualipso.org/
http://www.qualoss.org/

162 A. Capiluppi, C. Boldyreff, and K.-J. Stol

(“hierarchical”) and process (“coupling”) views to establish a comparison be-
tween these two views. Similarly, [19] defines four architectural views of software
systems, which in turn focus on coarser degrees of granularity (conceptual, or the
abstract design level; module, or the concrete design level; code, or components
level; and execution level). As stated above, the present research focuses on the
views which are closer to the work of software developers, such as, for instance,
the folder or the file level. In the selection of attributes, the limit is on those that
it is possible to derive from projects found in existing OSS repositories with a
reasonable effort. Hierarchical (“abstract design level”) and coupling (“compo-
nent level”) views can both provide insight into how developers deal with macro
and micro-components of software systems, respectively.

With reference to software decay, past SE literature has firmly established
that software architectures and the associated code degrade over time [13], and
that the pressure on software systems to evolve in order not to become obsolete
plays a major role in their evolution [23]. As a result, software systems have the
progressive tendency to loose their original structure, which makes it difficult to
understand and further maintain them [33]. Among the most common discrepan-
cies between the original and the degraded structures, the phenomenon of highly
coupled, and lowly cohesive, modules has already been known since 1972 [30] and
is an established topic of research. Architectural recovery is one of the recognized
counter-measures to this decay [12]. Several earlier works have been focused on
the architectural recovery of proprietary [12], closed academic [1], COTS [4]
and FLOSS [6,17,37] systems; in all of these studies, systems were selected in a
specific state of evolution, and their internal structures analysed for discrepan-
cies between the folder-structure and concrete architectures [37]. Repair actions
have been formulated as frameworks [32], methodologies [20] or guidelines and
concrete advice to developers [37].

3 Empirical Approach

The approach of building by decomposition into, and the composition of, several
components is a common scenario when considering OSS systems. Perhaps the
best-known example are Linux distributions, which are collections of projects,
libraries and components, which request or provide services to components via
connections. This has been reported in various studies [15,25], especially relating
to the issues of OSS licenses [16]. Apart from systems composed of subsystems
which are already OSS projects, it is essential that empirical knowledge on reuse
and domain engineering is based on finer-grained components, smaller than en-
tire systems (as in the LAMP – Linux, Apache, MySQL, Python/Perl/PHP –
stack of reuse).

The FFMpeg project has been chosen as an example of software reuse for several
reasons:

1. It has a long history of evolution as a multimedia player, that has grown
and refined several build-level components throughout its life-cycle. Some of

Successful Reuse of Software Components 163

these components appear like “E” type systems, instead of traditional “S”
or “P” types, with lower propensity for software evolution.

2. Several of its core developers have been collaborating also in the MPlayer4

project, one of the most commonly used multimedia players across OSS
communities. Eventually, the libavcodec component has been incorporated
(among others from FFMpeg) into the main development trunk of MPlayer,
increasing FFMpeg’s visibility and wide-spread usage.

3. Its components are currently reused on different platforms and architectures,
both in static- and in dynamic-linking. Static linking involves the inclusion
of source code at compile-time, while dynamic linking involves the inclusion
of a binary library at runtime.

4. Finally, the static-linking reuse of the FFMpeg components presents two oppo-
site scenarios: either a black-box reuse strategy, with “update propagation”
issues reported when the latest version of a project has to be compiled against
a particular version of the FFMpeg components [29]; or the white-box reuse
strategy, with copies of the components being deployed in the repositories
of other projects which are managed independently from the their original
development branch.

3.1 Definitions and Operationalization

This paper is built on top of two basic architectural principles: the concept of
build-level components [11] and the principle of architectural decay along the
evolution of software systems [13]. The build-level components are “directory
hierarchies containing ingredients of an application’s build process, such as source
files, build and configuration files, libraries, and so on. Components are then
formed by directories and serve as unit of composition” [11], and these compose
the “folder-structure” or “tree-structure” of a software system [9,10].

In this paper we use terminology and definitions provided in related and
well-known past studies. The definition of common coupling (intended for both
object-oriented [3,26] and procedural [14] languages). The following operational
definitions have been used:

– Coupling: this is the union of all the includes, dependencies and functions
calls (i.e., the common coupling) of all source files as extracted by the Doxy-
gen tool5. Since the empirical study is based on the definition of build-level
components, two further conversions have been made:

1. The file-to-file and the functions-to-functions couplings have been con-
verted into folder-to-folder couplings, considering the folder that each of
the above elements belongs to. A stronger coupling link between folder
A and B will be found when many elements within A call elements of
folder B.

4 MPlayer, http://www.mplayerhq.hu
5 http://www.stack.nl/~dimitri/doxygen/

http://www.mplayerhq.hu
http://www.stack.nl/~dimitri/doxygen/

164 A. Capiluppi, C. Boldyreff, and K.-J. Stol

2. Since the behavior of “build-level components” is studied here, the cou-
plings to subfolders of a component have also been redirected to the
component alone; hence a coupling A → B/C (with C being a subfolder
of B) is reduced to A → B.

– Connection: distilling the couplings as defined above, one could say, in a
Boolean manner, whether two folders are linked by a connection or not, dis-
regarding the strength of the link itself. The overall number of these connec-
tions for the FFMpeg project is recorded monthly in Figure 2; the connections
of a folder to itself are not counted (for the encapsulation principle), while
the two-way connection A → B and B → A is counted just once (since we
are only interested in which folders are involved in a connection).

– Cohesion: for each component, the sum of all couplings, in percentage,
between its own elements (files and functions);

– Outbound coupling (fan-out): for each component, the percentage of cou-
plings directed from any of its elements to elements of other components, as
in requests of services. A component with a large fan-out, or “controlling”
many components provides an indication of poor design, since the component
is probably performing more than one function.

– Inbound coupling (fan-in): for each component, the percentage of cou-
plings directed to it from all the other components, as in “provision of ser-
vices”. A component with high fan-in is likely to perform often-needed tasks,
invoked by many components, which is regarded as an acceptable design be-
havior.

The source code repository (CVS) of FFMpeg was parsed monthly, resulting in
some 100 temporal points, after which the tree structures were extracted for
each of these points. On the one hand, the number of source folders of the
corresponding tree is recorded in Figure 2. On the other hand, in order to produce
an accurate description of the tree structure as suggested by [37], each month’s
data has been further parsed using Doxygen, with the aim of extracting the
common coupling among the elements (i.e., source files and headers, and source
functions) of the systems. The analysis of size growth has been performed using
the sloccount tool6.

3.2 Description of the FFMPeg System

As mentioned above, the FFMpeg system has successfully become a highly visible
OSS project partly due to its components, libavcodec in particular, which have
been integrated into a large number of OSS projects in the multimedia domain.

In terms of a global system’s design, the FFMpeg project does not yet provide
a clear description of either its internal design, or how the architecture is de-
coupled into components and connectors. Nonetheless, by visualizing its source
tree composition [10], the folders containing the source code files appear to be
semantically rich, in line with the definitions of build-level components [11], and
source tree composition [9,10]. The first column of Table 1 summarizes which
folders currently contain source code and subfolders within FFMpeg.
6 http://www.dwheeler.com/sloccount/

http://www.dwheeler.com/sloccount/

Successful Reuse of Software Components 165

Fig. 2. Growth of folders and connections

As shown, some components act as containers for other subfolders, apart from
source files, as shown in columns 2 and 3, respectively. Typically these subfolders
have the role of specifying/restricting the functionalities of the main folder in
particular areas (e.g., the libavutil folder which is further divided into the var-
ious supported architectures – x86, ARM, PPC, etc.). The fourth column also
describes the main functionalities of the component. It can be observed that
each directory provides the build and configuration files for itself and the sub-
folders contained, following the definition of build-level components. The fifth
column of Table 1 lists the month when the component was first detected in the
repository. Apart from the miscellaneous tools component, each of these are
currently reused as OSS components in other multimedia projects as develop-
ment libraries, for example, the libavutil component is currently redistributed
as the libavutil-dev package).

Table 1 shows that the main components of this system have originated at
different dates, and that the older ones (i.e., libavcodec) are typically more ar-
ticulated into several directories and multiple files. The libavcodec component

Table 1. FFMpeg (build-level) components

Name Folders Files Description Date

libavcodec 12 625 Extensive audio/video codec library 08/2001
libpostproc 1 5 Library containing video postprocessing routines 10/2001
libavformat 1 205 Audio/video container mux and demux library 12/2002
libavutil 8 70 Shared routines and helper library 08/2005
libswscale 6 20 Video scaling library 08/2006
tools 1 4 Miscellaneous utilities 07/2007
libavdevice 1 16 Device handling library 12/2007
libavfilter 1 11 Video filtering library 02/2008

166 A. Capiluppi, C. Boldyreff, and K.-J. Stol

was created relatively early in the history of this system (08/2001), and it has
now grown to some 220 thousand lines of code (KSLOC) alone.

As is visible in the time-line of Figure 3, other components have coalesced
since then; each component appears modularized around a specific “function”,
according to the ”Description” column in Table 1, and as such have become
better reusable in other systems (and are in fact repackaged as distinct OSS
projects).

Fig. 3. Inception dates of components

4 Results and Discussion

This section provides the results of the empirical investigation into both the
growth in size, and the evolution of connections between the components of
FFMpeg. For each build-level component summarized in Table 1, a study of its
relative change in terms of the contained SLOC (source lines of code) along its
life-cycle has been undertaken. In addition, a study of the architectural connec-
tions has been performed, by analyzing temporally:

1. How many couplings were actually involved with elements of the same com-
ponent (as per the definition of cohesion given above), and

2. How many couplings consisted of links to or from other components (as per
the definition of inbound and outbound couplings).

4.1 Size Growth of FFMpeg Components

As a general result, two main behaviors can be observed, which have been
clustered in the two graphs of Figure 4; on the top graph, three components
(libavcodec, libavutil and libavformat) show a linear growth as a general
trend (relative to the maximum size achieved by each). In the following, these
components will be referred to as “E-type”. On the other hand, the rest of
FFMpeg components show a traditional library behavior, and will be referred as
either “S-type” or “P-type” systems.

Size Growth in E-Type Components. Considering Figure 4 (top), the
libavcodec component started out as a medium-sized component (18 KSLOCs),
but currently its size has reached over 220 KSLOCs, an increase of 1, 100%. Also,
the libavformat component has moved through a comparable pattern of growth
(250% increase), but with a smaller size overall (from 14 to 50 KSLOC). Al-
though reusable resources are often regarded as “S-type” and “P-type” systems,

Successful Reuse of Software Components 167

since their evolutionary patterns manifest a reluctance to growth (as in the typ-
ical behavior of software libraries), these two components achieve an “E-type”
evolutionary pattern even when heavily reused by several other projects. The
studied cases appear to be driven mostly by adaptive maintenance, since new
audio and video formats are constantly added and refined among the functions
of these components.

Expressing these observations in biological terms, these software components
appear and grow as “fruits” from the main “plant” (“trunk” in the version
control system). Furthermore, these components behave as “climacteric” fruits,
meaning that they ripen off the parent plant (and in some cases, they must be
picked in order to ripen). These FFMpeg components have achieved an evolution
even when separated from the project they belonged to, similarly to climacteric
fruits.

Size Growth in S- and P-Type Components. On the other hand, the remain-
ing components show a more traditional, library-style type of evolution: the bot-
tom part of Figure 4 details the relative growth of these components. Libpostproc
and libswscale appear hardly changing at all, even if they have been formed for
several years in the main project. Libavdevice, when created, was already at 80%
of its current state; libavfilter, instead, although achieving a larger growth,
does so since it was created at a very small stage (600 SLOC), which has now dou-
bled (1,4 KSLOCs). These resources are effectively library-type of systems, and
their reuse is simplified by the relative stability of their characteristics, meaning
the type of problem they solve. Using the same analogy as above, the components
(”fruits“) following this behavior are unlikely ripen any further once they have
been picked. Outside of the main trunk of development, these components remain
unchanged, even when incorporated into other OSS projects.

4.2 Architectural Growth of FFMpeg Components

The observations related to the growth in size have been used to cluster the com-
ponents based on their coupling patterns. As mentioned above, each of the 100
monthly check-outs of the FFMpeg system have been analyzed in order to extract
the common couplings of each element (functions or files), and these common
couplings have been later converted into connections between components.

As observed also with the growth in size, the E-type components present a
steadily increasing growth of couplings compared to the S- and P-type compo-
nents. The former also display a more modularized growth pattern, resulting in
a more stable and defined behavior.

Coupling Patterns in E-type Components. Figure 5 proposes the visual-
ization of the three E-type components as identified above. For each component,
4 trends are displayed:

1. The overall amount of its common couplings;
2. The amount of couplings directed towards its elements (cohesion, labeled

“self”);

168 A. Capiluppi, C. Boldyreff, and K.-J. Stol

Fig. 4. E-type (top) and S- and P-type of components (bottom) – growth in size

3. The amount of its outbound couplings (fan-out, labeled “out”);
4. The amount of its inbound couplings (fan-in, labeled “in”);

Each component has a continuous growth trend regarding the number of cou-
plings affecting it. The libavutil component has one sudden discontinuity in
this growth, which will be later explained. As a common trend, it is also visible
that both the libavcodec and libavformat components have a strong cohesion
factor, which maintains over the 75% threshold throughout their evolution. This
means that, in these two components, more than 75% of the total number of cou-
plings are consistently between internal elements. The cohesion of libavutil,

Successful Reuse of Software Components 169

on the other hand, degrades until it becomes very low, revealing a very high fan-
in; after the restructuring at around 1/5 of its lifecyle, this component becomes
a pure server, fully providing services to other components (more than 90% of
all its couplings – around 3,500 – come from external components).

When observing the three components as part of a common, larger system,
the changes in one component become relevant to the other components as well.
As an example, the general trend of libavcodec is intertwined to the other two
components in the following ways:

1. The overall number of couplings towards its own elements decreased during
a time interval when no further couplings were added, therefore its cohesion
has degraded;

2. At the same time, its fan-out suddenly increased, topping some 17% at the
latest studied point: observing carefully, the larger amount of requests of
service were more and more directed towards libavutil, which around the
same period experienced a sudden increase of its fan-in;

3. Also, the fan-in of libavcodec decreased: originally, the major cause of this
was due to numerous requests from the libavformat component. Through-
out the evolution, these links were converted into connections to libavutil
instead.

Performing a similar analysis for libavformat, it becomes clear that its fan-out
degrades, becoming gradually larger, the reason being an increasingly stronger
link to the elements of both libavcodec and libavutil. This form of inter-
component dependencies is a form of architectural decay: at the latest available
data point (08/20009), this has been reproduced in Figure 6.

This graph shows the typical trade-offs between encapsulation and decomposi-
tion: several of the common files accessed by both libavformat and libavcodec
have been lately moved to a third location (libavutil), that acts as a server to
both. This in turns has a negative effect on reusability: when trying to use the
functionalities of libavcodec, it will be necessary to import also the contents
of libavutil. Even worse, when trying to reuse the attributes of libavformat,
the connections to both libavutil and libavcodec have to be restored.

Coupling Patterns in S- and P-type Components. The characteristics of
the E-type components as described above can be summarized as follows: large
cohesion, fan-out under a certain threshold, and clear, defined behavior as a
component (e.g., pure “server” as achieved by the libavutil component).

The second cluster of components identified above (the “S-” and “P-type”)
revealed several discrepancies from the results observed in subsection 4.2. A list
of key results is summarized here:

1. As also observed for the growth of components, the number of couplings af-
fecting this second cluster of components reveals a difference of one
(libswscale, libavdevice and libavfilter) and even two (libpostproc)
orders of magnitude with respect to the E-type components.

170 A. Capiluppi, C. Boldyreff, and K.-J. Stol

Fig. 5. E-type components – coupling patterns

Successful Reuse of Software Components 171

libavutil

libavcodec

1748

8250libavformat

1093

523
4051

Fig. 6. Effects of excessive fan-out

2. Slowly growing trends in the number of couplings were observed in
libavdevice and libavfilter, but their cohesion remains stable. On the
other hand, a high fan-out was consistently observed in both, with values
of 0.7 and 0.5, respectively. Observing more closely, these dependencies are
directed towards the three E-type components defined above. This suggests
that these components are not yet properly designed, also due to their rela-
tively young age: their potential reuse is subsumed to the inclusion of other
FFMpeg libraries as well.

As a summary, this second type of components can be classified as slowly grow-
ing, less cohesive and more connected with other components in the same system.
They can be acceptable reusable candidates, but only in conjunction with the
whole, hosting project (i.e., FFMpeg).

4.3 Deployment of Libavcodec in Other OSS Projects

The three components libavcodec, libavformat and libavutil have been
characterized above as highly reusable, based on coupling patterns and size
growth attributes. In order to observe how these components are actually reused
and deployed in new hosting systems, this Section summarizes the study of the
deployment of the libavcodec component in 4 OSS projects: avifile7, avidemux8,
MPlayer and xine9.

The selection of these projects for the deployment study is based on their
current reuse of these components. Each project hosts a copy of the libavcodec
component in their code repositories, therefore implementing a white-box reuse
strategy of this resource. The issue to investigate is whether these hosting projects
maintain the internal characteristics of the original libavcodec, hosted in the
FFMpeg project. In order to do so, the coupling attributes of this folder have
been extracted from each OSS project, and the number of connected folders has
been counted, together with the total number of couplings.

Each graph in the Figure 7 represents a hosting project: the libavcodec
copy presents some degree of cohesion (the re-entrant arrow), and its specific
fan-in and fan-out (inwards and outwards arrows, respectively). The number of

7 http://avifile.sourceforge.net/
8 http://fixounet.free.fr/avidemux/
9 http://www.xine-project.org/home

http://avifile.sourceforge.net/
http://fixounet.free.fr/avidemux/
http://www.xine-project.org/home

172 A. Capiluppi, C. Boldyreff, and K.-J. Stol

Fig. 7. Deployment and reuse of libavcodec

connections (i.e., distinct source folders) responsible for the fan-in and fan-out
are displayed by the number in the circle. The following observations can be
made:

– The total amount of couplings in each copy is always lower than the original
FFMpeg copy: this means that not the whole FFMpeg project is reused, but
only some specific resources;

– In each copy, the ratio fan− in/fan− out is approximately 2:1. In the xine
copy, this is reversed: this is due to the fact that apparently xine does not
host a copy of the libavformat component;

Successful Reuse of Software Components 173

– For each graph, the connections between libavcodec and libavutil, and
between libavcodec and libavformat have been specifically detailed: the
fan-in from libavformat alone has typically the same order of magnitude
than all the remaining fan-in;

– The fan-out towards libavutil typically accounts for a much larger ratio.
This is a confirmation of the presence of a consistent dependency between
libavcodec and libavutil, which therefore must be reused together.
The avidemux project moved the necessary dependencies to libavutil
within the libavcodec component; therefore no build-level component
for libavutil is detectable.

5 Threats to Validity

We are aware of a few limitations of this study, which we discuss next. Since
we do not claim any causal relationships, we do not discuss threats to internal
validity.

Construct Validity. We used common coupling to represent inter-software
component connections. Furthermore, the build-level components presented in
Table 1 are automatically assigned (though probably accurate), but could be
only subcomponents of a larger component (e.g., composed of both libavutil
and libavcodec).

External Validity. External validity is concerned with the extent to which the
results of our study can be generalized. In our study, we have focused on one
case study (FFMPeg), which is written mostly in C. Performing a similar study on
a system written in, for instance, an object-oriented language, the results could
be quite different. However, it is not our goal to present generalizations based
on our results. Rather, the aim of this paper is to document a successful case of
OSS reuse by other OSS projects.

6 Conclusions

Empirical studies of reusability of OSS resources should proceed in two strands:
first, they should provide mechanisms to select the best candidate component
to act as a building block in a new system; second, they should document suc-
cessful cases of reuse, where an OSS component(s) has been deployed in other
OSS projects. This paper attempts to give a contribution to the second strand
by empirically analysing the FFMpeg project, whose components are currently
widely reused in several multimedia OSS applications. The empirical study was
performed on a monthly basis during the last 8 years of its development: the
characteristics of its size, the evolutionary growth and its coupling patterns
were extracted, in order to identify and understand the attributes that made its
components a successful case of OSS reusable resources. After having studied
these characteristics, 4 OSS projects were selected among the ones implement-
ing a white-box reuse of the FFMpeg components: the deployment and the reuse

174 A. Capiluppi, C. Boldyreff, and K.-J. Stol

of these components was studied from the perspective of their interaction with
their hosting systems.

In the FFMpeg study, a number of findings were obtained: first, it was found
that several of its build-level components make for a good start in the selection of
reusable components. They coalesce, grow and become available at various points
in the life cycle of this project, and all of them are currently available as building
blocks for other OSS projects to use. Second, it was possible to classify at least
two types of components: one set presents the characteristics of evolutionary (E-
type) systems, with a sustained growth throughout. The other set, albeit with
a more recent formation, is mostly unchanged, therefore manifesting the typical
attributes of reusable libraries.

The two clusters were compared again in the study of the connections be-
tween components: the first set showed components with either a clearly defined
behavior, or an excellent cohesion of its elements. It was also found that each of
these three components becomes more connected to the others, as forming one
single super-component. The second set appeared less stable, with accounts of
large fan-out, which called for a poor design of the components.

One of the reusable resources found within FFMpeg (i.e., libavcodec) were
analysed when deployed into 4 OSS systems performing a white-box reuse: its
cohesion pattern appeared similar to the original copy of libavcodec, while
it emerged with more clarity that at present its reuse is facilitated when the
libavformat and libavutil components are reused too.

Acknowledgements. The authors would like to thank Daniel German for the
clarification on the potential conflicts of licenses in the FFMpeg project, Thomas
Knowles for the insightful discussions, and Nicola Sabbi for the insider knowl-
edge of the MPlayer system. The work of Klaas-Jan Stol is partially funded by
IRCSET under grant no. RS/2008/134 and by Science Foundation Ireland grant
03/CE2/I303 1 to Lero (www.lero.ie).

References

1. Abi-Antoun, M., Aldrich, J., Coelho, W.: A case study in re-engineering to enforce
architectural control flow and data sharing. Journal of Systems and Software 80(2),
240–264 (2007)

2. Arief, B., Gacek, C., Lawrie, T.: Software architectures and open source software
– Where can research leverage the most? In: Proceedings of Making Sense of the
Bazaar: 1st Workshop on Open Source Software Engineering, Toronto, Canada
(May 2001)

3. Arisholm, E., Briand, L.C., Foyen, A.: Dynamic coupling measurement for object-
oriented software. IEEE Transactions on Software Engineering 30(8), 491–506
(2004)

4. Avgeriou, P., Guelfi, N.: Resolving architectural mismatches of COTS through
architectural reconciliation. In: Franch, X., Port, D. (eds.) ICCBSS 2005. LNCS,
vol. 3412, pp. 248–257. Springer, Heidelberg (2005)

5. Basili, V., Rombach, H.D.: Support for comprehensive reuse. IEEE Software
Engineering Journal 6(5), 303–316 (1991)

Successful Reuse of Software Components 175

6. Bowman, I.T., Holt, R.C., Brewster, N.V.: Linux as a case study: its extracted soft-
ware architecture. In: Proceedings of the 21st International Conference on Software
engineering (ICSE), pp. 555–563. IEEE Computer Society Press, Los Alamitos
(1999)

7. Capiluppi, A., Boldyreff, C.: Identifying and improving reusability based on cou-
pling patterns. In: Mei, H. (ed.) ICSR 2008. LNCS, vol. 5030, pp. 282–293. Springer,
Heidelberg (2008)

8. Capiluppi, A., Knowles, T.: Software engineering in practice: Design and architec-
tures of FLOSS systems. In: Boldyreff, C., Crowston, K., Lundell, B., Wasserman,
A.I. (eds.) OSS 2009. IFIP AICT, vol. 299, pp. 34–46. Springer, Heidelberg (2009)

9. Capiluppi, A., Morisio, M., Ramil, J.F.: The evolution of source folder structure
in actively evolved open source systems. In: Proceedings of the 10th International
Symposium on Software Metrics (METRICS), pp. 2–13. IEEE Computer Society,
Washington, DC, USA (2004)

10. de Jonge, M.: Source tree composition. In: Gacek, C. (ed.) ICSR 2002. LNCS,
vol. 2319, pp. 17–32. Springer, Heidelberg (2002)

11. de Jonge, M.: Build-level components. IEEE Transactions on Software Engineer-
ing 31(7), 588–600 (2005)

12. Dueñas, J.C., de Oliveira, W.L., de la Puente, J.A.: Architecture recovery for soft-
ware evolution. In: Proceedings of the 2nd Euromicro Conference On Software
Maintenance And Reengineering (CSMR), pp. 113–120 (1998)

13. Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S., Mockus, A.: Does code de-
cay? assessing the evidence from change management data. IEEE Transactions on
Software Engineering 27, 1–12 (2001)

14. Fenton, N.E., Pfleeger, S.L.: Software metrics: a practical and rigorous approach.
Thomson (1996)

15. German, D.M., Gonzalez-Barahona, J.M., Robles, G.: A model to understand the
building and running inter-dependencies of software. In: Proceedings of the 14th
Working Conference on Reverse Engineering (WCRE), pp. 140–149. IEEE Com-
puter Society, Washington, DC, USA (2007)

16. German, D.M., Hassan, A.E.: License integration patterns: Addressing license
mismatches in component-based development. In: Proceedings of the 2009 IEEE
31st International Conference on Software Engineering (ICSE), pp. 188–198. IEEE
Computer Society, Washington, DC, USA (2009)

17. Godfrey, M., Eric, H.: Secrets from the monster: Extracting mozilla’s software
architecture. In: Proceedings of the 2nd Symposium on Constructing Software En-
gineering Tools, CoSET (2000)

18. Hauge, Ø., Østerlie, T., Sørensen, C.-F., Gerea, M.: An Empirical Study on Se-
lection of Open Source Software - Preliminary Results. In: Capiluppi, A., Rob-
les, G. (eds.) Proceedings of the 2009 ICSE Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and Development (FLOSS), Vancou-
ver, Canada, May 18, pp. 42–47. IEEE Computer Society Press, Los Alamitos
(2009)

19. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley,
Reading (2000)

20. Krikhaar, R., Postma, A., Sellink, A., Stroucken, M., Verhoef, C.: A two-phase
process for software architecture improvement. In: Proceedings of the IEEE In-
ternational Conference on Software Maintenance (ICSM), p. 371. IEEE Computer
Society, Washington, DC, USA (1999)

21. Kruchten, P.: The 4+1 view model of architecture. IEEE Software 12(5), 88–93
(1995)

176 A. Capiluppi, C. Boldyreff, and K.-J. Stol

22. Lang, B., Abramatic, J.-F., González-Barahona, J.M., Gómez, P., Pedersen, M.K.:
Free and Proprietary Software in COTS-Based Software Development. In: Franch,
X., Port, D. (eds.) ICCBSS 2005. LNCS, vol. 3412, p. 2. Springer, Heidelberg (2005)

23. Lehman, M.M.: Programs, cities, students, limits to growth? Programming
Methodology, 42–62 (1978); Inaugural Lecture

24. Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proc.
IEEE 68(9), 1060–1076 (1980)

25. Li, J., Conradi, R., Bunse, C., Torchiano, M., Slyngstad, O.P.N., Morisio, M.:
Development with off-the-shelf components: 10 facts. IEEE Software 26(2), 80–87
(2009)

26. Li, W., Henry, S.: Object-oriented metrics that predict maintainability. J. Syst.
Softw. 23(2), 111–122 (1993)

27. Majchrowski, A., Deprez, J.-C.: An operational approach for selecting open source
components in a software development project. In: O’Connor, R., Baddoo, N.,
Smolander, K., Messnarz, R. (eds.) EuroSPI. CCIS, vol. 16, pp. 176–188. Springer,
Heidelberg (2008)

28. Mockus, A.: Large-scale code reuse in open source software. In: Proceedings of the
First International Workshop on Emerging Trends in FLOSS Research and Devel-
opment (FLOSS), p. 7. IEEE Computer Society, Washington, DC, USA (2007)

29. Orsila, H., Geldenhuys, J., Ruokonen, A., Hammouda, I.: Update propagation
practices in highly reusable open source components. In: Russo, B., Damiani, E.,
Hissam, S.A., Lundell, B., Succi, G. (eds.) Open Source Development, Communities
and Quality. IFIP, vol. 275, pp. 159–170. Springer, Boston (2008)

30. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058 (1972)

31. Sametinger, J.: Software engineering with reusable components. Springer, New
York (1997)

32. Sartipi, K., Kontogiannis, K., Mavaddat, F.: A pattern matching framework for
software architecture recovery and restructuring. In: Proceedings of the 8th Inter-
national Workshop on Program Comprehension (IWPC), pp. 37–47 (2000)

33. Schmerl, B., Aldrich, J., Garlan, D., Kazman, R., Yan, H.: Discovering architectures
from running systems. IEEE Transactions on Software Engineering 32(7), 454–466
(2006)

34. Senyard, A., Michlmayr, M.: How to have a successful free software project. In:
Proceedings of the 11th Asia-Pacific Software Engineering Conference, pp. 84–91.
IEEE Computer Society, Busan (2004)

35. Sommerville, I.: Software Engineering, 7th edn. International Computer Science
Series. Addison Wesley, Reading (2004)

36. Torchiano, M., Morisio, M.: Overlooked aspects of cots-based development. IEEE
Software 21(2), 88–93 (2004)

37. Tran, J.B., Godfrey, M.W., Lee, E.H.S., Holt, R.C.: Architectural repair of open
source software. In: Proceedings of the 8th International Workshop on Program
Comprehension (IWPC), pp. 48–59. IEEE Computer Society, Washington, DC,
USA (2000)

38. Tu, Q., Godfrey, W.M.: The build-time software architecture view. In: Proceed-
ings of 2001 International Conference on Software Maintenance, pp. 65–74. IEEE,
Florence (2001)

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 177–195, 2011.
© IFIP International Federation for Information Processing 2011

License Update and Migration Processes in Open Source
Software Projects

Chris Jensen and Walt Scacchi

Institute for Software Research,
University of California, Irvine Irvine, CA USA 92697

{cjensen,wscacchi}@uci.edu

Abstract. Open source software (OSS) has increasingly been the subject of re-
search efforts. Central to this focus is the nature under which the software can
be distributed, used, and modified and the causes and consequent effects on
software development, usage, and distribution. At present, we have little under-
standing of, what happens when these licenses change, what motivates such
changes, and how new licenses are created, updated, and deployed. Similarly,
little attention has been paid to the agreements under which contributions are
made to OSS projects and the impacts of changes to these agreements. We
might also ask these same questions regarding the licenses governing how indi-
viduals and groups contribute to OSS projects. This paper focuses on address-
ing these questions with case studies of processes by which the Apache Soft-
ware Foundation's creation and migration to Version 2.0 of the Apache Soft-
ware License and the NetBeans project's migration to the Joint Licensing
Agreement.

Keywords: Open source, license evolution, process, Apache, NetBeans.

1 Introduction

Software process research has investigated many aspects of open source software
(OSS) development in the last several years, including release processes, communica-
tion and collaboration, community joining, and project governance. The central point
of Lawrence Lessig's book “Code” is that the hardware and software that make up
cyberspace also regulate cyberspace. He argues that code both enables and protects
certain freedoms, but also serves as to control cyberspace. Software licenses codify
these freedoms and regulations by setting forth the terms and conditions for software
use, modification, and distribution of a system and any changes made to it. For that
reason, others have suggested that licenses serve as contracts for collaboration. In the
case of non-OSS licenses, that contract may indicate no collaboration, but rather strict
separation between users and developers. OSS licenses, by contrast range widely in
permissiveness, some granting more rights to the original authors and some granting
more rights to consumers of OSS software. While research has examined OSS li-
censes to great detail, we are only beginning to understand license evolution. Just as
OSS code is not static, neither are the licenses under which it is distributed. Research
into license evolution is just beginning. However, when licenses change, so too the

178 C. Jensen and W. Scacchi

contracts for collaboration change. This paper seeks to provide an incremental step to
understanding how changes in software licensing impact software development
processes.

Why does understanding license update and migration matter? Companies using
OSS software need to know how changes affect their use, modification, and distribu-
tion of a software system. License compatibility in OSS has long been a topic of de-
bate. Research is only beginning to provide tools for assistance in resolving software
license compatibility [1]. OSS project participants need to understand why changes
are being made, whether the changes align with their values and business models
(e.g., enabling new avenues of license compatibility offering strategic benefit or open-
ing up new channels of competition). As a project sponsor or host, you may be con-
cerned about how to best protect both the software system and your user community,
but also your business model. You typically want a license that will attract a large
number of developers to your project [2] while at the same time allowing you to make
a profit and stay in business.

While licenses such as the GNU General Public License (GPL), the Berkeley
Software Distribution (BSD) license, and the Apache License are well known, we
rarely consider another type of license agreement critical to understanding collabora-
tion in OSS projects: individual contributor license agreements (CLAs) and organiza-
tional contributor license agreements (OCLAs), for contributos from organized enti-
ties. In non-OSS software development, the contract for collaboration is typically an
employment contract, often stating that all intellectual property rights pertaining to
source code written by an employee are property of the employer. This provides the
employer with complete control of the rights granted of licensed software. In OSS
development, you have a situation where multiple developers are contributing to a
software system. Without copyright assignment or a CLAs, changing a software li-
cense requires the consent of every contributor to that system. We observed this situ-
ation in the case of the Linux kernel, which suggested that without a CLA, license
evolution can become inhibited or prevented as the number of contributors, each with
differing values and objectives, increases. To understand how changes in software
licenses affect software development processes, we must also investigate changes in
CLAs.

We address these issues with two case studies. The first examines the creation and
deployment of the Apache Software License, Version 2.0. The second looks at an
update to the contributor license agreement in the NetBeans project.

2 Background Work

Legal scholars, such as St. Laurent [3] and Larry Rosen [4], former general counsel
and secretary for the Open Source Initiative (OSI), have written extensively on license
selection. They note that quite often, the choice of license is somewhat outside the
control of a particular developer. This is certainly the case for code that is inherited
or dependent on code that is either reciprocally licensed, or at the very least, requires
a certain license for the sake of compatibility. However, outside such cases, both
St. Laurent and Rosen advocate for the use of existing and well-tested, well-
understood licenses as opposed to the practice of creating new licenses. Such license

 License Update and Migration Processes in Open Source Software Projects 179

proliferation is seen as a source of confusion among users and is often unnecessary
given the extensive set of licenses that already exist for a diverse set of purposes.
Lerner and Tirole [5] observe specific determinant factors in license selection. Of
the 40,000 Sourceforge projects studied, projects geared towards end-users tended
towards more restrictive license terms, while projects directed towards software de-
velopers tended towards less restrictive licenses. Highly restrictive licenses were also
found more common in consumer software (e.g., games) but less common for soft-
ware on consumer-oriented platforms (e.g., Microsoft Windows) as compared to non-
consumer-oriented platforms. Meanwhile, Rosen specifically addresses the issue of
relicensing, commenting that license changes made by fiat are likely to fracture the
community. This case of relicensing is exactly the focus of our case studies here.

The drafting and release of the GNU General Public License, Version 3.0 was done
in a public fashion, inviting many prominent members of the OSS community to par-
ticipate in the process. In fact, we even see a sort of prescriptive process specification
outlining, at a high level, how the new license was to be created. This license revision
process is interesting from the perspective that the license in question is not used by
one project or one foundation, but rather is an update of the most commonly used
open source license in practice. As such the process of its update and impact of its
revision on software development is both wide ranging and widely discussed.

Di Penta, et al. [6], examined changes to license headers in source code files in
several major open source projects. Their three primary research questions sought to
understand how frequently licensing statements in source code files change, the extent
of the changes, and how copyright years change in source code files. Their work
shows that most of the changes observed to source code files are small, though even
small changes could signify a migration to a different license. The authors also note
that little research available speaks to license evolution, pointing to the need for
greater understanding in this area.

Lindman, et al., [2] examine how companies perceive open source licenses and
what major factors contribute to license choice in companies releasing open source
software. The study reveals a tight connection between business model, patent poten-
tial, the motivation for community members to participate in development, control of
project direction, company size, and network externalities (compatibility with other
systems) and licensing choice.

Lindman, et al., provide a model of a software company, its developers, and users
in the context of an OSS system developed and released from a corporate environ-
ment [2]. However, few systems are developed in complete isolation. Rather, they
leverage existing libraries, components, and other systems developed by third parties.
Moreover, as Goldman and Gabriel point out, open source is more than just source
code in a public place released under an OSS license [7]; communities matter. Fig. 1
shows the production and consumption of open source software, highlighting the im-
pact of software licenses and contributor license agreements.

Going a step further, Oreizy [8] describes a canonical high-level software customi-
zation process for systems and components, highlighting intra-organizational software
development processes and resource flow between a system application developer, an
add-on developer, a system integrator, and an end user.

180 C. Jensen and W. Scacchi

Fig. 1. A model of software production and consumption with open source licensing

Similarly, we have examined such concepts in the context of software ecosystems
[9] in the context of process interaction. Software license change can precipitate inte-
grative forms of process interaction in the case of dual and multi-licensing by enabl-
ing new opportunities for use of software systems upstream of a project to provide
added functionality or support, as well as projects downstream vis a vis use as a
library, plugin development, support tool development, and via customization and
extension. In such cases, software source becomes a resource flowing between inte-
racting projects. However, license change can also trigger interproject process con-
flict if new license terms render two systems incompatible. At that point, the

 License Update and Migration Processes in Open Source Software Projects 181

resource flow between projects can be cut off, when downstream consumers of soft-
ware source code no longer receive updates. A more common example with non-OSS
is license expiration. License-based interproject process conflicts can also manifest as
unmet dependencies in software builds or an inability to fix defects or add enhance-
ments to software, resulting in process breakdown, and failing recover, project failure.
OSS licenses, however, guarantee that even when conflict occurs, recovery is possible
because the source is available and can be forked.

3 Methodology

The case studies in this report are part of an ongoing, multi-year research project dis-
covering and modeling open source software processes. Our research methodology is
ethnographically informed, applying a grounded theory to the analysis of artifacts
found in OSS projects. The primary data sources in this study come from mailing list
archives of the Apache and NetBeans projects.

Our primary data sources were mailing list messages. However, we also found
supplementary documentation on each project's websites that served to inform our
study. These supplementary documents were often, though not always referenced by
the messages in the mailing list. Cases regarding the NetBeans project all took place
between April and June of 2003, involving over 300 email messages, whereas the
Apache cases were spread over several discrete time periods and consisted of more
than 350 messages.

Case selection happened in two ways. For NetBeans, the cases arose during our
study of requirements and release processes, having stood out as prominent issues
facing the community during the time period studied. Although we observed addi-
tional incidents appropriate for discussion, the three cases selected fit together nicely
as a cohesive story. This approach was also used in the study of the Apache project.
However, due to a lower incident frequency, we expanded our study over a longer
time period to find incidents that proved substantial. As a testament to the nature of
project interaction, issues raised in mailing list discussions proved to be short-lived,
either because they were resolved quickly or because the conversation simply ceased.
It is possible to suggest this is the normal behavior pattern for both projects. A few
issues proved outliers, having more focused discussions, and these were selected for
further study. We also observed a tendency for discussions to play out in a series of
short-lived discussions sessions. A topic would be raised, receiving little or no atten-
tion. Then, at a later time, it would be raised again. The JCA discussion in NetBeans
and Subversion migration discussion in the Apache project demonstrated such con-
versational resurgence. We observed, in general, that discussion topics carry certain
conversational momentum. Topics with a high degree of momentum tended to have
lengthier discussion periods or frequent discussion sessions until fully resolved or
abandoned while topics with a low degree of momentum were addressed quickly or
simply died off. The causes and factors affecting changes in momentum were not
investigated as they laid too far afield from the focus of this study. We do note that
although consensus by attrition has been cited in other communities (e.g., [10 and
11]), we did not observe it in effect in any of the cases studied, but rather that the
primary participants in discussions remained active in their respective projects for

182 C. Jensen and W. Scacchi

several months following the reported incidents. The creation of the Apache License,
version 2.0 was directed to us by a colleague familiar with the project. Data for the
Apache licensing case was gathered from email messages sent to a mailing list estab-
lished for the purpose of discussing the proposed changes.

Considering the difficulties we experienced with building our own search engine to
support process discovery, we still faced the challenge of keeping track of process
data once we found it as we were building our models. Up until this point, our
approach to providing process traceability was simply to include links to project arti-
facts in our models. However, this strategy did not help us build the models, them-
selves. We returned the search problem back to the projects, themselves using their
own search engines to locate process data, looking for more lightweight support for
discovery.

Our current strategy for providing computer support for process discovery returns
to using each project's own search engine to locate process information. We have
operationalized the reference model as an OWL ontology with the Protégé ontology
editor [12], using only the OWL class and individual constructs to store process con-
cepts and their associated search queries respectively. Secondly, we built a Firefox
plugin, Ontology [13], to display the reference model ontology in the Firefox web
browser. Next, we enlisted the Zotero citation database Firefox plugin [14] to store
process evidence elicited from project data, integrating the two plugins such that each
datum added to the citation database from a project artifact is automatically tagged
with the selected reference model entities.

Fig. 2. Data capture in Firefox with Zotero and Ontology

 License Update and Migration Processes in Open Source Software Projects 183

The use of a citation database as a research data repository may seem unintuitive.
Zotero, however, has proven well suited for our needs. Like many Firefox plugins,
Zotero can create records simply from highlighted sections of a web document,
though the creation of arbitrary entries (not gleaned from document text selections) is
also possible. It can also save a snapshot of the entire document for later review,
which is useful given the high frequency of changes of some web documents- changes
that evidence steps in a software processes. The tag, note, and date fields for each
entry are useful for recording reference model associations and memos about the en-
try for use in constructing process steps and ascertaining their order. A screenshot of
Zotero with Ontology appears in Fig. 2.

The plugin integration greatly facilitates the coding of process evidence and pro-
vides traceability from raw research data to analyzed process models. As the tool set
is browser-based, it is not limited to analysis of a particular data set, whether local or
remote. Moreover, the tool set does not limit users to a single ontology or Zotero
database, thereby allowing users to construct research models using multiple ontol-
ogies describing other (e.g. non-OSS process) phenomenon and reuse the tool set for
analysis of additional data sets. Thus, it may be easily appropriated for grounded
theory research in other fields of study.

The elicitation of process evidence is still search driven. Rather than use one high-
ly customized search engine for all examined data repositories, the search task has
been shifted back to the organizations of study. This decision has several implica-
tions in comparison with the previous approach, both positive and negative. Using an
organization's own search engine limits our ability to extract document-type specific
metadata, however among the organizations we have studied, their search tools pro-
vide greater coverage of document and artifact types than Lucene handled at that
time. Furthermore, this approach does not suffer the data set limitations imposed by
web crawler exclusion rules. The ability to query the data set in a scripted fashion has
been lost, yet some scientists would see this as a gain. The use of computer-assisted
qualitative data analysis software (CAQDAS) historically has put into question the
validity of both the research method and results [15,16].

This tool was still quite unfinished as we began governance process discovery and
modeling. As we added functionality, we had to return to some of our data sources
and recapture it. Although we have high hope to use the integrated timeline feature to
assist in process activity composition and sequencing, the time and date support with-
in Zotero's native date format was insufficiently precise. With provisions only for
year, month, and day, there is no ability to capture action sequences that happen on
the same day. After adding support for greater date and time, we found having to
enter the date and time for every piece of data we captured rather tedious. Eventually
we have had to prioritize completion of discovery and modeling ahead of computer-
support for process discovery, and we had to disable the time and date entry. Unable
to utilize Zotero to our intended effect in discovery and modeling, our efforts with
Zotero remain in progress, pending usability improvements.

184 C. Jensen and W. Scacchi

Fig. 3. Timeline of the Review and Approval of the Apache License, Version 2.0

4 Creation and Migration to the Apache License, Version 2.0

The Apache Software Foundation created a new version of their license in the end of
2003 and beginning of 2004. Roy Fielding, then director of the ASF, announced the
license proposal on 8 November 2003 [17], inviting review and discussion on a mail-
ing list set up specifically for said purpose. Per Roy's message, the motivations for
the proposed license included

• Reducing the number of frequently asked questions about the Apache License.
• Allowing the license to be usable by any (including non-Apache) projects
• Requiring a patent license on contributions that necessarily infringe the contri-

butor's own patents
• Moving the full text of the license and specific conditions outside the source

code
• Roy further indicated a desire to have a license compatible with other OSS li-

censes, notably the GPL.

As you can see from Fig. 3, most of the discussion took place in mid November of
2003. In fact, given that the ApacheCon conference that ran from 16-19 November,
we can see a high message density in the days leading up to ApacheCon, with a
steady rate continuing on for a few days afterward. Beyond this, the frequency be-
comes sparse. An update to the proposed license was announced on 24 December
2003, after some internal review, a part of the process that is not publicly visible.
This update prompted a brief discussion. A second active time period is observable in
January 2004, when Fielding announces a final update (20 January 2004) and that the

 License Update and Migration Processes in Open Source Software Projects 185

final version of the license has been approved by the board [18 and 19] (21 January
2004).

The primary discussion point of the creation and migration to the 2.0 version of the
Apache License centered around a patent clause in the proposed license. According
to Brian Behlendorf, who was serving on the ASF board of directors at the time, the
ASF's patent-related goals were to “prevent a company from sneaking code into the
codebase covered by their own patent and then seeking royalties from either the ASF
or end-users” [20]. The clause in question read:

5. Reciprocity. If You institute patent litigation against a Contributor
with respect to a patent applicable to software (including a cross-claim
or counterclaim in a lawsuit), then any patent licenses granted by that
Contributor to You under this License shall terminate as of the date
such litigation is filed. In addition, if You institute patent litigation
against any entity (including a cross-claim or counterclaim in a law-
suit) alleging that the Work itself (excluding combinations of the Work
with other software or hardware) infringes Your patent(s), then any pa-
tent licenses granted to You under this License for that Work shall ter-
minate as of the date such litigation is filed. [21]

Consequences of this clause sparked discussion in a few areas, mainly surrounding
the first sentence of the clause regarding license termination. Legal representatives
from industry stated objections to losing usage rights for patent litigation regarding
any software, even software unrelated to that covered by the license [22], proposing
alternative wordings to achieve the stated license goals but restricting the trigger to
litigation pertaining to patents covered by the ASF licensed code [23]. Uncertainty
regarding the roles of people in the license revision process [24] and proposed
changes [25] created additional confusion regarding the patent reciprocity stance.

Eben Moglen, General Counsel for the Free Software Foundation (FSF), adds that
the first sentence of the license clause carries great risk for unintended and serious
consequences, and is an inappropriate vehicle for protecting free software against
patent litigation [26]. As such, the FSF has deemed the clause causes the license to be
incompatible with version 2 of the GPL, failing one of the goals of the proposed
Apache License.

Brian Carlson reports that the Debian community's consensus is that the proposed
license does not meet the criteria for Free Software Licenses under the Debian Free
Software Guidelines [27]. Consequently, code licensed as such would sandboxed into
the non-free archive, and therefore, not automatically built for Debian distributions,
nor receive quality assurance attention. Again, the license termination aspect of the
reciprocity clause is cited as the critical sticking point [28], with several members of
the Debian community arguing that free software licenses should only restrict modifi-
cation and distribution, but not usage of free software.

The patent reciprocity clause was not entirely rejected. There was support for ex-
tending it to provide mutual defense against patent litigation attacks against all open
source software [29]. The idea was quickly nixed on the grounds that it could lead to
users being attacked and unable to defend themselves if someone were to maliciously
violate a user's patent on an unrelated piece of software and create an open source

186 C. Jensen and W. Scacchi

version. In such a scenario, the user would have to choose between using Apache
licensed software and losing all their patents [30].

On 18 November, Fielding indicates that there have been “several iterations on the
patent sentences, mostly to deal with derivative work” [24], mentioning he will prob-
ably include the suggested changes in the patent language recommended by one of the
legal representatives from industry. Fielding notes that he has been in contact with
representatives from other organizations, among them Apple, Sun, the OSI, Mozilla,
and a few independent attorneys, although the details of these portions of the process
remain hidden.

The next milestone in the process occurs on 24 December, when Fielding mentions
that a second draft, version 1.23, has been prepared after internal review due to exten-
sive changes [31], and has been posted to the proposed licenses website [32] and the
mailing list. The new proposed license [33] incorporates many of the proposed
changes, including the removal of the contested first sentence of the patent reciprocity
clause, leaving the generally agreed upon patent termination condition:

If You institute patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated with-
in the Work constitutes direct or contributory patent infringement, then any patent
licenses granted to You under this License for that Work shall terminate as of the date
such litigation is filed.

The 1.23 version of the license received little feedback on the license discussion
mailing list. Aside from definition clarifications, there was an inquiry about GPL
compatibility. Behlendorf commented that Moglen's suggestions had been incorpo-
rated to address the two issues with GPL compliance, but he had been contacted earli-
er in the week to take a look at the current draft [34]. As a result, Behlendorf (on 7
January 2004) offers that the issues presented have been addressed to his satisfaction
and is willing to propose the license to the board at the January 2004 meeting [35].
However, before the board meeting, Fielding announces a version 1.24, featuring a
change to the definition of “Contributor” [36] and a 1.25 version very shortly thereaf-
ter to address the way “Copyright” is represented due to various laws and the use of
“(C)” to indicate copyright [37]. Finally, the Apache License, Version 2.0 was ap-
proved by the ASF board by a unanimous vote on 20 January 2004 [18] and an-
nounced to the mailing list by Fielding the following day [19]. Per the board meeting
minutes:

WHEREAS, the foundation membership has expressed a strong desire
for an update to the license under which Apache software is released,
WHEREAS, proposed text for the new license has been reworked and
refined for many, many months, based on feedback from the member-
ship and other parties outside the ASF,
NOW, THEREFORE, BE IT RESOLVED, that the proposed license
found at http://www.apache.org/licenses/proposed/LICENSE-2.0.txt is
officially named the Apache Software License 2.0. To grant a sufficient
transition time, this license is to be used for all software releases from
the Foundation after the date of March 1st, 2004.

 License Update and Migration Processes in Open Source Software Projects 187

The conversation continued on, briefly, to address two points. Firstly, a return to
the GPL compatibility discussion. Don Armstrong requested verification as to
whether Moglen/the FSF has identified the license as GPL compatible (Fielding's
announcement claimed it was) [38]. Fielding responds, saying Moglen sent a private
communication commenting on the license compatibility, and furthermore, that it was
the belief of the ASF that “a derivative work consisting of both Apache Licensed code
and GPL code can be distributed under the GPL,” and, as such, there wasn't anything
further to consider, as far as the ASF was concerned [39]. Incidentally, the FSF
standing is that due to the patent issue, the Apache license 2.0 is GPL3 compatible but
not GPL2 compatible [40]. Secondly, Vincent Massol requested information about
moving his Apache sub-project to the ASL2 license and what file license headers
should be used [41], to which Behlendorf responds [42]. A flow graph of the License
creation and migration process appears in Fig. 4.

Fig. 4. Process flow graph for Apache License Version 2.0 creation

5 Introduction of the Joint License Agreement

Rosen [4] suggests that copyright assignment is sought for two purposes:

188 C. Jensen and W. Scacchi

1. So the project can defend itself in court without the participation and ap-
proval of its contributors.

2. To give the project (and not the contributor) the right to make licensing deci-
sions, such as relicensing, about the software

The NetBeans case is interesting because it is not simple copyright assignment, but
rather affords both the contributor and the project (Sun Microsystems, specifically)
equal and independent copyright to contributed source.

The Joint License Agreement (JLA) was introduced to the NetBeans project on 28
April 2003 by Evan Adams, a prominent project participant working for Sun Micro-
systems [43]. Adams states that the JLA was being introduced in response to obser-
vations by Sun's legal team of Mozilla and other open source projects and believed
that Sun required full copyright authority to protect the NetBeans project from legal
threats and provide Sun with the flexibility to adapt the NetBeans license over time.
Under the proposed agreement, contributors (original authors) would retain all copy-
rights independently for project contributions and any previous contributions whose
authors did not agree to the terms of the JCA would have to be removed from the
source tree. The discussion spanned ninety messages from seventeen individuals over
nearly two months, with a follow-up discussion consisting of forty six messages from
fourteen individuals (eleven of whom participated in the earlier discussion) over a
third month. The discussion, which began at the end of April 2003 continued through
July (with a few sporadic messages extending out to September), long after the dead-
line for requiring JLA for project contributions.

The process for the license format change seems simple. The particulars of the
proposed license received early focus in the discussion. As the discussion progressed,
concern shifted away from details of the license agreement to the way in which the
change was proposed. In the course of discussion, it was revealed that switching to
the JLA was an idea proposed by the Sun legal counsel and the decision to adopt it
was done internally, unilaterally, and irrevocably by Sun without the involvement of
the project, at large. The adoption decision raised questions regarding the decision
rights and transparency within the project.

While recognizing that Sun-employed contributors were responsible for a majority
of project effort, non-Sun contributors took the lack of transparency and consideration
in the decision making process as disenfranchisement. In a follow-up discussion,
project members further expressed fears that giving Sun full copyright of contributed
code could lead to reclassification of volunteer-contributed code in objectionable
ways. More significantly, they feared the change could impact copyright of projects
built upon the NetBeans codebase, but not contributed back to NetBeans source repo-
sitory.

In time, most of the “corner case” concerns about the license agreement were
addressed. However, ultimately non-Sun employed contributors were still in the posi-
tion of having to trust Sun to act in an acceptable manner with a grant of full copy-
right. Moreover, the discussion drew out larger concerns regarding Sun's role
position of leadership and control of the project, and regarding transparency in
decision making. A flow graph of the JCA introduction process appears in Fig. 5.

 License Update and Migration Processes in Open Source Software Projects 189

Fig. 5. NetBeans JCA introduction process flow graph

6 Discussion and Conclusions

The two cases presented are not directly comparable. The Apache study looks at the
process of creating a new license, to be used by all projects under the domain of the
Apache Software Foundation. The NetBeans study focuses on the adoption of a new
license agreement for contributors to the NetBeans IDE and platform. Software
source licenses govern the rights and responsibilities of software consumers to
(among other things) use, modify, and distribute software. Contributor license
agreements (CLAs), on the other hand, govern the rights and responsibilities to
(among other things) use, modify, and distribute contributions of the organization to
which the contributions are submitted, and those retained by the contributor. The new
CLA stated that copyright of project contributions would be jointly owned by the ori-
ginating contributors, as well as the project's benefactor, Sun Microsystems. Code
contribution agreements may not be of interest to end users of software executables.
However, the OSS movement is known for its tendency towards user-contributors;

190 C. Jensen and W. Scacchi

that is, users who contribute to the development of the software and developers who
use their own software.

If we consider, specifically, the license changes in the Apache and NetBeans
projects, both were introduced as inevitable changes by persons of authority in each
project (founder Roy Fielding of Apache and Evan Adams of Sun Microsystems for
NetBeans). The initiators of the discussion both presented the rationale for making
the changes. For Apache, the move was motivated by a desire to increase compatibil-
ity with other licenses, reduce the number of questions about the Apache license,
moving the text outside the source code, and require patent license on contributions
where necessary. For NetBeans, the motivations were to protect the project from le-
gal threats and provide Sun the ability to change the license in the future. In the
Apache case, the motivations for making the changes went unquestioned. The discus-
sion focused on what objectives to achieve with the change and how best to achieve
them. The former had to do with a (minority) subset of participants who saw the li-
cense change as an opportunity to affect software development culture, altering the
direction of the software ecosystem as a means of governance on a macro level. The
latter had to do with making sure the verbiage of the license achieved the intended
objectives of the license without unintended consequences (such as those whose
nature was of the former). In the NetBeans case, the discussion focused on the differ-
ences between the licenses and their affect on non-sponsoring-organization partici-
pants (meso-level project governance) of the license. Given the context of the
surrounded cases, the structural and procedural governance of the project was also
questioned.

The area of the NetBeans license change that received the greatest push-back was
granting the sponsoring organization the right to change the license unilaterally at any
point in the future. This right was similarly granted to the ASF in the Apache contri-
butor license agreement (CLA) [44], a point that was not lost on participants in the
NetBeans license change discussions [45]. Why did this issue receive push-back in
NetBeans and not Apache? West and O'Mahony [46] suggest caution that, unlike
community-initiated projects, sponsored OSS projects must achieve a balance be-
tween establishing pre-emptive governance design (as we saw here) and establishing
boundaries between commercial and community ownership and control. The sur-
rounding cases served to create an atmosphere of distrust within the project. The dis-
trust led to fears that contributions from the sponsoring organization would become
closed off from the community, perhaps saved for the organization's commercial ver-
sion of the product, leaving the sponsoring organization as free-riders [47 and 48]
profiting off of the efforts of others without giving back [49] or otherwise limit what
project participants can do with project code.

Perhaps the most striking difference in the way the two license changes were intro-
duced is that the Apache case invited project participants (as well as the software eco-
system and the public, at large) to be a part of the change, whereas the NetBeans case
did not. Participants in the NetBeans project were left without a sense of transparen-
cy in the decision-making process in that the change was put on them without any
warning before the decision was made. Moreover, they were left without representa-
tion in the decision-making process in that they did not participate in determining the
outcome of a decision that had a large impact on them. This is not to say that the
Apache case was entirely transparent. There are clear indications from the messages

 License Update and Migration Processes in Open Source Software Projects 191

on the list that conversations were held off-list. Likewise, there were misconceptions
over what roles participants played and participant affiliation. However, the process
was not questioned, nor the result.

In conclusion, we have taken a first step to understanding how license change
processes impact software development processes by discovering and modeling the
update process for the Apache License and the update to the contributor license
agreement in the NetBeans project. We observed how differences in the processes in
introducing change intent influenced response to the changes. To put these cases into
context, NetBeans underwent two license changes since the events described above,
neither of which received significant push-back from the community. The first
shifted the license to the CDDL. The second was a move to dual license NetBeans
under the GPLv2. This second licensing shift was considered by Sun “at the request
from the community” [50]. Unlike the introduction of the JCA, the GPL shift was
presented to the community by Sun for feedback (in August 2007) as an added option
(rather than a complete relicensing) before the change was made. Thus, we can clear-
ly see further change in the processes used to govern the community in a way that
directly addressed the defects in the project's governance processes circa 2003. Shah
[51] echoes these concerns, observing that code ownership by firms creates the possi-
bility that non-firm-employed contributors will be denied future access to project
code. In other projects, these threats can lead to forking of the source, as happened
when the MySQL corporation was purchased by Sun Microsystems, which, in turn,
has recently been acquired by Oracle.

Acknowledgements. The research described in this report is supported by grants
from the Center for Edge Power at the Naval Postgraduate School, and the National
Science Foundation, #0534771 and #0808783. No endorsement implied.

References

1. Scacchi, W., Alspaugh, T., Asuncion, H.: The Role of Software Licenses in Open Archi-
tecture Ecosystems. In: Intern. Workshop on Software Ecosystems, Intern. Conf. Soft-
ware, Reuse, Falls Church, VA (September 2009)

2. Lindman, J., Paajanen, A., Rossi, M.: Choosing an Open Source Software License in
Commercial Context: A Managerial Perspective. In: 2010 36th EUROMICRO Conference
on Software Engineering and Advanced Applications Software Engineering and Ad-
vanced Applications, Euromicro Conference, pp. 237–244 (2010)

3. Laurent, A.M.: Understanding Open Source and Free Software Licensing. Reilly Media,
Inc., Sebastopol (2004)

4. Rosen, L.: Open Source Licensing: Software Freedom and Intellectual Property Law.
Prentice-Hall, Englewood Cliffs (2005)

5. Lerner, J., Tirole, J.: The Scope of Open Source Licensing. The Journal of Law, Econom-
ics & Organization 21(1), 20–56 (2005)

6. Di Penta, M., German, D., Guéhéneuc, Y., Antoniol, G.: An exploratory study of the
evolution of software licensing. In: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering (ICSE 2010), vol. 1, pp. 145–154. ACM, New York
(2010)

192 C. Jensen and W. Scacchi

7. Goldman, R., Gabriel, R.: Innovation Happens Elsewhere: How and Why a Com-pany
should Participate in Open Source. Morgan Kaufmann Publishers Inc., San Francisco
(2004)

8. Oreizy, P.: Open Architecture Software: A Flexible Approach to Decentralized Software
Evolution. Ph.D. Information and Computer Sciences, Irvine, CA, University of Califor-
nia, Irvine (2000)

9. Jensen, C., Scacchi, W.: Process Modeling Across the Web Information Infrastructure.
Software Process: Improvement and Practice 10(3), 255–272 (2005)

10. .Hedhman, N.: Mailing list message 07:18:55 -0000 “Re: [ANN] Avalon Closed (December
16, 2004),
http://www.mail-archive.com/communityapache.org/msg03889.html
(last accessed September 15, 2009)

11. Dailey, D.: Mailing list message 10:38:26 -0400 “Re: Support Existing Content / consen-
sus through attrition? (May 02, 2007),
http://lists.w3.org/Archives/Public/public-html/2007May/
0214.html (last accessed September 15, 2009)

12. The Protégé Ontology Editor Project, http://protege.stanford.edu/ (last ac-
cessed June 23, 2008)

13. The Firefox Ontology Plugin project,
http://rotterdam.ics.uci.edu/development/padme/browser/ontol
ogy (last accessed June 23, 2008)

14. The Zotero Project, http://www.zotero.org/ (last accessed June 23, 2008)
15. Bringer, J.D., Johnston, L.H., Brackenridge, C.H.: Using Computer-Assisted Qualitative

Data Analysis. Software to Develop a Grounded Theory Project Field Methods 18(3),
245–266 (2006)

16. Kelle, U.: Theory Building in Qualitative Research and Computer Programs for the Man-
agement of Textual Data. Sociological Research Online 2(2) (1997),
http://www.socresonline.org.uk/socresonline/2/2/1.html (last ac-
cessed June 23, 2008)

17. Fielding, R.: Message 02:39:09 GMT “Review of pro-posed Apache License, version 2.0
(November 08, 2003),
http://mail-archives.apache.org/mod/_mbox/archive-license/
200311.mbox/%3cBAAB287A-1194-11D8-842D-
000393753936apache.org/%3e (last acccessed August 14, 2009)

18. Board meeting minutes of The Apache Software Foundation (January 2004),
http://apache.org/foundation/records/minutes/2004/board_minu
tes_2004_01_21.txt (last accessed August 13, 2009)

19. Fielding, R.: Mailing list message 01:34:36 GMT “Apache License, Version 2.0 (January
24, 2004),
http://mail-archives.apache.org/mod_mbox/archive-license/
200401.mbox/%3C781EEF08-4E0D-11D8-915D-
000393753936apache.org%3E (last accessed August 13, 2009)

20. Behlendorf, B.: Mailing list message 07:31:40 GMT “RE: termination with unrelated trig-
ger considered harmful (November 22, 2003),
http://mail-archives.apache.org/mod_mbox/archive-license/
200311.mbox/%3C20031121232552.X38821fez.hyperreal.org%3E (last
accessed August 13, 2009)

 License Update and Migration Processes in Open Source Software Projects 193

21. Carlson, B. M.: Mailing list message 10:03:55 +0000 “Re: [fielding@apache.org: Review
of proposed Apache License, version 2.0] (November 8, 2003),
http://lists.debian.org/debian-legal/2003/11/msg00053.html
(last accessed August 12, 2009)

22. Peterson, S.K.: Mailing list message 14:52:54 GMT “ter-mination with unrelated trigger
considered harmful (November 14, 2003),
http://mailarchives.apache.org/mod_mbox/archivelicense/20031
1.mbox/%3C6D6463F31027B14FB3B1FB094F2C744704A11176tayexc17.a
mericas.cpqcorp.net%3E last accessed August 13, 2009)

23. Machovec, J.: Mailing list message 16:49:09 GMT “Re: termination with unrelated trigger
considered harmful (November 14, 2003),
http://mailarchives.apache.org/mod_mbox/archivelicense/20031
1.mbox/%3C3FB50785.7010801@golux.com%3E (last accessed August 13, 2009)

24. Fielding, R.: Mailing list message 02:10:27 GMT “Re: [fielding@apache.org: Review of
proposed Apache License, version 2.0] (November 18, 2003),
http://mail-archives.apache.org/mod_mbox/archive-license/
200311.mbox/%3c60AEF3C1-196C-11D8-A8F4-
000393753936apache.org%3e (last accessed August 13, 2009)

25. Engelfriet, A.: Mailing list message, 20:59:53 GMT Re: [fielding@apache.org: Review of
proposed Apache License, version 2.0] (November 17, 2003),
http://mail-archives.apache.org/mod_mbox/archive-license/
200311.mbox/%3c20031117205953.GA95846stack.nl%3e (last accessed
August 13, 2009)

26. Moglen, E.: Mailing list message, 21:28:32 GMT FSF Comments on ASL 2.0 draft (No-
vember 14, 2003),
http://mailarchives.apache.org/mod_mbox/archivelicense/20031
1.mbox/%3c16309.18688.540989.283163@new.law.columbia.edu%3e
(last accessed August 13, 2009)

27. Carlson, B. M.: Mailing list message 05:39:49 GMT DFSG-freeness of Apache Software
Licenses (November 13, 2003),
http://mailarchives.apache.org/mod_mbox/archivelicense/20031
1.mbox/%3c20031113053949.GD23250@stonewall%3e (last accessed August
13 2009)

28. Armstrong, D.: Mailing list message, GMT Re: DFSG-freeness of Apache Software Li-
censes (November 14, 2003),
http://mailarchives.apache.org/mod_mbox/archivelicense/20031
1.mbox/%3C20031114043950.GM2707@donarmstrong.com%3E, (last ac-
cessed August 13, 2009)

29. Johnson, P.: Mailing list message GMT Mu-tual defence patent clause (November 12,
2003),
http://mailarchives.apache.org/mod_mbox/archivelicense/20031
1.mbox/%3C003d01c3a8c1$f9b55170$c6ba400c@protocol.com%3E (last
accessed August 12, 2009)

30. Behlendorf, B.: Mailing list message 21:09:32 GMT Re: Mutual defence patent clause
(November 12, 2003),
http://mailarchives.apache.org/mod_mbox/archivelicense/200311.mbox/%3C2003111213
0508.H497@fez.hyperreal.org%3E, last accessed 13 August 2009

194 C. Jensen and W. Scacchi

31. Fielding, R.: Mailing list message. Re: Review of proposed Apache License, version 2.0
(December 24, 2003),
http://mail-archives.apache.org/mod_mbox/archive-license/
200312.mbox/%3c464B4006-3604-11D8-9A9F-
000393753936@apache.org%3e (last accessed, August 12, 2009)

32. Apache License Proposal Website,
http://www.apache.org/licenses/proposed/ (last accessed August 13,
2009)

33. Apache License, Version 1.23,
http://mail-archives.apache.org/mod_mbox/archive-license/
00312.mbox (accessed August 13, 2009)

34. Behlendorf, B.: Mailing list message 22:42:52 GMT Re: Review of proposed Apache Li-
cense, version 2.0 (January 09, 2004),
http://mail-archives.apache.org/mod_mbox/archive-license/
200401.mbox/%3c20040109143803.G31301fez.hyperreal.org%3e, (last
accessed August 13, 2009)

35. Behlendorf, B.: Mailing list message. Re: Review of proposed Apache License, version
2.0 (January 07, 2004),
http://mail-archives.apache.org/mod_mbox/archive-license/
200401.mbox/%3c20040107140658.A23429@fez.hyperreal.org%3e (last
accessed August 13, 2009)

36. Fielding, R.: Mailing list message Re: Review of proposed Apache License, version 2.0
(January 14, 2004),
http://mail-archives.apache.org/mod_mbox/archive-license/
200401.mbox/%3cD81EA136-46CF-11D8-B08A-
000393753936@apache.org%3e (last accessed August 13 2009)

37. Fielding, R.: Mailing list message Re: Review of proposed Apache License, version 2.0
(January 14 , 2004),
http://mail-archives.apache.org/mod_mbox/archive-license/
200401.mbox/%3cD6DB9454-46D3-11D8-B08A-
000393753936@apache.org%3e (last accessed August 13, 2009)

38. Armstrong, D.: Mailing list message. Re: Apache License, Version 2.0 (January 24, 2004),
http://mailarchives.apache.org/mod_mbox/archivelicense/20040
1.mbox%3C20040124021350.GG306@0archimedes.ucr.edu%3E (last ac-
cessed August 13, 2009)

39. Fielding, R.: Mailing list message Re: Apache License, Version 2.0 (January 24, 2004),
http://mail-archives.apache.org/mod_mbox/archive-
license/200401.mbox/%3C23385101-4E15-11D8-915D-
000393753936@apache.org%3E (last accessed August 13, 2009)

40. Free Software Foundation Licenses webpage,
http://www.fsf.org/licensing/licenses/index_html#GPLCompatib
leLicenses, (last accessed August 14, 2009)

41. Massol, V.: Mailing list message dated Sun, How to use the 2.0 license? (January 25
2004),
http://mailarchives.apache.org/mod_mbox/archivelicense/20040
1.mbox/%3C012f01c3e35c$78e229d0$2502a8c@0vma%3E (last accessed Au-
gust 13, 2009)

 License Update and Migration Processes in Open Source Software Projects 195

42. Behlendorf, B.: Mailing list message Re: How to use the 2.0 license? (January 25, 2004),
http://mailarchives.apache.org/mod_mbox/archivelicense/20040
1.mbox/%3C20040125121456.H396@fez.hyperreal.org%3E (last accessed
August 13, 2009)

43. Adams, E.: NBDiscuss mailing list message:Joint Copyright Assignment,
http://www.netbeans.org/servlets/ReadMsg?list=nbdiscuss&msgN
o-=2228 (last accessed August 6, 2009)

44. The Apache Software Foundation Individual Contributor License Agreement, Version 2.0,
http://www.apache.org/licenses/icla.txt (last accessed October 20,
2009)

45. Brabant, V.: mailing list message [nbdis-cuss] Re: licenses and trees (July 15, 2003),
http://www.netbeans.org/servlets/ReadMsg?listName=nbdiscuss&
msgNo=2547 (last accessed October 20, 2009)

46. West, J., O’Mahony, S.: Contrasting Community Building in Sponsored and Com-munity
Founded Open Source Projects. In: Proceedings of the Proceedings of the 38th Annual
Hawaii International Conference on System Sciences, HICSS, vol. 07, p. 196.3. IEEE
Computer Society, Washington, DC (2005)

47. Lerner, J., Tirole, J.: The simple economics of open source. NBER Working paper series,
WP 7600. Harvard University, Cambridge (2000)

48. von Hippel, E., von Krogh, G.: Open source software and the private-collective innovation
model: Issues for organizational science. Organization Science 14(2), 209–223 (2003)

49. Hedhman, N.: mailing list message dated Sun, 29 Jun 2003 13:31:48 +0800 “[nbdiscuss]
Re: licenses and trees (was: Anti-Sun Animosity),” available online at
http://www.netbeans.org/servlets/ReadMsg?listName=nbdiscuss&msgNo=2578, last ac-
cessed 21 October 2009.

50. NBDiscuss mailing list message,
http://www.netbeans.org/servlets/ReadMsg?list=nbdiscuss&msgN
o=3784 (last accessed February 28 , 2009)

51. Shah, S.K.: Motivation, governance and the viability of hybrid forms in open source soft-
ware development. Management Science 52(7), 1000–1014 (2006)

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 196–207, 2011.
© IFIP International Federation for Information Processing 2011

A Historical Account of the Value of Free and Open
Source Software: From Software Commune to

Commercial Commons

Magnus Bergquist, Jan Ljungberg, and Bertil Rolandsson

University of Gothenburg
{magnus.bergquist,jan.ljungberg,bertil.rolandsson}@gu.se

Abstract. Free and open source software has transformed from what has been
characterized as a resistance movement against proprietary software to become
a commercially viable form of software development, integrated in various
forms with proprietary software business. In this paper we explain this
development as a dependence on historical formations, shaped by different
ways of justifying the use of open source during different periods of time.
These formations are described as arrangements of different justificatory logics
within a certain time frame or a certain group of actors motivating the use of
free and open source software by referring to different potentialities. The
justificatory arrangements change over time, and tracing these changes makes it
easier to understand how the cultural, economic and social practices of open
source movements are currently being absorbed and adopted in a commercial
context.

Keywords: Free and Open Source Software, Justification, Historical approach.

1 Introduction

Over the last decade, free and open source software (FOSS) have transformed from
being an ideologically driven movement, organizing resistance against proprietary
software development, to a means for revitalizing the way firms produce software and
make business. This change can be described as a development, where open source
gradually have been recognized by different actors outside the open source
communities and incorporated in corporate software development contexts. While this
development has been described by different authors e.g. [4, 5, 8, 9, 10, 13, 24, 38],
the conditions and circumstances enabling the transformation of FOSS has rarely been
addressed.

The purpose of this paper is to articulate this transformation, by analyzing how the
use of FOSS has been justified during different periods of time. These justifications
are analyzed by using Boltanski and Thevévenot’s [3] framework of “justificatory
regimes” that enable actors in various settings to justify different means and
initiatives. We claim that these historically formed arrangements condition the

 A Historical Account of the Value of Free and Open Source Software 197

adoption of FOSS software and methods and its cultural, economic and social
practices in a commercial context.

2 Logics of Justification

FOSS has during its development been motivated or justified with different arguments
ranging from a moral non-utilitarian stance to a pragmatic, utilitarian stance [36]. In
this paper justification refers to how actors make use of different logics to embrace
ideas of change or novelties. Logics of justification are ways by which actors make
the changes legitimate through ongoing processes of valuation.

The analysis focus on how the importance of FOSS is recognized through
combinations of logics of justification, reshaped over time. In order to distinguish
more than e.g. the importance of a market value, we will then talk about different
types of worth [39]. An important start point is the theoretical elaboration on the
concept of justification done by Luc Boltanski together with Laurent Thevénot [3], in
which different social and moral aspects are considered as important to how change is
justified. More precise, they depict six different logics or “justificatory regimes” that
enable actors in various settings to justify means and initiatives. Boltanski and
Chiapello also used this framework to map the “spirit of capitalism”, i.e. the
justifications of people’s commitment to capitalism in a certain era. Here we apply it
to the development of FOSS and changes in the dominant value system. Thus, this is
an analysis of “the spirit of open source” or the ideology that justifies people’s
commitment to FOSS in a certain time period. The six logics of justification
suggested by Boltanski and Thevénot [3] are:

• An inspirational logic is founded on a principle of grace or artistry serving what is
perceived as authentic qualities of life.

• A domestic logic can be traced when an established hierarchy made out of
personal interdependencies, with a patriarch or guru on top, is justified as natural
by referring to a stable social order or tradition. An example could be a
conservative family organization, ruled by an authoritarian father or elder.

• In a popular logic justification is reached through importance of being renowned,
i.e. by being granted credit and esteem in the opinion of others. The achieved
worth becomes dependent on identification and fame.

• Within a civic logic, justification relies on being representative and on acting in
accordance with a collective will. Worth is created through the capacity to
mobilize collectives around common interests. In this process, moral claims, and
definition of identity become important.

• Justification within the market logic depends on individuals and their ability to
possess and compete. The worth would then be related to individuals’ selling and
buying goods and services. This can be perceived as an egoistic practice.
However, the right to possess and seize market opportunities is related to a claim
that, if done fairly common good will emerge out of market transactions.

• An industrial logic justifies actions and initiatives by referring to efficiency and
the scale of abilities. Contrary to the market logic, the industrial logic focuses on
whether functionality and productivity is organized in a reliable way.

198 M. Bergquist, J. Ljungberg, and B. Rolandsson

To Boltanski and Thevénot [3] these logics describe how the worth of initiatives can
be perceived differently, but also that any justification relies on claims that are based
on socioeconomic conditions as well as some sort of moral order. Thus, the ability to
make trustworthy references to both a general fairness and social order will be
necessary for a justifying logic to emerge.

In our analysis, the various logics that Boltanski and Thevénot identify are shaping
the justifying arrangements emerging within a certain time frame or a certain group of
actors. The tensions between FOSS practices and proprietary practices, creates
uncertainties about the future impact of adopting FOSS software. Thus, different
actors struggle to justify the use of FOSS by referring to different potentialities. These
justifying arrangements can work as integrative forces, but they are also associated
with tensions between e.g. social order and moral claims. The analysis concerns how
old perspectives on FOSS software development become active components in new
circumstances, justified according to principles that involved actors in different
organizational contexts can agree and act upon [3]. Hence, we will follow how new
and old discourses overlap and form interpretative arrangements, guiding how means
and measures are motivated and common principles articulated [2].

3 Method

In order to understand how perceptions of FOSS software have developed over time,
we have traced justifying arrangements that historically have been used to define the
value of FOSS. This has been done by going through canonical texts and previous
research [3]; i.e. we look at research and publications considered to have had a major
impact on the perception of FOSS. Typical for this archeology of knowledge [14] is to
compare series of sources over time in order to capture changes in dominant modes of
thinking, acting and organizing.

We have been looking at three time periods, were we claim that certain
arrangements of justification logic is constituted. Certain events function as
approximate starting points of these time periods. The formulation of the free
software definition and constitution of the Free Software Foundation is the starting
point for the first time period (early 1980s), constituting the first justificatory
arrangement. Here analysis is based on texts that evolved around the Free Software
Foundation (FSF) and the front figure Richard Stallman (e.g. [15, 17, 36]). The
starting point of the second time period is the formulation of the open source
definition and constitution of the Open Source Initiative (late 1990s). This is based on
texts related to the Open Source Initiative (OSI) and the front figure Eric Raymond
and his seminal and much referred texts that were later published as the book The
Cathedral and the Bazaar [29]. The starting point for the third time period is the
emergence of public sector policy documents regarding FOSS, created by policy
making bodies, advocacy groups and governments representing public sector interests
(early 2000s). Some of these documents, e.g. national reports and policy documents,
constitute the basis for the analysis of the justificatory arrangement that we call public
commons e.g. [27, 28, 32, 33].

 A Historical Account of the Value of Free and Open Source Software 199

4 Arrangements of Ideological Justification in the History of
FOSS

4.1 First Arrangement: Software Commune

When the free software movement started to mobilize during the eighties it was a
reaction against the emerging software industry, and it was organized as an
ideologically framed commune. Earlier no software industry or market for software
did exist because software was developed directly for specific hardware [6]. Since
intellectual property for software was a non-issue, the programmers were used to
share solutions, knowledge and the source code itself. They took pride in being skilled
programmers, and were eager to help fellow programmers. However, when the
market for software took off, the programmers’ old practices of sharing were
abandoned, and the source code became a private company property to be carefully
protected. This provoked some developers to take action in the shape of a politically
driven movement. One of the key persons in this process was Richard Stallman
(RMS) who still plays an important role in the movement. Stallman's work on the text
editor Emacs is a good example of the spirit of the movement. Emacs was given away
by Stallman on the condition that other programmers should "give back all extensions
they made, so as to help Emacs improve. I called this arrangement the Emacs
commune" [Stallman in 25, p. 416]. The emerging copyright protected software
development practices faced Stallman with what he describes as a stark moral choice:

"The easy choice was to join the proprietary software world, signing
nondisclosure agreements and promising not to help my fellow hacker." [15, p.
17].

Stallman chose another route and facilitated a number of initiatives that
institutionalized the resistance to proprietary software, such as the GNU project, the
Free Software definition [17], the Free Software Foundation, and the GNU General
Public License (GPL) [15, 36] that was designed to ensure that the rights of the free
software definition were preserved (i.e. an inscription of the free software definition
in copyright law). The “viral” character of GPL, i.e. that other software that is
bundled with a GPL-licensed software must also be released under GPL, created
tensions with proprietary software.

Here, justification was based on a civic logic based on principles and rules defining
free software as a common good. Software code must be made available for anyone to
use, alter and redistribute to secure future development of the ideas that the code
entails. The proprietary development was a threat against the programmers’ freedom:
“The fundamental act of friendship among programmers is the sharing of programs;
marketing arrangements now typically used essentially forbid programmers to treat
others as friends.” [15]. It was also threatening a more general public interest in the
freedom of information.

Besides the civic logic, an inspirational logic could be identified, emanating from
the roots of the free software movement in the hacker culture of the early sixties. This
was mainly formed around several MIT research groups who were experimenting
with new technologies (e.g. TX-0 computer, MIT AI Lab and the Unix operating
system). Levy [25] described this culture as:

200 M. Bergquist, J. Ljungberg, and B. Rolandsson

 “a new way of life, with a philosophy, an ethic and a dream.[...] hackers that by
devoting their technical abilities to computing with a devotion rarely seen outside
monasteries they were the vanguard of a daring symbiosis between man and
machine.” [25, p. 39].

Here hacking and playing with technology were justified as the authentic values of
life and the true motivational force for programmers’ engagement. The activity of
programming itself is often referred to as an art [11, 22], e.g. as Donald Knuth has
formulated it “The chief goal of my work as educator and author is to help people
learn how to write beautiful programs” [22, p. 6]. The word hack and hacking
changed over time from “a spirit of harmless, creative fun” to “acquire a sharper,
more rebellious edge” [36]. Still, the hacker concept is deeply linked to the ability to
solve difficult problems for its own sake, as the definition Stallman gives to it:
“Playfully doing something difficult, whether useful or not, that is hacking.” [15].

Also a popular logic was visible, since the reputation of being a skilled hacker is at
the heart of the very concept. To become a hacker is not something that individuals
decide by themselves, it is something they earn by getting respect from the
community. Public opinion itself establishes the worth of FOSS initiatives and actors,
in the sense that popular and famous projects or persons will attract many
contributors. There is even a special word in the hacker dictionary for the most
admired programmers with an exceptional reputation - demigood: “A hacker with
years of experience, a world-wide reputation, and a major role in the development of
at least one design, tool, or game used by or known to more than half of the hacker
community.” (Jargon-file 4.3.1).

Furthermore, the tight community with its’ closed clan-like hierarchy of personal
interdependencies and patriarchic governance, resembles a domestic logic. This is
what Raymond in his book “the Cathedral and the Bazaar” criticized as the cathedral-
building style of development, even though Raymond himself was a former believer:

 “I believed that the most important software (operating systems and really large
tools like Emacs) needed to be built as cathedrals, carefully crafted by individual
wizards or small bands of mages working in splendid isolation, with no beta
released before its time.” [29].

We have labeled the justifying arrangement of the first time period, commune, due to
its nature of a tight community, kept together by strong common hacker values. As
has been shown, this arrangement drew mainly on a technically driven civic
community logic rooted in the hacker movement, demanding free access to
information and source code while fighting against proprietary commercial interests
in software development. In addition, the arrangement also relied upon an
inspirational logic stressing the importance of authentic grace or technical artistry.
This encourages the developers to independently realize personal creativity, and
thereby improve their status within the community. This leads also to a popular logic
stressing the importance of reputation and fame. Also, a domestic logic follows from
the nature of the movement as a closed tight community were highly respected
developers took on roles representing hierarchical superiority typical for the domestic
logic.

 A Historical Account of the Value of Free and Open Source Software 201

4.2 Second Arrangement: The Bazaar

During the mid nineties a new approach to justify FOSS can be identified. Eric
Raymond, saw the earlier movement’s hostile attitude to commercial software as a big
problem:

 “It seemed clear to us in retrospect that the term 'free software' had done our
movement tremendous damage over the years. Part of this stemmed from the well-
known 'free speech/free-beer' ambiguity. Most of it came from something worse --
the strong association of the term 'free software' with hostility to intellectual
property rights, communism, and other ideas hardly likely to endear themselves to
an MIS manager.” [29].

In order to avoid these connotations, the term open source was coined, indicating that
open source is viewed as a means to an end of producing software of high quality.
The Open Source definition is similar to the Free Software definition, but it explicitly
states that an open source license must not contaminate other software (as the GPL-
license), claiming that this would hamper commercial use of open source. A plethora
of more permissive licenses [35], were used to make it easier for open source and
proprietary software to coexist. The Open Source Initiative (OSI) was founded in
1998 to support the new focus on technology rather than ideology. This more
pragmatic nature of the movement, downplayed some of the most ideological parts of
the value system, but also contributed to a wider diffusion of free and open source
software. The movement grew substantially, and included both large traditional
software companies (e.g. IBM, HP) and small companies that were founded on open
source business models (e.g. Red Hat, Mandrake).

In this time period the dominating technically driven civic imperative is replaced
by clearly visible market logic:

 “RMS's best propaganda has always been his hacking. So it is for all of us; to the
rest of the world outside our little tribe, the excellence of our software is a far
more persuasive argument for openness and freedom than any amount of
highfalutin appeal to abstract principles. So the next time RMS, or anybody else,
urges you to “talk about freedom", I urge you to reply "Shut up and show them the
code.“ [30]

It is not philosophical or political principles, but the excellence of the software that
should convince. The excellence of the software also points to quality ideals that are
often found in an industrial logic. This also stresses the importance of the code itself
and its accessibility, as a key to the arrangement. As an alternative to the domestically
oriented cathedral style, where wizards were leading a tight, closed tribe of skilled
hackers, Raymond proposed the “Linus Torvalds’s style or the bazaar style of
development - release early and often, delegate everything you can, be open to the
point of promiscuity” [29, p. 30].

However, the inspirational and popular logic are still visible in the bazaar.
Inspirational worth of open source software would depend on spontaneous and
passionate initiatives, like Linus Torvalds’ initiative to write the Linux system in
order to learn how operating systems work [34], and software development close to
artistry were still appreciated. The popular logic was strengthened in the bazaar where

202 M. Bergquist, J. Ljungberg, and B. Rolandsson

skilled programmers could gain reputation and fame if they succeeded to pass the peer
review system [1]. They could gain reputation among an even larger crowd of
developers, due to the open character of the bazaar. Also a domestic logic could be
detected, e.g. in the coordinating model often referred to as “benevolent dictatorship”
with Linus Torvalds as the prime example [29], and the informal hierarchies resulting
from differences in status and skill within FOSS communities.

We have labeled the justifying arrangement of this time period, the bazaar, in
accordance with Raymond’s metaphor. Here, FOSS and proprietary software will
coexist, and anyone is free to choose what is considered the best solution (market
logic). FOSS is viewed as a better, more efficient method for developing software of
good quality (industrial logic). Hacker values are still emphasized claiming that free
access to code would improve developers’ opportunities to do innovative and artistic
programming (inspirational logic). The spread of the movement make opportunities
to get reputation and fame among peers for making good contributions even more
attractive (popular logic). However, despite its strong market component, open source
software was still associated with a civic logic where freedom of information became
important.

4.3 Third Arrangement: The Public Commons

In the beginning of 2000, a pragmatic version of FOSS started to be appropriated by
large user groups outside FOSS communities. Especially governments and public
sector organizations found an interesting potential in keeping computing costs down
by using FOSS software. The domination of FOSS applications in the horizontal
domain of infrastructural software (e.g. operating systems, web servers, and data
bases) was complemented with an increasing use of vertical software as desktop and
enterprise systems [13]. With a growing number of FOSS users that were not
producers or experts but “general end-users”, FOSS moved out of the pure hacker
domain.

The growing use of FOSS in this context revitalized the former civic logic.
Manifested in a number of policy texts, it was reinterpreted by public sector
organizations and advocacy groups representing public sector interests (e.g.
governments, municipalities, FSF and OSI representatives). The incorporation of
FOSS in public sector was seen as an appraisal of values associated with democracy,
citizenship and the relationship between citizens and public sector. On the one hand
FOSS became attractive to public authorities due to new demands and needs dictated
by changes in their own organizations and in society. Economically it was a way to
cut costs in the public sector, and get value for taxpayer money. Ideologically FOSS
was seen as an expression of the principle of the commons, a way to promote ideas
associated with public sector organizations’ role in a democracy. It was presented as a
radical alternative that could liberate the public sector by getting rid of bureaucratic
and expensive non-democratic historical burdens; the public sector would serve the
people while standing free from partial interests on the market. On the other hand the
FOSS movement took the opportunity to influence public authorities by lobbying
activities in order to gain a widespread impact of their goals. FOSS provided the
public sector with the ideology and examples it needed to make its point.

 A Historical Account of the Value of Free and Open Source Software 203

A set of policy documents formulated around year 2000 [20, 21, 26, 27, 28, 32, 33,
see also 18] give a more detailed view of basic arguments about the use of FOSS in
public sector. One argued advantage was cost reasons. FOSS was often made
available at a low acquisition cost, and without licensing costs. By adopting FOSS
solutions it was also argued that different public actors could develop shareable
solutions that would decrease development costs. The cost argument is an efficiency
argument, relating to an industrial logic, but also to a public governance version of
the civic logic demanding transparency in how taxpayer money is used. Other
arguments aligned to an industrial logic are related to the supposed quality and
reliability of FOSS. The same holds for common arguments related to security,
transparency and privacy. The free availability of the source code supposedly offers
better protection against malware, meaning better protection for the citizens’ integrity.
These arguments also relates to how an industrial logic of efficiency is combined with
a public version of the civic logic, i.e. how the civic mission best could be
implemented in an efficient way.

Other arguments relates to market logic. FOSS devotion to promoting open
standards and interoperability secures that systems ensure access to government data
without possible barriers posed by proprietary software and data formats. This would
lead to a situation where lock-in effects of proprietary companies’ software could be
avoided. By promoting open standards and interoperability in its own systems, public
sector contributes actively to well functioning software markets, minimizing
monopolies and lock-in effects. Another argument related to a market logic is that
regional software industry was supposed to prosper as a consequence of public sector
interventions in FOSS. Local programmers were to be engaged in flexible adaptation
to specific needs that were not supported by global commercial actors, and create new
niche markets to be exploited by local entrepreneurs rather than by global software
firms.

Finally, a set of arguments more directly related to a civic logic could be found.
Arguments related to political reasons, claimed the advantages of national-wide FOSS
based IT-infrastructure in developing countries. Here post-colonial arguments were
raised, highlighting the possible independence from Western software houses
controlling the IT-development: “If South Africa chooses the open route […] South
Africa can break dependence on foreign companies, and potentially become a player
in the world of software development and software services markets” [32]. Other
arguments directly linked to a civic logic stress freedom and democracy as basic
values inherent in FOSS.

The justifying arrangement of the third time period is labeled public commons.
This is the first justifying arrangement that takes shape outside the movement. This
becomes evident while looking at how the civic logic is reinterpreted from a public
sector perspective; open source is seen as a mean for enhancing democracy and
making the public sector free in relation to commercial interest. The civic logic
promotes the public sector as a service provider for citizens, which calls for certain
moral claims regarding loyalty to the public who elects officials to represent them.
This justifies claims on honest and transparent development of software made for the
citizens by using FOSS. The public sector is given a mission based on the market
logic and the industrial logic, directing attention towards issues of cost efficiency,

204 M. Bergquist, J. Ljungberg, and B. Rolandsson

reliability and quality. Furthermore, the promotion of open source in public sector is
supposed to contribute to a well functioning software market.

5 Emerging Justificatory Logics of Contemporary FOSS

The historically based arrangements presented above show how FOSS has gone from
being justified as a community driven software development endeavor with the
developer at the center of attention, to become more motivated by external interests.
As shown, these are emerging arrangements in which the content of identified
justifying logics continuously have changed. The transformation of FOSS into a
commercially viable form has been described by different authors as OSS 2.0,
progressive open source, corporate code, professional open source etc. [12, 13, 16].
Here, we view the characteristics of all these phenomena as parts of an emerging
arrangement, partly overlapping in time with the mentioned public commons
arrangement. The arrangements presented also reveal how e.g. initial civic and
inspirational logics are reinterpreted over time. We will now discuss how these logics
play out in the formation of a new emerging justifying arrangement, and what this
may mean for the adoption of open source in a corporate context.

According to Boltanski and Thevénot [3] justification through the industrial logic
is achieved by making claims on efficiency, expertise and the scale of abilities. Focus
also lays upon whether technological innovations and functionality is organized in a
scientifically controlled and predictable way. In accordance, many descriptions of
FOSS have always focused on what can be described as an industrial logic [12, 13,
16], and today is further emphasized in descriptions of how e.g. the voluntary nature
of FOSS is substituted by strategic planning, bulletin board like product support
becomes professional, the open access to source code is challenged by giving
controlled access only to specific business partners, or only internally behind
corporate fire walls [12].

The basic idea within market logic is that justification is based on individuals’
ability to possess and compete [3]. The worth of such a justification is created when
as many as possible are able to sell and buy goods and services. One of the main
arguments for FOSS in public commons was to maximize the positive effects of
taxpayers’ money by making them operate on a more open and transparent market.
Hereby the market could be used for reaching a higher cause and thus legitimize
public sector civic claims. This way of reasoning, supporting the civic emphasis on
honest markets, is also found in firms built around FOSS today. However, these firms
also struggle to find ways of combining FOSS with proprietary code [19, 31].

The civic justification logic has undergone an interesting development. In the
commune and the bazaar, civic justification was the nexus of the FOSS movement’s
ideological agenda. The aim was to strengthen democracy and free access to
information and source code by the help of software communities supporting a
common right to independently control software. In the public commons arrangement
FOSS was then justified as a mean helping the public sector to become independent
from private companies’ proprietary standards and lock-in strategies. This also paved
the way for a customer and user perspective, supporting a market logic that
emphasizes common good rather than proprietary strategies. Open source software
becomes a way to improve honest, flexible and efficient relations with customers and

 A Historical Account of the Value of Free and Open Source Software 205

end-users. Now, similar claims on challenging the idea of possessing software is
found in contemporary pure play firms built around FOSS business models [31],
where competition with free and open standards is said to be a more honest approach
to customers and users.

Boltanski and Thevénot [3] describe inspirational logic as a type of justification
that refers to principles such as grace and artistry serving authentic qualities of life.
These principles lies at the heart of the initial hacker culture and were prominent both
in the commune and bazaar arrangements, but could not be identified in the public
commons arrangement. The inspirational logic traced in firms today seems to be
reinterpreted from a business perspective, by being less associated with contributions
to a higher cause and more associated with being engaged in work. Movement driven
inspiration is replaced by professional inspiration associated with a hobby or a
scientific quiz triggering lust for work by making professional developers free to
access and manipulate the code [13, 31]. In addition, the inspirational and industrial
logic do then also support each other. This type of inspirational logic resembles FOSS
research on intrinsic motivation, stressing that open source may connect the
professional world of software development with the exercise of a hobby [4].

According to Boltanski and Thevénot [3] justification through the popular logic is
reached through reputation; i.e. being granted credit and esteem in the opinion of
others is a goal in itself. The popular logic identified in the commune and in the
bazaar arrangement, related to the reputation that was gained when programmers
succeeded to get their contributions of code accepted by peer-reviewers and
introduced into the code base [4, 1]. Highest reputation was attached to the visionaries
and ideological leaders, gaining reputation through developing widely used FOSS
programs. Companies that struggle to attract the best FOSS-programmers, indicates
that this logic is re-articulated in firms today. The majority of contributions appear to
be rejected, and accepted contributions are still manifestations of programming skills
and status. However, focus rather lay on the status of the project than the individual
programmer; i.e. the success of attracting contributors to a company owned FOSS
project is main issue [31].

In the domestic logic Boltanski and Thevénot [3] describe how justification is
reached through the stability of conventions or traditions, revolving around a family
like organization and its ruler. In the commune, with its tight tribe of developers and
highly reputed ideological leaders, a domestic logic could be sensed. The bazaar
arrangement then challenged this closed commune, and in the public commons
arrangement the domestic logic was not visible at all. The domestic logic is hard to
trace in contemporary FOSS in corporate settings. However, it is potentially inherent
in many FOSS practices, where developers are part of an informal hierarchy due to
skill and reputation, and were the most respected developers is dedicated to roles that
clearly points out a hierarchical superiority. Also, FOSS still appears as heavily male
dominated, indicating a stable gender structure that could be investigated further in
terms of a domestic logic [7, 23].

6 Conclusions

By focusing on the value accredited to FOSS by different groups, and how the
justifications of FOSS have been formed in different time periods, we may move
beyond the established distinction between the initial movement driven approach and

206 M. Bergquist, J. Ljungberg, and B. Rolandsson

the current business driven OSS 2.0. It becomes possible to describe how different
justifying logics are re-articulated in the intersection of FOSS movement and
corporations. While the industrial and the market logics emerge as major justificatory
means in contemporary commercial FOSS, it is important to notice that core driving
forces as the inspirational logic and the civic logic still could be considered as
important parts of the FOSS bandwagon. Even in a commercial context marked by
industrial and markets logics, these logics still makes it possible to justify the use of
FOSS by referring to potentialities that could inspire and empower programmers
developing open source, as well as to contribute to the society as a whole.

References

1. Bergquist, M., Ljungberg, J.: The Power of Gifts: Organizing Social Relationships in
Open Source Communities. Information Systems Journal 11, 305–320 (2001)

2. Boltanski, L., Chiapello, E.: The New Spirit of Capitalism. Verso, London (2005)
3. Boltanski, L., Thévenot, L.: On Justification: Economies of Worth. Princeton University

Press, Princeton (2006)
4. Bonaccorsi, A., Rossi, C.: Comparing Motivations of Individual Programmers and Firms

to Take Part in the Open Source Movement: From Community to Business. Knowledge,
Technology and Policy 18(4), 40–64 (2006)

5. Bonaccorsi, A., Rossi, C.: Why Open Source Software can Succeed. Research
Policy 32(7), 1243–1258 (2003)

6. Campbell-Kelly, M.: From Airline Reservations to Sonic the Hedgehog: A History of the
Software Industry. MIT Press, Cambridge (2003)

7. Cuckier, W.: Constructing the IT Skills Shortage in Canada: The Implications of
Institutional Discouse and Practices for the Participation of Women. In: SIGMIS
Conference Copyright 2003. ACM, Philadelphia (2003)

8. Dahlander, L., Magnusson, M.G.: Relationships between open source software companies
and communities: Observations from Nordic firms. Research Policy 34(4) (2005)

9. Dahlander, L., Magnusson, M.G.: How do Firms Make Use of Open Source
Communities? Long Range Planning 41 (6) (2008)

10. Demil, B., Lecocq, X.: Neither Market, nor Hierarchy or Network: The Emergence of
Bazaar Governance. Organization Studies 27(10), 1447–1466 (2006)

11. Dijkstra, E.W.: EWD316: A Short Introduction to the Art of Programming. T. H.
Eindhoven, The Netherlands (1971)

12. Dinkelacker, J., Garg, P.K., Miller, R., Nelson, D.: Progressive Open Source. In:
Proceedings of ICSE 2002, Orlando, May 19-25 (2002)

13. Fitzgerald, B.: The Transformation of Open Source Software. MIS Quarterly 30(3), 587–
598 (2006)

14. Focault, M.: The Archaeology of Knowledge. Routledge Classics, London (2002)
15. Gay, J. (ed.): Free Software, Free Society: Selected Essays of Richard M. Stallman. GNU

Press, Boston (2002)
16. Gurbani, V.K., Garvert, A., Herbsleb, J.D.: A case study of open source tools and

practices in a commercial setting. In: Proceedings of the 3rd IFIP Working Group 2.13
International Conference on Open Source Software (OSS 2007), Limerick, Ireland, June
11-14., vol. 234. Springer, Heidelberg (2007)

17. GNU’s Bulletin 1 (1): 8, http://www.gnu.org/bulletins/bull1 (accessed
March 5, 2010)

 A Historical Account of the Value of Free and Open Source Software 207

18. Hahn, R.W. (ed.): Government Policy toward Open Source Software. AEI-Brookings
Joint Center for Regulatory Studies, Washington DC (2002)

19. Höst, M., Orucěvić-Alagić, A.: A systematic review of research on open source software
in commercial software product development. Inform. Softw. Technol. (2011),
doi:doi:10.1016/j.infsof

20. IDA Study: Study into the use of Open Source Software in the Public Sector Part 1,
http://europa.eu.int/ISPO/ida/export/files/en/840.pdf; Part 3,
http://europa.eu.int/ISPO/ida/export/files/en/835.pdf (2001)

21. International Institute of Infonomics Free/Libre and Open Source Software: Survey and
Study (2002), http://www.infonomics.nl/FLOSS/report/ [040401]

22. Knuth, D.: Computer Programming as an Art. Communications of the ACM (December
1974)

23. Lakhani, K.R., Wolf, R.G.: Why Hackers Do What They Do: Understanding Motivation
and Effort in Free/Open Source Software Projects. In: Feller, J., Fitzgerald, B., Hissam, S.,
Lakhani, K. (eds.) Perspectives on Free and Open Source Software. MIT Press,
Cambridge (2005)

24. Lerner, J., Tirole, J.: Some Simple Economics of Open Source. Journal of Industrial
Economics 50(2), 197–234 (2002)

25. Levy, S.: Hackers: Heroes of the Computer Revolution. Anchor Press/Doubleday, New
York (1984)

26. LinuxToday, LinuxPR: Munich Goes with Open Source Software (May 28, 2003),
http://linuxtoday.com/infrastructure/2003052802126NWDTPB.

27. MIMOS Berhad; Worldwide Open Source Policy: National Summaries (2003),
http://community.asiaosc.org/~iwsmith/policy/ [040401]

28. MITRE Corporation Use of Free and Open-Source Software (FOSS) in the U.S.
Department of Defense (2002),
http://www.egovos.org/rawmedia_repository/588347ad_c97c_48b9
_a63d_821cb0e8422d?/document.pdf

29. Raymond, E.S.: The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. O’Reilly and Associates, Sebastopol (1999)

30. Raymond, E.S.: Shut Up and Show them the Code, Linux Today (June 28, 1999b)
31. Rolandsson, B., Bergquist, M., Ljungberg, J.: Open source in the firm: Opening up

professional practices of software development. Research Policy 40(3), 576–587 (2011)
32. South African National Advisory Council on Innovation: Open Software & Open

Standards in South Africa: A Critical Issue for Addressing the Digital Divide (2002),
http://www.naci.org.za/pdfs/opensource.pdf [040401].

33. Statskontoret: Free and Open Source Software – a feasibility study, Appendix 1: Extensive
survey (2003), http://www.statskontoret.se/pdf/200308eng.pdf [040401]

34. Torvalds, L., Diamond, D.: Just For Fun: The Story of an Accidental Revolutionary.
HarperCollins, New York (2001)

35. Välimäki, M.: The Rise of Open Source Licensing: A Challenge to the Use of Intellectual
Property in the Software Industry. Helsinki, Turre Publishing. versity Press (2005)

36. Williams, S.: Free as in Freedom: Richard Stallman’s Crusade for Free Software. O’Reilly
Media, Sebastopol (2002)

37. Zittrain, J.: Normative Principles for Evaluating Free and Proprietary Software. University
of Chicago Law Review 71(1) (2004)

38. Ågerfalk, P.J., Fitzgerald, B.: Outsorcing to an unknown workforce: exploring
opensourcing as a global sourcing strategy. MIS Quarterly 32(2), 385–409 (2008)

39. Stark, D.: The Sense of Dissonance. Accounts of Worth in Economic Life. Princeton
University Press, Princeton (2009)

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 208–219, 2011.
© IFIP International Federation for Information Processing 2011

Framing the Conundrum of Total Cost of Ownership of
Open Source Software

Maha Shaikh and Tony Cornford

London School of Economics and Political Science, Information Systems
and Innovation Group, Houghton Street, London WC2A 2AE, UK

{m.i.shaikh,t.cornford}@lse.ac.uk
http://personal.lse.ac.uk/shaikh/,
http://personal.lse.ac.uk/cornford

Abstract. This paper reflects the results of phase I of our study on the total cost
of ownership (TCO) of open source software adoption. Not only have we found
TCO to be an intriguing issue but it is contentious, baffling and each company
approaches it in a distinctive manner (and sometimes not at all). In effect it is a
conundrum that needs unpacking before it can be explained and understood.
Our paper discusses the components of TCO as total cost of ownership and total
cost of acquisition (and besides). Using this broad dichotomy and its various
components we then analyze our data to make sense of procurement decisions
in relation to open source software in the public sector and private companies.

Keywords: open source software, total cost of ownership, benefits, exit costs,
software adoption.

1 Introduction

Total cost of ownership (TCO) is considered to be a fundamental issue when making
software procurement decisions [1-4] in organizations yet this is an area that has re-
ceived limited attention. In this paper we are concerned with TCO but more specifi-
cally in relation to open source software (OSS) adoption decisions by organizations1.
This adds yet another layer of complexity because the assessment of open source
software procurement is not exactly the same as that for proprietary software [5].
Indeed, we find that by unpacking the idea of open source TCO we become more
aware of the taken for granted in proprietary software procurement decisions. TCO
has been defined as an understanding of ‘the “true cost” of doing business with a par-
ticular supplier for a good or service’ [6]. The idea of a ‘true cost’ and the ability to be
able to assess it accurately, however is something most academics and practitioners
would agree is not straightforward [7]. Thus we prefer a definition of TCO offered by
Lerner and Schankerman [8] which distinguishes between different costs, and TCO is

1 Our research is funded by the UK Cabinet Office and the OpenForum Europe. The aim of this

research is to assess the various costs and value of open source adoption by the public sector
and private organizations.

 Framing the Conundrum of Total Cost of Ownership of Open Source Software 209

understood as the total cost of providing a functionality using one program. The
proper accounting of cost should include total costs of procurement, management and
support, associated hardware costs, and when one is thinking of changing software
solutions, migration costs’ (p107). In this definition we have a range of costs men-
tioned, all of which need attention before any true grasp of TCO of software can be
reached.

Fig. 1. This figure shows the various factors companies in our pro-forma considered when
making a decision to move to open source, and the relative weight of each factor

Some authors claim that there is no such thing as ‘the cost of software’ [8] imply-
ing that cost is a more multi-faceted issue which needs to be understood better. Thus,
like all evaluation decisions TCO has a quantitative and qualitative element. In sec-
tion 3 below we detail the various elements of each type of cost that we have noted
from literature and from our data. We found this to be a recognized issue amongst
practitioners in the public sector and the private. Most decisions taken on procurement
in either sector are understandably based on cost but this is not the only factor and
with open source software, we found that this is not even the most relevant. The larger
concern for companies eager to adopt open source software was reduced vendor lock-
in, and what companies understood as ‘value for money’ (see Fig 1).

Lerner and Schankerman [8], with their distinctions in costs, indicate the conun-
drum of TCO. Companies are becoming more aware of these issues but the smaller
ones do not have the resources to actually carry out a full detailed TCO study. How

210 M. Shaikh and T. Cornford

does a company assess the softer costs [9] surrounding software procurement espe-
cially when the software is open source (a relatively less familiar category for many
companies)? It is important to make sense of the categories of cost and exactly what
they entail to better manage them and make better informed decisions.

1.1 Conundrum of TCO of OSS

Literature in the area of TCO provides some useful models of cost evaluation [10].
What interests us in this study is not only the quantifiable costs but the more amorph-
ous expense that occurs at the start, operation and even migration away from the
software adoption. Business analysts [11-13] in this area have made note of the many
possibilities that open source offers companies [14] but again these are hard to quanti-
fy, and often for smaller companies this is a consideration for the future. Most small
companies that adopt open source software do so with the intention of cutting back on
license costs (as the license cost of OSS is zero or close to it) [10, 15]. However, the
total cost of ownership is not the same as the total cost of acquisition, or the cost of
operation, and this is the space we want to explore with our study. This categorization
is necessary as this has temporal consequences for adoption of software.

The total cost of acquisition usually refers to the costs that are needed to bring the
software to the actual point of use, so theoretically it includes the cost of software
(buying it). The total cost of operation is more nuanced a cost but very relevant in the
open source domain where companies need to adjust their TCO models to take into
account the different areas of expense that OSS involves. Operational costs refer to
the policies in place in companies that encourage and aid open source adoption, and
very importantly, clear and structured TCO assessments before making procurement
decisions.

In this paper we explore the various forms of costs that are necessary for compa-
nies and the public sector to explore in detail before making any procurement deci-
sions, but especially those related to open source as this is a relatively new concept
for them and different in that the license cost is very low yet other costs seem to
mount (but are often ignored and not understood).

2 Methodology

This study is structured to take place in two phases. This paper reflects some of the
results from phase I which includes a data collection pro-forma of twenty-five ques-
tions. These questions cover the basics of the company size, name and focus, but then
go on to ask some very detailed questions about the various applications that are open
source, why they were chosen, if they replaced proprietary software, was any differ-
ence in cost experienced, and finally, what prompted this change or need to adopt
open source software. The responses to the pro-forma, especially to the last question
will be fed into an interview guide. This then takes us to phase II where we aim to

 Framing the Conundrum of Total Cost of Ownership of Open Source Software 211

conduct between 35-40 in-depth interviews. Access in a number of organizations that
responded to the pro-forma has already been negotiated and phase II will take place
over the summer of 2011.

2.1 Phase I – Pro-Forma

Phase 1 involved the creation of the pro-forma which was based on literature and
documentation that helped to understand TCO models used in companies. The pro-
forma was used as an early and simple data collection device rather than a fully struc-
tured and detailed survey. Our study is more qualitative in approach so the pro-forma
was meant simply to gather material to help us set-up interviews, gain access and get
some early comments to amend our interview guide. The pro-forma does not ask for
facts, and figures on TCO for each organization, instead we ask the respondents to
reply in relation to a Likert scale of 1-5.

The pro-forma was set up for access in two ways, document form (available in odt,
pdf and doc formats) and an online version set up in SurveyMonkey. The aim of this
study is to make sense of adoption of open source software by both private companies
and public sector organizations. Though funded by the UK Cabinet Office to assess
and evaluate the costs and issues involved in open source adoption by government
agencies we decided that a more sound methodology would involve a balanced mix of
commercial and public sector organizations. Public sector organizations are not profit
orientated yet there is much to learn from private companies and their manner of deal-
ing with open source. The larger idea here is the level of experience and comfort that
private companies bring to open source adoption which is sorely lacking in the public
sector. There are some exemplary cases of open source adoption by the public sector
like the Extremadura case in Spain [16, 17] but there are far more ‘success’ stories of
open source adoption by commercial companies [18-21]. The factors that encourage
private companies to adopt open source software, especially considering most busi-
ness models of such adoption indicate that the software itself does not lead to value
creation or capture directly [22-25], make some of the lessons translatable across both
sectors.

The pro-forma was put online for a period of two months (and is still online but for
the sake of this paper we only took into account the pro-formas completed in the first
two months) and we received twenty-four responses. We also received seven paper
based pro-formas sent back to us as scanned documents via email. This made a total
of thirty-one pro-formas. We had set the pro-forma to ensure that details of the res-
pondent was a required category. This was done to be able to filter out any responses
that were biased, duplicate or simply not completed with any seriousness. Of the 24
online pro-formas two were filled in by people calling themselves ‘test’ and ‘ano-
nymous’. We discounted the results from both these pro-formas. We also had two
incomplete pro-formas online. Incomplete pro-formas were those where some ques-
tions were skipped. As this exercise was carried out as a precursor and data gathering
exercise more for the interest of creating a strong and clear interview guide for phase
II we accepted the results of the incomplete pro-formas. Phase II is where the

212 M. Shaikh and T. Cornford

researchers involved in this study hope to gain a more detailed understanding of TCO
models and the decision-making process in organizations so it was felt that so long as
the pro-formas were recognized to be valid (not anonymous or biased) and useful
(filled in 75% of the pro-forma and added some non-mandatory comments that helped
us to evaluate the experience of the company with open source) we would include the
results to help shape the interview guide for phase II.

The pro-forma has four sections. The aim of section one is to ask for simple infor-
mation like the name and affiliation of the respondent. This includes the size and
name of the company/local authority. Section two prompts for the sort of OSS used
by the organization and the time span of use. The aim of section three is to gather
details on strategic drivers that lead to OSS adoption, and section 4 is concerned with
eliciting the TCO models used.

2.2 Phase I Leading to Phase II

Of the total pro-formas we received the majority of them were filled in by small to
medium sized private companies (44%). Small to medium sized enterprises included
all those with a number of employees ranging between 1-100. We had 24% of the
pro-formas completed by employees of large, and in many cases global companies
(employees ranging from 101 and above). Public sector replies made 32% of the total.
In phase II we intend to cover a larger portion of the public sector.

The pro-forma had a number of questions where respondents were asked to add
comments or spell out the category of ‘other’ in more detail. Responses to such ques-
tions gave rise to some very interesting issues which will become a part of the inter-
view guide and informed the researchers involved. The respondents for the pro-forma
were asked for their contact details and phase II will draw us back to the those that
made very intriguing comments. Phase II will involve in-depth interviews focused on
5-7 case studies. Key personnel involved in making procurement decisions and strate-
gy of open source use in the organization will be interviewed.

The cases will be chosen on the basis of whether there has been involvement with
open source adoption, use and/or redistribution for at least a period of two years. This
is to ensure that there has been time enough for reflection on the process and there are
some indicators that show ‘success’ or ‘failure’ – more simply, is open source still
being used, has the use of it increased over time, and has it spread up the stack. We
also want an even mix of public and private organizations to make it possible to re-
flect across the cases and build on lessons learned for an exchange of ideas. The or-
ganizations and their experience with open source needs to have been fruitful at some
level but we are equally aware that we need to have examples of less successful im-
plementations as this will enrich our work and understanding of the concerns with
open source that can be faced. Indicators for the less successful cases include a return
to proprietary software use, move to outsourcing their software development and a
shrinkage in their in-house IT department. And lastly, our cases will include local
authorities in the UK and other European government as well such as the Municipali-
ty of Munich, Municipality of Andalucía.

 Framing the Conundrum of Total Cost of Ownership of Open Source Software 213

3 Analysis and Discussion

The pro-forma results are very interesting and we only have space to share some of
the key ideas that emerged. These ideas include the importance of liberty [15] and
flexibility (reduced vendor lock-in) provided by open source to companies and the
public sector, that long term costs vary far more across companies considering their
size and experience with open source, short term costs are slightly higher, that most
companies choose a combination of open source and proprietary software where their
decisions are based on pragmatism and need rather than questions of openness.

In this section we take these broad themes and frame them in relation to another
interesting dimension that we noted from our data, that of a more fine-tuned TCO
categorization than has been offered so far by other studies. We found that the cost
categories were not limited to two broad ones, cost of acquisition and cost of opera-
tion, but instead we recognized two other very key cost factors that companies are
beginning to take very seriously in relation to open source software procurement
decisions – cost of adoption and exit costs (see Table 1).

The cost of operation and software are more quantifiable and thus easier to meas-
ure and evaluate. Cost of operation includes the expense of conducting a TCO study
before making a decision of implementation. This is similar for proprietary software
so in some respects this is not specific to open source, but rather to software decisions
in general. The cost of software includes the cost of the license, setting up costs, and
other costs which are similar to the cost of operation in their lending themselves to be
quantified. However, the cost of adoption and exit costs for open source pose some
interesting challenges but also opportunities.

3.1 Cost of Adoption

The cost of adoption, we found, concerns all the relevant but more qualitative ex-
penses involved with the broad idea of adoption such as the learning necessary when
you adopt open source for the first time or for a new part of the stack (see Table 2).
Very importantly it also includes interoperability costs which many companies surpri-
singly ignore even though this is a feature of proprietary software as well. The differ-
ence with open source is that some respondents stated that they feel they can make the

Table 1. Different Categories of TCO, and what each involves

Categories of TCO
Cost of operation Cost of software Cost of adoption Exit costs

Formal TCO assessment Initial purchase price Learning Migration costs

TCO policy
Monetary costs of set-

up
Interoperability Re-training

Cost of evaluating
software (tinkering)

Customization
expense

Support services Switching costs

 Software scaling cost Training
 Access to upgrades

214 M. Shaikh and T. Cornford

necessary adjustments because the code is open, yet as we are becoming more aware,
there is a steep learning curve with all software not created in-house. Upgrades are a
growing concern for companies with open source because most open source software
tends to adapt and be changed more frequently than proprietary. Of course the choice
to upgrade is with the user yet interoperability can also become a problem if one
software is upgraded but other applications and infrastructure are not.

3.2 Exit Costs

Exit costs are yet a more intriguing idea. Respondents agreed that this aspect was the
most ignored and yet it formed a very positive aspect of the overall TCO of open
source adoption. Table 2 outlines the areas where the costs with open source were
considered to be the lowest but take note of the ‘other’ category in Table 2 and Figure
2. Upon reading the comments added by the respondents it was evident that though
open source saved the organization money there were costs that had been ignored and
ill-understood.

Exit costs include all the expenses of switching from one software to another, vari-
ous interoperability expenses, costs related to legacy systems, retraining staff and
initial teething issue costs. This is an area where at least at present companies feel that
open source costs are higher and not clear at all. The low license costs with open
source software, according to the respondents though very real can become mislead-
ing because companies simply begin to base their decisions on that cost alone and
dismiss any other factor.

Table 2. Areas and applications of OSS which Saved Money for Organizations

Which OSS saved your organization money?

Agree Agree some-
what

Completely
disagree

No change
in expense

- same
Applications: 75.0% 12.5% 0.0% 6.3%
Enterprise
systems 71.4% 0.0% 0.0% 0.0%

Vertical/line of
business 58.3% 0.0% 0.0% 0.0%

Desktop 84.6% 7.7% 0.0% 0.0%
System’s De-
velopment 71.4% 7.1% 0.0% 7.1%

Infrastructure: 84.6% 7.7% 0.0% 0.0%
OS Platforms 88.2% 11.8% 0.0% 0.0%
Application
Servers 84.6% 0.0% 0.0% 7.7%

Web services 93.3% 0.0% 0.0% 0.0%
Networking 86.7% 6.7% 0.0% 0.0%
Database 86.7% 0.0% 0.0% 13.3%
Other 72.6% 0.0% 0.0% 0.0%

 Framing the Conundrum of Total Cost of Ownership of Open Source Software 215

However, when migrating between one open source product to another the migra-
tion costs are then lower because open source is based on open standards and there is
greater interoperability. Most companies that had a more long term understanding of
their software adoption added comments in the pro-forma to the effect that the migra-
tion costs (exit costs) were more favourable for open source and so this became one of
the deciding factors in favour of OSS. Simply put, migration costs between one pro-
prietary application to another are always considerable as neither products are open
and it is thus difficult to manage the necessary interfacing and interoperability
changes across all the software applications that need to ‘speak to each other’.

3.3 Vendor Lock-in and Lock-Out

Vendor lock-in though a real problem with proprietary software is less so with open
source. This may well be a real consideration yet what we note from our study so far
is that expertise of the software (be it open source or otherwise) and a lack of good
documentation which is a problem with open source often becomes a lock-out. Com-
panies feel discouraged from adopting any software they cannot control [29], but also
cannot obtain comprehensive services and troubleshooting. The idea of reaching out
to an unknown community [26] has a romantic appeal but is not practical.

Indeed, such promises spread FUD about open source adoption and lead to lock-
out because companies avoid anything they are not familiar with. It is easy enough in
theory to take code and customize it yet as many respondents noted this is not so in
practice. They are forced to hire experts and look for support to communities outside
the company. This is a drain on their resources and an expense that was not consi-
dered by the decision takers, even if a TCO assessment was carried out before pro-
curement decisions were taken. This would not be such an issue if the software is
vendor-supported, however, we have found that many companies and local authorities
are drawn to open source because they wish to control the software source and make
changes to it both in-house and with the help of a strong external community.

3.4 Temporal Element of TCO

Another key theme that arose from our pro-forma data was that of cost temporality.
Of the four costs outlined in Table 1 the cost of adoption and exit costs are relatively
quite high for open source software. This is even more marked with the added com-
plexity of the size and experience of the organization. If the company is large and
experienced with open source then these two costs are often well-understood and thus
less expensive. Large companies can diversify and absorb costs better than smaller
companies and this is largely true for the public sector as well. Smaller organizations
however usually jump on the open source bandwagon with the naive idea that this
will prove cheaper. They have also not undertaken a TCO analysis and if they are not
experienced with open source it was then found that the expense of open source sur-
prised many. In some cases, especially in the public sector (coupled with issues of
poor interoperability) we have seen a return to proprietary software. Phase II of our
study will include this local authority as a full case study to better explore the prob-
lems, issues and dilemmas that forced it to return to closed source software adoption.

216 M. Shaikh and T. Cornford

3.5 Pragmatism and the Idea of Value

Most companies, like software developers and hackers work on the basis of pragmat-
ism. If something is good enough and not broken then it will be continued to be used.
Open source requires some experience and practice and very key, the licenses in-
volved with open source need good skills and expertise, something most small com-
panies do not have the resources for and the public sector simply does not consider. In
effect if something is good enough then change is considered problematic and unne-
cessary. In the public sector in the UK we have found that local authorities are begin-
ning to gravitate towards open source simply because of the lower costs promised by
open source (due to the recession), however a better understanding of the benefits of

Fig. 2. This figure shows the various open source software concentration in implementation in
the different organizations

open source is needed. The idea of where the value lies in open source software adop-
tion is the needed. And by value we do not mean a monetary value (though it does
include this category) we refer to the softer side of benefits – that of flexibility, open-
ness, freedoms, ability to tweak and customize and along with open standards and
open data – a far more open and accessible software environment. This is where the
true benefits and cost reductions will come in the future.

The real value in open source adoption is clearly the collaborative co-creative ide-
ology and spirit it encourages. This in turn leads to value creation, innovation, and a
stronger ecosystem [27].

 Framing the Conundrum of Total Cost of Ownership of Open Source Software 217

4 Conclusion

This paper maps the initial stages of our study of the total cost of ownership of open
source software. The analysis provides some interesting answers to broad questions
about cost but more importantly it raises relevant questions about the rather enigmatic
quality of assessing the total cost of software, especially open source software. It is a
conundrum as most companies lack experience with open source and more to the
point, a slightly different understanding of ‘value for money’ is needed. The actual
monetary cost of open source software adoption in many cases is not unlike that of
proprietary software but it is the liberties, flexibility and control that it provides that
draws companies and the public sector towards it.

Phase I of our study has given rise to some very interesting findings. The main
ideas the respondents focused on included the lack of maturity level of open source
software, license confusions and lack of knowledge about the implications of various
open source licenses. Other ideas which arose were somewhat more surprising, most
organizations do not even attempt a TCO study before making procurement decisions
because of the expense such studies involve. The models used to assess TCO are also
more suited for proprietary software and companies are not comfortable or skilled to
tweak them for open source. And lastly, there is no policy in most companies for open
source adoption. These decisions are made more ad-hoc and usually based on prag-
matic decisions of use and need rather than cost.

However, there is much detail yet to be teased out in this amorphous area, and dur-
ing the course of this study we hope to be able to show more clearly where the large
part of the costs lie with open source software adoption, exactly where and how they
are distinctive in comparison to proprietary software, what strategies and practices the
public sector and companies can employ to make more effective use of the unique
qualities of open source so that the software can yield a stronger feeling of ‘value for
money’. Indeed, can we go so far as to suggest that open source software adoption is
an idea that the public sector not only needs to explore more seriously but in fact it
will prove more effective, valuable, cheaper and necessary in the future? We aim to
be able to provide a more nuanced answer to this and other questions at the end of our
study, and encourage other researchers to explore such aspects because we feel that
public sector adoption of open source has the potential to have real influence on open
government strategies [28], open standards, and open data.

References

1. Ellram, L.M.: A Taxonomy of Total Cost of Ownership Model. Journal of Business Logis-
tics 15, 171–191 (1994)

2. Ellram, L.M.: Total cost of ownership an analysis approach for purchasing. Journal of
Physical Distribution and Logistics 25, 4–23 (1995)

3. Ellram, L.M., Siferd, S.P.: Total Cost of Ownership: A Key Concept in Strategic Cost
Management Decisions. Journal of Business Logistics 19, 55–84 (1998)

4. Hurkens, K., van der Valk, W., Wynstra, F.: Total Cost of Ownership in the Services
Sector: A Case Study. The Journal of Supply Chain Management 42, 27–37 (2006)

218 M. Shaikh and T. Cornford

5. MacCormack, A.: Evaluating Total Cost of Ownership for Software Platforms: Comparing
Apples, Oranges, and Cucumbers. AEI-Brookings Joint Center for Regulatory Studies Se-
ries (2003)

6. Ellram, L.M.: A Framework for Total Cost of Ownership. The International Journal of Lo-
gistics Management 4, 46–60 (1993)

7. Wouters, M.J.F., Anderson, J.C., Wynstra, F.: The Adoption of Total Cost of Ownership
for Sourcing Decisions - A Structural Equations Analysis. Accounting, Organizations and
Society 30, 167–191 (2005)

8. Lerner, J., Schankerman, M.: The Comingled Code: Open Source and Economic
Development. MIT Press, Hong Kong (2010)

9. Carr, L.P., Ittner, C.D.: Measuring the Cost of Ownership. Journal of Cost Management 6,
42–51 (1992)

10. Russo, B., Succi, G.: A Cost Model of Open Source Software Adoption. In: IJOSSP, pp.
60–82 (2009)

11. Sutor, R.: Managing open source adoption in your IT organization (2009),
http://www.sutor.com/newsite/blog-open/?p=3260

12. Galoppini, R.: Open Source TCO: Total Cost of Ownership and the Fermat’s Theorem
(2009), http://robertogaloppini.net/2009/01/08/open-source-tco-
total-cost-of-ownership-and-the-fermats-theorem/

13. Burkhardt, R.: Seven Predictions for Open Source in (2009), http://it.sys-
con.com/node/797241

14. Wheeler, D.A.: Why Open Source Software / Free Software (OSS/FS, FLOSS, or FOSS)?
Look at the Numbers (2007), http://www.dwheeler.com/oss_fs_why.html

15. Phipps, S.: Open Source Procurement: Subscriptions. In: Computer World, UK (2011)
16. Zuliani, P., Succi, G.: Migrating public administrations to open source software. In: E-

society IADIS International Conference, Avila, Spain, pp. 829–832 (2004)
17. Zuliani, P., Succi, G.: An Experience of Transition to Open Source Software in Local Au-

thorities. In: e-Challenges on Software Engineering, Vienna, Austria (2004)
18. Dinkelacker, J., Garg, P., Miller, R., Nelson, D.: Progressive Open Source, Hewlett-

Packard, Palo Alto, California HPL-2001-233 (September 28, 2001)
19. Dahlander, L.: Penguin in a newsuit: a tale of how de novo entrants emerged to harness

free and open source software communities. Industrial and Corporate Change 16, 913–943
(2007)

20. Fitzgerald, B.: The Transformation of Open Source Software. MIS Quarterly 30, 587–598
(2006)

21. O’Mahony, S., Diaz, F.C., Mamas, E.: IBM and Eclipse (A), Harvard Business Review
Case Study, December 16 (2005)

22. West, J., Gallagher, S.: Challenges of Open Innovation: The Paradox of Firm Investment in
Open Source Software. R&D Management 36, 315–328 (2006)

23. West, J.: How Open is Open Enough? Melding Proprietary and Open Source Platform
Strategies. Research Policy 32, 1259–1285 (2003)

24. Osterwalder, A., Pigneur, Y., Tucci, C.L.: Clarifying Business Models: Origins, Present,
and Future of the Concept. Communications of the Association for Information Sys-
tems 15, 1–40 (2005)

25. Vargo, S.L., Lusch, R.F.: Evolving to a New Dominant Logic for Marketing. Journal of
Marketing 68, 1–17 (2004)

26. Agerfalk, P., Fitzgerald, B.: Outsourcing to an Unknown Workforce: Exploring Open-
sourcing as a Global Sourcing Strategy. MIS Quarterly 32, 385–400 (2008)

 Framing the Conundrum of Total Cost of Ownership of Open Source Software 219

27. Shaikh, M., Cornford, T.: Understanding Commercial Open Source as Product and Service
Innovation. In: 2011 Academy of Management Annual Meeting, San Antonio, Texas,
USA (2011)

28. Noveck, B.S.: Defining Open Government (2011),
http://cairns.typepad.com/blog/2011/04/whats-in-a-name-open-
gov-we-gov-gov-20-collaborative-government.html

29. Shaikh, M., Cornford, T.: Letting Go of Control to Embrace Open Source: Implications for
Company and Community. In: The Hawaii International Conference on System Sciences
(HICSS), Koloa, Kauai, Hawaii, USA, vol. 43 (2010)

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 220–232, 2011.
© IFIP International Federation for Information Processing 2011

Libre Software as an Innovation Enabler in India
Experiences of a Bangalorian Software SME

Katja Henttonen

VTT Technical Research Centre of Finland
Oulu, Finland

katja.henttonen@vtt.fi
www.vtt.fi

Abstract. Free/Libre and open source software (FLOSS) has been advocated
for its presumed capacity to support native software industries in developing
countries. It is said to create new spaces for exploration and to lower entry bar-
riers to mature software markets, for example. However, little empirical re-
search has been conducted concerning FLOSS business in a developing country
setting and, thus, there is not much evidence to support or refute these claims.
This paper presents a business case study conducted in India, a country branded
as a 'software powerhouse' of the developing world. The findings show how
FLOSS has opened up significant opportunities for the case company, especial-
ly in terms of improving its innovative capability and upgrading in the software
value chain. On the other hand, they also highlight some challenges to FLOSS
involvement that rise specifically from the Indian context.

Keywords: Open source, innovation, India, free software, software business.

1 Introduction

Free/Libre and open source software (FLOSS) has been widely advocated [e.g. 1-4]
as a way to promote endogenous software innovation in developing countries. The
developmental opportunities created by the FLOSS phenomenon have been noticed
both by international development institutions (e.g. World Bank and UNDP) and
many of the developing countries themselves [1,3,4]. However, despite the enthu-
siasm, there remains very little empirical research on how developing country compa-
nies could successfully integrate FLOSS efforts into their internal innovative activi-
ties. Studies on commercially-motivated FLOSS in the US and Europe abound, but
the results may not be directly applicable to the diverse innovation environments in
the global South. This paper presents some key results of a qualitative case study [5]
conducted in India, the country with the most well-known software industry in the
developing world. The aim is to understand FLOSS-created opportunities and chal-
lenges from the viewpoint of an indigenous software SME.

The focus of the study is on the impacts of FLOSS on the innovativeness and prof-
itability of the case company. Herein, innovativeness means the ability to create and
implement new ideas which generate commercial value [cf. 6]. This can entail

 Libre Software as an Innovation Enabler in India 221

improvements to products, internal operations or a mix of markets. The study con-
cerns modest incremental innovations, which an SME can generate on a regular basis.

The rest of the paper is structured as follows. The second chapter is divided into
two sections: the first summarizes theoretical concepts underlying the study and the
second one briefly introduces the current debate on whether and how Indian primary
software sector could benefit from FLOSS.1 The third chapter describes the research
approach and methods employed in this study, and also very briefly introduces the
case company. The fourth chapter presents the actual case study results; it is orga-
nized in three sections reflecting three different approaches to open innovation (more
on these below). The fifth chapter discusses the meaning of some findings for further
research. Conclusions close the paper.

2 Background

2.1 FLOSS as Open innovation: Three Archetypes

This study builds on the Chesbrough's [7] Open innovation theory, which describes
the recent tendency of companies to 'open up' their innovation processes. In open
innovation, not all good ideas need to be developed internally, and not all ideas
should necessarily be further developed within firm's boundaries [8]. Chesbrough and
Crowther [9, cf. 10] distinguish two archetypes of open innovation: inbound and out-
bound. In the case of inbound open innovation, companies monitor the surrounding
environment of the firm to find technology and knowledge to complement in-house
R&D. In the case of outbound open innovation, companies are looking for external
organizations to take internally developed technology into new markets. An additional
approach to openness is an interactive value co-creation in strategic partnerships [11,
cf. 10] Here, the focus is on innovating together rather than on bringing resources
over company borders (inside or outside) [8].

From a perspective of a private company, FLOSS involvement becomes open in-
novation when it is combined with a sustainable business model [12]. The aforemen-
tioned 'subtypes' of open innovation can be used to categorize how primary software
companies engage with FLOSS [5, cf. 12,13]. In inbound open innovation, a company
sources free-of-charge intellectual property (IP) from FLOSS communities and uses it
to produce commercial software products or services. Typically, the main goal is to
save own R&D expenses and/or achieve faster time to market2. The outbound open
innovation entails what West and Gallagher [12] call “open source spin-out”: a com-
pany brings internally developed IP into FLOSS domain. It may aim to to create
demand for associated commercial offerings or advance strategic goals such as stan-
dards creation, for example. OSS communities can also be platforms for open value
co-creation where diverse stakeholders join forces to achieve a common R&D goal
and pooled contributions are made available to all [cf. 12].

1 The focus is on introducing the points put forwards in the development literature; the dis-

course is somewhat different in the FLOSS business literature. For the comparison of discus-
sions in the two disciplines, please see [5].

2 This does not necessarily equal to a 'parasite approach': a company may motivate external
innovation, e.g. by financially sponsoring FLOSS development [5, cf. 13,14].

222 K. Henttonen

2.2 FLOSS-Based Innovation in the Indian Context

While Indian software exports have grown exponentially over the past two decades
[15,16], many observers have pointed out that the industry's innovative capability has
remained relatively low [15,17,18]. The vast majority of Indian software exports con-
sists of low-value-adding off-shoring services such as maintenance of legacy systems
[15,17,18]. Due to barriers such as heavy financial constraints, 'late-comer disadvan-
tage' and geographical distance from key customers, many Indian software entrepre-
neurs struggle to upgrade in the software value chain [15,17]. Meanwhile, 'FLOSS
debate' is getting heated: academics and policy makers are arguing [e.g.4,19-22] on
whether FLOSS could help some Indian software companies, especially SMEs, to
increase innovativeness, add more value and capture more returns.

The proponents point out that sourcing technology from FLOSS communities (i.e.
inbound open innovation) saves R&D time and costs and can thereby help Indian
companies to overcome financial constraints and 'catch-up' to older players on the
global software markets [3,4,23]. Another key argument relates to inter-organizational
learning through gradually deepening FLOSS participation (in open co-creation).
Unlike off-shoring parent companies, who often have a strong incentive to prevent
knowledge spill-overs, FLOSS communities are very motivated to share knowledge
across organizational and geographical boundaries [24,25]. This is said to offer valua-
ble learning opportunities to Indian and other Southern companies [2,3,22]. Interes-
tingly, the possible benefits of outbound open innovation has not been discussed
much in the development literature, perhaps reflecting a tacit assumption that relevant
IP and technical knowledge flows 'from the West to the Rest' rather than vice versa.

Some critics have argued that any competitive advantage derived from FLOSS-
enabled cost and time savings is mitigated by GPL-like licensing terms [19,26]. As
these licenses make it difficult to sell mass-distributed packaged software, they are
said to deprive Southern software companies from the opportunity to benefit from the
'economies of repetition' [19]. Others have pointed out that 'price parity' with pirated
software is shirking the markets for FLOSS in the South [21,27]. It also widely ac-
knowledged that the cultural and linguistic barriers may hinder learning trough parti-
cipative process in FLOSS communities [20,28].There are also significant differences
between FLOSS communities on how they draw the boundaries of peripheral partici-
pation: some are highly inclusive, while others welcome only very advanced pro-
grammers [28,29]. Further, open co-creation and outbound open innovation both
require significant investments in non-(directly) revenue generating activities [13] and
because Indian companies typically face heavier financial constraints than their West-
ern counterparts, affordability can become a major problem [20]. Launching an own
FLOSS project is considered particularly costly and challenging human resource wise
[30-32].

Somewhat surprisingly, despite the lively debate, empirical studies on FLOSS ac-
tivities of primary software companies in India are almost non-existent. Some authors
[e.g. 19] even dismiss the subject by saying that FLOSS plays no role in the Indian
software industry. However, an international survey [33-35] indicates that, while
commercially-motivated FLOSS involvement seems to be a relatively weak
phenomenon in India (e.g. in comparison to Europe or Brazil), many small FLOSS
companies are still 'out there' and FLOSS experience is also highly appreciated by

 Libre Software as an Innovation Enabler in India 223

recruiters in more 'mainstream' software companies. The survey [34,35] also suggests
that most Indian companies limit themselves to inbound open innovation as far as
FLOSS is concerned. Outbound open innovation seems particularly rare, only three
Indian companies were found to author their own FLOSS projects [33]. Mahammo-
dan and De [36] also analysed FLOSS reuse by six proprietary software producers in
India. While these organizations reportedly attained significant cost savings by using
FLOSS components as 'black box', their developers often lacked sufficient time or
skills to even read the source code, leave alone contribute back.

3 Research Approach and Methodology

The paper presents results from a single case study conducted in a company called
Mahiti Infotech Private Limited3 (in short 'Mahiti') which is headquartered in Banga-
lore and employs 70-90 people. The company employs a customized product devel-
opment model [37]: it develops 'semi-finished' products, often co-creatively with
FLOSS communities, and later adds value by customizing them to the needs of indi-
vidual end-clients. The tailored products go to market either as bespoke software or
through the application service provision (ASP) model. Technical consulting provides
additional revenue streams.

While planning to conduct more case studies in the future, the author believes that
findings from this one case study alone may be valuable for the research community.
Especially so, because, to the knowledge of the author, no previous academic study
has aimed to 'give a say' to FLOSS entrepreneurs in India. Further, even though the
case cannot be argued to be perfectly 'revelatory' nor 'exemplifying' in a strict sense
[cf. 38], there are certainly many interesting characteristics to it. For example, despite
its relatively small size, Mahiti has an extremely visible role in the Indian FLOSS
scene. It can also be regarded as a notable example of an SME which has successfully
used FLOSS strategically in order to upgrade in the software value chain. The case
company also integrates elements from all the three archetypes of open innovation,
thereby allowing to analyse outbound/inbound open innovation and open co-creation
within the same organization.

The primary method of data collection was semi-structured interviews of the case
company personnel. Three directors, the company's chief executive officer (CEO),
chief technical officer (CTO) and marketing director were interviewed along with few
senior developers. Two other sources of evidence, documentation (e.g websites and
mailing list archives) and unobtrusive observation (mostly of employee interaction on
FLOSS related IRC channels) were used to collaborate and augment evidence col-
lected in the interviews. In order to cross-check data further [cf.39,40], some ques-
tions were also made to representatives of partner organizations. Most interviews
were recorded and transcribed; in few cases, it was necessary to rely on note taking
instead. A qualitative method called Template Analysis [41] was employed to
thematically analyse the interview transcripts and, to a much smaller extent, some
documentary evidence. In short, this means that a coding template was developed

3 Researchers have argued both for and against disclosing the organization's name in case stu-

dies, see [47] for an overview. In this study, the company directors were given a choice and
they selected recognition over anonymity.

224 K. Henttonen

iteratively whilst the analytical process moved forwards. The final template served as
a basis for interpreting the data and writing up the findings. In addition to the thematic
coding, some aspects of the Value Network Analysis [42] approach were used. The
role of this method was complementary and it is not elaborated herein.

This study aims to confirm to the criteria that Guba [43,44] suggests for qualitative
research: credibility (a parallel of internal validity), dependability (a parallel of reli-
ability) and transferability (a parallel of external validity). To improve credibility, the
study relies on several data sources and two different analysis methods as explained
earlier [cf. 40]. The results report has also been shown to key informants for confir-
mation [cf.39,45]. To ensure dependability, complete records have been kept of the
collected raw data (a case study database) so that other researchers can check them
per request [cf, 22,50]. As for transferability, the results from a single case study are
not generalisable to other situations, but they can still contribute to the understanding
of the target phenomena and thereby provide valuable leads for future research
[40,46]. Further, a longer research report available online [5] provides additional con-
textual information which can help others to make judgements on the transferability
of the findings to other settings [cf. 38].

4 Case Study Results

4.1 Experiences in Inbound Open Innovation

In order to save costs, Mahiti intensively encourages the use of FLOSS code and
components in all of their software projects. One of the founders gauged that an aver-
age Indian software company pays approximately 15% of their profits back in licens-
ing fees, an expense they avoided. However, the cost savings and their profitability
implications varied a great deal in practice as illustrated by two recent customer pro-
jects (see Fig.1). In the first case, the company only needed to make minor modifica-
tions to an existing FLOSS product, but could still charge a 'premium price', higher
than that of all proprietary software vendors participating in the bid. This is because

Customer project 2

Re-sellable extension
(by Mahiti)

Customer project 1

FOSS code base
(by community)

Custom code
(by Mahiti)$$$$$$$$ +-0

Fig. 1. Proportions of FLOSS and 'own' code in two projects [5]

the FLOSS product in question met well with the needs of the customer as such and
Mahiti could offer the fastest lead-time. The profit margin was very high. In the sec-
ond case, the company had to build almost half of the source code by itself before

 Libre Software as an Innovation Enabler in India 225

customer requirements were met, but could still charge a much lower price. The pro-
ject was not profitable alone, but was still worth doing because the extension devel-
oped in this project was expected to be resold to several other customers over time.

FLOSS also brings cost savings to customers and, according to Mahiti's expe-
rience, this is helping to expand bespoke software markets in India and other develop-
ing countries. Interestingly, unlike most Indian software SMEs [15,18], Mahiti has
highly diversified export markets with customers in countries such as Mongolia, the
Bahamas, Brazil and Tajikistan. They believed this is partially because FLOSS based
solutions are more affordable to Southern customizers, though it is obvious that many
other factors are also at play. Nevertheless, it is noteworthy that, while the ease of
piracy diminishes the cost advantage of FLOSS on the realm of mass software, the
impact is not the same on the bespoke software markets. Pirated mass products can be
customized to a certain extent (e.g. Microsoft Excel with macros), but such possibili-
ties are very limited.

FLOSS licensing did not cause any fundamental changes to the company's revenue
models4: instead of tailoring proprietary software packages, they were customizing
FLOSS solutions. The latter allowed them to add-more value in-house, thanks to the
low 'purchase price' and unlimited customization options. Profiting from the 'econo-
mies of repetition' through closed-source product development was seen infeasible
due to financial constraints and highly mature markets: “basically, the curve to re-
cover the funds is very high and this kind of [business] model is not viable for a com-
pany like ours”. To the question of whether FLOSS licensing terms limit profit-
making, the CEO replied:

─ “Yes, if you choose to build your product with open source, you will most proba-
bly not become Bill Gates or Steve Jobs. But this is like any career choice, well,
you can become a mortgage banker or a broker. [...] Microsoft is what it is today
because they have spent money on every single line of code that they wrote. But I
cannot start from scratch and build an operating system, I cannot achieve anything
like that unless I do it with open source. And when I benefit from the efforts of
others, I cannot expect to keep all of the profits alone.”

When asked about the main difficulties in FLOSS reuse, directors pointed to difficul-
ties in finding recruits with any previous experience on FLOSS technologies and de-
velopment practices. This was seen as stemming from the tendency of local engineer-
ing education to ignore the skills needs of FLOSS companies and from the relatively
small number of volunteer FLOSS developers [cf. 33] in the country. There was a
recognition of some recent positive developments on the field of education. However,
while some FLOSS technologies were slowly making their way to the engineering
curricula, general code reuse skills were reportedly not. Consequently, the vast major-
ity of new recruits were totally unfamiliar with the whole concept code reuse, only
vaguely associating it with 'cut and paste'. They had to be taught 'by hand' which
tended to bring up training expenses. As a strategy to address the skills gap, the com-
pany has started to offer free-of-charge lectures on FLOSS skills to local engineering
colleges.

4 For more information on FLOSS licensing issues in the case context, please see [5].

226 K. Henttonen

For the case company, another concern is that, as the vast majority of FLOSS
projects originate from the global North [cf. 48], they do not always address regional
needs as well as locally created software could. For example, the directors pointed out
that there are practically no FLOSS applications addressing non-urban development
needs in India, such as monitoring the quality of water or coordinating rural health-
care. “All of these are possible with FLOSS, but there are very few projects moving
despite a huge demand”, the CTO said. He added that, while many FLOSS applica-
tions are relatively easy to localize in terms of language or metric systems, there are
also more fundamental differences in software requirements between countries and
regions. Referring to the cultural diversity within India, he continued: “this is a vast
country and on the way from Bombay to Delhi the requirements change also... so no
matter how much FLOSS there is in a market, it is not enough.”.

4.2 Experiences in Outbound Open Innovation

Mahiti is one of the very few Indian software companies [cf. 33] to author its own
FLOSS development project. Recently launched OurBank (www.ourbank.in) is a
micro-finance software community which has attracted dozens of volunteer develop-
ers, mostly Indian engineering students, and NGOs from as far as Brazil have contrib-
uted localization effort. Based on their positive experience, Mahiti's directors are
convinced that it is feasible for a resource-constraint SME to launch its own FLOSS
community. Success on this arena was seen to depend on “energy and passion” as
well as certain key capabilities (e.g. social networking skills) rather than large mone-
tary investments. On the other hand, the CEO did admit that capturing returns from
FLOSS spin-outs can be difficult: “Creating a product, architecting it, developing it,
convincing other people that it is good and building a community - it is a painful thing
to do, but it is sustainable in the long run. However, it does not provide you with re-
turns like these [FLOSS customization projects].”

The mentioned profit-making challenges exist despite some institutional donations
(e.g. from EuropeAid) towards the development of OurBank. However, most diffi-
culties were believed to relate to the incubation phase. In the long run, Mahiti plans to
step aside from leading the community and become just one of the many contributors.
Such partial 'hand-off' was seen necessary so that the community can “evolve natu-
rally”. Time will show how the transition will work out in practise.

Apart from the spin-out described above, Mahiti has a longer history in doing re-
leases which could be called ‘spin-offs’. Whenever they have a piece of 'surplus'
source code, which has reached the end of it's life cycle, they put it freely available on
SourceForge or similar OSS platform. Because nothing is invested in community
building or even making a website, the cost of open-sourcing is very low in this case.
The company reported concrete and significant benefits once the IP got 'new life' in
FLOSS domain. For example, they once open sourced a very small business applica-
tion, a leave management system, which was only meant to be used in-house. Later
on, they were contacted by a large foundation, who had downloaded the software and
wanted to have it extended. The company gained a very important customer in this
way, but the marketing effort only consisted of a few mouse clicks.

 Libre Software as an Innovation Enabler in India 227

4.3 Experiences in Open Value Co-creation

Mahiti also plays a globally important role in the development of some FLOSS prod-
ucts such as the Plone content management system. When asked about business gains
from strategic FLOSS participation, the global marketing benefits were typically men-
tioned first. The company does not need to engage in conventional marketing, direc-
tors said, because “FLOSS gives us complete visibility”. Being listed as a partner on
the Plone website was alone considered to be a major advantage. Further visibility
resulted from employees' contributions, which they were always advised to do under
the name of the company, and from co-organizing Plone conferences. However, it
was not only about having one's name visible but, more importantly, about being seen
as a 'shaper' of the technology: “They [customers] come to us because they see us as
people who vision the [Plone] product and not only as people having [third-party]
expertise on it”, explains the marketing director. In addition, FLOSS communities are
specialized social networks were 'word-of-mouth' travels quickly. Recommendations
from other FLOSS community members brought in many customers. To exemplify
such discussions, a UK-based member recommends Mahiti to another organization on
a Plone mailing list saying “I've been told Mahiti has very good Plone/Zope skills and
also knows the server side”.

Somewhat expectedly, another group of reported benefits related to inter-
organizational learning. The employee training at Mahiti is closely integrated with
FLOSS participation. New employees started by following discussions on FLOSS
forums and they were encouraged to gradually deepen their participation, very much
in line with the classic 'onion model' [49] frequently stated in FLOSS research. The
interviewed employees seemed genuinely enthusiastic about this training method.
One said that while engineering education had only taught her to complete specific
tasks, FLOSS participation had taught her to find solutions independently. From the
management viewpoint, there are cost advantages because new employees are
coached free-of-charge5 by external experts. Some drawbacks were also mentioned,
for example, FLOSS project administrators did not always explain why they rejected
a contribution, which obviously constrained what an employee could learn from the
experience.

As to other forms of inter-organizational learning, the company had benefited from
adopting process innovations from FLOSS communities. For example, FLOSS in-
volvement had prompted the company to adopt and improve the practice of end-user
co-development. As a result, intense collaboration with domestic end-customers, who
paid below-market prices in return of participating in R&D and beta-testing, had be-
come a key part of their innovation process. Further, as a result of their FLOSS activi-
ties, the company has become geared towards writing well-commented and highly
modular source code which is easy to reuse internally. They have even introduced an
'internal source forge', a repository where developers search for reusable source code
developed in previous customer projects. These new development practices have
enabled the case company to move away from one-time-project development towards
developing 'semi-packages' out of reusable modules. In this way, FLOSS had clearly
become a booster rather than a barrier to the 'economies of repetition' discussed
earlier.

5 Alternatively, the coaching can be understood as a social return from investments which the

company makes to foster its relationship with FLOSS communities [cf. 13]. One developer
said that Mahiti's 'good reputation' in communities helped her to get assistance.

228 K. Henttonen

The challenges discussed in the context of inbound open innovation also have an
impact on open co-creation. In addition, directors acknowledged there are economic
barriers to making FLOSS contributions. However, Mahiti has found several ways to
keep expenses reasonable. Making minor contributions like bug fixes is integrated
into employee training as explained earlier. The company also intermediates contribu-
tions made by others, for example, it facilitated local Myanmarian refugees to trans-
late Plone into Burmese and put their contribution online. Or, as in the Hecker's [50]
“sell-it-free-it model”, large FLOSS contributions often consist of source code that
has already been sold to one or more customers. The later model is not only an issue
of affordability though; co-operation with end-customers was also seen crucial for
ensuring the quality of the contribution. The CTO explains: “You cannot release
something [to a FLOSS community] and expect miracles, unless you have tested it
and the only way to test a product is to test with a customer...once it's a stable product
only then the masses [of FLOSS users] can use it”. Reportedly, most of the company's
customers do not mind a contractual clause saying that the source code developed for
them might be open source later.

Interestingly, developers said that they had not experienced any language barriers
to FLOSS participation. Tertiary education had left them with a decent command of
English and, besides, they felt that only technical terms are needed to talk on FLOSS
related IRC channels. This is not an ethnographic study and it was not possible to
detect how more 'subtle' cultural or linguistic issues may shape their identity building
as FLOSS developers and effect their sense of belonging to a FLOSS community. On
the surface, however, the employees seemed to feel sincerely proud of being well-
recognized and respected members of the FLOSS communities where they contri-
buted. For example, they very positively recalled that Joel Burton from the Plone
Foundation had visited Mahiti and socialized with them. This was understood to be
evidence that their participation is highly appreciated. “If we worked with Microsoft,
Bill Gates would not come to chat with us”, compared one.

5 Discussion

This paper does not aim to advocate Mahiti's experiences as a success model, which
Indian software SMEs in masses could imitate. Firstly, it is appreciated that the study
has succeeded to identify more opportunities than challenges. Despite cross-checking
information from different sources (including non-company ones), the study still es-
sentially relies on what the informants decided to share. Most people prefer to talk
about their successes rather than their failures and the informants were supposedly not
free from this common human tendency. Secondly, the case company seems to pos-
sess unique capabilities and also has a different market position than most Indian
software SMEs. To exemplify the latter, Mahiti serves direct end-customers, over half
of which are non-profit organizations. As such customers often agree to open-
sourcing the code, which they have already paid for, the company can benefit from
'the sell-it-free-it' model. The scene is supposedly very different for most Indian
SMEs, which do subcontracting work for multinational ICT companies.

The paper has 'scanned' several opportunities and challenges faced by the case
company and none of these could be discussed in great depth. However, the author

 Libre Software as an Innovation Enabler in India 229

hopes that the paper has helped to highlight the wide range of perspectives, which one
should take into consideration when discussing FLOSS business in India, or possibly
other Southern contexts. For example, some development writers [e.g. 19] argue that
FLOSS business models are 'less profitable' without discussing what are the likely
alternatives for software companies in that particular country/region. Or, on the other
side of the debate, the 'endogenous' nature of FLOSS is often strongly advocated [e.g.
1,4] without discussing the challenges that Southern organizations face when trying to
launch their own FLOSS projects.

Most prior work on FLOSS-enabled learning, especially in the development con-
text, focuses on technological knowledge transfer [e.g.2,25,29]. However, this study
points to significant benefits from learning new development practices on customer
co-development and code reuse. The study also suggests that FLOSS can have mixed
impacts on the costs of employee training. These are both interesting subjects for
further research, especially considering that the low level of code reuse (often below
5%) and high training expenses are often mentioned among key factors hindering
profitability of Indian software SMEs [15,17,18]. Other topic, which deserves more
attention, is the potential ability of FLOSS to expand low-cost markets for bespoke
software in the South. The strong emphasis, which the interviewees placed on the
global marketing benefits of FLOSS participation, is also noteworthy. Very hypothet-
ically, this could related to the cost of international marketing (e.g. adverts in interna-
tional magazines) being proportionally higher than the cost of R&D labour (i.e.
FLOSS participation) for Indian companies.

From the viewpoint of the Open Innovation theory, Mahiti's experiences in upload-
ing 'surplus' source code to the Internet are particularly interesting. Their habit strong-
ly reflects one of the Chesbrough's [7] main “ethos”: one should never 'sit' on the
surplus intellectual property. The case study hints that SourgeForge-like platforms
might provide a low-cost route for releasing IP which is no longer creating value in-
house. If the released IP creates value elsewhere, there is a chance to claim a portion
of that value. While getting theoretical support from Open innovation researchers
[e.g. 51], this idea conflicts with many prior studies [13,30,32], which suggest that
any commercially-motivated FLOSS release should be supported by significant in-
vestments in marketing and infrastructure building.

6 Conclusion

The study illustrates how FLOSS can blur the boundary between software vendor and
third-party service provider, thereby opening up new opportunities for companies who
lack resources to develop own products from 'scratch'. FLOSS co-creation has helped
the case company to develop 'vendor-like' in-depth expertise and build an image as a
co-creator of certain technologies. Due to the availability of source code and the ab-
sence of licensing fees, they can also add more value to FLOSS products than a non-
vendor can typically add on proprietary products. In some cases, FLOSS releases
have even helped to open up routes to new markets. Meanwhile, the case company
continues to face many challenges such as the poor availability of new recruits with
FLOSS competences in India. More research is needed to understand how the find-
ings may apply beyond the single case setting and whether FLOSS has any potential
to transform the Indian software sector at large.

230 K. Henttonen

Acknowledgements. I want to thank Mr. Pasi Pussinen, a research scientist at VTT,
who gave some excellent feedback on a draft of this paper and all the informants, who
spent their valuable time being interviewed. As to financing, this work has been
supported by the research project ITEI-VTT, which is co-funded by VTT and Finnish
National Technology Agency (Tekes).

References

1. Dravis, P.: Open source software. Perspectives for development. Global information and
Communication Technologies Department, the World Bank, Washington (2003)

2. Tapia, A., Maldonado, E.: An ICT Skills Cascade: Government-Mandated Open Source
Policy as a Potential Driver for ICT Skills Transfer. Information Technologies and Inter-
national Development 5(2), 31–51 (2009)

3. Weerawarana, S., Weeratunge, J.: Open Source in Developing Countries. SIDA, Stock-
holm (2004)

4. Wong, K.: Free/open source software: government policy, UNDP Asia Pacific Develop-
ment Information Program in cooperation with Elsevier, New Delhi (2004)

5. Henttonen K.: Open source as an innovation enabler: A Case Study of an Indian Software
SME. Dissertation, The University of Manchester. Institute for Development Policy and
Management (2011),
http://opensource.erve.vtt.fi/publications/henttonendisserta
tion.pdf

6. Subramaniam, M., Youndt, S.: The influence of intellectual capital on the type of innova-
tive capabilities. Academy of Management Journal 48(3), 450–463 (2005)

7. Chesbrough, H.: Open innovation: the new imperative for creating and profiting from
technology. Harvard University Press, Boston (2003)

8. Koskela, K., Koivumäki, T., Näkki, P.: Art of openness. In: Pikkarainen, M., Codenie, W.,
Boucart, N., Heredia, J. (eds.) The Art of Software Innovation. Eight Practice Areas to In-
spire your Business. Springer, Heidelberg (2011) (to be published)

9. Chesbrough, H., Crowther, A.: Beyond high tech: early adopters of open innovation in
other industries. R&D Management 36, 229–236 (2006)

10. Gassmann, O., Enkel, E.: Towards a theory of Open innovation: three core process arche-
types. In: The Proceedings of the R&D Management Conference, Sesimbra, Portugal
(2004)

11. Piller, F., Ihl, C.: Open Innovation with Customers – Foundations, Competences and In-
ternational Trends. Trend Study within the BMBF Project. International Monitoring’,
RWTH Aachen University, Aachen (2009)

12. West, J., Gallagher, S.: Patterns of Open innovation in open source software development.
In: Chesbrough, H., Vanhaverbeke, W., West, J. (eds.) Open Innovation:Researching a
New Paradigm, pp. 82–106. Oxford University Press, Oxford (2006)

13. Goldman, G., Gabriel, R.: Innovation happens elsewhere. Open source as business strate-
gy. Elsivier, San Fransisco (2005)

14. Dahlander, L., Magnusson, M.: Relationships between open source software companies
and communities: Observations from Nordic firms. Research Policy 34(4), 481–493
(2005)

15. Arora, A.: The Indian software industry and its prospects. In: Bhagwati, J., Calomiris, C.
(eds.) Sustaining India’s growth miracle, pp. 166–215. Columbia University Press, New
York (2008)

 Libre Software as an Innovation Enabler in India 231

16. Athreye, S.: The Indian software industry. In: Arora, A., Gambardella (eds.) From Under-
dogs to Tigers: The Rise and Growth of the Software Industry in Brazil, China, India, Irel-
and, and Israel, pp. 7–14. Oxford University Press, Oxford (2005)

17. D’Costa, A.: Export Growth and Path Dependence: Locking Innovations. Software Indus-
try, Science, Technology and Society 7(1), 51–81 (2002)

18. Nirjar, A., Tylecote, A.: Breaking out of lock-in: Insights from case studies into ways up
the value ladder for Indian software SMEs. Information Resources Management Jour-
nal 18(4), 40–61 (2005)

19. Debroy, B., Morris, J.: Open to development: Open-Source software and economic devel-
opment. International Policy Network, London (2004)

20. O’Donnell, C.: A case for Indian outsourcing: open source interests in IT jobs. First Mon-
day 9(11) (2004)

21. Sharma, A., Adkins, R.: OSS in India. In: Dibona, C., Cooper, D., Stone, M. (eds.) Open
sources: the Continuing Evolution, O’Reilly, Sebastopol (2005)

22. Suman, A., Bhardwaj, K.: Open Source Software and Growth of Linux: The Indian Pers-
pective. DESIDOC Bulletin of Information Technology 23(6), 9–16 (2003)

23. May, C.: The FLOSS alternative: TRIPs, non-proprietary software and development.
Knowledge, Technology, and Policy 18(4), 142–163 (2006)

24. Krogh, G., Spaeth, S., Lakhani, K.: Community, joining, and specialization in open source
software innovation: a case study. Research Policy 32(7), 1217–1230 (2003)

25. Staring, K., TitleStad, O.: Development as a Free Software: Extending Commons Based
Peer Production to the South. In: The Proceedings of the Twenty Ninth International Con-
ference on Information Systems (ICIS 2008), Paris (2008)

26. Reddy, B., Evans, D.: Government Preferences for Promoting Open-Source Software: A
Solution in Search of a Problem. Social Science Research Network (2002)

27. Heeks, R.: Free and Open Source Software: A Blind Alley for Developing Countries?
IDPM Development Informatics Briefing Paper, Institute of Development Policy and
Management. The University of Manchester (2005)

28. Vaden, T., Vainio, N.: Free and Open Source Software Strategies for Sustainable Informa-
tion Society. In: O. Hietanen (ed.) University Partnerships for International Development:
Finnish Development Knowledge, Finland Futures Research Centre, Turku (2005)

29. Wernberg-Tougaard, C., Schmitz, P., Herning, K., Gøtze, J.: (Evaluating Open Source in
Government: Methodological Considerations in strategizing the Use of Open Source in the
Public Sector. In: Lytras, M., Naeve, A. (eds.) Open Source for Knowledge and Learning
Management: Strategies Beyond Tools, Idea Group Publishing, London (2007)

30. Henttonen, K., Matinlassi, M.: Contributing to Eclipse - a case study. In: Proceedings of
the Software Engineering 2007 Conference (SE 2007), Hamburg, Germany (2007)

31. Järvensivu, J., Mikkonen, T.: Forging A Community? Not: Experiences On Establishing
An Open Source Project. In: Russo, B., Damiani, E., Hissam, S., Lundell, B., Succi, G.
(eds.) Open Source Development Communities and Quality, IFIP Working Group 2.13 on
Open Source Software Systems (OSS 2008), Milano, Italy (2008)

32. West, J., O’Mahony, S.: Contrasting Community Building in Sponsored and Community
Founded Open Source Projects. In: The Proceedings of the 38th Annual Hawaii Interna-
tional Conference on System Science. IEEE Computer Society, Los Alamitos (2005)

33. UNU-MERIT Free/Libre and Open Source Software: Worldwide Impact Study. D31:
Track 1 International Report. Skills Study. United Nations University, Maastricht (2007)

34. UNU-MERIT Free/Libre and Open Source Software: Worldwide Impact Study. D7: Track
1 Survey Report - India. Skills Study. United Nations University, Maastricht (2007)

232 K. Henttonen

35. UNU-MERIT Free/Libre and Open Source Software: Worldwide Impact Study. D7: Track
2 Survey Report - India. Software Study. United Nations University, Maastricht (2007)

36. Madanmohan, T., De, R.: Open source reuse in commercial firms. IEEE Software 21(6),
62–69 (2004)

37. Codenie, W., Pikkarainen, M., Boucart, N., Deleu, J.: Software innovation in different
companies. In: Pikkarainen, M., Codenie, W., Boucart, N., Heredia, J. (eds.) The Art of
Software Innovation. Springer, Heidelberg (2011) (to be published)

38. Bryman, A.: Social Research Methods, 3rd edn. Oxford University Press, New York
(2008)

39. Chetty, S.: The case study method for research in small and medium sized firms. Interna-
tional Small Business Journal 15(1), 73–85 (1996)

40. Yin, R.: Case Study Research: Design and Methods, 4th edn. Sage Publications, California
(2009)

41. King, N.: Template analysis. In: Symon, G., Cassell, C. (eds.) Qualitative Methods and
Analysis in Organizational Research: A Practical Guide, pp. 118–134. Sage Publications,
California (1998)

42. Allee, V.: Value Network Analysis and Value Conversion of Tangible and Intangible As-
sets. Journal of Intellectual Capital 9(1), 5–24 (2008)

43. Guba, E.: Criteria for assessing the trustworthiness of naturalistic inquiries. Educational
Technology Research and Development 29(2), 75–91 (1981)

44. Guba, E.G., Lincoln, Y.S.: Competing paradigms in qualitative research. In: Denzin, N.,
Lincoln, Y. (eds.) Handbook of Qualitative Research, pp. 163–194. Sage Publications,
London (1994)

45. Rowley, J.: Using case studies in research. Management Research News 25(1), 16–27
(2002)

46. Flyvbjerg, B.: Five Misunderstandings About Case-Study Research. Qualitative In-
quiry 12(2), 219–245 (2006)

47. Walsham, G.: Doing interpretive research. European Journal of Information Sys-
tems 15(3), 320–330 (2006)

48. Robles, G., Gonzalez-Barahona, J.M.: Geographic location of developers at SourceForge.
In: The Proceedings of the 2006 International Workshop on Mining Software Reposito-
ries, Shanghai, China, pp. 144–150 (2006)

49. Ye, Y., Kishida, K.: Toward an understanding of the motivation of open source software
developers. In: The Proceedings of the 25th International Conference on Software Engi-
neering, ICSE 2003 (2003)

50. Hecker: Setting up shop: the business of Open-Source software. IEEE Software 16(1), 45–
51 (1999)

51. Henkel, J.: Selective revealing in Open innovation process: The case of embedded Linux.
Research Policy 35, 953–969 (2006)

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 233–243, 2011.
© IFIP International Federation for Information Processing 2011

Adoption of OSS Development Practices by the
Software Industry: A Survey

Etiel Petrinja, Alberto Sillitti, and Giancarlo Succi

CASE - Center for Applied Software Engineering
Free University of Bozen-Bolzano

Piazza Domenicani 3, 39100 Bolzano, Italy
{etiel.petrinja,alberto.sillitti,

giancarlo.succi}@unibz.it
http://www.case.unibz.it

Abstract. The paper presents a survey of aspects related to the adoption of
Open Source Software by the software industry. The aim of this study was to
collect data related to practices and elements in the development process of
companies that influence the trust in the quality of the product by potential
adopters. The work is part of the research done inside the QualiPSo project and
was carried out using a qualitative study based on a structured questionnaire
focused on perceptions of experts and development practices used by
companies involved in the Open Source Software industry. The results of the
survey confirm intuitive concerns related to the adoption of Open Source
Software as: the selection of the license, the quality issues addressed, and the
development process tasks inside Open Source Software projects. The study
uncovered specific aspects related to trust and trustworthiness of the Open
Source Software development process that we did not find in previous studies
as: the standards implemented by the OSS project, the project's roadmap is
respected, and the communication channels that are available.

1 Introduction

The Open Source Software (OSS) industry is continuously growing and it is
influencing also practices that are part of the traditional software development process
[4, 17, 20]. OSS development is supported by software companies and OSS projects
are not interesting only to enthusiasts and volunteers [6]. Similar initiatives are not
limited to the software area alone, but they are encompassing also areas as book
publishing, scientific publishing, and other familiar areas [8]. The benefits that OSS
brings are an interesting research area [16] and many studies have been conducted in
the past decade. An important research initiative is focused in the definition of
measures that based on empirical values characterise the OSS, and allow standard
measurement of its quality. The grouping of these measures in a form of an
assessment methodology provides to the software industry a convenient tool that can
be used before adopting a new OSS product.

The number of OSS projects implementing similar functions is large. The quality
of those projects depend on the development process used inside the project and the

234 E. Petrinja, A. Sillitti, and G. Succi

skills of participants in the community that are participating to the development.
Companies interested in reusing OSS components should be able to select the OSS
product that best suits their needs. This is usually a challenging task that requires
assessment tools and skills but it also takes time to be performed. Several assessment
methods for OSS have been proposed and new ones are under development; some of
the already available are:

• the QualiPSo OpenSource Maturity Model (OMM) (2009) [14],
• the Open Business Readiness Rating (OpenBRR) (2005) [24],
• the Open Source Maturity Model (OSMM) from Cap Gemini (2003) [7],
• the Open Source Maturity Model (OSMM) from Navica (2004) [12],
• the Open Business Quality Rating (Open BQR) (2007) [21], and
• the Methodology of Qualification and Selection of Open Source software (QSOS)
(2004) [1].

The aim of the study was to understand which are the key OSS development activities
perceived as important by experts from the software industry. Those activities will
influence the creation of a new assessment method that is addressing the OSS
development process. The methods listed (except QualiPSo OMM) are focused in the
OSS product and not in the development process. The development process has an
important role when deciding to adopt an OSS product. Product characteristics alone
are usually not a sufficient indicator of quality for stakeholders that are interested to
actively participate in the OSS project. Specially for software integrators that plan to
create a new software product reusing OSS components.

Adoption and integration of a OSS product is strongly related to further
modifications of the product, therefore a good interaction with the community
developing the product is essential. Process aspects have to be identified and assessed;
the best known process assessment methodology in the software domain is the
Capability Maturity Model Integrated (CMM/CMMI) [9, 19]. However, the CMMI is
not appropriate for assessing OSS projects. It is complex, it does not focus on single
projects but on the software company, and it does not address OSS specific aspects as:
contribution level, reputation of the project, licenses used, etc. The aim of the new
assessment methodology is to propose a CMMI-like method able to address OSS
specific aspects. Software companies are knowledgeable in CMMI, therefore we
planed to leverage on this skills of experts working in software companies.

The development of a OSS development process assessment methodology is one of
the results of the EU funded project QualiPSo [15]. The basic task for defining the
methodology was to conduct the survey, presented in this paper, and collect data
related to the practices and trust elements in the development process of surveyed
companies. Even if a higher quality of OSS products in comparison with closed
source software products was demonstrated in several case studies [5, 10, 11], OSS is
generally still perceived of low quality. The trustworthiness of OSS is an aspect we
consider critical for a larger usage of OSS.

We included in our study more than 50 professionals working for 20 European
software companies including: Siemens (Germany), Engineering Ingegneria
Informatica (Italy), Bull (France), Atos (Spain), IBM, Mandriva (France), Thales
(France), and others. A similar survey focused on OSS communities was published in
2008 [13].

 Adoption of OSS Development Practices by the Software Industry: A Survey 235

The results of the study provided a set of best practices related to the OSS
development process and a set of elements that bring trust to participants of the
survey. Trustworthy elements are elements that when addressed during the OSS
development process, guarantee to developers, users, and software integrators that the
project is of good quality.

The paper is organized as follows: in Section 2 we describe the survey with the
presentation of the methodology used. Section 3 is dedicated to the results of the
survey, highlighting key aspects of the OSS development process. The last section
contains conclusions and indications of possible future work.

2 The Survey

The European software industry is interested in OSS because it is an expanding
market alternative to the closed source software market where non-EU, mainly US,
software companies have a strong position [3]. OSS is an area where European
software companies can offer their expertise and implement new business models
[22]. The study presented in this paper is part of a large research conducted with the
aim to improve the adoption of OSS by the software industry.

2.1 Interviews with European Software Companies

The qualitative study gives an overview of OSS related development practices used in
European software companies, the adoption of new OSS development procedures,
and the usage of OSS products. Interviewees were asked which factors influence their
perception of the quality of the OSS process and what is their opinion about a wider
adoption of OSS in the company. The questionnaire was developed by defining
specific topics and identifying possible questions. We decided which questions are
important for the OSS development process and which aspects characteristics of the
final OSS product should be also collected to understand better the development
process. The complete questionnaire is available as part of the results of the QualiPSo
project at www.qualipso.org.

2.2 Methodology

The design of the research was based on the approach proposed by Silverman [18].
The approach requires the design of a structured and formal research involving two
basic and partially related decisions:

• The method, that is, whether performing a quantitative or a qualitative investigation.
• The methodology and the specific technique for gathering data (with an interview,
a questionnaire, with observations, etc.).

The decision is based on the evaluation of major goals of the research and the type of
information required. As far as opinions on OSS products were concerned, our goal
was to investigate those OSS product factors that influence the trustworthiness of the
OSS development process. Following the approach proposed by Silverman, this kind
of information requires a qualitative investigation. Our research methodology was

236 E. Petrinja, A. Sillitti, and G. Succi

based on a semi-structured questionnaire where some of the questions were closed
(offering a limited list of possible answers) and other questions were open allowing to
provide any answer from the interviewee. The questionnaire has been filled in during
face-to-face or telephone interviews. The interviewees were employees of European
software companies. The first set of interviewees was selected by the companies that
were involved in the QualiPSo project (19 partners) [15]. An additional set of
companies was selected based on their involvement in OSS projects. The total number
of interviewees was 53.

During the second phase, we conducted a quantitative study by creating a shorter
questionnaire on key elements and submitting the questionnaire to mailing lists,
conferences, and using it during personal meetings. We designed a web version of the
questionnaire and we collected most of the answers through a web form. The second
questionnaire reused many questions from the first version and additionally
(randomly) listed answers obtained during the first iteration of the research. We
closed most of the questions (providing possible answers) aiming to identify the
priority of answers compared between them. We excluded outliers and incomplete
answers from the first iteration. The results of the on-line questionnaire are just one
part of the results of the study presented in this paper. We compared the results
obtained with personal interviews and results obtained with the survey; the syntheses
of the results of the two iterations is presented in this paper.

The overall structure of the research was based on the Goal Question Metric
(GQM) approach [2]:

1. Goal: Identify trust related issues in the adoption of OSS in the European
software industry.

2. Question: The questionnaire includes 53 questions with additional sub-
questions. They were developed to ask the interviewee on specific goal
related issues.

3. Metric: Metrics about the level of adoption and the trust in OSS process are
selected to be able to measure answers to questions defined in the precedent
step.

The final form of the questionnaire was achieved through several iterations of drafts.
The questionnaire was divided into sections covering different topics related to the
OSS development process. The three main sections focused on:

1. trust and quality related aspects;
2. stakeholders related aspects as the roles and responsibilities used inside the

development process; and
3. aspects related to the technology used.

The data gathering process was organized as follows:

• The respondents were contacted to determine their general interest in the study.
• The questionnaire was sent to the respondents to verify the actual availability.
• Data were collected by personal or telephone interviews in English.
• The results of the interviews were recorded and the interviewees were asked for a
final check.

 Adoption of OSS Development Practices by the Software Industry: A Survey 237

The majority of interviews was conducted at the interweave working place. We
travelled to meet the majority of interviewees. Only in few cases the interview was done
through a conference call. The duration of the interviews was not specially recorded and
varied between different interviews. However the interviews lasted approximately one
hour. We were not able to measure the duration of the surveys performed on the web.
However, we have tested the survey questionnaire with colleagues before publishing it
on the web and the mailing lists and the time necessary to complete the questionnaire
varied between thirty and forty-five minutes. There were always two interviewers
present during interviews. One was usually reading questions and the other was writing
the answers. Two persons were able to collect more detailed responses from the
interviewed person and limited the duration of interviews. Soon after the end of the
interview, the answers recorded in the protocol were sent back to the interviewed
person. Only upon a positive feedback from the interviewee, the questionnaire was
considered accepted and the data were processed.

Participants were guaranteed anonymity and the information reported was
reviewed so that no single person or company can be identified. The number of
individuals interviewed from each company varied from one up to six employees per
company. The people interviewed were developers and managers in companies
included in the study.

3 Results

We present the results about three types of aspects in separate subsections, to
summarize the results of: quality related aspects, OSS development stakeholder
related aspects, and technology aspects. Some of the 53 collected questionnaires were
not filled completely; however, the key questions that were focused on topics
presented in this paper were filled in more than 90% of the questionnaires. During the
second phase of the study, we obtained 56 filled questionnaires. The subjects involved
in the two phases were different, nevertheless the results of the second phase
confirmed the results obtained during the first phase.

3.1 Trust and Quality Related Aspects

The interviewees spontaneously mentioned various factors that influence the trust
they have in the OSS process. The most frequently mentioned criteria were:

• the availability and the quality of the documentation about the OSS product,
• the number of downloads and the number of potential users of the OSS product, and
• open standards used for the development of the product.

A list of the most important characteristics and the percentage of respondents that
think that a characteristic influences trust is presented in Fig. 1. For example, the
popularity of the product was listed as important by 81% of the respondents.
Identified characteristics confirm the results of previous studies; however, some
unexpected aspects have been reported. Interviewers asked the respondents only what
they consider important when they think about trustworthiness of the OSS
development process. This focus allowed to discover some aspects that are considered
important specially for the trustworthiness. Some additional interesting aspects

238 E. Petrinja, A. Sillitti, and G. Succi

recorded were: the importance of companies and the industry that is sponsoring
the OSS project, the presence of an independent body that checks the product and the
development process used. We were especially interested in the perception of the
importance of the development process. Half of the surveyed participants were
working for companies that are concerned about the development process. The other
half reported that they are almost completely uninterested in the process and the
interest was merely focused on the characteristics of the OSS product. The companies
that just wanted to use the product were in general not interested in the development
process. On contrary, the companies that wish to further develop the product were
interested also in the development process.

Quality of the documentation

Popularity of the product (n. of users...)

Standards used

Roadmap respected

Quality of the test plan

Following of the test plan

Communication chanels available

The copyright addressed, patents free

Use of tools, cvs, bug tracking

Description of the development process

NOT care of the process

Number of bug reports

Number of commits (developers)

Independent body checking the process

Maintainability

People on the project

Sponsoring companies and industry

0 10 20 30 40 50 60 70 80 90 100

Fig. 1. Trustworthy factors related to the OSS development process

The cost of the license was one of the characteristics addressed specifically by a
question in our questionnaire. We considered this factor important because it is one of
the most influential aspect emerging from the results of previous OSS studies [23].
Interviewees stressed the importance of the license cost of OSS in comparison with
proprietary software. An additional question was if the total cost of the ownership
(TCO) affects the importance of the cost of the license; and the answer was

 Adoption of OSS Development Practices by the Software Industry: A Survey 239

unexpectedly negative. The absence of an initial license cost allows users to test and
experiment code modifications; this is a positive aspect of OSS in comparison with
proprietary software. The absence of license costs contributes strongly to an easier
and larger adoption of OSS products. Subsequent training and maintenance costs
encountered are considered less important than the benefits users have at the
beginning of the use of a OSS product.

The survey confirmed that testing is an important part of the adoption process of a
new OSS product. Surveyed companies test OSS using manual and automatic tests.
Manual tests are usually unstructured and often done ad-hoc. Automatic tests are
structured and standardized. Details of the testing procedure depends on the
importance the new OSS product has for the company.

Despite the availability of some assessment methodologies as QSOS and
OpenBRR, the surveyed companies usually use their own set of criteria to test the
quality of a OSS product. Many of these criteria are already part of the listed
methodologies but the methodologies are not yet well established and known by the
industry and their use is still limited.

Aspects that companies consider important when testing OSS vary considerably
across companies and the summary described in this paper presents characteristics
mentioned by a large percentage of interviewees. The testing process is usually done
informally by developers of the company (80%). Testing is also done by the OSS
community that is using the product and that reports bugs and proposes new features
and improvements. OSS communities are a good short-cut for companies when they
need to choose which OSS product to adopt, as communities can provide volunteers
for the testing process. If they need additional test results related to each company's
specific requirements, they conduct in-house tests carried on either by a group of
specialized developers, by the project manager, or sometimes also by external teams.

Two frequently mentioned characteristics considered important for assessing the
quality of OSS are: results of in-house or external tests of the product, and the size of
the user community. Both were mentioned by all the participants to the study (as
evident from Fig. 2). The number of users that already use a OSS product is an
indication of the variability of opinions and comments about the product that can offer
insight in aspects of the OSS project. Another important aspect is the type of
standards implemented inside the OSS project (73%). This aspect is often related to
technologies, programming languages, and frameworks used and supported by
projects. Documentation is also considered important by three-fourths of the
companies. Satisfaction of user expectations reported on forums and mailing lists by
the community of users of the product are considered important by half of the
surveyed interviewees. Just half of the interviewees consider important the process
followed (either the Rational Unified Process - RUP, a process assessed according to
the Capability Maturity Model - CMM, an IT Infrastructure Library - ITIL
benchmarked process or others) for the development of the product. Less frequently
mentioned aspects are: the availability and use of measures such as bug reports, the
size of the components, the certification of the quality of the product by a third-party
company, and others. The answers are graphically presented in Fig. 2.

240 E. Petrinja, A. Sillitti, and G. Succi

Testing procedure adopted

Number of users (community)

Respect of standards

Documentation

Meet user expectations

Use of a specific development process

Tracking of the bugs

Size of components

Stability

Security

0 10 20 30 40 50 60 70 80 90 100

Fig. 2. Criteria for assessing the quality of OSS

3.2 Aspects Related to Stakeholders

Roles and responsibilities of people inside companies participating in our research
play an important role when considering the adoption and development of OSS.
Surveyed companies use OSS products but in some cases they also develop OSS.
There is a correlation between the development of OSS and its usage. Part of the
participants only use OSS products, however the interviewees that participate in the
development of OSS products usually also use the product. This behaviour was
expected and it was reported in previous studies. We have asked how are the OSS
projects managed inside the companies and which are the responsibilities related to
OSS. For most of the companies, OSS development is only one of their development
activities. The majority of companies involved in the survey, is still exploring the
OSS development and their current OSS development approach is a mix set of
activities typical of a proprietary software development and of OSS development (as
the one adopted by OSS communities as Linux Kernel, Apache, and others). The
number of developers and the size of OSS communities formed by the companies is
still rather small. They are typically composed of up to 100 developers and
contributors and only rarely reach 1000 contributors. A limited OSS development
approach is evident from the responsibilities that members of the OSS community
have. Important decisions and responsibilities are assigned to employees of the
company. This way, companies still maintain the leading role and decide the
development directions of the OSS project. This way companies lose important
advantages that a more democratic OSS development process offers, such as a larger
amount of source code contributions, the development based on meritocracy, and
better motivation for the involvement in the OSS development process.

As for the roles and responsibilities, also the definition of requirements and
implementation of new features is influenced strongly by the business strategy of the
companies. After the implementation of critical features that are imposed by

 Adoption of OSS Development Practices by the Software Industry: A Survey 241

architectural and design decisions; key contributors of new features are customers of
surveyed companies. More than 80% of interviewees consider more important the
suggestions from their regular customers than suggestions coming from the OSS
community. Decisions of which features are implemented first are usually taken by
the coordinator of the project that is almost always an employee of the company.

3.3 Technology Aspects

The technology used inside OSS projects is an aspect that strongly influences the
whole OSS project and specially the development process. Interviewees answered in
details on questions related to technology related aspects and showed a high interest
on these characteristics. We dedicate this subsection to answers of interviewees to
some strongly perceived technology aspects.

Surveyed companies use different operating systems for developing OSS; Linux is
the most frequently used. Some companies also use the Windows operating system
and sometimes Solaris, in addition to Linux. Fig. 3 presents the percentage of use of
each operating system.

Linux

Windows

Solaris

MS Windows Mobile

0 10 20 30 40 50 60 70 80 90 100

Fig. 3. Operating System used by interviewees

The most frequently used programming language is Java which is regularly used by
all the companies. C++ is the second most frequently used programming language. The
surveyed companies use also other languages as: C, Python, PHP, Perl, some
proprietary domain languages, JavaScript, MS proposed languages, and others.
Languages and technologies usually influence the development methodologies used and
also the efficiency of specific development activities. The frequent use of Java and
Linux confirmed our expectations related to the language and the platform used by OSS
communities. Fig. 4 presents the frequency of the use of programming languages.

The surveyed companies that develop OSS, do it incrementally (80%) with small
exploration projects, starting with some basic features and releasing the first versions
of the product. New features are added later according to new requirements collected
first by the customers and then by the community. Such development is similar to the
process followed in OSS communities that are not strongly influenced by software
companies. The results of the survey also show that in some cases, the core part of the
project is entirely developed and implemented inside the company and only then it is
disclosed to the community and opened for new suggestions.

242 E. Petrinja, A. Sillitti, and G. Succi

Java

C++

C

Perl

Python

Other (PHP, JavaScript, MS languages)

0 10 20 30 40 50 60 70 80 90 100

Fig. 4. Programming language used by interviewees

Two important aspects of OSS projects that are supported by the surveyed companies
are: the use of open standards, and the modularization of the system architecture. From
the survey, we could not identify a OSS development strategy that was used by the
majority of companies. The methodology usually depends on the type of the company,
the OSS project, the technology used, and several other characteristics.

The large majority of the OSS projects developed by the companies, create and
maintain the documentation for the OSS product. More complex and thoroughly
developed projects have a diversified documentation for different types of stakeholders,
e.g., the user's manual, the developer's manual, and the manual for administration of the
OSS product. Since high quality documentation of OSS projects was identified as one of
the key trustworthy elements, companies invest a considerable effort to create the
documentation of their projects. The documentation is stored in formats types as:
readme files, wikis, web pages, user guides, as comments to the source code, and in
other forms. Developers are responsible to write the documentation related to their part
of the project. Only occasionally the documentation is written by specialized in-house or
external groups of experts.

4 Conclusions

The study presented in this paper has confirmed the interest of European software
companies in OSS in general and also in the OSS development process. The majority
of the surveyed companies are trying to participate on the OSS market starting with
small, exploration projects and then incrementally extending them. The majority of
companies participating in the survey started mixed proprietary-OSS projects. OSS
products developed are free to be used and improved by everybody and the source
code is available; the development process, the management responsibilities and
evolution of the project are, however, coordinated by the company that started the
project. The quality of the OSS development process and the lack of a high quality
assessment process, that can be used to measure characteristics of the development
process, is one of the main limitation to a wider diffusion of OSS. The key issue is
related to the perceived quality of OSS and the trust people have in its development

 Adoption of OSS Development Practices by the Software Industry: A Survey 243

process. The survey was focused on the usage of OSS in the European software
industry and the results sheds some light on this growing market.

Interviewees report that companies, that are releasing some of the management and
planning aspects of the project to the OSS community, are observing growing
contributions from volunteers. Benefits provided by OSS communities allow faster
improvement of OSS projects. Interviewees reported a perceivable improvement of
the business in companies that have started to use OSS and that have decided to use
the OSS development process for some of their projects. The key result of the study
was a set of characteristics that are considered important for improving the quality of
the OSS development process. The most important one are: the quality of the
documentation, the number of the users of the OSS product, and standards
implemented by the OSS project. These characteristics were used for the definition of
an assessment methodology that is now in the process of validation and refinement.

References

[1] Atos Origin, Method for Qualification and Selection of Open Source Software (QSOS)
(2009), http://www.qsos.org (last visited: March 2011)

[2] Basili, V.R.: Software modeling and measurement: The Goal/Question/Metric paradigm.
Technical Report CS-TR-2956, Department of Computer Science, University of
Maryland, MD, USA (1992)

[3] Burzynski, O.R., Graeml, A.R., Balbinot, Z.: The internationalization of the software
market: opportunities and challenges for brazilian companies. JISTEM J. Inf. Syst.
Technol. Manag. 7(3), 499–516 (2010)

[4] Capiluppi, A., Feller, J., Fitzgerald, B., Hissam, S., Lakhani, K., Robles, G., Scacchi, W.:
First International Workshop on Emerging Trends in FLOSS Research and Development.
In: Proc. of ICSEcompanion, 29th International Conference on Software Engineering
(ICSE 2007 Companion), pp. 135–136 (2007)

[5] DiBona, C., Ockman, S., Stone, M.: Open Sources: Voices from the Open Source
Revolution, p. 280. O’Reilly, Sebastopol (1999)

[6] Dueñas, C.J., Parada, H.A., Cuadrado, G.F., Santillán, M., Ruiz, J.L.: Apache and
Eclipse: Comparing Open Source Project Incubators. IEEE Software 24(6), 90–98 (2007)

[7] Duijnhouwer, F.-W., Widdows, C.: Capgemini Expert Letter Open Source Maturity
Model, Capgemini (2003)

[8] Goth, G.: Sprinting toward Open Source Development. IEEE Software 24(1), 88–91
(2007)

[9] Humphrey, W.: Characterizing the software process: a maturity framework. IEEE
Software 5(2), 73–79 (1988)

[10] Birendra, M., Ashutosh, P., Srinivasan, R.: Quality and Profits Under Open Source
Versus Closed Source. In: ICIS, Proceedings. Paper 32 (2002)

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 244–258, 2011.
© IFIP International Federation for Information Processing 2011

Towards Improving OSS Products Selection – Matching
Selectors and OSS Communities Perspectives

Claudia Ayala1, Daniela S. Cruzes2, Xavier Franch1, and Reidar Conradi2

1 Technical University of Catalunya
UPC-Campus Nord (Omega), 08034 Barcelona, Spain

{cayala,franch}@essi.upc.edu
2 Norwegian University of Science and Technology

NTNU-Gløshaugen, Trondheim, Norway
{dcruzes,conradi}@idi.ntnu.no

Abstract. Adopting third-party software is becoming an economical and
strategic need for today organizations. A fundamental part of its successful
adoption is the informed selection of products that best fit the organization
needs. One of the main current problems hampering selection, specially of OSS
products is the vast amount of unstructured, incomplete, evolvable and
widespread information about products that highly increases the risks of taking
a wrong decision. In this paper, we aim to inform and provide evidence to OSS
communities that help them to envisage improvements on their information
rendering strategies to satisfy industrial OSS selectors’ needs. Our results are
from the matching between the informational needs of 23 OSS selectors from
diverse software-intensive organizations, and the in-depth study of 9 OSS
communities of different sizes and domains. The results evidenced specific
areas of improvement that might help to enhance the industrial OSS selection
practice.

Keywords: Open Source Software, selection, information rendering strategy,
empirical study.

1 Introduction

Nowadays, the use of Open Source Software (OSS) provided by OSS communities is
revolutionizing the software industry [1]. The fact that OSS products are freely
available has influenced not only their significant adoption, but also the way that
software is developed and commercialized [12]. Thus, fostering OSS adoption has
been recognized as a crucial task for progressing towards improvements in a great
variety of application areas [26].

The potential advantages of adopting OSS greatly depend on the ability to select
the most suitable product for the task at hand [4]. Improper selection of an OSS
product may result in wrong strategic decisions with subsequent economic loss and
adverse effects on the business processes of the organizations [16].

In recent years there has been a plethora of proposals aimed to support software
products selection, usually suggesting sets of evaluation criteria to evaluate and

 Towards Improving OSS Products Selection 245

decide the most suitable alternative(s) (see [16], [18], [21], for comprehensive
surveys). However, a recent survey about industrial OSS selection practices [2] shows
that these proposals have not been greatly adopted in the industrial practice. Instead,
in order to face time-to-market demands and reducing the potential risks, selectors
(i.e., the person(s) in charge of the selection process) just base most of their decisions
on their experience and tend to limit the use of OSS products to those that are already
known and used by the development team. While the value of experience is
important, the fact that it is currently considered as the most influential factor for
selecting components is at the same time hampering the adoption and fully
exploitation of the potential benefits of the high variety of OSS products in the
marketplace. Furthermore, such study evidenced that one of the key problems is that
selectors are struggling not only with the current diversity of OSS products available
in the marketplace, but also with the great deal of widespread, incomplete,
heterogeneous, and unstructured information describing each of them (e.g.,
formal/informal documentation, tutorials, comments in forums, internal experiences)
that makes difficult to face a suitable selection process under time-to-market pressures
[3], [4], [17]. In addition, the study emphasized that the main source for gathering
OSS product information is the OSS community website.

In this context, in order to contribute to enable suitable OSS selection processes we
need to envisage more pragmatic approaches than suggesting sets of evaluation
criteria (especially when the evidence shows that the data to fill in these criteria is not
usually available). Therefore, the goal of this study is to explore the following
research questions:

─ RQ1. How much of the information required by OSS selectors for performing a
suitable selection process is actually provided by OSS communities?

─ RQ2: Are there OSS community characteristics that seem to influence its level
of readiness for supporting OSS selection?

With RQ1, we want to investigate the gap between the information “provided”
by OSS communities on their OSS community websites and the information required
by OSS selectors to perform an informed selection. RQ2 aims to explore whether
some OSS community characteristic(s) seem to affect its readiness (i.e., the degree
that the community covers the needs of OSS selectors). By answering these research
questions, this paper aims to inform and provide evidence to OSS communities that
help them to envisage improvements on their information rendering strategies. It is a
first step to raise their awareness on areas that are required to improve the OSS
selection industrial practice. This paper reports our results from a study about the
matching of 9 OSS communities vs. the needs of 23 industrial OSS selectors.

The rest of the paper is organized as follows: Section 2 provides a brief
background of the OSS literature and marketing principles that emphasize the
importance of dealing with information rendering aspects and their influence on OSS
products selection. Section 3 describes the methodological approach followed to
perform the study. Section 4 presents the results obtained from the study, while
Section 5 provides a discussion of main findings. Threats to validity are presented in
Section 6. Section 7 summarizes the conclusions and future work.

246 C. Ayala et al.

2 Background

OSS research has largely ignored one interesting aspect that is becoming crucial for
OSS projects: first-impression management [7]. Impression management theory refers
to the process by which individuals or organizations try to control or manage the
impressions that others form of them [28]. Due to the ever-increasing amount of
information available on the Internet and the need to make quick choices among
competing alternatives, first-impression management has been adopted as one of
the main theoretical lenses in marketing literature. Choi et al [7] demonstrated that the
OSS community website plays a critical role in attracting developers and users to the
community. The mature status of well-known OSS projects likely attracts users given
their greater activity and vitality. Furthermore some OSS products have become de
facto standards. However this pathway is unavailable for most of the OSS projects
and those newly initiated projects that struggle to attract users and contributors [6].

In the context of OSS selection if an OSS project is poorly presented and potential
selectors feel that the community does not invest much care in providing the needed
information for selection, they might formulate negative opinions about the project
and fail to consider it as a candidate even if it might represent a promising alternative.
Thus, poor first impressions not only impact on the rate of potential users in the short
run, they can also produce negative externalities for the project in the long run. For
instance, they might lose the synergies derived from collaborating with companies,
such as greater project activity, higher user’s base and popularity [7].

Several initiatives exist to develop a framework for the assessment of OSS
products. Most of these initiatives suggest different kinds of criteria such as
functionality, maturity, and the strategy of the organization around OSS. Relevant
examples are: OpenBRR (Open Business Readiness Rating) [22], QSOS
(Qualification and Selection of Open Source software) [25], or OSMM (Navica Open
Source Maturity Model) [14]. The evaluation criteria are further explored by, for
instance, Cruz et al. [9], the QualOSS Model Framework [8], and the QualiPSo model
of OSS trustworthiness [10]. In addition, the factors that might attract developers to
participate in OSS projects in order to sustain the vitality of the community have been
also studied [5], [7], [11], [15]. However, as far as we know, there are not empirical
studies that consider the needs of industrial OSS selectors as a way to improve first
impression management.

Consolidated works from the marketing research have developed relevant tactics to
help to influence first impression in a positive way [29]. We think that dealing with
first impression management is important for OSS research for two main reasons: 1)
OSS community contributors typically join OSS projects by first becoming selectors,
subsequently as users and then evolving into contributors [7], therefore first
impression management is a potential way to attract OSS potential users. 2)
Marketing strategies are becoming crucial to pose OSS products into the marketplace
given that nowadays the OSS phenomenon has evolved into a more commercially
viable form, where both volunteers and commercial organizations collaborate in its
ongoing development [1].

 Towards Improving OSS Products Selection 247

One of the initial grounds of first-impression management is to explore the needs
of the potential users and to envisage the improvement tactics. Therefore, this study
was designed to explore how the needs of OSS selectors are covered by OSS
communities in order to raise observations that may serve to envisage suitable
improvement tactics.

3 The Study

The study performed in this work was exploratory and aimed to investigate the
research questions introduced above. Our main research strategy consisted of the in-
depth study of 9 OSS community-based projects and exploring how these
communities covered the informational needs of 23 industrial OSS selectors.

3.1 Sampling

The target population of the study was OSS community projects. Since the variety of
OSS projects is quite wide not only regarding domain and size, but also regarding
activity and popularity, we approached a stratified random sampling for improving its
representativeness as well as the analysis of the results. We used the Ohloh.net
directory as the reference directory for selecting OSS projects. We choose Ohloh as it
is one of the largest and up-to-date OSS directories available, and has been widely
used to create historical reports about the changing demographics of OSS projects.

From the 437,982 OSS projects referenced in Ohloh by February 2010, we ordered
them with respect to their number of users and downloads. Then, we divided such a
list into three equal parts (that were considered as stratums). Subsequently, we
randomly selected 3 projects from each stratum. Table 1 summarizes the projects that
fall into each stratum and provides a brief description of each of them.

3.2 Data Collection Instrument

In order to assess the OSS projects in a homogeneous way, we developed a data
collection instrument based on the survey reported in [2]. This survey provides data
about the information that is required in order to perform an informed OSS selection.
23 OSS selectors from 20 small and medium organizations in Spain, Norway and
Luxembourg participated in the survey. It consisted of semi-structured interviews
that were recorded in audio and then transcribed to text. We had access to the raw
data from the respondents of such study (audio and text documents). From the
responses of the selectors that participated in the study we elicited a total of 85
informational needs (i.e., specific information that they referred as needed for making
informed decisions). We arranged similar answers using content analysis [19]. This
process resulted in 21 informational needs. It is important to remark that similar
efforts for establishing important evaluation criteria for selecting OSS products have
been done in the literature as stated in section 2. Our primary goal was to assess if the
information required by the selectors was provided by the OSS communities.

248 C. Ayala et al.

Table 1. Stratified random sampling

Stratum Name Description

1

Agilo for Scrum
It is one of the most widely used Scrum tools, offering many
features to support Scrum and software development teams.

Joomla
It is an award-winning content management system (CMS), which
enables to build Web sites and powerful online applications.

Subclipse
It is an Eclipse Team Provider plug-in providing support for
Subversion within the Eclipse IDE.

2

Gimp
GIMP is an acronym for GNU Image Manipulation Program. It is
a freely distributed program for such tasks as photo retouching,
image composition and image authoring.

GNU Grub GRUB is the GRand Unified Bootloader for GNU

IpTables
iptables is the user space command line program used to configure
the Linux 2.4.x and 2.6.x IPv4 packet filtering ruleset. It is
targeted towards system administrators.

3

Fluent
NHibernate

A fluent API for simplifying the entity mapping of NHibernate.
Add compile time safety, testability, and improved readability to
NHibernate projects.

MediaCoder

It is a free universal batch media transcoder, which integrates most
popular audio/video codecs and tools into an all-in-one solution.
New codecs and tools are added in constantly as well as support
for new devices.

StatusNet
StatusNet (formerly Laconica) is a microblogging service. Users
post short (140 character) notices that are broadcast to their friends
and fans using the Web, RSS, or instant messages.

In order to improve the quality of the data collection instrument, it was pre-tested

with three researchers. Consequently, we decided to arrange the 21 informational
needs in categories and subcategories that provided a more understandable, structured
and informative way of collecting them. For instance, the informational need Time of
the product in the market was grouped in the sub-category History of the Product
which at its time was grouped in the category To ensure technological stability and
evolution of the OSS product and its provider. This arrangement demonstrated to
provide researchers with a better understanding of the informational needs and their
contexts; it therefore enhanced the information gathering process. As a result, the 21
informational needs originally gathered were grouped into 8 categories and 3 sub-
categories. The data collection instrument also gather information as: whether the
informational need was provided or not by the OSS community; where the
information was found, the time required to skim the OSS community website to find
the information, and further comments from the researchers that performed and/or
reviewed the OSS community. As it can be noted, our intention was not only to
explore if the informational needs were available but also to have a first impression
about how it was advertised, and how difficult it was to extract it. The resulting data
collection instrument is shown in Table 2 and it also provides an example to illustrate
the kind of information that was gathered.

 Towards Improving OSS Products Selection 249

Table 2. Data collection instrument. Example of the assessment of the Agilo for Scrum project.1

Category/ Subcategory/ Informational Need
Results of the exploration

Status Where Further comments
1

Compliance with client’s functional requirements

List of main functional requirements of the OSS
project.

√ (1) The list of features provided seems quite comprehensive. If further information is
required, there is an email available. We asked for further information about the
product and our request was quickly processed.

2

To ensure technological stability and evolution of the OSS product and its provider

Is it a commercial firm leading the community? √ The community is lead by a single company called Agile42

List of companies/organizations collaborating in
the community.

× There is no information about any other company participating in the community.

History of the product.

 Time of the product in the market. × I navigated through the wiki and could not find this information

 Versions of the product available. ×

3

Evidence of successful OSS product usage

Number of registered users ×

List of companies using the product
√ (2) There is documentation about success stories in companies as: ASDIS, eBuddy,

be2, Ericsson, DHD24, Hypoport, Princenton Finantial systems and RES
software among others.

Number of downloads ×

Ratings and comments from users

√ Some textual comments from users as: “The Agile project approach allowed be2
the ability to monitor the project’s performance every two weeks, and to evaluate
the performance and quality. agile42 did a perfect job in training and coaching
distributed Scrum teams based in both Germany and Armenia for this project.
agile42 has been an indispensable link for a successful company
transformation.” Dave Sharrock, Director IT, be2 S.à.r.l….

4 Ease of OSS product integration

Interoperability issues

List of software system and subsystems
required to ensure the correct functioning of
the product.

√ Windows/MAC/Linux, andTrac 0.11. The information was widespread and it was
not easy to gather it.

Hardware requirements ×

Suitability of Code

Well-commented code √ Very well commented

Programming language √ Python

5
Availability of support

Free services
√

(3) Very basic ones. Most of their services are not free. They have a commercial

license where they provide further professional services. They also offer a blog,
Google groups for commenting things about the product, and a Wiki for free.

Non-Free services √ (4) Personalized services. In addition there is an improved version of the product
that is not OSS.

6 Availability of Tests Results

 Tests done by the OSS community ×

Tests done by an external party ×

7 Licensing terms

Availability of detailed information about the
licensing terms and explicitly state if they are
listed by the OSS initiative

√ (5) There are 2 licensing schemas. One that complies with the Apache Software
License, and a non OSS (offering an improved version of the product)

8 Availability of documentation

Documentation for final users √ (6) The documentation quality seems acceptable

Documentation for developers √ (7) The documentation for integrators is very basic and scarce

Available languages of the documentation Only English

General comments: The page is more oriented to business (the community is lead by a company called Agile42). A wiki is provided to report bugs and to
inform about possible further involvement with the community as contributors.
Name of the researchers: TP + CA
Date of the assessment: 11/2010 – reviewed 02/2011
Mean time required for skimming the webpage: 4 hours

(1) http://www.agile42.com/cms/pages/features/; (2) http://www.agile42.com/cms/pages/references/;
(3) https://dev.agile42.com/wiki http://groups.google.com/group/agilo/topics http://agile 42.com/cms/blog/;
(4) http://agile42.com/cms/pages/support/; (5) http://agile42.com/cms/pages/agilo/;
(6) http://agile42.com/cms/pages/agilo-documentation/; (7) https://dev.agile42.com/wiki/agilo/dev

250 C. Ayala et al.

3.3 Study Procedures and Data Analysis

Each OSS project was assessed using the data collection instrument introduced above.
Two different researchers were in charge of assessing each OSS community website.
Subsequently, they discussed and agreed the observations. Once all OSS projects
were explored and reviewed, the whole research team held discussion meetings to
analyze the data and consolidate the results.

4 Results of the Study

Results are grouped in two subsections according to the research questions introduced
above.

Table 3 shows a summary of the results from the analysis of the 9 OSS
communities. In order to provide insights of the coverage of each OSS community to
the selectors’ needs, we assigned relative weights to each category of the data
collection instrument as shown at the right side of each category in Table 3. Such
assignment was based on the number of selectors’ responses grouped into the
category. For instance, the category Compliance with client’s functional requirements
had 18 similar responses; therefore its relative weight with respect to the 85 selector’s
responses resulted in 21.18%. The category Availability and quality of the
documentation grouped 3 responses; therefore its weight was 3.53%. Based on such
weights we calculated the percentage of coverage of each community to the
categories of the data collection instrument. The last row of Table 3 shows the final
coverage of each OSS community to the OSS selectors needs. These weights allow us
to summarize our findings and provide useful insights to the reader to identify and
understand the categories where there is a higher need of improvements.

4.1 How Much of the Information Required by Selectors is Provided by OSS
Communities?

We found that the most important informational need belonging to the category
Compliance with client’s functional requirements was covered by all the analyzed
projects. All of them show (with diverse levels of detail) a list of features of the OSS
product.

The information required To ensure technological stability and evolution of the
OSS product and its provider was poorly covered by most of the studied OSS
communities. In addition, the coverage of informational needs belonging to this
category was very diverse (see Standard Deviation in last column of Table 3). Most of
the analyzed communities failed to clarify the kind of involvement of commercial
firms. While in some cases it was clear that the leader of the community was a
commercial firm and that several companies were also collaborating in the
community under diverse schemas (coding, sponsoring, donating, etc.), in some other
cases this information was not clear. The case of MediaCoder was outstanding as the
project has radically changed its OSS nature by a purely commercial approach. At this

 Towards Improving OSS Products Selection 251

respect, we found controversial comments in Ohloh claiming that MediaCoder should
not be listed therein anymore mainly because the source code is not actually available
and this violates one of the principles of OSS [23]. Other projects that did not offer
clear information about the involvement of companies were FluentNHibernate and
StatusNet, our observations regarding these projects led us to realize that such lack of
clarity might come from the fact that these communities are currently in the process
of defining a new business strategy by establishing commercial entities for making
business around the products (e.g., selling expert support). Furthermore, basic
informational needs as Time of the product in the market and Versions of the product
available were not provided by several communities, especially those with a
commercial orientation.

The informational needs grouped in the category Evidence of Successful OSS
product usage were the ones that most communities failed to cover. None of the
studied projects covered all the informational needs belonging to this category. Any
of the OSS projects offered information about the number of downloads. Only two
communities stated the number of registered users. Five projects stated a list of
companies that have successfully used the product, and just one project offered
comments from users of the product.

The informational needs belonging to the category Ease of OSS integration were
mostly covered by the studied projects. The only informational need that was not
successfully covered by most projects was related to the Hardware requirements
needed to ensure the correct functioning of the OSS product. MediaCoder also failed
to provide well-commented code and programming language (this is again due to the
fact that it does not provide the source code of the product).

Regarding the category Availability of support, in all projects it was explicitly
stated whether they provide non-free support, while free support was commonly
characterized by wikis, email lists, IRC channels, and forums.

Most projects, excepting two (MediaCoder and StatusNet) offered clear
information regarding Licensing terms. As mentioned above, these two projects were
facing a business model change and therefore their licensing schemas were not clearly
stated. Finally, regarding the Availability of documentation, almost all projects offered
documentation for final users and for developers and most of them offered a variety
of languages.

Summarizing, we found that the analyzed OSS projects cover the selectors’ needs
in a diverse degree. Such coverage ranges from 44.96% to 80.89%. Further
discussions are provided in section 5.

4.2 Are There OSS Project Characteristics that Influence Its Level of Readiness
for Supporting Selection?

The assessment of the 9 OSS community projects leads us to state some observations
regarding characteristics that might affect the information rendering aspects of OSS
communities and therefore their readiness for supporting selection. The most relevant
ones suggest that two interrelated characteristics seem to affect the information
rendering aspects of OSS projects: the involvement of commercial firms and the
stratums that the projects belong to.

252 C. Ayala et al.

We observed substantial differences among the 3 Stratums. Surprisingly, all OSS
projects from Stratum 1 have a close involvement of commercial firms in the
community. This finding is in line with the results from the study reported in [5] that
evidenced that firms coordinate, develop code for, or provide libraries to one third of
the 300 most active OSS projects in SourceForge. Projects from Stratum 2 did not
have commercial firms leading the projects, instead they referred to volunteer-based
communities that fully adhered to the Free Software Foundation (FSF) and two of
them (Gimp and Grub) were part of the GNU project that advocate for the “free
software” philosophy. Projects from the Stratum 3 also show a high involvement of
commercial firms. While MediaCoder is currently a purely commercial project,
Fluent NHibernate and StatusNet are facing a transition stage for becoming business-
oriented OSS communities. These facts are in line with the “commercialization” of
OSS predicted by [12].

The involvement of firms in the OSS communities seems to influence their
aesthetic appearance and information rendering aspects. For instance, Agilo for
Scrum is an OSS project entirely governed and led by the company Agile42, and so
its website is more oriented to business (i.e., selling services around the product) than
to promote the involvement of potential contributors to the community. In the case of
the Joomla!, the involvement of firms seems to be quite different as even if firms are
quite involved in the project, the project is governed by the community. Thus, its
website reflects a strong interest to promote resources for consolidating the
community and attract contributors. It also offers several schemas for companies and
organizations to participate in the community (i.e., donations, selling services around
the product, merchandizing). The website of Subclipse is led by the company
CollabNet and the provided resources are more oriented to final users (i.e.,
instructions on how to install the plugging) than to contribute to the community.
Other examples are FluentNHibernate and StatusNet that are currently approaching
business oriented models and are also improving the aesthetic appearance of their
portals. Therefore, we suggest that: as higher the involvement of commercial firms is,
the lesser seems to be the attention paid to promote the involvement of potential
contributors in the community.

Communities without commercial firms involved shared several commonalities. It
seems that they are mostly aimed to provide technical resources to strengthen the
developers’ community than aesthetic and attractive resources. This coincides with
some studies that emphasize that some OSS projects mostly leaded by community
programmers often value substance over form and some exhibit an antipathy for
marketing and public relations work [13]. In all cases, these OSS projects provide
mailing lists, forums and wikis aimed to enable the collaboration among the members.

Thus, our results might suggest that it would be useful to distinguish among:
Commercial OSS, Foundation-based OSS, and Community-based OSS in order to
better understand and assess the implications of selecting each kind of OSS product.

 Towards Improving OSS Products Selection 253

Table 3. Summary of results

Category/Subcategory/
Informational Need

Agilo for
Scrum Joomla Subclipse Gimp

GNU
Grub IpTables

Fluent
NHibe
rnate

Media
Coder StatusNet Std

Dev.

Compliance with client’s functional
requirements (21.18%)

21.18 21.18 21.18 21.18 21.18 21.18 21.18 21.18 21.18 0

List of main functional requirements
of the OSS project.

To ensure technological stability and
evolution of the OSS product and its
provider (21.18%)

5.30 15.89 10.59 21.18 21.18 21.18 10.59 5.30 0 7.28

Is the project governed by a
commercial firm or by the
community?

commercial

community

commercial

GNU

GNU

community

Not
clear

commercial Not clear

List of companies/organizations
collaborating in the community
(others than the leader)

History of the product.

Time of the product in the market.

Versions of the product available.

Evidence of successful OSS product
usage (12.94%)

6.47 6.47 3.24 3.24 3.24 0 0 0 3.24 2.53

Number of registered users

List of companies using the product

Number of downloads

Ratings and comments from users

Ease of OSS product integration
(12.94%)

9.71 9.71 12.94 12.94 9.71 9.71 6.47 9.71 9,71 1.94

Interoperability issues

List of software system and
subsystems required to ensure the
correct functioning of the product.

Hardware requirements

Suitability of Code

Well-commented code

Programming language

Availability of support (11.76%) 11.76 11.76 11.76 11.76 11.76 11.76 11.76 11.76 11.76 0

Free services

Non-Free services

Availability of test results (9.41%) 0 0 0 0 0 0 0 0 0 0

Tests done by the OSS community

Tests done by an external party

Licensing terms (7.06%) 7.06 7.06 7.06 7.06 7.06 7.06 7.06 0 0 2.77

Availability of detailed information
about the licensing terms and
explicitly state if they are listed by the
OSS initiative

 Not clear

Availability of documentation (3.53%) 2.6 3.53 2.60 3.53 3.53 3.53 2.60 0.25 3.53 1.06

Documentation for final users

 Documentation for integrators

Available languages of the
documentation

Only
English

Several Only
English

Several Several Several Only
English

Only
English

Several

Mean time spent by the two
researchers for skimming the portal
(hrs):

4:00 4:50 3:05 3:02 3:03 3.50 2:25 3:00 2:43

Resulting percentage of coverage of
the portal to the needs of selectors:

64.07 75.59 66.13 80.89 80.89 74.42 62.90 44.96 49.41 12.13

254 C. Ayala et al.

5 Discussion of Results

The previous section aimed to present a comprehensive view of the results. This
section aims at emphasizing and discussing the most important findings and
observations.

One of the main difficulties we faced in our OSS projects assessment was that the
information—even if it was sometimes available—was not directly accessible. We
had to browse the project website and explore among help files, manuals, or even
demos. This fact increased the time spent on skimming the portal to find the
information and definitely rules out any possibility of trying to automate the search
for the information as previously stated by [3].

Even if we found that the involvement of commercial firms and the stratums seem
to have a significant influence on information rendering aspects, the coverage of
selectors’ needs varies from project to project.

OSS communities are not aware of the importance of making some information
available. We observed that some informational needs are actually known by OSS
communities but are not explicitly provided by them. For instance, most of the
analyzed projects did not explicitly offer information about the Number or registered
users in the community, Time of the product in the market, or List of companies using
the product (if any). So, we hope that the results provided here help to raise the
awareness of the importance of providing such information. In addition, there are
categories that seem to be almost always provided (i.e., Compliance with client’s
functional requirements and Availability of support) while there are others that are not
fully covered (e.g., To ensure technological stability and evolution of the OSS product
and its provider) or are not covered by any of the studied project as Availability of test
results.

Providing such evidence is important to envisage the corresponding improvement
strategies and increase the competitive advantage of the OSS products.

6 Threats to Validity

This section discusses the threats to validity of our study in terms of construct,
internal, and external validity, as suggested by [24] and [27]. It furthermore
emphasizes the corresponding strategies used to deal with these threats.

6.1 Construct Validity

Regarding construct validity, our study was supported by 2 main principles: rigorous
planning of the study, and the establishment of protocols and instruments for data
collection and data analysis. The data collection instrument was carefully designed
taking into account the informational needs of selectors elicited from a semi-
structured interview further reported in [2], as detailed in section 3.2. This allows us
to focus the study on the information that is really needed by the industrial OSS
selection practice. In addition, the data collection instrument was pre-tested and
enhanced by creating categories and subcategories for grouping informational needs
(as detailed in section 3.2). This allows us to improve its understandability and
therefore to improve the data gathering process.

 Towards Improving OSS Products Selection 255

6.2 Internal Validity

Regarding internal validity, we tried hard to envisage and harmonize the data
gathering and the subsequent data analysis strategies. With respect to the data
gathering strategy, we took relevant decisions for approaching a better understanding
of the availability of the information for covering the selectors’ needs. One of the
most relevant decisions was to avoid the non-deterministic factors inherent to the OSS
selection processes. These non-deterministic factors refer to contextual issues that
greatly affect the OSS selection decision. For instance, even if an OSS project
provides a list of functional characteristics of the product, it might happen that such a
list is not detailed enough for the context of the selection project and the selector have
to face such a lack of detail by testing the product himself or by looking for further
information in forums, email lists, etc. The strategies for facing (or not) such lack of
information depend on the amount of time and resources that a company is willing
and able to invest in the selection process [9]. Therefore, to avoid such potential
issues we decided to focus our observations just on whether the informational need
was covered or not and on how the information was provided.

In addition, we decided that two different researchers independently faced the
assessment of each OSS community projects using the data collection instrument.
Subsequently they discussed their results in order to agree and merge them. This helps
us to deal with the potential subjectivity of the assessment of each researcher.
Furthermore, it is important to mention that the researchers participating in the study
are impartial parties and do not have any kind of involvement with any of the OSS
communities analyzed. In this sense, we consider that there is no any intentional bias
regarding the data gathered.

6.3 External Validity

Regarding external validity, it is important to highlight that the character of our study
is exploratory, and hence we did not aim to make universal generalizations beyond
the studied setting, but also provide some observations that might serve as a departing
point for further investigations and improvements. Having this in mind, we discuss
some mitigation strategies used in the study.

One of the main threats of external validity of the study is that we approached a
small set of OSS community projects and these projects might not represent the whole
variety of OSS projects. We tried to mitigate any possible bias related to this by
having a stratified random sampling so that the studied OSS communities were
diverse regarding size, application domain, popularity and success.

The informational needs used as a base to decide the informational coverage of
OSS projects were elicited from industrial OSS selectors. While extracting such needs
from the industrial practice is a good point to strengthen the external validity of our
observations, we are aware that eliciting such needs from 23 selectors might not
represent all real needs. However, we think that such results are useful to have a first
approximation to the problem and might serve as a basis to envisage future studies.

Finally, other issues that might affect the presented results (especially the time
spent skimming the OSS projects for finding and understanding the information) are:

256 C. Ayala et al.

a) As mentioned above, the assessment of each OSS project was performed using a
strategy that avoids the non-deterministic nature of the OSS selection processes (i.e.,
just capturing whether the informational need was covered or not and further
observations about how it was provided). At this respect, we are aware that in the
industrial OSS selection practice the complexity and time for gathering the OSS
products information is actually higher. Thus, we would like to stand out that the
metrics (weights and time for assessing each OSS project) provided in Table 3 are just
intending to offer insights of the coverage of each OSS community to the selectors’
needs. In any case these metrics are aimed to be representative of the assessment of
OSS projects for any specific OSS selection process.

b) The researchers in charge of analyzing the OSS communities were not experts in
any of the approached domains. So, we may say that the performance of researchers
that performed the data gathered process would be more similar to “novice selectors”
than experienced selectors that might perform better in finding and analyzing the OSS
communities.

7 Conclusions and Future Work

This study presents our results of exploring the current gap between the “required”
information needed by 23 industrial OSS selectors for making informed decisions and
the information “provided” by 9 OSS communities. The obtained results would
contribute to research and practice: a) by informing OSS communities about
information rendering aspects that could be improved to attract industrial users. b) by
informing OSS selection researchers about informational limitations that might help
them to calibrate their OSS selection proposals.

Our future work focus on complementing the results from the study reported here
with further information that allows OSS communities to elaborate their tactics of
improvement based on the selectors’ feedback [29].

References

1. Ayala, C.P., Cruzes, D., Hauge, Ø., Conradi, R.: Five Facts on the Adoption of Open
Source Software. IEEE Software, 95–99 (March-April 2011)

2. Ayala, C., Hauge, Ø., Conradi, R., Franch, X., Li, J.: Selection of Third Party Software in
Off-The-Shelf-Based Software Development - An Interview Study with Industrial
Practitioners. The Journal of Systems & Software 84, 620–637 (2011)

3. Bertoa, M., Troya, J.M., Vallecillo, A.: A Survey on the Quality Information Provided by
Software Component Vendors. Journal of Systems and Software 79, 427–439 (2006)

4. Boeg, J.: Certifying Software Component Attributes. IEEE Software 23(3), 74–81 (2006)
5. Bonaccorsi, A., Lorenzi, D., Merito, M., Rossi, C.: Business firms’ engagement in

community projects. Empirical evidence and further developments of the research. In:
Proceedings of the First International Workshop on Emerging Trends in FLOSS Research
and Development (FLOSS 2007), pp. 1–5. IEEE Computer Society, Minneapolis (2007),
doi:10.1109/floss.2007.3

 Towards Improving OSS Products Selection 257

6. Capiluppi, A., Lago, P., Morisio, M.: Evidences in the Evolution of OS Projects through
Changelog Analy¬ses. In: Proc. 3rd IEEE Workshop Open Source Software Eng (WOSSE
2003), ICSE 2003, pp. 10–24 (2003)

7. Choi, N., Chengalur-Smith, I., Whitmore, A.: Managing First Impressions of New Open
Source Software Projects. IEEE Software 73–77 (November-December 2010)

8. Ciolkowski, M., Soto, M.: Towards a Comprehensive Approach for Assessing Open
Source Projects. In: Dumke, R.R., Braungarten, R., Büren, G., Abran, A., Cuadrado-
Gallego, J.J. (eds.) IWSM 2008. LNCS, vol. 5338, pp. 316–330. Springer, Heidelberg
(2008)

9. Cruz, D., Wieland, T., Ziegler, A.: Evaluation Criteria for Free/Open Source Software
Products Based on Project Analysis. Software Process: Improvement and Practice 11(2),
107–122 (2006)

10. del Bianco, V., Lavazza, L., Morasca, S., Taibi, D.: Quality of Open Source Software: The
QualiPSo Trustworthiness Model. In: Boldyreff, C., Crowston, K., Lundell, B.,
Wasserman, A.I. (eds.) OSS 2009. IFIP AICT, vol. 299, pp. 199–212. Springer,
Heidelberg (2009)

11. Denner, C.S., Pearson, J., Kon, F.: Attractiveness of Free and Open Source Projects. In:
The European Conference on Information Systems ECIS 2010 (2010) ISBN: 978-0-620-
47172-5

12. Fitzgerald, B.: The Transformation of Open Source Software. MIS Quarterly 30(3) (2006)
13. Fogel, K.: Producing Open Source Software: How to Run a Successful Free Software

Project. O’Reilly, Sebastopol (2006)
14. Golden, B.: Succeeding with Open Source. Addison-Wesley Professional, Reading (2004)
15. Hauge, Ø., Ayala, C.P., Conradi, R.: Adoption of open source software in software-

intensive organizations - A systematic literature review. Information & Software
Technology 52(11), 1133–1154 (2010)

16. Jadhav, A.S., Sonar, R.M.: Evaluating and Selecting Software Packages: A review.
Information and Software Technology 51(3), 555–563 (2009)

17. Li, J., Conradi, R., Bunse, C., Torchiano, M., Slyngstad, O.P.N., Morisio, M.:
Development with Off-The-Shelf Components: 10 Facts. IEEE Software 26(2), 80–87
(2009)

18. Li, J., Conradi, R., Slyngstad, O.P.N., Torchiano, M., Morisio, M., Bunse, C.: A State-of-
the-Practice Survey of Risk Management in Development with Off-the-Shelf Software
Components. IEEE Transactions on Software Engineering 34(2), 271–286 (2008)

19. Krippendorff, A.: Content Analysis. Sage Publications, London (1980)
20. Mahmood, S., Lai, R., Kim, Y.S.: Survey of Component-Based Software Development.

IET Software 1(2), 57–66 (2007)
21. Merilinna, J., Matinlassi, M.: State of the Art and Practice of Open-Source Component

Integration. In: Proceedings of the 32nd EUROMICRO Conference on Software
Engineering and Advanced Applications, pp. 170–177. IEEE Computer Society, Los
Alamitos (2006)

22. Openbrr, Business Readiness Rating for Open Source A Proposed Open Standard to
Facilitate Assessment and Adoption of Open Source Software, Request For Comments,
(2005),
http://www.openbrr.org/wiki/images/d/da/BRR_whitepaper_2005R
FC1.pdf

23. Open Source Initiative, http://www.opensource.org/
24. Robson, C.: Real World Research: A Resource for Social Scientists and Practitioner-

researchers, 2nd edn. Blackwell Publishers Inc., Malden (2002)

258 C. Ayala et al.

25. Semeteys, R., Pilot, O., Baudrillard, L., Le Bouder, G., Pinkhardt, W.: Method for
Qualification and Selection of Open Source software (QSOS) version 1.6, Technical
report, Atos Origin (2006)

26. Simmons, G.L., Dillon, T.S.: Towards an Ontology for Open Source Software
Development. In: Fitzgeralg, E., Scacchi, B., Scotto, W., Succi, M. (eds.) Open Source
Systems. Damiani. IFIP, pp. 65–75. Springer, Boston (2006)

27. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.:
Experimentation in Software Engineering - An Introduction. Kluwer Academic
Publishers, Dordrecht (2000)

28. Winter, S.J., Saunders, C., Hart, P.: Electronic Window Dressing: Impression
Management with Websites. European J. Information Systems 12, 309–322 (2003)

29. Wolfe, E., Bies, R.: Impression Management in the Feedback-Seeking Process: A
Literature Review and Research Agenda. Academy of Management Review 15(3), 522–
541 (1991)

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 259–268, 2011.
© IFIP International Federation for Information Processing 2011

To Fork or Not to Fork:
Fork Motivations in SourceForge Projects

Linus Nyman1 and Tommi Mikkonen2

1 Hanken School of Economics, Helsinki, Finland
linus.nyman@hanken.fi

2 Tampere University of Technology, Tampere, Finland
tommi.mikkonen@tut.fi

Abstract. A project fork occurs when software developers take a copy of
source code from one software package and use it to begin an independent
development work that is maintained separately from its origin. Although
forking in open source software does not require the permission of the original
authors, the new version, nevertheless, competes for the attention of the same
developers that have worked on the original version. The motivations
developers have for performing forks are many, but in general they have
received little attention. In this paper, we present the results of a study of forks
performed in SourceForge (http://sourceforge.net/) and list the developers’
motivations for their actions. The main motivation, seen in close to half of the
cases of forking, was content modification; either adding content to the original
program or focusing the content to the needs of a specific segment of users. In a
quarter of the cases the motivation was technical modification; either porting
the program to new hardware or software, or improving the original.

1 Introduction

A project fork takes place when software developers take a copy of the source code
from one software package and use it to begin an independent development work. In
general, forking results in an independent version of the system that is maintained
separately from its origin. The beauty of open source software development is that no
permission from the original authors is needed to start a fork. Therefore, if some
developers are unhappy with the fashion in which the project is being managed, they
can start an independent project of their own. However, since other developers must
then decide which version of the project to support, forking may dilute the community
as the average number of developers per system under development decreases.

Despite some high-visibility forks, such as the forking of OpenOffice
(http://www.openoffice.org/) into LibreOffice (http://www.libreoffice.org/), the whole
concept of forking has seen little study. Furthermore, developers’ motivations for
forking are understood even less, although at times it seems rational and
straightforward to identify frustration with the fashion in which the main project is
being managed as a core reason.

In this paper, we present the results of our investigation of SourceForge
(http://sourceforge.net/) for forked projects and the motivations the authors have

260 L. Nyman and T. Mikkonen

identified for performing a fork. Furthermore, we categorize the different motivations
and identify some common misbeliefs regarding forking in general.

The rest of this paper is structured as follows: Section 2 discusses the necessary
background for explaining some of the technical aspects associated with forking,
Section 3 introduces the fashion in which the research was carried out, Section 4
offers insight into our most important findings, and Section 5 discusses them in more
detail. Section 6 proposes some directions for future research, and Section 7
concludes the paper with some final remarks.

2 Background

When pushed to the extreme, forks can be considered an expression of the freedom
made available through free and open source software. A commonly associated
downside is that forking creates the need for duplicated development efforts. In
addition, it can confuse users about which forked package to use. In other words,
developers have the option to collaborate and pool resources with free and open
source software, but this is enforced not by free software licenses, but only by the
commitment of all parties to cooperate.

There are various ways to approach forking and its study. One is to categorize the
different types to differentiate between, on the one hand, forks carried out due to
amicable but irreconcilable disagreements and interpersonal conflicts about the
direction of the project, and on the other, forks due to both technical disagreements
and interpersonal conflicts [1]. Still, the most obvious form of forking occurs when,
due to a disagreement among developers, a program splits into two versions with the
original code serving as the basis for the new version of the program.

Raymond [2] considers the actions of the developer community as well as the
compatibility of new code to be a central issue in differentiating code forking from
code fragmentation. Different distributions of a program are considered ‘pseudo-
forks’, because at first glance they appear to be forks, but in fact are not, since they
can benefit enough from each others’ development efforts not to be a waste, either
technically or sociologically. Moody [3] reflects Raymond’s sentiments, pointing out
that code fragmentation does not traditionally lead to a split in the community and is
thus considered less of a concern than a fork of the same program would be. These
sentiments both echo a distinction made by Fogel [1]: it is not the existence of a fork
which hurts a project, but rather the loss of developers and users. Here it is worth
noting, however, that forking can potentially also increase the developer community.
In cases in which developers are not interested in working on the original (for
instance due to frustration with the project direction, disagreements with a lead
developer, or not wanting to work on a corporate sponsored project), not forking
would lead to fewer developers as the developers in question would likely simply quit
the project rather than continue work on the original.

Both Weber [4] and Fogel [1] discuss the concept of forks as being healthy for the
ecosystem in a ‘survival of the fittest’ sense; the best code will survive. However,
they also note that while a fork may benefit the ecosystem, it is likely to harm the
individual project.

 To Fork Or Not to Fork: Fork Motivations in SourceForge Projects 261

Another dimension to forking lies in the intention of the fork. Again, several
alternatives may exist. For instance, the goal of forking can be to create different
branches for stable and development versions of the same system, in which case
forking is commonly considered to serve the interests of the community. At the other
extreme lies the hostile takeover, which means that a commercial vendor attempts to
privatize the source code [5]. Perhaps somewhat paradoxically, however, the potential
to fork any open source code also ensures the possibility of survival for any project.
As Moody [6] points out, the open source community and open source companies
differ substantially in that companies can be bought and sold, but the community
cannot. If the community disapproves of the actions of an open source company,
whether due to attempts to privatize the source code or for other reasons related to an
open source program, the open source community can simply fork the software from
the last open version and continue working in whichever direction it chooses.

3 Research Approach

In the study, we used SourceForge (http://sourceforge.net/) as the repository of open
source programs from which we collected forks. SourceForge contains over 260,000
open source projects created by over 2.7 million developers. Creating new projects,
participating in those that already exist, or downloading their contents is free, and
developers exercise this freedom: programs are downloaded from SourceForge at a
pace of more than 2,000,000 downloads daily.1

SourceForge offers programmers the opportunity to briefly describe their program,
and these descriptions can be searched using keywords. Using this search function,
we compiled a list of all of the programs with the word “fork” – as well as dozens of
intentionally misspelled variations of the word fork, none of which turned up any hits

– in their description. We then analyzed all the descriptions individually to
differentiate between them and to sort out programs that the developers claimed had
forked their code base from another program (which we call “self-proclaimed forks”)
from those which included the term ‘fork’ for some other reason, either to describe a
specific functionality of the program or as part of its name (i.e. false positives).
Consequently, a program that stated “This is a fork of …” was considered a fork,
while a program which noted that it “…can be used to avoid common security
problems when a process forks or is forked” was not. If it was impossible to
categorize a project based on the available data, it was discarded. Our data consisted
of all programs registered on SourceForge from its founding in late 1999 through 31
December 2010, resulting in a time span of slightly more than 11 years. This search
yielded a total of 566 programs that developers report to be forked.

We then analyzed the motivations stated in the descriptions of the forked
programs. The coding process was done in three phases. First, we went through all of
the descriptions and wrote a brief summary of the motivations, condensing the stated
reasons to as few words as possible. Then, we went through all of the motivations and
identified common themes, or subgroups of motivations, among them. In cases where
the fork included elements from more than one theme, we placed it in the subgroup

1 Source: http://sourceforge.net/about, accessed March 9, 2011

262 L. Nyman and T. Mikkonen

that seemed the most central to the motivation behind the fork. Finally, we examined
the subgroups to identify overarching groups of themes.

To give some examples of the coding, one fork stated: “[Project name] is a fork of
the [original project name] project. [The] purpose of [project name] is to add many
new features like globule reproduction, text to speech, and much more.” The
motivation behind the fork was identified as belonging to the subgroup “add content”,
which in the final step was combined (with a subgroup of programs which sought to
focus content) into a group called content modifications. A fork which sought to fix
bugs, and a fork which was motivated by porting a program, were first put into
separate subgroups, “technical: improvement” and “technical: porting”, and then these
subgroups were combined into the “technical modifications” group. Further examples
from the data are presented in the next section.

Based on the descriptions entered by the developer, we were able to identify
motivations for 381 of the forks. The group of forks which we were unable to
categorize consisted of two main types of descriptions: firstly, descriptions which
offered no insights as to underlying motivations, e.g. programs which simply stated
which program they were forked from; secondly, cases in which it was unclear from
the description if the elements described were added in the fork or if they existed in
the original; in other words, one couldn’t determine if the description of the program
included the motivation behind the fork, for instance new technical features, or if they
were describing pre-existing features common to both the original and the fork.

4 Reasons for Forking

Based on the data obtained, developers commonly attribute their reasons for forking
the code to pragmatism. For a variety of reasons, some of which were well
documented and some of which were unclear, the original version of the code failed
to meet developers’ needs. To expand the scope of the system, the developers then
decided to fork the program to a version which serves their own needs. The
descriptions of the forks include programs which note that certain changes have been
made to the fork, as well as those programs which discuss which changes will or
should be made to the forked version. In this paper, we have not distinguished
between the two: both planned and already implemented changes are treated equally,
since the goal was to study motivations rather than eventual implementations. In
general, the forks appear to stem from new developers rather than the original
developing team splitting into two camps. In fact, the data contain almost no
references to disagreements among developers that might have led to the fork.
However, this does not mean that such disagreements could not have existed.

In the following section, we provide a more detailed view of the different
motivations we were able to find in the data (n = 381). The main motivations fall into
two large groups (content and technical modifications) which comprise nearly three
quarters (72%) of all forking motivations. Four smaller groups, all of similar size,
comprise an additional 23% of the motivations. These four groups included the
reviving of a project, license- or FOS-related motivations, language- or country-
related reasons, and experimental forks. The remaining motivations, grouped simply
as “other”, consisted of diverse yet uncommon reasons. An overview reflecting the
numbers of forks appears in Figure 1.

 To Fork Or Not to Fork: Fork Motivations in SourceForge Projects 263

Fig. 1. Fork motivations in SourceForge projects

4.1 Content Modifications

Comprising almost half of all forks, content modifications is the largest group. The
two main subgroups within the content modifications category, both of which are
nearly equal in size, were the adding and the focusing of content; these are briefly
discussed below.

Adding content is a self-explanatory reason for making a fork. The developers
added new features or other content (e.g. adding better documentation, helper utilities,
or larger maps to a game). Quite often, developers didn’t describe additions in detail;
one developer, for instance, simply noted that the program was a fork “that has the
features I’m missing from [the original].” Another developer stated that the fork was
“A [program name] fork with more features”. In several cases, this group of forks also
included bugfixes.

Focusing content implies focusing on the needs of a specific user segment. This
category includes forks with both a technical and content-related focus, along with the
addition of functionalities and features as well as the removal of elements or features
unnecessary for a specific segment or purpose. Examples of content-related focus
include programs forked in order to focus on serving the needs of dance studios, radio
talk shows, catering companies, program developers, and astronomers, to name but a
few. Examples of technical focus include forks “aimed at higher-resolution iOS
devices”, a fork which “features improvements and changes that make it more
oriented for use in a Plone intranet site”, and a fork intended “to run on machines that
have 800x600 screen resolution”. In a minority of the cases in the focusing content
category, the original program was forked mainly to remove elements from the
original. The main goal in this group was to create a lighter or simpler version of the

264 L. Nyman and T. Mikkonen

original, with speed and ease of use as the main focus. One developer stated that the
fork was “lightweight, less bloated” and that it was forked to “make [the original]
simpler, faster, more useable.” Another developer noted that the fork was “Smaller,
faster, easy to use.”

4.2 Technical Modifications

This group, comprising just over a quarter of all forks, can be divided into two
subcategories: porting and improving. A characteristic of this category was that little
if anything was visibly different to the user; the forked programs simply focused on
either porting or improving the original.

Porting the original code to new hardware or software was the more common of
the technical motivations for forking, usually involving porting the original to fit a
certain operating system, hardware, game, plug-in, migrate to a different protocol, or
other such reasons. Examples from the data for this group include a “fork of [program
name] to GNU/Linux”, a fork “compatible with the NT architecture”, “a simple C
library for communicating with the Nintendo Wii Remote […] on a Linux system”,
and a program fork whose main target was to create a version “which works with
ispCP.” Some forks were ported to reduce a dependency; for instance, one developer
who noted that the fork was “geared towards ‘freeing’ [the original program] from its
system dependence, [thus] enabling it to run natively on e.g. Mac OS X or Cygwin.”
Another developer noted that the program was forked because the developer could not
find a “good and recent [program type] without KDE dependency.”

Improving the original program was slightly less common in the technical
motivations category than porting, which focuses on improving already existing
features and contains mostly bugfixes, code improvement and optimization, and
security improvements. Some cases were very general in their descriptions, noting
only that it was an “upgraded” or “improved” version of the original, or that the code
was forked “to fix numerous problems in the code” or to “improve the quality of
emulation”. Others were more specific, as with the developer of one fork, who notes
that “The main goal is to build a new codebase which handles bandwidth restrictions
as well as upcoming security issues and other hassles which showed up [during] the
last 6 months.”

4.3 Reviving an Abandoned Project

The third common motivation for forking was to continue development of a project
considered abandoned, deceased, stalled, retired, stagnant, inactive, or unmaintained.
In several of these cases, the developers of the fork note who the original developers
are and credit them. In a few cases, the developers of the fork note that they attempted
(unsuccessfully) to reach the original developers; in other words, forking the code was
the last available option for these developers, as the original developers could no
longer be reached. One such example is a fork which the developer notes was “due to
long-time inactivity” and then goes on to state “We want to thank the project founder
[name] for starting this project and we intend to continue the work”. In another case,
also due to the inactivity of the original developer, the developer of the fork
acknowledges the original author and notes that the fork “includes changes from

 To Fork Or Not to Fork: Fork Motivations in SourceForge Projects 265

comments made on his forum.” Other examples from the data are: “This project is a
fork of the excellent but dead [project name] project”, “This project is a fork of the
stalled [project name]”, “a code fork from the (deceased) [project name] source”, and,
finally, “The previous maintainer is unresponsive since 2008 and the library [has]
some deficiencies that need to [be] fixed. Anyway, thanks for creating this great
library [name of original developer]!”

4.4 License/FOS-Related Issues

This group consists of forks which were motivated by license-related issues or a
concern for the freedom of the code. Some of the forks appear to be simply a form of
backup copies: stored open source versions of well-known programs. The motivation
for this subgroup was a concern that the original version might become closed source.
In one case, the developer stated that the fork was due to concern about the future
openness of the code. In a similar case, a developer noted about the fork that “This is
a still-GPL version of [program name,] just in case.” One fork simply identifies the
motivation as a “license problem”. In five cases, the program was forked because the
original was deemed to have become either closed source or commercial, and in one
case, developers noted that the fork occurred because certain bits of the original code
were closed source. One fork notes that the new version removes proprietary (boot)
code from the program, but that “there is no need to use this version unless you are
concerned about the copyright status of the embedded boot code.”

4.5 Language- and/or Country-Specific Modifications

A small group of the forks were motivated by language and country. This group could
well be considered a subcategory of the “focusing content” group, but was considered
separate due to its clear language-related focus. The simplest, though not most
common, form of forks included programs which were merely translated into one or
more languages; in most cases, however, new content was also added to customize the
fork for a specific country and/or group. Some examples are forks created for
elections in New Zealand, the right-to-left reading of Hebrew texts, and a program
“customized to meet German requirements regarding accounting and financial
reporting.”

4.6 Experimentation

This group consisted mostly of forks which declared that they existed for
experimental purposes, with a handful citing development reasons. A feature common
among many of these forks is that the developers state that the fork is temporary and
that successful new features or improvements will be incorporated into the original
program. Some describe the fork as simply “for testing”, while others go into greater
detail, noting for instance that the fork is “aimed at experimenting with a number of
features turned up to maximum.” One developer notes that the fork is simply “for
fun”, and then goes on to tell readers where they can find the original project.

266 L. Nyman and T. Mikkonen

4.7 Other Reasons

Of the remaining forks, a handful described it as a “community fork.” In some of
these cases, it was possible to identify an overarching motivation behind the
community fork; in others it was not, the implications of the term in those cases
remaining unclear. Two cases cite a reprogramming in a different programming
language as the reason for the fork. The remaining reasons for the forks defied
categorization, and included such motivations as a desire to create a study tool for the
developer, as well as to test SourceForge for a different project.

Finally, the most surprising of the remaining groups was the group motivated by
disagreement or breach of trust. In the beginning of the study, we assumed that a
significant number of forks would stem from disagreement between developers. In
reality, we were able to identify such forks, but their proportion is quite small: we
identified only four cases, three of which stated that the users sought something the
original developers did not intend to implement and one which noted that the fork was
a reaction to a breach of trust. Furthermore, even some of these cases may be
attributed to the original developers’ loss of interest in the project.

5 Discussion

The data in this paper are based on information provided by developers themselves.
Many of the cases of self-proclaimed forking – such as when a developer continues an
abandoned project – could arguably be defined as something other than a true fork.
However, determining forks any other way (other than through the self-proclaimed
approach used here) would require a technical definition of a fork that would have to
be mined from the project data. At present, no such mechanism seems to exist, and in
general, differentiating between forked and fragmented code is an ambiguous
practice, unless defined by elements outside of the code itself. Consequently, we have
identified the developers as the most reliable source of information, at least at present.

Beyond the challenge of defining a fork, one here also needs to note two issues:
how the choice of SourceForge as a sampling frame might affect the data, as well as
how accurate, or complete, the descriptions offered there are. The choice of
SourceForge could affect the data in several ways. The main question would seem to
be whether the characteristics of the average program – or program fork – on
SourceForge differ from those of programs hosted on other sites, or from
independently hosted programs. For example, given that larger projects often have
their own hosting, it is possible that we are seeing only a small number of forks in
some categories because projects that would face such issues are not using
SourceForge. As to the completeness of the motivations offered by developers, there
could be a number of reasons why the information offered is incomplete. For instance,
the low frequency of disagreements as a motivational factor in forking may perhaps in
part be explained by either a reluctance to mention such disagreements or the limited
space offered by SourceForge in which to describe the program. It is also possible that
such information, while not stated on SourceForge, would be available on project
homepages. Indeed, we came across a project which noted elsewhere that a
disagreement among the developers of the original was a factor in the fork; however,

 To Fork Or Not to Fork: Fork Motivations in SourceForge Projects 267

the same project did not mention this disagreement in their description on
SourceForge.

In general, the results of our study suggest that forking is not a particularly extreme
situation in real-life projects. For the most part, developers’ motivations are easily
understandable, and forking can be considered a reasonable action. However, this
does not mean that hostile takeovers are absent from high-profile projects, but simply
that in the vast majority of cases, developers appear simply to seek to satisfy their
own needs and to develop interesting systems. Such motivations were evident in the
documentation in many ways. Some of the forks note that the changes or
improvements have already been made, whereas others announce the intended
direction of the fork and mention features to be added to it. Furthermore, crediting the
original developers was a rather common practice among those who forked a
program, which further emphasizes the fact that forks sought to achieve certain goals,
not to compete with existing communities. Perhaps more telling still is that a number
of forks noted that they hoped to be temporary, and clearly stated their desire that the
bugfixes and improvements introduced in their fork be incorporated into the original
program.

6 Future Work

Future work regarding issues associated with forking could take numerous directions.
Below we list some of the most promising directions that merit further investigation.

Defining a fork. All of the programs in the data for this article define themselves as
forks. In practice, upon more careful review, many of them could perhaps more
accurately be categorized as pseudo-forks, code fragmentation, or simply different
distributions of a code. The creation of a commonly agreed-upon view of forking vs.
fragmentation (or distributions) vs. code reuse would be a very practical step that
could benefit both researchers as well as the entire open source community. It could
also be possible to define a fork based on technical details, rather than depend on
information provided solely by the developers.

Licenses before and after forking. Future researchers could conduct a survey of
developers who have forked a program in which they explain their choice of license
in comparison to the license of the original program from which they forked.

Perception of forking. Another practical aspect related to forking is how
programmers view it; in other words, when is it acceptable to fork, and when is it not?
Furthermore, discovering whether certain behaviors make forking more acceptable
among developers would be an important direction for such work.

Expanding the data set. Performing a similar study for other sites that host open
source projects would contribute to a deeper understanding of forking. Because all the
data come from only one source, certain aspects may skew the results. Furthermore, it
would be interesting to test if one can tie the observed categories to antecedents or
consequences, e.g., are particular kinds of software more likely to fork in particular
ways or are particular kinds of forks more successful?

Forking in relation to business. A number of forks we have identified occurred
because the original project became closed source. Examining what happened to these
projects would deepen our understanding and view of forking in relation to business.

268 L. Nyman and T. Mikkonen

7 Conclusions

Forking is one of the least understood topics in open source development. While often
perceived initially as something malicious, the developers who perform the actual
forking cite rather straightforward reasons for their actions.

In this paper, we addressed the motivations of developers for performing a fork.
The data used in the project originate from SourceForge (http://sourceforge.net/), one
of the best-known hosts of open source projects, and focus on “self-proclaimed
forks”, or programs that the program developers themselves consider to be forks. The
motivations behind forking are based on developer input, not on mining technical
qualities of the project. However, using only the latter to determine forking would be
difficult, as separating forking from other open source-related phenomena is
problematic and inconclusive. At the very least, additional data from developers are
needed to define forking.

In conclusion, while hostile takeovers and the hijacking of a project as well as a
loss of developers after a fork are often associated with forking, the reality is that
forks seem to be a lot less dramatic. In fact, forking appears to be more or less
business as usual, and developers fork because doing so provides certain benefits for
their own goals. While we were able to find forks where the rationale for forking lay
in disagreement or trust issues, such cases were few in comparison to the total number
of projects we studied.

References

[1] Fogel: Producing Open Source Software. O’Reilly, Sebastopol (2006)
[2] Raymond: The Cathedral & the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary. O’Reilly, Sebastopol (2001)
[3] Moody: The Deeper Significance of LibreOffice 3.3. ComputerWorld UK (January 28,

2011)
[4] Weber: The Success of Open Source. Harvard University Press, Cambridge (2004)
[5] Lerner, Tirole: Some Simple Economics of Open Source. The Journal of Industrial

Economics 50(2), 197–234 (2002)
[6] Moody: Who owns commercial open source and can forks work? Linux Journal (April 23,

2009)

An Analysis of Author Contribution Patterns

in Eclipse Foundation Project Source Code

Quinn C. Taylor, Jonathan L. Krein,
Alexander C. MacLean, and Charles D. Knutson

SEQuOIA Lab — Brigham Young University — Provo, Utah, USA
{quinntaylor,jonathankrein,amaclean}@byu.net, knutson@cs.byu.edu

Abstract. Collaborative development is a key tenet of open source soft-
ware, but if not properly understood and managed, it can become a li-
ability. We examine author contribution data for the newest revision of
251,633 Java source files in 592 Eclipse projects. We use this observa-
tional data to analyze collaboration patterns within files, and to explore
relationships between file size, author count, and code authorship. We
calculate author entropy to characterize the contributions of multiple
authors to a given file, with an eye toward understanding the degree of
collaboration and the most common interaction patterns.

1 Introduction

Software development is an inherently complex activity, often involving a high
degree of collaboration between multiple individuals and teams, particularly
when creating large software systems. Interactions between individual contrib-
utors can affect virtually all aspects of software development, including design,
implementation, testing, maintenance, complexity, and quality.

Collaboration involves cooperation, communication, and coordination, and
generally implies some governing organizational structure. The organization has
an effect on the structure of the software being developed, as per “Conway’s
Law” [4]; presumably applying equally to proprietary and open source software.
Brooks noted that potential communication channels increase as the square of
the number of contributors [2]. Thus, there is benefit to understanding and
managing collaboration so it does not become a liability.

Analyzing collaboration data can help explain how people work together to
develop software. Studies by Bird [1], Ducheneaut [6], Gilbert [7], Mockus [12],
Dinh-Trong [5], and others have examined interactions between open source de-
velopers by correlating communication records (such as email) with source code
changes. Such approaches can expose patterns which reinforce contributor roles
and module boundaries, but may not be feasible for all projects (particularly
if email archives are unavailable) and can be difficult to compare or aggregate
across disparate projects.

In addition to examining collaboration across projects and modules, there is
value in understanding how contributors collaborate within files. Having a sense

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 269–281, 2011.
c© IFIP International Federation for Information Processing 2011

270 Q.C. Taylor et al.

of what constitutes “typical” collaboration for a project can provide valuable
context. For example, if most files in a project have one or two authors, a file
with 10 authors may merit additional scrutiny. In open source projects, unorga-
nized and organic contributions may be evidence of the bazaar rather than the
cathedral [13]. In any case, simply knowing can help set expectations.

This paper both replicates and extends earlier results [15]. Our research goals
center around detecting, characterizing, and understanding patterns of collabo-
ration within source code files. Our primary research questions are:

1. How often do n authors contribute to a given file?
We anticipate that most files have a single author, and as the number of
authors increases, the count of files with that many authors will decrease.

2. Is there a higher degree of collaboration in small or large files?
We anticipate that there will be a positive correlation between file size and
author count, partially because larger files have more code, and the potential
for more distinct functionalities and individual responsibilities.

3. Do files contain similar proportions of contributions from each author, or is
there a dominant author who is the clear “owner” of a given file, and if so,
how dominant is that author?
We anticipate that most source files will have one author who contributes
significantly more code than any other single author, and that this author’s
dominance will be inversely related to the number of contributing authors.

4. Is there a uniform or uneven distribution of collaboration across projects?
We anticipate that there will be a few “core” projects which are highly
collaborative, and many ancillary projects which are less collaborative.

2 Methodology

We conducted an observational study on existing Eclipse projects by extracting
author attribution data for Java source code files from git repositories. In this
section we describe the process we used to select and obtain the data.

2.1 Project and File Selection

We chose to analyze Eclipse Foundation projects for several reasons, including:

– the number and variety of Eclipse-related projects,
– use of easily-recognizable programming languages,
– the ability to locally clone remote git repositories,
– a track record of sustained development activity,
– the existence of corporate-sponsored open source development projects.

We selected Java source files for our analysis, since over 92% of the source files in
the repositories are Java, and Eclipse is so closely aligned with Java. We mined
data from 251,633 files in 592 projects. We included auto-generated code in our
analysis, since the inclusion of such files allows us to accurately characterize the
state of the project to which they belong.

An Analysis of Author Contribution Patterns in Eclipse Projects 271

2.2 Extraction and Calculation

The first step in calculating author collaboration is to count how many authors
have contributed to a file and the number of lines contributed by each one.
Summarizing raw line counts with a single representative statistic per file allows
for detailed statistical analysis of collaboration trends. In this paper, we use:
(1) the percentage of lines attributed to the most dominant author in each
file, and (2) author entropy (see Section 3 for details). These numbers can help
characterize some aspects of author contribution patterns.

We created a bash script to locally clone each remote git repository and use
‘git blame’ to count the number of lines attributed to each author for each
matching file. For each file in a project, the file path and line counts attributed
to each author were recorded.

We then wrote a simple CLI tool to process this data and calculate the per-
centage of lines written by each author. Author entropy for each file was calcu-
lated using Equation 1. We also normalized entropy by dividing by the maximum
possible entropy for each file, shown in Equation 2.

2.3 Limitations of the Data

We draw data only from git, a source control management (SCM) system that
preserves snapshots of file state over time. We do not consider other collaboration
mechanisms, such as email archives, forums, etc., although this could be a very
interesting extension of this work.

It it important to note that the SCM record of who “owns” a line of code only
identifies the individual who committed the most recent change affecting that
line. It does not guarantee that the contributor actually conceived of, wrote, or
even understands the code. By itself, it also does not tell us the genesis of a line;
it could be new, a minor tweak, or a formatting change.

Because we consider only the latest revision of each file, this data cannot be
used to make any inferences about collaboration over time. Without historical
data, we can see the result of collaboration, but not the nature of the evolution
of such collaboration.

Lastly, because we record author counts but not relative ordering of contri-
butions from various authors, this data does not fully capture or express the
amount of disorder. Because only percentages by each author are considered,
the data makes no distinction between files with orderly, segregated blocks of
contributions and files in which authors’ contributions are all mixed together.

3 Author Entropy

Author entropy is a summary statistic that quantifies the mixture of authors’
contributions to a file. Contribution percentages are weighted using logarithms
and summed; the resulting value conveys more information about the distribu-
tion than a simple average, and can expose interesting authorship patterns more
readily than raw line counts. Taylor et al [15] introduced author entropy and

272 Q.C. Taylor et al.

examined distributions in a proof-of-concept study with SourceForge data. A
follow-on paper [3] examined author entropy in GNOME application source.

Entropy originated in the field of thermodynamics, which defines it as the
disorder or randomness of molecules in a system. Entropy has also been defined
in terms of probability theory and used in the fields of information theory [14]
and machine learning [11].

We apply entropy as a measure of collaboration between individual contribu-
tors. Specifically, we consider entropy of source code by counting the number of
lines attributed to each author. This definition of entropy allows us to quantify
the mixture of author contributions to a file.

3.1 Calculating Entropy

Entropy formulae are nearly identical across domains, and generally vary only
in symbolic representation and constant multipliers. We use a formulation very
similar to that used in machine learning.

If F is a file, A is the number of authors, and pi is the proportion of the text
attributed to author i, then the entropy of the file is defined as:

E(F) ≡ −
A∑

i=1

(pi · log2 pi) (1)

E(F) is maximized when all authors contributed equal proportions of text in a
file (∀ i, pi = 1

A). The upper limit of E(F) is a function of A:

Emax(F) ≡ log2 A (2)

We use log2 for historical reasons tied to information theory (essentially, calcu-
lating the number of bits required to encode information). Although any log-
arithmic base would suffice, it is convenient that using log2 results in entropy
values in the range (0,1] for a binary classification.

3.2 Normalizing Entropy

Because the maximum possible entropy for a file is a function of the number
of authors, intuitive understanding of entropy can be difficult. For example, an
entropy value of 1.0 is the maximum possible for a file with 2 authors, but
comparatively low for a file with 10 authors. Dividing E by Emax produces a
normalized value in the range (0,1] which represents the percentage of maximum
entropy. Normalized entropy can be easier to understand, and in some cases more
appropriate for comparisons between disparate files.

4 Interpreting Collaboration

A high degree of collaboration within a given source file is not inherently good
or bad; as with any metric, context is key. Without knowledge about additional

An Analysis of Author Contribution Patterns in Eclipse Projects 273

factors such as a project’s state, organization, and development conditions, in-
terpreting collaboration is purely speculative. To illustrate this point, we list
below a variety of factors that could influence author entropy.

Low entropy could result from factors as varied as:

– Well-architected and modular software.
– Excellent communication and coordination.
– Lack of involvement from potential contributors.
– A disciplined team in which each person “owns” a module.
– A gatekeeper who gets credit for code written by others.
– Code that few people understand.
– Code that was reformatted and old attributions lost.
– Code with exhaustive unit tests, known to be correct.
– Code with negligible unit tests and unknown defects.
– Auto-generated code that no human actually “wrote.”
– Critical code that few people are allowed to modify.
– Mature code with little or no need for maintenance.
– Stale code that isn’t touched, even if it needs fixing.
– Dead code which is no longer used or modified.

High entropy could result from factors as varied as:

– Code with high coupling or many inter-dependencies.
– Unrelated code entities being stored in a single file.
– Adding manpower to a late project (Brooks’ law).
– Extremely buggy code that is constantly patched.
– Extremely stable code that is well-maintained.
– Enhancements or fixes that touch several files.
– Contributors joining or leaving a project team.
– Actively evolving code or refactoring activity.
– Miscommunication or lack of clear direction.
– Healthy collaboration between contributors.
– Overlapping responsibilities of contributors.
– Agile development or team programming.
– Potential for integration-stage problems.
– Continuous integration testing and fixes.

Such a menagerie of disparate factors is not a flaw in the metric itself, but rather
suggests that any metric can easily be misinterpreted without proper context. For
example, a file with high entropy written by several experts is likely of higher
quality than a file written by one novice author. Two files may have similar
entropies despite a large size difference. A recent contributor may understand a
file better than the original author who wrote it years ago. Correlating author
entropy with other metrics and observations can help distinguish between “good”
and “bad” entropy and provide valuable new insights.

Author entropy cannot directly indicate other attributes of the source code.
For example, file length is obscured since files of different size but equal pro-
portions of contribution have the same entropy. Entropy also does not reflect

274 Q.C. Taylor et al.

quality or the relative importance of contributions, such as new functionality,
bug fixes, comments, whitespace, or formatting. Although different entropy cal-
culation techniques could opt to account for such factors, there is no way to
deduce the weighting of such factors from a single number.

5 Results

The line count of the source files we examined ranged from 1 to 228,089, with
a median of 89. The extreme right-tail skew (97.5% have 1,000 lines or fewer,
92.5% have 500 or fewer) suggests that the data may have an exponential dis-
tribution. Plotting the data with a log10 transformation produces a histogram
(Figure 1) that closely resembles a normal distribution. A Q-Q plot showed that
the population fits a log-normal distribution quite well, although the long tail
caused higher residual deviations in the upper range. We also examined the files
with 10 lines or fewer and found that nearly all of them were related to unit
tests; several projects have extensive tests with Java source files that specify in
and out conditions, but have little or no code. Excluding these left-tail outliers
greatly improved the fit of the Q-Q plot in the low range.

0
50
00

10
00
0

15
00
0

20
00
0

1 10 100 1K 10K 100K

Fig. 1. Frequency of file sizes (in number of lines)

To answer our first research question, we plotted the frequencies of files with
n authors. The resulting histogram was an exponential decay curve, and when
plotted with a logarithmic scale, a near-perfect log-linear decay is evident (see
Figure 2). This confirms our hypothesis that most files have a single author, and
that the number of files with n authors decreases as n increases. It is also strik-
ingly similar to Lotka’s Law [10], which states that the number of authors who
contribute n scientific publications is about 1/na of those with one publication,
where a is nearly always 2. Lotka’s law predicts about 60% of authors publish
only once; in our data, 58.22% of the files have one author.

To answer our second research question, we plotted file size distributions
grouped by author count (see Figure 3). The log-linear increase in average file
size as the number of authors increases confirms our hypothesis that, on average,

An Analysis of Author Contribution Patterns in Eclipse Projects 275

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
10

10
0

1K
10
K

10
0K 146332

57896
24250

11892
5653

2697
1445

704
353

200
98

46
26

13 12
6

2

6

Fig. 2. Frequency of number of authors contributing to a given file

there is more collaboration (i.e., more authors) in large files. However, we must
note that there is a degree of uncertainty due to the decreasing sample sizes for
higher author counts and the extreme outliers for lower author counts.

We augmented Figure 3 with two additional data series: (1) the average num-
ber of lines in a file, and (2) the average number of lines contributed per author
to a file. Note that there is a pronounced dip between 1 and 10 authors, but a
fairly consistent average throughout. Although evaluating the causes and rami-
fications of this trend are beyond the scope of this paper, we find this to be an
interesting topic for future work.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

authors

lin
es

1
10

10
0

1K
10

K
10

0K

Upper circles represent the average number of lines per file.

Lower circles represent the average number of lines per author per file.

Fig. 3. Author count vs. file size (in number of lines)

276 Q.C. Taylor et al.

To answer our third research question, we plotted the number of lines in files
with two or more authors against the percentage of lines attributed to the most
dominant author in each file (see Figure 4). We also plotted the distributions of
author dominance for all files with a given author count (see Figure 5).

Fig. 4. Line count vs. percent written by dominant author for files with 2+ authors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

authors

Fig. 5. Author count vs. author dominance. Circles represent the curve 1
x
.

These plots confirm our hypothesis that most files have a dominant author,
and that the percentage of lines attributed to that author generally decreases as
the count of contributing authors increases. We find it noteworthy that author
dominance diverges increasingly from the lower bound (1

x). This suggests that
in Eclipse projects, more authors contributing to a file does not imply balanced
contributions; rather, a single author usually dominates the others.

To answer our fourth research question, we plotted the number of lines in
a project against the number of unique authors contributing to it for all 592
projects (see Figure 6). Over 83% of the projects have 10 or fewer unique authors,
and some significant outliers have much larger numbers of authors.

An Analysis of Author Contribution Patterns in Eclipse Projects 277

0 10 20 30 40 50 60 70

10
0

10
00

10
00

0
10

00
00

10
00

00
0

authors

lin
es

Fig. 6. Author count vs. total number of lines for all 592 projects

We also manually examined the 211 files with 11 or more authors. Nearly all
of these files came from a handful of projects, all of which were among the top
25 projects with the most authors. These projects include:

– org.eclipse.ui.workbench (Eclipse IDE interface)
– org.eclipse.jdt.core (Java Development Tools)
– org.eclipse.cdt (C/C++ Development Tooling)
– org.eclipse.pdt (PHP Development Tools)
– org.eclipse.birt.report (Business Intelligence and Reporting Tools)
– org.eclipse.jface (UI application framework/toolkit based on SWT)

The nature and role of these highly-collaborative projects confirms our hypoth-
esis that collaboration is not distributed uniformly, but is concentrated in a few
core projects. This phenomenon is also related to our second research question,
about the relationship between collaboration and file size.

5.1 Additional Questions

In addition to our primary research questions, we also replicated some results
from prior related work to verify whether the assertions made therein still hold
for broader data. These results are related to distributions of author entropy
(see Section 3) over varying file sizes and author counts.

In [15] we found a positive relationship between author count and entropy
(entropy rises as the number of authors increases). We found the same trend in
Eclipse source code, although it breaks down somewhat for 11 or more authors
due to sparseness of data (see Figure 7).

Although the entropy metric is inherently biased toward higher values (par-
ticularly when there are more authors), any file can have low entropy when one

278 Q.C. Taylor et al.

1 3 5 7 9 11 13 15 17 19

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

(a)

en
tro
py

1 3 5 7 9 11 13 15 17 19

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

no
rm

al
iz

ed
 e

nt
ro

py

Fig. 7. Author count vs. (a) entropy and (b) normalized entropy

of the authors is extremely dominant. However, because the maximum possible
entropy for a given file is a function of the number of authors, it can be difficult
to compare entropies for files with different number of authors. For this reason,
we use normalized entropy, which always falls in the range [0,1] regardless of
author count, and thus represents the percentage of maximum possible entropy.

Interestingly, the data exhibits a trend previously observed [15] in a very
constrained set of SourceForge data: distributions of normalized entropy tend to
center around 0.6 (or 60% of maximum possible entropy) as the author count
increases. Even as the data becomes more sparse for higher author counts, the
distributions tend to converge on the same range.

Casebolt [3] examined two-author source code files and observed an inverse
relationship between file size and entropy (small files have high entropy and vice
versa). A similar pattern occurs in our data, as shown in Figure 8(a). Unfortu-
nately, it is impossible to discern how many data points share the same location.
The task is even more hopeless when all files (not just those with two authors)
are included in the same plot, as in Figure 8(b). To better understand the distri-
bution and density of these data, we borrow a tool used by Krein [9] to visualize
language entropy: 3D height maps. This technique generates an image in which
densely-populated regions appear as elevated terrain (see Figure 9).

Figure 9 is an adaptation of both Figure 8(b) (adding height) and Figure 1
(adding depth). Starting from the back/left, the curves represent files in which
one author “owns” all lines but one, two, etc. The disproportionate distribution
of files on the furthest curves suggests that one- and two-line edits are probably
extremely common occurrences in the projects we examined. This may be a
manifestation of many small bug fixes, refactorings, interface changes, etc.

An Analysis of Author Contribution Patterns in Eclipse Projects 279

Fig. 8. Normalized entropy vs. line count for (a) two authors and (b) all files

Fig. 9. Height map of line count vs. normalized entropy (same data as Figure 8b)

280 Q.C. Taylor et al.

6 Future Work

Although this paper both replicates and adds to the results of prior work [15],
we also see several promising ways to extend this research.

First, statistical analysis of author entropy over time, including how entropy
of files, modules, and projects change over time, and why. One limitation of
this paper is that we examine only the most recent version of each file; we do
not consider previous versions of existing files, or files which once existed but
have since been deleted. We see significant value in understanding not only code
ownership, but the degree of the resulting disorder, and how it is related to and
caused by the development processes at play within a project.

Second, correlation of entropy with other code ownership measurements, com-
munication records (such as email), and development roles. This could build on
studies such as those by Bird [1], Mockus [12], Dinh-Trong [5], Jensen [8], and
von Krogh [16], among others. Understanding how conributor roles and project
organization affect source code entropy could help OSS project administrators
(or “core team”) to more effectively analyze and organize contributors’ efforts.

7 Conclusion

We discovered that author attribution data for source code files can provide
insight into the nature of collaboration between source code contributors. As
researchers, we seek to understand how people work together to develop complex
systems, and to explain success or failure based on the data at our disposal. We
are fascinated by the patterns of order which seem to naturally fall into place
amid the organic chaos of free-form interactions.

Our study revealed similar authorship patterns in a vastly different code base
than prior work, and suggested interesting new patterns we had not previously
considered. Author entropy continues to be an interesting and useful metric for
characterizing contributor interactions. Future research will improve our ability
to link collaborative activity with the underlying factors that influence it, and
facilitate improvements that enhance the quality of the software we produce.

References

1. Bird, C., Pattison, D., D’Souza, R., Filkov, V., Devanbu, P.: Chapels
in the Bazaar? Latent Social Structure in OSS. In: FSE (2008),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.2158

2. Brooks Jr., F.P.: The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley Longman Publishing Co., Inc., Amsterdam (1975)

3. Casebolt, J.R., Krein, J.L., MacLean, A.C., Knutson, C.D., Delorey, D.P.: Author
Entropy vs. File Size in the GNOME Suite of Applications. In: Proceedings of the
6th IEEE Working Conference on Mining Software Repositories (MSR 2009), pp.
91–94 (May 2009)

4. Conway, M.E.: Do Committees Invent? Datamation 14(4), 28–31 (1968)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.2158

An Analysis of Author Contribution Patterns in Eclipse Projects 281

5. Dinh-Trong, T.T., Bieman, J.M.: The FreeBSD Project: A Replication Case Stdy
of Open Source Development. IEEE Transactions of Software Engineering 31(6),
481–494 (2005)

6. Ducheneaut, N.: Socialization in an Open Source Software Community: A Socio-
Technical Analysis. In: Computer Supported Cooperative Work, vol. 14, pp. 323–
368 (2005)

7. Gilbert, E., Karahalios, K.: CodeSaw: A social visualization of distributed software
development. In: Baranauskas, C., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT
2007. LNCS, vol. 4663, pp. 303–316. Springer, Heidelberg (2007)

8. Jensen, C., Scacchi, W.: Role Migration and Advancement Processes in OSSD
Projects: A Comparative Case Study. In: 29th International Conference on Software
Engineering, ICSE 2007 Minneapolis, MN, pp. 364–374 (May 2007)

9. Krein, J.L., MacLean, A.C., Knutson, C.D., Delorey, D.P., Eggett, D.L.: Impact of
Programming Language Fragmentation on Developer Productivity: a SourceForge
Empirical Study. International Journal of Open Source Software and Processes
(IJOSSP) 2(2), 41–61 (2010)

10. Lotka, A.J.: The frequency distribution of scientific productivity. Journal of the
Washington Academy of Sciences 16(12), 317–324 (1926)

11. Mitchell, T.M.: Machine Learning, pp. 55–57. McGraw-Hill, New York (1997)
12. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two Case Studies of Open Source

Software Development: Apache and Mozilla. ACM Transactions on Software Engi-
neering and Methodology 11(3), 309–346 (2002)

13. Raymond, E.S.: The Cathedral and the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. O’Reilly and Associates, Inc., Sebastopol (2001)

14. Shannon, C.E.: A Mathematical Theory of Communication. The Bell System Tech-
nical Journal 27, 379–423 (1948)

15. Taylor, Q.C., Stevenson, J.E., Delorey, D.P., Knutson, C.D.: Author Entropy: A
Metric for Characterization of Software Authorship Patterns. In: Proceedings of the
3rd International Workshop on Public Data about Software Development (WoP-
DaSD 2008), Milan, Italy (September 2008)

16. von Krogh, G., Spacth, S., Lakhani, K.R.: Community, Joining, and Specializa-
tion in Open Source Software Innovation: A Case Study (Open Source Software
Development). Research Policy 32(7), 1217–1241 (2003)

Cliff Walls: An Analysis of Monolithic Commits

Using Latent Dirichlet Allocation

Landon J. Pratt, Alexander C. MacLean, Charles D. Knutson,
and Eric K. Ringger

Computer Science Department, Brigham Young University, Provo, Utah
{landonjpratt,amaclean,knutson,ringger}@byu.edu

Abstract. Artifact-based research provides a mechanism whereby re-
searchers may study the creation of software yet avoid many of the dif-
ficulties of direct observation and experimentation. However, there are
still many challenges that can affect the quality of artifact-based studies,
especially those studies examining software evolution. Large commits,
which we refer to as “Cliff Walls,” are one significant threat to studies
of software evolution because they do not appear to represent incremen-
tal development. We used Latent Dirichlet Allocation to extract topics
from over 2 million commit log messages, taken from 10,000 SourceForge
projects. The topics generated through this method were then analyzed
to determine the causes of over 9,000 of the largest commits. We found
that branch merges, code imports, and auto-generated documentation
were significant causes of large commits. We also found that corrective
maintenance tasks, such as bug fixes, did not play a significant role in
the creation of large commits.

1 Introduction

Artifact-based software engineering research may in some respects be compared
to archaeology, a field that has been defined as “the study of the human past,
through the material traces of it that have survived”[2]. Much like archaeolo-
gists, empirical software engineering researchers often seek to understand people.
The software engineering researcher, while not isolated from a target population
by eons, faces other obstacles that often make direct observation impossible.
Many organizations are loath to allow researchers through their gates, in an
effort to protect trade secrets or merely to hide shortcomings. Even in cases
where researchers are allowed to directly observe engineers building software, the
Hawthorne effect threatens the validity of such observations. Time investment
and organizational complexity are also issues that pose problems in software
engineering research. Direct observation requires significant time investment,
making it impossible for a single researcher to observe everything that takes
place within a given software organization.

As a result of these barriers, software researchers, like their archaeologist
counterparts, take advantage of artifacts—work products left behind in software

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 282–298, 2011.
c© IFIP International Federation for Information Processing 2011

Cliff Walls: An Analysis of Monolithic Commits 283

project burial grounds. Artifacts are collected after the fact, minimizing the con-
founding influence of the presence of a researcher. Artifacts also help researchers
deal with the requirements of studying complex organizations. By leveraging ar-
tifacts of the software process, researchers are able to study thousands of pieces
of software in a relatively short period of time, an otherwise impossible task.

The open source movement is particularly important to software engineering
research, since project artifacts, such as source code, revision control histories,
and message boards, are openly available to software archaeologists. This makes
open source software an ideal target for researchers with a desire to understand
how software is built.

1.1 Threats to Artifact-Based Research

Unfortunately, the study of artifacts in software engineering is not all sunshine
and double rainbows; serious challenges threaten the results of artifact-based re-
search involving open source software projects (such as those hosted on Source-
Forge). Since artifact data is examined separate from its original development
context, identifying the development artifacts actually recorded in the data can
be difficult. It is challenging enough to ensure that measurements taken for a spe-
cific purpose actually measure what they claim to measure [5]. It is all the more
difficult (and necessary), therefore, to validate artifact data, which is generally
collected without a targeted purpose.

Many phenomena can easily be overlooked by software archaeologists, such
as auto-generated code, the presence of non-source code files in version control,
and the side effects of branching and merging. Understanding the limitations
of artifact data represents an important step toward validating the results of
numerous studies (for example, [3, 6, 9, 13, 18, 20, 22]). Despite on-going efforts
to identify and mitigate the limitations of artifact-based research, new threats
are constantly emerging.

The focus of this paper is one such threat—the presence of monolithic commits
in open source repositories. A close look at the version control history of many
projects in SourceForge reveals some worrisome anomalies. Massive commits,
which we refer to as “Cliff Walls,” appear with alarming frequency. One inves-
tigation of Cliff Walls in SourceForge found that out of almost 10,000 projects
studied, half contained a single commit that represented 30% or more of the
entire project size [16]. These Cliff Walls indicate periods of unexplained accel-
eration in development, threatening some common assumptions of artifact-based
research, especially for studies of project evolution. Cliff Walls thwart attempts
to tie authors to contributions, mask true development history, and taint studies
of project evolution. We must better understand Cliff Walls if we are to paint
an accurate picture of software evolution through the use of artifacts.

2 Cliff Walls

In [16] we introduced the concept of “Cliff Walls” as unexpected increases in ver-
sion control activity over short periods of time (see Fig. 1). In the most extreme

284 L.J. Pratt et al.

cases, Cliff Walls represent millions of lines of source code contributed to the
repository in less than a day. Such activity is problematic for researchers, espe-
cially those investigating the evolution of software, because such sudden surges
of source code commits cannot possibly be the result of common incremental
development activities. Even a team of “supercoders” would be hard-pressed
to produce such massive quantities of code in a short period of time, all the
more impossible for the single “author” to which a version control commit is
attributed. We are forced to ask what these “Cliff Walls” truly represent.

Fig. 1. Cliff Walls in the Firebird Project

2.1 Definitions

When examining contributions to version control systems, it is logical to dis-
cuss them in the context of “commits.” However, some researchers have defined
“commit size” in terms of the number of files changed in a commit [12, 11, 10],
while others treat the size of a commit as a function of the number of LOC
added, removed or modified [1].

Within the context of this study, a commit refers to the set of files and/or
changes to files submitted simultaneously to a version control system by an indi-
vidual developer. Since we are primarily concerned with the growth of projects
over time, Commit size is defined as the total number of lines added or removed
from all source code files in a given commit, which allows us to perceive code
growth (or shrinkage) within a project. For example, if an existing line in one
file is modified, and no other changes are made, the size of the resulting commit
would be zero LOC. In this study, we include code comments in the measurement
of commit size, allowing us to detect code growth attributable to the insertion
of comments within source files.

We use the term Cliff Wall to describe any single commit with size greater
than 10,000 lines of code (LOC). We believe this threshold to be sufficiently
high that it avoids capturing most incremental development contributions for
individual authors. While it is possible that an extremely productive developer
could produce 10,000 lines of code in a period of days or weeks, it is unlikely.
Additionally, the methods employed in this study should allow us to identify
instances where the threshold fails.

Cliff Walls: An Analysis of Monolithic Commits 285

2.2 Commit Taxonomies

The ability to distinguish between different types of cliff walls is critical for
many artifact-based studies. For example, a researcher attempting to measure
developer productivity on a project would likely want to be able to distinguish
between large commits caused by auto-generated code and branch merges, as
they must be handled differently when calculating code contributions.

In [12], the authors present a taxonomy used to manually categorize large
commits on a number of open source software projects. Hattori and Lanza also
present a method for the automatic classification of commits of all sizes in open
source software projects [10]. The taxonomies developed in these studies focus
on classifying the type of change made (for example, development vs. main-
tenance). Both these studies concluded that corrective maintenance activities,
such as bug fixes, are rarely the topic of large commits. These studies also found
that a significant portion of large commits were dedicated to “implementation
activities.” The authors consider all source code files added to the repository to
be the result of implementation activities.

In [1], the authors categorize commits from open source projects into three
groups, using a rough heuristic based on commit size. Their study makes no
attempt to analyze commit log messages. Rather, they divide each commit into
one of three groups, based on the commit size: 1) single individual developer con-
tributions, 2) aggregate developer contributions, and 3) component or repository
refactoring or consolidations.

In our study, we seek to identify specific behaviors that play a significant
role in the creation of monolithic commits. In the next section, we discuss the
methods that we will apply in our search for the causes of Cliff Walls.

3 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is an unsupervised, hierarchical Bayesian
topic model for analyzing natural language document content that clusters the
terms in a corpus into topics [4]. In LDA, the model represents the assumption
that documents are a mixture of these topics and that each topic is a proba-
bility distribution over words. In short, LDA allows us, without any knowledge
engineering, to discover the topical content of a large collection of documents
in an unsupervised fashion. Given a corpus of documents such as our commit
log messages, inference techniques such as Gibbs sampling or Variational Bayes
can be used to find a set of topics that occur in that corpus, along with a topic
assignment to each word token in the corpus.

A common technique for visualizing the topics found using LDA is to list the
top n most probable terms in each topic. For example, one of the topics we found
using LDA that concerns bug correction, consisted of the following terms:

fix bug fixes crash sf problems small quick
closes blah deleting weapon decoder lost
hang weapons delphi noted led

286 L.J. Pratt et al.

When brevity is required, it is also common to refer to a topic by just the first
two or three most probable terms, sometimes in hyphenated form. Using this
notation, the above topic could be referred to as the “fix-bug” topic. Both of
these methods for indicating a particular topic (word list and first words) are
used throughout this paper.

Because LDA also assigns a topic to each individual token within a commit
message, a single commit can, and usually does, contain many topics. This is one
benefit of using LDA: each “document” may belong to multiple classes. Such is
not the case with many of the supervised classification methods, which typically
assign each document to a single class. In the case of commit log messages,
allowing for multiple topics in a single message allows us to conduct a more
fined-grained analysis.

The approach taken by LDA is an attractive alternative to other classification
and clustering methods. Supervised classification methods require a training set
of “tagged” data, for which the appropriate class for each instance has previously
been specified. In many situations this tagged data does not exist, requiring the
researcher to manually assign tags to some portion of the data. This is a tedious,
time-consuming, and potentially biased process which can be avoided through
the use of unsupervised methods such as LDA. Unsupervised methods may also
compensate for a measure of “short-sightedness” by the researcher. In supervised
methods, since the classes must be predefined by the researcher, it is possible to
degrade the usefulness of the model through the omission of important classes,
or the inclusion of irrelevant classes. Unsupervised methods avoid some of these
errors since no predefined clusters are specified, allowing the data to better
“speak for itself.” For our analysis, we used the open source tool “MALLET”
which includes an implementation of LDA [17].

4 Methods

Our data set consists of the version control logs of almost 10,000 projects from
SourceForge, acquired in late 2006. This data set has been previously used in
a number of studies [6, 7, 8, 13, 14, 15, 16]. The logs for all projects in our
data set were extracted from the CVS version control system. In creating the
data set, the original authors filtered projects based on development stage; only
projects labeled as Production/Stable or Maintenance were included in the data
set. For further description of the data, see [6]. In calculating commit size, we
excluded non-source code files, based on file extension. Over 30 “languages” were
represented in the final data set, including Java, C, C++, PHP, HTML, SQL,
Perl and Python.

Because CVS logs do not maintain any concept of an atomic multi-file “com-
mit” it was necessary to infer individual commits. We utilized the “Sliding Time
Window” method introduced by Zimmerman and Weißgerber [23]. This resulted
in a set of almost 2.5 million individual commits, extracted from over 26 million
file revisions. Applying our pre-defined threshold of 10,000 LOC yielded over
10,000 Cliff Walls. We also found that a number of the commits contained log

Cliff Walls: An Analysis of Monolithic Commits 287

messages that were uninformative. Commits with empty log messages or with
“empty log message” were removed from the data to prevent degradation in
the quality of topics identified. The resulting set contained 2,333,675 commits,
with 9,615 Cliff Walls. We later removed other uninformative commits (see dis-
cussion in Sec. 6), ultimately resulting in the exclusion of 6.6% of commits in
our data set due to log messages that conveyed no information about the de-
velopment activities they represent. A disproportionate number of the commits
removed were Cliff Walls (an ultimate exclusion of 14.8% of all Cliff Walls). Addi-
tionally, very common English adverbs, conjunctions, pronouns and prepositions
belonging to our “stop-word” list were removed from the commit messages in
order to ensure the identification of meaningful topics.

The LDA algorithm, as implemented in MALLET, requires three input param-
eters: the number of topics to produce in its analysis, the number of iterations,
and the length of the burn-in period. In our study, we elected to identify 150
topics with MALLET. The authors Hindle and German identified 28 “types of
change” for the commits classified as a part of their taxonomy [12]. Hattori and
Lanza, in their study of commit messages, identified 64 “keywords” that were
used to classify commits [10]. These prior results gave us reason to believe that
150 topics would be a sufficient number to capture the motivations behind the
commits in our data set, with an appropriate level of detail.1

As one of the steps to understanding the Cliff Wall phenomenon, we compare
the most prevalent topics found in Cliff Wall commits to those found in the entire
body of commits. Instead of running LDA separately on the two subsets of our
data, we run LDA once on all of the data and then filter the results to gain a
picture of Cliff Walls in contrast to All Commits. This approach ensures that the
topics found are consistent across both groups, which helps yield a meaningful
comparison.

5 Analysis and Discussion

Figure 2 provides a first glance at some of the variation exhibited by Cliff Walls.
In these graphs, each horizontal bar represents one of the 150 topics gener-
ated. The thickness of each bar represents the proportion of tokens in the entire
corpus of commits that were assigned to that topic. Commit log messages are
fairly evenly distributed over the topics for the general population of commits.
However, a small number of topics are considerably more prevalent in the large
commits. Tables 1 and 2 list the 15 most prevalent topics for all commits and
Cliff Wall commits.
1 The other two parameters, number of iterations and length of burn-in period, are

required by the Gibbs Sampling inference method employed by MALLET. We refer
the reader to [21] for a description of LDA as it is implemented within MALLET,
including a description of Gibbs Sampling. For these two parameters we used the
default values provided by MALLET; 1,000 iterations with 200 dedicated to burn-
in. Further work should investigate the possibility of more appropriate values for all
three parameters, as discussed in Sec. 6.

288 L.J. Pratt et al.

Fig. 2. Topic distribution for All Commits (left) and Cliff Wall Commits (right)

Similarly, the tag clouds in Figs. 3, 4, and 5 begin to give us an idea of the most
common topics for our two groups of interest.2 Each tag in the cloud represents
a topic that has been summarized using the “first words” method described in
Sec. 3. Like a stratum from Fig. 2, each tag is sized based on the proportion of
tokens belonging to that topic. Thus, the largest tag in Fig. 4, “initial-import,”
is also the largest stratum in the bar chart for Cliff Walls. Tag position and color
do not convey any additional information. Figure 5 is an alternate view of Fig. 4,
with the dominant “initial-import” topic removed to improve readability. These
images provide an overall view of the topics and their proportions for the two
groups of interest. We next discuss some of the most prevalent topics and their
interpretations.

One of the goals of this paper is to compare the topics produced by LDA with
previously hypothesized causes of Cliff Walls. We examine each of these causes
to see if LDA is able to identify them as prominent features of large commits.
We also examine some of the causes for Cliff Walls that were previously over-
looked, but were consequently suggested by LDA. In pursuit of these goals, we
have found two views of the data that provide insight into the causes of Cliff
Walls: Overall Topic Proportion and Topic Relative Rank. We discuss these in
the next two subsections.

2 All tag cloud images were generated using Wordle (www.wordle.net).

Cliff Walls: An Analysis of Monolithic Commits 289

Fig. 3. Topic Tag Cloud: All Commits

Fig. 4. Topic Tag Cloud: Cliff Walls

290 L.J. Pratt et al.

Fig. 5. Topic Tag Cloud: Cliff Walls (“initial-import” excluded)

5.1 Overall Topic Proportion

Tables 1 and 2 display the 15 most prevalent topics in the Cliff Wall and All
Commits groups, as determined by proportion of tokens belonging to that topic.
For example, the topic “version-release” in Tbl. 1 has a proportion of 1.75%,
suggesting that 1.75% of all the words in all of the commit messages in our data
set were assigned to this topic by the LDA algorithm. In other words, these tables
list the topics most frequently discussed in commit log messages belonging to
our two groups of interest. We refer back to these tables frequently throughout
this section as we discuss the various causes of Cliff Walls.

5.2 Topic Relative Rank

Additional insight into Cliff Walls can be gained through the use of another
simple metric. Within each of our two groups, “All Commits” and “Cliff Walls,”
each topic can be ranked based on its proportion within the group. The difference
between a topic’s ranking in the two groups is a good indicator of the prevalence
of a given topic relative to other topics.

For example, in Tbl. 1 we see that “initial-import” is the 5th ranked topic. In
Table 2, the same topic is ranked 1st, for a rank difference of +4. In contrast,
as we see from Tbl. 3, the topic “cvs-sync” holds ranks of 101 and 4, resulting
in a rank difference of +97. In essence this means that, relative to other topics,
“cvs-sync” is discussed more frequently within Cliff Wall commits than it is for
the general population of commits.

It is important to note that the difference between topic ranks is not synony-
mous with a similar difference in proportion. The difference between proportions
for the “initial-import” topic is an approximately 25% increase for the Cliff Walls
group. This is a very large change in proportion which results in a relatively small
difference in rank. It is even possible, given the distinct distributions of our two
groups (see Fig. 2) that a negative change in proportion could still result in a
positive rank difference.

Cliff Walls: An Analysis of Monolithic Commits 291

Table 1. Top 15 Topics for All Commits

Proportion Key Terms

1 1.75% version release updated update final

2 1.43% file branch initially added java

3 1.42% fixes minor small cleanups updates

4 1.38% data minor updates fixes bugfixes

5 1.38% initial import commit checkin revision

6 1.36% added comments comment documentation javadoc

7 1.29% fixed bug bugs incorrect couple

8 1.28% added support info extended basic

9 1.28% error message errors handling checking

10 1.26% removed code template commented unnecessary

11 1.25% fix bug fixing small bugs

12 1.18% fix typo corrected correct errors

13 1.17% fixed bug wrong crash introduced

14 1.17% page link updated links url

15 1.14% code cleanup source clean cleaned

Table 2. Top 15 Topics for Cliff Walls

Proportion Key Terms

1 25.74% initial import commit checkin revision

2 5.11% version release updated update final

3 2.30% removed deprecated sources constant imported

4 1.63% cvs sync tabs real converted

5 1.60% error message errors handling checking

6 1.58% message project messages error testing

7 1.51% merged merge head merging main

8 1.47% code cleanup source clean cleaned

9 1.29% files added dialogs library directories

10 1.21% directory moved common dir structure

11 1.17% xml updated api latest version

12 0.98% update added format updating creation

13 0.93% script makefile install configure sh

14 0.89% added comments comment documentation javadoc

15 0.89% double beta v1 v2 values

5.3 Code Imports

A “Code Import” occurs when a significant amount of source code is added to
the repository. Code Imports differ from “Off-line Development” in that the code
added was not developed as part of the project of interest, but instead originated
from some other project. The most common example of a code import is probably
the addition of the source code for an externally developed library.

We found a good deal of evidence that Off-line Development is a significant
cause of Cliff Walls. As shown in Tbl. 2, a few prominent topics (particularly 1,

292 L.J. Pratt et al.

Table 3. Largest “Positive” Rank Differences

All Rank Cliff Wall Rank Key Terms

+97 101 4 cvs sync update repository

+97 112 15 beta v1 v2 v3

+93 131 38 org cvs synchronized packages

+91 98 7 merged merged trunk stable

+91 100 9 files added directories library

+89 99 10 directory moved structure location

+88 142 54 cc net users sourceforge

+80 128 48 module python py libsrc

+73 119 46 system specific platform devel

+71 133 62 http www urls net

+71 105 34 web site resource component

+67 109 42 php index http forum

Table 4. Largest “Negative” Rank Differences

All Rank Cliff Wall Rank Key Terms

-120 13 133 fixed bug wrong crash

-118 12 130 fix typo corrected correct

-116 7 123 fixed bug bugs incorrect

-105 44 149 button selection tab dialog

-90 23 113 fixed problems issue bad

-89 30 119 string return null true

-80 51 131 variable global unused define

-77 26 103 output debug print messages

-76 49 125 problem fixed patch solution

-75 36 111 size buffer limit bytes

-75 54 129 function calls static inline

-74 3 77 fixes minor cleanups cosmetic

4 and 9) deal with the first-time addition of files to the repository. The addition
of files alone, however, does not indicate a Code Import. Table 1 indicates that
topic 1 is quite prominent for all commits, because files are constantly being
added to version control systems. In the case of Cliff Walls, however, the size of
the commit gives us good reason to believe that the files added contain a great
deal of code, and therefore do not represent files added as part of incremental
development.

Also, a few of the topics do provide additional evidence of Code Imports.
Topic 9 contains the term “library” which indicates that this topic relates to the
addition of library files to version control. Similarly, the topic “module-python”
appears in Tbl. 3 as a topic with a much higher relative rank for Cliff Wall
commits. Examination of log messages for which this topic had high proportion
yielded messages such as “bundle all of jython 2.1 with marathon so all python
standard library is available” and “Add the Sandia RTSCTS module to the code
base.” These messages are indicative of Code Imports.

Cliff Walls: An Analysis of Monolithic Commits 293

5.4 Off-Line Development

In this paper, we use the term “Off-line Development” to refer to large quantities
of code that were developed as part of a project, but for which we have no record.
This may be code that was developed without the benefit of version control, or
that was developed in a separate repository and then added to the SourceForge
CVS repository in a monolithic chunk.

Much of the evidence for Off-line Development is similar to that of Code Im-
ports. Many of the same topics that may refer to code imports (“initial-import,”
“cvs-sync,” and “files-added”) could equally be attributed to Off-line Develop-
ment. Thus it is difficult to distinguish between the true source of many large
commits, because it is hard to tell if the files added were developed in conjunc-
tion with the current project or separately. Further investigation is required to
elucidate the differences between Cliff Walls attributable to Code Import and
those due to Off-line Development.

5.5 Branching and Merging

Merging is a major factor in the creation of Cliff Walls. The 7th ranked topic for
Cliff Walls is a topic dealing with the merging of a branch in the repository. This
same topic also appears as one of the largest positive rank differences in Tbl. 3.
This indicates that not only are merges a significant factor behind the creation
of Cliff Walls but also that the merge topic is significantly more prevalent within
Cliff Walls than it is for All Commits. In contrast, the “initial-import” topic is
one of the highest ranked topics in both groups.

5.6 Auto-Generated Code

Topics pertaining to Auto-generated Code are a bit more difficult to identify.
The topic “target-generated” appears to capture auto-generated code quite well:

target generated rules rule generate mark
reports make generation targets automati-
cally linked policy libraries based generator
jam dependencies building

Surprisingly, this topic is of relatively little importance, with rank 67 (Cliff Walls)
and 113 (All Commits). Such low ranks would seem to indicate that Auto-
generated code does not play a significant role in the explanation of Cliff Walls.
We did, however, find another example that suggests that Auto-generated Code
may be a more significant factor. We were surprised to find that the topic “added-
comments” was the 14th ranked topic for Cliff Walls (see Tbl. 2). Non-source
code files had been excluded from our study, and code commenting seemed an
unlikely cause for commits on the magnitude of 10,000 lines or greater. Upon ap-
peal to the commit log messages, we found a large number of messages containing

294 L.J. Pratt et al.

text such as “Add generated documentation files,” “Documentation generated
from javadoc,” and “Updated documentation using new doxygen configuration.”

Further examination revealed that, at least in the cases mentioned above,
these commits consist almost entirely of HTML files. The above comments con-
tain 81, 120, and 448 HTML files, respectively. This suggests that large, comment
or documentation related commits may be the result of auto-generated HTML
files from documentation systems such as javadoc and doxygen.

It is possible that there may be other significant sources of Auto-generated
Code expressed in the topics obtained from LDA. In the above case, the tools
that generated the “code” were more effective identifiers of Auto-generated code
than were the terms “automatically” and “generated.” Further investigation is
required to determine whether other such cases exist.

5.7 Other Findings

As we hoped, the application of LDA to this problem suggested some potential
Cliff Wall causes we had not forseen. Additionally, a few interesting observations
served to confirm some of our suspicions about Cliff Walls. In this section we
discuss some of these findings.

One discovery of note was the importance of activities related to project re-
leases and new versions. The 2nd most prevalent topic discussed in Cliff Wall log
messages is “version-release.” Topics 11 and 15 in Tbl. 2 also deal primarily with
project releases and versioning, with prevalent terms such as “latest,” “version,”
“beta,” “v1” and “v2.” It is difficult to tell exactly what is occurring with these
commits; most provide little information other than a version number. We sus-
pect that many of these may be the result of merges, and further investigation
may determine the true cause.

We were able to gain some understanding of topics which were infrequently
discussed in the log messages of Cliff Wall commits. Table 4 shows some of the
topics for which the topic rank dropped significantly for Cliff Wall commits.
This drop would indicate topics that were discussed much less frequently for
Cliff Walls than All Commits, when compared to all other topics. Some of the
trends in the table include topics discussing corrective maintenance (“fixed-bug,”
“fix-typo,” ‘fixes-minor,” “output-debug”), gui tweaks (“button-selection”), and
minor implementation details (“string-return,” “variable-global,” “size-buffer”).
It is not surprising that these topics do not significantly occur in the log messages
of large commits, but these trends lend credibility to our results.

Table 3 provides another interesting insight. We observe that two topics ap-
pear to deal with web technologies: “http-www” and “php-index.” In many cases,
we found that these topics indicated the presence of a URL in the log message.
It is intriguing that this topic surpassed so many others in the Cliff Walls cate-
gory. We believe that these URLs could convey valuable information about the
commit, and may help to identify library code that is being imported, or the
location of an external version control repository utilized by the project.

Cliff Walls: An Analysis of Monolithic Commits 295

6 Threats

Some of the most significant threats to our results arise from the data set em-
ployed. As previously stated, the data was gathered in late 2006, and is now
relatively old. It is possible that the results that we have found do not corre-
spond to the current state of projects in SourceForge. This study is also limited
to projects using the CVS version control system. According to our estimates, al-
most all new projects in SourceForge are now using Subversion instead of CVS.
While the two technologies are similar in many ways, it is possible that our
analysis would produce different results if conducted using data from Subversion
logs.

It should be noted that when the original data was gathered, projects were
filtered to include only those projects listed as “Production,” “Stable,” or “Main-
tenance,” in an effort to limit the data set to include only “successful” projects
[6]. As a result, when we talk about topics across “All Commits,” we are actually
unable to generalize to the entire population of projects in SourceForge. This is
significant, because as one estimate found, only about 12% of projects in Source-
Forge were being actively developed [19]. It is possible, even likely, that a similar
analysis, not limited to “Production/Stable/Maintenance” projects would pro-
duce different results. However, we do not feel that the depiction of Cliff Walls
would change dramatically, as we presume they are rare in defunct projects.

Another significant threat to the validity of our results is the presence of “low
quality” topics. We found two types of low quality topics in our results: topics
with contradictory terms and topics generated from dirty data. One example of a
topic with contradictory terms is the “removed-deprecated” topic ranked 3rd in
Tbl. 2. This topic contains the contradictory terms “removed,” and “imported”
as important terms in the topic. This leads to a topic that is difficult to interpret,
as the “meaning” of the topic can vary based on the document in which it is
present. To better understand this topic we examined the log messages of 233
Cliff Walls containing the topic. Of those 233, the term “removed” occurred in
only 1 message, while “imported” occurred in 154. Obviously, for large commits,
“imported” is a much more appropriate description of log messages with this
topic.

We found two low quality topics resulting from dirty data in our results. The
topics “error-message” and “message-project,” the 5th and 6th most prevalent
topics for Cliff Walls, are also misleading. We looked at 286 Cliff Wall log mes-
sages containing at least one of these two topics, and found that 211 (74%)
of them contained only the message “no message.” These commits should have
been removed from the data set prior to the analysis. Exclusion of these commits
would result in a data set containing 2,301,620 commits, with 9,199 Cliff Walls,
a minor decrease in size. We do not feel that this issue greatly affected the out-
comes of this study. However, these topics possibly prevented more appropriate
topics from being considered.

In order to improve the results of future studies applying LDA to the Cliff
Walls problem, greater effort should be made in LDA model selection. The three
input parameters that we were required to specify (number of topics, number of

296 L.J. Pratt et al.

iterations, and burn-in period) could likely be tuned to produce higher quality
topics. In particular, this may help us to avoid the issue of topics with contra-
dictory terms.

7 Conclusions

We are excited by the promise that LDA shows for automated analysis of large
commits. Through the use of tag clouds and other views of the data, we have
been able to gain an insightful picture into the causes behind Cliff Walls. We
found that in most cases, our suspicions of Cliff Walls were confirmed. We found
significant evidence that library imports, externally developed code, and merges
were the subjects of topics frequently discussed in log messages of large commits.
We also found evidence that auto-generated code can, in some cases, result in
the creation of cliff walls. LDA also helped us to confirm that maintenance tasks,
such as bug fixes, do not occur in large commits with much frequency. These
conclusions agree with previous studies on the causes of large commits [12, 10].

We found that it was difficult to use commit log messages to distinguish library
code imports from imports of large amounts of project code. However, in some
cases we are able to identify library imports. We also hope that, in the future,
the URLs included in some Cliff Wall commit messages may be used to identify
other instances of library code imports.

We believe that LDA is a welcome alternative to many of the methods that
have previously been used for classification of commit log messages. While we
invested a great deal of time manually interpreting the results produced by LDA,
we were able to avoid the tedium of data tagging required by most supervised
classification tasks.

8 Future Work

The role of large commits in software evolution is still largely unclear. In this
study, we have examined the causes of Cliff Walls for a particular subset of all
software projects—those that are relatively successful, are hosted on Source-
Forge, and that use CVS for version control. In order to better understand Cliff
Walls, we need to build upon this subset. First, research should consider investi-
gating Cliff Walls as they occur in other version control systems. CVS is no longer
the most significant version control system, since others, such as Subversion and
GIT have risen to take its place.

SourceForge is only one of many environments in which open source software
is developed. There are various open source forges and foundations, each with
its own tools, communities, policies, and practices that influence the software
development that occurs therein. It is possible that some of these other environ-
ments may prove more welcoming to those interested in studying the evolution of
software. An effort should be made to characterize and compare the Cliff Walls
that exist in other open source development communities, such as the Apache
and Eclipse Foundations, RubyForge, and GITHub, to name a few. Of course the

Cliff Walls: An Analysis of Monolithic Commits 297

study of large commits should not be limited to only open source organizations,
but should be investigated wherever possible.

More information may also be gained through a more in-depth analysis of the
Cliff Walls themselves. The largest commit in our data set was over 13 million
lines of code. In contrast, the smallest Cliff Wall contained 10,001 LOC. In this
study, both of these commits, as well as everything in between, were lumped
into the same class: Cliff Walls. It is likely that such a large level of granularity
hides much that can be learned about the causes of Cliff Walls. We believe that
there are opportunities to better understand this phenomenon by examining
more closely the causes behind Cliff Walls of differing magnitudes.

Acknowledgements. The authors would like to thank Dan Walker of the BYU
Natural Language Processing Lab for his willingness to provide insight and guid-
ance on the methods used in this paper.

References

[1] Arafat, O., Riehle, D.: The Commit Size Distribution of Open Source Software.
In: 42nd Hawaii International Conference on System Sciences, HICSS 2009, pp.
1–8. IEEE, Los Alamitos (2009)

[2] Bahn, P., Bahn, P.G., Tidy, B.: Archaeology: a very short introduction. Oxford
University Press, USA (2000)

[3] Bird, C., Gourley, A., Devanbu, P., Swaminathan, A., Hsu, G.: Open borders? im-
migration in open source projects. In: International Workshop on Mining Software
Repositories, p. 6 (2007)

[4] Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of
Machine Learning Research 3, 993–1022 (2003)

[5] Briand, L.C., Morasca, S., Basili, V.R.: Defining and validating measures for
object-based high-level design. IEEE Transactions on Software Engineering 25(5),
722–743 (1999)

[6] Delorey, D.P., Knutson, C.D., Chun, S.: Do programming languages affect produc-
tivity? a case study using data from open source projects. In: 1st International
Workshop on Emerging Trends in FLOSS Research and Development (FLOSS
2007) (May 2007)

[7] Delorey, D.P., Knutson, C.D., Giraud-Carrier, C.: Programming language trends
in open source development: An evaluation using data from all production phase
sourceforge projects. In: 2nd International Workshop on Public Data about Soft-
ware Development (WoPDaSD 2007) (June 2007)

[8] Delorey, D.P., Knutson, C.D., MacLean, A.: Studying production phase source-
forge projects: A case study using cvs2mysql and sfra+. In: Second International
Workshop on Public Data about Software Development (WoPDaSD 2007) (June
2007)

[9] Hassan, A.E.: Predicting faults using the complexity of code changes. In: Proceed-
ings of the 31st International Conference on Software Engineering (ICSE 2009),
pp. 78–88. ACM, New York (2009)

[10] Hattori, L.P., Lanza, M.: On the nature of commits. In: 23rd IEEE/ACM
International Conference on Automated Software Engineering-Workshops, ASE
Workshops 2008, pp. 63–71. IEEE, Los Alamitos (2008)

298 L.J. Pratt et al.

[11] Hindle, A., German, D.M., Godfrey, M.W., Holt, R.C.: Automatic classication of
large changes into maintenance categories. In: IEEE 17th International Conference
on Program Comprehension, ICPC 2009, pp. 30–39. IEEE, Los Alamitos (2009)

[12] Hindle, A., German, D.M., Holt, R.: What do large commits tell us?: a taxonom-
ical study of large commits. In: Proceedings of the 2008 International Working
Conference on Mining Software Repositories, pp. 99–108. ACM, New York (2008)

[13] Krein, J.L., MacLean, A.C., Delorey, D.P., Knutson, C.D., Eggett, D.L.: Language
entropy: A metric for characterization of author programming language distribu-
tion. In: 4th Workshop on Public Data about Software Development (2009)

[14] Krein, J.L., MacLean, A.C., Delorey, D.P., Knutson, C.D., Eggett, D.L.: Impact
of programming language fragmentation on developer productivity: a sourceforge
empirical study. In: International Journal of Open Source Software and Processes
(IJOSSP); Publication Pending

[15] MacLean, A.C., Pratt, L.J., Krein, J.L., Knutson, C.D.: Threats to validity in
analysis of language fragmentationon sourceforge data. In: Proceedings of the1st
International Workshopon Replicationin Empirical Software Engineering Research
(RESER 2010), p. 6 (May 2010)

[16] MacLean, A.C., Pratt, L.J., Krein, J.L., Knutson, C.D.: Trends that affect tem-
poral analysis using sourceforge data. In: Proceedings of the 5th International
Workshop on Public Data about Software Development (WoPDaSD 2010), p. 6
(June 2010)

[17] McCallum, A.K.: MALLET: A machine learning for language toolkit (2002),
http://mallet.cs.umass.edu

[18] Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source soft-
ware development: Apache and mozilla. ACM Transactions on Software Engineer-
ing and Methodology 11(3), 309–346 (2002)

[19] Rainer, A., Gale, S.: Evaluating the Quality and Quantity of Data on Open Source
Software Projects (2005)

[20] Tarvo, A.: Mining software history to improve software maintenance qual- ity: A
case study. IEEE Software 26(1), 34–40 (2009)

[21] Wallach, H., Mimno, D., McCallum, A.: Rethinking LDA: Why priors matter.
Advances in Neural Information Processing Systems 22, 1973–1981 (2009)

[22] Xu, J., Gao, Y., Christley, S., Madey, G.: A topological analysis of the open
souce software development community. In: HICSS 2005: Proceedings of the 38th
Annual Hawaii International Conference on System Sciences, vol. 7 (2005)

[23] Zimmermann, T., Weißgerber, P.: Preprocessing CVS data for fine-grained analy-
sis. In: Proceedings 1st International Workshop on Mining Software Repositories
(MSR 2004), Citeseer, pp. 2–6 (2004)

http://mallet.cs.umass.edu

Package Upgrade Robustness:

An Analysis for GNU/Linux R© Package
Management Systems

John Thomson1, Andre Guerreiro1, Paulo Trezentos1, and Jeff Johnson2

1 Caixa Mágica Software
Edificio Espanha - Rua Soeiro Pereira Gomes

Lote 1 - 8 F, 1600-196 Lisboa
{first.surname}@caixamagica.pt

2 rpm5.org
jbj@rpm5.org

Abstract. GNU/Linux systems are today used in servers, desktops, mo-
bile and embedded devices. One of the critical operations is the instal-
lation and maintenance of software packages in the system. Currently
there are no frameworks or tools for evaluating Package Management
Systems (PMSs), such as RPM, in Linux and for measuring their reliabil-
ity. The authors perform an analysis of the robustness of the RPM engine
and discuss some of the current limitations. This article contributes to the
enhancement of Software Reliability in Linux by providing a framework
and testing tools under an open source license. These tools can easily be
extended to other PMSs such as DEB packages or Gentoo Portage.

1 Introduction

Installation of software in Linux systems is mostly performed by installing pre-
compiled binary code using a Package Management System (PMS). The most
frequently used package installers are RPM Package Manager (RPM) and dpkg
(Debian format). We identify methods in which package upgrades can be anal-
ysed for their reliability and to ascertain how often failures occur. By formalising
the failures we hope to provide the basis for future work where failures can be
classified and detected that provides a method to quantitatively assess package
installers.

1.1 Background

Source code compilation on a user machine has largely been superseded by
having dedicated build machines. GNU/Linux distributions then make these
‘packages’[1, Sec. 3, p. 9] available as pre-compiled binary packages (Fig. 2). The
MANCOOSI project1, is dedicated to solving problems associated with various
package installers and provides the most recent research in this area.
1 http://www.mancoosi.org

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 299–306, 2011.
c© IFIP International Federation for Information Processing 2011

http://www.mancoosi.org

300 J. Thomson et al.

Host System

Caixa Mágica Mandriva Mageia SLES11 RHEL6
Chroot

Buildbot

Distribution

Installer Test FrameworkPackage Manifest Tests

Results

RPM 4.6.0 RPM 4.8.1 RPM 4.4.2.3 RPM 5.3 DPKG
Package
Installer

Fig. 1. An indication of the proposed architecture of the test framework, with an
internal python testing system and external buildbot automation suite

Fig. 2. A simplified topology demonstrating how sources and packages combine on a
host and user machine

There have been few investigations into package installer reliability and
robustness[11,12,2]. Applications on GNU/Linux systems are distributed and in-
stalled through PMSs, therefore it makes sense to systematically test and anal-
yse their reliability. RPM is the baseline PMS chosen by the Linux Standard
Base (LSB) as the definitive installation system for GNU/Linux OS’s2.

There is a distinct fork of RPM Package Manager (RPM), ‘@rpm5’, referred
to as RPM 5. One of the main development activities for RPM 5 is that of
creating a fully Atomicity, Consistency, Isolation, Durability (ACID) compliant
transactional system for installation of packages.

One other main alternative to RPM is that of .deb packages3, used in Debian
systems and there are some subtle differences between them[1, Sec. 3.1-3.2].

2 http://refspecs.freestandards.org/LSB 3.1.0/LSB-Core-generic/LSB-Core-

generic/swinstall.html#SWINSTALL-INTRO
3 http://www.debian.org/doc/FAQ/ch-pkg_basics.en.html

http://www.debian.org/doc/FAQ/ch-pkg_basics.en.html

Package Upgrade Robustness 301

Failures relating to dependency resolution which recently have been better
defined [5,7] are a matter for solvers[9][8].

1.2 The Aim

To investigate the extent that RPM systems ensure that in event of a failure that
the package transaction leaves the system in a consistent state.

2 Concepts

Packages are collections of self-sufficient software that can direct PMSs. Our
framework considers pre-compiled binary packages for testing.

Installers create a database of the files associated with packages and the status
on the system.

An ‘upgrade’ is defined as when a package is modified from one version to
another.

2.1 Package Upgrade Failure

Used to describe when a package upgrade operation has resulted in an erroneous
installation and can occur due to a lack of physical resources and scriptlet failure
(amongst others [3, Ch. 2]). Maintainer script failures remain the single biggest
cause of failures.

Database Consistency Failure. For RPM, there is a centralised database where
package upgrades are recorded. When upgrading a package the database can fail
to commit the transaction and can be left in an inconsistent state (see Sect. 3).

3 Test Framework

Software fault-injection and ‘black-box’ approaches are recognised methodolo-
gies for testing the robustness of systems[6,4,10]. The aim is to have a cross-
distribution, test framework that can identify common faults and also identify
unique failures, specific to architectures.

3.1 Analysable Elements

A package installer like RPM performs operations both on the file-system and
on its internal database of package meta-data.

The database side of the problem is analysed since the new developments in
PMSs are mainly improvements in that area.

Multiple package transactions differ from single because they have more re-
quirements to be fulfilled: either they install all of the packages or none of them.

Within each test suite the input parameters are the Error Injection Time and
the package(s) composition.

302 J. Thomson et al.

Upgrade transactions enclose two different sub-atomic operations: installation
and removal. The final expected result is that only one version of a package is
installed.

Failed upgrade for Individual package tests case (Sect. 4.2):

– Database consistency test: There are zero, two or more different versions
present in the RPM database after an upgrade transaction;

Failed upgrade for Groups package tests case (Sect. 4.3):

– Database consistency test: Number of failures in an upgrade due to invalid
database entries.

– Group Atomicity test: More than one package matches the failure case of an
individual transaction.

3.2 Injecting Faults

We introduce to the normal upgrade procedure an external interruption in the
form of a SIGKILL, signal #9 on most POSIX compliant systems, forcing a
termination.

SIGKILL is useful for testing the robustness of RPM in a worst-case situation.

4 Test Results

Two versions of RPM are being tested with this version of the framework as can
be seen in Table 1. Future versions of RPM 5 will likely be fully ACID compliant,
therefore group tests should show fewer transaction failures.

4.1 Test Environment

Tests were performed on Linux Caixa Mágica (CM) 14 virtual machines with
Gnome. BerkeleyDB error meant that RPM 4.6 needed a rebuild of the database
after a set of interrupted package upgrades (unnecessary for RPM 5.3).

Table 1. Details of the versions of RPM being examined

Version Type Release Build Date

4.6.0 Package 2.3xcm14 2009/08/03

5.3.1 Built from Source N/A 2010/05/24

RPM 4.6.0 being tested is from a Caixa Mágica build 4.
RPM 5 version used is from the RPM 5.3.1 tarball5.

4 http://contribsoft.caixamagica.pt/trac/browser/packages/cm14/rpm
5 http://rpm5.org/files/rpm/rpm-5.3/rpm-5.3.1.tar.gz

http://contribsoft.caixamagica.pt/trac/browser/packages/cm14/rpm
http://rpm5.org/files/rpm/rpm-5.3/rpm-5.3.1.tar.gz

Package Upgrade Robustness 303

4.2 Individual Package Tests

The results shown in Table 2 are from running 100 iterations of upgrading pack-
ages with a random kill-time. Although the file-system failure rate is higher for
RPM 5 the number of database failures are lower than for RPM 4.

Table 2. Individual packages transaction: File-system and database consistency failure
rate after error injection

File-System Database

Pkg Pkg size RPM RPM RPM RPM
No. MB 4.6 5.3 4.6 5.3

Failure Failure Failure Failure
Rate Rate Rate Rate

1 0.01 0/100 0/100 7/100 1/100

2 0.06 1/100 4/100 13/100 4/100

3 0.20 46/100 63/100 19/100 19/100

4 0.30 41/100 65/100 11/100 0/100

5 0.46 10/100 15/100 22/100 14/100

6 0.50 7/100 13/100 17/100 5/100

7 1.80 39/100 60/100 0/100 0/100

8 2.30 50/100 56/100 0/100 0/100

9 6.10 68/100 56/100 0/100 0/100

10 21.00 49/100 45/100 0/100 0/100

Avg. 3.27 31/100 38/100 9/100 4/100

4.3 Group Packages Tests

If a package upgrade fails in a transaction it increments the number of database
failures. A single package failure in a group package upgrade transaction indicates
a group transaction failure (Txn. Failure Rate). Table 3 shows the results of
database consistency whereas Table 4 presents file-system consistency.

4.4 Individual Packages Against Time

If a PMS has no time to perform an upgrade there is no chance for a failure
to be introduced. Figs. 3 & 4 indicate such behaviour and possibly provide an
explanation for why in Table 2 the larger packages do not exhibit any database
failures.

304 J. Thomson et al.

Table 3. Group transactions: Database consistency for individual packages in
transaction and group atomicity failure rate after error injection

Database Consistency Group Atomicity

Group RPM 4.6 RPM 5.3 RPM 4.6 RPM 5.3
(No. Package Package Txn. Txn.
Pkgs) Failure Failure Failure Failure

rate rate Rate Rate

1 (4) 263/400 19/400 92/100 17/100

2 (4) 189/400 45/400 83/100 36/100

3 (4) 59/400 76/400 30/100 65/100

4 (3) 11/300 31/300 10/300 31/100

5 (3) 29/300 9/300 16/100 7/100

6 (3) 30/300 39/300 18/100 53/100

7 (3) 121/300 60/300 77/100 55/100

8 (3) 73/300 65/300 73/100 65/100

9 (3) 89/300 39/300 47/100 31/100

10 (4) 55/400 1/400 55/100 1/100

Avg 92/340 38/340 50/100 36/100

Table 4. Group transactions: File-system consistency for individual packages in
transaction and group atomicity failure rate after error injection

File-system Consistency Group Atomicity

Group RPM 4.6 RPM 5.3 RPM 4.6 RPM 5.3
(No. Package Package Txn. Txn.
Pkgs) Failure Failure Failure Failure

rate rate Rate Rate

1 (4) 0/400 83/400 0/400 82/100

2 (4) 206/400 33/400 87/100 26/100

3 (4) 66/400 50/400 66/100 50/100

4 (3) 40/300 123/300 30/100 74/100

5 (3) 0/300 3/300 0/100 3/100

6 (3) 238/300 0/300 89/100 0/100

7 (3) 184/300 151/300 100/100 84/100

8 (3) 80/300 75/300 80/100 75/100

9 (3) 235/300 201/300 93/100 86/100

10 (4) 118/400 83/400 100/100 83/100

Avg 117/340 80/340 65/100 56/100

Package Upgrade Robustness 305

 0

 2

 4

 6

 8

 10

 0 0.5 1 1.5 2 2.5

N
um

be
r

of
 F

ai
lu

re
s

Error injection time (seconds)

Database Failures
Filesystem Failures

Database Gaussian curve approximation
File-System Gaussian curve approximation

Fig. 3. RPM 4.6 - Package Failures vs. Error Injection Time for a package of 300KB
over ten iterations

 0

 2

 4

 6

 8

 10

 0 0.5 1 1.5 2 2.5

N
um

be
r

of
 F

ai
lu

re
s

Error injection time (seconds)

Database Failures
Filesystem Failures

Database Gaussian curve approximation
File-System Gaussian curve approximation

Fig. 4. RPM 5.3 - Package Failures vs. Error Injection Time for a package of 300KB
over ten iterations

5 Conclusions

Linux systems are today deployed worldwide in different environments. The ma-
jority of such systems rely on a functioning kernel and a reliable Package Man-
agement System.

The SIGKILL test is one of the most extreme types of test likely indicating
worst case behaviour. Although generally RPM 5.3 performed better in terms
of database consistency, it still doesn’t support atomicity in group transactions.
There is the possibility to extend this study to Debian packages. Other types
and permutations of errors can be injected to explore the recovery mechanisms
of different PMSs.

306 J. Thomson et al.

The outcomes of this analysis, can be used to resolve problems and then
suggest novel approaches for more robust package upgrade transactions.

Acknowledgements. Partially supported by the European Community’s 7th
Framework Programme (FP7/2007-2013), grant agreement n◦214898.

References

1. Barata, P., Trezentos, P., Lynce, I., di Ruscio, D.: Survey of the state of the art
technologies. Mancoosi project deliverable D3.1, Mancoosi (June 2009)

2. Crameri, O., Knezevic, N., Kostic, D., Bianchini, R., Zwaenepoel, W.: Staged de-
ployment in mirage, an integrated software upgrade testing and distribution sys-
tem. SIGOPS Oper. Syst. Rev. 41(6), 221–236 (2007)

3. Di Ruscio, D., Thomson, J., Pelliccione, P., Pierantonio, A.: First version
of the DSL. Mancoosi Project deliverable D3.2, Mancoosi (November 2009),
http://www.mancoosi.org/reports/d3.2.pdf

4. Duraes, J.A., Madeira, H.S.: Emulation of software faults: A field data study and a
practical approach. IEEE Transactions on Software Engineering 32, 849–867 (2006)

5. Le Berre, D., Parrain., A.: On SAT technologies for dependency management and
beyond. In: ASPL (2008)

6. Madeira, H., Costa, D., Vieira, M.: On the emulation of software faults by software
fault injection. In: DSN 2000, pp. 417–426. IEEE Computer Society, Washington,
DC (2000)

7. Mancinelli, F., Boender, J., Di Cosmo, R., Vouillon, J., Durak, B., Leroy, X.,
Treinen, R.: Managing the complexity of large free and open source package-based
software distributions. In: ASE, pp. 199–208 (2006)

8. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean
optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508.
Springer, Heidelberg (2009)

9. Trezentos, P., Lynce, I., Oliveira, A.L.: Apt-pbo: solving the software dependency
problem using pseudo-boolean optimization. In: ASE 2010, pp. 427–436. ACM
Press, New York (2010), http://doi.acm.org/10.1145/1858996.1859087

10. Voas, J.: Fault injection for the masses. Computer 30(12), 129–130 (1997)
11. Yoon, I.C., Sussman, A., Memon, A., Porter, A.: Effective and scalable software

compatibility testing. In: ISSTA 2008, pp. 63–74. ACM, New York (2008)
12. Zacchiroli, S., Cosmo, R.D., Trezentos, P.: Package upgrades in foss distributions:

Details and challenges. In: First ACM Workshop on HotSWUp (October 2008)

http://www.mancoosi.org/reports/d3.2.pdf
http://doi.acm.org/10.1145/1858996.1859087

Applying Open Source Practices and Principles

in Open Innovation: The Case of the Demola
Platform

Terhi Kilamo1, Imed Hammouda1, Ville Kairamo2, Petri Räsänen2,
and Jukka P. Saarinen3

1 Tampere University of Technology
firstname.lastname@tut.fi
2 Uusi Tehdas/New Factory

firstname.lastname@hermia.fi
3 Nokia Research Center

jukka.p.saarinen@nokia.com

Abstract. In numerous fields, businesses have to rely on rapid devel-
opment and release cycles. Variant new ideas and concepts can emerge
through open innovation as the participants are not limited to the com-
pany scope. This makes open innovation an increasingly appealing op-
tion for the industry. One such open innovation platform, Demola, allows
university students to work on real life industrial cases of their own in-
terest. We have identified similarities with its way of operation to open
source software development and find that it offers a viable motivational,
organizational and collaborative solution to open innovation.

1 Introduction

Constant, lightning-fast innovation is becoming an essential element to compa-
nies in software business. Innovation can lie in any commodity it being something
novel that can be put to actual use. Many companies rely on innovation on a
daily basis to create better products and to improve their internal processes [2].
Traditionally such advantages have been kept within the company.

Opening up the option to innovate to a wider group of partners can enforce
and expand the scope of the innovation process, which becomes free of the bound-
aries of the company and what knowledge is available within. Open innovation
helps in identifying the best ideas by combining internal and external ideas into
architectures and systems [11,2]. The open innovation process typically involves
proof of concepts, trials, and, perhaps most importantly, the right people to
identify what should (or must) be focused on.

Open innovation, however, comes with a number of challenges such as mo-
tivation, integration and exploitation of innovation [5]. It needs a governance
framework [4] that enables organizational alignment of the different partners,
proper handling of intellectual property rights issues, and the emergence of new
kinds of business opportunities. These challenges have to be taken into account

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 307–311, 2011.
c© IFIP International Federation for Information Processing 2011

308 T. Kilamo et al.

when building any open innovation platform with the goal of driving future
development and solutions.

In this paper, we argue that the open source model of development and knowl-
edge creation brings a set of principles of practices that could be adapted to the
context of open innovation, in the same way as observed in [10]. We focus on
open innovation in the context of academia-industry co-operation. In order to
support our arguments, we have analyzed an open innovation platform for stu-
dents called Demola [12].

We identify characteristics of open source software development in the moti-
vational, organizational, and collaboration aspects of open innovation. The main
research question answered is: How Demola’s approach shares similarities with
other community driven development methods, mainly open source? In Section
2 we give background on the Demola organization and discuss the practices of
open source within the open innovation context of Demola in Section 3. Section
4 then concludes the paper with some discussion and final remarks.

2 Platform for Open Innovation and Learning

There is a real need for increased opportunities for innovation projects that can
lead to new business ideas. Open innovation environments allow businesses to
reach beyond the company scope in the search for new concepts and ideas. A
governance framework is needed with practices and working principles to bring
innovation partners together and to ensure ongoing innovation work.

Demola is one such open innovation platform intended for students. It aims
to multidiciplinary and agile development of innovative products and product
demos. The project ideas come from the industry and public organisations and
thus concepts that have practical business importance are developed. The stu-
dent work is supported by both the industrial and the academia partners that
provide guidance throughout the project. Demola offers a governance framework

COMMUNITY

PROJECT
PARTNERS

OPERATOR
DEMOLA

students
TEAM

ACADEMIA
teachers
researchers

Fig. 1. Demola Partners

Open Source Principles in Open Innovation 309

that facilitates team building and supports emerging business ideas. It also in-
corporates a model for managing immaterial rights that supports startups and
respects the authors. On a practical level, Demola provides workspaces that
support team work and co-creation. Demola is a modern and actual learning
environment to students from different universities.

Figure 1 shows the partners in Demola innovation and the flow of communica-
tion and support for the project work. The team is at the heart of development
while others direct, aid and facilitate the work. In terms of numbers, there are
currently 35 companies involved in Demola as project partners. During 2011
the aim is to reach a yearly level of around 100 projects running. The Demola
operator itself employs three people: one manager and two assistants.

3 Adopting Open Source

Demola was built on the basis of openness. There are different aspects and
challenges that need to be addessed in making the platform open and functional.
A set of principles and practices of free/libre open source (FLOSS) can been
identified in Demola.

Motivation. A famous quote from Raymond [1] claims that “Every good work
of software starts by scratching a developer’s personal itch.” This is commonly
seen as one of the driving forces behind open source software quality and success.
The participant’s motivation is also one of the main characteristics of Demola
team building and work. Similarly Raymond’s restatement of the itch: “To solve
an interesting problem, start by finding a problem that is interesting to you” is
a major driving force in the Demola way of doing.

Internal motivation as driver : The participant’s internal motivation is the
main driving factor for the Demola team work. Participation is fueled by their
own background, motivation and goals that range beyond normal school work.

Participant chooses the project : The way teams are formed in Demola is similar
to how open source communities come into being. Students search for project
topics that are meaningful and interesting to them and apply for participation in
it. The reasons for choosing a project are personal to the applicant with widely
varied factors behind the selection. The applicants have no knowledge of the
possible other team members in advance and it is not possible to choose the
people you form the team with.

Collaboration. Jukka Saarinen, one of the key people behind the the founda-
tion of Demola, has said about the platform: “What is special about Demola is
the way of doing things: anyone and everyone can contribute ideas to a demo
which is then built together. The let’s do it attitude without bureaucracy and for-
mal processes makes the atmosphere fruitful” [8]. This reflects the philosophical
standpoint of open source software development. Those with the interest and
skill can contribute their work to the community.

310 T. Kilamo et al.

Co-creation: Demola has been built on the notion of bringing the right people
together and to enabling collaboration between participants. Demola itself is a
developer community where anyone can contribute their work based on their own
interest and skill. Similarly the development of the project concepts and demos
in Demola is done through collaborative teams. Each team member brings his
or her own knowledge and expertise into the team and each team is different.

Community spirit : The student teams, active academia members and the
project partners form an innovation ecosystem where all participants benefit
from the Demola platform. Demola acts like a community of developers where
the teams share ideas and work and where the project partners benefit from the
work done in teams for other partners.

Legal Concerns. What is special about open source is its philosophy on intel-
lectual property rights (IPR). The approach chosen for managing the IPR of the
project teams in Demola is akin to the idea of licensing in open source. The open
innovation approach in Demola respects the IPR of the teams: the students own
the rights to the project results. The originator of the project idea can buy wide
and parallel usage rights to the results by paying the project team an agreed
reward, i.e. the team licences their work to the industrial partner.

4 Discussion and Conclusions

We have identified the best practices and principles of FLOSS development
within an open innovation platform, Demola. When its way of doing is jux-
taposed with the FLOSS principles and practices the common factors are iden-
tifiable. FLOSS also enables a better and wider exploitation of the results as the
teams hold the rights to their work. Demola not only provides support for the
project partners to buy rights to the work but also for the students themselves
to start new businesses on top of the results.

Traditional open source principles and practices, however, may fall short in
other aspects such as timely delivery, communication, and quality. Such chal-
lenges in the daily workflow of the project development need futher management
methods on top of FLOSS. How these challenges are met is a focus of future re-
search. Our findings suggest that the open source model offers a viable solution
to open innovation in terms of motivational, organizational, and collaborational
aspects.

References

1. Raymond, E.S.: The Cathedral and the Bazaar. O’Reilly Media, Sebastopol (1999)
2. Chesbrough, H.: Open Innovation: Researching a New Paradigm, chapter Open

Innovation: A New Paradigm for Understanding Industrial Innovation. Oxford Uni-
versity Press, Oxford (2006)

3. Takeuchi, H., Nonaka, I.: The New New Product Development Game. Harvard
Business Review, 137–146 (January-February 1986)

Open Source Principles in Open Innovation 311

4. Feller, J., Finnegan, P., Hayes, J., O’Reilly, P.: Institutionalising information asym-
metry: governance structures for open innovation. Information Technology & Peo-
ple 22(4), 297–316 (2009)

5. West, J., Gallagher, S.: Challenges of Open Innovation: The Paradox of Firm In-
vestment in Open-Source Software. R&D Management 36(3), 319–331 (2006)

6. Beck, K.: Embracing Change With Extreme Programming. Computer 32(10), 70–77
(1999)

7. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R.C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for Agile
Software Development (March 2002), http://agilemanifesto.org/ (last visited
March 2011)

8. Facilitating Innovation at Demola. Open Threads: Open Innovation Newsletter
(April 2009)

9. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile Software Development
Methods Review and Analysis. VTT Publications 478 (2002)

10. Goldman, R., Gabriel, R.P.: Innovation Happens Elsewhere: open source as busi-
ness strategy. Morgan Kaufmann, San Francisco (2005)

11. Davis, S.: How to Make Open Innovation Work in Your Company. Visions Magazine
(December 2006)

12. Demola Innovation Platform, http://www.demola.fi (last visited March 2011)

http://agilemanifesto.org/
http://www.demola.fi

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 312–315, 2011.
© IFIP International Federation for Information Processing 2011

KommGame: A Reputation Environment for Teaching
Open Source Software

Veerakishore Goduguluri, Terhi Kilamo, and Imed Hammouda

Department of Software Systems, Tampere University of Technology
Korkeakoulunkatu 1, FI-33720 Tampere, Finland

firstname.lastname@tut.fi

Abstract. The importance of teaching open source software in universities is
increasing with the advent of open source as a development and business
model. A novel, student centric approach of teaching open source was tried out
at Tampere University of Technology where a new environment called
KommGame was introduced to assist in teaching open source development.
This environment includes a reputation system to motivate learners to
participate. In this paper, we present our approach of teaching open source and
how the KommGame environment was employed to teach open source
software.

1 Introduction

With the advent of open source software (OSS) as a development and business model,
the number of job vacancies valuing open source knowledge and experience has been
rising on a regular basis. This in turn has motivated many universities and
professional schools to introduce new courses and programmes related to teaching
OSS principles and practices (e.g. [1], [3]). So far OSS teaching has mostly been
organized in a traditional lecture course format, for example taking the form of a
seminar where students present specific OSS related topics. Other attempts rely on
sending students out into real open source projects and communities (e.g. [2]).

Such approaches to teaching open source software face two major challenges.
First, classical teaching methods may not fully convey all the special aspects involved
in OSS development such as community collaboration, peer review, and co-creation.
Second, students may find it hard to participate in real OSS project as a first
experience. This is because OSS projects typically have own principles, practices,
processes, and tools.

A more attractive approach is to provide a learning environment for OSS where
students could collaborate collectively to achieve a common goal. Such constructivist
approach [4] to learning allows students to generate new knowledge through the
interaction of the group’s past experience and new ideas. A constructivist learning
method however needs individual’s active participation, which from the OSS
perspective means student contribution to the community. An important question is,
therefore, how to keep students’ motivation high for the purpose of learning OSS
concepts through active contribution. It has been argued that reputation systems could
play an important role in maintaining student motivation [5].

 KommGame: A Reputation Environment for Teaching Open Source Software 313

In this paper, we argue that reputation systems can be applied in a learning
environment for open source software. Our approach is also inspired by the
experiences of using reputation systems to reward and recognize developers in OSS
communities such as Qt [6]. Towards this aim, we present an example reputation
model and a concrete reputation environment known as KommGame that mimics real
open source projects. The environment has successfully been tested at Tampere
University of Technology (TUT) to introduce OSS concepts and practices to software
engineering students.

The remaining of this paper is structured as follows: Section 2 reputation systems
for teaching open source. Section 3 presents the KommGame environment. Finally we
conclude in Section 4.

2 Reputation Model for Teaching Open Source Software

Reputation systems are used to measure the contribution of individuals in an online
community; they are also applied in different fields such as e-commerce, search
engines, and social news. As reputation systems are applied for measuring online
activities one can see that reputation systems can be applied for e-learning in the
educational context where most of the activities happen online. In [3] Farmer has
explained about different reputation models. It is discussed in [7] that reputation
systems suites a small group of young participants; they have high competitive sprit
which makes learning more active and motivated.

In OSS development all kinds of contribution are treated as equally important and
there is no good metric with which to compare or quantify different types of
contribution with each other. This is the reason why most of the open source
communities have not adopted a reputation system. In an educational context,
however, the course moderator may decide which types of contribution should be
emphasized. A reputation model can be designed accordingly.

We argue that the karma reputation model fits well the activities and the nature of
OSS communities, where the object subjected to reputation is human. The final karma
value of the participants is the sum of weight times of each contribution. The
universal karma model can be written as

(3.1)) ()())((
1

TokensQualityWeeklygFavoritesfoncontributifKarma
n

k
kk ++=∑

=

Here n corresponds to the total number of contributions. fk is the weight function
corresponding to contribution type. “Favorites” is the number of like bookmarks a
content author gets. “Weekly Quality Tokens” corresponds to the number of time the
particular participant was selected as the best quality contributor of the week by the
rest of the members of community.

For example, a sample karma model which covers activities related to bugs,
features, improvements and wiki is given below. In the formula each activities is
multiplied with its associated weight. Total karma is sum of all karmas from each
activity.

314 V. Goduguluri, T. Kilamo, and I. Hammouda

Karma= 6*√(number of bugs reported) + 3*√(number of bug comments) +
2*(number of bugs closed) + 4*√(number of feature requests) + 3*√(number of bug
comments) + 2* (number of closed new features) + 4*√(number of request) + 3*√(
number of improvement comments) + 2*√(number of closed improvements) +
4*√(number of edits) + 4*√(number of likes) + 4* √(number of weekly quality
tokens)

3 KommGame Environment

We have developed an OSS learning environment based on the reputation model
presented earlier. The learning environment, called KommGame [8], maintains karma
values as a motivational factor for a community of learners. The KommGame
environment forms an infrastructure required for collaborative and student centric
learning.

Fig. 1. Karma reporting interface

The KommGame infrastructure has been developed to mimic the infrastructure of a
real open source community. The environment has features to add and edit open
content, a user management system to manage users of the community, a system to
track user activities, a communications channel, a bug management system, a source
code base to maintain source code of the project, a reputation system to calculate the
karma of each community member and an user interface to publish karma values.

Figure 1 shows the KommGame interface for karma value reports. The graph
shows different categories of users (i.e. committers and reporters), illustrated using
different colors. Each vertical bar in the graph represents the score of each user of the
system. Each vertical bar has two parts with different colors, the bottom part indicates
the score of the previous weeks. The upper part indicates the score of the current
week. The hat icons, shown in some bars, indicate the best contributors of the week.

4 Conclusions

The approach of KommGame for OSS education allows students to practice OSS
project in safe and realistic OSS environment. The KommGame motivates the

 KommGame: A Reputation Environment for Teaching Open Source Software 315

students to make more contribution to the OSS project and thus give them a valuable
OSS project experience. This kind of realistic setting gives the students a good
starting point to work in real OSS development.

The future plans for KommGame are to research how this can be applied in
traditional programming courses where, students have to collaborate and participate in
programming exercises. Future work includes applying the karma model to other
courses and using KommGame as a standard system to issue certificates for OSS
learners.

References

1. Megías, D., Serra, J., Macau, R.: An International Master Programme in Free Software in
the European Higher Education Space. In: Proceedings of the First International
Conference on Open Source Systems, pp. 349–352 (July 2005)

2. Lundell, B., Persson, A., Lings, B.: Learning Through Practical Involvement in the OSS
Ecosystem: Experiences from a Masters Assignment. In: Open Source Development,
Adoption and Innovation. IFIP, vol. 234, pp. 289–294. Springer, Boston (2007)

3. German, M.D.: Experience teaching a graduate course in Open Source Software
Engineering. In: Proceedings of the First International Conference on Open Source Systems
(OSS 2005), Genova, Italy, July 11-15, pp. 326–328 (2005)

4. Piaget, J.: The Child’s Conception of the World. Rowman and Allenheld, New York (1960)
5. Temperini, M., Sterbini, A.: Learning from Peers: Motivating Students through Reputation

Systems. In: International Symposium on Applications and the Internet, pp. 305–308
(2008)

6. Qt developers network reputation system,
http://developer.qt.nokia.com/ranks (last visited on March 2011)

7. Temperini, M., Sterbini, A.: Learning from Peers: Motivating Students through Reputation
Systems. In: International Symposium on Applications and the Internet, pp. 305–308
(2008)

8. OSS Learning environment at TUT,
http://osscourse.cs.tut.fi/mantis/login_page.php (last visited on
March 2011)

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 316–319, 2011.
© IFIP International Federation for Information Processing 2011

Virtual Health Information Infrastructures:
A Scalable Regional Model

Ann Séror

eResearch Collaboratory, 352 Rue Lavigueur, Quebec City, Canada G1R 1B4
annseror@eresearchcollaboratory.com

Abstract. Integrating research, education and evidence-based medical practice
requires complex infrastructures and network linkages among these critical
activities. This research examines communities of practice and open source
software tools in development of scalable virtual infrastructures for the regional
Virtual Health Library of the Latin American and Caribbean Health Sciences
System (Bireme) and embedded national cases. Virtual infrastructures refer to
an environment characterized by overlapping distribution networks accessible
through Internet portals and websites designed to facilitate integrated use of
available resources. Case analysis shows engagement of interdisciplinary
communities of practice for scalable virtual infrastructure design. This research
program considers theory and methods for study of transferability of the Latin
American model to large health care systems in other cultures.

Keywords: virtual infrastructures, open source systems, communities of
practice, Bireme, culture.

Information technologies and telecommunication infrastructures are transforming
institutions at the foundation of evidence-based research, education and practice in
medicine and the health sciences. Emerging health information networks offer
integrated systems to link these complex activities for innovation in health care
service delivery. There is growing recognition in scientific communities of the critical
importance of networks in social systems in general as well as in health care. [1,2]
The OSS community offers substantial resources to build infrastructures at the
foundation of health information networks. [3] Recent literature recognizes that
access to health information for health care providers, policy makers, researchers,
publishers, and systematic reviewers is essential to global development of equitable
health care systems as well as achievement of the Millennium Development Goals.
[4] In this fast developing field of inquiry, only fragmented research has focused on
the design and scaling of collaborative health information systems taking into account
the institutional roles of virtual infrastructures.

Studies of the Latin American and Caribbean Health Sciences System (Bireme)
suggest the importance of local research and publication as well as regional leadership
to integrate medical education and practice. [5-8] Emerging open access publishing
systems reveal new dynamics between international and national as well as academic
and practitioner communities, while the social medicine tradition of the Latin
American region illustrates the power of ideology as a factor shaping integrated

 Virtual Health Information Infrastructures: A Scalable Regional Model 317

regional and local health information systems. Virtual infrastructures supporting
these systems refer to an environment characterized by overlapping distribution
networks, systems brokerage functions, and the adoption of a software perspective
emphasizing the devices and channels through which information is processed and
distributed. [9] The diversity of such systems means that technology varies, in
particular as a function of technological choices based on local and regional
ideologies and traditions. The health care system is defined here as a dynamic set of
interconnected individuals, institutions, organizations, and projects offering products
and services in health care markets. [10] Ruef [11] suggests that inclusion in an
ecological field – such as a complex national health care system - should be
determined in the context of broad system functions and their linkages. These
linkages may be social, functional, geographical, and temporal as well as virtual.

Nonaka has described the complex Japanese concept of “ba” as “a shared space for
emerging relationships” that may be physical, virtual or mental in nature reflecting the
individual in the collective “all”. [12,13] “Ba” poses the foundation for translation of
information into knowledge, and the temporal and spatial frame for its use. In this
study, “ba” represents the health care system knowledge ecology linking communities
of practice and virtual infrastructures contributing to translation of information into
knowledge and care delivery. Communities of practice are defined here as groups of
people sharing a focus on a common interest or task and interacting regularly to
improve their knowledge or performance. [14-17] While research, education and
practice in health care may form independent professional communities; researchers,
learners and practitioners may also create both social and intellectual capital through
mutual and reciprocal engagement. [18]

Effective system integration at the country and regional levels of analysis is
particularly evident in the Latin American social medicine model where communities
of practice share common ideologies [19] associated with universal health care, public
education in medicine and the health sciences, open access publishing of health
information and research, and infrastructure creation through open source software
development. Some experience suggests that the open source model for software
development may be extended to research in the health sciences, pointing to the
ideological coherence between infrastructure development and productive activities
conducted within such infrastructure. [20-22] Virtual infrastructures, accessible on
the Internet offer visible evidence of ecological domains for mapping and analysis of
their configurations at micro-, meso- and meta-levels of structure. The research
questions considered here are:

• What is the emergent configuration of virtual infrastructures
integrating regional and national health information systems and knowledge
ecologies?

• What are the roles of human resources and open source
communities of practice in these ecological systems?

• What factors determine the transferability of this scalable model to
other large system contexts?

The methodology for this qualitative research program is embedded case analysis
suggested by Yin. [23] The Latin American and Caribbean Health Sciences System
(Bireme) forms the context in which national information systems have developed.

318 A. Séror

This choice of case is revelatory of the reciprocal roles of regional and country level
leadership in this process. While qualitative methods may not yield generalizable
conclusions, they contribute to rich description of regional and national knowledge
ecologies and the ideological role of the social medicine model shared among
countries of the Latin American region. [24] Data are drawn from published accounts
of system development [25] and the websites of the constituent organizations,
networks and services to describe the configuration of virtual infrastructures. [26,27]
E-mapping software is used to visualize maps of the linkages among resources
identified in the knowledge ecology of the regional Virtual Health Library of the
Latin American and Caribbean Health Sciences System (Bireme). [28,29] The maps
generated using this methodology show how global, regional and national open
source resources are shared and integrated by users in the virtual infrastructure.
[30,31] Open source ideology and culture are considered in development of a model
of transferability of the Bireme system to other large regional systems such as those in
China and India.

References

1. Barabási, A.-L.: Linked: How Everything is Connected to Everything Else and What It
Means for Business, Science, and Everyday Life. Basic Books, New York (2003)

2. PloS Medicine (eds) It’s the Network, Stupid: Why Everything in Medicine is Connected.
PLoS Med. 5, e71 (2008)

3. Reynolds, C., Wyatt, J.: Open Source, Open Standards, and Health Care Information
Systems. J. Med. Internet Res. 13, e24 (2011)

4. Godlee, F., Pakenham-Walsh, N., Ncayiyana, D., Cohen, B., Packer, A.: Can We Achieve
Health Information for All by 2015? Lancet 364, 295–300 (2004)

5. Meneghini, R., Mugnaini, R., Packer, A.: International versus National Oriented Brazilian
Scientific Journals: A Scientometric Analysis Based on SciELO and JCR-ISI Databases.
Scientometrics 69, 529–538 (2006)

6. Meneghini, R., Packer, A.: Is There Science Beyond English? EMBO Reports 8, 112–116
(2007)

7. Packer, A.: SciELO as a Model for Scientific Communication in Developing Countries:
Origins, Evolution, Current Status, Management and Perspectives of the SciELO Network
of Open Access Collections of Ibero-America Journals. CODATA 2007 - Strategies for
Open and Permanent Access to Scientific Information in Latin America: Focus on Health
and Environment Information for Sustainable Development. Sao Paulo, Brazil, May 8-10
(2007)

8. Packer, A.: The SciELO Model for Electronic Publishing and Measuring of Usage and
Impact of Latin American and Caribbean Scientific Journals. In: Second UCSU/UNESCO
International Conference on Electronic Publishing in Science, February 20-23 (2001)

9. Séror, A.: A Case Analysis of INFOMED: The Cuban National Health Care
Telecommunications Network and Portal. J. Med. Internet Res. 8, e1 (2006)

10. Alliance for Health Policy and Systems Research: Strengthening Health Systems: The
Role and Promise of Policy and Systems Research. Global Forum for Health Research,
Geneva (2004)

11. Ruef, M.: The Emergence of Organizational Forms: A Community Ecology Approach.
Am. J. Sociol. 106, 658–714 (2000)

 Virtual Health Information Infrastructures: A Scalable Regional Model 319

12. Nonaka, I.: The Concept of “Ba": Building a Foundation for Knowledge Creation. Calif.
Manage. Rev. 40, 40–54 (1998)

13. Nonaka, I.: A Dynamic Theory of Organizational Knowledge Creation. Organ. Sci. 5, 14–
37 (1994)

14. Wenger, E.: Communities of Practice: Learning as a Social System. Systems Thinker 9, 1–
8 (1998)

15. Wenger, E.: Communities of Practice: Learning, Meaning, and Identity. Cambridge
University Press, Cambridge (1998)

16. Edwards, K.: Epistemic Communities, Situated Learning and Open Source Software
Development. MIT Working Paper (2001)

17. Haas, P.: Introduction: Epistemic Communities and International Policy Coordination. Int.
Organ. 46, 1–35 (1992)

18. McDonald, P.W., Viehbeck, S.: From Evidence-Based Practice Making to Practice-Based
Evidence Making: Creating Communities of (Research) and Practice. Health Promot.
Pract. 8, 140–144 (2007)

19. Committee for Economic Development (CED): Open Standards, Open Source, and Open
Innovation: Harnessing the Benefits of Openness. Washington, D.C. (2008)

20. Anonymous: An Open-source Shot in the Arm? The Economist (June 10, 2004)
21. Maurer, S., Rai, A., Sali, A.: Finding Cures for Tropical Diseases: Is Open Source an

Answer? PLoS Med. 1, 180–183 (2004)
22. Mueller, M.: Info-Communism? Ownership and Freedom in the Digital Economy. First

Monday 13 (2008)
23. Yin, R.: Case Study Research: Design and Methods. Sage, London (2002)
24. Collier, D., Mahoney, J.: Insights and Pitfalls: Selection Bias in Qualitative Research.

World Polit. 49, 56–91 (1996)
25. VHL Guide (2011),

http://guiabvs2011.bvsalud.org/en/presentation/
26. Vidal Ledo, M.C., Febles Rodríguez, P., Estrada Sentí, C.V.: Mapas Conceptuales.

Educación Médica Superior 21 (2007)
27. Rodriguez Pina, R.A., Guerra Avila, E.: Mapas Conceptuales y Geo-referencias en

Productos y Servicios de Inteligencia Empresarial. In: ACIMED, vol. 17 (2008)
28. Egbu, C., et al.: Knowledge Mapping and Bringing about Change for the Sustainable

Urban Environment. In: Engineering and Physical Sciences Research Council (EPSRC),
Glasgow (2006)

29. Ruffini, M.: Using E-Maps to Organize and Navigate Online Content. EDUCAUSE
Quarterly 31, 56–61 (2008)

30. Ebener, S., Khan, A., Shademani, R., Compernolle, L., Beltran, M., Lansang, M.A., et al.:
Knowledge Mapping as a Technique to Support Knowledge Translation. B. World Health
Organ. 84, 636–642 (2006)

31. Lavis, J., Lomas, J., Hamid, M., Sewankambo, N.: Assessing Country-Level Efforts to
Link Research to Action. B. World Health Organ. 84, 620–628 (2006)

Something of a Potemkin Village? Acid2 and

Mozilla’s Efforts to Comply with HTML4

Matthijs den Besten1 and Jean-Michel Dalle2

1 Chaire Innovation et Régulation, Ecole Polytechnique, Paris, France
matthijs.den-besten@polytechnique.edu

2 Université Pierre et Marie Curie, Paris, France
jean-michel.dalle@upmc.fr

The real point here is that the Acid3 test isn’t a broad-spectrum standards-
support test. It’s a showpiece, and something of a Potemkin village at
that. Which is a shame, because what’s really needed right now is ex-
haustive test suites for specifications— XHTML, CSS, DOM, SVG.[2]

Acid3 is the third of three benchmark tests that have been devised to chal-
lenge browsers to comply with Internet standards [6]. While Firefox developers
at Mozilla had fully embraced the predecessor to Acid3, Acid2, they showed
themselves much more reticent this time around. As the quote above indicates
they had come to feel that Acid3 would divert attention from the real issues
and might actually make it more difficult to achieve “deep compliance” as de-
velopers would scramble to come up with quick fixes just to pass the benchmark
test. But were these fears justified? To find out, we retrieved the bug reports for
bugs in Mozilla’s Bugzilla bug tracker concerning compliance with the HTML4
standard and tried to analyze the differences in the process of bug resolution
between bugs that were linked to Acid2 and bugs that were not. In Bugzilla,
the bug resolution process passes a number of well-defined stages. Based on the
transition rates that we observe we conclude that the process of bug resolution is
markedly different for bugs associated with Acid2. In particular, bug resolution
appears to be much more chaotic in case of Acid2. This might be symptomatic
for “scrambling”, which would explain why developers were not so keen to re-
peat the experience when Acid3 came around. Further investigations, however,
are needed to corroborate this hypothesis.

Bugs reports in Bugzilla are often part of Bug Report Networks [3]. That is,
they are part of a network of dependencies as bugs can be declared to depend
on, block, or duplicate other bugs. Note that the dependencies between bugs are
not always purely technical. In fact, an important type of bugs in Bugzilla is the
“meta-bug”, also known as the “tracker bug”, which is a bug at the root of a
dependency tree whose leafs are bugs that are related to the issue that the meta-
bug is trying to address. For instance, meta-bug 7954 is the bug that tracks issues
related to the implementation of the HTML4 standard and the meta-bug 289480
tracks the issues related to Acid2. For our investigation we took advantage of the
efforts of the administrators of these meta-bugs to list all bugs related to HTML4
and Acid2 respectively. Yet, as these meta-bugs facilitate coordination among
a group of people with a particular interest, much like project-pages in case of

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 320–324, 2011.
c© IFIP International Federation for Information Processing 2011

Something of a Potemkin Village? 321

Wikipedia [5], it might be that the differences in bug resolution behavior, which
we observe, are a reflection of internal project-culture rather than the effect of
external pressure from a public challenge.

Fig. 1. Bug resolution process according to Bugzilla (source: [4])

As of March 2011, there are 2904 bugs in the dependency tree of the HTML4
meta-bug and 2195 in the tree of Acid2 (and except for 51 bugs, these bugs also
appear in the HTML4 tree). In order to inspect the process of bug resolution,
we code each bug report as a sequence of states (cf. [1]), where the duration of
states is defined by the number of messages posted on the bug’s discussion forum
and a state by the bug’s Bugzilla bug status. Bugzilla distinguishes 7 forms of
“status” [4]: unconfirmed is the default initial state assigned to a bug when

322 M. den Besten and J.-M. Dalle

NEW

ASSIGNED

RESOLVED

UNCONFIRMED

REOPENED

VERIFIED

Fig. 2. Diagram of observed state transitions for bugs related to HTML4, active
between November 29, 2005 and October 24, 2006 and not associated with Acid2
(n = 235)

it is declared; new is the state that the bug gets once it has been confirmed
by someone with CanConfirm rights (these people also have the right to declare
bugs with an immediate initial status of new); assigned is the status of the
bug once it has been “assigned” to someone, making this person responsible for
managing the bug resolution process; resolved is the status of the bug once a
solution for the problem that it identified has been proposed; verified is the
status of the bug once the solution has gone through a review; reopened is the
status of the bug signalling that it has been decided that the proposed solution is
not valid or not sufficient; and finally a bug can have status closed to indicate
that comments to the bug are no longer welcome.1 There is a canonical path of
bug treatment from unconfirmed to new, from new to assigned, etcetera,
ending with verified and/or closed that is proposed in the Bugzilla manual

1 Note, however, that status closed is no longer used (see bug 169885).

Something of a Potemkin Village? 323

NEW

ASSIGNED

RESOLVED

UNCONFIRMED REOPENED

VERIFIED

Fig. 3. Diagram of observed state transitions for bugs related to HTML4, active be-
tween November 29, 2005 and October 24, 2006 and associated with Acid2 (n = 274)

(see Figure ??. Deviations from this path are allowed, but that are supposed to
be exceptions rather than the rule.

Figure 2 is a state diagram based on the transition rates for bugs related to
HTML4, but not to Acid2, on which there was activity between the releases
of Firefox 1.5 (November 29, 2005) and 2.0 (October 24, 2006).2 The shape of
the edges indicates the likelihood of a transition.3 The pathways depicted in the
diagram are very close to the canonical path proposed in the Bugzilla manual. In
contrast, the state diagram in Figure 3 for bugs related to Acid2 during the same
period, which falls just after the launch of Acid2 and includes the passing of the
test by a development version of Firefox 3.0 a year later, shows a very different
picture full of loops and shortcuts. Further investigations will help us determine
whether this is a sign of chaos or due to greater efficacy in solving bugs since the
availability of a public test suite makes it easy to verify the resolution of a bug
and since people with shared interest come to know each others’ competences.

2 Release dates according to [7].
3 Bold for a rate higher than 0.2; solid if > 0.1; dashed > 0.05; and dotted > 0.

324 M. den Besten and J.-M. Dalle

References

1. Gabadinho, A., Ritschard, G., Müller, N., Studer, M.: Analyzing and visualizing
state sequences in R with TraMineR. Journal of Statistical Software 40(4), 1–37
(2011)

2. Meyer, E.: Eric’s archived thoughts: Acid redux (2008),
http://meyerweb.com/eric/thoughts/2008/03/27/acid-redux/

3. Sandusky, R.J., Gasser, L., Ripoche, G.: Bug report networks. In: Proc. ICSE Work-
shop Mining Software Repositories (2004)

4. The Bugzilla Team. The Bugzilla Guide - 3.0.5 Release
5. Ung, H., Dalle, J.-M.: Project management in the wikipedia community. In: Pro-

ceedings of the 6th International Symposium on Wikis and Open Collaboration,
WikiSym 2010, pp. 13–14. ACM, New York (2010); ACM ID: 1832790

6. Wikipedia. Acid3 (2011), http://en.wikipedia.org/wiki/Acid3
7. Wikipedia. History of Firefox (2011),

http://en.wikipedia.org/wiki/History_of_Firefox

http://meyerweb.com/eric/thoughts/2008/03/27/acid-redux/
http://en.wikipedia.org/wiki/Acid3
http://en.wikipedia.org/wiki/History_of_Firefox

Aspects of an Open Source Software Sustainable

Life Cycle

Flávia Linhalis Arantes and Fernanda Maria Pereira Freire

Nucleus of Informatics Applied to Education (NIED)
State University of Campinas (UNICAMP)

Campinas, SP, Brazil
{farantes,fernanda}@unicamp.br

Abstract. In this paper we present a literature overview about
OSS sustainability, considering not only financial resources, but also
community growth, source code and tools management. Based on these
aspects, we define an OSS life cycle that may contribute to OSS projects
sustainability.

Keywords: OSS Sustainability, OSS Communities, Financial Resources,
Software Maintenance

1 Introduction

With the popularity of OSS (Open Source Software), governments, universities
and other institutions around the world are adopting free platforms aiming to
save millions [1,12].

A natural question that arises when one looks at the increasing use of such
software for which you do not pay any fee or license is: how open source projects
are supported?

Researches related to OSS sustainability [6,9,14] show that the profits come
from offering services such as support, consulting and training. In this work, we
mean by sustainable the management model that can support the community
through various resources. It is not, however, financially maintained by a single
company or institution.

We present a study on other aspects, besides financial ones, that are also
important for OSS projects sustainability. In the next sections we treat OSS
projects sustainability broadly, considering the dynamics involved in a sustain-
able life cycle.

2 An OSS Sustainable Life Cycle

Based on a literature review, we can say that the sustainability of OSS is closely
related to three factors – community growth, financial resources and software
management, as illustrated in Figure 1.

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 325–329, 2011.
c© IFIP International Federation for Information Processing 2011

326 F.L. Arantes and F.M. Pereira Freire

According to Figure 1, growth and continuity of the community can result
more naturally in financial resources that, if well managed, can be reversed in
benefits to the community and encourage its growth, feeding the OSS sustainable
life cycle.

Fig. 1. Sustainable life cycle model for OSS projects.

The proper management of community, software and tools can decrease the
financial resources necessary to maintain the project. With management im-
provements in that subjects, it is possible to minimize tasks and human factors,
and to promote a vision of a robust computational development for the commu-
nity. As a result, it is possible to reduce costs and, consequently, to contribute
to the sustainability of OSS communities.

2.1 Community Growth

When we talk about OSS communities management, it is natural to think of
reasons why communities continue to exist and to grow. Some important fac-
tors for the existence and continuity of an OSS community are: interactivity,
variety of participants, large number of members, web space that allows interac-
tion, matters of common interest, and cooperation among participants. A basic
premise is that people should bring information and share it openly with the
group. Another important attribute of a community is the population size. A
community becomes more valuable as more members join it [18].

Researches also point out that community growth and development process
openness can contribute to software quality and reliability [16,8,7]. This state-
ment assumes that the more people are paying attention to the software and
interacting with each other, the easier it is to find and to fix its bugs.

Researches also show that the continuity of an OSS community depends on the
adoption of the software that it produces [18]. There are several factors for com-
panies or individuals to take the decision to adopt certain free software. These
factors include availability of support, size of community, technical attributes
of software such as reliability, safety, quality and performance [11,5]. Software
adoption can increase the visibility of the community and generate employment
opportunities in bundled services (support, enhancements, upgrades) that can
contribute to the community sustainability.

OSS Sustainable Life Cycle 327

2.2 Financial Resources

In most cases, OSS projects profits come from offering services such as support,
consulting, training, product maintenance, and development of new software
customizations [6,9,14]. Free software can still be funded by various segments of
society such as government, academia and corporations [3,4]. In order to receive
more direct support from government, the groups associated with OSS often
turn to NGOs, foundations and even micro companies [18,14].

Many OSS economic aspects have been investigated in the literature. Riehle
[13] tried to answer one of the main questions in the economic field of OSS
projects: How is developers payment determined? Lerner and Tirole [10] discuss
questions about economic justification of OSS projects. Shirali-Shahreza [15]
discuss various OSS aspects, including economic ones.

2.3 Software Management

Factors related to source code structure can greatly contribute to OSS projects
sustainability – it can lead to faster changes with less bugs. The code with a
modular structure is an incentive for developers to enter and to continue in
the project development [2]. Terceiro and colleagues [17] claim that structural
complexity increases the cost of maintaining a software project, because the
code becomes harder to understand, and consequently more difficult to modify.
In OSS projects, this increased effort may represent an additional difficulty for
the entry of new developers, and a sustainability problem.

The discontinuity of the development team and the geographically distributed
nature of OSS projects make them even more difficult to manage. For issues like
these, the need to communicate, interact and socialize using communication tools
with computational support is even greater.

In order to coordinate their work, OSS communities members use the Internet
with simple and widely available tools. There are two categories of tools used
in OSS projects. The first one is related to communication between community
members and the second concerns the management of source code.

A challenge to be exploited in this context is to investigate solutions on how to
improve integration and communication between OSS tools, such as discussion
forum, issue tracking, wiki, among others. The possibilities of using the commu-
nication that is made through these tools can reduce, for example, support costs
and other activities that require time from the development team.

3 Conclusion

This study provided a brief overview, bringing together different aspects which
contribute to OSS projects sustainability. With such a study we defined a sus-
tainable life cycle aiming to provide guidance on the creation and maintenance
of sustainable OSS development and communities.

328 F.L. Arantes and F.M. Pereira Freire

References

1. Allen, J.P.: Open source deployment at the city and county of san francisco: From
cost reduction to rapid innovation. In: Hawaii International Conference on System
Sciences, pp. 1–10 (2010)

2. Baldwin, C.Y., Clark, K.B.: The architecture of participation: Does code architec-
ture mitigate free riding in the open source development model? Manage. Sci. 52,
1116–1127 (2006), http://portal.acm.org/citation.cfm?id=1246148.1246160

3. Capek, P.G., Frank, S.P., Gerdt, S., Shields, D.: A history of ibm’s open-source
involvement and strategy. IBM Syst. J. 44, 249–257 (2005),
http://dx.doi.org/10.1147/sj.442.0249

4. Capra, E., Francalanci, C., Merlo, F., Rossi Lamastra, C.: A survey on firms par-
ticipation in open source community projects. In: Boldyreff, C., Crowston, K.,
Lundell, B., Wasserman, A.I. (eds.) OSS 2009. IFIP AICT, vol. 299, pp. 225–236.
Springer, Heidelberg (2009)

5. Dedrick, J., West, J.: An exploratory study into open source platform adoption. In:
Proceedings of the Proceedings of the 37th Annual Hawaii International Conference
on System Sciences (HICSS 2004) - Track 8, vol. 8, pp. 1–10. IEEE Computer
Society, Washington, DC (2004),
http://portal.acm.org/citation.cfm?id=962756.963252

6. Hecker, F.: Setting up shop: The business of open-source software. IEEE Softw. 16,
45–51 (1999), http://dx.doi.org/10.1109/52.744568

7. Joode, R.W., Bruijne, M.: The organization of open source communities: Towards a
framework to analyze the relationship between openness and reliability. In: Hawaii
International Conference on System Sciences, vol. 6, p. 118b (2006)

8. Lakhani, K., Wolf, R.G.: Why hackers do what they do: Understanding motivation
and effort in free/open source software projects. Social Science Research Network,
1–27 (2003), http://www.ssrn.com/abstract=443040

9. Lawton, G.: The changing face of open source. Computer 42, 14–17 (2009)

10. Lerner, J., Tirole, J.: Some simple economics of open source. The Journal of In-
dustrial Economics 50(2), 197–234 (2002),
http://dx.doi.org/10.1111/1467-6451.00174

11. Morgan, L., Finnegan, P.: Benefits and drawbacks of open source software: An
exploratory study of secondary software firms. In: Proceedings of the 3rd IFIP
International Conference on Open Source Systems (OSS), pp. 307–312. Springer,
Heidelberg (2007)

12. Richter, D., Zo, H., Maruschke, M.: A comparative analysis of open source software
usage in germany, brazil, and india. In: Proceedings of the 2009 Fourth Interna-
tional Conference on Computer Sciences and Convergence Information Technology,
ICCIT 2009, pp. 1403–1410. IEEE Computer Society, Washington, DC (2009),
http://dx.doi.org/10.1109/ICCIT.2009.169

13. Riehle, D.: The economic motivation of open source software: Stakeholder perspec-
tives. Computer 40, 25–32 (2007),
http://portal.acm.org/citation.cfm?id=1251559.1251741

14. Riehle, D.: The economic case for open source foundations. Computer 43, 86–90
(2010)

15. Shirali-Shahreza, S., Shirali-Shahreza, M.: Various aspects of open source soft-
ware development. In: International Symposium on Information Technology, ITSim
2008, vol. 4, pp. 1–7 (2008)

http://portal.acm.org/citation.cfm?id=1246148.1246160
http://dx.doi.org/10.1147/sj.442.0249
http://portal.acm.org/citation.cfm?id=962756.963252
http://dx.doi.org/10.1109/52.744568
http://www.ssrn.com/abstract=443040
http://dx.doi.org/10.1111/1467-6451.00174
http://dx.doi.org/10.1109/ICCIT.2009.169
http://portal.acm.org/citation.cfm?id=1251559.1251741

OSS Sustainable Life Cycle 329

16. Stamelos, I., Angelis, L., Oikonomou, A., Bleris, G.L.: Code quality analysis in
open source software development. Inf. Syst. J. 12(1), 43–60 (2002)

17. Terceiro, A., Rios, L.R., Chavez, C.: An empirical study on the structural com-
plexity introduced by core and peripheral developers in free software projects. In:
Proceedings of the 2010 Brazilian Symposium on Software Engineering, SBES 2010,
pp. 21–29. IEEE Computer Society, Washington, DC (2010),
http://dx.doi.org/10.1109/SBES.2010.26

18. Vincentin, I.C.: Desenvolvimento de Software Livre no Brasil: estudo sobre a per-
cepção dos envolvidos em relação às motivações ideológicas e de negócios. Ph.D.
thesis, Faculdade de Economia, Administração e Contabilidade da Universidade de
São Paulo (2007)

http://dx.doi.org/10.1109/SBES.2010.26

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 330–333, 2011.
© IFIP International Federation for Information Processing 2011

Open Source and Open Data: Business Perspectives from
the Frontline

Juho Lindman and Yulia Tammisto

Aalto University School of Economics, Information Systems Science,
PL 21210, 00076 Aalto, Helsinki, Finland

{Yulia.Tammisto,Juho.Lindman}@aalto.fi

Abstract. Open data initiatives on governmental data seem often to be linked to
small software companies, which also use and release software under OSS
licenses. This paper calls for more research to understand the similarities
between open data and open source software vendors. We build a theoretical
linkage between the more established OSS research and emerging research on
open data in the context of small software companies.

1 Introduction

Governmental Open Data projects in different countries have created new
opportunities for small software companies [11], but the possibilities of Open Data
(OD)1 are not limited to governmental data. A better understanding of the changes in
the ecosystems where these small software companies operate helps to better
understand the transformation of the software marketplace driven by OD and Open
Source Software (OSS)2.

There is a gap in research traditions between research on OSS and OD. This is
surprising at the outset, as most OD advocates have invested heavily in OSS; many of
the tools used in OD publication are licensed under OSS licenses; and often the actual
companies are similar or even operate in both OSS and OD. OD also enjoys a wide
popularity in OSS communities. We propose that this gap should be bridged and
theoretical linkages built between OSS and OD research.

2 OSS and OD

Voluntary collective action systems often include a public or semipublic good [5].
These public goods can be for example OSS or OD. Mixing open and proprietary
product strategies offers potential to many software companies [3]. Another way to

1 OD refers to “information that has been made technically and legally available for reuse” [22].

In addition to the technological details our definition stresses the legal and organizational
aspects of open data that are similar in OSS research.

2 In this paper we rely on the following OSS definition: “Open Source is a development method
for software that harnesses the power of distributed peer review and transparency of process”
(http://www.opensource.org).

 Open Source and Open Data: Business Perspectives from the Frontline 331

benefit from more open development is to change internal software production based
on the lessons from the OSS world [4]. Concepts used to describe OSS inspired
practices within an organization include: Corporate Source [2] and Inner Source [9].
Open Source can also be considered as a sourcing strategy and defined as a
governance model, where software development tasks are opensourced to an
unknown workforce [13].

Open government data has been claimed to offer possibilities for economic growth
by providing data sets which can be used in the provisioning of new services [6]. Tim
Berners-Lee [1] has provided a categorization of five levels of open data for linked
open data. The process of data transformation and publication can be theorized in
several ways. Latif et al. [8] offered a model to describe the roles of entities in OD
business: 1) raw data provider, 2) linked data developer and 3) applications developer.
Elsewhere [12], we have developed a conceptualization, building on Latif [8] and
Rajala’s [10] classification, which focuses on the different business models of the
actors. Based on our findings, it seems that value capturing (of the small software
companies of open data) may follow three different paths: 1) consultancy, 2)
conversion, and 3) application development.

3 Findings

We conducted a small round of interviews about OD using interpretive interview
approach [7] and compared the results with the earlier collected data on OSS.
Through the course of the analysis we detected a certain similarities between OSS and
OD companies that are reported in Table 1. All the respondents are from Finland,
their profiles are listed in Table 2.

Table 1. Similarities between OD and OSS business

 Open Data Open Source Similarity
Competition
environment

Market is divided
between small software
companies and large
software companies

Market is divided
between small,
medium- and
large software
companies

Most of the large
competitors are the
same in both OD and
OSS. Some companies
are the same and they
use and develop the
same software.

Customers So far emphasis on
public organizations
(cultural institutions,
municipalities),
potential in the media-
industry

Emphasis on
public
organizations
(schools) and
private actors

Public sector as a large
customer

Revenue
sources

Consultancy,
conversions,
application
development,
maintenance

Consultancy,
application
development,
maintenance

Not based on traditional
software sales, develop
services on top of
public goods

332 J. Lindman and Y. Tammisto

Table 1. (Continued)

Communities

Often enjoy popularity
and community support

Often enjoy
popularity and
community
support

Developer-communities
are the same and have
“activist” components

Openness of
activities

“I think the added
value [of OD] comes
from having more
clever people to look at
it.”

“More eyeballs
make bugs
shallow”

Favor openness in the
innovation activity

Table 2. Informants of the interviews

OD Company Position

1
Small (5 persons) web technology and application
development company

Project manager /
Consultant

2
Small (5 persons) web technology and application
development company (same as above)

CEO / Consultant /
Developer

3 Small (10 persons) software development company
Project manager /
Developer

4
Small (2 persons) consultancy and software
development company

CEO / Consultant

OS Company Position

1
Small (3 persons) OSS company developing
collaborative learning tools

CEO

2
Small (3 persons) OSS company developing
collaborative learning tools (same as above)

Developer

3
Small (1 person) OSS company developing relational
database tools

Entrepreneur

4
Small (10 persons) OSS company developing web
services

Developer

4 Conclusion

The aim of this paper was to look for some similarities between OD and OSS in the
context of small software companies engaged in OD and OSS. We speculate that
there are interesting lessons to be learned to the OD research from OSS business
model research related to service design and delivery relying on public goods.
Research on OSS communities can in some cases be applicable also to the emerging
OD communities. By this paper we only scratched the surface of the potential
contribution for the research. We call for a further research on comparison of OD and
OSS to realize all the benefits of the combination of these two phenomena.

 Open Source and Open Data: Business Perspectives from the Frontline 333

References

1. Berners-Lee, T.: Linked Data Design Issues (July 2006),
http://www.w3.org/DesignIssues/LinkedData.html

2. Dinkelacker, J., Garg, P., Miller, R., Nelson, D.: Progressive Open Source. In: The
Proceedings of ICSE 2002, May 19-25, pp. 174–184 (2002)

3. Fosfuri, A., Giarratana, M., Luzzi, A.: The Penguin Has Entered the Building: The
Commercialization of Open Source Software Products. Organization Science 19(2), 292–
305 (2008)

4. Gurbani, V., Garvert, A., Hersleb, J.: Managing a Corporate Open Source Asset.
Communications of the ACM 53(2), 155–159 (2010)

5. Heckathorn, D.: The Dynamics and Dilemmas of Collective Action. American
Sociological Review 61(2), 250–277 (1996)

6. Huijboom, N., Van den Broek, T.: Open Data: an International Comparison of Strategies.
European Journal of ePractice 12 (March/April 2011),
http://www.epractice.eu/files/European%20Journal%20epractice
%20Volume%2012_1.pdf

7. Klein, H., Myers, M.: A set of Principles for Conducting and Evaluating Interpretative
Field Studies in Information Systems. MIS Quarterly 23(1), 67–94 (1999)

8. Latif, A., Saeed, A.U., Hoefler, P., Stocker, A., Wagner, C.: The Linked Data Value Chain:
A Light Weight Model for Business Engeneers. In: Proceedings of I-SEMANTICS 2009
International Conference on Semantic Systems, Graz, Austria, pp. 568–575 (2009)

9. Linden, F., Lundell, B., Marttiin, P.: Commodification of Industrial Software – A Case for
Open Source. IEEE Software (July-August 2009)

10. Rajala, R.: Determinants of Business Model Performance in Software firms. Doctoral
Dissertation, Aalto University School of Economics, Helsinki, Finland (2010)

11. SOMUS. Social media for citizens and public sector collaboration) project – final report
(January 2011),
http://www.vtt.fi/inf/pdf/publications/2011/P755.pdf

12. Tammisto, Y., Lindman, J.: Open Data Business Models. In: The Proceedings of the 34th
IRIS Seminar, Turku, Finland, August 16-19, pp. 16–19 (accepted, 2011)

13. Ågerfalk, P., Fitzgerald, B.: Outsourcing to an Unknown Workforce: Exploring
Opensourcing as a Global Sourcing Strategy. MIS Quarterly 32(2), 385–409 (2008)

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 334–337, 2011.
© IFIP International Federation for Information Processing 2011

Forge.mil: A Case Study for Utilizing Open Source
Methodologies Inside of Government

Guy Martin and Aaron Lippold

Forge.mil Community Management Team
gmartin@collab.net, aaron.lippold@disa.mil

http://www.forge.mil

Abstract. In late 2008, DISA (Defense Information Systems Agency), the
global IT arm of the US Department of Defense, embarked upon a project to
create an internal collaboration and software application lifecycle management
system. Beyond simply fielding yet another tool, the Forge.mil effort was
designed to fundamentally change the way the DoD developed and acquired
software technology and systems. The method of this change was the
application of Open Source principles inside of the larger DoD community,
including ideas such as meritocracy and code sharing, as well as Agile and
collaborative software development. This lightning talk will explain the
rationale behind Forge.mil, how it was developed using Open Source principles,
and how it continues to influence technology acquisition within the DoD in
both practice and policy changes.

1 Introduction

The US Department of Defense has had a long (and at times challenging) relationship
with the Open Source world. While there have been successes along the way
(including work on projects such as SE Linux), by and large, the use of Open Source
within the DoD has been limited to certain server side applications.

There have been groups within the DoD community who recognized that there was
value not only in working within the Open Source world where appropriate, but also
in applying the same principles to internal development that made projects such as
Linux, Apache, and Subversion successful.

This goes beyond simple ‘code sharing’ or ‘reuse repositories,’ which, while a
laudable goal, are rarely successful without a large upfront effort at cultural upheaval.
The DISA team (civilian, military, and contractors) that came together in 2008 to start
Forge.mil realized early on that they were not going to change years of entrenched
cultural resistance to ‘the Open Source way.’ What they hoped to provide, however,
was not only a simple set of integrated tools to make life easier for all project
stakeholders (developers, program managers, testers, senior executives), but a ‘safe
place’ to begin the cultural change process necessary to make technology acquisition
in the DoD much more streamlined.

Forge.mil is the third incarnation of this effort and arguably, the most successful,
with 10,000 registered users and a new ‘Community layer’ built upon one of the most
successful Open Source projects to date – the Drupal content management engine.

 Forge.mil: Utilizing Open Source Methodologies Inside of Government 335

However, there are still entrenched cultural issues that need to be addressed to make
the Forge.mil effort more successful and pervasive.

1.1 Vision

Forge.mil’s official mission statement is: “Improve DoD’s ability to rapidly deliver
dependable software, services and systems”

Unofficially, the team works very hard at breaking down cultural barriers and
‘silos of excellence’ through the application of Open Source principles such as:
meritocracy, transparency, reuse, trust, and community. While there has to be a base
of operations, per se, with a unified tool set, a lot of the work done by the Forge.mil
community management team revolves around coaching projects on collaboration
techniques and software reuse strategies. Additionally, the team has shown leadership
by helping lawmakers craft new guidelines on DoD acquisition strategy1. These new
guidelines direct the US Secretary of Defense to establish “a new acquisition process
for information technology systems, designed to include:

• Early & continual involvement of users
• Multiple, rapidly executed increments of capability
• Early, successive prototyping to support an evolutionary approach
• A modular, open-systems approach”

Forge.mil helps provide a place to continue defining this improved style of
‘innersourcing’ for DoD technology acquisition.

1.2 Implementation Specifics

Forge.mil serves two specific types of audiences:

• Projects and developers looking to share and collaborate on internal
code/projects

• Teams looking to collaborate with a limited set of government/contract workers

Because of these diverse audiences, and to make administration simpler, Forge.mil is
primary composed of two main capabilities:

• Software.forge.mil
o Freely available for project hosting for ‘internal open’ projects

• Project.forge.mil
o Fee-for-service offering allowing for limited participation

Additionally, there is a Content Management System (utilizing Drupal) called
Community.forge.mil that provides ‘social development’ tools such as voting,
reputation management, and project activity streams to provide visibility across
multiple projects on each project site that may be part of a larger community of
interest.

1 US Congress: HR 2647, National Defense Authorization Act (2010), Section 804.

336 G. Martin and A. Lippold

It is important to note again at this point that these systems are not freely available to
the outside Open Source community – they are behind DoD firewalls and protected
by Public Key Infrastructure systems. These systems are designed to replicate
the Open Source ‘dynamic’ present in successful projects such as Linux, Apache,
Drupal, etc.

The primary human interface between the community of users and the system is
the Forge.mil Community Management team, composed of two half-time community
managers (contractors), and one quarter-time government employee. This team’s
roles include:

• Project onboarding and adjudication
• Coaching for Open Source and Agile best practices
• Detailed consulting/support to remove barriers to entry

One of the primary roles of this team is to help in determining what projects should be
allowed on the ‘Internal Open Source’ system (Software.forge.mil). Projects that are
forks of existing Open Source projects are usually rejected and their requesters sent to
the proper external Open Source community, so that unmaintainable DoD-specific
forks do not occur.

1.3 Challenges

Attempting culture change of this magnitude inside of an organization like the US
Department of Defense is not without significant challenges. Among those are:

• Contractor resistance to ‘loss of intellectual property’
• Fear of sharing and/or showing substandard code/systems
• Perceived increases in cost to develop systems (easily countered – see

Metrics/Outcomes below)
• Cultural resistance to change

There is no single ‘silver bullet’ to address all of these issues, but increasing
economic pressures have provided a lever to help most teams ‘cross the chasm.’
Additionally, the government can invoke ‘Government Purpose Rights’ on software
they have paid a contractor to develop, though there are sometimes additional costs
for that.

1.4 Metrics/Outcomes

Forge.mil closely tracks several key metrics and ROI figures. In three years of
operation, the program has had the following successes:

• 10,000 registered users
• 500 projects
• 57,000 software commits
• 51,000 software downloads
• 4,000 discussion posts
• 15,000 shared documents
• 1,000 software repositories created
• $175M in ROI savings (cost avoidance and software asset reuse)

 Forge.mil: Utilizing Open Source Methodologies Inside of Government 337

1.5 Conclusion

The implementation of Forge.mil provides a useful case study in how to apply Open
Source methodologies to internal development problems within corporations or
governments for maximum benefit. There are many challenges along the way, but a
collaborative approach can be utilized to overcome most stakeholder concerns and
issues.

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 338–347, 2011.
© IFIP International Federation for Information Processing 2011

Health Informatics: The Relevance of Open Source and
Multilevel Modeling

Luciana T. Cavalini1 and Timothy W. Cook2

1 Institute of Community Health, Fluminense Federal University (UFF)
Rua Marquês de Paraná, 303 - 3rd Floor Annex HUAP

Niterói, RJ – Brazil 24220-331
lutricav@vm.uff.br

2 National Institute of Science and Tecnology – Medicine Assisted by Scientific Computing
(INCT-MACC)

timothywayne.cook@gmail.com
http://www.mlhim.org

Abstract. Health information features significant spatial-temporal and domain
complexities, which brings challenges to the implementation of patient-
centered, interoperable and semantically coherent healthcare information
systems. This position paper supports the idea that the multilevel modeling
approach is essential to ensure interoperability at the semantic level, but true
interoperability is only achieved by the adoption of open standards, and open
source implementations are needed for promote competition based on software
quality. The Multilevel Healthcare Information Modelling (MLHIM)
specifications are presented as the fully open source multilevel modeling
reference implementation, and best practices for the development of multilevel-
based open source healthcare applications are suggested.

Keywords: Health informatics, open source software, multilevel modeling.

1 Introduction

The information related to human health is inherently complex at the intersections of
space, time and knowledge [17]. This complexity precludes the feasibility of one,
single, all encompassing electronic health record for individuals in a population, since
various pieces of information from a number of different applications may be needed
at any point in time [21]. Semantic interoperability is crucial in recording information
in purpose specific applications that need to synchronize to larger databases. This is
the way to provide useful information from the point of care to the healthcare services
in a timely manner [15].

Regarding public health, the typical turnaround time now for acquiring the
healthcare status of a population can be weeks or even months while experts pour
over the data and try to merge pieces from various applications and paper forms into
something meaningful [14]. By basing applications on a common information model
and using a constraint based approach to define the knowledge components, we can
achieve semantic interoperability and near real-time information regarding the

 Health Informatics: The Relevance of Open Source and Multilevel Modeling 339

healthcare status of a population and its individuals so that faster action can be taken
to meet the needs in that area. This approach also helps empowering application
developers at the local level, so they can develop healthcare applications fitted to the
very specific local needs without losing semantic coherence and interoperability with
other local services and with the highest levels of the healthcare systems [11].

Healthcare inequalities will not be easily solved by adopting 21st Century
healthcare based on 20th Century information systems [16]. There are no remaining
obstacles related to hardware, including mobile computing and pervasive medicine,
but software based on traditional data models are not fitted to deal with the significant
spatial and temporal complexities of healthcare information [4].

That is the case because health information systems based on traditional data
models are not interoperable and have high maintenance costs. These problems have a
significant negative impact on the use of these systems to the emerging situations and
dynamics currently found in healthcare [5,25]. In fact, the development of healthcare
applications is a complex challenge, especially given the large number of concepts in
constant evolution, which makes it difficult to reach a consensus on any concept [9].

Some solutions to these problems have been proposed over the past two decades,
such as the work of Yoder et al. [35]. However, the solution most fitted to the specific
features of healthcare information involves the separation between domain model and
persistence of data. This multilevel modeling approach proposes the definition of at
least two levels: the Reference Model, which defines generic types of data and data
structures and a Domain Model, defined by restrictions on the Reference Model [19].

Health information systems based on multilevel modeling are more easily
interoperable and can be implemented on any hardware. The adoption of a common
Reference Model and a Domain Model for different systems allows a transparent and
shareable interface with geographic information systems and statistical analysis tools
that can analyze information collected from various remote systems [22].

Nowadays, multilevel modeling specifications for healthcare information systems
are openly available and proven in software. Based on these specifications, it is
possible to develop healthcare applications centered on the citizen, with the capability
of recording longitudinal data [12].

Furthermore, decision support systems and standardized reports can be
implemented in the systems and still ensuring semantic interoperability at any level,
since the development of algorithms for decision support based on a common domain
model allows the reuse of decision rules in different implementations. Thus, in the
point and time of care, control measures can be implemented immediately, allowing
for greater effectiveness of healthcare and, at the governance level, larger areas can be
monitored and priority areas can be identified for intervention [2].

However, despite its technical advantages, multilevel modeling-based solutions
have not been widely implemented in real healthcare settings, except for some few
academic projects [6,20,24].

There is one aspect that is essential but seldom addressed regarding interoperability
of healthcare information systems, which is related to the modality of software
licensing. In fact, the general business model of proprietary software companies may
be considered unfriendly to interoperability, since the competition between companies
has the goal to establish hegemony or monopoly, in order to concentrate capital, and
that is based on the secrecy of the software source code. Actually, one can state there

340 L.T. Cavalini and T.W. Cook

is no proven interoperability without the development of, at least, open specifications,
since it is necessary for one system to be compliant to the other system's features that
are related to interoperability, and that can only be attained if the systems were
developed based on a common set of specifications. Thus, expanding this argument, it
is possible to deduce that a complete condition of interoperability between all systems
is only possible if they share a common set of specifications, at least at the level of
data extract exchange. Therefore, full interoperability requires open standards and
open source software [1,8].

This business model has not shown any differences when applied to healthcare.
Actually, it is stated that open standards facilitate competition between open source
software and proprietary software, since it allows the competition between different
implementations of the same specification [30]. This is a key issue related to software
quality, which is crucial in healthcare, since the quality of the software is directly
related to the quality of care [2].

Taking into account the centrality of open source and multilevel modeling to
ensure the development of high quality, citizen-centered, interoperable, semantically
coherent health information systems, our objective is to describe the essential features
of a open specification for multilevel healthcare information modeling, and to propose
a set of best practices for the development of healthcare applications based on those
specifications.

2 Method

2.1 Summary of the Specifications

The “Multilevel Healthcare Information Modelling” (MLHIM) specifications are a
fully open set of specifications for the development of health information systems
based on multilevel modeling. The MLHIM documentation is published under the
Open Document Format (ODF) at http://www.mlhim.org.

The technological choices for the development of the MLHIM specifications were
made because of the distributed and diverse nature of healthcare information systems;
thus, its goal is interoperability and standardization is the path. The basis of MLHIM
are the dual-level openEHR specifications [3] and the healthcare-specific data types
as defined by the ISO 21090 standard. These specifications and standards are
articulated in a single specification, with the specific purpose of creating a path for
semantic interoperability among different health applications, including legacy
systems.

In the MLHIM specifications, the classes of the Reference Model are persistent
and should be kept as stable as possible over time. In the Domain Model, the
Constraint Definitions on the Reference Model provide the semantic interpretation of
the objects stored by the Reference Model.

The idea behind the multilevel modeling is that changes in structure and rules of
inference are reflected on the Constraint Definitions and not on the Reference Model.
Thus, change requests on the persistence mechanisms of the information systems are
reduced. Furthermore, the Constraint Definitions are created and edited by domain
experts and not by computer scientists, which avoids the need for interpretation of the

 Health Informatics: The Relevance of Open Source and Multilevel Modeling 341

knowledge extracted from an ad hoc interaction. Once the domain expert is
responsible for modeling the knowledge, concepts are thoroughly and accurately
expressed as Concept Constraint Definitions (CCDs).

This approach is compliant to the following standards developed by the
International Organization for Standardization (ISO):

- ISO/TS 18308:2004 - Health informatics - Requirements for an electronic
health record architecture;

- ISO/TR 20514:2005 - Electronic health record - Definition, scope and context;
- ISO 13606-1:2008 - Health informatics - Electronic health record

communication - Part 1: Reference model;
- ISO 13606-2:2008 - Health informatics - Electronic health record

communication - Part 2: Archetype interchange specification;
- ISO 13606-3:2009 - Health informatics - Electronic health record

communication - Part 3: Reference archetypes and term lists;
- ISO/TS 13606-4:2009 - Health informatics - Electronic health record

communication - Part 4: Security;
- ISO 13606-5:2010 - Health informatics - Electronic health record

communication - Part 5: Interface specification;
- ISO/FDIS 21090:2011 - Health informatics - Harmonized data types for

information interchange;

2.2 Knowledge Modeling

The MLHIM specifications adopt XML Schema Documents (XSDs) for the
elaboration of the Concept Constraint Definitions (CCDs). A CCD is a XSD file that
expresses a defined healthcare concept. This concept is expressed on the CCD as
constraint definitions on the MLHIM Reference Model.

XML is regarded as the most widely adopted solution to system interoperability
and semantic coherence; therefore, in order to fit its purposes, XML must be open
source [26]. There are some recent publications (since 2005) about the use of XML
Schema languages as an attempt to perform a posteriori standardization of data types
and metadata [28,32], development of templates for structured documents [27,35], or
any combination of the techniques cited above [10,13,29], what can be understood as
solutions to promote data interchange between one-level based information systems.

Some of those studies adopt the concept of the domain expert as the author of the
knowledge modeling [18]. Although that approach solves some of the semantic loss
derived from ad hoc interactions between the domain expert and the system
developer, it still does not ensure interoperability and semantic coherence for the
attempts of data interchange between one-level model applications.

On the other hand, the use of XML W3C Schemas for knowledge modeling based
on the dual-model ISO 13606 standard was tested and validated by Rinner et al. [31],
allowing semantic validation of knowledge components, conditional to the definition
of a “fully generic validation” provided by the Reference Model. On the other hand,
the authors describe the technical difficulties regarding the specific transformations
(or constraints) on the ISO 13606 Reference Model classes that are needed to express
a given healthcare concept. That suggests the need for a knowledge modeling editor,
which is a common concern for multilevel modeling projects [23,33].

342 L.T. Cavalini and T.W. Cook

In the MLHIM specifications, a Constraint Definition Designer has been developed,
using Mind Maps, which are proven efficient as concept definition tools [7]. XMind
(XMind Ltd.), an open source Mind Map editor, was used to build the CCD template
for the MLHIM Constraint Definition Designer. In this template, instead of using the
Mind Map nodes to directly constraint the domain concepts, they were defined as
classes of the MLHIM Reference Model, being the constraint definitions applied by
the specific arrangement of some classes required for a specific concept, and by
defining constraints on the attributes of those classes, expressed as sub-items of a given
Mind Map node. The resulting XMind file should be transformed into a XSD file,
which is the CCD for a particular healthcare concept and it can be validated against the
MLHIM Reference Model. Furthermore, it can be combined to other CCDs to inform
the development of Graphic User Interfaces for MLHIM-based applications. The
MLHIM Constraint Definition Designer is available at https://launchpad.net/cdd.

3 Application Development

This section proposes a set of best practices for the multilevel modeling-based
application development. The underlying reasoning expressed here is that
interoperability and semantic coherence are ensured by open specifications based on
multilevel modeling, such as the MLHIM specifications, which include a generic,
stable, standard-compliant Reference Model and the rules for the Concept Constraint
Definitions on the Reference Model. In order to increase the probability of building
CCDs that are valid against the MLHIM Reference Model, the Constraint Definition
Designer was devised as a CCD editing tool.

Any other particular feature such as the combination of CCDs in templates, the
definition of GUI, the choice of the object-oriented programming language and the
correspondent application framework, the choice of the No-SQL or object-oriented
database to persist the data and the query algorithms are considered as implementation
choices and do not interfere on the technical aspects regarding interoperability and
semantic coherence, already addressed in a comprehensive manner by the MLHIM
specifications.

However, in order to guarantee that the interoperability and the semantic coherence
ensured by the specifications will be attained by multilevel modeling-based systems,
it is necessary to develop high quality applications. Given this reasoning, a non
exhaustive set of best practices for healthcare application development based on
multilevel modeling is presented below.

3.1 Application Framework and Data Persistence

The MLHIM specifications provide the Open Source Health Information Platform
(OSHIP) (https://launchpad.net/oship), a open source implementation of the MLHIM
specifications. OSHIP is implemented in Eclipse Modeling Framework (EMF) (The
Eclipse Foundation), which allows code export to the main object-oriented languages,
such as Java, Python and Ruby. This raw code can be wrapped into many application
development frameworks based on those programming languages, allowing a wider
adoption of the specifications, since the application framework is not an additional
learning curve for the developers.

 Health Informatics: The Relevance of Open Source and Multilevel Modeling 343

Usually, the chosen application framework will guide the choice of the type of
database to be adopted for the persistence of data. It is important to notice that, since
the MLHIM specifications are object-oriented, the more obvious choice would be an
object-oriented database for data persistence. However, object-oriented databases may
present performance or query issues. Taking that technical difficulty into account, No-
SQL or hierarchical databases can be chosen instead, in order to circumvent those
technical complexities in real life applications, although the persistence of data
origined from MLHIM-based applications is trivial if an object-oriented database is
chosen.

3.2 Communication Layer

The communication layer is proposed to be built on any software component based on
distributed technology, available in object-oriented programming languages, running
on distributed or wireless communication networks. The association between the
layers of modeling and data communication can be done through a model-driven
approach. In this approach, the overall architecture of the system will be specified at a
high level, using an Architecture Description Language (ADL), implicitly or
explicitly annotated with the CCDs used in the data layer, allowing the development
of the Graphical User Interfaces, which are likely to be persisted in a database, and
which are communicated through the network from each system component. This
specification will therefore be the basis for the generation of code for different parts
of the application.

The proposed ADL library to be adopted is the ADL Acme
(http://www.cs.cmu.edu/~acme/). The library AcmeLib can be used as a basis for
building code generators for different parts of the application.

3.3 System Integration

The adoption of multilevel modeling for the development of healthcare applications
brings a great deal of flexibility for application developers. There is no need for the
development of a monolithic Electronic Medical Record (EMR) for the entire
healthcare setting, irregardless of its size and complexity (primary care, outpatient
clinic, hospital). Multilevel modeling allows the development of purpose-specific
applications, no matter how restricted the data is (which includes applications for
specialized scientific research); the data can be exchanged from any application to
any other, and the data extracts of both are still valid. However, some institutions
might require a higher level of system integration due to the specificities of its
particular workflow.

 In order to allow system integration, the use of a Service Oriented Architecture
(SOA) is proposed. SOA allows better integration between different languages and
platforms, which is necessary since MLHIM-based applications can be developed on
any object-oriented language. Additionally, SOA makes easier the management of
scalability, reusability, distribution and storage of applications. The development of
this application integration is proposed by the adoption of the Representational State
Transfer (REST) architectural style. In order to achieve system integration via REST,
it is proposed the use open source libraries for the development of clients and servers

344 L.T. Cavalini and T.W. Cook

based on REST with portability for the main object-oriented languages (e.g.,
Restfulie, RIP). Those libraries allow code breaking so that it creates a very flexible
service that is able to evolve with minimal change on the client side. Thus, it is
possible to integrate different applications developed in different languages and
platforms in a cost-effective way, reducing risks and costs associated with traditional
system integration tasks.

3.4 Decision Support

The C Language Inference Processing System (CLIPS) is proposed as the inference
mechanism for the development of decision support algorithms in MLHIM-based
applications. CLIPS provides important benefits for the development of decision
support engines in healthcare systems for the following reasons: (a) it supports a
forward-chaining (or data-driven) mode of processing inference rules, which means
that whenever new data become available, all available states of the system are
checked again, and (b) it provides a powerful applications programming interface in
C/C++, which allows, for the processing of a rule, the addition of routines that are
interactive with the user and the management of dependencies between the actions of
dynamic control. Both features are essential for modeling rules for dynamic scenarios
such as healthcare. In addition, CLIPS supports multiple persistence layers, allowing
a fully object-oriented system design, essential for information systems based on
multilevel modeling.

3.5 Data Aggregation and Business Intelligence

It is proposed that the preparation of reports based on aggregated data from the local
level to regional and national levels be based on the Statistical Data and Metadata
Exchange - Health Domain (SDMX-HD) specifications, which are being developed
under the auspices of the World Health Organization (WHO) for the standardization
of aggregate data formats, in order to facilitate the exchange of statistical
measurements and health indicator definitions. These specifications are inspiring
some of the requirements of ISO 14639 - eHealth Architecture (now at the stage of
Draft Technical Report).

For the execution of Business Inteligence (BI) tasks, open source solutions such as
the Pentaho BI tool (http://www.pentaho.com) (Pentaho Corporation) are suggested
for the preparation of pre-defined management reports, monitoring reports, custom
data analysis, data aggregation and formatting data for export to legate management
systems required by national and regional healthcare authorities that are not compliant
to the SDMX-HD specifications.

4 Conclusions

The issues regarding interoperability and semantic coherence are more relevant for
health information systems than for any other economic sector of the society. That is
so due to the need for the maintenance of the citizen's longitudinal health record all
through his life. However, the extreme conceptual, spatial and temporal dynamics of

 Health Informatics: The Relevance of Open Source and Multilevel Modeling 345

the healthcare activities require a high level of diversity between information systems
for different healthcare settings and purposes.

Traditional one-level data model applications, which fit the needs of almost any
other economic activity of human society are being used for 45 years in the healthcare
sector and have not been able to provide a citizen-centered, interoperable and
semantically coherent health record.

Over the last 20 years, multilevel modeling specifications have been developed in
order to address those important issues. Over that development process, it became
evident that true interoperability will only be achieved if the multilevel modeling
specifications were openly available. The implementation of the multilevel
specifications in open source software has the potential to increase the competition for
the development of good quality software, which is critical in the healthcare sector.

This paper presented the state of the art of the open source multilevel modeling that
are currently available, which demonstrates the practical possibility of development of
open source healthcare applications based on multilevel modeling. Thus, by
contributing to those projects, the open source community can help improving the
quality of healthcare on a global basis.

References

1. Almeida, F., Oliveira, J., Cruz, J.: Open standards and open source: enabling
interoperability. Int. J. Soft. Eng. App. 2(1) (2011), doi:10.5121/ijsea.2011.2101

2. Ammenwerth, E., Shaw, N.: Bad informatics can kill: is evaluation the answer? Methods
Inf. Med. 44(1), 1–3 (2005)

3. Barretto, S.A., Warren, J., Goodchild, A., Bird, L., Heard, S., Stumptner, M.: Linking
guidelines to Electronic Health Record design for improved chronic disease management.
In: AMIA Annu. Symp. Proc., pp. 66–70 (2003)

4. Beale, T., Heard, S.: openEHR Architecture overview. openEHR Foundation, London
(2008)

5. Blobel, B.: Comparing concepts for electronic health record architectures. Stud. Health
Technol. Inform. 90, 209–214 (2002)

6. Cantiello, J., Cortelyou-Ward, K.H.: The American Recovery and Reinvestment Act:
lessons learned from physicians who have gone electronic. Health Care Manag
(Frederick) 29(4), 332–338 (2010)

7. Chen, R., Klein, G.: The openEHR Java reference implementation project. Stud. Health
Technol. Inform. 129(Pt 1), 58–62 (2007)

8. D’Antoni, A.V., Zipp, G.P., Olson, V.G., Cahill, T.F.: Does the mind map learning
strategy facilitate information retrieval and critical thinking in medical students? BMC
Med. Educ. 10, 61 (2010)

9. Dutton, W.: Key enablers for eTransformation? eID, interoperability and open source. Eur.
J. ePractice 6, 2 (2009)

10. Eccles, M., Mason, J.: How to develop cost-conscious guidelines. Health Technol.
Assess. 5(16), 1–69 (2001)

11. Gao, S., Mioc, D., Yi, X., Anton, F., Oldfield, E., Coleman, D.J.: Towards web-based
representation and processing of health information. Int. J. Health Geographics 8, 3 (2009)

12. Garde, S., Chen, R., Leslie, H., Beale, T., McNicoll, I., Heard, S.: Archetype-based
knowledge management for semantic interoperability of electronic health records. Stud.
Health Technol. Inform. 150, 1007–1011 (2009)

346 L.T. Cavalini and T.W. Cook

13. Garde, S., Knaup, P., Hovenga, E., Heard, S.: Towards semantic interoperability for
electronic health records. Methods Inf. Med. 46(3), 332–343 (2007)

14. Hägglund, M., Scandurra, I., Moström, D., Koch, S.: Bridging the gap: a virtual health
record for integrated home care. Int. J. Integr. Care 7, 26 (2007)

15. Hammond, W.E., Bailey, C., Boucher, P., Spohr, M., Whitaker, P.: Connecting
information to improve health. Health Aff. (Millwood) 29(2), 284–288 (2010)

16. Haughton, J.: Look up: the right EHR may be in the cloud. Major advantages include
interoperability and flexibility. Health Manag. Technol. 32(2), 52 (2011)

17. Haux, R.: Medical informatics: past, present, future. Int. J. Med. Inform. 79(9), 599–610
(2010)

18. Hudson, D.L.: Cohen ME. Uncertainty and complexity in personal health records. In:
Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 6773–6776 (2010)

19. Hulse, N.C., Rocha, R.A., Del Fiol, G., Bradshaw, R.D., Hanna, T.P., Roemer, L.K.: KAT:
A flexible XML-based knowledge authoring environment. J. Am. Med. Inform. Assoc. 12,
418–430 (2005)

20. Kalra, D., Beale, T., Heard, S.: The openEHR Foundation. Stud. Health Technol.
Inform. 115, 153–173 (2005)

21. Kashfi, H.: An openEHR-based clinical decision support system: a case study. Stud. Health
Technol. Inform. 150, 348 (2009)

22. Kelley, J.: The interoperability hang-up. When it comes to information exchange, how
should precede what. Health Manag. Technol. 32(2), 32–34 (2011)

23. Kohl, C.D., Garde, S., Knaup, P.: Facilitating secondary use of medical data by using
openEHR archetypes. Stud. Health Technol. Inform. 160(Pt 2), 1117–1121 (2010)

24. Maldonado, J.A., Moner, D., Bosca, D., Fernandez-Breis, J.T., Angulo, C., Robles, M.:
LinkEHR-Ed: a multi-reference model archetype editor based on formal semantics. Int. J.
Med. Inform. 78(8), 559–570 (2008)

25. Martinez-Costa, C., Menarguez-Tortosa, M., Fernandez-Breis, J.T.: An approach for the
semantic interoperability of ISO EN 13606 and OpenEHR archetypes. J. Biomed.
Inform. 43(5), 736–746 (2010)

26. Michelsen, L., Pedersen, S.S., Tilma, H.B., Andersen, S.K.: Comparing different
approaches to two-level modelling of electronic health records. Stud. Health Technol.
Inform. 116, 113–118 (2005)

27. Neeser, A.E.: XML: The open source solution to interoperability. Open Lib. Class J. 1(2)
(2009),
http://www.infosherpas.com/ojs/index.php/openandlibraries/ar
ticle/view/31/40 (accessed on March 6, 2011)

28. Norlin, C., Kerr, L.M., Rocha, R.A.: Using clinical questions to structure the content of a
web-based information resource for primary care physicians. In: AMIA Symp. Proc., pp.
482–486 (2009)

29. Paterson, T., Law, A.: An XML transfer schema for exchange of genomic and genetic
mapping data: implementation as a web service in a Taverna workflow. BMC
Bioinformatics 10, 252 (2009)

30. Qian, Y., Tchuvatkina, O., Spidlen, J., Wilkinson, P., Gasparetto, M., Jones, A.R., Manion,
F.J., Scheuermann, R.H., Sekaly, R.P., Brinkman, R.R.: FuGEFlow: data model and
markup language for flow cytometry. BMC Bioinformatics 10, 184 (2009)

31. Reynolds, C.J., Wyatt, J.C.: Open Source, open standards, and health care information
systems. J. Med. Internet Res. 13(1), e24 (2011)

 Health Informatics: The Relevance of Open Source and Multilevel Modeling 347

32. Rinner, C., Janzek-Hawlat, S., Sibinovic, S., Duftschmid, G.: Semantic validation of
standard-based electronic health record documents with W3C XML schema. Methods Inf.
Med. 49(3), 271–280 (2010)

33. Seibel, P.N., Krüger, J., Hartmeier, S., Schwarzer, K., Löwenthal, K., Mersch, H.,
Dandekar, T., Giegerich, R.: XML Schemas for common bioinformatic data types and
their application in workflow systems. BMC Bioinformatics 7, 490 (2006)

34. Sundvall, E., Qamar, R., Nystrom, M., Forss, M., Petersson, H., Karlsson, D., Ahlfeldt, H.,
Rector, A.: Integration of tools for binding archetypes to SNOMED CT. BMC Med.
Inform. Decis. Mak. 8(suppl. 1), S7 (2008)

35. Yoder, J.W., Balaguer, F., Johnson, R.: Architecture and design of adaptive object-models,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.
9077&rep=rep1&type=pdf

36. Zhao, L., Lee, K.P., Hu, J.: Generating XML Schemas for DICOM structured reporting
templates. J. Am. Med. Inform. Assoc. 12, 72–83 (2005)

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 348–367, 2011.
© IFIP International Federation for Information Processing 2011

Open Source Software for Model Driven Development:
A Case Study

Jonas Gamalielsson1, Björn Lundell1, and Anders Mattsson2

1 University of Skövde, Skövde, Sweden
{jonas.gamalielsson,bjorn.lundell}@his.se

2 Combitech AB, Jönköping, Sweden
anders.mattsson@combitech.se

Abstract. Model Driven Development (MDD) is widely used in the embedded
systems domain, and many proprietary and Open Source tools exist that support
MDD. The potential for sustainability of such tools needs to assessed prior to
any organisational adoption. In this paper we report from a case study
conducted in a consultancy company context aiming to investigate Open Source
tools for MDD. For the company it was interesting to explore the two Open
Source modelling tools Topcased and Papyrus for potential adoption. The focus
for our case study is on assessing the health of the ecosystems for the two
investigated Open Source projects by means of quantitative analysis of
publically available data sources about Open Source projects. The health of
ecosystems is an important prerequisite for a long term sustainable OSS (Open
Source Software) tool-chain in the MDD area, which can aid strategic decision
making for potential adoption within a company context. We have established
details on the extent to which developers and users are active in two specific
OSS ecosystems, and identified organisational influence for both ecosystems.
We find that the investigated tools are promising regarding the health of their
ecosystems, and a natural next step for the company would be to proceed with a
pilot study in order to analyse the effectiveness of the investigated tools in
company contexts.

1 Introduction

Despite the existence of many tools supporting Model Driven Development (MDD),
there is currently a lack of reported case studies from MDD practice in industry
(Mattsson et al. 2009). Some of these tools are licensed as Open Source Software
(OSS). There are a number of different motivations for utilising OSS within
companies, and companies have adopted several different business models for
engaging in Open Source (Bonaccorsi and Rossi 2006; Lundell et al. 2010; van der
Linden et al. 2009). In fact, the majority of today’s innovative products and solutions
are developed on the basis of Open Source software (Ebert 2008). In recent years,
there has been an increased interest in OSS usage amongst practitioners in Swedish
companies, with an increased emphasis on active involvement in OSS projects
beyond passive use of OSS products (Lundell et al. 2010). In this paper we report
from an analysis of two MDD tools (Topcased (Topcased.org 2011a) and Papyrus

 Open Source Software for Model Driven Development 349

(Eclipse.org 2011a)) provided as Open Source software, with the goal to aid strategic
decision making for potential adoption within a company context.

Some of the contributors in the OSS projects are affiliated with companies that
provide support and consultant services related to the OSS projects at hand. On the
other hand, other contributors are affiliated with companies in the secondary software
sector (Fitzgerald 2006), i.e. companies with extensive software development in
domains such as avionics, automotive, telco, etc., but whose main goal is not to
provide services to OSS projects. For companies in such domains, developed
solutions often require long term maintenance, something which developers in this
area see “as fundamentally important” (Lundell et al. 2011). For example, support for
products in the avionics domain will often last for more than 70 years (Robert 2007).
Further, previous results from the embedded systems area show that support from
large OSS communities is “considered superior compared to proprietary alternatives
in some cases.” (Lundell et al. 2011)

In recent years we have seen a commodification in software development (van der
Linden et al. 2009), and many companies in the secondary software sector develop
and are dependent upon a large amount of software which do not give a competitive
advantage. For such commodity software, many large and small companies seek to
leverage from the Open Source licensing model in their collaboration on commodity
software. An example of such commodity software is the Eclipse platform, which
constitutes the basis for many Open Source licensed development tools (West 2003).

Before an organisation adopts an Open Source project it is important to evaluate its
ecosystem in order to make sure that it is healthy and that the project is likely to be
sustainable and maintained for a long time (van der Linden et al. 2009). One
important means in such an evaluation is to quantitatively assess the health of an
Open Source community (Crowston and Howison 2006). A number of studies have
investigated large, well known Open Source projects through quantitative analysis,
including the Linux kernel (Moon and Sproull 2000), Apache (Mockus et al. 2002),
Mozilla (Mockus et al. 2002), Gnome (German 2004) and KDE (Lopez-Fernandez et
al. 2006). Such quantitative assessment includes, but is not limited to, analysis of data
from: Software Configuration Management (SCM) systems such as CVS and SVN
(Lopez-Fernandez et al. 2006; Gamalielsson and Lundell 2010), mailing lists (Kamei
et al. 2008; Gamalielsson et al. 2010), and bug tracking systems (Crowston and
Howison 2005; Mockus et al. 2002).

Our study is undertaken as a case study conducted in a medium sized consultancy
company active in the embedded systems domain. The goal has been to investigate
the two Eclipse-based Open Source projects Topcased and Papyrus for potential
company adoption. Specifically, the aim is to reveal insights concerning the health of
the ecosystems of the two OSS projects as this constitutes an important basis for
strategic decision making within the company.

2 Research Approach

In this paper we report from a case study conducted within the consultancy company
Combitech AB (hereafter referred to as Combitech), which is a company working
with advanced systems design and software development, electronic engineering,
process optimisation, and staff training. It has approximately 800 employees and

350 J. Gamalielsson, B. Lundell, and A. Mattsson

covers a broad spectrum of business areas such as defence, aviation, automotive,
medical and telecoms.

The company has a long experience of systematic method work and model-based
system development. In several development projects, UML is used (e.g., Mattsson et
al. (2009)), but other modelling techniques are used as well. The company has
experience from use of three major case tools supporting both UML and time-discrete
modelling: Rose Realtime® (from IBM), Rhapsody® (from IBM and previously i-
Logix), and TAU® (from Telelogic). Combitech has an interest in exploring the
potential of the Eclipse platform and Open Source tools to complement (and possibly
replace) its current tool suite.

For Combitech it was interesting to explore the two Open Source modelling tools
Topcased (Topcased.org 2011a) and Papyrus (Eclipse.org 2011a) for potential
adoption. A motivation for conducting a study involving Papyrus and Topcased is that
both tools are based on the Eclipse Modelling Framework (EMF). With an
organisational adoption of EMF, it will be possible to exchange models between the
many tools supporting EMF, thus minimising the risk for lock-in and enabling
integration of tools to support company development practices with effective tool
chains. Further, initial use of Topcased within the company context was a positive
experience, which increased the interest in further exploration.

Topcased is a software environment primarily intended for development of critical
embedded systems encompassing both software and hardware. It promotes the use of
model-driven engineering and formal methods. Topcased stems from an industrial
R&D project (Lundell et al. 2008), and is released as Open Source by a partner group
where members originate from various organisations. According to Eclipse.org
(2010), Topcased “is backed by some major industrial players”. At time of writing
(January 2011), the project contains approximately 8000 source code files. 71% of
these are Java files, in total containing 1.2 MLOC (excluding comments and blank
rows) (Ohloh.net 2011a).

Papyrus is a graphical editing tool for models in languages such as UML, SysML
and MARTE. Papyrus was included in the MDT (Model Development Tools)
subproject of the Eclipse platform in January 2009. The project currently contains
approximately 9400 source code files, where 73% of these are Java files which in
total contain 2.3 MLOC (Ohloh.net 2011b).

To guide the decision on whether to engage in any of the ecosystems for the two
projects, Combitech wanted to establish that the projects are likely to be sustainable
and maintained for a long time. This was considered important since any
organisational adoption of an OSS MDD tool-chain implies a long-term commitment
which affects working practice within the company. Specifically, three aspects of
ecosystem health were considered important: activity in ecosystems; company
influence in ecosystems; and interaction between ecosystems for the two OSS projects
(Topcased and Papyrus). The company interest in these three aspects of ecosystem
health is in line with previous research (Crowston and Howison 2006; German 2004;
Gamalielsson et al. 2010).

To investigate the activity in ecosystems, we analysed the contributions in terms of
committed SCM artefacts of the Open Source projects over time (from start of
projects to August 2010). To investigate the company influence in ecosystems, we
analysed over time the extent to which different contributors are affiliated with
different companies. The interaction between ecosystems was assessed by studying

 Open Source Software for Model Driven Development 351

contributors that are active in both projects. The data for Topcased was collected from
the Gforge website for the project (http://gforge.enseeiht.fr/projects/topcased,
accessed 10 September 2010), and for Papyrus the data was collected from the
Eclipse website for the project (http://www.eclipse.org/projects/project_summary
.php?projectid=modeling.mdt.papyrus, accessed 10 September 2010).

3 Results

This section presents results on the activity in the two OSS projects Topcased and
Papyrus, an analysis of how different contributors are affiliated with different
companies, and the interaction between the two ecosystems.

3.1 Activity in Ecosystems

The activity in ecosystems is an important factor that reflects the health and long term
sustainability of OSS projects, and we therefore studied each project separately in
terms of the extent of contributions to SCM repositories, mailing lists, and forums
over time.

The number of commits for Topcased as a function of time is shown in Figure 1.
The first commits were made in November 2004 and the last month studied is August
2010 (70 months in total). It can be observed that a major part of the commits are
code commits (red trace), constituting on average 60% of the total number of commits

Fig. 1. Topcased: number of commits

352 J. Gamalielsson, B. Lundell, and A. Mattsson

(blue trace). Another fact is that some peaks (e.g. November 2005, November 2006
and July 2008) co-occur with events in the project version history shown in Table 1. It
can be noted that there has been a large number of releases since the start of the
project.

The number of messages contributed to the developer- and user mailing lists of
Topcased is illustrated in Figure 2. Like in Figure 1, the peaks can be related to
the version history in Table 1. It can be noted that there is elevated activity in
the developer list around May 2005 (before the initial release) and also at the time of
the initial release (October 2005) and version 2.0.0 (July 2008). Similarly, peaks in
the user mailing list often co-occur with events in the version history (e.g. September
2006, May 2007 and May 2009). Some peaks in Figure 2 also co-occur with peaks in
Figure 1 (e.g. October 2006, July 2008 and April/May 2009). The average number of
postings each month is 21 for the developer mailing list and 67 for the user mailing
list, which shows that there is more activity on average in the user mailing list.

The number of commits for Papyrus as a function of time is shown in Figure 3.
SCM data for this project spans from January 2009 to August 2010 (20 months in
total). It can be noted that code artefacts are dominating (79% of total number of
commits). The commit activity is high during the entire period of study, and the three
largest peaks occur in February 2009, December 2009 and July 2010. The first two of
these peaks do not co-occur with events in the version history of Papyrus (see table
2), but the last peak co-occurs with the release of version 0.7. So far, there has only
been a few releases of the tool.

Fig. 2. Topcased: number of messages in developer- and user mailing lists

 Open Source Software for Model Driven Development 353

Table 1. Topcased: version history

Date (Y-M-D) Release
2005-10-11 Initial
2005-11-17 0.6.0
2006-01-24 0.7.0
2006-03-17 0.8.0
2006-06-07 0.9.0
2006-09-20 0.10.0
2006-11-08 0.11.0
2007-05-29 1.0.0M4.1
2007-08-11 1.0.0
2007-11-26 2.0.0M3
2007-12-07 1.2.0
2008-01-20 2.0.0M4
2008-02-20 1.3.0
2008-03-03 2.0.0M5
2008-04-19 2.0.0M6
2008-07-18 2.0.0
2008-09-01 2.1.0
2008-11-06 2.2.0
2009-01-07 2.3.0
2009-03-16 2.4.0
2009-05-07 2.5.0
2009-07-27 3.0.0 & 2.6.0
2009-09-28 3.1.0
2009-12-03 3.2.0
2010-03-22 3.3.0
2010-06-02 3.4.0
2010-06-21 3.4.1
2010-07-23 4.0.0

Fig. 3. Papyrus: number of commits

354 J. Gamalielsson, B. Lundell, and A. Mattsson

The number of messages contributed to the developer mailing list and forum of
Papyrus is illustrated in Figure 4. It can be observed that the two largest peaks for the
developer mailing list co-occur with the initial- (November 2008) and second
milestone release (October 2009) of Papyrus. The peaks for the forum are less
distinct. The average number of postings each month is 47 for the developer mailing
list and 27 for the forum, which shows that there is more activity on average in the
developer mailing list.

Table 2. Papyrus: version history

Date (Y-M-D) Release
2008-11-25 Initial
2009-09-18 0.7M1
2009-10-16 0.7M2
2010-07-14 0.7

Fig. 4. Papyrus: number of messages in developer- and user mailing lists

3.2 Influence in Ecosystems

It was previously known to Combitech that company influence over time can affect
the long term sustainability of a project, and we therefore studied each project
separately in terms of contribution and affiliation.

Figure 5 illustrates the proportion of SCM commits for the eight different
affiliations for Topcased. It can be observed that different affiliations are dominating

 Open Source Software for Model Driven Development 355

in different time periods. Affiliations are also ranked from most influential over all
time (A1) to least influential (A8). Affiliation A1 (blue) is dominating from
November 2004 until August 2008, whereas A2 (red) and A3 (green) together largely
dominate from September 2008 until August 2010. The remaining affiliations (A4
through A8) are considerably less influential. The orange colour represents unknown
affiliations.

Figure 6 shows the corresponding proportion of SCM commits for the six different
affiliations for Papyrus. Like for Topcased, affiliations are ranked from most
influential over all time (A9) to least influential (A12). It can be noted that A9 is the
most influential affiliation over all time, and is dominating during most months. A2
(which was also active in Topcased) is active from April 2009 until August 2010, and
is dominating during some months. A4 (also active in Topcased) is the third most
influential affiliation, and is dominating in April and May 2009.

Fig. 5. Topcased: Proportion of commits per affiliation over time

Figure 7 illustrates the total proportion of SCM contributions for different
affiliations in Topcased (left pie chart) and Papyrus (right pie chart). It is evident that
for both projects, one single affiliation is clearly dominating (A1 for Topcased with
76% of the commits, and A9 for Papyrus with 68% of the commits). For both
Topcased and Papyrus, the three most influential affiliations account for
approximately 95% of the commits.

356 J. Gamalielsson, B. Lundell, and A. Mattsson

Fig. 6. Papyrus: Proportion of commits per affiliation over time

Fig. 7. Total affiliation commit influence (left pie: Topcased, right pie: Papyrus)

The affiliations can be classified into different affiliation types: Small and Medium
Enterprise (SME), Large Company (LC) and Research Institute (RI), see Table 3.

 Open Source Software for Model Driven Development 357

Table 3. Affiliation type (rows) for affiliations (columns)

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
SME X X X X X X
LC X X X X
RI X X

The proportion of SCM commits for different affiliation types is illustrated in

Figure 8 for Topcased. It can be observed that SME (blue) is dominating from
November 2004 until August 2008, whereas “large company” (red) largely dominates
from September 2008 until August 2010.

Figure 9 shows the corresponding proportions of SCM commits for Papyrus. It is
evident that the most influential affiliation is “research institute” (brown), which is
active during all months and dominating during the majority of the months. SME
(blue) is most active, and dominating, in April and May 2009. “Large company” (red)
is active from April 2009 until August 2010, and is occasionally dominating.

Fig. 8. Topcased: number of commits for different affiliation types

Figure 10 illustrates the total proportion of SCM contributions for different
affiliation types in Topcased (left pie chart) and Papyrus (right pie chart). It is evident
that for both projects, one single affiliation type is dominating (SME for Topcased
with 78% of the commits, and “research institute” for Papyrus with 71% of the
commits). It is interesting to note that “large company” has the same proportion of
commits (21%) for both projects.

358 J. Gamalielsson, B. Lundell, and A. Mattsson

Fig. 9. Papyrus: number of commits for different affiliation types

Fig. 10. Total affiliation type commit influence (left pie: Topcased, right pie: Papyrus)

The influence can also be studied at committer level. The number of SCM commits
from the top committers (those who have made largest proportion of commits over all
time) in Topcased as a function of time, is shown in Figure 11. It can be observed that
the single most influential committer (blue trace) is dominating in several periods and

 Open Source Software for Model Driven Development 359

Fig. 11. Topcased: number of commits for top committers

Fig. 12. Papyrus: number of commits for top committers

360 J. Gamalielsson, B. Lundell, and A. Mattsson

contributes 56% of all commits. The top three committers (red trace) and top five
committers (green trace) largely follow the trace of all commits (purple colour), and
contribute 78% and 84% of all commits, respectively.

The number of SCM commits from the top developers in Papyrus is illustrated in
Figure 12. It can be noted that the single most influential committer (blue trace) is
dominating during the first three months, but is thereafter less influential, and
contributes 28% of all commits. Further, there is a bigger difference between the
contribution from the top three and top five committers, who contribute 60% and 78%
of all commits, respectively.

3.3 Interaction between Ecosystems

For Combitech it was interesting to investigate the extent to which individual
developers contribute to both OSS projects over time. Such insights may indicate
future relevance of the projects for Combitech since both projects are likely to benefit
from exchange of expertise, which in turn can increase innovation in the projects.

Figures 13 and 14 show the contribution of the inter-project committers for
Topcased and Papyrus during the life span of both projects. For example, Figure 13
shows that 38% of all (160 of totally 416) commits to Topcased in April 2009 stem
from developers active in both projects. There are four committers that are active in

Fig. 13. Topcased: total number of commits and contribution by inter-project committers
(during the life span of Papyrus)

 Open Source Software for Model Driven Development 361

both projects during the life span of the projects. These committers are all affiliated
with A2 (a large company), and contribute 33% of all commits in Topcased (from
January 2009, i.e. during the life span of both projects) and 21% of all commits in
Papyrus. At affiliation level, A4 (an SME) is also active in both projects (as indicated
in e.g. Figure 7), but with different committers in the two projects. The results
indicate that there is considerable interaction between ecosystems, as a large
proportion of the commits each month is provided by developers active in both
projects. However, from our limited analysis of the time period for both projects it is
difficult to establish any current and future trends in interactions between projects.

Fig. 14. Papyrus: total number of commits and contribution by inter-project committers

4 Analysis

There are a number of reasons for considering adoption of Open Source tools in a
commercial context. For Combitech, development process optimisation based on
MDD technology is an important service. This service is today mostly based on
proprietary tools. Complementing this with Open Source tools would potentially have
several benefits:

• Possibility to influence the development of the tool by contributing to the
development. This could enable better support for the processes that
Combitech is offering its customers to deploy.

362 J. Gamalielsson, B. Lundell, and A. Mattsson

• Possibility to sell new services around the tool, for example custom made
adaptations and bug fixing support.

• Today when offering tool experts, Combitech has a natural disadvantage
towards the vendor of the tool which would not exist with an Open Source
tool.

• The license cost for proprietary tools targeted towards the embedded market
with full code generation capabilities is very high and can be a barrier hard to
overcome for companies considering employing MDD. Being able to offer
tooling with no license cost could be a door-opener to new customers.

• Eliminating the license cost needed for training courses in MDD technology.
Today this cost makes it too expensive to offer these as open courses, they
are only offered as customer specific courses held at customer sites with
customer owned licenses.

• Combitech also works as a subcontractor developing software/hardware
systems to customers. Eliminating license cost would make these services
more competitive.

• The possibility to work in OSS development projects could be used to attract
and keep developers to the company and act as an important part in their
competence development.

In addition to these potential benefits from adoption of Open Source tools for MDD in
the company context, it is also important for Combitech to consider the extent to
which Topcased and Papyrus are likely to be sustainable and maintainable for a long
time.

Considering the developer and user activity in the two projects, the co-occurence
of peaks in the activity diagrams and events in the version history of the projects is
not surprising, since it is expected that commits are performed in SCM repositories
and that different matters are discussed in mailing lists in connection with new
releases. However, this behaviour also indicates that there is a collaborative effort
involved and that the community is responsive.

The activity in mailing lists and forums is rather limited for both investigated
projects in contrast with other OSS projects like Nagios (IT infrastructure monitoring
software) and the Apache webserver. For the corresponding user mailing lists in
Nagios and Apache there are between 10 and 33 times as many messages each month
according to Gamalielsson et al. (2010) and data from Gmane (http://gmane.org,
accessed 7 January 2011). For the corresponding developer mailing lists there are
between two and 19 times as many messages each month. However, Nagios and
Apache, two projects aimed at the monitoring and operation of IT infrastructure, are
more established projects with a broader user base. Another reason for the limited
mailing list activity for the investigated tools may be extensive internal usage within
organisations and also that other communication channels are used apart from public
mailing lists and forums. Further, the maturity level of the projects may affect the
activity in mailing lists.

Our analysis of the two OSS projects suggests that there is significant development
involvement by companies and research institutes. This is in stark contrast with
several other Open Source projects, where this kind of involvement is more limited,
for example the projects Nagios, Mono and Evolution (Gamalielsson et al. 2010;

 Open Source Software for Model Driven Development 363

Martinez-Romo et al. 2008). For the Topcased project there was a clear shift in
affiliation amongst participants at a given point in time, where an SME that had been
dominating since the start of the project was replaced by two dominating large
companies. This shift of domination has also been observed in the Open Source
project “Open XML/ODF translator” (Gamalielsson and Lundell 2010), where an
SME was initially dominating but later replaced by another (somewhat larger) SME
and a large company. A large company is backing up this project, and has also
provided the specification for the tool. In the case of the investigated Papyrus project,
committers affiliated with SMEs were also active early in the project, and large
companies became more influential later on. The findings regarding contribution by
affiliation may suggest that large companies engage in OSS projects with increased
maturity and after initial releases of the tools.

From the results it is also evident that few committers contribute a large proportion
of the commits. This is in agreement with the previous finding that “the vast majority
of mature OSS programs are developed by a small number of individuals”
(Krishnamurthy 2002), where it was found that the median number of developers was
4. As a comparison, the top five developers for Topcased and Papyrus contributed
84% and 78% of the commits, respectively. Further, Papyrus has more committers
than the average incubator project on the Eclipse platform, as evidenced when
comparing our results to a previous analysis of 23 incubator projects (Duenas et al.
2007).

There has been regular and frequent releases of the tools, and from the results we
can not observe any decline in activity. On the contrary, it is likely that the interest
and user base for the tools will increase in the future. One reason for this is that
Papyrus is still in the “incubation phase” (Eclipse.org 2011b), but based on the current
status of the project it is likely to be promoted to the mature phase soon, which in turn
most likely will lead to an increased user base. It has also been reported that there is
an on-going integration and consolidation effort of a number of Eclipse-based tools
and technologies, which includes but is not limited to, Topcased and Papyrus
(Eclipsecon.org 2010). An indication of this is our finding that several committers
from the same large company contribute significantly to both projects. It is also a fact
that an SME is active in both projects, but with different committers. The integration
and consolidation effort could potentially lead to increased uptake within companies
in the embedded systems domain.

Organisations that want to use/adopt OSS-based MDD tools need to engage in the
ecosystems of the projects (Eclipse.org 2010). For our analysis of the two tools we
found that both projects have a strong commercial involvement. Earlier experience
(Lundell et al. 2010) from the Swedish context has identified a difference in the
“collaboration climate between projects that have a strong commercial involvement
and those that are more ‘traditional’, community-driven OS projects”. Professional
developers in Swedish companies developing with Open Source have also expressed
concerns regarding a potential risk that a project is too strongly goal driven, leading to
that “the fun and enthusiasm for those participating on a voluntary basis can
disappear” (Lundell et al. 2010). In order to investigate the collaborative climate in
each ecosystem, it would necessitate genuine interaction with each project in a pilot
study. Without such it would be difficult to assess whether the collaborative climate

364 J. Gamalielsson, B. Lundell, and A. Mattsson

in the Topcased and Papyrus ecosystems is congruent with existing work practices in
the company.

In summary, our analysis suggests that both projects have healthy ecosystems, with
an active base of developers and users. Despite a seemingly commercial drive, both
projects seem to have developers representing an appropriate mix of different kinds of
organisations involving the secondary software sector. This, in turn, can significantly
contribute to long term sustainability for the OSS projects. For Combitech it is
interesting to note that a number of practitioners representing large companies in the
embedded systems domain have shown interest in Topcased, as evidenced by
practitioner presentations at an industrial conference (Topcased.org 2011b). Further,
in a consultancy report on the analysis of OSS-based MDD tools prepared on behalf
of a large company in the embedded systems domain, a number of tools (including
Topcased and Papyrus) were found promising and a more in-depth investigation of
these was recommended (Eclipse.org 2010). In the same report it is also stated that of
“particular interest and relevance is the TOPCASED project ...”. In terms of
functionality, the report also points out that “MDT Papyrus is still quite far from
being ready for prime time, and would perhaps require additional attention and
investment ...” (Eclipse.org 2010). This view is something which needs to be
investigated in a pilot project within the organisation before adoption.

Our specific assessment of the health for two Open Source communities may have
broader implications for evaluation and assessment of software systems. Evaluation of
software systems has many dimensions and it is widely acknowledged to be a
complex activity (Lundell and Lings 2004). Our specific strategy used for assessing
health of Open Source ecosystems has certain similarities with, and may contribute to,
previously proposed approaches (e.g. OpenBRR, QSOS, OMM) for evaluation and
assessment of Open Source projects (Petrinja et al. 2010). Common to all these are
that they are based on an a-priori evaluation framework (Lundell and Lings 2004).
For example, QSOS features an intrinsic durability category which includes metrics
such as activity on releases and number of developers. Similarly, OMM has number
of commits and bug reports as metrics. Our activity analysis goes beyond previously
presented approaches in that we elaborate on more intricate aspects such as affiliation
and organisation types in our activity analysis. Further, a number of research projects
(e.g. Flossmetrics and QualOSS) have systematically analysed OSS projects and as
part of this proposed certain metrics (Daffara 2009).

5 Conclusion and Future Work

Prior to the initiation of this case study, the company explored the functionality
offered in a number of Open Source MDD tools for the Eclipse platform for potential
company adoption. The focus for this case study has been to explore the sustainability
of the ecosystems for the two Open Source projects Topcased and Papyrus.

Overall, we found that both projects are active as evidenced by contributions in
SCM repositories, mailing lists and forums. There seems to be an appropriate mix of
professional organisations (SMEs, large companies and research institutes) involved
in the development of the projects, and developers from one large company are active
in both projects. From this we note that both Open Source projects have promising

 Open Source Software for Model Driven Development 365

health in their respective ecosystems. Our analysis shows that it is likely that the
external user base of the projects will increase over time as the projects mature and as
a consequence of the on-going integration and consolidation effort of Eclipse-based
tools and technologies. However, having studied two Open Source projects that have
existed for less than a decade, only time can tell whether they are still active after
several decades.

A limitation in our study concerning assessment of the user base is that we only
consider publicly available project data in our analysis. From previous studies it is
known that many large companies adopt and use Open Source software internally
within their own organisational context. This is of particular importance in this
domain with its very long life cycles. Further, we note that there is a lack of
documented evidence that report on usage of OSS-based MDD tools in company
contexts. One notable exception is the Topcased project for which it has been claimed
that the Topcased tool “is in productive use in Airbus” (Eclipse.org 2009), and more
specifically “Airbus Industry is committed to using TOPCASED in its A350
program” (Eclipse.org 2010). Further, the functionality and reliability of the Topcased
tool has been found sufficient in other usage contexts where critical systems are being
developed. For example, it has been used in the context of validation of satellite flight
software (Pouly et al. 2011) and railway safety systems (Hase 2011). Motivated by
such experiences from other companies in the secondary software sector and the
results from our investigation of the Topcased community, the tool is currently being
explored by developers at Combitech.

Based on our results, a natural next step for the company will be to proceed with a
pilot study in order to analyse the extent to which the functionality offered in the
investigated tools support the preferred working practice used in development
projects in the company. Since the company perceives the health of the Topcased
ecosystem to be promising and based on earlier positive experience of the tool, such a
pilot study involving Topcased usage within the company context is seen as a natural
next step. From this, the company will be able to further investigate the collaborative
climate through genuine interaction between the company context and the broader
Topcased ecosystem.

Acknowledgement. This research has been financially supported by the ITEA2
project OPEES (www.opees.org) through Vinnova (www.vinnova.se).

References

Bonaccorsi, A., Rossi, C.: Comparing motivations of individual programmers and firms to take
part in the open source movement: from community to business. Knowledge Technology
and Policy 18, 40–64 (2006)

Crowston, K., Howison, J.: The social structure of Free and Open Source software development.
First Monday 10(2) (2005)

Crowston, K., Howison, J.: Assessing the Health of Open Source Communities. IEEE Computer
39(5), 89–91 (2006)

Daffara, C.: The SME guide to Open Source Software, 4th edn. FLOSSMETRICS report,
European Commission project FP6-033982 (July 4, 2009),
http://www.flossmetrics.org/sections/deliverables/docs/WP8/
D8.1.1-SMEs_Guide.pdf (accessed June 4, 2011)

366 J. Gamalielsson, B. Lundell, and A. Mattsson

Duenas, J.C., Parada, G., H., A., Cuadrado, F., Santillan, M., Ruiz, J.L.: Apache and Eclipse:
Comparing Open Source Project Incubators. IEEE Software 24(6), 90–98 (2007)

Ebert, C.: Open source software in industry. IEEE Software 25, 52–53 (2008)
Eclipse.org. Eclipse Automotive Interest Group- meeting minutes (2009),

http://dev.eclipse.org/mhonarc/lists/auto-iwg/
pdfTcIV3Ghb68.pdf (accessed June 4, 2011)

Eclipse.org. Papyrus (2011a), http://www.eclipse.org/modeling/mdt/papyrus
 (accessed June 4, 2011)
Eclipse.org. Papyrus (2011b), http://www.eclipse.org/modeling/mdt
 (accessed June 4, 2011)
Eclipse.org. An Extended Survey of Open Source Model-Based Engineering Tools (2010),

http://wiki.eclipse.org/images/d/dc/Report.external.bvs.pdf
(accessed June 4, 2011)

Eclipsecon.org. Papyrus: Advent of an Open Source IME at Eclipse (2010),
 http://www.eclipsecon.org/2010/sessions/sessions?id=1385
 (accessed June 4, 2011)
Fitzgerald, B.: The Transformation of Open Source Software. MIS Quarterly 30(3), 587–598

(2006)
Gamalielsson, J., Lundell, B., Lings, B.: The Nagios community: An extended quantitative

analysis. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey, G.R., Noll, J., et
al. (eds.) OSS 2010. IFIP AICT, vol. 319, pp. 85–96. Springer, Heidelberg (2010)

Gamalielsson, J., Lundell, B.: Open Source Software for Data Curation of Digital Assets: a case
study. In: Lugmayr, A., et al. (eds.) Proceedings of Mindtrek 2010 of 14th International
Digital Media & Business Conference (MindTrek): Envisioning Future Media Environments,
pp. 53–56. ACM, New York (2010)

German, D.: The GNOME project: a case study of open source global software development.
Journal of Software Process: Improvement and Practice 8(4), 201–215 (2004)

Hase, K.R.: ”openETCS”: An Open Source Approach for Railway Safety Systems Adopting
TOPCASED for CENELEC EN 50126/50128 Safety Case. In: First Topcased Days Toulouse
2011, Toulouse, France, February 2-4 (2011),
http://gforge.enseeiht.fr/docman/view.php/52/4289/
A2-DeutscheBahn.pdf (accessed June 4, 2011)

Kamei, Y., Matsumoto, S., Maeshima, H., Onishi, Y., Ohira, M., Matsumoto, K.: Analysis of
Coordination Between Developers and Users in the Apache Community. In: Russo, B., et al.
(eds.) Open Source Development, Communities and Quality, pp. 81–92. Springer, Boston
(2008)

Krishnamurthy, S.: Cave or Community? An Empirical Examination of 100 Mature Open
Source Projects. First Monday 7(6) (2002)

van der Linden, F., Lundell, B., Marttiin, P.: Commodification of Industrial Software: A Case
for Open Source. IEEE Software 26(4), 77–83 (2009)

Lopez-Fernandez, L., Robles, G., Gonzalez-Barahona, J.M., Herraiz, I.: Applying Social
Network Analysis Techniques to Community-driven Libre Software Projects. International
Journal of Information Technology and Web Engineering 1, 27–48 (2006)

Lundell, B., Bermejo, J., Labezin, C., Sempert, F., Valentin, M.-L., Laprevote, A., van der Linden,
F., Pablos, J.J.: Open Source Software Workshop, ITEA 2 Symposium, Rotterdam, October 21
(2008)

Lundell, B., Lings, B.: On understanding evaluation of tool support for IS development.
Australasian Journal of Information Systems (AJIS) 12(1), 39–53 (2004)

 Open Source Software for Model Driven Development 367

Lundell, B., Lings, B., Lindqvist, E.: Open Source in Swedish companies: where are we?
Information Systems Journal 20(6), 519–535 (2010)

Lundell, B., Lings, B., Syberfeldt, A.: Practitioner perceptions of Open Source software in the
embedded systems area. Journal of Systems and Software (in press, 2011)

Martinez-Romo, J., Robles, G., Ortuño-Perez, M., Gonzalez-Barahona, J.M.: Using Social
Network Analysis Techniques to Study Collaboration between a FLOSS Community and a
Company. In: Russo, B., et al. (eds.) Open Source Development, Communities and Quality,
pp. 171–186. Springer, Boston (2008)

Mattsson, A., Lundell, B., Lings, B., Fitzgerald, B.: Linking Model-Driven Development and
Software Architecture: A Case Study. IEEE Transactions on Software Engineering 35(1),
83–93 (2009)

Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source software
development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology 11(3), 309–346 (2002)

Moon, Y.J., Sproull, L.: Essence of distributed work: The case of the Linux kernel. First
Monday 5(11) (2000)

Ohloh.net. Topcased (2011a), http://www.ohloh.net/p/topcased
(accessed June 4, 2011)

Ohloh.net. MDT Papyrus (2011b),
http://www.ohloh.net/p/mdt-papyrus (accessed June 4, 2011)

Petrinja, E., Sillitti, A., Succi, G.: Comparing OpenBRR, QSOS and OMM Assessment
Models. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey, G.R., Noll, J., et
al. (eds.) OSS 2010. IFIP AICT, vol. 319, pp. 224–238. Springer, Heidelberg (2010)

Pouly, J., Rolland, J.F., Faure, T., Hyounet, P., Zanon, O.: Automatic generation of tests from
UML models to validate satellite flight software. In: First Topcased Days Toulouse 2011,
Toulouse, France, February 2-4 (2011),
http://gforge.enseeiht.fr/docman/view.php/52/ (accessed June 4, 2011)

Robert, S.: New trends and needs for Avionics Systems. In: ARTEMIS Conference, Berlin
(May 2007),
https://www.artemisia-association.org/downloads/
SYLVIE_ROBERT_AC_2007.pdf (accessed June 4, 2011)

Topcased.org. Topcased – The Open Source Toolkit for Critical Systems (2011a),
http://www.topcased.org (accessed June 4, 2011)

Topcased.org. First Topcased Days Toulouse 2011, Toulouse, France, February 2-4 (2011b),
http://www.topcased.org/index.php/content/view/53
(accessed June 4, 2011)

West, J.: How Open is Open Enough? Melding Proprietary and Open Source Platform
Strategies. Research Policy 32(7), 1259–1285 (2003)

The Third Generation of OSS:

A Three-Stage Evolution
from Gift to Commerce-Economy

Toshihiko Yamakami

ACCESS, CTO Office,
1-10-2 Nakase, Mihama-ku, Chiba-shi, Chiba-ken, JAPAN 261-0023

http://www.access-company.com

Abstract. Linux is penetrating into mobile software as the basis for a
mobile middleware platform. It is accelerating the increasing visibility
of open source software (OSS) components in mobile middleware plat-
forms. Considering the 10-million lines of code of OSS-based industrial
platforms such as a mobile middleware platform, engagement in founda-
tions is inevitable for large-scale packages of OSS for industrial solutions.
The author discusses the driving factors toward a foundation-based OSS
and the transition of the underlying economy types to analyze the tran-
sitions to the third-generation OSS.

Keywords: Open source software (OSS), evolution of OSS, industrial
OSS, foundation-based OSS.

1 Introduction

Linux has penetrated into a wide range of digital appliances, e.g. mobile hand-
sets, digital TVs, game consoles, and HD recorders. It facilitates the reuse of
PC-based rich user experience data service software with the high speed network
capabilities of an embedded software environment. As Linux-based software is
widely adopted for digital appliances, the original weak points of Linux in an
embedded environment have been addressed, namely its real time processing and
battery life capabilities. The author reviews the patterns of evolution in the past
literature, and proposes the concept of third-generation OSS, a foundation-based
OSS. The author discusses the driving factors toward a foundation-based OSS
and the transition of the underlying economy types to analyze the transitions to
the third-generation OSS.

2 Purpose and Related Work

2.1 Purpose of Research

The purpose of this research is to identify and understand the transitions in OSS
with regard to base economy types.

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 368–378, 2011.
c© IFIP International Federation for Information Processing 2011

http://www.access-company.com

The Third Generation of OSS 369

2.2 Related Work

OSS was separated from the concept of free software in the late 1990’s in order to
revisit the commercial issues of using OSS. It is a paradoxical to publish source
code, the core competence of the software industry, so openly. Fitzgerald et al
discussed the contradictions, paradoxes and tensions of OSS in [4]. Fitzgerald
named OSS 2.0, the open source phenomenon has undergone a significant trans-
formation from its free software origins to a more mainstream, commercially
viable form [3]. This paper deals with a follow-up to OSS 2.0.

Raymond discussed open source from the business model perspective in this
famous open source work series [8].

OSS has continued to evolve. Watson presented the second generation of OSS,
or professional OSS [13] in contrast to the three types of first generation OSS:
community OSS, sponsored OSS, and corporate distribution.

Letellier discussed the third generation of OSS [5] from the perspective of its
organizational structure.

The long-term factors of OSS have also attracted the attention of researchers.
Subramaniam discussed success factors using longitudinal data on OSS projects
[9] and presented the impacts of different license types. Yu discussed time series
analysis techniques to study the time dependence of open-source software ac-
tivities using mailing lists, bug reports, and revision history [15] and presented
diversity in cyclic-ness and in seasonal dependency.

As the size of OSS software has grown, organizational governance has emerged.
Examples include the Eclipse Foundation [12] and Apache Software Foundation
[11]. There are new industrial organizations emerging for industry-specific soft-
ware: for example, mobile handset software-related foundations including the
LiMo Foundation [6], the OHA [7], and the Symbian Foundation [10].

Capra et al analyzed analyses the impact of firms’ participation on popularity
and internal software design quality for 643 SourceForge.net projects [2].

Yamakami presented multiple views of the generations of OSS in order to
understand the diverse evolutions of OSS [14].

The originality of this paper lies in its examinations of the transitions of the
base economy types in order to identify and understand the evolution of OSS.

3 Landscape of OSS

3.1 Generational Views of OSS

OSS has been successful at penetrating into the world, including the software
industry. It is no longer a question any more whether we should use OSS, because
the current industrial best practices adopt the OSS-based development in many
industrial domains. Examples include mobile multimedia software for mobile
handsets.

OSS has become a reasonably complete stack, therefore, many user applica-
tions can be built using only OSS. This user application covers many industrial
applications and enterprise applications.

370 T. Yamakami

Augustin discussed generations of OSS dating back to 1974 from the viewpoint
of stacks in OSS. Augustin presented a 5-generation view as depicted in Fig. 1
[1].

Game
(Adventure,

Rogue)

1974–

�
Tools
(gcc, ld,

emacs)

1982–

�
OS

(Linux,

FreeBSD)

1990–

�
Infrastructure

(JBoss,

MySQL, PHP)

1990–

�
Application

(SugarCRM,

Pentaho . . .)

1990–

Fig. 1. Augustin’s 5 generation-view

The first generation of OSS consists of games distributed by mailing lists. The
second generation consists of tools for development environments. The third gen-
eration is the OS (operating system). The fourth generation consists of infras-
tructure elements such as databases and web server scripting languages. The fifth
generation is applications. It is a generational analysis by domains or completion
of computing stacks.

Watson presented a view in terms of a business model. Watson discussed
the emergence of professional OSS, as the second generation of OSS. The two
generations of OSS are depicted in Fig. 2.

Proprietary
�

� �
1st Generation

OSS

Volunteers distro Sponsored

OSS

�
Professional

OSS

� �
2nd Generation

OSS

Fig. 2. Watson’s 2 generation-view

The second generation that emerges is professional OSS, in which companies
contribute their assets to open source and explore a wide range of business
models based around that. Full-time employees are engaged in OSS to leverage
their business models.

The author has a sense that this increased interaction between OSS and busi-
ness was similar to that between the Internet and business in the first half of
the 1990s. In the case of the Internet, it was gradually recognized that a fusion
with business was the way that would lead the Internet to its full potential. The
author believes that a similar conclusion will be drawn in the case of OSS.

The Third Generation of OSS 371

3.2 Emerging New Aspects of OSS: Foundation Dimension

The completeness of OSS components for industrial solutions allows for a
complete platform consisting of OSS modules. Large-scale OSS platforms have
emerged these days, such as Symbian, and Android. Such industry-scale OSS
solutions require the following, depicted in Table 1.

Table 1. Requirements for industry-scale OSS solutions

Item Description

Governance Governance to manage quality and performance of the entire
platform.

Neutrality Neutrality to serve as an industrial platform that can be sup-
ported by a wide range of stakeholders.

OSS
community-
friendliness

Friendliness toward upstream OSS communities to enable coor-
dination and collaboration with upstream communities.

Ecosystem
considera-
tions

Ecosystem to enable different industrial stakeholders to partici-
pate, enabling both the maintenance of common parts and cus-
tomized differentiation for each stake holder.

Considering the 10-million lines of code of OSS-based industrial platforms
such as a mobile middleware platform, engagement in foundations is inevitable
for large-scale packages of OSS for industrial solutions.

3.3 Perspective for Three-Stage Evolution of Large-Scale OSS

The author believes that the shift towards foundation-based OSS is a natural
consequence of the shifts in base economy types of OSS.

The shift in base economy types of OSS is depicted in Fig. 3.

Gift

economy
�

Craftsmanship
economy

(guild economy)

�

Cost-and

-benefit
economy

(trading economy)

Fig. 3. 3-generation view of the base economy types of OSS

In the early days of OSS, the basic economy type is the gift economy. They
give, so we gave. Gifts in turns are the basic constructs of the economy. This is
similar to the primitive economy of early civilization. There are neither economic
rules nor quantitative measures to be used for trades. It is the starting point of
an economy.

372 T. Yamakami

If a project and the community surrounding it persist, then social norms,
values, and social ties are developed. Internal rules and guidelines are developed
for a community. In this stage, an economy of Guilds is used. A guild is an
association of craftsmen in a particular trade. Confraternities of workers were
organized in a manner that was something between a trade union, a cartel and
a secret society. The community is the core part of this economy.

Then, OSS collides with the real world economy, the basic economy type is
shifted to a cost-benefit economy. This is the common trading economy, used
in the modern world. There are two types of economy. One is the OSS-centered
economy. When Red Hat started a business based on giving copy-left software
away and providing expert services for a fee, many people thought that copy-
left would not be a sustainable business. However, Red Hat still persists and
has proven that the radical copy-left is still viable when a related business is
successfully built.

The other is the professional OSS economy. The dual license is one example.
It is allowed to provide multiple licenses including OSS license and commercial
license. The dual license is to provide codes with an OSS license and a comercial
license. Full-time employees with fully crafted business models enable this type
of economy, which is a common business model with business model engineering.
Another example is proprietary add-ons.

The misfits and fits with the current industrial landscape are illustrated in
Table 2.

3.4 Implications from the Transitions of Base Economy Types

These transitions in base economy types can explain the evolution of licenses.

Table 2. Misfits and fits with the current industrial landscape

Economy
type

Fits Misfits

Gift Universally applicable Gift economy is important when
there is a scarcity of code, how-
ever, once a large mass of code
has been contributed, a value-
weight of a gift decreases.

Guild Strong social ties and norms
help in the management of a
large mass of code

Person-dependence may create
obstacles to consistent handling
of large-scale packages of OSS
code for industrial solutions.

Commerce Large-scale OSS projects re-
quire alignment to roadmaps,
structured governance, skilled
project management, coordina-
tion among different stakehold-
ers, and industrial support.

Not all OSS communities accept
these commerce-driven activi-
ties due for the historical rea-
son and the volunteer-oriented
nature of maintenance.

The Third Generation of OSS 373

Licensing is an important aspect of OSS. Even so, there are a large number
of licenses in OSS, the author identifies a kind of evolution in licenses, depicted
in Fig. 4.

Free
software
license

(for freedom
of software)

�
Open
source

license
(diversity)

�
Multiple

licenses
(diversity for
single code)

Fig. 4. 3-generation view of licenses

Early examples of OSS licenses include the GPL (GNU Public License) and
BSD licenses. GPL is an important license that is based on free software, and
pursues the freedom of software. It is unique in that it represents a philosophy
rather than software development practices.

Then next generation consists of open source software licenses. The term
OSS was coined when the community discussed licensing with the publication
of Netscape software in 1998. There was some misunderstanding of licenses and
many projects started to create new licenses for their source code, which lead to
a significant number of OSS licenses. The OSS licenses represented the diversity
of OSS projects.

As people continued to learn and explore OSS licensing issues, it was recog-
nized that there is no reason that one piece of software should have only one
license. Software code can have as many licenses as needed. The dual license in
OSS is a departure from a rigid and fixed licensing system. It allows a certain
flexibility of business development to a company, as long as that company has a
copyright for the entire code. This is the basis for professional OSS.

As features are extended and communities grow with enhancements in the
IT infrastructure, the volume of code simply continues to grow. This exposes
OSS projects to the challenges of large-scale software development. In order to
understand these challenges, the following generations are observed during the
evolution of large-scale OSS, depicted in Fig. 5.

Extension of
a project

(empowered by
infrastructure)

�
Enabling

multi-layer

structure
(platform)

�
Federated

development of
a large number

of projects

Fig. 5. 3-generation view of large-scale software development

In the first generation, a community grows and extends a number of small
projects in the community. The IT infrastructure enables the management of

374 T. Yamakami

larger-scale software projects. Accumulation of community experience, project
management experience, and the increased capabilities of development environ-
ments enable the development of large-scale software.

In the second generation, the idea of developing an entire software package
within the community is abandoned. The architecture and ecosystem to enable
further software development in relation to third-party software and corporations
are developed. One example is the separation of platform and plug-in compo-
nents. The shared platform is developed and maintained by the community. Each
corporation can develop their own plug-in for its purposes, including business
purposes. Examples include Eclipse.

In the third generation, a foundation is established to govern a large number of
projects that are loosely connected. Each project is isolated in terms of functions
and project management. The foundation has a higher level of orchestration.
Examples include the Apache software foundation and the GNOME foundation.

The generations of diffusion using OSS are depicted in Fig. 6.

Implementation
of existing

standards

�
Shared

platforms

�
Shared

unbundling
(new software
ecosystem)

Fig. 6. 3-generation view of diffusion using OSS

The first generation accommodates the diffusion of open standards. The im-
plementation of open standards in OSS leverages the acceptance of a standard.
This also fits OSS because open standards provide clear requirements, which
eliminates overhead in OSS development with less ambiguity compared to other
types of software.

The second generation leverages the diffusion of shared platforms. Splitting
software into a shared platform and plug-ins provides efficient development of
software as long as the architecture is properly designed. Eclipse is one exam-
ple. When a platform is based on OSS, it provides transparency of governance,
neutrality of delivery control, and public participation. It also facilitates open
distribution of technical information.

The third generation leverages unbundling and unlocking. The foundation-
based OSS provides a base for industrial ecosystem such as application stores and
white-brand SDKs. The white-brand SDK in the embedded software engineer-
ing enables unbundling third-party applications that replace the second-party
applications in the early days.

The transitions of corporate engagement are depicted in Fig. 7.
In the first stage, enterprises are engaged in users of OSS.
In the second stage, enterprises place resources for OSS projects, where stable

development and delivered quality of code influences their businesses. One exam-
ple is Eclipse. IBM hosted Eclipse in its early stage of and worked in the Eclipse

The Third Generation of OSS 375

Users
(large-scale
testbeds)

�
Sponsored

OSS

�
Advisory

board members
(industrial
foundation)

Fig. 7. 3-generation view of corporate engagement in OSS

consortium. Then, a non-profit foundation that owned all the code would work
much better. IBM donated the entirety of the Eclipse code to the Eclipse Foun-
dation in order to form an industrial framework to support Eclipse development.
Another example is Linux. IBM, HP, SGI, Intel, and other industrial players pro-
vided human resources toward the improvement of Linux to commercial-grade
quality.

In the third stage, many leading industrial players play an important role in
industry-backed OSS-based foundations. They pay extra fees for an Advisory
Board to manage the industrial governance of large-scale OSS projects. The
extra fees can be used to reduce the fees of other regular members to host a
wide range of support for diverse stakeholders.

4 Discussion

4.1 Advantages of the Proposed Model

The proposed transition model addresses the shifts in underlying schemes during
the evolution of OSS.

Over the decades, OSS has gained experience, and has achieved a high level
of quality, performance, and completeness. It has also increased its code size,
diversity and heterogeneity. This has brought about changes in the landscape of
OSS.

In the early stage of OSS, there was some anti-proprietary feeling in many OSS
communities. After professional OSS emerged as well as a dual licensing scheme,
an increasing number of OSS projects accepted their co-existence with enterprise
involvement. The scale of current OSS projects requires some management and
governance skills from large organizations such as global industrial players.

The proposed model highlights this underlying scheme change over decades
of OSS evolution.

4.2 Implications

OSS is a multi-faceted phenomenon, as shown in Fig. 8.
One aspect of OSS is philosophy and social movement. From a dimension

such as this, there is still hesitation to accept the commerce-based economy that
underlies OSS.

Although there is some anti-proprietary feeling in many OSS communities,
with respect for the volunteer attitudes in the communities, large organizations,

376 T. Yamakami

Code

SourceForge

License

GPL, LGPL

BSD

Development
best practices

β, Bazaar style
Social
change

NPO/NGO

Philosophy,
movement

Free software

Diffusion

Professional OSS

Community

By-person, emotional conflict

Maintainer

Fig. 8. Seven views of OSS

Table 3. Driving forces of commerce-based economy in OSS communities

Item Description

Code scale Large-scale code requires highly structured management.

Industry as
user

Coverage of the completed software stacks lead the entire in-
dustry to become a customer of OSS component packages, and
must have representatives from industry in OSS communities.

Organizational
governance

Large-scale OSS solutions require highly organized governance
to represent neutrality and compose reasonable roadmaps for
stakeholders.

Global aware-
ness

OSS is increasing in width and diversity, therefore, global aware-
ness, usually provided by a global industry leading company, is
important to OSS management.

mainly consisting of global industrial players are increasing their presence in
OSS communities. The driving forces of this trend are depicted in Table 3.

4.3 Limitations

This research is descriptive and qualitative without any quantitative measures. In
particular, this paper lacks any quantifiable measures for the transitions between
economy types. Those quantitative approaches are beyond the scope of this
paper.

This paper focuses on large-scale and industrial OSS solutions. Although, they
are increasingly visible, however, they are a part of an OSS world of diversity
and heterogeneity.

OSS projects are diverse and this paper lacks the in-depth analysis of each
OSS project.

The impacts on social norms and trusts in OSS communities from these tran-
sitions are not covered in this paper.

The detailed business ecosystem engineering driving the proposed transitions
is not addressed in this paper.

The Third Generation of OSS 377

5 Conclusion

Over the decades, OSS has accomplished many great achievements and pene-
trated into the entire software industry. OSS has come to occupy the mainstream
of the software industry. The success of OSS includes quality, performance, cov-
erage and completeness as well as many established OSS-based foundations with
global governance.

This success also highlights the necessity for revisiting the underlying economy
types.

The author proposes a transition model from free economy to commerce-based
economy. The transition is driven by the completeness of OSS for industrial
solutions and the engagement of industry in OSS projects.

This trend does not fit with the free-economy-oriented-ness inherited from
the early stage of OSS. However, multiple driving forces are visible to support
the transition toward a commerce-based economy as the underlying principle in
OSS projects.

The awareness of stages raised by the proposed model will help build mutual
understanding between OSS communities; and industrial engagement, which has
lead to productive evolution in many OSS projects.

The author presents multiple generation views that fit the proposed transition
model in order to provide supplemental support for the transition discussed.

The transition has become visible over a long span of time, even decades. And
it happens due to the maturity of OSS projects, and due to a mutual under-
standing between OSS communities and enterprises. The resulting institutional
characteristics such as global awareness and harmonization with industrial so-
lutions can contribute to further productive collaboration between communities
and industries in OSS projects.

References

1. Augustin, L.: Why now is the time for open source applications. In: Plenary Speech
of OSS 2010, Notre Dame, IN, USA (May 2010)

2. Capra, E., Francalanci, C., Merlo, F., Rossi-Lamastra, C.: Firms’ involvement in
open source projects: A trade-off between software structural quality and popular-
ity. J. Syst. Softw. 84, 144–161 (2011),
http://dx.doi.org/10.1016/j.jss.2010.09.004

3. Fitzgerald, B.: The transformation of opensource software. MIS Quarterly 30, 587–
598 (2006)

4. Fitzgerald, B., Agerfalk, P.J.: The mysteries of open source software: Black and
white and red all over? In: HICSS 2005: Proceedings of the Proceedings of the
38th Annual Hawaii International Conference on System Sciences, p. 196.1. IEEE
Computer Society, Washington, DC (2005)

5. Letellier, F.: Open source software: the role of nonprofits in federating business
and innovation ecosystems (January 2008) (a submission for AFME 2008),
http://flet.netcipia.net/xwiki/bin/download/Main/publications-fr/

GEM2008-FLetellier-SubmittedPaper.pdf

http://dx.doi.org/10.1016/j.jss.2010.09.004

378 T. Yamakami

6. LiMo Foundation: LiMo Foundation Home page (January 2007),
http://www.limofoundation.org/

7. Open Handset Alliance: Open Handset Alliance web page (2007),
http://www.openhandsetalliance.com/

8. Raymond, E.S.: The magic cauldron (August 2000),
http://www.catb.org/~esr/writings/cathedral-bazaar/magic-cauldron/

9. Subramaniam, C., Sen, R., Nelson, M.L.: Determinants of open source software
project success: A longitudinal study. Decis. Support Syst. 46(2), 576–585 (2009)

10. Symbian Foundation: Symbian Foundation web page (2008),
http://www.symbianfoundation.org/

11. The Apache Software Foundation: The Apache Software Foundation web page
(1999), http://www.apache.org/

12. The Eclipse Foundation: The Eclipse Foundation web page (2004),
http://www.eclipse.org/

13. Watson, R.T., Boudreau, M.C., York, P.T., Greiner, E., Donald Wynn, J.: The
business of open source. CACM 51(4), 41–46 (2008)

14. Yamakami, T.: Generations of oss in evolutionary paths: Toward an understanding
of where oss is heading. In: IEEE ICACT 2011, pp. 1599–1603. IEEE, Los Alamitos
(2011)

15. Yu, L., Ramaswamy, S., Lenin, R.B., Narasimhan, V.L.: Time series analysis of
open-source software projects. In: ACM-SE 47: Proceedings of the 47th Annual
Southeast Regional Conference, pp. 1–6. ACM, New York (2009)

http://www.limofoundation.org/
http://www.openhandsetalliance.com/
http://www.catb.org/~esr/writings/cathedral-bazaar/magic-cauldron/
http://www.symbianfoundation.org/
http://www.apache.org/
http://www.eclipse.org/

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, pp. 379–384, 2011.
© IFIP International Federation for Information Processing 2011

Standing Situations and Issues of Open Source Policy in
East Asian Nations: Outcomes of Open Source Research

Workshop of East Asia

Tetsuo Noda1, Terutaka Tansho1, and Shane Coughlan2

1 Shimane University
nodat@soc.shimane-u.ac.jp
tansho@riko.shimane-u.ac.jp

2 Regional Director Asia of Open Invention Network
shane@opendawn.com

Abstract. East Asia nations have made some progress with this technology, and
started to introduce OSS for e-government systems during the early part of this
century. Many countries granted it a central role in their policies. The reasons
for this include adoption of software based on standard specification, liberation
from vender lock-in, or opposition to the market control of proprietary software.
However, the primary reason is to reduce adoption costs for e-government
systems. While this policy work is useful, there is a great deal more that needs
to be done. The OSS adoption policy in each nation of East Asia must be
accompanied by technological progress in domestic IT service industries or US
multinationals will expand at the cost of local businesses. If this continues
unchecked it will create a new form of lock-in for East Asian nations. Some
Asian nations are trying to promote their domestic IT service industries, putting
their OSS adoption policy to practical use, and this workshop will provide case
studies of that work. It will also provide a forum for discussing current
challenges and opportunities around both policy and practical implementation
issues across Asia.

1 Introduction

As part of Shimane University's research into Open Source matters, the Research
Project Promotion Institute 1 has run a project called 'Stabilization and Business
Models for Open Source Software' since 2008. One deliverable has been the hosting
of a seminar entitled 'Open Source Research Workshop in East Asia' on November
26th and 27th 2010. This seminar was attended by Japanese and academic thought-
leaders as well as a diverse range of international participants.

East Asian nations have made some progress with Open Source technology in the
last decade, building on the early introduction of OSS for e-Government systems at

1 Shimane University is executing forward empirical and theoretical research on the productivity

of the business model's construction is to be done by the cooperation of the industrial-
government-academic-community complex.
 http://albatross.soc.shimane-u.ac.jp/oss/index.html

380 T. Noda, T. Tansho, and S. Coughlan

the turn of the last century. Many countries granted OSS a central role in their policies
for reasons like adherence to standard specification, freedom from vender lock-in, or
opposition to the market control of proprietary software. However, the primary reason
is to reduce adoption costs for e-Government systems.

While the initial governmental policy work has been useful, a great deal more
needs to be done before the value proposition offered by OSS is realized. One key
example is that the OSS adoption policy in each nation of East Asia must be
accompanied by progress in domestic IT service industries to prevent multinationals
expanding at the cost of local businesses. This is a consideration given that Open
Source originates from the West coast of the USA and is still primarily developed and
enhanced by US corporations. It could even be said that the current technical
evolution of OSS is driven mainly by companies originating from the United States.
While the inherent benefits of OSS extend beyond the boundaries of enterprises,
organizations and nations, and OSS has the potential to foster new business markets
in regions other than North America, the current status quo has the potential for a new
form of lock-in for East Asian nations.

Some East Asian nations are trying to promote domestic IT service industries by
putting their OSS adoption policy to practical use, and this workshop provided case
studies of that work. It also provided a forum for discussing current challenges and
opportunities around both policy and practical implementation issues across East
Asian nations.

The intention was to extract the aspects of Open Source adoption policy that are
not accompanied by the technological progress in domestic IT service industries, and
from this derive an indication of the role government should play in East Asia and in
other developing countries generally.

At the workshop Open Source thought-leaders from Japan, China, South Korea,
Vietnam, The Gambia and Ireland discussed the nuances and known outcomes of
Open Source adoption policies, and contributed to the publication of a proceeding as a
special issue of our bulletin2 in conjunction with the event. As the contentions of the
researchers are contained in the proceeding, the focus of this paper is to explain the
presentations of the researchers and the main points of discussion at the workshop.

2 Open Source Policy in East Asian Nations

2.1 Open Source Policy in Japan

Mr. Shunichi Tashiro, the chief officer of Open Software Center at the Japanese
Industrial-Technology Promotion Agency3, introduced Open Source Policy in Japan
and the activity of his department.

2 Journal of Economics Memoirs Of The Faculty Of Law And Literature, Shimane University

No.37 Special Issue “Open Source Policy and Promotion of IT Industries in East Asia”
Nov.2010.

3 The Open Software Center is an organization within the Information-Technology Promotion
Agency (IPA), Japan, one of Independent Administrative Agencies 1 in Japan, and is operated
under the budget of the Japanese government. http://www.ipa.go.jp/index-e.html

 Standing Situations and Issues of Open Source Policy in East Asian Nations 381

He explained that software is built on platforms, and that it ultimately cannot work
without interoperability with other software. Openness of the platforms and interfaces
are crucial to provide freedom to software developers and users, and therefore to
foster a healthy, competitive environment in the national and international software
industry. The Open Software Center was founded in 2006 to promote Open Source
software and open standards as an important aspect of information services,
development methods, assessment criteria, standardization systems, and research
studies. The core proposition is that OSS enhances knowledge sharing and sustains a
collaborative development environment.

The key issue is probably 'Open Standards' rather than Open Source. Open
Standards are technical standards for which specifications are publicly available, that
any part can use and that any party can participate in regarding further development.
These are critical to ensure the interoperability of software and freedom of action for
software developers and users.

One example of practical engagement with this issue in Japan is the standardization
of the programming language Ruby, which is now in the screening process of JIS
(Japanese Industrial Standards) and will soon obtain JIS certification before
submission to ISO (International Organization for Standardization) in 2011. This will
encourage the Japanese-created Ruby language to be adopted in e-Government
systems and enterprise environments across the world.
In this way a Japanese government agency is supporting the promotion of the
domestic information service industry while also contributing positively to the global
IT market.

2.2 Open Source and the Software Industry in China

Dr. Dongbin Wang, the researcher of Center of China Study, Tsinghua University4,
introduced the history of the Internet and Open Source in China.

Before China joined in WTO in 2001, software piracy was very popular and lead to
a large loss of potential revenue every year for the industry. One high profile example
is that Microsoft’s software products were frequently copied and illegally installed on
computers across the private and public sectors, a situation that somewhat ironically
also helped Microsoft become the de-facto norm in computing for the local market.
However, after 2001 the Chinese government began to increase the legislation and
enforcement around software piracy, and companies like Microsoft accompanied this
shift in the local market norms by taking a much stricter line regarding unauthorized
coping of their products. One side effect of this was for many cyber cafes to react by
switching to Linux and other Open Source software to reduce licensing costs.

It is possible to conclude that intellectual property rights protection is a double-
edged sword for Open Source development and adoption. Recently many large
companies in China have formally preferred Linux as a pre-installation operation
system, but due to the rampant piracy of Windows in the past there is an on-going

4 Center for China Study (CCS), Tsinghua University is a leading academic think-tank for policy

making in China. Its researches cover most fields of China Studies, which include
Development and China Study, Chinese Economy and Development Strategy.
http://www.facebook.com/group.php?gid=48859734768

382 T. Noda, T. Tansho, and S. Coughlan

familiarity and desire for Microsoft and other proprietary products. In effect, the over
commercialization and effective commoditization of proprietary software presents a
key obstacle to Open Source expansion in China.

2.3 Open Source Software - Education, Practice and Applications at the
University of Engineering and Technology

Dr. Nam Hai Nguyen & Dr. Quang Hieu Le from the University of Engineering and
Technology school of the Vietnam National University, Hanoi(UET) 5 provided
information on policies and challenges experienced by the Vietnamese government
regarding OSS development in their country.

The national government has long emphasized a focus on and priority for OSS
development and deployment. For example, in 2006 the government mandated that
procurement of IT products and services should give preference to investment,
adoption and application of OSS and OSS-based software products, especially those
with quality and functionality equal to proprietary software supplied by domestic
enterprises

UET has engaged with the trend towards OSS by exploring best practices in the
field and building educational knowledge to share with students and with society-at-
large. Through these activities the faculty members of UET play an important role in
advancing the widespread use of OSS in teaching and research activities, and in
practical deployment outside of the confines of academia.

To further both the activities of UET, and the Vietnamese engagement with OSS
generally, efficient international cooperation is of crucial importance. UET is a
leading proponent of such cooperation, is seeking to build knowledge-sharing bridges
with the broader global community.

3 Free and Open Source Software Governance: Turning Potential
into Deliverables

The presentation examined some of the key governance approaches and resources that
help turn the potential of FOSS into a deliverable, whether that deliverable is a
product, revenue stream or altruistic solution to a shared problem.

The concept of governance has become increasingly important because - while Free
and Open Source Software (FOSS) offers tremendous potential to create technology
platforms and develop business opportunities - the best methods to obtain results from
FOSS adoption have not always been clear. Simply being 'open' or using third party
code appears to have limited value on its own, and does not address the management
requirements or legal imperatives that stakeholders face. Deriving ongoing value from
FOSS requires understanding the ideas and norms that underpin the field. FOSS has a
premise that third-party sharing and contribution delivers enhanced value over
proprietary approaches to managing software, and that FOSS can deliver this value
through copyright licenses that allow everyone to use, study, share and improve
software code. As this idea has reached the mainstream, the licenses are increasingly the

5 http://www.vnu.edu.vn/en/contents/index.php?ID=932

 Standing Situations and Issues of Open Source Policy in East Asian Nations 383

subject of legal and management scrutiny, and best practices have inevitably emerged
for adopting, developing and deploying code subject to their terms.

It was explained how organizations ranging from the Linux Foundation to Free
Software Foundation Europe have built networks, encouraged publications and
developed tools to assist their own audiences and the broader community of all
potential FOSS stakeholders, and some of these governance projects or organizations
were explored in brief case studies.

4 Discussion and Conclusion: The Potential Crowding-Out Effect
of Government Policy

The majority of the presentations therefore engaged with the role of each Asian
government or educational institutional in furthering Open Source policy and its
practical application. One immediately observable point from their exploration is that
each nation discussed places importance on Open Source adoption and supports it
politically.

However, the point was raised that excessive policy engagement by central
government might spoil the development of Open Source communities by creating a
crowding-out effect. There are many stakeholders involved and the interests of these
stakeholders are not necessarily entirely in sync. The development methods of Open
Source software often include collaboration on the Internet through the participation
of a number of developers, corporations and other stakeholders. This environment is
competitive not only towards proprietary software but also within itself, and as such
requires the flexibility that markets and their associated competitiveness provide.

As the motivation factors of Open Source software developers and investors vary,
they tend to participate in creating code and therefore platforms with broadly
applicable value. Government engagement needs to take this into account, and avoid
causing the risk of constrained, prescriptive environments for Open Source
development. This applies in the educational field too. While it is clearly important
to explore and integrate OSS in educational environments, especially in the context of
computer engineering, such coverage needs to be broad. The field needs to be
presented in a context that does not ignore the way that OSS often appears, grows and
delivers value outside of the traditional constraints and assumptions of formal
engineering education. The discussion suggested that governmental policy around
OSS is not clear cut. While positive policy is to be encouraged, the value offered by
OSS needs to be understood clearly to ensure it is not inadvertently smothered by
well-meaning but ineffective mandates. This indicates that perhaps there are 'new'
issues of Open Source adoption policy in East Asian nations to consider, and all
participants at the workshop agreed to proceed with examination of how these issues
can be resolved in a future workshop.

References

1. Noda, T., Tansho, T.: Regional Industrial Promotion through Open Source Software by
Local Government in Japan. In: Proceeding of the First International Workshop on Building
Sustainable Open Source Communities (2009)

384 T. Noda, T. Tansho, and S. Coughlan

2. Noda, T., Tansho, T.: Open Source Introduction Policy and Promotion of Regional
Industries in Japan: Open Source Software. In: Ågerfalk, P., Boldyreff, C., González-
Barahona, J.M., Madey, G.R., Noll, J. (eds.) OSS 2010. IFIP AICT, vol. 319, pp. 425–426.
Springer, Heidelberg (2010)

3. Wang, D.: Open Source and Software Industry in China. Journal of Economics Memoirs of
the Faculty of Law and Literature (November 2010); Shimane University No.37 Special
Issue, Open Source Policy and Promotion of IT Industries in East Asia

4. Yi, S., Noda, T., Oh, J.: Comparative study on the implementation and performance of open
source activating policy between Korea and Japan. National Information Agency Society,
Korea (2009)

5. Yi, S., Noda, T.: Enhancing the Circulation: Some Implications on the OSS Policy and IT
Industry Promotion. Journal of Economics Memoirs of the Faculty of Law And Literature
(November 2010); Shimane University No.37 Special Issue Open Source Policy and
Promotion of IT Industries in East Asia

Towards Sustainable Open Source

Imed Hammouda1 and Björn Lundell2

1 Tampere University of Technology, Finland
2 University of Skövde, Sweden

Open source software is gaining momentum in several forms. In addition to the
huge increase in the number of open source projects started and the remark-
able rise of FLOSS adoption by companies and governments, new models of
participation in the movement are emerging rapidly. For instance, companies
are increasingly releasing some of their proprietary software systems as open
source on one hand and acquiring open source software on the other hand. For
all these forms of involvement, a central question is how to build and maintain a
sustainable ecosystem around the open source projects. Sustainability issues of
open source extends beyond the technical challenges of building project infras-
tructure covering other important aspects related to business, economic, legal,
social, and cultural dimensions. Long term sustainability will be the theme of
OSS 2012 to be held in Tunisia. We think that the OSS community could start
discussing the theme by exchanging related experiences, sharing relevant con-
cerns, and proposing topics of interest.

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, p. 385, 2011.
c© IFIP International Federation for Information Processing 2011

Improving US Department of Defense

Technology Acquisition and Development with
Open Source

Guy Martin1 and Aaron Lippold2

1 CollabNET, USA
2 Forge.mil, USA

In late 2008, DISA (Defense Information Systems Agency), the global IT arm
of the US Department of Defense, embarked upon a project to create an inter-
nal collaboration and software application lifecycle management system. Beyond
simply fielding yet another tool, the Forge.mil effort was designed to fundamen-
tally change the way the DoD developed and acquired software technology and
systems. The method of this change was the application of Open Source princi-
ples inside of the larger DoD community, including ideas such as: meritocracy,
code sharing, as well as Agile and collaborative software development. This work-
shop will explore where the program has succeeded, as well as areas that need
to be improved. It is hoped that participants will be able to bring perspectives
from their work in the external Open Source world to this discussion.

S.A. Hissam et al. (Eds.): OSS 2011, IFIP AICT 365, p. 386, 2011.
c© IFIP International Federation for Information Processing 2011

Author Index

Ali Babar, Muhammad 142
Arantes, Flávia Linhalis 325
Avgeriou, Paris 142
Ayala, Claudia 1, 244

Bass, Len 50
Bergquist, Magnus 196
Boldyreff, Cornelia 159

Capiluppi, Andrea 159
Cavalini, Luciana T. 338
Conradi, Reidar 1, 244
Cook, Timothy W. 338
Cornford, Tony 208
Coughlan, Shane 379
Cruzes, Daniela S. 1, 244

Dalle, Jean-Michel 320
den Besten, Matthijs 320

Filho, Guido L.S. 34
Franch, Xavier 244
Freire, Fernanda Maria Pereira 325

Gamalielsson, Jonas 348
Goduguluri, Veerakishore 312
Guedes, Álan L. 34
Guerreiro, Andre 299

Hammouda, Imed 307, 312, 385
Hedberg, Henrik 90
Henttonen, Katja 220

Iivari, Netta 90

Jensen, Chris 177
Johnson, Jeff 299
Junior, Lucenildo L.A. 34

Kairamo, Ville 307
Kazman, Rick 50
Kilamo, Terhi 307, 312
Knutson, Charles D. 106, 269, 282
Krein, Jonathan L. 269
Kulesza, Raoni 34

Lima, Jefferson F.A. 34
Lindman, Juho 330

Lippold, Aaron 334, 386
Ljungberg, Jan 196
Lundell, Björn 348, 385

MacLean, Alexander C. 106, 269, 282
Martin, Guy 334, 386
Matos, Alfredo 75
Mattsson, Anders 348
Meira, Silvio R.L. 34
Mikkonen, Tommi 259
Mulazzani, Fabio 123

Nguyen Duc, Anh 1
Noda, Tetsuo 379
Nyman, Linus 259

Ozkaya, Ipek 50

Petrinja, Etiel 233
Pratt, Landon J. 106, 282

Rantalainen, Aapo 90
Räsänen, Petri 307
Ringger, Eric K. 106, 282
Robinson, William 17
Rolandsson, Bertil 196
Rossi, Bruno 123
Ruiz, Claudia 17
Russo, Barbara 123

Saarinen, Jukka P. 307
Scacchi, Walt 62, 177
Séror, Ann 316
Shaikh, Maha 208
Sillitti, Alberto 233
Steff, Maximilian 123
Stol, Klaas-Jan 142, 159
Succi, Giancarlo 233

Tammisto, Yulia 330
Tansho, Terutaka 379
Taylor, Quinn C. 269
Thomson, John 75, 299
Trezentos, Paulo 75, 299

Yamakami, Toshihiko 368

	Title
	Organization
	Table of Contents
	Part I: Papers
	OSS Quality and Reliability
	Impact of Stakeholder Type and Collaboration on Issue Resolution Time in OSS Projects
	Introduction
	Stakeholder Collaboration Measure by Social Network Analysis (SNA)
	Impact of Collaboration on Software Development
	Issue-Stakeholder Network Measures

	Research Hypotheses
	The Case Study
	Projects Context and Selection
	Data Collection and Preprocessing
	Descriptive Statistics

	Hypotheses Testing Results
	H1: The stakeholder’s centrality degree of a firm-paid assignee is higher than those of a volunteer assignee.
	H2: There is a difference in mean issue resolution time between a firm-paid assignee and a volunteer assignee
	H3: The larger number of stakeholders involve in an issue is, the longer the issue resolution time is, and H4: The larger number of exchanged message on an issue is, the longer the issue resolution time is

	Discussion of Results
	Threats to Validity
	Conclusion and Future Work
	References

	Towards a Unified Definition of Open Source Quality
	Introduction
	FLOSS
	Software Quality
	Methodology
	Data Collection
	Analysis

	Findings
	Quality as a Product
	Quality as a Process
	Modularity as the Enabler to FLOSS Quality
	Characteristics of Samples
	Summary

	Discussion
	FLOSS Quality as Evolving
	Quality as Defect Resolution Rate
	Modularity as Driver of Quality
	Process and Product as Drivers of Quality
	FLOSS Requires Its Own Maturity Model for Quality

	Conclusion
	References

	OSS Products
	Ginga-J - An Open Java-Based Application Environment for Interactive Digital Television Services
	Introduction
	Ginga Middleware
	Ginga-J Specification
	Reference Implementation Architecture
	Implementation
	Related Works
	Development Process
	Final Remarks
	References

	Developing Architectural Documentation for the Hadoop Distributed File System
	Introduction
	Our Process for Developing the Documentation
	Gaining the Overview
	Expert Interview
	Directory Structure
	Tool Support

	Elaboration
	Validation and Refinement
	Structure of the Documentation
	Discussion
	Where to Start
	Evolution
	The Use of Tools
	Open Source Specifics

	Next Steps
	References

	Review of Technologies of and for OSS
	Modding as an Open Source Approach to Extending Computer Game Systems
	Introduction
	Related Research
	Software Extension
	Modding as Cultural Practice

	Four Types of Game Mods
	User Interface Customizations and Agents
	Game Conversions
	Machinima
	Hacking Closed Game Systems

	Game Modding Software Tools and Support
	Opportunities and Constraints for Modding
	Conclusions
	References

	Preparing FLOSS for Future Network Paradigms:
	Introduction
	Tools for Evolving Paradigms
	Linux Tools
	Network Manager
	Connman
	Wpa_Supplicant and Hostapd
	Wireless Communication Linux Kernel
	Avahi

	Linux Network Stack
	Linux Distributions
	Reference Architecture

	Overview and Future Directions
	Conclusions
	References

	A Review of Tool Support for User-Related Communication in FLOSS Development
	Introduction
	Existing Communication Means in FLOSS Projects
	User-Developer Communication Means in FLOSS Projects
	HCI Research Guidelines
	Recommended Communication Means for FLOSS Projects
	Conclusions
	References

	Knowledge and Research Building in OSS
	Knowledge Homogeneity and Specialization in the Apache HTTP Server Project.
	Introduction
	Specialization
	The Apache HTTP Server Project
	Reference Organizations
	Private Information
	Goal

	Data
	Mailing Lists
	Subversion Repository

	Methods
	Developer/Email Mapping
	Email Cleaning
	Topic Identification
	Social Network Analysis

	Results
	LDA Results
	Topical Affinity
	Topic Communities
	Specialization

	Validation
	Threats to Validity
	Minor Contributors
	Email Text Selection

	Future Work
	Hidden Private Information
	Developer Tenure
	Topic Analysis in a Mid-Sized Organization
	Cross Project Comparison in Apache
	Knowledge and Email Communication

	Conclusions
	Organizational Resiliency
	Small Group of Core Developers
	Small Project Size
	Voting
	Software Engineering Taxonomy

	References

	Building Knowledge in Open Source Software Research in Six Years of Conferences
	Introduction
	Background and Motivation
	Research Method
	Creating the Directed Graph of Cross-Citations
	Descriptive Analysis of Cross-Citations
	Inspecting the Graph

	Classification of the Articles
	Inter-cluster Connections

	Discussion
	Conclusions
	References

	OSS Reuse, Integration, and Compliance
	The Importance of Architectural Knowledge in Integrating Open Source Software
	Introduction
	Background and Motivation
	Component-Based Development with Open Source Software
	Software Architecture and Architectural Knowledge
	Software Architecture in Open Source Software Research
	Research Objectives

	Research Design
	Research Method and Data Collection
	Data Analysis

	Results
	RQ1: Architectural Knowledge Needs of OSS Integrators
	RQ2: Why Is Architectural Knowledge Needed?
	RQ3: The Availability of Architectural Knowledge
	RQ4: The Relative Importance of Architectural Knowledge

	Discussion and Conclusion
	Limitations of This Study
	Conclusion

	References

	Successful Reuse of Software Components: A Report from the Open Source Perspective
	Introduction
	Background and Related Work
	Empirical Approach
	Definitions and Operationalization
	Description of the FFMPeg System

	Results and Discussion
	Size Growth of FFMpeg Components
	Architectural Growth of FFMpeg Components
	Deployment of Libavcodec in Other OSS Projects

	Threats to Validity
	Conclusions
	References

	OSS Value and Economics
	License Update and Migration Processes in Open Source Software Projects
	Introduction
	Background Work
	Methodology
	Creation and Migration to the Apache License, Version 2.0
	Introduction of the Joint License Agreement
	Discussion and Conclusions
	References

	A Historical Account of the Value of Free and Open Source Software: From Software Commune to Commercial Commons
	Introduction
	Logics of Justification
	Method
	Arrangements of Ideological Justification in the History of FOSS
	First Arrangement: Software Commune
	Second Arrangement: The Bazaar
	Third Arrangement: The Public Commons

	Emerging Justificatory Logics of Contemporary FOSS
	Conclusions
	References

	Framing the Conundrum of Total Cost of Ownership of Open Source Software
	Introduction
	Conundrum of TCO of OSS

	Methodology
	Phase I – Pro-Forma
	Phase I Leading to Phase II

	Analysis and Discussion
	Cost of Adoption
	Exit Costs
	Vendor Lock-in and Lock-Out
	Temporal Element of TCO
	Pragmatism and the Idea of Value

	Conclusion
	References

	OSS Adoption in Industry
	Libre Software as an Innovation Enabler in India Experiences of a Bangalorian Software SME
	Introduction
	Background
	FLOSS as Open innovation: Three Archetypes
	FLOSS-Based Innovation in the Indian Context

	Research Approach and Methodology
	Case Study Results
	Experiences in Inbound Open Innovation
	Experiences in Outbound Open Innovation
	Experiences in Open Value Co-creation

	Discussion
	Conclusion
	References

	Adoption of OSS Development Practices by the Software Industry: A Survey
	Introduction
	The Survey
	Interviews with European Software Companies
	Methodology

	Results
	Trust and Quality Related Aspects
	Aspects Related to Stakeholders
	Technology Aspects

	Conclusions
	References

	Towards Improving OSS Products Selection – Matching Selectors and OSS Communities Perspectives
	Introduction
	Background
	The Study
	Sampling
	Data Collection Instrument
	Study Procedures and Data Analysis

	Results of the Study
	How Much of the Information Required by Selectors is Provided by OSS Communities?
	Are There OSS Project Characteristics that Influence Its Level of Readiness for Supporting Selection?

	Discussion of Results
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusions and Future Work
	References

	Mining OSS Repositories
	To Fork or Not to Fork: Fork Motivations in SourceForge Projects
	Introduction
	Background
	Research Approach
	Reasons for Forking
	Content Modifications
	Technical Modifications
	Reviving an Abandoned Project
	License/FOS-Related Issues
	Language- and/or Country-Specific Modifications
	Experimentation
	Other Reasons

	Discussion
	Conclusions
	References

	An Analysis of Author Contribution Patterns in Eclipse Foundation Project Source Code
	Introduction
	Methodology
	Project and File Selection
	Extraction and Calculation
	Limitations of the Data

	Author Entropy
	Calculating Entropy
	Normalizing Entropy

	Interpreting Collaboration
	Results
	Additional Questions

	Future Work
	Conclusion
	References

	Cliff Walls: An Analysis of Monolithic Commits Using Latent Dirichlet Allocation
	Introduction
	Threats to Artifact-Based Research

	Cliff Walls
	Definitions
	Commit Taxonomies

	Latent Dirichlet Allocation
	Methods
	Analysis and Discussion
	Overall Topic Proportion
	Topic Relative Rank
	Code Imports
	Off-Line Development
	Branching and Merging
	Auto-Generated Code
	Other Findings

	Threats
	Conclusions
	Future Work
	References

	Part II: Lightning Talks
	Package Upgrade Robustness: An Analysis for GNU/Linux R� Package Management Systems
	Introduction
	Background
	The Aim

	Concepts
	Package Upgrade Failure

	Test Framework
	Analysable Elements
	Injecting Faults

	Test Results
	Test Environment
	Individual Package Tests
	Group Packages Tests
	Individual Packages Against Time

	Conclusions
	References

	Applying Open Source Practices and Principles in Open Innovation: The Case of the Demola Platform
	Introduction
	Platform for Open Innovation and Learning
	Adopting Open Source
	Discussion and Conclusions
	References

	KommGame: A Reputation Environment for Teaching Open Source Software
	Introduction
	Reputation Model for Teaching Open Source Software
	KommGame Environment
	Conclusions
	References

	Virtual Health Information Infrastructures: A Scalable Regional Model
	References

	Something of a Potemkin Village? Acid2 and Mozilla’s Efforts to Comply with HTML4
	References

	Aspects of an Open Source Software Sustainable Life Cycle
	Introduction
	An OSS Sustainable Life Cycle
	Community Growth
	Financial Resources
	Software Management

	Conclusion
	References

	Open Source and Open Data: Business Perspectives from the Frontline
	Introduction
	OSS and OD
	Findings
	Conclusion
	References

	Forge.mil: A Case Study for Utilizing Open Source Methodologies Inside of Government
	Introduction
	Vision
	Implementation Specifics
	Challenges
	Metrics/Outcomes
	Conclusion

	Part III: Industry Papers
	Health Informatics: The Relevance of Open Source and Multilevel Modeling
	Introduction
	Method
	Summary of the Specifications
	Knowledge Modeling

	Application Development
	Application Framework and Data Persistence
	Communication Layer
	System Integration
	Decision Support
	Data Aggregation and Business Intelligence

	Conclusions
	References

	Open Source Software for Model Driven Development: A Case Study
	Introduction
	Research Approach
	Results
	Activity in Ecosystems
	Influence in Ecosystems
	Interaction between Ecosystems

	Analysis
	Conclusion and Future Work
	References

	The Third Generation of OSS: A Three-Stage Evolution from Gift to Commerce-Economy
	Introduction
	Purpose and Related Work
	Purpose of Research
	Related Work

	Landscape of OSS
	Generational Views of OSS
	Emerging New Aspects of OSS: Foundation Dimension
	Perspective for Three-Stage Evolution of Large-Scale OSS
	Implications from the Transitions of Base Economy Types

	Discussion
	Advantages of the Proposed Model
	Implications
	Limitations

	Conclusion
	References

	Standing Situations and Issues of Open Source Policy in East Asian Nations: Outcomes of Open Source Research Workshop of East Asia
	Introduction
	Open Source Policy in East Asian Nations
	Open Source Policy in Japan
	Open Source and the Software Industry in China
	Open Source Software - Education, Practice and Applications at the University of Engineering and Technology

	Free and Open Source Software Governance: Turning Potential into Deliverables
	Discussion and Conclusion: The Potential Crowding-Out Effect of Government Policy
	References

	Part IV: Workshops
	Towards Sustainable Open Source
	Improving US Department of Defense Technology Acquisition and Development with Open Source

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

