
Distributional Learning of Simple Context-Free

Tree Grammars

Anna Kasprzik1 and Ryo Yoshinaka2,�

1 University of Trier, FB IV Informatik, 54286 Trier
kasprzik@informatik.uni-trier.de

2 ERATO MINATO Project, Japan Science and Technology Agency
ry@ist.hokudai.ac.jp

Abstract. This paper demonstrates how existing distributional learning
techniques for context-free grammars can be adapted to simple context-
free tree grammars in a straightforward manner once the necessary no-
tions and properties for string languages have been redefined for trees.
Distributional learning is based on the decomposition of an object into
a substructure and the remaining structure, and on their interrelations.
A corresponding learning algorithm can emulate those relations in order
to determine a correct grammar for the target language.

1 Introduction

This paper is settled in the area of Grammatical Inference, i.e., the study of
algorithms that “learn” formal languages from only partial information. The
class that has been studied most extensively with respect to its algorithmical
learnability is that of regular string languages. The established learning algo-
rithms for regular string languages have soon been extended to more complex
structures, most notably to trees (see for example [1] for learning a subset of
regular tree languages from finite positive data, and [2, 3, 4] for learning regular
tree languages from queries and/or finite data).

However, recently a range of efforts have been made to explore other classes
beyond the regular one. While the class of context-free languages as a whole does
not seem to be learnable in any non-trivial setting considered so far, there exist
several context-free subclasses with certain properties that make them learnable
by accordingly adapted strategies which can be subsumed under the term of
distributional learning (see for example [5, 6, 7, 8, 9, 10], and references therein).

Every member w of a context-free string language L∗ ⊆ Σ∗ can be decom-
posed into a substring y and a context 〈x, z〉 ∈ Σ∗×Σ∗ such that w = xyz. The
theory of distributional learning is concerned with the question which of those
substrings and which of those contexts can be put back together to form an-
other grammatical member of L∗. If L∗ fulfils certain distributional properties,
a corresponding learning algorithm can exploit information on these particular
� The author is concurrently working in Hokkaido University. This work was supported

in part by Mext Kakenhi (B-23700156)

J. Kivinen et al. (Eds.): ALT 2011, LNAI 6925, pp. 398–412, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Distributional Learning of Simple Context-Free Tree Grammars 399

simple context-free tree grammars

context-free string grammars
regular tree grammars

regular string grammars

Fig. 1.

distributions for example in order to determine nonterminals and production
rules of a grammar reflecting those interrelations, with the consequence that the
resulting grammar correctly generates L∗.

The technique of distributional learning can be extended to languages based
on more complex structures than the basic string once we have redefined such
notions as a substructure and its counterpart, the context or environment of a cer-
tain substructure, along with an unambiguous concatenation operation for those
two kinds of objects. Yoshinaka [10], for example, generalizes the learning algo-
rithm given in [6] for context-free grammars (cfgs) to multiple cfgs. Moreover,
Yoshinaka and Kanazawa [12] demonstrate that the techniques of distributional
learning developed so far can be likewise adapted to other kinds of objects and
formalisms in a rather abstract way via Abstract Categorial Grammars.

The contribution of our paper should be located in this line of research. We
concentrate on the case of trees and consider simple (i.e., non-duplicating and
non-deleting) context-free tree grammars (scftgs) as descriptions.1 Scftgs join
two directions of generalization: They can be seen as a natural context-free coun-
terpart of regular tree grammars and as a natural extension of cfgs to trees
(Fig. 1). Moreover, the class of string languages that can be associated with
scftgs is located in the so-called “mildly context-sensitive” family proposed by
Joshi [11] which is of particular importance in computational linguistics. In this
paper we demonstrate that distributional learning techniques for cfgs can be
translated in a straightforward way to techniques for scftgs and thereby estab-
lish a parallel to the fact that learning techniques for regular string languages can
be transferred directly to regular tree languages. We remark that although the
distributional learning of scftgs can be seen as a special case covered by [12],
in contrast to the generality of their discussion we obtain a much clearer and
detailed view on the close correspondence between the distributional learning
of cfgs and their immediate tree counterpart by basing our results directly on
notions and results from formal (tree) language theory.

Organization of the paper: In Section 2 we define the necessary notational
tools and we give the definition of scftgs. In Section 3 we establish the basic
principles for the distributional learning of scftgs and then present and dis-
cuss two different distributional learning algorithms for them, in two different
learning settings. We conclude and sketch some suggestions for future work in
Section 4.

1 scftgs have also been called linear context-free tree grammars in the literature.

400 A. Kasprzik and R. Yoshinaka

2 Preliminaries

2.1 Trees and Substitutions

We presume a basic knowledge of standard tree terminology. For a more com-
prehensive introduction to trees and associated concepts and theorems, see [13]
for example.

A ranked alphabet is a set of symbols Σ paired with a (total) function ρ : Σ →
N. For k ≥ 0, we write Σk = {a ∈ Σ | ρ(a) = k} to denote the set of all symbols
with rank k.

The set TΣ of all trees over a ranked alphabet Σ is defined as the smallest
set of expressions such that t = f(t1, . . . , tk) ∈ TΣ for every k ≥ 0, f ∈ Σk, and
t1, . . . , tk ∈ TΣ . The tree f() for f ∈ Σ0 is often abbreviated to f . The size of a
tree t, which is denoted by |t|, means the number of occurrences of symbols in
t, i.e., |f(t1, . . . , tk)| = 1 + |t1|+ · · ·+ |tk|.

A subset of TΣ is called a tree language. For a finite tree language L ⊆ TΣ ,
we define the size of L by ‖L‖ =

∑
t∈L |t|.

Throughout this paper we assume a countably infinite set X of ordered vari-
ables x1, x2, . . . which have rank 0.

A tree t ∈ TΣ∪X is called an m-stub if only and all the variables x1, . . . , xm

occur exactly once in t for some m ∈ N.2 The set of all m-stubs is denoted by
S

m
Σ and we let SΣ =

⋃
m∈N

S
m
Σ . We note that S

0
Σ = TΣ .

A leaf substitution η is a finite partial mapping from X to TΣ , which is
extended to a function η̂ : TΣ∪X → TΣ∪X as follows:

– for x ∈ X , let η̂(x) = η(x) if η(x) is defined and η̂(x) = x otherwise, and
– for f ∈ Σk, let η̂(f(t1, . . . , tk)) = f(η̂(t1), . . . , η̂(tk)).

We identify a leaf substitution η with its extension η̂. We often put η after
an argument as a postfix operator, i.e., tη instead of η(t). A leaf substitution
that maps xi1 , . . . , xim to t1, . . . , tm, respectively, is often denoted as [xi1 ←
t1, . . . , xim ← tm]. In cases where the domain is just {x1, . . . , xm}, we abbreviate
such an operator [x1 ← t1, . . . , xm ← tm] to [t1, . . . , tm].

Let Δ and Σ be ranked alphabets. An infix substitution σ is a mapping from
Δ to SΣ such that σ(f) ∈ S

k
Σ for all f ∈ Δk. σ is extended to a function

σ̂ : SΣ∪Δ → SΣ as follows:

– σ̂(f(s1, . . . , sk)) = σ(f)[σ̂(s1), . . . , σ̂(sk)] for f ∈ Δk,
– σ̂(f(s1, . . . , sk)) = f(σ̂(s1), . . . , σ̂(sk)) for f
∈ Δk.

We identify an infix substitution σ with its extension σ̂. The definition of an infix
substitution coincides with that of a leaf substitution when the domain Δ consists
only of symbols of rank 0. Hence we may denote an infix substitution that maps
Yi ∈ Δ to si ∈ SΣ for i = 1, . . . , m as a postfix operator [Y1 ← s1, . . . , Ym ← sm]
without confusion.
2 What we call a stub is also called a ‘context’ in the literature on trees [13]. However,

we avoid this established terminology since in our framework a stub fulfills the role
of a substructure, and not of the remaining parts of a decomposition.

Distributional Learning of Simple Context-Free Tree Grammars 401

Example 1. Let Σ = Σ0 ∪ Σ1 with Σ1 = {a, b, c, d}, Σ0 = {e} and Δ = Δ1 =
{Y1}. For s = b(c(x1)) ∈ S

1
Σ , the result of the application of an infix substitution

[Y1 ← s] to a tree t = a(Y1(d(e))) ∈ TΣ∪{Y1} is t[Y1 ← s] = a(b(c(d(e)))).
Let Σ0 = {a, b, c}, Σ1 = {h}, Σ2 = {f, g} and Δ = Δ2 = {Y2}. For s =

f(x1, g(b, x2)) ∈ S
2
Σ and t = h(Y2(a, c)) ∈ TΣ∪{Y2}, we have

t[Y2 ← s] = h(Y2(a, c))[Y2 ← f(x1, g(b, x2))] = h(f(a, g(b, c))).

Lemma 1. Let an infix substitution σ from Δ to SΣ and a symbol Y ∈ Σ be
such that Y
∈ Δ and σ(a) contains no occurrence of Y for any a ∈ Δ. Then
(s1[Y ← s2])σ = (s1σ)[Y ← (s2σ)].

2.2 Simple Context-Free Tree Grammars

We are now ready to specify the grammars that generate the kind of languages
we will consider as targets for our learning algorithms in Section 3.

Definition 1. Let r ∈ N be a natural number. We define an r-simple context-
free tree grammar (r-scftg) as a 4-tuple G = 〈Σ, N, I, P 〉 where

– Σ is a ranked alphabet of terminals with Σm = ∅ for all m > r,
– N is a ranked alphabet of nonterminals with Nm = ∅ for all m > r,
– I ⊆ N0 is a set of initial symbols,3 and
– P is a finite set of production rules of the form A → s with A ∈ Nm and

s ∈ S
m
Σ for some m ≥ 0.

We let Pm = {A→ s ∈ P | A ∈ Nm and s ∈ S
m
Σ }.

For u, v ∈ S
n
Σ∪N , we write u ⇒G v if there is m ∈ N, A → s ∈ Pm and

t ∈ S
n
Σ∪N∪{Y } such that Y has rank m and occurs just once in t and

– u = t[Y ← A(x1, . . . , xm)] and
– v = t[Y ← s].

The relation ⇒∗
G on SΣ∪N is defined as the reflexive transitive closure of ⇒G.

The stub language L(G, A) generated by A ∈ Nm is the set

L(G, A) = { s ∈ S
m
Σ | A(x1, . . . , xm)⇒∗

G s }.
We simply write LA for L(G, A) where G is understood. The tree language
generated by G is defined as L(G) =

⋃
A∈I LA.

Context-free (string) grammars (cfgs) can be interpreted as 1-scftgs and vice
versa.

Lemma 2. If A⇒∗
G u[Y ← B(x1, . . . , xm)] and B⇒∗

G v, then A⇒∗
G u[Y ← v]

for any A ∈ N , B ∈ Nm, u ∈ SΣ∪N∪{Y }, v ∈ S
m
Σ∪N and Y of rank m.

3 Contrary to the standard definition of cftgs, we allow multiple initial symbols.
Obviously this generalization does not affect the expressive power of the formalism,
yet our results will be conveniently presented in this non-standard form.

402 A. Kasprzik and R. Yoshinaka

Definition 2. We call an m-stub s non-permuting if the variables x1, . . . , xm

occur in this order from left to right in s.
An scftg is said to be normal if, for any rule A → s, the stub s ∈ SΣ∪N is

of one of the following two types:

I. f(x1, . . . , xk) for some f ∈ Σk or
II. B(x1, . . . , xi, C(xi+1, . . . , xj), xj+1, . . . , xk) for some B ∈ Nk−j+i+1 and C ∈

Nj−i with 0 ≤ i ≤ j ≤ k.

One can show that indeed every r-scftg admits an equivalent r-scftg in the
normal form by a technique similar to the proofs for corresponding theorems in
related formalisms (e.g., [14], [15]). For the rest of this paper we will assume all
stubs of S

m
Σ∪N to be non-permuting and all scftgs to be normal.

Proposition 1. Fix a positive integer r. The uniform membership problem for
r-scftgs, which asks whether t ∈ L(G), is decidable in polynomial time in the
size of an r-scftg G and a tree t.

Proof. The case of r-scftgs can be seen as a special case of a richer formalism
that has a polynomial-time parsing algorithm if instances are restricted to r-
scftgs (e.g., [16]). To make this paper self-contained, yet we outline a parsing
algorithm for r-scftgs based on the standard CKY algorithm for cfgs. We have
an (m + 1)-dimensional table Tm where each dimension corresponds to a node
position of the tree to be parsed for each m = 0, . . . , r. We keep and update the
tables so that each cell of Tm is occupied by nonterminals of rank m that can
generate the m-stub determined by the corresponding (m+1) positions. It is not
hard to see that if instances are normal, such an algorithm runs in polynomial
time, where the degree of the polynomial linearly depends on r.

3 Distributional Learning of Simple Context-Free Tree
Grammars

3.1 Decomposition of Trees

Consider a context-free string language L ⊆ Σ∗, and the decompositions of
members w of L into substrings w′ and contexts 〈u, v〉 ∈ Σ∗×Σ∗ with w = uw′v.
Distributional learning of cfgs is based on the analysis and emulation of the
specific relations between those particular strings and contexts that when put
together form a grammatical string of the language in question.

We (re)define suitable concepts corresponding to ‘substrings’ and ‘contexts’
for the tree case, with the goal of making distributional learning algorithms for
strings directly translatable into distributional learning algorithms for trees. In
our framework, the tree counterpart of a substring is a stub, which is the kind of
object that a nonterminal of an scftg derives. We specify our tree counterpart
of a context as follows.

Distributional Learning of Simple Context-Free Tree Grammars 403

Definition 3. An m-environment is a tree over Σ ∪ {#m} in which #m occurs
exactly once, where #m
∈ Σ is a special symbol of rank m. The set of all m-
environments is denoted by E

m
Σ . For an m-environment e ∈ E

m
Σ and an m-stub

s ∈ S
m
Σ , we define a binary operation �m by

e�m s = e[#m ← s].

The domain and accordingly the range of the operation is naturally extended to
sets in the standard way.

The subscript m of �m is often suppressed. We note that the result of the
operation is always a tree in TΣ .

Definition 4 contains the essence of the substructure-environment relation for
a certain language in the tree case.

Definition 4. For a tree language L ⊆ TΣ and m, r ∈ N, we let

Subm(L) = { s ∈ S
m
Σ | e� s ∈ L for some e ∈ E

m
Σ },

Sub≤r(L) =
⋃

m≤r

Subm(L),

Envm(L) = { e ∈ E
m
Σ | e� s ∈ L for some s ∈ S

m
Σ },

Env≤r(L) =
⋃

m≤r

Envm(L).

We note that we always have #0 ∈ Env0(L) and x1 ∈ Sub1(L) unless L is
empty. Sub0(L) corresponds to the set of ‘subtrees’ in the usual sense.

Lemma 3. Fix a positive integer r. For any finite language L ⊆ TΣ, one can
compute the sets Sub≤r(L) and Env≤r(L) in polynomial time in ‖L‖.
We remark that the degree of the polynomial linearly depends on r.

Hereafter, we drop Σ to denote sets SΣ , EΣ as S, E, when Σ is understood.

Example 2. Let Σ = Σ0 ∪ Σ2 where Σ0 = {a, b, c} and Σ2 = {f, g}. A tree
t = f(a, g(b, c)) ∈ T can be decomposed in many ways:

t = #0 � t (#0 ∈ Env0(t), t ∈ Sub0(t))
= f(a, #0)� g(b, c) (f(a, #0) ∈ Env0(t), g(b, c) ∈ Sub0(t))
= f(a, #1(b))� g(x1, c) (f(a, #1(b)) ∈ Env1(t), g(x1, c) ∈ Sub1(t))
= f(a, #2(b, c))� g(x1, x2) (f(a, #2(b, c)) ∈ Env1(t), g(x1, x2) ∈ Sub1(t))
= #2(a, c)� f(x1, g(b, x2)) (#2(a, c) ∈ Env2(t), f(x1, g(b, x2)) ∈ Sub2(t))

and so on.

In the following subsections, we illustrate how these adapted notions result in
distributional learning algorithms for trees by discussing some concrete examples
in detail.

404 A. Kasprzik and R. Yoshinaka

3.2 Substitutable Simple Context-Free Tree Languages

There are several properties that make context-free languages learnable using
distributional techniques. Among those properties, we will pick the strongest
one first: Substitutability. The class of substitutable cfgs and even the class
of substitutable multiple context-free grammars (mcfgs) have been shown to
be efficiently learnable from positive examples by Clark [6] and Yoshinaka [10],
respectively. Compared to other existing distributional learning algorithms those
learners are rather simple due to the great restriction of substitutability.

The learning setting we consider is the same as in the two references given
above: Identification in the limit from positive data [17]. Let G∗ be the tar-
get grammar. A learner A is given an infinite sequence of positive examples
t1, t2, · · · ∈ L(G∗) fulfilling the condition L(G∗) = { ti | i ≥ 1 }. For each n ≥ 1,
A constructs a conjecture grammar Gn based on the data t1, . . . , tn received so
far. We say thatA identifies G∗ in the limit from positive data if for any sequence
of positive examples from L(G∗), there is a point n0 such that L(Gn0) = L(G∗)
and Gn = Gn0 for all n > n0.

This subsection presents an efficient algorithm that identifies every r-substi-
tutable scftg in the limit from positive data.

Definition 5. A tree language L ⊆ TΣ is said to be r-substitutable if the fol-
lowing holds:

– For any m ≤ r and s1, s2 ∈ S
m, if there is e0 ∈ E

m with e0� s1, e0� s2 ∈ L
then we have e� s1 ∈ L iff e� s2 ∈ L for all e ∈ E

m.

In such a case we say that s1 and s2 are substitutable for each other. An r-
substitutable scftg is an r-scftg G such that L(G) is r-substitutable.

Fix an r-substitutable scftg G∗ as our learning target. For a finite set D ⊆
L(G∗) of positive examples, our learner constructs an scftg GD = 〈Σ, N, I, P 〉
as follows. First, we take the substubs in Sub≤r(D) as nonterminal symbols:

Nm = { [[s]] | s ∈ Subm(D) } for m ≤ r,

I = { [[t]] ∈ N0 | t ∈ D }.

We want each nonterminal [[s]] to derive s′ ∈ S if and only if s and s′ are
substitutable for each other. Our grammar GD has rules of the following two
types.

I. [[s]]→ a(x1, . . . , xm) for s ∈ Subm(D) and a ∈ Σm,
if there is e ∈ Envm(D) such that e� s ∈ D and e� a(x1, . . . , xm) ∈ D ;

II. [[s]] → [[s1]](x1, . . . , xi, [[s2]](xi+1, . . . , xj), xj+1, . . . , xm) for s ∈ Subm(D),
s1 ∈ Subm−j+i+1(D), s2 ∈ Subj−i(D), if there is e ∈ Envm(D) such that
e� s ∈ D and e� s1[x1, . . . , xi, s2[xi+1, . . . , xj], xj+1, . . . , xm] ∈ D .

In other words, we obtain a rule of Type I if the learner finds a common en-
vironment for s and a(x1, . . . , xm) and can thus conclude that those two stubs

Distributional Learning of Simple Context-Free Tree Grammars 405

are substitutable for each other, and accordingly a rule of Type II if the same
occurs for s and s1[x1, . . . , xi, s2[xi+1, . . . , xj], xj+1, . . . , xm].

A trivial rule of Type I is [[a(x1, . . . , xm)]]→ a(x1, . . . , xm) for a ∈ Σm. Once
the symbol a is observed in D, the learner constructs this trivial rule. Similarly,
if s ∈ Sub(D) is represented as s = s1[�x1, s2[�x2], �x3] for some s1, s2 ∈ Sub(D),
then we have the trivial rule of Type II

[[s1[�x1, s2[�x2], �x3]]]→ [[s1]](�x1, [[s2]](�x2), �x3),

where �x1, �x2, �x3 = x1, . . . , xm. Successive applications of such trivial rules de-
compose a stub s into pieces in arbitrary ways and finally we obtain [[s]]⇒∗

GD
s

for all [[s]] ∈ N .
Algorithm 1 shows our learner for r-substitutable scftgs. It is clear by Propo-

sition 1 and Lemma 3 that the algorithm updates its conjecture Ĝ in polynomial
time in the size ‖D‖ of D.

Algorithm 1. Learning r-substitutable scftgs
Data: A sequence of positive examples t1, t2, . . .
Result: A sequence of scftgs G1, G2, . . .
let Ĝ be an scftg such that L(Ĝ) = ∅;
for n = 1, 2, . . . do

read the next example tn;
if tn �∈ L(Ĝ) then

let Ĝ = GD for D = {t1, . . . , tn};
end if
output Ĝ as Gn;

end for

Example 3. Let us sketch an example run for Algorithm 1.
Consider a target scftg G∗ = 〈Σ0 ∪ Σ3, N

∗
0 ∪ N∗

3 , I∗, P ∗〉 where Σ0 =
{a, b, c, d, f}, Σ3 = {g, h}, N∗

0 = {A}, N∗
3 = {B}, I∗ = {A}, and P ∗ consists of

the following three rules

A→ g(a, B(b, f, c), d), B → h(x1, x2, x3), B → g(a, B(b, g(x1, x2, x3), c), d) .

Figure 2 illustrates the rules of G∗ and example trees t1 = g(a, h(b, f, c), d) and
t2 = g(a, g(a, h(b, g(b, f, c), c), d), d) generated by G∗. Obviously G∗ is not in
normal form but since the learner only has to construct a grammar generating
the same language as G∗ we choose this representation for understandability.
Suppose the learner is given the tree t1 as its first datum. The learner will
react by constructing a grammar G{t1} = {Σ, N, I, P} as specified above. At
this first stage, I is the singleton of [[t1]] and all the constructed rules in P
are trivial ones. Thus this grammar does not generate any other tree but t1
itself. Suppose the next datum given to the learner is t2. This results in several
additional nonterminals and one more start symbol [[t2]]. The learner observes

406 A. Kasprzik and R. Yoshinaka

G :*

t :1

D :

t :2

Fig. 2. Grammar G∗ and sample set D for the example run of Algorithm 1

that h(x1, x2, x3) and g(a, h(b, g(x1, x2, x3), c), d) are substitutable for each other
due to the environment g(a, #3(b, f, c), d):

t1 = g(a, #3(b, f, c), d)� h(x1, x2, x3) ∈ D,

t2 = g(a, #3(b, f, c), d)� g(a, h(b, g(x1, x2, x3), c), d) ∈ D.

The learner constructs a rule

[[h(x1, x2, x3)]]→ [[g(a, x1, d)]]([[h(b, g(x1, x2, x3), c)]](x1, x2, x3))

by the fact g(a, h(b, g(x1, x2, x3), c), d) = g(a, x1, d)[x1 ← h(b, g(x1, x2, x3), c)].
Successive applications of trivial rules result in a derivation

[[h(x1, x2, x3)]]⇒GD

[[g(a, x1, d)]]([[h(b, g(x1, x2, x3), c)]](x1, x2, x3))

∗⇒
GD

g(a, [[h(x1, x2, x3)]](b, g(x1, x2, x3), c), d),

which simulates the rule B → g(a, B(b, g(x1, x2, x3), c), d) of G∗. As a conse-
quence, GD generates every string in L(G∗).

Lemma 4. L(GD) ⊆ L(G∗) for any D ⊆ L(G∗).

Proof. Let GD = 〈Σ, N, I, P 〉 and σ an infix substitution from N to SΣ given
by σ([[s]]) = s for all [[s]] ∈ N . By induction on the length of derivation, we show
that if [[t]]⇒∗

GD
t′ for [[t]] ∈ I, then t′σ ∈ L(G∗). If [[t]] ∈ I, by definition it means

[[t]]σ = t ∈ L(G∗). Thus the claim holds for any zero-step derivation.

Distributional Learning of Simple Context-Free Tree Grammars 407

Suppose that the last rule applied in the derivation process from [[t]] to t′ is

[[s]]→ [[s1]](x1, . . . , xi, [[s2]](xi+1, . . . , xj), xj+1, . . . , xm).

That is, there is u ∈ E
m such that

[[t]] ∗⇒
GD

u� [[s]](x1, . . . , xm)

⇒
GD

u� [[s1]](x1, . . . , xi, [[s2]](xi+1, . . . , xj), xj+1, . . . , xm) = t′.

For the sake of legibility, let us abbreviate x1, . . . , xi to �x1, xi+1, . . . , xj to �x2

and xj+1, . . . , xm to �x3. By the induction hypothesis, we have

(u � [[s]](�x1, �x2, �x3))σ = uσ � s[�x1, �x2, �x3] = uσ � s ∈ L(G∗)

by Lemma 1. By the presence of the rule, we know that s and s1[�x1, s2[�x2], �x3]
are substitutable for each other in L(G∗). The fact uσ � s ∈ L(G∗) implies
t′σ = uσ � s1[�x1, s2[�x2], �x3] ∈ L(G∗).

The case where the last applied rule is of Type I can be shown in the same
way. ��
Next we give a set of positive examples from which our learner constructs a right
conjecture. Let the target grammar G∗ = 〈Σ, N∗, I∗, P ∗〉. For each nonterminal
A ∈ N∗

m, arbitrarily fix an m-environment eA such that B⇒∗
G∗ eA � A(�x) for

some B ∈ I∗ and an m-stub sA such that A⇒∗
G∗ sA. We define

D∗ = { eA � a(x1, . . . , xm) | A→ a(x1, . . . , xm) ∈ P ∗ with a ∈ Σ }
∪ { eA � sB[�x1, sC [�x2], �x3]] | A→ B(�x1, C(�x2), �x3) ∈ P ∗ with B, C ∈ N∗ }.

Note that eA � sA ∈ D∗ for all A ∈ N∗ and eB = #0 for all B ∈ I∗.

Lemma 5. For any D ⊆ L(G∗), if D ⊇ D∗, we have L(GD) = L(G∗).

Proof. We show that every nonterminal A of G∗ is simulated by [[sA]] in GD. If
A ∈ I∗, then sA ∈ D and thus [[sA]] ∈ I.

For a rule A→ a(x1, . . . , xm) ∈ P ∗, we have

eA � sA, eA � a(x1, . . . , xm) ∈ D∗.

By definition, GD has the corresponding rule of Type I:

[[sA]]→ a(x1, . . . , xm).

Let us consider a rule

A→ B(�x1, C(�x2), �x3) ∈ P ∗

of G∗. We have
eA � sA, eA � sB[�x1, sC [�x2], �x3]] ∈ D∗.

By definition, GD has the corresponding rule of Type II:

[[sA]]→ [[sB]](�x1, [[sC]](�x2), �x3)).

Consequently, every derivation of G∗ is simulated by a derivation of GD. ��

408 A. Kasprzik and R. Yoshinaka

Therefore, once the learner gets a superset of D∗, it always conjectures an scftg
that generates the target language. We also remark that the set D∗ is not too
big. D∗ consists of at most |P ∗| positive examples and if we choose eA and sA to
be minimal, each element in D∗ is a minimal tree that is obtained using a rule
of G∗.

Theorem 1. Algorithm 1 identifies every r-substitutable scftg in the limit
from positive data. It updates the conjecture in polynomial time and the number
of examples needed to converge is bounded by a polynomial in the number of rules
of the target grammar.

3.3 Finite Environment Property

In [18], Clark defines the notion of a Finite Context Property for cfgs and
proposes a corresponding learning algorithm. The learning setting he assumes
is identification in the limit from positive data and membership queries, which
is similar to the one from the previous subsection except that in addition the
learner has access to a membership oracle to ask if a certain object is in the
target language or not, and will receive an answer in constant time. This subsec-
tion defines an analogous property for scftgs and present a matching learning
algorithm. We base our algorithm on the one proposed for strings in [19], which
is a simpler version of Clark’s original.

Definition 6. We say that an r-scftg G has the p-Finite Environment Prop-
erty (p-fep) if for every A ∈ Nm, there is FA ⊆ E

m such that |FA| ≤ p and

LA = { s ∈ S
m | FA � s ⊆ L(G∗) } .

We call such an environment set FA a characterizing environment set of A.

Before giving the overall view of our learning algorithm (Algorithm 2), we de-
scribe the construction and important properties of the scftg that the learner
maintains as its current conjecture.

Let G∗ be our learning target, an r-scftg with the p-fep, and L∗ = L(G∗).
Suppose we have two finite sets S ⊆ S and E ⊆ E such that a(x1, . . . , xm) ∈ S for
all a ∈ Σm and #0 ∈ E, which are computed from given positive data in a way
explained later. We define an scftg Gr,p(E, S) = 〈Σ, N, P, I〉 as follows. While
Algorithm 1 takes stubs as nonterminals, Algorithm 2 uses sets of environments
as nonterminals.

Nm = { [[F]] | F ⊆ E ∩ E
m and |F | ≤ p } for m ≤ r,

I = { [[{#0}]] }.

Note that |Nm| ≤ |E|p. We have rules of two types, which require the aid of the
oracle to be determined:

I. [[F]]→ a(x1, . . . , xm) with a ∈ Σm if F � a(x1, . . . , xm) ⊆ L∗;

Distributional Learning of Simple Context-Free Tree Grammars 409

II. [[F]]→ [[F1]](�x1, [[F2]](�x2), �x3) if

for all s1, s2 ∈ S, F1� s1, F2� s2 ⊆ L∗ implies F � s1[�x1, s2[�x2], �x3] ⊆ L∗.

When learning an r-scftg with the p-fep, we want each nonterminal [[F]] to
derive s if and only if F � s ⊆ L∗, that is, we want F to be a characterizing en-
vironment set of [[F]]. Conversely, for each nonterminal A of the target grammar
G∗, we want our conjecture to simulate A by a nonterminal [[FA]] where FA is a
characterizing environment set for A extracted from the given data. From this
idea, rules of Type II of the form [[F]]→ [[F1]](�x1, [[F2]](�x2), �x3) are justified if for
all s1, s2 ∈ S,

F1 � s1, F2 � s2 ⊆ L∗ implies F � s1[�x1, s2[�x2], �x3] ⊆ L∗ (1)

since s1 ∈ L[[F1]], s2 ∈ L[[F2]] implies s1[�x1, s2[�x2], �x3] ∈ L[[F]] under the presence of
the rule. However, since S

m is infinite for each m, one cannot check this property
(1). Instead, we use the finite set S. This is the idea behind the rule construction.

We say that a rule of Type II is correct if (1) holds.

Lemma 6. If E ⊆ F then L(Gr,p(E, S)) ⊆ L(Gr,p(F, S)).

Proof. Every rule of Gr,p(E, S) is also that of Gr,p(F, S). ��
Lemma 7. If S ⊆ T then L(Gr,p(E, T)) ⊆ L(Gr,p(E, S)).

Proof. Every rule of Gr,p(E, T) is also that of Gr,p(E, S). ��
We want every rule of the conjectured grammar to be correct. The following
argument shows that for every finite set E ⊆ E, there is a finite set S ⊆ S such
that every rule of Gr,p(E, S) is correct.

For F ⊆ E
m, F1 ⊆ E

k, F2 ⊆ E
j and i ≤ m− j such that m = k + j − 1, if a

rule of Type II

[[F]]→ [[F1]](x1, . . . , xi, [[F2]](xi+1, . . . , xi+j), xi+j+1, . . . , xm)

is not correct, there are s1, s2 ∈ S such that

F1�s1, F2�s2 ⊆ L∗ and F �s1[x1, ..., xi, s2[xi+1, ..., xi+j], xi+j+1, ..., xm] � L∗.

If s1, s2 ∈ S, the incorrect rule is suppressed. Hence, 2r|N |3 ≤ 2r|E|3p stubs
suffice to suppress all incorrect rules. We say that S is fiducial on E if every rule
of Gr,p(E, S) is correct.

Lemma 8. If every rule of Ĝ = Gr,p(E, S) is correct, we have L(Ĝ) ⊆ L∗.

Proof. One can prove by induction that for any [[F]] ∈ N and s ∈ S, whenever
[[F]]⇒∗

Ĝ
s, it holds that F � s ⊆ L∗. By definition of I, we have proven the

lemma. ��
Lemma 9. Let L∗ be generated by an r-scftg G∗ with the p-fep. Then L∗ ⊆
L(Gr,p(E, S)) if E includes a characterizing environment set FA of A for every
nonterminal A of G∗.

410 A. Kasprzik and R. Yoshinaka

Algorithm 2. Learning scftgs with the p-fep
Data: A sequence of trees t1, t2, · · · ∈ L(G∗); membership oracle O;
Result: A sequence of r-scftgs G1, G2, . . . ;
let D := ∅; E := ∅; S := ∅; Ĝ := Gr,p(E, S);
for n = 1, 2, . . . do

let D := D ∪ {tn}; S := Sub≤r(D);
if D � L(Ĝ) then

let E := Env≤r(D);
end if
output Ĝ = Gr,p(E, S) as Gn;

end for

Proof. Each nonterminal A of G∗ is simulated by [[FA]] in Gr,p(E, S) except the
very first step of a derivation from an initial symbol of G∗, where that initial
symbol of G∗ is simulated by [[{#0}]] in Gr,p(E, S). ��
Due to the nice properties presented in the lemmas above, our learning algorithm
is quite simple. Whenever we get a positive example that is not generated by our
current conjecture, we expand E (see Lemma 6). On the other hand, to suppress
incorrect rules, we keep expanding S (Lemma 7).

Theorem 2. Algorithm 2 identifies r-scftgs with the p-fep in the limit from
positive data and membership queries.

Proof. Let Dn = {t1, . . . , tn}. Lemma 9 ensures that Algorithm 2 does not up-
date E infinitely many times, because characterizing environment sets of non-
terminals in G∗ are finite subsets of Env(L∗) and at some point the learner will
have seen all of them. Let Em0 = Env(Dm0) be the limit and Sn0 = Sub(Dn0) be
fiducial on Em0 . Together with Lemma 8, we see that for any n ≥ max{m0, n0},
Algorithm 2 outputs Gn = Gr,p(Em0 , Sn0) such that L(Gn) = L(G∗). ��

Some remarks on the efficiency of our algorithm: It is easy to see that
‖E‖, ‖S‖ ∈ O(‖D‖r+1) and we have at most |E|p nonterminals. We need at
most a polynomial number of membership queries to determine rules among
those nonterminals. All in all, Algorithm 2 updates its conjecture in polyno-
mial time in the size ‖D‖ of the data D. Moreover, we do not need too much
data. To get characterizing environments of all nonterminals, p|N∗| examples
are enough, where N∗ is the set of nonterminals of the target scftg G∗. To
suppress incorrect rules, O(r|E|3p) stubs are enough by Lemma 8.

4 Conclusion

We have demonstrated how existing distributional learning techniques for cfgs
can be naturally extended to scftgs by giving the necessary theoretical foun-
dations and by discussing two concrete efficient algorithms for the distributional
learning of scftgs in detail. These are just two examples for the potential of our

Distributional Learning of Simple Context-Free Tree Grammars 411

translation – in fact, any distributional algorithm for strings should be trans-
latable into an algorithm for trees by this method. This includes other learning
settings such as membership and equivalence queries – see [8,5] for distributional
algorithms based on this scenario.

We suggest Tree Adjoining Grammars (tags; [11]) as another prominent tree
generating formalism that becomes learnable via our distributional techniques by
modifying the definitions of substubs and environments accordingly. Moreover,
the shift from strings to trees executed in this paper can be easily continued to
context-free graph formalisms such as hyperedge replacement grammars [20] by
giving a similar translation and specifying in an analogous manner how a learner
would extract a sub-hypergraph from a given example of the target language to
construct his hypothesis. We have focused on simple cftgs as the most intuitive
extension of cfgs to trees – a further conceivable direction for future work is
the question of what happens if we allow subtrees to be duplicated.

Practical applications: As Clark [21] mentions in his conclusion, distributional
learning techniques are adaptable to a probabilistic paradigm by focussing on
the frequency with which the substrings and contexts of a language occur in
(large) sets of given data. Hence it seems a promising approach for example in
computational linguistics to consider applying probabilistically modified distri-
butional techniques to large corpora of linguistic data such as the Penn treebank,
from which a probabilistic cfg or also a tag can be extracted (see [22], [23]),
once we have specified distributional algorithms for tags as suggested above.

Acknowledgement. The authors are grateful to Alexander Clark and the
anonymous reviewers for valuable comments that have improved the quality
of this paper.

References

[1] López, D., Sempere, J.M., Garćıa, P.: Inference of reversible tree languages. IEEE
Transactions on Systems, Man, and Cybernetics, Part B 34(4), 1658–1665 (2004)

[2] Drewes, F., Högberg, J.: Learning a regular tree language from a teacher. In: Ésik,
Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 279–291. Springer, Heidelberg
(2003)

[3] Besombes, J., Marion, J.Y.: Learning tree languages from positive examples and
membership queries. Theoretical Computer Science 382, 183–197 (2007)

[4] Oncina, J., Garcia, P.: Inference of recognizable tree sets. Technical report, DSIC
II/47/93, Universidad de Valencia (1993)

[5] Shirakawa, H., Yokomori, T.: Polynomial-time MAT learning of c-deterministic
context-free grammars. Transaction of Information Processing Society of
Japan 34, 380–390 (1993)

[6] Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable
context-free languages. Journal of Machine Learning Research 8, 1725–1745 (2007)

[7] Clark, A., Eyraud, R., Habrard, A.: Using contextual representations to efficiently
learn context-free languages. Journal of Machine Learning Research 11, 2707–2744
(2010)

[8] Clark, A.: Distributional learning of some context-free languages with a minimally
adequate teacher. In: [24], pp. 24–37

412 A. Kasprzik and R. Yoshinaka

[9] Clark, A.: Towards general algorithms for grammatical inference. In: Hutter, M.,
Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010. LNCS, vol. 6331, pp.
11–30. Springer, Heidelberg (2010)

[10] Yoshinaka, R.: Efficient learning of multiple context-free languages with multi-
dimensional substitutability from positive data. Theor. Comput. Sci. 412(19),
1821–1831 (2011)

[11] Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required to
provide reasonable structural description. In: Dowty, D., Karttunen, L., Zwicky,
A. (eds.) Natural Language Processing, Cambridge University Press, Cambridge
(1985)

[12] Yoshinaka, R., Kanazawa, M.: Distributional learning of abstract categorial gram-
mars. In: Pogodalla, S., Prost, J.-P. (eds.) LACL. LNCS, vol. 6736, pp. 251–266.
Springer, Heidelberg (2011)

[13] Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree Automata Techniques and Applications (2008)

[14] Seki, H., Kato, Y.: On the generative power of multiple context-free grammars
and macro grammars. IEICE Transactions 91-D(2), 209–221 (2008)

[15] Kanazawa, M., Salvati, S.: The copying power of well-nested multiple context-
free grammars. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA 2010.
LNCS, vol. 6031, pp. 344–355. Springer, Heidelberg (2010)

[16] Lautemann, C.: The complexity of graph languages generated by hyperedge re-
placement. Acta. Inf. 27(5), 399–421 (1990)

[17] Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (1967)

[18] Clark, A.: Learning context free grammars with the syntactic concept lattice. In:
[24], pp. 38–51

[19] Yoshinaka, R.: Towards dual approaches for learning context-free grammars based
on syntactic concept lattices. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS,
vol. 6795, pp. 429–440. Springer, Heidelberg (2011)

[20] Habel, A., Kreowski, H.: Some structural aspects of hypergraph languages gen-
erated by hyperedge replacement. In: Brandenburg, F.J., Wirsing, M., Vidal-
Naquet, G. (eds.) STACS 1987. LNCS, vol. 247, pp. 207–219. Springer, Heidelberg
(1987)

[21] Clark, A.: Efficient, correct, unsupervised learning of context-sensitive languages.
In: Proceedings of CoNLL. Association for Computational Linguistics, Uppsala
(2010)

[22] Charniak, E.: Tree-bank grammars. In: Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pp. 1031–1036 (1996)

[23] Chen, J., Bangalore, S., Vijay-Shanker, K.: Automated extraction of tree-
adjoining grammars from treebanks. Nat. Lang. Eng. 12, 251–299 (2006)

[24] Sempere, J.M., Garćıa, P. (eds.): ICGI 2010. LNCS, vol. 6339. Springer, Heidel-
berg (2010)

	Distributional Learning of Simple Context-Free Tree Grammars
	Introduction
	Preliminaries
	Trees and Substitutions
	Simple Context-Free Tree Grammars

	Distributional Learning of Simple Context-Free Tree Grammars
	Decomposition of Trees
	Substitutable Simple Context-Free Tree Languages
	Finite Environment Property

	Conclusion
	References

