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Abstract. A possibly immortal agent tries to maximise its summed
discounted rewards over time, where discounting is used to avoid in-
finite utilities and encourage the agent to value current rewards more
than future ones. Some commonly used discount functions lead to time-
inconsistent behavior where the agent changes its plan over time. These
inconsistencies can lead to very poor behavior. We generalise the usual
discounted utility model to one where the discount function changes with
the age of the agent. We then give a simple characterisation of time-
(in)consistent discount functions and show the existence of a rational
policy for an agent that knows its discount function is time-inconsistent.

Keywords: Rational agents, sequential decision theory, general dis-
counting, time-consistency, game theory.

1 Introduction

The goal of an agent is to maximise its expected utility; but how do we measure
utility? One method is to assign an instantaneous reward to particular events,
such as having a good meal, or a pleasant walk. It would be natural to measure
the utility of a plan (policy) by simply summing the expected instantaneous
rewards, but for immortal agents this may lead to infinite utility and also assumes
rewards are equally valuable irrespective of the time at which they are received.

One solution, the discounted utility (DU) model introduced by Samuelson in
[12], is to take a weighted sum of the rewards with earlier rewards usually valued
more than later ones.

There have been a number of criticisms of the DU model, which we will not
discuss. For an excellent summary, see [1]. Despite the criticisms, the DU model
is widely used in both economics and computer science.

A discount function is time-inconsistent if plans chosen to maximise expected
discounted utility change over time. For example, many people express a prefer-
ence for $110 in 31 days over $100 in 30 days, but reverse that preference 30 days
later when given a choice between $110 tomorrow or $100 today [4]. This behavior
can be caused by a rational agent with a time-inconsistent discount function.

Unfortunately, time-inconsistent discount functions can lead to extremely bad
behavior and so it becomes important to ask what discount functions are time-
inconsistent.
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Previous work has focussed on a continuous model where agents can take
actions at any time in a continuous time-space. We consider a discrete model
where agents act in finite time-steps. In general this is not a limitation since
any continuous environment can be approximated arbitrarily well by a discrete
one. The discrete setting has the advantage of easier analysis, which allows us to
consider a very general setup where environments are arbitrary finite or infinite
Markov decision processes.

Traditionally, the DU model has assumed a sliding discount function. For-
mally, a sequence of instantaneous utilities (rewards) R = (rk, rk+1, rk+2, · · · )
starting at time k, is given utility equal to

∑∞
t=k dt−krt where d ∈ [0, 1]∞. We

generalise this model as in [6] by allowing the discount function to depend on the
age of the agent. The new utility is given by

∑∞
t=k dk

t rt. This generalisation is
consistent with how some agents tend to behave; for example, humans becoming
temporally less myopic as they grow older.

Strotz [13] showed that the only time-consistent sliding discount function is
geometric discounting. We extend this result to a full characterisation of time-
consistent discount functions where the discount function is permitted to change
over time. We also show that discounting functions that are “nearly” time-
consistent give rise to low regret in the anticipated future changes of the policy
over time.

Another important question is what policy should be adopted by an agent that
knows it is time-inconsistent. For example, if it knows it will become temporarily
myopic in the near future then it may benefit from paying a price to pre-commit
to following a particular policy. A number of authors have examined this question
in special continuous cases, including [3, 10, 11, 13]. We modify their results to
our general, but discrete, setting using game theory.

The paper is structured as follows. First the required notation is intro-
duced (Section 2). Example discount functions and the consequences of time-
inconsistent discount functions are then presented (Section 3). We next state
and prove the main theorems, the complete classification of discount functions
and the continuity result (Section 4). The game theoretic view of what an agent
should do if it knows its discount function is changing is analyzed (Section 5).
Finally we offer some discussion and concluding remarks (Section 6).

2 Notation and Problem Setup

The general reinforcement learning (RL) setup involves an agent interacting se-
quentially with an environment where in each time-step t the agent chooses
some action at ∈ A, whereupon it receives a reward rt ∈ R ⊆ R and ob-
servation ot ∈ O. The environment can be formally defined as a probability
distribution μ where μ(rtot|a1r1o1a2r2o2 · · · at−1rt−1ot−1at) is the probability
of receiving reward rt and observation ot having taken action at after history
h<t := a1r1o1 · · ·at−1rt−1ot−1. For convenience, we assume that for a given his-
tory h<t and action at, that rt is fixed (not stochastic). We denote the set of all
finite histories H := (A×R×O)∗ and write h1:t to be a history of length t, h<t to
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be a history of length t−1. ak, rk, and ok are the kth action/reward/observation
tuple of history h and will be used without explicitly redefining them (there will
always be only one history “in context”).
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A deterministic environment (where every
value of μ(·) is either 1 or 0) can be represented
as a graph with edges for actions, rewards of each
action attached to the corresponding edge, and
observations in the nodes. For example, the de-
terministic environment on the right represents
an environment where either pizza or pasta must be chosen at each time-step
(evening). An action leading to an upper node is eat pizza while the ones lead-
ing to a lower node are eat pasta. The rewards are for a consumer who prefers
pizza to pasta, but dislikes having the same food twice in a row. The starting
node is marked as S. This example, along with all those for the remainder of
this paper, does not require observations.

The following assumption is required for clean results, but may be relaxed if
an ε of slop is permitted in some results.

Assumption 1. We assume that A and O are finite and that R = [0, 1].

Definition 1 (Policy). A policy is a mapping π : H → A giving an action for
each history.

Given policy π and history h1:t and s ≤ t then the probability of reaching history
h1:t when starting from history h<s is P (hs:t|h<s, π) which is defined by,

P (hs:t|h<s, π) :=
t∏

k=s

μ(rkok|h<kπ(h<k)). (1)

If s = 1 then we abbreviate and write P (h1:t|π) := P (h1:t|h<1, π).

Definition 2 (Expected Rewards). When applying policy π starting from
history h<t, the expected sequence of rewards Rπ(h<t) ∈ [0, 1]∞, is defined by

Rπ(h<t)k :=
∑

ht:k

P (ht:k|h<t, π)rk.

If k < t then Rπ(h<t)k := 0.

Note while the set of all possible ht:k ∈ (A×R×O)k−t+1 is uncountable due to
the reward term, we sum only over the possible rewards which are determined
by the action and previous history, and so this is actually a finite sum.

Definition 3 (Discount Vector). A discount vector dk ∈ [0, 1]∞ is a vector[
dk
1 , dk

2 , d
k
3 , · · · ] satisfying dk

t > 0 for at least one t ≥ k.

The apparently superfluous superscript k will be useful later when we allow the
discount vector to change with time. We do not insist that the discount vector
be summable,

∑∞
t=k dk

t < ∞.
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Definition 4 (Expected Values). The expected discounted reward (or utility
or value) when using policy π starting in history h<t and discount vector dk is

V π
dk(h<t) := Rπ(h<t) · dk :=

∞∑

i=1

Rπ(h<t)id
k
i =

∞∑

i=t

Rπ(h<t)id
k
i .

The sum can be taken to start from t since Rπ(h<t)i = 0 for i < t. This means
that the value of dk

t for t < k is unimportant, and never will be for any result
in this paper. As the scalar product is linear, a scaling of a discount vector has
no affect on the ordering of the policies. Formally, if V π1

dk (h<t) ≥ V π2
dk (h<t) then

V π1
αdk(h<t) ≥ V π2

αdk(h<t) for all α > 0.

Definition 5 (Optimal Policy/Value). In general, our agent will try to
choose a policy π∗

dk to maximise V π
dk(h<t). This is defined as follows.

π∗
dk(h<t) := argmax

π
V π

dk(h<t), R∗
dk(h<t) := Rπ∗

dk (h<t),

V ∗
dk(h<t) := V

π∗
dk

dk (h<t).

If multiple policies are optimal then π∗
dk is chosen using some arbitrary rule.

Unfortunately, π∗
dk need not exist without one further assumption.

Assumption 2. For all π and k ≥ 1, limt→∞
∑

h<t
P (h<t|π)V π

dk(h<t) = 0.

Assumption 2 appears somewhat arbitrary. We consider:

1. For summable dk the assumption is true for all environments. With the
exception of hyperbolic discounting, all frequently used discount vectors are
summable.

2. For non-summable discount vectors dk the assumption implies a restriction
on the possible environments. In particular, they must return asymptotically
lower rewards in expectation. This restriction is necessary to guarantee the
existence of the value function.

From now on, including in theorem statements, we only consider environ-
ments/discount vectors satisfying Assumptions 1 and 2. The following theorem
then guarantees the existence of π∗

dk .

Theorem 6 (Existence of Optimal Policy). π∗
dk exists for any environment

and discount vector dk satisfying Assumptions 1 and 2.

The proof of the existence theorem is in the appendix.
An agent can use a different discount vector dk for each time k. This motivates

the following definition.

Definition 7 (Discount Matrix). A discount matrix d is a ∞ × ∞ matrix
with discount vector dk for the kth column.

It is important that we distinguish between a discount matrix d (written bold), a
discount vector dk (bold and italics), and a particular value in a discount vector
dk

t (just italics).
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Definition 8 (Sliding Discount Matrix). A discount matrix d is sliding if
dk

k+t = d1
t+1 for all k, t ≥ 1.

Definition 9 (Mixed Policy). The mixed policy is the policy where at each
time step t, the agent acts according to the possibly different policy π∗

dt .

πd(h<t) := π∗
dt(h<t) Rd(h<t) := Rπd(h<t).

We do not denote the mixed policy by π∗
d as it is arguably not optimal as

discussed in Section 5. While non-unique optimal policies π∗
dk at least result in

equal discounted utilities, this is not the case for πd. All theorems are proved
with respect to any choice πd.

Definition 10 (Time Consistency). A discount matrix d is time consistent if
and only if for all environments π∗

dk(h<t) = π∗
dj (h<t), for all h<t where t ≥ k, j.

This means that a time-consistent agent taking action π∗
dt(h<t) at each time

t will not change its plans. On the other hand, a time-inconsistent agent may
at time 1 intend to take action a should it reach history h<t (π∗

d0(h<t) = a).
However upon reaching h<t, it need not be true that π∗

dt(h<t) = a.

3 Examples

In this section we review a number of common discount matrices and give an
example where a time-inconsistent discount matrix causes very bad behavior.

Constant Horizon. Constant horizon discounting is where the agent only cares
about the future up to H time-steps away, defined by dk

t = [[t − k < H ]].1

Shortly we will see that the constant horizon discount matrix can lead to very
bad behavior in some environments.

Fixed Lifetime. Fixed lifetime discounting is where an agent knows it will not
care about any rewards past time-step m, defined by dk

t = [[t < m]]. Unlike
the constant horizon method, a fixed lifetime discount matrix is time-consistent.
Unfortunately it requires you to know the lifetime of the agent beforehand and
also makes asymptotic analysis impossible.

Hyperbolic. dk
t = 1/(1+κ(t−k)). The parameter κ determines how farsighted

the agent is with smaller values leading to more farsighted agents. Hyperbolic
discounting is often used in economics with some experimental studies explaining
human time-inconsistent behavior by suggesting that we discount hyperbolically
[14]. The hyperbolic discount matrix is not summable, so may be replaced by
the following (similar to [5]), which has similar properties for β close to 1.

dk
t = 1/(1 + κ(t − k))β with β > 1.

Geometric. dk
t = γt with γ ∈ (0, 1). Geometric discounting is the most com-

monly used discount matrix. Philosophically it can be justified by assuming an
1 [[expr]] = 1 if expr is true and 0 otherwise.
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agent will die (and not care about the future after death) with probability 1− γ
at each time-step. Another justification for geometric discount is its analytic
simplicity - it is summable and leads to time-consistent policies. It also models
fixed interest rates.

No Discounting. dk
t = 1, for all k, t. [8] and [7] point out that discounting

future rewards via an explicit discount matrix is unnecessary since the environ-
ment can capture both temporal preferences for early (or late) consumption, as
well as the risk associated with delaying consumption. Of course, this “discount
matrix” is not summable, but can be made to work by insisting that all envi-
ronments satisfy Assumption 2. This approach is elegant in the sense that it
eliminates the need for a discount matrix, essentially admitting far more com-
plex preferences regarding inter-temporal rewards than a discount matrix allows.
On the other hand, a discount matrix gives the “controller” an explicit way to
adjust the myopia of the agent.
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0 0 0To illustrate the potential consequences
of time-inconsistent discount matrices we
consider the policies of several agents act-
ing in the following environment. Let agent
A use a constant horizon discount matrix
with H = 2 and agent B a geometric discount matrix with some discount rate
γ.

In the first time-step agent A prefers to move right with the intention of mov-
ing up in the second time-step for a reward of 2/3. However, once in second
time-step, it will change its plan by moving right again. This continues indefi-
nitely, so agent A will always delay moving up and receives zero reward forever.

Agent B acts very differently. Let πt be the policy in which the agent moves
right until time-step t, then up and right indefinitely. V πt

dk (h<1) = γt (t+1)
(t+2) .

This value does not depend on k and so the agent will move right until
t = argmax

{
γt (t+1)

t+2

}
< ∞ when it will move up and receive a reward.

The actions of agent A are an example of the worst possible behavior arising
from time-inconsistent discounting. Nevertheless, agents with a constant hori-
zon discount matrix are used in all kinds of problems. In particular, agents in
zero sum games where fixed depth mini-max searches are common. In practise,
serious time-inconsistent behavior for game-playing agents seems rare, presum-
ably because most strategic games don’t have a reward structure similar to the
example above.

4 Theorems

The main theorem of this paper is a complete characterisation of time consistent
discount matrices.

Theorem 11 (Characterisation). Let d be a discount matrix, then the fol-
lowing are equivalent.
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1. d is time-consistent (Definition 10)
2. For each k there exists an αk ∈ R such that dk

t = αkd1
t for all t ≥ k ∈ N.

Recall that a discount matrix is sliding if dk
t = d1

t−k+1. Theorem 11 can be
used to show that if a sliding discount matrix is used as in [13] then the only
time-consistent discount matrix is geometric. Let d be a time-consistent slid-
ing discount matrix. By Theorem 11 and the definition of sliding, α1d

1
t+1 =

d2
t+1 = d1

t . Therefore 1
α1

d1
2 = d1

1 and d1
3 = 1

α1
d1
2 =

(
1

α1

)2

d1
1 and similarly,

d1
t =

(
1

α1

)t−1

d1
1 ∝ γt with γ = 1/α1, which is geometric discounting. This is

the analogue to the results of [13] converted to our setting.
The theorem can also be used to construct time-consistent discount rates. Let

d1 be a discount vector, then the discount matrix defined by dk
t := d1

t for all
t ≥ k will always be time-consistent, for example, the fixed lifetime discount
matrix with dk

t = 1 if t ≤ H for some horizon H . Indeed, all time-consistent
discount rates can be constructed in this way (up to scaling).

Proof (Theorem 11). 2 =⇒ 1: This direction follows easily from linearity of the
scalar product.

π∗
dk(h<t) ≡ argmax

π
V π

dk(h<t) ≡ argmax
π

Rπ(h<t) · dk = arg max
π

Rπ(h<t) · αkd1

(2)

= argmax
π

αkRπ(h<t) · d1 = arg max
π

Rπ(h<t) · d1 ≡ π∗
d1(h<t)

as required. The last equality of (2) follows from the assumption that dk
t = αkd1

t

for all t ≥ k and because Rπ(h<t)i = 0 for all i < t.
1 =⇒ 2: Let d0 and dk be the discount vectors used at times 0 and k respec-

tively. Now let k ≤ t1 < t2 < · · · and consider the deterministic environment
below where the agent has a choice between earning reward r1 at time t1 or r2

at time t2. In this environment there are only two policies, π1 and π2, where
Rπ1(h<k) = r1et1 and Rπ2(h<k) = r2et2 with ei the infinite vector with all
components zero except the ith, which is 1.

S · · ·
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0 r20

0

Since d is time-consistent, for all r1, r2 ∈ R and k ∈ N we have:

arg max
π

V π
d1(h<k) ≡ argmax

π
Rπ(h<k) · d1 (3)

= argmax
π

Rπ(h<k) · dk ≡ argmax
π

V π
dk(h<k). (4)

Now V π1
dk ≥ V π2

dk if and only if dk ·[Rπ1(h<k) − Rπ2(h<k)] = [dk
t1 , d

k
t2 ] · [r1,−r2] ≥

0. Therefore we have that,

[d1
t1 , d

1
t2 ] · [r1,−r2] ≥ 0 ⇔ [dk

t1 , d
k
t2 ] · [r1,−r2] ≥ 0. (5)
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Letting cos θk be the cosine of the angle between [dk
t1 , d

k
t2 ] and [r1,−r2] then

Equation (5) becomes cos θ0 ≥ 0 ⇔ cos θk ≥ 0. Choosing [r1,−r2] ∝ [d1
t2 ,−d1

t1 ]
implies that cos θ0 = 0 and so cos θk = 0. Therefore there exists αk ∈ R such
that

[dk
t1 , d

k
t2 ] = αk[d1

t1 , d
1
t2 ]. (6)

Let k ≤ t1 < t2 < t3 < · · · be a sequence for which d1
ti

> 0. By the previous argu-
ment we have that, [dk

ti
, dk

ti+1
] = αk[d1

ti
, d1

ti+1
] and [dk

ti+1
, dk

ti+2
] = α̃k[d1

ti+1
, d1

ti+2
].

Therefore αk = α̃k, and by induction, dk
ti

= αkd1
ti

for all i. Now if t ≥ k and
d1

t = 0 then dk
t = 0 by equation (6). By symmetry, dk

t = 0 =⇒ d1
t = 0. There-

fore dk
t = αkd1

t for all t ≥ k as required. �

In Section 3 we saw an example where time-inconsistency led to very bad behav-
ior. The discount matrix causing this was very time-inconsistent. Is it possible
that an agent using a “nearly” time-consistent discount matrix can exhibit sim-
ilar bad behavior? For example, could rounding errors when using a geometric
discount matrix seriously affect the agent’s behavior? The following Theorem
shows that this is not possible. First we require a measure of the cost of time-
inconsistent behavior. The regret experienced by the agent at time zero from
following policy πd rather than π∗

d1 is V ∗
d1(h<1) − V πd

d1 (h<1). We also need a
distance measure on the space of discount vectors.

Definition 12 (Distance Measure). Let dk, dj be discount vectors then define
a distance measure D by

D(dk, dj) :=
∞∑

i=max{k,j}
|dk

i − dj
i |.

Note that this is almost the taxicab metric, but the sum is restricted to i ≥
max {k, j}.
Theorem 13 (Continuity). Suppose ε ≥ 0 and Dk,j := D(dk, dj) then

V ∗
d1(h<1) − V πd

d1 (h<1) ≤ ε + D1,t +
t−1∑

k=1

Dk,k+1

with t = min
{
t :

∑
h<t

P (h<t|π∗
d1)V ∗

d1(h<t) ≤ ε
}
, which for ε > 0 is guaranteed

to exist by Assumption 2.

Theorem 13 implies that the regret of the agent at time zero in its future time-
inconsistent actions is bounded by the sum of the differences between the dis-
count vectors used at different times. If these differences are small then the regret
is also small. For example, it implies that small perturbations (such as rounding
errors) in a time-consistent discount matrix lead to minimal bad behavior.

The proof is omitted due to limitations in space. It relies on proving the result
for finite horizon environments and showing that this extends to the infinite
case by using the horizon, t, after which the actions of the agent are no longer
important. The bound in Theorem 13 is tight in the following sense.
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Theorem 14. For δ > 0 and t ∈ N and any sufficiently small ε > 0 there exists
an environment and discount matrix such that

(t − 2)(1 − ε)δ < V ∗
d1(h<1) − V πd

d1 (h<1) < (t + 1)δ

≡ D1,t +
t−1∑

i=1

Di,i+1

where t = min
{
t :

∑
h<t

P (h<t|π∗
d1)V ∗

d1(h<t) = 0
}

< ∞ and where D(dk, dj) ≡
Dk,j = δ for all k, j.

Note that t in the statement above is the same as that in the statement of
Theorem 13. Theorem 14 shows that there exists a discount matrix, environment
and ε > 0 where the regret due to time-inconsistency is nearly equal to the bound
given by Theorem 13.

Proof (Theorem 14). Define d by

dk
i =

{
δ if k < i < t

0 otherwise

Observe that D(dk, dj) = δ for all k < j < t since dj
i = dk

i for all i except i = j.
Now consider the environment below.

S · · ·0 0 0

1 − ε 1 − ε2 1 − εt−1

1 − ε

1 − ε2

0

For sufficiently small ε, the agent at time zero will plan to move right and then
down leading to R∗

d1(h<1) = [0, 1− ε, 1− ε, · · · ] and V ∗
d1(h<1) = (t− 1)δ(1− ε).

To compute Rd note that dk
k = 0 for all k. Therefore the agent in time-step

k doesn’t care about the next instantaneous reward, so prefers to move right
with the intention of moving down in the next time-step when the rewards are
slightly better. This leads to Rd(h<1) = [0, 0, · · · , 1 − εt−1, 0, 0, · · · ]. Therefore,

V ∗
d1(h<1) − V πd

d1 (h<1) = (t − 1)δ(1 − ε) − (1 − εt−1)δ ≥ (t − 2)δ(1 − ε)

as required. �


5 Game Theoretic Approach

What should an agent do if it knows it is time inconsistent? One option is to
treat its future selves as “opponents” in an extensive game. The game has one
player per time-step who chooses the action for that time-step only. At the end
of the game the agent will have received a reward sequence r ∈ R∞. The utility
given to the kth player is then r · dk. So each player in this game wishes to
maximise the discounted reward with respect to a different discounting vector.
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For example, let d1 = [2, 1, 2, 0, 0, · · · ] and d2 =
[∗, 3, 1, 0, 0, · · · ] and consider the environment on the
right. Initially, the agent has two choices. It can ei-
ther move down to guarantee a reward sequence of r =
[4, 0, 0, · · · ] which has utility of d1 · [4, 0, 0, · · · ] = 8 or
it can move right in which case it will receive a reward
sequence of either r′ = [1, 3, 0, 0, · · · ] with utility 5 or
r′′ = [1, 1, 3, 0, 0, · · · ] with utility 9. Which of these two reward sequences it re-
ceives is determined by the action taken in the second time-step. However this
action is chosen to maximise utility with respect to discount sequence d2 and
d2 · r′ > d1 · r′′. This means that if at time 1 the agent chooses to move right,
the final reward sequence will be [1, 3, 0, 0, · · · ] and the final utility with respect
to d1 will be 5. Therefore the rational thing to do in time-step 1 is to move down
immediately for a utility of 8.

The technique above is known as backwards induction which is used to find
sub-game perfect equilibria in finite extensive games. A variant of Kuhn’s theo-
rem proves that backwards induction can be used to find such equilibria in finite
extensive games [9]. For arbitrary extensive games (possibly infinite) a sub-game
perfect equilibrium need not exist, but we prove a theorem for our particular
class of infinite games.

A sub-game perfect equilibrium policy is one the players could agree to play,
and subsequently have no incentive to renege on their agreement during play.
It isn’t always philosophically clear that a sub-game perfect equilibrium policy
should be played. For a deeper discussion, including a number of good examples,
see [9].

Definition 15 (Sub-game Perfect Equilibria). A policy π∗
d is a sub-

game perfect equilibrium policy if and only if for each t V
π∗
d

dt (h<t) ≥
V π̃

dt(h<t), for all h<t, where π̃ is any policy satisfying π̃(h<i) = π∗
d(h<i)∀h<i

where i �= t.

Theorem 16 (Existence of Sub-game Perfect Equilibrium Policy). For
all environments and discount matrices d satisfying Assumptions 1 and 2 there
exists at least one sub-game perfect equilibrium policy π∗

d.

Many results in the literature of game theory almost prove this theorem. Our
setting is more difficult than most because we have countably many players (one
for each time-step) and exogenous uncertainty. Fortunately, it is made easier
by the very particular conditions on the preferences of players for rewards that
occur late in the game (Assumption 2). The closest related work appears to be
that of Drew Fudenberg in [2], but our proof (see appendix) is very different.
The proof idea is to consider a sequence of environments identical to the original
environment but with an increasing bounded horizon after which reward is zero.
By Kuhn’s Theorem [9] a sub-game perfect equilibrium policy must exist in each
of these finite games. However the space of policies is compact (Lemma 21) and
so this sequence of sub-game perfect equilibrium policies contains a convergent
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sub-sequence converging to policy π. It is not then hard to show that π is a
sub-game prefect equilibrium policy in the original environment.

Proof (Theorem 16). Add an action adeath to A and μ such that if adeath is
taken at any time in h<t then μ returns zero reward. Essentially, once in the
agent takes action adeath, the agent receives zero reward forever. Now if π∗

d is
a sub-game perfect equilibrium policy in this modified environment then it is a
sub-game perfect equilibrium policy in the original one.

For each t ∈ N choose πt to be a sub-game perfect equilibrium policy in the
further modified environment obtained by setting ri = 0 if i > t. That is, the
environment which gives zero reward always after time t. We can assume without
loss of generality that πt(h<k) = adeath for all k ≥ t. Since Π is compact, the
sequence π1, π2, · · · has a convergent subsequence πt1 , πt2 , · · · converging to π
and satisfying

1. πti(h<k) = π(h<k), for all h<k where k ≤ i.
2. πti is a sub-game perfect equilibrium policy in the modified environment

with reward rk = 0 if k > ti.
3. πti(h<ti) = adeath.

We write Ṽ πti for the value function in the modified environment. It is now shown
that π is a sub-game perfect equilibrium policy in the original environment. Fix
a t ∈ N and let π̃ be a policy with π̃(h<k) = π(h<k) for all h<k where k �= t.
Now define policies π̃ti by

π̃ti(h<k) =

{
π̃(h<k) if k ≤ i

πti(h<k) otherwise

By point 1 above, π̃ti(h<k) = πti(h<k) for all h<k where k �= t. Now for all i > t
we have

V π
dt(h<t) ≥ V

πti

dt (h<t) − |V π
dt(h<t) − V

πti

dt (h<t)| (7)

≥ Ṽ
πti

dt (h<t) − |V π
dt(h<t) − V

πti

dt (h<t)| (8)

≥ Ṽ
π̃ti

dt (h<t) − |V π
dt(h<t) − V

πti

dt (h<t)| (9)

≥ V π̃
dt(h<t) − |V π

dt(h<t) − V
πti

dt (h<t)|
− |V π̃ti

dt (h<t) − Ṽ
π̃ti

dt (h<t)| − |V π̃ti

dt (h<t) − V π̃
dt(h<t)| (10)

where (7) follows from arithmetic. (8) since V ≥ Ṽ . (9) since πti is
a sub-game perfect equilibrium policy. (10) by arithmetic. We now show
that the absolute value terms in (10) converge to zero. Since V π(·) is
continuous in π and limi→∞ πti = π and limi→∞ π̃ti = π̃, we obtain
limi→∞

[
|V π

dt(h<t) − V
πti

dt (h<t)| + |V π̃ti

dt (h<t) − V π̃
dt(h<t)|

]
= 0. Now π̃ti(h<k) =

adeath if k ≥ ti, so |V π̃ti (h<t) − Ṽ π̃ti (h<t)| = 0. Therefore taking the limit as i
goes to infinity in (10) shows that V π

dt(h<t) ≥ V π̃
dt(h<t) as required. �
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In general, π∗
d need not be unique, and different sub-game equilibrium poli-

cies can lead to different utilities. This is a normal, but unfortunate, prob-
lem with the sub-game equilibrium solution concept. The policy is unique if
for all players the value of any two arbitrary policies is different. Also, if
∀k(V π1

dk = V π2
dk =⇒ ∀jV π1

dj = V π2
dj ) is true then the non-unique sub-game

equilibrium policies have the same values for all agents. Unfortunately, neither
of these conditions is necessarily satisfied in our setup. The problem of how
players might choose a sub-game perfect equilibrium policy appears surprisingly
understudied. We feel it provides another reason to avoid the situation altogether
by using time-consistent discount matrices. The following example illustrates the
problem of non-unique sub-game equilibrium policies.

Example 17. Consider the example in Section 3 with an agent using a constant
horizon discount matrix with H = 2. There are exactly two sub-game perfect
equilibrium policies, π1 and π2 defined by,

π1(h<t) =

{
up if t is odd
right otherwise

π2(h<t) =

{
up if t is even
right otherwise

Note that the reward sequences (and values) generated by π1 and π2 are different
with Rπ1(h<1) = [1/2, 0, 0, · · · ] and Rπ2(h<1) = [0, 2/3, 0, 0, · · · ]. If the players
choose to play a sub-game perfect equilibrium policy then the first player can
choose between π1 and π2 since they have the first move. In that case it would
be best to follow π2 by moving right as it has a greater return for the agent at
time 0 than π1.

For time-consistent discount matrices we have the following proposition.

Proposition 18. If d is time-consistent then V ∗
dk = V πd

dk = V
π∗
d

dk for all k and
choices of π∗

dk and πd and π∗
d.

Is it possible that backwards induction is simply expected discounted reward
maximisation in another form? The following theorem shows this is not the case
and that sub-game perfect equilibrium policies are a rich and interesting class
worthy of further study in this (and more general) settings.

Theorem 19. ∃d such that π∗
d �= π∗

d̃
0 , for all d̃

0
.

The result is proven using a simple counter-example. The idea is to construct
a stochastic environment where the first action leads the agent to one of two
sub-environments, each with probability half. These environments are identical
to the example at the start of this section, but one of them has the reward 1
(rather than 3) for the history right, down. It is then easily shown that π∗

d is
not the result of an expectimax expression because it behaves differently in each
sub-environment, while any expectimax search (irrespective of discounting) will
behave the same in each.
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6 Discussion

Summary. Theorem 11 gives a characterisation of time-(in)consistent discount
matrices and shows that all time-consistent discount matrices follow the sim-
ple form of dk

t = d1
t . Theorem 13 shows that using a discount matrix that is

nearly time-consistent produces mixed policies with low regret. This is useful
for a few reasons, including showing that small perturbations, such as rounding
errors, in a discount matrix cannot cause major time-inconsistency problems. It
also shows that “cutting off” time-consistent discount matrices after some fixed
depth - which makes the agent potentially time-inconsistent - doesn’t affect the
policies too much, provided the depth is large enough. When a discount matrix is
very time-inconsistent then taking a game theoretic approach may dramatically
decrease the regret in the change of policy over time.

Some comments on the policies π∗
dk (policy maximising expected dk-

discounted reward), πd (mixed policy using π∗
dk at each time-step t) and π∗

d

(sub-game perfect equilibrium policy).

1. A time-consistent agent should play policy π∗
dk = πd for any k. In this case,

every optimal policy π∗
dk is also a sub-game perfect equilibrium policy.

2. πd will be played by an agent that believes it is time-consistent, but may
not be. This can lead to very bad behavior as shown in Section 3.

3. An agent may play π∗
d if it knows it is time-inconsistent, and also knows

exactly how (I.e, it knows dk for all k at every time-step). This policy is ar-
guably rational, but comes with its own problems, especially non-uniqueness
as discussed.

Assumptions. We made a number of assumptions about which we make some
brief comments.

1. Assumption 1, which states that A and O are finite, guarantees the ex-
istence of an optimal policy. Removing the assumption would force us to
use ε-optimal policies, which shouldn’t be a problem for the theorems to go
through with an additive ε slop term in some cases.

2. Assumption 2 only affects non-summable discount vectors. Without it, even
ε-optimal policies need not exist and all the machinery will break down.

3. The use of discrete time greatly reduced the complexity of the analysis.
Given a sufficiently general model, the set of continuous environments should
contain all discrete environments. For this reason the proof of Theorem 11
should go through essentially unmodified. The same may not be true for
Theorems 13 and 16. The former may be fixable with substantial effort (and
perhaps should be true intuitively). The latter has been partially addressed,
with a positive result in [3, 10, 11, 13].

Acknowledgements. We thank reviewers for valuable feedback on earlier
drafts.
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A Technical Proofs

Before the proof of Theorem 6 we require a definition and two lemmas.

Definition 20. Let Π = AS be the set of all policies and define a metric D
on Π by T (π1, π2) := mint∈N {t : ∃h<t s.t π1(h<t) �= π2(h<t)} or ∞ if π1 = π2

and D(π1, π2) := exp(−T (π1, π2)).

T is the time-step at which π1 and π2 first differ. Now augment Π with the
topology induced by the metric d.

Lemma 21. Π is compact.

Proof. We proceed by showing Π is totally bounded and complete. Let ε =
exp(−t) and define an equivalence relation by π ∼ π′ if and only if T (π1, π2) ≥ t.
If π ∼ π′ then D(π, π′) ≤ ε. Note that Π/∼ is finite. Now choose a representative
from each class to create a finite set Π̄ . Now

⋃
π∈Π̄ Bε(π) = Π , where Bε(π) is

the ball of radius ε about π. Therefore Π is totally bounded.
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Next, to show Π is complete. Let π1, π2, · · · be a Cauchy sequence with
D(πi, πi+j) < exp(−i) for all j > 0. Therefore πi(h<k) = πi+j(h<k)∀h<k with
k ≤ i, by the definition of D. Now define π by π(h<t) := πt(h<t) and note that
πi(h<j) = π(h<j)∀j ≤ i since πi(h<k) = πk(h<k) ≡ π(h<k) for k ≤ i. Therefore
limi→∞ πi = π and so Π is complete. Finally, Π is compact by the Heine-Borel
theorem. �

Lemma 22. When viewed as a function from Π to R, V π

dk(·) is continuous.
(given Assumption 2)

Proof. Suppose D(π1, π2) < exp(−t) then π1 and π2 are identical on all histories
up to length t. Therefore

|V π1
dk (h<k) − V π2

dk (h<k)| ≤ dk · [Rπ1(h<k) + Rπ2(h<k)]

=
∞∑

i=k

dk
i (Rπ1(h<k)i + Rπ2

i (h<k)i) . (11)

Since π1 and π2 are identical up to time t, (11) becomes

∞∑

i=t

dk
i (Rπ1(h<k)i + Rπ2

i (h<k)i) =

∑

h<t

[
P (h<t|h<k, π1)V π1

dk (h<t) + P (h<t|h<k, π2)V π2
dk (h<t)|

]
(12)

where (12) follows from the definition of the reward and value functions. By
Assumption 2, limt→∞

∑
h<t

P (h<t|h<k, πi)V πi

dk (h<t) = 0 for i ∈ {1, 2} and so,
V is continuous. �

Proof (Theorem 6). Let Π be the space of all policies with the metric of Def-
inition 20. By Lemmas 21/22 Π is compact and V is continuous. Therefore
argmaxπ V π

dk(h<1) exists by the extreme value theorem. �
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