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Abstract. Artificial general intelligence aims to create agents capable of
learning to solve arbitrary interesting problems. We define two versions
of asymptotic optimality and prove that no agent can satisfy the strong
version while in some cases, depending on discounting, there does exist
a non-computable weak asymptotically optimal agent.
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1 Introduction

The dream of artificial general intelligence is to create an agent that, starting
with no knowledge of its environment, eventually learns to behave optimally. This
means it should be able to learn chess just by playing, or Go, or how to drive a car
or mow the lawn, or any task we could conceivably be interested in assigning it.

Before considering the existence of universally intelligent agents, we must be
precise about what is meant by optimality. If the environment and goal are
known, then subject to computation issues, the optimal policy is easy to con-
struct using an expectimax search from sequential decision theory [13]. However,
if the true environment is unknown then the agent will necessarily spend some
time exploring, and so cannot immediately play according to the optimal policy.
Given a class of environments, we suggest two definitions of asymptotic optimal-
ity for an agent.

1. An agent is strongly asymptotically optimal if for every environment in the
class it plays optimally in the limit.

2. It is weakly asymptotic optimal if for every environment in the class it plays
optimally on average in the limit.

The key difference is that a strong asymptotically optimal agent must eventually
stop exploring, while a weak asymptotically optimal agent may explore forever,
but with decreasing frequency.

In this paper we consider the (non-)existence of weak/strong asymptotically
optimal agents in the class of all deterministic computable environments. The
restriction to deterministic is for the sake of simplicity and because the results
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for this case are already sufficiently non-trivial to be interesting. The restriction
to computable is more philosophical. The Church-Turing thesis is the unprovable
hypothesis that anything that can intuitively be computed can also be computed
by a Turing machine. Applying this to physics leads to the strong Church-Turing
thesis that the universe is computable (possibly stochastically computable, i.e.
computable when given access to an oracle of random noise). Having made these
assumptions, the largest interesting class then becomes the class of computable
(possibly stochastic) environments.

In [7], Hutter conjectured that his universal Bayesian agent, AIXI, was weakly
asymptotically optimal in the class of all computable stochastic environments.
Unfortunately this was recently shown to be false in [14], where it is proven that
no Bayesian agent (with a static prior) can be weakly asymptotically optimal in
this class.1 The key idea behind Orseau’s proof was to show that AIXI eventually
stops exploring. This is somewhat surprising because it is normally assumed that
Bayesian agents solve the exploration/exploitation dilemma in a principled way.
This result is a bit reminiscent of Bayesian (passive induction) inconsistency
results [3, 4], although the details of the failure are very different.

We extend the work of [14], where only Bayesian agents are considered, to
show that non-computable weak asymptotically optimal agents do exist in the
class of deterministic computable environments for some discount functions (in-
cluding geometric), but not for others. We also show that no asymptotically
optimal agent can be computable, and that for all “reasonable” discount func-
tions there does not exist a strong asymptotically optimal agent.

The weak asymptotically optimal agent we construct is similar to AIXI, but
with an exploration component similar to ε-learning for finite state Markov deci-
sion processes or the UCB algorithm for bandits. The key is to explore sufficiently
often and deeply to ensure that the environment used for the model is an adequate
approximation of the true environment. At the same time, the agent must explore
infrequently enough that it actually exploits its knowledge. Whether or not it is
possible to get this balance right depends, somewhat surprisingly, on how forward
looking the agent is (determined by the discount function). That it is sometimes
not possible to explore enough to learn the true environment without damaging
even a weak form of asymptotic optimality is surprising and unexpected.

Note that the exploration/exploitation problem is well-understood in the Ban-
dit case [1, 2] and for (finite-state stationary) Markov decision processes [15]. In
these restrictive settings, various satisfactory optimality criteria are available.
In this work, we do not make any assumptions like Markov, stationary, ergod-
icity, or else besides computability of the environment. So far, no satisfactory
optimality definition is available for this general case.

2 Notation and Definitions

We use similar notation to [7, 14] where the agent takes actions and the envi-
ronment returns an observation/reward pair.

1 Or even the class of computable deterministic environments.
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Strings. A finite string a over alphabet A is a finite sequence a1a2a3 · · · an−1an

with ai ∈ A. An infinite string ω over alphabet A is an infinite sequence
ω1ω2ω3 · · · . An, A∗ and A∞ are the sets of strings of length n, strings of fi-
nite length, and infinite strings respectively. Let x be a string (finite or infi-
nite) then substrings are denoted xs:t := xsxs+1 · · ·xt−1xt where s, t ∈ N and
s ≤ t. Strings may be concatenated. Let x, y ∈ A∗ of length n and m respec-
tively, and ω ∈ A∞. Then define xy := x1x2 · · ·xn−1xny1y2 · · · ym−1ym and
xω := x1x2 · · ·xn−1xnω1ω2ω3 · · · . Some useful shorthands,

x<t := x1:t−1 yx<t := y1x1y2x2 · · · yt−1xt−1. (1)

The second of these is ambiguous with concatenation, so wherever yx<t appears
we assume the interleaving definition of (1) is intended. For example, it will be
common to see yx<tyt, which represents the string y1x1y2x2y3x3 · · · yt−1xt−1yt.
For binary strings, we write #1(a) and #0(a) to mean the number of 0’s and
number of 1’s in a respectively.

o1|r1

y1

o2|r2

y2

o3|r3

y3

o4|r4

y4

o5|r5

y5 · · ·

· · ·

agent, π environment, μ

Environments and Optimality. Let Y,
O and R ⊂ R be action, observation
and reward spaces respectively. Let X =
O × R. An agent interacts with an en-
vironment as illustrated in the diagram
on the right. First, the agent takes an ac-
tion, upon which it receives a new obser-
vation/reward pair. The agent then takes
another action, receives another observation/reward pair, and so-on indefinitely.
The goal of the agent is to maximise its discounted rewards over time. In this
paper we consider only deterministic environments where the next observa-
tion/reward pair is determined by a function of the previous actions, observations
and rewards.

Definition 1 (Deterministic Environment). A deterministic environment
μ is a function μ : (Y × X )∗ × Y → X where μ(yx<tyt) ∈ X is the observa-
tion/reward pair given after action yt is taken in history yx<t. Wherever we
write xt we implicitly assume xt = (ot, rt) and refer to ot and rt without defin-
ing them. An environment μ is computable if there exists a Turing machine that
computes it.

Note that since environments are deterministic the next observation need not
depend on the previous observations (only actions). We choose to leave the
dependence as the proofs become clearer when both the action and observation
sequence is more visible.

Assumption 1. Y and O are finite, R = [0, 1].

Definition 2 (Policy). A policy π is a function from a history to an action
π : (Y × X )∗ → Y.

As expected, a policy π and environment μ can interact with each other to
generate a play-out sequence of action/reward/observation tuples.
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Definition 3 (Play-out Sequence). We define the play-out sequence yxμ,π ∈
(Y × X )∞ inductively by yμ,π

k := π(yxμ,π
<k ) and xμ,π

k := μ(yxμ,π
<k y

μ,π
k ).

We need to define the value of a policy π in environment μ. To avoid the pos-
sibility of infinite rewards, we will use discounted values. While it is common
to use only geometric discounting, we have two reasons to allow arbitrary time-
consistent discount functions.

1. Geometric discounting has a constant effective horizon, but we feel agents
should be allowed to use a discount function that leads to a growing horizon.
This is seen in other agents, such as humans, who generally become less
myopic as they grow older. See [5] for a overview of generic discounting.

2. The existence of asymptotically optimal agents depends critically on the
effective horizon of the discount function.

Definition 4 (Discount Function). A regular discount function γ ∈ R
∞ is a

vector satisfying γk ≥ 0 and 0 <
∑∞

t=k γt <∞ for all k ∈ N.

The first condition is natural for any definition of a discount function. The second
condition is often cited as the purpose of a discount function (to prevent infinite
utilities), but economists sometimes use non-summable discount functions, such
as hyperbolic. The second condition also guarantees the agent cares about the
infinite future, and is required to make asymptotic analysis interesting. We only
consider discount functions satisfying all three conditions. In the following, let

Γt :=
∞∑

i=t

γi Ht(p) := min
h∈N

{

h :
1
Γt

t+h∑

k=t

γk > p

}

.

An infinite sequence of rewards starting at time t, rt, rt+1, rt+2, · · · is given a
value of 1

Γt

∑∞
i=t γiri. The term 1

Γt
is a normalisation term to ensure that values

scale in such a way that they can still be compared in the limit. A discount
function is computable if there exists a Turing machine computing it. All well
known discount functions, such as geometric, fixed horizon and hyperbolic are
computable. Note that Ht(p) exists for all p ∈ [0, 1) and represents the effective
horizon of the agent. After Ht(p) time-steps into the future, starting at time t,
the agent stands to gain/lose at most 1 − p.

Definition 5 (Values and Optimal Policy). The value of policy π
when starting from history yxμ,π

<t in environment μ is V π
μ (yxμ,π

<t ) :=
1
Γt

∑∞
k=t γkr

μ,π
k . The optimal policy π∗

μ and its value V ∗
μ are defined π∗

μ(yx<t) :=

argmaxπ V
π
μ (yx<t) and V ∗

μ (yx<t) := V
π∗

μ
μ (yx<t).

Assumption 1 combined with Theorem 6 in [9] guarantees the existence of π∗
μ.

Note that the normalisation term 1
Γt

does not change the policy, but is used to
ensure that values scale appropriately in the limit. For example, when discount-
ing geometrically we have, γt = γt for some γ ∈ (0, 1) and so Γt = γt

1−γ and
V π

μ (yxμ,π
<t ) = (1 − γ)

∑∞
k=t γ

k−trμ,π
k .
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Definition 6 (Asymptotic Optimality). Let M = {μ0, μ1, · · · } be a finite
or countable set of environments and γ be a discount function. A policy π is a
strong asymptotically optimal policy in (M,γ) if

lim
n→∞

[
V ∗

μ (yxμ,π
<n ) − V π

μ (yxμ,π
<n )

]
= 0, for all μ ∈ M. (2)

It is a weak asymptotically optimal policy if

lim
n→∞

1
n

n∑

t=1

[
V ∗

μ (yxμ,π
<t ) − V π

μ (yxμ,π
<t )

]
= 0, for all μ ∈ M. (3)

Strong asymptotic optimality demands that the value of a single policy π con-
verges to the value of the optimal policy π∗

μ for all μ in the class. This means that
in the limit, a strong asymptotically optimal policy will obtain the maximum
value possible in that environments.

Weak asymptotic optimality is similar, but only requires the average value of
the policy π to converge to the average value of the optimal policy. This means
that a weak asymptotically optimal policy can still make infinitely many bad
mistakes, but must do so for only a fraction of the time that converges to zero.
Strong asymptotic optimality implies weak asymptotic optimality.

While the definition of strong asymptotic optimality is rather natural, the
definition of weak asymptotic optimality appears somewhat more arbitrary. The
purpose of the average is to allow the agent to make a vanishing fraction of
serious errors over its (infinite) life-time. We believe this is a necessary condition
for an agent to learn the true environment. Of course, it would be possible to
insist that the agent make only o(logn) serious errors rather than o(n), which
would make a stronger version of weak asymptotic optimality. Our choice is the
weakest notion of optimality of the above form that still makes sense, which
turns out to be already too strong for some discount rates.

Note that for both versions of optimality an agent would be considered optimal
if it actively undertook a policy that led it to an extremely bad “hell” state from
which it could not escape. Since the state cannot be escaped, its policy would
then coincide with the optimal policy and so it would be considered optimal.
Unfortunately, this problem seems to be an unavoidable consequence of learn-
ing algorithms in non-ergodic environments in general, including the currently
fashionable PAC algorithms for arbitrary finite Markov decision processes.

3 Non-existence of Asymptotically Optimal Policies

We present the negative theorem in three parts. The first shows that, at least
for computable discount functions, there does not exist a strong asymptotically
optimal policy. The second shows that any weak asymptotically optimal policy
must be incomputable while the third shows that there exist discount functions
for which even incomputable weak asymptotically optimal policies do not exist.

Theorem 7. Let M be the class of all deterministic computable environments
and γ a computable discount function, then:
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1. There does not exist a strong asymptotically optimal policy in (M,γ).
2. There does not exist a computable weak asymptotically optimal policy in

(M,γ).
3. If γk := 1

k(k+1) then there does not exist a weak asymptotically optimal policy
in (M,γ).

Part 1 of Theorem 7 says there is no strong asymptotically optimal policy in
the class of all computable deterministic environments when the discount func-
tion is computable. It is likely there exist non-computable discount functions
for which there are strong asymptotically optimal policies. Unfortunately the
discount functions for which this is true are likely to be somewhat pathological
and not realistic.

Given that strong asymptotic optimality is too strong, we should search for
weak asymptotically optimal policies. Part 2 of Theorem 7 shows that any such
policy is necessarily incomputable. This result features no real new ideas and re-
lies on the fact that you can use a computable policy to hand-craft a computable
environment in which it does very badly [10]. In general this approach fails for
incomputable policies because the hand-crafted environment will then not be
computable. Note that this does not rule out the existence of a stochastically
computable weak asymptotically optimal policy.

It turns out that even weak asymptotic optimality is too strong for some
discount functions. Part 3 of Theorem 7 gives an example discount function
for which no such policy (computable or otherwise) exists. In the next section
we introduce a weak asymptotically optimal policy for geometric (and may be
extended to other) discounting. Note that γk = 1

k(k+1) is an example of a discount
function where Ht(p) = Ω(t). It is also analytically easy to work with.

All negative results are proven by contradiction, and follow the same basic
form.

1. Assume π is a computable/arbitrary weak/strong asymptotically optimal.
2. Therefore π is weak/strong asymptotically optimal in μ for some particular
μ.

3. Construct ν, which is indistinguishable from μ under π, but where π is not
weak/strong asymptotically optimal in ν.

It is worth remarking that for all counter-examples, the set of observations O
is empty and so all results apply also to bandits. Space does not permit us to
present the proofs of part 1 and 2, which in any case are substantially easier
than part 3.

Proof (Theorem 7, Part 3). Recall γk = 1
k(k+1) and so Γt = 1

t . Now let Y =
{up, down} and O = ∅. Define μ by

μ(yr<tyt) =

{
1
2 if yt = up
1
2 − ε if yt = down
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where ε ∈ (0, 1
2 ) will be chosen later. As before, V ∗

μ (yr<t) = 1
2 . Assume π is

weakly asymptotically optimal. Therefore

lim
n→∞

1
n

n∑

t=1

V π
μ (yrμ,π

<t ) =
1
2
. (4)

We show by contradiction that π cannot explore (take action down) too often.
Assume there exists an infinite time-sequence t1, t2, t3, · · · such that π(yrμ,π

<t ) =
down for all t ∈ ⋃∞

i=1[ti, 2ti]. Then for t ∈ [ti, 3
2 ti] we have

V π
μ (yrμ,π

<t ) ≡ 1
Γt

∞∑

k=t

γkr
μ,π
k ≤ t

[

(
1
2
− ε)

2ti∑

k=t

γk +
1
2

∞∑

k=2ti+1

γk

]

(5)

=
1
2
− ε

[

1 − t

2ti + 1

]

<
1
2
− ε

4
(6)

where (5) is the definition of the value function and the previous assumption
and definition of μ. (6) by algebra and since t ∈ [ti, 3

2 ti]. Therefore

1
2ti

2ti∑

t=1

V π
μ (yrμ,π

<t ) <
1

2ti

⎡

⎣
ti−1∑

t=1

1
2

+

3
2 ti−1∑

t=ti

(
1
2
− ε

4

)

+
2ti∑

t= 3
2 ti

1
2

⎤

⎦ =
1
2
− 1

16
ε. (7)

The first inequality follows from (6) and because the maximum value
of any play-out sequence in μ is 1

2 . The second by algebra. Therefore
lim infn→∞ 1

n

∑n
t=1 V

π
μ (yrμ,π

<t ) < 1
2 − 1

16ε <
1
2 , which contradicts (4). There-

fore there does not exist a time-sequence t1 < t2 < t3 < · · · such that
π(yrμ,π

<t ) = down for all t ∈ ⋃∞
i=1[ti, 2ti].

So far we have shown that π cannot “explore” for t consecutive time-steps
starting at time-step t, infinitely often. We now construct an environment similar
to μ where this is required. Choose T to be larger than the last time-step t at
which yμ,π

s = down for all s ∈ [t, 2t] Define ν by

ν(yr<tyt) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(yr<tyt) if t < T
1
2 if yt = down and there does not exist t′ ≥ T

such that ys = down∀s ∈ [t′, 2t′]
1 if yt = down and exists t′ ≥ T such that 2t′ < t and

ys = down∀s ∈ [t′, 2t′]
1
2 − ε otherwise

Now we compare the values in environment ν of π and π∗
ν at times t ≥ T . Since

π does not take action down for t consecutive time-steps at any time after T , it
never “unlocks” the reward of 1 and so V π

ν (yrν,π
<t ) ≤ 1

2 . Now let π̃(yr<t) = down
for all yr<t. Therefore, for t ≥ 2T ,
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V π̃
ν (yrν,π

<t ) ≡ 1
Γt

∞∑

k=t

γkr
ν,π̃
k ≥ t

[(
1
2
− ε

) 2t−1∑

k=t

γk +
∞∑

k=2t

γk

]

(8)

= t

[(
1
2
− ε

) (
1
t
− 1

2t

)

+
1
2t

]

=
3
4
− 1

2
ε (9)

where (8) follows by the definition of ν and π̃. (9) by the definition of γk

and algebra. Finally, setting ε = 1
4 gives V π̃

ν (yrν,π
<t ) ≥ 5

8 = 1
2 + 1

8 . Since
V ∗

ν ≥ V π̃
ν , we get V ∗

ν (yrν,π
<t ) − V π

ν (yrν,π
<t ) ≥ V π̃

ν (yrν,π
<t ) − V π

ν (yrν,π
<t ) ≥ 1

8 . Therefore
lim supn→∞

1
n

∑n
t=1 [V ∗(yrν,π

<t ) − V π
ν (yrν,π

<t )] ≥ 1
8 , and so π is not weakly asymp-

totically optimal. ��
We believe it should be possible to generalise the above to computable discount
functions with Ht(p) > cpt with cp > 0 for infinitely many t, but the proof will
likely be messy.

4 Existence of Weak Asymptotically Optimal Policies

In the previous section we showed there did not exist a strong asymptotically
optimal policy (for most discount functions) and that any weak asymptotically
optimal policy must be incomputable. In this section we show that a weak asymp-
totically optimal policy exists for geometric discounting (and is, of course, in-
computable).

The policy is reminiscant of ε-exploration in finite state MDPs (or UCB for
bandits) in that it spends most of its time exploiting the information it already
knows, while still exploring sufficiently often (and for sufficiently long) to detect
any significant errors in its model.

The idea will be to use a model-based policy that chooses its current model
to be the first environment in the model class (all computable deterministic
environments) consistent with the history seen so far. With increasing probability
it takes the best action according to this policy, while still occasionally exploring
randomly. When it explores it always does so in bursts of increasing length.

Definition 8 (History Consistent). A deterministic environment μ is con-
sistent with history yx<t if μ(yx<kyk) = xk, for all k < t.

Definition 9 (Weak Asymptotically Optimal Policy). Let Y = {0, 1}
and M = {μ1, μ2, μ3, · · · } be a countable class of deterministic environments.
Define a probability measure P on B∞ inductively by, P (zn = 1|z<n) :=
1
n , for all z<n ∈ Bn−1. Now let χ ∈ B∞ be sampled from P and define
χ̄, χ̇h ∈ B∞ by

χ̄k :=

{
1 if k ∈ ⋃

i:χi=1[i, i+ log i]
0 otherwise

χ̇h
k :=

{
0 if χ̄k:k+h = 0h+1

1 otherwise
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Next let ψ be sampled from the uniform measure (each bit of ψ is independently
sampled from a Bernoulli 1/2 distribution) and define a policy π by,

π(yx<t) :=

{
π∗

νt
(yxπ,μ

<t ) if χ̄t = 0
ψt otherwise

(10)

where νt = μit with it = min {i : μi consistent with history yxπ,μ
<t } < ∞. Note

that it is always finite because there exists an i such that μi = μ, in which case
μi is necessarily consistent with yxπ,μ

<t .

Intuitively, χk = 1 at time-steps when the agent will explore for log k time-steps.
χ̄k = 1 if the agent is exploring at time k and ψk is the action taken if exploring
at time-step k. χ̇ will be used later, with χ̇h

k = 1 if the agent will explore at least
once in the interval [k, k+h]. If the agent is not exploring then it acts according
to the optimal policy for the first consistent environment in M.

Theorem 10. Let γt = γt with γ ∈ (0, 1) (geometric discounting) then the
policy defined in Definition 9 is weakly asymptotically optimal in the class of all
deterministic computable environments with probability 1.

Some remarks:

1. That Y = {0, 1} is only convenience, rather than necessity. The policy is
easily generalised to arbitrary finite Y.

2. π is essentially a stochastic policy. With some technical difficulties it is possi-
ble to construct an equivalent deterministic policy. This is done by choosing
χ to be any P -Martin-Löf random sequence and ψ to be a sequence that is
Martin-Löf random w.r.t to the uniform measure. The theorem then holds
for all deterministic environments. The proof is somewhat delicate and may
not extend nicely to stochastic environments. For an introduction to Kol-
mogorov complexity and Martin-Löf randomness, see [12]. For a reason why
the stochastic case may not go through as easily, see [8].

3. The policy defined in Definition 9 is not computable for two reasons. First,
because it relies on the stochastic sequences χ and ψ. Second, because the
operation of finding the first environment consistent with the history is not
computable.2 We do not know if there exists a weak asymptotically optimal
policy that is computable when given access to a random number generator
(or if it is given χ and ψ).

4. The bursts of exploration are required for optimality. Without them it will
be possible to construct counter-example environments similar to those used
in part 3 of Theorem 7.

Before the proof we require some more definitions and lemmas. Easier proofs are
omitted due to space limitations.
2 The class of computable environments is not recursively enumerable [12].



Asymptotically Optimal Agents 377

Definition 11 (h-Difference). Let μ and ν be two environments consistent
with history yx<t, then μ is h-different to ν if there exists yxt:t+h satisfying

yk = π∗
μ(yx<k) for all k ∈ [t, t+ h],

xk = μ(yx<kyk) for all k ∈ [t, t+ h],
xk = ν(yx<kyk) for some k ∈ [t, t+ h].

Intuitively, μ is h-different to ν at history yx<t if playing the optimal policy
for μ for h time-steps makes ν inconsistent with the new history. Note that
h-difference is not symmetric.

Lemma 12. If an ∈ [0, 1] and lim supn→∞
1
n

∑n
i=1 an = ε and α ∈ B∞ is an

indicator sequence with αi := [[ai ≥ ε/4]],3 then
∏∞

i=1

[
1 − αi

i

]
= 0.

Lemma 13. Let a1, a2, a3, · · · be a sequence with an ∈ [0, 1] for all n. The
following properties of χ are true with probability 1.

1. For any h, lim supn→∞
1
n#1(χ̇h

1:n) = 0.
2. If lim sup 1

n

∑n
i=1 ai = ε > 0 and αi := [[ai > ε/2]] then αi = χi = 1 for

infinitely many i.

Proof. 1. Let i ∈ N, ε > 0 and Eε
i be the event that #1(χ̇h

1:2i) > 2iε. Us-
ing the definition of χ̇h to compute the expectation E

[
#1(χ̇h

1:2i)
]
< i(i + 1)h

and applying the Markov inequality gives that P (Eε
i ) < i(i + 1)h2−i/ε.

Therefore
∑

i∈N
P (Eε

i ) < ∞. Therefore the Borel-Cantelli lemma gives that
Eε

i occurs for only finitely many i with probability 1. We now assume that
lim supn→∞

1
n#1(χ̇h

1:n) > 2ε > 0 and show that Eε
i must occur infinitely of-

ten. By the definition of lim sup and our assumption we have that there ex-
ists a sequence n1, n2, · · · such that #1(χ̇h

1:ni
) > 2niε for all i ∈ N. Let

n+ := mink∈N

{
2k : 2k ≥ n

}
and note that #1(χ̇h

1:n+
i

) > n+
i ε, which is ex-

actly Eε
log n+

i

. Therefore there exist infinitely many i such that Eε
i occurs and so

lim supn→∞
1
n#1(χ̇h

1:n) = 0 with probability 1.
2. The probability that αi = 1 =⇒ χi = 0 for all i ≥ T is P (αi = 1 =⇒ χi =
0∀i ≥ T ) =

∏∞
i=T

(
1 − αi

i

)
=: p = 0, by Lemma 12. Therefore the probability

that αi = χi = 1 for only finitely many i is zero. Therefore there exists infinitely
many i with αi = χi = 1 with probability 1, as required. ��
Lemma 14 (Approximation Lemma). Let π1 and π2 be policies, μ an en-
vironment and h ≥ Ht(1 − ε). Let yx<t be an arbitrary history and yxμ,πi

t:t+h be
the future action/observation/reward triples when playing policy πi. If yxπ1,μ

t:t+h =
yxπ2,μ

t:t+h then |V π1
μ (yx<t) − V π2

μ (yx<t)| < ε.

Recall that π∗
μ and π∗

ν are the optimal policies in environments μ and ν respec-
tively (see Definition 5).

3 [[expression]] = 1 if expression is true and 0 otherwise.
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Lemma 15 (h-difference). If |V π∗
μ

μ (yxπ,μ
<t )− V

π∗
ν

μ (yxπ,μ
<t )| > ε then μ is Ht(1−

ε)-different to ν on yxπ,μ.

We are now ready to prove the main theorem.

Proof (Theorem 10). Let π be the policy defined in Definition 9 and μ
be the true (unknown) environment. Recall that νt = μit with it =
min {i : μi consistent with history yxπ,μ

<t } is the first model consistent with the
history yxπ,μ

<t at time t and is used by π when not exploring. First we claim there
exists a T ∈ N and environment ν such that νt = ν for all t ≥ T . Two facts,

1. If μi is inconsistent with history yxπ,μ
<t then it is also inconsistent with yxπ,μ

<t+h

for all h ∈ N.
2. μ is consistent with yxπ,μ

<t for all π, t.

By 1) we have that the sequence i1, i2, i3, · · · is monotone increasing. By 2) we
have that the sequence is bounded by i with μi = μ. The claim follows since
any bounded monotone sequence of natural numbers converges in finite time.
Let ν := ν∞ be the environment to which ν1, ν2, ν3, · · · converges to. Note that
ν must be consistent with history yxμ,π

<t for all t. We now show by contradiction
that the optimal policy for ν is weakly asymptotically optimal in environment
μ. Suppose it were not, then

lim sup
n→∞

1
n

n∑

t=1

[
V ∗

μ (yxπ,μ
<t ) − V

π∗
ν

μ (yxπ,μ
<t )

]
= ε > 0. (11)

Let α ∈ B∞ be defined by αt := 1 if and only if,
[
V ∗

μ (yxπ,μ
<t ) − V π

μ (yxπ,μ
<t )

] ≥ ε/4. (12)

By Lemma 13 there exists (with probability one) an infinite sequence t1, t2, t3, · · ·
for which χk = αk = 1. Intuitively we should view time-step tk as the start
of an “exploration” phase where the agent explores for log tk time-steps. Let
h := Htk

(1 − ε/4) = �log(ε/4)/ log γ�, which importantly is independent of tk
(for geometric discounting). Since log tk → ∞ we will assume that log tk ≥ h for
all tk. Therefore χ̄i = 1 for all i ∈ ⋃∞

k=1[tk, tk + h]. Therefore by the definition
of π, π(yxπ,μ

<i ) = ψi for i ∈ ⋃∞
k=1[tk, tk + h]. By Lemma 15 and Equation (12), μ

is h-different to ν on history yxπ,μ
<tk

. This means that if there exists a k such that
π plays according to the optimal policy for μ on all time-steps t ∈ [tk, tk + h]
then ν will be inconsistent with the history yxμ,π

1:tk+h, which is a contradiction.
We now show that π does indeed play according to the optimal policy for μ for
all time-steps t ∈ [tk, tk + h] for at least one k. Formally, we show the following
holds with probability 1 for some k.

ψi ≡ π(yxπ,μ
<i ) = π∗

μ(yxπ,μ
<i ), for all i ∈ [tk, tk + h]. (13)

Recall that ψ ∈ B∞ where ψi ∈ B is identically independently distributed accord-
ing to a Bernoulli(1

2 ) distribution. Therefore P (ψi = π∗
μ(yxπ,μ

<i )) = 1
2 . Therefore
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p := P (ψi = π∗
μ(yxπ,μ

<i )∀i ∈ [tk, tk + h]) =
∏tk+h

i=tk
P (ψi = π∗

μ(yxπ,μ
<i )) = 2−h−1 > 0

and P (∀k∃i ∈ [tk, tk + h] with ψi = π∗
μ(yxπ,μ

<i )) =
∏∞

k=1(1 − p) = 0. Therefore
Equation (13) is satisfied for some k with probability 1 and so Equation (11)
leads to a contradiction. Therefore

lim
n→∞

1
n

n∑

t=1

[
V ∗

μ (yxπ,μ
<t ) − V

π∗
ν

μ (yxπ,μ
<t )

]
= 0. (14)

We have shown that the optimal policy for ν has similar μ-values to the optimal
policy for μ. We now show that π acts according to π∗

ν sufficiently often that it
too has values close to those of the optimum policy for the true environment, μ.
Let ε > 0, h := Ht(1 − ε) and t ≥ T . If χ̇h

t = 0 then by the definition of π and
the approximation lemma we obtain

∣
∣
∣V

π∗
ν

μ (yxπ,μ
<t ) − V π

μ (yxπ,μ
<t )

∣
∣
∣ < ε. (15)

Therefore

lim sup
n→∞

1
n

n∑

t=1

∣
∣
∣V

π∗
ν

μ (yxπ,μ
<t ) − V π

μ (yxπ,μ
<t )

∣
∣
∣ ≤ lim sup

n→∞
1
n

∣
∣
∣
∣
∣

T−1∑

t=1

1 +
n∑

t=T

[
χ̇h

t (1 − ε) + ε
]
∣
∣
∣
∣
∣

(16)

= ε+ (1 − ε) lim sup
n→∞

1
n

#1(χ̇h
T :n) (17)

= ε (18)

where (16) follows since values are bounded in [0, 1] and Equation (15). (17)
follows by algebra. (18) by part 1 of Lemma 13. By sending ε→ 0,

lim
n→∞

1
n

n∑

t=1

[
V

π∗
ν

μ (yxπ,μ
<t ) − V π

μ (yxπ,μ
<t )

]
= 0. (19)

Finally, combining Equations (14) and (19) gives the result. ��
We expect this theorem to generalise without great difficulty to discount func-
tions satisfying Ht(p) < cp log(t) for all p. There will be two key changes. First,
extend the exploration time to some function E(t) with E(t) ∈ O(Hp(t)) for
all p. Second, modify the probability of exploration to ensure that Lemma 13
remains true.

5 Discussion

Summary. Part 1 of Theorem 7 shows that no policy can be strongly asymp-
totically optimal for any computable discount function. The key insight is that
strong asymptotic optimality essentially implies exploration must eventually
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cease. Once this occurs, the environment can change without the agent dis-
covering the difference and the policy will no longer be optimal.

A weaker notion of asymptotic optimality, that a policy be optimal on aver-
age in the limit, turns out to be more interesting. Part 2 of Theorem 7 shows
that no weak asymptotically optimal policy can be computable. We should not
be surprised by this result. Any computable policy can be used to construct
a computable environment in which that policy does very badly. Note that by
computable here we mean deterministic and computable. There may be com-
putable stochastic policies that are weakly asymptotically optimal, but we feel
this is unlikely.

Part 3 of Theorem 7, shows that even weak asymptotically optimal policies
need not exist if the discount function is sufficiently far-sighted. On the other
hand, Theorem 10 shows that weak asymptotically optimal policies do exist for
some discount rates, in particular, for the default geometric discounting. These
non-trivial and slightly surprising result shows that choice of discount function
is crucial to the existence of weak asymptotically optimal policies. Where weak
asymptotically optimal policies do exist, they must explore infinitely often and
in increasing contiguous bursts of exploration where the length of each burst is
dependent on the discount function.

Consequences. It would appear that Theorem 7 is problematic for artificial
general intelligence. We cannot construct incomputable policies, and so we can-
not construct weak asymptotically optimal policies. However, this is not as prob-
lematic as it may seem. There are a number of reasonable counter arguments:

1. We may be able to make stochastically computable policies that are asymp-
totically optimal. If the existence of true random noise is assumed then this
would be a good solution.

2. The counter-example environment constructed in part 2 of Theorem 7 is a
single environment roughly as complex as the policy itself. Certainly, if the
world were adversarial this would be a problem, but in general this appears
not to be the case. On the other hand, if the environment is a learning
agent itself, this could result in a complexity arms race without bound.
There may exist a computable weak asymptotically optimal policy in some
extremely large class of environments. For example, the algorithm of Section
4 is stochastically computable when the class of environments is recursively
enumerable and contains only computable environments. A natural (and
already quite large) class satisfying these properties is finite-state Markov
decision processes with {0, 1}-valued transition functions and rational-valued
rewards.

3. While it is mathematically pleasant to use asymptotic behaviour to char-
acterise optimal general intelligent behaviour, in practise we usually care
about more immediate behaviour. We expect that results, and even (pa-
rameter free) formal definitions of intelligence satisfying this need will be
challenging, but worthwhile.

4. Accept that even weak asymptotic optimality is too strong and find some-
thing weaker, but still useful.
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Relation to AIXI. The policy defined in Section 4 is not equivalent to AIXI
[7], which is also incomputable. However, if the computable environments in M
are ordered by complexity then it is likely the two will be quite similar. The key
difference is the policy defined in this paper will continue to explore whereas it
was shown in [14] that AIXI eventually ceases exploration in some environments
and some histories. We believe, and a proof should not be too hard, that AIXI
will become weakly asymptotically optimal if an exploration component is added
similarly as in Section 4.

We now briefly compare the self-optimising property in [6] to strong
asymptotic optimality. A policy π is self-optimising in a class M if
limt→∞

[
V ∗

μ (yx<t) − V π
μ (yx<t)

]
= 0 for any infinite history yx1:∞ and for all

μ ∈ M. This is similar to strong asymptotic optimality, but convergence must be
on all histories, rather than the histories actually generated by π. This makes the
self-optimising property a substantially stronger form of optimality than strong
asymptotic optimality. It has been proven that if there exists self-optimising
policy for a particular class, then AIXI is also self-optimising in that class [6].

It is possible to define a weak version of the self-optimising property by in-
sisting that limn→∞ 1

n

∑n
t=1

[
V ∗

μ (yx<t) − V π
μ (yx<t)

]
= 0 for all yx1:∞ and all

μ ∈ M. It can then be proven that the existence of a weak self-optimising policy
would imply that AIXI were also weakly self-optimising. However, the policy de-
fined in Section 4 cannot be modified to have the weak self-optimising property.
It must be allowed to choose its actions itself. This is consistent with the work
in [14] which shows that AIXI cannot be weakly asymptotically optimal, and so
cannot be weak self-optimising either.

Discounting. Throughout this paper we have assumed rewards to be discounted
according to a summable discount function. A very natural alternative to dis-
counting, suggested in [11], is to restrict interest to environments satisfying∑∞

k=1 r
μ,π
k ≤ 1. Now the goal of the agent is simply to maximise summed re-

wards. In this setting it is easy to see that the positive theorem is lost while
all negative ones still hold! This is unfortunate, as discounting presents a major
philosophical challenge. How to choose a discount function?

Assumptions/Limitations. Assumption 1 ensures that Y and O are finite.
All negative results go through for countable Y and O. The optimal policy of
Section 4 may not generalise to countable Y. We have also assumed bounded
reward and discrete time. The first seems reasonable while the second allows for
substantially easier analysis. Additionally we have only considered deterministic
computable environments. The stochastic case is unquestionably interesting. We
invoked Church thesis to assert that computable stochastic environments are
essentially the largest class of interesting environments.

Many of our Theorems are only applicable to computable discount functions.
All well-known discount function in use today are computable. However [7] has
suggested γt = 2−K(t), where K(t) is the (incomputable) prefix Kolmogorov
complexity of t, may have nice theoretical properties.
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