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Abstract. Many problems, such as cognitive radio, parameter control
of a scanning tunnelling microscope or internet advertisement, can be
modelled as non-stationary bandit problems where the distributions of
rewards changes abruptly at unknown time instants. In this paper, we
analyze two algorithms designed for solving this issue: discounted UCB
(D-UCB) and sliding-window UCB (SW-UCB). We establish an upper-
bound for the expected regret by upper-bounding the expectation of
the number of times suboptimal arms are played. The proof relies on an
interesting Hoeffding type inequality for self normalized deviations with a
random number of summands. We establish a lower-bound for the regret
in presence of abrupt changes in the arms reward distributions. We show
that the discounted UCB and the sliding-window UCB both match the
lower-bound up to a logarithmic factor. Numerical simulations show that
D-UCB and SW-UCB perform significantly better than existing soft-max
methods like EXP3.S.

1 Introduction

Multi-armed bandit (MAB) problems, modelling allocation issues under uncer-
tainty, are fundamental to stochastic decision theory. The archetypal MAB prob-
lem may be stated as follows: there is a bandit with K independent arms. At
each time step, the agent chooses one arm and receives a reward accordingly. In
the stationary case, the distribution of the rewards are initially unknown, but
are assumed to remain constant during all games. The agent aims at minimizing
the expected regret over T rounds, which is defined as the expectation of the dif-
ference between the total reward obtained by playing the best arm and the total
reward obtained by using the algorithm. For several algorithms in the literature
(e.g. [20, 1]), as the number of plays T tends to infinity, the expected total reward
asymptotically approaches that of playing a policy with the highest expected re-
ward, and the regret grows as the logarithm of T . More recently, finite-time
bounds for the regret and improvements have been derived (see [5, 2, 16]), but
those improvements do not address the issue of non-stationarity.

Though the stationary formulation of the MAB allows to address exploration
versus exploitation challenges in a intuitive and elegant way, it may fail to be
adequate to model an evolving environment where the reward distributions un-
dergo changes in time. As an example, in the cognitive medium radio access
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problem [19], a user wishes to opportunistically exploit the availability of an
empty channel in a multiple channel system; the reward is the availability of
the channel, whose distribution is unknown to the user. Another application is
real-time optimization of websites by targetting relevant content at individuals,
and maximizing the general interest by learning and serving the most popular
content (such situations have been considered in the recent Exploration versus
Exploitation (EvE) PASCAL challenge by [14], see also [18] and the references
therein). These examples illustrate the limitations of the stationary MAB mod-
els. The probability that a given channel is available is likely to change in time.
The news stories a visitor of a website is most likely to be interested in vary in
time.

To model such situations, non-stationary MAB problems have been consid-
ered (see [17, 14, 22, 24]), where distributions of rewards may change in time.
Motivated by the problems cited above, and following a paradigm widely used
in the change-point detection literature (see [12, 21] and references therein), we
focus on non-stationary environments where the distributions of the rewards
undergo abrupt changes. We show in the following that, as expected, policies
tailored for the stationary case fail to track changes of the best arm.

Section 2 contains the formal presentation of the non-stationary setting we
consider, together with two algorithms adressing this exploration/exploitation
dilemma : D-UCB and SW-UCB. D-UCB had been proposed in [17] with empiri-
cal evidence of efficiency, but no theoretical analysis. SW-UCB is a new UCB-like
algorithm that appears to perform slightly better in switching environments. In
Section 3, we provide upper-bounds on the performance of D-UCB and SW-
UCB; moreover, we provide a lower-bound on the performance of any algorithm
in abruptly changing environments, that almost matches the upper-bounds. As
a by-product, we show that any policy (like UCB-1) that achieves a logarith-
mic regret in the stationary case cannot reach a regret of order smaller than
T/ log(T ) in the presence of switches. D-UCB is analyzed in Section 4; it relies
on a novel deviation inequality for self-normalized averages with random number
of summands which is stated in Section 7 together with some technical results.
A lower bound on the regret of any algorithm in an abruptly changing environ-
ment is given in Section 5. In Section 6, two simple Monte-Carlo experiments
are presented to support our findings.

2 Algorithms

In the sequel, we assume that the set of arms is {1, . . . , K}, and that the rewards
{Xt(i)}t≥1 for arm i ∈ {1, . . . , K} are modeled by a sequence of independent
random variables from potentially different distributions (unknown to the user)
which may vary across time but remain bounded by B > 0. For each t > 0,
we denote by μt(i) the expectation of the reward Xt(i) for arm i. Let i∗t be the
arm with highest expected reward at time t (in case of ties, let i∗t be one of the
arms with highest expected rewards). The regret of a policy π is defined as the
expected difference between the total rewards collected by the optimal policy
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π∗ (playing at each time instant the arm i∗t ) and the total rewards collected by
the policy π. Note that, in this paper, the non-stationary regret is not defined
with respect to the best arm on average, but with respect to a strategy tracking
the best arm at each step (this notion of regret is similar to the “regret against
arbitrary strategies” introduced in Section 8 of [3] for the non-stochastic bandit
problem).

We consider abruptly changing environments: the distributions of rewards
remain constant during periods and change at unknown time instants called
breakpoints (which do not depend on the policy of the player or on the se-
quence of rewards). In the following, we denote by ΥT the number of break-
points in the reward distributions that occur before time T . Another type of
non-stationary MAB, where the distribution of rewards changes continuously, is
considered in [22].

Standard soft-max and UCB policies are not appropriate for abruptly chang-
ing environments: as stressed in [14], “empirical evidence shows that their Ex-
ploration versus Exploitation trade-off is not appropriate for abruptly changing
environments“. To address this problem, several methods have been proposed.

In the family of softmax action selection policies, [3] and [8, 9] have proposed
an adaptation of the Fixed-Share algorithm referred to as EXP3.S (see [15, 6]
and the references therein). Theorem 8.1 and Corollary 8.3 in [3] state that when
EXP3.S is tuned properly (which requires in particular that ΥT is known in ad-
vance), the expected regret satisfies Eπ [RT ] ≤ 2

√
e−1

√
KT (ΥT log(KT ) + e).

Despite the fact that it holds uniformly over all reward distributions, such an
upper-bound may seem deceptive in comparison to the stationary case,: the rate
O(

√
T log T ) is much larger than the O(log T ) achievable for a fixed distribution

in the absence of changes. But actually, we prove in Section 5 that no policy can
always achieve an average fixed-game regret smaller than O(

√
T ) in the non-

stationary case. Hence, EXP3.S matches the best achievable rate up to a factor√
log T . By construction, this algorithm can as well be used in an adversarial

setup; but, in a stochastic environment, it is not guaranteed to be optimal (think
that, in the stationary case, UCB outperforms EXP3 in the stochastic setup),
and specific methods based on probabilistic estimation have to be considered.

In fact, in the family of UCB policies, several attempts have been made; see
for examples [22] and [17]. In particular, [17] have proposed an adaptation of the
UCB policies that relies on a discount factor γ ∈ (0, 1). This policy constructs
an UCB X̄t(γ, i) + ct(γ, i) for the instantaneous expected reward, where the
discounted empirical average is given by

X̄t(γ, i) =
1

Nt(γ, i)

t∑

s=1

γt−sXs(i)�{Is=i} , Nt(γ, i) =
t∑

s=1

γt−s
�{Is=i},

where the discounted exploration bonus is ct(γ, i) = 2B
√

ξ log nt(γ)/Nt(γ, i),
with nt(γ) =

∑K
i=1 Nt(γ, i), for an appropriate parameter ξ. Using these nota-

tions, discounted-UCB (D-UCB) is defined in Algorithm 1. For γ = 1, D-UCB
boils down to the standard UCB-1 algorithm.
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Algorithm 1. Discounted UCB
for t from 1 to K, play arm It = t;
for t from K + 1 to T , play arm

It = arg max
1≤i≤K

X̄t(γ, i) + ct(γ, i).

In order to estimate the instantaneous expected reward, the D-UCB policy
averages past rewards with a discount factor giving more weight to recent obser-
vations. We propose in this paper a more abrupt variant of UCB where averages
are computed on a fixed-size horizon. At time t, instead of averaging the rewards
over the whole past with a discount factor, sliding-window UCB relies on a local
empirical average of the observed rewards, using only the τ last plays. Specifi-
cally, this algorithm constructs an UCB X̄t(τ, i) + ct(τ, i) for the instantaneous
expected reward; the local empirical average is given by

X̄t(τ, i) =
1

Nt(τ, i)

t∑

s=t−τ+1

Xs(i)�{Is=i} , Nt(τ, i) =
t∑

s=t−τ+1

�{Is=i} ,

and the exploration bonus is defined as ct(τ, i) = B
√

ξ log(t ∧ τ)/(Nt(τ, i)),
where t ∧ τ denotes the minimum of t and τ , and ξ is an appropriate constant.
The policy defined in Algorithm 2 is denoted Sliding-Window UCB (SW-UCB).

Algorithm 2. Sliding-Window UCB
for t from 1 to K, play arm It = t;
for t from K + 1 to T , play arm

It = arg max
1≤i≤K

X̄t(τ, i) + ct(τ, i),

3 Regret Bounds

In this section, we provide upper-bounds on the regret of D-UCB and SW-UCB,
as well as an almost matching lower-bound on the regret of any algorithm facing
an abruptly changing environment.

Let ΥT denote the number of breakpoints before time T , and let ÑT (i) =∑T
t=1 �{It=i�=i∗t } denote the number of times arm i was played when it was not

the best arm during the T first rounds. Denote by ΔμT (i) the minimum of the
difference of expected reward of the best arm μt(i∗t ) and the expected reward
μt(i) of arm i for all times t ∈ {1, . . . , T} such that arm i is not optimal:

ΔμT (i) = min
{
μt(i∗t ) − μt(i) : t ∈ {1, . . . , T}, μt(i) < μt(i∗t )

}
. (1)
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We denote by Pγ and Eγ the probability distribution and expectation under the
policy D-UCB using the discount factor γ. As the expected regret is

Eγ [RT ] = Eγ

⎡

⎣
T∑

t=1

∑

i:μt(i)<μt(i∗t )

(Xt(i∗t ) − Xt(i))�{It=i}

⎤

⎦ ≤ B

K∑

i=1

Eγ

[
ÑT (i)

]
,

it is sufficient to upper-bound the expected number of times an arm i is played
when this arm is suboptimal.

Theorem 1. Let ξ ∈ (1/2, 1) and γ ∈ (1/2, 1). For any T ≥ 1 and for any arm
i ∈ {1, . . . , K}:

Eγ

[
ÑT (i)

]
≤ C1 T (1 − γ) log

1
1 − γ

+ C2
ΥT

1 − γ
log

1
1 − γ

, (2)

where

C1 =
32

√
2B2ξ

γ1/(1−γ)(ΔμT (i))2
+

4

(1 − 1
e ) log

(
1 + 4

√
1 − 1/2ξ

)

and

C2 =
γ − 1

log(1 − γ) log γ
× log ((1 − γ)ξ log nK(γ)) .

When γ goes to 1, C2 → 1 and

C1 → 16 eB2ξ

(ΔμT (i))2
+

2

(1 − e−1) log
(
1 + 4

√
1 − 1/2ξ

) .

Algorithm SW-UCB shows a similar behavior, but the absence of infinite memory
makes it slightly more suited to abrupt changes of the environment. Denote by
Pτ and Eτ the probability distribution and expectation under policy SW-UCB
with window size τ . The following bound holds:

Theorem 2. Let ξ > 1/2. For any integer τ and any arm i ∈ {1, . . . , K},

Eτ

[
ÑT (i)

]
≤ C(τ)

T log τ

τ
+ τΥT + log2(τ) , (3)

where

C(τ) =
4B2ξ

(ΔμT (i))2
�T/τ	
T/τ

+
2

log τ

⌈
log(τ)

log(1 + 4
√

1 − (2ξ)−1)

⌉

→ 4B2ξ

(ΔμT (i))2
+

2
log(1 + 4

√
1 − (2ξ)−1)

as τ and T/τ go to infinity.
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3.1 Tuning the Parameters

If horizon T and the growth rate of the number of breakpoints ΥT are known in
advance, the discount factor γ can be chosen so as to minimize the RHS in Equa-
tion 2. Choosing γ = 1 − (4B)−1

√
ΥT /T yields Eγ

[
ÑT (i)

]
= O

(√
TΥT log T

)
.

Assuming that ΥT = O(T β) for some β ∈ [0, 1), the regret is upper-bounded
as O

(
T (1+β)/2 log T

)
. In particular, if β = 0, the number of breakpoints ΥT is

upper-bounded by Υ independently of T , taking γ = 1 − (4B)−1
√

Υ/T , the re-

gret is bounded by O
(√

ΥT log T
)
. Thus, D-UCB matches the lower-bound of

Theorem 3 stated below, up to a factor log T .
Similary, choosing τ = 2B

√
T log(T )/ΥT in SW-UCB yields Eτ

[
ÑT (i)

]
=

O
(√

ΥT T log T
)

. Assuming that ΥT = O(T β) for some β ∈ [0, 1), the av-
erage regret is upper-bounded as O

(
T (1+β)/2

√
log T

)
. If β = 0, the number

of breakpoints ΥT is upper-bounded by Υ independently of T , then with τ =
2B

√
T log(T )/Υ the upper-bound is O

(√
ΥT log T

)
. Thus, SW-UCB matches

the lower-bound of Theorem 3 up to a factor
√

log T , slightly better than the
D-UCB.

On the other hand, if the breakpoints have a positive density over time (say,
if ΥT ≤ rT for a small positive constant r), then γ has to remain lower-bounded
independently of T ; Theorem 1 gives a linear, non-trivial bound on the regret
and allows to calibrate the discount factor γ as a function of the density of the
breakpoint: with γ = 1−

√
r/(4B) we get an upper-bound with a dominant term

in −
√

r log(r)O (T ).
Concerning SW-UCB, τ has to remain lower-bounded independently of T .

For instance, if ΥT ≤ rT for some (small) positive rate r, and for the choice
τ = 2B

√
− log r/r, Theorem 2 gives Eτ

[
ÑT (i)

]
= O

(
T
√
−r log (r)

)
. If the

growth rate of ΥT is known in advance, but not the horizon T , then we can use
the “doubling trick” to set the value of γ and τ . Namely, for t and k such that
2k ≤ t < 2k+1, take γ = 1 − (4B)−1(2k)(β−1)/2.

If there is no breakpoint (ΥT = 0), the best choice is obviously to make
the window as large as possible, that is τ = T . Then the procedure is exactly
standard UCB. A slight modification of the preceeding proof for ξ = 1

2 + ε with

arbitrary small ε yields EUCB

[
ÑT (i)

]
≤ 2B2

(Δμ(i))2 log(T ) (1 + o(1)) . This result
improves by a constant factor the bound given in Theorem 1 in [5]. In [13],
another constant factor is gained by using a different proof.

4 Analysis of D-UCB

Because of space limitations, we present only the analysis of D-UCB, i.e. the
proof of Theorem 1. The case of SW-UCB is similar, although slightly more
simple because of the absence of bias at a large distance of the breakpoints.

Compared to the standard regret analysis of the stationary case (see e.g.
[5]), there are two main differences. First, because the expected reward changes,
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the discounted empirical mean X̄t(γ, i) is now a biased estimator of the expected
reward μt(i). The second difference stems from the deviation inequality itself: in-
stead of using a Chernoff-Hoeffding bound, we use a novel tailored-made control
on a self-normalized mean of the rewards with a random number of summands,
which is stated in Section 7. The proof is in 5 steps:

Step 1. The number of times a suboptimal arm i is played is:

ÑT (i) = 1 +
T∑

t=K+1

�{It=i�=i∗t ,Nt(γ,i)<A(γ)} +
T∑

t=K+1

�{It=i�=i∗t ,Nt(γ,i)≥A(γ)} ,

where A(γ) = 16B2ξ log nT (γ)/(ΔμT (i))2 . Using Lemma 1 (see Section 7), we
may upper-bound the first sum in the RHS as

∑T
t=K+1 �{It=i�=i∗t ,Nt(γ,i)<A(γ)} ≤

�T (1− γ)	A(γ)γ− 1
1−γ . For a number of rounds (which depends on γ) following

a breakpoint, the estimates of the expected rewards can be poor for D(γ) =
log ((1 − γ)ξ log nK(γ)) / log(γ) rounds. For any positive T , we denote by T (γ)
the set of all indices t ∈ {K +1, . . . , T} such that for all integers s ∈]t−D(γ), t],
for all j ∈ {1, . . . , K}, μs(j) = μt(j). In other words, t is in T (γ) if it does not
follow too soon after a state transition. This leads to the following bound:

T∑

t=K+1

�{It=i�=i∗t ,Nt(γ,i)≥A(γ)} ≤ ΥT D(γ) +
∑

t∈T (γ)

�{It=i�=i∗t ,Nt(γ,i)≥A(γ)} .

Putting everything together, we obtain:

ÑT (i) ≤ 1+ �T (1− γ)	A(γ)γ−1/(1−γ) +ΥT D(γ)+
∑

t∈T (γ)

�{It=i�=i∗t ,Nt(γ,i)≥A(γ)} .

(4)

Step 2. Let t ∈ T (γ). If the following three things were true:
⎧
⎪⎨

⎪⎩

X̄t(γ, i) + ct(γ, i) < μt(i) + 2ct(γ, i)
μt(i) + 2ct(γ, i) < μt(i∗t )
μt(i∗t ) < X̄t(γ, i∗t ) + ct(γ, i∗t )

then X̄t(γ, i)+ ct(γ, i) < X̄t(γ, i∗t )+ ct(γ, i∗t ), and arm i∗ would be chosen. Thus,

{It = i 
= i∗t , Nt(γ, i) ≥ A(γ)} ⊆

⎧
⎨

⎩

{μt(i∗t ) − μt(i) ≤ 2ct(γ, i), Nt(γ, i) ≥ A(γ)}
∪
{
X̄t(γ, i∗t ) ≤ μt(i∗t ) − ct(γ, i∗t )

}

∪
{
X̄t(γ, i) ≥ μt(i) + ct(γ, i)

}

(5)
In words, playing the suboptimal arm i at time t may occur in three cases: if
μt(i) is substantially over-estimated, if μt(i∗t ) is substantially under-estimated,
or if μt(i) and μt(i∗t ) are close to each other. But for the choice of A(γ) given
above, we have ct(γ, i) ≤ 2B

√
(ξ log nt(γ)) /A(γ) ≤ ΔμT (i)/2 , and the event

{μt(i∗t ) − μt(i) < 2ct(γ, i), Nt(γ, i) ≥ A(γ)} never occurs.
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In Steps 3 and 4 we upper-bound the probability of the first two events of the
RHS of (5). We show that for t ∈ T (γ), that is at least D(γ) rounds after a break-
point, the expected rewards of all arms are well estimated with high probability.
For all j ∈ {1, . . . , K}, consider the event Et(γ, j) =

{
X̄t(γ, i) ≥ μt(j)+ct(γ, j)

}
.

The idea is the following: we upper-bound the probability of Et(γ, j) by sepa-
rately considering the fluctuations of X̄t(γ, j) around Mt(γ, j)/Nt(γ, j), and the
‘bias’ Mt(γ, j)/Nt(γ, j) − μt(j), where Mt(γ, j) =

∑t
s=1 γt−s

�{Is=j}μs(j) .

Step 3. Let us first consider the bias. First note that Mt(γ, j)/Nt(γ, j), as a
convex combination of elements μs(j) ∈ [0, B], belongs to interval [0, B]. Hence,
|Mt(γ, j)/Nt(γ, j) − μt(j)| ≤ B. Second, for t ∈ T (γ),

|Mt(γ, j) − μt(j)Nt(γ)| =

∣
∣
∣
∣
∣
∣

t−D(γ)∑

s=1

γt−s (μs(j) − μt(j))�{Is=j}

∣
∣
∣
∣
∣
∣

≤
t−D(γ)∑

s=1

γt−s |μs(j) − μt(j)|�{Is=j} ≤ BγD(γ)Nt−D(γ)(γ, j).

As oviously Nt−D(γ)(γ, j) ≤ (1− γ)−1, we get that |Mt(γ, j)/Nt(γ, j)−μt(j)| ≤
BγD(γ) ((1 − γ)Nt(γ))−1. Altogether,

∣
∣
∣
∣
Mt(γ, j)
Nt(γ, j)

− μt(j)
∣
∣
∣
∣ ≤ B

(
1 ∧ γD(γ)

(1 − γ)Nt(γ)

)
.

Hence, using the elementary inequality 1 ∧ x ≤
√

x and the definition of D(γ),
we obtain for t ∈ T (γ):

∣
∣
∣
∣
Mt(γ, j)
Nt(γ, j)

− μt(j)
∣
∣
∣
∣ ≤ B

√
γD(γ)

(1 − γ)Nt(γ, i)
≤ B

√
ξ log nK(γ)

Nt(γ, j)
≤ 1

2
ct(γ, j) .

In words: D(γ) rounds after a breakpoint, the ‘bias’ is smaller than the half of
the exploration bonus. The other half of the exploration bonus is used to control
the fluctuations. In fact, for t ∈ T (γ):

Pγ (Et(γ, j)) ≤ Pγ

(

X̄t(γ, j) > μt(j) + B

√
ξ log nt(γ)
Nt(γ, j)

+
∣
∣
∣∣
Mt(γ, j)
Nt(γ, j)

− μt(j)
∣
∣
∣∣

)

≤ Pγ

(

X̄t(γ, j) − Mt(γ, j)
Nt(γ, j)

> B

√
ξ log nt(γ)
Nt(γ, j)

)

.

Step 4. Denote the discounted total reward obtained with arm j by

St(γ, j) =
t∑

s=1

γt−s
�{Is=j}Xs(j) = Nt(γ, j)X̄t(γ, j) .
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Using Theorem 4 and the fact that Nt(γ, j) ≥ Nt(γ2, j), we get:

Pγ (Et(γ, j)) ≤ Pγ

(
St(γ, j) − Mt(γ, j)

√
Nt(γ2, j)

> B

√
ξNt(γ, j) log nt(γ)

Nt(γ2, j)

)

≤ Pγ

(
St(γ, j) − Mt(γ, j)

√
Nt(γ2, j)

> B
√

ξ log nt(γ)

)

≤
⌈

log nt(γ)
log(1 + η)

⌉
nt(γ)−2ξ

(
1− η2

16

)

.

Step 5. Hence, we finally obtain from Equation (4) that for all positive η:

Eγ

[
ÑT (i)

]
≤ 1 + �T (1 − γ)	A(γ)γ−1/(1−γ) + D(γ)ΥT

+ 2
∑

t∈T (γ)

⌈
log nt(γ)
log(1 + η)

⌉
nt(γ)−2ξ

(
1−η2

16

)

.

When ΥT 
= 0, γ is taken strictly smaller than 1. As ξ > 1
2 , we take η =

4
√

1 − 1/2ξ, so that 2ξ
(
1 − η2/16

)
= 1. For that choice, with τ = (1 − γ)−1,

∑

t∈T (γ)

⌈
log nt(γ)
log(1 + η)

⌉
nt(γ)−2ξ

(
1− η2

16

)

≤ τ − K +
T∑

t=τ

⌈
log nτ (γ)
log(1 + η)

⌉
nτ (γ)−1

≤ τ − K +
⌈

log nτ (γ)
log(1 + η)

⌉
T

nτ (γ)
≤ τ − K +

⌈
log 1

1−γ

log(1 + η)

⌉
T (1 − γ)

1 − γ1/(1−γ)

and we obtain the statement of the Theorem.

5 A Lower-Bound on the Regret in Abruptly Changing
Environment

In this section, we consider a particular non-stationary bandit problem where
the distributions of rewards on each arm are piecewise constant and have two
breakpoints. Given any policy π, we derive a lower-bound on the number of
times a sub-optimal arm is played (and thus, on the regret) in at least one such
game. Quite intuitively, the less explorative a policy is, the longer it may keep a
suboptimal policy after a breakpoint. Theorem 3 gives a precise content to this
statement.

As in the previous section, K denotes the number of arms, and the rewards
are assumed to be bounded in [0, B]. Consider any deterministic policy π of
choosing the arms I1, . . . , IT played at each time depending to the past re-
wards Gt � Xt(It), and recall that It is measurable with respect to the sigma-
field σ(G1, . . . , Gt) of the past observed rewards. Denote by Ns:t(i) the number
of times arm i is played between times s and t Ns:t(i) =

∑t
u=s �{Iu=i}, and
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NT (i) = N1:T (i). For 1 ≤ i ≤ K, let Pi be the probability distribution of the
outcomes of arm i, and let μ(i) denote its expectation. Assume that μ(1) > μ(i)
for all 2 ≤ i ≤ K. Denote by Pπ the distribution of rewards under policy π, that
is: dPπ(g1:T |I1:T ) =

∏T
t=1 dPit(gt). For any random variable W measurable with

respect to σ(G1, . . . , GT ), denote by Eπ[W ] its expectation under Pπ.
In the sequel, we divide the period {1, . . . , T} into epochs of the same size

τ ∈ {1, . . . , T}, and we modify the distribution of the rewards so that on one of
those periods, arm K becomes the one with highest expected reward. Specifically:
let Q be a distribution of rewards with expectation ν > μ(1), let δ = ν − μ(1)
and let α = D(PK ; Q) be the Kullback-Leibler divergence between PK and Q.
For all 1 ≤ j ≤ M =

⌊
T
τ

⌋
, we consider the modification P

j
π of Pπ such that on

the j-th period of size τ , the distribution of rewards of the K-th arm is changed
to ν. That is, for every sequence of rewards g1:T ,

dP
j
π

dPπ
(g1:T |I1:T ) =

jτ∏

t=1+(j−1)τ,It=K

dQ

dPK
(gt) .

Besides, let N j(i) = N1+(j−1)τ :jτ (i) be the number of times arm i is played in
the j-th period. For any random variable W in σ(G1, . . . , GT ), denote by E

j
π [W ]

its expectation under distribution P
j
π. Now, denote by P

∗
π the distribution of

rewards when j is chosen uniformly at random in the set {1, . . . , M}, i.e. P
∗
π is

the (uniform) mixture of the (Pj
π)1≤j≤M , and denote by E

∗
π [·] the expectation

under P
∗
π: E

∗
π [W ] = M−1

∑M
j=1 E

j
π [W ]. In the following, we lower-bound the

expected regret of any policy π under P
∗
π in terms of its regret under Pπ.

Theorem 3. For any horizon T such that 64/(9α) ≤ Eπ[NT (K)] ≤ T/(4α) and
for any policy π ,

E
∗
π [RT ] ≥ C(μ)

T

Eπ [RT ]
,

where C(μ) = 2δ(μ(1) − μ(K))/(3α) .

Proof. The main ingredients of this reasoning are inspired by the proof of The-
orem 5.1 in [3].First, note that the Kullback-Leibler divergence D(Pπ; Pj

π) is:

D(Pπ; Pj
π) =

T∑

t=1

D
(
Pπ (Gt|G1:t−1) ; Pj

π (Gt|G1:t−1)
)

=
jτ∑

t=1+(j−1)τ

Pπ (It = K)D(PK ; Q) = αEπ

[
N1+(j−1)τ :jτ (K)

]
.

But E
j
π [N j(K)]−Eπ[N j(K)] ≤ τdTV (Pj

π, Pπ) ≤ τ

√
D(Pπ; Pj

π)/2 by Pinsker’s in-

equality, and thus E
j
π[N j(K)] ≤ Eπ[N j(K)]+τ

√
αEπ [N j(K)]/2 . Consequently,

since
∑M

j=1 N j(K) ≤ NT (K),

M∑

j=1

E
j
π [N j(K)] − E[NT (K)] ≤ τ

M∑

j=1

√
αEπ [N j(K)]

2
≤ τ

√
αMEπ[NT (K)]

2
.
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Thus, there exists 1 ≤ j ≤ M such that

E
∗
π[N j(K)] ≤ 1

M
Eπ [NT (K)] +

τ

M

√
α

2
MEπ[NT (K)]

≤ τ

T − τ
Eπ[NT (K)] +

√
α

2
τ3

T − τ
Eπ [NT (K)] .

Now, the expectation under P
∗
π of the regret RT is lower-bounded as:

E
∗
π[RT ]

δ
≥ τ−E

∗
π [NT (K)] ≥

(

τ − τ

T − τ
Eπ[NT (K)] −

√
α

2
τ3

T − τ
Eπ [NT (K)]

)

.

Maximizing the right hand side of the previous inequality by choosing τ =
8T/(9αEπ[NT (K)]) or equivalently M = 9α/(8Eπ[NT (K)]) leads to the lower-
bound:

E
∗
π[RT ] ≥ 16δ

27α

(
1 − αEπ[NT (K)]

T

)2 (
1 − 8

9αEπ[NT (K)]

)
T

Eπ [NT (K)]
.

To conclude, simply note that Eπ[NT (K)] ≤ Eπ[RT ]/(μ(1) − μ(K)). We obtain
that E

∗
π[RT ] is lower-bounded by

16δ(μ(1)− μ(K))
27α

(
1 − αEπ [NT (K)]

T

)2 (
1 − 8

9αEπ[NT (K)]

)
T

Eπ[RT ]
,

which directly leads to the statement of the Theorem.

The following corollary states that no policy can have a non-stationary regret of
order smaller than

√
T . It appears here as a consequence of Theorem 3, although

it can also be proved directly.

Corollary 1. For any policy π and any positive horizon T ,

max{Eπ(RT ), E∗
π(RT )} ≥

√
C(μ)T .

Proof. If Eπ [NT (K)] ≤ 16/(9α), or if Eπ [NT (K)] ≥ T/α, the result is obvious.
Otherwise, Theorem 3 implies that:

max{Eπ(RT ), E∗
π(RT )} ≥ max{Eπ(RT ), C(μ)

T

Eπ(RT )
} ≥

√
C(μ)T .

In words, Theorem 3 states that for any policy not playing each arm often
enough, there is necessarily a time where a breakpoint is not seen after a long
period. For instance, as standard UCB satisfies Eπ[N(K)] = Θ(log T ), then
E
∗
π[RT ] ≥ cT/ log(T ) for some positive c depending on the reward distribution.

To keep notation simple, Theorem 3 is stated and proved here for determinis-
tic policy. It is easily verified that the same results also holds for randomized
strategies (such as EXP3-P, see [3]).
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This result is to be compared with standard minimax lower-bounds on the re-
gret. On one hand, a fixed-game lower-bound in O(log T ) was proved in [20] for
the stationary case, when the distributions of rewards are fixed and T is allowed
to go to infinity. On the other hand, a finite-time minimax lower-bound for indi-
vidual sequences in O(

√
T ) is proved in [3]. In this bound, for each horizon T the

worst case among all possible reward distributions is considered, which explains
the discrepancy. This result is obtained by letting the distance between distribu-
tions of rewards tend to 0 (typically, as 1/

√
T ). In Theorem 3, no assumption is

made on the distributions of rewards Pi and Q, their distance actually remains
lower-bounded independently of T . In fact, in the case considered here minimax
regret and fixed-game minimal regret appear to have the same order of magnitude.

6 Simulations

The scope of this section is to present two simple, archetypal settings that show
the interest of UCB methods in non-stationary stochastic environments. In the
first example, there are K = 3 arms and the time horizon is set to T = 104.
The rewards of arm i ∈ {1, . . . , K} at time t are independent Bernoulli random
variables with success probability pt(i), with pt(1) = 0.5, pt(2) = 0.3 and for
t ∈ {1, . . . , T}, pt(3) = 0.4 for t < 3000 or t ≥ 5000, and pt(3) = 0.9 for
3000 ≤ t < 5000. The optimal policy for this bandit task is to select arm 1
before the first breakpoint (t = 3000) and after the second breakpoint (t = 5000).
In Figure 1 , we represent the evolution of the cumulated regret. We compare
the UCB-1 algorithm with ξ = 1

2 , the EXP3.S algorithm described in [3] with
the tuned parameters given in Corollary 8.3 (with the notations of this paper
α = T−1 and γ =

√
K(ΥT log(KT ) + e)/[(e−1)T ] with ΥT = 2), the D-UCB

algorithm with ξ = 0.6 and γ = 1 − 1/4
√

T and the SW-UCB with ξ = 0.6 and
τ = 4

√
T log T (chosen according to Section 3).
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Fig. 1. Bernoulli MAB problem with
two swaps. Above: evolution of the re-
ward distributions. Below: cumulative
regret of each policy.
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periodic rewards. Above: evolution of
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cumulative regret of each policy.
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As can be seen in Figure 1 (and as can be consistently observed over all
simulations), D-UCB performs almost as well as SW-UCB. Both of them waste
significantly less time than EXP3.S and UCB-1 to detect the breakpoints, and
quickly concentrate their pulls on the optimal arm. Observe that policy UCB-
1, initially the best, reacts very fast to the first breakpoint (t = 3000), as the
confidence interval for arm 3 at this step is very loose. On the contrary, it takes
a very long time after the second breakpoint (t = 5000) for UCB-1 to play arm
1 again.

In the second example, we test the behaviour of D-UCB and SW-UCB by in-
vestigating their performance in a slowly-varying environment. This environment
is made of K = 2 arms, the rewards are still Bernoulli random variables with
parameters pt(i) but they are in persistent, continuous evolution. Arm 2 is taken
as a reference (pt(2) = 1/2 for all t), and the parameter of arm 1 evolves peri-
odically as: pt(1) = 0.5 + 0.4 cos (6πRt/T ). Hence, the best arm to pull changes
cyclically and the transitions are smooth (regularly, the two arms are statisti-
cally indistinguishable). In Figure 2 , the evolutions of the cumulative regrets
under the four policies are shown: in this continuously evolving environment, the
performance of D-UCB and SW-UCB are almost equivalent while UCB-1 and
the Exp3.S algorithms accumulate larger regrets. Continuing the experiment or
multiplying the changes only confirms this conclusion.

These modest and yet representative examples suggest that, despite the fact
that similar regret bounds are proved for D-UCB, SW-UCB and EXP3.S, the two
former methods are significantly more reactive to changes in practice and have
a better performance, whether the environment is slowly or abruptly changing.
EXP3.S, on the other hand, is expected to be more robust and more adapted to
non stochastic (and non-oblivious) environments.

7 Technical Results

We first state a deviation bound for self-normalized discounted average, of inde-
pendent interest, that proves to be a key ingredient in the analysis of D-UCB. Let
(Xt)t≥1 be a sequence of non-negative independent random variables bounded
by B defined on a probability space (Ω,A, P), and we denote μt = E[Xt]. Let Ft

be an increasing sequence of σ-fields of A such that for each t, σ(X1 . . . , Xt) ⊂ Ft

and for s > t, Xs is independent from Ft. Consider a previsible sequence (εt)t≥1

of Bernoulli variables (for all t > 0, εt is Ft−1-measurable). For γ ∈ [0, 1), let
St(γ) =

∑t
s=1 γt−sXsεs, Mt(γ) =

∑t
s=1 γt−sμsεsNt(γ) =

∑t
s=1 γt−sεs, and

nt(γ) =
∑t

s=1 γt−s.

Theorem 4. For all integers t and all δ, η > 0,

P

(
St(γ) − Mt(γ)
√

Nt(γ2)
> δ

)

≤
⌈

log nt(γ)
log(1 + η)

⌉
exp

(
−2δ2

B2

(
1 − η2

16

))
.
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The following lemma is required in the analysis of SW-UCB and D-UCB:

Lemma 1. Let i ∈ {1, . . . , K}; for any positive integer τ , let Nt−τ :t(1, i) =∑t
s=t−τ+1 �{It=i}. Then for any positive m,

T∑

t=K+1

�{It=i,Nt−τ:t(1,i)<m} ≤ �T/τ	m .

Thus, for any τ ≥ 1 and A > 0,
∑T

t=K+1 �{It=i,Nt(γ,i)<A} ≤ �T/τ	Aγ−τ .

The proof of these results is omitted due to space limitations.

8 Conclusion and Perspectives

This paper theoretically establishes that the UCB policies can be successfully
adapted to cope with non-stationary environments. It is shown introducing two
breakpoints is enough to move from the log(T ) performance of stationary bandits
to the

√
T log(T ) performance of adversarial bandits. The upper bound of the

D-UCB and SW-UCB in an abruptly changing environment are similar to the
upper bounds of the EXP3.S algorithm, and numerical experiments show that
UCB policies outperform the softmax methods in stochastic environments. The
focus of this paper is on an abruptly changing environment, but it is believed that
the theoretical tools developed to handle the non-stationarity can be applied in
different contexts. In particular, using a similar bias-variance decomposition of
the discounted or windowed-rewards, continuously evolving reward distributions
can be analysed. Furthermore, the deviation inequality for discounted martingale
transforms given in Section 7 is a powerful tool of independent interest.

As the previously reported Exp3.S algorithm, the performance of the proposed
policy depends on tuning parameters (discount factor or window). Designing
a fully adaptive algorithm, able to actually detect the changes as they occur
with no prior knowledge of a typical inter-arrival time, is not an easy task and
remains the subject of on-going research. A possibility may be to tune adaptively
the parameters by using data-driven approaches, as in [14]. Another possibility
is to use margin assumptions on the gap between the distributions before and
after the changes, as in [24]: at the price of this extra assumption, one obtains
improved bounds without the need for the knowledge of the number of changes.
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