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Preface

This volume contains the papers presented at the 22nd International Confer-
ence on Algorithmic Learning Theory (ALT 2011), which was held in Espoo,
Finland, October 5–7, 2011. The conference was co-located with the 14th Inter-
national Conference on Discovery Science (DS 2011). The technical program of
ALT 2011 contained 28 papers selected from 61 submissions, and 5 invited talks.
The invited talks were presented in joint sessions at both conferences.

ALT 2011 was dedicated to the theoretical foundations of machine learning
and took place on the campus of Aalto University, Espoo, Finland. ALT provides
a forum for high-quality talks with a strong theoretical background and scientific
interchange in areas such as inductive inference, universal prediction, teaching
models, grammatical inference, formal languages, query learning, complexity of
learning, on-line learning and relative loss bounds, semi-supervised and unsuper-
vised learning, clustering, active learning, statistical learning, regression, bandit
problems, support vector machines, Vapnik-Chervonenkis dimension, probably
approximately correct learning, Bayesian and causal networks, boosting and
bagging, information-based methods, minimum description length, Kolmogorov
complexity, kernels, graph learning, decision tree methods, Markov decision pro-
cesses, reinforcement learning, intelligent agents, and real-world applications of
algorithmic learning theory.

DS 2011 was the 14th International Conference on Discovery Science and fo-
cused on the development and analysis of methods for intelligent data analysis,
knowledge discovery and machine learning, as well as their application to sci-
entific knowledge discovery. Traditionally, it was co-located and held in parallel
with Algorithmic Learning Theory.

The present volume contains the texts of the 28 papers presented at ALT
2011, divided into groups of papers on inductive inference, regression, bandit
problems, online learning, kernels and margin-based methods, intelligent agents,
and on other learning models. The volume also contains the texts or abstracts
of the invited talks:
– Peter Auer (Montanuniversität Leoben, Austria), “Models for Autonomously

Motivated Exploration in Reinforcement Learning” (invited speaker for ALT
2011)

– Yoshua Bengio (Université de Montréal, Canada), “On the Expressive Power
of Deep Architectures” (joint invited speaker for ALT 2011 and DS 2011)

– Jorma Rissanen (Helsinki Institute for Information Technology, Finland),
“Optimal Estimation” (invited speaker for ALT 2011)

– Eyke Hüllermeier jointly with Johannes Fürnkranz (Philipps-Universität
Marburg, Germany, and Technische Universität Darmstadt, Germany, re-
spectively), “Learning from Label Preferences” (invited speaker for DS 2011)

– Ming Li (University of Waterloo, Canada), “Information Distance and Its
Extensions” (invited speaker for DS 2011).



VI Preface

Papers presented at DS 2011 are contained in the DS 2011 proceedings.
Since 1999, ALT has been awarding the E. M. Gold Award for the most

outstanding student contribution. This year, the award was given to Malte
Darnstädt for his paper “Supervised Learning and Co-training,” co-authored
with Hans Ulrich Simon and Balázs Szőrényi.

ALT 2011 was the 22nd in the ALT conference series, established in Japan in
1990. A second root is the conference series Analogical and Inductive Inference,
previously held in 1986, 1989, 1992, which merged with the conference series ALT
after a collocation in the year 1994. From then on, ALT became an international
conference series which kept its strong links to Japan but was also regularly held
in other destinations including Australia, Germany, Hungary, Italy, Portugal,
Singapore, Spain, the USA, and Finland.

The ALT series was supervised by its Steering Committee: Naoki Abe (IBM
Thomas J. Watson Research Center, Yorktown, USA), Shai Ben-David (Univer-
sity of Waterloo, Canada), Jyrki Kivinen (University of Helsinki, Finland), Philip
M. Long (Google, Mountain View, USA), Akira Maruoka (Ishinomaki Senshu
University, Japan), Takeshi Shinohara (Kyushu Institute of Technology, Iizuka,
Japan), Frank Stephan (National University of Singapore, Republic of Singa-
pore), Einoshin Suzuki (Kyushu University, Fukuoka, Japan), Csaba Szepesvári
(University of Alberta, Canada), Eiji Takimoto (Kyushu University, Fukuoka,
Japan), Győrgy Turán (University of Illinois at Chicago, USA and University
of Szeged, Hungary), Osamu Watanabe (Tokyo Institute of Technology, Japan),
Thomas Zeugmann (Chair, Hokkaido University, Japan), and Sandra Zilles (Pub-
licity Chair, University of Regina, Saskatchewan, Canada).

We would like to thank the many people and institutions who contributed
to the success of the conference. In particular, we want to thank our authors
for contributing to the conference and for coming to Espoo in October 2011.
Without their efforts and their willingness to choose ALT 2011 as a forum to
report on their research, this conference would not have been possible.

We would like to thank the Aalto University, School of Science, Department
of Information and Computer Science, the University of Helsinki, Department
of Computer Science, the Helsinki Institute for Information Technology, and
Algodan – Finnish Centre of Excellence for Algorithmic Data Analysis Research
for generously sponsoring the conference.

We are furthermore grateful to Aalto University for hosting the event. The
support of Aalto University, the University of Helsinki, the Helsinki Institute
for Information Technology and Algodan was a great help, organizationally and
financially, for the ALT 2011 and DS 2011 conferences.

We also thank the journal Artificial Intelligence for its generous financial
support of ALT 2011 and DS 2011.

We are also grateful that we could use the excellent conference management
system EasyChair for putting together the program for ALT 2011; EasyChair
was developed mainly by Andrei Voronkov and is hosted at the University of
Manchester. The system is cost-free.



Preface VII

The conference series ALT was this year, as in many previous years, co-
located with the series Discovery Science. We are grateful for this continuous
collaboration. In particular, we would like to thank the Conference Chair Heikki
Mannila and the Program Committee Chairs Tapio Elomaa and Jaakko Hollmén
of Discovery Science 2011.

We would like to thank Olli Simula for organizing the conference and the
tremendous amount of work he put into making ALT 2011 a success. We want
to extend our thanks to the other members of the local Organizing Committee,
who were there to organize the reception, to sit at the information desk and to
carry out the other duties connected to organizing and hosting a conference.

We are grateful to the members of the ALT 2011 Program Committee and
the subreferees for their hard work in selecting a good program for ALT 2011.
Reviewing papers and checking the correctness of results is demanding in time
and skills and we very much appreciate this contribution to the conference. Last
but not least we thank Springer for their support in preparing and publishing
this volume of the Lecture Notes in Artificial Intelligence series.

July 2011 Jyrki Kivinen
Csaba Szepesvári

Esko Ukkonen
Thomas Zeugmann
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Editors’ Introduction

Jyrki Kivinen, Csaba Szepesvári, Esko Ukkonen, and Thomas Zeugmann

The ALT-conference series is focuses on studies of learning from an algorithmic
and mathematical perspective. During the last decades various models of learn-
ing emerged and a main goal is to investigate how various learning problems can
be formulated and solved in some of the abstract models.

The general study of scenarios in which computer programs learn from infor-
mation provided to them involves a considerable interaction between different
branches of mathematics and computer science such as analysis, statistics, prob-
ability theory, combinatorics, theory of computation, Kolmogorov complexity,
and analysis of algorithms. There are also close connections to the more empir-
ical oriented disciplines of machine learning.

This wide variety is also nicely reflected in the papers contained in this volume.
In the following, we shall introduce the five invited lectures and the regular
contributions in some more detail.

Invited Talks. It is a good tradition of the co-located conferences ALT and
DS to have five joint invited speakers. For ALT 2011 and DS 2011 the invited
speakers are eminent researchers and they present either an introduction to their
specific research area or give a lecture of wide general interest.

Peter Auer (University of Leoben) has worked on various topics in learning
theory. One important theme has been exploration-exploitation trade-off in rein-
forcement learning, as modeled for example by the so-called multiarmed bandit
problem. His invited presentation Models for Autonomously Motivated Explo-
ration in Reinforcement Learning (joint work with Shiau Hong Lim and Chris
Watkins) proposed some settings where the learning agent is not just maximiz-
ing some externally given reward function, as usually in reinforcement learning,
but actively tries to find out things about the environment that might be useful
in the future.

Yoshua Bengio (Université de Montréal) received his PhD from McGill Uni-
versity in 1991. His work covers a variety of topics in machine learning and neural
networks. Much of his recent work has focused on deep architectures, which were
also the topic of his invited presentation On the Expressive Power of Deep Archi-
tectures (joint work with Olivier Delalleau). Using representations with several
layers allows building higher-level abstractions on top of some simple underlying
structure, which might be needed to solve challenging AI problems. For a long
time the study of deep architectures was discouraged by the lack of good learning
algorithms for them, but recently there have been some striking successes that
have brought the topic back into mainstream. The invited presentation gave the-
oretical and practical motivations for deep architectures, surveyed some of the
successful algorithms and considered ideas for further challenges.

Jorma Rissanen (Helsinki Institute for Information Technology) received his
PhD from Helsinki University of Technology in 1965. During his long career

J. Kivinen et al. (Eds.): ALT 2011, LNAI 6925, pp. 1–13, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 J. Kivinen et al.

he has made several highly influential contributions to information theory and
its applications. He received the IBM Outstanding Innovation Award in 1988,
the IEEE Richard W. Hamming Medal in 1993, and the Kolmogorov Medal
in 2006. Furthermore, his honors include receiving in 2009 the Claude E. Shan-
non Award for his work in developing arithmetic coding. Within the machine
learning community he is perhaps best known for introducing and developing
the Minimum Description Length principle. His invited talk Optimal Estimation
presented new information-theoretic methods for estimating parameters, their
number and structure, with results about their optimality properties.

Eyke Hüllermeier (Universität Marburg) received his PhD in 1997 from the
Computer Science Department of the University of Paderborn, and his Habilita-
tion degree in 2002 from the same university. From 1998 to 2000, he spend two
years as a Marie Curie fellow at the Institut de Recherche en Informatique de
Toulouse. Currently, he is also the head of the IEEE/CIS ETTC Task Force on
Machine Learning.

Johannes Fürnkranz (Technical University of Darmstadt) obtained his PhD
in 1994, and the Habilitation degree in 2001 both from the Technical University
of Vienna. In 2002 he received a prestigious APART stipend of the Austrian
Academy of Sciences. His main research interest is machine learning. He also
received an “Outstanding Editor Award” of the Machine Learning journal.

In their invited talk Learning from Label Preferences Eyke Hüllermeier and
Johannes Fürnkranz studied a particular instance of preference learning. They
addressed this problem by reducing it to the learning by pairwise comparison
paradigm. This allows to decompose a possibly complex prediction problem into
learning problems of a simpler type, i.e., binary classification.

Ming Li (University of Waterloo) received his PhD from Cornell University
in 1985. His research interests cover a wide range of topics including bioinfor-
matics algorithms and software, Kolmogorov complexity and its applications,
analysis of algorithms, computational complexity, and computational learning
theory. His outstanding contributions have been widely recognized. In 2006 he
became an ACM fellow, a fellow of the Royal Society of Canada, and an IEEE
fellow. Furthermore, he received the Award of Merit from the Federation of
Chinese Canadian Professionals in 1997, the IEEE Pioneer Award for Granular
Computing in 2006, the Premier’s Discovery Award for Innovation Leadership in
2009, the Outstanding Contribution Award from IEEE for Granular Computing
in 2010, and the Killam Prize in 2010. The invited talk Information Distance
and Its Extensions by Ming Li presented two extensions to the general theory
of information distance concerning multiple objects and irrelevant information.
The theory of information distance emerged during the last two decades and it
found numerous applications during the past ten years.

Inductive Inference. A formal language is just a set of strings over some fixed
finite alphabet. Inductive inference of formal languages is the study of algorithms
that map evidence on a language into hypotheses about it. In general, one studies
scenarios in which the sequence of computed hypotheses stabilizes to an accurate
and finite description (e.g., a grammar) of the target language.
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The following sources of information are distinguished. The learner receives
augmenting initial segments of any sequence of all positive and negative exam-
ples (all strings over the underlying alphabet are classified with respect to their
containment in the target language). In general, there is no requirement con-
cerning the order in which the labeled strings are presented. If this source of
information is used then we refer to it as informant. Instead of having potential
access to all labeled strings, the learner may be required to learn from positive
data only. Then the learner is fed augmenting initial segments of any infinite
sequence of strings exhausting just the target language in the limit. We refer to
it as learning from text. Learning from examples usually results in identification
in the limit, i.e., after having seen only finitely many examples the learner stabi-
lizes its output to a correct description of the target. Note that it is usually not
decidable whether or not the learner has already converged. A learner identifies a
target language if it learns the target from any text (informant) for it. A learner
learns a class of languages if it identifies every language in the class.

Allowing the learner to compute its actual hypothesis from all the data seen
so far is somehow unrealistic, since it requires memory capacities to process text
segments of unbounded length. Therefore, one has also studied the variation
that the learner has exclusively access to the new datum coming in and its
previously computed hypothesis. The criterion of success remains unchanged,
i.e., the learner stabilizes its output to a correct description of the target. The
resulting learning model is referred to as iterative learning. It is well known
that the collection of all classes of languages that are iteratively learnable is
strictly smaller than the collection of all classes of languages learnable in the
limit. Therefore, one has also studied variations of iterative learning.

The paper Iterative Learning from Positive Data and Counters by Timo
Kötzing considers the variation that an iterative learner has additionally access
to a counter. While it was known that this additional information yields a strictly
more powerful learning model, it remained open why and how such a counter aug-
ments the learner power. To answer this question, six different types of a counter
are distinguished. In the previously studied case, the counter was incremented
in each iteration, i.e., counting from zero to infinity (i.e., c(i + 1) = c(i) + 1).
Further possibilities include strictly increasing counters (i.e., c(i + 1) > c(i)),
and increasing and unbounded (i.e., c(i + 1) ≥ c(i) and the limit inferior of the
sequence of counter values is infinity). The paper completely characterizes the
relative learning power of iterative learners in dependence on the counter type
allowed. It is shown that strict monotonicity and unboundedness are the only
properties of the counters that augment the learner power in the iterative set-
ting. The situation changes if other learning criteria are considered. For example,
the learner may be required to never abandon a correct hypothesis, or its hy-
potheses should not depend on the order and the number of repetitions of the
examples. It is then shown that for each choice of two different counter types
there is a learning criterion that, when augmented with one of the counter types,
yields different learnable classes than the same criterion when augmented with
the other counter type.
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The setting studied by Sanjay Jain, Eric Martin, and Frank Stephan in their
paper Robust Learning of Automatic Classes of Languages is different from the
general one described above in that the classes of target languages considered are
required to be automatic ones. That is, the authors consider classes of regular
languages of the form (Li)i∈I such that {(i, x) | x ∈ Li} and I itself are regular
sets. So automatic classes of languages are a particular type of an automatic
structure. Note that automatic structures have received considerable attention
recently in learning theory and elsewhere. Furthermore, automatic classes are
also a special case of indexed families that have been intensively studied in
learning theory. To explain what is meant by robust learning, let us assume that
we know a class L to be learnable. The interesting question is then what can be
said about the classes T that are obtainable by applying an algorithmic transfor-
mation to L. If all these classes T are learnable then we call L robustly learnable.
Clearly, the answer may depend on the type of transformation allowed. Know-
ing such an invariant is of great importance as we all know from mathematics.
In the case of inductive inference of recursive functions this problem has been
studied intensively. There it turned out that general recursive operators, that is,
operators mapping every total function to a total one, are the most appropriate
transformations. In the setting of inductive inference of languages from text, so
far the attempts to find the appropriate class of transformations failed. In their
paper, Jain, Martin, and Stephan resolve this problem for automatic classes by
using automatic systems to define the class of admissible transformations. Then
characterizations of robust learning with respect to several natural learning cri-
teria are provided. Last but not least the authors extend their results to the case
where the source of information is changed to queries. That is, instead of pas-
sively receiving initial segments of a text, the learner is allowed to ask particular
types of questions to gain information concerning the target. Commonly used
types of questions are membership queries (asking whether or not a particular
string belongs to the target language) and equivalence queries (asking whether
or not a particular finite description generates the target language and noth-
ing else). In addition also subset queries and superset queries are studied. Note
that the criterion of success has to be modified, too. Instead of learning in the
limit, learning via queries requires the learner to indicate that it has learned by
stopping to ask questions and outputting a correct description of the target.

The paper Learning and Classifying by Sanjay Jain, Eric Martin, and Frank
Stephan sheds additional light on our understanding of language learning by
relating it to classification. The model of classification considered is new. The
authors define a so-called P -classifier which takes as input a finite sequence of
elements of a language L and a finite sequence of predicates from the set P . It
then outputs either the special symbol “?” indicating that the classifier makes
no guess or a finite sequence of truth values intended as guesses of the values of
the predicates on the language L. A computable P -classifier M is said to classify
a language L if for every text for L and for every finite sequence of predicates
from P , the guesses of M are the correct truth values of the finite sequence of
predicates on L for all but finitely many initial segments of the text. Again, a
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computable P -classifier is said to classify a class of languages if it classifies every
language in the class. So it remains to specify the set P of allowed predicates.
The basic predicates are membership of a particular element in L. The remaining
predicates are Boolean combinations of these basic predicates.

The paper then compares P -classification with different criteria of learning
from text. These criteria are learning in the limit as described above, behav-
iorally correct learning and finite identification. Behaviorally correct learning
differs from learning in the limit in that the learner has to output for all but
finitely many inputs a correct hypothesis, but not necessarily the same one.
Finite identification is a model, where it is demanded that convergence of the
sequence of hypotheses is decidable. So the learner outputs again the special
symbol ‘?” indicating that it does not make a guess or a hypothesis. Once a hy-
pothesis is output, it must be correct and learning is over. The main motivation
for these investigations and the main insight obtained by these studies is the
exploration of the idea that learning may be viewed as the limit of an increasing
set of classification tasks.

The paper Learning Relational Patterns by Michael Geilke and Sandra Zilles
studies the learnability of a special target class. Patterns are a very intuitive
way to define languages. A pattern is just a non-empty string over (Σ ∪ X),
where Σ is finite alphabet (the so-called constants) and X = {x1, x2, . . .} is
a countable set of variables. For example, ax1abbx2cx1 is a pattern provided
a, b, c ∈ Σ. The language L(π) generated by a pattern π is the set of all strings
obtainable by substituting strings over Σ for the variables occurring in π, where
in each substitution step the same string has to be used for all occurrences of the
same variable. So, abbabbaacbb ∈ L(π), where π = ax1abbx2cx1 and obtained by
substituting bb for x1 and aa for x2. Note that it makes a huge difference whether
or not only non-empty strings are allowed as substitutions. If this the case then
the class of all pattern languages is learnable from text. On the other hand, if
empty strings are allowed as substitutions then the class of all pattern languages
is not learnable from text. The present paper considers the case that empty
substitutions are not allowed. While the class of all such pattern languages is
very interesting and has attracted a lot of attention, it may be also too general for
several applications. Thus, the authors introduce a new class by allowing (a finite
number of) relations between the variables in the pattern and call the new class
relational patterns. For instance, a relation can be used to express the demand
that the substitutions for the variables x1 and x2 used in one substitution step
have always the same length (as in our example above). It is then shown that the
class of relational pattern languages is learnable from text, where the hypotheses
output are also relational patterns. The authors also study the complexity of the
membership problem which is NP -complete for the original class. For relational
patterns it is shown to be NP -hard. Finally, probabilistic relational patterns
are considered. Now for each variable type (expressed by the given relations)
a distribution over the set of allowed substitutions is specified. This induces
a probability distribution over the strings of the language, and learning has
to be performed with respect to all texts obtainable in this way. The success
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criterion is then relaxed to δ-learning, meaning that the learner has to succeed
with probability at least 1 − δ. Under fairly natural conditions on a class of all
relational patterns it is shown that δ-learning can be achieved.

Regression. In regression problems one is concerned with learning to predict a
real-valued response given some inputs. The learner predicting some value suffers
some loss, which is usually the square of the prediction error. The problem can be
studied in the online learning framework or under some statistical assumptions;
in both cases the main issue is to design algorithms which keep the prediction
loss as small as possible.

Of considerable interest is to learn a linear mapping from a d-dimensional
Euclidean space to the set of real numbers, i.e., the task of linear prediction.
In many practical problems one suspects that the weight vector w∗ defining the
linear mapping is sparse because not all inputs are relevant. This also implies
that the weight vector will have a small 1-norm. How to design algorithms that
can exploit this prior information has been the subject of intense investigation
in recent years. Sébastien Gerchinovitz and Jia Yuan Yu study this problem
in the online learning framework in their paper Adaptive and Optimal Online
Linear Regression on �1-balls. Their main contribution is showing that the best
achievable regret is subject to a phase transition depending on the value of the
“intrinsic quantity” κ =

√
T‖w∗‖1X/(2dY ): For κ < 1, the best achievable

regret scales as dκ, whereas for κ > 1 it behaves as d lnκ. Here, T is the sample-
size, X is the size of the �∞-ball that the inputs lie in, and Y is a bound on the
size of the responses. They also give computationally efficient algorithms that
essentially achieve this bound without knowing the values of ‖w∗‖1, X , Y or T .

Nina Vaits and Koby Crammer in their paper Re-Adapting the Regularization
of Weights for Non-Stationary Regression consider the problem of tracking the
best sequence of weights also in the context of linear prediction with a squared
loss. They develop an algorithm which uses per-feature learning rates and prove
a regret bound with respect to the best sequence of functions. Under some tech-
nical assumption and with proper tuning, the regret is shown to be of order
O(T (p+1)/2p logT ) when the best weight sequence’s “cumulative deviation” is of
order O(T 1/p) for some p > 1. They also show that by running multiple instances
in parallel, prior knowledge of p can be avoided.

Oftentimes, analyzing the “in-sample” or training error is the first step in
the analysis of the risk of regression methods. Moreover, the behavior of the
training error is also of major interest in signal or image processing when the
goal of learning is to reject noise at the input points in the training data. The
main novelty in the paper of Arnak S. Dalalyan and Joseph Salmon (Competing
Against the Best Nearest Neighbor Filter in Regression) is that the authors prove
a sharp oracle inequality for the expected training error of a procedure that they
suggest. The oracle inequality is called sharp as its leading constant, multiplying
the risk of the best predictor within the considered set of predictors, is one
and the additive residual term decays at the rate of O(1/n). The procedure
itself uses aggregation with exponential weights over a set of symmetrized linear
estimators, a special case of which are nearest neighbor filters. In particular, the
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procedure avoids the need to choose the number of neighbors k to be considered
and yet its performance is guaranteed to be almost as good as that of the nearest
neighbor filter with the best choice of k. The procedure assumes the knowledge
of the covariance matrix underlying the noise or an unbiased estimate of this
covariance matrix which is independent of the responses used in the training
procedure.

Bandit Problems. Bandit problems provide the simplest model to study learn-
ing in interactive, sequential scenarios with limited feedback: The learner takes
actions, resulting in some reward that the learner observers. However, the learner
gains no information about the rewards associated with the action not taken,
hence the feedback about the environment is limited. The goal of the learner
is to achieve as much reward as possible. Performance is measured in terms of
the regret, i.e., the loss as compared to using the single best action from the
beginning of time.

In their paper Lipschitz Bandits without the Lipschitz Constant Sébastien
Bubeck, Gilles Stoltz, and Jia Yuan Yu study bandit problems when the set of
actions is the d-dimensional hypercube and the payoff function is known to be
globally Lipschitz with respect to the maximum-norm. They develop an algo-
rithm which works as well as the Lipschitz constant was available though their
algorithm does not need to know the Lipschitz constant. This is in contrast to
previous works which either assumed that the Lipschitz constant is known a
priori or the regret of the algorithm scaled suboptimally as a function of the
unknown Lipschitz constant. The strategy proposed is based on a discretization
argument, assumes the knowledge of the horizon and proceeds in two phases.
In the first phase, the Lipschitz constant is estimated by exploring the points
in the hypercube uniformly. By the end of this phase, the Lipschitz constant
is estimated based on the obtained data. By biasing the estimate obtained this
way upwards, it is ensured that the the Lipschitz constant will not be underesti-
mated. In the second phase, the hypercube is discretized based on the estimated
biased Lipschitz constant and then a standard multi-armed bandit strategy is
used in the resulting finite-armed problem.

Most papers concerned with the stochastic version of bandit problem study the
expected regret. However, a decision maker might also be interested in the risk,
i.e., whether the regret is small not only in expectation, but also with high prob-
ability. In their paper Deviations of Stochastic Bandit Regret Antoine Salomon
and Jean-Yves Audibert show that in the classical setting of finite-armed stochas-
tic bandit problems whether “small risk” policies exist hinges upon whether the
total number of plays is known beforehand. That small risk is possible to achieve
when this knowledge is available was known beforehand. The new result is that
without this knowledge, no algorithm can achieve small risk except when the
class of distributions that can be assigned to the actions is restricted in some
way.

Bandit algorithms designed for static environments are not expected to work
well when the environment changes from time to time, for example when the
environment changes abruptly. In the case of adversarial stochastic bandits, the
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corresponding problem is called the tracking problem and the so-called Exp3.S
algorithm was shown to achieve a regret of O(

√
sT logT ) on a horizon T when

the number of abrupt changes is at most s. Aurélien Garivier and Eric Moulines
study the same problem in a stochastic setting. In their paper titled On Upper-
Confidence Bound Policies for Switching Bandit Problems they prove that al-
ready when a single switch between two stochastic environments E1, E2 is allowed,
no algorithm can achieve better than

√
C(E1, E2)T regret, where C(E1, E2) is a

constant that depends on the two environments E1, E2 only. They also study the
so-called discounted UCB algorithm and one version which uses sliding windows.
They show that with appropriate tuning these algorithms are able to match the
regret of Exp3.S. These theoretical findings are complemented with results of
numerical experiments that indicate that the UCB-type algorithms might be
advantageous in stochastic environments compared to Exp3.S.

Online learning with bandit information can be studied under various crite-
ria. In their paper Upper-Confidence-Bound Algorithms for Active Learning in
Multi-Armed Bandits Alexandra Carpentier, Alessandro Lazaric, Mohammad
Ghavamzadeh, Rémi Munos, and Peter Auer study the problem of estimating
the mean values of a a finite number of actions uniformly well. In earlier work,
a specific algorithm based on a forced exploration strategy was designed and
analyzed for this problem. However, it is suspected that forced exploration with
a fixed exploration rate can lead to suboptimal performance. In their paper Car-
pentier et al. study algorithms which avoid fixed rate forced exploration schemes.
The performance bounds developed are indeed better than that of developed for
the forced exploration scheme.

Online Learning. In online learning the training data is presented sequen-
tially and the learner updates its hypothesis after each data point. Sequential
decision making tasks naturally require online learning, but it can also be used
for computational reasons even when all the training data is available at once
but manipulating the entire data set is computationally too expensive.

The classical perceptron algorithm takes very little time per iteration and is
guaranteed to find a hyperplane separating the positive and negative data points
if one exists, but the margin of the hyperplane is not in any way optimized.
Various algorithms for optimizing the margin are known, but they get compu-
tationally quite demanding for large data sets. Constantinos Panagiotakopoulos
and Petroula Tsampouka in their paper The Perceptron with Dynamic Margin
contribute to the line of research that tries to combine the computational sim-
plicity of the perceptron algorithm with guaranteed approximation bounds for
the margin. The algorithm is based on maintaining a dynamic upper bound on
the maximum margin. Besides the theoretical approximation bound, also exper-
iments show the algorithm to perform well compared to previous ones for the
same problem.

The paper Combining Initial Segments of Lists by Manfred K. Warmuth,
Wouter M. Koolen, and David P. Helmbold falls broadly within the framework
of predicting with expert advice. As an example, suppose you have K different
policies for maintaining a memory cache of size N . Different policies work well
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for different access sequences, and you would like to combine the caches of the
K policies dynamically into your own cache of size N such that no matter what
the access sequence, you do not incur many more misses than the best of the K
policies for that particular sequence. A naive implementation of the well-known
Hedge algorithm for predicting with expert advice is not computationally feasi-
ble, since there are roughly NK ways of picking your combined cache. However,
the paper comes up with efficient algorithms based on the special combinatorial
structure of this set of NK combinations. Also some lower bounds and hardness
results are presented.

The paper Regret Minimization Algorithms for Pricing Lookback Options by
Eyal Gofer and Yishay Mansour applies tools from online prediction to finance.
The final goal of the paper is to get upper bounds for the values of a certain
type of an option. Assuming an arbitrage-free market, such upper bounds can
be derived from regret bounds for trading algorithms. The trading algorithm
considered here combines one-way trading (selling stock over time but never
buying more) with regret minimization that tries to follow which performs better,
cash or stock. A simulation on real stock data demonstrates how the bound works
in practice.

The paper Making Online Decisions with Bounded Memory by Chi-Jen Lu
and Wei-Fu Lu is concerned with the problem of prediction with expert advice
for 0 − 1 losses when the predictor is a finite state machine. Assuming that
the number of actions is n, it is shown that any predictor with mn−1 states
must have regret Ω(T/m) in T time steps (note that remembering the exact
number of mistakes of each expert would use T n states). In the paper the authors
propose two new algorithms for this problem: the first one is based on exponential
weighting and achievesO(m+T/m ln(nm)) regret (for smallm), while the second
algorithm, based on gradient descent, achieves O(n

√
m + T/

√
m) regret. Note

that the first algorithm achieves an almost optimal
√
T lnn regret using roughly

half the memory that standard algorithms would use.
In sequence prediction the problem is to predict the next symbol of a sequence

given the past. As it is well known Solomonoff induction solves this problem, but
only if the entire sequence is sampled from a computable distribution. In the pa-
per Universal Prediction of Selected Bits Tor Lattimore, Marcus Hutter, and
Vaibhav Gavane consider the more general problem of predicting only parts of
a sequence, lifting the restriction that the sequence is computable (or sampled
from a computable distribution). For example, in an online classification prob-
lem, the side information available to predict the next outcome can be arbitrary,
the only part that needs to be predicted are the labels. They show that the
normalized version of Solomonoff induction can still be used in this more gen-
eral problem, and in fact it can detect any recursive sub-pattern (regularity)
within an otherwise completely unstructured sequence. It is also shown that the
unnormalized version can fail to predict very simple recursive sub-patterns.

Consider two computers communicating using protocols designed and imple-
mented by different parties. In such settings, the possibility of incompatibility
arises. Thus, it is desirable if one (or both) computers utilize a communication
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strategy that automatically corrects mistakes. Previous work has shown that if
the user can sense progress, such a strategy exists if there exists a protocol at
all that would achieve the goal of communication. The drawback of the actual
constructions is that they rely on enumerating protocols until a successful one
is discovered, leading to the potential for exponential overhead in the length of
the desired protocol. Brendan Juba and Santosh Vempala in their paper Seman-
tic Communication for Simple Goals is Equivalent to On-line Learning consider
the problem of reducing this overhead for some reasonably general special cases.
Most interestingly, this is done by establishing an equivalence between these spe-
cial cases and the usual model of mistake-bounded on-line learning. The results
motivate the study of sensing with richer kinds of feedback.

Kernels and Margin-Based Methods. Kernels are a powerful mathemati-
cal tool that have gained popularity in machine learning, among other reasons,
because they sometimes allow computationally efficient implementation of algo-
rithms that otherwise would require manipulating very high-dimensional feature
vectors. Learning algorithms that operate in a high-dimensional feature space
often employ some form of margin maximization as a means of avoiding overfit-
ting.

The paper Accelerated Training of Max-Margin Markov Networks with Kernels
by Xinhua Zhang, Ankan Saha, and S.V.N. Viswanathan considers structured
output prediction, where in addition to the inputs, also the outputs to be pre-
dicted can have a complicated structure. Using the kernel paradigm this can be
modeled assuming a joined feature map φ that maps input-output pairs (x,y)
into the feature space. One way of proceeding from there, and the one adopted
in this paper, is max-margin Markov networks, which leads to a minimization
problem where the objective function is convex but not smooth. Non-smoothness
rules out some of the faster optimization methods. This paper shows how some
known techniques for this kind of optimization can be modified so that they
retain their convergence speed, getting to within ε of the optimum in O(1/

√
ε)

iterations, and allow the iteration step to be implemented in an efficient manner
that utilizes the structure of the outputs.

Corinna Cortes and Mehryar Mohri in their paper Domain Adaptation in
Regression consider the situation when the training and test data come from
different distributions. We assume there is little or no labeled data about the
target domain where we actually wish to learn, but unlabeled data is available,
as well as labeled data from a different but somehow related source domain. Pre-
vious work has introduced a notion of discrepancy such that a small discrepancy
between the source and target domains allows learning in this scenario. This
paper sharpens and simplifies the previous results for a large class of domains
related to kernel regression. It then goes on to develop an algorithm for find-
ing a source distribution that minimizes the discrepancy and shows empirically
that the new algorithm allows domain adaptation on much larger data sets than
previous methods.

The paper Approximate Reduction from AUC Maximization to 1-Norm Soft
Margin Optimization by Daiki Suehiro, Kohei Hatano, and Eiji Takimoto
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considers the problem of obtaining a good ranking function as a convex com-
bination of a given set of basic ranking functions. Area under the ROC curve
(AUC) is a popular performance measure for ranking, and known results bounds
it in terms of a margin-based criterion for pairs of positive and negative exam-
ples. However, using this reduction directly to optimize AUC leads to a problem
of size O(pn), where p is the number of positive examples and n the number
of negative examples in the original problem. This is computationally infeasible
for even moderately large data sets. The paper presents an alternative reduc-
tion that leads to a problem of size O(p+ n). The problem thus obtained is not
equivalent with the original problem, but the paper provides some approximation
guarantees, and shows empirically that the proposed approach is practical.

Intelligent Agents. Intelligent agents need to adapt to their environment to
achieve their goals. The problem is made especially difficult by the fact that the
actions taken may have long term effects.

In their paper Axioms for Rational Reinforcement Learning, following Sav-
age’s pioneering work, Peter Sunehag and Marcus Hutter define a notion of
rational agents and show that the so-defined rational agents act as if they main-
tained a probabilistic world model. The simplest rationality concept considered
in the paper from which the other concepts are derived concerns agents who have
preferences above payoff schemes corresponding to a single uncertain outcome.
The authors also investigate the subtleties of countably infinite outcomes and
asymptotic optimality when an agent faces countably many environments.

Laurent Orseau studies the question of how to design agents which are “knowl-
edge seeking” in the paper titled Universal Knowledge-Seeking Agents. The
knowledge-seeking agents are those who have a probabilistic world model. In a
rather unorthodox manner, the immediate cost suffered by such an agent at some
time step is defined as the conditional probability assigned to future outcomes
based on the probabilistic world model that the agent chose to use. Arguably,
an agent that uses an appropriate world model and that acts so as to mini-
mize the long-term cost will choose actions that allow it to “discard” as many
environments as quickly as possible. Performance is compared to the expected
total cost suffered by the optimal agent that uses the probability distribution of
the true environment as its world model. The main result, which is proven for
certain “horizon functions,” shows that the so-called AIXI agent’s performance
converges to the optimal performance provided that the environment is deter-
ministic. A cost defined using the logarithm of the conditional probabilities, i.e.,
a Shannon-type cost, is also studied.

A recent result by Orseau published at ALT 2010 showed that Hutter’s uni-
versal Bayesian agent AIXI fails to be weakly asymptotically optimal when the
environment is chosen to be some computable deterministic environment. The
main observation in the paper Asymptotically Optimal Agents by Tor Lattimore
and Marcus Hutter is that a similar result holds true for arbitrary agents. In
particular, the authors study this question in general discounted deterministic
reinforcement problems. It is shown that no learning algorithm can be strongly
asymptotically optimal for this class of environments, while the existence of
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weakly asymptotically optimal algorithms depends on the considered discount
function. However, weakly asymptotically optimal algorithms are necessarily in-
computable. One such algorithm is presented for geometric discounting.

A discount matrix d is an ∞×∞ matrix: At time step t an agent using d would
“discount” future rewards using the values in the tth column of d. A discount
matrix leads to time-consistent behavior if for any environment the optimal pol-
icy given some history up to time t uses the same action as the optimal policy
that is computed with a column of the discount matrix corresponding to some
previous time instance (ties are assumed to be broken in an arbitrary, system-
atic manner). Tor Lattimore and Marcus Hutter prove a characterization of
what discount matrices lead to time consistent discounting in their paper Time
Consistent Discounting. They also study the sensitivity of behaviors to pertur-
bations of a time-consistent discount matrix. Finally, using a game theoretic
approach, they show that there is a rational policy even if the discount matrix
is time-inconsistent.

Other Learning Models. Identification in the limit from positive data is one
of the earliest learning paradigms considered in computer science. The learner
receives an infinite sequence that consists of the strings belonging to an unknown
(infinite) language. After each input string, the learner outputs a grammar, and
learning is successful if after some finite amount of steps, the grammar is correct
for the unknown language.

Probably approximately correct (PAC) learning is another model that has
served as the framework for many fundamental results and also inspired a large
number of other models. In the basic PAC setting, the unknown quantities are
a target concept f :X → { 0, 1 } and a probability measure P over X . The
learner receives a set of labeled examples (x, f(x)) and outputs a hypothesis
h:X → { 0, 1 }. For given ε and δ, the hypothesis must satisfy with probability
at least 1 − δ the property P (f(x) 	= h(x)) ≤ ε. The analysis of a learning algo-
rithm involves estimating the required number of examples and the computation
time in terms of ε, δ and other relevant parameters of the problem.

The paper Distributional Learning of Simple Context-Free Tree Grammars
by Anna Kasprzik and Ryo Yoshinaka considers learning of languages consist-
ing of trees, not strings. Context-free tree grammars generalize the notion of
context-free grammars from strings to trees. While learning general context-free
languages seems difficult, efficient learning algorithms for several subclasses are
know. The present paper, in particular, takes as a starting point the known re-
sults for substitutable context-free languages. A context-free language L over is
substitutable, if any two strings z1 and z2 that satisfy uz1v ∈ L and uz2v ∈ L for
some pair of strings (u, v), also satisfy the condition u′z1v′ ∈ L⇔ u′z2v′ ∈ L for
any pair (u′, v′). Intuitively, if z1 and z2 can both appear in one context (u, v),
then they can appear in exactly the same contexts (u′, v′). The learning tech-
niques based on analyzing such interactions between strings and their context
are known as distributional. In the present paper, the notion of substitutability
is appropriately generalized to tree languages. This leads to learning algorithms
for several classes of context-free tree languages.
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Elena Grigorescu, Lev Reyzin and Santosh Vempala in their paper On Noise-
Tolerant Learning of Sparse Parities and Related Problems consider PAC learn-
ing with random classification noise. In this model, the examples are affected
by noise with some fixed rate η < 1/2, so an example (x, y) of target concept
f satisfies y = f(x) with probability 1 − η and y = 1 − f(x) with probabil-
ity η. The situation where X = { 0, 1 }n and the target concept is known to
be the parity of some unknown subset of the n input bits is of particular in-
terest, since it is perhaps the most basic case that is known to be learnable
in the noise-free setting, but not known to be learnable with random classi-
fication noise. In contrast, most known learning algorithms for the noise-free
PAC model have been generalized to allow random classification noise by using
the statistical query model. The present paper shows that parities of at most r
variables are learnable in the PAC model with random classification noise in
time poly(1/ε, ln(1/δ), 1/(1 − 2η))n(1/2+2η2+o(1))r, which is the first known im-
provement over the brute-force bound O(nr). The results of this paper can be
combined with earlier work to get bounds for general r-juntas (functions that
depend on only r input bits) and for s-term DNF formulas.

Co-training under the conditional independence assumption is a model often
used in PAC-style analysis of semisupervised learning. In this model, access to
a large number of unlabeled examples can lead to a drastic reduction in the
required number of labeled examples. The paper Supervised Learning and Co-
Training by Malte Darnstädt, Hans Ulrich Simon, and Balázs Szörényi poses the
question of how much of this reduction is due to the unlabeled examples, and how
much would result from the conditional independence assumption even without
access to any unlabeled examples. It turns out that under this assumption, the
number of labeled examples needed to co-train two concept classes, having VC-
dimensions d1 and d2, is O(

√
d1d2/ε). For small ε this is significantly smaller

than the lower bound Ω(d/ε) for learning a concept class of VC-dimension d
without the conditional independence assumption.

A labeled random example (x, f(x)) gives information both about the target
function f and the distribution of x. The paper Learning a Classifier When the
Labeling is Known by Shalev Ben-David and Shai Ben-David focuses on the
second aspect by assuming that the target function f is actually known to the
learner beforehand. The learning problem is still nontrivial if we require that the
hypothesis h belongs to some restricted hypothesis class H that does not include
the target f . In practice, such restrictions might arise because the hypothesis
must be very efficient to evaluate, or in a form understandable to a human expert.
The paper establishes a combinatorial property of H based on shattering that
tells us which of three cases holds: the required number of samples is either zero,
Θ(1/ε), or Ω(1/ε2).
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1 Introduction

One of the striking differences between current reinforcement learning algorithms
and early human learning is that animals and infants appear to explore their en-
vironments with autonomous purpose, in a manner appropriate to their current
level of skills. An important intuition for autonomously motivated exploration
was proposed in [1, 2]: an agent should be interested in making observations
that reduce its uncertainty about future observations. Inherently random obser-
vations are not interesting because the agent can never learn to predict them;
and observations that the agent can already predict are not interesting because
they convey no new information. This criterion is valuable but essentially retro-
spective: at the end of its life, an agent can look back and use the criterion to
rigorously assess which of its past explorations were useful in increasing the pre-
cision of predictions, and which explorations were useless. It is harder to identify
useful explorations prospectively, but there are a range of plausible heuristics for
doing so, in the form of setting up intrinsic rewards for explorations which give
preliminary signs of success. Some of these ideas have already been used in rein-
forcement learning ([3]) to identify intermediate skills that should be learned. A
taxonomy of intrinsic reward systems that encourage an agent to make such “in-
teresting” observations is proposed in [4]; an implementation of a simple learning
system exhibiting “intelligent adaptive curiosity” is described in [5]. However,
there is not yet a systematic theoretical analysis of possible heuristics for prospec-
tive identification of useful explorations. It is also evident that improvement in
prediction is only one of many rigorous retrospective criteria for identifying use-
ful explorations: there has been no systematic examination of other criteria for
retrospective and prospective identification of useful explorations.
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2 Preliminaries

For a formal model of autonomous exploration that is accessible to theoretical
analysis, we consider learning a Markov Decision Process (MDP) without exter-
nal rewards. The learning agent still has to gather relevant information about
the unknown state transitions in the MDP, but relevance is not determined by a
predefined reward function on the states. Instead, we propose other notions for
relevant information, that are derived from various objectives for the learning
agent. In general, the goal of the learning agent is to gather as much relevant
information as possible in the available exploration time, or — vice versa — to
use as little exploration time as possible to gather the required information.

3 Learning to Reach States

An immediate and simple objective for a learning agent in an MDP with finite
state space S, is to find for each of the states s ∈ S a reliable policy for reaching
this state from a defined start state s0. The learning protocol is that the learning
agent may explore the MDP by taking actions in the MDP for a number of steps.1

After the exploration phase, for each of the states s ∈ S the learning agent needs
to output a policy πs, which is evaluated by the average time L(s|s0, πs) that
it takes the agent to reach the goal state s from start state s0, when following
policy πs. The overall utility of the learning agent A after T exploration steps
can then be measured by some utility function,

U(A, T ) =
∑
s∈S

u(s, L(s|s0, πs)) ,

where u(s, L) is a function decreasing in L. As an example, the particular choice

uΛ,α(s, L) =
{

1 if L ≤ αΛ and ∃π∗
s : L(s|s0, π∗

s ) ≤ Λ
0 else

counts the states which are reachable in Λ steps by an optimal policy and for
which the learning agent has found a sufficiently good policy. We are interested
in a bound on the number of necessary exploration steps, such that for all states
reachable in Λ steps a sufficiently good policy has been found. A straightforward
adaptation of the RMAX algorithm [6, 7] gives bounds polynomial in the number
of states, but better bounds can be derived from more recent work [8]. We will
also discuss further improvements of these bounds.

3.1 Infinite State Spaces

The problem of reaching states becomes more even interesting and intrigu-
ing when an infinite but discrete state space is considered. A simple adaptation of

1 To avoid MDPs where the exploring agent may get stuck in a state, we assume
that the agent has a RESET action that deterministically takes it back to the start
state s0.
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known reinforcement algorithms that depend on the size of the state space is
not possible anymore. And even for a finite state space the dependency of the
exploration time on the size of the complete state space is unfavorable. Instead,
a dependency on the number of states that can actually be reached in Λ steps
would be preferable. Unfortunately, this is not possible in general.

Counter Example. For any n ≥ 1, consider the state space

S = {s0, s(1)1 , . . . , s
(n)
1 , . . . , s

(1)
Λ−1, . . . , s

(n)
Λ−1, sΛ}

and actions a0, a1. Assume for the transition probabilities that

– p(s(k)
1 |s0, ai) = 1/n for k = 1, . . . , n and i = 0, 1,

– for all � = 1, . . . , Λ − 1 and k = 1, . . . , n there is an action ai with
p(s(k)

�+1|s
(k)
� , ai) = 1 and p(s0|s(k)

� , a1−i) = 1, (for notational convenience

s
(1)
Λ = s

(n)
Λ = sΛ).

Then for Λ  n, sΛ is the only state that can be reached in Λ steps by an
optimal policy. But Ω(nΛ) exploration steps are necessary to actually find a
policy which gets to sΛ in O(Λ) steps. ��
Thus we will consider also more constrained versions of learning to reach states.

3.2 Other Learning Objectives

Another natural goal for autonomous exploration is to enable the agent to adapt
quickly to any externally assigned reward function. As it turns out, this requires
— under mild conditions and in an adversarial setting — uniformly good esti-
mates of all transition probabilities, since otherwise the rewards can be assigned
such that the learning agent is hurt most by the most inaccurately estimated
transition probabilities.

4 Further Research Directions

We believe that there are at least two very interesting directions for further re-
search: one is to consider autonomous exploration in continuous state spaces with
parametrized transition probabilities, see e.g. [9]. The other research direction is
about further objectives for autonomous exploration, in particular learning and
representing multiple skills. The competence of an agent can be considered as
a function over a set of skills, and through exploration and learning the agent
improves its competence.
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On the Expressive Power of Deep Architectures
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Abstract. Deep architectures are families of functions corresponding to
deep circuits. Deep Learning algorithms are based on parametrizing such
circuits and tuning their parameters so as to approximately optimize
some training objective. Whereas it was thought too difficult to train
deep architectures, several successful algorithms have been proposed in
recent years. We review some of the theoretical motivations for deep
architectures, as well as some of their practical successes, and propose
directions of investigations to address some of the remaining challenges.

1 Learning Artificial Intelligence

An intelligent agent takes good decisions. In order to do so it needs some form
of knowledge. Knowledge can be embodied into a function that maps inputs
and states to states and actions. If we saw an agent that always took what one
would consider as the good decisions, we would qualify the agent as intelligent.
Knowledge can be explicit, as in the form of symbolically expressed rules and
facts of expert systems, or in the form of linguistic statements in an encyclope-
dia. However, knowledge can also be implicit, as in the complicated wiring and
synaptic strengths of animal brains, or even in the mechanical properties of an
animal’s body. Whereas Artificial Intelligence (AI) research initially focused on
providing computers with knowledge in explicit form, it turned out that much
of our knowledge was not easy to express formally. What is a chair? We might
write a definition that can help another human understand the concept (if he
did not know about it), but it is difficult to make it sufficiently complete for
a computer to translate into the same level of competence (e.g. in recognizing
chairs in images). Much so-called common-sense knowledge has this property.

If we cannot endowe computers with all the required knowledge, an alter-
native is to let them learn it from examples. Machine learning algorithms aim
to extract knowledge from examples (i.e., data), so as to be able to properly
generalize to new examples. Our own implicit knowledge arises either out of
our life experiences (lifetime learning) or from the longer scale form of learning
that evolution really represents, where the result of adaptation is encoded in the
genes. Science itself is a process of learning from observations and experiments in
order to produce actionable knowledge. Understanding the principles by which
agents can capture knowledge through examples, i.e., learn, is therefore a central
scientific question with implications not only for AI and technology, but also to
understand brains and evolution.

J. Kivinen et al. (Eds.): ALT 2011, LNAI 6925, pp. 18–36, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Formally, a learning algorithm can be seen as a functional that maps a dataset
(a set of examples) to a function (typically, a decision function). Since the dataset
is itself a random variable, the learning process involves the application of a pro-
cedure to a target distribution from which the examples are drawn and for which
one would like to infer a good decision function. Many modern learning algo-
rithms are expressed as an optimization problem, in which one tries to find a
compromise between minimizing empirical error on training examples and min-
imizing a proxy for the richness of the family of functions that contains the
solution. A particular challenge of learning algorithms for AI tasks (such as un-
derstanding images, video, natural language text, or speech) is that such tasks
involve a large number of variables with complex dependencies, and that the
amount of knowledge required to master these tasks is very large. Statistical
learning theory teaches us that in order to represent a large body of knowledge,
one requires a correspondingly large number of degrees of freedom (or richness of
a class of functions) and a correspondingly large number of training examples. In
addition to the statistical challenge, machine learning often involves a computa-
tional challenge due to the difficulty of optimizing the training criterion. Indeed,
in many cases, that training criterion is not convex, and in some cases it is not
even directly measurable in a deterministic way and its gradient is estimated by
stochastic (sampling-based) methods, and from only a few examples at a time
(online learning).

One of the characteristics that has spurred much interest and research in re-
cent years is depth of the architecture. In the case of a multi-layer neural
network, depth corresponds to the number of (hidden and output) layers. A fixed-
kernel Support Vector Machine is considered to have depth 2 (Bengio and LeCun,
2007) and boosted decision trees to have depth 3 (Bengio et al., 2010). Here we
use the word circuit or network to talk about a directed acyclic graph, where
each node is associated with some output value which can be computed based on
the values associated with its predecessor nodes. The arguments of the learned
function are set at the input nodes of the circuit (which have no predecessor)
and the outputs of the function are read off the output nodes of the circuit. Dif-
ferent families of functions correspond to different circuits and allowed choices
of computations in each node. Learning can be performed by changing the com-
putation associated with a node, or rewiring the circuit (possibly changing the
number of nodes). The depth of the circuit is the length of the longest path in
the graph from an input node to an output node.

This paper also focuses on Deep Learning, i.e., learning multiple levels of
representation. The intent is to discover more abstract features in the higher
levels of the representation, which hopefully make it easier to separate from
each other the various explanatory factors extent in the data. Theoretical re-
sults (Yao, 1985; H̊astad, 1986; H̊astad and Goldmann, 1991; Bengio et al., 2006;
Bengio and Delalleau, 2011; Braverman, 2011), reviewed briefly here (see also a
previous discussion by Bengio and LeCun, 2007) suggest that in order to learn
the kind of complicated functions that can represent high-level abstractions (e.g.,
in vision, language, and other AI-level tasks) associated with functions with
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many variations but an underlying simpler structure, one may need deep archi-
tectures. The recent surge in experimental work in the field seems to support this
notion, accumulating evidence that in challenging AI-related tasks – such as com-
puter vision (Bengio et al., 2007; Ranzato et al., 2007; Larochelle et al., 2007;
Ranzato et al., 2008; Lee et al., 2009; Mobahi et al., 2009; Osindero and Hinton,
2008), natural language processing (NLP) (Collobert and Weston, 2008;
Weston et al., 2008), robotics (Hadsell et al., 2008), or information retrieval
(Salakhutdinov and Hinton, 2007; Salakhutdinov et al., 2007) – deep learning
methods significantly out-perform comparable but shallow competitors (e.g. win-
ning the Unsupervised and Transfer Learning Challenge; Mesnil et al., 2011),
and often match or beat the state-of-the-art.

In this paper we discuss some of the theoretical motivations for deep ar-
chitectures, and quickly review some of the current layer-wise unsupervised
feature-learning algorithms used to train them. We conclude with a discussion of
principles involved, challenges ahead, and ideas to face them.

2 Local and Non-local Generalization: The Challenge and
Curse of Many Factors of Variation

How can learning algorithms generalize from training examples to new cases?
It can be shown that there are no completely universal learning procedures,
in the sense that for any learning procedure, there is a target distribution on
which it does poorly (Wolpert, 1996). Hence, all generalization principles exploit
some property of the target distribution, i.e., some kind of prior. The most
exploited generalization principle is that of local generalization. It relies on a
smoothness assumption, i.e., that the target function (the function to be learned)
is smooth (according to some measure of smoothness), i.e., changes slowly and
rarely (Barron, 1993). Contrary to what has often been said, what mainly hurts
many algorithms relying only on this assumption (pretty much all of the non-
parametric statistical learning algorithms) is not the dimensionality of the input
but instead the insufficient smoothness of the target function1.

To make a simple picture, imagine the supervised learning framework and a
target function that is locally smooth but has many ups and downs in the domain
of interest. We showed that if one considers a straight line in the input domain,
and counts the number of ups and downs along that line, then a learner based
purely on local generalization (such as a Gaussian kernel machine) requires at
least as many examples as there are ups and downs (Bengio et al., 2006).

Manifold learning algorithms are unsupervised learning procedures aiming to
characterize a low-dimensional manifold near which the target distribution con-
centrates. Bengio and Monperrus (2005) argued that many real-world manifolds
(such as the one generated by translations or rotations of images, when the im-
age is represented by its pixel intensities) are highly curved (translating by 1

1 But of course additional noisy dimensions, although they do not change smoothness
of the target function, require more examples to cancel the noise.
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pixel can change the tangent plane of the manifold by about 90 degrees). The
manifold learning algorithms of the day, based implicitly or explicitly on non-
parametric estimation of the local tangent planes to the manifold, are relying on
purely local generalization. Hence they would require a number of examples that
grows linearly with the dimension d of the manifold and the number of patches
O
(

D
r

)d
needed to cover its nooks and crannies, i.e., in O

(
d
(

D
r

)d)
examples,

where D is a diameter of the domain of interest and r a radius of curvature.

3 Expressive Power of Deep Architectures

To fight an exponential, it seems reasonable to arm oneself with other expo-
nentials. We discuss two strategies that can bring a potentially exponential
statistical gain thanks to a combinatorial effect: distributed (possibly sparse)
representations and depth of architecture. We also present an example of the
latter in more details in the specific case of so-called sum-product networks.

3.1 Distributed and Sparse Representations

Learning algorithms based on local generalization can generally be interpreted as
creating a number of local regions (possibly overlapping, possibly with soft rather
than hard boundaries), such that each region is associated with its own degrees of
freedom (parameters, or examples such as prototypes). Such learning algorithms
can then learn to discriminate between these regions, i.e., provide a different
response in each region (and possibly doing some form of smooth interpolation
when the regions overlap or have soft boundaries). Examples of such algorithms
include the mixture of Gaussians (for density estimation), Gaussian kernel ma-
chines (for all kinds of tasks), ordinary clustering (such as k-means, agglom-
erative clustering or affinity propagation), decision trees, nearest-neighbor and
Parzen windows estimators, etc... As discussed in previous work (Bengio et al.,
2010), all of these algorithms will generalize well only to the extent that there
are enough examples to cover all the regions that need to be distinguished from
each other.

As an example of such algorithms, the way a clustering algorithm or a nearest-
neighbor algorithm could partition the input space is shown on the left side of
Fig. 1. Instead, the right side of the figure shows how an algorithm based on dis-
tributed representations (such as a Restricted Boltzmann Machine; Hinton et al.,
2006) could partition the input space. Each binary hidden variable identifies on
which side of a hyper-plane the current input lies, thus breaking out input space
in a number of regions that could be exponential in the number of hidden units
(because one only needs a few examples to learn where to put each hyper-plane),
i.e., in the number of parameters. If one assigns a binary code to each region, this
is also a form of clustering, which has been called multi-clustering (Bengio, 2009).

Distributed representations were put forward in the early days of connec-
tionism and artificial neural networks (Hinton, 1986, 1989). More recently, a
variation on distributed representations has been explored by many researchers,
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Fig. 1. Contrast beween learning algorithms such as clustering (left side), based on local
generalization, with examples required in each input region distinguished by the learner,
and algorithms based on distributed representations, such as a Restricted Boltzmann
Machine (right side). The latter also splits up the input space in regions but where the
number of parameters or examples required can be much smaller (potentially exponen-
tially smaller) than the number of regions one can distinguish. This is what grants the
possibility of generalizing to regions where no data have been observed.

which is somehow in between purely local representations and the traditional
dense distributed representations: sparse representations. The idea is that only
a few dimensions of the representations are “active”, with the inactive dimen-
sions basically set to 0 or close to 0. Neurons in the cortex are believed to have a
distributed and sparse representation (Olshausen and Field, 1997), with around
1-4% of the neurons active at any one time (Attwell and Laughlin, 2001; Lennie,
2003). With k out of d active dimensions in a representation, one still gets (po-
tentially) exponentially more representational power than a local representation,
with the number of regions that can be distinguished now being in the order of
n choose k. See Bengio (2009) for a brief overview of the literature on sparse
representations.

3.2 Depth

Depth is a notion borrowed from complexity theory, and that is defined for circuits.
A circuit is a directed acyclic graph where each node is associated with a compu-
tation, and whose output results are used by the successors of that node. Input
nodes have no predecessor and output nodes have no successor. The depth of a
circuit is the longest path from an input to an output node. A long-standing ques-
tion in complexity theory is the extent to which depth-limited circuits can repre-
sent functions as efficiently as deeper circuits. A depth-2 circuit (with appropriate
choice of computational elements, e.g. logic gates or formal neurons) can compute
or approximate any function, but it may require an exponentially large number
of nodes. This is a relevant question for machine learning, because many learn-
ing algorithms learn “shallow architectures” (Bengio and LeCun, 2007), typically
of depth 1 (linear predictors) or 2 (most non-parametric predictors). If AI tasks
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require deeper circuits (and human brains certainly appear deep), then we should
find ways to incorporate depth into our learning algorithms. The consequences
of using a too shallow predictor would be that it may not generalize well, unless
given huge numbers of examples and capacity (i.e., computational resources and
statistical resources).

The early results on the limitations of shallow circuits regard functions such
as the parity function (Yao, 1985), showing that logic gates circuits of depth-2
require exponential size to implement d-bit parity where a deep circuit of depth
O(log(d)) could implement it with O(d) nodes. H̊astad (1986) then showed that
there are functions computable with a polynomial-size logic gate circuit of depth
k that require exponential size when restricted to depth k − 1 (H̊astad, 1986).
Interestingly, a similar result was proven for the case of circuits made of linear
threshold units (formal neurons; H̊astad and Goldmann, 1991), when trying to
represent a particular family of functions. A more recent result brings an ex-
ample of a very large class of functions that cannot be efficiently represented
with a small-depth circuit (Braverman, 2011). It is particularly striking that the
main theorem regards the representation of functions that capture dependencies
in joint distributions. Basically, dependencies that involve more than r variables
are difficult to capture by shallow circuits. An r-independent distribution is one
that cannot be distinguished from the uniform distribution when looking only at
r variables at a time. The proof of the main theorem (which concerns distribution
over bit vectors) relies on the fact that order-r polynomials over the reals cannot
capture r-independent distributions. The main result is that bounded-depth cir-
cuits cannot distinguish data generated by r-independent distributions from in-
dependent noisy bits. We have also recently shown (Bengio and Delalleau, 2011)
results for sum-product networks (where nodes either compute sums or products,
over the reals). We present these results in more details below as an example
of the advantage brought by depth in terms of the efficiency of the represen-
tation: we found two families of polynomials that can be efficiently represented
with depth-d circuits, but require exponential size with depth-2 circuits. Inter-
estingly, sum-product networks were recently proposed to efficiently represent
high-dimensional joint distributions (Poon and Domingos, 2010).

Besides the complexity-theory hints at their representational advantages, there
are other motivations for studying learning algorithms which build a deep archi-
tecture. The earliest one is simply inspiration from brains. By putting together
anatomical knowledge and measures of the time taken for signals to travel from
the retina to the frontal cortex and then to motor neurons (about 100 to 200ms),
one can gather that at least 5 to 10 feedforward levels are involved for some of
the simplest visual object recognition tasks. Slightly more complex vision tasks
require iteration and feedback top-down signals, multiplying the overall depth
by an extra factor of 2 to 4 (to about half a second).

Another motivation derives from what we know of cognition and abstractions:
as argued by Bengio (2009), it is natural for humans to represent concepts at
one level of abstraction as the composition of concepts at lower levels. Engineers
often craft representations at multiple levels, with higher levels obtained by
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transformation of lower levels. Instead of a flat main program, software engineers
structure their code to obtain plenty of re-use, with functions and modules re-
using other functions and modules. This inspiration is directly linked to machine
learning: deep architectures appear well suited to represent higher-level abstrac-
tions because they lend themselves to re-use. For example, some of the features
that are useful for one task may be useful for another, making Deep Learning par-
ticularly well suited for transfer learning and multi-task learning (Caruana, 1995;
Collobert and Weston, 2008; Bengio et al., 2011; Bengio, 2011). Here one is ex-
ploiting the existence of underlying common explanatory factors that are useful
for multiple tasks. This is also true of semi-supervised learning, which exploits con-
nections between the input distribution P (X) and a target conditional distribu-
tion P (Y |X) (see Weston et al. (2008) for a first application of Deep Learning to
semi-supervised learning). In general these two distributions, seen as functions of
x, may be unrelated to each other. But in the world around us, it is often the case
that some of the factors that shape the input variablesX are predictive of the out-
put variables Y . Deep Learning relies heavily on unsupervised or semi-supervised
learning, and assumes that representations ofX that are useful to captureP (X) are
also in part useful to capture P (Y |X). An extensive study by Erhan et al. (2010)
has explored the question of whether and how this prior may explain the success
of the greedy layer-wise unsupervised pre-training recipe followed in many Deep
Learning algorithms, and explained in Sect. 4.

3.3 A Deep Sum-Product Networks Case Study

Poon and Domingos (2010, 2011) introduced deep sum-product networks as
a method to compute partition functions of tractable graphical models. These
networks are analogous to traditional artificial neural networks but with nodes
that compute either products or weighted sums of their inputs. In this setting
the advantage brought by depth may not be obvious: after all, the output value
can always be written as a sum of products of input variables (possibly raised to
some power), and consequently it is easily rewritten as a shallow network with
a sum output unit and product hidden units.

The argument supported by our theoretical analysis (Bengio and Delalleau,
2011) is that a deep architecture is able to compute some functions much more
efficiently than a shallow one. Here we measure “efficiency” in terms of the num-
ber of computational units in the network. Bengio (2009) suggested that some
polynomials could be represented more efficiently by deep sum-product networks,
but without providing any formal statement or proofs. We partly addressed this
void by demonstrating families of circuits for which a deep architecture can be
exponentially more efficient than a shallow one in the context of real-valued
polynomials2.

2 Here we restrict our definition of “sum-product networks” to those networks whose
summation units have positive incoming weights, even though some of our results
still hold for networks with non-positive weights (Bengio and Delalleau, 2011).
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In the following we briefly review our main results, in which we consider two
families of functions represented by deep sum-product networks (denoted by F
and G). For each family, we establish a lower bound on the minimal number of
hidden units a shallow (depth-2) sum-product network would require to repre-
sent a function of this family, showing it is much less efficient than the deep
representation.

The first family of functions we study is F = ∪n≥4Fn, where Fn is made of
functions built from deep sum-product networks with n = 2k inputs and (even)
depth k that alternate binary product and sum layers (Fig. 2 for the simplest
case, F4).
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Fig. 2. Sum-product network computing some f ∈ F4, i.e., with n=4 inputs and depth
k = log2 n = 2

The second family of functions is G = ∪n≥2,i≥0Gin such that the sub-family
Gin is made of sum-product networks with n input variables and depth 2i+ 1,
that alternate sum and product layers. Each sum or product unit takes n − 1
units from the previous layer as inputs. An example of a network belonging to
G1,3 is shown in Fig. 3 (it has unit summation weights to keep the figure easy
to read). Note that contrary to family F , depth and input size can be varied
independently for networks in G.

The main result for family F is that any shallow sum-product network com-
puting a function in Fn must have at least 2

√
n−1 hidden units. The high-level

proof sketch consists in the following steps (Bengio and Delalleau, 2011):

1. Show that the number of unique products found in the expanded polynomial
representation of f ∈ Fn is 2

√
n−1.

2. Prove that the only possible architecture for a shallow sum-product network
to compute f is to have a hidden layer made of product units, with a sum
unit as output.

3. Conclude that the number of hidden units in step 2 must be at least the
number of unique products computed in step 1.

For family G, we obtain that a shallow sum-product network computing gin ∈ Gin

must have at least (n−1)i hidden units. The proof relies on a similar idea, i.e. we
use a lower bound on the number of products found in the expanded polynomial
expansion of g to bound the number of hidden units in a shallow sum-product
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Fig. 3. Sum-product network computing some g ∈ G1,3

network with summation output. In addition, the final result uses the degree of
the output polynomial, which is (n− 1)i, to bound the number of hidden units
in a shallow sum-product network with product output (also proving there can
be no product units in the hidden layer).

In summary, we obtain that functions in families F and G can be com-
puted by a deep sum-product network with exponentially less units
than when computed by a shallow sum-product network. This motivates
using deep sum-product networks to obtain more efficient representations.

4 A Zoo of Learning Algorithms

Greedy Layer-Wise Unsupervised Feature Learning
Whereas early efforts at training deep architectures were unsuccess-
ful (Bengio and LeCun, 2007), a major breakthrough in Deep Learning methods
came about with the use of layer-wise unsupervised learning (Hinton et al., 2006;
Bengio et al., 2007; Ranzato et al., 2007), as a way to initialize a deep supervised
neural network.

Deep Learning usually occurs in two phases: first, unsupervised, layer-wise
training, and second, supervised training of a classifier that exploits what has
been done in the first phase. In the unsupervised phase, each layer is added
and trained greedily, i.e., keeping the earlier layers fixed and ignoring the
future interactions with additional layers. Each layer uses the representation
learned by the previous layer as input that it tries to model and transform
to a new and better representation. Many unsupervised learning algorithms
are being explored for the first phase, including various methods to train Re-
stricted Boltzmann Machines (RBMs) (Freund and Haussler, 1994; Hinton et al.,
2006; Tieleman, 2008; Salakhutdinov and Hinton, 2009; Desjardins et al., 2010)
or Deep Boltzmann Machines (Salakhutdinov and Hinton, 2010; Lee et al.,
2009), different flavours of auto-encoders (Bengio et al., 2007; Vincent et al.,
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2008; Larochelle et al., 2009), and other sparse encoder-decoder systems
(Ranzato et al., 2007; Kavukcuoglu et al., 2009).

The objective stated in the Deep Learning literature is to discover power-
ful representation-learning algorithms, mostly thanks to unsupervised learning
procedures. Ideally, such representations should somehow capture the salient
factors of variation that explain the data, and this can be tested by attempting
to use these learned representations to predict some of these factors, e.g., in a
classification problem.

Boltzmann Machines. The first unsupervised learning algorithm
(Hinton and Salakhutdinov, 2006; Hinton et al., 2006) that has been proposed
for training each layer of a deep architecture is based on a Restricted Boltzmann
Machine (Smolensky, 1986), which is an undirected graphical model that is a
particular form of Boltzmann Machine (Hinton et al., 1984). A Boltzmann Ma-
chine is an undirected graphical model for observed variable x based on latent
variable h is specified by an energy function E(x, h):

P (x, h) =
e−E(x,h)

Z

where Z is a normalization constant called the partition function. A Boltzmann
machine is one where E(x, h) is a second-order polynomial in (x, h), e.g.,

E(x, h) = h′Wx+ h′Uh+ x′V x+ b′h+ c′x

and in general both x and h are considered to be binary vectors, which makes
Z intractable except when both x and h have very few components. The coef-
ficients θ = (W,U, V, b, c) of that second-order polynomial are the parameters
of the model. Given an observed x, the inference P (h|x) is generally intractable
but can be estimated by sampling from a Monte-Carlo Markov Chain (MCMC),
e.g. by Gibbs sampling, or using loopy belief, variational or mean-field approx-
imations. Even though computing the energy is easy, marginalizing over h in
order to compute the likelihood P (x) is generally intractable, so that the exact
log-likelihood gradient is also intractable. However, several algorithms have been
proposed in recent years to estimate the gradient, most of them based on the
following decomposition into the so-called “positive phase part” (x is fixed to
the observed value, the gradient term tends to decrease the associated energy)
and “negative phase part” (both x and h are sampled according to P , and the
gradient term tends to increase their energy):

∂

∂θ
(− logP (x)) = Eh

[
∂E(x, h)
∂θ

|x
]
− Ex,h

[
∂E(x, h)
∂θ

]
.

Even though a Boltzmann Machine is a parametric model when we consider the
dimensionality nh of h to be fixed, in practice one allows nh to vary, making it a
non-parametric model. With nh large enough, one can model any discrete distri-
bution: Le Roux and Bengio (2008) showed that Restricted Boltzmann Machines
(described below) are universal approximators, and since they are special cases



28 Y. Bengio and O. Delalleau

of Boltzmann Machines, Boltzmann Machines also are universal approximators.
On the other hand with nh > 0 the log-likelihood is not anymore convex in the
parameters, and training can potentially get stuck in one of many local minima.

The Restricted Boltzmann Machine (RBM) is a Boltzmann machine
without lateral interactions, i.e., U = 0 and V = 0. It turns out that the positive
phase part of the gradient can be computed exactly and tractably in the easier
special case of the RBM, because P (h|x) factorizes into

∏
i P (hi|x). Similarly

P (x|h) factorizes into
∏

j P (xj |h), which makes it possible to apply blocked
Gibbs sampling (sampling h given x, then x given h, again h given x, etc.). For
a trained RBM, the learned representation R(x) of its input x is usually taken
to be E[h|x], as a heuristic.

RBMs are typically trained by stochastic gradient descent, using a noisy (and
generally biased) estimator of the above log-likelihood gradient. The first gradi-
ent estimator that was proposed for RBMs is the Contrastive Divergence estima-
tor (Hinton, 1999; Hinton et al., 2006), and it has a particularly simple form: the
negative phase gradient is obtained by starting a very short chain (usually just one
step) at the observed x and replacing the above expectations by the corresponding
samples. In practice, it has worked very well for unsupervised pre-training meant
to initialize each layer of a deep supervised (Hinton et al., 2006; Bengio et al., 2007;
Erhan et al., 2010) or unsupervised (Hinton and Salakhutdinov, 2006) neural
network.

Another common way to train RBMs is based on the Stochastic Maximum
Likelihood (SML) estimator (Younes, 1999) of the gradient, also called Persis-
tent Contrastive Divergence (PCD; Tieleman, 2008) when it was introduced for
RBMs. The idea is simply to keep sampling negative phase x’s (e.g. by blocked
Gibbs sampling) even though the parameters are updated once in a while, i.e.,
without restarting a new chain each time an update is done. It turned out that
SML yields RBMs with much better likelihood, whereas CD updates sometimes
give rise to worsening likelihood and suffer from other issues (Desjardins et al.,
2010). Theory suggests (Younes, 1999) this is a good estimator if the param-
eter changes are small, but practice revealed (Tieleman, 2008) that it worked
even for large updates, in fact giving rise to faster mixing (Tieleman and Hinton,
2009; Breuleux et al., 2011). This is happening because learning actually inter-
acts with sampling in a useful way, pushing the MCMC out of the states it just
visited. This principle may also explain some of the fast mixing observed in a
related approach called Herding (Welling, 2009; Breuleux et al., 2011).

RBMs can be stacked to form a Deep Belief Network (DBN), a hybrid of
directed and undirected graphical model components, which has an RBM to
characterize the interactions between its top two layers, and then generates the
input through a directed belief network. See Bengio (2009) for a deeper treatment
of Boltzmann Machines, RBMs, and Deep Belief Networks.

Auto-encoders are neural networks which are trained to reconstruct their in-
put (Rumelhart et al., 1986; Bourlard and Kamp, 1988; Hinton and Zemel, 1994).
A one-hidden layer auto-encoder is very similar to an RBM and its reconstruc-
tion error gradient can be seen as an approximation of the RBM log-likelihood
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gradient (Bengio and Delalleau, 2009). Both RBMs and auto-encoders can be used
as one-layer unsupervised learning algorithms that give rise to a new represen-
tation of the input or of the previous layer. In the same year that RBMs were
successfully proposed for unsupervised pre-training of deep neural networks, auto-
encoders were also shown to help initialize deep neural networks much better than
random initialization (Bengio et al., 2007). However, ordinary auto-encoders gen-
erally performed worse than RBMs, and were unsatisfying because they could po-
tentially learn a useless identity transformation when the representation size was
larger than the input (the so-called “overcomplete” case).

Sparse Coding was introduced in computational neuroscience
(Olshausen and Field, 1997) and produced filters very similar to those observed
in cortex visual area V1 (before similar filters were achieved with RBMs, sparse
predictive decomposition, and denoising auto-encoders, below). It corresponds
to a linear directed graphical model with a continuous-valued latent variable
associated with a sparsity prior (Student or Laplace, the latter corresponding to
an L1 penalty on the value of the latent variable). This is like an auto-encoder, but
without a parametric encoder, only a parametric decoder. The “encoding” corre-
sponds to inference (finding the most likely hidden code associated with observed
visible input) and involves solving a lengthy but convex optimization problem
and much work has been devoted to speeding it up. A very interesting way to do
so is with Predictive Sparse Decomposition (Kavukcuoglu et al., 2008), in
which one learns a parametric encoder that approximates the result of the sparse
coding inference (and in fact changes the solution so that both approximate
encoding and decoding work well). Such models based on approximate inference
were the first successful examples of stacking a sparse encoding (Ranzato et al.,
2007; Jarrett et al., 2009) into a deep architecture (fine-tuned for supervised
classification afterwards, as per the above greedy-layerwise recipe).

Score Matching is an alternative statistical estimation principle (Hyvärinen,
2005) when the maximum likelihood framework is not tractable. It can be ap-
plied to models of continuous-valued data when the probability function can
be computed tractably up to its normalization constant (which is the case for
RBMs), i.e., it has a tractable energy function. The score of the model is the
partial derivative of the log-likelihood with respect to the input, and indicates in
which direction the likelihood would increase the most, from a particular input
x. Score matching is based on minimizing the squared difference between the
score of the model and a target score. The latter is in general unknown but the
score match can nonetheless be rewritten in terms of the expectation (under the
data generating process) of first and (diagonal) second derivatives of the energy
with respect to the input, which correspond to a tractable computation.

Denoising Auto-encoders were first introduced by Vincent et al. (2008)
to bypass the frustrating limitations of auto-encoders mentioned above. Auto-
encoders are only meant to learn a “bottleneck”, a reduced-dimension rep-
resentation. The idea of Denoising Auto-Encoders (DAE) is simple: feed the
encoder/decoder system with a stochastically corrupted input, but ask it to recon-
struct the clean input (as one would typically do to train any denoising system).
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This small change turned out to systematically yield better results than those
obtained with ordinary auto-encoders, and similar or better than those obtained
with RBMs on a benchmark of several image classification tasks (Vincent et al.,
2010). Interestingly, the denoising error can be linked in several ways to the
likelihood of a generative model of the distribution of the uncorrupted exam-
ples (Vincent et al., 2008; Vincent, 2011), and in particular through the Score
Matching proxy for log-likelihood (Vincent, 2011): the denoising error corre-
sponds to a form of regularized score matching criterion (Kingma and LeCun,
2010). The link also sheds light on why a denoising auto-encoder captures the
input distribution. The difference vector between the reconstruction and the cor-
rupted input is the model’s guess as to the direction of greatest increase in the
likelihood (starting from a corrupted example), whereas the difference vector be-
tween the corrupted input and the clean original is nature’s hint of a direction of
greatest increase in likelihood (since a noisy version of a training example is very
likely to have a much lower probability than the original under the data gener-
ating distribution). The difference of these two differences is just the denoising
reconstruction error residue.

Noise-Contrastive Estimation is another estimation principle which can
be applied when the energy function can be computed but not the partition
function (Gutmann and Hyvarinen, 2010). It is based on training not only from
samples of the target distribution but also from samples of an auxiliary “back-
ground” distribution (e.g. a flat Gaussian). The partition function is considered
like a free parameter (along with the other parameters) in a kind of logistic re-
gression trained to predict the probability that a sample belongs to the target
distribution vs the background distribution.

Semi-supervised Embedding is an interesting and different way to use
unlabeled data to learn a representation (e.g., in the hidden layers of a deep
neural network), based on a hint about pairs of examples (Weston et al., 2008).
If two examples in a pair are expected to have a similar semantic, then their
representations should be encouraged to be similar, whereas otherwise their
representations should be at least some distance away. This idea was used in
unsupervised and semi-supervised contexts (Chopra et al., 2005; Hadsell et al.,
2006; Weston et al., 2008), and originates in the much older idea of siamese
networks (Bromley et al., 1993).

Contractive Autoencoders (Rifai et al., 2011) minimize a training crite-
rion that is the sum of a reconstruction error and a “contraction penalty”, which
encourages the learnt representation h(x) to be as invariant as possible to the
input x, while still allowing to distinguish the training examples from each other
(i.e., to reconstruct them). As a consequence, the representation is faithful to
changes in input space in the directions of the manifold near which examples
concentrate, but it is highly contractive in the orthogonal directions. This is
similar in spirit to a PCA (which only keeps the leading directions of variation
and completely ignores the others), but is softer (no hard cutting at a particular
dimension), is non-linear and can contract in different directions depending on
where one looks in the input space (hence can capture non-linear manifolds).
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To prevent a trivial solution in which the encoder weights go to zero and the
decoder weights to infinity, the contractive autoencoder uses tied weights (the
decoder weights are forced to be the transpose of the encoder weights). Because
of the contractive criterion, what we find empirically is that for any particular
input example, many of the hidden units saturate while a few remain sensitive
to changes in the input (corresponding to changes in the directions of changes
expected under the data distribution). That subset of active units changes as
we move around in input space, and defines a kind of local chart, or local coor-
dinate system, in the neighborhood of each input point. This can be visualized
to some extent by looking at the singular values and singular vectors of the
Jacobian matrix J (containing the derivatives of each hidden unit output with
respect to each input unit). Contrary to other autoencoders, one tends to find
only few dominant eigenvalues, and their number corresponds to a local rank or
local dimension (which can change as we move in input space). This is unlike
other dimensionality reduction algorithms in which the number of dimensions
is fixed by hand (rather than learnt) and fixed across the input domain. In fact
the learnt representation can be overcomplete (larger than the input): it is only
in the sense of its Jacobian that it has an effective small dimensionality for any
particular input point. The large number of hidden units can be exploited to
model complicated non-linear manifolds.

5 Principles, Challenges and Ideas Ahead

What lies beyond the principle of local generalization which has already been
very successful in machine learning? The principles of distributed (possibly
sparse) representations and deep circuits make possible other ways to generalize.
Both can exploit a combinatorial effect in order to characterize and differenti-
ate a number of input regions that is exponentially larger than the number of
parameters.

However, these principles also come with challenges, notably a more diffi-
cult non-convex optimization problem. The greedy layer-wise unsupervised pre-
training trick has served well, but more needs to be done in order to globally
train these deep architectures. This optimization difficulty means that the op-
timization problem is not cleanly decoupled from the modeling choices. Some
models may work well in practice because the optimization is easier.

Representation learning algorithms have been found empirically to partly
disentangle the underlying factors of variation, such as geometric factors of
variation (Goodfellow et al., 2009), or domain vs sentiment in sentiment analy-
sis (Glorot et al., 2011). This means that some learned features (some component
of the representation) are more invariant to some factors of variation (compared
to the raw input) and more sensitive to others. Perhaps the most exciting chal-
lenge ahead is the following: why is this apparent disentangling happening, and
can we go even further in that direction? We already know some tricks which
seem to help this disentangling: independence (e.g., as in ICA), sparsity (e.g.,
as in sparse auto-encoders, sparse RBMs, or sparse denoising auto-encoders),
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grouping (forcing some groups of learned features to behave as a group, e.g.,
encouraging all of the units in a group to be off together), and slowness (forcing
some units to respond in a temporally coherent manner). We propose to invest
more towards understanding all of these better and exploiting this understand-
ing to yield learning algorithms that better disentangle the underlying factors of
variation in AI-related tasks.
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1 Modeling Problem

Data Y = {yt : t = 1, 2, . . . , n}, or Y |X = {(yt, x1,t, x2,t, . . .)}, X explanatory
variables. Want to learn properties in Y expressed by set of distributions as
models: f(Y |Xs; θ, s), where θ = θ1, . . . , θk(s) real-valued parameters, s structure
parameter: for picking the most important variables in X .

1.1 Models and Estimators

To simplify notations write yt, x1,t, x2,t, . . . as xt; structures determined by num-
ber k of real-valued parameters.

Classes of parametric models

Mk = {f(xn; θ, k) : θ ∈ Ωk ⊂ Rk}; k ≤ n

M = {Mk : k = 1, 2, . . . ,K,K ≤ n}.

Sets of estimator functions θ̄(·), k̄(·). Consider the distributions defined by esti-
mators

for fixed k : f̄(xn; k) = f(xn; θ̄(xn), k)/C̄k,n

C̄k,n =
∫
f(yn; θ̄(yn), k)dyn

in general : f̄(xn) = f̄(xn; k̄(xn))/C̄n

C̄n =
∑

k

∫
k̄(yn)=k

f̄(yn; k)dyn

Let θ̂(·), k̂(·) be the estimator that maximizes C̄n:

Ĉn = max
θ̄(·),k̄(·)

C̄n. (1)

It also maximizes the probability or density f̂(xn) on the observed data, which
is taken as the single postulate for this theory of estimation. The maximum Ĉn

is called the maximum capacity, and it is also the maximum mutual information
that any estimator can obtain about the models in the class.
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Eyke Hüllermeier1 and Johannes Fürnkranz2
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Abstract. In this paper, we review the framework of learning (from)
label preferences, a particular instance of preference learning. Following
an introduction to the learning setting, we particularly focus on our own
work, which addresses this problem via the learning by pairwise com-
parison paradigm. From a machine learning point of view, learning by
pairwise comparison is especially appealing as it decomposes a possibly
complex prediction problem into a certain number of learning problems
of the simplest type, namely binary classification. We also discuss how a
number of common machine learning tasks, such as multi-label classifica-
tion, hierarchical classification or ordinal classification, may be addressed
within the framework of learning from label preferences. We also briefly
address theoretical questions as well as algorithmic and complexity issues.

Preference learning is a recent addition to the suite of learning tasks in machine
learning [1], where the training information is typically not given in the form
of scalar outputs, but instead in the form of pairwise comparisons expressing
preferences between different objects. One can distinguish learning from object
preferences, where the training data is given in the form of pairwise comparisons
between objects, and learning from label preferences, where the training data is
given in the form of pairwise comparisons between labels that are attached to
the objects. In the former case, a common performance task is to rank a new set
of objects (object ranking), whereas in the latter case, the performance task is to
rank the set of labels for a new object (label ranking). Besides, the training in-
formation may also be given in the form of (ordinal) preference degrees attached
to the objects, indicating an absolute (as opposed to a relative/comparative)
assessment. If the task is to rank a new set of objects according to their pref-
erence degrees, we also speak of instance ranking. In this talk, we focus on the
task of label ranking, and, in particular, on our own work in this area, which
concentrates on learning a set of pairwise comparators (LPC) [2].
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Abstract. Consider, in the most general sense, the space of all informa-
tion carrying objects: a book, an article, a name, a definition, a genome,
a letter, an image, an email, a webpage, a Google query, an answer, a
movie, a music score, a Facebook blog, a short message, or even an ab-
stract concept. Over the past 20 years, we have been developing a gen-
eral theory of information distance in this space and applications of this
theory. The theory is object-independent and application-independent.
The theory is also unique, in the sense that no other theory is “better”.
During the past 10 years, such a theory has found many applications.
Recently we have introduced two extensions to this theory concerning
multiple objects and irrelevant information. This expository article will
focus on explaining the main ideas behind this theory, especially these
recent extensions, and their applications. We will also discuss some very
preliminary applications.

� The full version of this paper is published in the Proceedings of the 14th International
Conference on Discovery Science, Lecture Notes in Artificial Intelligence Vol. 6926.
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Abstract. We analyze iterative learning in the limit from positive data
with the additional information provided by a counter. The simplest type
of counter provides the current iteration number (counting up from 0 to
infinity), which is known to improve learning power over plain iterative
learning.

We introduce five other (weaker) counter types, for example only pro-
viding some unbounded and non-decreasing sequence of numbers. Ana-
lyzing these types allows for understanding what properties of a counter
can benefit learning.

For the iterative setting, we completely characterize the relative power
of the learning criteria corresponding to the counter types. In particular,
for our types, the only properties improving learning power are unbound-
edness and strict monotonicity.

Furthermore, we show that each of our types of counter improves
learning power over weaker ones in some settings, and that, for iterative
learning criteria with one of these types of counter, separations of learn-
ing criteria are necessarily witnessed by classes containing only infinite
languages.

Keywords: Inductive Inference.

1 Introduction

We analyze the problem of algorithmically learning a description for a formal
language (a computably enumerable subset of the natural numbers) when pre-
sented successively all and only the elements of that language. For example, a
learner h might be presented more and more even numbers. After each new num-
ber, h may output a description of a language as its conjecture. The learner h
might decide to output a program for the set of all multiples of 4, as long as no
even number not divisible by 4 has been presented. Later, when h sees an even
number not divisible by 4, it might change this guess to a program for the set
of all multiples of 2.
� Timo Kötzing was supported by the Deutsche Forschungsgemeinschaft (DFG) under

grant no. NE 1182/5-1.
�� The author would like to thank John Case, Sanjay Jain, Frank Stephan and Sandra

Zilles for valuable and fruitful discussions.

J. Kivinen et al. (Eds.): ALT 2011, LNAI 6925, pp. 40–54, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Iterative Learning from Positive Data and Counters 41

Many criteria for deciding whether a learner h is successful on a language L
have been proposed in the literature. Gold, in his seminal paper [Gol67], gave a
first, simple learning criterion, TxtEx-learning1, where a learner is successful iff,
on every text for L (listing of all and only the elements of L) it eventually stops
changing its conjectures, and its final conjecture is a correct description for the
input sequence.

Trivially, each single, describable language L has a suitable constant function
as an Ex-learner (this learner constantly outputs a description for L). Thus, we
are interested for which classes of languages L is there a single learner h learning
each member of L. This framework is known as language learning in the limit
and has been studied extensively, using a wide range of learning criteria similar
to TxtEx-learning (see, for example, the text book [JORS99]).

In this paper we are concerned with a memory limited variant of TxtEx-
learning, namely iterative learning [Wie76, LZ96] (It). While in TxtEx-learning
a learner may arbitrarily access previously presented data points, in iterative
learning the learner only sees its previous conjecture and the latest data point.
It is well known that this setting allows for learning strictly fewer classes of
languages. The successive literature analyzed iterative learners with some ad-
ditional resources, for example a bounded example memory [LZ96]; “long term”
finite memory states [FKS95]; or feedback learning, i.e. the ability to ask for the
containment of examples in previously seen data [LZ96, CJLZ99].

A different option for providing additional learning power for iterative learning
was suggested in [CM08b], where iterative with counter learning was introduced.
In this setting, a learner, in each iteration, has access to its previous conjecture,
the latest datum, and the current iteration number (counting up from 0 to
infinity). [CM08b] shows that this learning criterion is strictly more powerful
than plain iterative learning, strictly less powerful than TxtEx-learning, and
incomparable to set-driven learning [WC80].

In set-driven learning, the learner has access only to the (unordered) set of
data seen so far, with duplicates removed. Consider now a learning criterion,
where the learner has access to the set of data seen so far, just as in set-driven
learning, but also to the current iteration number (just as in iterative with
counter learning as introduces in [CM08b]). It is easy to see that this learning
criterion is equivalent to partially set-driven (or rearrangement independent)
learning [SR84]; it is well known that partially set-driven learning is equivalent
to TxtEx-lerning.

The main aim of this paper is to discuss how and why such a counter improves
learning power. In particular, we want to understand what properties of a counter
can be used in a learning process to increase learning power. Is it the higher
and higher counter values, which we can use to time-bound computations? Is it
knowing the number of data items seen so far? Is it the complete enumeration
of all natural numbers which we can use to divide up tasks into infinitely many
subtasks to be executed at the corresponding counter value?

1 Txt stands for learning from a text of positive examples; Ex stands for explanatory.
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We approach these questions by introducing different counter types, each mod-
eling some of the possibly beneficial properties mentioned above. Formally, a
counter type is a set of counters ; a counter is a mapping from the natural num-
bers to itself. Instead of giving the learner the current iteration number, we will
map this number with a counter drawn from the counter type under considera-
tion.

We define the following counter types.2

(i) Complete and ordered: Id = {idN};3
(ii) Strictly monotone: �R! = {c | ∀i : c(i+ 1) > c(i)};
(iii) Monotone & unbounded: �R = {c | ∀i : c(i+ 1) ≥ c(i) ∧ lim infi→∞ c(i) =

∞};
(iv) Eventually above any number: Rinf=∞ = {c | lim infi→∞ c(i) = ∞};
(v) Unbounded: Rsup=∞ = {c | lim supi→∞ c(i) = ∞};
(vi) Complete: Ronto = {c | range(c) = N}.

By requiring a learner to succeed regardless of what counter was chosen from
the counter type, we can provide certain beneficial properties of a counter, while
not providing others. For example, counters from Ronto provide a complete enu-
meration of all natural numbers, but do not allow to infer the number of data
items seen so far.

We illustrate the inclusion properties of the different sets of counters with
the following diagram (inclusions are top to bottom; thus, inclusions of learning
power when such counters are used are bottom to top).

Id

�R!

�R

Rinf=∞

Rsup=∞

Ronto

The weakest type of counter is Rsup=∞, the unbounded counter. The advan-
tage over having no counter at all is to be able to make computations with higher
and higher time bounds; in fact, it is easy to see that set-driven learning merely
requires a counter from Rsup=∞ to gain the full power of TxtEx-learning. John
Case pointed out that any text for an infinite language implicitly provides a
counter from Rsup=∞.

A somewhat stronger counter type is Rinf=∞; the intuitive advantage of this
counter is that a learner will not repeat mistakes made on small counter values
2 The counter types (i), (iii) and (v) were suggested by John Case in private commu-

nication.
3 “Id” stands for identity; N denotes the natural numbers and idN the identity on N.



Iterative Learning from Positive Data and Counters 43

indefinitely, but only the behavior on large counter values affects the learning
process in the limit.

For the monotone counters from �R, the advantage is again that early mistakes
are not repeated once learning has proceeded to a later stage (as in, higher
counter value), as well as a monotonicity in advancing through these stages.

Counters from �R! have the additional benefit of providing an upper bound on
the number of examples seen so far.

Id is the strongest type of counter providing exactly the number of data
elements presented so far. Also, all natural numbers are listed, which allows a
learner to divide up tasks into infinitely many subtasks to be executed at the
corresponding counter value; the counter type Ronto models this latter advantage
while dropping the order restriction.

The main results of this paper consider iterative learning and are as follows.
Even adding the weakest type of counter, Rsup=∞, to plain iterative learning al-
lows for an increase in learning power; however, there is no increase on learning
classes of infinite languages only (Theorem 4). Furthermore, the criteria corre-
sponding to the six counter types are divided into two groups of criteria of equal
learning power as depicted by the following diagram (the gray line divides the
two groups).

It Id

�R!

�R

Rinf=∞

Rsup=∞

Ronto

In particular, only the strict monotonicity of a counter gives additional learn-
ing power over Rsup=∞ counters. The proofs for the claims inherent in the dia-
gram can be found in Section 5.

Theorem 9 in Section 5 shows the separation depicted in the above diagram;
its proof uses a self-learning class of languages [CK10, CK11] and Case’s Operator
Recursion Theorem (ORT) [Cas74, JORS99]. Because of space limitations, we
only sketch that argument below.

Extending these results to settings where learners have additional resources
is ongoing work; preliminary results show that, for adding a finite number of
memory states, we get a similar diagram as for iterative learning above.

One may wonder whether some two of the counter types introduced above
always yield the same learning power (as many did in the case of iterative learn-
ing), across all possible settings. In Section 2 we show and discuss that this is
not the case.
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After this, the paper is organized as follows. Section 3 gives some mathematical
preliminaries. In Section 4 we establish that any separation of learning criteria
power will necessarily be witnessed by a class containing only infinite languages,
if the considered learning criteria have access to any of the six counter types. As
already mentioned, Section 5 gives some details for the diagram above.

2 Differences in Counters

In this section we show that, for any choice of two different counter types, there
is a learning criterion which, when augmented with one of the counter types,
yields different classes of languages learnable than when augmented with the
other.

We already saw some such separations in the setting for iterative learning.
Now we will give some other settings witnessing other separations.

First, consider iterative learning with one additional feedback query (see
[LZ96, CJLZ99]). In this setting, in each iteration, the learner may ask about
one datum whether it has been presented previously. Frank Stephan and San-
jay Jain (private communication) have a proof that, in this setting, there are
classes of languages learnable with Ronto counters which are not learnable with
�R! counters. Thus, there are settings where Id separates from �R!, and where
Ronto separates from Rsup=∞.

For more separations, we turn to very simple learning criteria. We consider
transductive learning (Td), that is, learning without memory (which equals a
degenerate case of memoryless learning with bounded memory states, where the
bound on the number of states is 1; [CCJS07, CK08]). In this somewhat artificial
toy setting a learner is presented a datum (and possibly a counter value) in each
iteration, and not more. Note that, learners are allowed to output the special
symbol ? to, in effect, keep the previous conjecture as the latest guess.

It is not hard to see that, for transductive learning, adding an Rsup=∞ or
Ronto counter does not improve learning power. However, other types of counter
do provide increases. The general result is depicted in the following diagram,
using the same format as in the diagram on iterative learning above.

Td Id

�R!

�R

Rinf=∞

Rsup=∞

Ronto
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The intuitive reasons for the separations are as follows. An infinite limit inferior
guarantees that mistakes on early counter values are not repeated infinitely often.
With a strictly monotone counter, any mistake on a counter value z is guaranteed
to be preceded by at most z other data items; thus, if the language contains at
least z + 1 data items giving the correct output, the mistake will be rectified.

The situation changes if we require of the learner additionally to never aban-
don correct conjectures – either only not semantically (called non-U-shaped
learning [BCM+08]) or not even syntactically (strongly non-U-shaped learn-
ing [CM08a]). The resulting groupings and separations are depicted in the fol-
lowing two diagrams.

NUTd Id

�R!

�R

Rinf=∞

Rsup=∞

Ronto

SNUTd Id

�R!

�R

Rinf=∞

Rsup=∞

Ronto

Intuitively, for learning criteria requiring non-U-shapedness, order plays an
important role (wrong conjectures may only come before correct ones), leading
to the separations between Rinf=∞ and �R. For strongly non-U-shaped learning
with Rinf=∞ counter, a learner may not give two different conjectures for any
two pairs of datum/counter value.

All the above settings together show that, for each two different types of
counter, there are settings of associated learning criteria where the learning
power separates.

Because of space restrictions, the only theorem regarding transductive learn-
ing we will prove in this paper is given in Theorem 10, giving a flavor of the
proofs concerning transductive learning.

3 Mathematical Preliminaries

Unintroduced notation follows [Rog67].
N denotes the set of natural numbers, {0, 1, 2, . . .}. The symbols ⊆, ⊂, ⊇,

⊃ respectively denote the subset, proper subset, superset and proper superset
relation between sets. For any set A, we let Pow(A) denote the set of all subsets
of A. ∅ denotes both the empty set and the empty sequence.

With dom and range we denote, respectively, domain and range of a given
function. We sometimes denote a partial function f of n > 0 arguments x1, . . . , xn

in lambda notation (as in Lisp) as λx1, . . . , xn f(x1, . . . , xn). For example, with
c ∈ N, λx c is the constantly c function of one argument.
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We fix any computable 1-1 and onto pairing function 〈·, ·〉 : N × N → N.4
Whenever we consider tuples of natural numbers as input to a function, it is
understood that the general coding function 〈·, ·〉 is used to code the tuples into
a single natural number. We similarly fix a coding for finite sets and sequences,
so that we can use those as input as well.

If a function f is not defined for some argument x, then we denote this fact
by f(x)↑, and we say that f on x diverges; the opposite is denoted by f(x)↓,
and we say that f on x converges. If f on x converges to p, then we denote this
fact by f(x)↓ = p.

The special symbol ? is used as a possible hypothesis (meaning “no change
of hypothesis”). We write f → p to denote that f ∈ P converges to p, i.e.,
∃x0 : f(x0) = p ∧ ∀x ≥ x0 : f(x)↓ ∈ {?, p}.5

P and R denote, respectively, the set of all partial computable and the set of
all computable functions (mapping N → N).

We let ϕ be any fixed acceptable programming system for P . Further, we let
ϕp denote the partial computable function computed by the ϕ-program with
code number p.

A set L ⊆ N is computably enumerable (ce) iff it is the domain of a computable
function. Let E denote the set of all ce sets. We let W be the mapping such that
∀e : W (e) = dom(ϕe). For each e, we write We instead of W (e). W is, then, a
mapping from N onto E . We say that e is an index, or program, (in W ) for We.

In this paper, an operator is a mapping from any fixed number of arguments
from P into P .

The symbol # is pronounced pause and is used to symbolize “no new input
data” in a text. For each (possibly infinite) sequence q with its range contained
in N ∪ {#}, let content(q) = (range(q) \ {#}).

3.1 Learning Criteria

A learner is a partial computable function.
A language is a ce set L ⊆ N. Any total function T : N → N∪ {#} is called a

text. For any given language L, a text for L is a text T such that content(T ) = L.
This kind of text is what learners usually get as information. We will extend the
notion of texts to include counters as follows.

For any type of counters R, we let TxtCtr[R] be the set of all functions
〈T, c〉 = λi 〈T (i), c(i)〉 with T a text and c ∈ R. We call an element from
TxtCtr[R] a text/counter, and the content of any text/counter is the content
of its text component.

A sequence generating operator is an operator β taking as arguments a func-
tion h (the learner) and a text/counter T and that outputs a function p. We call
p the learning sequence of h given T . Intuitively, β defines how a learner can
interact with a given text/counter to produce a sequence of conjectures.

4 For a linear-time example, see [RC94, Section 2.3].
5 f(x) converges should not be confused with f converges to.
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We define the sequence generating operators It and Td (corresponding to the
learning criteria discussed in the introduction) as follows. For all h, T, i,

It(h, T )(i) =

{
h(∅), if i = 0; 6

h(It(h, T )(i− 1), T (i− 1)), otherwise.

Td(h, T )(i) =

{
h(∅), if i = 0;
h(T (i− 1)), otherwise.

Thus, in iterative learning, the learner has access to the previous conjecture, but
not so in transductive learning.

Successful learning requires the learner to observe certain restrictions, for
example convergence to a correct index. These restrictions are formalized in our
next definition.

A sequence acceptance criterion is a predicate δ on a learning sequence and a
text/counter. We give the examples of explanatory (Ex), non-U-shaped (NU)
and strongly non-U-shaped (SNU) learning, which were discussed in Sections 1
and 2. Formally, we let, for all p, T ,

Ex(p, T ) ⇔ [∃q : p converges to q ∧Wq = content(T )];
NU(p, T ) ⇔ [∀i : Wp(i) = content(T ) ⇒Wp(i+1) = Wp(i)];

SNU(p, T ) ⇔ [∀i : Wp(i) = content(T ) ⇒ p(i+ 1) = p(i)].

We combine any two sequence acceptance criteria δ and δ′ by intersecting them.
For any set of text/counters α, any sequence generating operator β and any

combination of sequence acceptance restrictions δ, αβδ is a learning criterion.
A learner h αβδ-learns the set

αβδ(h) = {L ∈ E | ∀T ∈ α : content(T ) = L⇒ δ(β(h, T ), T )}.

Abusing notation, we also use αβδ to denote the set of all αβδ-learnable
classes (learnable by some learner).

4 Separations by Classes of Infinite Languages

In this section we show that, for iterative learning, all separations between the
learning criteria corresponding to the different counter types are necessarily wit-
nessed by sets of infinite languages. The reasoning for this can be extended to
include many other learning criteria.

For an operator Θ, a learning criterion I is called Θ-robust iff, for any class of
languages L, I-learnability of L is equivalent to I-learnability of Θ(L) (element
wise application of Θ).7

We let Θ0 be the mapping L �→ 2L ∪ (2N + 1). Obviously, there is a function
f0 such that ∀e : Θ0(We) = Wf0(e). Note that Θ0 has an inverse Θ−1

0 for which
a function analogous to f0 exists.
6 h(∅) denotes the initial conjecture made by h.
7 [CK11] explores some notions of robustness for function learning.
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Theorem 1. Let R ∈ {Rsup=∞,Rinf=∞, �R, �R!, Id,Ronto}. Then we have that
the learning criterion TxtCtr[R]ItEx is Θ0-robust.

Proof. Let L ∈ TxtCtr[R]ItEx. Obviously, Θ0(L) can be learned using the
learner for L by ignoring odd data (considering them as #) and halving all even
data, mapping all conjectures with f0. Conversely, let a learner h0 for Θ0(L) be
given. Consider first the case of R = Id. Define the following function h′.

∀e, x, z : h′(e, x, z) = h0(h0(e, 2x, 2z), 2z + 1, 2z + 1).

Intuitively, on a text T , h′ simulates h0 on the text where 2T is interleaved with
odd data. We use 1-1 s-m-n to get a function to turn conjectures for a language
from Θ0(L) into the corresponding language from L (we use 1-1 so that we can
extract and use the conjectures of h0 from the previous generation as input to
h0), resulting in a learner h. Note that, for R = Ronto, the above construction
of h works just as well. All other cases are similar as follows.

For R ∈ {Rsup=∞,Rinf=∞, �R}, when we see counter value of z, we simulate
h0 on all odd data ≤ z and on the current datum times two, using a counter
value of z for all of them.

For R = �R!, when we see counter value of z, we simulate h0 on all odd data
< z and on the current datum times two, using a counter value of z2 + i for the
ith run of h0. Thus, within these batches of data, the counter values are strictly
increasing. The next batch will start with a counter value of (z+1)2 = z2+2z+1.
This exceeds the last counter used in the previous batch, as the previous batch
had a size ≤ z + 1.

Theorem 2. Let I and I ′ be Θ0-robust learning criteria. Then I and I ′ separate
in learning power iff they separate on classes of infinite languages.

Proof. Suppose a class of languages L separates I and I ′. Then Θ0(L), a class
of infinite languages, also witnesses this separation, as I and I ′ are Θ0-robust.

From what we saw in this section we get the following corollary.

Corollary 3. Let R,R′ ∈ {Rsup=∞,Rinf=∞, �R, �R!, Id,Ronto}. Then the learn-
ing criteria TxtCtr[R]ItEx and TxtCtr[R′]ItEx separate iff the separation is
witnessed by a class of infinite languages. Furthermore, it is witnessed by a class
of languages all containing all odd numbers.

5 Comparison of Counter Types

In this section we present the proofs for the results regarding iterative learn-
ing with counter. First we compare the weakest counter with no counter at all
(Theorem 4). The Theorems 5 through 8 give equivalences of learning power as
indicated in Section 1. Finally, Theorem 9 gives the separation between strictly
monotone counters and weaker counters.
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Looking into the proof of Theorem 4 in [CM08b] (showing that an Id counter
allows for learning languages which cannot be learned set-drivenly), we see
that even the counters from Rsup=∞ allow for learning more than learning set-
drivenly. This leads to the first part of the next theorem. However, this proof
makes use of finite languages. John Case remarked that Rsup=∞-counters are
provided by texts for infinite languages for free, leading to the second part of
the theorem. We let E∞ denote the set of all infinite ce sets.

Theorem 4. We have

TxtItEx ⊂ TxtCtr[Rsup=∞]ItEx

and
Pow(E∞) ∩ TxtItEx = Pow(E∞) ∩TxtCtr[Rsup=∞]ItEx.

For the next step up the hierarchy of counter types, we don’t get an increase in
learning power.

Theorem 5. We have

TxtCtr[Rsup=∞]ItEx = TxtCtr[Rinf=∞]ItEx.

Proof. Clearly we get “⊆”. The intuitive reason for the inclusion “⊇” is as follows.
We can use the max of counter value, hypothesis and datum as a new counter
to work with. If the conjecture changes infinitely often, then, without loss of
generality, the new counter is from Rinf=∞. Hence, the learning will converge;
furthermore, for any fixed number z, only finitely many data points are evaluated
with a counter value below z.

Let L ∈ TxtCtr[Rinf=∞]ItEx as witnessed by h0. By Corollary 3, we can
assume, without loss of generality, that L contains only infinite languages. Ob-
viously, using standard padding arguments, we can assume the sequence of h0’s
conjectures, on any text, to be non-decreasing in numeric value. Furthermore,
we can assume that, whenever h0 would make a mind change when the present
datum was replaced with a #, then it would also change its mind on the actual
datum.

Let h be such that

h(∅) = h0(∅);
∀e, x, z : h(e, x, z) = h0(e, x,max(e, x, z)).

That is, h has the same initial conjecture as h0 and uses the maximum of current
conjecture, current datum (we let # count as 0) and current counter value as
new counter value.

Let L ∈ L, T a text for L and c ∈ Rsup=∞ a counter. Suppose, by way of
contradiction, h on T and c does not converge. Then h simulates h0 on T and a
counter from Rsup=∞; this converges, a contradiction.

Suppose, by way of contradiction, h on T and c does not converge to an index
for L. We focus on the text after h’s convergence to some (wrong) conjecture e.
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Consider first the case where there is a finite s such that, for all s′ ≥ s,
h0(e,#, s′) �= e, that is, h0 changes its mind on # for all but finitely many
counter values. Then, clearly, at some point after the convergence of h on T , we
get a counter value ≥ s so that h will change its mind, a contradiction.

Consider now the case where, for infinitely many s, h0(e,#, s) = e. Let T ′

be the text derived from T where we do not change anything before the point
of h’s convergence on T , and afterwards replace all repeated data with #es. Let
c′ be such that, for all i, c′(i) = maxt[h0(e, T ′(i), t) = e] (possibly ∞) – that
is, c′ denotes the maximum counter value for h0 to not change its mind. As
e is incorrect and needs to be changed by h0 eventually on any counter with
infinite limit inferior, c′ has finite limit inferior. Thus, there is a bound s such
that, for infinitely many i, maxt[h0(e, T ′(i), t) = e] ≤ s. Because of the case
we consider now, we know that there are infinitely many i with T ′(i) �= # and
maxt[h0(e, T ′(i), t) = e] ≤ s. One of these pairwise different T ′(i) = T (i) will be
larger than s, leading to a mind change with h, a contradiction.

Note that the just above proof is not entirely a simulation argument – h0 is
being simulated, but not on counters for which we have immediate performance
guarantees.

Also the next step in the counter hierarchy does not yield a difference in
learning power.

Theorem 6. We have

TxtCtr[Rinf=∞]ItEx = TxtCtr[�R]ItEx.

Proof. Clearly we get “⊆”. Let L ∈ TxtCtr[�R]ItEx as witnessed by h0. Ob-
viously, using standard padding arguments, we can assume the sequence of h0’s
conjectures, on any text, to be non-decreasing in numeric value. Furthermore,
we can assume each conjecture to exceed the counter value on which it was first
output.

For all e, z, we let f(e, x, z) be the least t with e ≤ t ≤ max(e, z) and
h0(e, x, t) �= e, if existent (undefined otherwise). Note that the domain of f
is decidable.

Let h be such that, for all e, x, z,

h(∅) = h0(∅);

h(e, x, z) =

{
h0(e, x, f(e, x, z)), if f(e, x, z)↓,
e, otherwise.

Let L ∈ L, T a text for L and c ∈ Rinf=∞ a counter. We define a counter c′
on argument i thus. Let e be the conjecture of h after T [i]; if, in the definition
of h(e, T (i), c(i)), the first case holds with some t, then c′(i) = t. Otherwise, if
there will be a mind change of h on T with counter c later, then c′(i) = e, else
c′(i) = max(e,min{c(j) | j ≥ i}).

It is easy to see that c′ ∈ �R and h on T and c simulates h0 on T and c′.
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Note that, in the proof just above, the argument is again not entirely a simula-
tion – defining the counter c′ requires knowledge of future mind changes and of
infinitely many future counter values.

Next we show that complete counters do not give an advantage over Rsup=∞
counters.

Theorem 7. We have

TxtCtr[Rsup=∞]ItEx = TxtCtr[Ronto]ItEx.

Proof. The inclusion “⊆” is trivial. Suppose, by way of contradiction, a set L
separates the two criteria considered by this theorem. Then, using Corollary 3,
we get that a class of languages all containing all odd data witness the separation
as well. From a text for such a languages we can extract a complete counter (by
dividing each datum by 2, rounding down), a contradiction.

Last we show that also the top-most in the counter hierarchy gives no difference
in learning power.

Theorem 8. We have

TxtCtr[�R!]ItEx = TxtCtr[Id]ItEx.

Proof. Clearly we get “⊆”. The intuitive idea for “⊇” is as follows. The learner
can store in the conjecture the last counter on which it changed the conjecture
and fill up all the gaps in between two counter values with #es.

Let L ∈ TxtCtr[Id]ItEx as witnessed by h0. Without loss of generality, we
assume that h0 will change its mind on any datum whenever it would change
its mind on a # (this is not as trivial as for other counter types, but straight-
forward to show). Using 1-1 s-m-n, we fix any 1-1 function pad such that, for
all e, x, Wpad(e,x) = We. We use this function for a learner to memorize certain
information (at the cost of a mind change).

We define a function h∗0 inductively as follows. For all e, z,

h∗0(e, ∅, z) = e;
∀σ, x : h∗0(e, σ x, z) = h0(h∗0(e, σ, z), x, z + len(σ)).

Let h be such that, for all e, x, z, z′,

h(∅) = pad(h0(∅), 0);

h(pad(e, z′), x, z) =

{
pad(h∗0(e,#z−z′

x, z′), z + 1), if h∗0(e,#z−z′
x, z′) �= e;

e, otherwise.

Let L ∈ L, T a text for L and c ∈ �R! a counter. We define a text T ′ thus.

∀i : T ′(i) =

{
T (k), if i = c(k);
#, otherwise.



52 T. Kötzing

Clearly, T ′ is a text for L and T ′ ◦ c = T . Let p be the sequence of outputs of h
on T and p′ the sequence of outputs of h0 on T ′. Now we have p′ ◦ c = p, as h
makes mind changes on data whenever it would make a mind change on a pause
with the same counter value.

The next theorem shows that the remaining two classes of learning power do
separate.

Theorem 9. We have

TxtCtr[�R]ItEx ⊂ TxtCtr[�R!]ItEx.

Informal sketch of the argument. The inclusion is trivial. The intuitive idea
of the separation is as follows. We use a self-learning class of languages (see
the definition of L below for an example of a self-learning class; these classes
are discussed in more detail in [CK10, CK11]). We will then suppose that this
class can be learned with �R counters by some function h. We will suggest to
h to change its mind on certain data (we call them a(0), a(1), . . . ); if h never
changes its mind, then this will suffice to make h fail. Otherwise, we are still
free to suggest to h not to change its mind on this data for high counter values
(above some threshold we call c0). We now add some other data (we call them
b(0), b(1), . . . ) on which h should not change, unless it has changed on some
a-values previously. In fact, we add exactly c0 such data points. With a counter
from �R, these data points may all come very early, on a low and always the same
counter value; h will not be able to change its mind then (otherwise we just start
over and find infinitely many mind changes on data where no mind change was
suggested). Furthermore, h will change its mind later on some a, leading to no
success in identification.

With a strictly increasing counter, however, h would have no problem: if all
b-values come before the a-values, then the counter would be pushed high enough
such that on a-values there need not be a mind change.

Finally, we give two theorems regarding transductive learning.

Theorem 10. We have

TxtCtr[Ronto]TdEx = TxtTdEx = TxtCtr[Rinf=∞]SNUTdEx.

Proof. We start with the first equality, where the inclusion “⊇” is trivial. Let L
be TxtCtr[Ronto]TdEx-learnable, as witnessed by h. Without loss of generality,
we can assume h to output ? on # with any counter value. Otherwise, the number
output on pause may be infinitely output on learning any language, in which
case L can have at most one element, which we can learn using only the initial
conjecture and outputting ? on # with any counter value.

We claim that, for all L ∈ L, there is a p such that

– L = Wh(∅) or ∃x ∈ L∀z : h(x, z) = p;
– ∀x ∈ L, z ∈ N : h(x, z) ∈ {?, p}.
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Suppose, by way of contradiction, that we can get two different outputs p and
p′ on two datum/counter pairs. Then we can force infinite oscillation between p
and p′, a contradiction. Thus, there is at most one p ever output on a datum.
Suppose that, for each x ∈ L, there is a z such that h(x, z) =?. Then we can list
all x ∈ L such that h always outputs ? and fill up missing counter values with
#. As L is learned by h, L = Wh(∅).

Clearly, any h as above might as well ignore the counter and learn without
such additional help.

Regarding TxtCtr[Rinf=∞]SNUTdEx, it is easy to see that it includes
all TxtTdEx-learnable classes (using the characterization of learnability as
given by the above list). Furthermore, note that any two syntactically differ-
ent outputs of a learner lead to a syntactic U-shape on some text/counter, with
the counter from Rinf=∞. Thus, the above characterization for languages from
TxtCtr[Ronto]TdEx also characterizes the languages from that are learnable in
the sense of TxtCtr[Rinf=∞]SNUTdEx.

Theorem 11. We have

TxtCtr[Rinf=∞]TdEx = TxtCtr[�R]TdEx.

Proof. The inclusion “⊆” is trivial. Let L be TxtCtr[�R]TdEx-learnable, as
witnessed by h.

We show that h witnesses L ∈ TxtCtr[Rinf=∞]TdEx. Let L ∈ L, T a text
for L and c ∈ Rinf=∞. Permute 〈T, c〉 into a text/counter 〈T ′, c′〉 such that c′ is
non-decreasing. Note that h on 〈T ′, c′〉 converges to an index for L.

We distinguish two cases. Either h on 〈T ′, c′〉 makes infinitely many non-?
outputs. Then h on 〈T, c〉 makes the same infinitely many non-? outputs, and
all of those are equal and correct.

Otherwise h on 〈T ′, c′〉makes only finitely many non-? outputs. Then all those
finitely many outputs are correct, as we could permute all later elements before
any given output (and decrease the counter value as required to retain mono-
tonicity of the counter). Thus, h on 〈T, c〉 converges to an index for L.
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Abstract. This paper adapts and investigates the paradigm of robust
learning, originally defined in the inductive inference literature for classes
of recursive functions, to learning languages from positive data. Robust-
ness is a very desirable property, as it captures a form of invariance of
learnability under admissible transformations on the object of study. The
classes of languages of interest are automatic — a formal concept that
captures the notion of being recognisable by a finite automaton. A class
of first-order definable operators — called translators — is introduced
as natural transformations that preserve automaticity of languages in a
given class and the inclusion relations between languages in the class.
For many learning criteria, we characterise the classes of languages all
of whose translations are learnable under that criterion. The learning
criteria have been chosen from the literature on both explanatory learn-
ing from positive data and query learning, and include consistent and
conservative learning, strong-monotonic learning, strong-monotonic con-
sistent learning, finite learning, learning from subset queries, learning
from superset queries, and learning from membership queries.
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1 Introduction

The present work introduces and studies a notion of robust learning in the con-
text of Gold-style language learning (that is, learning in the limit from positive
data only). Essentially, robust learning means that learnability of a class is in-
variant under any admissible transformation: that is, not only the class itself,
but also each of its images under an admissible transformation, is learnable.
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The search for invariants is quite prominent in many fields of mathematics. For
example, Hermann Weyl described Felix Klein’s famous Erlangen programme
on the algebraic foundation of geometry in these words [21]: “If you are to find
deep properties of some object, consider all natural transformations that pre-
serve your object.” Bārzdiņš had a similar interest in relation to learning a class
of recursive functions, and he conjectured the following, see [3, 23]. Let a class of
recursive functions be given. Then every image of the class under a general re-
cursive operator is learnable iff the class is a subclass of a recursively enumerable
(uniformly recursive) class of functions. Recursively enumerable classes of func-
tions can be easily identified by a technique called “learning by enumeration” [4].
Using this technique, one just conjectures the first function in the list which is
consistent with all data seen so far. Learnability of classes of functions by such
algorithms cannot be destroyed by general recursive operators. Bārzdiņš’ conjec-
ture, see [23], essentially says that the enumeration technique also captures all
cases where robust learnability holds. Fulk [3] disproved the conjecture and this
led to a rich field of exploration within the field of function learning [9, 10, 19].
Further refinements, such as uniform robust learnability [10] (where the learner
for a transformed class has to be computable in a description of the transforma-
tion) and hyperrobust learnability [19] (learnability, by the same learner, of all
the transformations of a certain kind — more precisely, transformations given
by primitive recursive operators) have also been investigated.

It is natural to try and generalise robust learning to the case of language
learning, which was the first object of study in inductive inference and has been
more broadly investigated than function learning. However, the natural exten-
sion of the definition as in function learning does not work well for language
learning, as even the class of singletons would not be robustly learnable based
on that definition. This paper proposes a modified approach to robust language
learning, focusing on specific classes of languages — to be introduced in the next
paragraph — that enjoy good properties. This approach also provides appealing
characterisations. Nevertheless, all concepts defined in this paper are meaningful
even for arbitrary families of r.e. languages.

Before we introduce the specific classes of languages that are the object of
study of this paper, recall that sets of finite strings over some finite alphabet
are regular if they are recognisable by a finite state automaton. Sets of pairs of
finite strings over respective alphabets are regular if they are recognisable by a
finite state multi-input automaton that uses two different inputs to read both
coordinates of the pair, with a special symbol (say �) being used to pad a shorter
coordinate. For instance, to accept the pair (010, 45) an automaton should read
0 from the first input and 4 on the second input and change its state from the
start state to some state q1, then read 1 from the first input and 5 from the
second input and change its state from q1 to some state q2, finally read 0 from
the first input and � from the second input and change its state from q2 to an
accepting state. It is essential that all inputs involved are read synchronically—
one character per input and cycle. The classes of languages that we focus on in
this paper are classes of regular languages of the form (Li)i∈I such that I and
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{(i, x) : x ∈ Li} are regular sets; we refer to such a class as an automatic family
of languages. An automatic family of languages is actually a particular kind of
automatic structure [5, 13, 14].

Learnability of automatic families has recently been studied [6, 7]. Moreover,
these classes are a special case of indexed families, which have been extensively
studied in learning theory [1, 16, 17]. One major advantage of automatic families
over indexed families is that their first-order theory is decidable [5, 6, 7, 13] and
that many important properties of them can be first-order defined. In particular,
the inclusion structure of the classes can be first-order defined and plays an
important role in this paper. This is a fundamental difference to the case of
indexed families.

We consider any transformation given by an operator Φ which maps subsets of
the source domain D to subsets of an image domain D′ such that the automatic
family (Li)i∈I to be learnt is mapped to a family (L′

i)i∈I = (Φ〈Li〉)i∈I , Φ is de-
finable by a first-order formula, Φ preserves inclusions of all sets and Φ preserves
noninclusions between members of the class. We call such a Φ a translator. An
important special case is given by text-preserving translators for which Φ〈L〉 is
the union of all Φ〈E〉 where E ranges over the finite subsets of L. A key result of
the theory of automatic structures is that the image (Φ〈Li〉)i∈I of an automatic
family under such an operator is again an automatic family [13]. We study the
impact of such translations on learnability.

We proceed as follows. In Sections 2 and 3, we introduce the necessary notation
and notions. In Section 4, we illustrate the notions with a few examples and
provide a general characterisation of robust learnability in the limit of automatic
families of languages. In Section 5, we provide many further characterisations
of robust learnability for some of the learning criteria that have been studied in
the literature: consistent and conservative learning, strong-monotonic learning,
strong-monotonic consistent learning, finite learning. In Section 6, we consider
learning from subset queries, learning from superset queries, and learning from
membership queries.

2 Automatic Structures, Languages and Translations

The languages considered in inductive inference [8] consist of numbers implicitly
coding some underlying structure, but the coding is not made explicit. In the
context of this work though, where languages have to be recognised by finite
automata, a minimum of structure has to be given to the members of a language:
they are assumed to be strings over an alphabet denoted by Σ. It is assumed
that Σ is finite but large enough so that all regular sets considered are included
in the set Σ� of strings over Σ. For x ∈ Σ�, the length of x, denoted |x|, is the
number of symbols occurring in x; for example, |00121| = 5. We write xy for the
concatenation of two strings x and y. We denote the empty string by ε.

We denote byD and I two regular subsets of Σ�. We assume that the members
of Σ are strictly ordered and given x, y ∈ Σ�, we write x <ll y iff x is length-
lexicographically smaller than y, that is, if either |x| < |y| or |x| = |y| and x
comes lexicographically before y. We write x ≤ll y iff x = y or x <ll y.
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In order to capture the constraint that a class of languages is uniformly recog-
nisable by a finite automaton, we make use of a particular kind of automatic
structures [14], that for simplicity, is still referred to as automatic structures.
The structures under consideration offer enough expressive power to refer to the
target language that a learner will be given a presentation of and has to eventu-
ally correctly identify, and to refer to the whole class of languages that are the
object of learning. A unary predicate symbol and a binary predicate symbol are
used to refer to the target language and the class of languages, respectively.

Definition 1. We call automatic structure any V-structure M whose domain is
Σ�, with V some relational vocabulary with the following properties.
– V contains the unary predicate symbol X and the binary predicate symbol
Y (and possibly more predicate symbols of any arity).

– The interpretation of X in M is included in D and the interpretation of Y
in M is included in I ×D.

– The interpretation of all predicate symbols in V in M is regular.

By language we mean a subset of Σ�; by source language we mean a subset of
D.

Definition 2. By an automatic class we mean a repetition-free regular I-family
(Li)i∈I of source languages (so {(i, x) : i ∈ I, x ∈ Li} is recognisable by a multi-
input automaton). Members of I are referred to as indices.

Here are some examples of automatic classes: (i) The class of sets with up to
k elements for a constant k; (ii) The class of all finite and cofinite subsets of
{0}∗; (iii) The class of all intervals of an automatic linear order on a regular set.
On the other hand, the class of all finite sets over {a, b} is not automatic. The
constraint that automatic classes be repetition-free is not standard when one
considers learning of indexed families. However, it is without loss of generality
in the context of this work and allows one to substantially simplify the arguments
in most proofs. We consider transformations of languages that are definable in
the language used to describe the target language and the class of languages to
be learnt. In the next definition, x denotes any member of the target language.

Definition 3. Let Φ be any first-order formula over the vocabulary of some
automatic structure with the distinguished variable x as unique free variable
(this allows one to denote such a formula by Φ rather than by Φ(x)). Let an
automatic class I = (Li)i∈I be given. For all source languages L, denote by ΦI〈L〉
the language consisting of all s ∈ Σ� such that Φ[s/x] is true in all automatic
structures in which the interpretation of X(w) is w ∈ L and the interpretation
of Y (i, w) is i ∈ I ∧ w ∈ Li. We say that Φ is an automatic I-translator if:

– for all source languages L and L′, if L ⊆ L′ then ΦI〈L〉 ⊆ ΦI〈L′〉;
– for all members i and j of I, if Li � Lj then ΦI〈Li〉 � ΦI〈Lj〉.

Given two terms t and t′, we write t ∈ X for X(t) and t′ ∈ Yt for Y (t, t′)
(equivalently, Yt = {t′ : Y (t, t′)}).
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Given an automatic I-translator Φ, we let Φ〈I〉 denote (ΦI〈Li〉)i∈I ; we refer to
any such family as a translation of I. Note that a translation is always defined
with respect to I-translators for a particular automatic class I. We drop the
reference to I for ease of notation. The advantage of the definability of translators
via first-order formulas is automaticity preservation. Indeed, by results in [13]:

Theorem 4. For all automatic classes I, all translations of I are automatic.

3 Texts and Learnability

Let us recall the basic concepts in inductive inference as originally defined in [4]
and fix some notation. The only difference with the classical framework of learn-
ing from positive data is that we consider languages over strings rather than
natural numbers.

Let # �∈ Σ be a special symbol. We denote by SEQ the set of finite sequences of
members of Σ� ∪{#}. Given σ ∈ SEQ, we denote by rng(σ) the set of members
of Σ� that occur in σ (e.g., if Σ = {a, b, c} and σ = (ab,#, ab, cacba) then
rng(σ) = {ab, cacba}). Given σ ∈ SEQ and a family I = (Li)i∈I of languages, we
say that σ is for I iff rng(σ) ⊆ Li for some i ∈ I. Given a language L, a text for
L refers to an enumeration (ek)k∈N of L ∪ {#} where # might not occur. The
concatenation of σ ∈ SEQ with s ∈ Σ�∪{#} is written σ �s. We also write σ � τ
for the concatenation of σ, τ ∈ SEQ. An initial segment of a member σ of SEQ
is a member τ of SEQ such that σ is of the form τ � τ ′ for some τ ′ ∈ SEQ; in
this case σ is also said to extend τ .

The notion of translator is quite general and it is worthwhile to examine
to which extent it can be constrained to continuous transformations, that is,
translators such that any member of the translation can be determined from a
finite subset of the original language:

Definition 5. Let an automatic class I = (Li)i∈I and an automatic I-translator
Φ be given. We say that Φ is text-preserving iff for all source languages L and
for all s ∈ ΦI〈L〉, there is a finite subset F of L with s ∈ ΦI〈F 〉.

We talk about text-preserving translation of I to refer to any family of the
form Φ〈I〉 where Φ is a text-preserving automatic I-translator.

Example 6. Given an automatic class I = (Li)i∈I , let a formula Φnc with x as
unique free variable express x ∈ I∧∃y(y ∈ X \Yx), that is, x ∈ I∧X � Lx. Then
for all languages L, Φnc

I 〈L〉 = {i ∈ I : L � Li}. Moreover, Φnc is text-preserving.
Note that I is expressible, as there is at most one index for ∅; hence I is the set
of all x’s with ∃y(Y (x, y)), or ∃y(Y (x, y)) ∨ x = i0, where i0 denotes the index
of ∅ in case ∅ ∈ I.

Almost all results will involve recursive learners, with one exception (Theo-
rem 29) where we had to drop the recursiveness requirement. This result will be
expressed in terms of general learners. Both kinds of learners are defined next.

Definition 7. A general learner is a partial function from SEQ into I. A learner
is any partial recursive function from SEQ into I with a recursive domain.
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In the context of automatic structures, the fact that a learner is undefined on
some input signals that the learner cannot make a reasonable guess, rather than
the learner being unable to make a guess due to computational infeasibility. This
justifies the constraint on the domain of a learner in the definition above. We
could also let a learner output some special symbol rather than being undefined.

Definition 8 (Gold [4]). Let I = (Li)i∈I be an automatic class. A learner M
is said to learn I iff for all i ∈ I and for all texts (ek)k∈N for Li, M

(
(e0 . . . , ek)

)
is defined and equal to i for cofinitely many k ∈ N. We say that I is learnable iff
some learner learns I.

Note that for simplicity, we use the term “learning” to refer to the notion that
in the literature is more precisely called explanatory learning. Furthermore, ob-
serve that the definition above takes advantage of the one-one indexing of the
automatic families considered. We now recall some of the restrictions on learn-
ability that have been investigated in the literature [12, 22, 11] and that will be
considered in this paper, individually or combined.

Definition 9. Let an automatic class I = (Li)i∈I and a learner M that learns
I be given.
M is consistent iff for all σ ∈ SEQ, if σ is for I then M(σ) is defined and

rng(σ) ⊆ LM(σ).
M is conservative iff for all σ, τ ∈ SEQ, if σ � τ is for I, both M(σ) and

M(σ � τ) are defined and LM(σ�τ) �= LM(σ), then rng(σ � τ) \ LM(σ) �= ∅.
M is confident iff for all texts e of languages, there exists m ∈ N such that

for all n ≥ m, M
(
(e(0) . . . e(n))

)
is undefined or equal to M

(
(e(0) . . . e(m))

)
.

M is strong-monotonic iff for all σ, τ ∈ SEQ, if σ is an initial segment of τ , τ
is for I and both M(σ) and M(τ) are defined, then LM(σ) ⊆ LM(τ).

Definition 10. An automatic class I is said to be consistently, conservatively,
confidently or strong-monotonically learnable iff some consistent, conservative,
confident or strong-monotonic learner learns I, respectively.

For robust learning, one requires that each translation Φ〈I〉 of the family I is
learnable (according to the given criterion), where Φ ranges over all automatic
I-translators. Note that requiring the learnability of each translation implies re-
quiring the learnability of I itself, as the translator can be the identity-operator.
In some cases, we consider learnability only of Φ〈I〉, for all text-preserving auto-
matic I-translators Φ.

The proof of the learnability of indexed families of languages in terms of tell-
tales given by Angluin [1] can easily be adapted to the current setting, with
indexed families replaced by automatic classes.

Definition 11 (Angluin [1]). Let I = (Li)i∈I be an automatic class. Given
i ∈ I, a tell-tale for Li is a finite F ⊆ Li such that for all i′ ∈ I, if F ⊆ Li′ ⊆ Li

then Li = Li′ .

Theorem 12 (Jain, Luo and Stephan [6]; based on Angluin [1]). Let
I = (Li)i∈I be an automatic class. Then I is learnable iff for all i ∈ I, there
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exists a tell-tale for Li. Moreover, if I is learnable then I is consistently and
conservatively learnable by a set-driven learner (whose conjecture on an input σ
only depends on rng(σ)).

Alternatively, one could also describe the tell-tale by an upper bound in order
to get a first-order definable formula which expresses learnability. An automatic
class I = (Li)i∈I is learnable iff for all members i of I, there is a bound bi ∈ D
(which recall, denotes the domain of the source languages) such that no j ∈ I
satisfies that {y ∈ Li : y ≤ll bi} ⊆ Lj ⊂ Li. This is equivalent to

(∀i ∈ I) (∃bi ∈ D) (∀j ∈ I)
[(
∃y ∈ D[y ≤ll bi ∧ y ∈ Li \ Lj ]

)
∨(

∃y ∈ D[y ∈ Lj \ Li]
)

∨
(
∀y ∈ D[y ∈ Li ⇒ y ∈ Lj]

)]
.

In order not to clutter notation, we will from now on abstain from breaking
subset-relations down into first-order formulas as exemplified with the previous
formula; we leave it to the reader to formalise subset-relations via quantified
predicates using membership.

Example 13. Let an automatic class I = (Li)i∈I be given. There are two learn-
ers, Msmon and Mex (which use automatic description of I as a parameter),
which learn I whenever I is strong-monotonically and explanatorily learnable,
respectively. These two learners are defined as follows.

– In response to σ ∈ SEQ, Msmon outputs the unique i ∈ I that satisfies
rng(σ) ⊆ Li and such that for all j ∈ I, if rng(σ) ⊆ Lj then Li ⊆ Lj ; if such
an i does not exist then Msmon is undefined.

– In response to σ ∈ SEQ, Mex outputs the unique i ∈ I such that rng(σ) ⊆ Li

and there is no j ∈ I with (1) rng(σ) ⊆ Lj and (2) either Lj ⊂ Li or j <ll i
and Li �⊂ Lj ; if such an index i does not exist then Mex is undefined.

Note that not all explanatorily learnable classes are strong-monotonically learn-
able, hence the learner Msmon is not as powerful as Mex . An example of a
class which is explanatorily learnable but not strong-monotonically learnable is{
{0, 1}� \ {x} : x ∈ {0, 1}�

}
. Furthermore, the above learners can of course also

run on classes of the form Φ〈I〉 (using Φ〈I〉 as a parameter instead of I) whenever
such a class is learnable under the corresponding condition.

4 General Characterisation

We start with two examples of conditions that guarantee robust learnability.

Theorem 14. Let I = (Li)i∈I be an automatic class.

– If ({Li : i ∈ I},⊃) is well ordered (for the superset relation, not the subset
relation), then all translations of I are learnable.

– If for all i, j ∈ I, Li ⊆ Lj ⇔ Li = Lj then all translations of I are learnable.

As can be expected, learning does not imply robust learning, even if restricted
to text-preserving translations:
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Theorem 15. Some strong-monotonically, consistently and confidently learn-
able automatic class has a text-preserving translation which is not learnable.

Theorem 16 offers a general characterisation of robust learning in this framework
along the lines of Theorem 12.

Theorem 16. Given an automatic class I = (Li)i∈I , the three conditions below
are equivalent.

1. Every translation of I is learnable.
2. Every text-preserving translation of I is learnable.
3. For all i ∈ I, there exists bi ∈ I such that for all j ∈ I, either Lj �⊂ Li or

there exists k ∈ I with k ≤ll bi, Li � Lk and Lj ⊆ Lk.

5 Characterisations of Learnability Variously Constrained

Consistency is a rather weak constraint on learners, and is often combined with
other desirable properties. We first combine consistency with conservativeness.
Later we will combine it with strong-monotonicity. Note that here “a class is
consistently and conservatively learnable” means that the class is learnable by
a learner which is both consistent and conservative (rather than having two dif-
ferent learners, one satisfying consistency and the other satisfying conservative-
ness). A similar convention applies to combining other constraints on learners.
Let us first illustrate the notion with an example.

Example 17. Take I equal to {1n, 2n : n ∈ {1, 2, 3, . . .}}. Let I = (Li)i∈I be
defined by L1n = {0m : m > n} and L2n = {0m : m < n} for all n > 0. Note
that I is an automatic class that is neither ⊂- nor ⊃-well founded. Let Φ be a
text-preserving automatic I-translator. Some consistent and conservative learner
M learns Φ〈I〉, proceeding as follows in response to σ ∈ SEQ.

If σ extends τ , M(τ) is defined and rng(σ) ⊆ LM(τ)

Then M outputs M(τ)
Else If there is n ∈ N with rng(σ) ⊆ ΦI〈L1n〉 and rng(σ) � ΦI〈L1n+1〉
Then M outputs 1n

Else M conjectures 2n for the least n > 0 with rng(σ) included in ΦI〈L2n〉.
Since Φ is text-preserving, for all n > 0, every finite subset of ΦI〈L1n〉 is contained
in ΦI〈L2m〉 for some m ∈ N; hence M is consistent. By the first clause in the
definition of M , M is conservative.

We now show that M learns Φ〈I〉. Let n > 0 be given. Presented with a text
for ΦI〈L1n〉, M eventually observes a datum outside ΦI〈L1n+1〉, at which point
M either conjectures 1n or outputs the previous hypothesis — of the form 2m

for some m > 0 — until ΦI〈L2m〉 becomes inconsistent with the data observed,
at which point M makes a mind change to 1n. Presented with a text for ΦI〈L2n〉,
M eventually conjectures 2n as soon as the data observed become inconsistent
with ΦI〈L1〉 and ΦI〈L2m〉 for all nonzero m < n, which is guaranteed to happen
as there are only finitely many languages of the latter type.
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Combined with Theorem 16, the next result characterises robust learnability by
consistent, conservative learners.

Theorem 18. Let I be a learnable automatic class all of whose translations are
learnable. Then every translation of I is consistently and conservatively learnable
iff the set of members of I is well founded under inclusion.

For the learning criterion of strong-monotonicity, we first consider the concept
by itself and then combined with consistency. Again, we can characterise robust
learnability under these restrictions, and provide further insights.

Theorem 19. Given an automatic class I = (Li)i∈I , clauses 1–3 are equivalent.
1. Every translation of I is strong-monotonically learnable.
2. Every text-preserving translation of I is strong-monotonically learnable.
3. For all i ∈ I, there exists bi ∈ I such that for all j ∈ I with Li � Lj, there

exists k ∈ I with k ≤ll bi, Li � Lk and Lj ⊆ Lk.

Theorem 20. Every automatic class has some strong-monotonically learnable
translation.

Theorem 21. If some text-preserving translation of an automatic class I is
strong-monotonically learnable, then I itself is strong-monotonically learnable.

We now consider learners which are both strong-monotonic and consistent. The
following example shows that consistency adds a genuine constraint to strong-
monotonicity.

Example 22. Take I = {0, 1} ∪ {2}�. Let I = (Li)i∈I be defined by L0 = {0},
L1 = {1} and L2n = {0, 1}∪{2m : m ≥ n} for all n ∈ N. Then I is an automatic
class. Let Φ be an automatic I-translator. Then Msmon from Example 13 (using
Φ〈I〉 as a parameter) learns Φ〈I〉, due to the following behaviour on σ ∈ SEQ: if
rng(σ) is contained in exactly one of ΦI〈L0〉 and ΦI〈L1〉, then Msmon outputs 0
or 1, respectively. If there is n ∈ N with rng(σ) contained in ΦI〈L2n〉 but not in
ΦI〈L2n+1〉, then Msmon(σ) outputs 2n. In any other case, Msmon(σ) is undefined.
Clearly, Msmon is a strong-monotonic learner that learns Φ〈I〉.

But no consistent, strong-monotonic learner M learns Φ〈I〉. Indeed, suppose
otherwise, and let σ ∈ SEQ be such that rng(σ) is a subset of the union of ΦI〈L0〉
with ΦI〈L1〉, but not a subset of either of the sets. Then M(σ) is equal to 2n for
some n ∈ N, and M(τ) remains equal to 2n for all τ ∈ SEQ that extend σ and
that are initial segments of a text for ΦI〈L2n+1〉 (the learner cannot change its
mind as L2n+1 ⊂ L2n); therefore M fails to learn Φ〈I〉.

Theorem 23. Given an automatic class I = (Li)i∈I , the three conditions below
are equivalent.
1. Every translation of I is strong-monotonically consistently learnable.
2. Every text-preserving translation of I is strong-monotonically consistently

learnable.
3. {Li : i ∈ I} is ⊂-well-ordered and of type ω at most.
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Theorem 24. Let an automatic class I = (Li)i∈I be given. The following

(�) For all finite F ⊆ I, if there exists i ∈ I with Lk ⊆ Li for all
k ∈ F , then there exists i ∈ I such that Lk ⊆ Li for all k ∈ F , and
for all j ∈ I, Li ⊆ Lj ⇔ ∀k ∈ F (Lk ⊆ Lj)

expresses that every finite subset of I which is ⊆-bounded in I has a (necessarily
unique) ⊆-least upper bound in I. Then statements 1,2 below hold.
1. There exists an automatic I-translator Φ such that Φ〈I〉 is consistently and

strongly-monotonically learnable iff (�) holds.
2. Suppose that the class I is strongly-monotonically learnable. Then some text-

preserving automatic translation of I is strongly-monotonically and consis-
tently learnable iff (�) holds.

Note that a class that contains an ascending infinite chain is not confidently
learnable. The following theorem follows from this observation along with the
results about strong-monotonic learning shown above.

Theorem 25. Given an automatic class I = (Li)i∈I , statements 1–4 below hold.
1. A strong-monotonically learnable class I is confidently learnable iff it con-

tains no infinite ascending chain.
2. Every translation of I is strong-monotonically and confidently learnable iff

I does not contain infinite ascending chains and for all i ∈ I, there exists
bi ∈ I such that for all j ∈ I, if Li � Lj, then there is k ≤ll bi with Lj ⊆ Lk

and Li � Lk.
3. Some translation of I is strong-monotonically and confidently learnable iff

I contains no ascending infinite chain.
4. If some text-preserving translation of I is strong-monotonically and confi-

dently learnable, then I itself is strong-monotonically and confidently learn-
able.

These results give a full characterisation on how confident learnability com-
bines with strong-monotonic learning. We should also observe the fact that ev-
ery translation of a class is confidently learnable does not imply that the class
is strong-monotonically learnable:

Example 26. Consider the automatic class I which contains {0}� and for all
n > 0, {0m : m < n} ∪ {1n} and {0}� ∪ {1m : m ≥ n} . This class is not
strong-monotonically learnable as any learner that learns I must output the
index for {0}� after seeing a finite sequence σ of suitable examples. But then,
for sufficiently large n, a mind change to the index for {0m : m < n} ∪ {1n}
would be necessary to learn it from any text which extends σ.

Still for every automatic I-translator Φ, Φ〈I〉 is confidently learnable by a
learner M that proceeds as follows. As long as the data is consistent with
ΦI〈{0}�〉, M conjectures the index for ΦI〈{0}�〉. If there exists (a necessar-
ily unique) n > 0 such that the data seen so far is consistent with the set
ΦI〈{0m : m < n} ∪ {1n}〉 but not with ΦI〈{0}� ∪ {1m : m > n}〉, then M
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outputs the index for ΦI〈{0m : m < n} ∪ {1n}〉. Otherwise, if presented with
some data that is consistent with ΦI〈0� ∪ {1m : m ≥ n}〉 for all n ∈ N, but not
with ΦI〈0�〉, M outputs its previous hypothesis. Otherwise, M conjectures the
index for ΦI〈{0}� ∪ {1m : m ≥ n}〉 where n > 0 is largest for which the set is
consistent with the input data; n might go down as more data are presented,
but will eventually stabilise. Hence Φ〈I〉 is confidently learnable.

A characterisation of classes whose every translation is confidently learnable by
a computable learner is open. Theorem 29 deals with the case of general learners.

Theorem 27. Every translation of an automatic class I is confidently, conser-
vatively and consistently learnable iff I is finite.

A more restrictive notion of learning is finite learning where the very first conjec-
ture output by the learner has to correctly identify the set to be learnt. Obviously,
finitely learnable classes are antichains as otherwise one could see the data for
a set Li and conjecture an index for this set only to find out later that the set
to be learnt is actually a superset of Li. So a key question is to characterise the
size of these antichains.

Theorem 28. Let an automatic class I be given. Statements 1–3 below hold.
1. Every text-preserving translation of I is finitely learnable iff I is a finite

antichain.
2. Some translation of I is finitely learnable iff I is an antichain.
3. If I has a finitely learnable text-preserving translation, then I itself is finitely

learnable.

The following result is the only one that involves general learners rather than
computable learners. Recall the definition of Φnc in Example 6.

Theorem 29. Let I = (Li)i∈I be an automatic class all of whose translations
are learnable. Then both conditions below are equivalent.

– Every translation of I is confidently learnable by some general learner.
– There exists no nonempty subset J of I such that, for all i ∈ J and finite

subsets F of Φnc
I 〈Li〉, there exists j ∈ J with F ∪ {i} ⊆ Φnc

I 〈Lj〉.

6 Learning from Queries

Whereas learnability in the limit offers a model of passive learning, learning
from queries allows agents to play an active role by questioning an oracle on
some properties that the target language might have, and sometimes getting
further clues [2]. Four kinds of queries are usually used, alone or in combination.
In a given context, the selection of queries that the learner is allowed to make is
dictated by the desire to obtain natural, elegant and insightful characterisations.
Some studies have compared the passive and active models of learning, which
usually turn out to be different [18]. Interestingly, in our model both families
of paradigms bind tightly as learnability of a class of languages from superset
queries is equivalent to learnability from positive data of every translation of the
class (Corollary 40 below).
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Definition 30. Let T be the set of queries of at least one of the following types:

Membership query: is x ∈ L? Subset query: is Le ⊆ L?
Superset query: is Le ⊇ L? Equivalence query: is Le = L?

Let an automatic class I = (Li)i∈I be given.
An I-query learner of type T is a machine M such that, for all i ∈ I, when

learning Li, M makes finitely many queries from T , possibly taking into account
the answers to earlier queries, with all queries answered correctly w.r.t. L = Li,
and eventually outputs a member of I.

An I-query learner of type T learns I iff for all i ∈ I, i is the member of I
that M eventually outputs when learning Li. A query learner of type T for I is
an I-query learner of type T that learns I.

I is learnable from queries of type T iff a query learner of type T for I exists.
When T is clear from the context, we omit to mention “of type T .”

Remark 31. Let an automatic class I = (Li)i∈I and an automatic I-translator
Φ be given. Since Φ preserves inclusion and no counterexamples are involved,
“learnability of I from queries of type T” and “learnability of Φ〈I〉 from queries
of type T” are equivalent notions as long as T does not include membership
queries. Observe that subset, superset and equivalence queries are only with ref-
erence to languages in I, or Φ〈I〉, respectively.

Since no complexity bound is imposed, we immediately have the following:

Theorem 32. Every automatic class is learnable from equivalence queries.

We illustrate query learning with a few examples of automatic classes.

Example 33. All translations of the classes below are learnable from member-
ship queries:

–
{
{x ∈ {0, 1}� : x is a prefix of y ∨ y is a prefix of x} : y ∈ {0, 1}�

}
.

–
{
{0}� ∪ {1m : m ≤ n} : n > 0

}
∪
{
{0m : m ≥ n} : n > 0

}
.

– Any finite class.

Example 34. Given an automatic class I, let Φnc be the text-preserving auto-
matic I-translator defined in Example 6. Then Φnc〈I〉 is learnable from mem-
bership and subset queries by searching for the unique i ∈ I which satisfies that
i /∈ Φnc

I 〈L〉 ∧ Φnc
I 〈Li〉 ⊆ Φnc

I 〈L〉. Indeed, a negative answer to the membership
query for i implies Φnc

I 〈L〉 ⊆ Φnc
I 〈Li〉 and so Φnc

I 〈Li〉 = Φnc
I 〈L〉.

Example 35. Let an automatic class I be given and let Φ be a, not necessarily
text-preserving, automatic I-translator satisfying ΦI〈L〉 = {i ∈ I : Li ⊆ L} for
all languages L. Then Φ〈I〉 is learnable from membership and superset queries: a
Φ〈I〉-query learner can search for the unique i ∈ I ∩ΦI〈L〉 with ΦI〈L〉 ⊆ ΦI〈Li〉.
This i satisfies ΦI〈Li〉 = ΦI〈L〉 and can be found using both kinds of queries.
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Example 36. Consider the automatic class I consisting of {0, 1}� and all co-
singletons of the form {0, 1}� \ {x} with x ∈ {0, 1}�. Then none of I’s text-
preserving translations is learnable from superset and membership queries. Let
Φ be a text-preserving I-translator, and assume for a contradiction that a query
learner M for Φ〈I〉 outputs an index for ΦI〈{0, 1}�〉 after finitely many superset
and membership queries on x1, x2, . . . , xn. If L is any member of Φ〈I〉, then the
superset query “is ΦI〈{0, 1}�〉 ⊇ L?” necessarily receives the answer “yes”, and
for all i ∈ I with Li �= {0, 1}� and Li �= L, the superset query “is ΦI〈Li〉 ⊇ L?”
necessarily receives the answer “no”. Furthermore, the membership queries “is
xk ∈ L?” necessarily receive the answer “yes” when answered with respect to
L = ΦI〈{0, 1}�〉. Now for each xk ∈ ΦI〈{0, 1}�〉, there is a finite subset Ek of
{0, 1}� with xk ∈ ΦI〈Ek〉. Consider any y ∈ {0, 1}� such that:

– for all k ∈ I such that M has queried the membership of xk to the target
language when learning ΦI〈{0, 1}�〉, y /∈ Ek;

– the superset query “is ΦI〈L〉 ⊆ ΦI〈{0, 1}� \ {y}〉?” has not been asked by M
when learning ΦI〈{0, 1}�〉.

Then all queries would receive the same answer if the language L to be learnt
was ΦI〈{0, 1}� \ {y}〉; therefore M cannot distinguish ΦI〈{0, 1}� \ {y}〉 from
ΦI〈{0, 1}�〉. Hence M is incorrect and Φ〈I〉 is not learnable from superset and
membership queries.

Theorem 37. Every automatic class has a translation learnable using member-
ship queries.

The theorem and corollary that follow characterise learnability from subset and
superset queries. These results have a similar flavour as Theorems 4, 5 and
10 in [15], obtained in the context of indexable classes of r.e. languages and a
broader class of queries.

Theorem 38. Let an automatic class I = (Li)i∈I be given. Then I is learnable
from subset queries iff for all i ∈ I, there exists bi ∈ I such that, for all j ∈ I
with Li ⊂ Lj, there exists k ∈ I with k ≤ll bi and Lk ⊆ Lj ∧ Lk � Li.

Corollary 39. Let an automatic class I = (Li)i∈I be given. Then I is learnable
from superset queries iff for all i ∈ I, there exists bi ∈ I such that for all j ∈ I
with Li ⊃ Lj, there exists k ∈ I with k ≤ll bi and Lk ⊇ Lj ∧ Lk � Li.

Corollary 40. An automatic class I is learnable from superset queries iff every
translation of I is learnable from positive data.

Given an automatic class I of languages all of whose text-preserving translations
are learnable from superset and membership queries, I-query learners that ask
superset queries do not benefit from also asking membership queries:

Theorem 41. If every text-preserving translation of an automatic class I is
learnable from membership and superset queries then I itself is learnable from
superset queries.
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One has an analogous result for subset queries, but considering all translations
rather than all text-preserving translations of the class, thanks to a (non text-
preserving) automatic I-translator Φ that satisfies ΦI〈L〉 = {i ∈ I : Li ⊆ L} for
all languages L. Indeed a membership query of the form “is i ∈ ΦI〈L〉?” is then
equivalent to the subset query “is ΦI〈Li〉 ⊆ ΦI〈L〉?”:

Theorem 42. If every translation of an automatic class I is learnable from
membership and subset queries then I itself is learnable from subset queries only.

In the previous result, restriction to text-preserving translations is impossible:

Theorem 43. Let I be the automatic class
{
∅
}
∪
{
{0, 1}� \ {x} : x ∈ {0, 1}�

}
.

1. Every text-preserving translation of I is learnable using membership and
subset queries.

2. Some translation of I is not learnable using membership queries only.
3. I is not learnable using subset queries only.

Theorem 44. Given automatic class I = (Li)i∈I , every translation of I is
learnable from membership queries iff (∀i)(∃bi)(∀j �= i)(∃k ≤ll bi)[
(Lj ⊆ Lk ∧ Li � Lk) ∨ (Lk ⊆ Lj ∧ Lk � Li)

]
.

7 Conclusion

A notion of learnability is robust if it is immune to natural transformations
of the class of objects to be learned. The associated notion of transformation
of languages has been defined as a function, called a translator, that maps lan-
guages to languages and preserves the inclusion structure of the languages in the
original class. Our study has focused on automatic classes of languages, as auto-
maticity is invariant under translation and as this restriction allows one to ob-
tain appealing characterisations of robust learning under many classical learning
criteria, namely: consistent and conservative learning, strong-monotonic learn-
ing, strong-monotonic consistent learning, finite learning, learning from subset
queries, learning from superset queries, and learning from membership queries.
The characterisations are natural as they express a particular constraint on
the inclusion structure of the original class. In many cases, they are especially
strong as they also deal with learnability under those of the translations that
are text-preserving, in that they can be generated from an enumeration of a
language without necessitating the latter to be “seen as a whole.” In some of
the characterisations, learning from every translation turned out to be equiva-
lent to learning from every text-preserving translation (Theorem 16 (standard
learnability), Theorem 19 (strong-monotonic learnablity), and Theorem 23 (con-
sistent learnability)). Though there are some similarities in the proof, we do not
know of a general charactersisation of learning criteria for which such a result
applies. Open questions remain. For instance, for confident learning, we only
found a characterisation with respect to nonrecursive learners.
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Abstract. We define and study a learning paradigm that sits between
identification in the limit and classification. More precisely, we expect
that a learner be able to identify in the limit which members of a set
D of n possible data belong to a target language, where n and D are
arbitrary. We show that Ex- and BC-learning are often more difficult
than performing this classification task, taking into account desirable
constraints on how the learner behaves, such as bounding the number
of mind changes and being conservative. Special attention is given to
various forms of consistency. We provide a fairly comprehensive set of
results that demonstrate the fruitfulness of the approach and the richness
of the paradigm.

1 Introduction

The main purpose of the field of inductive inference is to study whether it is
possible, following a mechanical procedure subjected to various constraints in its
computing abilities, to identify a device (usually a Turing machine or one of its
equivalents) from an enumeration of the data it can produce, from an analysis of
the finite sets or sequences of those data (see [BB75, CS83, Gol67, JORS99, ZZ08]
for example). Successful learning or identification in the limit requires that the
procedure succeeds after enough data have been seen. Success usually means
that either a syntactical description of the device has been correctly discovered
and will be issued from the point of convergence onwards (called explanatory
or Ex-identification, [Gol67]), or that the behaviour of the device has been cor-
rectly identified and that from the point of convergence onwards, a syntactical
description of the device will be issued but this syntactical description may
vary in the face of new data (called behaviourally correct or BC-identification,
[Bār74b, CL82, CS83, OW82]).
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Another line of research, which has received substantial though considerably
less attention from the community, consists in discovering in the limit some
property of the device that generates the data being analysed, and is referred
to as classification (see for example, [FH94, WS95, SWZ97, CKSS97, Ste01,
Jai01, JMS08]). Think of multiclassification as the task of finding out whether
the device that generates the data to be observed has property P , for any P
in a given set of properties. Learning is in some sense the case of synchronous
multiclassification for (usually infinitely many) disjoint classification tasks: it
amounts to discovering (the description of) a device characterized as having or
not the property of producing d, for any potential datum d. Therefore, it has to
be expected that learning is in many cases more difficult than classification. This
is still not as obvious as might first appear as we deal with full classification and
not positive only classification: the work of a classifier is to output either 1 or 0
to indicate whether, on the basis of the sequence of data currently observed, the
property holds or does not hold, respectively.

The simplest property one might conceive of is that of membership of some
datum to the set of data that the device can produce. The task is trivial with
one mind change at most, as a classifier just has to output 0 until the datum
appears, if ever. Even if the focus is on the simple properties expressed as data
membership, more complex tasks naturally come to mind. In this paper, we will
investigate the task of multiclassification—but we will still talk about a “classi-
fier” rather than “multiclassifier”. For instance, the task to classify a device in
one of the four classes determined by whether or not it produces the datum 0
and whether or not it produces the datum 1 might require two mind changes
sometimes, unless the presence of one number guarantees the presence of the
other in the set of data that can be generated by any of the target devices. A
natural generalisation of this idea then requires from the classifier that it deals
with any finite set of basic classification tasks, be they of the form of data mem-
bership or more complex ones. For instance, one might want to consider Boolean
combinations of data membership of a certain kind as basic classification tasks.

We mentioned that learning is a kind of synchronous multiclassification, where
each classification task expresses the property of generating or not precisely this
or that set of data, for all possible such sets. More precisely, learning can be seen
as multiclassification of the basic property of data membership, taking together
the infinitely many possible data. So what we are describing is a framework
where learning is somehow the limit of multiclassification, where the number of
basic classification tasks taken together, and required to be finite, grows towards
infinity: identifying a device is the limiting case of discovering whether 0, 1, . . . ,
n belong to the set of data that can be generated by that device when n becomes
larger and larger.1 One of the aims of this paper is to make that statement precise
and investigate its consequences. In other words, we examine to which extent
successful multiclassification makes learning possible.

1 Considering classification tasks individually is trivial, as we have observed already,
whereas considering infinitely many tasks together is too hard and too close to the
limiting case of considering all predicates.
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We proceed as follows. In Section 2, we introduce the background notation
and notions, illustrated with a few examples. This covers the classical concepts
of finite, Ex- and BC-learnability, and the new concept of classification, pos-
sibly constrained by counterparts to the usual notions of mind changes and
conservativeness, and three different notions of consistency. Section 3 presents
negative results on BC-learnability, shown to be harder than classification vari-
ously constrained. In contrast, Section 4 shows how finite or Ex-learnability can
be obtained from various classification strategies. Section 5 investigates in more
depth the relationships between the various forms of classification.

2 Definitions and Examples

2.1 General Notions and Learnability

We denote by N the set of natural numbers. The length of a finite sequence σ
is denoted len(σ). Given a sequence σ, for i < len(σ), σ(i) represents the ith
member of σ (starting with the 0th element); for i ≤ len(σ), σ|i represents the
initial segment of σ of length i. We use � to denote concatenation between finite
sequences, and identify a sequence of length 1 with its unique member. Given
x, i ∈ N, we denote by xi the unique member of {x}i. Given a set E, we denote
by E� the set of finite sequences of members of E. Given E ⊆ N, we let χE

denote the characteristic function of E.
We fix an acceptable enumeration (ϕe)e∈N of the partial recursive functions

over N, and for all e ∈ N, denote by We the domain of ϕe (see, for example
[Rog67]). We fix a computable coding of all finite sequences of members of N
into N, and denote by 〈n1, . . . , nk〉 the image of (n1, . . . , nk) by this coding. Also,
we fix a computable coding of all pairs of members of N into N, and denote by
〈n1, n2〉2 the image of (n1, n2) by this coding for all n1, n2 ∈ N, with the property
that 〈n1, n2〉2 ≤ 〈n′

1, n2〉2 and 〈n1, n2〉2 ≤ 〈n1, n
′
2〉2 whenever n1 ≤ n′

1 and
n2 ≤ n′

2. Given a total recursive function g, the retraceable function determined
by g is the total recursive function f such that f(n) = 〈f(0), . . . , f(n− 1), g(n)〉
for all n ∈ N. A retraceable function is the retraceable function determined by
some given recursive function.

A language is a set of the form We. We denote by L a class of languages.
Given a language L, a text for L is an infinite enumeration of the members of L,
possibly with repetitions of some members of L and possibly with occurrences
of #, the “pause” symbol [Gol67]. Given a recursive function f , the canonical
text for f is the infinite sequence whose ith term, i ∈ N, is 〈i, f(i)〉2. A text is a
text for some language. We denote (N∪ {#})� by SEQ. Given σ ∈ SEQ, rng(σ)
denotes the set of natural numbers that occur in σ. A member σ of SEQ is said
to be for a language L if rng(σ) ⊆ L, and for L if it is for some member of L.

A learner is a computable function from SEQ into N∪{?} (where ? is a distin-
guished symbol which allows the learner to express that it makes no hypothesis).
Given a language L, a learner M Ex-learns L, see [Gol67], iff for all texts t for
L, there exists e ∈ N such that We = L and M(σ) = e for cofinitely many finite
initial segments σ of t. A learner Ex-learns L if it Ex-learns all members of L.
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Given a language L, a learner M BC-learns L, see [Bār74b, CL82, OW82], iff
for all texts t for L, WM(σ) = L for cofinitely many finite initial segments σ of
t. A learner BC-learns L if it BC-learns all members of L. Given a language L,
a learner M finitely learns L, see [Gol67], iff M Ex-learns L and for all texts t
for L and for all finite initial segments σ1 and σ2 of t, if M(σ1) and M(σ2) are
both distinct from ? then they are equal. A learner finitely learns L if it finitely
learns all members of L. Given c ∈ N, we say that a learner M that Ex-learns
L makes at most c mind changes, see [CS83], iff there is no infinite sequence t
of members of N ∪ {#} and no strictly increasing sequence (i0, . . . , ic) of c + 1
integers such that M(t|i0) �= ? and M(t|ik

) �= M(t|ik+1) for all k ≤ c; when c = 0
we rather say that M makes no mind change.

2.2 Classification

A predicate is a property that can be true or false for any given language (1 or 0
is then the truth value of that predicate for that language, respectively). Given
a sequence τ of predicates, a language L and a sequence τ ′ of members of {0, 1},
we say that τ ′ is the sequence of truth values of τ for L if τ ′ has the same length
as τ and for all i < len(τ), τ ′(i) is the truth value of τ(i) for L. For n ∈ N, let ∈n

be the predicate that is true for languages that contain n, and false for others.
Let In denote the set of all predicates of the form ∈n, n ∈ N. Let Boole denote
the set of all predicates that are Boolean combinations of predicates in In.

Definition 1. Let P be a set of predicates.
A general P -classifier is a total function M on SEQ × P � such that for all
σ ∈ SEQ, for all n ∈ N and for all τ ∈ Pn, M(σ, τ) is a member of {0, 1}n ∪{?}.
A P -classifier is a computable general P -classifier.

Definition 2. Let P be a set of predicates and let M be a general P -classifier.
Given a language L, we say that M classifies L iff the following holds. For any
text t for L and any τ ∈ P �, for cofinitely many finite initial segments σ of t,
M(σ, τ) is the sequence of truth values of τ for L.
We say that M classifies L iff M classifies all members of L.

Given a set P of predicates, a classification task (with respect to P ) refers to any
finite sequence of members of P . To say that a general P -classifierM is successful
on a classification task τ then means that for all texts t for a member L of L

and for cofinitely many finite initial segments σ of t, M(σ, τ) is the sequence of
truth values of τ for L.

Classification, especially when requiring the classifier to decide whether the in-
put language belongs to one of several disjoint classes of languages, has been stud-
ied by several authors earlier, see [FH94, WS95, SWZ97, CKSS97, Ste01, Jai01,
JMS08] for example. The definitions above are about multi-classification, in which
the classifier has to simultaneously perform several classification tasks.

We now consider the important constraint of consistency. In the context of this
paper, and as opposed to the classical notion of consistency used for learnability
(see [Ang80, Bār74a, JB81, WL76]) it is natural to impose that the decisions on
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the predicates to be dealt with be consistent not only with the available data
(which can always be easily achieved when deciding a finite number of predi-
cates), but also with a language in the class under consideration. As classifiers
have to deal with arbitrarily large finite set of predicates, one can further con-
sider whether the classification, on a particular input, is compatible with some
fixed language L when the predicate set is large enough. This L above may or
may not be in the class of languages under consideration. The following definition
explores these possibilities.

Notions of conservativeness [Ang80] and mind changes [CS83] will also play
an important role in this paper, but they are straightforward adaptations of the
classical notions considered in inductive inference.

Definition 3. Let a class of languages L, a set of predicates P , and a general
P -classifier M be given.

We say that M is consistent on L iff for all σ ∈ SEQ and τ ∈ P �, if σ is for
L then there exists L ∈ L such that σ is for L and M(σ, τ) is the sequence of
truth values of τ for L.

We say that M is strongly consistent on L iff M is consistent on L and for all
σ ∈ SEQ, if σ is for L then there exists a language L and a τ ∈ P � such that σ
is for L and for all τ ′ ∈ P � satisfying rng(τ) ⊆ rng(τ ′), M(σ, τ ′) is the sequence
of truth values of τ ′ for L.

We say that M is strongly consistent within class on L iff M is consistent on
L and for all σ ∈ SEQ, if σ is for L then there exists L ∈ L and a τ ∈ P � such
that σ is for L and for all τ ′ ∈ P � satisfying rng(τ) ⊆ rng(τ ′), M(σ, τ ′) is the
sequence of truth values of τ ′ for L.

(Based on [Ang80]) We say that M is conservative on L iff for all σ ∈ SEQ,
n ∈ N ∪ {#} and τ ∈ P �, if there exists L ∈ L such that σ � n is for L and
M(σ, τ) is the sequence of truth values of τ for L then M(σ, τ) = M(σ � n, τ).

When L is clear from the context, we omit “on L” in the previous expressions.

Definition 4. (Based on [CS83]) Let a set P of predicates, a general P -classifier
M that classifies L, and c ∈ N be given. We say that M makes at most c mind
changes iff there is no text t for L, no τ ∈ P � and no strictly increasing sequence
(i0, . . . , ic) of c+1 integers such that M(t|i0 , τ) �= ? and M(t|ik

, τ) �= M(t|ik+1, τ)
for all k ≤ c; when c = 0 we rather say that M makes no mind change.

2.3 Illustrative Examples

A successful classifier of a learnable class does not immediately provide a learner
of that class. For an illustration, the next example exhibits a class of languages
L and a consistent and conservative In-classifier that classifies L using at most
one mind change, and for all finite initial segments of a text for some member
of L, is incorrect on infinitely many classification tasks.

Example 5. For all i ∈ N, let Li = {2j | j ≤ i} ∪ {2i+ 1} and suppose that
L is equal to {2N} ∪ {Li | i ∈ N}. Let M be an In-classifier such that for all
σ ∈ SEQ for L and sequences of the form (∈n0 , . . . ,∈nk

), the following holds.
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If there exists i ∈ N with 2i+ 1 ∈ rng(σ) then M
(
σ, (∈n0 , . . . ,∈nk

)
)

is equal to
(χLi(n0), . . . , χLi(nk)). Otherwise, if the greatest number in {n0, . . . , nk}, say
n, is both odd and greater than any number in rng(σ), then for all j ≤ k,
M
(
σ, (∈n0 , . . . ,∈nk

)
)
(j) = 1 iff nj is even or nj = n. Otherwise, for all j ≤ k,

M
(
σ, (∈n0 , . . . ,∈nk

)
)
(j) = 1 iff nj is even. It is easy to see that M In-classifies

L, is consistent and conservative, and makes at most one mind change; also, for
all σ ∈ SEQ, if σ is for 2N then there exists infinitely many sequences of the
form (∈n0 , . . . ,∈nk

) such that M
(
σ, (∈n0 , . . . ,∈nk

)
)
�= (χ2N(n0), . . . , χ2N(nk)).

Successful classification is possible with respect to a nonlearnable class, as illus-
trated in the next example.

Example 6. Suppose that L consists of N and all cosingletons (sets of the
form N \ {n}). Then no learner BC-learns L (this follows easily from Angluin’s
tell-tale characterization [Ang80] as N does not have a tell-tale in L). Let a
Boole-classifier M be defined as follows. Let σ ∈ SEQ be for L. Let τ ∈ Boole�

be given. If there exists a unique integer n /∈ rng(σ) such that ∈n is used in one
of τ ’s predicates, then M(σ, τ) is the sequence of truth values of τ in N \ {n}.
Otherwise, M(σ, τ) is the sequence of truth values of τ in N. It is immediately
verified that M is consistent and classifies L making at most two mind changes.

3 Classification Versus BC-Learnability

We start our investigations with three results on Boole-classification. Almost all
other results deal with In-classification.

Theorem 7. There exists a class L of languages that some Boole-classifier clas-
sifies making no mind change, but no learner BC-learns L.

Proof. For any set E, let fE denote the retraceable function determined by χE .
Let SE = {〈n, fE(n)〉2 : n ∈ N}. Let L denote the set of all SE , where E is a
recursive set. Then, since the class of recursive sets cannot be BC-learnt from
informant [CL82], we immediately have that L is not in BC.

Let M be a Boole-classifier such that for all σ ∈ SEQ that are for L and for all
τ ∈ Boole�, the following holds. If there exists an integer n such that ∈n is used
in one of τ ’s predicates and every member of rng(σ) is of the form 〈m,x〉2 with
m < n, then M(σ, τ) = ?. Otherwise, M(σ, τ) is the sequence of truth values of
τ for SE for any finite set E such that σ is for SE (note that all E, such that
σ is for SE , will give the same result for M(σ, τ)). It is easily verified that M
classifies L making no mind change. ��

Theorem 8. There exists a class L of languages such that some strongly consis-
tent within class general Boole-classifier classifies L making at most one mind
change, but no learner BC-learns L.

Proof. Let (Me)e∈N denote an effective enumeration of all learners. Given a
subset E of N, let fE denote the retraceable function determined by χE . We
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inductively define a sequence (Ee,i)e,i∈N of finite subsets of N such that for all
e, i ∈ N, Ee,i ⊆ Ee,i+1, in such a way that the set of triples 〈e, i, x〉 with e ∈ N,
i ∈ N and x ∈ Ee,i is recursively enumerable. For all e ∈ N, set Ee,0 = {e}. Let
natural numbers e and i be given, and assume that Ee,i has been defined. Look
for an initial segment σ of the canonical text for fEe,i , with len(σ) > max(Ee,i),
and for j ≥ len(σ) such that Me(σ) is defined and 〈j, fEe,i(j)〉2 ∈ WMe(σ), and
set Ee,i+1 = Ee,i ∪{j}; if there is no such σ and j then set Ee,i+1 = Ee,i. For all
e ∈ N, let Se denote {〈n, f⋃

i∈N
Ee,i

(n)〉2 | n ∈ N}. Denote {〈n, f∅(n)〉2 | n ∈ N}
by S. Finally, set L = {S} ∪ {Se | e ∈ N}.

Let M be a general Boole-classifier such that for all σ ∈ SEQ that are for L,
the following holds. If σ is for S then for all τ ∈ Boole�, M(σ, τ) is the sequence
of truth values of τ for S. Otherwise, there exists a unique e ∈ N such that σ is
for Se, and for all τ ∈ Boole�, M(σ, τ) is the sequence of truth values of τ in Se.
Trivially, M is strongly consistent within class and classifies L with at most one
mind change. Moreover, it follows immediately from the definition of L that for
all e ∈ N, Me does not BC-learn Se. So no learner BC-learns L. ��

Theorem 9. There exists a class L of languages such that some strongly con-
sistent Boole-classifier classifies L making at most two mind changes, but no
learner BC-learns L.

We now focus on In-classification. The last result of this section exhibits a case
where BC-learnability fails whereas consistent and conservative classification
succeeds, even when the latter is constrained to using very few mind changes.

Theorem 10. There exists a class L of languages such that some consistent
and conservative In-classifier classifies L making at most 2 mind changes, but
no learner BC-learns L.

4 Classification Versus Finite and Ex-learnability

The first result of this section exhibits a class of languages that is easy to learn, as
it is learnable with no mind change, whereas classification requires sometimes to
go through all possibilities of making n predicates true or false before converging
to the correct answer.

Theorem 11. There exists a class L of finite languages such that some learner
finitely learns L and some consistent and conservative In-classifier classifies L.
Moreover, for all consistent In-classifiers M and for all n ∈ N, there is τ ∈ Inn

and a text t for L such that {M
(
t|i, τ
)
| i ∈ N} has cardinality 2n.

The next results in this section show how to construct an Ex-learner from a
classifier constrained in the maximum number of mind changes it is allowed to
make, and by consistency and conservativeness requirements.

Theorem 12. Let L be a class of languages that some strongly consistent and
conservative In-classifier classifies making at most k mind changes for some k
in N. Then some learner Ex-learns L. Moreover, all members of L are recursive.
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Proof. For all n ∈ N, set τn = (∈0, . . . ,∈n). Let C be a strongly consistent and
conservative In-classifier that classifies L making at most k mind changes. Define
a learner M as follows. Let σ ∈ SEQ be given. Then M(σ) is an integer e such
that for all n ∈ N, n ∈ We iff either n ≤ len(σ) and C(σ, τlen(σ))(n) = 1, or
n > len(σ) and C(σ, τn)(n) = 1. As the process describing We in the previous
statement gives a decision procedure, we can make sure that the learner makes
a mind change only when the conjectured language changes. So to complete
the proof of the theorem, it suffices to verify that M BC-learns L. Let a text
t for L ∈ L be given. We inductively define a sequence (σi)i≤k of finite initial
segments of t and a sequence (ni)i≤k of natural numbers, such that for all i < k,
len(σi) ≤ ni ≤ len(σi+1). Let σ0 be the empty sequence, and let n0 ∈ N be such
that for all n ≥ n0 and n′ ≥ n, C(σ0, τn) is an initial segment of C(σ0, τn′) (such
an n0 exists since M is strongly consistent). Let i < k be given and assume that
for all j ≤ i, σj and nj have been defined. If for all initial segments σ of t and
all n such that n ≥ len(σ) ≥ ni, C(σ, τn) = C(σi, τn), then clearly M(σ) is an
index for L, for all initial segments σ of t with len(σ) ≥ ni. So, suppose that
there exists a finite initial segment σ of t and n such that n ≥ len(σ) ≥ ni and
C(σ, τn) �= C(σi, τn). Since C is conservative, C(σi, τn) is not the sequence of
truth values of τn for L′, for any L′ ∈ L which contains rng(σ). So, since C is
consistent, C(σi, τn) is not an initial segment of C(σ, τn′ ) for any n′ ≥ n. We
then set σi+1 = σ and let ni+1 ≥ n be such that for all n′′ ≥ ni+1 and n′′′ ≥ n′′,
C(σi+1, τn′′) is an initial segment of C(σi+1, τn′′′) (such an ni+1 exists since C
is strongly consistent). Note that for all m ≥ ni+1, C(σi+1, τm) �= C(σi, τm):
this follows from the respective definitions of σi, σi+1, ni and ni+1, the fact that
ni ≤ n ≤ ni+1, and the fact that C(σi, τn) is an initial segment of C(σi, τm), but
not of C(σi+1, τm). Since C makes no more than k mind changes, we conclude
that for all finite initial segments σ of t that extend σk and are of length greater
than nk, M(σ) is an index of the language L. ��
Theorem 13. Let L be a class of languages such that some consistent In-
classifier classifies L making at most one mind change. Then some strongly
consistent In-classifier classifies L making at most one mind change.

Proof. Let M be a consistent In-classifier that classifies L making at most one
mind change. Given i ∈ N, let τi denote (∈0, . . . ,∈i), and let Ai be the set of all
j ≤ i with M

(
(), τi
)
(j) = 1. Let B denote the set of all members of

⋃
L that do

not belong to Ai for infinitely many i ∈ N, and let C denote the set of members
of
⋃

L that belong to Ai for all but finitely many i ∈ N. Given x ∈ N and i ≥ x,
let Si

x denote M
(
(), τi
)

if x ∈ Ai, and M
(
(x), τi

)
otherwise.

First note that for all x ∈ B, there exists a unique language Lx in L such that
x ∈ Lx, and for all i ≥ x, Si

x is the sequence of truth values of τi for Lx. Indeed,
since M makes at most one mind change, M

(
(x), τi

)
is necessarily the sequence

of truth values of τi for Lx for the infinitely many i ∈ N such that x /∈ Ai, which
uniquely determines Lx. Since M is consistent, M

(
(), τi
)

is then necessarily the
sequence of truth values of τi for Lx for all i ∈ N such that x ∈ Ai.

We first show that C is r.e. There is nothing to prove if C is recursive, so
assume otherwise. For a contradiction, suppose that there exists x ∈ C such
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that for all i ≥ x, Si
x is an initial segment of Si+1

x . Since Si
x = M

(
(), τi
)

for
cofinitely many i ∈ N, it follows from the definition of Ai, i ∈ N, that for all
y ≥ x, either y ∈ C and Sy

x(y) = 1, or y /∈ C and Sy
x(y) = 0, which contradicts

the hypothesis that C is not recursive. Together with the previous observation
on the members of B, this implies that C is the set of all x ∈

⋃
i∈N

Ai such that
Si

x is not an initial segment of Si+1
x for some i ≥ x, hence is r.e.

We now show that C is recursive. Assume that there exists a sequence (xi)i∈N

of pairwise distinct members of C and a sequence (ni)i∈N of members of N such
that for all i ∈ N, ni ≥ xi and xi /∈ Ani . One can assume without loss of
generality that the sequences (xi)i∈N and (ni)i∈N are recursive. For all i ∈ N,
set Si = M

(
(xi), τni

)
. Then for all i ∈ N, Si is the sequence of truth values of

τni in every language in L that contains xi; moreover, since xi belongs to Aj for
cofinitely many j ∈ N, Si is an initial segment of M

(
(), τj

)
for cofinitely many

j ∈ N. Hence for all i, j ∈ N, one of Si and Sj is an initial segment of the other,
and for all y ∈ B, Si(y) = 0 (as otherwise, y belongs to Aj for cofinitely many
j ∈ N). Thus C is the language L such that for all i ∈ N, Si is the sequence
of truth values of τni for L. Moreover, since the sequence (Si)i∈N is r.e., C
is recursive. On the other hand, if there exists no infinite sequence (xi)i∈N of
pairwise distinct members of C and corresponding sequence (ni)i∈N of members
of N such that for all i ∈ N, ni ≥ xi and xi /∈ Ani , then

⋃
iAi ∩B is r.e.; thus C

is recursive (as both, C and {i : i ∈ Ai} \ C are recursively enumerable and the
recursive set {i : i ∈ Ai} contains all but finitely many elements in C).

Now observe that no member L of L is strictly included in C. Otherwise,
there would be a member σ of SEQ, with rng(σ) ⊆ L, and i ∈ N such that
x ∈ C ∩Ai \L but M(σ, τi)(x) = 0. But then there exists a σ′ ∈ SEQ extending
σ such that rng(σ′) ⊆ C and M(σ′, τi)(x) = 1, which contradicts that M makes
at most 1 mind change.

We can now define a strongly-consistent In-classifier N as follows. Let σ ∈
SEQ be for L, and let τ ∈ In� be given. If σ is for C then N(σ, τ) is the sequence
of truth values of τ for C. Otherwise, by the previous remark, there exists a
least x ∈ rng(σ) that does not belong to C, and N(σ, τ) is the sequence of truth
values of τ for Lx, the unique member of L that contains x (by the definition of
Lx, x ∈ B, N(σ, τ) can be effectively determined using the sequences Si

x, i ≥ x).
Obviously, N classifies L with at most one mind change. ��

Corollary 14. Let L be a class of languages. If some consistent In-classifier
classifies L making at most one mind change then some learner Ex-learns L.

5 Limitations of Classification Variously Constrained

The results in this section have the flavour of the standard results in inductive
inference that compare how various constraints imposed on the learners affect
their power to learn as opposed to other constraints. These matters are investi-
gated here in the context of our notion of classification.
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Theorem 15. There exists a class L of languages such that some conservative
In-classifier classifies L using at most one mind change, but no consistent In-
classifier classifies L.

Theorem 16. There exists a class L of languages such that some conservative
and strongly consistent In-classifier classifies L using at most one mind change,
but no strongly consistent within class In-classifier classifies L.

The above diagonalization is optimal, as any consistent classifier using no mind
changes outputs only correct classifications (for any language in the class) on
empty σ. It is thus also strongly consistent within class making no mind change.
Note that by Theorem 13, the following is also optimal.

Theorem 17. There exists a class L of languages such that some conservative
and consistent In-classifier classifies L using at most two mind changes, but no
strongly consistent In-classifier classifies L.

Proof. Let (Me)e∈N be an effective enumeration of all In-classifiers. For the sake
of defining L, we first define a family (F t

e )e,t∈N of finite subsets of N of the form
{0, p1, q1, . . . , pn, qn} where n ∈ N, p1, . . . , pn are even, q1, . . . , qn are odd, and
1 < p1 < q1 < · · · < pn < qn. It will be the case that:

– for each e, t, F t
e is finite and can be recursively determined from e, t;

– for all e, t, t′ ∈ N, if t ≤ t′ then all even numbers in F t
e belong to F t′

e ;
– for all e ∈ N, if

⋃
t∈N

F t
e is infinite then for all t, t′ ∈ N with t ≤ t′, F t

e ⊆ F t′
e ;

– F t
e contains all even numbers in

⋃
t′∈N

F t′
e which are ≤ t, except perhaps for

the largest such even number.

For all e, t ∈ N, let τ t
e denote 〈〈e, 0〉2, . . . , 〈e, t〉2〉. Let e ∈ N be given. Define

F 0
e as {0}. Let t ∈ N be given, and assume that F t

e has been defined, but F t+1
e

has not been defined yet. If there exists an odd number q ≤ t such that within
t computation steps, Me(〈e, 0〉2, τ t

e) assigns the value 1 to ∈〈e,q〉2 , then for all
t′ > t, let F t′

e be defined as F t
e if q /∈ F t

e , and as (F t
e \ {q}) ∪ {q + 2} otherwise.

Suppose that there is no such odd number. Let p be equal to 2 if F t
e = {0}, and

to 3 plus the largest odd number in F t
e otherwise. If

– Me(〈e, 0〉2, τ t
e) does not halt within t steps, or Me(〈e, 0〉2, τ t

e) does not assign
the value 1 to ∈〈e,n〉2 for some even number n ∈ F t

e ,
– or if p > t,
– or if p ≤ t and within t computation steps, Me(〈e, 0〉2, τ t

e) does not assign
the value 0 to ∈〈e,p〉2 ,

then set F t+1
e = F t

e . Otherwise, define F t+1
e as the union of F t

e with {p, 8t+ 1}.
This completes the definition of (F t

e)e,t∈N. For all e, t ∈ N, we now define a
language St

e and set L = {∅} ∪ {St
e | e ∈ N, t ∈ N}. Let e, t ∈ N be given. Let E

denote the set of all even numbers in F t
e .
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– Suppose that
⋃

t′>t F
t′
e ∩ 2N = E. Then set St

e = {〈e, x〉2 : x ∈ E}.
– Suppose that

⋃
t′>t F

t′
e ∩ 2N �= E. Let t′ > t be least such that F t′

e ∩ 2N �=
F t

e ∩ 2N. Let q be the largest odd number of F t′
e . If

⋃
t′′>t F

t′′
e does not

contain q + 2 then set St
e = {〈e, x〉2 : x ∈ E ∪ {q}}; otherwise, set St

e =
{〈e, x〉2 : x ∈ E ∪ {q + 2}}.

We now show that L satisfies the claim of the theorem. Define an In-classifier
M as follows. Let σ ∈ SEQ be for L, and let τ ∈ In� be given.

If rng(σ) = ∅ then let M(σ, τ) be the sequence of truth values of τ for ∅.
If e ∈ N is such that σ contains an element of the form 〈e, x〉2 but no element

of the form 〈e, 2y + 1〉2, and if t ∈ N is largest with ∈〈e,t〉2 occurring in τ , then
let M(σ, τ) be the sequence of truth values of τ in the set of all elements of the
form 〈e, 2x〉2 that occur in F t

e ∪ rng(σ). Note that if some (necessarily unique)
element of the form 〈e, 2x〉2 with 2x ≤ t belongs to rng(σ)\F t

e , then 2x is larger
than all even numbers in F t

e and M(σ, τ) is the sequence of truth values of τ for
L for any L ∈ L such that σ is for L; hence M will not make any further mind
change on any extension of σ that is for L.

If e ∈ N is such that σ contains an element of the form 〈e, 2x+ 1〉2 (which is
necessarily unique), then let M(σ, τ) be the sequence of truth values of τ for St

e

for any t such that St
e contains 2x+1. Note that if 2x+1 belongs to St

e for some
t ∈ N, then one can effectively find such a t by looking for a t′ such that 2x− 1
or 2x + 1 belongs to F t′

e ; moreover, M will not make any further mind change
on any extension of σ that is for L. It is easily verified that M is consistent and
conservative and classifies L making at most 2 mind changes.

Let e, t ∈ N be given. If there exists an odd number x ≤ t such that Me(〈e, 0〉2,
τ t
e) assigns the value 1 to ∈〈e,x〉2 , then by construction, Me is not consistent.

Otherwise, if there exists t ∈ N such that F t
e =
⋃

s∈N
F s

e , then by construction
again, Me is not consistent. Otherwise, still by construction, there are infinitely
many t ∈ N such that Me(〈e, 0〉2, τ t+1

e ) is not an extension of Me(〈e, 0〉2, τ t
e)

(because when Me deals with 〈e, 0〉2 as first argument and with τ t
e as second

argument with larger and larger values of t, Me is forced to give the value false
and then the value true to ∈p for infinitely many p ∈ 2N). Hence Me is not
strongly consistent. Thus, no strongly consistent In-classifier classifies L. ��

Theorem 18. Let k > 1 be given. There exists a class L of languages such that
some strongly consistent within class and conservative In-classifier classifies L

making at most k mind changes, but no In-classifier classifies L making at most
k − 1 mind changes.

If conservative classifiers were required to output an initial hypothesis different
to ? (in line with what is required of consistent classifiers), then the number of
mind changes for conservative classifiers could be one more than the number of
mind changes needed by strongly consistent classifiers.

Similarly, if conservative learners could not output ?, then the number of mind
changes by the conservative learner in the next theorem would increase by one.
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Theorem 19. Let k ∈ N and a class of languages L be given. If some total In-
classifier classifies L making at most k mind changes, then some conservative
In-classifier classifies L making at most k mind changes.

Proof. Let M be a total In-classifier that classifies L making at most k mind
changes. Let an In-classifier N be defined as follows. Let τ ∈ In� be given. Set
N
(
(), τ
)

=?. For all σ ∈ SEQ and x ∈ N ∪ {#}, let N(σ � x, τ) be equal to
M(σ � x, τ) if the latter is the sequence of truth values of τ in rng(σ), and to
N(σ, τ) otherwise. It is immediately seen that M is conservative and classifies
L making at most k mind changes. ��

The last result of the paper deals with the hierarchy of the number of mind
changes that might be needed as a function of the number of membership pred-
icates to decide. It shows that for any choice of such a function f , for some class
of languages L, it is impossible for any consistent classifier for L to decide n
predicates using at most f(n) mind changes, though for some particular choices
of f , some classifier might do so with f(n+ 1) mind changes at most.

Theorem 20. For every strictly increasing total function f from N into N there
exists a class L of languages, which satisfies the following:
(a) For all consistent In-classifiers M for L and n > 0, there exists τ ∈ Inn,
L ∈ L and a text t for L such that {M

(
t|i+1, τ

)
�= M

(
t|i, τ
)
| i ∈ N} has

cardinality greater than f(n).
(b) There exists a consistent In-classifier M for L such that for all n ∈ N, for
all τ ∈ Inn, for all L ∈ L and for all texts t for L, the set {M

(
t|i+1, τ

)
�=

M
(
t|i, τ
)
| i ∈ N} has cardinality at most 3(f(n) + 2).

Proof. Let (Me)e∈N be an enumeration of all In-classifiers. Let e ∈ N and n > 0
be given. Let τe,n denote the sequence (∈〈e,n,0〉, . . . ,∈〈e,n,n−1〉). If there exists
p ∈ N such that for all x ∈ N, Me(#p, τe,n) is a sequence of nothing but 0’s, then
let g(e, n) denote such a p; otherwise, let g(e, n) denote 0. Given e ∈ N, n > 0
and r ∈ {n, . . . , n + f(n) + 1}, let Lr

e,n denote {〈e, n, x〉 | n ≤ x ≤ r}, σr
e,n the

concatenation of #g(e,n) with (〈e, n, n〉, . . . , 〈e, n, r〉), and for all i < n, Lr,i
e,n the

set Lr
e,n ∪ {〈e, n, i〉}.

Let L consist of ∅ and, for e ∈ N, n > 0 and r ∈ {n, . . . , n+ f(n) + 1}, sets
of the form Lr

e,n or Lr,i
e,n such that the following holds.

– Suppose that r ≤ n+ f(n) and r − n is even. Then for all i < n, L contains
Lr,i

e,n iff L contains Ls
e,n for all s ∈ {n, . . . , r− 1}. Moreover, L contains Lr

e,n

iff (i) L contains Lr,i
e,n for all i < n and (ii) Me(σr

e,n, τe,n) is defined and is a
sequence where 1 occurs once and only once.

– Suppose that r ≤ n + f(n) and r − n is odd. Then L contains Lr
e,n iff L

contains Ls,i
e,n for all s ∈ {n, . . . , r − 1} and i < n. Moreover, for all i < n, L

contains Lr,i
e,n iff (i) L contains Lr

e,n and (ii) Me(σr
e,n, τe,n) is defined and is

a sequence of nothing but 0’s.
– Suppose that r = n+ f(n) + 1. Then L contains Lr

e,r and Ln,i
e,r for all i < n

iff for all s ∈ {n, . . . , r − 1}, L contains Ls
e,n and Ls,i

e,n for all i < n.
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Let e ∈ N be such that Me is a consistent In-classifier that classifies L. Let
n > 0 be given. Since Me classifies ∅, the definition of g(e, n) implies that
Me(#g(e,n), τe,n) is a sequence of nothing but 0’s. Moreover, for all members r
of {n, . . . , n + f(n)}, either r − n is even and M(σr

e,n, τe,n) is defined and is a
sequence where 1 occurs once and only once, or r − n is odd and M(σr

e,n, τe,n)
is defined and is a sequence of nothing but 0’s. Indeed, suppose otherwise for a
contradiction. Let r ∈ {n, . . . , n+f(n)} be least such that the previous condition
does not hold. Assume that r−n is even (the case where r−n is odd is similar).
According to its definition, L contains Lr,i

e,n for all i < n, but it contains no
Ls

e,n with s ∈ {r, . . . , n + f(n) + 1}. Since Me classifies L and is consistent, we
infer that Me(σr

e,n, τe,n) is defined and is a sequence where 1 occurs once and

only once. This is a contradiction. Hence any text t for Ln+f(n)+1
e,n having σr

e,n as
initial segment for all r ∈ {n, . . . , n+f(n)+1} is such that the cardinality of the
set {Me

(
t|i+1, τe,n

)
�= Me

(
t|i, τe,n

)
| i ∈ N} is greater than f(n). This completes

the proof of part (a). We omit the proof of part (b). ��

6 Conclusion

Our aim was to close the gap between classification and learning, using a notion
of multiclassification where arbitrarily large finite sets of membership queries
have to be dealt with synchronously. Learning implicitly permits to multiclas-
sify the membership of all numbers in the limit and therefore our result that
in many cases learnability is more difficult to achieve than classification is not
unexpected. We have also shown that multiclassification is interesting in its own
right. In particular combining it with conservativeness and various variants of
consistency gives a complex and interesting picture. Furthermore, multiclassi-
fication permits in many cases severe constant mind change bounds and we
explored the interaction between these constant mind change bounds on the one
hand and the learnability of the corresponding classes on the other hand.
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Abstract. Patterns provide a simple, yet powerful means of describ-
ing formal languages. However, for many applications, neither patterns
nor their generalized versions of typed patterns are expressive enough.
This paper extends the model of (typed) patterns by allowing relations
between the variables in a pattern. The resulting formal languages are
called Relational Pattern Languages (RPLs). We study the problem of
learning RPLs from positive data (text) as well as the membership prob-
lem for RPLs. These problems are not solvable or not efficiently solvable
in general, but we prove positive results for interesting subproblems.

We further introduce a new model of learning from a restricted pool
of potential texts. Probabilistic assumptions on the process that gener-
ates words from patterns make the appearance of some words in the text
more likely than that of other words. We prove that, in our new model,
a large subclass of RPLs can be learned with high confidence, by effec-
tively restricting the set of likely candidate patterns to a finite set after
processing a single positive example.

1 Introduction

After Angluin [1] introduced the pattern languages, they became a popular ob-
ject of study in algorithmic learning theory. Patterns are strings consisting of con-
stant and variable symbols; substituting variables by strings of constant symbols
generates words in the corresponding pattern languages. Thus patterns provide
a simple and intuitive, yet powerful means of describing formal languages.

One focus has been on learning pattern languages in the limit from positive
data: a learner is given access to a stream of all and only the words in the target
language L and is supposed to generate a sequence of patterns that eventually
stabilizes on a pattern generating L [3, 2, 9]. Two central concerns are here

(a) the apparent trade-off between the expressiveness of pattern languages and
the existence of algorithms for learning such languages from positive data [10],

(b) the lack of efficient algorithms for fundamental tasks involved in many
intuitive learning procedures, like solving the membership problem for pattern
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languages [1]. Any learning algorithm that uses membership tests to construct
patterns consistent with the known data will suffer from the NP -hardness of the
membership problem.

The first concern is best illustrated when comparing non-erasing pattern lan-
guages [1] to erasing pattern languages [13], the latter ones differing from the
former ones only in the detail that they allow to replace variables in a pattern
with the empty string. This little additional detail makes patterns more expres-
sive, but at the same time, in general, non-learnable in the limit from positive
data [10]. Furthermore, even erasing pattern languages are often not expressive
enough to model interesting real-world applications. To this end, Wright [16] and
Koshiba [6] introduced an extension of pattern languages, called typed pattern
languages. Typed patterns restrict the set of allowed substitutions separately
for each variable, so as to model languages in which, e.g., the variable x3 in the
pattern “author: x1 title: x2 year: x3” should be replaced only by 4-digit
strings, whereas x1 and x2 can be replaced by strings containing letters. Un-
fortunately, little is known about general conditions under which typed pattern
languages are learnable. Moreover, for many applications, neither pattern lan-
guages nor typed pattern languages are sufficient to model the complex structure
in textual data. Below we give examples of bioinformatics applications in which
it is obvious that (typed) pattern languages lack the ability to express that the
substitutions for two or more distinct variables are dependent on each other.

This paper extends the model of (typed) pattern languages by allowing that
certain variables in a pattern are in a particular relation with each other. The
resulting formal languages are called Relational Pattern Languages ; both classi-
cal pattern languages and typed pattern languages are special cases of relational
pattern languages. Moreover, relational pattern languages overcome the limita-
tions observed in terms of expressiveness of (typed) pattern languages.

We study relational pattern languages both with respect to their learnability
in the limit from positive data (text) and with respect to the complexity of the
membership problem. Our contributions along these lines are as follows:

(1) Considering Gold’s model of learning in the limit from arbitrary texts [3],
relational pattern languages can be learned as long as the set of allowed relations
between variables is finite and no variable can be replaced by the empty string.
The conditions are essential for learnability.

(2) The membership problem for relational pattern languages is NP -complete
in general, but we show a number of interesting sub-problems that can be solved
efficiently. Most notably, we prove that the membership problem for relational
patterns over finitely many polynomial-time decidable relations is solvable in
polynomial time if the words for which to test membership are bounded in length.
This is not only a very interesting sub-problem from an application point of view,
but also not trivial, since we deal with potential empty substitutions.1

Considering practical applications, Gold’s model of learning in the limit can
be criticized: often there is no step in the learning process after which the set

1 If only non-empty substitutions for variables are allowed, the membership problem
restricted to a finite set of words becomes trivial.
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of candidate patterns can be reduced to a finite set, thus forcing the learner to
make a best guess within an infinite version space—this might make it difficult
for a user to decide when to interrupt the infinite learning process. Despite
allowing the learning algorithm this limit behaviour, there is no general positive
learnability result for the case that empty substitutions are allowed, cf. [10]. This
is partly due to the fact that a learning algorithm in Gold’s model is required to
be successful on any text for the target language. As a step towards a practical
model for learning a large class of (erasing) relational pattern languages, we
make the following contributions:

(3) We introduce a new model of learning from a restricted pool of potential
texts, since in practice not all texts (data streams) are equally likely. We assume
that there are probability distributions over the strings that can be substituted
for pattern variables, thus making the appearance of some words in the text
more likely than that of other words. As we will explain below, our model differs
from previous approaches that were based on a similar motivation [5, 12]. We
refer to the underlying patterns as Probabilistic Relational Patterns.

(4) We prove that in our new model, a large class of (erasing) probabilistic
relational pattern languages can be learned with high confidence, by effectively
restricting the set of likely candidate patterns to a finite set after processing only
a single positive example.

(5) Our model results in a simple but potentially practical method for test-
ing membership correctly with high confidence, for all probabilistic relational
patterns using a finite set of recursive relations.

2 Learning (Typed) Pattern Languages

Languages are defined with respect to a non-empty alphabet Σ. A word w is a
finite, possibly empty, sequence of symbols from Σ the length of which is denoted
by |w|.2 ε refers to the empty word, i.e., the word of length 0. The set of all words
over Σ is denoted by Σ∗, and the set of all non-empty words over Σ by Σ+;
hence Σ+ = Σ∗ \ {ε}. A language L is a subset of Σ∗. By w1 ◦ w2 we denote
the concatenation of two words w1 and w2 (where, for ease of presentation, we
allow w1 and/or w2 to be written as σ ∈ Σ rather than a word (σ) of length 1).
In what follows, we always assume Σ to be a finite set of cardinality at least 2.
We denote the set of all non-zero natural numbers by N+.

In Gold’s model of learning in the limit from positive data [3], a class of
languages is learnable if there is a learner that “identifies” every language in the
class from any of its texts, where a text for a language L is an infinite sequence
τ(0), τ(1), τ(2), . . . of words such that {τ(i) | i ∈ N} = L.

Definition 1 (Gold [3]). Let L be a class of languages. L is learnable in the
limit from positive data if there is a hypothesis space {Li | i ∈ N} ⊇ L and a
partial recursive mapping S such that, for any L ∈ L and any text (τ(i))i∈N for

2 “Word” refers to a finite sequence of symbols exclusively from Σ, whereas “string”
refers to any other sequence of symbols.
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L, S(τ(0), . . . , τ(n)) is defined for all n ∈ N and there is a j ∈ N with Lj = L
and S(τ(0), . . . , τ(n)) = j for all but finitely many n.

A class of languages that has been studied in the formal language theory commu-
nity as well as in the learning theory community is Angluin’s class of non-erasing
pattern languages [1], defined as follows. Let X = {x1, x2, . . .} be a countable set
of symbols called variables; we require that X be disjoint from Σ. A pattern is a
non-empty finite string over Σ∪X . The set of all patterns over Σ∪X will be de-
noted by PatΣ . A substitution is a string homomorphism θ : PatΣ → Σ∗ that is
the identity when restricted to Σ. The set of all substitutions with respect to Σ
is denoted by ΘΣ . The non-erasing language LNE(p) of a pattern p ∈ (Σ ∪X)+

is defined by LNE(p) = {w ∈ Σ∗ | ∃θ ∈ ΘΣ [θ(p) = w∧∀x ∈ X [θ(x) �= ε]]}, i.e.,
it consists of all words that result from substituting all variables in p by non-
empty words over Σ∗. The set LΣ,NE of non-erasing pattern languages is given
by LΣ,NE = {LNE(p) | p ∈ PatΣ}. Angluin showed that LΣ,NE is learnable in
the limit from positive data [1].

Shinohara extended pattern languages by permitting the substitution of vari-
ables by ε [13]. We denote the erasing pattern language of a pattern p by LE(p),
where LE(p) = {w ∈ Σ∗ | ∃θ ∈ ΘΣ [θ(p) = w]}, and refer to the class of erasing
pattern languages by LΣ,E . For |Σ| ∈ {2, 3, 4}, LΣ,E is not learnable in the limit
from positive data [10]. Wright [16] studied a subclass of erasing pattern languages
under restricted substitutions, leading to Koshiba’s typed pattern languages [6].
In Koshiba’s model, each variable x in a pattern p is assigned a particular type
T (x) = t, where t ⊆ Σ∗ is recursive. (p, T ) is then called a typed pattern. The
words generated by (p, T ) are formed by substituting any variable of type t in p
only with words from t, resulting in the typed pattern language L(p, T ).3

Types make pattern languages more expressive and more suitable for appli-
cations. For example, a system for entering bibliographic data as described by
Shinohara [13] might use patterns like p = author: x1 title: x2 year: x3. One
would expect x3 to be substituted only by certain two or four digit integers—a
property that becomes expressible when using types.

Fig. 1. RNA sequence
with bonds

In fact, every recursive language L can trivially be
written as a typed pattern language, generated by the
pattern p = x1 where the type of x1 is L. Thus, a
typed pattern is not always a useful description of a
language, from an application point of view. Ideally,
one would like to keep the types themselves simple, to
make the pattern understandable by humans.

Consider for example patterns describing RNA se-
quences formed out of bases A,C,G,U . The sec-
ondary structure of molecules contains information
about bonds between base pairs in the sequence; C can
bond with G, A with U . For example, Fig. 1 shows po-
tential intramolecular bonds for the sequence CUUU
3 Actually, Koshiba did not allow substituting variables by the empty string, but we

relax this condition here. We also deviate slightly from his notation.
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UCCG AGGG UCAG CGGA ACCA. Obviously, the bonding partners towards
one end of the sequence must appear in reverse order of the corresponding bases
towards the opposite end of the sequence. To express this with a typed pattern
would require the whole subsequence UCCG AGGG UCAG CGGA to be the
substitution for a single variable and thus an element of a complex type.

A formally simpler example is the language L1 = {anbn | n ≥ 1}, which is
context-free but not regular. To express L1 as a typed pattern language requires
“complex” types; regular types are not sufficient.

Proposition 2. Let (p, T ) be a typed pattern. If L(p, T ) = L1 then there is some
x ∈ X occurring in p such that T (x) is not a regular language.

Proof. Let (p, T ) be a typed pattern generating L1, and k be the number of
variables that occur more than once in p. Assume T (x) was regular for all x ∈ X
occurring in p. We deduce a contradiction by induction on k.

For k = 1, L(p, T ) would be the concatenation of regular languages and as
such regular—a contradiction.

For k ≥ 2, let x be a variable that occurs l times in p with l ≥ 2. W.l.o.g., we
may assume that L(x, T ) �= {ε}. Since L(p, T ) = L1 and x occurs multiple times,
one obtains L(x, T ) ⊆ {ai | i ∈ N+} or L(x, T ) ⊆ {bi | i ∈ N+}. For L(x, T ) ⊆
{ai | i ∈ N+}, let y be a variable not occurring in p, T ′(y) = {ai·l | ai ∈ L(x, T )},
and T ′(z) = T (z) for all variables z occurring p. Then L(p′, T ′) = L(p, T ) = L1,
where p′ is the pattern that results when removing all occurrences of x from p and
adding y as a prefix. The inductive hypothesis yields the required contradiction.
The case L(x, T ) ⊆ {bi | i ∈ N+} is analogous. ��

3 Relational Patterns

In order to model interdependencies between the substitutions of variables, we
introduce relations between variables into the definition of patterns.

Definition 3. Let R be a set of relations over Σ∗. Then, for any n ∈ N+, Rn

denotes the set of n-ary relations in R. A relational pattern with respect to Σ and
R is a pair (p, vR) where p is a pattern over Σ and vR ⊆ {(r, y1, . . . , yn) | n ∈
N+, r ∈ Rn, and y1, . . . , yn are variables in p}. The set of relational patterns
with respect to R will be denoted by PatΣ,R.

The set of all possible substitutions for (p, vR) is denoted by Θ(p,vR),Σ. It
contains all substitutions θ ∈ ΘΣ that fulfill, for all n ∈ N+:

∀r ∈ Rn ∀y1, . . . , yn ∈ X [(r, y1, . . . , yn) ∈ vR ⇒ (θ(y1), . . . , θ(yn)) ∈ r] .

The language of (p, vR), denoted by L(p, vR), is defined as {w ∈ Σ∗ | ∃θ ∈
Θ(p,vR),Σ : θ(p) = w}. The set of all languages of relational patterns with respect
to R will be denoted by LΣ,R.

For instance, r = {(w1, w2) | w1, w2 ∈ Σ∗ ∧ |w1| = |w2|} is a binary relation,
which, applied to two variables x1 and x2 in a relational pattern (p, vR), ensures
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that the substitutions of x1 and x2 generating words from p always have the
same length. Formally, this is done by including (r, x1, x2) in vR.

We assume, without loss of generality, that for every variable x occurring in
a relational pattern (p, vR), there is exactly one r ∈ R1 such that (r, x) ∈ vR. In
fact, this unary relation r represents the type of variable x. If there is no r ∈ R1

with (r, x) ∈ vR, we can include (r∗, x) in (p, vR), where w ∈ r∗ ↔ w ∈ Σ∗. If R1

contains several ri (for i in some index set I) with (ri, x) ∈ vR, we can replace
them by the single relation (r∩I , x) where w ∈ r∩I ↔ ∀i ∈ I [w ∈ ri]. We will
use the terms “type” and “unary relation” interchangeably. Similarly, without
loss of generality, each set of n variables is included in vR with at most one n-ary
relation. We further assume that relational patterns do not contain any variable
twice. This is no restriction, since repetition of variables can be expressed by an
equality relation between two distinct variables.

We are only going to consider the case that R is finite, which seems sufficient
for many practical applications. It is easy to see that LΣ,NE and LΣ,E, as well
as the class of typed pattern languages over finitely many types, are subclasses
of LΣ,R, for respective suitably defined finite sets R.

The gain in expressiveness shows for example in L1, which, by Proposition 2,
cannot be expressed as a typed pattern language using only regular type lan-
guages. Using relational patterns, regular types are sufficient to describe L1.

Proposition 4. There is a finite set R of relations such that R1 contains only
regular languages and L1 ∈ LΣ,R.

Proof. If R = {r1, r2, r}, r1 = {ai | i ≥ 1}, r2 = {bi | i ≥ 1}, r = {(w1, w2) |
|w1| = |w2|}, and vR = {(r1, x1), (r2, x2), (r, x1, x2)} then L(x1x2, vR) = L1. ��

Since erasing pattern languages can be expressed as relational pattern languages,
Reidenbach’s non-learnability results for erasing pattern languages [10] immedi-
ately yield the following theorem.

Theorem 5. There is a finite alphabet Σ and finite set R of recursive relations
such that LΣ,R is not learnable in the limit from positive data.

However, if we disallow empty substitutions, we get positive learnability results
for any set of recursive relations.

Theorem 6. Let R be a finite set of recursive relations with r ⊆ Σ+ for all
r ∈ R1. Then LΣ,R is learnable in the limit from positive data.

To prove this, we use a well-known result due to Angluin [2], according to which
every indexable class of languages that has finite thickness is learnable in the
limit from positive data. A class L of languages is indexable if there is an enu-
meration (Li)i∈N with L = {Li | i ∈ N} and an effective procedure d that
decides, given any i ∈ N and w ∈ Σ∗, whether or not w ∈ Li [2]. (Li)i∈N is
then called an indexing for L. An indexable class L has finite thickness if, for
every w ∈ Σ∗, the set of languages in L that contain w is finite. One can es-
tablish both indexability and finite thickness to prove Theorem 6. The proofs
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of both these properties use standard techniques and are omitted because of
space constraints. It should be noted though that our results show in particular,
that Theorem 6 can be witnessed by a learner that returns relational patterns
as its hypotheses—a desirable feature from an application point of view, since
relational patterns provide an intuitive representation of a language.

Lemma 7. Let R be a finite set of recursive relations with r ⊆ Σ+ for all
r ∈ R1. There exists an effective enumeration f : N → PatΣ,R of all relational
patterns over R such that (L(f(i)))i∈N is an indexing for LΣ,R.

Lemma 8. Let R be a finite set of recursive relations with r ⊆ Σ+ for all
r ∈ R1. Then LΣ,R has finite thickness.

In fact, Lemma 8 can be strengthened. An indexable class L is said to have
recursive finite thickness [8] if there is an indexing (Li)i∈N for L and a recursive
procedure c such that, for any w ∈ Σ∗, c(w) is a finite subset of N fulfilling
[w ∈ Li ↔ ∃j ∈ c(w) [Lj = Li]], i.e., for every word w a finite list of indices for
all languages in L containing w can be effectively determined.

Theorem 9. Let R be a finite set of recursive relations with r ⊆ Σ+ for all
r ∈ R1. Then LΣ,R has recursive finite thickness.

The proof is omitted due to space constraints. Theorem 9 has some nice conse-
quences, which follow immediately from the literature on recursive finite thick-
ness [8, 7]. For the following corollary, note that an iterative learner [14] is
restricted to learn without access to prior data at any point in time. Its hypothesis
on a text segment (τ(0), . . . , τ(n)) is determined only by τ(n) and its hypothesis
generated on (τ(0), . . . , τ(n − 1)) (or a dummy hypothesis in case n = 0).

Corollary 10. Let R be a finite set of recursive relations with r ⊆ Σ+ for all
r ∈ R1. Let k ∈ N. Then the class of all unions of up to k languages from LΣ,R

is learnable in the limit from positive data using an iterative learner.

4 The Membership Problem

Many algorithms for learning formal languages make a hypothesis only if the
corresponding language is proven to be consistent with the observed data. This
typically requires solving several instances of the membership problem. If P ⊆
PatΣ is a set of patterns and W ⊆ Σ∗ a set of words, then the erasing (non-
erasing) membership problem for (P ,W ) is decidable if there is an effective
procedure that, given any p ∈ P and any w ∈ W , decides whether or not w ∈
LNE(p) (w ∈ LE(p), resp.). Similarly, we can define the membership problem
for relational pattern languages.

The fact that both the non-erasing and the erasing membership problem for
(PatΣ , Σ∗) are NP -complete [1, 4] is an obstacle for the design of efficient learn-
ing algorithms for pattern languages. In this section, we study the complexity
of subproblems of the memberhip problem for relational pattern languages.
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The following consequence of Angluin’s result is straightforward.

Theorem 11. Let R be a finite set of recursive relations. Then the membership
problem for (PatΣ,R, Σ

∗) is NP -hard.

However, when the number of variables occurring in a relational pattern is
bounded a priori, we get a positive result, which generalizes Angluin’s result
that the non-erasing membership problem is polynomial-time decidable if the
patterns contain at most k variables, for some k [1].

Theorem 12. Let R be a set of finite relations, each of which is decidable
in polynomial time. Let k ∈ N. Then the membership problem for ({(p, vR) ∈
PatΣ,R | p contains at most k distinct variables}, Σ∗) is decidable in polynomial
time.

Proof. Given a relational pattern (p, vR) over R and a word w, the following
procedure decides whether w ∈ L(p, vR) in time polynomial in |p|, |vR|, and |w|.

1. Let z ≤ k be the number of distinct variables in p. List all tuples (w1, . . . , wz)
of up to z many substrings of w, for which w1 ◦ . . . ◦ wz is a subsequence of
w. (Note: as k is constant, the number of such tuples is polynomial in |w|.)

2. For each tuple (w1, . . . , wz) thus listed, define a substitution θ by substituting
the z variables in p in order with the words w1, . . . , wz; then test whether
(i) θ ∈ Θ(p,vR),Σ and (ii) θ(p) = w. (Note: these tests can be done in
polynomial time, since all relations in R can be decided in polynomial time.)

3. If there is one tuple (w1, . . . , wz) for which the test on both (i) and (ii) is
positive, return yes, otherwise return no.

The correctness and efficiency of the procedure follow immediately. ��

In contrast to this, in the context of relational patterns, it is impossible to get
an equivalent of Shinohara’s [13] result stating that the (non-)erasing member-
ship problem is polynomial-time decidable when restricted to the class of all
patterns in which no variable occurs twice, so called regular patterns. Since rela-
tional patterns can always be expressed equivalently without using any variable
twice, Theorem 11 yields NP -hardness of the membership problem for relational
patterns with recursive relations and without repetition of variables.

For erasing regular pattern languages, Shinohara’s result can be extended:

Theorem 13. Let k ∈ N. Then the erasing membership problem for ({p ∈
PatΣ | there are at most k variables that occur multiple times in p}, Σ∗) is
decidable in polynomial time.

Proof. For a given p ∈ PatΣ with at most k repeated variables and for w ∈ Σ∗,
the number of ways in which only the repeated variables in p can be replaced
by subwords of w is (loosely) upper-bounded by

(|w|
2k

)
(for each of the up to k

repeated variables, one fixes a start position and an end position of the first loca-
tion in w in which the variable could be substituted), which is polynomial in |w|.
Replacing only the repeated variables by words in this way maps p to a regular
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pattern whose length is polynomial in |w| + |p|. Obviously, w ∈ LE(p) iff w is
generated by one of these regular patterns. Since, according to Shinohara [13],
the erasing membership problem for regular patterns is polynomial-time decid-
able, it follows that w ∈ LE(p) can be decided in polynomial time as well. ��

To our knowledge, the literature has so far not dealt with the question of the
complexity of the membership problem when the class of patterns is not severely
restricted, yet the set of words is. Since many real-world applications deal with
an a priori restricted set of words, it seems reasonable to focus our attention
on such problems. For example, in bioinformatics applications, one often has an
upper bound on the length of RNA sequences or amino acid sequences that will
occur in a database, due to restrictions on either molecular size or the length of
snippets collected in experiments. We hence focus on the membership problem
for (P , Σ≤m) for m ∈ N and for large classes P of (relational) patterns. Here
Σ≤m denotes the set of words of length at most m over Σ.

For classical patterns, the non-erasing membership problem for (PatΣ , Σ≤m)
clearly is polynomial-time decidable, since the length of a pattern generating a
word w is upper-bounded by |w|. However, for erasing pattern languages and
for the general case of relational pattern languages, a similar statement does
not follow that obviously. The following main result of this section states that,
for words of length at most m, the membership problem for a very general
class of relational patterns is polynomial-time decidable. Note that this does not
provide practical solutions in general, since the length bound m, which occurs
in the exponent in our complexity bound, might be rather large in practice.

Theorem 14. Let R be a set of polynomial-time decidable relations and m ∈ N.
Then the membership problem for (PatΣ,R, Σ

≤m) is decidable in polynomial
time.

Proof. Let (p, vR) ∈ PatΣ,R and w ∈ Σ≤m. Let R′ be the set of relations
resulting from R when every unary relation t is replaced by t \ {ε}, i.e., R′ =
(R \R1) ∪ {(t \ {ε} | t ∈ R1}.

We say that ((p, vR), w) fulfills Property (∗) if there is a relational pattern
(q, vR′) ∈ Q(p,vR) with |q| ≤ |w|, and a substitution θq ∈ Θ(q,vR′ ),Σ, such that
θq(q) = w and θ ∈ Θ(p,vR),Σ , where θ restricted to the variables in q equals
θq and θ(x) = ε for all other variables. Here Q(p,vR) is the set of all relational
patterns (q, vR′) ∈ PatΣ,R′ where

1. q results from p by removing arbitrarily many variables from p
2. vR′ = {(r, y1, . . . , yn) ∈ vR | yi occurs in q for all 1 ≤ i ≤ n, n ≥ 2}] ∪ {(t \

{ε}, x) | (t, x) ∈ vR and x occurs in q}.

First, we claim that w ∈ L(p, vR) iff ((p, vR), w) fulfills Property (∗): If w ∈
L(p, vR), then there is a substitution θp ∈ Θ(p,vR),Σ such that θp(p) = w. Let q
be the pattern resulting from p after deletion of all variables x with θ(x) = ε.
Obviously, |q| ≤ |w| and there is a θq ∈ Θ(q,vR′ ),Σ with θq(q) = w, where vR′ is
defined as in Property (∗).2. Clearly, (q, vR′) ∈ Q(p,vR). It remains to show that
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θ ∈ Θ(p,vR),Σ , where θ restricted to the variables in q equals θq and θ(x) = ε for
all other variables. This follows from θ = θp. Hence ((p, vR), w) fulfills Property
(∗). If ((p, vR), w) fulfills Property (∗), it follows just as easily that w ∈ L(p, vR).

Second, we show that Property (∗) can be tested in polynomial time in |p|
and |vR|: To construct a list of all (q, vR′) ∈ Q(p,vR) with |q| ≤ |w|, it suffices to
consider all sets S of at most |w| many distinct variables occurring in p and to
list, for each such S, the relational pattern (θ′(p), vR′) with vR′ as in Property
(∗).2, where

θ′(x) :=

{
x , if x ∈ S ∪Σ ,

ε , otherwise .

With |S| ≤ |w| ≤ m, it follows that at most

|w|∑
i=0

(
|p|
i

)
≤

|w|∑
i=0

|p|i ≤ (m+ 1) · |p|m = O(|p|m)

many relational patterns (q, vR′) are listed. Theorem 12 implies that, for these
listed relational patterns (q, vR′), membership of w in L(q, vR′) can be tested in
time polynomial in m. If all these membership tests are negative, then Property
(∗) is not fulfilled. Each positive membership test yields a substitution θq ∈
Θ(q,vR′ ) with θq(q) = w. One then tests whether θ ∈ Θ(p,vR),Σ , where θ is defined
as in Property (∗); each of these tests can be done in O(|vR| · |p|). Property (∗)
is fulfilled if and only if one of these tests is positive. With m being fixed, the
total run-time is polynomial in |vR| and |p|. ��

5 Probabilistic Relational Patterns

We have identified two problems that are impossible or hard to solve for complex
classes of relational patterns: (i) learning such patterns from text and (ii) the
membership problem for such patterns for all words w ∈ Σ∗. There is reason
to assume that real-world instantiations of these problems can be solved more
easily. To model realistic scenarios more closely, we assume that certain words in
a (relational) pattern language are more likely than others, and thus introduce
the class of probabilistic relational patterns. Our approach addresses the two
issues above in the following way.

Learning from text. In applications, not all words are equally likely to occur
in a text for a target language. Hence it seems unnecessary to demand from a
learner to be successful on all texts of a target language. In this section, we mod-
ify Gold’s success criterion by considering probability distributions over types
in the pattern language and demanding learnability only from texts that are
“sufficiently likely.” Studying the learnability of probabilistic relational pattern
languages in our new model, we obtain upper bounds on the number of relational
patterns that have to be considered to identify the target language.

The membership problem. As a side-effect of our model of probabilistic re-
lational patterns, we obtain a simple and potentially practical mechanism for
testing membership of words of arbitrary length.
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We choose to model probabilistic relational pattern languages via probability
distributions on types, i.e., for any type r and any subset A ⊆ r, a variable of
type r is substituted by a word from subset A with a certain probability. We
have to make sure though that the collection of words substituted for distinct
variables does not violate any of the higher-order relations in the pattern.

Definition 15. Let R be a set of relations. A probabilistic relational pattern
over R is a triple (p, vR, prR1), where (p, vR) is a relational pattern over R and,
for each r ∈ R1, prR1 contains exactly one probability distribution on r. For
r ∈ R1 and A ⊆ r, the probability of A with respect to r is then denoted by
prr(A). A probabilistic text for (p, vR, prR1), if existent, is an infinite sequence
of words in L(p, vR), each of which is formed by the following stochastic process:

1. For each variable x in p, for (r, x) ∈ vR, draw a substitution θ(x) ∈ r
according to prr.

2. If, for all n ∈ N+, all r′ ∈ Rn, and all (r′, xi1 , . . . , xin) ∈ vR, the substi-
tutions drawn fulfill (θ(xi1 ), . . . , θ(xin)) ∈ r′, then return the word resulting
from the substitutions drawn in step 1. Otherwise, repeat from step 1.

Unlike Gold’s definition, we define the success criterion with respect to a class
of patterns rather than pattern languages. This is necessary since two relational
patterns could describe the same language L but differ in the probability distri-
bution defined on L.

Definition 16. Let P be a class of probabilistic relational patterns and δ ∈
(0, 1). P is δ-learnable in the limit from likely texts if there is a partial recur-
sive mapping S such that, for any (p, vR, prR1) ∈ P, if (τ(i))i∈N is any prob-
abilistic text for (p, vR, prR1), then, S(τ(0), . . . , τ(n)) is defined for all n and,
with probability at least 1 − δ, there is a relational pattern (q, v′R) such that
L(q, v′R) = L(p, vR) and S(τ(0), . . . , τ(n)) = q for all but finitely many n.

The parameter δ determines a confidence level with which the learner S is sup-
posed to identify a pattern from a probabilistic text, if this text is generated
according to Definition 15. Learning is still a limit process, but success is only
required on a portion of all possible texts.

Our model has some similarities with stochastic finite learning [11, 12]. In the
latter model though, learning is a finite process and the data stream is generated
from a probability distributions over the learning domain (which is in our case
Σ∗) rather than over types. Kearns and Pitt [5] studied PAC learning of pattern
languages generated by patterns with a bounded number of variables, restricting
the class of possible distribution of words by considering only a particular kind
of substitution. The way they restrict substitutions differs from our model, and
their learner expects both positive and negative examples to learn from.

Prior research on (efficient) learning of subclasses of erasing pattern languages
mostly studied patterns in which the number of variables is a priori upper-
bounded [11, 12, 15]. However, in many applications, the number of variables
in target patterns is huge, but the arity of relations is limited. For instance, in
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our simplified bioinformatics model, the maximal arity of relations in relational
patterns that describe the two-dimensional structure of RNA sequences is 2.
Therefore, we study relational patterns in which the arity of relations is bounded
and the number of distinct variables is unbounded.

Definition 17. Let k ∈ N, R a finite set of recursive relations, and (p, vR) a
relational pattern. (p, vR) is called k-simple, if

1. Ri = ∅ for all i > k,
2. for every x ∈ X, |{(r, y1, . . . , yi−1, x, yi+1, . . . , yn) ∈ vR | n ≥ 2, 1 ≤ i ≤

n}| ≤ 1, and
3. if r ∈ R, (w1, . . . , wi) ∈ r, and wj = ε for some j ∈ {1, . . . , i} then w1 =

. . . = wi = ε.

A k-simple relational pattern contains at most 1 multi-variable relation per vari-
able, with an arity of at most k. These relations, as well as all types in a k-simple
pattern, are recursive. Erasing pattern languages generated by patterns with a
bounded number of variable repetitions can also be generated by k-simple rela-
tional patterns.4 In addition, relational patterns generating RNA sequences as
shown in Figure 1 are 2-simple, if each base participates in at most one bond.

Definition 18 requires additional notation. For a relational pattern (p, vR),
any n-ary relation r, and any i ∈ {1, . . . , n}, r[i] denotes the set {w ∈ Σ∗ |
∃w1, . . . , wi−1, wi+1, . . . , wn ∈ Σ∗ [(w1, . . . , wi−1, w, wi+1, . . . , wn) ∈ r]} and

Allowed(x) =
⋂

r(y1,...,yi−1,x,yi+1,...,yn)∈vR

r[i] .

Intuitively, Allowed(x) is the set of all words that can potentially be substituted
for x in the relational pattern (p, vR).

Definition 18. Let π ∈ (0, 1), k ∈ N, R a finite set of recursive relations, and
(p, vR, prR1) a probabilistic relational pattern. (p, vR, prR1) is called (k, π)-good
if (p, vR) is k-simple and, for all t ∈ R1 and all x with (t, x) ∈ vR

1. prt(Allowed(x)) > 0,
2. there is a set A ⊆ t \ {ε} with prt(Allowed(x)∩A)

prt(Allowed(x)) > 1 − π.

The main result of this section shows that (k, π)-good probabilistic relational
patterns are learnable with high confidence, by cutting down to a finite set of
likely candidate patterns after processing only a single positive example.

Theorem 19. Let δ, π ∈ (0, 1), k ∈ N, R a finite set of recursive relations,
and P any class of (k, π)-good probabilistic relational patterns with respect to R.
Then P is δ-learnable in the limit from likely texts.

4 To our knowledge, learnability of this class has not been studied in the literature
before—our positive learnability result presented below in Corollary 21 immediately
yields learnability of such erasing pattern languages from likely texts.
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Proof. Let (p, vR, prR1) ∈ P be arbitrary and v be the number of independent
variables in (p, vR), i.e., variables x such that for all n ∈ N and for all r ∈ Rn :
(r, y1, . . . , yi−1, x, yi+1, . . . , yn) ∈ vR implies i = 1. Let τ be an arbitrary prob-
abilistic text for L(p, vR). Since (p, vR, prR1) is (k, π)-good, for all t ∈ R1 and
for all variables x of type t in p, there is a set A ⊆ t \ {ε} fulfilling Properties 1
and 2 of Definition 18. m1 = |τ(0)| is an upper bound for the number of inde-
pendent variables in (p, vR) that have been substituted by w ∈ A in τ(0). Since
prt(Allowed(x) ∩A)/prt(Allowed(x)) > 1 − π, each of the v many independent
variables in p are substituted with probability 1 − π by a word from A.

Using Chernoff bounds with μ = v(1−π), it follows that the probability that
fewer than (1 − λ1)μ = (1 − λ1)v(1 − π) independent variables are replaced by
a word from A is less than exp(−μλ2

1
2 ) = exp(− v(1−π)λ2

1
2 ) where λ1 ∈ (0, 1).

First, we determine an upper bound for v with a confidence of at least 1− δ1
for some δ1 ∈ (0, δ

2 ). We want to upper-bound the probability Pr[m1 < (1 −
λ1)v(1 − π)] (which is < exp(− v(1−π)λ2

1
2 )) by δ1. This can be achieved when

exp(−μ
2 +m1 − m2

1
2μ ) ≤ δ1 (details are omitted), which holds when μ + m2

1
μ ≥

2m1 − 2 ln δ1 and in particular when μ ≥ 2m1 − 2 ln δ1. The latter is equivalent
to v ≥ 1

1−π (2·m1−2·ln δ1). Thus, with confidence level 1−δ1, 1
1−π (2·m1−2·ln δ1)

is an upper bound for the number of independent variables in p.
Second, we compute an upper bound for the number m2 of independent vari-

ables that are substituted by ε, with confidence level 1 − δ2 for δ2 = δ
2 . Using

Chernoff bounds with an expected value of μ′ = vπ, it follows that

Pr[m2 > (1 + λ2) · μ′] = Pr[m2 > (1 + λ2) · v · π] <
[

exp(λ2)
(1 + λ2)(1+λ2)

]v·π
.

If λ2 = min{λ > 0 |
[

exp(λ)
(1+λ)(1+λ)

]vπ

≤ δ2}, then (1 + λ2)vπ + 1 ≥ m2 with
confidence level 1−δ2. Since (p, vR) is k-simple, a variable can be substituted by
ε only if it is in relation with a variable that is substituted by ε. As Ri = ∅ for
i > k and because of Property 2 in Definition 17, with confidence level 1 − δ2,
the number of variables in p that are substituted by ε is at most m2k.

Thus, with confidence at least (1 − δ1)(1 − δ2) > (1 − δ), m1 + m2k is an
upper bound for |p|. Since R is finite, the set of possible candidates for the
target language (with confidence at least 1 − δ) is finite and, therefore, the
target pattern can be identified in the limit from positive data with probability
1 − δ. ��

For typed pattern languages defined over a finite number of types and with a
bounded number of variable repetitions, we obtain a general positive learnabil-
ity result. They can be represented by a particular kind of k-simple relational
pattern, for which we can prove learnability from likely texts using Theorem 19.
The proof is omitted because of space constraints. We require that every variable
has a non-zero probability of being replaced with a non-empty word.
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Theorem 20. Let k ∈ N and let L be the class of all typed pattern languages
generated using finitely many types and patterns with at most k repetitions per
variable. Then there is a set R of relations such that

1. L ⊆ LΣ,R, and
2. for all δ, π ∈ (0, 1), the class {(p, vR, prR1) | (p, vR) ∈ LΣ,R and ∀t ∈

R1 [prt(t \ {ε}) > 1 − π]} is δ-learnable from likely texts.

Corollary 21. Let k ∈ N and let L be the class of all erasing pattern languages
generated by patterns with at most k repetitions per variable. Then there is a set
R of relations such that

1. L ⊆ LΣ,R, and
2. for all δ, π ∈ (0, 1), the class {(p, vR, prR1) | (p, vR) ∈ LΣ,R and ∀t ∈

R1 [prt(t \ {ε}) > 1 − π]} is δ-learnable from likely texts.

The model of probabilistic relational patterns also yields a straightforward
method for testing membership correctly with high confidence.

Observation 22. Let R be a finite set of recursive relations and let prR1 contain
a probability distribution for each r ∈ R1. Let δ, π ∈ (0, 1). Let A be the following
algorithm, given a probabilistic relational pattern (p, vR, prR1) and w ∈ Σ∗:

1. Let W be the set of words obtained from 2 − 2 ln(δ)/π independent draws
from L(p, vR) as in Definition 15.

2. If w ∈W , return yes, else return no.

Then, for any (p, vR) and any w ∈ L(p, vR) whose probability of being generated
in (p, vR, prR1) by the process in Definition 15 is at least π, A detects the mem-
bership of w in L(p, vR) with probability at least 1 − δ. For any (p, vR) and any
w /∈ L(p, vR), A declares non-membership of w in L(p, vR).

The proof is a simple application of Chernoff bounds that implies that, after
2−2 ln(δ)/π independent trials, an event with probability at least π occurs with
probability at least 1− δ. For example, to detect membership with a confidence
of 0.9 for all words whose probability is at least π = 0.00001, a set W of about
660,518 words would be generated. How efficient such a method would be in
practice depends on the efficiency of generating words from relational patterns.

6 Conclusion

We extended the model of (typed) pattern languages by introducing relational
pattern languages, whose expressiveness seems more apt for many applications.
We studied relational pattern languages both with respect to their learnability
from positive data and with respect to the complexity of the membership prob-
lem. We identified interesting sub-problems of the membership problem that
can be solved efficiently, in particular the sub-problem of bounded word length,
which, to our knowledge, has not even been studied for classical patterns yet.
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Our probabilistic version of relational patterns, and the corresponding model
of learning from likely texts provide an adaptation for more realistic text mining
and bioinformatics scenarios than Gold’s original model can deal with. In our
new model, a large class of (erasing) probabilistic relational pattern languages
can be learned with high confidence. After seeing just one positive example, the
learner can effectively restrict the set of likely candidate patterns to a finite
set. Finally, we proposed a simple yet potentially efficient method for testing
membership for probabilistic relational patterns correctly with high confidence.
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Abstract. We consider the problem of online linear regression on indi-
vidual sequences. The goal in this paper is for the forecaster to output
sequential predictions which are, after T time rounds, almost as good as
the ones output by the best linear predictor in a given �1-ball in Rd. We
consider both the cases where the dimension d is small and large relative
to the time horizon T . We first present regret bounds with optimal de-
pendencies on the sizes U , X and Y of the �1-ball, the input data and the
observations. The minimax regret is shown to exhibit a regime transition
around the point d =

√
TUX/(2Y ). Furthermore, we present efficient al-

gorithms that are adaptive, i.e., that do not require the knowledge of U ,
X, Y , and T , but still achieve nearly optimal regret bounds.

1 Introduction

In this paper, we consider the problem of online linear regression against ar-
bitrary sequences of input data and observations, with the objective of being
competitive with respect to the best linear predictor in an �1-ball of arbitrary
radius. This extends the task of convex aggregation. We consider both low- and
high-dimensional input data. Indeed, in a large number of contemporary prob-
lems, the available data can be high-dimensional—the dimension of each data
point is larger than the number of data points. Examples include analysis of
DNA sequences, prediction with sparse data (e.g., Netflix problem), times series
of seismic activity. In such high-dimensional problems, even linear regression on
a small �1-ball is sufficient if the best predictor is sparse. Our goal is, in both low
and high dimensions, to provide online linear regression algorithms along with
bounds on �1-balls that characterize their robustness to worst-case scenarios.

1.1 Setting

We consider the online version of linear regression, which unfolds as follows. First,
the environment chooses a sequence of observations (yt)t�1 in R and a sequence
of input vectors (xt)t�1 in Rd, both initially hidden from the forecaster. At each
time instant t ∈ N∗ = {1, 2, . . .}, the environment reveals the data xt ∈ Rd; the

� This research was carried out within the INRIA project CLASSIC hosted by École
Normale Supérieure and CNRS.

J. Kivinen et al. (Eds.): ALT 2011, LNAI 6925, pp. 99–113, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



100 S. Gerchinovitz and J.Y. Yu

forecaster then gives a prediction ŷt ∈ R; the environment in turn reveals the
observation yt ∈ R; and finally, the forecaster incurs the square loss (yt − ŷt)2.
The dimension d can be either small or large relative to the number T of time
steps: we consider both cases.

In the sequel, u · v denotes the standard inner product between u,v ∈ Rd,
and we set ‖u‖∞ � max1�j�d |uj| and ‖u‖1 �

∑d
j=1 |uj |. The �1-ball of radius

U > 0 is the following bounded subset of Rd:

B1(U) �
{
u ∈ Rd : ‖u‖1 � U

}
.

Given a fixed radius U > 0 and a time horizon T � 1, the goal of the forecaster
is to predict almost as well as the best linear forecaster in the reference set{
x ∈ Rd �→ u · x ∈ R : u ∈ B1(U)

}
, i.e., to minimize the regret on B1(U)

defined by

T∑
t=1

(yt − ŷt)2 − min
u∈B1(U)

{
T∑

t=1

(yt − u · xt)2
}
.

We shall present algorithms along with bounds on their regret that hold uni-
formly over all sequences1 (xt, yt)1�t�T such that ‖xt‖∞ � X and |yt| � Y for
all t = 1, . . . , T , where X,Y > 0. These regret bounds depend on four important
quantities: U , X , Y , and T , which may be known or unknown to the forecaster.

1.2 Contributions and Related Works

The literature on online linear regression is extensive, we can only situate our
work with those closest to ours.

Our first contribution consists of a minimax analysis of online linear regression
on �1-balls in the arbitrary sequence setting. We first provide a refined regret
bound expressed in terms of Y , d, and a quantity κ =

√
TUX/(2dY ). This

quantity κ is used to distinguish two regimes: we show a distinctive regime
transition2 at κ = 1 or d =

√
TUX/(2Y ). Namely, for κ < 1, the regret is of the

order of
√
T , whereas it is of the order of lnT for κ > 1.

This regret bound matches the optimal risk bounds for stochastic settings3

[BM01, Tsy03, RWY09]. Hence, linear regression is just as hard in the stochastic
setting as in the arbitrary sequence setting. Using the standard online to batch
conversion, we make the latter statement more precise by establishing a lower
bound for all κ at least of the order of

√
ln d/d. This lower bound extends those

of [CB99, KW97], which only hold for small κ of the order of 1/d.

1 Actually our results hold whether (xt, yt)t�1 is generated by an oblivious environ-
ment or a non-oblivious opponent since we consider deterministic forecasters.

2 In high dimensions (i.e., when d > ωT , for some absolute constant ω > 0), we do
not observe this transition (cf. Figure 1).

3 For example, (xt, yt)1�t�T may be i.i.d., or xt can be deterministic and yt = f(xt)+
εt for an unknown function f and an i.i.d. sequence (εt)1�t�T of Gaussian noise.
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The algorithm achieving our minimax regret bound is both computationally
inefficient and non-adaptive (i.e., it requires prior knowledge of the quantities
U , X , Y , or T that may be unknown in practice). The next two contributions
tackle these issues.

In the same setting as ours, [CBLW96] presents a gradient descent algorithm
with regret bounds relative to predictors in an �2-ball. For the regret relative to
predictors in an �1-ball, the EG± algorithm of [KW97] achieves a regret bound
of 2UXY

√
2T ln(2d) + 2U2X2 ln(2d). This algorithm is efficient, and our lower

bound in terms of κ shows that it is optimal up to logarithmic factors in the
regime κ � 1. However, the EG± algorithm requires prior knowledge of U , X ,
Y , and T .

Our second contribution is a generic method, called loss Lipschitzification,
which enables to adapt automatically to X , Y , and T when U is known. Our
method transforms the loss function u �→ (yt−u·xt)2 into a Lipschitz continuous
function and adapts to the unknown Lipschitz constant. The LEG algorithm
(Section 3) illustrates this technique by modifying the EG± algorithm [KW97]
to yield an algorithm of the same computational complexity that also achieves
the minimax regret without needing to know X , Y , and T beforehand.

Our third contribution is a simple method to achieve minimax regret uni-
formly over all �1-balls B1(U) for U > 0. This robustness property is similar
to that of the p-norm algorithms [GL03], but our method guarantees a better
regret bound4. This method aggregates instances of an algorithm that require
prior knowledge of U . For the sake of simplicity, we assume that X , Y , and T
are known, but explain in the discussions how to extend the method to a fully
adaptive algorithm that requires the knowledge neither of U , X , Y , nor T .

The SMIDAS algorithm [SST09] and the COMID algorithm [DSSST10], which
generalize p-norm algorithms, can be shown to achieve the minimax regret if U ,
X , Y and T are known. The LEG algorithm (Section 3) does so without prior
knowledge of the problem parameters X , Y and T . When U is unknown, the
Scaling algorithm (Section 4) has a better bound than the SMIDAS algorithm5.

The paper is organized as follows. In Section 2, we establish our refined upper
and lower bounds in terms of the intrinsic quantity κ. In Section 3, we present
an efficient and adaptive algorithm that achieves the optimal regret on B1(U)
when U is known. In Section 4, we use an aggregating strategy to achieve an
optimal regret uniformly over all �1-balls B1(U), for U > 0, when X , Y , and T
are known. Finally, in Section 5, we discuss as an extension a fully automatic
algorithm that requires no prior knowledge of U , X , Y , or T .

2 Optimal Rates

In this section, we first present a refined upper bound on the minimax regret on
B1(U) for an arbitrary U > 0. In Corollary 1, we express this upper bound in

4 Our regret bound grows as U instead of U2.
5 Same comment.
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terms of an intrinsic quantity κ �
√
TUX/(2dY ). The optimality of the latter

bound is shown in Section 2.2.

2.1 Upper Bound

Theorem 1 (Upper bound). Let d, T ∈ N∗, and U,X, Y > 0. The minimax
regret on B1(U) for bounded base predictions and observations satisfies

inf
F

sup
‖xt‖∞�X, |yt|�Y

{
T∑

t=1

(yt − ŷt)2 − inf
‖u‖1�U

T∑
t=1

(yt − u · xt)2
}

�

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3UXY

√
2T ln(2d) if U < Y

X

√
ln(1+2d)

T ln 2 ,

26UXY
√
T ln
(
1 + 2dY√

T UX

)
if Y

X

√
ln(1+2d)

T ln 2 � U � 2dY√
T X

,

32 dY 2 ln
(
1 +

√
T UX
dY

)
+ dY 2 if U > 2dY

X
√

T
,

where the infimum is taken over all forecasters F and where the supremum ex-
tends over all sequences (xt, yt)1�t�T ∈ (Rd × R)T such that |y1|, . . . , |yT | � Y
and ‖x1‖∞ , . . . , ‖xT ‖∞ � X.

Theorem 1 improves the bound of [KW97, Theorem 5.11] for the EG± algorithm.
First, our bound depends logarithmically—as opposed to linearly—on U for
U > 2dY/(

√
TX). Secondly, it is smaller by a factor ranging from 1 to

√
ln d

when
Y

X

√
ln(1 + 2d)
T ln 2

� U � 2dY√
TX

. (1)

Hence, Theorem 1 answers a question6 raised in [KW97] about the gap of√
ln(2d) between the upper and lower bounds.
The proof appears in [GY11]. It uses a Maurey-type argument: we randomize

over a discretization ofB1(U). Although this argument was used in the stochastic
setting (cf. [Nem00, Tsy03, BN08, SSSZ10]), we adapt it to the deterministic
setting. This is yet another technique that can be applied to both the stochastic
and individual sequence settings.

The following corollary expresses the upper bound of Theorem 1 in terms of an
intrinsic quantity κ �

√
TUX/(2dY ) that relates

√
TUX/(2Y ) to the ambient

dimension d.

Corollary 1 (Upper bound in terms of an intrinsic quantity). Let d, T ∈
N∗, and U,X, Y > 0. The upper bound of Theorem 1 expressed in terms of d, Y ,
and the intrinsic quantity κ �

√
TUX/(2dY ) reads:

6 The authors of [KW97] asked: “For large d there is a significant gap between the
upper and lower bounds. We would like to know if it possible to improve the upper
bounds by eliminating the ln d factors.”
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inf
F

sup
‖xt‖∞�X, |yt|�Y

{
T∑

t=1

(yt − ŷt)2 − inf
‖u‖1�U

T∑
t=1

(yt − u · xt)2
}

�

⎧⎪⎪⎨⎪⎪⎩
6 dY 2κ

√
2 ln(2d) if κ <

√
ln(1+2d)

2d
√

ln 2
,

52 dY 2κ
√

ln(1 + 1/κ) if
√

ln(1+2d)

2d
√

ln 2
� κ � 1 ,

32 dY 2
(
ln(1 + 2κ) + 1

)
if κ > 1 .

The upper bound of Corollary 1 is shown in Figure 1. Observe that, in low
dimension (Figure 1(b)), a clear transition from a regret of the order of

√
T to

one of lnT occurs at κ = 1. This transition is absent for high dimensions: for
d � ωT , where ω �

(
32(ln(3) + 1)

)−1, the regret bound 32 dY 2
(
ln(1 + 2κ) + 1

)
is worse than a trivial bound of TY 2 when κ � 1.

1�min
�

Y2 T

Y2 lnd
52dY2

� ln(1+1/�)

(a) High dimension d � ωT

�max1�min
�

Y2 T

Y2 d

Y2 lnd

52dY2
� ln(1+1/�)

cdY2 (ln(1+2�) +1)

(b) Low dimension d < ωT

Fig. 1. The regret bound of Corollary 1 over B1(U) as a function of κ =
√

TUX/(2dY ).

The constant c is chosen to ensure continuity at κ = 1, and ω �
(
32(ln(3) + 1)

)−1
. We

define: κmin =
√

ln(1 + 2d)/(2d
√

ln 2) and κmax = (e(T/d−1)/c − 1)/2.

2.2 Lower Bound

Corollary 1 gives an upper bound on the regret in terms of the quantities d,
Y , and κ �

√
TUX/(2dY ). We now show that for all d ∈ N∗, Y > 0, and κ �√

ln(1 + 2d)/(2d
√

ln 2), the upper bound can not be improved7 up to logarithmic
factors.

Theorem 2 (Lower bound). For all d ∈ N∗, Y > 0, and κ �
√

ln(1+2d)

2d
√

ln 2
, there

exist T � 1, U > 0, and X > 0 such that
√
TUX/(2dY ) = κ and

7 For T sufficiently large, we may overlook the case κ <
√

ln(1 + 2d)/(2d
√

ln 2) or√
T < (Y/(UX))

√
ln(1 + 2d)/ ln 2. Observe that in this case, the minimax regret is

already of the order of Y 2 ln(1 + d) (cf. Figure 1).
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inf
F

sup
‖xt‖∞�X, |yt|�Y

{
T∑

t=1

(yt − ŷt)2 − inf
‖u‖1�U

T∑
t=1

(yt − u · xt)2
}

�

⎧⎪⎨⎪⎩
c1

ln
(
2+16d2

)dY 2κ
√

ln (1 + 1/κ) if
√

ln(1+2d)

2d
√

ln 2
� κ � 1 ,

c2

ln
(
2+16d2

)dY 2 if κ > 1 ,

where c1, c2 > 0 are absolute constants. The infimum is taken over all forecasters
F and the supremum extends over all sequences (xt, yt)1�t�T ∈ (Rd ×R)T such
that |y1|, . . . , |yT | � Y and ‖x1‖∞ , . . . , ‖xT ‖∞ � X.

The above lower bound extends those of [CB99, KW97], which hold for small
κ of the order of 1/d. The proof appears in [GY11]. We perform a reduction to
the stochastic batch setting—via the standard online to batch conversion, and
employ a version of a lower bound of [Tsy03].

3 Adaptation to Unknown X, Y and T

Although the proof of Theorem 1 already gives an algorithm that achieves the
minimax regret, the latter takes as inputs U , X , Y , and T , and it is inefficient
in high dimensions. In this section, we present a new method that achieves the
minimax regret both efficiently and without prior knowledge of X , Y , and T pro-
vided that U is known. Adaptation to an unknown U is considered in Section 4.
Our method consists of modifying an underlying linear regression algorithm such
as the EG± algorithm [KW97] or the sequential Ridge forecaster [Vov01, AW01].
Next, we show that the EG± algorithm with Lipschitzified losses achieves the
minimax regret for the regime d >

√
TUX/(2Y ). A simpler modification (with-

out loss Lipschitzification) can be applied to the Ridge forecaster to achieve

a nearly optimal regret bound of order dY 2 ln
(
1 + d

(√
TUX
dY

)2)
in the regime

d <
√
TUX/(2Y ). The latter analysis is more technical and hence is omitted.

3.1 Lipschitzification of the Loss Function

The second algorithm of the proof of Theorem 1 is computationally inefficient
because it aggregates approximately d

√
T experts. In contrast, the EG± algo-

rithm has a manageable computational complexity that is linear in d. We now
describe a version of the EG± algorithm that is minimax optimal but does not
require prior knowledge of X and Y—as opposed to the EG± algorithm. Our
key technique consists of transforming the loss functions u �→ (yt −u ·xt)2 into
functions �̃t that are Lipschitz continuous with respect to ‖·‖1. Afterward, adap-
tation to the unknown Lipschitz constants is carried out using the techniques of
[CBMS07].
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We point out that our Lipschitzification method can be applied to other al-
gorithms, such as the p-norm algorithm and its regularized variants (SMIDAS
and COMID) [GL03, SST09, DSSST10]. The method may also apply to loss
functions other than the square loss, e.g., convex but non-Lipschitz functions.

The Lipschitzification proceeds as follows. At each time t, we set

Bt �
(
2�log2(max1�s�t−1 y2

s)	
)1/2

,

so that ys ∈ [−Bt, Bt] for all s = 1, . . . , t − 1. The modified loss function �̃t :
Rd → R is constructed as follows:

– if |yt| > Bt, then
�̃t(u) = 0 for all u ∈ Rd ;

– if |yt| � Bt, then �̃t is the convex function that coincides with the square
loss when

∣∣u · xt

∣∣ � Bt and is linear elsewhere. This function is shown in
Figure 2 and can be formally defined as

�̃t(u) �

⎧⎨⎩
(yt − u · xt)2 if

∣∣u · xt

∣∣ � Bt,
(yt −Bt)2 + 2(Bt − yt)(u · xt −Bt) if u · xt > Bt,
(yt +Bt)2 + 2(−Bt − yt)(u · xt +Bt) if u · xt < −Bt.

Observe that in both cases |yt| > Bt and |yt| � Bt, the function �̃t is continu-
ously differentiable and Lipschitz continuous with respect to ‖·‖1 with Lipschitz
constant ∥∥∥∇�̃t∥∥∥∞ � 2

(
|yt| +Bt

)
‖xt‖∞ � 2

(
1 +

√
2
)
‖xt‖∞ max

1�s�t
|ys| , (2)

where we used the fact that Bt �
√

2max1�s�t−1 |ys|. We can also glean from
Figure 2 that, when |yt| � Bt, we have

∀u ∈ Rd,
(
yt − [u · xt]Bt

)2 � �̃t(u) �
(
yt − u · xt

)2
, (3)

where for all B > 0, we define the clipping operator [·]B by

[x]B � min
{
B,max{−B, x}

}
for all x ∈ R .

3.2 Lipschitzifying Exponentiated Gradient Algorithm

Consider the LEG algorithm of Figure 3. Let (ej)1�j�d denote the canonical
basis of Rd and ±Uej denote the vertices of B1(U). We use as a blackbox the
exponentially weighted majority forecaster of [CBMS07] on 2d experts—namely,
{±Uej : j = 1, . . . , d}—as in [KW97]. It adapts to the unknown Lipschitz con-
stant max1�t�T ‖∇�̃t‖∞ by the particular choice of ηt.

We first need some notations. Following the tuning provided by [CBMS07],
the parameter ηt of the LEG algorithm (see Figure 3) is defined by

ηt = min

{
1

Êt−1

, C

√
lnK
Vt−1

}
, (4)
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�4 �2 0 2 4 6
u ·xt

0

2

4

6

8

10

12

14

16

yt Bt�Bt

Square loss

Lipschitzified

Clipped

Fig. 2. Example when |yt| � Bt. The square loss (yt − u · xt)
2, its clipped version(

yt − [u ·xt]Bt

)2
and its Lipschitzified version �̃t(u) are plotted as a function of u ·xt.

where C �
√

2(
√

2 − 1)/(e − 2) and

zs
j,ε � (−1)ε∇�̃s

(
ûs

)
· Uej , s ∈ {1, . . . , T}, j ∈ {1, . . . , d}, ε ∈ {0, 1} ,

Êt−1 � inf
k∈Z

⎧⎨⎩2k : 2k � max
1�s�t−1

∣∣∣∣∣∣ max
1�j�d
ε∈{0,1}

zs
j,ε − min

1�j�d
ε∈{0,1}

zs
j,ε

∣∣∣∣∣∣
⎫⎬⎭ ,

Vt−1 �
t−1∑
s=1

∑
j,ε

w2j−1+ε,s

(
zs

j,ε −
∑
k,γ

w2k−1+γ,sz
s
k,γ

)2

.

Note that Êt−1 approximates the range of the zs
j,ε up to time t− 1, while Vt−1

is the corresponding cumulative variance of the forecaster.
The next theorem bounds the regret of the LEG algorithm on B1(U). This

algorithm is efficient and adaptive in X and Y ; it achieves approximately the
regret bound of Theorem 1 in the regime κ � 1 or d �

√
TUX/(2Y ).

Theorem 3. Let U > 0 and T � 1. Then, for all individual sequences (x1, y1),
. . . , (xT , yT ) ∈ Rd × R, the Lipschitzifying Exponentiated Gradient algorithm
tuned with U satisfies the regret bound

T∑
t=1

(yt − ŷt)2 − inf
‖u‖1�U

T∑
t=1

(yt − u · xt)2

� c1UXY
(√

T ln(2d) + 8 ln(2d)
)

+ c2Y
2 ,

where c1 � 8
(√

2 + 1
)

and c2 � 4
(
1 + 1/

√
2
)2

, and where the quantities X =
max1�t�T ‖xt‖∞ and Y = max1�t�T |yt| are unknown to the forecaster.
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Parameter: radius U > 0.
Initialization: B1 � 0, ŵ0 �

(
1/(2d), . . . , 1/(2d)

) ∈ R2d.
At each time round t � 1,

1. Compute the linear combination

ût � U
d∑

j=1

(
ŵ2j−1,t − ŵ2j,t

)
ej ∈ B1(U); (5)

2. Get xt ∈ Rd and output the clipped prediction ŷt �
[
ût ·xt

]
Bt

;

3. Get yt ∈ R and define the modified loss �̃t : Rd → R as above;
4. Update the parameter ηt+1 according to (4);
5. Update the weight vector wt+1 = (w1,t+1, . . . , w2d,t+1) defined

for all j = 1, . . . , d and ε ∈ {0, 1} by

w2j−1+ε,t+1 �
exp

(
−ηt+1

t∑
s=1

(−1)ε∇�̃s

(
ûs

) · Uej

)
∑

1�k�K
ε′∈{0,1}

exp

(
−ηt+1

t∑
s=1

(−1)ε′∇�̃s

(
ûs

) · Uek

) ;

6. Update the threshold Bt+1 �
(
2�log2(max1�s�t y2

s)�
)1/2

.

Fig. 3. The Lipschitzifying Exponentiated Gradient (LEG) algorithm

Proof (of Theorem 3). By definition of ŷt and Bt+1 � |yt| we have

T∑
t=1

(
yt − ŷt

)2 �
T∑

t=1
t:|yt|�Bt

(
yt −

[
ût · xt

]
Bt

)2

+
T∑

t=1
t:|yt|>Bt

(Bt+1 +Bt)2

�
T∑

t=1
t:|yt|�Bt

�̃t(ût) +
(

1 +
1√
2

)2 T∑
t=1

t:Bt+1>Bt

B2
t+1

�
T∑

t=1

�̃t(ût) + 4
(

1 +
1√
2

)2

Y 2 ,

where the second inequality follows from the fact that:

– if |yt| � Bt then (yt − [ût · xt]Bt)2 � �̃t(ût) by Equation (3);
– if |yt| > Bt, which is equivalent to Bt+1 > Bt by definition of Bt+1, then
Bt � Bt+1/

√
2, so that Bt+1 +Bt �

(
1 + 1/

√
2
)
Bt+1.

As for the third inequality above, we used the non-negativity of �̃t(ût) and upper
bounded the geometric sum

∑T
t:Bt+1>Bt

B2
t+1 in the same way as in [CBMS07,

Theorem 6], i.e., setting K � �log2 max1�t�T y
2
t �,



108 S. Gerchinovitz and J.Y. Yu

T∑
t:Bt+1>Bt

B2
t+1 �

K∑
k=−∞

2k = 2K+1 � 4Y 2 .

Since �̃t(u) � (yt −u · xt)2 for all u ∈ Rd (by Equation (3) if |yt| � Bt, obvious
otherwise), the last inequality yields

T∑
t=1

(yt − ŷt)2 − inf
‖u‖1�U

T∑
t=1

(yt − u · xt)2

�
T∑

t=1

�̃t(ût) − inf
‖u‖1�U

T∑
t=1

�̃t(u) + 4
(

1 +
1√
2

)2

Y 2 . (6)

But, by convexity and continuous differentiability of �̃t,

T∑
t=1

�̃t(ût) − inf
‖u‖1�U

T∑
t=1

�̃t(u) � sup
‖u‖1�U

T∑
t=1

∇�̃t(ût) · (ût − u)

�
T∑

t=1

∇�̃t(ût) · ût − min
1�j�d
γ∈{±1}

T∑
t=1

∇�̃t(ût) · (Uγej) , (7)

where the second inequality holds by linearity of u �→ ∇�̃t(ût) · (ût − u) on the
polytope B1(U). Next we use the particular form of ût. By (5) we get

T∑
t=1

∇�̃t(ût) · ût − min
1�j�d
γ∈{±1}

T∑
t=1

∇�̃t(ût) · (Uγej)

=
T∑

t=1

∑
1�j�d
ε∈{0,1}

w2j−1+ε,t(−1)ε∇�̃t
(
ût

)
· Uej − min

1�j�d
ε∈{0,1}

T∑
t=1

(−1)ε∇�̃t
(
ût

)
· Uej

� 2U max
1�t�T

∥∥∥∇�̃t∥∥∥∞ (2√T ln(2d) + 4 ln(2d) + 6
)

(8)

� 8
(√

2 + 1
)
UXY

(√
T ln(2d) + 2 ln(2d) + 3

)
, (9)

where (8) follows straightforwardly8 from [CBMS07, Corollary 1], and where (9)
follows from ‖∇�̃t‖∞ � 2

(√
2 + 1

)
XY by (2). Putting Equations (6), (7), and

(9) together and noting that 3 � 6 ln(2d) concludes the proof. ��

4 Adaptation to Unknown U

In the previous section, the forecaster is given a radius U > 0 and asked to
ensure a low worst-case regret on the �1-ball B1(U). In this section, U is no
8 The weight vectors wt ∈ R2d are exactly those of [CBMS07, Corollary 1] when

applied to the loss vectors
(∇�̃t(ût) ·Uej ,−∇�̃t(ût) ·Uej

)
1�j�d

∈ R2d, t = 1, . . . , T .
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longer given: the forecaster is asked to be competitive against all balls B1(U),
for U > 0. Namely, its worst-case regret on each B1(U) should be almost as good
as if U were known beforehand. For simplicity, we assume that X , Y , and T are
known: we discuss in Section 5 how to simultaneously adapt to all parameters.

Parameters: X, Y, η > 0, T � 1, and c > 0 (a constant).
Initialization: R = �log2(2T/c)	+, w1 = 1/(R + 1) ∈ RR+1.
For time steps t = 1, . . . , T :

1. For experts r = 0, . . . , R:
– Run the sub-algorithm A(Ur) on the ball B1(Ur) and

obtain the prediction ŷ
(r)
t .

2. Output the prediction ŷt =
∑R

r=0

w
(r)
t∑R

r′=0
w

(r′)
t

[
ŷ
(r)
t

]
Y

.

3. Update w
(r)
t+1 = w

(r)
t exp

(
−η
(
yt −

[
ŷ
(r)
t

]
Y

)2)
for r =

0, . . . , R.

Fig. 4. The Scaling algorithm

We define

R � �log2(2T/c)�+ and Ur � Y

X

2r√
T ln(2d)

, for r = 0, . . . , R , (10)

where c > 0 is a known absolute constant and

�x�+ � min
{
k ∈ N : k � x

}
for all x ∈ R .

The Scaling algorithm of Figure 4 works as follows. We have access to a sub-
algorithm A(U) which we run simultaneously for all U = Ur, r = 0, . . . , R. Each
instance of the sub-algorithm A(Ur) performs online linear regression on the �1-
ball B1(Ur). We employ an exponentially weighted forecaster to aggregate these
R + 1 sub-algorithms to perform online linear regression simultaneously on the
balls B1(U0), . . . , B1(UR).

The following regret bound follows by exp-concavity of the square loss.

Theorem 4. Suppose that X,Y > 0 are known. Let c, c′ > 0 be two absolute
constants. Suppose that for all U > 0, we have access to a sub-algorithm A(U)
with regret against B1(U) of at most

cUXY
√
T ln(2d) + c′Y 2 for T � T0 , (11)

uniformly over all sequences (xt) and (yt) bounded by X and Y . Then, for a
known T � T0, the Scaling algorithm with η = 1/(8Y 2) satisfies

T∑
t=1

(yt − ŷt)2 � inf
u∈Rd

{
T∑

t=1

(yt − u · xt)2 + 2c ‖u‖1XY
√
T ln(2d)

}
+ 8Y 2 ln

(
�log2(2T/c)�+ + 1

)
+ (c+ c′)Y 2. (12)
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In particular, for every U > 0,

T∑
t=1

(yt − ŷt)2 � inf
u∈B1(U)

{
T∑

t=1

(yt − u · xt)2
}

+ 2cUXY
√
T ln(2d)

+ 8Y 2 ln
(
�log2(2T/c)�+ + 1

)
+ (c+ c′)Y 2.

Remark 1. By Theorem 3 the LEG algorithm satisfies assumption (11) with
T0 = ln(2d), c � 9c1 = 72

(√
2 + 1

)
, and c′ � c2 = 4

(
1 + 1/

√
2
)2

.

Proof. Since the Scaling algorithm is an exponentially weighted average fore-
caster (with clipping) applied to the R + 1 experts A(Ur) =

(
ŷ
(r)
t

)
t�1

, r =
0, . . . , R, we have, by Lemma 1 in the appendix,

T∑
t=1

(yt − ŷt)2 � min
r=0,...,R

T∑
t=1

(
ŷ
(r)
t − ŷt

)2

+ 8Y 2 ln(R + 1)

� min
r=0,...,R

{
inf

u∈B1(Ur)

{
T∑

t=1

(yt − u · xt)2
}

+ cUrXY
√
T ln(2d)

}
+ z , (13)

where the last inequality follows by assumption (11), and where we set

z � 8Y 2 ln(R + 1) + c′Y 2 .

Let u∗
T ∈ argminu∈Rd

{∑T
t=1(yt − u · xt)2 + 2c ‖u‖1XY

√
T ln(2d)

}
. Next, we

proceed by considering three cases depending on the value of ‖u∗
T ‖1.

Case 1: U0 < ‖u∗
T ‖1 < UR. Let r∗ � min

{
r = 0, . . . , R : Ur � ‖u∗

T ‖1

}
. Note

that r∗ � 1 since ‖u∗
T ‖1 > U0. By (13) we have

T∑
t=1

(yt − ŷt)2 � inf
u∈B1(Ur∗ )

{
T∑

t=1

(yt − u · xt)2
}

+ cUr∗XY
√
T ln(2d) + z

�
T∑

t=1

(yt − u∗
T · xt)2 + 2c ‖u∗

T ‖1XY
√
T ln(2d) + z ,

where the last inequality follows from u∗
T ∈ B1(Ur∗) and from the fact that

Ur∗ � 2 ‖u∗
T ‖1 (since, by definition of r∗, ‖u∗

T ‖1 > Ur∗−1 = Ur∗/2). Finally, we
obtain (12) by definition of u∗

T and z � 8Y 2 ln(R+ 1) + c′Y 2.

Case 2: ‖u∗
T ‖1 � U0. By (13) we have

T∑
t=1

(yt − ŷt)2 �
{

T∑
t=1

(yt − u∗
T · xt)2 + cU0XY

√
T ln(2d)

}
+ z , (14)

which yields (12) since cU0XY
√
T ln(2d) = cY 2 (by definition of U0), by adding

2c ‖u∗
T ‖1XY

√
T ln(2d) � 0, and by definition of u∗

T and z.
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Case 3: ‖u∗
T ‖1 � UR. By construction, we have ŷt ∈ [−Y, Y ], and by assumption,

we have yt ∈ [−Y, Y ], so that
T∑

t=1

(yt − ŷt)2 � 4Y 2T �
T∑

t=1

(yt − u∗
T · xt)2 + 2cURXY

√
T ln(2d)

�
T∑

t=1

(yt − u∗
T · xt)2 + 2c ‖u∗

T ‖1XY
√
T ln(2d) ,

where the second inequality follows by 2cURXY
√
T ln(2d) = 2cY 22R � 4Y 2T

(since 2R � 2T/c by definition of R), and the last inequality uses the assumption
‖u∗

T ‖1 � UR. We finally get (12) by definition of u∗
T .

This concludes the proof of the first claim (12). The second claim follows by
bounding ‖u‖1 � U . ��

5 Extension to a Fully Adaptive Algorithm and Other
Discussions

The Scaling algorithm of Section 4 uses prior knowledge of Y , Y/X , and T . In
order to obtain a fully automatic algorithm, we need to adapt efficiently to these
quantities. Adaptation to Y is possible via a technique already used for the LEG
algorithm, i.e., by updating the clipping range Bt based on the past observations
|ys|, s � t− 1.

In parallel to adapting to Y , adaptation to Y/X can be carried out as fol-
lows. We replace the exponential sequence {U0, . . . , UR} by another exponential
sequence {U ′

0, . . . , U
′
R′}:

U ′
r � 1

T k

2r√
T ln(2d)

, r = 0, . . . , R′ , (15)

where R′ � R +
⌈
log2 T

2k
⌉

= �log2(2T/c)�+ +
⌈
log2 T

2k
⌉
, and where k > 1 is a

fixed constant. On the one hand, for T � T0 � max
{
(X/Y )1/k, (Y/X)1/k

}
, we

have (cf. (10) and (15)),
[U0, UR] ⊂ [U ′

0, U
′
R′ ] .

Therefore, the analysis of Theorem 4 applied to the grid {U ′
0, . . . , UR′} yields9 a

regret bound of the order of UXY
√
T ln d + Y 2 ln(R′ + 1). On the other hand,

clipping the predictions to [−Y, Y ] ensures the crude regret bound 4Y 2T0 for
small T < T0. Hence, the overall regret for all T � 1 is of the order of

UXY
√
T ln d+ Y 2 ln(k lnT ) + Y 2 max

{
(X/Y )1/k, (Y/X)1/k

}
.

Adaptation to an unknown time horizon T can be carried out via a standard
doubling trick on T . However, to avoid restarting the algorithm repeatedly, we
can use a time-varying exponential sequence {U ′

−R′(t)(t), . . . , U
′
R′(t)(t)} where

9 The proof remains the same by replacing 8Y 2 ln(R + 1) with 8Y 2 ln(R′ + 1).
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R′(t) grows at the rate of k ln(t). This gives10 us an algorithm that is fully
automatic in the parameters U , X , Y and T . In this case, we can show that the
regret is of the order of

UXY
√
T ln d+ Y 2k ln(T ) + Y 2 max

{(√
TX/Y

)1/k
,
(
Y/(

√
TX)

)1/k
}
,

where the last two terms are negligible when T → +∞ (since k > 1).
Next we discuss another possible improvement. There is a logarithmic gap

between the upper bound of Theorem 1 and the lower bound of Theorem 2. This
gap comes from a concentration argument on a specific sequence of (unbounded)
normal random variables in the proof of the lower bound. We think that in the
interval κ � cd (for some large enough absolute constant c > 0), we can recover
the missing ln(1 + 2κ) in our lower bound by using the argument of [Vov01,
Theorem 2] instead. As for the interval κ � cd, we could use a different sequence
of random variables with bounded support, and, e.g., Assouad’s Lemma.
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A Lemma

Next we recall a regret bound satisfied by the standard exponentially weighted
average forecaster applied to clipped base forecasts. Assume that at each time t �
1, the forecaster has access to K � 1 base forecasts ŷ(k)

t ∈ R, k = 1, . . . ,K, and
that for some known bound Y > 0 on the observations, he predicts at time t as

ŷt �
K∑

k=1

pk,t

[
ŷ
(k)
t

]
Y
.

In the equation above, [x]Y � min{Y,max{−Y, x}} for all x ∈ R, and the weight
vectors pt ∈ RK are given by p1 = (1/K, . . . , 1/K) and, for all t = 2, . . . , T , by

pk,t �
exp
(
−η
∑t−1

s=1

(
ys −

[
ŷ
(k)
s

]
Y

)2
)

∑K
j=1 exp

(
−η
∑t−1

s=1

(
ys −

[
ŷ
(j)
s

]
Y

)2
) , 1 � k � K ,

for some parameter η > 0 to be chosen below. The next lemma is a straigthfor-
ward consequence of Theorem 3.2 and Proposition 3.1 of [CBL06].

Lemma 1 (Exponential weighting with clipping). Assume that the fore-
caster knows beforehand a bound Y > 0 on the observations |yt|, t = 1, . . . , T .
Then, the above forecaster tuned with η � 1/(8Y 2) satisfies

T∑
t=1

(
yt − ŷt

)2 � min
1�k�K

T∑
t=1

(
yt − ŷ

(k)
t

)2 +
lnK
η

.
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Abstract. The goal of a learner in standard online learning is to have the cumula-
tive loss not much larger compared with the best-performing prediction-function
from some fixed class. Numerous algorithms were shown to have this gap ar-
bitrarily close to zero compared with the best function that is chosen off-line.
Nevertheless, many real-world applications (such as adaptive filtering) are non-
stationary in nature and the best prediction function may not be fixed but drift over
time. We introduce a new algorithm for regression that uses per-feature-learning
rate and provide a regret bound with respect to the best sequence of functions
with drift. We show that as long as the cumulative drift is sub-linear in the length
of the sequence our algorithm suffers a regret that is sub-linear as well. We also
sketch an algorithm that achieves the best of the two worlds: in the stationary set-
tings has log(T ) regret, while in the non-stationary settings has sub-linear regret.
Simulations demonstrate the usefulness of our algorithm compared with other
state-of-the-art approaches.

1 Introduction

We consider the classical problem of online learning for regression. On each iteration,
the algorithm receives a new instance (for example, input from an array of antennas)
and outputs a prediction of a real value (for example distance to the source). The correct
value is then revealed, and the algorithm suffers a loss based on both its prediction and
the correct output value.

In general, the goal of the learner is to achieve an average loss that is not too big
compared with the loss it would have received if it had chosen to predict according to
the single best-performing function from some fixed class. It is well-known that as the
number of time steps grows, very simple aggregation algorithms are able to achieve
an average loss arbitrarily close to that of the best function in retrospect. Furthermore,
such guarantees hold even if the input and output pairs are chosen in a fully adversarial
manner with no distributional assumptions [6].

Despite the extensive and impressive guarantees that can be made for algorithms
in such settings, competing with the best fixed function is not always good enough. In
many real-world applications, the true target function is not fixed, but is slowly changing
over time. Consider a filter designed to cancel echoes in an hall. Over time, people enter
and leave the hall, furniture are being moved, microphones are replaced and so on.
When this drift occurs, the predictor itself must also change in order to remain relevant.

J. Kivinen et al. (Eds.): ALT 2011, LNAI 6925, pp. 114–128, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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These reasons led to the development of algorithms and accompanying analysis for
drifting or shifting settings (for example [24,1,20,23] and the references therein). In this
setting, the performance of an algorithm is compared with a sequence of functions (and
not a single function). Often such a sequence is either drifting, where each function is
close in some sense to its predecessor, or shifting, where conceptually the sequence can
be partitioned into few segments, for each there is a single function that performs well
on all examples of that segment.

Recently there is an increased amount of interest in algorithms that exploits second
order information. For example the second order perceptron algorithm [5], confidence-
weighted learning [10,8], adaptive regularization of weights (AROW) [9], all designed
for classification; and AdaGrad [11] and FTPRL [25] for general loss functions.

In this paper we build on the AROW algorithm and develop an algorithm for re-
gression. Such algorithms are known to work well in practice and converge fast for
stationary-problems. However, for non-stationary problems AROW and other similar
algorithms gradually stop updating their prediction rule, even though their performance
deteriorates. We thus modify the algorithm to overcome these shortcomings. We an-
alyze the algorithm in the worst-case regret framework and show, that as long as the
amount of average-drift is sublinear, the average-loss of our algorithm will converge
to the average-loss of the best sequence of functions. Specifically, we show that if the
cumulative deviation is of order O

(
T 1/p
)

for some known p > 1, then the cumulative
regret is O

(
T (p+1)/(2p) log(T )

)
. We also show that for stationary setting the algorithm

suffers logarithmic regret, similar to previous results [13].
Additionally, we sketch an algorithm that does not employ such prior knowledge.

Specifically, this algorithm runs C + 1 copies of the algorithm mentioned above, each
copy with a parameter chosen to fit a specific assumption of the amount of non-station-
arity in the data. The algorithm then feeds these C + 1 outputs to an additional copy
that computes a linear combination of these C + 1 outputs. Thus, the cumulative loss
of the later algorithm is bounded by the cumulative loss of the best copy (ie the one
with the “best” choice of parameter) with additional regret of O(logT ). Therefore, this
algorithm for the non-stationary setting will suffer a polynomial sub-linear regret.

Notation: For a symmetric matrix Σ we denote its jth eigenvalue by λj(Σ). Sim-
ilarly we denote its smallest eigenvalue by λmin(Σ) = minj λj(Σ), and its largest
eigenvalue byλmax(Σ) = maxj λj(Σ).

2 Problem Setting

We work in the online setting for regression evaluated using the square loss. On each
iteration our algorithm receives an instance xt ∈ Rd and predicts a real value ŷt ∈
R it then receives the correct label yt ∈ R, suffers loss � (yt, ŷt) = (ŷt − yt)

2. The
algorithm then updates its prediction rule, and proceeds to the next round.

Our algorithms employs linear functions (with bounded norm), ŷt = x�
t wt−1. The

goal of the learning algorithm is to suffer low loss compared with the best linear func-
tion. Formally, we define the regret of an algorithm to be,

R(T ) =
T∑
t

(
x�

t wt−1 − yt

)2 − inf
u

T∑
t

(
x�

t u − yt

)2
.
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The goal of the algorithm is to have R(T ) = o(T ), such that the average loss will
converge to the average loss of the best linear function u. We use an extended notion
of evaluation, comparing the performance of an algorithm to the performance of a se-
quence of functions,

R(T ) =
T∑
t

(
x�

t wt−1 − yt

)2 − inf
u1,...,uT

T∑
t

(
x�

t ut − yt

)2
.

It is reasonable to assume that the total deviation of the compared sequence is
sub-linear in T , that is, for which

∑
t ‖ut−1 − ut‖ = o(T ). Clearly, if the total de-

viation is Ω(T ) we can not expect a learning algorithm to achieve a vanishing aver-
aged regret. Yet, it may be the case that the sequence of functions is not converging
limt→∞

∑t
s=1 ‖us−1 − us‖ yet the algorithm will have vanishing average regret.

3 Algorithm

As in CW [10,8] and AROW [9] our algorithm maintains a Gaussian distribution pa-
rameterized by a mean wt ∈ Rd and a full covariance matrix Σt ∈ Rd×d. Intuitively,
the mean wt represents the current linear function, while the covariance matrixΣt cap-
tures the uncertainty in the function wt. Given a new example (xt, yt) the algorithm
uses its current mean to make a prediction ŷt = x�

t wt−1. Our algorithm then sets the
new distribution to be the solution of the following optimization problem,

DKL (N (w, Σ) ‖N (wt−1, Σt−1)) +
1
2r
�
(
yt − w�xt

)
+

1
2r
(
x�

t Σxt

)
This optimization problem is similar to the one of AROW [9] for classification, except
we use the square loss rather than squared-hinge loss used in AROW. Intuitively, the
optimization problem trades off between three requirements. The first term forces the
parameters not to change much per example, as the entire learning history is encapsu-
lated within them. The second term requires that the new vector wt should perform well
on the current instance, and finally, the third term reflects the fact that the uncertainty
about the parameters reduces as we observe the current example xt. Writing the KL
explicitly, we get the following.

1
2

log
(

detΣt−1

detΣ

)
+

1
2
Tr
(
Σ−1

t−1Σ
)

+
1
2

(wt−1 − w)�Σ−1
t−1 (wt−1 − w) − d

2

+
1
2r
�
(
yt − w�xt

)
+

1
2r
(
x�

t Σxt

)
. (1)

We now develop the update rule of (1) explicitly. Taking the derivative of (1) with
respect to w and setting it to zero, we getΣ−1

t−1 (w − wt−1)− 1
2r 2 (wt · xt − yt)xt =

0 . Therefore, if Σt−1 is non-singular, the update for the mean parameters is given by

wt = wt−1 −
1
r

(wt · xt − yt)Σt−1xt . (2)
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We solve for wt by taking the dot product of each side of the equality with xt :
wt · xt = wt−1 · xt − 1

r (wt · xt − yt)x�
t Σt−1xt. Rearranging the terms yields,

(wt · xt)
(
r + x�

t Σt−1xt

)
= (wt−1 · xt) r +

(
ytx

�
t Σt−1xt

)
, and substituting back

in (2), we get

wt = wt−1 −
1
r

(
(wt−1 · xt) r +

(
ytx

�
t Σt−1xt

)
r + x�

t Σt−1xt
− yt

)
Σt−1xt

=wt−1 −
(

(wt−1 · xt) − yt

r + x�
t Σt−1xt

)
Σt−1xt . (3)

We compute the update of the confidence parameters by setting the derivative of (1)
with respect to Σ to zero, − 1

2Σ
−1 + 1

2Σ
−1
t−1 + 1

2r xtx
�
t = 0 .From this we obtain the

following update for the confidence parameters.

Σ−1
t = Σ−1

t−1 +
1
r
xtx

�
t . (4)

Our goal is to develop algorithms for non-stationary settings. As observed in the context
of CW [10], AROW [9], AdaGrad [11] and FTPRL [25] the matrixΣ can be interpreted
as adaptive learning rate. Therefore, due to the update of (4) the eigenvalues of Σt goes
to zero with t (equivalently, the update (4) forces the eigenvalues of Σ−1

t to increase)
and the effective learning rate goes to zero. As a consequence the algorithm will grad-
ually stop updating using instances which lie in the subspace of examples that were
previously observed numerous times. This property leads to fast convergence in the sta-
tionary case, but at the same time to poor performance in the non-stationary case. As
it might happen there is a need to update the prediction rule with using some instance,
yet the learning rate for this specific update is too small, and no useful update may be
performed.

We propose two modifications to the above algorithm, that combined together over-
come the problem that learning rate gradually goes to zero. The modified algorithm
operates on segments of the input sequence. In each segment indexed by i, the algo-
rithm checks weather the lowest eigenvalue of Σt is greater than a given lower bound
Λi. Once the lowest eigenvalue of Σt is smaller than Λi the algorithm resets Σt = I
and updates the value of the lower boundΛi+1. Formally, the algorithm uses the update

(4) to compute an intermediate candidate for Σt denote by Σ̃t =
(
Σ−1

t−1 + 1
r xtx

�
t

)−1
.

If indeed Σ̃t � ΛiI then it sets Σt = Σ̃t otherwise it sets Σt = I and the segment
index is increased by 1.

Additionally, before this modification, the norm of the weight vector wt did not
increase much as the “effective” learning rate (the matrix Σt) went to zero. After our
update, as the learning rate is effectively bounded from below, the norm of wt may
increase too fast, which in turn will cause a low update-rate in non-stationarity inputs.

We thus employ one more modification exploited later by the analysis. After updat-
ing the mean wt as in (3) we project it into a ball B around the origin with radius RB

using a Mahalanobis distance. Formally, we define the function proj(w̃, Σ,RB) to be
the solution of the following optimization problem,

arg min
‖w‖≤RB

1
2

(w − w̃)�Σ−1 (w − w̃) (5)
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Parameters: 0 < r, RB , a sequence 1 > Λ1 ≥ Λ2...
Initialize: Set w0 = 0 , Σ0 = I , i = 1
For t = 1, . . . , T do

– Receive an instance xt

– Output prediction ŷt = x�
t wt−1

– Receive the correct label yt

– Update:

Σ̃−1
t = Σ−1

t−1 +
1

r
xtx

�
t (6)

w̃t = wt−1 +
(yt − x�

t wt−1)Σt−1xt

r + x�
t Σt−1xt

(7)

– Update Σt:
If Σ̃t � ΛiI set Σt = Σ̃t else set Σt = I , i = i + 1

– Update wt:
wt = proj (w̃t, Σt, RB)

Output: wT , ΣT

Fig. 1. ARCOR: adaptive regularization of weights for regression with covariance reset

We write the Lagrangian,

L =
1
2

(w − w̃)�Σ−1 (w − w̃) + α

(
1
2
‖w‖2 − 1

2
R2

B

)
.

Setting to zero the gradient with respect to w we get,Σ−1 (w − w̃)+αw = 0 . Solving
for w we get

w =
(
αI +Σ−1

)−1
Σ−1w̃ =

1
α

(
I + (αΣ)−1

)−1

Σ−1w̃ = (I + αΣ)−1
w̃ .

From KKT conditions we get that If ‖w̃‖ ≤ RB then α = 0 and w = w̃. Otherwise, α
is the unique positive scalar that satisfy the equality,

‖ (I + αΣ)−1
w̃‖ = RB .

The value of α can be found using binary search and eigen-decomposition of the matrix
Σ. We write explicitly Σ = V ΛV � for a diagonal matrix Λ. By denoting u = V �w̃
we get that the last equation equals to, ‖ (I + αΛ)−1

u‖ = RB . We thus wish to

find α such that
∑d

j

u2
j

(1+αΛj,j)2 = R2
B . It can be done using a binary search in the

range α ∈ [0, a] where a = (‖u‖/RB − 1)/λmin(Λ). To summarize the projection
step can be performed in time cubic in d and logarithmic in RB and Λi. We call the
algorithm ARCOR for adaptive regularization with covariance reset. A pseudo-code of
the algorithm is summarized in Fig. 1. We note that it can be combined with Mercer
kernels, and omit the details due to lack of space.
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4 Analysis

We turn to analyze the algorithm in the non-stationary case, computing the regret with
respect to more than a single comparison vector. Before we proceed with the bound we
define additional notation. We denote by ti the example index for which a restart was
performed for the ith time, that is Σti = I for all i. We define by n the total number
of restarts, or intervals. We denote by Ti = ti − ti−1 the number of examples between
two consecutive restarts. Clearly T =

∑n
i=1 Ti. Finally, we denote by Σi−1 = Σti−1

just before the ith restart, and we note that it depends on exactly Ti examples (since the
last restart).

In what follows we compare the performance of the algorithm to the performance of
a sequence of weight vectors ut ∈ Rd all of which are of bounded norm RB . In other
words, all the vectors ut belong to B = {u : ‖u‖2 ≤ RB}.

Theorem 1. Assume the algorithm of Fig. 1 is run with an input sequence (x1, y1), . . . ,
(xT , yT ), that all the inputs are of unit norm ‖xt‖ = 1, and that the outputs are
bounded Y = maxt |yt|. Let ut be any sequence of bounded weight vectors ‖ut‖ ≤
RB . The cumulative loss is bounded by,

∑
t

(
x�

t wt−1 − yt

)2 ≤
∑

t

(
x�

t ut − yt

)2
+ 2
(
R2

B + Y 2
) n∑

i=1

log det
((
Σi
)−1
)

+ ru�
TΣ

−1
T uT + 2RBr

∑
t

1
Λi(t)

‖ut−1 − ut‖ , (8)

where n is the number of covariance restarts and Σi−1 is the value of the covariance
matrix just before the ith restart.

Note that the number of restarts n is not fixed but depends both on the total number of
examples T and the scheme used to set the values of the lower bound of the eigenvalues
Λi. In general, the lower the values of Λi are, the smaller the number of covariance-
restarts occur, yet the larger the value of the last term of the bound is, which scales
inversely proportional to Λi. A more precise statement is given in the next corollary.

Corollary 1. Assume the algorithm of Fig. 1 made n restarts. Under the conditions of
Theorem 1 we have,∑

t

(
x�

t wt−1 − yt

)2 ≤
∑

t

(
x�

t ut − yt

)2
+ 2
(
R2

B + Y 2
)
dn log

(
1 +

T

nrd

)
+ ru�

TΣ
−1
T uT + 2RBrΛ

−1
n

∑
t

‖ut−1 − ut‖ , (9)

Proof. By definition we have
(
Σi
)−1 = I + 1

r

∑Ti+ti

t=ti
xtx

�
t . Denote the eigenvalues

of
∑Ti+ti

t=ti
xtx

�
t by λ1, . . . , λd. Since ‖xt‖ = 1 their sum is Tr

(∑Ti+ti

t=ti
xtx

�
t

)
= Ti.
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We use the concavity of the log function to bound log det
((
Σi
)−1
)

=
∑d

j log
(
1+ λj

r

)
≤ d log

(
1 + Ti

rd

)
. Applying concavity again we bound the following sum,

n∑
i

log det
((
Σi
)−1
)
≤

n∑
i

d log
(

1 +
Ti

rd

)
≤ dn log

(
1 +

T

nrd

)
,

where we used the fact that
∑n

i Ti = T . Substituting the last inequality in Theorem 1,
as well as using the monotinicity of the coefficients, Λi ≥ Λn for all i ≤ n, yields the
desired bound.

Implicitly, the second and fourth terms of the bound have opposite dependence on n.
The second term is increasing with n � T , while the fourth is decreasing with n. If n
is small it means that the lower bound Λn is very low (otherwise we would make more
restarts) and thus Λ−1

n is large. We now make this implicit dependence explicit.
Our goal is to bound the number of restarts n as a function of the number of exam-

ples T . This depends on the exact sequence of values Λi used. The following lemma
provides a bound on n given a specific sequence of Λi.

Lemma 1. Assume the algorithm of Fig. 1 is run with some sequence of Λi, then the
number of restarts is upper bounded by,

n ≤ min
N

{
N : T ≤ r

N∑
i

(
Λ−1

i − 1
)}

.

Proof. Since
∑n

i=1 Ti = T , then the number of restarts is maximized when the number
of examples between restrats Ti is minimized. We prove now a lower bound on Ti for
all i = 1 . . . n. A restart occurs for the ith time when the smallest eigenvalue of Σt is
larger (for the first time) then Λi.

As before, by definition we have,
(
Σi
)−1 = I+ 1

r

∑Ti+ti

t=ti
xtx

�
t . By Theorem 8.1.8

of [15] we have that there exists a matrix A ∈ Rd×Ti with each column belongs to
the d − 1-dimensional simplex (that is ak,l ≥ 0 and

∑
k ak,l = 1 for l = 1, . . . , Ti)

such that the kth eigenvalue λi
k of
(
Σi
)−1

equals to λi
k = 1 + 1

r

∑Ti

l=1 ak,l. The value

of Ti is defined when the largest eigenvalue of
(
Σi
)−1

hits Λ−1
i . Formally, we get the

following lower bound on Ti,

arg min
{ak,l}

s s.t. max
k

(
1 +

1
r

s∑
l=1

ak,l

)
≥ Λ−1

i

ak,l ≥ 0 for k = 1, . . . , d, l = 1, . . . , s∑
k

ak,l = 1 for l = 1, . . . , s

For a fixed s a maximal value maxk

(
1 + 1

r

∑s
l=1 ak,l

)
is obtained if all the “mass”

is concentrated in one value k. That is we have ak,l = 1 for k = k0 and ak,l = 0
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otherwise. In this case maxk

(
1 + 1

r

∑s
l=1 ak,l

)
=
(
1 + 1

r s
)

and the lower bound is
obtained when

(
1 + 1

r s
)

= Λ−1
i . Solving for s we get that the shortest possible length

of the ith interval is bounded by, Ti ≤ r
(
Λ−1

i − 1
)
. Summing over the last equation

we get, T =
∑n

i Ti ≤ r
∑n

i

(
Λ−1

i − 1
)
. Thus, the number of restarts is upper bounded

by the minimal value n that satisfy the last inequality.

Combining Lemma 1 with Corollary 1 we get,

Corollary 2. Assume the algorithm of Fig. 1 is ran with a polynomial schema, that is
Λ−1

i = iq−1 + 1 for some q > 1. Under the conditions of Theorem 1 we have,∑
t

(
x�

t wt−1 − yt

)2 ≤
∑

t

(
x�

t ut − yt

)2
+ ru�

TΣ
−1
T uT

+ 2
(
R2

B + Y 2
)
d (q(T + 1) + 1)

1
q log

(
1 +

T

nrd

)
(10)

+ 2RBr
(
(q(T + 1) + 1)

q−1
q + 1

)∑
t

‖ut−1 − ut‖ . (11)

Proof. Substituting Λ−1
i = iq−1 + 1 in Lemma 1 we get,

r
n∑
i

(
Λ−1

i − 1
)

= r
n∑

i=1

iq−1 ≥
∫ n

1

xq−1dx =
1
q

(nq − 1) . (12)

Setting the last term to T + 1 we get an upper bound on n,

n ≤ (q(T + 1) + 1)1/q ⇒ Λ−1
n ≤ (q(T + 1) + 1)(q−1)/q + 1 . (13)

Comparing the last two terms of the bound of Corollary 2 we observe a natural tradeoff
in the value of q. The third term of (10) is decreasing with large values of q, while the
fourth term of (11) is increasing with q.

Assuming a bound on the deviation
∑

t ‖ut−1 − ut‖ ≤ C T 1/p. We set q =
2p/(p+1) and get that the sum of (10) and (11) is of order O

(
T (p+1)/(2p) log(T )

)
. As

a consequence we get that, as long as p > 1 the sum of (10) and (11) is o(T ) and thus is
vanishing. Furthermore, when the noise is very low we have p ≈ −(1 + ε) in this case
q ≈ 2 + (2/ε), and we get that the algorithm will not make any restarts and retrieve the
bound of O(log T ) for the stationary case. Intuitively, for this choice of q the algorithm
will have only one interval, and there will be no restarts.

Intuitively, this schema to set Λi balances between the amount of noise (need for
many restarts) and the property that using the covariance matrix for updates achieves
fast-convergence. We note that an exponential schema Λi = 2−i will lead to very few
restarts, and very small eigenvalues of the covariance matrix. This is because the last
segment will be about half the length of the entire sequence.
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5 Proof of Theorem 1

We first state the following lemmas, for which we define

dt (z,v) = (z−v)�Σ−1
t (z−v) , dt̃ (z,v) = (z−v)�Σ̃−1

t (z−v) , χt = x�
t Σt−1xt .

Lemma 2. Let w̃t and Σ̃t be defined in (6) and (7) in Fig. 1, then,

dt−1 (wt−1,ut−1) − dt̃ (w̃t,ut−1) =
1
r
�t −

1
r
gt −

�tχt

r (r + χt)
. (14)

The proof follows a chain of algebraic equalities and is omitted due to lack of space.

Lemma 3. Denote by Δt = dt−1 (wt−1,ut−1) − dt (wt,ut) then

Δt ≥
1
r

(�t − gt) − �t
χt

r(r + χt)

+ u�
t−1Σ

−1
t−1ut−1 − u�

t Σ
−1
t ut − 2RBΛ

−1
i ‖ut−1 − ut‖ (15)

where i− 1 is the number of restarts performed before example t.

Proof. We write Δt as a telescopic sum of four terms as follows,

Δt,1 = dt−1 (wt−1,ut−1) − dt̃ (w̃t,ut−1) Δt,2 = dt̃ (w̃t,ut−1) − dt (w̃t,ut−1)
Δt,3 = dt (w̃t,ut−1) − dt (wt,ut−1) Δt,4 = dt (wt,ut−1) − dt (wt,ut)

We lower bound each of the four terms. Since, the value of Δt,1 was computed in
Lemma 2 we start with the second term. If no reset occurs thenΣt = Σ̃t and Δt,2 = 0.
Otherwise, we use the facts that 0 � Σ̃t � I , and Σt = I and get,

Δt,2 = (w̃t − ut−1)
�
Σ̃−1

t (w̃t − ut−1) − (w̃t − ut−1)
�
Σ−1

t (w̃t − ut−1)

= Tr
(
(w̃t − ut−1) (w̃t − ut−1)

�
(
Σ̃−1

t −Σ−1
t

))
≥ Tr

(
(w̃t − ut−1) (w̃t − ut−1)

� (I − I)
)

= 0 .

To summarize, Δt,2 ≥ 0. We can lower bound Δt,3 by using the fact that wt is a
projection of w̃t onto a closed set (a ball of radius RB around the origin), which by
our assumption contains ut. Employing Corollary 3 of [20] we get, dt (w̃t,ut−1) ≥
dt (wt,ut−1) and thus Δt,3 ≥ 0.

Finally, we lower bound the fourth term Δt,4,

Δ4 = (wt − ut−1)
�
Σ−1

t (wt − ut−1) − (wt − ut)
�
Σ−1

t (wt − ut)

= u�
t−1Σ

−1
t ut−1 − u�

t Σ
−1
t ut − 2w�

t Σ
−1
t (ut−1 − ut) (16)

We use Hölder inequality and then Cauchy-Schwartz inequality to get the following
lower bound,

− 2w�
t Σ

−1
t (ut−1 − ut) = −2Tr

(
Σ−1

t (ut−1 − ut)w�
t

)
≥ −2λmax

(
Σ−1

t

)
w�

t (ut−1 − ut) ≥ −2λmax

(
Σ−1

t

)
‖wt‖‖ut−1 − ut‖ .
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We use the facts that ‖wt‖ ≤ RB and that λmax

(
Σ−1

t

)
= 1/λmin (Σt) ≤ Λ−1

i , where
i is the current segment index, and get

−2w�
t Σ

−1
t (ut−1 − ut) ≥ −2Λ−1

i RB‖ut−1 − ut‖ . (17)

Substituting (17) in (16) and using Σt � Σt−1 we get,

Δt,4 ≥ u�
t−1Σ

−1
t ut−1 − u�

t Σ
−1
t ut − 2RBΛ

−1
i ‖ut−1 − ut‖

≥ u�
t−1Σ

−1
t−1ut−1 − u�

t Σ
−1
t ut − 2RBΛ

−1
i ‖ut−1 − ut‖ . (18)

Combining (18) with Lemma 2 concludes the proof.

Lemma 4. During the runtime of the algorithm of Fig. 1 we have

ti+Ti∑
t=ti

χt

(χt + r)
≤ log

(
det
(
Σ−1

ti+1−1

))
= log

(
det
((
Σi
)−1
))

. (19)

We remind the reader that: (1) ti is the first example index after the ith restart (2) Ti is
the number of examples observed before the next restart (3) the notationΣi = Σti+1−1

is the covariance matrix just before the next restart.

The proof of the lemma is similar to the proof of Lemma 4 [9] and thus omitted. We
now turn to prove Theorem 1,

Proof. We bound the sum
∑

tΔt from above and below, and start with an upper bound
using the property of telescopic sum and get,∑

t

Δt = (d0 (w0,u0) − dT (wT ,uT )) ≤ d0 (w0,u0) (20)

We compute a lower bound by applying Lemma 3 and get,∑
t

Δt ≥
∑

t

(
1
r

(�t − gt) − �t
χt

r(r + χt)

+ u�
t−1Σ

−1
t−1ut−1 − u�

t Σ
−1
t ut − 2RBΛ

−1
i(t)‖ut−1 − ut‖

)
,

where i(t) is the number of restarts occurred before observing the tth example. We
continue to develop the last equation and get,∑

t

Δt ≥
1
r

∑
t

�t −
1
r

∑
t

gt −
∑

t

�t
χt

r(r + χt)

+
∑

t

(
u�

t−1Σ
−1
t−1ut−1 − u�

t Σ
−1
t ut

)
−
∑

t

2RBΛ
−1
i(t)‖ut−1 − ut‖

=
1
r

∑
t

�t −
1
r

∑
t

gt −
∑

t

�t
χt

r(r + χt)

+ u�
0 Σ

−1
0 u0 − u�

TΣ
−1
T uT − 2RB

∑
t

Λ−1
i(t)‖ut−1 − ut‖ . (21)
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Combining (20) with (21) and using d0 (w0,u0) = u�
0 Σ

−1
0 u0 (w0 = 0) we get,

1
r

∑
t

�t −
1
r

∑
t

gt −
∑

t

�t
χt

r(r + χt)
− u�

TΣ
−1
T uT

− 2RB

∑
t

Λ−1
i(t)‖ut−1 − ut‖ ≤ 0 .

Rearranging the terms we get,∑
t

�t ≤
∑

t

gt +
∑

t

�t
χt

r + χt
+ ru�

TΣ
−1
T uT + 2RBr

∑
t

1
Λi(t)

‖ut−1 − ut‖ (22)

Since ‖wt‖ ≤ RB , (and we assume that) ‖xt‖ = 1 and supt |yt| = Y , we get that
supt �t ≤ 2(R2

B + Y 2). The second term in the right-hand-side is bounded using the
last inequality and Lemma 4,

∑
t

�t
χt

r + χt
=

n∑
i

ti+Ti∑
t=ti

�t
χt

r + χt

≤
n∑
i

(
sup

t
�t

)
log det

((
Σi
)−1
)

≤ 2
(
R2

B + Y 2
) n∑

i

log det
((
Σi
)−1
)
. (23)

To conclude, we showed that if the algorithm is given an upper bound on the amount
of drift, which is sub-linear in T , it can achieve sub-linear regret. Furthermore, if it
is known that there is no non-stationarity in the reference vectors, then running the
algorithm with q = ∞ will have a regret logarithmic in T . We use this property in the
next section, where we describe a version of the algorithm when such a bound is not
known, or is very loose.

6 Algorithm for Unknown Amount of Drift

We sketch now an algorithm, which does not assuming knowing the exact drift level,
yet achieves log(T ) regret in the stationary case, and sub-linear regret otherwise.

In a nutshell, the algorithm runs C + 1 copies of ARCOR, one with q = ∞ (no
reset) and the others with q = 1, 2, 3...C. On each iteration the input vector xt is
fed into the C + 1 copies each of which computes a prediction ŷt,c. These C + 1
predictions are collected into a vector in RC+1. This vector is then fed into another
copy of the algorithm which is run with q = ∞ and RB = 1. Denote its weight vector
by vt ∈ RC+1. The output of our algorithm is thus ŷt = v�

t−1ŷt. Given the feedback,
the algorithm updates all C + 1 copies using ARCOR, as well as the additional copy.
Conceptually, we position C + 2 copies of the algorithm in a network of depth 2. The
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Fig. 2. Cumulative squared loss for AROW for regression, ARCOR with few value of q and
NLMS vs iteration. Left panel shows result for dataset with no shifts and the right panel for
dataset with shifts.

first layer is composed of C + 1 nodes, each runs its own copy of the algorithm under
a specific assumption of drift value (as above). The outputs if the first layer are fed into
the second layer, that integrates them linearly into a final output.

Intuitively, since the value of vt can be any member of the standard basis (ie (0..1..0),
we get that the loss of the additional copy is bounded with the loss of the best copy with
additional log(T ) term (the regret for the stationary case). Thus if the best copy is the
one with q = ∞ (ARCOR for the stationary case), the total regret is logarithmic in T .
Otherwise, in the non-stationary case, the regret of the best copy would be polynomial
in T , which is the final regret. We just sketched the proof of the following theorem,

Theorem 2. Assuming the algorithm just presented is run with C + 1 copies of AR-
COR and the additional copy. Then, the total loss of the algorithm is bounded by∑

t (ŷt − yt)
2 ≤ minC+1

c=1

∑
t (ŷc,t − yt)

2 + D log(T ) , where D is a constant de-
pending on the number of copies C and the parameter used r.

We note that Theorem 1 or one of its corollaries can be used to bound each of the terms∑T
t (ŷc,t − yt)

2. Specifically, if the minima is obtained for the stationary case we get a
logarithmic regret all together, otherwise the polynomial term is dominant in the bound.

7 Simulations

We illustrate the algorithms with two synthetic datasets, one with drifting only, and
the other also with switching. We generated 2, 000 points in R20 where the first ten
coordinates were grouped into five groups of size two. Each such pair was drawn from
a 45◦ rotated Gaussian distribution with standard deviation 10 and 1. The remaining
10 coordinates were drawn from independent Gaussian distributions N (0, 2). The first
dataset was generated using a sequence of vectors ut ∈ R20 for which the only non-
zero coordinates are the first two. This vector in R2 is of unit norm ‖ut‖ = 1 and
rotating in a rate of t−0.01.
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Similarly, the second dataset was generated with a sequence of rate t−0.5, but with
one additional twist. Every 50 time-steps the two-dimensional vector defined above was
“embedded” in different pair of coordinates of the reference vector ut, for the first 50
steps it were coordinates 1, 2 in the next 50 examples, coordinates 3, 4 and so on. This
change causes a switch in the reference vector ut. Finally, the target label yt was set to
be x�

t ut + ξt where ξt ∼ N (0, 2).
Three algorithms are evaluated: NLMS (normalized least mean square) [2,21] which

is a state-of-the-art first-order algorithm, AROW for regression, as developed in Sec. 3
with no restarting nor projection and ARCOR for various value of q. All algorithms
have one parameter to tune, which was performed using a single random sequence. We
repeat each experiment 100 reporting the mean cumulative square-loss and 95% confi-
dence interval. We note that Aggregating Algorithm (AA) and Ridge Regression(RR)
algorithm are very close algorithmically and in performance to AROW for regression
and thus omitted.

The results are summarized in Fig. 2. In a nutshell, AROW for regression performs
worst, NLMS is second and ARCOR is the best. This is surprising, as AROW for clas-
sification outperforms many algorithms that are related in spirit to NLMS. Yet, as men-
tioned above, the algorithm drives its learning rate to zero, not allowing for the ability
to track drifting concepts. For both datasets, and mainly for the one with switching
(right panel), AROW for regression is sensitive to the non-stationary properties of the
data, and thus suffers very large loss, as its tracking ability is very slow. NLMS has
nice tracking properties, but its learning rate is relatively slow. ARCOR tracks as fast
as AROW, yet it bounds the learning rate and thus allows fast tracking rate. Note that
in both datasets the “gap” between the cumulative error of all algorithms increases with
time, this means that ARCOR tracks better both on drifting and switching settings.

8 Related Work and Summary

There is a large body of research in online learning for regression problems. Almost
half a century ago, Widrow and Hoff [28] developed a variant of the least mean squares
(LMS) algorithm for adaptive filetering and noise reduction. The algorithm was further
developed and analyzed extensively (see e.g. [12]). The normalized least mean squares
filter (NLMS) [2,21] builds on LMS and performs better to scaling of the input. The
recursive least squares (RLS) [19] is the closest to our algorithm in the signal processing
literature, it also maintains a weight-vector and a covariance-like positive semi-definite
(PSD) matrix used to re-weight the input.

In the machine learning literature the problem of online regression was studied ex-
tensively, and clearly we can not cover all the relevant work. Cesa-Bianchi et al. [4]
studied gradient descent based algorithms for regression with the squared loss. Kivinen
and Warmuth [22] proposed various generalizations for general regularization func-
tions. We refer the reader to a comprehensive book in the subject [6].

Foster [14] studied an online version of the ridge regression algorithm in the worst-
case setting. Vovk [18] proposed a related algorithm called the Aggregating Algorithm
(AA), and later Forster [13] improved its regret analysis for the square loss. Both algo-
rithms employ second order information. ARCOR for the separable case is very similar
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to these algorithms, although has alternative derivation. Recently, few algorithms were
proposed either for classification [5,10,8,9] or for general loss functions [11,25] in the
online convex programming framework. Our work shares the same design principles of
AROW [9] yet it is aimed for regression. Furthermore, it has two important modifica-
tions which makes it work in the drifting or shifting setting. These modifications make
the analysis more complex than of AROW.

Two of the approaches used in previous algorithms for non-stationary setting are to
bound the weight vector and covariance reset. Bounding the weight vector was per-
formed either by projecting it into a bonded set [20], shrinking it by multiplication [23]
or subtracting previously seen examples [3]. These three methods (or at least most of
their variants) can be combined with kernel operators, and in fact, the last two ap-
proaches were designed and motivated by kernels.

The Covariance Reset RLS algorithm (CR-RLS) [26,17,7] was designed for adaptive
filtering. CR-RLS makes covariance reset every fixed amount of data points, while AR-
COR performs restarts based on the actual properties of the data: the eigenspectrum of
the covariance matrix. Furthermore, as far as we know, there is no analysis in the mis-
take bound model for this algorithm. Both ARCOR and CR-RLS are motivated from
the property that the covariance matrix goes to zero and becomes rank deficient.

In both algorithms the information encapsulated in the covariance matrix is lost after
restarts. In a rapidly varying environments, like a wireless channel, this loss of mem-
ory can be beneficial, as previous contributions to the covariance matrix may have little
correlation with the current structure. Recent versions of RLS+CR [16,27] employ co-
variance reset to have numerically stable computations.

Our work combines both techniques with online learning with second order algo-
rithm for regression. In this aspect we have the best of all worlds, fast convergence rate
due to the usage of second order information, and the ability to adapt in non-stationary
environments due to projection and resets. Current work includes extending the algo-
rithm for general loss function, efficient implementation of the algorithm and automat-
ically detecting the level of non-stationarity.
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Abstract. Designing statistical procedures that are provably almost as
accurate as the best one in a given family is one of central topics in
statistics and learning theory. Oracle inequalities offer then a convenient
theoretical framework for evaluating different strategies, which can be
roughly classified into two classes: selection and aggregation strategies.
The ultimate goal is to design strategies satisfying oracle inequalities
with leading constant one and rate-optimal residual term. In many recent
papers, this problem is addressed in the case where the aim is to beat
the best procedure from a given family of linear smoothers. However,
the theory developed so far either does not cover the important case of
nearest-neighbor smoothers or provides a suboptimal oracle inequality
with a leading constant considerably larger than one. In this paper, we
prove a new oracle inequality with leading constant one that is valid
under a general assumption on linear smoothers allowing, for instance,
to compete against the best nearest-neighbor filters.
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1 Introduction

Linear procedures are omnipresent in machine learning. Sliding windows esti-
mators, nearest neighbor smoothers, support vector machines with L2 loss, etc.,
are popular examples of learning procedures obtained from the data vector by
a linear transform. However, the performance of these procedures is, in general,
severely affected by the choice of various tuning parameters. A typical example is
presented in Figure 1: among the three linear estimators of a regression function,
the two up-most estimators perform very poorly while the third one leads to an
almost perfect recovery. The goal of the present paper is to propose a strategy
which is able to estimate a regression function almost as well as the best lin-
ear procedure in a given family. Such a family may be obtained by considering,
for instance, different values for the number of neighbors in nearest neighbor

J. Kivinen et al. (Eds.): ALT 2011, LNAI 6925, pp. 129–143, 2011.
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Fig. 1. The effect of the smoothing matrix Aλ on the resulting estimator. In this exam-
ple, the true signal is the sine function over [−π, π] and the three matrices represented
in the leftmost column are some powers of one convolution matrix. Large powers corre-
spond to stronger smoothing. It is clearly seen that the third matrix leads to an almost
perfect recovery of the original signal.

smoothing. It is also possible to make vary the metric in which the proximity is
measured.

We will mainly focus on the theoretical guarantees expressed in terms of ora-
cle inequalities for the expected squared loss. Interestingly, despite the fact that
several recent papers [1, 4, 18, 11] discuss the paradigm of competing against
the best linear procedure from a given family, none of them provide oracle in-
equalities with leading constant equal to one. Furthermore, most existing results
involve some constants depending on different parameters of the setup. In con-
trast, the oracle inequality that we prove herein is with leading constant one and
admits a very simple formulation. It is established for a suitably symmetrized
version of the exponentially weighted aggregate [16, 8, 14] with arbitrary prior
(see Figure 2) and a temperature parameter which is not too small. The result
is completely non-asymptotic and leads to asymptotically optimal residual term
in the case where the sample size, as well as the cardinality of the family of
competitors, tends to infinity.

More precisely, let f be an unknown function defined on some set X (called
feature space) and taking values in R. To fix the ideas, assume that X is equipped
with a metric d. We consider the setting where only noisy evaluations of the
function f at n points x1, . . . , xn of X are available. The observations are then
D = {(x1, Y1), . . . , (xn, Yn)}. We are interested here in recovering the true values
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f(xi) for i = 1, . . . , n based on the data D. In this context, if we assume that
f is smooth in some sense, a common estimator of f(xi) is given by the k-
nearest neighbor (kNN) filter f̂k,d(xi). In order to define it, let us denote by
ji,0, ji,1, . . . , ji,(n−1) a permutation of {1, . . . , n} that leads to a rearrangement of
the design points xj from the closest to xi to the farthest, i.e., 0 = d(xi, xji,0 ) ≤
d(xi, xji,1 ) ≤ . . . ≤ d(xi, xji,(n−1)). The kNN smoothing filter is then defined by

f̂k,d(xi) =
1
k

k−1∑
m=0

Yji,m . (1)

In most applications, one can define different metrics d on the feature space and
obtain different estimators of f(xi) with very different statistical properties. The
choice of the parameter k and the metric d that leads to the smallest possible
estimation error is an important problem both from practical and theoretical
viewpoints. A natural question arises: assume that we are given several metrics
d1, . . . , dL on the feature space, is it possible to design a statistical procedure
that estimates each of f(xi) nearly as well as the best kNN-filter from the family
{f̂k,d�

: k = 1, . . . , n; � = 1, . . . , L}? We show that the answer to this question is
affirmative, but there is a price to pay for not knowing the optimal metric and
the optimal value of k. In the present work, we address this issues by aggregating
the estimators f̂k,d over the set of all possible values of k and the metric d. Our
results imply that the price to pay for not knowing the best values of these
parameters is of the order log(L(n− 1))/n.

Note that the estimator (1) can be written as f̂k,d(xi) =
∑n

j=1 aijYj , with aij

being equal to 1/k if j ∈ {ji,0, . . . , ji,(k−1)} and 0 otherwise. Thus, the weights aij

depend exclusively on the the features x1, . . . , xn and not on the Yis. Therefore,
the kNN filter is a particular instance of linear estimators defined by

f̂ =

⎡⎢⎣f̂(x1)
...

f̂(xn)

⎤⎥⎦ = AY ,

where A is a n×n weight matrix and Y = [Y1, . . . , Yn]� is the vector of observed
responses. The main results of this paper hold for this general class of estimators
under some condition on the weight matrix A. This condition is satisfied for a
kNN estimator whatever the metric d and the parameter k are.

From the perspective of learning theory, oracle inequalities constitute a valu-
able theoretical tool for assessing the performance of procedures elaborated in
the context of agnostic learning introduced by [20], see also [19] for a recent
contribution to the subject. Note also that the problem of competing against
the best procedure in a given family has been extensively studied in the context
of online learning and prediction with expert advice [21, 9, 10, 5]. A remarkable
connection between the results on online learning and the statistical oracle in-
equalities has been recently established by [17]. The case of linear estimators has
been studied by [24, 26, 12] for projection matrices A and by [26, 12] for diagonal
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Input: data vector Y ∈ Rn, n× n noise covariance matrix Σ and a family of linear
smoothers {f̂λ = AλY ; λ ∈ Λ}.

Output: estimator f̂SEWA of the true function f .

Parameter: prior probability distribution π on Λ, temperature parameter β > 0.

Strategy:
1. For every λ, compute the risk estimate r̂unb

λ =
∥∥Y − f̂λ

∥∥2
n

+ 2
n

Tr(ΣAλ) −
1
n

Tr[Σ].
2. Define the probability distribution π̂(dλ) = θ(λ)π(dλ) with θ(λ) ∝

exp(−nr̂unb
λ /β).

3. For every λ, build the symmetrized linear smoothers f̃λ = (Aλ + Aλ
� −

Aλ
�Aλ)Y .

4. Average out the symmetrized smoothers w.r.t. posterior π̂: f̂SEWA =∫
Λ

f̃λπ̂(dλ).

Fig. 2. The symmetrized exponentially weighted aggregation strategy for competing
against the best linear smoother in a given family

matrices A. However, these result do not cover several important classes of linear
estimators including the kNN filter.

We should mention that the numerical experiments we have carried out on
a number of synthetic datasets have shown that the symmetrized exponentially
weighted aggregate performs as predicted by our theoretical result. Interestingly,
these experiments show also that the standard (non-symmetrized) exponentially
weighted aggregate is not worse than the symmetrized one. However, we are not
able so far to provide theoretical guarantees for the non-symmetrized strategy.

Outline. The rest of the paper is organized as follows. We introduce the main no-
tation along with a short background on oracle inequalities and on linear filtering
in Section 2. The main contribution of the paper, a sharp oracle inequality for the
symmetrized exponentially weighted aggregate, is stated in Section 3, while Sec-
tion 4 contains some numerical results. Section 5 summarizes the content of the
paper and provides some perspectives. The proofs are postponed to the Appendix.

2 Notation and Background

Throughout this work, we focus on the heteroscedastic regression model with
Gaussian additive noise. More precisely, we assume that we are given a vector
Y = (y1, · · · , yn)� ∈ Rn obeying the model:

yi = fi + ξi, for i = 1, . . . , n, (2)

where ξ = (ξ1, . . . , ξn)� is a centered Gaussian random vector, fi = f(xi) where
f is an unknown function X → R and x1, . . . , xn ∈ X are deterministic points.
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Here, no assumption is made on the set X . Our objective is to recover the vector
f = (f1, . . . , fn), often referred to as signal, based on the data y1, . . . , yn. In our
work the noise covariance matrix Σ = E[ξξ�] is assumed to be finite and known,
with a possible extension to the case of estimated covariance matrix discussed
in Remark 5. We measure the performance of an estimator f̂ by its expected
empirical quadratic loss: r = E(‖f − f̂‖2

n), where ‖f − f̂‖2
n = 1

n

∑n
i=1(fi − f̂i)2.

We also denote by 〈·|·〉n the corresponding empirical inner product. For any
matrix B, ‖|B‖| stands for the spectral norm of B, i.e., its largest singular value.

2.1 Oracle Inequalities

In this subsection we describe the paradigm of selection/aggregation of estima-
tors in a data-driven manner from a given family of estimators. The task of
aggregation consists in estimating f by a suitable combination of the elements
of a family of constituent estimators FΛ = (f̂λ)λ∈Λ ∈ Rn, while the task of
selection is just to choose a data-dependent value λ̂ of λ for which the estimator
f̂ λ̂ is close to f . The target objective of the selection/aggregation is to build an
estimator f̂ select/f̂aggr that mimics the performance of the best constituent esti-
mator, called oracle (because of its dependence on the unknown function f). In
what follows, we assume that Λ is a measurable subset of RM , for some M ∈ N.

The theoretical tool commonly used for evaluating the quality of an aggregation
procedure is the oracle inequality (OI), generally written in the following form:

E‖f̂aggr − f‖2
n ≤ Cn inf

λ∈Λ

(
E‖f̂λ − f‖2

n

)
+Rn, (3)

with residual term Rn tending to zero, and leading constant Cn being bounded.
The OIs with leading constant one—called sharp OIs—are of central theoretical
interest since they allow to bound the excess risk and to assess the aggregation-
rate-optimality.

2.2 Nearest Neighbor Filtering

When the unknown function f is smooth or can be well approximated by a
smooth function, it is reasonable to estimate it by computing the moving av-
erages or k-Nearest Neighbor (kNN) filters, see e.g. [15]. More precisely, let us
fix an index i and consider the problem of estimating the value fi of f at xi.
Let xj1 , . . . , xjk

be the set of k points from {x1, . . . , xn} which are at smallest
distance (in some metric) from xi. The idea of kNN filtering is to estimate the
unknown value fi by taking the average of k values Yj�

, � = 1, . . . , k. This ap-
proach is particularly popular, for instance, in stereo-vision for reconstructing
3D scenes from 3D point clouds.

A crucial point when estimating a function by kNN-filtering is the choice of the
tuning parameter k. This parameter allows the user to control the trade-offbetween
the bias and the variance of estimation. If the value of k is too small, the resulting
estimator is very oscillating, whereas large values of k lead to over-smoothed esti-
mators. Many strategies for selecting k in a data driven manner have been proposed
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in the literature [25, 23, 22, 18, 1]. However, to the best of our knowledge, none of
these procedures is proved to satisfy a sharp oracle inequality in the sense made
precise in the previous section. In the present work, we propose a strategy—for
which a sharp oracle inequality is established—based on data-driven aggregation
of kNN filters rather than on (data-driven) selection of the parameter k.

2.3 General Linear Smoothing

More generally, we will focus on linear estimators f̂λ, i.e., estimators that are
linear transforms of the data Y = (y1, . . . , yn)� ∈ Rn. Using the convention that
all vectors are one-column matrices, linear estimators can be defined by

f̂λ = AλY , (4)

where the n× n real matrix Aλ is deterministic. This means that the entries of
Aλ may depend on the points x1, . . . , xn but not on the data vector Y . Let In
denote the identity matrix of size n × n. It is well-known that the risk of the
estimator (4) is given by

E[‖f̂λ − f‖2
n] = ‖(Aλ − In)f‖2

n +
Tr(AλΣAλ

�)
n

(5)

and that r̂unb
λ , defined by

r̂unb
λ =

∥∥Y − f̂λ

∥∥2
n

+
2
n

Tr(ΣAλ) − 1
n

Tr[Σ] (6)

is an unbiased estimator of rλ = E[‖f̂λ − f‖2
n]. In order to get a sharp oracle

inequality with a simple residual term, we will need the following assumption.

[C(λ)] The matrix Aλ satisfies Tr(ΣAλ) ≤ Tr(ΣAλ
�Aλ).

Let us present now several classes of widely used linear estimators for which this
condition is satisfied.

1. The simplest class of matrices Aλ for which condition C(λ) holds true are or-
thogonal projections. Indeed, if Aλ is a projection matrix, it satisfies Aλ

�Aλ =
Aλ and, therefore, Tr(ΣAλ) = Tr(ΣAλ

�Aλ).
2. If the matrix Σ is diagonal, then a sufficient condition for C(λ) is aii ≤∑n

j=1 a
2
ji. Consequently, for the matrices having only zeros on the main

diagonal C(λ) holds true. For instance, the kNN filter in which the weight
of the observation Yi is replaced by zero,i.e., aij = 1j∈{ji,1,...,ji,k}/k satisfies
this condition.

3. Under a little bit more stringent assumption of homoscedasticity, i.e., when
Σ = σ2In, if the matrices Aλ are such that all the non-zero elements of
each row are equal and sum up to one (or a quantity larger than one) then
Tr(Aλ) = Tr(Aλ

�Aλ) and C(λ) is fulfilled. A notable example of linear es-
timators that satisfy this condition are Nadaraya-Watson estimators with
rectangular kernel and nearest neighbor filters. Below is a visual illustration
of a matrix defining a Nadaraya-Watson estimator:
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3 Main Result

Let rλ = E[‖f̂λ − f‖2
n] denote the risk of the estimator f̂λ, for any λ ∈ Λ, and

let r̂λ be an estimator of rλ. For any probability distribution π over the set Λ
and for any β > 0, we define the probability measure of exponential weights, π̂,
by the following formula: π̂(dλ) = θ(λ)π(dλ) with

θ(λ) =
exp(−nr̂λ/β)∫

Λ exp(−nr̂ω/β)π(dω)
. (7)

The corresponding exponentially weighted aggregate, henceforth denoted by
f̂EWA, is the expectation of the f̂λ w.r.t. the probability measure π̂:

f̂EWA =
∫

Λ

f̂λ π̂(dλ) . (8)

It is convenient and customary to use the terminology of Bayesian statistics: the
measure π is called prior, the measure π̂ is called posterior and the aggregate
f̂EWA is then the posterior mean. The parameter β will be referred to as the
temperature parameter. In the framework of aggregating statistical procedures,
the use of such an aggregate can be traced back to [16].

The density θ(·) assigns weights to the estimators according to their perfor-
mance, measured in terms of the risk estimate r̂λ. The temperature parameter
reflects the confidence we have in this criterion: if β ≈ 0 the posterior concen-
trates on the estimators achieving the smallest value for r̂λ, whereas if β → +∞
then the posterior approaches to the prior π, and the data do not modify our
confidence in the estimators. It should also be noted that averaging w.r.t. the
posterior π̂ is not the only way of constructing an estimator of f based on π̂;
some alternative randomized estimators have been studied, for instance, in [2].

To state our main results, we denote by PΛ the set of all probability measures
on Λ and by K(p, p′) the Kullback-Leibler divergence between two probability
measures p, p′ ∈ PΛ:

K(p, p′) =

{∫
Λ

log
(

dp
dp′ (λ)

)
p(dλ) if p� p′,

+∞ otherwise.
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Theorem 1. Let {Aλ : λ ∈ Λ} be any family of n × n matrices satisfying con-
dition C(λ) on a set of π-measure one. Let f̂SEWA denote the symmetrized expo-
nentially weighted aggregate, i.e. the exponentially weighted aggregate acting on
symmetrized estimators f̃λ = (Aλ + Aλ

� −Aλ
�Aλ)Y with the weights (7) defined

via the risk estimate r̂unb
λ . Then, for every β ≥ 4‖|Σ‖|, it holds that

E
[
‖f̂SEWA − f‖2

n

]
≤ inf

p∈PΛ

{∫
Λ

E
[
‖f̂λ − f‖2

n

]
p(dλ) +

β

n
K(p, π)

}
.

A first observation that one can make is that, in the particular case of a finite
collection of projection estimators (i.e., Aλ = Aλ

� = A2
λ for every λ) this result

reduces to Corollary 6 in [24]. Furthermore, Theorem 1 handles the general noise
covariances while [24] deals only with i.i.d. Gaussian noise.

Note also that the result of Theorem 1 applies to the estimator f̂EWA that uses
the full knowledge of the covariance matrix Σ. Indeed, even if for the choice of β
only an upper bound on the spectral norm of Σ is required, the entire matrix Σ
enters in the definition of the unbiased risk r̂unb

λ that is used for defining f̂SEWA.
We will discuss in Remark 5 some extensions of the proposed methodology to
the case of unknown Σ.

Remark 1. We decided in this paper to focus on the case of Gaussian errors,
in order to put the emphasis on the possibility of efficiently aggregating broad
families of linear estimators without spending time and space on other technical
aspects. The result stated in this section can be generalized to some other noise
distributions by following the approach developed in [13].

Remark 2. We prove a result that is stronger than the one stated in Theorem 1.
In particular, it holds for any matrices Aλ and boils down to the elegant inequal-
ity stated in Theorem 1 when condition C(λ) is π-a.e. satisfied. The precise form
of this more general result is the following. Let f̂SEWA denote the aggregate de-
fined in Figure 2. Then, for every β ≥ 4‖|Σ‖|, the risk E

[
‖f̂SEWA −f‖2

n

]
of f̂SEWA

is bounded from above by

inf
p∈PΛ

{∫
Λ

E
[
‖f̂λ − f‖2

n

]
p(dλ) +

β

n
K(p, π)

}
+Rn (9)

with the residual term Rn = β
n log

[ ∫
Λ
e

2
β Tr[Σ(Aλ−Aλ

�Aλ)]π(dλ)
]
.

Remark 3. Using the previous remark, one can also get the risk bound (9), when
condition C(λ) is only approximately satisfied. More precisely, if condition C(λ)
is replaced by :

[C(λ, ε)] The matrix Aλ satisfies Tr(ΣAλ) ≤ Tr(ΣAλ
�Aλ) + ε,

then the residual term Rn in Inequality (9) simply becomes 2ε
n .

In order to demonstrate that Theorem 1 can be reformulated in terms of an OI
as defined by (3), let us consider the case when the prior π is discrete. That is,
we assume that π(Λ0) = 1 for a countable set Λ0 ⊂ Λ. Without loss of generality,
we assume that Λ0 = N. Then, the following result holds true.
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Proposition 1. If π is supported by N and condition C(λ) is satisfied for every
λ ∈ N, then the aggregate f̂SEWA satisfies the inequality

E[‖f̂SEWA − f‖2
n] ≤ inf

λ:πλ>0

{
E‖f̂λ − f‖2

n +
β log(1/πλ)

n

}
(10)

provided that β ≥ 4‖|Σ‖|.

Proof. It suffices to apply Theorem 1 and to bound the right hand side from
above by the minimum over all Dirac measures p = δλ with λ such that πλ > 0.

This inequality can be compared to Corollary 2 in Section 4.3 of [4]. Our inequal-
ity has the advantage of being sharp, i.e., having factor one both in front of the
expectation of the LHS of (10) and in front of the inf of the RHS. To the best of
our knowledge, there is no other result in the literature providing such a sharp
OI for linear estimators which are not of projection type. In particular, in [4]
the risk in the LHS of the OI is multiplied by a constant which is smaller than
one and depends on different parameters of the problem. It should be noted,
however, that we consider the noise covariance matrix as known, whereas [4]
estimates the noise covariance along with the regression function.
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Fig. 3. Three test signals used in experimental evaluation. From left to right : the sine
function, HeaviSine and Wave functions [7].

Remark 4. A particular case of Proposition 1 is the situation where π is the
uniform probability over a finite set of cardinality M . In such a situation, the
remainder term in (10) becomes of the form (β logM)/n. The rate (logM)/n of
the remainder term in the OI has been proven [28] unavoidable in the context
of aggregating data-independent estimators. By similar arguments, it is possible
to prove that this rate is optimal in the case of aggregating linear smoothers as
well.

Remark 5. The symmetrized exponentially weighted aggregate f̂SEWA is easily
extended to handle the more realistic situation where an unbiased estimate Σ̂,
independent of Y , of the covariance matrix Σ is available. Simply replaceΣ by Σ̂
in the definition of the unbiased risk estimate (6). When the matrices Aλ satisfy
π-a.e. condition C(λ), it is easy to see that the claim of Theorem 1 remains
valid. Of course, the condition β ≥ 4‖|Σ‖| should be replaced by β ≥ 4‖|Σ̂‖| and
β should be replaced by E[β] in the right hand side of the oracle inequality.
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4 Numerical Experiments

We have implemented the symmetrized exponentially weighted aggregate (SEWA)
in Matlab in the case of combining kNN filters with varying values of k. Along
with SEWA we have also implemented the classical exponentially weighted aggre-
gate (EWA) as defined for instance in [24, 14] and the empirical risk minimization
(ERM) algorithm, the latter consisting in choosing the value of k minimizing the
unbiased estimator of the risk (6). Following the philosophy of reproducible re-
search, a toolbox containing the code we used for getting the results reported in
this section will be made available by the date of the conference at the authors’
home pages.

In our experiments, we compared the aforementioned three strategies, ERM,
EWA and SEWA, on three common 1D signals depicted in Figure 3. Each signal
has been beforehand normalized to have an L2 norm equal to one. We have cho-
sen several sample sizes n ∈ {30, 50, 100} and noise levels σ2 ∈ {0.2, 0.5, 1, 1.5, 2}
and randomly generated the data vector Y = (Y1, . . . , Yn) by the formula
Yi = f(i/n) + εi, where (ε1, . . . , εn) is a Gaussian random vector N (0, σ2In).
We then computed the three estimators ERM, EWA and SEWA and repeated
the experiment 104 times. As preliminary estimators we used the kNN filters
with k ∈ {1, . . . , [n/2]}. The prior was chosen to be uniform and the tempera-
ture parameter is the one suggested by the theory: β = 4σ2. The medians and
the inter-quartile ranges of the errors1 ‖f̂• − f‖2 are summarized in Tables 1, 2
and 3 below.

Table 1. Sine function: the values of the median error and the inter-quartile range (in
parentheses) over 104 trials are reported

n = 30 n = 50 n = 100
ERM EWA SEWA ERM EWA SEWA ERM EWA SEWA

σ2 = 0.2 1.4397 1.3906 1.3469 1.5290 1.4685 1.4663 1.6768 1.5984 1.6471
(0.40) (0.40) (0.35) (0.40) (0.39) (0.38) (0.40) (0.38) (0.38)

σ2 = 0.5 2.0301 1.8806 1.7861 2.1395 2.0800 2.0086 2.3634 2.2661 2.2786
(0.57) (0.48) (0.53) (0.65) (0.59) (0.56) (0.63) (0.62) (0.59)

σ2 = 1 2.4966 2.2161 2.1933 2.8026 2.5501 2.4487 3.0561 2.9287 2.8590
(0.69) (0.61) (0.71) (0.81) (0.67) (0.74) (0.93) (0.83) (0.81)

σ2 = 1.5 2.7930 2.4966 2.5046 3.1521 2.8125 2.7660 3.5679 3.3088 3.2167
(0.94) (0.83) (0.96) (0.94) (0.84) (0.95) (1.09) (0.92) (0.96)

σ2 = 2 3.0113 2.7180 2.7793 3.3930 3.0757 3.0413 3.9748 3.5854 3.4970
(1.08) (1.02) (1.17) (1.10) (0.93) (1.06) (1.19) (1.00) (1.09)

A first observation is that the aggregation strategies, EWA and SEWA, are
always better than the selection strategy ERM. This is essentially explained

1 In this expression the norm is the classical Euclidean one and f̂ • is either one of the
estimators ERM, EWA or SEWA.
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Table 2. HeaviSine function [7]: the values of the median error and the inter-quartile
range (in parentheses) over 104 trials are reported

n = 30 n = 50 n = 100
ERM EWA SEWA ERM EWA SEWA ERM EWA SEWA

σ2 = 0.2 1.6552 1.5906 1.5708 1.8157 1.7274 1.7306 2.0170 1.9359 1.9921
(0.37) (0.36) (0.35) (0.37) (0.39) (0.38) (0.39) (0.37) (0.39)

σ2 = 0.5 2.2783 2.1604 2.0845 2.4834 2.3370 2.2589 2.7984 2.6620 2.6611
(0.55) (0.57) (0.58) (0.59) (0.54) (0.57) (0.62) (0.59) (0.59)

σ2 = 1 2.9039 2.7275 2.6416 3.1558 2.9446 2.8783 3.5533 3.3284 3.2715
(0.82) (0.81) (0.85) (0.85) (0.83) (0.84) (0.86) (0.80) (0.82)

σ2 = 1.5 3.3554 3.1526 3.0878 3.5758 3.3576 3.2583 4.0708 3.7886 3.7106
(1.08) (0.99) (0.97) (1.02) (0.95) (1.00) (1.05) (0.97) (1.00)

σ2 = 2 3.7266 3.4729 3.4443 4.0147 3.7368 3.6694 4.4888 4.1560 4.0723
(1.34) (1.19) (1.22) (1.30) (1.23) (1.24) (1.24) (1.13) (1.16)

Table 3. Wave function: the values of the median error and the inter-quartile range
(in parentheses) over 104 trials are reported

n = 30 n = 50 n = 100
ERM EWA SEWA ERM EWA SEWA ERM EWA SEWA

σ2 = 0.2 1.4340 1.3814 1.3724 1.5887 1.5725 1.5580 1.9720 1.8696 1.8612
(0.37) (0.29) (0.30) (0.41) (0.33) (0.33) (0.34) (0.30) (0.33)

σ2 = 0.5 1.8300 1.6868 1.7159 2.1004 1.9571 1.9608 2.4045 2.3730 2.3462
(0.45) (0.41) (0.47) (0.53) (0.41) (0.47) (0.67) (0.49) (0.52)

σ2 = 1 2.1727 2.0073 2.0976 2.4719 2.2784 2.3351 2.9898 2.7755 2.7716
(0.74) (0.65) (0.73) (0.69) (0.60) (0.68) (0.77) (0.58) (0.66)

σ2 = 1.5 2.4395 2.2637 2.4013 2.7554 2.5266 2.6331 3.2993 3.0282 3.0761
(1.00) (0.84) (0.94) (0.93) (0.77) (0.89) (0.88) (0.72) (0.83)

σ2 = 2 2.6845 2.5068 2.6809 2.9950 2.7495 2.8961 3.5428 3.2290 3.3133
(1.23) (1.01) (1.12) (1.15) (0.94) (1.06) (1.05) (0.86) (0.99)

by a relative lack of stability of selection strategies thoroughly discussed in [6].
A second observation is that there is no clear winner among the aggregation
strategies EWA and SEWA. Both of them are quite accurate with very little
difference in the error of estimation. This raises the following question: is it pos-
sible to prove a sharp oracle inequality for the standard EWA without applying
the symmetrization trick? To date, we are unable to answer this question.

It is important to stress that the medians reported in Tables 1-3 are those of
estimation errors without normalization by the sample size n. Therefore, it is
quite natural that these errors increase with n (more and more parameters are
estimated). It is however clear from the reported results that the non-normalized
accuracy increases very slowly when n increases. This is in agreement with our
theoretical result stating that the error increases at most logarithmically.
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5 Conclusion and Outlook

We have suggested a new strategy for aggregating linear smoothers in order to
denoise a signal corrupted by an additive Gaussian noise. We proved a sharp
oracle inequality for the proposed strategy, termed SEWA for symmetrized ex-
ponentially weighted aggregation. A few experimental results are also reported
that allow to illustrate our theoretical result and to quantify the advantage of
aggregation as compared to selection.

The SEWA results may have profitable application to classification and pat-
tern recognition. As proved in [3], fast rates in classification can be obtained by
plugging-in efficient regression estimators. We are experimenting with the use of
a procedure analogous to SEWA to perform binary classification. The results, to
date, have been as encouraging as in the regression case.

Acknowledgments. This work has been partially supported by ANR grant
Parcimonie.
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A Proof of Theorem 1

The proof of our main result relies on the well-known Stein lemma [27] providing
an unbiased risk estimate for any estimator that depends sufficiently smoothly
on the data vector Y . For the convenience of the reader, we recall Stein’s lemma
in the case of heteroscedastic Gaussian regression.

Lemma 1. Let Y be a random vector drawn form the Gaussian distribution
Nn(f , Σ). If the estimator f̂ is a.e. differentiable in Y and the elements of
the matrix ∇ · f̂� := (∂if̂j) have finite first moment, then r̂Σ = ‖Y − f̂‖2

n +
2
n Tr[Σ(∇·f̂�)]− 1

n Tr[Σ], is an unbiased estimate of r, i.e., Er̂Σ = r. Moreover,
if Σ̂ is an unbiased estimator of Σ such that Y and Σ̂ are independent, then

r̂ = ‖Y − f̂‖2
n +

2
n

Tr[Σ̂(∇ · f̂�)] − 1
n

Tr[Σ̂], (11)

is an unbiased estimator of the risk r as well.

We apply Stein’s lemma to the estimator f̂λ = AλY , where Aλ is an n × n

matrix. We get that r̂unb
λ,Σ =

∥∥Y − f̂λ

∥∥2
n

+ 2
n Tr[ΣAλ] − 1

n Tr[Σ] is an unbiased
estimator of the risk rλ = E[‖f̂λ − f‖2

n] = ‖(Aλ − In)f‖2
n + 1

n Tr[AλΣA�
λ ].
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Furthermore, if Σ̂ is an unbiased estimator of Σ then r̂unb
λ =

∥∥Y − f̂λ

∥∥2
n

+
2
n Tr[Σ̂Aλ] − 1

n Tr[Σ̂] is also an unbiased estimator of rλ.
Prior to proceeding with the proof of main theorems, we prove an important

auxiliary result which is the central ingredient of the proof for our main result.

Lemma 2. Let assumptions of Lemma 1 be satisfied. Let {f̃λ : λ ∈ Λ} be a
family of estimators of f and {r̃λ : λ ∈ Λ} a family of risk estimates such that
the mapping Y �→ (f̃λ, r̃λ) is a.e. differentiable ∀λ ∈ Λ. Let r̃unb

λ be the unbiased
risk estimate of f̃λ given by Stein’s lemma (cf. Eq. (11)).
1. For every μ ∈ PΛ and for any β > 0, the estimator f̃EWA defined as the

average of f̃λ w.r.t. the probability measure μ̂(Y , dλ) = θ(Y , λ)μ(dλ) with
θ(Y , λ) ∝ exp

{
− nr̃λ(Y )/β

}
admits

r̂EWA =
∫

Λ

(
r̃unb
λ − ‖f̃λ − f̃EWA‖2

n − 2n
β

〈
∇Y r̃λ|Σ̂(f̃λ − f̃EWA)

〉
n

)
μ̂(dλ)

as unbiased estimator of the risk.
2. If furthermore r̃λ ≥ r̃unb

λ , ∀λ ∈ Λ and
∫

Λ

〈
∇r̃λ|Σ̂(f̃λ − f̃EWA)

〉
n
μ̂(dλ) ≥

−a
∫

Λ
‖f̃λ − f̃EWA‖2

nμ̂(dλ) for some random a > 0 independent of Y , then
for every β ≥ 2na it holds that

E[‖f̃EWA − f‖2
n] ≤ inf

p∈PΛ

{∫
Λ

E[r̃λ] p(dλ) +
E[β]K(p, μ)

n

}
.

Proof. According to the Lemma 1, the quantity

r̂EWA = ‖Y − f̃EWA‖2
n +

2
n

Tr[Σ̂(∇ · f̃EWA(Y )] − 1
n

Tr[Σ̂] (12)

is an unbiased estimate of the risk rn = E(‖f̃EWA − f‖2
n). Using simple algebra,

one checks that

‖Y − f̃EWA‖2
n =
∫

Λ

(
‖Y − f̃λ‖2

n − ‖f̃λ − f̃EWA‖2
n

)
μ̂(dλ). (13)

By interchanging the integral and differential operators, we get the following re-
lation: ∂yi f̂EWA,j =

∫
Λ

{(
∂yj f̃λ

j
(Y )
)
θ(Y , λ)+ f̃λ

j
(Y )
(
∂yiθ(Y , λ)

)}
μ(dλ). This

equality, combined with Equations (12) and (13) implies that

r̂EWA =
∫

Λ

(
r̃unb
λ − ‖f̃λ − f̃EWA‖2

n

)
μ̂(dλ) +

2
n

∫
Λ

Tr[Σ̂f̃λ∇Y θ(Y , λ)�]μ(dλ).

Taking into account the fact that the differentiation and the integration can be
interchanged,

∫
Λ f̃EWA

(
∇Y θ(Y , λ)

)�
μ(dλ) = f̃EWA∇Y

( ∫
Λ θ(Y , λ)μ(dλ)

)
= 0,

and we come up with the following expression for the unbiased risk estimate:

r̂EWA =
∫

Λ

(
r̃unb
λ − ‖f̃λ − f̂n‖2

n + 2
〈
∇Y log θ(λ)|Σ̂(f̃λ − f̃EWA)

〉
n

)
μ̂(dλ)

=
∫

Λ

(
r̃unb
λ − ‖f̃λ − f̃EWA‖2

n − 2nβ−1
〈
∇Y r̃λ|Σ̂(f̃λ − f̃EWA)

〉
n

)
μ̂(dλ).

This completes the proof of the first assertion of the lemma.
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To prove the second assertion, let us observe that under the required condition
and in view of the first assertion, for every β ≥ 2na it holds that r̂EWA ≤∫

Λ r̃
unb
λ μ̂(dλ) ≤

∫
Λ r̃λμ̂(dλ) ≤

∫
Λ r̃λμ̂(dλ) + β

nK(μ̂, μ). To conclude, it suffices to
remark that μ̂ is the probability measure minimizing the criterion

∫
Λ
r̃λp(dλ) +

β
nK(p, μ) among all p ∈ PΛ. Thus, for every p ∈ PΛ, it holds that r̂EWA ≤∫
Λ r̃λp(dλ) + β

n K(p, μ). Taking the expectation of both sides, the desired result
follows.

Proof of Remark 2 and Theorem 1

Let now f̃λ = ÃλY with a symmetric Ãλ = Aλ+Aλ
�−Aλ

�Aλ. We apply Lemma 2
with the prior μ(dλ) ∝ exp{2 Tr[Σ(Aλ

�−Aλ
�Aλ)]/β}π(dλ), with f̂λ = AλY and

with the risk estimate

r̃λ =
∥∥Y − f̂λ

∥∥2
n

+
2
n

Tr[ΣÃλ] − 1
n

Tr[Σ] = r̂unb
λ +

2
n

Tr[ΣAλ
�Aλ −ΣAλ]. (14)

One easily checks that this choice leads to the posterior μ̂ that is equal to π̂
defined in Figure 2. Therefore, the aggregate f̃EWA based on the prior μ coincides
with f̂SEWA based on the prior π. Thus we obtain the following inequality:

E[‖f̂SEWA − f‖2
n] ≤ inf

p∈PΛ

{∫
Λ

E[r̃λ] p(dλ) +
βK(p, μ)

n

}
. (15)

Furthermore, easy algebra yields that all the conditions required in the second
part of Lemma 2 are fulfilled with a = 2‖|Σ‖|

n as soon as β ≥ 4‖|Σ‖|. Indeed, one
can notice that ∇Y r̃λ = 2

n (Y − f̃λ). This leads to∫
Λ

〈
∇Y r̃λ|Σ(f̃λ − f̃EWA)

〉
n
μ̂(dλ) =

2
n

∫
Λ

〈
f̃EWA − f̃λ|Σ(f̃λ − f̃EWA)

〉
n
μ̂(dλ)

≤ 2‖|Σ‖|
n

∫
Λ

‖f̃λ − f̃EWA‖2
nμ̂(dλ). (16)

Hence the conclusion of the second part of Lemma 2 holds true. To prove the
claim of Remark 2, one can notice that:

K(p, μ) = −
∫

Λ

log
(dμ
dp

(λ)
)
p(dλ)

=
∫

Λ

2
β

Tr[Σ(Aλ
�Aλ − Aλ)]p(dλ) + log

[∫
Λ

e
2
β Tr[Σ(Aλ−Aλ

�Aλ)]π(dλ)
]

+ K(p, π).

(17)

Then, by taking the expectation and combining together relations (14), (15) and
(17), one gets E[‖f̂SEWA − f‖2

n] ≤ infp∈PΛ

{∫
Λ rλp(dλ) + βK(p,π)

n

}
+ Rn, and the

claim of Remark 2 follows.
Finally, if condition C(λ) is satisfied for π-almost all values of λ, then Rn is

non-positive, and we get the sharp oracle inequality stated in Theorem 1.
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Abstract. We consider the setting of stochastic bandit problems with a
continuum of arms indexed by [0, 1]d. We first point out that the strate-
gies considered so far in the literature only provided theoretical guar-
antees of the form: given some tuning parameters, the regret is small
with respect to a class of environments that depends on these parame-
ters. This is however not the right perspective, as it is the strategy that
should adapt to the specific bandit environment at hand, and not the
other way round. Put differently, an adaptation issue is raised. We solve
it for the special case of environments whose mean-payoff functions are
globally Lipschitz. More precisely, we show that the minimax optimal
orders of magnitude Ld/(d+2) T (d+1)/(d+2) of the regret bound over T
time instances against an environment whose mean-payoff function f is
Lipschitz with constant L can be achieved without knowing L or T in
advance. This is in contrast to all previously known strategies, which
require to some extent the knowledge of L to achieve this performance
guarantee.

1 Introduction

In the (stochastic) bandit problem, a gambler tries to maximize the revenue
gained by sequentially playing one of a finite number of arms that are each
associated with initially unknown (and potentially different) payoff distribu-
tions [Rob52]. The gambler selects and pulls arms one by one in a sequential
manner, simultaneously learning about the machines’ payoff-distributions and
accumulating rewards (or losses). Thus, in order to maximize his gain, the gam-
bler must choose the next arm by taking into consideration both the urgency of
gaining reward (“exploitation”) and acquiring new information (“exploration”).
Maximizing the total cumulative payoff is equivalent to minimizing the (total)
regret, that is, minimizing the difference between the total cumulative payoff of
the gambler and that of another clairvoyant gambler who chooses the arm with
the best mean-payoff in every round. The quality of the gambler’s strategy can
be characterized by the rate of growth of his expected regret with time. In par-
ticular, if this rate of growth is sublinear, the gambler in the long run plays as
well as his clairvoyant counterpart.

Continuum-Armed Bandit Problems. Although the early papers studied
bandits with a finite number of arms, researchers soon realized that bandits with

J. Kivinen et al. (Eds.): ALT 2011, LNAI 6925, pp. 144–158, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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infinitely many arms are also interesting, as well as practically significant. One
particularly important case is when the arms are identified by a finite number
of continuous-valued parameters, resulting in online optimization problems over
continuous finite-dimensional spaces. During the last decades numerous contri-
butions have investigated such continuum-armed bandit problems, starting from
the early formulations of [Agr95, Cop09, Kle04] to the more recent approaches
of [AOS07, KSU08, BMSS11]. A special case of interest, which forms a bridge
between the case of a finite number of arms and the continuum-armed setting,
is the problem of bandit linear optimization, see [DHK08] and the references
therein.

Not the Right Perspective! We call an environment f the mapping that
associates with each arm x ∈ X the expectation f(x) of its associated probability
distribution. The theoretical guarantees given in the literature mentioned above
are of the form: given some tuning parameters, the strategy is competitive, and
sometimes even minimax optimal, with respect to a large class of environments
that unfortunately depends on these parameters. But of course, this is not the
right perspective: it is the strategy that should adapt to the environment, not
the other way round!

More precisely, these parameters describe the smoothness of the environments
f in the class at hand in terms of a global regularity and/or local regularities
around the global maxima of f . The issues raised by some of the works mentioned
above can be roughly described as follows:

– The class of environments for the CAB1 algorithm of [Kle04] is formed by
environments that are (α,L, δ)–uniformly locally Lipschitz and the strategy
CAB1 needs to know α to get the optimal dependency in the number T of
arms pulled;

– For the Zooming algorithm of [KSU08], it is formed by environments that
are 1–Lipschitz with respect to a fixed and known metric L;

– The HOO algorithm of [BMSS11] basically needs to know the pseudo-metric
� with respect to which f is weakly Lipschitz continuous, with Lipschitz
constant equal to 1;

– Other examples include the UCB-air algorithm (which relies on a smoothness
parameter β, see [WAM09]), the OLOP algorithm (smoothness parameter
γ, see [BM10]), the LSE algorithm (smoothness parameter CL, see [YM11]),
the algorithm presented in [AOS07] and so on.

Adaptation to the Unknown Smoothness is Needed. In a nutshell, adap-
tive methods are required. By adaptive methods, we mean—as is done in the sta-
tistical literature—agnostic methods, i.e., with minimal prior knowledge about
f , that nonetheless obtain almost the same performance against a given envi-
ronment f as if its smoothness were known beforehand.

More precisely, given a fixed (possibly vector-valued) parameter L lying in
a set L and a class of allowed environments FL, where L ∈ L, existing works
present algorithms that are such that their worst-case regret bound over T time
steps against environments in FL,
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sup
f∈FL

RT (f) � ϕ(T, L) ,

is small and even minimax optimal, i.e., such that it has the optimal dependencies
on T and L. However, to do so, the knowledge of L is required. In this work, we
are given a much larger class of environments F = ∪L∈L FL, and our goal is an
algorithm that adapts in finite time to every instance f of F , in the sense that
for all T and f ∈ F , the regret RT (f) is at most of the order of minϕ(T, L),
where the minimum is over the parameters L such that f ∈ FL.

Since we are interested in worst-case bounds, we will have to consider distri-
bution-free bounds (i.e., bounds that only depend on a given class FL); of course,
the orders of magnitude of the latter, even when they are minimax optimal, are
often far away –as far as the dependencies in T are concerned– with respect
to distribution-dependent bounds (i.e., bounds that may depend on a specific
instance f ∈ FL).

Links with Optimization Algorithms. Our problem shares some common
points with the maximization of a deterministic function f (but note that in our
case, we only get to see noisy observations of the values of f). When the Lip-
schitz constant L of f is known, an approximate maximizer can be found with
well-known Lipschitz optimization algorithms (e.g., Shubert’s algorithm). The
case of unknown L has been studied in [JPS93, Hor06]. The DIRECT algorithm
of [JPS93] carries out Lipschitz optimization by using the smallest Lipschitz con-
stant that is consistent with the observed data; although it works well in practice,
only asymptotic convergence can be guaranteed. The algorithm of [Hor06] iter-
ates over an increasing sequence of possible values of L; under an additional
assumption on the minimum increase in the neighborhood of the maximizers, it
guarantees a worst-case error of the order of L2T−2/d after taking T samples of
the deterministic function f .

Adaptation to a Global Lipschitz Smoothness in Bandit Problems.
We provide in this paper a first step toward a general theory of adaptation. To
do so, we focus on the special case of classes FL formed by all environments
f that are L–Lipschitz with respect to the supremum norm over a subset of
Rd: the hypercube [0, 1]d for simplicity. This case covers partially the settings
of [BMSS11] and [KSU08], in which the Lipschitz constant was equal to 1, a
fact known by the algorithms. (Extensions to Hölderian-type assumptions as
in [Kle04, AOS07] will be considered in future work.)

As it is known, getting the minimax-optimal dependency on T is easy, the
difficult part is getting that on L without knowing the latter beforehand.

Our Contributions. Our algorithm proceeds by discretization as in [Kle04].
To determine the correct discretization step, it first resorts to an uniform explo-
ration yielding a rather crude estimate of the Lipschitz constant (that is however
sufficient for our needs); in a second phase, it finds the optimal interval using
a standard exploration-exploitation strategy. Our main assumptions are (essen-
tially) that f and its derivative are Lipschitz continuous in the hypercube.
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We feel that this two-step approach can potentially be employed in more gen-
eral settings well beyond ours: with the notation above, the uniform-exploration
phase performs a model-selection step and recommends a class FL̃, which is used
in the second phase to run a continuum-armed bandit strategy tuned with the
optimal parameters corresponding to L̃ ∈ L. However, for the sake of simplicity,
we study only a particular case of this general methodology.

Outline of the Paper. In Section 2, we describe the setting and the classes
of environments of interest, establish a minimax lower bound on the achievable
performance (Section 2.1), and indicate how to achieve it when the global Lip-
schitz parameter L is known (Section 2.2). Our main contribution (Section 3)
is then a method to achieve it when the Lipschitz constant is unknown for a
slightly restricted class of Lipschitz functions.

2 Setting and Notation

We consider a d–dimensional compact set of arms, say, for simplicity, X = [0, 1]d,
where d � 1. With each arm x ∈ [0, 1]d is associated a probability distribution
νx with known bounded support, say [0, 1]; this defines an environment. A key
quantity of such an environment is given by the expectations f(x) of the dis-
tributions νx. They define a mapping f : [0, 1]d → [0, 1], which we call the
mean-payoff function.

At each round t � 1, the player chooses an arm It ∈ [0, 1]d and gets a reward
Yt sampled independently from νIt

(conditionally on the choice of It). We call a
strategy the (possibly randomized) rule that indicates at each round which arm
to pull given the history of past rewards.

We write the elements x of [0, 1]d in columns; xT will thus denote a row vector
with d elements.

Assumption 1. We assume that f is twice differentiable, with Hessians uni-
formly bounded by M in the following sense: for all x ∈ [0, 1]d and all y ∈ [0, 1]d,∣∣∣yT Hf (x) y

∣∣∣ � M ‖y‖2
∞ .

The �1–norm of the gradient ‖∇f‖1 of f is thus continuous and it achieves its
maximum on [0, 1]d, whose value is denoted by L. As a result, f is Lipschitz
with respect to the �∞–norm with constant L (and L is the smallest1 constant
for which it is Lipschitz): for all x, y ∈ [0, 1]d,∣∣f(x) − f(y)

∣∣ � L ‖x− y‖∞ .

In the sequel we denote by FL,M the set of environments whose mean-payoff
functions satisfy the above assumption.

We also denote by FL the larger set of environments whose mean-payoff func-
tions f is only constrained to be L–Lipschitz with respect to the �∞–norm.
1 The proof of the approximation lemma will show why this is the case.
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2.1 The Minimax Optimal Orders of Magnitude of the Regret

When f is continuous, we denote by

f� = sup
x∈[0,1]d

f(x) = max
x∈[0,1]d

f(x)

the largest expected payoff in a single round. The expected regret RT at round
T is then defined as

RT = E

[
Tf� −

T∑
t=1

Yt

]
= E

[
Tf� −

T∑
t=1

f(It)

]

where we used the tower rule and where the expectations are with respect to
the random draws of the Yt according to the νIt

as well as to any auxiliary
randomization the strategy uses.

In this article, we are interested in controlling the worst-case expected regret
over all environments of FL. The following minimax lower bound follows from
a straightforward adaptation of the proof of [BMSS11, Theorem 13], which is
omitted from this extended abstract and may be found in [BSY11]. (The adap-
tation is needed because the hypothesis on the packing number is not exactly
satisfied in the form stated in [BMSS11].)

Theorem 1. For all strategies of the player and for all

T � max

{
Ld,

(
0.15L2/(d+2)

max{d, 2}

)d}
,

the worst-case regret over the set FL of all environments that are L–Lipschitz
with respect to the �∞–norm is larger than

sup
FL

RT � 0.15Ld/(d+2) T (d+1)/(d+2) .

The multiplicative constants are not optimized in this bound (a more careful
proof might lead to a larger constant in the lower bound).

2.2 How to Achieve a Minimax Optimal Regret When L is Known

In view of the previous section, our aim is to design strategies with worst-case
expected regret supFL

RT less than something of order Ld/(d+2) T (d+1)/(d+2)

when L is unknown. A simple way to do so when L is known was essentially
proposed in the introduction of [Kle04] (in the case d = 1); it proceeds by
discretizing the arm space. The argument is reproduced below and can be used
even when L is unknown to recover the optimal dependency T (d+1)/(d+2) on T
(but then, with a suboptimal dependency on L).

We consider the approximations fm of f with md regular hypercube bins
in the �∞–norm, i.e., m bins are formed in each direction and combined to
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form the hypercubes. Each of these hypercube bins is indexed by an element
k = (k1, . . . , kd) ∈ {0, . . . ,m− 1}d. The average value of f over the bin indexed
by k is denoted by

fm(k) = md

∫
k/m+[0,1/m]d

f(x) dx .

We then consider the following two-stage strategy, which is based on some strat-
egy MAB for multi-armed bandits; MAB will refer to a generic strategy but we
will instantiate below the obtained bound. Knowing L and assuming that T is
fixed and known in advance, we may choose beforehand m =

⌈
L2/(d+2)T 1/(d+2)

⌉
.

The decomposition of [0, 1]d into md bins thus obtained will play the role of the
finitely many arms of the multi-armed bandit problem. At round t � 1, when-
ever the MAB strategy prescribes to pull bin Kt ∈ {0, . . . ,m − 1}d, then first,
an arm It is pulled at random in the hypercube Kt/m+ [0, 1/m]d; and second,
given It, the reward Yt is drawn at random according to νIt

. Therefore, given
Kt, the reward Yt has an expected value of fm(Kt). Finally, the reward Yt is
returned to the underlying MAB strategy.

Strategy MAB is designed to control the regret with respect to the best of
the md bins, which entails that

E

[
T max

k
fm(k) −

T∑
t=1

Yt

]
� ψ
(
T,md

)
,

for some function ψ that depends on MAB. Now, whenever f is L–Lipschitz
with respect to the �∞–norm, we have that for all k ∈ {0, . . . ,m − 1}d and all
x ∈ k/m+ [0, 1/m]d, the difference

∣∣f(x) − fm(k)
∣∣ is less than L/m; so that2

max
x∈[0,1]d

f(x) − max
k

fm(k) � L

m
.

All in all, for this MAB-based strategy, the regret is bounded by the sum of the
approximation term L/m and of the regret term for multi-armed bandits,

sup
FL

RT � T
L

m
+ ψ(T,md)

� Ld/(d+2)T (d+1)/(d+2) + ψ
(
T,
(⌈
L2/(d+2)T 1/(d+2)

⌉)d)
. (1)

We now instantiate this bound.
2 Here, one could object that we only use the local Lipschitzness of f around the

point where it achieves its maximum; however, we need f to be L–Lipschitz in an
1/m–neighborhood of this maximum, but the optimal value of m depends on L. To
solve the chicken-egg problem, we restricted our attention to globally L–Lipschitz
functions, which, anyway, in view of Theorem 1, comes at no cost as far as minimax-
optimal orders of magnitude of the regret bounds in L and T are considered.
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The INF strategy of [AB10] (see also [ABL11]) achieves ψ(T,m′) = 2
√

2Tm′
and this entails a final O

(
Ld/(d+2) T (d+1)/(d+2)

)
bound in (1). Note that for the

EXP3 strategy of [ACBFS02] or the UCB strategy of [ACBF02], extra logarith-
mic terms of the order of lnT would appear in the bound.

3 Achieving a Minimax Optimal Regret Not Knowing L

In this section, our aim is to obtain a worst-case regret bound of the minimax-
optimal order of Ld/(d+2) T (d+1)/(d+2) even when L is unknown. To do so, it will
be useful to first estimate L; we will provide a (rather crude) estimate suited
to our needs, as our goal is the minimization of the regret rather than the best
possible estimation of L. Our method is based on the following approximation
results.

For the estimation to be efficient, it will be convenient to restrict our attention
to the subset FL,M of FL, i.e., we will consider the additional assumptions on the
existence and boundedness of the Hessians asserted in Assumption 1. However,
the obtained regret bound (Theorem 2) will suffer from some (light) dependency
on M but will have the right orders of magnitude in T and L; the forecaster
used to achieve it depends neither on L nor on M and is fully adaptive.

3.1 Some Preliminary Approximation Results

We still consider the approximations fm of f over [0, 1]d with md regular bins.
We then introduce the following approximation of L:

Lm = m max
k∈{1,...,m−2}d

max
s∈{−1,1}d

∣∣∣fm(k) − fm(k + s)
∣∣∣ .

This quantity provides a fairly good approximation of the Lipschitz constant,
since m

(
fm(k) − fm(k + s)

)
is an estimation of the (average) derivative of f in

bin k and direction s.
The lemma below relates precisely Lm to L: as m increases, Lm converges

to L.

Lemma 1. If f ∈ FL,M and m � 3, then

L− 7M
m

� Lm � L .

Proof. We note that for all k ∈ {1, . . . ,m − 2}d and s ∈ {−1, 1}d, we have by
definition

∣∣∣fm(k) − fm(k + s)
∣∣∣ = md

∣∣∣∣∣
∫

k/m+[0,1/m]d

(
f(x) − f

(
x+ s/m

))
dx

∣∣∣∣∣
� md

∫
k/m+[0,1/m]d

∣∣∣f(x) − f
(
x+ s/m

)∣∣∣dx .
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Now, since f is L–Lipschitz in the �∞–norm, it holds that∣∣∣f(x) − f
(
x+ s/m

)∣∣∣ � L
::s/m::∞ =

L

m
;

integrating this bound entails the stated upper bound L on Lm.

For the lower bound, we first denote by x� ∈ [0, 1]d a point such that::∇f(x�)
::

1
= L. (Such a point always exists, see Assumption 1.) This point be-

longs to some bin in {0, . . . ,m−1}d; however, the closest bin k�
m in {1, . . . ,m−2}d

is such that
∀x ∈ k�

m/m+ [0, 1/m]d, ‖x− x�‖∞ � 2
m
. (2)

Note that this bin k�
m is such that all k�

m + s belong to {0, . . . ,m − 1}d and
hence legally index hypercube bins, when s ∈ {−1, 1}d. Now, let s�

m ∈ {−1, 1}d

be such that
∇f(x�) · s�

m =
::∇f(x�)

::
1

= L , (3)

where · denotes the inner product in Rd. By the definition of Lm as some
maximum,

Lm � m
∣∣∣fm

(
k�

m

)
− fm

(
k�

m + s�
m

)∣∣∣
= m×md

∣∣∣∣∣
∫

k�
m/m+[0,1/m]d

(
f(x) − f

(
x+ s�

m/m
))

dx

∣∣∣∣∣ . (4)

Now, Taylor’s theorem (in the mean-value form for real-valued twice differen-
tiable functions of possibly several variables) shows that for any x ∈ k�

m/m +
[0, 1/m]d, there exists two elements ξ and ζ, belonging respectively to the seg-
ments between x and x�, on the one hand, between x� and x + s�

m/m on the
other hand, such that

f(x) − f
(
x+ s�

m/m
)

=
(
f(x) − f(x�)

)
+
(
f(x�) − f

(
x+ s�

m/m
))

= ∇f(x�) · (x− x�) +
1
2
(x− x�)

T Hf (ξ) (x− x�)

− ∇f(x�) ·
(
x+ s�

m/m− x�

)
− 1

2
(
x+ s�

m/m− x�

)T
Hf (ζ)

(
x+ s�

m/m− x�

)
= −∇f(x�) · s

�
m

m
+

1
2
(x− x�)

T Hf (ξ) (x− x�)

− 1
2
(
x+ s�

m/m− x�

)T
Hf (ζ)

(
x+ s�

m/m− x�

)
.

Using (3) and substituting the bound on the Hessians stated in Assumption 1,
we get

f(x) − f
(
x+ s�

m/m
)

� − L

m
+
M

2
‖x− x�‖2

∞ +
M

2

::x+ s�
m/m− x�

::2

∞ ;
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substituting (2), we get

f(x) − f
(
x+ s�

m/m
)

� − L

m
+

M

2m2

(
22 + 32

)
� − L

m
+

7M
m2

� 0 ,

where the last inequality holds with no loss of generality (if it does not, then the
lower bound on Lm in the statement of the lemma is trivial). Substituting and
integrating this equality in (4) and using the triangle inequality, we get

Lm � L− 7M
m

.

This concludes the proof. 	


3.2 A Strategy in Two Phases

Our strategy is described in Figure 1; several notation that will be used in the
statements and proofs of some results below are defined therein. Note that we
proceed in two phases: a pure exploration phase, when we estimate L by some
L̃m, and an exploration–exploitation phase, when we use a strategy designed
for the case of finitely-armed bandits on a discretized version of the arm space.
(The discretization step depends on the estimate obtained in the pure exploration
phase.)

The first step in the analysis is to relate L̃m and L̂m to the quantity they are
estimating, namely Lm.

Lemma 2. With probability at least 1 − δ,

∣∣L̂m − Lm

∣∣ � m

√
2
E

ln
2md

δ
.

Proof. We consider first a fixed k ∈ {0, . . . ,m − 1}d; as already used in Sec-
tion 2.2, the Zk,j are independent and identically distributed according to a
distribution on [0, 1] with expectation fm(k), as j varies between 1 and E. There-
fore, by Hoeffding’s inequality, with probability at least 1 − δ/md

∣∣μ̂k − fm(k)
∣∣ �√ 1

2E
ln

2md

δ
.

Performing a union bound and using the triangle inequality, we get that with
probability at least 1 − δ,

∀k, k′ ∈ {0, . . . ,m− 1},
∣∣∣ ∣∣μ̂k − μ̂k′

∣∣− ∣∣fm(k) − fm(k′)
∣∣ ∣∣∣ �√ 2

E
ln

2md

δ
.

This entails the claimed bound. 	


By combining Lemmas 1 and 2, we get the following inequalities on L̃m, since
the latter is obtained from L̂m by adding a deviation term.



Lipschitz Bandits without the Lipschitz Constant 153

Parameters:

– Number T of rounds;
– Number m of bins (in each direction) considered in the pure exploration phase;
– Number E of times each of them must be pulled;
– A multi-armed bandit strategy MAB (taking as inputs a number md of arms and

possibly other parameters).

Pure exploration phase:

1. For each k ∈ {0, . . . , m − 1}d

– pull E arms independently uniformly at random in k/m + [0, 1/m]d and get
E associated rewards Zk,j , where j ∈ {1, . . . , E};

– compute the average reward for bin k,

μ̂k =
1

E

E∑
j=1

Zk,j ;

2. Set
L̂m = m max

k∈{1,...,m−2}d
max

s∈{−1,1}d

∣∣μ̂k − μ̂k+s

∣∣
and define L̃m = L̂m + m

√
2

E
ln(2mdT ) as well as m̃ =

⌈
L̃

2/(d+2)
m T 1/(d+2)

⌉
.

Exploration–exploitation phase:

Run the strategy MAB with m̃d arms as follows; for all t = Em + 1, . . . , T ,

1. If MAB prescribes to play arm Kt ∈ {0, . . . , m̃ − 1
}d

, pull an arm It at random

in Kt/m + [0, 1/m]d;
2. Observe the associated payoff Yt, drawn independently according to νIt

;
3. Return Yt to the strategy MAB.

Fig. 1. The considered strategy
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Corollary 1. If f ∈ FL,M and m � 3, then, with probability at least 1 − 1/T ,

L− 7M
m

� L̃m � L+ 2m

√
2
E

ln
(
2mdT

)
.

We state a last intermediate result; it relates the regret of the strategy of Figure 1
to the regret of the strategy MAB that it takes as a parameter.

Lemma 3. Let ψ(T ′,m′) be a distribution-free upper bound on the expected re-
gret of the strategy MAB, when run for T ′ rounds on a multi-armed bandit prob-
lem with m′ arms, to which payoff distributions over [0, 1] are associated. The
expected regret of the strategy defined in Figure 1 is then bounded from above as

sup
FL

RT � Emd + E

[
LT

m̃
+ ψ
(
T − Emd, m̃d

)]
.

Proof. As all payoffs lie in [0, 1], the regret during the pure exploration phase is
bounded by the total length Emd of this phase.

Now, we bound the (conditionally) expected regret of the MAB strategy dur-
ing the exploration–exploitation phase; the conditional expectation is with re-
spect to the pure exploration phase and is used to fix the value of m̃. Using
the same arguments as in Section 2.2, the regret during this phase, which lasts
T − Emd rounds, is bounded against any environment in FL by

L
T − Emd

m
+ ψ
(
T − Emd, m̃d

)
.

The tower rule concludes the proof. 	


We are now ready to state our main result. Note that it is somewhat unsatis-
factory as the main regret bound (8) could only be obtained on the restricted
class FL,M and depends (in a light manner, see comments below) on the pa-
rameter M , while having the optimal orders of magnitude in T and L. These
drawbacks might be artifacts of the analysis and could be circumvented, per-
haps in the light of the proof of the lower bound (Theorem 1), which exhibits
the worst-case elements of FL (they seem to belong to some set FL,ML , where
ML is a decreasing function of L).

Note howewer that the dependency on M in (8) is in the additive form. On the
other hand, by adapting the argument of Section 2.2, one can prove distribution-
free regret bounds on FL,M with an improved order of magnitude as far as T
is concerned but at the cost of getting M as a multiplicative constant in the
picture. While the corresponding bound might be better in some regimes, we
consider here FL,M instead of FL essentially to remove pathological functions,
and as such we want the weakest dependency on M .
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Theorem 2. When used with the multi-armed strategy INF, the strategy of Fig-
ure 1 ensures that

sup
FL,M

RT � T (d+1)/(d+2)

⎛⎝9Ld/(d+2) + 5

(
2m

√
2
E

ln
(
2T d+1

))d/(d+2)
⎞⎠

+ Emd + 2
√

2Tdd + 1 (5)

as soon as

m � 8M
L

. (6)

In particular, for

0 < γ <
d(d + 1)

(3d+ 2)(d+ 2)
and α =

1
d+ 2

(
d+ 1
d+ 2

− γ
3d+ 2
d

)
> 0 , (7)

the choices of m = �Tα� and E = m2
⌈
T 2γ(d+2)/d

⌉
yield the bound

sup
FL,M

RT � max

{(
8M
L

+ 1
)1/α

, Ld/(d+2) T (d+1)/(d+2)
(
9 + ε(T, d)

)}
, (8)

where

ε(T, d) = 5T−γ
(
ln(2T d)

)d/(d+2) + T−γ +
2
√

2dd T + 1
T−(d+1)/(d+2)

vanishes as T tends to infinity.

Note that the choices of E and m solely depend on T , which may however
be unknown in advance; standard arguments, like the doubling trick, can be
used to circumvent the issue, at a minor cost given by an additional constant
multiplicative factor in the bound.

Remark 1. There is a trade-off between the value of the constant term in the
maximum, (1+8M/L)1/α, and the convergence rate of the vanishing term ε(T, d)
toward 0, which is of order γ. For instance, in the case d = 1, the condition on
γ is 0 < γ < 2/15; as an illustration, we get

– a constant term of a reasonable size, since 1/α � 4.87, when the convergence
rate is small, γ = 0.01;

– a much larger constant, since 1/α = 60, when the convergence rate is faster,
γ = 2/15 − 0.01.

Proof. For the strategy INF, as recalled above, ψ(T ′,m′) = 2
√

2T ′m′. The
bound of Lemma 3 can thus be instantiated as

sup
FL,M

RT � Emd + E

[
LT

m̃
+ 2

√
2Tm̃d

]
.
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We now substitute the definition

m̃ =
⌈
L̃2/(d+2)

m T 1/(d+2)
⌉

� L̃2/(d+2)
m T 1/(d+2)

(
1 +

1

L̃
2/(d+2)
m T 1/(d+2)

)
and separate the cases depending on whether L̃2/(d+2)

m T 1/(d+2) is smaller or larger
than d to handle the second term in the expectation. In the first case, we simply
bound m̃ by d and get a 2

√
2Tdd term. When the quantity of interest is larger

than d, then we get the central term in the expectation below by using the fact
that (1 + 1/x)d � (1 + 1/d)d � e whenever x � d. That is, sup

FL,M

RT is less than

Emd + E

[
T (d+1)/(d+2) L

L̃
2/(d+2)
m

+ 2

√
2T e
(
T 1/(d+2)L̃

2/(d+2)
m

)d

+ 2
√

2Tdd

]
.

We will now use the lower and upper bounds on L̂m stated by Corollary 1. In
the sequel we will make repeated use of the following inequality linking α–norms
and 1–norms: for all integers p, all u1, . . . , up > 0, and all α ∈ [0, 1],(

u1 + . . .+ up

)α � uα
1 + . . .+ uα

p . (9)

By resorting to (9), we get that with probability at least 1 − 1/T ,

2

√
2T e
(
T 1/(d+2)L̃

2/(d+2)
m

)d

= 2
√

2e T (d+1)/(d+2) L̃d/(d+2)
m

� 2
√

2e T (d+1)/(d+2)

(
L+ 2m

√
2
E

ln
(
2mdT

))d/(d+2)

� 2
√

2e T (d+1)/(d+2)

⎛⎝Ld/(d+2) +

(
2m

√
2
E

ln
(
2mdT

))d/(d+2)
⎞⎠ .

On the other hand, with probability at least 1 − 1/T ,

L̃m � L− 7M
m

� L

8
,

where we assumed that m and E are chosen large enough for the lower bound
of Corollary 1 to be larger than L/8. This is indeed the case as soon as

7M
m

� 7L
8
, that is, m � 8M

L
,

which is exactly the condition (6).
Putting all things together (and bounding m by T in the logarithm), with

probability at least 1 − 1/T , the regret is less than

Emd + T (d+1)/(d+2) L

(L/8)2/(d+2)
+ 2

√
2Tdd

+ 2
√

2e T (d+1)/(d+2)

⎛⎝Ld/(d+2) +

(
2m

√
2
E

ln
(
2T d+1

))d/(d+2)
⎞⎠ ; (10)
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on the event of probability smaller than δ = 1/T where the above bound does
not necessarily hold, we upper bound the regret by T . Therefore, the expected
regret is bounded by (10) plus 1. Bounding the constants as 82/(d+2) � 82/3 = 4
and 2

√
2e � 5 concludes the proof of the first part of the theorem.

The second part follows by substituting the values of E and m in the expres-
sion above and by bounding the regret by T0 for the time steps t � T0 for which
the condition (6) is not satisfied.

More precisely, the regret bound obtained in the first part is of the desired
order Ld/(d+2) T (d+1)/(d+2) only if E  m2 and Emd � T (d+1)/(d+2). This is
why we looked for suitable values of m and E in the following form:

m = �Tα� and E = m2
⌈
T 2γ(d+2)/d

⌉
,

where α and γ are positive. We choose α as a function of γ so that the terms

Emd =
(
�Tα�

)d+2 ⌈
T 2γ(d+2)/d

⌉
and T (d+1)/(d+2)

(
m√
E

)d/(d+2)

= T (d+1)/(d+2)
(⌈
T 2γ(d+2)/d

⌉)−d/(2(d+2))

are approximatively balanced; for instance, such that

α(d+ 2) + 2γ(d+ 2)/d = (d+ 1)/(d+ 2) − γ ,

which yields the proposed expression (7). The fact that α needs to be positive
entails the constraint on γ given in (7).

When condition (6) is met, we substitute the values of m and E into (5) to
obtain the bound (8); the only moment in this substitution when taking the
upper or lower integer parts does not help is for the term Emd, for which we
write (using that T � 1)

Emd = md+2
⌈
T 2γ(d+2)/d

⌉
� Tα(d+2)

(
1 + T 2γ(d+2)/d

)
� 2Tα(d+2)T 2γ(d+2)/d = 2T (d+1)/(d+2)−γ .

When condition (6) is not met, which can only be the case when T is such that
Tα < 1 + 8M/L, that is, T < T0 = (1 + 8M/L)1/α, we upper bound the regret
by T0. 	
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Abstract. This paper studies the deviations of the regret in a stochastic
multi-armed bandit problem. When the total number of plays n is known
beforehand by the agent, Audibert et al. (2009) exhibit a policy such
that with probability at least 1− 1/n, the regret of the policy is of order
log n. They have also shown that such a property is not shared by the
popular ucb1 policy of Auer et al. (2002). This work first answers an
open question: it extends this negative result to any anytime policy. The
second contribution of this paper is to design anytime robust policies for
specific multi-armed bandit problems in which some restrictions are put
on the set of possible distributions of the different arms.

1 Introduction

Bandit problems illustrate the fundamental difficulty of sequential decision mak-
ing in the face of uncertainty: a decision maker must choose between following
what seems to be the best choice in view of the past (“exploitation”) or test-
ing (“exploration”) some alternative, hoping to discover a choice that beats the
current empirical best choice. More precisely, in the stochastic multi-armed ban-
dit problem, at each stage, an agent (or decision maker) chooses one action (or
arm), and receives a reward from it. The agent aims at maximizing his rewards.
Since he does not know the process generating the rewards, he does not know
the best arm, that is the one having the highest expected reward. He thus incurs
a regret, that is the difference between the cumulative reward he would have
got by always drawing the best arm and the cumulative reward he actually got.
The name “bandit” comes from imagining a gambler in a casino playing with
K slot machines, where at each round, the gambler pulls the arm of any of the
machines and gets a payoff as a result.

The multi-armed bandit problem is the simplest setting where one encoun-
ters the exploration-exploitation dilemma. It has a wide range of applications
including advertisement [BSS09], [DK09], economics [BV08], [LPT04], games
[GW06] and optimization [Kle05], [CM07], [KSU08], [BMSS09]. It can be a cen-
tral building block of larger systems, like in evolutionary programming [Hol92]
and reinforcement learning [SB98], in particular in large state space Markovian
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Decision Problems [KS06]. Most of these applications require that the policy of
the forecaster works well for any time. For instance, in tree search using bandit
policies at each node, the number of times the bandit policy will be applied at
each node is not known beforehand (except for the root node in some cases),
and the bandit policy should thus provide consistently low regret whatever the
total number of rounds is.

Most previous works on the stochastic multi-armed bandit [Rob52], [LR85],
[Agr95], [ACBF02] (among others) focused on the expected regret, and showed
that after n rounds, the expected regret is of order log n. So far, the analysis
of the upper tail of the regret was only addressed in [AMS09]. The two main
results there about the deviations of the regret are the following. First, after
n rounds, for large enough constant C > 0, the probability that the regret of
ucb1 (and also its variant taking into account the empirical variance) exceeds
C logn is upper bounded by 1/(logn)C′

for some constant C′ depending on the
distributions of the arms and on C (but not on n). Besides, for most bandit
problems, this upper bound is tight to the extent that the probability is also
lower bounded by a quantity of the same form. Second, a new upper confidence
bound policy was proposed: it requires to know the total number of rounds in
advance and uses this knowledge to design a policy which essentially explores in
the first rounds and then exploits the information gathered in the exploration
phase. Its regret has the advantage of being more concentrated to the extent
that with probability at least 1 − 1/n, the regret is of order logn. The problem
left open by [AMS09] is whether it is possible to design an anytime robust policy,
that is a policy such that for any n, with probability at least 1− 1/n, the regret
is of order logn. In this paper, we answer negatively to this question when the
reward distributions of all arms are just assumed to be uniformly bounded, say
all rewards are in [0, 1] for instance (Corollary 7). We then study which kind
of restrictions on the set of probabilities defining the bandit problem allows to
answer positively. One of our positive results is the following: if the agent knows
the value of the expected reward of the best arm (but does not know which arm
is the best one), the agent can use this information to design an anytime robust
policy (Theorem 12).

The paper is organised as follows: in Section 2, we formally describe the prob-
lem we address and give the corresponding definitions and properties. In Section
3, we present our main impossibility result. In Section 4, we provide restric-
tions under which it is possible to design anytime robust policies. Section 5
is devoted to the proof of our main result. All other proofs are available at
http://hal.archives-ouvertes.fr/hal-00579607/en/.

2 Problem Setup and Definitions

In the stochastic multi-armed bandit problem withK ≥ 2 arms, at each time step
t = 1, 2, . . . , an agent has to choose an arm It in the set {1, . . . ,K} and obtains a
reward drawn from νIt independently from the past (actions and observations).
The environment is thus parameterized by a K-tuple of probability distributions
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θ = (ν1, . . . , νK). The agent aims at maximizing his rewards. He does not know
θ but knows that it belongs to some set Θ. We assume for simplicity that Θ ⊂ Θ̄,
where Θ̄ denotes the set of all K-tuple of probability distributions on [0, 1]. We
thus assume that the rewards are in [0, 1].

For each arm k and all times t ≥ 1, let Tk(t) =
∑t

s=1 �Is=k denote the number
of times arm k was pulled from round 1 to round t, and byXk,1, Xk,2, . . . , Xk,Tk(t)

the sequence of associated rewards. For an environment parameterized by θ =(
ν1, . . . , νK), let Pθ denote the distribution on the probability space such that for

any k ∈ {1, . . . ,K}, the random variables Xk,1, Xk,2, . . . are i.i.d. realizations of
νk, and such that these K infinite sequence of random variables are independent.
Let Eθ denote the associated expectation.

Let μk =
∫
xdνk(x) be the mean reward of arm k. Let μ∗ = maxk∈{1,...,K} μk

and fix an arm k∗ such that μk∗ = μ∗, that is k∗ has the best expected reward.
The suboptimality of arm k is measured by Δk = μ∗ − μk. The agent aims at
minimizing its regret defined as the difference between the cumulative reward
he would have got by always drawing the best arm and the cumulative reward
he actually got. At time n ≥ 1, its regret is thus

R̂n =
n∑

t=1

Xk∗,t −
n∑

t=1

XIt,TIt(t)
. (1)

The expectation of this regret has a simple expression in terms of the subop-
timalities of the arms and the expected sampling times of the arms at time n.
Precisely, we have

EθR̂n = nμ∗ −
n∑

t=1

Eθ(μIt) = nμ∗ − Eθ

( K∑
k=1

Tk(n)μk

)

= μ∗
K∑

k=1

Eθ[Tk(n)] −
K∑

k=1

μkEθ[Tk(n)] =
K∑

k=1

ΔkEθ[Tk(n)].

Other notions of regret exists in the literature: the quantity
∑K

k=1 ΔkTk(n) is
called the pseudo regret and may be more practical to study, and the quantity
maxk

∑n
t=1Xk,t −

∑n
t=1 XIt,TIt (t) defines the regret in adverserial settings. Re-

sults and ideas we want to convey here are more suited to definition (1), and
taking another definition of the regret would only bring some more technical
intricacies.

Our main interest is the study of the deviations of the regret R̂n, i.e. the
value of Pθ(R̂n ≥ x) when x is larger and of order of EθR̂n. If a policy has
small deviations, it means that the regret is small with high probability and in
particular, if the policy is used on some real data, it is very likely to be small
on this specific dataset. Naturally, small deviations imply small expected regret
since we have

EθR̂n ≤ Eθ max(R̂n, 0) =
∫ +∞

0

Pθ

(
R̂n ≥ x

)
dx.
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To a lesser extent it is also interesting to study the deviations of the sampling
times Tn(k), as this shows the ability of a policy to match the best arm. Moreover
our analysis is mostly based on results on the deviations of the sampling times,
which then enables to derive results on the regret. We thus define below the
notion of being f -upper tailed for both quantities.

Define R∗
+ = {x ∈ R : x > 0}, and let Δ = mink �=k∗ Δk be the gap between

the best arm and second best arm.

Definition 1 (f-T and f-R). Consider a mapping f : R → R∗
+. A policy has

f -upper tailed sampling Times (in short, we will say that the policy is f -T ) if
and only if

∃C, C̃ > 0, ∀θ ∈ Θ such that Δ �= 0,

∀n ≥ 2, ∀k �= k∗, Pθ

(
Tk(n) ≥ C

logn
Δ2

k

)
≤ C̃

f(n)
.

A policy has f -upper tailed Regret (in short, f -R) if and only if

∃C, C̃ > 0, ∀θ ∈ Θ such that Δ �= 0, ∀n ≥ 2, Pθ

(
R̂n ≥ C

logn
Δ

)
≤ C̃

f(n)
.

We will sometimes prefer to denote f(n)-T (resp. f(n)-R) instead of f -T (resp.
f -R) for readability. Note also that, for sake of simplicity, we leave aside the
degenerated case of Δ being null (i.e. when there are at least two optimal arms).

In this definition, we considered that the number K of arms is fixed, mean-
ing that C and C̃ may depend on K. The thresholds considered on Tk(n) and
R̂n directly come from known tight upper bounds on the expectation of these
quantities for several policies. To illustrate this, let us recall the definition and
properties of the popular ucb1 policy. Let X̂k,s = 1

s

∑s
t=1Xk,t be the empirical

mean of arm k after s pulls. In ucb1, the agent plays each arm once, and then
(from t ≥ K + 1), he plays

It ∈ argmax
k∈{1,...,K}

{
X̂k,Tk(t−1) +

√
2 log t

Tk(t− 1)

}
. (2)

While the first term in the bracket ensures the exploitation of the knowledge
gathered during steps 1 to t − 1, the second one ensures the exploration of the
less sampled arms. For this policy, [ACBF02] proved:

∀n ≥ 3, E[Tk(n)] ≤ 12
logn
Δ2

k

and EθR̂n ≤ 12
K∑

k=1

logn
Δk

≤ 12K
logn
Δ

.

[LR85] showed that these results cannot be improved up to numerical constants.
[AMS09] proved that ucb1 is log3-T and log3-R where log3 is the function
x �→ [log(x)]3. Besides, they also study the case when 2 log t is replaced by ρ log t
in (2) with ρ > 0, and proved that this modified ucb1 is log2ρ−1-T and log2ρ−1-
R for ρ > 1/2, and that ρ = 1

2 is actually a critical value, since for ρ < 1/2, the
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policy does not even have a logarithmic regret guarantee in expectation. Another
variant of ucb1 proposed by Audibert et al. is to replace 2 log t by 2 logn in (2)
when we want to have low and concentrated regret at a fixed given time n. We
refer to it as ucb-h as its implementation requires the knowledge of the horizon
n of the game. The behaviour of ucb-h on the time interval [1, n] is significantly
different to the one of ucb1, as ucb-h will explore much more at the beginning
of the interval, and thus avoids exploiting the suboptimal arms on the early
rounds. Audibert et al. showed that ucb-h is n-T and n-R (as it will be recalled
in Theorem 8).

We now introduce the weak notion of f -upper tailed as this notion will be
used to get our strongest impossibility results.

Definition 2 (f-wT and f-wR). Consider a mapping f : R → R∗
+. A policy

has weak f -upper tailed sampling Times (in short, we will say that the policy is
f -wT ) if and only if

∀θ ∈ Θ such that Δ �= 0,

∃C, C̃ > 0, ∀n ≥ 2, ∀k �= k∗, Pθ

(
Tk(n) ≥ C

logn
Δ2

k

)
≤ C̃

f(n)
.

A policy has weak f -upper tailed Regret (in short, f -wR) if and only if

∀θ ∈ Θ such that Δ �= 0, ∃C, C̃ > 0, ∀n ≥ 2, Pθ

(
R̂n ≥ C

logn
Δ

)
≤ C̃

f(n)
.

The only difference between f -T and f -wT (and between f -R and f -wR) is the
interchange of “∀θ” and “∃C, C̃”. Consequently, a policy that is f -T (respectively
f -R) is f -T (respectively f -wR). Let us detail the links between the f -T , f -R,
f -wT and f -wR.

Proposition 3. Assume that there exists α, β > 0 such that f(n) ≤ αnβ for
any n ≥ 2. We have

f -T ⇒ f -R ⇒ f -wR ⇔ f -wT .

The proof of this proposition is technical but rather straightforward. Note that
we do not have f -R ⇒ f -T , because the agent may not regret having pulled
a suboptimal arm if the latter has delivered good rewards. Note also that f
is required to be at most polynomial: if not some rare events such as unlikely
deviations of rewards towards their actual mean can not be neglected, and none
of the implications hold in general (except, of course, f -R ⇒ f -wR and f -T ⇒
f -wT ).

3 Impossibility Result

From now on, we mostly deal with anytime policies (i.e. policies that do not have
the knowledge of the horizon n) and the word policy (or algorithm) implicitly
refers to anytime policy.
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In the previous section, we have mentioned that for any ρ > 1/2, there is a
variant of ucb1 (obtained by changing 2 log t into ρ log t in (2)) which is log2ρ−1-
T . This means that, for any α > 0, there exists a logα-T policy, and a hence logα-
R policy. The following result shows that it is impossible to find an algorithm
that would have better deviation properties than these ucb policies. For many
usual settings (e.g., when Θ is the set Θ̄ of all K-tuples of measures on [0, 1]),
with not so small probability, the agent gets stuck drawing a suboptimal arm he
believes best. Precisely, this situation arises when simultaneously:

(a) an arm k delivers payoffs according to a same distribution νk in two distinct
environments θ and θ̃,

(b) arm k is optimal in θ but suboptimal in θ̃,
(c) in environment θ̃, other arms may behave as in environment θ, i.e. with

positive probability other arms deliver payoffs that are likely in both envi-
ronments.

If the agent suspects that arm k delivers payoffs according to νk, he does not
know if he has to pull arm k again (in case the environment is θ) or to pull the
optimal arm of θ̃. The other arms can help to point out the difference between
θ and θ̃, but then they have to be chosen often enough. This is in fact this kind
of situation that has to be taken into account when balancing a policy between
exploitation and exploration.

Our main result is the formalization of the leads given above. In particular,
we give a rigorous description of conditions (a), (b) and (c). Let us first recall
the following results, which are needed in the formalization of condition (c).
One may look at [Rud86], p.121 for details (among others). Those who are not
familiar with measure theory can skip to the non-formal explanation just after
the results.

Theorem 4 (Lebesgue-Radon-Nikodym theorem). Let μ1 and μ2 be σ-fi-
nite measures on a given measurable space. There exists a μ2-integrable function
dμ1
dμ2

and a σ-finite measure m such that m and μ2 are singular1 and

μ1 =
dμ1

dμ2
· μ2 +m.

The density dμ1
dμ2

is unique up to a μ2-negligible event.

We adopt the convention that dμ1
dμ2

= +∞ on the complementary of the support
of μ2.

Lemma 5. We have

– μ1

(
dμ1
dμ2

= 0
)

= 0.
– μ2

(
dμ1
dμ2

> 0
)
> 0 ⇔ μ1

(
dμ2
dμ1

> 0
)
> 0.

1 Two measures m1 and m2 on a measurable space (Ω,F) are singular if and only
if there exists two disjoint measurable sets A1 and A2 such that A1 ∪ A2 = Ω,
m1(A2) = 0 and m2(A1) = 0.
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Proof. The first point is a clear consequence of the decomposition μ1 = dμ1
dμ2

·
μ2 + m and of the convention mentioned above. For the second point, one can
write by uniqueness of the decomposition:

μ2

(
dμ1

dμ2
> 0
)

= 0 ⇔ dμ1

dμ2
= 0 μ2 − a.s. ⇔ μ1 = m ⇔ μ1 and μ2 are singular.

And by symmetry of the roles of μ1 and μ2:

μ2

(
dμ1

dμ2
> 0
)
> 0 ⇔ μ1 and μ2 are not singular ⇔ μ1

(
dμ2

dμ1
> 0
)
> 0.

Let us explain what these results has to do with condition (c).
One may be able to distinguish environment θ from θ̃ if a certain arm � delivers

a payoff that is infinitely more likely in θ̃ than in θ. This is for instance the case
if X�,t is in the support of ν̃� and not in the support of ν�, but our condition is
more general. If the agent observes a payoff x from arm �, the quantity dν�

dν̃�
(x)

represents how much the observation of x is more likely in environment θ than in
θ̃. If νk and ν̃k admit density functions (say, respectively, f and f̃) with respect
to a common measure, then dν�

dν̃�
(x) = f(x)

f̃(x)
. Thus the agent will almost never

make a mistake if he removes θ from possible environments when dν�

dν̃�
(x) = 0.

This may happen even if x is in both supports of ν� and ν̃�, for example if x is
an atom of ν̃� and not of ν� (i.e. ν̃�(x) > 0 and ν�(x)=0). On the contrary, if
dν�

dν̃�
(x) > 0 both environments θ and θ̃ are likely and arm �’s behaviour is both

consistent with θ and θ̃.
Now let us state the impossibility result. Here and throughout the paper we

find it more convenient to denote f +∞ g rather than the usual notation
g = o(f), which has the following meaning:

∀ε > 0, ∃N ≥ 0, ∀n ≥ N, g(n) ≤ εf(n).

Theorem 6. Let f : N → R∗
+ be greater than any logα, that is f +∞ logα for

any α > 0. Assume that there exists θ, θ̃ ∈ Θ, and k ∈ {1, . . . ,K} such that:

(a) νk = ν̃k,
(b) k is the index of the best arm in θ but not in θ̃,
(c) ∀� �= k, Pθ̃

(
dν�

dν̃�
(X�,1) > 0

)
> 0.

Then there is no f -wT policy, and hence no f -R policy.

Let us give some hints of the proof (see Section 5 for details). The main idea is
to consider a policy that would be f -wT , and in particular that would “work
well” in environment θ in the sense given by the definition of f -wT . The proof
exhibits a time N at which arm k, optimal in environment θ and thus often
drawn with high Pθ-probability, is drawn too many times (more than the loga-
rithmic threshold Clog(N)/Δ2

k) with not so small Pθ̃-probability, which shows
the nonexistence of such a policy. More precisely, let n be large enough and
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consider a time N of order logn and above the threshold. If the policy is f -wT ,
at time N , sampling times of suboptimal arms are of order logN at most, with
Pθ-probability at least 1 − C̃/f(N). In this case, at time N , the draws are con-
centrated on arm k. So Tk(N) is of order N , which is more than the threshold.
This event holds with high Pθ-probability. Now, from (a) and (c), we exhibit
constants that are characteristic of the ability of arms � �= k to “behave as if in
θ”: for some 0 < a, η < 1, there is a subset ξ of this event such that Pθ(ξ) ≥ aT

for T =
∑

� �=k T�(N) and for which dPθ

dPθ̃
is lower bounded by ηT . The event ξ on

which the arm k is sampled N times at least has therefore a Pθ̃-probability of
order (ηa)T at least. This concludes this sketchy proof since T is of order logN ,
thus (ηa)T is of order loglog(ηa) n at least.

Note that the conditions given in Theorem 6 are not very restrictive. The
impossibility holds for very basic settings, and may hold even if the agent has
great knowledge of the possible environments. For instance, the setting

K = 2 and Θ =
{(

Ber
(1

4

)
, δ 1

2

)
,

(
Ber
(3

4

)
, δ 1

2

)}
,

where Ber(p) denotes the Bernoulli distribution of parameter p and δx the Dirac
measure on x, satisfies the three conditions of the theorem.

Nevertheless, the main interest of the result regarding the previous literature
is the following corollary.

Corollary 7. If Θ is the whole set Θ̄ of all K-tuples of measures on [0, 1], then
there is no f -R policy, where f is any function such that f +∞ logα for all
α > 0.

This corollary should be read in conjunction with the following result for ucb-h
which, for a given n, plays at time t ≥ K + 1,

It ∈ argmax
k∈{1,...,K}

{
X̂k,Tk(t−1) +

√
2 logn
Tk(t− 1)

}
.

Theorem 8. For any β > 0, ucb-h is nβ-R.

For ρ > 1, Theorem 8 can easily be extended to the policy ucb-h(ρ) which starts
by drawing each arm once, and then at time t ≥ K + 1, plays

It ∈ argmax
k∈{1,...,K}

{
X̂k,Tk(t−1) +

√
ρ logn
Tk(t− 1)

}
. (3)

Naturally, we have nβ n→+∞ logα(n) for all α, β > 0 but this does not contra-
dict our theorem, since ucb-h(ρ) is not an anytime policy. ucb-h will work fine
if the horizon n is known in advance, but may perform poorly at other rounds.
In particular and as any policy, in view of Corollary 7, it cannot achieve anytime
polynomial regret concentration.
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Corollary 7 should also be read in conjunction with the following result for
the policy ucb1(ρ) which starts by drawing each arm once, and then at time
t ≥ K + 1, plays

It ∈ argmax
k∈{1,...,K}

{
X̂k,Tk(t−1) +

√
ρ log t

Tk(t− 1)

}
. (4)

Theorem 9. For any ρ > 1/2, ucb1
(
ρ) is log2ρ−1-R.

Thus, any improvements of existing algorithms which would for instance involve
estimations of variance (see [AMS09]), of Δk, or of many characteristics of the
distributions cannot beat the variants of ucb1 regarding deviations.

4 Positive Results

The intuition behind Theorem 6 suggests that, if one of the three conditions (a),
(b), (c) does not hold, a robust policy would consist in the following: at each
round and for each arm k, compute a distance between the empirical distribution
of arm k and the set of distribution νk that makes arm k optimal in a given
environment θ. As this distance decreases with our belief that k is the optimal
arm, the policy consists in taking the k minimizing the distance. Thus, the agent
chooses an arm that fits better a winning distribution νk. He cannot get stuck
pulling a suboptimal arm because there are no environments θ̃ with νk = ν̃k in
which k would be suboptimal. More precisely, if there exists such an environment
θ̃, the agent is able to distinguish θ from θ̃: during the first rounds, he pulls
every arm and at least one of them will never behave as if in θ if the current
environment is θ̃. Thus, in θ̃, he is able to remove θ from the set of possible
environments Θ (remember that Θ is a parameter of the problem which is known
by the agent).

Nevertheless such a policy cannot work in general, notably because of the
three following limitations:

– If θ̃ is the current environment and even if the agent has identified θ as
impossible (i.e. dνk

dν̃k
(Xk,1) = 0), there still could be other environments θ′

that are arbitrary close to θ in which arm k is optimal and which the agent
is not able to distinguish from θ̃. This means that the agent may pull arm k
too often because distribution ν̃k = νk is too close to a distribution ν′k that
makes arm k the optimal arm.

– The ability to identify environments as impossible relies on the fact that
the event dνk

dν̃k
(Xk,1) > 0 is almost sure under Pθ (see Lemma 5). If the set

of all environments Θ is uncountable, such a criterion can lead to exclude
the actual environment. For instance, assume an agent has to distinguish
a distribution among all Dirac measures δx (x ∈ [0, 1]) and the uniform
probability λ over [0, 1]. Whatever the payoff x observed by the agent, he
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will always exclude λ from the possible distributions, as x is always infinitely
more likely under δx than under λ:

∀x ∈ [0, 1],
dλ

dδx
(x) = 0.

– On the other hand, the agent could legitimately consider an environment θ
as unlikely if, for ε > 0 small enough, there exists θ̃ such that dνk

dν̃k
(Xk,1) ≤ ε.

Criterion (c) only considers as unlikely an environment θ when there exists
θ̃ such that dνk

dν̃k
(Xk,1) = 0.

Despite these limitations, we give in this section sufficient conditions on Θ for
such a policy to be robust. This is equivalent to finding conditions on Θ under
which the converse of Theorem 6 holds, i.e. under which the fact one of the
conditions (a), (b) or (c) does not hold implies the existence of a robust policy.
This can also be expressed as finding which kind of knowledge of the environment
enables to design anytime robust policies.

We estimate distributions of each arm by means of their empirical cumulative
distribution functions, and distance between two c.d.f. is measured by the norm
‖.‖∞, defined by ‖f‖∞ = supx∈[0,1] |f(x)| where f is any function [0, 1] → R.
The empirical c.d.f of arm k after having been pulled t times is denoted F̂k,t.
The way we choose an arm at each round is based on confidence areas around
F̂k,Tk(n−1). We choose the greater confidence level (gcl) such that there is still
an arm k and a winning distribution νk such that Fνk

, the c.d.f. of νk, is in
the area of F̂k,Tk(n−1). We then select the corresponding arm k. By means of
Massart’s inequality (1990), this leads to the c.d.f. based algorithm described in
Figure 1. Let Θk denote the set {θ ∈ Θ|k is the optimal arm in θ}, i.e. the set
of environments that makes k the index of the optimal arm.

Proceed as follows:

– Draw each arm once.
– Remove each θ ∈ Θ such that there exists θ̃ ∈ Θ and � ∈ {1, . . . , K} with

dν�
dν̃�

(X�,1) = 0.
– Then at each round t, play an arm

It ∈ argmin
k∈{1,...,K}

Tk(t − 1) inf
θ∈Θk

∥∥F̂k,Tk(t−1) − Fνk

∥∥2
∞.

Fig. 1. A c.d.f.-based algorithm: gcl

4.1 Θ is Finite

When Θ is finite the limitations presented above do not really matter, so that
the converse of Theorem 6 is true and our algorithm is robust.

Theorem 10. Assume that Θ is finite and that for all θ = (ν1, . . . , νK), θ̃ =
(ν̃1, . . . , ν̃K) ∈ Θ, and all k ∈ {1, . . . ,K}, at least one of the following holds:
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– νk �= ν̃k,
– k is suboptimal in θ, or is optimal in θ̃.
– ∃� �= k, Pθ̃

(
dν�

dν̃�
(X�,1) > 0

)
= 0.

Then gcl is nβ-T (and hence nβ-R) for all β > 0.

4.2 Bernoulli Laws

We assume that any νk (k ∈ {1, . . . ,K}, θ ∈ Θ) is a Bernoulli law, and denote
by μk its parameter. We also assume that there exists γ ∈ (0, 1) such that
μk ∈ [γ, 1] for all k and all θ.2 Moreover we may denote arbitrary environments
θ, θ̃ by θ = (μ1, . . . , μK) and θ̃ = (μ̃1, . . . , μ̃K).

In this case dν�

dν̃�
(1) = μl

μ̃l
> 0, so that for any θ, θ̃ ∈ Θ and any l ∈ {1, . . . ,K}

one has

Pθ̃

(
dν�

dν̃�
(X�,1) > 0

)
≥ Pθ̃(X�,1 = 1) = μ̃l > 0.

Therefore condition (c) of Theorem 6 holds, and the impossibility result only
relies on conditions (a) and (b). Our algorithm can be made simpler: there is no
need to try to exclude unlikely environments and computing the empirical c.d.f.
is equivalent to computing the empirical mean (see Figure 2). The theorem and
its converse are expressed as follows. We will refer to our policy as gcl-b as it
looks for the environment matching the observations at the Greatest Confidence
Level, in the case of Bernoulli distributions.

Proceed as follows:

– Draw each arm once.
– Then at each round t, play an arm

It ∈ argmin
k∈{1,...,K}

Tk(t − 1) inf
θ∈Θk

(
μk − X̂k,Tk(t−1)

)2

.

Fig. 2. A c.d.f.-based algorithm in case of Bernoulli laws: gcl-b

Theorem 11. For any θ ∈ Θ and any k ∈ {1, . . . ,K}, let us set

dk = inf
θ̃∈Θk

|μk − μ̃k|.

gcl-b is such that: ∀β > 0, ∃C, C̃ > 0, ∀θ ∈ Θ, ∀n ≥ 2,

∀k ∈ {1, . . . ,K}, Pθ

(
Tk(n) ≥ C logn

d2
k

)
≤ C̃

nβ
.

Let f : N∗ → R∗
+ be greater than any logα, that is ∀α > 0, f +∞ logα.

If there exists k such that
2 The result also holds if all parameters μk are in a given interval [0, γ], γ ∈ (0, 1).
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(a’) inf
θ∈Θ\Θk

dk = inf
θ∈Θk

θ̃∈Θ\Θk

|μk − μ̃k| = 0,

then there is no policy such that:

∃C, C̃ > 0, ∀θ ∈ Θ, ∀n ≥ 2, ∀k �= k∗, Pθ (Tk(n) ≥ C logn) ≤ C̃

f(n)
.

Note that we do not adopt the former definitions of robustness (f -R and f -T ),
because the significant term here is dk (and not Δk)3, which represents the dis-
tance between Θk and Θ�Θk. Indeed robustness lies on the ability to distinguish
environments, and this ability is all the more stronger as the distance between
the parameters of these environments is greater. Provided that the density dν

dν̃ is
uniformly bounded away from zero, the theorem holds for any parametric model,
with dk being defined with a norm on the space of parameters (instead of |.|).
Note also that the second part of the theorem is a bit weaker than Theorem
6, because of the interchange of “∀θ” and “∃C, C̃”. The reason for this is that
condition (a) is replaced by a weaker assumption: νk does not equal ν̃k, but
condition (a’) means that such νk and ν̃k can be chosen arbitrarily close.

4.3 μ∗ Is Known

This section shows that the impossibility result also breaks down if μ∗ is known
by the agent. This situation is formalized as μ∗ being constant overΘ. Conditions
(a) and (b) of Theorem 6 do not hold: if a distribution νk makes arm k optimal
in an environment θ, it is still optimal in any environment θ̃ such that ν̃k = νk.
In this case, our algorithm can be made simpler (see Figure 3). At each round
we choose the greatest confidence level such that at least one empirical mean
X̂k,Tk(t−1) has μ∗ in its confidence interval, and select the corresponding arm k.
This is similar to the previous algorithm, deviations being evaluated according
to Hoeffding’s inequality instead of Massart’s one. We will refer to this policy as
gcl∗.

Proceed as follows:

– Draw each arm once.
– Then at each round t, play an arm

It ∈ argmin
k∈{1,...,K}

Tk(t − 1)
(
μ∗ − X̂k,Tk(t−1)

)2

.

Fig. 3. gcl∗: a variant of c.d.f.-based algorithm when μ∗ is known

Theorem 12. When μ∗ is known, gcl∗ is nβ-T (and hence nβ-R) for all β > 0.
3 There is no need to leave aside the case of dk = 0: with the convention 1

0
= +∞, the

corresponding event has zero probability.
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5 Proof of Theorem 6

Let us first notice that we can remove the Δ2
k denominator in the the definition of

f -wT without loss of generality. This would not be possible for the f -T definition
owing to the different position of “∀θ” with respect to “∃C, C̃”.

Thus, a policy is f -wT if and only if

∀θ ∈ Θ such that Δ �= 0,

∃C, C̃ > 0, ∀n ≥ 2, ∀k �= k∗, Pθ (Tk(n) ≥ C logn) ≤ C̃

f(n)
.

Let us assume that the policy has the f -upper tailed property in θ, i.e., there
exists C, C̃ > 0

∀N ≥ 2, ∀� �= k, Pθ

(
T�(N) ≥ C logN

)
≤ C̃

f(N)
. (5)

Let us show that this implies that the policy cannot have also the f -upper tailed
property in θ̃. To prove the latter, it is enough to show that for any C′, C̃′ > 0

∃n ≥ 2, Pθ̃

(
Tk(n) ≥ C′ log n

)
>

C̃′

f(n)
. (6)

since k is suboptimal in environment θ̃. Note that proving (6) for C′ = C is
sufficient. Indeed if (6) holds for C′ = C, it a fortiori holds for C′ < C. Besides,
when C′ > C, (5) holds for C replaced by C′, and we are thus brought back to
the situation when C = C′. So we only need to lower bound Pθ̃

(
Tk(n) ≥ C logn

)
.

From Lemma 5, Pθ̃

(
dν�

dν̃�
(X�,1) > 0

)
> 0 is equivalent to Pθ

(
dν̃�

dν�
(X�,1) > 0

)
> 0.

By independence of X1,1, . . . , XK,1 under Pθ, condition (c) in the theorem may
be written as

Pθ

(∏
� �=k

dν̃�

dν�
(X�,1) > 0

)
> 0.

Since
{∏

� �=k
dν̃�

dν�
(X�,1) > 0

}
= ∪m≥2

{∏
� �=k

dν̃�

dν�
(X�,1) ≥ 1

m

}
, this readily im-

plies that

∃η ∈ (0, 1), Pθ

(∏
� �=k

dν̃�

dν�
(X�,1) ≥ η

)
> 0.

Let a = Pθ

(∏
� �=k

dν̃�

dν�
(X�,1) ≥ η

)
.

Let us take n large enough such that N = �4C logn� satisfies N < n,
C logN < N

2K and f(n)ηt
(
at − (K−1)C̃

f(N)

)
> C̃′ for t = �C logN�. For any C̃′,

such a n does exist since f +∞ logα for any α > 0.
The idea is that if until roundN , arms � �= k have a behaviour that is typical of

θ, then the arm k (which is suboptimal in θ̃) may be pulled about C logn times
at round N . Precisely, we prove that ∀� �= k, Pθ

(
T�(N) ≥ C logN

)
≤ C̃

f(N)
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implies Pθ̃

(
Tk(n) ≥ C′ logn

)
> C̃′

f(n) . Let At = ∩s=1...t

{∏
� �=k

dν̃�

dν�
(X�,s) ≥ η

}
.

By independence and by definition of a, we have Pθ(At) = at. We also have

Pθ̃

(
Tk(n) ≥ C logn

)
≥ Pθ̃

(
Tk(N) ≥ N

2

)
≥ Pθ̃

( ⋂
� �=k

{
T�(N) ≤ N

2K

})

≥ Pθ̃

( ⋂
� �=k

{
T�(N) < C logN

})

≥ Pθ̃

(
At ∩

{ ⋂
� �=k

{
T�(N) < C logN

}})
.

Introduce BN =
⋂

� �=k

{
T�(N) < C logN

}
, and the function q such that

�At∩BN = q
(
(X�,s)� �=k, s=1..t, (Xk,s)s=1..N

)
.

Since ν̃k = νk, by definition of At and by standard properties of density functions
dν̃�

dν�
, we have

Pθ̃

(
At ∩

{ ⋂
� �=k

{T�(N) < C logN}
})

=
∫
q
(
(x�,s)� �=k, s=1..t, (xk,s)s=1..N

) ∏
� �=k

s=1..t

dν̃�(x�,s)
∏

s=1..N

dν̃k(xk,s)

≥ ηt

∫
q
(
(x�,s)� �=k, s=1..t, (xk,s)s=1..N

) ∏
� �=k

s=1..t

dν�(x�,s)
∏

s=1..N

dνk(xk,s)

= ηtPθ

(
At ∩

{ ⋂
� �=k

{T�(N) < C logN}
})

≥ ηt

(
at − (K − 1)C̃

f(N)

)
>

C̃′

f(n)
,

where the one before last inequality relies on a union bound with (5) and
Pθ(At) = at, and the last inequality uses the definition of n. We have thus
proved that (6) holds, and thus the policy cannot have the f -upper tailed prop-
erty simultaneously in environment θ and θ̃.
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Abstract. Many problems, such as cognitive radio, parameter control
of a scanning tunnelling microscope or internet advertisement, can be
modelled as non-stationary bandit problems where the distributions of
rewards changes abruptly at unknown time instants. In this paper, we
analyze two algorithms designed for solving this issue: discounted UCB
(D-UCB) and sliding-window UCB (SW-UCB). We establish an upper-
bound for the expected regret by upper-bounding the expectation of
the number of times suboptimal arms are played. The proof relies on an
interesting Hoeffding type inequality for self normalized deviations with a
random number of summands. We establish a lower-bound for the regret
in presence of abrupt changes in the arms reward distributions. We show
that the discounted UCB and the sliding-window UCB both match the
lower-bound up to a logarithmic factor. Numerical simulations show that
D-UCB and SW-UCB perform significantly better than existing soft-max
methods like EXP3.S.

1 Introduction

Multi-armed bandit (MAB) problems, modelling allocation issues under uncer-
tainty, are fundamental to stochastic decision theory. The archetypal MAB prob-
lem may be stated as follows: there is a bandit with K independent arms. At
each time step, the agent chooses one arm and receives a reward accordingly. In
the stationary case, the distribution of the rewards are initially unknown, but
are assumed to remain constant during all games. The agent aims at minimizing
the expected regret over T rounds, which is defined as the expectation of the dif-
ference between the total reward obtained by playing the best arm and the total
reward obtained by using the algorithm. For several algorithms in the literature
(e.g. [20, 1]), as the number of plays T tends to infinity, the expected total reward
asymptotically approaches that of playing a policy with the highest expected re-
ward, and the regret grows as the logarithm of T . More recently, finite-time
bounds for the regret and improvements have been derived (see [5, 2, 16]), but
those improvements do not address the issue of non-stationarity.

Though the stationary formulation of the MAB allows to address exploration
versus exploitation challenges in a intuitive and elegant way, it may fail to be
adequate to model an evolving environment where the reward distributions un-
dergo changes in time. As an example, in the cognitive medium radio access

J. Kivinen et al. (Eds.): ALT 2011, LNAI 6925, pp. 174–188, 2011.
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problem [19], a user wishes to opportunistically exploit the availability of an
empty channel in a multiple channel system; the reward is the availability of
the channel, whose distribution is unknown to the user. Another application is
real-time optimization of websites by targetting relevant content at individuals,
and maximizing the general interest by learning and serving the most popular
content (such situations have been considered in the recent Exploration versus
Exploitation (EvE) PASCAL challenge by [14], see also [18] and the references
therein). These examples illustrate the limitations of the stationary MAB mod-
els. The probability that a given channel is available is likely to change in time.
The news stories a visitor of a website is most likely to be interested in vary in
time.

To model such situations, non-stationary MAB problems have been consid-
ered (see [17, 14, 22, 24]), where distributions of rewards may change in time.
Motivated by the problems cited above, and following a paradigm widely used
in the change-point detection literature (see [12, 21] and references therein), we
focus on non-stationary environments where the distributions of the rewards
undergo abrupt changes. We show in the following that, as expected, policies
tailored for the stationary case fail to track changes of the best arm.

Section 2 contains the formal presentation of the non-stationary setting we
consider, together with two algorithms adressing this exploration/exploitation
dilemma : D-UCB and SW-UCB. D-UCB had been proposed in [17] with empiri-
cal evidence of efficiency, but no theoretical analysis. SW-UCB is a new UCB-like
algorithm that appears to perform slightly better in switching environments. In
Section 3, we provide upper-bounds on the performance of D-UCB and SW-
UCB; moreover, we provide a lower-bound on the performance of any algorithm
in abruptly changing environments, that almost matches the upper-bounds. As
a by-product, we show that any policy (like UCB-1) that achieves a logarith-
mic regret in the stationary case cannot reach a regret of order smaller than
T/ log(T ) in the presence of switches. D-UCB is analyzed in Section 4; it relies
on a novel deviation inequality for self-normalized averages with random number
of summands which is stated in Section 7 together with some technical results.
A lower bound on the regret of any algorithm in an abruptly changing environ-
ment is given in Section 5. In Section 6, two simple Monte-Carlo experiments
are presented to support our findings.

2 Algorithms

In the sequel, we assume that the set of arms is {1, . . . ,K}, and that the rewards
{Xt(i)}t≥1 for arm i ∈ {1, . . . ,K} are modeled by a sequence of independent
random variables from potentially different distributions (unknown to the user)
which may vary across time but remain bounded by B > 0. For each t > 0,
we denote by μt(i) the expectation of the reward Xt(i) for arm i. Let i∗t be the
arm with highest expected reward at time t (in case of ties, let i∗t be one of the
arms with highest expected rewards). The regret of a policy π is defined as the
expected difference between the total rewards collected by the optimal policy
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π∗ (playing at each time instant the arm i∗t ) and the total rewards collected by
the policy π. Note that, in this paper, the non-stationary regret is not defined
with respect to the best arm on average, but with respect to a strategy tracking
the best arm at each step (this notion of regret is similar to the “regret against
arbitrary strategies” introduced in Section 8 of [3] for the non-stochastic bandit
problem).

We consider abruptly changing environments: the distributions of rewards
remain constant during periods and change at unknown time instants called
breakpoints (which do not depend on the policy of the player or on the se-
quence of rewards). In the following, we denote by ΥT the number of break-
points in the reward distributions that occur before time T . Another type of
non-stationary MAB, where the distribution of rewards changes continuously, is
considered in [22].

Standard soft-max and UCB policies are not appropriate for abruptly chang-
ing environments: as stressed in [14], “empirical evidence shows that their Ex-
ploration versus Exploitation trade-off is not appropriate for abruptly changing
environments“. To address this problem, several methods have been proposed.

In the family of softmax action selection policies, [3] and [8, 9] have proposed
an adaptation of the Fixed-Share algorithm referred to as EXP3.S (see [15, 6]
and the references therein). Theorem 8.1 and Corollary 8.3 in [3] state that when
EXP3.S is tuned properly (which requires in particular that ΥT is known in ad-
vance), the expected regret satisfies Eπ [RT ] ≤ 2

√
e−1
√
KT (ΥT log(KT ) + e).

Despite the fact that it holds uniformly over all reward distributions, such an
upper-bound may seem deceptive in comparison to the stationary case,: the rate
O(

√
T logT ) is much larger than the O(log T ) achievable for a fixed distribution

in the absence of changes. But actually, we prove in Section 5 that no policy can
always achieve an average fixed-game regret smaller than O(

√
T ) in the non-

stationary case. Hence, EXP3.S matches the best achievable rate up to a factor√
logT . By construction, this algorithm can as well be used in an adversarial

setup; but, in a stochastic environment, it is not guaranteed to be optimal (think
that, in the stationary case, UCB outperforms EXP3 in the stochastic setup),
and specific methods based on probabilistic estimation have to be considered.

In fact, in the family of UCB policies, several attempts have been made; see
for examples [22] and [17]. In particular, [17] have proposed an adaptation of the
UCB policies that relies on a discount factor γ ∈ (0, 1). This policy constructs
an UCB X̄t(γ, i) + ct(γ, i) for the instantaneous expected reward, where the
discounted empirical average is given by

X̄t(γ, i) =
1

Nt(γ, i)

t∑
s=1

γt−sXs(i)�{Is=i} , Nt(γ, i) =
t∑

s=1

γt−s
�{Is=i},

where the discounted exploration bonus is ct(γ, i) = 2B
√
ξ lognt(γ)/Nt(γ, i),

with nt(γ) =
∑K

i=1Nt(γ, i), for an appropriate parameter ξ. Using these nota-
tions, discounted-UCB (D-UCB) is defined in Algorithm 1. For γ = 1, D-UCB
boils down to the standard UCB-1 algorithm.
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Algorithm 1. Discounted UCB
for t from 1 to K, play arm It = t;
for t from K + 1 to T , play arm

It = arg max
1≤i≤K

X̄t(γ, i) + ct(γ, i).

In order to estimate the instantaneous expected reward, the D-UCB policy
averages past rewards with a discount factor giving more weight to recent obser-
vations. We propose in this paper a more abrupt variant of UCB where averages
are computed on a fixed-size horizon. At time t, instead of averaging the rewards
over the whole past with a discount factor, sliding-window UCB relies on a local
empirical average of the observed rewards, using only the τ last plays. Specifi-
cally, this algorithm constructs an UCB X̄t(τ, i) + ct(τ, i) for the instantaneous
expected reward; the local empirical average is given by

X̄t(τ, i) =
1

Nt(τ, i)

t∑
s=t−τ+1

Xs(i)�{Is=i} , Nt(τ, i) =
t∑

s=t−τ+1

�{Is=i} ,

and the exploration bonus is defined as ct(τ, i) = B
√
ξ log(t ∧ τ)/(Nt(τ, i)),

where t ∧ τ denotes the minimum of t and τ , and ξ is an appropriate constant.
The policy defined in Algorithm 2 is denoted Sliding-Window UCB (SW-UCB).

Algorithm 2. Sliding-Window UCB
for t from 1 to K, play arm It = t;
for t from K + 1 to T , play arm

It = arg max
1≤i≤K

X̄t(τ, i) + ct(τ, i),

3 Regret Bounds

In this section, we provide upper-bounds on the regret of D-UCB and SW-UCB,
as well as an almost matching lower-bound on the regret of any algorithm facing
an abruptly changing environment.

Let ΥT denote the number of breakpoints before time T , and let ÑT (i) =∑T
t=1 �{It=i�=i∗t } denote the number of times arm i was played when it was not

the best arm during the T first rounds. Denote by ΔμT (i) the minimum of the
difference of expected reward of the best arm μt(i∗t ) and the expected reward
μt(i) of arm i for all times t ∈ {1, . . . , T} such that arm i is not optimal:

ΔμT (i) = min
{
μt(i∗t ) − μt(i) : t ∈ {1, . . . , T}, μt(i) < μt(i∗t )

}
. (1)
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We denote by Pγ and Eγ the probability distribution and expectation under the
policy D-UCB using the discount factor γ. As the expected regret is

Eγ [RT ] = Eγ

⎡⎣ T∑
t=1

∑
i:μt(i)<μt(i∗t )

(Xt(i∗t ) −Xt(i))�{It=i}

⎤⎦ ≤ B

K∑
i=1

Eγ

[
ÑT (i)

]
,

it is sufficient to upper-bound the expected number of times an arm i is played
when this arm is suboptimal.

Theorem 1. Let ξ ∈ (1/2, 1) and γ ∈ (1/2, 1). For any T ≥ 1 and for any arm
i ∈ {1, . . . ,K}:

Eγ

[
ÑT (i)

]
≤ C1 T (1 − γ) log

1
1 − γ

+ C2
ΥT

1 − γ
log

1
1 − γ

, (2)

where

C1 =
32

√
2B2ξ

γ1/(1−γ)(ΔμT (i))2
+

4

(1 − 1
e ) log

(
1 + 4

√
1 − 1/2ξ

)
and

C2 =
γ − 1

log(1 − γ) log γ
× log ((1 − γ)ξ log nK(γ)) .

When γ goes to 1, C2 → 1 and

C1 → 16 eB2ξ

(ΔμT (i))2
+

2

(1 − e−1) log
(
1 + 4

√
1 − 1/2ξ

) .
Algorithm SW-UCB shows a similar behavior, but the absence of infinite memory
makes it slightly more suited to abrupt changes of the environment. Denote by
Pτ and Eτ the probability distribution and expectation under policy SW-UCB
with window size τ . The following bound holds:

Theorem 2. Let ξ > 1/2. For any integer τ and any arm i ∈ {1, . . . ,K},

Eτ

[
ÑT (i)

]
≤ C(τ)

T log τ
τ

+ τΥT + log2(τ) , (3)

where

C(τ) =
4B2ξ

(ΔμT (i))2
�T/τ�
T/τ

+
2

log τ

⌈
log(τ)

log(1 + 4
√

1 − (2ξ)−1)

⌉

→ 4B2ξ

(ΔμT (i))2
+

2
log(1 + 4

√
1 − (2ξ)−1)

as τ and T/τ go to infinity.
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3.1 Tuning the Parameters

If horizon T and the growth rate of the number of breakpoints ΥT are known in
advance, the discount factor γ can be chosen so as to minimize the RHS in Equa-
tion 2. Choosing γ = 1 − (4B)−1

√
ΥT /T yields Eγ

[
ÑT (i)

]
= O

(√
TΥT logT

)
.

Assuming that ΥT = O(T β) for some β ∈ [0, 1), the regret is upper-bounded
as O

(
T (1+β)/2 logT

)
. In particular, if β = 0, the number of breakpoints ΥT is

upper-bounded by Υ independently of T , taking γ = 1 − (4B)−1
√
Υ/T , the re-

gret is bounded by O
(√

ΥT logT
)
. Thus, D-UCB matches the lower-bound of

Theorem 3 stated below, up to a factor logT .
Similary, choosing τ = 2B

√
T log(T )/ΥT in SW-UCB yields Eτ

[
ÑT (i)

]
=

O
(√

ΥTT logT
)
. Assuming that ΥT = O(T β) for some β ∈ [0, 1), the av-

erage regret is upper-bounded as O
(
T (1+β)/2

√
logT

)
. If β = 0, the number

of breakpoints ΥT is upper-bounded by Υ independently of T , then with τ =
2B
√
T log(T )/Υ the upper-bound is O

(√
ΥT logT

)
. Thus, SW-UCB matches

the lower-bound of Theorem 3 up to a factor
√

logT , slightly better than the
D-UCB.

On the other hand, if the breakpoints have a positive density over time (say,
if ΥT ≤ rT for a small positive constant r), then γ has to remain lower-bounded
independently of T ; Theorem 1 gives a linear, non-trivial bound on the regret
and allows to calibrate the discount factor γ as a function of the density of the
breakpoint: with γ = 1−

√
r/(4B) we get an upper-bound with a dominant term

in −
√
r log(r)O (T ).

Concerning SW-UCB, τ has to remain lower-bounded independently of T .
For instance, if ΥT ≤ rT for some (small) positive rate r, and for the choice
τ = 2B

√
− log r/r, Theorem 2 gives Eτ

[
ÑT (i)

]
= O

(
T
√

−r log (r)
)
. If the

growth rate of ΥT is known in advance, but not the horizon T , then we can use
the “doubling trick” to set the value of γ and τ . Namely, for t and k such that
2k ≤ t < 2k+1, take γ = 1 − (4B)−1(2k)(β−1)/2.

If there is no breakpoint (ΥT = 0), the best choice is obviously to make
the window as large as possible, that is τ = T . Then the procedure is exactly
standard UCB. A slight modification of the preceeding proof for ξ = 1

2 + ε with

arbitrary small ε yields EUCB

[
ÑT (i)

]
≤ 2B2

(Δμ(i))2 log(T ) (1 + o(1)) . This result
improves by a constant factor the bound given in Theorem 1 in [5]. In [13],
another constant factor is gained by using a different proof.

4 Analysis of D-UCB

Because of space limitations, we present only the analysis of D-UCB, i.e. the
proof of Theorem 1. The case of SW-UCB is similar, although slightly more
simple because of the absence of bias at a large distance of the breakpoints.

Compared to the standard regret analysis of the stationary case (see e.g.
[5]), there are two main differences. First, because the expected reward changes,
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the discounted empirical mean X̄t(γ, i) is now a biased estimator of the expected
reward μt(i). The second difference stems from the deviation inequality itself: in-
stead of using a Chernoff-Hoeffding bound, we use a novel tailored-made control
on a self-normalized mean of the rewards with a random number of summands,
which is stated in Section 7. The proof is in 5 steps:

Step 1. The number of times a suboptimal arm i is played is:

ÑT (i) = 1 +
T∑

t=K+1

�{It=i�=i∗t ,Nt(γ,i)<A(γ)} +
T∑

t=K+1

�{It=i�=i∗t ,Nt(γ,i)≥A(γ)} ,

where A(γ) = 16B2ξ lognT (γ)/(ΔμT (i))2 . Using Lemma 1 (see Section 7), we
may upper-bound the first sum in the RHS as

∑T
t=K+1 �{It=i�=i∗t ,Nt(γ,i)<A(γ)} ≤

�T (1 − γ)�A(γ)γ−
1

1−γ . For a number of rounds (which depends on γ) following
a breakpoint, the estimates of the expected rewards can be poor for D(γ) =
log ((1 − γ)ξ lognK(γ)) / log(γ) rounds. For any positive T , we denote by T (γ)
the set of all indices t ∈ {K+1, . . . , T} such that for all integers s ∈]t−D(γ), t],
for all j ∈ {1, . . . ,K}, μs(j) = μt(j). In other words, t is in T (γ) if it does not
follow too soon after a state transition. This leads to the following bound:

T∑
t=K+1

�{It=i�=i∗t ,Nt(γ,i)≥A(γ)} ≤ ΥTD(γ) +
∑

t∈T (γ)

�{It=i�=i∗t ,Nt(γ,i)≥A(γ)} .

Putting everything together, we obtain:

ÑT (i) ≤ 1+ �T (1− γ)�A(γ)γ−1/(1−γ) +ΥTD(γ)+
∑

t∈T (γ)

�{It=i�=i∗t ,Nt(γ,i)≥A(γ)} .

(4)

Step 2. Let t ∈ T (γ). If the following three things were true:⎧⎪⎨⎪⎩
X̄t(γ, i) + ct(γ, i) < μt(i) + 2ct(γ, i)
μt(i) + 2ct(γ, i) < μt(i∗t )
μt(i∗t ) < X̄t(γ, i∗t ) + ct(γ, i∗t )

then X̄t(γ, i)+ ct(γ, i) < X̄t(γ, i∗t )+ ct(γ, i∗t ), and arm i∗ would be chosen. Thus,

{It = i �= i∗t , Nt(γ, i) ≥ A(γ)} ⊆

⎧⎨⎩
{μt(i∗t ) − μt(i) ≤ 2ct(γ, i), Nt(γ, i) ≥ A(γ)}
∪
{
X̄t(γ, i∗t ) ≤ μt(i∗t ) − ct(γ, i∗t )

}
∪
{
X̄t(γ, i) ≥ μt(i) + ct(γ, i)

}
(5)

In words, playing the suboptimal arm i at time t may occur in three cases: if
μt(i) is substantially over-estimated, if μt(i∗t ) is substantially under-estimated,
or if μt(i) and μt(i∗t ) are close to each other. But for the choice of A(γ) given
above, we have ct(γ, i) ≤ 2B

√
(ξ lognt(γ)) /A(γ) ≤ ΔμT (i)/2 , and the event

{μt(i∗t ) − μt(i) < 2ct(γ, i), Nt(γ, i) ≥ A(γ)} never occurs.
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In Steps 3 and 4 we upper-bound the probability of the first two events of the
RHS of (5). We show that for t ∈ T (γ), that is at leastD(γ) rounds after a break-
point, the expected rewards of all arms are well estimated with high probability.
For all j ∈ {1, . . . ,K}, consider the event Et(γ, j) =

{
X̄t(γ, i) ≥ μt(j)+ct(γ, j)

}
.

The idea is the following: we upper-bound the probability of Et(γ, j) by sepa-
rately considering the fluctuations of X̄t(γ, j) around Mt(γ, j)/Nt(γ, j), and the
‘bias’ Mt(γ, j)/Nt(γ, j) − μt(j), where Mt(γ, j) =

∑t
s=1 γ

t−s
�{Is=j}μs(j) .

Step 3. Let us first consider the bias. First note that Mt(γ, j)/Nt(γ, j), as a
convex combination of elements μs(j) ∈ [0, B], belongs to interval [0, B]. Hence,
|Mt(γ, j)/Nt(γ, j) − μt(j)| ≤ B. Second, for t ∈ T (γ),

|Mt(γ, j) − μt(j)Nt(γ)| =

∣∣∣∣∣∣
t−D(γ)∑

s=1

γt−s (μs(j) − μt(j))�{Is=j}

∣∣∣∣∣∣
≤

t−D(γ)∑
s=1

γt−s |μs(j) − μt(j)|�{Is=j} ≤ BγD(γ)Nt−D(γ)(γ, j).

As oviously Nt−D(γ)(γ, j) ≤ (1− γ)−1, we get that |Mt(γ, j)/Nt(γ, j)−μt(j)| ≤
BγD(γ) ((1 − γ)Nt(γ))−1. Altogether,∣∣∣∣Mt(γ, j)

Nt(γ, j)
− μt(j)

∣∣∣∣ ≤ B

(
1 ∧ γD(γ)

(1 − γ)Nt(γ)

)
.

Hence, using the elementary inequality 1 ∧ x ≤
√
x and the definition of D(γ),

we obtain for t ∈ T (γ):∣∣∣∣Mt(γ, j)
Nt(γ, j)

− μt(j)
∣∣∣∣ ≤ B

√
γD(γ)

(1 − γ)Nt(γ, i)
≤ B

√
ξ lognK(γ)
Nt(γ, j)

≤ 1
2
ct(γ, j) .

In words: D(γ) rounds after a breakpoint, the ‘bias’ is smaller than the half of
the exploration bonus. The other half of the exploration bonus is used to control
the fluctuations. In fact, for t ∈ T (γ):

Pγ (Et(γ, j)) ≤ Pγ

(
X̄t(γ, j) > μt(j) +B

√
ξ lognt(γ)
Nt(γ, j)

+
∣∣∣∣Mt(γ, j)
Nt(γ, j)

− μt(j)
∣∣∣∣
)

≤ Pγ

(
X̄t(γ, j) − Mt(γ, j)

Nt(γ, j)
> B

√
ξ lognt(γ)
Nt(γ, j)

)
.

Step 4. Denote the discounted total reward obtained with arm j by

St(γ, j) =
t∑

s=1

γt−s
�{Is=j}Xs(j) = Nt(γ, j)X̄t(γ, j) .
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Using Theorem 4 and the fact that Nt(γ, j) ≥ Nt(γ2, j), we get:

Pγ (Et(γ, j)) ≤ Pγ

(
St(γ, j) −Mt(γ, j)√

Nt(γ2, j)
> B

√
ξNt(γ, j) lognt(γ)

Nt(γ2, j)

)

≤ Pγ

(
St(γ, j) −Mt(γ, j)√

Nt(γ2, j)
> B
√
ξ lognt(γ)

)

≤
⌈

lognt(γ)
log(1 + η)

⌉
nt(γ)−2ξ

(
1− η2

16

)
.

Step 5. Hence, we finally obtain from Equation (4) that for all positive η:

Eγ

[
ÑT (i)

]
≤ 1 + �T (1 − γ)�A(γ)γ−1/(1−γ) +D(γ)ΥT

+ 2
∑

t∈T (γ)

⌈
lognt(γ)
log(1 + η)

⌉
nt(γ)−2ξ

(
1−η2

16

)
.

When ΥT �= 0, γ is taken strictly smaller than 1. As ξ > 1
2 , we take η =

4
√

1 − 1/2ξ, so that 2ξ
(
1 − η2/16

)
= 1. For that choice, with τ = (1 − γ)−1,

∑
t∈T (γ)

⌈
lognt(γ)
log(1 + η)

⌉
nt(γ)−2ξ

(
1− η2

16

)
≤ τ −K +

T∑
t=τ

⌈
lognτ (γ)
log(1 + η)

⌉
nτ (γ)−1

≤ τ −K +
⌈

lognτ (γ)
log(1 + η)

⌉
T

nτ (γ)
≤ τ −K +

⌈
log 1

1−γ

log(1 + η)

⌉
T (1 − γ)

1 − γ1/(1−γ)

and we obtain the statement of the Theorem.

5 A Lower-Bound on the Regret in Abruptly Changing
Environment

In this section, we consider a particular non-stationary bandit problem where
the distributions of rewards on each arm are piecewise constant and have two
breakpoints. Given any policy π, we derive a lower-bound on the number of
times a sub-optimal arm is played (and thus, on the regret) in at least one such
game. Quite intuitively, the less explorative a policy is, the longer it may keep a
suboptimal policy after a breakpoint. Theorem 3 gives a precise content to this
statement.

As in the previous section, K denotes the number of arms, and the rewards
are assumed to be bounded in [0, B]. Consider any deterministic policy π of
choosing the arms I1, . . . , IT played at each time depending to the past re-
wards Gt � Xt(It), and recall that It is measurable with respect to the sigma-
field σ(G1, . . . , Gt) of the past observed rewards. Denote by Ns:t(i) the number
of times arm i is played between times s and t Ns:t(i) =

∑t
u=s �{Iu=i}, and
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NT (i) = N1:T (i). For 1 ≤ i ≤ K, let Pi be the probability distribution of the
outcomes of arm i, and let μ(i) denote its expectation. Assume that μ(1) > μ(i)
for all 2 ≤ i ≤ K. Denote by Pπ the distribution of rewards under policy π, that
is: dPπ(g1:T |I1:T ) =

∏T
t=1 dPit(gt). For any random variable W measurable with

respect to σ(G1, . . . , GT ), denote by Eπ[W ] its expectation under Pπ.
In the sequel, we divide the period {1, . . . , T} into epochs of the same size

τ ∈ {1, . . . , T}, and we modify the distribution of the rewards so that on one of
those periods, armK becomes the one with highest expected reward. Specifically:
let Q be a distribution of rewards with expectation ν > μ(1), let δ = ν − μ(1)
and let α = D(PK ;Q) be the Kullback-Leibler divergence between PK and Q.
For all 1 ≤ j ≤ M =

⌊
T
τ

⌋
, we consider the modification Pj

π of Pπ such that on
the j-th period of size τ , the distribution of rewards of the K-th arm is changed
to ν. That is, for every sequence of rewards g1:T ,

dPj
π

dPπ
(g1:T |I1:T ) =

jτ∏
t=1+(j−1)τ,It=K

dQ

dPK
(gt) .

Besides, let N j(i) = N1+(j−1)τ :jτ (i) be the number of times arm i is played in
the j-th period. For any random variable W in σ(G1, . . . , GT ), denote by Ej

π [W ]
its expectation under distribution Pj

π. Now, denote by P∗
π the distribution of

rewards when j is chosen uniformly at random in the set {1, . . . ,M}, i.e. P∗
π is

the (uniform) mixture of the (Pj
π)1≤j≤M , and denote by E∗

π [·] the expectation
under P∗

π: E∗
π [W ] = M−1

∑M
j=1 Ej

π [W ]. In the following, we lower-bound the
expected regret of any policy π under P∗

π in terms of its regret under Pπ.

Theorem 3. For any horizon T such that 64/(9α) ≤ Eπ[NT (K)] ≤ T/(4α) and
for any policy π ,

E∗
π [RT ] ≥ C(μ)

T

Eπ [RT ]
,

where C(μ) = 2δ(μ(1) − μ(K))/(3α) .

Proof. The main ingredients of this reasoning are inspired by the proof of The-
orem 5.1 in [3].First, note that the Kullback-Leibler divergence D(Pπ; Pj

π) is:

D(Pπ; Pj
π) =

T∑
t=1

D
(
Pπ (Gt|G1:t−1) ; Pj

π (Gt|G1:t−1)
)

=
jτ∑

t=1+(j−1)τ

Pπ (It = K)D(PK ;Q) = αEπ

[
N1+(j−1)τ :jτ (K)

]
.

But Ej
π [N j(K)]−Eπ[N j(K)] ≤ τdTV (Pj

π,Pπ) ≤ τ

√
D(Pπ; Pj

π)/2 by Pinsker’s in-

equality, and thus Ej
π[N j(K)] ≤ Eπ[N j(K)]+τ

√
αEπ [N j(K)]/2 . Consequently,

since
∑M

j=1 N
j(K) ≤ NT (K),

M∑
j=1

Ej
π [N j(K)] − E[NT (K)] ≤ τ

M∑
j=1

√
αEπ [N j(K)]

2
≤ τ

√
αMEπ[NT (K)]

2
.
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Thus, there exists 1 ≤ j ≤ M such that

E∗
π[N j(K)] ≤ 1

M
Eπ [NT (K)] +

τ

M

√
α

2
MEπ[NT (K)]

≤ τ

T − τ
Eπ[NT (K)] +

√
α

2
τ3

T − τ
Eπ [NT (K)] .

Now, the expectation under P∗
π of the regret RT is lower-bounded as:

E∗
π[RT ]
δ

≥ τ−E∗
π [NT (K)] ≥

(
τ − τ

T − τ
Eπ[NT (K)] −

√
α

2
τ3

T − τ
Eπ [NT (K)]

)
.

Maximizing the right hand side of the previous inequality by choosing τ =
8T/(9αEπ[NT (K)]) or equivalently M = 9α/(8Eπ[NT (K)]) leads to the lower-
bound:

E∗
π[RT ] ≥ 16δ

27α

(
1 − αEπ[NT (K)]

T

)2(
1 − 8

9αEπ[NT (K)]

)
T

Eπ [NT (K)]
.

To conclude, simply note that Eπ[NT (K)] ≤ Eπ[RT ]/(μ(1) − μ(K)). We obtain
that E∗

π[RT ] is lower-bounded by

16δ(μ(1) − μ(K))
27α

(
1 − αEπ [NT (K)]

T

)2 (
1 − 8

9αEπ[NT (K)]

)
T

Eπ[RT ]
,

which directly leads to the statement of the Theorem.

The following corollary states that no policy can have a non-stationary regret of
order smaller than

√
T . It appears here as a consequence of Theorem 3, although

it can also be proved directly.

Corollary 1. For any policy π and any positive horizon T ,

max{Eπ(RT ),E∗
π(RT )} ≥

√
C(μ)T .

Proof. If Eπ [NT (K)] ≤ 16/(9α), or if Eπ [NT (K)] ≥ T/α, the result is obvious.
Otherwise, Theorem 3 implies that:

max{Eπ(RT ),E∗
π(RT )} ≥ max{Eπ(RT ), C(μ)

T

Eπ(RT )
} ≥
√
C(μ)T .

In words, Theorem 3 states that for any policy not playing each arm often
enough, there is necessarily a time where a breakpoint is not seen after a long
period. For instance, as standard UCB satisfies Eπ[N(K)] = Θ(log T ), then
E∗

π[RT ] ≥ cT/ log(T ) for some positive c depending on the reward distribution.
To keep notation simple, Theorem 3 is stated and proved here for determinis-
tic policy. It is easily verified that the same results also holds for randomized
strategies (such as EXP3-P, see [3]).
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This result is to be compared with standard minimax lower-bounds on the re-
gret. On one hand, a fixed-game lower-bound in O(log T ) was proved in [20] for
the stationary case, when the distributions of rewards are fixed and T is allowed
to go to infinity. On the other hand, a finite-time minimax lower-bound for indi-
vidual sequences in O(

√
T ) is proved in [3]. In this bound, for each horizon T the

worst case among all possible reward distributions is considered, which explains
the discrepancy. This result is obtained by letting the distance between distribu-
tions of rewards tend to 0 (typically, as 1/

√
T ). In Theorem 3, no assumption is

made on the distributions of rewards Pi and Q, their distance actually remains
lower-bounded independently of T . In fact, in the case considered here minimax
regret and fixed-game minimal regret appear to have the same order of magnitude.

6 Simulations

The scope of this section is to present two simple, archetypal settings that show
the interest of UCB methods in non-stationary stochastic environments. In the
first example, there are K = 3 arms and the time horizon is set to T = 104.
The rewards of arm i ∈ {1, . . . ,K} at time t are independent Bernoulli random
variables with success probability pt(i), with pt(1) = 0.5, pt(2) = 0.3 and for
t ∈ {1, . . . , T}, pt(3) = 0.4 for t < 3000 or t ≥ 5000, and pt(3) = 0.9 for
3000 ≤ t < 5000. The optimal policy for this bandit task is to select arm 1
before the first breakpoint (t = 3000) and after the second breakpoint (t = 5000).
In Figure 1 , we represent the evolution of the cumulated regret. We compare
the UCB-1 algorithm with ξ = 1

2 , the EXP3.S algorithm described in [3] with
the tuned parameters given in Corollary 8.3 (with the notations of this paper
α = T−1 and γ =

√
K(ΥT log(KT ) + e)/[(e−1)T ] with ΥT = 2), the D-UCB

algorithm with ξ = 0.6 and γ = 1 − 1/4
√
T and the SW-UCB with ξ = 0.6 and

τ = 4
√
T logT (chosen according to Section 3).
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Fig. 1. Bernoulli MAB problem with
two swaps. Above: evolution of the re-
ward distributions. Below: cumulative
regret of each policy.
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As can be seen in Figure 1 (and as can be consistently observed over all
simulations), D-UCB performs almost as well as SW-UCB. Both of them waste
significantly less time than EXP3.S and UCB-1 to detect the breakpoints, and
quickly concentrate their pulls on the optimal arm. Observe that policy UCB-
1, initially the best, reacts very fast to the first breakpoint (t = 3000), as the
confidence interval for arm 3 at this step is very loose. On the contrary, it takes
a very long time after the second breakpoint (t = 5000) for UCB-1 to play arm
1 again.

In the second example, we test the behaviour of D-UCB and SW-UCB by in-
vestigating their performance in a slowly-varying environment. This environment
is made of K = 2 arms, the rewards are still Bernoulli random variables with
parameters pt(i) but they are in persistent, continuous evolution. Arm 2 is taken
as a reference (pt(2) = 1/2 for all t), and the parameter of arm 1 evolves peri-
odically as: pt(1) = 0.5 + 0.4 cos (6πRt/T ). Hence, the best arm to pull changes
cyclically and the transitions are smooth (regularly, the two arms are statisti-
cally indistinguishable). In Figure 2 , the evolutions of the cumulative regrets
under the four policies are shown: in this continuously evolving environment, the
performance of D-UCB and SW-UCB are almost equivalent while UCB-1 and
the Exp3.S algorithms accumulate larger regrets. Continuing the experiment or
multiplying the changes only confirms this conclusion.

These modest and yet representative examples suggest that, despite the fact
that similar regret bounds are proved for D-UCB, SW-UCB and EXP3.S, the two
former methods are significantly more reactive to changes in practice and have
a better performance, whether the environment is slowly or abruptly changing.
EXP3.S, on the other hand, is expected to be more robust and more adapted to
non stochastic (and non-oblivious) environments.

7 Technical Results

We first state a deviation bound for self-normalized discounted average, of inde-
pendent interest, that proves to be a key ingredient in the analysis of D-UCB. Let
(Xt)t≥1 be a sequence of non-negative independent random variables bounded
by B defined on a probability space (Ω,A,P), and we denote μt = E[Xt]. Let Ft

be an increasing sequence of σ-fields of A such that for each t, σ(X1 . . . , Xt) ⊂ Ft

and for s > t, Xs is independent from Ft. Consider a previsible sequence (εt)t≥1

of Bernoulli variables (for all t > 0, εt is Ft−1-measurable). For γ ∈ [0, 1), let
St(γ) =

∑t
s=1 γ

t−sXsεs, Mt(γ) =
∑t

s=1 γ
t−sμsεsNt(γ) =

∑t
s=1 γ

t−sεs, and
nt(γ) =

∑t
s=1 γ

t−s.

Theorem 4. For all integers t and all δ, η > 0,

P

(
St(γ) −Mt(γ)√

Nt(γ2)
> δ

)
≤
⌈

lognt(γ)
log(1 + η)

⌉
exp
(
−2δ2

B2

(
1 − η2

16

))
.
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The following lemma is required in the analysis of SW-UCB and D-UCB:

Lemma 1. Let i ∈ {1, . . . ,K}; for any positive integer τ , let Nt−τ :t(1, i) =∑t
s=t−τ+1 �{It=i}. Then for any positive m,

T∑
t=K+1

�{It=i,Nt−τ:t(1,i)<m} ≤ �T/τ�m .

Thus, for any τ ≥ 1 and A > 0,
∑T

t=K+1 �{It=i,Nt(γ,i)<A} ≤ �T/τ�Aγ−τ .

The proof of these results is omitted due to space limitations.

8 Conclusion and Perspectives

This paper theoretically establishes that the UCB policies can be successfully
adapted to cope with non-stationary environments. It is shown introducing two
breakpoints is enough to move from the log(T ) performance of stationary bandits
to the

√
T log(T ) performance of adversarial bandits. The upper bound of the

D-UCB and SW-UCB in an abruptly changing environment are similar to the
upper bounds of the EXP3.S algorithm, and numerical experiments show that
UCB policies outperform the softmax methods in stochastic environments. The
focus of this paper is on an abruptly changing environment, but it is believed that
the theoretical tools developed to handle the non-stationarity can be applied in
different contexts. In particular, using a similar bias-variance decomposition of
the discounted or windowed-rewards, continuously evolving reward distributions
can be analysed. Furthermore, the deviation inequality for discounted martingale
transforms given in Section 7 is a powerful tool of independent interest.

As the previously reported Exp3.S algorithm, the performance of the proposed
policy depends on tuning parameters (discount factor or window). Designing
a fully adaptive algorithm, able to actually detect the changes as they occur
with no prior knowledge of a typical inter-arrival time, is not an easy task and
remains the subject of on-going research. A possibility may be to tune adaptively
the parameters by using data-driven approaches, as in [14]. Another possibility
is to use margin assumptions on the gap between the distributions before and
after the changes, as in [24]: at the price of this extra assumption, one obtains
improved bounds without the need for the knowledge of the number of changes.
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Abstract. In this paper, we study the problem of estimating the mean
values of all the arms uniformly well in the multi-armed bandit setting.
If the variances of the arms were known, one could design an optimal
sampling strategy by pulling the arms proportionally to their variances.
However, since the distributions are not known in advance, we need to
design adaptive sampling strategies to select an arm at each round based
on the previous observed samples. We describe two strategies based on
pulling the arms proportionally to an upper-bound on their variance and
derive regret bounds for these strategies. We show that the performance
of these allocation strategies depends not only on the variances of the
arms but also on the full shape of their distribution.

1 Introduction

Consider a marketing problem where the objective is to estimate the potential
impact of several new products or services. A common approach to this problem
is to design active online polling systems, where at each time step a product
is presented (e.g., via a web banner on Internet) to random customers from a
population of interest, and feedbacks are collected (e.g., whether the customer
clicks on the advertisement or not) and used to estimate the average preference of
all the products. It is often the case that some products have a general consensus
of opinion (low variance) while others have a large variability (high variance).
While in the former case very few votes would be enough to have an accurate
estimate of the value of the product, in the latter the system should present the
product to more customers in order to achieve the same level of accuracy. Since
the variability of the opinions for different products is not known in advance, the
objective is to design an active strategy that selects which product to display at
each time step in order to estimate the values of all the products uniformly well.

The problem of online polling can be seen as an online allocation problem with
several options, where the accuracy of the estimation of the quality of each option
depends on the quantity of resources allocated to it and also on some (initially
unknown) intrinsic variability of the option. This general problem is closely re-
lated to the problems of active learning (Cohn et al., 1996, Castro et al., 2005),
sampling and Monte-Carlo methods (Étoré and Jourdain, 2010), and optimal ex-
perimental design (Fedorov, 1972, Chaudhuri and Mykland, 1995). A particular
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instance of this problem is introduced in Antos et al. (2010) as an active learning
problem in the framework of stochastic multi-armed bandits. More precisely, the
problem is modeled as a repeated game between a learner and a stochastic en-
vironment, defined by a set of K unknown distributions {νk}K

k=1, where at each
round t, the learner selects an option (or arm) kt and as a consequence receives
a random sample from νkt (independent of the past samples). Given a budget
of n samples, the goal is to define an allocation strategy over arms so as to esti-
mate their expected values uniformly well (using a squared loss to evaluate the
accuracy). Note that if the variances {σ2

k}K
k=1 of the arms were initially known,

the optimal allocation strategy would be to sample the arms proportionally to
their variances, or more precisely, proportionally to λk = σ2

k/
∑

j σ
2
j . However,

since the distributions are initially unknown, the learner should implement an
active allocation strategy which adapts its behavior as samples are collected.
The performance of this strategy is measured by its regret (Eq. 4), defined as
the difference between the expected quadratic estimation error of the algorithm
and the error of the optimal allocation.

Antos et al. (2010) presented an algorithm, called GAFS-MAX, that allocates
samples proportionally to the empirical variances of the arms, while imposing
that each arm should be pulled at least

√
n times (to guarantee good estimation

of the true variances). They proved that for large enough n, the regret of their
algorithm scales with Õ(n−3/2) and conjectured that this rate is optimal.1 How-
ever, the performance displays both an implicit (in the condition for large enough
n) and explicit (in the regret bound) dependency on the inverse of the smallest
optimal allocation proportion, i.e., λmin = mink λk. This suggests that the algo-
rithm may have a poor performance whenever an arm has a very small variance
compared to the others (e.g., when users involved in the poll have very simi-
lar opinions about some products and very different on some others). Whether
this dependency is due to the analysis of GAFS-MAX, to the specific class of
algorithms, or to an intrinsic characteristic of the problem is an interesting open
question.

In this paper, in order to further investigate this issue, we introduce two
novel algorithms based on upper-confidence-bounds (UCB) on the variance. The
algorithms sample the arms proportionally to an upper-bound on their vari-
ance computed from the empirical variances and a confidence interval derived
from Chernoff-Hoeffding’s (first algorithm) and Bernstein’s (second algorithm)
inequalities. The main advantage of this class of algorithms is that the possi-
bility to use standard tools and arguments for UCB-like algorithms makes their
analysis simple, thus making the study of the dependency on λmin easier. The
main contributions and findings of this paper are as follows:

– The first algorithm, called CH-AS, is based on Chernoff-Hoeffding’s bound
and its regret is Õ(n−3/2) with an inverse dependency on λmin, similar to
GAFS-MAX. The main differences are: the bound for CH-AS holds for any n

1 The notation un = Õ(vn) means that there exist C > 0 and α > 0 such that
un ≤ C(log n)αvn for sufficiently large n.
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(and not only for large enough n), multiplicative constants are made explicit,
and finally, the proof is simpler and relies on very simple tools.

– The second algorithm, called B-AS, uses an empirical Bernstein’s inequality,
and it has a better performance (in terms of the number of pulls) in targeting
the optimal allocation strategy without any dependency on λmin. However,
moving from the number of pulls to the regret causes the inverse dependency
on λmin to appear again in the bound. We show that this might be due to
the specific shape of the distributions {νk}K

k=1 and derive a regret bound
independent from λmin for the case of Gaussian arms.

– We show empirically that while the performance of CH-AS depends on λmin

in the case of Gaussian arms, this dependence does not exist for B-AS and
GAFS-MAX, as they perform well in this case. This suggests that 1) it is not
possible to remove λmin from the regret bound of CH-AS, independent of the
arms’ distributions, and 2) GAFS-MAX’s analysis could be improved along
the same line as the proof of B-AS for the Gaussian arms. Furthermore, we
further investigate the impact of the distribution on the regret by reporting
numerical results in case of Rademacher distributions showing that B-AS
performance worsens with λ−1

min. This leads to the conjecture that the full
shape of the distributions, and not only their variance, impacts the regret of
these algorithms.

2 Preliminaries

The allocation problem studied in this paper is formalized in the standard K-
armed stochastic bandit setting, where each arm k = 1, . . . ,K is characterized
by a distribution2 νk with mean μk and variance σ2

k. At each round t ≥ 1, the
learner (algorithm A) selects an arm kt and receives a sample drawn from νkt

independently of the past. The objective is to estimate the mean values of all
the arms uniformly well given a total budget of n pulls. An adaptive algorithm
defines its allocation strategy as a function of the samples observed in the past
(i.e., at time t, the selected arm kt is a function of all the observations up to time
t− 1). After n rounds and observing Tk,n =

∑n
t=1 I {k = kt} samples from each

arm k, the algorithm A returns the empirical estimates μ̂k,n =
1

Tk,n

Tk,n∑
t=1

Xk,t,

where Xk,t denotes the sample received when pulling arm k for the t-th time.
The accuracy of the estimation at each arm k is measured according to its
expected squared estimation error, or loss

Lk,n = Eνk

[
(μk − μ̂k,n)2

]
. (1)

The global performance, or loss, of A is defined as the worst loss of the arms

Ln(A) = max
1≤k≤K

Lk,n . (2)

2 Although the formulation of the problem holds for any distribution, in the following
we will consider the case of bounded and sub-Gaussian distributions in order to
derive meaningful bounds.
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If the variance of the arms were known in advance, one could design an optimal
static allocation (i.e., independent from the observed samples) by pulling the
arms proportionally to their variances. If an arm k is pulled a fixed number of
times T ∗

k,n, its loss is 3

Lk,n(A∗) =
σ2

k

T ∗
k,n

. (3)

By choosing T ∗
k,n so as to minimize Ln under the constraint that

∑K
k=1 T

∗
k,n = n,

the optimal static allocation strategy A∗ pulls each arm k T ∗
k,n = σ2

kn∑K
i=1 σ2

i

times
(up to rounding effects), and achieves a global performance Ln(A∗) = Σ/n,

where Σ =
∑K

i=1 σ
2
i . We denote by λk =

T∗
k,n

n = σ2
k

Σ , the optimal allocation
proportion for arm k, and by λmin = min1≤k≤K λk, the smallest such proportion.

In our setting, where the variances of the arms are not known in advance, the
exploration-exploitation trade-off is inevitable: an adaptive algorithm A should
estimate the variances of the arms (exploration) at the same time as it tries
to sample the arms proportionally to these estimates (exploitation). In order
to measure how well the adaptive algorithm A performs, we compare its per-
formance to that of the optimal allocation algorithm A∗, which requires the
knowledge of the variances of the arms. For this purpose we define the notion of
regret of an adaptive algorithm A as the difference between the loss incurred by
the learner and the optimal loss Ln(A∗):

Rn(A) = Ln(A) − Ln(A∗). (4)

It is important to note that unlike the standard multi-armed bandit problems,
we do not consider the notion of cumulative regret, and instead, use the excess-
loss suffered by the algorithm at the end of the n rounds. This notion of re-
gret is closely related to the pure exploration setting (e.g., Audibert et al. 2010,
Bubeck et al. 2011). In fact, in both settings good strategies should play each
arm a linear function of n, in contrast with the standard stochastic bandit set-
ting, where the sub-optimal arms should be played logarithmically in n.

3 Allocation Strategy Based on Chernoff-Hoeffding UCB

The first algorithm, called Chernoff-Hoeffding Allocation Strategy (CH-AS), is
based on a Chernoff-Hoeffding high-probability bound on the difference between
the estimated and true variances of the arms. Each arm is simply pulled pro-
portionally to an upper-confidence-bound (UCB) on its variance. This algorithm
deals with the exploration-exploitation trade-off by pulling more the arms with
higher estimated variances or higher uncertainty in these estimates.

3 This equality does not hold when the number of pulls is random, e.g., in adaptive
algorithms, where the strategy depends on the random observed samples.
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Input: parameter δ
Initialize: Pull each arm twice
for t = 2K + 1, . . . , n do

Compute Bq,t = 1
Tq,t−1

(
σ̂2

q,t−1 + 5
√

log(1/δ)
2Tq,t−1

)
for each arm 1 ≤ q ≤ K

Pull an arm kt ∈ arg max1≤q≤K Bq,t

end for
Output: μ̂q,n for all arms 1 ≤ q ≤ K

Fig. 1. The pseudo-code of the CH-AS algorithm, with σ̂2
q,t computed as in Eq. 5

3.1 The CH-AS Algorithm

The CH-AS algorithm ACH in Fig. 1 takes a confidence parameter δ as input
and after n pulls returns an empirical mean μ̂q,n for each arm q. At each time
step t, i.e., after having pulled arm kt, the algorithm computes the empirical
mean μ̂q,t and variance σ̂2

q,t of each arm q as4

μ̂q,t =
1
Tq,t

Tq,t∑
i=1

Xq,i and σ̂2
q,t =

1
Tq,t

Tq,t∑
i=1

X2
q,i − μ̂2

q,t , (5)

where Xq,i is the i-th sample of νq and Tq,t is the number of pulls allocated
to arm q up to time t. After pulling each arm twice (rounds t = 1 to 2K),
from round t = 2K + 1 on, the algorithm computes the Bq,t values based on a
Chernoff-Hoeffding’s bound on the variances of the arms:

Bq,t =
1

Tq,t−1

(
σ̂2

q,t−1 + 5

√
log(1/δ)
2Tq,t−1

)
,

and then pulls the arm kt with the largest Bq,t.

3.2 Regret Bound and Discussion

Before reporting a regret bound for CH-AS, we first analyze its performance in
targeting the optimal allocation strategy in terms of the number of pulls. As it
will be discussed later, the distinction between the performance in terms of the
number of pulls and the regret will allow us to stress the potential dependency
of the regret on the distribution of the arms (see Section 4.3).

Lemma 1. Assume that the supports of the distributions {νk}K
k=1 are in [0, 1]

and that n ≥ 4K. For any δ > 0, for any arm 1 ≤ k ≤ K, the number of pulls
Tk,n played by the CH-AS algorithm satisfies with probability at least 1 − 4nKδ,

− 5

Σ2λ
3/2
min

√
n log(1/δ) − K

Σ
≤ Tk,n − T ∗

k,n ≤ 5(K − 1)

Σ2λ
3/2
min

√
n log(1/δ) +

K2

Σ
. (6)

4 Notice that this is a biased estimator of the variance even if the Tq,t were not random.
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Proof. Let ξK,n(δ) be the event

ξK,n(δ) =
⋂

1≤k≤K, 1≤t≤n

{∣∣∣(1

t

t∑
i=1

X2
k,i −

(1
t

t∑
i=1

Xk,i

)2) − σ2
k

∣∣∣ ≤ 5

√
log(1/δ)

2t

}
. (7)

From Hoeffding’s inequality it follows that Pr(ξK,n(δ)) ≥ 1 − 4nKδ. We divide
the proof of this lemma into the following three steps.

Step 1. Mechanism of the algorithm. On event ξK,n(δ), for all t ≤ n and q

|σ̂2
q,t − σ2

q | ≤ 5

√
log(1/δ)

2Tq,t
,

and the following upper and lower bounds for Bq,t+1 hold

σ2
q

Tq,t
≤ Bq,t+1 ≤ 1

Tq,t

(
σ2

q + 10

√
log(1/δ)

2Tq,t

)
. (8)

Let t + 1 > 2K be the time at which a given arm k is pulled for the last time,
i.e., Tk,t = Tk,n − 1 and Tk,(t+1) = Tk,n. Note that as n ≥ 4K, there is at least
one arm k that is pulled after the initialization phase. Since ACH chooses to pull
arm k at time t + 1, for any arm p, we have Bp,t+1 ≤ Bk,t+1. From Eq. 8 and
the fact that Tk,t = Tk,n − 1, we obtain

Bk,t+1 ≤ 1

Tk,t

(
σ2

k + 10

√
log(1/δ)

2Tk,t

)
=

1

Tk,n − 1

(
σ2

k + 10

√
log(1/δ)

2(Tk,n − 1)

)
. (9)

Using Eq. 8 and the fact that Tp,t ≤ Tp,n, we derive a lower-bound for Bp,t+1 as

Bp,t+1 ≥ σ2
p

Tp,t
≥ σ2

p

Tp,n
. (10)

Combining the condition Bp,t+1 ≤ Bk,t+1 with Eqs. 9 and 10, we obtain

σ2
p

Tp,n
≤ 1

Tk,n − 1

(
σ2

k + 10

√
log(1/δ)

2(Tk,n − 1)

)
. (11)

Note that at this point there is no dependency on t, and thus, the probability
that Eq. 11 holds for any p and for any k such that Tk,n > 2 (i.e. arm k is pulled
at least once after the initialization phase), is at least 1 − 4nKδ (probability of
the event ξK,n(δ)).

Step 2. Lower bound on Tp,n. If an arm p is under-pulled without taking
into account the initialization phase, i.e., Tp,n − 2 < λp(n − 2K), then from
the constraint

∑
k(Tk,n − 2) = n − 2K, we deduce that there must be at least

one arm k that is over-pulled, i.e., Tk,n − 2 > λk(n − 2K). Note that for this
arm, Tk,n − 2 > λk(n − 2K) ≥ 0, so we know that this specific arm is pulled
at least once after the initialization phase and that it satisfies Eq. 11. Using
the definition of the optimal allocation T ∗

k,n = nλk = nσ2
k/Σ and the fact that

Tk,n ≥ λk(n− 2K) + 2, Eq. 11 may be written as
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σ2
p

Tp,n
≤ 1

T ∗
k,n

n

n − 2K

(
σ2

k +

√
100 log(1/δ)

2(λk(n − 2K) + 2 − 1)

)
≤ Σ

n
+

20
√

log(1/δ)

(λminn)3/2
+

4KΣ

n2
,

since λk(n − 2K) + 1 ≥ λk(n/2 − 2K + 2K) + 1 ≥ nλk

2 , as n ≥ 4K (thus also
2KΣ

n(n−2K) ≤ 4KΣ
n2 ). By reordering the terms in the previous equation, we obtain

the lower bound

Tp,n ≥ σ2
p

Σ
n

+
20
√

log(1/δ)

(nλmin)3/2 + 4KΣ
n2

≥ T ∗
p,n − 5

√
n log(1/δ)

Σ2λ
3/2
min

− K

Σ
, (12)

where in the second inequality we used 1/(1 + x) ≥ 1 − x (for x > −1) and
σ2

p ≤ 1/4. Note that the lower bound holds w.h.p. for any arm p.

Step 3. Upper bound on Tp,n. Using Eq. 12 and the fact that
∑

k Tk,n = n,
we obtain the upper bound

Tp,n = n −
∑
k 
=p

Tk,n ≤ T ∗
p,n +

5(K − 1)

Σ2λ
3/2
min

√
n log(1/δ) +

K2

Σ
. (13)

	

We now show how this bound translates into a regret bound.

Theorem 1. Assume the distributions {νk}K
k=1 to be bounded in [0, 1] and n ≥

4K. The regret of ACH , for parameter δ = n−5/2, is bounded as

Rn(ACH) ≤ 70K
√

logn

n3/2 Σ λ
5/2
min

+O
( logn
n2

)
. (14)

For space limitations, we only report a sketch of the proof here, the full proof is
provided in the longer version of the paper (Carpentier et al., 2011).

Proof (Sketch). Eq. 3 indicates that the more often an arm is pulled, the smaller
its estimation error becomes. However, this is not true in general because Tk,n

is a random variable that depends on the actual received samples, and thus,
Lk,n = Eνk

[
(μk − μ̂k,n)2

]
does not satisfy Eq. 3. Nevertheless, for any arm

k, the number of pulls Tk,n is a stopping time w.r.t. the filtration induced by
the samples received for arm k. Hence, by applying the result of Lemma 10
in Antos et al. (2010) (a form of Wald’s equality), one derive

E
[
(μk − μ̂k,n)2I {ξK,n(δ)} ] ≤ 1

T 2
k,n

E
[( Tk,n∑

t=1

(μk − Xk,t)
)2]

=
σ2

kE(Tk,n)

T 2
k,n

, (15)

where T k,n is a lower-bound for Tk,n on ξK,n(δ). From this bound, one can use
Lemma 1, which provides both upper and lower-bounds for Tk,n on the event
ξK,n(δ) to deduce that E

[
(μk − μ̂k,n)2I {ξK,n(δ)}

]
= σ2

k

T∗
k,n

+O
(
n−3/2

√
log(1/δ)

)
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and E
[
(μk − μ̂k,n)2I {ξK,n(δ)}c ] ≤ 1 × P(ξK,n(δ)c) ≤ 4nKδ (which is obvious).

The claim follows by setting δ = n−5/2. 	


Remark 1. As discussed in Sec. 2, our objective is to design a sampling strategy
capable of estimating the mean values of the arms almost as accurately as the
optimal allocation strategy, which assumes that the variances are known. In
fact, Thm. 1 shows that the CH-AS algorithm provides a uniformly accurate
estimation of the expected values of the arms with a regretRn of order Õ(n−3/2).
This regret rate is the same as for GAFS-MAX algorithm (Antos et al., 2010).

Remark 2. In addition to a linear dependency on the number of arms K, the
bound also displays an inverse dependency on the smallest proportion λmin. As
a result, the bound scales poorly when an arm has a very small variance relative
to the other arms (i.e., σk � Σ). Note that GAFS-MAX has also a similar
dependency on the inverse of λmin, although a precise comparison is not possible
due to the fact that Antos et al. (2010) do not explicitly report the multiplicative
constants in their regret bound. Moreover, Thm. 1 holds for any n whereas the
regret bound in Antos et al. (2010) requires a condition n ≥ n0, where n0 is a
constant that scales with λ−1

min. Finally, note that this UCB type of algorithm
(CH-AS) enables a much simpler regret analysis than that of GAFS-MAX.

Remark 3. It is clear from Lemma 1 that the inverse dependency on λmin appears
in the bound on the number of pulls and then it is propagated to the regret
bound. We now show with a simple example that this dependency is not an
artifact of the analysis and it is intrinsic in the performance of the algorithm.
Consider a two-arm problem with σ2

1 = 1 and σ2
2 = 0. Here the optimal allocation

is T ∗
1,n = n− 1, T ∗

2,n = 1 (only one sample is enough to estimate the mean of the
second arm), and λmin = 0, which makes the bound in Thm. 1 vacuous. This does
not mean that CH-AS has an unbounded regret but it indicates that it minimizes
the regret with a poorer rate (see Sec. A.3 in Carpentier et al. 2011, for a sketch
of the proof). In fact, the upper-confidence term forces the algorithm to pull the
arm with zero variance at least Ω(n2/3) times, which results in under-pulling
the first arm by the same amount, and thus, in worsening its estimation. It can
be shown that the resulting regret has the rate Õ(n−4/3) and no dependency
on λmin. So, it still decreases to zero faster than 1/n, but with a slower rate
than in Thm. 1. Merging these two results, we deduce that the regret is in fact
Rn ≤ min

{
λ
−5/2
min Õ(n−3/2), Õ(n−4/3)

}
. Note that when λmin = 0 the regret of

GAFS-MAX is in Õ(n−3/2)5, and GAFS-MAX thus outperforms CH-AS in this
case. We further study the behavior of CH-AS in Sec. 5.1.

The reason for the poor performance in Lemma 1 is that Chernoff-Hoeffding’s
inequality is not tight for small-variance random variables. In Sec. 4, we propose
an algorithm based on an empirical Bernstein’s inequality, which is tighter for
small-variance random variables, and prove that this algorithm under-pulls all
the arms by at most Õ(n1/2), without a dependency on λmin (see Eqs. 18 and 19).

5 See the end of Section 4 in Antos et al. (2010).
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Input: parameters c1, c2, δ
Let b = 4

√
c1 log(c2/δ)

√
log(2/δ) + 2

√
5c1n

−1/2

Initialize: Pull each arm twice
for t = 2K + 1, . . . , n do

Compute Bq,t = 1
Tq,t−1

(
σ̂2

q,t−1 + 2bσ̂q,t−1

√
1

Tq,t−1
+ b2 1

Tq,t−1

)
for each

arm 1 ≤ q ≤ K
Pull an arm kt ∈ arg max1≤q≤K Bq,t

end for
Output: μ̂q,t for each arm 1 ≤ q ≤ K

Fig. 2. The pseudo-code of the B-AS algorithm, with σ̂k,t computed as in Eq. 16

4 Allocation Strategy Based on Bernstein UCB

In this section, we present another UCB-like algorithm, called Bernstein Alloca-
tion Strategy (B-AS), based on a Bernstein’s inequality for the variances of the
arms, with an improved bound on |Tk,n − T ∗

k,n| without the inverse dependency
on λmin (compare the bounds in Eqs. 18 and 19 to the one for CH-AS in Eq. 6).
However this result itself is not sufficient to derive a better regret bound than
CH-AS. This finding shows that even an adaptive algorithm which implements
a strategy close to the optimal allocation strategy may still incur a regret that
poorly scales with the smallest proportion λmin. We further investigate this is-
sue by showing that the way the bound of the number of pulls translates into
a regret bound depends on the specific distributions of the arms. In fact, when
the sample distributions are Gaussian, we can exploit the property that the em-
pirical mean μ̂k,t conditioned on Tk,t is independent of the empirical variances
(σ̂k,s)s≤t and further deduce that the regret of B-AS no longer depends on λ−1

min.
The numerical simulations in Sec. 5 further illustrate this theoretical finding.

4.1 The B-AS Algorithm

The B-AS algorithm (Fig. 2), AB , is based on a high-probability bounds (em-
pirical Bernstein’s inequality) on the variance of each arm (Maurer and Pontil,
2009, Audibert et al., 2009). B-AS requires three parameters as input (see also
Remark 4 in Sec. 4.2 on how to reduce them to one) c1 and c2, which are related
to the shape of the distributions (see Assumption 1), and δ, which defines the
confidence level of the bound. The amount of exploration of the algorithm can
be adapted by properly tuning these parameters. The algorithm is similar to
CH-AS except that the bounds Bq,t on each arm are computed as

Bq,t =
1

Tq,t−1

(
σ̂2

q,t−1 + 2bσ̂q,t−1

√
1

Tq,t−1
+ b2 1

Tq,t−1

)
,

where b = 4
√
c1 log(c2/δ)

√
log(2/δ) + 2

√
5c1n−1/2 and6

6 We consider the unbiased estimator of the variance here.
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σ̂2
k,t =

1

Tk,t − 1

Tk,t∑
i=1

(Xk,i − μ̂k,t)
2, with μ̂k,t =

1

Tk,t

Tk,t∑
i=1

Xk,i . (16)

4.2 Regret Bound and Discussion

Instead of bounded distributions, we consider the more general assumption of
sub-Gaussian distributions.

Assumption 1 (Sub-Gaussian distributions). There exist c1, c2 > 0 such
that for all 1 ≤ k ≤ K and any ε > 0,

PX∼νk
(|X − μk| ≥ ε) ≤ c2 exp(−ε2/c1) . (17)

We first bound the difference between the B-AS and optimal allocation strategies.

Lemma 2. Under Assumption 1 and for any δ > 0, when the B-AS algorithm
runs with parameters c1, c2, and δ, with probability at least 1 − 2nKδ, we have
Tp,min ≤ Tp,n ≤ Tp,max for any arm 1 ≤ p ≤ K and any n ≥ 16

9 c(δ)
−2, where

Tp,min = T ∗
p,n

− Kλp

[
1 +

16a
√

log(2/δ)

Σ

(√
Σ +

2a
√

log(2/δ)

c(δ)

)
√

n + 128Ka2 log(2/δ)

Σ
√

c(δ)
n1/4

]
, (18)

and

Tp,max = T ∗
p,n

+ K

[
1 +

16a
√

log(2/δ)

Σ

(√
Σ +

2a
√

log(2/δ)

c(δ)

)
√

n + 128Ka2 log(2/δ)

Σ
√

c(δ)
n

1
4

]
, (19)

where c(δ) = 2a
√

log(2/δ)√
K(

√
Σ+4a

√
log(2/δ))

and a = 2
√
c1 log(c2/δ) +

√
5c1

log(2/δ)n
−1/2.

Remark. Unlike the bounds for CH-AS in Lemma 1, B-AS allocates the arms
such that the difference between Tp,n and T ∗

p,n grows at most as Õ(
√
n) without

dependency on λ−1
min. This overcomes the limitation of CH-AS, which, as dis-

cussed in Remark 3 of Sec. 3.2, may over-sample (thus also under-sample) some
arms by O(n2/3) whenever λmin is small. We further notice that the lower bound
in Eq. 18 is of order λpÕ(

√
n), which implies that the gap between Tp,n and T ∗

p,n

decreases as λp becomes smaller. This is not the case in the upper bound, where
the gap is of order Õ(

√
n), but is independent of the value of λp. This explains

why in the case of general distributions, B-AS has a regret bound with an inverse
dependency on λmin (similar to CH-AS), as shown in Thm. 2

Theorem 2. Under Assumption 1, for any n ≥ 4K, the regret of AB run with
parameters c1, c2, and δ = (c2 + 2)n−5/2 is bounded as

Rn(AB) ≤
[CK5c21
λ2

min

log(n)2
(
Σ + 200 log(n)

)(
1 +

1
Σ3

)
+ 2c1(c2 + 2)K

]
n−3/2 ,

where C is a constant (a loose numerical value for C is 30000).
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Similar to Thm. 1, the bound on the number of pulls translates into a regret
bound through Eq. 15. As it can be noticed, in order to remove the dependency
on λmin, a symmetric bound on |Tp,n − T ∗

p,n| ≤ λpÕ(
√
n) would be needed.

While the lower bound in Eq. 18 decreases with λp, the upper bound scales with
Õ(

√
n). Whether there exists an algorithm with a tighter upper bound scaling

with λp is still an open question. In the next section, we show that an improved
regret bound can be achieved in the special case of Gaussian distributions.

4.3 Regret for Gaussian Distributions

In the case of Gaussian distributions, the loss bound in Eq. 15 can be improved
as in the following lemma (the full proof is reported in Carpentier et al. 2011).

Lemma 3. Assume that distributions {νk}K
k=1 are Gaussian. Then for any k

E
[
(μ̂k,n − μk)2

]
≤ σ2

k

Tk,min
+ σ2

kδ
′ , (20)

where Tk,n ≥ Tk,min is the lower-bound in Lemma 2 which holds with probability
at least 1 − δ′ (where δ′ = 2nKδ).

Proof (Sketch). We first write the loss for any arm k as

E
[
(μ̂k,n − μk)2

]
=

n∑
t=2

E
[
(μ̂k,n − μk)2|Tk,n = t

]
P(Tk,n = t). (21)

We notice that Tk,n is a random stopping time which depends on the sequence
of empirical variances for arm k and the empirical variances of all the other
arms. The event {Tk,n ≥ t} depends on the filtration Fk,t (generated by the
sequence of empirical variances of the rewards of arm k) and on the “environment
of arm k” E−k (defined by all the rewards samples of other arms). We recall
that for a Gaussian distribution N (μk, σ

2
k), the empirical mean μ̂k,n built on a

fixed number t of independent samples is distributed as a normal distribution
N (μk, σ

2
k/t) and it is independent from the empirical variance σ̂2

k,n. According
to Carpentier et al. (2011), this property can be extended to the conditional
random variable μ̂k,n|Fk,n, E−k which is still distributed as N (μk, σ

2
k/t). Using

this property in (21) we have

E
[
(μ̂k,n − μk)2

]
=

n∑
t=2

σ2
k

t
P(Tk,n = t) = σ2

kE
[ 1

Tk,n

]
.

Using the lower-bound in Lemma 2 the statement follows. 	


Remark 1. We notice that the loss bound in Eq. 20 does not require any upper
bound on Tk,n. It is actually similar to the case of deterministic allocation.
When T̃k,n is a deterministic number of pulls, the corresponding loss resulting
from pulling arm k, T̃k,n times, is Lk,n = σ2

k/T̃k,n. In general, when Tk,n is a
random variable depending on the empirical variances {σ̂2

k}k (as in CH-AS and
B-AS), the conditional expectation E

[
(μ̂k,n − μk)2|Tk,n = t

]
no longer equals
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σ2
k/t. However, for Gaussian distributions we recover the property E

[
(μ̂k,n −

μk)2|Tk,n = t
]

= σ2
k/t, which allows us to deduce the result reported in Lemma 3.

We now report a regret bound in the case of Gaussian distributions. Note that
in this case, Assumption 1 holds for c1 = 2Σ and c2 = 1.7

Theorem 3. Assume that {νk}K
k=1 are Gaussian and that an upper-bound Σ ≥

Σ. B-AS with parameters c1 = 2Σ, c2 = 1, and δ = n−5/2 has a regret

Rn(AB) ≤ CΣK3/2
(
log(2n)

)2
n−3/2 +O

(
n−7/4(logn)2

)
, (22)

where C is a constant (a loose numerical value for C is 19200).

Remark 2. In the case of Gaussian distributions, the regret bound for B-AS has
the rate Õ(n−3/2) without dependency on λmin, which represents a significant
improvement over the regret bounds for the CH-AS and GAFS-MAX algorithms.

Remark 3. In practice, there is no need to tune the three parameters c1, c2, and δ
separately. In fact, it is enough to tune the algorithm for a single parameter b (see
Fig. 2). Using the proof of Thm. 3, it is possible to show that the expected regret
is minimized by choosing b = O

(
max{Σ3/2

,
√
Σ} logn

)
, which only requires an

upper bound on the value of Σ. This is a reasonable assumption whenever a
rough estimate of the magnitude of the variances is available.

5 Numerical Experiments

5.1 CH-AS, B-AS, and GAFS-MAX with Gaussian Arms

In this section, we compare the performance of CH-AS, B-AS, and GAFS-MAX
on a two-armed problem with Gaussian distributions ν1 = N (0, σ2

1 = 4) and
ν2 = N (0, σ2

2 = 1) (note that λmin=1/5). Fig. 3-(left) shows the rescaled regret,
n3/2Rn, for the three algorithms averaged over 50, 000 runs. The results indicate
that while the rescaled regret is almost constant w.r.t. n in B-AS and GAFS-
MAX, it increases for small (relative to λ−1

min) values of n in CH-AS.
The robust behavior of B-AS when the distributions of the arms are Gaussian

may be easily explained by the bound of Thm. 3 (Eq. 22). The initial increase
in the CH-AS curve is also consistent with the bound of Thm. 1 (Eq. 14). As
discussed in Remark 3 of Sec. 3.2, the regret bound for CH-AS is of the form Rn ≤
min
{
λ
−5/2
min Õ(n−3/2), Õ(n−4/3)

}
, and thus, the algorithm behaves as Õ(n−4/3) and

λ
−5/2
min Õ(n−3/2) for small and large (relative to λ−1

min) values of n, respectively.
It is important to note that the behavior of CH-AS is independent of the arms’
distributions and is intrinsic in the allocation mechanism, as shown in Lemma 1.
Finally, the behavior of GAFS-MAX indicates that although its analysis shows
an inverse dependency on λmin and yields a regret bounds similar to CH-AS,

7 For a single Gaussian distribution c1 = 2σ2. Here we use c1 = 2Σ in order for the
assumption to be satisfied for all K distributions simultaneously.
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its rescaled regret in fact does not grow with n when the distributions of the
arms are Gaussian. This is why we believe that it would be possible to improve
the GAFS-MAX analysis by bounding the standard deviation using Bernstein’s
inequality. This would remove the inverse dependency on λmin and provide a
regret bound similar to B-AS in the case of Gaussian distributions.
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Fig. 3. (left) The rescaled regret of CH-AS, B-AS, and GAFS-MAX algorithms on
a two-armed problem, where the distributions of the arms are Gaussian. (right) The
rescaled regret of B-AS for two bandit problems, one with two Gaussian arms and one
with a Gaussian and a Rademacher arms.

5.2 B-AS with Non-gaussian Arms

In Sec. 4.3, we showed that when the arms have Gaussian distributions, the
regret bound of the B-AS algorithm does not depend on λmin anymore. We also
discussed on why we conjecture that it is not possible to remove this dependency
in case of general distributions unless tighter upper bounds on the number of
pulls can be derived. Although we do not yet have a lower bound on the regret
showing the dependency on λmin, in this section we empirically show that the
shape of the distributions directly impacts the regret of the B-AS algorithm.

As discussed in Sec. 4.3, the property of Gaussian distributions that allows us
to remove the λmin dependency in the regret bound of B-AS is that the empirical
mean μ̂k,n of each arm k is independent of its empirical variance σ̂2

k,n conditioned
on Tk,n. Although this property might approximately hold for a larger family
of distributions, there are distributions, such as Rademacher, for which these
quantities are negatively correlated. In the case of Rademacher distribution,8

the loss (μ̂k,t − μk)2 is equal to μ̂2
k,t and we have σ̂2

k,t = 1
Tk,t

∑Tk,t

i=1 X
2
k,i − μ̂2

k,t =
1− μ̂2

k,t, as a result, the larger σ̂2
k,t, the smaller μ̂2

k,t. We know that the allocation
strategies in CH-AS, B-AS, and GAFS-MAX are based on the empirical variance
which is used as a substitute for the true variance. As a result, the larger σ̂2

k,t,

8 X is Rademacher if X ∈ {−1, 1} and admits values −1 and 1 with equal probability.
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the more often arm k is pulled. In case of Rademacher distributions, this means
that an arm is pulled more than its optimal allocation exactly when its mean is
accurately estimated (the loss is small). This may result in a poorer estimation
of the arm, and thus, negatively affect the regret of the algorithm.

In the experiments of this section, we use B-AS in two different bandit prob-
lems: one with two Gaussian arms ν1 = N (0, σ2

1) (with σ1 ≥ 1) and ν2 = N (0, 1),
and one with a Gaussian ν1 = N (0, σ2

1) and a Rademacher ν2 = R arms. Note
that in both cases λmin = λ2 = 1/(1 + σ2

1). Figure 3-(right) shows the rescaled
regret (n3/2Rn) of the B-AS algorithm as a function of λ−1

min for n = 1000. As
expected, while the rescaled regret of B-AS is constant in the first problem, it
increases with σ2

1 in the second one. As explained above, this behavior is due to
the poor approximation of the Rademacher arm which is over-pulled whenever
its estimated mean is accurate. This result illustrates the fact that in this active
learning problem (where the goal is to estimate the mean values of the arms),
the performance of the algorithms that rely on the empirical-variances (e.g., CH-
AS, B-AS, and GAFS-MAX) crucially depends on the shape of the distributions,
and not only on their variances. This may be surprising since according to the
central limit theorem the distribution of the empirical mean should tend to a
Gaussian. However, it seems that what is important is not the distribution of
the empirical mean or variance, but the correlation of these two quantities.

6 Conclusions and Open Questions

In this paper we studied the problem of the uniform estimation of the mean value
of K independent distributions under a given sampling budget. We introduced
a novel class of algorithms based on upper-confidence-bounds on the (unknown)
variances of the arms, and analyzed two algorithms: CH-AS and B-AS. For CH-
AS we derived a regret bound similar to Antos et al. (2010), scaling as Õ(n−3/2)
and with a dependence on λ−1

min. We then introduced a more refined algorithm,
B-AS, using a tighter upper bounds on the variance, and reported a refined
regret bound in the case of Gaussian distributions. Finally we gave arguments
(including numerical simulations) supporting the idea that the full shape of the
distributions (and not not only their variance) has a relevant impact on the
performance of the allocation strategies.

This work opens a number of questions.

– Distribution dependency. An open question is to which extent the result for
B-AS in case of Gaussian distributions could be extended to more general
families of distributions. As illustrated in the case of Rademacher, the corre-
lation between the empirical means and variances may cause the algorithm
to over-pull arms even when their estimation is accurate, thus incurring a
large regret. On the other hand, if the sample distributions are Gaussian,
the empirical means and variances are uncorrelated and the allocation algo-
rithms such as B-AS achieve a better regret. Further investigation is needed
to identify whether this results can be extended to other distributions.
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– Lower bound. The results in Secs. 4.3 and 5.2 suggest that the dependency on
the distributions of the arms could be intrinsic in the allocation problem. If
this is the case, it should be possible to derive a lower bound for this problem
showing such dependency (a lower-bound with dependency on λ−1

min).
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Abstract. The classical perceptron rule provides a varying upper bound
on the maximum margin, namely the length of the current weight vec-
tor divided by the total number of updates up to that time. Requiring
that the perceptron updates its internal state whenever the normalized
margin of a pattern is found not to exceed a certain fraction of this dy-
namic upper bound we construct a new approximate maximum margin
classifier called the perceptron with dynamic margin (PDM). We demon-
strate that PDM converges in a finite number of steps and derive an up-
per bound on them. We also compare experimentally PDM with other
perceptron-like algorithms and support vector machines on hard margin
tasks involving linear kernels which are equivalent to 2-norm soft margin.

Keywords: Online learning, classification, maximum margin.

1 Introduction

It is a common belief that learning machines able to produce solution hyperplanes
with large margins exhibit greater generalization ability [21] and this justifies the
enormous interest in Support Vector Machines (SVMs) [21, 2]. Typically, SVMs
obtain large margin solutions by solving a constrained quadratic optimization
problem using dual variables. In their native form, however, efficient implemen-
tation is hindered by the quadratic dependence of their memory requirements in
the number of training examples a fact which renders prohibitive the processing
of large datasets. To overcome this problem decomposition methods [15, 6] were
developed that apply optimization only to a subset of the training set. Although
such methods led to improved convergence rates, in practice their superlinear
dependence on the number of examples, which can be even cubic, can still lead
to excessive runtimes when large datasets are processed. Recently, the so-called
linear SVMs [7, 8, 13] made their appearance. They take advantage of linear
kernels in order to allow parts of them to be written in primal notation and were
shown to outperform decomposition SVMs when dealing with massive datasets.

The above considerations motivated research in alternative large margin clas-
sifiers naturally formulated in primal space long before the advent of linear
SVMs. Such algorithms are mostly based on the perceptron [16, 12], the simplest
online learning algorithm for binary linear classification. Like the perceptron,

J. Kivinen et al. (Eds.): ALT 2011, LNAI 6925, pp. 204–218, 2011.
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they focus on the primal problem by updating a weight vector which represents
at each step the current state of the algorithm whenever a data point presented
to it satisfies a specific condition. It is the ability of such algorithms to process
one example at a time1 that allows them to spare time and memory resources
and consequently makes them able to handle large datasets. The first algorithm
of that kind is the perceptron with margin [3] which is much older than SVMs.
It is an immediate extension of the perceptron which provably achieves solutions
with only up to 1/2 of the maximum margin [10]. Subsequently, various algo-
rithms succeeded in approximately attaining maximum margin by employing
modified perceptron-like update rules. Such algorithms include ROMMA [11],
ALMA [5], CRAMMA [19] and MICRA [20]. Very recently, the same goal was
accomplished by a generalized perceptron with margin, the margitron [14].

The most straightforward way of obtaining large margin solutions through
a perceptron is by requiring that the weight vector be updated every time the
example presented to the algorithm has (normalized) margin which does not
exceed a predefined value [17, 18, 1]. The obvious problem with this idea, how-
ever, is that the algorithm with such a fixed margin condition will definitely not
converge unless the target value of the margin is smaller than the unknown max-
imum margin. In an earlier work [14] we noticed that the upper bound ‖at‖ /t
on the maximum margin, with ‖at‖ being the length of the weight vector and t
the number of updates, that comes as an immediate consequence of the percep-
tron update rule is very accurate and tends to improve as the algorithm achieves
larger margins. In the present work we replace the fixed target margin value with
a fraction 1− ε of this varying upper bound on the maximum margin. The hope
is that as the algorithm keeps updating its state the upper bound will keep ap-
proaching the maximum margin and convergence to a solution with the desired
accuracy ε will eventually occur. Thus, the resulting algorithm may be regarded
as a realizable implementation of the perceptron with fixed margin condition.

The rest of this paper is organized as follows. Section 2 contains some prelimi-
naries and a motivation of the algorithm based on a qualitative analysis. In Sect.
3 we give a formal theoretical analysis. Section 4 is devoted to implementational
issues. Section 5 contains our experimental results while Sect. 6 our conclusions.

2 Motivation of the Algorithm

Let us consider a linearly separable training set {(xk, lk)}m
k=1, with vectors xk ∈

IRd and labels lk ∈ {+1,−1}. This training set may either be the original dataset
or the result of a mapping into a feature space of higher dimensionality [21, 2].
Actually, there is a very well-known construction [4] making linear separability
always possible, which amounts to the adoption of the 2-norm soft margin. By
placing xk in the same position at a distance ρ in an additional dimension, i.e.
by extending xk to [xk, ρ], we construct an embedding of our data into the so-
called augmented space [3]. This way, we construct hyperplanes possessing bias
1 The conversion of online algorithms to the batch setting is done by cycling repeatedly

through the dataset and using the last hypothesis for prediction.
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in the non-augmented feature space. Following the augmentation, a reflection
with respect to the origin of the negatively labeled patterns is performed by
multiplying every pattern with its label. This allows for a uniform treatment of
both categories of patterns. Also, R ≡ max

k
‖yk‖ with yk ≡ [lkxk, lkρ] the kth

augmented and reflected pattern. Obviously, R ≥ ρ.
The relation characterizing optimally correct classification of the training pat-

terns yk by a weight vector u of unit norm in the augmented space is

u · yk ≥ γd ≡ max
u′:‖u′‖=1

min
i

{u′ · yi} ∀k . (1)

We shall refer to γd as the maximum directional margin. It coincides with the
maximum margin in the augmented space with respect to hyperplanes passing
through the origin. For the maximum directional margin γd and the maximum
geometric margin γ in the non-augmented feature space, it holds that 1 ≤ γ/γd ≤
R/ρ. As ρ → ∞, R/ρ → 1 and, consequently, γd → γ [17, 18].

We consider algorithms in which the augmented weight vector at is initially
set to zero, i.e. a0 = 0, and is updated according to the classical perceptron rule

at+1 = at + yk (2)

each time an appropriate misclassification condition is satisfied by a training
pattern yk. Taking the inner product of (2) with the optimal direction u and
using (1) we get

u · at+1 − u · at = u · yk ≥ γd

a repeated application of which gives [12]

‖at‖ ≥ u · at ≥ γdt . (3)

From (3) we readily obtain

γd ≤ ‖at‖
t

(4)

provided t > 0. Notice that the above upper bound on the maximum directional
margin γd is an immediate consequence of the classical perceptron rule and holds
independent of the misclassification condition.

It would be very desirable that ‖at‖ /t approaches γd with t increasing since
this would provide an after-run estimate of the accuracy achieved by an algo-
rithm employing the classical perceptron update. More specifically, with γ′d being
the directional margin achieved upon convergence of the algorithm in tc updates,
it holds that

γd − γ′d
γd

≤ 1 − γ′dtc
‖atc‖

. (5)

In order to understand the mechanism by which ‖at‖ /t evolves we consider the
difference between two consecutive values of ‖at‖2

/t2 which may be shown to
be given by the relation

‖at‖2

t2
− ‖at+1‖2

(t+ 1)2
=

1
t(t+1)

{(
‖at‖2

t
− at · yk

)
+

(
‖at+1‖2

t+ 1
− at+1 · yk

)}
.

(6)
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Let us assume that satisfaction of the misclassification condition by a pattern
yk has as a consequence that ‖at‖2

/t > at · yk (i.e., the normalized margin
ut · yk of yk (with ut ≡ at/ ‖at‖) is smaller than the upper bound (4) on γd).
Let us further assume that after the update has taken place yk still satisfies
the misclassification condition and therefore ‖at+1‖2

/(t+ 1) > at+1 · yk. Then,
the r.h.s. of (6) is positive and ‖at‖ /t decreases as a result of the update. In
the event, instead, that the update leads to violation of the misclassification
condition, ‖at+1‖2

/(t+ 1) may be smaller than at+1 · yk and ‖at‖ /t may not
decrease as a result of the update. We expect that statistically, at least in the
early stages of the algorithm, most updates do not lead to correctly classified
patterns (i.e., patterns which violate the misclassification condition) and as a
consequence ‖at‖ /t will have the tendency to decrease. Obviously, the rate of
this decrease depends on the size of the difference ‖at‖2

/t − at · yk which, in
turn, depends on the misclassification condition and how amply it is satisfied.

If we are interested in obtaining solutions possessing margin the most natural
choice of misclassification condition is the fixed (normalized) margin condition

at · yk ≤ (1 − ε)γd ‖at‖ (7)

with the accuracy parameter ε satisfying 0 < ε ≤ 1. This is an example of a
misclassification condition which if it is satisfied ensures that ‖at‖2

/t > at · yk.
Moreover, by making use of (4) and (7) it may be shown2 that ‖at+1‖2/(t+ 1) ≥
at+1 · yk for t ≥ ε−1R2/γ2

d. Thus, after at most ε−1R2/γ2
d updates ‖at‖ /t de-

creases monotonically. The perceptron algorithm with fixed margin condition
(PFM) is known to converge in a finite number of updates to an ε-accurate ap-
proximation of the maximum directional margin hyperplane [17, 18, 1]. Although
it appears that PFM demands exact knowledge of the value of γd, we notice that
only the value of β ≡ (1 − ε)γd, which is the quantity entering (7), needs to be
set and not the values of ε and γd separately. That is why the after-run estimate
(5) is useful in connection with the algorithm in question. Nevertheless, in order
to make sure that β < γd a priori knowledge of a fairly good lower bound on γd

is required and this is an obvious defect of PFM.
The above difficulty associated with the fixed margin condition may be reme-

died if the unknown γd is replaced for t > 0 with its varying upper bound ‖at‖ /t

at · yk ≤ (1 − ε)
‖at‖2

t
. (8)

Condition (8) ensures that ‖at‖2/t − at · yk ≥ ε‖at‖2/t > 0. Moreover, as
in the case of the fixed margin condition, ‖at+1‖2

/(t+ 1) − at+1 · yk ≥ 0 for
t ≥ ε−1R2/γ2

d. As a result, after at most ε−1R2/γ2
d updates the r.h.s. of (6) is

bounded from below by ε ‖at‖2 /t2(t + 1) ≥ εγ2
d/(t + 1) and ‖at‖ /t decreases

2 Combining (4) and (7) we get (8) from where (t−1)at ·yk ≤ ((t−1)/t)(1−ε) ‖at‖2 ≤
(1 − ε) ‖at‖2. Also from t ≥ ε−1R2/γ2

d, using (3), we obtain tR2 ≤ εγ2
dt2 ≤ ε ‖at‖2.

Thus, (t−1)at ·yk + t ‖yk‖2 ≤ (t−1)at ·yk + tR2 ≤ (1− ε) ‖at‖2 + ε ‖at‖2 = ‖at‖2.
But ‖at‖2 ≥ (t − 1)at · yk + t ‖yk‖2 is equivalent to ‖at+1‖2 ≥ (t + 1)at+1 · yk.
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The Perceptron with Dynamic Margin

Input: A linearly separable augmented dataset
S = (y1, . . . , yk, . . . , ym) with reflection assumed
Fix: ε
Define: qk = ‖yk‖2 , ε̄ = 1 − ε
Initialize: t = 0, a0 = 0, �0 = 0, θ0 = 0
repeat

for k = 1 to m do
ptk = at · yk

if ptk ≤ θt then
at+1 = at + yk

�t+1 = �t + 2ptk + qk

t ← t + 1
θt = ε̄ �t/t

until no update made within the for loop

monotonically and sufficiently
fast. Thus, we expect that ‖at‖ /t
will eventually approach γd close
enough, thereby allowing for con-
vergence of the algorithm3 to an
ε-accurate approximation of the
maximum directional margin hy-
perplane. It is also apparent that
the decrease of ‖at‖ /t will be
faster for larger values of ε. The
perceptron algorithm employing
the misclassification condition (8)
(with its threshold set to 0 for
t = 0), which may be regarded as

originating from (7) with γd replaced for t > 0 by its dynamic upper bound
‖at‖ /t, will be named the perceptron with dynamic margin (PDM).

3 Theoretical Analysis

From the discussion that led to the formulation of PDM it is apparent that if
the algorithm converges it will achieve by construction a solution possessing di-
rectional margin larger than (1 − ε)γd. (We remind the reader that convergence
assumes violation of the misclassification condition (8) by all patterns. In addi-
tion, (4) holds.) The same obviously applies to PFM. Thus, for both algorithms it
only remains to be demonstrated that they converge in a finite number of steps.
This has already been shown for PFM [17, 18, 1] but no general ε-dependent
bound in closed form has been derived. In the present section we demonstrate
convergence of PDM and provide explicit bounds for both PFM and PDM.

Before we proceed with our analysis we will need the following result.

Lemma 1. Let the variable t ≥ e−C satisfy the inequality

t ≤ δ(1 + C + ln t) , (9)

where δ, C are constants and δ > e−C . Then

t ≤ t0 ≡ (1 + e−1)δ (C + ln ((1 + e)δ)) . (10)

Proof. If t ≥ e−C then (1 + C + ln t) ≥ 1 and inequality (9) is equivalent to
f(t) = t/(1 + C + ln t) − δ ≤ 0. For the function f(t) defined in the interval
[e−C ,+∞) it holds that f(e−C) < 0 and df/dt = (C + ln t)/(1 + C + ln t)2 > 0

3 Let ft ≡ ‖at‖2/t2 with γ2
d ≤ ft ≤ R2. For t ≥ N = [ε−1R2/γ2

d]+ 1 ([x] is the integer
part of x ≥ 0) we have ft − ft+1 ≥ εft/(t +1) or (1− ε/(t +1))ft ≥ ft+1 from where
ln(ft/ft+1) ≥ − ln(1 − ε/(t + 1)) ≥ ε/(t + 1). Repeated application of the previous
inequality gives ln(fN/ft) ≥ ε

∑t
k=N+1 k−1 ≥ ε

∫ t

N+1
k−1dk = ε ln(t/(N + 1)). But

fN/ft ≤ R2/γ2
d. Then t ≤ (N + 1)(R2/γ2

d)1/ε. A refined analysis is given in Sect. 3.
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for t > e−C . Stated differently, f(t) starts from negative values at t = e−C and
increases monotonically. Therefore, if f(t0) ≥ 0 then t0 is an upper bound of all
t for which f(t) ≤ 0. Indeed, it is not difficult to verify that t0 > δ > e−C and

f(t0) = δ

(
(1 + e−1)

(
1 +

ln ln((1 + e)eCδ)
ln((1 + e)eCδ)

)−1

− 1

)
≥ 0

given that 0 ≤ ln lnx/ lnx ≤ e−1 for x ≥ e. 	


Now we are ready to derive an upper bound on the number of steps of PFM.

Theorem 1. The number t of updates of the perceptron algorithm with fixed
margin condition satisfies the bound

t ≤ (1 + e−1)
2ε

R2

γ2
d

{
4
γd

R

(
1 − (1 − ε)

γd

R

)
+ ln
(

(1 + e)
ε

R

γd

(
1 − (1 − ε)

γd

R

))}
.

Proof. From (2) and (7) we get

‖at+1‖2 = ‖at‖2 + 2at · yk + ‖yk‖2 ≤ ‖at‖2

(
1 +

2(1 − ε)γd

‖at‖
+

R2

‖at‖2

)
.

Then, taking the square root and using the inequality
√

1 + x ≤ 1+x/2 we have

‖at+1‖ ≤ ‖at‖
(

1 +
2(1 − ε)γd

‖at‖
+

R2

‖at‖2

)1/2

≤ ‖at‖
(

1 +
(1 − ε)γd

‖at‖
+

R2

2 ‖at‖2

)
.

Now, by making use of ‖at‖ ≥ γdt, we observe that

‖at+1‖ − ‖at‖ ≤ (1 − ε)γd +
R2

2 ‖at‖
≤ (1 − ε)γd +

R2

2γd

1
t
.

A repeated application of the above inequality t−N times (t > N ≥ 1) gives

‖at‖ − ‖aN‖ ≤ (1 − ε)γd(t−N) +
R2

2γd

t−1∑
k=N

k−1

≤ (1 − ε)γd(t−N) +
R2

2γd

(
1
N

+
∫ t

N

k−1dk

)
from where using the obvious bound ‖aN‖ ≤ RN we get an upper bound on
‖at‖

‖at‖ ≤ (1 − ε)γdt+
(
1 − (1 − ε)

γd

R

)
RN +

R2

2γd

(
1
N

+ ln
t

N

)
.

Combining the above upper bound on ‖at‖, which holds not only for t > N but
also for t = N , with the lower bound from (3) we obtain

t ≤ 1
2ε
R2

γ2
d

{
2
γd

R

(
1 − (1 − ε)

γd

R

)
N +

1
N

− lnN + ln t
}

.
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Setting

δ =
1
2ε
R2

γ2
d

, α = 2
γd

R

(
1 − (1 − ε)

γd

R

)
and choosing N = [α−1] + 1, with [x] being the integer part of x ≥ 0, we finally
get

t ≤ δ(1 + 2α+ lnα+ ln t) . (11)

Notice that in deriving (11) we made use of the fact that αN +N−1 − lnN ≤
1 + 2α + lnα. Inequality (11) has the form (9) with C = 2α + lnα. Obviously,
e−C < α−1 < N ≤ t and e−C < α−1 ≤ δ. Thus, the conditions of Lemma 1 are
satisfied and the required bound, which is of the form (10), follows from (11). 	


Finally, we arrive at our main result which is the proof of convergence of PDM
in a finite number of steps and the derivation of the relevant upper bound.

Theorem 2. The number t of updates of the perceptron algorithm with dynamic
margin satisfies the bound

t ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

t0

(
1 − 1

1−2ε
R2

γ2
d
t−1
0

)1/2ε

, t0 ≡ [ε−1]
(

R
γd

)1/ε (
1 + [ε−1]−1

1−2ε

)1/2ε

if ε < 1
2

(1 + e−1)R2

γ2
d

ln
(
(1 + e)R2

γ2
d

)
if ε = 1

2

t0
(
1 − 2(1 − ε)t1−2ε

0

)
, t0 ≡ ε(3−2ε)

2ε−1
R2

γ2
d

if ε > 1
2 .

Proof. From (2) and (8) we obtain

‖at+1‖2 = ‖at‖2 + 2at · yk + ‖yk‖2 ≤ ‖at‖2

(
1 +

2(1 − ε)
t

)
+R2 . (12)

For ε ≤ 1/2, using the inequality (1 + x)ζ ≥ 1 + ζx for x ≥ 0, ζ = 2(1 − ε) ≥ 1
in (12) we get

‖at+1‖2 ≤ ‖at‖2

(
1 +

1
t

)2(1−ε)

+R2 . (13)

For ε ≥ 1/2, instead, using the inequality (1 + x)ζ + ζ(1 − ζ)x2/2 ≥ 1 + ζx for
x ≥ 0, 0 ≤ ζ = 2(1 − ε) ≤ 1 in (12) and the bound ‖at‖ ≤ Rt we obtain

‖at+1‖2 ≤ ‖at‖2

(
1 +

1
t

)2(1−ε)

+ (1 − ε)(2ε− 1)
‖at‖2

t2
+R2

≤ ‖at‖2

(
1 +

1
t

)2(1−ε)

+ ε(3 − 2ε)R2 . (14)

By dividing both sides of (13) and (14) with (t+ 1)2(1−ε) we arrive at

‖at+1‖2

(t+ 1)2(1−ε)
− ‖at‖2

t2(1−ε)
≤ fR2

(t+ 1)2(1−ε)
,
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where f = 1 for ε ≤ 1/2 and f = ε(3 − 2ε) for ε ≥ 1/2. A repeated application
of the above inequality t−N times (t > N ≥ 1) gives

‖at‖2

t2(1−ε)
− ‖aN‖2

N2(1−ε)
≤ fR2

t∑
k=N+1

k−2(1−ε) ≤ fR2

∫ t

N

k−2(1−ε)dk . (15)

We also define αt ≡ ‖at‖/Rt and observe that the bounds ‖at‖ ≤ Rt and
‖at‖ ≥ γdt confine αt to lie in the range γd/R ≤ αt ≤ 1.

Let us assume that ε < 1/2. Then, setting ‖aN‖ = αNRN in (15) and per-
forming the integration we get the following upper bound on ‖at‖2

‖at‖2 ≤ t2(1−ε)α2
NR

2N2ε

{
1 +

α−2
N N−1

2ε− 1

((
t

N

)2ε−1

− 1

)}

which combined with the lower bound ‖at‖2 ≥ γ2
dt

2 leads to

t2ε ≤ α2
N

R2

γ2
d

N2ε

{
1 +

α−2
N N−1

2ε− 1

((
t

N

)2ε−1

− 1

)}
. (16)

For ε < 1/2 the term proportional to (t/N)2ε−1 in (16) is negative and may be
dropped to a first approximation leading to the looser upper bound t0

t0 ≡ N

(
αN

R

γd

)1/ε (
1 +

α−2
N N−1

1 − 2ε

)1/2ε

(17)

on the number t of updates. Then, we may replace t with its upper bound t0 in
the r.h.s. of (16) and get the improved bound

t ≤ t0

(
1 − 1

1 − 2ε
R2

γ2
d

t−1
0

)1/2ε

.

This is allowed given that the term proportional to (t/N)2ε−1 in (16) is negative
and moreover t is raised to a negative power. Choosing N = [ε−1] and αN = 1
(i.e., setting αN to its upper bound which is the least favorable assumption) we
obtain the bound stated in Theorem 2 for ε < 1/2.

Now, let ε > 1/2. Then, setting N = 1 in (15), using ‖a1‖2 ≤ R2 ≤ fR2 =
ε(3 − 2ε)R2 and performing the integration we get the following upper bound
on ‖at‖2

‖at‖2 ≤ t2(1−ε)ε(3 − 2ε)R2

(
1 +

t2ε−1 − 1
2ε− 1

)
which combined with the lower bound ‖at‖2 ≥ γ2

dt
2 gives

t ≤ ε(3 − 2ε)
2ε− 1

R2

γ2
d

(
1 − 2(1 − ε)t1−2ε

)
. (18)
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For ε > 1/2 the term proportional to t1−2ε in (18) is negative and may be
dropped to a first approximation leading to the looser upper bound t0

t0 ≡ ε(3 − 2ε)
2ε− 1

R2

γ2
d

on the number t of updates. Then, we may replace t with its upper bound t0 in
the r.h.s. of (18) and get the improved bound stated in Theorem 2 for ε > 1/2.
This is allowed given that the term proportional to t1−2ε in (18) is negative and
moreover t is raised to a negative power.

Finally, for ε = 1/2 setting N = 1 in (15), using ‖a1‖2 ≤ R2, ‖at‖2 ≥ γ2
dt

2

and performing the integration we get

t ≤ R2

γ2
d

(1 + ln t)

which on account of Lemma 1 leads to the bound of Theorem 2 for ε = 1/2. 	


Remark 1. The bound of Theorem 2 holds for PFM as well on account of (4).

The worst-case bound of Theorem 2 for ε � 1 behaves like ε−1(R/γd)1/ε which
suggests an extremely slow convergence if we require margins close to the max-
imum. From expression (17) for t0, however, it becomes apparent that a more
favorable assumption concerning the value of αN (e.g., αN � 1 or even as low as
αN ∼ γd/R) after the first N  α−2

N updates does lead to tremendous improve-
ment provided, of course, that N is not extremely large. Such a sharp decrease
of ‖at‖ /t in the early stages of the algorithm, which may be expected from rela-
tion (6) and the discussion that followed, lies behind its experimentally exhibited
rather fast convergence.

It would be interesting to find a procedure by which the algorithm will be
forced to a guaranteed sharp decrease of the ratio ‖at‖ /t. The following two
observations will be vital in devising such a procedure. First, we notice that
when PDM with accuracy parameter ε has converged in tc updates the threshold
(1−ε)‖atc‖

2/tc of the misclassification condition must have fallen below γd ‖atc‖.
Otherwise, the normalized margin utc ·yk of all patterns yk would be larger than
γd. Thus, αtc < (1 − ε)−1γd/R. Second, after convergence of the algorithm with
accuracy parameter ε1 in tc1 updates we may lower the accuracy parameter
from the value ε1 to the value ε2 and continue the run from the point where
convergence with parameter ε1 has occurred since for all updates that took
place during the first run the misclassified patterns would certainly satisfy (at
that time) the condition associated with the smaller parameter ε2. This way,
the first run is legitimately fully incorporated into the second one and the tc1
updates required for convergence during the first run may be considered the first
tc1 updates of the second run under this specific policy of presenting patterns to
the algorithm. Combining the above two observations we see that by employing
a first run with accuracy parameter ε1 we force the algorithm with accuracy
parameter ε2 < ε1 to have αt decreased from a value ∼ 1 to a value αtc1

<

(1 − ε1)−1γd/R in the first tc1 updates.
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The above discussion suggests that we consider a decreasing sequence of pa-
rameters εn such that εn+1 = εn/η (η > 1) starting with ε0 = 1/2 and ending
with the required accuracy ε and perform successive runs of PDM with accu-
racies εn until convergence in tcn updates is reached. According to our earlier
discussion tcn includes the updates that led the algorithm to convergence in the
current and all previous runs. Moreover, at the end of the run with parameter
εn we will have ensured that αtcn

< (1 − εn)−1γd/R. Therefore, tcn+1 satisfies
tcn+1 ≤ t0 or

tcn+1 ≤ tcn

(
1

1 − εn

)η/εn
(

1 +
(1 − εn)2

1 − 2εn/η
R2

γ2
d

t−1
cn

)η/2εn

.

This is obtained by substituting in (17) the values ε = εn+1 = εn/η, N = tcn and
αN = (1− εn)−1γd/R which is the least favorable choice for αtcn

. Let us assume
that εn � 1 and set tcn = ξ−1

n R2/γ2
d with ξn � 1. Then, 1/(1 − εn)η/εn � eη

and (
1 +

(1 − εn)2

1 − 2εn/η
R2

γ2
d

t−1
cn

)η/2εn

� (1 + ξn)η/2εn � eηξn/2εn .

For ξn � εn the term above becomes approximately eη/2 while for ξn � εn
approaches 1. We see that under the assumption that PDM with accuracy pa-
rameter εn converges in a number of updates  R2/γ2

d the ratio tcn+1/tcn in the
successive run scenario is rather tightly constrained. If, instead, our assumption
is not satisfied then convergence of the algorithm is fast anyway. Notice, that the
value of tcn+1/tcn inferred from the bound of Theorem 2 is ∼ η (R/γd)

(η−1)/εn

which is extremely large. We conclude that PDM employing the successive run
scenario (PDM-succ) potentially converges in a much smaller number of steps.

4 Efficient Implementation

To reduce the computational cost involved in running PDM, we extend the pro-
cedure of [14, 13] and construct a three-member nested sequence of reduced
“active sets” of data points. As we cycle once through the full dataset, the
(largest) first-level active set is formed from the points of the full dataset sat-
isfying at · yk ≤ c1(1 − ε) ‖at‖2

/t with c1 = 2.2. Analogously, the second-level
active set is formed as we cycle once through the first-level active set from the
points which satisfy at · yk ≤ c2(1 − ε) ‖at‖2

/t with c2 = 1.1. The third-level
active set comprises the points that satisfy at · yk ≤ (1 − ε) ‖at‖2

/t as we cycle
once through the second-level active set. The third-level active set is presented
repetitively to the algorithm for Nep3 mini-epochs. Then, the second-level ac-
tive set is presented. During each round involving the second-level set, a new
third-level set is constructed and a new cycle of Nep3 passes begins. When a
number of Nep2 cycles involving the second-level set is reached the first-level set
becomes active again leading to the population of a new second-level active set.
By invoking the first-level set for the (Nep1 + 1)th time, we trigger the loading
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of the full dataset and the procedure starts all over again until no point is found
misclassified among the ones comprising the full dataset. Of course, the Nep1 ,
Nep2 and Nep3 rounds are not exhausted if no update takes place during a round.
In all experiments we choose Nep1 = 9, Nep2 = Nep3 = 12. In addition, every
time we make use of the full dataset we actually employ a permuted instance
of it. Evidently, the whole procedure amounts to a different way of sequentially
presenting the patterns to the algorithm and does not affect the applicability of
our theoretical analysis. A completely analogous procedure is followed for PFM.

An additional mechanism providing a substantial improvement of the compu-
tational efficiency is the one of performing multiple updates [14, 13] once a data
point is presented to the algorithm. It is understood, of course, that in order
for a multiple update to be compatible with our theoretical analysis it should
be equivalent to a certain number of updates occurring as a result of repeatedly
presenting to the algorithm the data point in question. For PDM when a pat-
tern yk is found to satisfy condition (8) we perform λ = [μ+] + 1 updates at
once. Here, μ+ is the smallest non-negative root of the quadratic equation in the
variable μ derivable from the relation (t+ μ)at+μ · yk − (1 − ε) ‖at+μ‖2 = 0 in
which at+μ ·yk = at ·yk +μ ‖yk‖

2 and ‖at+μ‖2 = ‖at‖2 +2μat ·yk +μ2 ‖yk‖
2.

Thus, we require that as a result of the multiple update the pattern violates the
misclassification condition. Similarly, we perform multiple updates for PFM.

Finally, in the case of PDM (no successive runs) when we perform multiple
updates we start doing so after the first full epoch. This way, we avoid the
excessive growth of the length of the weight vector due to the contribution to
the solution of many aligned patterns in the early stages of the algorithm which
hinders the fast decrease of ‖at‖ /t. Moreover, in this scenario when we select
the first-level active set as we go through the full dataset for the first time (first
full epoch) we found it useful to set c1 = c2 = 1.1 instead of c1 = 2.2.

5 Experimental Evaluation

We compare PDM with several other large margin classifiers on the basis of their
ability to achieve fast convergence to a certain approximation of the “optimal”
hyperplane in the feature space where the patterns are linearly separable. For
linearly separable data the feature space is the initial instance space whereas for
inseparable data (which is the case here) a space extended by as many dimensions
as the instances is considered where each instance is placed at a distance Δ
from the origin in the corresponding dimension4 [4]. This extension generates a
margin of at least Δ/

√
m. Moreover, its employment relies on the well-known

equivalence between the hard margin optimization in the extended space and
the soft margin optimization in the initial instance space with objective function
4 yk = [ȳk, lkΔδ1k, . . . , lkΔδmk], where δij is Kronecker’s δ and ȳk the projection

of the kth extended instance yk (multiplied by its label lk) onto the initial instance
space. The feature space mapping defined by the extension commutes with a possible
augmentation (with parameter ρ) in which case ȳk = [lkx̄k, lkρ]. Here x̄k represents
the kth data point.
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‖w‖2 +Δ−2
∑

iξ̄
2
i involving the weight vector w and the 2-norm of the slacks ξ̄i

[2]. Of course, all algorithms are required to solve identical hard margin problems.
The datasets we used for training are: the Adult (m = 32561 instances,

n = 123 attributes) and Web (m = 49749, n = 300) UCI datasets as compiled
by Platt [15], the training set of the KDD04 Physics dataset (m = 50000, n =
70 after removing the 8 columns containing missing features) obtainable from
http://kodiak.cs.cornell.edu/kddcup/datasets.html, the Real-sim (m =
72309, n = 20958), News20 (m = 19996, n = 1355191) and Webspam (unigram
treatment with m = 350000, n = 254) datasets all available at
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets, the multiclass
Covertype UCI dataset (m = 581012, n = 54) and the full Reuters RCV1 dataset
(m = 804414, n = 47236) obtainable from http://www.jmlr.org/papers/
volume5/lewis04a/lyrl2004 rcv1v2 README.htm. For the Covertype dataset
we study the binary classification problem of the first class versus rest while for
the RCV1 we consider both the binary text classification tasks of the C11 and
CCAT classes versus rest. The Physics and Covertype datasets were rescaled
by a multiplicative factor 0.001. The experiments were conducted on a 2.5 GHz
Intel Core 2 Duo processor with 3 GB RAM running Windows Vista. Our codes
written in C++ were compiled using the g++ compiler under Cygwin.

The parameter Δ of the extended space is chosen from the set {3, 1, 0.3, 0.1}
in such a way that it corresponds approximately to R/10 or R/3 depending on
the size of the dataset such that the ratio γd/R does not become too small (given
that the extension generates a margin of at least Δ/

√
m). More specifically, we

have chosen Δ = 3 for Covertype, Δ = 1 for Adult, Web and Physics, Δ = 0.3
for Webspam, C11 and CCAT and Δ = 0.1 for Real-sim and News20. We also
verified that smaller values of Δ do not lead to a significant decrease of the
training error. For all datasets and for algorithms that introduce bias through
augmentation the associated parameter ρ was set to the value ρ = 1.

We begin our experimental evaluation by comparing PDM with PFM. We
run PDM with accuracy parameter ε = 0.01 and subsequently PFM with the
fixed margin β = (1− ε)γd set to the value γ′d of the directional margin achieved
by PDM. This procedure is repeated using PDM-succ with step η = 8 (i.e.,
ε0 = 0.5, ε1 = 0.0625, ε2 = ε = 0.01). Our results (the value of the directional
margin γ′d achieved, the number of required updates (upd) for convergence and
the CPU time for training in seconds (s)) are presented in Table 1. We see that
PDM is considerably faster than PFM as far as training time is concerned in spite
of the fact that PFM needs much less updates for convergence. The successive run
scenario succeeds, in accordance with our expectations, in reducing the number
of updates to the level of the updates needed by PFM in order to achieve the
same value of γ′d at the expense of an increased runtime. We believe that it
is fair to say that PDM-succ with η = 8 has the overall performance of PFM
without the defect of the need for a priori knowledge of the value of γd. We also
notice that although the accuracy ε is set to the same value for both scenarios
the margin achieved with successive runs is lower. This is an indication that
PDM-succ obtains a better estimate of the maximum directional margin γd.

http://kodiak.cs.cornell.edu/kddcup/datasets.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.jmlr.org/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm
http://www.jmlr.org/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm
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Table 1. Results of an experimental evaluation comparing the algorithms PDM and
PDM-succ with PFM

data PDM ε = 0.01 PFM PDM-succ ε = 0.01 PFM

set 104γ′
d 10−6upd s 10−6upd s 104γ′

d 10−6upd s 10−6upd s

Adult 84.57 27.43 3.7 10.70 7.3 84.46 9.312 5.3 9.367 6.6

Web 209.6 739.4 0.8 1.089 0.9 209.1 0.838 0.9 0.871 0.8

Physics 44.54 9.449 10.4 6.021 13.8 44.53 5.984 15.3 6.006 13.8

Real-sim 39.93 15.42 13.6 12.69 35.7 39.74 5.314 13.8 5.306 14.3

News20 91.90 2.403 27.4 1.060 55.6 91.68 0.814 47.7 0.813 43.7

Webspam 10.05 331.0 197.5 108.4 348.0 10.03 89.72 247.0 89.60 264.5

Covertype 47.51 189.7 86.6 68.86 156.0 47.48 66.03 146.1 64.41 142.5

C11 13.81 148.6 156.3 75.26 895.1 13.77 49.02 612.4 49.22 557.5

CCAT 9.279 307.7 310.6 151.2 1923.5 9.253 107.8 1389.8 107.8 1601.0

We also considered other large margin classifiers representing classes of al-
gorithms such as perceptron-like algorithms, decomposition SVMs and linear
SVMs with the additional requirement that the chosen algorithms need only
specification of an accuracy parameter. From the class of perceptron-like algo-
rithms we have chosen (aggressive) ROMMA which is much faster than ALMA
in the light of the results presented in [9, 14]. Decomposition SVMs are rep-
resented by SVMlight [7] which, apart from being one of the fastest algorithms
of this class, has the additional advantage of making very efficient use of mem-
ory, thereby making possible the training on very large datasets. Finally, from
the more recent class of linear SVMs we have included in our study the dual
coordinate descent (DCD) algorithm [8] and the margin perceptron with un-
learning (MPU)5 [13]. We considered the DCD versions with 1-norm (DCD-
L1) and 2-norm (DCD-L2) soft margin which for the same value of the accu-
racy parameter produce identical solutions if the penalty parameter is C = ∞
for DCD-L1 and C = 1/(2Δ2) for DCD-L2. The source for SVMlight (ver-
sion 6.02) is available at http://smvlight.joachims.org and for DCD at
http://www.csie.ntu.edu.tw/~cjlin/liblinear. The absence of publicly
available implementations for ROMMA necessitated the writing of our own code
in C++ employing the mechanism of active sets proposed in [9] and incorporat-
ing a mechanism of permutations performed at the beginning of a full epoch.
For MPU the implementation followed closely [13] with active set parameters
c̄ = 1.01, Nep1 = Nep2 = 5, gap parameter δb = 3R2 and early stopping.

The experimental results (margin values achieved and training runtimes) in-
volving the above algorithms with the accuracy parameter set to 0.01 for all of
them are summarized in Table 2. Notice that for SVMlight we give the geometric
margin γ′ instead of the directional one γ′d because SVMlight does not introduce
bias through augmentation. For the rest of the algorithms considered, including
PDM and PFM, the geometric margin γ′ achieved is not listed in the tables since

5 MPU uses dual variables but is not formulated as an optimization. It is a perceptron
incorporating a mechanism of reduction of possible contributions from “very-well
classified” patterns to the weight vector which is an essential ingredient of SVMs.

http://smvlight.joachims.org
http://www.csie.ntu.edu.tw/~cjlin/liblinear
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Table 2. Results of experiments with ROMMA, SVMlight, DCD-L1, DCD-L2 and
MPU algorithms. The accuracy parameter for all algorithms is set to 0.01.

data ROMMA SVMlight DCD-L1 DCD-L2 MPU

set 104γ′
d s 104γ′ s 104γ′

d s s 104γ′
d s

Adult 84.66 275.8 84.90 414.2 84.95 0.6 0.5 84.61 0.8

Web 209.6 52.6 209.4 40.3 209.5 0.7 0.6 209.5 0.3

Physics 44.57 117.7 44.60 2341.8 44.57 22.5 20.0 44.62 4.9

Real-sim 39.89 1318.8 39.80 146.5 39.81 6.4 5.6 39.78 3.3

News20 92.01 4754.0 91.95 113.8 92.17 48.1 47.1 91.62 15.8

Webspam 10.06 39760.6 10.07 29219.4 10.08 37.5 33.0 10.06 28.2

Covertype 47.54 43282.0 47.73 48460.3 47.71 18.1 15.0 47.67 18.7

C11 13.82 146529.2 13.82 20127.8 13.83 30.7 27.2 13.79 20.2

CCAT 9.290 298159.4 9.291 83302.4 9.303 51.9 46.2 9.264 36.1

it is very close to the directional margin γ′d if the augmentation parameter ρ is
set to the value ρ = 1. Moreover, for DCD-L1 and DCD-L2 the margin values
coincide as we pointed out earlier. From Table 2 it is apparent that ROMMA and
SVMlight are orders of magnitude slower than DCD and MPU. Comparing the
results of Table 1 with those of Table 2 we see that PDM is orders of magnitude
faster than ROMMA which is its natural competitor since they both belong to
the class of perceptron-like algorithms. PDM is also much faster than SVMlight

but statistically a few times slower than DCD, especially for the larger datasets.
Moreover, PDM is a few times slower than MPU for all datasets. Finally, we
observe that the accuracy achieved by PDM is, in general, closer to the before-
run accuracy 0.01 since in most cases PDM obtains lower margin values. This
indicates that PDM succeeds in obtaining a better estimate of the maximum
margin than the remaining algorithms with the possible exception of MPU.

Before we conclude our comparative study it is fair to point out that PDM
is not the fastest perceptron-like large margin classifier. From the results of [14]
the fastest algorithm of this class is the margitron which has strong before-run
guarantees and a very good after-run estimate of the achieved accuracy through
(5). However, its drawback is that an approximate knowledge of the value of γd

(preferably an upper bound) is required in order to fix the parameter controlling
the margin threshold. Although there is a procedure to obtain this information,
taking all the facts into account the employment of PDM seems preferable.

6 Conclusions

We introduced the perceptron with dynamic margin (PDM), a new approximate
maximum margin classifier employing the classical perceptron update, demon-
strated its convergence in a finite number of steps and derived an upper bound on
them. PDM uses the required accuracy as the only input parameter. Moreover,
it is a strictly online algorithm in the sense that it decides whether to perform
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an update taking into account only its current state and irrespective of whether
the pattern presented to it has been encountered before in the process of cycling
repeatedly through the dataset. This certainly does not hold for linear SVMs.
Our experimental results indicate that PDM is the fastest large margin classifier
enjoying the above two very desirable properties.
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Abstract. We propose a new way to build a combined list from K base
lists, each containing N items. A combined list consists of top segments of
various sizes from each base list so that the total size of all top segments
equals N . A sequence of item requests is processed and the goal is to
minimize the total number of misses. That is, we seek to build a combined
list that contains all the frequently requested items. We first consider the
special case of disjoint base lists. There, we design an efficient algorithm
that computes the best combined list for a given sequence of requests.
In addition, we develop a randomized online algorithm whose expected
number of misses is close to that of the best combined list chosen in
hindsight. We prove lower bounds that show that the expected number
of misses of our randomized algorithm is close to the optimum. In the
presence of duplicate items, we show that computing the best combined
list is NP-hard. We show that our algorithms still apply to a linearized
notion of loss in this case. We expect that this new way of aggregating
lists will find many ranking applications.

1 Introduction

We propose a new approach for aggregating ranked lists. Assume we have K lists
of N items each, as illustrated in Figure 1. Our comparator is the best combined
list of size N that is composed of the tops of the K lists. A combined list might
take the top 20% of list 1, the top 0% of list 2, the top 60% of list 3, and so
forth. Note that the contents of the base lists might change over time and there
are exponentially many (roughly NK) combined lists altogether.

We seek efficient online algorithms that construct such combined lists on the
fly. In each trial the following happens: First, the current contents of all base
lists are provided to the algorithm. Then the algorithm assembles (either deter-
ministically or randomly) its combined list. After that some item is requested.
If it is not in the chosen combined list, then the algorithm incurs a miss (one
unit of loss). Some or all of the base lists might also miss the requested item and
might update themselves accordingly for the next trial.
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1 2 3 4
1
2
3
4
5

K

N

Fig. 1. We depict one
combined list formed
by taking the tops
from K = 4 lists.
Note that all lists
have size N = 5 and
the combined list has
the same size. The
list shown is c =
(1, 0, 3, 1).

The goal of the algorithm is to endure small addi-
tional loss (regret) over the best combined list chosen in
hindsight once the entire request sequence and the time-
varying contents of the base lists are known. We seek
efficient online algorithms that implicitly maintain some
information about all roughly NK combined lists and can
efficiently choose or sample a combined list from this in-
formation. As we shall see, probabilistic algorithms will
have the advantage.

We claim that this setup has many applications. For
example we can use our method to combine the listings
produced by different search engines. Here a first goal is
to combine the tops of the base lists for the purpose of
maximizing hits. However in the case of search engines, we
are also concerned with accumulating hits at the top of our
chosen combined list and this aspect is not yet modeled
by our approach. We briefly discuss such extensions in the
conclusion Section 7.

Another important application is caching. In this case each list is the ranked
list of items selected by a different caching strategy. We assume that all items
have the same size and exactly N fit into the fast memory. The algorithm can
simulateK caching strategies as “virtual caches” and then combines these virtual
caches to form one “real cache”. The virtual caches only record a few bytes of
meta-data about each item in their cache: ID, link to the data, and calculated
priority. Object data is only kept for the N items of the real combined cache. The
memory cost for maintaining the virtual caches is negligible. The real combined
cache can be updated as the virtual caching strategies change their item lists
and the algorithm observes the performance of its combined cache.

Previous Work. Methods for building a real cache by combining a number of
virtually maintained caching strategies using exponential weights were explored
in [GWBA02]. The employed heuristics performed well experimentally. However
no performance bounds were proven. The idea for building a real cache by com-
bining the tops of two virtual lists was first developed in [MM03, MM04]. In this
case the first list contained the most recently requested items and the second
contained those that were requested more than once. The goal for building a
combined list was to optimally balance recency and frequency information. A
deterministic heuristic was developed for adjusting the top portion taken from
each list. In this paper we prove a lower bound for any deterministic algorithm
that shows that any such algorithm can be forced to have loss at least K B
where B is the loss of the optimal combined list chosen in hindsight. We also
give a randomized online algorithm whose expected loss is at most B plus an
additional sublinear regret and show that the regret of this algorithm is optimal
within a factor of min(

√
K,
√

ln(N/K)).
This paper was motivated by our previous work on combining caching heuris-

tics [GWBA02]. In general, there are always two approaches to a rich problem
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setting. Either we can restrict the setting enough so that theoretical bounds are
obtainable, or we can explore heuristics without provable guarantees that perform
well in practice. Ideally the two approaches will meet eventually. In this paper we
focus on algorithms for which we can prove regret bounds and we believe we made
significant progress towards addressing practically interesting problems.

Aggregating Experts. One of the main metaphors of online learning has been
the aggregation of many simple “experts” [LW94, Vov98, FS97]. In our applica-
tion, each combined list serves as an expert. The online algorithm maintains its
uncertainty over all experts as a mixture distribution and predicts based on this
mixture. In more detail, the probability of a combined list c is proportional to
βM(c), where M(c) is the number of misses of list c and the update factor β lies
in [0, 1).

There are exponentially many mixture weights (one per expert). However,
as we shall see later, we still manage to obtain very efficient algorithms by
manipulating the weights implicitly. We first discuss how to obtain a combined
list from a mixture. One could consider thresholding the mean, using the median
(this is new but only works for 2 lists) or sampling.

The Weighted Average (Mean) Does Not Correspond to a Combined
List. A deterministic algorithm would naturally predict with the weighted ma-
jority (mean) of the mixture. That is, an item is in the chosen combined list if
the total weight of all combined lists in the mixture that contain this item is at
least 50%. Unfortunately, the weighted majority does not always correspond to
a list of size N : For N = 4 and K = 3, consider the case displayed in Figure 2,
where we mix the 3 combined lists that contain the top halves of 2 out of the 3
list; if the mixture is uniform on these 3 combined lists, then all items in the top
halves of each of the 3 lists have total weight 2/3, which is 6 elements altogether
and this is more than N = 4.

1 2 3

1

2

3

4

(a)

1 2 3

1

2

3

4

(b)

1 2 3

1

2

3

4

(c)

1 2 3

1

2

3

4

(d)

Fig. 2. Counterexample against obtaining a combined list by mean thresholding. Con-
sider the combined lists (a), (b) and (c), which each use 4 items with weight 1. The
uniform mixture over (a), (b) and (c) (displayed as (d)), sports 6 elements with weight
2/3 each. By including the items whose mean weight exceeds some threshold, we end
up with either 0 or 6 elements, but not the desired 4.

Deterministic Algorithm for the Case of Two Lists Based on the Me-
dian. In the case of K = 2 (i.e. two lists of size N), there are N + 1 combined
lists c0, . . . , cN , where ci = (i, N − i) contains the i top elements from the first
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c0 = (0, 5) c1 = (1, 4) c2 = (2, 3) c3 = (3, 2) c4 = (4, 1) c5 = (5, 0)

Fig. 3. The 6 combined lists of size N = 5 from K = 2 base lists

list and the N − i top elements from the second list. These combined lists are
displayed in Figure 3.

For K = 2 disjoint lists there is a simple algorithm producing a single com-
bined list of the right size N based on the median that circumvents the problem
with the mean discussed in the previous section. It maintains the same expo-
nential weight discussed before but chooses a combined list ci s.t. the total
weights of the lists c0, . . . , ci−1 and the lists ci+1, . . . , cN are both at most half.
In other words the algorithm picks the combined list from 〈c0, c1, . . . , cN 〉 with
the median weight and we call this deterministic algorithm the Weighted Me-
dian algorithm. Whenever a miss occurs, then at least half of the total weight is
multiplied by β: If the item was on the first list and was missed by the median
list ci, then at least c0, . . . , ci are multiplied by β, which contain at least half of
the total weight. Similarly, if the item was on the second list and missed by ci,
then at least ci, . . . , cN are multiplied by β, which is again at least half of the
total. The case when the item did not appear on either base list is trivial.

Since at least half of the total weight is multiplied by β, an analysis paralleling
the analysis of the deterministic Weighted Majority algorithm [LW94] gives the
following loss bound after tuning β based on N and the budget B, i.e. the loss
of the best combined list in hindsight:

2B +O
(√

B ln(N + 1) + ln(N + 1)
)
.

There are two problems with this deterministic algorithm: It has the factor 2
in front of the budget and we don’t know how to generalize it to more than 2
lists. This is not surprising because we show in this paper that any deterministic
algorithm can be forced to incur loss K B, where B is the loss of the best. Never-
theless, algorithms based on this approach perform well experimentally [Sca07]
and beat the previous deterministic heuristics developed in [MM03, MM04].

Probabilistic Algorithms Based on Sampling. Our approach is to apply
the Hedge algorithm [FS97] to the exponentially many combined lists. It uses the
same exponential weights that are proportional to βM(c) for list c but now we
simply pick a combined list at random according to the mixture coefficients on all
the combined lists. This ensures that the randomly chosen combined list is of the
right size and hence circumvents the fact that the mixture does not represent a
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single combined list. The expected loss of the mixture is the mixture of the losses
of the individual combined lists. When β is properly tuned as a function of the
budget B and the number of combined lists, then the probabilistic algorithms
achieve expected loss B + O(

√
BK lnN). Note that now the factor in front of

the budget B is one (whereas any deterministic algorithm can be forced have
loss at least KB, see Section 5). The caveat of the probabilistic algorithms is
that the list they predict with may change significantly between trials and in
applications where there is a cost for changing the prediction, such algorithms
are not useful. We discuss this issue again in the conclusion Section 7.

Hedge vs Follow the Perturbed Leader. The two main flavors of efficient
online algorithms for dealing with a linear loss are Hedge [FS97] and Follow the
Perturbed Leader [KV05]. Hedge based algorithms usually have slightly better
loss bounds, whereas FPL-type algorithms typically have computational advan-
tages. In this paper, completely contrary to those general rules, we present a
Hedge-based algorithm that is fundamentally faster for our problem than the
best-known FPL algorithm. The reason for this anomaly is that the computa-
tions for Hedge can be accelerated using the Fast Fourier Transform, whereas
only a slower acceleration is known for finding the best combined list.

Outline of the Paper. After setting the stage formally in Section 2, we begin
by sketching the batch algorithm in Section 3. We then give our main ran-
domized algorithm in Section 4 whose (expected) regret can be bounded by
O(

√
BK logN), where B is the loss budget of the best combined list. It simu-

lates the Hedge algorithm on the exponentially many combined lists. We first
assume that all base lists are disjoint, i.e. the requested item appears on at most
one base list. This assumption lets us express the 0-1 loss/miss of a combined
list as a sum over the initial segments of the base lists. The straightforward
implementation requires O(KN2) time per trial. However we found a way to
speed up the algorithm using Fast Fourier Transform for an improved time of
O(KN lnN) per trial.

A number of lower bounds are given in Section 5. Any deterministic algorithm
can be made to suffer loss at least KB, i.e. such algorithms cannot achieve
sublinear regret. We also prove that any probabilistic algorithm can be forced to
have regret at least Ω(max(

√
B lnN,

√
B K)). Thus when either K is constant

or N = Θ(K), the regret of our probabilistic algorithm is optimal within a
constant factor.

In Section 6 we then address the case where duplicates are allowed between
base lists. In this case we show that the question of whether there is a list with no
misses is NP-hard. We then address the same problem with a surrogate loss. We
“linearize” the loss much in the same way NP-completeness was avoided when
learning disjunctions (by switching from 0-1 loss to attribute loss). In short, if
the requested item occurs 5 times on the lists, then a combined list that hits this
item 2 times now has loss 3. We can show that our algorithm now has a regret
bound of O(

√
BK2 logN) for the linearized loss. Note the additional factor of

K which is due to the fact the range of the loss per trial is now [0,K]. We also
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discuss an alternate method for solving the problem with duplicates based on
the online shortest path problem and using Component Hedge [KWK10]. This
algorithm achieves regret O(

√
BK logN) for the problem with duplicates (i.e.

no additional range factor). However we do not know how to bound the running
time for the iterative projection computation employed by the algorithm. We
conclude with a number of open problems in the final section.

2 Setting

Recall that we have K base lists of N slots each. Until Section 6 we assume that
each item appears at most once on all list. For k ≤ K, we identify a (partial)
combined list with a vector of counts c = (c1, . . . , ck), where ci denotes the
number of items taken from the top of base list i. We denote the set of combined
lists using n elements from k base lists by

�n,k :=
{
c ∈ {0, . . . , n}k ∣∣ ∑k

i=1 ci = n
}
.

We also think about �n,k as the set of paths from (0, 0) to (n, k) through the
graph shown in Figure 4. Representational issues aside, the number of combined
lists is rather large:

ln|�N,K | = ln
(
N +K − 1
K − 1

)
≤ (K − 1) ln

(N +K − 1) e
K − 1

= O

(
K ln

N

K

)
(1)

The right equality holds under our assumption that N ≥ K. To appreciate the
sheer number of lists, consider for example that |�10,20| ≈ 107, while |�100,20| ≈
4.9 · 1021.
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4, 5

1, 0

1, 1

1, 2

1, 3

1, 4

1, 5
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2, 1

2, 2

2, 3

2, 4

2, 5

3, 0

3, 1

3, 2

3, 3

3, 4

3, 5

0, 0

1, 1 2, 1

3, 4

4, 5

Fig. 4. Dynamic programming di-
agram for K = 4, N = 5. There
is a 1–1 correspondence between
(0, 0) − (4, 5) paths in this graph
and combined lists. The marked
path corresponds to the combined
lists shown in Figure 1. In general,
combined list c = (c1, . . . , cK) cor-
responds to path (0, 0) − (1, c1) −
(2, c1 + c2) − . . . − (k,

∑k
i=1 ci) −

. . . − (K, N).

Different trials can have different lists and
requested items. What is important is the list
and position containing the requested item. A
single trial is summarized by a (N+1)×K di-
mensional miss matrix M, where for 0 ≤ c ≤
N and 1 ≤ k ≤ K, the entry Mc,k is one if the
requested item appears on base list k in a posi-
tion strictly greater than c and zero otherwise.
The sum M(c) :=

∑k
i=1Mci,i is zero when

combined list c contains the request item, and
one when c misses the requested item on the
disjoint lists. We often sum miss matrices over
trials: Mt denotes the miss matrix for trial t
and M<t is the cumulative miss matrix be-
fore trial t, i.e. M<t

c,k :=
∑

s<t M
s
c,k. Therefore

M<t(c) =
∑k

i=1 M
<t
ci,i

is the total number of
misses made by the combined list c in the first
t− 1 trials.

We allow items to occur on multiple lists in Section 6. There, when M is
a single trial miss matrix, M(c) can be greater than one. For example, if the
requested item occurs on 5 different base lists and c has it twice then M(c) = 3.
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3 Batch Algorithm

Let M =
∑T

t=1 Mt denote the cumulative miss matrix after T trials. The
hindsight-optimal list c∗ and its loss B are given by

c∗ := argmin
c∈�N,K

M(c) B := M(c∗) = min
c∈�N,K

M(c).

Brute-force evaluation of the minimum is intractable, viz (1). But we can exploit
the structure of �N,K and M(c) to compute c∗ and B efficiently. Let Bn,k denote
the loss of the best combined list with n elements from the first k base lists:

Bn,k := min
c∈�n,k

M(c).

Hence B = BN,K . Now observe that B�,� satisfies the recurrence for 0 ≤ n ≤ N :

Bn,1 = Mn,1 and Bn,k = min
0≤c≤n

Bn−c,k−1 +Mc,k, for 1 < k ≤ K.

By straightforward tabulation, the loss B = BN,K of the best combined list
can be computed in time O(KN2). Interestingly, we can tabulate even faster.
The column B�,k is the infimal convolution1 of B�,k−1 and M�,k. The best-
known algorithm for general infimal convolution is O( N2

ln N ) due to [BCD+06].
In our setting, both B�,k−1 and M�,k are non-increasing. However it is an open
problem whether these special properties lead to an improved time bound. Once
B�,� is known, it is easy to recover the optimal combined list c� in O(NK) time.

The above dynamic programming algorithm immediately leads to an online
algorithm, called Follow the Perturbed Leader (FPL)[KV05], which has small
regret compared to the best list chosen in hindsight. At trial t, FPL adds a
random perturbation matrix to M<t and chooses the best combined list with
respect to that perturbed miss matrix. FPL has slightly weaker regret bounds
[HP05] than Hedge, but is usually faster. Surprisingly we show in the next sec-
tion that for combined list the Hedge algorithm is actually faster: it requires
O(KN lnN) time instead of O(KN2

ln N ) for FPL.

4 The Randomized Online Algorithm Based on Sampling

In this section we develop an efficient randomized online algorithm and prove
that its loss is not much larger than B, the loss of the best combined list chosen
in hindsight. The algorithm is the well-known Hedge algorithm [FS97] where
the combined list function as the experts. The algorithm (implicitly) maintains
weights proportional to βM(c) for each combined list c. There are two versions
of the Hedge algorithm. The first one predicts with the mixture vector over the
experts and incurs loss equal to dot product between the mixture vector times
the loss vector. Since the mixture vector is exponential in size we have to use
1 Aka (min, +) convolution or min-convolution or inf-convolution or epigraphical sum.
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the second version. Like the Randomized Weighted Majority algorithm [LW94],
this version outputs an expert drawn at random from the mixture. The loss is
the loss of the drawn combined list and the goal is to bound the expected loss
of the algorithm in relation to the loss of the best list chosen in hindsight.

Our contribution lies in the efficient implementation of the sampling version
of the Hedge algorithm for combined lists. Following [TW03], we crucially use
the fact that in our application, the loss M(c) of a combined list c decomposes
into a sum: M(c) =

∑K
k=1 Mck,k. Thus the weight of c is proportional to the

product
∏K

k=1 β
Mck,k . This property of the weights allows us to efficiently sample

a combined list according to the mixture prescribed by the exponential weights
of Hedge. The computation is based on dynamic programming, similar to the
batch algorithm, but it is faster: O(KN lnN) instead of O(KN2

ln N ) per trial.
Before showing this speedup, recall that the expected regret of the Hedge

algorithm after tuning the learning rate η [FS97] is bounded by B+
√

2B lnE+
lnE where E is the number of experts with loss range [0, 1] per trial and B is
the loss budget of the best expert. In our application, lnE is O(K ln N

K ) by (1),
giving us the following regret bound for our algorithm:

B +O

(√
BK ln

N

K
+K ln

N

K

)
. (2)

Note that the loss of a combined list lies in {0, 1} since we assumed that the
base lists are disjoint.

We now give the efficient implementation of the sampling. Let M = M<t

denote the cumulative miss matrix before trial t. In trial t, we need to efficiently
sample combined list c ∈ �N,K with probability proportional to

∏K
k=1 β

Mck,k .
We first compute the normalization ZN,K , which is defined for all (partial) com-
bined lists as follows

Zn,k :=
∑

c∈�n,k

βM(c).

To efficiently compute Z�,�, we again derive a recurrence. For all 0 ≤ n ≤ N ,

Zn,1 = βMn,1 and Zn,k =
N∑

ck=0

Zn−ck,k−1β
Mck,k , for 1 < k ≤ K.

Even more compactly, we have

Z�,k = Z�,k−1 ∗ βM�,k for 1 < k ≤ K

where ∗ denotes real discrete convolution, i.e. (x ∗ y)n =
∑

i xn−iyi. Since
the convolution of two vectors of length N each can be performed in time
O(N lnN) using the Fast Fourier Transform [CT65], we can tabulate Z�,� in
time O(KN lnN).2

2 A similar approach was used in [KM05] to obtain a similar speedup in the completely
different context of computing the stochastic complexity of the Multinomial model.
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Sampling a list from c ∈ �n,k with probability proportional to βM(c) is now
done as follows: First draw the last element ck = j with probability equal to
Zn−j,k−1β

Mj,k/Zn,k. Then recursively sample the initial part of the list from
�n−j,k−1. The probability of drawing the full c ∈ �N,K telescopes to βM(c)/ZN,K

as desired. Once we have Z�,� tabulated, the sampling itself takes O(KN) time.
An analogous approach can be used to compute the expected loss of Hedge if

that is of interest, e.g. for external model selection.
We already mentioned in Section 2 that it is possible to identify combined

lists with paths through the specific graph shown in Figure 4. Therefore any
algorithm that has small regret compared the best path chosen in hindsight is
a competitor to our algorithm. The online shortest path problem has received
considerable attention both in the full-information and in the bandit setting
[TW03, KV05, AHR08, CBL09, KWK10]. However, for that problem it is as-
sumed that the adversary can control the loss of each individual edge and as a
result any algorithm requires an update time that is at least on the order of the
number of edges. This is not the case in our setting. We have O(KN2) edges in
our graph, and yet we achieve update time O(KN lnN). How is this possible?
First note that a miss matrix M has only KN parameters. Put another way, the
losses of the edges are partitioned into equivalence classes of size O(N) and all
edges of the same class always have the same loss:

∀0 ≤ n, n′ ≤ N−i, 1 ≤ k < K : (n, k) → (n+i, k+1) ∼ (n′, k) → (n′+i, k+1).

This feature of our problem allows us to use convolutions and obtain update
time that is lower than the number of edges in the shortest path formulation.

5 Lower Bounds

1 2 3 4
1
2
3
4
5

Fig. 5. For N =
5, K = 4 the spe-
cial items are put
in the marked po-
sitions. One must
be missed by any
combined list of
size N .

In the noise-free case (there is a combined list with no misses),
the minimax regret for deterministic algorithms was proven to
be Ω(K lnN) with the first author’s students in a class project
[SS07]. Here we focus on the noisy case. We begin with a simple
adversary argument against any deterministic algorithm and
then turn to lower bounds for randomized algorithms.

We first show a simple lower bound of KB against any
deterministic algorithm, where B > 0 is the number of misses
of the best combined list in hindsight. We assume that B is
known to both the algorithm and adversary and N ≥ K.
As illustrated by Figure 5, the adversary tags the following K
items as “special”: item N−K+2 from the 1st list and the top
items from the remaining K−1 lists. Any combined list of size
N must miss at least one of these K special items because to
contain them all would require a list of size N−K+2+K−1 =
N + 1. In each trial the adversary simply hits one of the special items missed by
the combined list produced by the deterministic algorithm. Since combined lists
have size N , at least one special item will be missed in each trial.
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In T trials, the algorithm incurs T misses, but the number of misses of the
best combined list is at most T

K . The reason is that the best combined list leaves
out the special item with the lowest number of hits and the lowest number is
at most T

K . So if the best has loss B then any deterministic algorithm can be
forced to have loss at least KB, and thus regret at least B(K − 1).

We now build techniques for proving our lower bound against any randomized
algorithm in stages. The basic component of our lower bound constructions will
be the standard 2-expert game. The game is parametrized by a loss budget
B. There are two players, the Algorithm and the Environment, and the game
proceeds in rounds. At the beginning of each round, the Algorithm chooses
its prediction, which is a pair (w1, w2) with w1, w2 ≥ 0 and w1 + w2 = 1.
The Environment then chooses one of two possible outcomes: expert 1 makes a
mistake, or expert 2 makes a mistake. If expert 1 makes a mistake, the Algorithm
incurs loss w1; if expert 2 makes a mistake, the Algorithm incurs loss w2. The
game ends when one expert has made at least B + 1 mistakes. Let g2(B) be the
largest total loss the Environment can force the Algorithm to incur in this game.
It can be shown based on results in [AWY08] that for any integer budget B

g2(B) ≥ B +

√
B

π
.

We now prove a lower bound on the regret in the K = 2 list case of

B +

√
B log2(N + 1)

π

against any randomized algorithm A. We do this by constructing a trial sequence
using the above 2-expert case as a building block on which A incurs at least this
much loss while there is at least one combined list with loss at most B. For the
sake of simplicity of the presentation we assume that N = 2S −1 for some integer
S that divides the budget B.

The game consists of S = log2(N+1) stages, each stage using up a proportion
B/S of the loss budget and causing a loss of at least g2(B/S) to the algorithm.
Therefore, the total loss of the algorithm will be at least the desired result

S

(
B

S
+

√
B

Sπ

)
= B +

√
BS

π
.

We have two lists, each with N elements. During stage 1, we access only two
elements, the middle elements (those in position (N + 1)/2 on the first and
position (N + 1)/2 on the second list). Notice that a deterministic prediction
can include at most one of the middle elements. Intuitively, stage 1 will decide
whether it is better to include the middle element from list 1 or from list 2. This
is done using the 2-expert game in a manner described below.

Suppose we decided to include the middle element from list 1. This means
we have removed from consideration the first half of elements of list 1 (they are
included) and the last half of elements of list 2 (they are not included). During
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stage 2 we similarly decide between the middle element of the second half of
list 1, and the middle element of the first half of list 2. Suppose we now decide
in favor of list 2. This means that we have decided to include at least (N + 1)/2
elements from list 1, at least (N + 1)/4 elements from list 2, and (N − 3)/4
elements are yet to be decided. We continue this process, halving the remaining
range at each stage, until only one good combined list remains. This argument
proves the following lower bound:

Theorem 1. Let N + 1 be a power of 2 and B be a budget that is divisible by
log2(N + 1). Then for any randomized online algorithm A for the K = 2 list
problem there is a sequence of request on which A incurs at least loss

B +

√
B log2(N + 1)

π

but there is at least one combined list with at most B misses.

Note that the lower bound construction uses the same base lists in each trial
and the base lists are disjoint.

It is fairly easy to see that the above Ω(
√
B lnN) expected regret bound

for any randomized algorithm also holds for K > 2 lists. When N ≥ K/2, we
can also prove a second lower bound of Ω(

√
BK) by simulating K/2 many 2-

expert games using pairs of base lists. However the details of this second bound
are complex and omitted due to space constraints. We conjecture that the lower
bound on the expected regret is Ω(

√
BK ln(N/K)), i.e. that the expected regret

bound of the algorithm of Section 4 is optimal within a constant factor.

6 Combining Lists with Duplicates

We now turn to the scenario where the base lists are not disjoint any more, i.e.
items can occur on multiple lists. This minor difference in the setup has major
implications. For one, finding the list that minimizes the number of misses is
NP-hard, even if the base lists contain the same items in every trial. So we
cannot hope for efficient algorithms with low regret unless RP = NP. We sketch
a reduction from Set Cover in Section 6.1 and then work around this hardness
result in Section 6.2 by linearizing the loss.

6.1 NP-Hardness by Reduction from Set Cover

An instance of the Set Cover problem consists of a collection C of subsets of some
universe U , and a number m. The question is whether a subcollection D ⊆ C of
size m exists such that the union of the subcollection is U . We transform this
instance into a zero miss combined list existence problem with K = |C| base lists
of size N = m(p + |U |) and a sequence of |U | requests. For each subset S ∈ C,
we introduce a base list that starts with p many padding items, then includes
item ix for each x ∈ S, and ends with padding to length N . By design, N is
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such that a combined list can contain all non-padding items from m base lists.
To ensure that it cannot contain non-padding items from m + 1 base lists, we
must have that (m + 1)(p + 1) > N . The least such p equals m(|U | − 1). The
request sequence hits ix for each x ∈ U .

If an m-cover exists, there is a combined list with zero loss. If not, then
any combined list must miss at least one item. So an m-cover exists iff there
is a combined list without any misses. Also unless RP=P, there cannot exist a
polynomial time randomized algorithm with polynomial expected loss on request
sequences for which there exists a combined list with no misses. (By polynomial
we mean polynomial in N and K.)

If such an algorithm existed and achieved regret p(N, k) then one could present
it with random requests chosen with replacement from the given request se-
quence. If there does not exist a combined list with zero misses, then for such
random request the expected loss must be at least 1 over the length of the re-
quest sequence. By presenting the algorithm with polynomially many random
requests, the expected loss is either bounded by p(N, k) or the expected loss
must grow linearly in the number of requests. This clearly can be used to design
a polynomial-time randomized decision procedure for the combined list problem
we just showed to be NP-complete.

6.2 Working around the Hardness

When the lists are disjoint then in any trial the miss count M(c) is 0 either 1
for any combined list c and the 0/1 loss is identical to M(c). When items can
appear on multiple list, then M(c) can be larger than 1, whereas the 0/1 loss
is I(d − M(c)), where d is the number of duplicates of the requested item, and
I(h) = 1 if h = 0 and 0 if h ≥ 1. The above reductions show that we cannot hope
for an efficient algorithm with small expected regret measured by the 0/1 loss
when the items can appear on multiple lists. Observe that I(d−M(c)) ≤ M(c).
Therefore, in this section we propose to replace the 0/1 loss I(d − M(c)) by
its upper bound M(c). This amounts to linearizing the loss because M(c) =∑K

k=1Mck,k. Note that the 0/1 loss I(d− M(c)) decidedly does not decompose
into a sum over the component of c.

This approach parallels how NP-hardness was avoided when learning disjunc-
tions. There the 0/1 loss was replaced by the attribute loss which decomposes
into a sum of the literals in the disjunction [Lit88]. This linearization of the loss
is extensively discussed in [TW03].

Our efficient implementation of Hedge is based on the decomposition of the
miss count and remains unchanged in the setting when items can appear on
multiple lists. However, M(c) now lies in [0,K] and the straightforward regret
bounds have an additional factor of K due to the extended range. This means
that in the case of combined lists the resulting regret bound has leading term√

2BK ln|�N,K | ≈
√

2BK2 ln(N + 1).

The additional range factor also appears in the regret of the FPL algorithm.
Several method have been developed for eliminating the range factor. First, the
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range factor can be eliminated if the so called unit rule hold for the given loss and
algorithm [KWK10]. However, there are simple counter examples for combined
lists. Second, we can change the algorithm to the Component Hedge algorithm
which has a range factor free regret bound with a leading term of√

4BK ln
(N +K)e

K
.

This algorithm maintains its uncertainty as a usage vector, i.e. an element of the
convex hull of the (N+1)×K indicator matrices corresponding to the combined
lists. The weight update involves a relative entropy projection onto this convex
hull, which can be expressed using few linear equality constraints as a linear
image of the flow polytope. This projection can be computed using an iterative
algorithm, but it’s convergence properties have not yet been analyzed [KWK10].

7 Open Problems

In summary, we hope that we opened up a new approach for combining lists
(of the same size N). We invented a new notion of mixture of such base lists
in which the sizes of the top segments that were chosen from each list sum
to N . We developed an efficient algorithm that implicitly maintains a mixture
over exponentially many combined lists and proved regret bounds that are tight
within a factor of min(

√
K,
√

ln(N/K)). Besides proving a tight lower bound for
the K > 2 list case (notoriously hard), our approach leaves many open questions:

– We have ignored the question of how to rank the items within the combined
list. Our notion of loss simply charges one unit depending on whether the
requested item is in the combined list or not. Ideally, the combined list should
be ranked and we would like to develop online algorithms for the case when
the cost is proportional to how close each request is to the top of the list. One
idea is to overlay N algorithms optimized for combined list sizes 1,2,. . .N .
Intuitively the item i on the list would miss the combined lists of size 1,2,. . . ,
i−1 and incur loss proportional to i−1. However this approach will only work
when the the combined lists of size less than i are contained in the list of size
i. So far we were not able to achieve good regret bounds with this approach.

– In caching applications it costs to change the “real cache” because items need
to be reloaded. Our online algorithms currently ignore the reloading costs
and this is particularly egregious for the probabilistic algorithms. The Shrink-
ing Dartboard Algorithm, a method for lazily updating the expert followed
by the Hedge algorithm was developed in [GVW10], and seems quite read-
ily applicable to our setting. The Follow-the-Lazy-Leader algorithm [KV05]
is another method requiring fewer updates. Also some good practical heuris-
tics for reloading were given in [Gra03, GWBA02]. However no performance
guarantees were provided for these heuristics.

– At this point our algorithm is designed to achieve small regret compared to
the best fixed combined list chosen in hindsight. In the expert setting there
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is a long history of algorithms that can handle the case when the best expert
is allowed to shift over time. This is achieved by first doing an exponential
update and then mixing in a bit of either the uniform distribution over all
experts or the average of all past distributions over the experts [HW98, BW02,
GLL05]. In all experimental evaluations that the authors are aware of, it was
crucial to extend the online algorithms to the shifting expert case [HLSS00,
GWBA02]. It is a tedious but straightforward exercise to mix in a bit of the
uniform distribution into the dynamic programming algorithm of Section 4,
thus implementing the Fixed Share algorithm from [HW98]. The method is
again based on recurrences, and maintains all weights implicitly. However, it
adds an O(T 2) factor to the running time of our current algorithm. We don’t
know how to do the fancier method efficiently, which mixes in a bit of the
past average distribution. The reason is that the exponential weight updates
on the NK many combined lists seem to be at loggerheads with mixing in
the past average weight. The resulting update is neither multiplicative nor
additive and makes it difficult to implicitly maintain the weights.

In this respect Component Hedge [KWK10] may have the advantage, as
mixing in the past average usage vector can be done in constant time per
component per trial. However, for this approach to be viable, an efficient
implementation of the required relative entropy projections must be found.

– This paper is theoretical in that we focus on models for which we can prove
regret bounds. However it would be useful to do practical experiments of the
type done in [Gra03, GWBA02]. This would require us to blend the methods
developed here with heuristics for handling for example the reloading issue.

Acknowledgments. Thanks to Anindya Sen and Corrie Scalisi for valuable
ground work on this problem as part of a class and a Master’s project [SS07,
Sca07]. Thanks to Jyrki Kivinen for generous brainstorming.
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Abstract. In this work, we extend the applicability of regret minimiza-
tion to pricing financial instruments, following the work of [11]. More
specifically, we consider pricing a type of exotic option called a fixed-strike
lookback call option. A fixed-strike lookback call option has a known ex-
piration time, at which the option holder has the right to receive the
difference between the maximal price of a stock and some pre-agreed
price. We derive upper bounds on the price of these options, assum-
ing an arbitrage-free market, by developing two-way trading algorithms.
We construct our trading algorithms by combining regret minimization
algorithms and one-way trading algorithms. Our model assumes upper
bounds on the absolute daily returns, overall quadratic variation, and
stock price, otherwise allowing for fully adversarial market behavior.

1 Introduction

Pricing options is a fundamental task in finance, both from a theoretical and a
practical perspective. An option is a financial instrument that allows its holder
to buy or sell a certain asset for a given price at a given time. For example, a
European call option, at its expiration time T , allows its holder to buy the asset
for a price K. In other words, the option pays max(ST −K, 0) at time T , where
ST is the asset (stock) price at time T . In this work we examine an exotic option
called a European fixed-strike lookback call option, which, at its expiration time
T , allows its holder to choose the best time in hindsight to buy the asset for a
price K. Namely, the lookback option pays max(MT −K, 0) at time T , where
MT is the maximal asset price over the lifetime of the option.

Option pricing has been greatly influenced, theoretically and practically, by
the works of Black and Scholes [1] and Merton [19]. In their Nobel Prize-winning
works, they modeled the price of a stock as a geometric Brownian motion stochas-
tic process. In addition, their model assumes an arbitrage-free market, namely,
that market prices provide no opportunities for riskless profit. Over the years
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the Black-Scholes-Merton (BSM) model has been applied to pricing many types
of financial instruments, including fixed-strike lookback options [7]. Despite its
enormous success, the assumptions of the BSM model have several known draw-
backs. First, the model is only an abstraction of price changes, while in reality
prices are discrete and experience sharp jumps, and the daily returns are neither
independent nor identically distributed. Second, the main parameter which is
required, the stock volatility, is not observable, and has to be estimated.1 In
this work we investigate the pricing of lookback options in an adversarial online
learning model which was introduced in [11]. A major advantage of such an ad-
versarial online approach is that price jumps and discrete trading are inherently
assumed in the model.

Before we discuss our main results, we introduce two elements that we will
use in constructing our algorithms: regret minimization and one-way trading.
Regret minimization, in a nutshell, devises algorithms that can compete well with
respect to a given class of benchmarks. The measure of regret is the difference
between the performance of the online algorithm and the best benchmark in the
class. (See [4] for an excellent exposition of the topic.) In the one-way trading
problem [12], one seeks to convert one type of asset to another, for example, yen
to dollars, and trades are limited to selling yen for dollars. Since it is impossible
to know in advance the best time to sell, one can try to minimize the competitive
ratio, which upper bounds the ratio between the return from selling at the best
price and the actual return achieved by the online algorithm.

In this paper we present a family of regret minimization algorithms that com-
bines two algorithmic black boxes: a regret minimization component, and a one-
way trading component. We translate the performance of the regret minimization
and one-way trading components into upper bounds on the price of fixed-strike
lookback options. This translation applies a general principle, namely, that if
the regret bounds of an online algorithm guarantee that its payoff dominates
the payoff of a financial instrument, then in an arbitrage-free market, the initial
cost of the algorithm must exceed the price of the financial instrument. This
approach was pioneered in [11], where it was used to derive upper and lower
bounds on the price of European call options.

In our analysis we use specific one-way trading algorithm and regret mini-
mization algorithms with the purpose of deriving concrete upper bounds on the
price of lookback options. Specifically, for the regret minimization component,
we concentrate on the Polynomial Weights algorithm [5]. For the one-way trad-
ing component, we consider a simple price-oriented algorithm and the optimal
competitive one-way trading algorithm [12]. Based on that, we derive explicit
upper bounds for the price of lookback options. We stress that our combina-
tion of regret minimization with one-way trading results, in general, in two-way
trading (as discussed in Section 5).

1 In fact, in many cases people compute the implied volatility, which is the volatility
that under the BSM model would give the current option price. It is well documented
that the implied volatility is not constant, even for a given expiration time, and
depends on the strike price.
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We conclude with an experimental study of our bounds for the price of look-
back options, considering data from the S&P 500 index. Despite the adversarial
nature of our model, the upper bounds achieved are reasonable even when com-
pared to the BSM pricing.

Related Work. In learning theory, the most widely studied finance problem is
portfolio selection, where the most commonly used benchmark is the best con-
stantly rebalanced portfolio (BCRP). A key result by Cover [8] gives an algo-
rithm, the universal portfolio, which achieves the same asymptotic growth rate
as the BCRP, even under adversarial conditions. Subsequent work incorporated
side information and transaction costs, proved optimal regret w.r.t. the BCRP,
improved computational complexity, and considered short selling [9,20,2,17,22].
Other works combining learning and portfolio selection are [15,21,3,13,14].

The one-way trading and search problems were first studied in [12] and later
in [6,16,18], where competitive ratios for various finance problems were analyzed.
In the search problem, price offers are made sequentially to a player whose aim
is to sell only once and at the highest possible price. The search problem with
k points, with application to the pricing of floating-strike lookback calls,2 was
studied in [18]. Our model and the classical search and one-way trading model,
used in [12,18], differ in two important ways. First, we allow two-way trading,
and second, we assume a bound on the total quadratic variation. Indeed, we
show that by allowing these two additional features, we can obtain a better
competitive ratio than the optimal one-way trading competitive ratio of [12].

Outline. The outline of the paper is as follows. In Section 2 we provide notation
and definitions. Section 3 presents an upper bound on the price of lookback
options, given the regret bounds of a trading algorithm. Section 4 introduces
a family of algorithms that combines regret minimization and one-way trading,
with resulting new bounds on the price of lookback options. In Section 5 we
discuss our results. Section 6 presents empirical results. Due to space limitations,
some proofs are omitted.

2 Preliminaries

We consider a discrete-time finite-horizon model, with a risky asset (stock) and
a risk-free asset (bond or cash). The price of the stock at time t is St and the
price of the risk-free asset is Bt. Initially, B0 = S0 = 1. We assume that the
price of cash does not change, i.e., Bt = 1, which is equivalent to assuming a
zero risk-free interest rate. We further assume that we can buy or sell any real
quantity of stocks with no transaction costs. For the stock we denote by rt the
single period return between t− 1 and t, so that St = St−1(1 + rt).

2 This type of security pays ST −mT at time T , where ST is the stock price at time T ,
and mT is the minimal stock price over the lifetime of the option. It is different from
the fixed-strike lookback option, which we price, making our bounds incomparable.
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A realization of the prices is a price path, which is the vector rt = (r1, . . . , rt).
We define a few parameters of a price path. We denote by M a bound on the
maximum stock price St, by R a bound on the absolute single period change
|rt|, by Q a bound on the quadratic variation

∑T
t=1 r

2
t , and by Mt the maximum

price up to time t, Mt = max 0≤u≤tSu. We will assume that the bounds R, Q,
and M are given, and ΠM,R,Q, or simply Π , will denote the set of all price
paths satisfying these bounds. Since max 1≤t≤T (r2t ) ≤

∑T
t=1 r

2
t < R2T , we may

assume that R2 ≤ Q ≤ R2T . The number of time steps, T , is influenced by both
the frequency of trading and the absolute time duration. For this reason it is
instructive to consider M and Q as fixed, rather than as increasing in T .

A trading algorithm A starts with a total asset value V0. At every time period
t ≥ 1, A sets weights ws,t ≥ 0 for stock and wc,t ≥ 0 for cash, and we define the
fractions ps,t = ws,t/Wt and pc,t = wc,t/Wt, where Wt = ws,t + wc,t. A fraction
ps,t of the total asset value, Vt−1, is placed in stock, and likewise, pc,tVt−1 is
placed in cash. Following that, the stock price St becomes known, the asset
value is updated to Vt = Vt−1(1 + ps,trt), and time period t+ 1 begins.

We comment that since we assume that both weights are non-negative, the al-
gorithms we consider use neither short selling of the stock, nor buying on margin
(negative positions in cash). However, as part of the arbitrage-free assumption,
we assume that short selling is, in general, allowed in the market.

An algorithm is referred to as one-way trading from stock to cash if the amount
of cash never decreases over time, i.e., for every t ≥ 1 we have pc,tVt−1 ≤ pc,t+1Vt,
otherwise it is referred to as two-way trading.

A European call option C(K,T ) is a security paying max(ST − K, 0) at
time T , where K is the strike price and T is the expiration time. The value
of the option at time 0 will be denoted by C(K,T ). A fixed-strike lookback
call option LC(K,T ) is a security paying max(MT − K, 0) at time T , where
MT = max0≤t≤T St, and its value at time 0 will be denoted by LC(K,T ). The
interesting range for the strike price of lookback options is K ∈ [S0,M). The
reason is that for K ≥ M , the payoff is always 0, so LC(K,T ) = 0, and for
K < S0, LC(K,T ) = LC(S0, T ) + S0 −K. Thus, we assume that K ∈ [S0,M).

3 Arbitrage-Free Bounds

We assume that the pricing is arbitrage-free, which is defined as follows. Trading
algorithm A1 dominates trading algorithm A2 w.r.t. the set of price paths Π , if
for every price path in Π , the final value of A1 is at least the final value of A2.
The arbitrage-free assumption says that if A1 dominates A2 then the initial value
of A1 is at least the initial value of A2. This assumption is natural, because if it
is broken, it becomes possible to make a riskless profit by buying into A1 and
selling A2. The resulting flow of funds from A2 to A1 affects the stock price in a
way that causes even a small arbitrage opportunity to quickly disappear.

For example, define trading algorithm ALC which simply buys the lookback
option and holds it. Its initial value is LC(K,T ) and its final value is max(MT −
K, 0). (We sometimes refer to ALC as simply LC(K,T ).) Assume we design a
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trading strategy A1 whose initial value is V0 and at time T its value is VT ≥
max(MT − K, 0) for every possible price path. This means that A1 dominates
ALC . Therefore, by the arbitrage-free assumption, we have that LC(K,T ) ≤ V0.

We now establish a connection between bounds on the multiplicative regret
of a trading algorithm and arbitrage-free pricing of lookback options. This con-
nection is similar to the one given in [11] for European call options.

Definition 1. Let A be a trading algorithm and let Vt be its asset value at time
0 ≤ t ≤ T , assuming V0 = 1. A is said to have an (α, β) multiplicative regret, for
some α, β > 0, if for every price path, VT ≥ max(α, βMT ).

Lemma 1. If an algorithm with (α, β) multiplicative regret exists, then

LC(K,T ) ≤ 1
min(α/K, β)

−K .

Proof. Consider a new security, LC1(K,T ), which pays max(MT ,K) at time
T , and let LC1(K,T ) be its value at time 0. Since the payoff of LC1(K,T ) is
always K plus the payoff of LC(K,T ), then, by the arbitrage-free assumption,
LC1(K,T ) = LC(K,T )+K. For an algorithm with (α, β) multiplicative regret,
we have that VT ≥ max(α, βMT ). If α ≥ βK, then

max(α, βMT ) ≥ max(βK, βMT ) = βmax(K,MT ) .

Otherwise, α < βK, and then

max(α, βMT ) ≥ max(α,
α

K
MT ) =

α

K
max(K,MT ) .

Therefore, in any case, max(α, βMT ) ≥ min(α/K, β) · max(MT ,K), so the al-
gorithm dominates min(α/K, β) units of LC1(K,T ). By the arbitrage-free as-
sumption, we have that

LC1(K,T ) ≤ 1
min(α/K, β)

.

Since LC1(K,T ) = LC(K,T ) +K, the result follows. 	


We note that Lemma 1 indicates exactly how improved regret bounds for a
trading algorithm relate to tighter upper bounds on LC(K,T ).

4 Trading Algorithms and Bounds for Lookback Options

4.1 Simple Arbitrage-Free Bounds

We start with a few simple arbitrage-free bounds. Let ATS be a trading algorithm
that starts with T stocks (initial value S0T ) and sells one stock at each time
t ∈ [1, T ]. Since the final value of ATS is

∑T
t=1 St ≥ MT − S0 ≥ MT − K, we

have that
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Theorem 1. ATS dominates LC(K,T ), implying that LC(K,T ) ≤ TS0 = T .

A similar strategy ATC uses ordinary call options rather than stocks. ATC buys
one call option for each expiration time t ∈ [1, T ] (initial value

∑T
t=1 C(K, t)) and

simply collects the payoffs. Since the final value of ATC is
∑T

t=1 max(St−K, 0) ≥
max(MT −K, 0), we have that

Theorem 2. ATC dominates LC(K,T ), therefore, LC(K,T ) ≤
∑T

t=1 C(K, t).

While the previous strategies were time-oriented, the next strategy is price-
oriented. Algorithm APS starts with N = 1+�log2(M/K)� stocks, and, therefore,
has an initial value of NS0. APS sells stock i, i ∈ [0, N − 1], at the first time
St ≥ 2iK. (This strategy is very similar to one discussed in [12].)

Theorem 3. APS dominates LC(K,T ), and LC(K,T ) ≤ NS0 = 1 + �log2
M
K �.

We remark that using the methodology of Dawid et al. [10] one can derive an
improved bound of ln(M/K) − 1 + (K/M).

4.2 Combining Regret Minimization and One-Way Trading

The simple algorithms reveal what is required of an algorithm to dominate
LC(K,T ). Such an algorithm must always set aside enough cash to cover the
payoff of the option. In the vicinity of record highs, cash reserves may need to
be increased by selling stocks. At the same time, enough stocks must be retained
in case even higher price levels are reached.

The problem may also be seen as that of predicting the point where the stock
price reaches a maximum. We may think of a set of experts, each with its own
selling trigger as a function of market conditions, where the job of the algorithm
is to choose the best expert. This casts the problem in the best expert and
regret minimization frameworks. Such a formulation turns out to be equivalent
to a conventional regret minimization algorithm working with stock and cash,
combined with a one-way trading mechanism.

Our algorithm thus contains both a regret minimization element and a one-
way trading element. This combination will enable us to bound the regret w.r.t.
stock prices over the whole price path of the stock. This is in contrast to perform-
ing conventional regret minimization, which would only bound the regret w.r.t.
the final stock price. At the same time, this approach is also a generalization of
regret minimization with stock and cash, because by picking an inactive one-way
trading element, we can obtain an ordinary regret minimization algorithm.

We define our trading algorithm using two parameters, a one-way trading
rule and a regret minimization rule. Intuitively, the one-way trading rule will
move funds gradually from stock to cash, while the regret minimization rule will
try to follow whichever asset is performing better, stock or cash (using a regret
minimization algorithm).

The one-way trading rule is defined by a function h mapping histories to
[0, 1]. We require that h be monotonically non-increasing along a price path,
i.e., if rt is a prefix of rt+1 then h(rt) ≥ h(rt+1). In addition, h will start at 1,
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i.e., h(r0) = 1. In the algorithm we will use the notation Ht = h(rt−1), so that
1 = H1 ≥ H2 ≥ . . . ≥ 0, and H = (H1, . . . , HT+1). If we set Ht = 1 for every t,
we will essentially not transfer funds from stock to cash.

The regret minimization rule performs regret minimization between stock and
cash. It is defined by the update equations ws,t+1 = ws,tf(rt), and wc,t+1 = wc,t,
where f : ∪t≥1Rt → R+. In what follows, we use f(rt) = 1 + ηrt, which is the
regret minimization rule of the Polynomial Weights algorithm [5], as adapted
in [11]. We will require that η ∈ [1, ηmax], where ηmax = 1−2R

2R(1−R) , and that

R < 1 − 1/
√

2 ≈ 0.3. In the next section we will show that η = 1 has the
interpretation of a buy and hold strategy, namely, the regret minimization rule
maintains its initial allocation of stock and cash. For convenience, we denote
g(rt) =

∏t
u=1 f(ru), for the accumulated update of f .

We now give the exact definition of our family of trading algorithms. Initially,
wc,1, ws,1 > 0, and for t ≥ 1,

ws,t+1 = ws,t
Ht+1

Ht
f(rt) = ws,1Ht+1g(rt) ,

wc,t+1 = wc,t + ws,1(Ht −Ht+1)g(rt) = wc,t + ws,tf(rt) − ws,t+1 .

Recall that a trading algorithm invests a fraction ws,t/(ws,t + wc,t) of assets
in stock, and the rest in cash. We assume that initially, V0 = 1. The following
lemma relates the current weights to the initial weights, using the stock price,
the variation parameter Q and the one-way trading rule.

Lemma 2. For every η ∈ [1, ηmax],

ws,t+1 ≥ Ht+1ws,1S
η
t e

−η(η−1)Q ,

wc,t+1 ≥ wc,1 + ws,1e
−η(η−1)Q

t∑
u=1

(Hu −Hu+1)Sη
u .

Proof. We first observe that for every 1 ≤ τ ≤ T , since g(rτ ) =
∏τ

u=1 f(ru) =∏τ
u=1(1 + ηru), we have that

ln g(rτ ) =
τ∑

u=1

ln(1 + ηru) ≥ η

τ∑
u=1

ln(1 + ru) − η(η − 1)
τ∑

u=1

r2u

= η lnSτ − η(η − 1)
τ∑

u=1

r2u ≥ lnSη
τ − η(η − 1)Q = lnSη

τ e
−η(η−1)Q ,

where the first inequality uses the fact that for every η ∈ [1, ηmax] and r > −R,
ln(1 + ηr) ≥ η ln(1 + r) − η(η − 1)r2 (see [11]). Thus, for every 1 ≤ τ ≤ T ,
g(rτ ) ≥ Sη

τ e
−η(η−1)Q. We therefore have that

ws,t+1

ws,1
=

t∏
u=1

ws,u+1

ws,u
=

t∏
u=1

Hu+1

Hu
f(ru) =

Ht+1

H1
g(rt) ≥ Ht+1S

η
t e

−η(η−1)Q ,
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for the weight of stock, and

wc,t+1 = wc,1 +
t∑

u=1

(wc,u+1 − wc,u) = wc,1 + ws,1

t∑
u=1

(Hu −Hu+1)g(ru)

≥ wc,1 + ws,1

t∑
u=1

(Hu −Hu+1)Sη
ue

−η(η−1)Q

= wc,1 + ws,1e
−η(η−1)Q

t∑
u=1

(Hu −Hu+1)Sη
u ,

for the weight of cash. Both inequalities used our lower bound on g(rτ ). 	

The following theorem lower bounds the profit of the algorithm in terms of H ,
and facilitates the proof of (α, β) multiplicative regret results for given one-way
trading rules.

Theorem 4. For every η ∈ [1, ηmax],

VT ≥
(
pc,1 + ps,1e

−η(η−1)Q(
T∑

t=1

(Ht −Ht+1)S
η
t +HT+1S

η
T )

) 1
η

.

Proof. We have that

ln
WT+1

W1
=

T∑
t=1

ln
Wt+1

Wt
=

T∑
t=1

ln
wc,t+1 + ws,t+1

Wt
=

T∑
t=1

ln
wc,t + ws,tf(rt)

Wt

=
T∑

t=1

ln
wc,t + ws,t(1 + ηrt)

Wt
=

T∑
t=1

ln(1 + ηps,trt)

=
T∑

t=1

ln
(

1 + η

(
Vt

Vt−1
− 1
))

≤
T∑

t=1

η ln
Vt

Vt−1
= η lnVT ,

where the inequality uses the fact that for every η ∈ [1, ηmax] and r > −R,
ln(1 + ηr) ≤ η ln(1 + r) (see [11]). On the other hand, we have that

ln
WT+1

W1
= ln

wc,T+1 + ws,T+1

W1

≥ ln

(
1
W1

(
wc,1 + ws,1e

−η(η−1)Q

(
T∑

t=1

(Ht −Ht+1)S
η
t +HT+1S

η
T

)))

= ln

(
pc,1 + ps,1e

−η(η−1)Q

(
T∑

t=1

(Ht −Ht+1)S
η
t +HT+1S

η
T

))
,

where the inequality is by Lemma 2. Together, we have that

η lnVT ≥ ln

(
pc,1 + ps,1e

−η(η−1)Q

(
T∑

t=1

(Ht −Ht+1)S
η
t +HT+1S

η
T

))
,

and, rearranging, we get the desired result. 	
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A Price-Oriented Rule and Bound. The one-way trading rule presented in
this subsection is reminiscent of the simple algorithm APS in that it depends
only on the maximal price so far, Mt. Like APS , unless the price is at an all-time
high, this rule does not trigger a sale of stocks, i.e., Ht+1 = Ht. However, the
combined trading algorithm may still sell stocks at any price level due to the
regret minimization rule.

Lemma 3. Using Ht = ln(M/μt−1)/ ln(M/K), where μt = max(K,Mt), the
algorithm achieves an (α, β) multiplicative regret with α = p

1/η
c,1 , and

β = min

⎧⎨⎩p
1
η

c,1

K
,

(
ps,1e

−η(η−1)Q

η ln(M/K)

) 1
η

⎫⎬⎭ .

Proof. From Theorem 4 we have that

VT ≥
[
pc,1 + ps,1e

−η(η−1)Q

(
T∑

t=1

(Ht −Ht+1)S
η
t +HT+1S

η
T

)] 1
η

. (1)

Since H1 ≥ . . . ≥ HT+1 ≥ 0, we have that VT ≥ p
1/η
c,1 = α, which proves the α

part of the (α, β) multiplicative regret. For the β part, we consider two cases. If
MT ≤ K, then VT ≥ p

1/η
c,1 ≥ p

1/η
c,1 K

−1MT ≥ βMT , as required. We now assume
MT > K. From Equation (1) we get

VT ≥
(
pc,1 + ps,1e

−η(η−1)Q 1
ln(M/K)

T∑
t=1

Sη
t ln

μt

μt−1

) 1
η

, (2)

by definition of Ht and using the fact that HT+1 ≥ 0. The values μt form a
non-decreasing sequence, and we have that μT = MT > K = μ0. Let μη

T = xl >
xl−1 > . . . > x0 = μη

0 be the distinct values of μη
t , 0 ≤ t ≤ T , for some l ≥ 1.

Note that Sη
t ln μt

μt−1
= 0 if μt = μt−1, and Sη

t ln μt

μt−1
= μη

t ln μt

μt−1
= 1

η ·μη
t ln μη

t

μη
t−1

otherwise. Therefore,

η

T∑
t=1

Sη
t ln

μt

μt−1
=

l∑
i=1

xi ln
xi

xi−1
≥ xl − x0 = μη

T − μη
0 = Mη

T −Kη ,

where the inequality is true since for every zn > . . . > z0 > 0, we have that∑n
i=1 zi ln(zi/zi−1) ≥ zn − z0. Plugging this into Equation (2) gives

VT ≥
(
pc,1 +

ps,1e
−η(η−1)Q

η ln(M/K)
(Mη

T −Kη)
) 1

η

.

Denoting γ = ps,1e−η(η−1)Q

η ln(M/K) , we have

VT ≥ ((pc,1 − γKη) + γMη
T )

1
η =
(
pc,1 − γKη

Mη
T

+ γ

) 1
η

·MT .
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If pc,1 − γKη ≥ 0, then VT ≥ γ1/ηMT ≥ βMT , as required. Otherwise, since
MT > K, we have that

(
pc,1 − γKη

Mη
T

+ γ

) 1
η

≥
(
pc,1 − γKη

Kη
+ γ

) 1
η

=
p

1
η

c,1

K
,

and, therefore, VT ≥ (p1/η
c,1 /K) ·MT ≥ βMT , and the proof is complete. 	


This multiplicative regret result implies a new bound on LC(K,T ).

Theorem 5. For η ∈ [1, ηmax], LC(K,T ) ≤ (Kη + Sη
0ηe

η(η−1)Q ln M
K )1/η −K.

Proof. Recall that S0 = 1. Combining Lemmas 1 and 3, we have that

LC(K,T ) ≤ 1
min(α/K, β)

−K ,

where α = p
1/η
c,1 and β = min(p1/η

c,1 /K, γ
1/η), denoting γ = ps,1e−η(η−1)Q

η ln(M/K) . Since

α/K ≥ β, we have LC(K,T ) ≤ 1/β − K = max(Kp
−1/η
c,1 , γ−1/η) − K. We

now optimize for pc,1 = 1 − ps,1. The term Kp
−1/η
c,1 is decreasing in pc,1, while

the term γ−1/η is increasing in pc,1. Thus, to minimize the bound, we would
like to pick pc,1 such that Kp

−1/η
c,1 = γ−1/η. It is easy to verify that pc,1 =

(1 + K−ηηeη(η−1)Q ln(M/K))−1 satisfies this requirement, and is also in [0, 1],
and thus a valid choice. Therefore,

LC(K,T ) ≤ Kp
− 1

η

c,1 −K = K ·
(
1 +K−ηηeη(η−1)Q ln(M/K)

) 1
η −K

=
(
Kη + ηeη(η−1)Q ln(M/K)

) 1
η −K . 	


Bounds Based on Competitive Ratio. For every one-way trading rule h,
and every η ∈ [1, ηmax], we may define

ρh(η) = sup
Π

Mη
T∑T

t=1(Ht −Ht+1)S
η
t +HT+1S

η
T

.

Namely, ρh(η) is the competitive ratio of h w.r.t. the sequence {Sη
t }

T
t=1. Assume

ρ̄h is a known upper bound on ρh, so ρ̄h(η) ≥ ρh(η) for every η ∈ [1, ηmax] (if ρh

is known explicitly, then ρ̄h = ρh). We next bound LC(K,T ) in terms of ρ̄h(η).

Theorem 6. Let h be the one-way trading rule used in the trading algorithm.
For every η ∈ [1, ηmax], there is a choice of pc,1 for which the trading algorithm
has a (βK, β) multiplicative regret, and, therefore, LC(K,T ) ≤ 1/β −K, where

β =
(
Kη − Sη

0 + Sη
0 e

η(η−1)Qρ̄h(η) (1 − (K/M)η)
1 − (S0/M)η

)− 1
η

.
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Proof. Recall that S0 = 1. Denote b = e−η(η−1)Qρ̄h(η)−1 and p = pc,1 for
convenience. By definition of ρ̄h(η) and by Theorem 4,

VT ≥ (p+ (1 − p)e−η(η−1)Qρ̄h(η)−1Mη
T )

1
η = (p+ (1 − p)bMη

T )
1
η .

Thus, we have that VT ≥ (p+ (1 − p)b)1/η = (p(1 − b) + b)1/η, and, in addition,

VT ≥ MT

(
pM−η + (1 − p)b

) 1
η = MT

(
p
(
M−η − b

)
+ b
) 1

η .

We therefore have an (α, β) multiplicative regret with α = (p(1 − b) + b)1/η and
β = (p(M−η − b) + b)1/η. By Lemma 1, LC(K,T ) ≤ 1

min(α/K,β) − K. Define

p0 = (Kη−1)b
(Kη−1)b+1−(K/M)η . Since 1 ≤ K < M , we have that p0 ∈ [0, 1], so we may

pick p = p0. It can be easily verified that, given this choice, α/K = β, and,
therefore, LC(K,T ) ≤ 1/β −K, and

β =
(
p0(M−η − b) + b

) 1
η =
(
Kη − 1 + 1

b (1 − (K/M)η)
1 −M−η

)− 1
η

=
(
Kη − 1 + eη(η−1)Qρ̄h(η)(1 − (K/M)η)

1 −M−η

)− 1
η

. 	


For η = 1, the above bound becomes simpler:

Corollary 1. If η = 1, then LC(K,T ) ≤ S0(ρ̄h(1) − 1) M−K
M−S0

.

Setting Ht ≡ 1, the principle used in the proof of Theorem 6 can be utilized to
prove a variation on the upper bound given in [11] for C(K,T ).

Theorem 7. For every η ∈ [1, ηmax],

C(K,T ) ≤
(
Kη + Sη

0 e
η(η−1)Q(1 − (K/M)η)

) 1
η −K .

5 Discussion of the Bounds

Direction of Trading: One-Way versus Two-Way. The algorithm family
of Section 4 combines regret minimization and one-way trading components. We
would like to show that in general, this results in two-way trading algorithms,
although we may set the parameter η so as to obtain a one-way trading algorithm.
The analysis applies also to the trading algorithm of [11], which corresponds to
the special case where the one-way trading component is inactive, i.e., Ht ≡ 1.

The dynamics of our algorithms are an interplay between the dynamics of
their two components. However, whenever Ht+1 = Ht, the only active element is
the regret minimization component f(rt), making the dynamics easier to char-
acterize. Note that for any h, simply cashing in less frequently can guarantee
that Ht+1 = Ht often, without changing the essential workings of the algorithm.
For Ht = ln(M/μt−1)

ln(M/K) , the price-oriented rule used in Theorem 5, we have that
Ht+1 = Ht if the stock price is not at a new all-time high. The following claim
gives a characterization of the direction of trading.
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Claim. For any f(rt), if Ht+1 = Ht, then the sign of f(rt) − 1 − rt determines
the direction of trading at time t + 1. If f(rt) = 1 + ηrt, then for η = 1 the
algorithm is one-way trading; for η > 1, if Ht+1 = Ht, the algorithm buys stocks
when prices rise and sells stocks when prices drop.

Relation to the Search and One-Way Trading Problems. Any one-way
trading algorithm h may be used in our configuration. In particular, Theorem 6
shows how the competitive ratio characteristics of h determine the multiplica-
tive regret of our algorithm. In particular, it shows that improving ρh(η), the
competitive ratio of h w.r.t. the sequences {Sη

t }
T
t=1, improves the multiplicative

regret of the two-way trading algorithm.
An optimal competitive ratio one-way trading algorithm is derived in [12],

in a scenario where only an upper bound M and a lower bound M/ϕ on the
stock price are known, and T trades are allowed. The optimal competitive ratio
ρ∗ = ρ∗(T, ϕ) is defined by (ϕ−1)(1−ρ∗/T )T +1 = ρ∗. Equivalently, this implies
an (α,β) multiplicative regret with β = 1/ρ∗.

In our model we deviate in two important ways from their model. First, we
introduce an additional parameter that bounds the quadratic variation, Q, and
second, we allow for two-way trading. Therefore, it is not surprising that for
certain settings we may improve on their optimal competitive ratio. Denoting h
for the optimal algorithm, we can show that whenever ln(ρh(1))−ρ′h(1)/ρh(1) >
Q, our trading algorithm, using specific parameters and h as the one-way trading
rule, has a better competitive ratio than h. In general, bigger values of ϕ and
smaller values of Q make for bigger improvements.

Comparison to the Simple Bounds. We now show that the price-oriented
bound of Theorem 5 is superior to the bounds of the simple algorithms of Sub-
section 4.1. For algorithms ATS and APS , which are clearly one-way trading, we
will show that the price-oriented bound is superior even when we set η = 1 (and
thus have a one-way trading algorithm).

The bound for APS is 1 + �log2(M/K)�, while, for η = 1, Theorem 5 gives a
bound of ln(M/K). We have that

ln(M/K) = log2(M/K) · ln 2 ≈ 0.69 log2(M/K) < 1 + �log2(M/K)� .

If we make no extra assumptions on the growth of Q over time, then the bound
of Theorem 5 is superior to the call option-based bound of ATC , where we use
the bound of Theorem 7 on the price of call options. This is summarized in the
following lemma.

Lemma 4. If T > 1, then for any η ∈ [1, ηmax],(
Kη + ηeη(η−1)Q ln

M

K

) 1
η

−K < T

[(
Kη + eη(η−1)Q

(
1 −
(
K

M

)η)) 1
η

−K

]
.
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Finally, we observe that for η = 1, the r.h.s. of the lemma is smaller than T , the
bound of ATS .3

Comparison to BCRP Approaches. The problem of pricing lookback op-
tions may be viewed as having a reference class of n = T + 1 alternative strate-
gies, namely, holding cash or selling the stock on some day t, for 1 ≤ t ≤ T .
Working with this simple reference class, we can achieve better regret bounds
than those given w.r.t. superior benchmarks such as the BCRP. Consider a
näıve buy and hold algorithm that initially divides capital equally between
the alternative strategies, performing no further action. This algorithm clearly
has a regret bound of lnn w.r.t. the log returns of any of the alternatives.
In comparison, the universal portfolio’s (optimal) bound w.r.t. the BCRP is
n−1

2 ln 2T + ln Γ (1/2)n

Γ (n/2) + o(1) (see, e.g., [4]). In the case of lookback options, we
get an Ω(T ) regret bound, which grows arbitrarily large as the trading frequency
increases. The problematic dependence on T persists even if n is small, for ex-
ample, in the case of call options, where n = 2 (the alternatives are holding
cash or holding the stock). A different algorithm presented by Hazan and Kale
[14] has regret bounds which depend on the quadratic variability4 of the single
period returns. Their bound is a great improvement over the previous bound,
under realistic conditions where the quadratic variability is much smaller than
T . However, it is still lower bounded by the näıve bound of lnn, for every n.
Therefore, the regret bounds w.r.t. the BCRP cannot be used directly to achieve
interesting upper bounds on the prices of lookback options or call options.

6 Empirical Results

In order to examine our bounds empirically, we consider the S&P 500 index data
for the years 1950-2010. (The results are plotted in Figure 1.) We computed a
price for a 1-year lookback using the price-oriented rule and bound (see Sub-
section 4.2), with K = 1, R = 0.15, Q = 0.1, and M = 1.5. These R, Q, and
M values hold for all years but two in our test. In addition, for each year we
computed the payoff of the lookback option, and ran our algorithm with the
price-oriented rule and computed its profit. In our calculations we used a single
value of η, which is the value that minimized our price bound. The BSM pric-
ing [7] was computed for comparison, using the average volatility for the whole
data, and assuming zero risk-free interest. Note that the stock prices for each
year were normalized so that S0 = 1 at the beginning of the year.

An important issue is to compare the net payoff to the lookback option price.
The net payoff is the difference between the payoff to the option holder (always
non-negative) and the profit (or loss) the algorithm made in trading. We observe
3 It is easy to observe that our bound outperforms the bound derived using [10] for

small values of Q and large values of K.
4 Their definition is different from the quadratic variation Q which we use. In partic-

ular, their variability is centered around the average value of the daily returns, and
is similar to the variance of random variables.
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Fig. 1. The plot gives a breakdown of the option writer’s cash flow in terms of option
payoff, option price, and profit from the algorithm’s trading. Data is calculated for
1-year lookbacks on the S&P 500 index for the years 1950-2010, with K = 1, R = 0.15,
Q = 0.1, and M = 1.5. The option writer makes a profit if the payoff minus profit line
is below the option price line. (Note that the “hindsight” empirical price is 0.314 while
our bound gives 0.399.) The calculated BSM price is 0.129.

that our lookback option price dominates the net payoff for every year, with our
option price at about 0.4 and the maximal net payoff at about 0.3.

We conclude with a comparison of our two different bound derivations for
different values of the strike price K. One derivation is the price-oriented bound
of Theorem 5, and the other is the competitive ratio-based bound of Theorem
6. For the latter bound we use the optimal one-way trading rule of [12]. We set
R = 0.2, Q = 0.2, and M = 2. In addition, we set T = 252 trading days and a
lower bound of 0.5 on the stock price for the optimal one-way trading bound. For
the price-oriented rule, we give both the bound with optimal η and the bound
with η = 1. For the optimal one-way trading rule, η = 1 was always the best
choice for this setting.

It can be seen that for the price-oriented rule, working with the optimal η is
better than merely one-way trading (η = 1). For lower values of K, the optimal
one-way trading rule does better, whereas for higher values of K, the price-
oriented rule does better.

K 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Opt. One-Way Trading Rule 0.602 0.541 0.481 0.421 0.361 0.301 0.241 0.180 0.120
Price-Oriented Rule 0.687 0.586 0.493 0.408 0.330 0.259 0.195 0.137 0.086

Price-Oriented Rule, η = 1 0.693 0.598 0.511 0.431 0.357 0.288 0.223 0.163 0.105
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Abstract. We study the online decision problem in which there are T
steps to play and n actions to choose. For this problem, several algorithms
achieve an optimal regret of O(

√
T ln n), but they all require about T n

states, which one may not be able to afford when n and T are very large.
We are interested in such large scale problems, and we would like to
understand what an online algorithm can achieve with only a bounded
number of states. We provide two algorithms, both with mn−1 states,
for a parameter m, which achieve regret of O(m + (T/m) ln(mn)) and
O(n

√
m+ T/

√
m), respectively. We also show that any online algorithm

with mn−1 states must suffer a regret of Ω(T/m), which is close to what
our algorithms achieve.

1 Introduction

In our daily life, there are situations in which we have to make repeated decisions
without knowledge of the future. This can be modeled as the so-called online
decision problem. In this problem, there are T steps to play and n actions to
choose, for some parameters T and n. At each step, we have to choose an action
to play before knowing its loss. After choosing the action, we suffer a loss corre-
sponding to that action and get to know the loss vector, consisting of the loss of
each action, of that step. We would like to have an online algorithm with a small
regret, which is the difference between the total loss of the algorithm and that of
the best fixed action in hindsight. This problem has become an important topic
in machine learning research, and it has found applications in other areas such
as algorithm design, game theory, optimization, and statistics. More information
can be found in the survey papers such as [9, 2, 4] or the book [5], and some
recent works include [10, 1, 3, 7].

For simplicity of presentation, we will focus in this paper on the special case
of binary loss values; it is not hard to extend our results to the general case.
For the case of binary loss values, several algorithms are known to achieve a
regret of O(

√
T lnn), which is optimal as a matching lower bound is also known

(see e.g. [5]). One well-known algorithm is the multiplicative update algorithm
[11, 8] which works as follows. At each step, the algorithm maintains n weights
(w1, . . . , wn), one for each action, and plays action i with probability wi/Z where
Z is the sum of the n weights. After receiving the loss vector (�1, . . . , �n) of that

J. Kivinen et al. (Eds.): ALT 2011, LNAI 6925, pp. 249–261, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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step, with �i ∈ {0, 1} being the loss of action i, it updates the i’th weight,
for each i, by multiplying it by the factor (1 − η)�i for some learning rate η.
Although this algorithm achieves optimal regret, it is memory demanding in
the following sense. Note that the algorithm needs to keep a separate weight
for each action, and each weight can take T different values throughout the T
steps, which amounts to a total of T n possible values for it to keep track of. We
are interested in large scale problems arising from complex situations, in which
there are a large number of actions to choose and a large number of steps to
play. In such situations, the algorithm will require a huge amount of memory,
which one may not be able to afford. In fact, other algorithms which achieve the
same regret bound all have this memory problem. Therefore, one may wonder
if it is possible to have a more memory-efficient algorithm which can achieve a
regret close to O(

√
T lnn). More generally, given a memory bound, what is the

lowest regret achievable by an online algorithm?
We model a memory-bounded online algorithm by a finite state automata

as follows. It has a finite set S of states, with each state associated with a
probability distribution, and it also has a state transition function τ , which
takes a state together with a loss vector and produces a new state. At each step,
the algorithm is in some state s ∈ S and it plays according to the probability
distribution associated with that state. After receiving the loss vector � of that
step, it then transits to the new state τ(s, �), and the process continues. Here,
we only consider the case that the transition function τ is deterministic but the
action chosen at each state is randomized, which is the case of most previous
algorithms, such as the multiplicative update algorithm [11, 8] and the gradient
descend algorithm [13].

In this paper, we provide two algorithms with mn−1 states, for a parameter
m. Our first algorithm is based on the multiplicative update algorithm and
achieves a regret of O(m+(T/m) ln(mn)), which is O((T/m) ln(mn)) when m =
O(

√
T ) (for a larger m, one can simply use O(

√
T ) states and ignore additional

ones). This means that the algorithm using T (n−1)/2 states can already achieve
a regret of O(

√
T log(Tn)) which is close to the optimum. Our second algorithm

is based on the gradient descend algorithm and achieves a regret of O(n
√
m +

T/
√
m), which is O(T/

√
m) when m = O(T/n) (again, one can ignore additional

states for a larger m). Note that the regrets achieved by our two algorithms
are incomparable, but the regret of our first algorithm is smaller when n <
ec

√
m/m for some constant c. Our two algorithms are natural modifications of

existing algorithms, and one may wonder if a more sophisticated modification
or a completely new algorithm can actually achieve a much smaller regret. We
provide a negative answer to this question by showing that any online algorithm
with mn−1 states must suffer a regret of Ω(T/m), which is close to what our
two algorithms achieve.

A line of works related to ours is that on universal prediction of individual
sequences; see [12, 6] and the reference therein. The most relevant result seems
to be that of Meron and Feder [12], who considered the problem of repeatedly
predicting the next bit of an individual binary sequence. This corresponds to
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our case in which there are only two actions and the loss vector at each step
is either (0, 1) or (1, 0) (loss 1 for incorrect prediction). They provided an algo-
rithm with m states which achieves a regret of T/(2m) and they also showed
a matching lower bound. Moreover, they considered measuring regret against a
larger comparison class consisting of order-L Markov predictors. Each predictor
in the class is a special type of online algorithm with 2L states, which has the
L most recent bits in the sequence as its current state. They provided an online
algorithm with m2L

states which achieves a regret of O(T/m), and they showed
an Ω(T/(m2L)) regret lower bound for any such algorithm. One may try to re-
late their results to ours by seeing each predictor in their comparison class as an
action in our case. Note that even if one restricts the prediction at each state
to be deterministic, there are 22L

such predictors, and using this number as n
in our results will give much larger regret bounds than theirs. The reason for
this discrepancy is that these actions (Markov predictors) are in fact correlated
in the sense that the loss received by one has dependence on those received by
others, which is utilized by [12] to obtain a smaller regret, while our large regret
lower bound relies on the independence among actions, which gives us freedom
to choose more adversarial loss vectors. This is related to works on structured
expert classes, in which structures of experts (or actions) may be exploited to
achieve smaller regret; see for example Chapter 5 in [5] for more details.

Finally, we would like to remark that our setting seems related to that of
streaming algorithms, which are also concerned about the memory issue but
with the goal of computing some functions (approximately), instead of making
repeated decisions for minimizing the regret. It may be possible to use ideas from
streaming algorithms to design randomized online algorithms (with randomized
state transition functions) with a smaller regret. However, we have no success
so far, as the existing streaming algorithms for related functions we are aware of
all seem to have large approximation errors which result in regret bounds larger
than those of our two algorithms. We leave the exploration of this direction as
our future work.

2 Preliminaries

Notations and definitions. Let N denote the set of nonnegative integers and Z+

the set of positive integers. For n ∈ Z+, let [n] denote the set {1, 2, . . . , n}. For
any real number r, let �r� denote the floor of r, which is the largest integer not
exceeding r. Given an n-dimensional vector p and an index i ∈ [n], let pi denote
the component of p in the i’th dimension. Given two n-dimensional vectors p
and q, their inner product is defined by 〈p, q〉 =

∑
i∈[n] piqi.

Distributions. We consider probability distributions over a set of n elements,
which can also be seen as n-dimensional vectors in [0, 1]n. Let P denote the set
which contains all such distributions:

P =

⎧⎨⎩(p1, . . . , pn) ∈ [0, 1]n :
∑
i∈[n]

pi = 1

⎫⎬⎭ .
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Given two distributions p, q ∈ P , their L2 distance is defined by ‖p − q‖2 =√∑
i∈[n](pi − qi)2 and their L1 distance by ‖p− q‖1 =

∑
i∈[n] |pi − qi|. We will

need the following simple fact.

Fact 1. For any p, q ∈ P, ‖p− q‖1 = 2
∑

i∈[n]:pi≥qi
(pi − qi).

Online decision problem. We study the following online decision problem, in
which there are T steps to play, there is a fixed set [n] of actions to choose at
each step, and the loss values are all binary. At step t ∈ [T ], an online algorithm
A must choose an action to play according to some distribution p(t) ∈ P . After
that, A receives a loss vector �(t) ∈ {0, 1}n and suffers an expected loss of
〈p(t), �(t)〉 =

∑
i∈[n] p

(t)
i �

(t)
i at that step. The standard way for evaluating the

performance of A is to compare its total expected loss to that of the best offline
algorithm which can see all the loss vectors but has to play a fixed action (which
has the same effect as a fixed probability distribution) for all T steps. The
difference is called the regret of A, denoted as RA, which is∑

t∈[T ]

〈p(t), �(t)〉 − min
i∈[n]

∑
t∈[T ]

�
(t)
i =

∑
t∈[T ]

〈p(t), �(t)〉 − min
p∈P

∑
t∈[T ]

〈p, �(t)〉.

In this paper, we consider the constraint that the online algorithm has only a
bounded number of states, which can be seen as a finite automata as follows.
Each such algorithm has a finite set S of states, with each state associated with
some probability distribution in P , and it has some state transition function
τ : S×{0, 1}n → S. At each time step, the algorithm is in some state s ∈ S, and
it plays the probability distribution associated with s. Then after seeing a loss
vector �, the algorithm transits to the state τ(s, �), and the process continues.

3 Our First Algorithm

In this section, we present our first algorithm, and the result is the following.

Theorem 1. For any m,n ∈ Z+ such that n ≥ 2 and m ≥ 6 ln(mn), there
exists an algorithm A1 with at most mn−1 states which achieves a regret of
O(m+ (T/m) ln(nm)).

The algorithm A1 is based on the multiplicative update algorithm [11, 8], but
now with mn−1 states, the algorithm can only play according to that number
of distributions. Each state of A1 consists of n counters, one for each action.
Each counter is used to keep track of the accumulated loss received so far by the
corresponding action, but we only allow each counter to go up to m/3 in order
to have a small number of states (assume for ease of presentation that m/3 is an
integer). At step t ∈ [T ], the algorithm starts from a state s(t) = (s(t)1 , . . . , s

(t)
n )

and then transits to some state s(t+1) = (s(t+1)
1 , . . . , s

(t+1)
n ) after receiving a

loss vector �(t). The multiplicative update algorithm would just set s(t+1) to
ŝ(t+1) = s(t+1) + �(t), but we need to perform some rounding in order to keep
each counter bounded. Formally, our algorithm is described as follows.
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Algorithm A1: It starts from the state s(1) = (0, . . . , 0). At step t ∈ [T ], it plays
according to the distribution p(t) = (p(t)

1 , . . . , p
(t)
n ), where

p
(t)
i = (1 − η)s

(t)
i /Z(t), with Z(t) =

∑
j∈[n]

(1 − η)s
(t)
j ,

and then after receiving the loss vector �(t), it updates its state as follows.

– Let ŝ(t+1) = s(t) + �(t). That is, ŝ(t+1)
i = s

(t)
i + �

(t)
i for every i ∈ [n].

– If ŝ(t+1)
i ≥ 1 for every i ∈ [n], then let s(t+1)

i = ŝ
(t+1)
i − 1 for every i ∈ [n].

Otherwise, let s(t+1)
i = min{ŝ(t+1)

i ,m/3} for every i ∈ [n].

Let us bound the number of states of A1. Note that for any t, at least one of the
n counters in s(t) has the value 0, while each counter takes an integral value in
the range from 0 to m/3. Thus, the total number of states is at most(

n

1

)
· (1 +m/3)n−1 =

(
n1/(n−1)

)n−1

· (1 +m/3)n−1 ≤ mn−1,

for n ≥ 2 and m ≥ 6 (which follows from the condition that m ≥ 6 ln(mn)).
Next, let us analyze the regret of A1. Let action i∗ be the best fixed action

which an offline algorithm can choose in hindsight. Then the regret of A1 is

RA1 =
∑
t∈[T ]

�
(t)
A1

−
∑
t∈[T ]

�
(t)
i∗ , where �(t)A1

=
∑
i∈[n]

p
(t)
i �

(t)
i .

Our key lemma is the following, which gives a bound on the regret of A1 at each
step.

Lemma 1. For any t ∈ [T ] and any η ∈ (0, 1/2),

�
(t)
A1

− �
(t)
i∗ ≤ 1

η

(
ln

1

p
(t)
i∗

− ln
1

p
(t+1)
i∗

+ η2 + ηne−ηm/3

)
.

Using this lemma and choosing η = 3
m ln(nm), which is less than 1/2 with

m ≥ 6 ln(mn), we can bound the total regret of A1 over T steps by

∑
t∈[T ]

(
�
(t)
A1

− �
(t)
i∗

)
≤
∑
t∈[T ]

1
η

(
ln

1

p
(t)
i∗

− ln
1

p
(t+1)
i∗

+ η2 + ηne−ηm/3

)

≤ 1
η

ln
1

p
(1)
i∗

+
(
η + ne−ηm/3

)
T

=
m lnn

3 ln(nm)
+
(

3 ln(nm)
m

+
1
m

)
T

≤ m

3
+

4 ln(nm)
m

T.
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To complete the proof of Theorem 1, it remains to prove Lemma 1, which we do
next. Consider the distribution p̂(t+1) = (p̂(t+1)

1 , . . . , p̂
(t+1)
n ), where

p̂
(t+1)
i = (1 − η)ŝ

(t+1)
i /Ẑ(t+1), with Ẑ(t+1) =

∑
j∈[n]

(1 − η)ŝ
(t+1)
j .

Let us write

ln
1

p
(t+1)
i∗

− ln
1

p
(t)
i∗

=

(
ln

1

p̂
(t+1)
i∗

− ln
1

p
(t)
i∗

)
+

(
ln

1

p
(t+1)
i∗

− ln
1

p̂
(t+1)
i∗

)

= ln
p
(t)
i∗

p̂
(t+1)
i∗

+ ln
p̂
(t+1)
i∗

p
(t+1)
i∗

. (1)

We bound the two terms in (1) by the following two lemmas.

Lemma 2. For any t ∈ [T ] and any η ∈ (0, 1/2), ln p
(t)
i∗

p̂
(t+1)
i∗

≤ −η(�(t)A1
− �

(t)
i∗ )+η2.

Lemma 3. For any t ∈ [T ], ln p̂
(t+1)
i∗

p
(t+1)
i∗

≤ ηne−ηm/3.

From these two lemmas, we have

ln
1

p
(t+1)
i∗

− ln
1

p
(t)
i∗

≤ −η(�(t)A1
− �

(t)
i∗ ) + η2 + ηne−ηm/3,

which implies Lemma 1. It remains to prove the two lemmas, which we do next.

Proof. (of Lemma 2) This follows from existing analyses for the multiplicative
update algorithm, but we provide the proof here for completeness. Note that

p
(t)
i∗

p̂
(t+1)
i∗

=
(1 − η)s

(t)
i∗ /Z(t)

(1 − η)ŝ
(t+1)
i∗ /Ẑ(t+1)

=
1

(1 − η)�
(t)
i∗

· Ẑ
(t+1)

Z(t)
, (2)

since ŝ(t+1)
i∗ = s

(t)
i∗ + �

(t)
i∗ by definition. The first factor in (2) is at most eη�

(t)
i∗ +η2

since η ∈ (0, 1/2) and �
(t)
i∗ ∈ {0, 1}, while the second factor in (2) is

∑
i∈[n]

(1 − η)s
(t)
i +�

(t)
i

Z(t)
=
∑
i∈[n]

p
(t)
i (1−η)�

(t)
i =

∑
i∈[n]

p
(t)
i (1−η�(t)i )= 1−η�(t)A1

≤ e−η�
(t)
A1 .

As a result, we have

ln
p
(t)
i∗

p̂
(t+1)
i∗

≤ ln
(
eη�

(t)
i∗ +η2

· e−η�
(t)
A1

)
= η�

(t)
i∗ + η2 − η�

(t)
A1

= −η(�(t)A1
− �

(t)
i∗ ) + η2.
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Proof. (of Lemma 3) First note that if ŝ(t+1)
i ≥ 1 for every i ∈ [n], then p̂

(t+1)
i =

p
(t+1)
i for every i ∈ [n] and we have the lemma. Thus, let us assume that ŝ(t+1)

i =
0 for some i ∈ [n]. Note that

p̂
(t+1)
i∗

p
(t+1)
i∗

=
(1 − η)ŝ

(t+1)
i∗ /Ẑ(t+1)

(1 − η)s
(t+1)
i∗ /Z(t+1)

≤ Z(t+1)

Ẑ(t+1)

since s(t+1)
i∗ ≤ ŝ

(t+1)
i∗ . Let nv be the number of i ∈ [n] such that ŝ(t+1)

i = v, and
recall that we have n0 ≥ 1 because ŝ(t+1)

i = 0 for some i ∈ [n]. Then we have
Ẑ(t+1) =

∑m/3+1
v=0 nv(1−η)v and Z(t+1) =

∑m/3
v=0 nv(1−η)v +nm/3+1(1−η)m/3,

which implies that

Z(t+1)

Ẑ(t+1)
=

u+ r(1 − η)m/3

u+ r(1 − η)m/3+1
= 1 +

ηr(1 − η)m/3

u+ r(1 − η)m/3+1
,

for some u ≥ n0(1 − η)0 ≥ 1 and r = nm/3+1 ≤ n− 1. As a result, we have

ln
p̂
(t+1)
i∗

p
(t+1)
i∗

≤ ln
(
1 + ηr(1 − η)m/3

)
≤ ηr(1 − η)m/3 ≤ ηne−ηm/3.

	

4 Our Second Algorithm

In this section, we present our second algorithm, and the result is the following.

Theorem 2. For any n,m ∈ Z+ with n ≥ 2 and m ≥ 14, there is an algorithm
A2 with at most mn−1 states which achieves a regret of O(n

√
m+ T/

√
m).

The algorithm A2 is based on the gradient descend algorithm [13], but now with
only mn−1 states, A2 can only play according to that number of probability
distributions. The idea is to reduce the resolution of probability values, so that
each is always a multiple of some value δ = 1/(kn) with k ∈ Z+. Let Qδ ⊆ P
denote such a set of probability distributions:

Qδ =

⎧⎨⎩(x1δ, . . . , xnδ) : xi ∈ N for i ∈ [n] and
∑
i∈[n]

xiδ = 1

⎫⎬⎭ . (3)

The following lemma provides a bound on the size of Qδ.

Lemma 4. For any δ = 1/(kn) with k ∈ Z+, |Qδ| =
(
kn+n−1

n−1

)
.

Proof. Note that the set Qδ has the same size as the following set:⎧⎨⎩(x1, . . . , xn) ∈ Nn :
∑
i∈[n]

xi

kn
= 1

⎫⎬⎭ =

⎧⎨⎩(x1, . . . , xn) ∈ Nn :
∑
i∈[n]

xi = kn

⎫⎬⎭ .

Thus, we have |Qδ| =
(
kn+n−1

n−1

)
. 	
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Note that when n ≥ 2 and m ≥ 14, by choosing k = �m/7� ≥ 2, we have

|Qδ| ≤
(
e(kn+ n− 1)

n− 1

)n−1

≤ (e(2k + 1))n−1 ≤ (7k)n−1 ≤ mn−1. (4)

Then we let the probability distributions played by our algorithm A2 all come
from such a set Qδ, with

δ = 1/(�m/7�n).

The following lemma shows that playing only distributions in Qδ does not affect
the regret too much as any p̂ ∈ P has some close-by distribution in Qδ.

Lemma 5. For any p̂ ∈ P, there exists some p ∈ Qδ such that |p̂i − pi| ≤ δ for
every i ∈ [n].

Proof. Note that any p̂ ∈ P can be expressed as p̂ = (x1δ + ε1, . . . , xnδ + εn),
where xi ∈ N and 0 ≤ εi < δ for every i ∈ [n]. To obtain p ∈ Qδ, with each
component a multiple of δ, we first take out all those εi’s from p̂ to obtain a
vector p̄ = (x1δ, . . . , xnδ), which is not yet a probability distribution. Note that
the sum ε =

∑
i∈[n] εi is a multiple of δ, because (

∑
i∈[n] xi)δ + ε =

∑
i∈[n] p̂i =

1 = (�m/7�n)δ is a multiple of δ. So we divide ε into r = ε/δ parts of equal
value δ, add them respectively into the first r components of p̄, and let p be
the resulting vector. Then p is a probability distribution in Qδ and satisfies the
condition that |p̂i − pi| ≤ δ for every i ∈ [n]. 	


For any p̂ ∈ P , let us write Qδ(p̂) for that close-by distribution guaranteed by
Lemma 5. The distribution our algorithm plays at each step is Qδ(p̂) for some
distribution p̂ obtained by doing a gradient descend with a projection. Formally,
our algorithm is described as follows.

Algorithm A2: It starts with an arbitrary distribution p(1) ∈ P . At step t ∈ [T ],
it plays according to the distribution p(t), and then does the following update
after receiving the loss vector �(t):

– Let p̂(t+1) = ΠP(p(t) − η�(t)) = arg minp∈P
∥∥p− (p(t) − η�(t))

∥∥
2
.

– Let p(t+1) = Qδ(p̂(t+1)).

According to the bound in (4), the size of Qδ is at most mn−1, so algorithm A2

indeed requires only that number of states. To analyze the regret of A2, we rely
on the following lemma which bounds its regret at each step. Let p∗ denote the
best fixed distribution in P which an offline algorithm can choose in hindsight.

Lemma 6. For any t ∈ [T ],〈
p(t) − p∗, �(t)

〉
≤ 1

2η

(∥∥∥p(t) − p∗
∥∥∥2

2
−
∥∥∥p(t+1) − p∗

∥∥∥2
2

)
+O

(
ηn+

1
ηmn

)
.
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Using this lemma and choosing η = 1/(n
√
m), we can bound the total regret of

A2 over T steps as

∑
t∈[T ]

〈
p(t) − p∗, �(t)

〉
≤ 1

2η

∥∥∥p(1) − p∗
∥∥∥2

2
+O

(
ηn+

1
ηmn

)
T

= O

(
n
√
m+

T√
m

)
,

since
∥∥p(1) − p∗

∥∥2
2
≤ 2. This proves Theorem 2.

It remains to prove Lemma 6. For this, let us write∥∥∥p(t+1) − p∗
∥∥∥2

2
=
∥∥∥(p̂(t+1) − p∗

)
+
(
p(t+1) − p̂(t+1)

)∥∥∥2
2

=
∥∥∥p̂(t+1) − p∗

∥∥∥2
2

+
∥∥∥p(t+1) − p̂(t+1)

∥∥∥2
2

+ 2
〈
p̂(t+1) − p∗, p(t+1) − p̂(t+1)

〉
. (5)

Next, we bound the three terms in (5). Following the analysis of Zinkevich [13],
we can bound the first term in (5) as∥∥∥p̂(t+1) − p∗

∥∥∥2
2

=
∥∥∥ΠP(p(t) − η�(t)) − p∗

∥∥∥2
2

≤
∥∥∥p(t) − η�(t) − p∗

∥∥∥2
2

=
∥∥∥(p(t) − p∗) − η�(t)

∥∥∥2
2

=
∥∥∥p(t) − p∗

∥∥∥2
2
− 2η

〈
p(t) − p∗, �(t)

〉
+ η2

∥∥∥�(t)∥∥∥2
2

≤
∥∥∥p(t) − p∗

∥∥∥2
2
− 2η

〈
p(t) − p∗, �(t)

〉
+ η2n.

Moreover, according to Lemma 5, the second term in (5) is∥∥∥p(t+1) − p̂(t+1)
∥∥∥2

2
=
∑
i∈[n]

(
p
(t+1)
i − p̂

(t+1)
i

)2

≤ nδ2,

while the third term in (5) is

2
〈
p̂(t+1) − p∗, p(t+1) − p̂(t+1)

〉
≤ 2
∑
i∈[n]

∣∣∣p̂(t+1)
i − p∗i

∣∣∣ ∣∣∣p(t+1)
i − p̂

(t+1)
i

∣∣∣
≤ 2
∑
i∈[n]

∣∣∣p̂(t+1)
i − p∗i

∣∣∣ δ
≤ 2δ

∑
i∈[n]

(
p̂
(t+1)
i + p∗i

)
= 4δ.
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By combining the above bounds, we obtain∥∥∥p(t+1) − p∗
∥∥∥2

2
≤
∥∥∥p(t) − p∗

∥∥∥2
2
− 2η

〈
p(t) − p∗, �(t)

〉
+ η2n+ nδ2 + 4δ.

With δ = O(1/(mn)), this implies that〈
p(t) − p∗, �(t)

〉
≤ 1

2η

(∥∥∥p(t) − p∗
∥∥∥2

2
−
∥∥∥p(t+1) − p∗

∥∥∥2
2

)
+O

(
ηn+

1
ηmn

)
,

which proves Lemma 6 and completes the proof of Theorem 2. 	


5 A Lower Bound

In this section, we show a lower bound on the regret for any algorithm with only
a small number of states. The result is the following.

Theorem 3. For any online algorithm A with at most mn−1 states, there exists
a sequence of T loss vectors with respect to which A has a regret of Ω(T/m).

Let us first describe the proof idea. Consider any online algorithm with a small
number of states, which can only play according to a small number of probability
distributions. We show that there exists a probability distribution q which is far
from all those distributions, and we let the offline algorithm play this fixed
distribution q. Consequently, no matter which state the online algorithm is in
at any step, the distribution it plays is always far from the distribution q which
the offline algorithm plays. This allows us to choose a loss vector for each step
which makes the online algorithm suffer a significantly larger loss than the offline
algorithm.

Now let us give the formal proof of the theorem. Consider any algorithm A
with at most mn−1 states, and let K denote the set of probability distributions
associated with these states. The following lemma guarantees the existence of a
distribution q which is far from all the distributions in K, where we now measure
the distance of two distributions by their L1 distance.

Lemma 7. There exists some q ∈ P such that for any p ∈ K, ‖p − q‖1 ≥
1/(64m).

Proof. We will show the existence of one such q = (q1, . . . , qn) in the set Qδ,
defined in (3), and now we choose

δ = 1/(8mn).

The idea is to show that Qδ contains many elements while each p ∈ K is only
close to a small number of them. With a small |K|, this would then imply that
some element of Qδ is far from all elements of K.

First, for any p ∈ K, we bound the number of elements in Qδ which are close
to p. Consider the set, denoted by B(p), which consists of those q ∈ Qδ such
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that ‖q − p‖1 ≤ 1/(64m). Note that the size of B(p) is at most the size of the
following set:

B̂(p) =

⎧⎨⎩(x1, . . . , xn) ∈ Nn :
∑
i∈[n]

∣∣∣ xi

8mn
− pi

∣∣∣ ≤ 1
64m

⎫⎬⎭
=

⎧⎨⎩(x1, . . . , xn) ∈ Nn :
∑
i∈[n]

|xi − 8mnpi| ≤
n

8

⎫⎬⎭ .

We bound the size of B̂(p) in terms of the size of the following set:

B̄(p) =

⎧⎨⎩(y1, . . . , yn) ∈ Nn :
∑
i∈[n]

yi ≤ n

8

⎫⎬⎭ ,

by using the mapping τ : B̂(p) → B̄(p) defined by τ(x1, . . . , xn) = (y1, . . . , yn)
where yi = �|xi −8mnpi|� for every i ∈ [n]. Clearly, τ(x1, . . . , xn) ∈ B̄(p) for any
(x1, . . . , xn) ∈ B̂(p), because yi ≤ |xi − 8mnpi| for each i. Moreover, at most 2n

elements of B̂(p) can be mapped to the same image by τ , because each yi can
come from at most two different values of xi. This implies that

|B(p)| ≤ |B̂(p)| ≤ 2n · |B̄(p)|.

Note that

|B̄(p)| ≤
∑

v≤�n/8�

(
v + n− 1
n− 1

)
=
(
�n/8� + n

n

)
=
(
�n/8� + n

�n/8�

)
,

where the first equality is due to the well-known equality that
∑

v≤r

(
v+n−1

n−1

)
=(

r+n
n

)
which can be easily shown by induction on r. We claim that for any n ≥ 2,(

�n/8� + n

�n/8�

)
≤ 2n−2.

This is easy to verify for �n/8� ∈ {0, 1}; for �n/8� ≥ 2, we have(
�n/8� + n

�n/8�

)
≤
(
e(�n/8� + n)

�n/8�

)�n/8�
≤
(
e

(
1 +

n

n/8 − 1

))n/8

,

which is(
e

(
1 +

8n
n− 8

))n/8

≤
(
e

(
1 +

8n
n− n/2

))n/8

= (e(1 + 16))n/8 ≤ 2n−2,

by a straightforward calculation. As a result, we have

|B(p)| ≤ 2n · |B̄(p)| ≤ 2n · 2n−2 = 4n−1.
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Then, since |K| ≤ mn−1, we have∣∣∣∣∣∣
⋃
p∈K

B(p)

∣∣∣∣∣∣ ≤
∑
p∈K

|B(p)| ≤ mn−1 · 4n−1 = (4m)n−1.

On the other hand, according to Lemma 4 with δ = 1/(kn) = 1/(8mn), we have

|Qδ| =
(
kn+ n− 1
n− 1

)
≥
(
kn+ n− 1
n− 1

)n−1

> kn−1 = (8m)n−1 > (4m)n−1.

This implies the existence of some q ∈ Qδ which is not in B(p) for any p ∈ K,
and we have the lemma. 	


With this lemma, we let the offline algorithm play this probability distribution q
for all T steps. Then we choose the T loss vectors one after one in the following
way. Suppose before step t we have chosen t−1 loss vectors for the first t−1 steps,
and the online algorithm A after receiving them enters some state associated
with some probability distribution p(t) ∈ K. Then we choose the loss vector
�(t) = (�(t)1 , . . . , �

(t)
n ) for step t such that for any i ∈ [n],

�
(t)
i =

{
1, if p(t)

i ≥ qi,
0, otherwise.

The regret of the algorithm A at step t with respect to this loss vector is∑
i∈[n]

p
(t)
i �

(t)
i −

∑
i∈[n]

qi�
(t)
i =

∑
i∈[n]

(
p
(t)
i − qi

)
�
(t)
i =

∑
i∈[n]:p

(t)
i ≥qi

(
p
(t)
i − qi

)
,

which by Fact 1 and Lemma 7 is

1
2

· ‖p(t) − q‖1 ≥ 1
2

· 1
64m

=
1

128m
.

As a result, with respect to such T loss vectors, the total regret of the algorithm
A is

∑
t∈[T ]

∑
i∈[n]

p
(t)
i �

(t)
i −

∑
t∈[T ]

∑
i∈[n]

qi�
(t)
i =

∑
t∈[T ]

⎛⎝∑
i∈[n]

p
(t)
i �

(t)
i −

∑
i∈[n]

qi�
(t)
i

⎞⎠ ≥ T

128m
.

This completes the proof of Theorem 3.
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Abstract. Many learning tasks can be viewed as sequence prediction
problems. For example, online classification can be converted to sequence
prediction with the sequence being pairs of input/target data and where
the goal is to correctly predict the target data given input data and
previous input/target pairs. Solomonoff induction is known to solve the
general sequence prediction problem, but only if the entire sequence is
sampled from a computable distribution. In the case of classification
and discriminative learning though, only the targets need be structured
(given the inputs). We show that the normalised version of Solomonoff
induction can still be used in this case, and more generally that it can
detect any recursive sub-pattern (regularity) within an otherwise com-
pletely unstructured sequence. It is also shown that the unnormalised
version can fail to predict very simple recursive sub-patterns.

Keywords: Sequence prediction, Solomonoff induction, online classifi-
cation, discriminative learning, algorithmic information theory.

1 Introduction

The sequence prediction problem is the task of predicting the next symbol, xn

after observing x1x2 · · ·xn−1. Solomonoff induction [10, 11] solves this problem
by taking inspiration from Occam’s razor and Epicurus’ principle of multiple
explanations. These ideas are formalised in the field of Kolmogorov complexity,
in particular by the universal a priori semi-measure M.

Let μ(xn|x1 · · ·xn−1) be the true (unknown) probability of seeing xn having
already observed x1 · · ·xn−1. The celebrated result of Solomonoff [10] states that
if μ is computable then

lim
n→∞ [M(xn|x1 · · ·xn−1) − μ(xn|x1 · · ·xn−1)] = 0 with μ-probability 1 (1)

That is, M can learn the true underlying distribution from which the data is
sampled with probability 1. Solomonoff induction is arguably the gold standard
predictor, universally solving many (passive) prediction problems [3, 4, 10].

However, Solomonoff induction makes no guarantees if μ is not computable.
This would not be problematic if it were unreasonable to predict sequences

J. Kivinen et al. (Eds.): ALT 2011, LNAI 6925, pp. 262–276, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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sampled from incomputable μ, but this is not the case. Consider the sequence
below, where every even bit is the same as the preceding odd bit, but where the
odd bits may be chosen arbitrarily.

00 11 11 11 00 11 00 00 00 11 11 00 00 00 00 00 11 11 (2)

Any child will quickly learn the pattern that each even bit is the same as the
preceding odd bit and will correctly predict the even bits. If Solomonoff induction
is to be considered a truly intelligent predictor then it too should be able to
predict the even bits. More generally, it should be able to detect any computable
sub-pattern. It is this question, first posed in [3, 5] and resisting attempts by
experts for 6 years, that we address.

At first sight, this appears to be an esoteric question, but consider the fol-
lowing problem. Suppose you are given a sequence of pairs, x1y1x2y2x3y3 · · ·
where xi is the data for an image (or feature vector) of a character and yi the
corresponding ascii code (class label) for that character. The goal of online clas-
sification is to construct a predictor that correctly predicts yi given xi based
on the previously seen training pairs. It is reasonable to assume that there is a
relatively simple pattern to generate yi given xi (humans and computers seem
to find simple patterns for character recognition). However it is not necessarily
reasonable to assume there exists a simple, or even computable, underlying dis-
tribution generating the training data xi. This problem is precisely what gave
rise to discriminative learning [9].

It turns out that there exist sequences with even bits equal to preceding odd bits
on which M fails to predict the even bits. On the other hand, it is known that M is
a defective measure, but may be normalised to a proper measure,Mnorm. We show
that this normalised version does eventually predict any recursive sub-pattern of
any sequence, such as that in Equation (2). This outcome is unanticipated since
(all?) other results in the field are independent of normalisation [3, 4, 8, 10]. The
proofs are completely different to the standard proofs of predictive results.

2 Notation and Definitions

We use similar notation to [1, 2, 3]. For a more comprehensive introduction to
Kolmogorov complexity and Solomonoff induction see [3, 4, 8, 12].

Strings. A finite binary string x is a finite sequence x1x2x3 · · ·xn with xi ∈
B = {0, 1}. Its length is denoted �(x). An infinite binary string ω is an infinite
sequence ω1ω2ω3 · · · . The empty string of length zero is denoted ε. Bn is the set
of all binary strings of length n. B∗ is the set of all finite binary strings. B∞ is the
set of all infinite binary strings. Substrings are denoted xs:t := xsxs+1 · · ·xt−1xt

where s, t ∈ N and s ≤ t. If s > t then xs:t = ε. A useful shorthand is
x<t := x1:t−1. Strings may be concatenated. Let x, y ∈ B∗ of length n and
m respectively. Let ω ∈ B∞. Then,

xy := x1x2 · · ·xn−1xny1y2 · · · ym−1ym

xω := x1x2 · · ·xn−1xnω1ω2ω3 · · ·
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For b ∈ B, ¬b = 0 if b = 1 and ¬b = 1 if b = 0. We write x $ y if x is a prefix of
y. Formally, x $ y if �(x) ≤ �(y) and xi = yi for all 1 ≤ i ≤ �(x). x � y if x $ y
and �(x) < �(y).

Complexity. Here we give a brief introduction to Kolmogorov complexity and
the associated notation.

Definition 1 (Inequalities). Let f, g be real valued functions. We write f(x)
×
≥

g(x) if there exists a constant c > 0 such that f(x) ≥ c·g(x) for all x. f(x)
×
≤ g(x)

is defined similarly. f(x) ×= g(x) if f(x)
×
≤ g(x) and f(x)

×
≥ g(x).

Definition 2 (Measures). We call μ : B∗ → [0, 1] a semimeasure if μ(x) ≥∑
b∈B μ(xb) for all x ∈ B∗, and a probability measure if equality holds and μ(ε) =

1. μ(x) is the μ-probability that a sequence starts with x. μ(b|x) := μ(xb)
μ(x) is the

probability of observing b ∈ B given that x ∈ B∗ has already been observed.
A function P : B∗ → [0, 1] is a semi-distribution if

∑
x∈B∗ P (x) ≤ 1 and a

probability distribution if equality holds.

Definition 3 (Enumerable Functions). A real valued function f : A → R
is enumerable if there exists a computable function f : A × N → Q satisfying
limt→∞ f(a, t) = f(a) and f(a, t+ 1) ≥ f(a, t) for all a ∈ A and t ∈ N.

Definition 4 (Machines). A Turing machine L is a recursively enumer-
able set (which may be finite) containing pairs of finite binary strings
(p1, y1), (p2, y2), (p3, y3), · · · .
L is a prefix machine if the set

{
p1, p2, p3 · · ·

}
is prefix free (no program is a

prefix of any other). It is a monotone machine if for all (p, y), (q, x) ∈ L with
�(x) ≥ �(y), p $ q =⇒ y $ x.

We define L(p) to be the set of strings output by program p. This is different
for monotone and prefix machines. For prefix machines, L(p) contains only one
element, y ∈ L(p) if (p, y) ∈ L. For monotone machines, y ∈ L(p) if there exists
(p, x) ∈ L with y $ x and there does not exist a (q, z) ∈ L with q � p and
y $ z. For both machines L(p) represents the output of machine L when given
input p. If L(p) does not exist then we say L does not halt on input p. Note that
for monotone machines it is possible for the same program to output multiple
strings. For example (1, 1), (1, 11), (1, 111), (1, 1111), · · · is a perfectly legitimate
monotone Turing machine. For prefix machines this is not possible. Also note
that if L is a monotone machine and there exists an x ∈ B∗ such that x1:n ∈ L(p)
and x1:m ∈ L(p) then x1:r ∈ L(p) for all n ≤ r ≤ m.

Definition 5 (Complexity). Let L be a prefix or monotone machine then de-
fine

λL(y) :=
∑

p:y∈L(p)

2−�(p) CL(y) := min
p∈B∗

{�(p) : y ∈ L(p)}

If L is a prefix machine then we write mL(y) ≡ λL(y). If L is a monotone
machine then we write ML(y) ≡ λL(y). Note that if L is a prefix machine then
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λL is an enumerable semi-distribution while if L is a monotone machine, λL is
an enumerable semi-measure. In fact, every enumerable semi-measure (or semi-
distribution) can be represented via some machine L as λL.

For prefix/monotone machine L we write Lt for the first t program/output pairs
in the recursive enumeration of L, so Lt will be a finite set containing at most t
pairs.1

The set of all monotone (or prefix) machines is itself recursively enumerable
[8],2 which allows one to define a universal monotone machine UM as follows.
Let Li be the ith monotone machine in the recursive enumeration of monotone
machines.

(i′p, y) ∈ UM ⇔ (p, y) ∈ Li

where i′ is a prefix coding of the integer i. A universal prefix machine, denoted
UP , is defined in a similar way. For details see [8].

Theorem 6 (Universal Prefix/Monotone Machines). For the universal
monotone machine UM and universal prefix machine UP ,

mUP (y) > cLmL(y) for all y ∈ B∗ MUM (y) > cLML(y) for all y ∈ B∗

where cL > 0 depends on L but not y.

For a proof, see [8]. As usual, we will fix reference universal prefix/monotone
machines UP , UM and drop the subscripts by letting,

m(y) := mUP (y) ≡
∑

p:y∈UP (p)

2−�(p) M(y) := MUM (y) ≡
∑

p:y∈UM(p)

2−�(p)

K(y) := CUP (y) ≡ min
p∈B∗ {�(p) : y ∈ UP (p)} Km(y) := min

p∈B∗ {�(p) : y ∈ UM (p)}

The choice of reference universal Turing machine is usually3 unimportant since a
different choice varies m,M by only a multiplicative constant, while K,Km are
varied by additive constants. For natural numbers n we define K(n) by K(〈n〉)
where 〈n〉 is the binary representation of n.

M is not a proper measure, M(x) > M(x0) + M(x1) for all x ∈ B∗, which
means that M(0|x) + M(1|x) < 1, so M assigns a non-zero probability that the
sequence will end. This is because there are monotone programs p that halt, or
enter infinite loops. For this reason Solomonoff introduced a normalised version,
Mnorm defined as follows.
1 Lt will contain exactly t pairs unless L is finite, in which case it will contain t pairs

until t is greater than the size of L. This annoyance will never be problematic.
2 Note the enumeration may include repetition, but this is unimportant in this case.
3 See [6] for a subtle exception. All the results in this paper are independent of universal

Turing machine.
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Definition 7 (Normalisation)

Mnorm(ε) := 1 Mnorm(yn|y<n) ≡ Mnorm(y1:n)
Mnorm(y<n)

:=
M(y1:n)

M(y<n0) + M(y<n1)
.

This normalisation is not unique, but is philosophically and technically the
most attractive and was used and defended by Solomonoff. Historically, most
researchers have accepted the defective M for technical convenience. As men-
tioned, the difference seldom matters, but in this paper it is somewhat surpris-
ingly crucial. For a discussion of normalisation, see [8].

Theorem 8. The following are results in Kolmogorov complexity. Proofs for all
can be found in [8].

1. m(x) ×= 2−K(x)

2. 2−K(xb) ×= 2−K(x¬b)

3. M(x)
×
≥ m(x)

4. If P is an enumerable semi-distribution, then m(y)
×
≥ P (y)

5. If μ is an enumerable semi-measure, then M(y)
×
≥ μ(y)

Note the last two results are equivalent to Theorem 6 since every enumerable
semi-(measure/distribution) is generated by a monotone/prefix machine in the
sense of Theorem 6 and vice-versa.

Before proceeding to our own theorems we need a recently proven result in
algorithmic information theory.

Theorem 9. [Lempp, Miller, Ng and Turetsky, 2010, unpublished, private com-
munication] limn→∞

m(ω<n)
M(ω<n) = 0, for all ω ∈ B∞.

3 Mnorm Predicts Selected Bits

The following Theorem is the main positive result of this paper. It shows that any
computable sub-pattern of a sequence will eventually be predicted by Mnorm.

Theorem 10. Let f : B∗ → B ∪ {ε} be a total recursive function and ω ∈ B∞

satisfying f(ω<n) = ωn whenever f(ω<n) �= ε. If f(ω<ni) �= ε is defined for an
infinite sequence n1, n2, n3, · · · then limi→∞ Mnorm(ωni |ω<ni) = 1.

Essentially the Theorem is saying that if there exists a computable pre-
dictor f that correctly predicts the next bit every time it tries (i.e when
f(ω<n) �= ε) then Mnorm will eventually predict the same bits as f . By this
we mean that if you constructed a predictor fMnorm defined by fMnorm(ω<n) =
argmaxb∈B Mnorm(b|ω<n), then there exists an N such that fMnorm(ω<n) =
f(ω<n) for all n > N where f(ω<n) �= ε. For example, let f be defined by

f(x) =

{
x�(x) if �(x) odd
ε otherwise
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Now if ω ∈ B∞ satisfies ω2n = f(ω<2n) = ω2n−1 for all n ∈ N then Theorem 10
shows that limn→∞ Mnorm(ω2n|ω<2n) = 1. It says nothing about the predictive
qualities of Mnorm on the odd bits, on which there are no restrictions.

The proof essentially relies on using f to show that monotone programs for
ω<ni¬ωni can be converted to prefix programs. This is then used to show that
M(ω<ni¬ωni)

×= m(ω<ni¬ωni). The result will then follow from Theorem 9.
Theorem 10 insists that f be totally recursive and that f(ω<n) = ε if f refrains

from predicting. One could instead allow f to be partially recursive and simply
not halt to avoid making a prediction. The proof below breaks down in this case
and we suspect that Theorem 10 will become invalid if f is permitted to be only
partially recursive.

Proof (Theorem 10). We construct a machine L from UM consisting of all
programs that produce output that f would not predict. We then show that
these programs essentially form a prefix machine. Define L by the following
process

1. L := ∅ and t := 1.
2. Let (p, y) be the tth pair in UM .
3. Let i be the smallest natural number such that yi �= f(y<i) �= ε. That is,

i is the position at which f makes its first mistake when predicting y. If f
makes no prediction errors then i doesn’t exist.4

4. If i exists then L := L ∪ {(p, y1:i)} (Note that we do not allow L to contain
duplicates).

5. t := t+ 1 and go to step 2.

Since f is totally recursive and UM is recursively enumerable, the process above
shows that L is recursively enumerable. It is easy to see that L is a monotone
machine. Further, if (p, y), (q, x) ∈ L with p $ q then y = x. This follows since
by monotonicity we would have that y $ x, but f(x<�(y)) = f(y<�(y)) �= y�(y) =
x�(y) and by steps 3 and 4 in the process above we have that �(x) = �(y).

Recall that Lt is the tth enumeration of L and contains t elements. De-
fine L̄t ⊆ Lt to be the largest prefix free set of shortest programs. Formally,
(p, y) ∈ L̄t if there does not exist a (q, x) ∈ Lt such that q � p. For example, if
Lt = (1, 001), (11, 001), (01, 11110), (010, 11110) then L̄t = (1, 001), (01, 11110).
If we now added (0, 11110) to Lt to construct Lt+1 then L̄t+1 would be
(1, 001), (0, 11110).

Since Lt is finite, L̄t is easily computable from Lt. Therefore the following
function is computable.

P (y, t) :=
∑

p:(p,y)∈L̄t

2−�(p) ≥ 0.

4 This is where the problem lies for partially recursive prediction functions. Computing
the smallest i for which f predicts incorrectly is incomputable if f is only partially
recursive, but computable if it is totally recursive. It is this distinction that allows
L to be recursively enumerable, and so be a machine.
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Now L̄t is prefix free, so by Kraft’s inequality
∑

y∈B∗ P (y, t) ≤ 1 for all t ∈ N.
We now show that P (y, t + 1) ≥ P (y, t) for all y ∈ B∗ and t ∈ N which proves
that P (y) = limt→∞ P (y, t) exists and is a semi-distribution.

Let (p, y) be the program/output pair in Lt+1 but not in Lt. To see how P (·, t)
compares to P (·, t+ 1) we need to compare L̄t and L̄t+1. There are three cases:

1. There exists a (q, x) ∈ Lt with q � p. In this case L̄t+1 = L̄t.
2. There does not exist a (q, x) ∈ Lt such that p � q. In this case (p, y) is simply

added to L̄t to get L̄t+1 and so L̄t ⊂ L̄t+1. Therefore P (·, t+ 1) ≥ P (·, t) is
clear.

3. There does exist a (q, x) ∈ L̄t such that p � q. In this case L̄t+1 differs from
L̄t in that it contains (p, y) but not (q, x). Since p � q we have that y = x.
Therefore P (y, t+ 1) − P (y, t) = 2−�(p) − 2−�(q) > 0 since p � q. For other
values, P (·, t) = P (·, t+ 1).

Note that it is not possible that p = q since then x = y and duplicates are not
added to L. Therefore P is an enumerable semi-distribution. By Theorem 8 we
have

m(ω<ni¬ωni)
×
≥ P (ω<ni¬ωni) (3)

where the constant multiplicative fudge factor in the
×
≥ is independent of i.

Suppose ω<ni¬ωni ∈ UM (p). Therefore there exists a y such that ω<ni¬ωni $ y
and (p, y) ∈ UM . By parts 2 and 3 of the process above, (p, ω<ni¬ωni) is added
to L. Therefore there exists a T ∈ N such that (p, ω<ni¬ωni) ∈ Lt for all t ≥ T .

Since ω<ni¬ωni ∈ UM (p), there does not exist a q � p with ω<ni¬ωni ∈
UM (q). Therefore eventually, (p, ω<ni¬ωni) ∈ L̄t for all t ≥ T . Since every
program in UM for ω<ni¬ωni is also a program in L, we get

lim
t→∞P (ω<ni¬ωni , t) ≡ P (ω<ni¬ωni) = M(ω<ni¬ωni).

Next,
Mnorm(¬ωni |ω<ni) ≡ M(ω<ni¬ωni)

M(ω<niωni) + M(ω<ni¬ωni)
(4)

×
≤ m(ω<ni¬ωni)

M(ω1:ni)
(5)

×=
m(ω1:ni)
M(ω1:ni)

(6)

where Equation (4) follows by the definition of Mnorm. Equation (5) fol-
lows from Equation (3) and algebra. Equation (6) follows since m(xb) ×=
2−K(xb) ×= 2−K(x¬b) ×= m(x¬b), which is Theorem 8. However, by Theorem
9, limi→∞

m(ω<ni
)

M(ω<ni
) = 0 and so limi→∞ Mnorm(¬ωni |ω<ni) = 0. Therefore

limi→∞ Mnorm(ωni |ω<ni) = 1 as required. 	

We have remarked already that Theorem 10 is likely not valid if f is permitted
to be a partial recursive function that only output on sequences for which they
make a prediction. However, there is a class of predictors larger than the totally
recursive ones of Theorem 10, which Mnorm still learns.
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Theorem 11. Let f : B∗ → B ∪{ε} be a partial recursive function and ω ∈ B∞

satisfying

1. f(ω<n) is defined for all n.
2. f(ω<n) = ωn whenever f(ω<n) �= ε.

If f(ω<ni) ∈ B for an infinite sequence n1, n2, n3, · · · then

lim
i→∞

Mnorm(ωni |ω<ni) = 1.

The difference between this result and Theorem 10 is that f need only be defined
on all prefixes of at least one ω ∈ B∞ and not everywhere in B∗. This allows for a
slightly broader class of predictors. For example, let ω = p1b1p2b2p3b3 · · · where
pi is some prefix machine that outputs at least one bit and bi is the first bit of that
output. Now there exists a computable f such that f(p1b1 · · · pi−1bi−1pi) = bi

for all i and f(ω<n) = ε whenever ωn �= bi for some i (f only tries to predict the
outputs). By Theorem 11, Mnorm will correctly predict bi.

The proof of Theorem 11 is almost identical to that of Theorem 10, but with
one additional subtlety.

Proof sketch. The proof follows that of Theorem 10 until the construction of L.
This breaks down because step 3 is no longer computable since f may not halt
on some string that is not a prefix of ω. The modification is to run steps 2-4
in parallel for all t and only adding (p, y1:i) to L once it has been proven that
f(y<i) �= yi and f(y<k) halts for all k < i, and either chooses not to predict
(outputs ε), or predicts correctly. Since f halts on all prefixes of ω, this does not
change L for any programs we care about and the remainder of the proof goes
through identically. 	


It should be noted that this new class of predictors is still less general than
allowing f to an arbitrary partial recursive predictor. For example, a partial
recursive f can predict the ones of the halting sequence, while choosing not to
predict the zeros (the non-halting programs). It is clear this cannot be modified
into a computable f predicting both ones and zeros, or predicting ones and
outputting ε rather than zero, as this would solve the halting problem.

4 M Fails to Predict Selected Bits

The following theorem is the corresponding negative result that while Mnorm

always predicts recursive sub-patterns, M can fail to do so. This essentially
means that the key problem with M is that it is a defective measure.

Theorem 12. Let f : B∗ → B ∪ {ε} be the total recursive function defined by,

f(z) :=

{
z�(z) if �(z) odd
ε otherwise
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There exists an infinite string ω ∈ B∞ with ω2n = f(ω<2n) ≡ ω2n−1 for all
n ∈ N such that

lim inf
n→∞ M(ω2n|ω<2n) < 1.

The proof requires some lemmas.

Lemma 13. M(xy) can be bounded as follows.

2K(�(x))M(y)
×
≥ M(xy)

×
≥ M(y)2−K(x). (7)

Proof. Both inequalities are proven relatively easily by normal methods as used
in [8] and elsewhere. Nevertheless we present them as a warm-up to the slightly
more subtle proof later.

Now construct monotone machine L, which we should think of as taking two
programs as input. The first, a prefix program p, the output of which we view
as a natural number n. The second, a monotone program. We then simulate the
monotone machine and strip the first n bits of its output. L is formally defined
as follows.

1. L := ∅, t := 1
2. Let (p, n), (q, y) be the tth pair of program/outputs in UP × UM , which is

enumerable.
3. If �(y) ≥ n then add (pq, yn+1:�(y)) to L
4. t := t+ 1 and go to step 2

By construction, L is enumerable and is a monotone machine. Note that if xy ∈
UM (q) and �(x) ∈ UP (p) then y ∈ L(pq). Now,

M(y)
×
≥ ML(y) ≡

∑
r:y∈L(r)

2−�(r) ≥
∑

q,p:xy∈UM(q),�(x)∈UP (p)

2−�(pq) (8)

=
∑

q:xy∈UM (q)

2−�(q)
∑

p:�(x)∈UP (p)

2−�(p) ≡ M(xy)m(�(x)) (9)

×= M(xy)2−K(�(x)) (10)

where Equation (8) follows by Theorem 6, definitions and because if xy ∈ UM (q)
and �(x) ∈ UP (p) then y ∈ L(pq). Equation (9) by algebra, definitions. Equation
(10) by Theorem 8.

The second inequality is proved similarly. We define a machine L as follows,

1. L = ∅, t := 1
2. Let (q, x), (r, y) be the tth element in UP × UM , which is enumerable.
3. Add (qr, xy) to L
4. t := t+ 1 and go to step 2
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It is easy to show that L is monotone by using the properties of UP and UM .
Now,

M(xy)
×
≥ ML(xy) ≡

∑
p:xy∈L(p)

2−�(p) ≥
∑

q,r:x∈UP (q),y∈UM (r)

2−�(qr)

=
∑

q:x∈UP (q)

2−�(q)
∑

r:y∈UM (r)

2−�(r) ≡ m(x)M(y) ×= 2−K(x)M(y).

	


Lemma 14. There exists an ω ∈ B∞ such that

lim inf
n→∞ [M(0|ω<n) + M(1|ω<n)] = 0.

Proof. First we show that for each δ > 0 there exists a z ∈ B∗ such that M(0|z)+
M(1|z) < δ. This result is already known and is left as an exercise (4.5.6) with
a proof sketch in [8]. For completeness, we include a proof. Recall that M(·, t)
is the function approximating M(·) from below. Fixing an n, define z ∈ B∗

inductively as follows.

1. z := ε
2. Let t be the first natural number such that M(zb, t) > 2−n for some b ∈ B.
3. If t exists then z := z¬b and repeat step 2. If t does not exist then z is left

unchanged (forever).

Note that z must be finite since each time it is extended, M(zb, t) > 2−n.
Therefore M(z¬b, t) < M(z, t) − 2−n and so each time z is extended, the value
of M(z, t) decreases by at least 2−n so eventually M(zb, t) < 2−n for all b ∈ B.
Now once the z is no longer being extended (t does not exist in step 3 above)
we have

M(z0) + M(z1) ≤ 21−n. (11)

However we can also show that M(z)
×
≥ 2−K(n). The intuitive idea is that the

process above requires only the value of n, which can be encoded in K(n) bits.
More formally, let p be such that n ∈ UP (p) and note that the following set is
recursively enumerable (but not recursive) by the process above.

Lp := (p, ε), (p, z1:1), (p, z1:2), (p, z1:3), · · · , (p, z1:�(z)−1), (p, z1:�(z)).

Now take the union of all such sets, which is a) recursively enumerable since UP

is, and b) a monotone machine because UP is a prefix machine.

L :=
⋃

(p,n)∈UP

Lp.

Therefore

M(z)
×
≥ ML(z) ≥ 2−K(n) (12)
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where the first inequality is from Theorem 6 and the second follows since if n∗ is
the program of length K(n) with UP (n∗) = n then (n∗, z1:�(z)) ∈ L. Combining
Equations (11) and (12) gives

M(0|z) + M(1|z)
×
≤ 21−n+K(n).

Since this tends to zero as n goes to infinity,5 for each δ > 0 we can construct a
z ∈ B∗ satisfying M(0|z) + M(1|z) < δ, as required. For the second part of the
proof, we construct ω by concatenation.

ω := z1z2z3 · · ·

where zn ∈ B∗ is chosen such that,

M(0|zn) + M(1|zn) < δn (13)

with δn to be chosen later. Now,

M(b|z1 · · · zn) ≡ M(z1 · · · znb)
M(z1 · · · zn)

(14)

×
≤
[
2K(�(z1···zn−1))+K(z1···zn−1)

]M(znb)
M(zn)

(15)

≡
[
2K(�(z1···zn−1))+K(z1···zn−1)

]
M(b|zn) (16)

where Equation (14) is the definition of conditional probability. Equation (15)
follows by applying Lemma 13 with x = z1z2 · · · zn−1 and y = zn or znb. Equa-
tion (16) is again the definition of conditional probability. Now let

δn =
2−n

2K(�(z1···zn−1))+K(z1···zn−1)
.

Combining this with Equations (13) and (16) gives

M(0|z1 · · · zn) + M(1|z1 · · · zn)
×
≤ 2−n.

Therefore,

lim inf
n→∞ [M(0|ω<n) + M(1|ω<n)] = 0

as required. 	


Proof (Theorem 12). Let ω̄ ∈ B∞ be defined by ω̄2n := ω̄2n−1 := ωn where ω is
the string defined in the previous lemma. Recall UM :=

{
(p1, y1), (p2, y2), · · ·

}
is

the universal monotone machine. Define monotone machine L by the following
process,
5 An integer n can easily be encoded in 2 log n bits, so K(n) ≤ 2 log n + c for some

c > 0 independent of n.
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1. L = ∅, t = 1
2. Let (p, y) be the tth element in the enumeration of UM

3. Add (p, y1y3y5y7 · · · ) to L
4. t := t+ 1 and go to step 2.

Therefore if ω̄<2n ∈ UM (p) then ω1:n ∈ L(p). By identical reasoning as elsewhere,

M(ω1:n)
×
≥ M(ω̄<2n). (17)

In fact, M(ω1:n) ×= M(ω̄<2n), but this is unnecessary. Let P :=
{p : ∃b ∈ B s.t ω1:nb ∈ UM (p)} and Q := {p : ω1:n ∈ UM (p)} ⊃ P . Therefore

1 − M(0|ω1:n) − M(1|ω1:n) = 1 −
∑

p∈P 2−�(p)∑
q∈Q 2−�(q)

=

∑
p∈Q−P 2−�(p)∑

q∈Q 2−�(q)
.

Now let P̄ := {p : ∃b ∈ B s.t ω̄<2nb ∈ UM (p)} and Q̄ := {p : ω̄<2n ∈ UM (p)} ⊃
P̄ . Define monotone machine L by the following process

1. L = ∅, t := 1
2. Let (p, y) be the tth program/output pair in UM

3. Add (p, y1y1y2y2 · · · y�(y)−1y�(y)−1y�(y)) to L
4. t := t+ 1 and go to step 2.

Let p ∈ Q − P . Therefore ω1:n ∈ UM (p) and ω1:nb /∈ UM (p) for any b ∈ B.
Therefore ω̄<2n ∈ L(p) while ω̄<2nb /∈ L(p) for any b ∈ B. Now there exists an i
such that L is the ith machine in the enumeration of monotone machines, Li.

Therefore, by the definition of the universal monotone machine UM we have
that ω̄<2nb /∈ UM (i′p) = Li(p) = L(p) ' ω̄<2n and UM (i′p) = L(p) for any
b ∈ B. Therefore i′p ∈ Q̄− P̄ and so,∑

q∈Q̄−P̄

2−�(q) ≥
∑

p:i′p∈Q̄−P̄

2−�(i′p) ≥
∑

p∈Q−P

2−�(i′p) ×=
∑

p∈Q−P

2−�(p). (18)

Therefore

1 − M(0|ω̄<2n) − M(1|ω̄<2n) ≡
∑

p∈Q̄−P̄ 2−�(p)

M(ω̄<2n)
(19)

×
≥
∑

p∈Q−P 2−�(p)

M(ω1:n)
(20)

≡ 1 − M(0|ω1:n) − M(1|ω1:n) (21)

where Equation (19) follows from the definition of P̄ , Q̄ and M. Equation (20)
by (18) and (17). Equation (21) by the definition of P,Q and M. Therefore by
Lemma 14 we have

lim sup
n→∞

[1−M(0|ω̄<2n)−M(1|ω̄<2n)]
×
≥ lim sup

n→∞
[1−M(0|ω1:n)−M(1|ω1:n)] = 1.
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Therefore

lim inf
n→∞ M(ω̄2n|ω̄<2n) < 1

as required. 	


Note that limn→∞ M(ω̄2n|ω̄<2n) �= 0 in fact, one can show that there exists a
c > 0 such that M(ω̄2n|ω̄<2n) > c for all n ∈ N.

5 Discussion

Summary. Theorem 10 shows that if an infinite sequence contains a computable
sub-pattern then the normalised universal semi-measure Mnorm will eventually
predict it. This means that Solomonoff’s normalised version of induction is ef-
fective in the classification example given in the introduction. Note that we have
only proven the binary case, but expect the proof will go through identically for
arbitrary finite alphabet.

On the other hand, Theorem 12 shows that plain M can fail to predict such
structure and that it does so because it is not a proper measure. These results
are surprising since (all?) other predictive results, including Equation (1) and
many others in [3, 4, 8, 10], do not rely on normalisation.

Consequences. We have shown that M really is deficient on some sequences
that may still be of interest. This forces us to use Mnorm which has one major
drawback, it is not enumerable. Since M is enumerable, we have some hope
of approximating it using standard compression algorithms or more brute force
methods. However Mnorm is only approximable,6 which makes it substantially
more challenging or impossible to approximate. This disadvantage is not as great
as it seems since the predictive distribution M(b|x) is also only approximable.

Open Questions. A number of open questions were encountered in writing this
paper.

1. Extend Theorem 10 to the stochastic case where a sub-pattern is generated
stochastically from a computable distribution rather than merely a com-
putable function. It seems likely that a different approach will be required
to solve this problem.

2. Another interesting question is to strengthen the result by proving a con-
vergence rate. It may be possible to prove that under the same conditions

as Theorem 10 that
∑∞

i=1 [1 − Mnorm(ωni |ω<ni)]
×
≤ K(f) where K(f) is

the (prefix) complexity of the predicting function f . Again, if this is even
possible, it will likely require a different approach.

3. Prove or disprove the validity of Theorem 10 when the totally recursive
prediction function f (or the modified predictor of Theorem 11) is replaced
by a partially recursive function.

6 A function f is approximable if there exists a computable function f(·, t) with
limt→∞ f(·, t) = f(·). Convergence need not be monotonic.
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Table of Notation

Symbol Description
B Binary symbols, 0 and 1
Q Rational numbers
N Natural numbers
B∗ The set of all finite binary strings
B∞ The set of all infinite binary strings
x, y, z Finite binary strings
ω An infinite binary string
ω̄ An infinite binary string with even bits equal to preceding odd bits
�(x) The length of binary string x
¬b The negation of binary symbol b. ¬b = 0 if b = 1 and ¬b = 1 if b = 0
p, q Programs
μ An enumerable semi-measure
M The universal enumerable semi-measure
Mnorm The normalised version of the universal enumerable semi-measure
m The universal enumerable semi-distribution
K(f) The prefix Kolmogorov complexity of a function f
L An enumeration of program/output pairs defining a machine
UM The universal monotone machine
UP The universal prefix machine
×
≥ f(x)

×
≥ g(x) if there exists a c > 0 such that f(x) > c · g(x) for all x

×
≤ f(x)

×
≤ g(x) if there exists a c > 0 such that f(x) < c · g(x) for all x

×= f(x) ×= g(x) if f(x)
×
≥ g(x) and f(x)

×
≤ g(x)

x � y x is a prefix of y and �(x) < �(y)
x $ y x is a prefix of y
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Abstract. Previous works [11, 6] introduced a model of semantic com-
munication between a “user” and a “server,” in which the user attempts
to achieve a given goal for communication. They show that whenever
the user can sense progress, there exist universal user strategies that can
achieve the goal whenever it is possible for any other user to reliably do
so. A drawback of the actual constructions is that the users are ineffi-
cient: they enumerate protocols until they discover one that is successful,
leading to the potential for exponential overhead in the length of the de-
sired protocol. Goldreich et al. [6] conjectured that this overhead could
be reduced to a polynomial dependence if we restricted our attention
to classes of sufficiently simple user strategies and goals. In this work,
we are able to obtain such universal strategies for some reasonably gen-
eral special cases by establishing an equivalence between these special
cases and the usual model of mistake-bounded on-line learning [3, 15].
This equivalence also allows us to see the limits of constructing universal
users based on sensing and motivates the study of sensing with richer
kinds of feedback. Along the way, we also establish a new lower bound for
the “beliefs model” [12], which demonstrates that constructions of effi-
cient users in that framework rely on the existence of a common “belief”
under which all of the servers in a class are designed to be efficient.
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it was intended to address settings where two computers communicate using
communications protocols designed and implemented by different parties. In such
settings, the possiblity of incompatibility arises, and so it would be desirable for
one (or both) of these computers to utilize a universal communications protocol
that automatically corrects miscommunication. The main results of these works
demonstrated that when a goal for communication is fixed in advance, such a
universal protocol – that achieves its goal whenever its partner supports such
functionality – can often be constructed.

Here, we attempt to address one of the main deficiencies of earlier results,
specifically of results in the infinite executions model [6], reviewed in Sec. 2.
To be more precise, the main results constructing universal protocols (such as
Thm. 5) relied on enumerating all algorithms. We are motivated by the desire
for constructions that do not suffer from prohibitive overhead, as conjectured
to exist [6]. In the finite executions model (e.g., the subject of Juba and Su-
dan [11]) this overhead can be controlled by assuming that the server was “de-
signed” to permit a typical user protocol to run efficiently with respect to some
“beliefs” [12]. The constructions do not give good strategies in the infinite ex-
ecution model, though, since they do not give a finite bound on the number of
errors.1

We observe that for a restricted kind of goal and sensing that is viable with
respect to a class of simple user strategies, the problem of constructing a univer-
sal user from sensing is precisely the problem of learning the class of concepts
corresponding to the simple strategies in the usual on-line learning model [3, 15]
(Thm. 8). Thus, each solution to the on-line learning problem for a concept
class yields a generic construction of a universal user from a sensing function
that is viable with respect to the corresponding class – allowing us to translate
an algorithm for efficiently learning linear threshold functions in Thm. 11 to
an efficient strategy that works whenever a linear threshold strategy is viable –
and vice-versa, allowing us to also translate the negative results. This settles the
conjecture of Goldreich et al. [6], establishing that for natural classes of simple
strategies and goals, universal user strategies can achieve polynomial overhead in
the description length of the desired strategy. We further establish lower bounds
that suggest limits to the power of universal users based on the kind of sensing
discussed thus far—between the lower bounds that we obtain from the on-line
learning model and the new lower bounds we obtain, basic sensing seems to
only be adequate for the construction of efficient universal users in very simple
settings. But, some natural kinds of richer feedback allow the construction of
efficient universal users for correspondingly richer user strategies, and we sug-
gest the exploration of such richer feedback as a next step towards constructing
universal users of suitable efficiency.

1 One of our results supports these notions, though: we show in Sec. 5.1 that in
order for an efficient user for a class of servers to exist, there must be a common
“belief” among indistinguishable servers in the class under which typical users are
efficient.
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2 Semantic Communication in Infinite Executions

The basic model involves a system of three interacting entities, a user, a server,
and an environment. Each entity has some internal state, and they are each joined
by a (two-way) communications channel that also has some fixed state on each
round. Each entity has a strategy that specifies a distribution over new internal
states and outgoing messages for the following round, given the entity’s current
state and incoming messages. We will generally denote the user strategies by U ,
server strategies by S, and environment strategies by E, respectively.

Thus, given strategies for each of the entities, the system is modeled by a
discrete-time Markov process with a state space Ω. We will refer to the infinite
sequence of random variables {Xt}∞t=1 where Xt is the state of the system in
round t as an execution; the execution produced by the interaction between a user
strategy U , a server strategy S, and an environment strategy E will be denoted
by (E,U, S). An execution started from state σ1 is an execution conditioned
on X1 = σ1. We denote the space of internal states of the user, server, and
environment by Ω(u), Ω(s), and Ω(e), resp., and for i, j ∈ {u, e, s}, the state of
the communication channel from i to j is a member of Ω(i,j). Given a state of
the system σ, we will let the respective superscripts denote the projection of σ
on to the respective components—e.g., σ(u,e) is the user’s outgoing message to
the environment in σ. We wish to design algorithms for user strategies, to be
executed by the user in pursuit of a goal:

Definition 1 (Goals and robust achievement). A goal is given by a pair
(E , R), consisting of a non-deterministic environment strategy and a referee: A
referee R is a function taking an (infinite) sequence of environment states to a
boolean value; we say that an execution is successful if the referee evaluates to 1.
A non-deterministic strategy E is given by a set of (probabilistic) strategies. If
a pair of user and server strategies is successful at (E , R) for all E ∈ E and all
initial states of the execution, we say that the pair robustly achieves the goal.

The interpretation of the environment’s non-deterministic strategy is that the
environment adversarially chooses a probabilistic strategy E from the set E , ef-
fectively making its non-deterministic choices “up-front,” allowing us to (sanely)
analyze the resulting probabilistic system.

The algorithmic problem we consider is to compute a user strategy that
achieves a fixed goal of communication with a large class of server strategies—a
universal strategy for the goal:

Definition 2 (Universal user). A user strategy U is S-universal with respect
to a goal G if for every server strategy S ∈ S, (U, S) robustly achieves the goal.

We will focus on universal strategies U for which the period of miscommunica-
tion in any execution (E,U, S) is uniformly bounded by a polynomial in a size
parameter associated with the states of the system, sz : Ω → N. The size will
remain fixed throughout an execution (although the world’s states may induce
many different sizes associated with the same goal).
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We will restrict our attention to goals in which time is divided into sessions
of a fixed length. This is a special case of the multi-session goals of Goldreich
et al. [6]; we prefer to consider only the special case here because the classes
of user strategies we consider are particularly simple, only generating messages
for a fixed number of rounds (initially, just one round). Our decision to only
consider the special case will also have the added benefit of simplifying the
other definitions we use (namely, the number of errors and the corresponding
quantitative aspect of our “sensing functions”).2

Definition 3 (Fixed length multi-session goals). A goal G = (E , R) is said
to be a k-round multi-session goal if the following hold:

1. (The environment’s states.) The environment’s states are partitioned into k
sets, Ω(e)

1 , . . . , Ω
(e)
k . We refer to the elements of Ω(e)

1 as start-session states,
and the elements of Ω(e)

k as end-session states. In each case, the elements of
Ω

(e)
i are a pair consisting of an integer index and a contents.

2. (Starting a new session.) When in an end-session state, the environment non-
deterministically moves to a start-session state with an incremented index;
furthermore, this non-deterministic choice is independent of the contents of
the end-session state.

3. (Execution of a session.) When the environment is in some state (j, σ) ∈ Ω
(e)
i

for i �= k, E(j, σ)(e) is a distribution over Ω
(e)
i+1 such that every element

in its support has index j. Furthermore, the distribution over contents and
messages is independent of the index and environment’s actual strategy.

4. (Compact referee) There is a temporal decision function R′ taking end-
session states to Boolean verdicts, and R is satisfied with an infinite exe-
cution iff R′ evaluates to zero at most finitely many times.

The number of times R′ evaluates to 0 in an execution is the number of errors.3

2.1 Sensing: Implicit Descriptions of Goals in Terms of Feedback

Success at a goal of communication is defined as a function of the environment’s
states, which are not directly visible to the user. Naturally, it is helpful for the
user to have some idea of whether or not its current communication strategy
is working—indeed, it is essential if the user is to be able to reliably succeed
in a single session, and many natural goals of communication allow a user to
compute such feedback [10]. Although feedback is not known to be essential in
any sense in multi-session goals, better feedback seems to allow the design of
better user strategies [6]. In particular, in this work (as in previous works on
semantic communication) we will focus on a relatively minimal kind of feedback
that can be computed by the user during an execution.

2 NB: the decision of “when to halt” is not at issue here, cf. [10, Chapters 2 and 5].
3 This is a simplification of the notion of errors used by Goldreich et al. [6] where the

referee suspending a decision for too long was also onsidered to be an error.
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Definition 4 (Sensing, safety, and viability). A sensing function V is a
boolean function of the user’s view. Let G = (E , R) be a fixed-length multi-session
goal with temporal decision function R′ and size parameter function sz : Ω → N,
let S be a server strategy, and let U be a class of user strategies. For functions
B : N → N and ε : N → [0, 1/3],
– We say that V is (B, ε)-safe for G w.r.t. U and S if ∀E ∈ E , U ∈ U , σ1 ∈ Ω,

whenever R′(σ1) = 0, then w.p. 1 − ε(sz(σ1)), either only B(sz(σ1)) errors
will occur, or for some t ≤ B(sz(σ1)), V evaluates to 0 in some state Xt of
the execution (E,U, S) started from state σ1.

– We say that V is (B, ε)-viable for G w.r.t. U and S if ∃U ∈ U ∀E ∈ E , σ1 ∈
Ω, w.p. at least 1 − ε(sz(σ1)), after B(sz(σ1)) rounds, V evaluates to 1 in
every subsequent round in the execution (E,U, S) started from state σ1.

If ε ≡ 0, we say that safety (or viability, resp.) holds perfectly, and we may refer
to such a sensing function as B-safe (B-viable, resp.).

Thus, sensing functions encapsulate goal-specific feedback for solving a com-
munications problem. It has been pointed out (by B. Patt-Shamir [17] and an
anonymous reviewer) that the role of a sensing function is analogous to that of
a failure detector in distributed computing [5, 9]. The main difference is that
the feedback provided by a failure detector is generally a tentative set of faulty
processes (which is the main obstacle in such settings), whereas sensing pro-
vides tentative feedback about success at a problem—for example, Juba and
Sudan [11] use an interactive proof system to obtain feedback for the goal of
computing a function. Although we will motivate a turn to richer feedback in
Sec. 5, the main theorems of Goldreich et al. [6] show this simple type of feedback
is sufficient for the construction of universal strategies for many goals:

Theorem 5 (On the existence of universal strategies – [6]). Let G =
(E , R) be a fixed-length goal,4 U be an enumerable set of user strategies, S be a
set of server strategies, and ε : N → [0, 1/3] be such that the following hold:

1. There is a sensing strategy V s.t. ∀U ∈ U , there is a bounding function B
s.t. V is (B, ε)-safe with U and S for G, and ∀S ∈ S ∃U ∈ U s.t. for the
bounding function B associated with U , V is (B, ε)-viable with respect to
(U, S), Furthermore, the mapping U �→ B is computable.
Let B denote the set of bounds that appear in the image of this mapping; that
is, B = {Bi : i ∈ N}, where Bi is the bound for the ith user strategy in U .

2. One of the following two conditions hold: (a) The viability condition holds
perfectly (i.e., ε ≡ 0). or (b) For every i, Bi+1 < Bi/2ε.

Then there is a S-universal user strategy U s.t. ∀S ∈ S ∃B ∈ B (U, S) robustly
achieves the goal G with O(B2) errors, where the constant in the O-notation
depends on S. Furthermore, if B-viability holds and the composition of any U ∈
U with the sensing and enumeration strategies also resides in U , then, ∀S ∈ S,
the complexity of U is bounded by the complexity of some fixed strategy in U .

4 Actually, the theorem holds for the broader class of compact goals, not defined here.
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Generic Users for Goals Implicitly Specified by Sensing. Theorem 5
gives a single, “generic” construction of a universal user from a sensing function,
which can be applied to a variety of examples of sensing functions yielding uni-
versal users [6]. In this work, by contrast, we consider the capabilities and limits
of such generic constructions, that is, the capabilities and limits of constructions
based on sensing: rather than directly describing goals, we will assume that we
are given a sensing function for a goal, and so the goal is implicitly described
by the feedback available to the user and the class of strategies that suffice to
achieve good feedback, as guaranteed by the viability condition. We then say
that the construction is generic when it produces a universal user strategy that
achieves any goal given only this information:

Definition 6 (Generic universal user). For a class of goals in infinite ex-
ecutions G, a class of user strategies U , and functions B : U × N → N, s :
N → N and v : N → N, we say that U is a B-error (U , s, v)-generic univer-
sal user for G if ∀G ∈ G, any server S, and any sensing function V that is
s-safe with S for G and v-viable with S with respect to U for G, when U is
provided the verdicts of V as auxiliary input, (U, S) robustly achieves G with
minUS∈U :US v−viable with S B(US , ·) errors.

There are two primary differences from the statement of Thm. 5: first, Thm. 5
allows for the bounding functions s and v for sensing to vary with the user strat-
egy, and second, the number of errors incurred by Thm. 5 as stated was allowed
to depend (arbitrarily) on the server S, whereas we demand that a generic uni-
versal user in the present sense obtains a bound that depends uniformly on the
“best” user strategy in U . That said, it turns out that for any enumerable class
of user strategies U , and B(Ui, n) = 3imax{s(n), v(n)}2, the proof of Thm. 5
actually constructs a B-error (U , s, v)-generic universal user for any fixed-length
goal. (Where Ui denotes the ith strategy in the given enumeration of U .) As
suggested, we want user strategies that only make polynomially many errors (in
the length of the description of a target strategy in U , and the size parameter
of the execution). Goldreich et al. [6] showed, however, that a polynomial de-
pendence cannot be achieved without some restrictions on the class of servers:
briefly, servers with passwords force any strategy to suffer a number of errors
that is exponential in the length of the password, and hence in the length of the
description of the target strategy.

Thus, we will consider the problem of constructing a generic universal user
that succeeds in a polynomial number of errors, given that it is viable with
respect to a simple class of strategies. In particular, in Sec. 4, we show that
if the class of user strategies U in the viability condition is sufficiently simple,
then we can efficiently identify a good strategy for the class of one-round multi-
session goals; in Sec. 5.1, on the other hand, we will see that even for one-round
multi-session goals, we will need richer kinds of feedback to efficiently compute
good strategies when U is not so simple. In both cases, the results will follow
from an equivalence to on-line learning that we describe in more detail next.
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3 On-line Learning is Equivalent to Semantic
Communication with One-Round Goals

Given that an exponential number of errors in the description length of the de-
sired user strategy is unavoidable in general, we would like to know when it can
be avoided. Specifically, we would like to have some conditions under which we
can develop efficient universal user strategies for goals in infinite executions. In
this section, we investigate one such set of conditions: we will restrict our atten-
tion to multi-session goals of communication in which each round corresponds to
a distinct session, and assume that sensing with very good safety and viability is
available, in which moreover, the sensing function is viable with respect to some
class of simple user strategies. Then, a generic construction of universal users
from such sensing functions is equivalent to the design of an on-line learning al-
gorithm, and we will find that generic constructions of universal user strategies
exist for a variety of classes of simple user strategies.

The model of on-line learning that we consider was introduced by Bārzdiņš
and Frievalds [3]. We assume that a target concept or target function f is drawn
from some a priori fixed class of functions C and the learning algorithm is run in
an infinite sequence of trials consisting of the following steps: 1. The algorithm
is provided an instance x ∈ X as input. 2. The algorithm produces a prediction
from Y . 3. The algorithm receives reinforcement feedback, indicating whether its
prediction equaled f(x). In Littlestone’s [15] setting,X = {0, 1}n and Y = {0, 1},
and then n is a natural size parameter, and C is finite, but we only require that
a suitable notion of size can be defined for X and C. The main parameter used
to evaluate these algorithms is the worst case number of mistakes:

Definition 7 (Mistake bounded learning). For a given on-line learning al-
gorithm A and a concept class C with size parameter n : C → N, and any target
concept f : X → Y for f ∈ C, let MA(f) be the maximum, over all sequences of
instances x̄ = {xi ∈ X}∞i=1, of the number of trials in which A outputs y such
that y �= f(xi). We then say that a learning algorithm A has mistake bound
m : N → N if ∀n′ ∈ N maxf∈C:n(f)=n′ MA(f) ≤ m(n′). If the state of A does
not change when the algorithm receives positive feedback, then we say A is a
conservative algorithm.

Mistake bounded learning algorithms are easily made conservative.
We now show our main theorem, that the special case of semantic com-

munication introduced here – generic users for one-round multi-session goals
with a 1-safe and 1-viable sensing function – is equivalent to mistake-bounded
learning.

Theorem 8. Let G be a class of one-round multi-session goals in which the
user’s incoming messages on each round are drawn from a set Ω(·,u), and its
outgoing messages are from the set Ω(u,·). Let U be a class of functions {U :
Ω(·,u) → Ω(u,·)} with a size parameter n : U → N. Then a conservative m(n)-
mistake bounded learning algorithm for U is a m′-error (U , 1, 1)-generic universal
user for G for error bound m′(U, n′) = m(n(U)) + 1, and conversely, a m′-error



284 B. Juba and S. Vempala

(U , 1, 1)-generic universal user for G for error bound m′(U, n′) = m(n(U)) is a
m(n)-mistake bounded learning algorithm for U .

Proof. (⇒:) We suppose we are given a conservative m(n)-mistake bounded
learning algorithm A for U . We will show that A serves as a generic universal
user as follows. Suppose we are given G ∈ G, a server S, and a sensing function
V that is 1-safe with S for G and 1-viable with S with respect to U for G.

By the definition of 1-viability, there is US ∈ U s.t. if the user sends the
same messages as US, after one round V will provide a positive indication on
every round. Thus, US will correspond to the target concept. Each round of
the execution will correspond to a trial for the learning algorithm. Suppose we
provide the incoming messages to A as the instance, take the prediction of A as
the outgoing messages, and provide the verdict of V on the following round as
the reinforcement. In particular, if A sends the same outgoing message as US ,
A will receive a positive indication from the sensing function, which we take
as positive feedback. Conversely, if V produces a negative indication, then A
must not have sent the same outgoing message as US would have sent on the
incoming messages in that round. V may also produce positive indications when
the outgoing message A sent differs from what US would have sent, but since A
is conservative, the state of A does not change. Now, since A is a m(n)-mistake
bounded learning algorithm for U , it only receives negative reinforcement m(n)
times in any execution.

Since G is a 1-round multi-session goal, R′ evaluates to 0 or 1 on each round;
when it evaluates to 0, the 1-safety of V guarantees that either that is the only
error that will occur, or that V evaluates to 0 in the current round. V is therefore
only allowed to evaluate to 1 when an error occurs once, so our strategy therefore
makes at most m(n) + 1 errors.

(⇐:) Let a target concept U ∈ U and any sequence of instances x̄ = {xi ∈
Ω(e,u) × Ω(s,u)}∞i=1 be given. We will show how to embed the corresponding
sequence of trials into a one-round multi-session goal with a 1-safe and 1-viable
sensing function for some server S.

Consider the following one-round multi-session goal GU = (E , RU ): the envi-
ronment non-deterministically chooses (σ(e,u)

i , σ
(s,u)
i+1 ) ∈ Ω(e,u) × Ω(s,u) for each

round i, and sends (σ(e,u)
i , b) to the user and σ

(s,u)
i+1 to the server. The temporal

decision function R′
U for the referee RU then is satisfied in session i if the user

returns U(σ(e,u)
i , σ

(s,u)
i ). Let S be the server that forwards the message it received

from the environment in the previous round to the user in the current round.
Let VU be the sensing function that returns 1 if the user’s message on the ith
round is U(σ(e,u)

i , σ
(s,u)
i ). Note that when the user executes with S, VU computes

R′
U , so VU is 1-safe with S for GU . Furthermore, whenever the user sends the

same message as U ∈ U , VU is trivially satisfied on the following round, so VU

is also 1-viable with S with respect to U for GU . We can embed x̄ in an execu-
tion in the following way: let the execution start from the state where σ(e,u) =
x

(e,u)
1 , σ(s,u) = x

(s,u)
1 , and σ(e,s) = x

(s,u)
2 , and suppose that the environment’s
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nondeterministic choice for the ith round is (x(e,u)
i+1 , x

(s,u)
i+2 ). Then, we can check

that in each ith round of this execution, the user receives xi.
Now, supposing that we are given a m′-error (U , 1, 1)-generic universal user for

G A, for every target concept U ∈ U , A robustly achieves GU with m′(U, n′) =
m(n(U)) errors when given the feedback from VU in an execution with S—in
particular, in the execution we constructed for a given sequence of trials x̄. By
definition of GU , now, A makes an error in the ith round iff it does not send
the same messages as U in that round, so when A is provided the feedback from
VU , it makes at most m(n(U)) mistakes in the sequence of trials x̄. We now note
that VU computes the same function as the learner’s reinforcement, so when A
is provided access to the reinforcement instead of A, it still only makes m(n(U))
mistakes, as needed.

4 Universal Users from On-line Learning Algorithms

We now exploit Thm. 8 to obtain generic constructions of efficient universal
users for one-round multi-session goals. In particular, we show that for a variety
of halfspace learning, we can confirm one of the main conjectures of Goldre-
ich et al. [6]: there is a universal strategy for a nontrivial class of servers with
polynomial overhead. The particular variant we consider has the feature that,
unlike previous algorithms (with the exception of the perceptron algorithm) the
number of mistakes does not depend on the size of the examples.

Definition 9 (Linear threshold strategies). The class of linear threshold
strategies in n dimensions with b-bit weights, ULT(n,b), is as follows. We iden-
tify the user’s incoming messages with Qn. Then, for any weight vector w ∈
{−2b+1 + 1, . . . , 2b+1 − 1}n and threshold c ∈ {−2b+1 + 1, . . . , 2b+1 − 1}, the
user strategy that on incoming message x ∈ Qn sends Uw,c(x) to the server and
environment where Uw,c(x) = 1 if

∑n
i=1 wixi ≥ c and 0 otherwise is in ULT(n,b).

An algorithm for efficiently learning linear threshold functions with general
weights was given by Maas and Turán [16], based on a reduction to the problem
of finding feasible points in convex programs given by a separation oracle:

Definition 10 (Convex feasibility with a separation oracle). Let a convex
set K ⊂ Rn be given. For r ∈ N, we say that K has guarantee r if the volume of
K ∩ Ball(0, r) is at least r−n. A separation oracle for K answers queries of the
form x ∈ Qn with “yes” if x ∈ K and otherwise non-deterministically returns
a vector v ∈ Qn and c ∈ Q such that 〈x, v〉 ≥ c, but that for every y ∈ K,
〈y, v〉 < c. If the longest vector v returned by the separation oracle is � bits, we
will say that the oracle is �-bounded.

Now, we say that an oracle algorithm A(·) solves the search problem of convex
feasibility with a �-bounded separation oracle in time t(n, log r, �) and query
complexity q(n, log r, �) if, for any �-bounded separation oracle for a convex body
K with guarantee r, A(·) produces a point in K in time t(n, log r, �), and making
at most q(n, log r, �) queries to the oracle.
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There are efficient algorithms for solving convex programs in this model, yielding
algorithms for learning linear threshold functions. The one by Vaidya [18], and
an algorithm based on random walks [4] both make at most O(n log r) queries.

Actually, the above algorithm(s) were for a different problem than the one we
consider here: in their model, the instance space was assumed to be b-bit integer
points (as opposed to Qn) while the linear threshold functions used arbitrary
precision (though poly(b) bits suffice to represent all linear thresholds on the
b-bit instance space), and the time and query complexity of their algorithm
depended the size of the instances. Although it is clear that we cannot hope to
eliminate the dependence of the computation time of the size of the instances, it
turns out that the dependence on the size of instances in the mistake bound can
be eliminated in our setting, using techniques for solving convex programming
problems when the convex set K is not of full dimension [7, 8].

Theorem 11. Suppose there is an algorithm that solves convex feasibility with a
�-bounded separation oracle in time t(n, log r, �) and query complexity q(n, log r)
for polynomials t and q. Then there is a m(n, b)-mistake bounded on-line learning
algorithm for ULT(n,b) running in time t′(n, log b, �) on each trial for a polynomial
t′ where � is the length in bits of the longest received instance x ∈ Qn, and
m(n, b) = O(n · q(n, b+ logn)).

Sketch of proof. The weight vector and threshold of the function Uw,c is an
integer point in [−2b+1 + 1, 2b+1 − 1]n+1, which is a convex set, and a coun-
terexample x to a proposed linear threshold (w′, c′) defines a hyperplane such
that either 〈(w′, c′), (x,−1)〉 ≥ 0 > 〈(w, c), (x,−1)〉 or 〈(w, c), (x,−1)〉 ≥ 0 >
〈(w′, c′), (x,−1)〉, and either way (x,−1) and 0 gives us a separating hyperplane.

Thus, we pass our counterexamples to the feasibility algorithm, and the algo-
rithm terminates once it finds some point (w̃, c̃) s.t. any halfspace of the remain-
ing feasible set not containing (w̃, c̃) has volume less than the guarantee. Then, if
we get another counterexample, the hyperplanes given by our counterexamples
define a set containing (w, c) of volume less than the guarantee.

By choosing the guarantee sufficiently small, we will be able to ensure that
there is a hyperplane such that all of the points with integer coordinates (in-
cluding the target (w, c)) lie in this hyperplane; we will then be able to find
this hyperplane, and reduce to the problem of finding a feasible point in a lower
dimensional space by projecting onto it. After we repeat this process n+1 times,
(w, c) is uniquely determined.

Algorithms for k-round Goals and Strategies with Larger Message Spaces. We
exclusively focused on one-round goals and user strategies with Boolean mes-
sage spaces here. Naturally, this is because the notion of feedback we obtain
from sensing only agrees with the usual notions of feedback in on-line learning
for Boolean functions, and conversely, on-line learning usually does not handle
stateful “concepts.” It turns out, though, that a result due to Auer and Long [2]
allows us to slightly relax both of these restrictions, giving efficient algorithms
for, e.g., O(log logn)-round goals or messages of size O(log logn).
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5 Richer Feedback and the Limitations of Basic Sensing

5.1 Limitations of Basic Sensing

We start by presenting a strong lower bound when the space of messages is large.
We obtain this via a lower bound on the number of algorithms that an oblivious
schedule (including Levin-style enumerations and sampling algorithms) must use
to escape from a “bad” set of states whenever a class of servers does not have
a common prior under which escaping the bad set is easy. We then refine it to
handle adaptive algorithms under the assumption that executions with servers
in their respective collections of bad states produce indistinguishable user views.
The key definition enabling us to state these theorems captures subsets of states
of the execution that are hard for typical users to escape:

Definition 12 (Effectively closed). For a non-deterministic environment
strategy E with size parameter sz : Ω → N, a server S, a distribution over
user strategies P , t : N → N, and γ : N → [0, 1], we say that the set of server
and environment states Θ ⊆ Ω(s) × Ω(e) is (t, γ)-effectively closed with respect
to P if, ∀(σ(s), σ(e)) ∈ Θ, t ≤ t(sz(σ)) the probability that, for a user strategy U
drawn from P , (X(s)

t , X
(e)
t ) ∈ Θ is at least 1−γ(sz(σ)) in the execution (E,U, S)

started from σ (for the initial state σ(u) specified by U), where the probability is
taken over the choice of U from P and the random evolution of the execution.

These lower bounds also turn out to justify the features of a model introduced in
another attempt to refine the notions of semantic communication to reduce the
overhead: the “beliefs” model of communication [12]. There, it was assumed that
a server was designed to be efficient with respect to “typical” users under a given
“belief” (prior) distribution; a user strategy for which communication has low
overhead whenever a user has beliefs that are close to those of the server designer
then exists. Of course, in order for this approach to guarantee low overhead
with respect to an entire class of servers, there must be a common belief under
which all of the servers were designed well. Our lower bound establishes that
this common belief was essential in a sense: suppose that we wish to achieve
some goal that cannot be achieved while the execution is in one of our “bad
sets.” Then, our lower bounds demonstrate that when the class of servers lacks
a suitable common notion of “natural users” under which escaping the bad sets
is easy, a universal user cannot be too efficient, and the best possible running
time is roughly obtained by sampling from the best common distribution.

Theorem 13. Let G = (E , R) be a goal and S be a class of servers s.t. ∀E ∈
E , S ∈ S we have designated some set of pairs of states of E and S, ΘS,E. Let
δ ∈ [0, 1] be given. Now, suppose that ∃(t, ε) ∈ N× [0, 1] s.t. for every distribution
over user strategies from the class U , Q, ∃E ∈ E , S ∈ S such that ΘS,E is (t, ε)-
effectively closed with respect to Q in E. Then, for any sequence of user strategies
and running times (U1, t1), (U2, t2), . . . s.t. each ti ≤ t, ∃S ∈ S, E ∈ E s.t. if in
the execution where the user runs U1 for t1 steps, U2 for t2 steps, and so on, the
first step τ for which (X(s)

τ , X
(e)
τ ) /∈ ΘS,E is at most

∑k
i=1 ti with probability at

least δ, then k ≥ 1
ε(1+1/δ) .
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Proof. In a zero-sum game between a “user” player and a “server/environment”
player, in which the strategy sets are U and S × E , and the payoff of U with
(S,E) is given by the maximum probability, over executions starting from initial
states from ΘS,E, that the execution exits ΘS,E in t steps, our assumption on
distributions over U means that the server/environment player always has a
good strategy. Loomis’ Theorem then yields that there is some distribution Q̃
over S × E such that when any user strategy U1 ∈ U that is run for t1 ≤ t steps
with a server and environment pair (S,E) drawn from Q̃ and started in any
state of ΘS,E , the probability that the execution (E,U1, S) enters a state σ such
that (σ(s), σ(e)) /∈ ΘS,E is at most ε.

It then follows by induction on k that, given that the execution never entered
a state σ such that (σ(s), σ(e)) /∈ ΘS,E during the runs of U1, . . . , Uk−1, during
the tk step run of Uk, the probability that the execution enters such a state σ is
at most ε

1−kε . Therefore, while kε < 1, a union bound gives a total probability
of exiting ΘS,E in the first k runs of at most kε

1−kε . In particular, some (S∗, E∗)
in the support of Q̃ must give (U1, t1), . . . , (Uk, tk) probability at most kε

1−kε of
exiting ΘS∗,E . Thus, if we exit ΘS∗,E with probability at least δ by the end of
the kth run, this requires k ≥ 1

ε(1+1/δ) , as needed.

We can extend Theorem 13 to cover adaptive algorithms, given that the servers
generate indistinguishable views so long as they remain in the bad states. The key
point is that in this case, the algorithm generates a schedule nearly independently
of the actual server, essentially reducing to the earlier analysis.

Corollary 14. Let G, U , S, sets of states ΘS,E for each E ∈ E and each S ∈ S,
and δ ∈ [0, 1] be given as in Theorem 13. Suppose that ∃E ∈ E s.t. for every
distribution Q over U , ∃S ∈ S s.t. ΘS,E is (t, ε)-effectively closed with respect
to Q in E. Suppose further that ∀U ∈ U , S1 ∈ S, S2 ∈ S, (σ(s)

1 , σ
(e)
1 ) ∈ ΘS1,E,

∃(σ(s)
2 , σ

(e)
2 ) ∈ ΘS2,E s.t. the distribution over user views in the first t steps of the

execution (E,U, S1) started from a state (σ(e)
1 , σ(u), σ

(s)
1 ) is γ-statistically close

to the user view in the first t steps of the execution (E,U, S2) started from the
state (σ(e)

2 , σ(u), σ
(s)
2 ). Then for any algorithm U that on each step either starts

running a new strategy from U from its initial state or continues running the
same strategy from U for up to at most t steps, ∃S ∈ S s.t. if U reaches a state
σ s.t. (σ(s), σ(e)) /∈ ΘS,E w.p. ≥ δ by running up to k strategies from their initial
states, then k ≥ 1

ε(1+1/δ)+γ/δ .

Note that we can also apply Corollary 14 to the case where the sets ΘS,E are
chosen to be states of the execution where a given sensing function fails. This
will allow us to obtain lower bounds on the performance of any user strategy
that uses such a sensing function. Recall that Goldreich et al. [6] showed simple
conditions implied an exponential lower bound on the number of errors made by
universal users for classes including password-protected servers. Now, for the case
of one-round multi-session goals, we know that a lower bound on the number of
rounds before the referee is satisfied translates into a lower bound on the number
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of errors. In this case, we obtain lower bounds with respect to many other classes
of user strategies with large message spaces.

Theorem 15. Let U be a class of stateless user strategies computing functions
U : X → Y s.t. for every outgoing message y and incoming message x, some
U ∈ U satisfies U(x) = y. Let G = (E , R) be a one-round goal in which the
environment non-deterministically selects an infinite sequence of elements of X,
E = {Ex̄ : x̄ = {xi ∈ X}∞i=1}, s.t. each ith session consists of Ex̄ sending xi to
both the user and server. The referee’s temporal decision function R′ is satisfied
iff the server receives a message consisting of “1” from the server. Now, let the
class of servers S = S(U) be s.t. ∀U ∈ U , ∃SU ∈ S(U) s.t. in each round, the
server stores the message x ∈ X it received from the server until the next round;
the server then sends “1” to the user and environment if the user sent a message
y ∈ Y on that round such that y = U(x) for the previous message x that the
server received from the environment, and sends “0” to the user and environment
otherwise. Then for any user strategy, ∃S∗ ∈ S(U) s.t. the user strategy makes
at least |Y |/3 errors w.p. ≥ 1/2, and at least |Y |/2 errors in the worst case.

It is easy to construct specific examples for which learning functions on a message
space Y requires an overhead of |Y | − 1—Auer and Long[2] describe one such
example. Theorem 15, on the other hand, applies to many simple cases of interest,
such as linear transformations:

Example 16 (Lower Bound for Linear Transformations). Let U be the class of
linear transformations A : Fn → Fn for some finite field F. Suppose that the
instance space is given by Fn \ {0}. Now, for any nonzero x, y ∈ Fn we know
that there is some Ax,y such that A(x) = y. So, Thm. 15 shows that any on-line
learning algorithm makes at least (|F|n − 1)/2 mistakes in the worst case.

We can also use Thm. 8 directly to recover impossibility results for learning
Boolean functions. Angluin [1] noted that an efficient mistake-bounded learning
algorithm gives an efficient PAC-learning algorithm, so negative results for effi-
cient PAC-learning also translate to negative results for generic universal users,
and so even most natural classes of Boolean strategies do not have efficient uni-
versal users under cryptographic assumptions (cf. [13, 14]).

5.2 Richer Feedback

Thus, Thm 8 gives a reasonable picture of which classes of strategies we can ef-
ficiently learn generically from basic sensing – i.e., with success/fail feedback –
and which classes we cannot. Unfortunately, the boundary falls short of where we
would like—we can only learn strategies with very small message spaces, and un-
der standard cryptographic assumptions, even then only for fairly simple classes
of user strategies.

Recall that our motivation for focusing on this notion of sensing was that we
had results, such as Thm. 5, effectively saying that whenever sensing was possi-
ble, it was feasible to achieve a goal with any helpful server. As we are primarily
interested in user strategies that do not experience such overhead as that suffered
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by these constructions, though, we find that we are strongly motivated to investi-
gate some notions of stronger feedback (that may not always be available). That
is, we view negative results showing that (U , 1, 1)-generic universal users cannot
be mistake-efficient and/or time-efficient as limitations of basic sensing, and so
we seek alternative notions of sensing that do not suffer these limitations. For ex-
ample, Auer and Long [2] showed how some useful, richer kinds of feedback can
be simulated given only basic sensing, but only if the feedback is still limited in
the sense that it can be simulated by a logarithmic number of queries; but if these
kinds of feedback are directly available, then since we don’t need to simulate the
feedback, we don’t experience this overhead.
Example 17 (Efficient Universal Linear Transformation Strategies from Richer
Sensing). Consider the class of user strategies computing linear transformations
A : Fn → Fn for some finite field F, as considered in Example 16. There, we saw
that given only basic sensing, any generic universal strategy experiences at least
(|F|n − 1)/2 errors for one-round multi-session goals, where Auer and Long’s
technique yields a universal strategy making Õ(|F|n) errors.

Suppose now that we had richer sensing feedback, that not only provided
positive or negative indications, but on a negative indication also provided some
index i ∈ {1, . . . , n} such that if on the previous round we received an incoming
message vector x ∈ Fn and responded with y ∈ Fn, a viable linear transforma-
tion strategy A would not have responded with (A(x))i = yi. Then, e.g., for
F2, we could use Gaussian elimination to learn each ith row of a viable linear
transformation on Fn

2 in n mistakes, for n2 mistakes (and time O(n3) per round)
overall. Auer and Long’s technique can then also be used to simulate access to
(A(x))i over Fq for q > 2 with an overhead of Õ(q) mistakes, thus allowing us to
use essentially the same learning algorithm over Fq. As long as the field size is
still small, this yields polynomial error and polynomial time bounded universal
strategies, in contrast to the exponential lower bound of Example 16.
Similarly, if the sensing function also told us that the user’s messages in some
ith round of the previous session was unsatisfactory, then this feedback would
enable us to construct efficient universal users for k-round multi-session goals,
given that there are stateless viable user strategies such that a time and mistake
efficient on-line learning algorithm for the class of user strategies when restricted
to any single round (even if k is polynomially large).

Conclusion. These observations suggest the following program for future work.
In order to obtain flexible protocols for interesting goals with low overhead, we
could first try to identify what kind of feedback is available in those goals, and
second, try to determine which classes of strategies can be efficiently learned
from such feedback. The hope is that with rich enough feedback, reasonably
strong classes of strategies can be learned.
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Kaelbling and Leslie Valiant. We thank Oded Goldreich for insightful comments
that improved the presentation. Finally, we thank the anonymous referees for
their comments.
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Abstract. Structured output prediction is an important machine learn-
ing problem both in theory and practice, and the max-margin Markov
network (M3N) is an effective approach. All state-of-the-art algorithms
for optimizing M3N objectives take at least O(1/ε) number of iterations
to find an ε accurate solution. [1] broke this barrier by proposing an
excessive gap reduction technique (EGR) which converges in O(1/

√
ε)

iterations. However, it is restricted to Euclidean projections which con-
sequently requires an intractable amount of computation for each iter-
ation when applied to solve M3N. In this paper, we show that by ex-
tending EGR to Bregman projection, this faster rate of convergence can
be retained, and more importantly, the updates can be performed effi-
ciently by exploiting graphical model factorization. Further, we design a
kernelized procedure which allows all computations per iteration to be
performed at the same cost as the state-of-the-art approaches.

1 Introduction

In the supervised learning setting, one is given a training set of labeled data
points and the aim is to learn a function which predicts labels on unseen data
points. Sometimes the label space has a rich internal structure which character-
izes the combinatorial or recursive inter-dependencies of the application domain.
It is widely believed that capturing these dependencies is critical for effectively
learning with structured output. Examples of such problems include sequence la-
beling, context free grammar parsing, and word alignment. However, parameter
estimation is generally hard even for simple linear models, because the size of the
label space is potentially exponentially large (see e.g. [2]). Therefore it is crucial
to exploit the underlying conditional independence assumptions for the sake of
computational tractability. This is often done by defining a graphical model on
the output space, and exploiting the underlying graphical model factorization to
perform computations.

Research in structured prediction can broadly be categorized into two tracks:
Using a maximum a posterior estimate from the exponential family results in
conditional random fields [CRFs, 3], and a maximum margin approach leads to
max-margin Markov networks [M3Ns, 4]. Unsurprisingly, these two approaches

J. Kivinen et al. (Eds.): ALT 2011, LNAI 6925, pp. 292–307, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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share many commonalities: First, they both minimize a regularized risk with a
square norm regularizer. Second, they assume that there is a joint feature map
φ which maps (x,y) to a feature vector in Rp.1 Third, they assume a label loss
�(y,yi;xi) which quantifies the loss of predicting label y when the correct label
of input xi is yi. Finally, they assume that the space of labels Y is endowed with
a graphical model structure and that φ(x,y) and �(y,yi;xi) factorize according
to the cliques of this graphical model. The main difference is in the loss function
employed. CRFs minimize the L2-regularized logistic loss:

J(w)=
λ

2
‖w‖2

2 +
1
n

n∑
i=1

log
∑
y∈Y

exp
(
�(y,yi;xi)−

〈
w,φ(xi,yi) − φ(xi,y)

〉)
, (1)

while the M3Ns minimize the L2-regularized hinge loss

J(w) =
λ

2
‖w‖2

2 +
1
n

n∑
i=1

max
y∈Y
{
�(y,yi;xi) −

〈
w,φ(xi,yi) − φ(xi,y)

〉}
. (2)

A large body of literature exists on efficient algorithms for minimizing the above
objective functions. A summary of existing methods, and their convergence rates
(iterations needed to find an ε accurate solution) can be found in Table 1. The ε
accuracy of a solution can be measured in many different ways and different algo-
rithms employ different but somewhat related stopping criterion. Some produce
iterates wk in the primal space and bound the primal gap J(wk) − minw J(w).
Some solve the dual problem D(α) with iterates αk and bound the dual gap
maxα D(α) − D(αk). Some bound the duality gap J(wk) − D(αk), and still
others bound J(wk)−minw Jk(w) where Jk is a uniform lower bound of J . This
must be borne in mind when interpreting the convergence rates in Table 1.

Since (1) is a smooth convex objective, classical methods such as L-BFGS
can directly be applied [5]. Specialized solvers also exist. For instance a primal
algorithm based on bundle methods was proposed by [6], while a dual algo-
rithm for the same problem was proposed by [7]. Both algorithms converge at
O( 1

λ log(1/ε)) rates to an ε accurate solution, and, remarkably, their convergence
rates are independent of n the number of data points, and |Y| the size of the
label space. It is widely believed in optimization (see e.g. Section 9.3 of [8]) that
unconstrained smooth strongly convex objective functions can be minimized in
O(log(1/ε)) iterations, and these specialized optimizers also achieve this rate.

On the other hand, since (2) is a non-smooth convex function, efficient al-
gorithms are harder to come by. SVM-Struct was one of the first specialized
algorithms to tackle this problem, and [9] derived an O(G2/λε2) rate of conver-
gence. Here G denotes the maximum L2 norm of the feature vectors φ(xi,y). By
refining their analysis, [6] proved a O(G2/λε) rate of convergence for a related
but more general algorithm, which they called bundle methods for regularized
risk minimization (BMRM). At first glance, it looks like the rates of convergence
of these algorithms are independent of |Y|. This is somewhat misleading because,
although the dependence is not direct, the convergence rates depend on G, which
is in turn implicitly related to the size of Y.
1 We discuss kernels and associated feature maps into a Reproducing Kernel Hilbert

Space (RKHS) in Section 4.3.
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Table 1. Comparison of specialized optimization algorithms for training structured
prediction models. Primal-dual methods maintain estimation sequences in both primal
and dual spaces. Details of the oracle will be discussed in Section 5. The convergence
rate highlights the dependence on both ε and some “constants” that are often hidden
in the O notation: n, λ, and the size of the label space |Y|. The convergence rate
of SMO on M3N is derived from [12, Corollary 17], noting the dual problem (19) is
so-called pairable. It enjoys linear convergence O(log 1

ε
) when the dual objective is

positive definite (pd), and O( 1
ε
) when it is positive semi-definite (psd). The term G in

the convergence rate denotes the maximum L2 norm of the features vectors φ(xi,y).
The convergence rate of Extragradient depends on λ in an indirect way.

Optimization
Primal/Dual Type of gap

Oracle Convergence rate

algorithm for M3N CRF M3N

BMRM [6] primal ≥primal gap max O
(

1
λ

log 1
ε

)
O
(

G2

λε

)
SVM-Struct

primal-dual
constraint

max n/a O
(

G2

λε2

)
[9] violation

Extragradient [10] primal-dual duality gap exp n/a O
(

log|Y|
ε

)
Exponentiated

dual dual gap exp O
(

1
λ

log 1
ε

)
O
(

G2 log|Y|
λε

)
gradient [7]

SMO
dual dual gap max n/a

psd: O
(
n |Y| 1

λε

)
[11, Chapter 6] pd: O

(
n|Y| log 1

ε

)
Our algorithm primal-dual duality gap exp n/a O

(
G
√

log|Y|
λε

)

Algorithms which optimize (2) in the dual have also been developed. For
instance, the algorithm proposed by [7] performs exponentiated gradient descent
in the dual and converges at O

(
log|Y|

λε

)
rates. Again, these rates of convergence

are not surprising given the well established lower bounds of [13] who show that,
in general, non-smooth optimization problems cannot be solved in fewer than
Ω(1/ε) iterations by solvers which treat the objective function as a black box.

In this paper, we present an algorithm that provably converges to an ε accurate

solution of (2) in O
(√

log|Y|
λε

)
iterations. This does not contradict the lower

bound because our algorithm is not a general purpose black box optimizer. In
fact, it exploits the special form of the objective function (2). Before launching
into the technical details we would like to highlight some important features
of our algorithm. First, compared to existing algorithms our convergence rates
are better in terms of |Y|, λ, and ε. Second, our convergence analysis is tighter
in that our rates are with respect to the duality gap. Not only is the duality
gap computable, it also upper bounds the primal and dual gaps used by other
algorithms. Finally, our cost per iteration is comparable with other algorithms.

To derive our algorithm we extend the recent excessive gap technique of [1]
to Bregman projections and establish rates of convergence (Section 2). This
extension is important because the original gradient based algorithm for strongly
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convex objectives by [1] does not admit graphical model factorizations, which are
crucial for efficiency in structured prediction problems. We apply our resulting
algorithm to the M3N objective in Section 3. A straightforward implementation
requires O(|Y|) computational cost per iteration, which makes it prohibitively
expensive. We show that by exploiting the graphical model structure of Y the
cost per iteration can be reduced to O(log |Y|) (Section 4). Finally we contrast
our algorithm with existing techniques in Section 5.

2 Excessive Gap Technique with Bregman Projection

The excessive gap technique proposed by [1] achieves accelerated rate of conver-
gence only when the Euclidean projection is used. This prevents the algorithm
from being applied to train M3N efficiently, and the aim of this section is to ex-
tend the approach to Bregman projection. We start by recapping the algorithm.

Definition 1. A function f : Rn → R ∪ {∞} is called ρ strongly convex with
respect to (wrt) a norm ‖ · ‖ if f − ρ

2‖ · ‖2 is convex. If f is differentiable and its
gradient is Lipschitz continuous wrt ‖·‖ with constant L, we say f is L-l.c.g.

Let Q1 and Q2 be subsets of Euclidean spaces and A be a linear map from Q1

to Q2. Suppose f and g are convex functions defined on Q1 and Q2 respectively.
We are interested in the following optimization problem:

min
w∈Q1

J(w) where J(w) := f(w)+g�(Aw)=f(w)+ max
α∈Q2

{〈Aw,α〉−g(α)}. (3)

We will make the following standard assumptions: a) Q2 is compact; b) with
respect to a certain norm on Q1, the function f defined on Q1 is ρ-strongly
convex (ρ > 0) but not necessarily l.c.g, and c) with respect to a certain norm
on Q2 (which can be different from that on Q1), the function g defined on Q2

is Lg-l.c.g and convex, but not necessarily strongly convex. If we identify f(w)
with the regularizer and g�(Aw) with the loss function, then it is clear that (3)
has the same form as (1) and (2). We will exploit this observation in Section 3.

If some mild constraint qualifications hold (e.g. Theorem 3.3.5 of [14]) one
can write the dual D(α) of J(w) using A� (the transpose of A) as

D(α) := −g(α) − f�(−A�α) = −g(α) − max
w∈Q1

{〈−Aw,α〉 − f(w)} , (4)

and assert the following (in M3N, both the max and min are attainable)

min
w∈Q1

J(w) = max
α∈Q2

D(α), and J(w) ≥ D(α) ∀ w ∈ Q1,α ∈ Q2. (5)

The key difficulty in solving (3) arises because g� and hence J may potentially
be non-smooth. Our aim is to uniformly approximate J(w) with a smooth and
strongly convex function. Towards this end let d be a σ strongly convex smooth
function (σ > 0) with the following properties:

min
α∈Q2

d(α) = 0, d(α0) = 0, and D := max
α∈Q2

d(α).
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In optimization parlance, d is called a prox-function. Let μ ∈ R be an arbitrary
positive constant, and we will use (g + μd)� to define a new objective function

Jμ(w) := f(w)+(g + μd)�(Aw) = f(w)+ max
α∈Q2

{〈Aw,α〉−g(α)−μd(α)} . (6)

The key idea of excessive gap minimization pioneered by [1] is to maintain two
estimation sequences {wk} and {αk}, together with a diminishing sequence {μk}
such that

Jμk
(wk) ≤ D(αk), and lim

k→∞
μk = 0. (7)

Using (6), (7) and the definition of Fenchel dual, we can derive the key bound
on the duality gap:

J(wk) −D(αk) ≤ Jμk
(wk) + μkD −D(αk) ≤ μkD. (8)

In other words, to rapidly reduce the duality gap, we need to anneal down μk as
quickly as possible, but still allow wk and αk to be updated efficiently.

[1] gave a solution based on Euclidean projections, where μk decays at 1/k2

rate and all updates can be computed in closed form. We now extend his ideas to
updates based on Bregman projections2, which will be the key to our application
to structured prediction problems later. Since d is differentiable, we can define
a Bregman divergence based on it:3

Δ(ᾱ,α) := d(ᾱ) − d(α) − 〈∇d(α), ᾱ − α〉 . (9)

Given a point α and a direction g, we can define the Bregman projection as:

V (α,g) := argmin
ᾱ∈Q2

{Δ(ᾱ,α) + 〈g, ᾱ − α〉} = argmin
ᾱ∈Q2

{d(ᾱ) − 〈∇d(α) − g, ᾱ〉} .

For notational convenience, we define the following two maps:

w(α) := argmax
w∈Q1

{〈−Aw,α〉 − f(w)} = ∇f�(−A�α) (10a)

αμ(w) := argmax
α∈Q2

{〈Aw,α〉 − g(α) − μd(α)} = ∇(g + μd)�(Aw). (10b)

Since both f and (g + μd) are strongly convex, the above maps are unique and
well defined. By easy calculation (e.g. Eq. (7.2) in [1]), −D(α) is L-l.c.g where

L =
1
ρ

‖A‖2 + Lg, and ‖A‖ := max
‖w‖=‖α‖=1

〈Aw,α〉 . (11)

With this notation in place we now describe our excessive gap minimization
method in Algorithm 1. Unrolling the recursive update for μk+1 yields μk+1 =

6
(k+3)(k+2)

L
σ . Plugging this into (8) and using (11) immediately yields a O(1/

√
ε)

rate of convergence of our algorithm.
2 [1] did discuss updates based on Bregman projections, but just for the case where f is

convex rather than strongly convex. Here, we show how to improve the convergence
rate from O(1/ε) to O(1/

√
ε) when f is strongly convex.

3 This paper applies ∇ only to differentiable functions; it never refers to subgradient.
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Algorithm 1. Excessive gap minimization

Input: Function f which is strongly convex, convex function g which is l.c.g .
Output: Sequences {wk}, {αk}, and {μk} that satisfy (7), with lim

k→∞
μk = 0.

Initialize:α0 ←argminu∈Q2
d(u), μ1← L

σ
, w1←w(α0), α1←V

(
α0,

−1
μ1

∇D(α0)
)
.1

for k = 1, 2, . . . do2

τk ← 2
k+3

.3

α̂ ← (1 − τk)αk + τkαμk(wk).4

wk+1 ← (1 − τk)wk + τkw(α̂).5

α̃ ← V
(
αμk(wk), −τk

(1−τk)μk
∇D(α̂)

)
.6

αk+1 ← (1 − τk)αk + τkα̃.7

μk+1 ← (1 − τk)μk.8

Theorem 1 (Rate of convergence for duality gap). The sequences {wk}
and {αk} in Algorithm 1 satisfy

J(wk) −D(αk) ≤ 6LD
σ(k + 1)(k + 2)

=
6D

σ(k + 1)(k + 2)

(
1
ρ

‖A‖2 + Lg

)
. (12)

All that remains is to show that

Theorem 2. The updates in Algorithm 1 guarantee (7) is satisfied for all k ≥ 1.
Proof. Since d is σ-strongly convex, so

Δ(ᾱ,α) = d(ᾱ) − d(α) − 〈∇d(α), ᾱ − α〉 ≥ σ

2
‖ᾱ − α‖2

. (13)

It is not hard to show that the initial w1 and α1 satisfy the excessive gap condi-
tion (7). We now focus on proving by induction that the updates in Algorithm 1
maintain (7). We begin with two useful observations. Using μk+1 = 6

(k+3)(k+2)
L
σ

and the definition of τk, one can bound

μk+1 =
6

(k + 3)(k + 2)
L

σ
≥ τ2

k

L

σ
. (14)

Let β := αμk
(wk). The optimality conditions for (10b) imply

〈μk∇d(β) −Awk + ∇g(β),α − β〉 ≥ 0. (15)

By using the update equation for wk+1 and the convexity of f , we have
Jμk+1(wk+1) = f(wk+1) + max

α∈Q2
{〈Awk+1,α〉 − g(α) − μk+1d(α)}

= f((1 − τk)wk + τkw(α̂)) + max
α∈Q2

{(1 − τk) 〈Awk,α〉+

τk 〈Aw(α̂),α〉 − g(α) − (1 − τk)μkd(α)}
≤ max

α∈Q2
{(1 − τk)T1 + τkT2} ,

where T1 = −μkd(α)+〈Awk,α〉−g(α)+f(wk) and T2 = −g(α)+〈Aw(α̂),α〉+
f(w(α̂)). T1 can be bounded as follows
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(by defn. of Δ) T1 = −μk {Δ(α,β) + d(β) + 〈∇d(β),α − β〉}
+ 〈Awk,α〉 − g(α) + f(wk)

(by (15)) ≤ −μkΔ(α,β) − μkd(β) + 〈−Awk + ∇g(β),α − β〉
+ 〈Awk,α〉 − g(α) + f(wk)

= −μkΔ(α,β) − μkd(β) + 〈Awk,β〉 − g(α)+
〈∇g(β),α − β〉 + f(wk)

(by convexity of g) ≤ −μkΔ(α,β)−μkd(β)+〈Awk,β〉−g(β)+f(wk)
(by defn. of β) = −μkΔ(α,β) + Jμk

(wk)
(by induction assumption) ≤ −μkΔ(α,β) +D(αk)

(by concavity of D) ≤ −μkΔ(α,β) +D(α̂) + 〈∇D(α̂),αk − α̂〉 ,

while T2 can be bounded by using Lemma 7.2 of [1]:

T2 = −g(α) + 〈Aw(α̂),α〉 + f(w(α̂)) ≤ D(α̂) + 〈∇D(α̂),α − α̂〉 .

Putting the upper bounds on T1 and T2 together, we obtain the desired result.

Jμk+1(wk+1) ≤ max
α∈Q2

{(1 − τk) [−μkΔ(α,β) +D(α̂) + 〈∇D(α̂),αk − α̂〉]

+ τk [D(α̂) + 〈∇D(α̂),α − α̂〉]}
= max

α∈Q2
{−μk+1Δ(α,β) +D(α̂)+

〈∇D(α̂), (1 − τk)αk + τkα − α̂〉}
(by defn. of α̂) = max

α∈Q2
{−μk+1Δ(α,β) +D(α̂) + τk 〈∇D(α̂),α − β〉}

= − min
α∈Q2

{μk+1Δ(α,β) −D(α̂) − τk 〈∇D(α̂),α − β〉}

(by defn. of α̃) = −μk+1Δ(α̃,β) +D(α̂) + τk 〈∇D(α̂), α̃ − β〉
(by (13)) ≤ − 1

2μk+1 ‖α̃ − β‖2 +D(α̂) + τk 〈∇D(α̂), α̃ − β〉
(by (14)) ≤ − 1

2τ
2
kL ‖α̃ − β‖2 +D(α̂) + τk 〈∇D(α̂), α̃ − β〉

(by defn. of αk+1) = − 1
2L ‖αk+1 − α̂‖2 +D(α̂) + 〈∇D(α̂),αk+1 − α̂〉

(by L-l.c.g of D) ≤ D(αk+1). �

When stated in terms of the dual gap (as opposed to the duality gap) our
convergence results can be strengthened slightly. We omit the proof here.

max
α∈Q2

D(α) −D(αk)≤ 6 Ld(α∗)
σ(k + 1)(k + 2)

=
6 d(α∗)

σ(k + 1)(k + 2)

(
‖A‖2

ρ
+ Lg

)
, (16)

where α∗ := argmaxα∈Q2
D(α). Note d(α∗) is tighter than the D in (12).

3 Training Max-Margin Markov Networks

In the max-margin Markov network (M3N) setting [4], we are given n labeled data
points

{
xi,yi

}n

i=1
, where xi are drawn from some space X and yi belong to some



Accelerated Training of Max-Margin Markov Networks with Kernels 299

space Y. We assume that there is a feature map φ which maps (x,y) to a feature
vector in Rp. Furthermore, for each xi, there is a label loss �iy := �(y,yi;xi) which
quantifies the loss of predicting label y when the correct label is yi. Given this
setup, the objective function minimized by M3Ns can be written as

J(w) =
λ

2
‖w‖2

2 +
1
n

n∑
i=1

max
y∈Y
{
�iy −

〈
w,ψi

y

〉}
, (17)

where ‖w‖2 = (
∑

iw
2
i )1/2 is the L2 norm and we used the shorthand ψi

y :=
φ(xi,yi)−φ(xi,y). To write (17) in the form of (3), let Q1 = Rp, A be a
(n |Y|)-by-p matrix whose (i,y)-th row is (−ψi

y)�,

f(w) =
λ

2
‖w‖2

2 , and g�(u) =
1
n

∑
i

max
y

{
�iy + ui

y

}
.

Now, g can be verified to be:

g(α) = −
∑

i

∑
y

�iyα
i
y if αi

y ≥ 0, and
∑
y

αi
y =

1
n
, ∀ i (18)

and ∞ otherwise. The domain of g isQ2 = Sn :=
{
α ∈ [0, 1]n|Y| :

∑
yα

i
y = 1

n , ∀i
}
,

which is convex and compact. Using the L2 norm on Q1, f is clearly λ-strongly
convex. Similarly, if we use the L1 norm on Q2 (i.e., ‖α‖1 =

∑
i

∑
y

∣∣αi
y

∣∣), then
g is 0-l.c.g. By noting that f�(−A�α) = 1

2λα�AA�α, one can write the dual
form D(α) : Sn �→ R of J(w) as

D(α) = −g(α) − f�(−A�α) = − 1
2λ

α�AA�α +
∑

i

∑
y

�iyα
i
y, α ∈ Sn. (19)

3.1 Rates of Convergence

A natural prox-function to use in our setting is the relative entropy with respect
to the uniform distribution, which is defined as:

d(α) =
n∑

i=1

∑
y

αi
y logαi

y + logn+ log |Y| . (20)

This results in a log-sum-exp form of (g + μd)� (derivation omitted):

(g + μd)�(u) =
μ

n

n∑
i=1

log
∑
y∈Y

exp
(ui

y + �iy
μ

)
− μ log |Y| . (21)

The relative entropy is 1-strongly convex in Sn with respect to the L1 norm
[e.g., 15, Proposition 5.1]. Furthermore, d(α) ≤ D = log |Y| for α ∈ Sn, and the
norm of A can be computed via

‖A‖ = max
w∈Rp,u∈Rn|Y|

{
〈Aw,u〉 :

p∑
i=1

w2
i = 1,

n∑
i=1

∑
y∈Y

∣∣ui
y

∣∣ = 1
}

= max
i,y

∥∥ψi
y

∥∥
2
,

where
∥∥ψi

y

∥∥
2

is the Euclidean norm of ψi
y. Since f is λ-strongly convex and Lg =

0, plugging this expression of ‖A‖ into (12) and (16), we obtain the following
rates of convergence for our algorithm:
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J(wk) −D(αk) ≤ 6 log |Y|
(k + 1)(k + 2)

maxi,y

∥∥ψi
y

∥∥2
2

λ

and max
α∈Q2

D(α) −D(αk) ≤ 6KL(α∗||α0)
(k + 1)(k + 2)

maxi,y

∥∥ψi
y

∥∥2
2

λ
,

where KL(α∗||α0) denotes the KL divergence between α∗ and the uniform dis-
tribution α0. Recall that for distributions p and q the KL divergence is defined
as KL(p||q) =

∑
i pi ln pi

qi
.

Therefore to reduce the duality gap and dual gap below ε, it suffices to take

2 + max
i,y

∥∥ψi
y

∥∥
2

√
6 log |Y|
λε

and max
i,y

∥∥ψi
y

∥∥
2

√
6KL(α∗||α0)

λε
(22)

steps respectively.

4 Efficient Computation by Clique Decomposition

In the structured large margin setting, the number of labels |Y| could potentially
be exponentially large. For example, if a sequence has l nodes and each node
has two states, then |Y| = 2l. A naive implementation of the excessive gap
reduction algorithm described in the previous section requires maintaining and
updating O(|Y|) coefficients at every iteration, which is prohibitively expensive.
With a view to reducing the computational complexity, and also to take into
account the inherent conditional independence properties of the output space, it
is customary to assume that Y is endowed with a graphical model structure; we
refer the reader to [2] for an in-depth treatment of this issue. For our purposes
it suffices to assume that �(y,yi;xi) and φ(xi,y) decompose according to the
cliques4 of an undirected graphical model, and hence can be written (with some
abuse of notation) as

�iy = �(y,yi;xi) =
∑
c∈C

�(yc, y
i
c;x

i) =
∑
c∈C

�iyc
,

φ(xi,y) = ⊕
c∈C

φ(xi, yc), and ψi
y = ⊕

c∈C
ψi

yc
. (23)

Here C denotes the set of all cliques of the graphical model and ⊕ denotes vector
concatenation. More explicitly, ψi

y is the vector on the graphical model obtained
by accumulating the vector ψi

yc
on all the cliques c of the graph.

Let hc(yc) be an arbitrary real valued function on the value of y restricted
to clique c. Graphical models define a distribution p(y) on y ∈ Y whose density
takes the following factorized form:

p(y) ∝ q(y) =
∏
c∈C

exp (hc(yc)) . (24)

4 Any fully connected subgraph of a graph is called a clique.
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The key advantage of a graphical model is that the marginals on the cliques can
be efficiently computed:

myc :=
∑

z:z|c=yc

q(z) =
∑

z:z|c=yc

∏
c′∈C

exp (hc′(zc′)) .

where the summation is over all the configurations z in Y whose restriction on
the clique c equals yc. Although Y can be exponentially large, efficient dynamic
programming algorithms exist that exploit the factorized form (24), e.g. belief
propagation [16]. The computational cost is O(sω) where s is the number of
states of each node, and ω is the maximum size of the cliques. For example,
a linear chain has ω = 2. When ω is large, approximate algorithms also exist
[17–19]. In the sequel we will assume that our graphical models are tractable,
i.e., ω is low.

4.1 Basics

At each iteration of Algorithm 1, we need to compute four quantities: w(α),
∇D(α), αμ(w), and V (α,g). Below we rewrite them by taking into account
the factorization (23), and postpone to Section 4.2 the discussion on how to
compute them efficiently. Since αi

y ≥ 0 and
∑

y α
i
y = 1

n , the
{
αi

y : y ∈ Y
}

form an unnormalized distribution, and we denote its (unnormalized) marginal
distribution on clique c by

αi
yc

:=
∑

z:z|c=yc

αi
z. (25)

The feature expectations on the cliques with respect to the unnormalized distri-
butions α are important:

F
[
ψi

yc
; α
]

:=
∑
yc

αi
yc

ψi
yc
, and F[ψc; α] :=

∑
i

F
[
ψi

yc
; α
]
. (26)

Clearly, if for all i the marginals of α on the cliques (i.e.,
{
αi

yc
: i, c, yc

}
in (25))

are available, then these two expectations can be computed efficiently.

– w(α): As a consequence of (23) we can write ψi
y = ⊕

c∈C
ψi

yc
. Plugging this

into (10a) and recalling that ∇f�(−A�α) = −1
λ A�α yields the following

expression for w(α) = −1
λ A�α:

w(α) =
1
λ

∑
i

∑
y

αi
yψi

y =
1
λ

∑
i

∑
y

αi
y

(
⊕

c∈C
ψi

yc

)
=

1
λ

⊕
c∈C

(∑
i

F
[
ψi

yc
; α
])

=
1
λ

⊕
c∈C

F[ψc; α]. (27)

– ∇D(α): Using (19) and the definition of w(α), the (i,y)-th element of
∇D(α) can be written as

(∇D(α))i
y = �iy − 1

λ

(
AA�α

)i
y

= �iy −
〈
ψi

y,w(α)
〉

=
∑

c

(
�iyc

− 1
λ

〈
ψi

yc
,F[ψc; α]

〉)
. (28)
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– αμ(w): Using (10b) and (21), the (i,y)-th element of αμ(w) given by (∇(g+
μd)�(Aw))i

y can be written as

(αμ(w))i
y =

1
n

exp
(
μ−1
(
�iy −

〈
ψi

y,w
〉))

∑
y′ exp

(
μ−1
(
�iy′ −

〈
ψi

y′ ,w
〉))

=
1
n

∏
c exp

(
μ−1
(
�iyc

−
〈
ψi

yc
,wc

〉))
∑

y′
∏

c exp
(
μ−1
(
�iy′

c
−
〈
ψi

y′
c
,wc

〉)) . (29)

– V (α,g): Since the prox-function d is the relative entropy, the (i,y)-th ele-
ment of V (α,g) is

(V (α,g))i
y =

1
n

αi
y exp(−gi

y)∑
y′ αi

y′ exp(−gi
y′)

. (30)

4.2 Efficient Computation

We now show how the algorithm can be made efficient by taking into account
(23). Key to our efficient implementation are the following four observations from
Algorithm 1 when applied to the structured large margin setting. In particular,
we will exploit the fact that the marginals of αk can be updated iteratively.

– The marginals of αμk
(wk) and α̂ can be computed efficiently. From

(29) it is easy to see that αμk
(wk) can be written as a product of factors over

cliques, that is, in the form of (24). Therefore, the marginals of αμk
(wk)

can be computed efficiently. As a result, if we keep track of the marginal
distributions of αk, then it is trivial to compute the marginals of α̂ = (1 −
τk)αk + τkαμk

(wk).
– The marginals of α̃ can be computed efficiently. Define η = −τk

(1−τk)μk
.

By plugging in (28) and (29) into (30) and observing that ∇D(α) can be
written as a sum of terms over cliques obtains:
α̃i

y = (V (αμk
(wk), η∇D(α̂)))i

y ∝ (αμk
(wk))i

y exp
(
−η (∇D(α̂))i

y

)
=
∏

c

exp
(
μ−1

k

(
�iyc

−
〈
ψi

yc
, (wk)c

〉)
−η�iyc

+ ηλ−1
〈
ψi

yc
,F[ψc; α̂]

〉)
. (31)

Clearly, α̃ factorizes and has the form of (24). Hence its marginals can be
computed efficiently.

– The marginals of αk can be updated efficiently. Given the marginals of
α̃, it is trivial to update the marginals of αk+1 since αk+1 = (1−τk)αk+τkα̃.
For convenience, define αc := {αi

yc
: i, yc}.

– wk can be updated efficiently. According to step 5 of Algorithm 1, by
using (27) we have

(wk+1)c = (1 − τk)(wk)c + τk(w(α̂))c = (1 − τk)(wk)c + τkλ
−1F[ψc; α̂].

Leveraging these observations, Algorithm 2 provides a complete listing of how
to implement the excessive gap technique with Bregman projections for training
M3N. It focuses on clarifying the ideas; a practical implementation can be sped
up in many ways. The last issue to be addressed is the computation of the primal
and dual objectives J(wk) and D(αk), so as to monitor the duality gap. Indeed,
this is viable without incurring higher order of computations and we leave the
details to the reader.
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Algorithm 2. Max-margin structured learning using clique factorization

Input: Loss functions
{
�i
y

}
and features

{
ψi

y

}
, a regularization parameter λ, a

tolerance level ε > 0.
Output: A pair w and α that satisfy J(w) − D(α) < ε.

Initialize: k ← 1, μ1 ← 1
λ

maxi,y

∥∥ψi
y

∥∥2
2
, α0 ←

(
1

n|Y| , . . . ,
1

n|Y|

)�
∈ Rn|Y|.1

Update w1 ← w(α0) = 1
λ
⊕c∈C F[ψc; α0], α1 ← V

(
α0,− 1

μ1
∇D(α0)

)
and2

compute its marginals.
while J(wk) − D(αk) ≥ ε do /* Terminate when duality gap falls below ε */3

τk ← 2
k+3

.4

Compute the marginals of αμk (wk) by exploiting (29).5

forall cliques c ∈ C do6

Compute the marginals α̂c by convex combination:7

α̂c ← (1 − τk)(αk)c + τk(αμk (wk))c.
Update the weight on clique c:8

(wk+1)c ← (1 − τk) (wk)c + τk
λ

∑
i F
[
ψi

yc
; α̂c

]
.

Compute the marginals of α̃ by using (31) and the marginals {α̂c}.9

forall cliques c ∈ C do10

Update the marginals (αk)c by convex combination:11

(αk+1)c ← (1 − τk)(αk)c + τkα̃c.

Update μk+1 ← (1 − τk)μk, k ← k + 1.12

return wk and αk.13

4.3 Kernelization

When nonlinear kernels are used, the feature vectors φi
y are not expressed ex-

plicitly and only their inner products can be evaluated via kernels on the cliques:〈
ψi

y,ψ
j
y′

〉
:= k((xi,y), (xj ,y′))=

∑
c

kc((xi, yc), (xj , y′c)),

where kc((xi, yc), (xj , y′c)) :=
〈
ψi

yc
,ψj

y′
c

〉
. Algorithm 2 is no longer applicable

because no explicit expression of w is available. However, by rewriting wk as the
feature expectations with respect to some distribution βk ∈ Sn, then we only
need to update wk implicitly via βk, and the inner product between wk and
any feature vector can also be efficiently calculated. We formalize and prove this
claim by induction.

Theorem 3. For all k ≥ 0, there exists βk ∈ Sn, such that (wk)c = 1
λF[ψc; βk],

and βk can be updated by βk+1 = (1 − τk)βk + τkα̂k.

Proof. First, w1 = w(α0) = 1
λ ⊕c∈C F[ψc; α0], so β1 = α0. Suppose the claim

holds for all 1, . . . , k, then
(wk+1)c = (1−τk)(wk)c +

τk
λ

F[ψc; (α̂k)c] = (1−τk)
1
λ

F[ψc; βk]+
τk
λ

F[ψc; (α̂k)c]

=
1
λ

F[ψc; (1 − τk)(βk)c+τk(α̂k)c].

Therefore, we can set βk+1 = (1− τk)βk + τkα̂k ∈ Sn. �
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In general α̂k �= α̃k, hence βk �= αk. To compute
〈
ψi

yc
, (wk)c

〉
required by (31),

we have〈
ψi

yc
, (wk)c

〉
=

〈
ψi

yc
,
1
λ

∑
j

∑
y′

c

βj
y′

c
ψj

y′
c

〉
=

1
λ

∑
j

∑
y′

c

βj
y′

c
kc((xi, yc), (xj , y′c)).

And by using this trick, all the iterative updates in Algorithm 2 can be done
efficiently. So is the evaluation of ‖wk‖2 and the primal objective. The dual
objective (19) is also easy since∑

i

∑
y

�iy(αk)i
y =
∑

i

∑
y

∑
c

�iyc
(αk)i

y =
∑

i

∑
c

∑
yc

�iyc

∑
y:y|c=yc

(αk)i
y =
∑
i,c,yc

�iyc
(αk)i

yc
,

and the marginals of αk are available. Finally, the quadratic term in D(αk) can
be computed by∥∥A�αk

∥∥2
2

=
∥∥∑

i,y

ψi
y(αk)i

y

∥∥2
2

=
∑

c

∥∥∑
i,yc

ψi
yc

(αk)i
yc

∥∥2
2

=
∑

c

∑
i,j,yc,y′

c

(αk)i
yc

(αk)j
y′

c
kc((xi, yc), (xj , y′c)),

where the inner term is the same as the unnormalized expectation that can be
efficiently calculated. The last formula is only for nonlinear kernels.

4.4 Efficiency in Memory and Computation

For concreteness, let us consider a sequence as an example. Here the cliques
are just edges between consecutive nodes. Suppose there are l + 1 nodes and
each node has s states. The memory cost of Algorithm 2 is O(nls2), due to the
storage of the marginals. The computational cost per iteration is dominated by
calculating the marginals of α̂ and α̃, which is O(nls2) by standard graphical
model inference. The rest operations in Algorithm 2 cost O(nls2) for linear
kernels. If nonlinear kernels are used, then the cost becomes O(n2ls2).

5 Discussion

Structured output prediction is an important learning task in both theory and
practice. The main contribution of our paper is twofold. First, we identified an
efficient algorithm by [1] for solving the optimization problems in structured
prediction. We proved the O(1/

√
ε) rate of convergence for the Bregman projec-

tion based updates in excessive gap optimization, while [1] showed this rate only
for projected gradient style updates. In M3N optimization, Bregman projection
plays a key role in factorizing the computations, while technically such factoriza-
tions are not applicable to projected gradient. Second, we designed a nontrivial
application of the excessive gap technique to M3N optimization, in which the
computations are kept efficient by using the graphical model decomposition.
Kernelized objectives can also be handled by our method, and we proved supe-
rior convergence and computational guarantees than existing algorithms.
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When M3Ns are trained in a batch fashion, we can compare the convergence
rate of dual gap between our algorithm and the exponentiated gradient method
[ExpGrad, 7]. Assume α0, the initial value of α, is the uniform distribution and
α∗ is the optimal dual solution. Then by (22), we have

Ours: max
i,y

∥∥ψi
y

∥∥
2

√
6KL(α∗||α0)

λε
, ExpGrad: max

i,y

∥∥ψi
y

∥∥2
2

KL(α∗||α0)
λε

.

It is clear that our iteration bound is almost the square root of ExpGrad, and has
much better dependence on ε, λ, maxi,y

∥∥ψi
y

∥∥
2
, as well as the divergence from

the initial guess to the optimal solution KL(α∗||α0).
In addition, the cost per iteration of our algorithm is almost the same as Exp-

Grad, and both are governed by the computation of the expected feature values
on the cliques (which we call exp-oracle), or equivalently the marginal distribu-
tions. For graphical models, exact inference algorithms such as belief propagation
can compute the marginals via dynamic programming [16]. Finally, although
both algorithms require marginalization, they are calculated in very different
ways. In ExpGrad, the dual variables α correspond to a factorized distribution,
and in each iteration its potential functions on the cliques are updated using
the exponentiated gradient rule. In contrast, our algorithm explicitly updates
the marginal distributions of αk on the cliques, and marginalization inference
is needed only for α̂ and α̃. Indeed, the joint distribution α does not factorize,
which can be seen from step 7 of Algorithm 1: the convex combination of two
factorized distributions is not necessarily factorized.

Marginalization is just one type of query that can be answered efficiently by
graphical models, and another important query is the max a-posteriori inference
(which we call max-oracle): given the current model w, find the argmax in (2).
Max-oracle has been used by greedy algorithms such as cutting plane (BMRM
and SVM-Struct) and sequential minimal optimization [SMO, 11, Chapter 6].
SMO picks the steepest descent coordinate in the dual and greedily optimizes
the quadratic analytically, but its convergence rate is linear in |Y| which can
be exponentially large for M3N (ref Table 1). The max-oracle again relies on
graphical models for dynamical programming [19], and many existing combina-
torial optimizers can also be used, such as in the applications of matching [20]
and context free grammar parsing [21]. Furthermore, this oracle is particularly
useful for solving the slack rescaling variant of M3N proposed by [9]:

J(w)=
λ

2
‖w‖2

2+
1
n

n∑
i=1

max
y∈Y
{
�(y,yi;xi)

(
1−
〈
w,φ(xi,yi) − φ(xi,y)

〉)}
. (32)

Here two factorized terms get multiplied, which causes additional complexity
in finding the maximizer. [22, Section 1.4.1] solved this problem by a modified
dynamic program. Nevertheless, it is not clear how ExpGrad or our method can
be used to optimize this objective.

In the quest for faster optimization algorithms for M3Ns, the following three
questions are important: how hard is it to optimize M3N intrinsically, how in-
formative is the oracle which is the only way for the algorithm to access the
objective function (e.g., evaluate the function and its derivatives), and how well



306 X. Zhang, A. Saha, and S.V.N. Vishwanathan

does the algorithm make use of such information. The superiority of our algo-
rithm suggests that the exp-oracle provides more information about the function
than the max-oracle does, and a deeper explanation is that the max-oracle is
local [13, Section 1.3], i.e. it depends only on the value of the function in the
neighborhood of the querying point wk. In contrast, the exp-oracle is not local
and uses the global structure of the function. Hence there is no surprise that the
less informative max-oracle is easier to compute, which makes it applicable to a
wider range of problems such as (32). Moreover, the comparison between Exp-
Grad and our algorithm shows that even if the exp oracle is used, the algorithm
still needs to make good use of it in order to converge faster.

For future research, it is interesting to study the lower bound complexity for
optimizing M3N, including the dependence on ε, n, λ, Y, and probably even
on the graphical model topology. Empirical evaluation of our algorithm is also
important, especially regarding the numerical stability of the additive update of
marginal distributions αk under fixed precision. Broader applications are possi-
ble in sequence labeling, word alignment, context free grammar parsing, etc.
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Abstract. This paper presents a series of new results for domain adaptation in
the regression setting. We prove that the discrepancy is a distance for the squared
loss when the hypothesis set is the reproducing kernel Hilbert space induced by a
universal kernel such as the Gaussian kernel. We give new pointwise loss guaran-
tees based on the discrepancy of the empirical source and target distributions for
the general class of kernel-based regularization algorithms. These bounds have
a simpler form than previous results and hold for a broader class of convex loss
functions not necessarily differentiable, including Lq losses and the hinge loss.
We extend the discrepancy minimization adaptation algorithm to the more sig-
nificant case where kernels are used and show that the problem can be cast as
an SDP similar to the one in the feature space. We also show that techniques
from smooth optimization can be used to derive an efficient algorithm for solving
such SDPs even for very high-dimensional feature spaces. We have implemented
this algorithm and report the results of experiments demonstrating its benefits for
adaptation and show that, unlike previous algorithms, it can scale to large data
sets of tens of thousands or more points.

1 Introduction

A standard assumption in learning theory and applications is that training and test points
are drawn according to the same distribution. But, a more challenging problem of do-
main adaptation arises in a variety of applications, including natural language pro-
cessing, speech processing, or computer vision [7, 3, 9, 10, 17, 18, 12]. This problem
occurs when little or no labeled data is available from the target domain, but labeled
data from a source domain somewhat similar to the target, as well as large amounts of
unlabeled data from the target domain, are accessible. The domain adaptation problem
then consists of using the source labeled and target unlabeled data to learn a hypothesis
performing well on the target domain.

The theoretical analysis of this problem has been the topic of some recent publica-
tions. An analysis of adaptation was initiated by Ben-David et al. [1]. Several issues of
that paper were later corrected by Blitzer et al. [4]. These authors gave VC-dimension
bounds for binary classification based on a dA distance between distributions that can
be estimated from finite samples, and a term λH depending on the distributions and the
hypothesis set H , which cannot be estimated from data. In [11], we presented alterna-
tive learning bounds which hold in particular in the classification setting and depend
on the optimal classifiers in the hypothesis set for the source and target distributions.

J. Kivinen et al. (Eds.): ALT 2011, LNAI 6925, pp. 308–323, 2011.
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Our bounds are in general not comparable to those of [1, 4] but we showed that un-
der some plausible assumptions they are superior to those of [1, 4] and that in many
cases the bounds of [1, 4] have a factor of 3 of the error that can make them vacuous.
The assumptions made in the analysis of adaptation were more recently discussed by
Ben-David et al. [2] who also presented several negative results for this problem. These
negative results hold only for the 0-1 loss used in classification.

This paper deals with the problem of adaptation in regression, for which many
of the observations made in the case of the 0-1 loss do not hold. In [11], we intro-
duced a distance between distributions specifically tailored to domain adaptation, the
discrepancy distance, which generalizes the dA distance to arbitrary loss functions,
and presented several theoretical guarantees based on that discrepancy, including data-
dependent Rademacher complexity generalization bounds. In this paper we present a
series of novel results for domain adaptation in regression extending those of [11] and
making them more significant and practically applicable.

In Section 2, we describe more formally the learning scenario of domain adaptation
in regression and briefly review the definition and key properties of the discrepancy. We
then present several theoretical results in Section 3. For the squared loss, we prove that
the discrepancy is a distance when the hypothesis set is the reproducing kernel Hilbert
space of a universal kernel, such as a Gaussian kernel. This implies that minimizing
the discrepancy to zero guarantees matching the target distribution, a result that does
not hold in the case of the 0-1 loss. We further give pointwise loss guarantees depend-
ing on the discrepancy of the empirical source and target distributions for the class of
kernel-based regularization algorithms, including kernel ridge regression, support vec-
tor machines (SVMs), or support vector regression (SVR). These bounds have a simpler
form than a previous result we presented in the specific case of the squared loss in [11]
and hold for a broader class of convex loss functions not necessarily differentiable,
which includes all Lq losses (q ≥ 1), but also the hinge loss used in classification.

When the magnitude of the difference between the source and target labeling func-
tions is small on the training set, these bounds provide a strong guarantee based on the
empirical discrepancy and suggest an empirical discrepancy minimization algorithm
[11]. In Section 4, we extend the discrepancy minimization adaptation algorithm with
the squared loss to the more significant case where kernels are used. We show that the
problem can be cast as a semi-definite programming (SDP) problem similar to the one
given in [11] in the feature space, but formulated only in terms of the kernel matrix.

Such SDP optimization problems can only be solved practically for modest sample
sizes of a few hundred points using existing solvers, even with the most efficient pub-
licly available one. In Section 5, we prove, however, that an algorithm with significantly
better time and space complexities can be derived to solve these SDPs using techniques
from smooth optimization [14]. We describe the algorithm in detail. We prove a bound
on the number of iterations and analyze the computational cost of each iteration.

We have implemented that algorithm and carried out extensive experiments show-
ing that it can indeed scale to large data sets of tens of thousands or more points. Our
kernelized version of the SDP further enables us to run the algorithm for very high-
dimensional and even infinite-dimensional feature spaces. Section 6 reports our empir-
ical results demonstrating the effectiveness of this algorithm for domain adaptation.
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2 Preliminaries

This section describes the learning scenario of domain adaptation and reviews the key
definitions and properties of the discrepancy distance between distributions.

2.1 Learning Scenario

Let X denote the input space and Y the output space, a measurable subset of R, as
in standard regression problems. In the adaptation problem we are considering, there
are different domains, defined by a distribution over X and a target labeling function
mapping from X to Y . We denote by Q the distribution over X for the source domain
and by fQ : X → Y the corresponding labeling function. Similarly, we denote by P the
distribution over X for the target domain and by fP the target labeling function. When
the two domains share the same labeling function, we simply denote it by f .

In the domain adaptation problem in regression, the learning algorithm receives a
labeled sample of m points S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y )m from the
source domain, that is x1, . . . , xm are drawn i.i.d. according to Q and yi = fQ(xi)
for i ∈ [1,m]. We denote by Q̂ the empirical distribution corresponding to x1, . . . , xm.
Unlike the standard supervised learning setting, the test points are drawn from the target
domain, which is based on a different input distribution P and possibly different label-
ing function fP . The learner is additionally provided with an unlabeled sample T of
size n drawn i.i.d. according to the target distribution P . We denote by P̂ the empirical
distribution corresponding to T .

We consider a loss function L : Y × Y → R+ that is symmetric and convex with
respect to each of its argument. In particular L may be the squared loss commonly used
in regression. For any two functions h, h′ : X → Y and any distribution D over X , we
denote by LD(h, h′) the expected loss of h(x) and h′(x):

LD(h, h′) = E
x∼D

[L(h(x), h′(x))]. (1)

The domain adaptation problem consists of selecting a hypothesis h out of a hypothesis
set H with a small expected loss according to the target distribution P , LP (h, fP ).

2.2 Discrepancy Distance

A key question for adaptation is a measure of the difference between the distributions
Q and P . As pointed out in [11], a general-purpose measure such as the L1 distance is
not helpful in this context since the L1 distance can be large even in some rather favor-
able situations for adaptation. Furthermore, this distance cannot be accurately estimated
from finite samples and ignores the loss function. Instead, the discrepancy provides a
measure of the dissimilarity of two distributions that is specifically tailored to adapta-
tion and is defined based on the loss function and the hypothesis set used.

Observe that for a fixed hypothesis h ∈H , the quantity of interest in adaptation is
the difference of expected losses |LP (fP , h)−LQ(fP , h)|. A natural distance between
distributions in this context is thus one based on the supremum of this quantity over all
h∈H . The target hypothesis fP is unknown and could match any hypothesis h′. This
leads to the following definition [11].
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Definition 1. Given a hypothesis set H and loss function L, the discrepancy distance
disc between two distributions P and Q over X is defined by:

disc(P,Q) = max
h,h′∈H

∣∣LP (h′, h) − LQ(h′, h)
∣∣. (2)

The discrepancy is by definition symmetric and verifies the triangle inequality for any
loss function L. But, in general, it does not define a distance since we may have
disc(P,Q) = 0 for P �= Q. We shall prove, however, that for a large family of kernel-
based hypothesis set, it does verify all the axioms of a distance.

3 Theoretical Analysis

In what follows, we consider the case where the hypothesis set H is a subset of the
reproducing kernel Hilbert space (RKHS) H associated to a positive definite symmetric
(PDS) kernel K: H = {h ∈ H : ‖h‖K ≤Λ}, where ‖ · ‖K denotes the norm defined by
the inner product on H and Λ ≥ 0. We shall assume that there exists R> 0 such that
K(x, x)≤R2 for all x ∈ X . By the reproducing property, for any h ∈ H and x ∈ X ,
h(x)=〈h,K(x, ·)〉K , thus this implies that |h(x)|≤‖h‖K

√
K(x, x)≤ΛR.

3.1 Discrepancy with Universal Kernels

We first prove that for a universal kernel K , such as a Gaussian kernel [20], the discrep-
ancy defines a distance. Let C(X) denote the set of all continuous functions mapping
X to R. We shall assume that X is a compact set, thus the functions in C(X) are also
bounded. A PDS kernel K over X×X is said to be universal if it is continuous and if
the RKHS H it induces is dense in C(X) for the norm infinity ‖ · ‖∞.

Theorem 1. Let L be the squared loss and let K be a universal kernel. Then, for any
two distributions P and Q, if disc(P,Q) = 0, then P = Q.

Proof. Consider the function Ψ : C(X) → R defined for any h ∈ C(X) by Ψ(h) =
Ex∼P [h2] − Ex∼Q[h2]. Ψ is continuous for the norm infinity over C(X) since h �→
Ex∼P [h2] is continuous. Indeed, for any h, h′∈H ,

|E
P
[h′2] − E

P
[h2]| = |E

P
[(h′ + h)(h′ − h)]| ≤ (‖h‖∞ + ‖h′‖∞)‖h′ − h‖∞,

and similarly with h �→Ex∼Q[h2]. If disc(P,Q)=0, then, by definition,

∀h, h′ ∈ H,
∣∣ E

x∼P
[(h′(x) − h(x))2] − E

x∼Q
[(h′(x) − h(x))2]

∣∣ = 0.

Thus, EP [h′′2]−EQ[h′′2] = 0 for any h′′ = h′ − h∈ H with ‖h′′‖K ≤ 2ΛR, therefore
for any h′′ ∈ H with ‖h′′‖K ≤ 2ΛR, hence for any h′′ ∈ H regardless of the norm.
Thus, Ψ=0 over H. Since K is universal, H is dense in C(X) for the norm ‖ · ‖∞ and
by continuity of Ψ for ‖ · ‖∞, for all h ∈ C(X), EP [h2]−EQ[h2] = 0. Let f be any
non-negative function in C(X), then

√
f is well defined and is in C(X), thus,

E
P
[(
√
f)2] − E

Q
[(
√
f)2] = E

P
[f ] − E

Q
[f ] = 0.
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It is known that if EP [f ] − EQ[f ] = 0 for all f ∈C(X) with f ≥ 0, then P =Q (see
[8][proof of lemma 9.3.2]). This concludes the proof. 	


Thus, the theorem shows that if we could find a source distributionQ that would reduce
to zero the discrepancy in the case of the familiar Gaussian kernels, then that distribution
would in fact match the target distribution P .

3.2 Guarantees for Kernel-Based Regularization Algorithms

We now present pointwise loss guarantees in domain adaptation for a broad class of
kernel-based regularization algorithms, which also demonstrate the key role played
by the discrepancy in adaptation and suggest the benefits of minimizing that quantity.
These algorithms are defined by the minimization of the following objective function:

FQ̂(h) = R̂Q̂(h) + λ‖h‖2
K , (3)

where λ ≥ 0 is a trade-off parameter and RQ̂(h) = 1
m

∑m
i=1 L(h(xi), yi) the empirical

error of hypothesis h ∈ H. This family of algorithms includes support vector machines
(SVM) [6], support vector regression (SVR) [21], kernel ridge regression (KRR) [19],
and many other algorithms. We shall assume that the loss functionL is μ-admissible for
some μ>0: that is, it is symmetric and convex with respect to both of its arguments and
for all x ∈ X and y ∈ Y and h, h′ ∈ H , it verifies the following Lipschitz condition:

|L(h′(x), y) − L(h(x), y)| ≤ μ|h′(x) − h(x)|.

μ-admissible losses include the hinge loss and all Lq losses with q ≥ 1, in particular
the squared loss, when the hypothesis set and the set of output labels are bounded.

The labeling functions fP and fQ may not coincide on the training set supp(Q̂). But,
for adaptation to be possible, the difference between the labels received for the training
points and their target values should be assumed to be small, even if the input space
distributions P and Q are very close.

When the magnitude of the difference between the source and target labeling func-
tions is small on the training set, that is η=max{L(fQ(x), fP (x)) : x∈ supp(Q̂)} �
1, the following theorem gives a strong guarantee on the pointwise difference of the
loss between the hypothesis h returned by the algorithm when training on the source
domain and the hypothesis h′ returned when training on a sample drawn from the target
distribution in terms of the empirical discrepancy disc(P̂ , Q̂). The theorem holds for all
μ-admissible losses and has a simpler form than a previous result we presented in [11].

Theorem 2. Let L be a μ-admissible loss. Assume that fp ∈ H and let η denote
max{L(fQ(x), fP (x)) : x∈supp(Q̂)}. Let h′ be the hypothesis returned by the kernel-
based regularization algorithm (3) when minimizing FP̂ and h the one returned when
minimizing FQ̂. Then, for all x ∈ X and y ∈ Y ,

∣∣L(h′(x), y) − L(h(x), y)
∣∣ ≤ μR

√
disc(P̂ , Q̂) + μη

λ
. (4)
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Proof. The proof makes use of a generalized Bregman divergence, which we first in-
troduce. For a convex function F : H → R, we denote by ∂F (h) the subgradient of F
at h: ∂F (h) = {g ∈ H : ∀h′ ∈ H, F (h′)−F (h) ≥ 〈h′ − h, g〉}. ∂F (h) coincides with
∇F (h) when F is differentiable at h. Note that at a point h where F is minimal, 0 is
an element of ∂F (h). Furthermore, the subgradient is additive, that is, for two convex
function F1 and F2, ∂(F1 + F2)(h) = {g1 + g2 : g1 ∈ ∂F1(h), g2 ∈ ∂F2(h)}. For any
h ∈ H, fix δF (h) to be an (arbitrary) element of ∂F (h). For any such choice of δF , we
can define the generalized Bregman divergence associated to F by:

∀h′, h ∈ H, BF (h′‖h) = F (h′) − F (h) − 〈h′ − h, δF (h)〉 . (5)

Note that by definition of the subgradient, BF (h′‖h) ≥ 0 for all h′, h ∈ H. Let N
denote the convex function h → ‖h‖2

K . Since N is differentiable, δN(h) = ∇N(h)
for all h ∈ H, and δN and thus BN are uniquely defined. To make the definition of
the Bregman divergences for FQ̂ and R̂Q̂ compatible so that BFQ̂

= BR̂Q̂
+ λBN , we

define δR̂Q̂ from δFQ̂ by: δR̂Q̂(h) = δFQ̂(h) − λ∇N(h) for all h ∈ H. Furthermore,
we choose δFQ̂(h) to be 0 for any point h where FQ̂ is minimal and let δFQ̂(h) be an
arbitrary element of ∂FQ̂(h) for all other hs. We proceed in a similar way to define the

Bregman divergences for FP̂ and R̂P̂ so that BFP̂
= BR̂P̂

+ λBN .
Since the generalized Bregman divergence is non-negative and since BFQ̂

= BR̂Q̂
+

λBN and BFP̂
= BR̂P̂

+ λBN , we can write

BFQ̂
(h′‖h) +BFP̂

(h‖h′) ≥ λ
(
BN(h′‖h) +BN (h‖h′)

)
.

Observe that BN (h′‖h)+BN (h‖h′) = −〈h′ − h, 2h〉− 〈h− h′, 2h′〉 = 2‖h′ −h‖2
K .

Thus,BFQ̂
(h′‖h)+BFP̂

(h‖h′) ≥ 2λ‖h′−h‖2
K . By definition of h′ and h as minimizers

and our choice of the subgradients, δFP̂ (h′) = 0 and δFQ̂(h) = 0, thus, this inequality
can be rewritten as follows:

2λ‖h′ − h‖2
K ≤ R̂Q̂(h′) − R̂Q̂(h) + R̂P̂ (h) − R̂P̂ (h′).

Now, rewriting this inequality in terms of the expected losses gives:

2λ‖h′ − h‖2
K ≤

(
LP̂ (h, fP ) − LQ̂(h, fQ)

)
−
(
LP̂ (h′, fP ) − LQ̂(h′, fQ)

)
=
(
LP̂ (h, fP ) − LQ̂(h, fP )

)
−
(
LP̂ (h′, fP ) − LQ̂(h′, fP )

)
+
(
LQ̂(h, fP ) − LQ̂(h, fQ)

)
−
(
LQ̂(h′, fP ) − LQ̂(h′, fQ)

)
.

Since fP is in H , by definition of the discrepancy, the first two terms can both be
bounded by the empirical discrepancy:∣∣∣(LP̂ (h, fP ) − LQ̂(h, fP )

)∣∣∣ ≤ disc(P̂ , Q̂) and
∣∣∣(LP̂ (h′, fP ) − LQ̂(h′, fP )

)∣∣∣ ≤ disc(P̂ , Q̂).

The last two terms can be bounded using the μ-admissibility ofL since for any h′′ ∈ H ,∣∣∣(LQ̂(h′′, fP )−LQ̂(h′′, fQ)
)∣∣∣≤μ E

x∼Q̂
[|fP (x)−fQ(x)|]≤μη.
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Thus, 2λ‖h′ − h‖2
K ≤ 2disc(P̂ , Q̂) + 2μη. (6)

By the reproducing property, for any x ∈X , h′ − h(x) = 〈h′ − h,K(x, ·)〉, thus, for
any x ∈X and y ∈ Y ,

∣∣L(h′(x), y) − L(h(x), y)
∣∣ ≤ μ|h′ − h(x)| ≤ μR‖h′ − h‖K .

Upper bounding the right-hand side using (6) directly yields the statement (4). 	


A similar theorem can be proven when only fQ ∈ H is assumed. These theorems
can be extended to the case where neither the target function fP nor fQ is in H

by replacing in Theorem 2 η with η′′ = max{L(h∗P (x), fQ(x)) : x ∈ supp(Q̂)} +
max{L(h∗P (x), fP (x)) : x ∈ supp(P̂ )}, where h∗P ∈ argminh∈H LP (h, fP ). They
show the key role played by the empirical discrepancy disc(P̂ , Q̂) in this context when
η′′ � 1. Note that η = 0 when fP = fQ = f as in the sample bias correction setting
or other scenarios where the so-called covariate-shift assumption hold. Under the as-
sumptions η � 1 or η′′ � 1, these theorems suggest seeking an empirical distribution
q∗, among the family Q of all distributions with a support included in that of Q̂, that
minimizes that discrepancy [11]:

q∗ = argmin
q∈Q

disc(P̂ , q). (7)

Using q∗ instead of Q̂ amounts to reweighting the loss on each training point. This
forms the basis of our adaptation algorithm which consists of: (a) first computing q∗;
(b) then modifying (3) using q∗:

Fq∗(h) =
1
m

m∑
i=1

q∗(xi)L(h(xi), yi) + λ‖h‖2
K , (8)

and finding a minimizing h. The minimization of Fq∗ is no more difficult than that of
FQ̂ and is standard. Thus, in the following section, we focus on the first stage of our
algorithm and study in detail the optimization problem (7).

4 Optimization Problems

Let X be a subset of RN , N>1. We denote by SQ the support of Q̂, by SP the support
of P̂ , and by S their union supp(Q̂) ∪ supp(P̂ ), with |SQ| = m ≤ m and |SP | =
n ≤ n. The unique elements of SP are denoted by x1, . . . ,xm and those of SP by
xm+1, . . . ,xq, with q = m+n. For a vector z ∈ Rm, we denote by zi its ith coordinate.
We also denote by Δm the simplex in Rm: Δm = {z ∈ Rm : zi ≥ 0 ∧

∑m
i=1 zi = 1}.

4.1 Discrepancy Minimization in Feature Space

We showed in [11] that the problem of minimizing the empirical discrepancy for the
squared loss and the hypothesis space H = {x �→ w�x : ‖w‖≤Λ} of bounded linear
functions can be cast as the following convex optimization problem:

min
z∈Δm

‖M(z)‖2, (9)
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where M(z) ∈ SN is a symmetric matrix that is an affine function of z:

M(z) = M0 −
m∑

i=1

ziMi, (10)

with M0 =
∑q

j=m+1 P̂ (xj)xjx�j and for i ∈ [1,m] Mi = xix�i, xi ∈ SQ. The minimal
discrepancy distribution q∗ is given by q∗(xi) = zi, for all i ∈ [1,m]. Since ‖M(z)‖2 =
max{λmax(M(z)), λmax(−M(z))}, the problem can be rewritten equivalently as the
following semi-definite programming (SDP) problem:

min
z,t

t (11)

subject to

[
tI M(z)

M(z) tI

]
+ 0 ∧ 1�z = 1 ∧ z ≥ 0.

This problem can be solved in polynomial time using interior point methods. The time
complexity for each iteration of the algorithm is in our notation [16][pp.234-235] :
O(m3 + mN3 + m2N2 + nN2). This time complexity as well as its space complexity,
which is in O((m + N)2), make such algorithms impractical for relatively large or
realistic machine learning problems.

4.2 Discrepancy Minimization with Kernels

Here, we prove that the results of the previous section can be generalized to the case
of high-dimensional feature spaces defined implicitly by a PDS kernel K . We denote
by K = [K(xi,xj)]ij ∈ Rq×q the kernel matrix associated to K for the full sample
S = SQ ∪ SP and for any z ∈ Rm by D(z) the diagonal matrix

D(z) = diag(−z1, . . . ,−zm, P̂ (xm+1), . . . , P̂ (xm+n)).

Theorem 3. For any Q̂ and P̂ , the problem of determining the discrepancy minimizing
distribution q∗ for the squared loss L2 and the hypothesis set H can be cast as an SDP
of the same form as (9) but that depends only on the Gram matrix of the kernel K:

min
z∈Δm

‖M′(z)‖2 (12)

where M′(z) = K1/2D(z)K1/2 = M′
0 −
∑m

i=1 ziM′
i, with M′

0 = K1/2D0K1/2

and M′
i = K1/2DiK1/2 for i ∈ [1,m], and D0,D1, . . . ,Dm ∈ Rq×q defined by

D0 = diag(0, . . . , 0, P̂ (xm+1), . . . , P̂ (xm+n)), and for i ≥ 1, Di is the diagonal
matrix of the ith unit vector.

Proof. Let Φ : X → F be a feature mapping associated to K , with dim(F) = N ′. Let
q = m + n. The problem of finding the optimal distribution q∗ is equivalent to solving

min
‖z‖1=1
z≥0

{λmax(M(z)), λmax(−M(z))}, (13)
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Algorithm 1
for k ≥ 0 do
vk ← TC(uk)
wk ← argminu∈C

{
L
σ

d(u) +
∑k

i=0
i+1
2

[F (ui) + 〈∇F (ui),u − ui〉]
}

uk+1 ← 2
k+3

wk + k+1
k+3

vk

end for

Fig. 1. Convex optimization algorithm

where the matrix M(z) is defined by

M(z)=
q∑

i=m+1

P̂ (xi)Φ(xi)Φ(xi)�−
m∑

i=1

ziΦ(xi)Φ(xi)�,

with q∗ given by: q∗(xi) = zi for all i ∈ [1,m]. Let Φ denote the matrix in RN ′×q

whose columns are the vectors Φ(x1), . . . , Φ(xm+n). Then, observe that M(z) can be
rewritten as

M(z) = ΦD(z)Φ�.

It is known that for any two matrices A ∈ RN ′×q and B ∈ Rq×N ′
, AB and BA

have the same eigenvalues. Thus, matrices M(z) = (ΦD(z))Φ� and Φ�(ΦD(z)) =
KD(z) have the same eigenvalues. KD(z) is not a symmetric matrix. To ensure that
we obtain an SDP of the same form as (9) minimizing the spectral norm of a symmetric
matrix, we can instead consider the matrix M′(z) = K1/2D(z)K1/2, which, by the
same argument as above has the same eigenvalues as KD(z) and therefore M(z). In
particular, M′(z) and M(z) have the same maximum and minimum eigenvalues, thus,
‖M(z)‖2 = ‖M′(z)‖2. Since D = D0 −

∑m
i=1 ziDi, this concludes the proof. 	


Thus, the discrepancy minimization problem can be formulated in both the original
input space and in the RKHS defined by a PDS kernel K as an SDP of the same form.
In the next section, we present a specific study of this SDP and use results from smooth
convex optimization as well as specific characteristics of the SDP considered in our
case to derive an efficient and practical adaptation algorithm.

5 Algorithm

This section presents an algorithm for solving the discrepancy minimization problem
using the smooth approximation technique of Nesterov [14]. A general algorithm was
given by Nesterov [13] to solve convex optimization problems of the form

minimizez∈CF (z), (14)

where C is a closed convex set and F admits a Lipschitz continuous gradient over C
in time O(1/

√
ε), which was later proven to be optimal for this class of problems. The

pseudocode of the algorithm is given in Figure 1. Here, TC(u) ∈ C denotes for any
u ∈ C, an element of argminv∈C 〈∇F (u),v − u〉 + 1

2L‖v−u‖2 (the specific choice
of the minimizing v is arbitrary for a given u). d denotes a prox-function for C, that is



Domain Adaptation in Regression 317

Algorithm 2

u0 ← argminu∈C u�Ju
for k ≥ 0 do
vk ← argminu∈C

2p−1
2

(u − uk)�J(u − uk) + ∇Gp(M(uk))�u
wk ← argminu∈C

2p−1
2

(u − u0)
�J(u− u0) +

∑k
i=0

i+1
2

∇Gp(M(ui))
�u

uk+1 ← 2
k+3

wk + k+1
k+3

vk

end for

Fig. 2. Smooth approximation algorithm

d is a continuous and strongly convex function over C with respect to the norm ‖ · ‖
with convexity parameter σ > 0 and d(u0) = 0 where u0 = argminu∈C d(u). The
following convergence guarantee was given for this algorithm [14].

Theorem 4. Let z∗ be an optimal solution for problem (14) and let vk be defined as in
Algorithm 1, then for any k ≥ 0, F (vk) − F (z∗) ≤ 4Ld(z∗)

σ(k+1)(k+2) .

Algorithm 1 can be further used to solve in O(1/ε) optimization problems of the same
form where F is a Lipschitz-continuous non-smooth convex function [15]. This can
be done by finding a uniform ε-approximation of F by a smooth convex function G
with Lipschitz-continuous gradient. This is the technique we consider in the following.
Recall the general form of the discrepancy minimization SDP in the feature space:

minimize ‖M(z)‖2 (15)

subject to M(z) =
m∑

i=0

ziMi ∧ z0 = −1 ∧
m∑

i=1

zi = 1 ∧ ∀i ∈ [1,m], zi ≥ 0,

where z∈Rm+1 and where the matrices Mi ∈SN
+ , i∈ [0,m], are fixed SPSD matrices.

Thus, here C = {z ∈ Rm+1 : z0 = −1 ∧
∑m

i=1 zi = 1 ∧ ∀i ∈ [1,m], zi ≥ 0}.
We further assume in the following that the matrices Mi are linearly independent since
the problem can be reduced to that case straightforwardly. The symmetric matrix J =
[〈Mi,Mj〉F ]i,j ∈ R(m+1)×(m+1) is then PDS and we will be using the norm x �→√

〈Jx,x〉=‖x‖J on Rm+1.
A difficulty in solving this SDP is that the function F : z �→‖M(z)‖2 is not differen-

tiable since eigenvalues are not differentiable functions at points where they coalesce,
which, by the nature of the minimization, is likely to be the case precisely at the opti-
mum. Instead, we can seek a smooth approximation of that function. One natural can-
didate is the function z �→ ‖M(z)‖2

F . However, the Frobenius norm can lead to a very
coarse approximation of the spectral norm. As suggested by Nesterov [15], the function
Gp:M �→ 1

2 Tr[M2p]
1
p , where p≥1 is an integer, can be used to give a smooth approx-

imation. Indeed, let λ1(M)≥λ2(M)≥· · ·≥λN (M) denote the list of the eigenvalues
of a matrix M∈SN in decreasing order. By the definition of the trace, for all M∈SN ,

Gp(M)= 1
2

[∑N
i=1 λ

2p
i (M)

] 1
p , thus

1
2
λ2 ≤ Gp(M) ≤ 1

2
(rank(M)λ2p)

1
p ,
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where λ= max{λ1(M),−λN (M)} = ‖M‖2. Thus, if we choose r as the maximum
rank, r = maxz∈C rank(M(z)) ≤ max{N,

∑n
i=0 rank(Mi)}, then for all z∈C,

1
2
‖M(z)‖2

2 ≤ Gp(M(z)) ≤ 1
2
r

1
p ‖M(z)‖2

2. (16)

This leads to a smooth approximation algorithm for solving the SDP (15) derived from
Algorithm 1 by replacing the objective functionF with Gp. Choosing the prox-function
d : u �→ 1

2‖u − u0‖2
J leads to the algorithm whose pseudocode is given in Figure 2,

after some minor simplifications. The following theorem guarantees that its maximum
number of iterations to achieve a relative accuracy of ε is in O(

√
r log r/ε).

Theorem 5. For any ε>0, Algorithm 2 solves the SDP (15) with relative accuracy ε in
at most 4

√
(1 + ε)r log r/ε iterations using the objective functionGp with p∈ [q0, 2q0)

and q0 =(1 + ε)(log r)/ε.

Proof. The proof follows directly [14], it is given in Appendix A for completeness. 	


The first step of the algorithm consists of computing the vector u0 by solving the simple
QP of line 1. We now discuss in detail how to efficiently compute the steps of each
iteration of the algorithm in the case of our discrepancy minimization problems.

Each iteration of the algorithm requires solving two simple QPs (lines 3 and 4). To
do so, the computation of the gradient ∇Gp(M(uk)) is needed. This will therefore rep-
resent the main computational cost at each iteration other than solving the QPs already
mentioned since, clearly, the sum

∑k
i=0

i+1
2 ∇Gp(M(ui))�u required at line 4 can be

computed in constant time from its value at the previous iteration. Since for any z ∈ Rm

Gp(M(z)) = Tr[M2p(z)]1/p = Tr
[
(

m∑
i=0

ziMi)2p
]1/p

,

using the linearity of the trace operator, the ith coordinate of the gradient is given by

[∇Gp(M(z))]i =〈M2p−1(z),Mi〉F Tr[M2p(z)]
1
p−1, (17)

for all i ∈ [0,m]. Thus, the computation of the gradient can be reduced to that of the
matrices M2p−1(z) and M2p(z). When the dimension of the feature space N is not
too large, both M2p−1(z) and M2p(z) can be computed via O(log p) matrix multipli-
cations using the binary decomposition method to compute the powers of a matrix [5].
Since each matrix multiplication takes O(N3), the total computational cost for deter-
mining the gradient is then in O((log p)N3). The cubic-time matrix multiplication can
be replaced by more favorable complexity terms of the form O(N2+α), with α = .376.
Alternatively, for large values of N , that is N  (m + n), in view of Theorem 3, we
can instead solve the kernelized version of the problem. Since it is formulated as the
same SDP, the same smooth optimization technique can be applied. Instead of M(z),
we need to consider the matrix M′(z) = K1/2D(z)K1/2. Now, observe that

M′2p(z) =
[
K1/2D(z)K1/2

]2p
= K1/2

[
D(z)K

]2p−1
D(z)K1/2.
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Fig. 3. Performance improvement of the RMSE for the 12 adaptation tasks as a function of the
size of the unlabeled data used. Note that the figures do not make use of the same y-scale.

Thus, by the property of the trace operator,

Tr[M′2p(z)] = Tr[D(z)K1/2K1/2[D(z)K]2p−1] = Tr[[D(z)K]2p]. (18)

The other term appearing in the expression of the gradient can be computed as follows:

〈M′2p−1(z),M′
i〉F =Tr[[K1/2D(z)K1/2]2p−1K1/2DiK1/2]

=Tr[K1/2
[
D(z)K

]2p−2
D(z)K1/2K1/2DiK1/2]

=Tr[K[D(z)K]2p−1Di],

for any i ∈ [1,m]. Observe that multiplying a matrix A by Di is equivalent to zeroing
all of its columns but the ith one, therefore Tr[ADi] = Aii. In view of that,

〈M′2p−1(z),M′
i〉F = [K[D(z)K]2p−1]ii. (19)

Therefore, the diagonal of the matrix K[D(z)K]2p−1 provides all these terms. Thus,
in view of (18) and (19), the gradient given by (17) can be computed directly from the
(2p)th and (2p−1)th powers of the matrix D(z)K. The iterated powers of this matrix,
[D(z)K]2p(z) and [D(z)K]2p−1(z), can be both computed using a binary decomposi-
tion in timeO((log p)(m+n)3). This is a significantly more efficient computational cost
per iteration for N  (m + n). It is also substantially more favorable than the iteration
cost for solving the SDP using interior-point methodsO(m3 + mN3 + m2N2 + nN2).
Furthermore, the space complexity of the algorithm is only in O((m + n)2).

6 Experiments

This section reports the results of extensive experiments demonstrating both the effec-
tiveness of discrepancy minimization in adaptation when using kernel ridge regression
and the efficiency of our optimization algorithm. Our results show that the adapta-
tion algorithm presented is practical even for relatively large data sets and for high-
dimensional feature spaces.

For our experiments, we used the multi-domain sentiment dataset (version 1.0) of
Blitzer et al. [3]. This data set has been used in several publications [4, 11], but despite
the ordinal nature of the star labeling of the data, it has always been treated as a clas-
sification task, and not as a regression task which is the focus of this work. We are not
aware of any other adaptation datasets that can be applied to the regression task.
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Table 1. RMSE results obtained for the 12 adaptation tasks. Each field of the table has three
results: from training only on the source data (top), from the adaptation task (middle), and from
training only on the target data (bottom).

books dvd elec kitchen

books .273 ± .004
.450 ± .005
.362 ± .004
.252 ± .004

.544 ± .002

.407 ± .009

.246 ± .003

.331 ± .001

.324 ± .006

.315 ± .003

dvd

.546 ± .007

.506 ± .010

.273 ± .004
.252 ± .004

.505 ± .004

.371 ± .006

.246 ± .003

.383 ± .003

.369 ± .004

.315 ± .003

elec

.412 ± .005

.399 ± .012

.273 ± .004

.429 ± .006

.325 ± .005

.252 ± .004
.246 ± .003

.345 ± .004

.331 ± .003

.315 ± .003

kitchen

.360 ± .003

.352 ± .008

.273 ± .004

.412 ± .002

.319 ± .008

.252 ± .004

.330 ± .003

.287 ± .007

.246 ± .003
.315 ± .003

To make the data conform with the regression setting discussed in the previous sec-
tions, we first convert the discrete labels to regression values by fitting all the data for
each of the four tasks books, dvd, elec, and kitchen a Gaussian kernel ridge regres-
sion with a relatively small width σ = 1 as feature vectors the normalized counts of the
top 5,000 unigrams and bigrams, as measured across all four tasks. These regression
values are used as target values for all subsequent modeling.

We then define 12 adaptation problems for each pair of distinct tasks (task, task′),
where task and task′ are in {books, dvd, elec, kitchen}. For each of these prob-
lems, the source empirical distribution is a mixture defined by 500 labeled points from
task and 200 from task′. This is intended to make the source and target distributions
reasonably close, a condition for the theory developed in this paper, but the algorithm
receives of course no information about this definition of the source distribution. The
target distribution is defined by another set of points all from task′.

Figure 3 shows the performance of the algorithm on the 12 adaptation tasks between
distinct domains plotted as a function of the amount of unlabeled data received from
the target domain. The optimal performance obtained by training purely on the same
amount of labeled data from the target domain is also indicated in each case. The input
features are again the normalized counts of the top 5,000 unigrams and bigrams, as
measured across all four tasks, and for modeling we use kernel ridge regression with
the Gaussian kernel of the same width σ = 1. This setup guarantees that the target
labeling function is in the hypothesis space, a condition matching one of the settings
analyzed in our theoretical study. The results are mean values obtained from 9-fold
cross validation and we plot mean values ± one standard deviation. As can be seen from
the figure, adaptation improves, as expected, with increasing amounts of data. One can
also observe that not all data sets are equally beneficial for adaptation. The kitchen
task primarily discusses electronic gadgets for kitchen use, and hence the kitchen and
elec data sets adapt well to each other, an observation also made by Blitzer et al. [3].

Our results on the adaptation tasks are also summarized in Table 1. The row name
indicates the source domain and the column name the target domain. Due to lack of
space, we only list the results for adaptation with 1,000 unlabeled points from the target
domain. In this table, we also provide for reference the results from training purely with
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Fig. 4. The left panel shows a plot reporting run times measured empirically (mean ± one stan-
dard deviation) for the QP optimization and the computation of ∇Gp as a function of the sample
size (log-log scale). The right panel compares the total time taken by Algorithm 2 to compute the
optimization solution, to the one taken by SeDuMi (log-log scale).

labeled data from the source or target domain. We are not aware of any other adaptation
algorithms for the regression tasks with which we can compare our performance results.

Algorithm 2 requires solving several QPs to compute u0 and uk+1, k ≥ 0. Since
uk+1 ∈ Rm+1, the cost of these computations only depends on the size of the labeled
sample m, which is relatively small. Figure 4 displays average run times obtained for m
in the range 500 to 10, 000. All experiments were carried out on a single processor of an
Intel Zeon 2.67GHz CPU with 12GB of memory. The algorithm was implemented in R
and made use of the quadprog optimization package. As can be seen from the figure,
the run times scale cubically in the sample size, reaching roughly 10s for m = 1, 000.

The dominant cost of each iteration of Algorithm 2 is the computation of the gradient
∇Gp(M(uk)), as already pointed out in Section 5. The iterated power method provides
a cost per iteration ofO((log p)(m+n)3), and thus depends on the combined size of the
labeled and unlabeled data. Figure 4 shows typical timing results obtained for different
samples sizes in the range m + n = 500 to m + n = 10, 000 for p = 16, which
empirically was observed to guarantee convergence. For a sample size of m + n =
2, 000 the time is about 80 seconds. With 5 iterations of Algorithm 2 the total time is
5 × (80 + 2 ∗ 10) + 10 = 510 seconds.

In contrast, even the most efficient SDP solvers publicly available, SeDuMi, cannot
solve our discrepancy minimization SDPs for more than a few hundred points in the
kernelized version. In our experiments, SeDuMi (http ://sedumi.ie.lehigh.edu/)
simply failed for set sizes larger than m + n = 750! In Figure 4, typical run times for
Algorithm 2 with 5 iterations are compared to run times using SeDuMi.

7 Conclusion

We presented several theoretical guarantees for domain adaptation in regression and
proved that the empirical discrepancy minimization can also be cast as an SDP when
using kernels. We gave an efficient algorithm for solving that SDP using results from
smooth optimization and specific characteristics of these SDPs in our adaptation case.
Our adaptation algorithm is shown to scale to larger data sets than what could be af-
forded using the best existing software for solving such SDPs. Altogether, our results
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form a complete solution for domain adaptation in regression, including theoretical
guarantees, an efficient algorithmic solution, and extensive empirical results.

Acknowledgments. We thank Steve Boyd, Michael Overton, and Katya Scheinberg
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References

[1] Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain
adaptation. In: NIPS 2006 (2007)

[2] Ben-David, S., Lu, T., Luu, T., Pál, D.: Impossibility theorems for domain adaptation. Jour-
nal of Machine Learning Research - Proceedings Track 9, 129–136 (2010)

[3] Blitzer, J., Dredze, M., Pereira, F.: Biographies, Bollywood, Boom-boxes and Blenders:
Domain Adaptation for Sentiment Classification. In: ACL 2007 (2007)

[4] Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Wortman, J.: Learning bounds for domain
adaptation. In: NIPS 2007 (2008)

[5] Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. The MIT Press, Cam-
bridge (1992)

[6] Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20(3) (1995)
[7] Dredze, M., Blitzer, J., Talukdar, P.P., Ganchev, K., Graca, J., Pereira, F.: Frustratingly Hard

Domain Adaptation for Parsing. In: CoNLL 2007 (2007)
[8] Dudley, R.M.: Real Analysis and Probability. Wadsworth, Belmont (1989)
[9] Jiang, J., Zhai, C.: Instance Weighting for Domain Adaptation in NLP. In: Proceedings of

ACL 2007, pp. 264–271 (2007)
[10] Legetter, C.J., Woodland, P.C.: Maximum likelihood linear regression for speaker adapta-

tion of continuous density hidden Markov models. Comp. Speech and Lang. (1995)
[11] Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: Learning bounds and algo-

rithms. In: Proceedings of COLT 2009. Omnipress, Montréal, Canada (2009)
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A Proof of Theorem 5
Proof. Let ‖M∗‖2 be the optimum of the SDP (15), Gp(M′∗) that of the SDP with F
replaced with its smooth approximation Gp, and z∗ ∈ C a solution of that SDP with

relative accuracy ε. Then, for p ≥ (1+ε) log r
ε , in view of (16), z∗ is a solution of the

original SDP (15) with relative accuracy ε:

‖M(z∗)‖2

‖M∗‖2
≤ r

1
2p

√
GP (M(z∗))√
Gp(M′∗)

≤ r
1
2p (1 + ε)1/2 ≤ (1 + ε).

Gp can be shown to admit a Lipschitz gradient with Lipschitz constant L = (2p −
1) with respect to the norm ‖ · ‖J and the prox-function d can be chosen as d(u) =
1
2‖u − u0‖2

J, with u0 = argminu∈C ‖u‖J and convexity parameter σ = 1. It can be

shown that d(z∗) ≤ rGp(M′∗). Thus, in view of Theorem 4, Gp(M(zk))−Gp(M′∗)
Gp(M′∗) ≤

4(2p−1)r
(k+1)(k+2) . Choosing p such that 2p < 4 (1+ε) log r

ε , and setting the right-hand side to
ε > 0, gives the following maximum number of iterations to achieve a relative accuracy
of ε using Algorithm 2: k∗ =

√
(16r(1 + ε) log r)/ε2 = 4

√
(1 + ε)r log r/ε. 	
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Abstract. Finding linear classifiers that maximize AUC scores is im-
portant in ranking research. This is naturally formulated as a 1-norm
hard/soft margin optimization problem over pn pairs of p positive and n
negative instances. However, directly solving the optimization problems
is impractical since the problem size (pn) is quadratically larger than the
given sample size (p + n). In this paper, we give (approximate) reduc-
tions from the problems to hard/soft margin optimization problems of
linear size. First, for the hard margin case, we show that the problem is
reduced to a hard margin optimization problem over p + n instances in
which the bias constant term is to be optimized. Then, for the soft mar-
gin case, we show that the problem is approximately reduced to a soft
margin optimization problem over p+n instances for which the resulting
linear classifier is guaranteed to have a certain margin over pairs.

1 Introduction

Learning to rank has been one of the most active areas of research in machine
learning and information retrieval in the past decade, due to increasing demands
in, for example, recommendation tasks and financial risk analysis [5, 13, 8, 4,
21, 6, 19, 2, 14]. Among the problems related to learning to rank, the bipartite
ranking is a fundamental problem, which involves learning to obtain rankings
over positive and negative instances. More precisely, for a given sample consisting
of positive and negative instances, the goal of the bipartite ranking problem is to
find a real-valued function h, which is referred to as a ranking function, with the
following property: For a randomly chosen test pair of positive instance x+ and
negative instance x−, the ranking function h maps x+ to a higher value than
x− with high probability. Thus, a natural measure for evaluating the goodness
of ranking function h is the probability that h(x+) > h(x−), which we call the
AUC of h.

The bipartite ranking problem can be reduced to the binary classification
problem over a new instance space, consisting of all pairs (x+,x−) of positive
and negative instances. More precisely, the problem of maximizing the AUC is
equivalent to finding a binary classifier f of the form of f(x+,x−) = h(x+) −
h(x−) so that the probability that f(x+,x−) > 0 is maximized for a randomly
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chosen instance pair. Several studies including RankSVMs [13, 4] have taken this
approach with linear classifiers as the ranking functions. RankSVMs are justified
by generalization bounds [21, 2] which say that a large margin over pairs of
positive and negative instances in the sample implies a high AUC score under
the standard assumption that instances are drawn i.i.d. under the underlying
distribution.

The reduction approach, however, has a drawback that the sample constructed
through the reduction is of size pn when the original sample consists of p positive
and n negative instances. This is a quadratic blowup in size.

In this paper, we formulate AUC maximization as 1-norm hard/soft margin
optimization problems1 over pn pairs of p positive and n negative instances. We
show some reduction schemes to 1-norm hard (or soft) margin optimization over
p+n instances which approximate the original problem over pairs. First, for the
hard margin case where the resulting linear classifer is supposed to classfiy all
pairs correctly by some positive margin, we show that the original problem over
pairs is equivalent to the 1-norm hard margin problem over p+n instances with
the bias term.

Second, for the soft margin case, in which the resulting classsfier is allowed to
misclassify a number of pairs, we show reduction methods to 1-norm soft margin
optimization over instances that are guaranteed to have a certain margin over
pairs of instance. When we solve the original problem over pairs, it can be shown
that for any ε s.t. 0 < ε < 1, the solution has a margin of least ρ∗ ≥ γ∗ over
at least (1 − ε)pn pairs, where ρ∗ and γ∗ are optimal solutions of the primal
and dual problems of the original problem. Note that the optimal solutions
ρ∗ and γ∗ depend on ε respectively. On the other hand, for an appropriate
parameter setting, one of our reduction methods guarantees that the resulting
classifier has a margof at least γ∗ for (1−

√
ε)2pn pairs. Note that, this guarantee

might be rather weak, since the guaranteed margin γ∗ is lower than the optimal
margin ρ∗ in general. However, if ρ∗ ≈ γ∗, say, when pairs are close to be
linearly separable, our theoretical guarantee becomes sharper. Also, theoretically
guaranteed reduction methods from AUC maximization to classification are quite
meaningful since typical methods lack such properties.

We should note that our theoretical guarantee itself is not new. SoftRank-
Boost [15] is proved to have the same guarantee. But our reduction methods
and SoftRankBoost are totally different. SoftRankBoost is designed using the
smooth boosting framework [7, 23, 11, 12, 3]. On the other hand, our methods
are built from an optimization theoretic perspective and provide a much clearer
understanding for underlying optimization problems. In addition, our methods
motivate practical heuristics to further improve AUCs.

In experiments using artificial and real data, the practical heuristics derived
from the analysis achieve AUCs that are almost as high as the original soft

1 In this paper we refer to 1-norm soft margin optimization as a soft margin opti-
mization with 1-norm of the weight vector regularized. Note that sometimes the soft
margin optimization of SVMs with 1-norm of slack valuables optimized is also called
1-norm soft margin optimization.
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margin formulation over pairs while keeping the sample size linear. In addition,
our methods also outperform previous methods including RankBoost [8] and
SoftRankBoost.

There have been a number of studies in this field. Brefeld and Scheffer [4]
and Fung et al. [10] proposed reduction methods from RankSVMs or 2-norm
soft margin optimization over pairs to 2-norm soft margin optimization over
instances. Raykar et al. investigated similar problems in the logisitic regression
framework [18]. These reduction methods, however, do not have theoretical guar-
antees similar to ours. Further, these researches consider soft margin optimiza-
tion problems where 2-norm of the weight vector is regularized. On the other
hand, in our soft margin optimization, 1-norm of the weight vector is regular-
ized. So, the resulting weight vector tends to be sparse, which is useful for feature
selection. Freund et al proposed RankBoost [8], which is an efficient implemen-
tation of AdaBoost [9] over pairs of positive and negative instances and runs in
linear time for a given sample size. Rudin and Schapire further demonstrated
that under certain assumptions, AdaBoost is equivalent to RankBoost [21]. Since
AdaBoost is shown to have at least half of the maximum margin asymptotically
for the 1 norm hard margin optimization(see, e.g., [16, 17]), RankBoost and
AdaBoost also have large margins over pairs. Rudin also proposed the P-Norm
Push, which maximizes a criterion that assigns higher weights to rankings among
top instances [20].

2 Preliminaries

Let X+ and X− be the sets of positive instances and negative instances, respec-
tively. Let X = X+ ∪ X− be the instance space. A distribution D over X is
said to be nontrivial if D has non-zero probability over both positive and nega-
tive instances. Given a non-trivial distribution D, we denote D+ and D− as the
marginal distribution of D over positive and negative instances, respectively. A
ranking function h is any function from X to [−1,+1]. The AUC of hypothesis
h with respect to a non-trivial distribution D over X is given as

AUCD(h) = Pr
x+,x−∼D

{h(x+) > h(x−) | x+ ∈ X+,x− ∈ X−},

where each x+ and x− is drawn independently with respect to D.
Let S be a set of m(= p+ n) instances drawn i.i.d. with respect to D, which

includes p positive instances and n negative instances, respectively. Let S+ =
{x+

1 , . . . ,x
+
p } and S− = {x−

1 , . . . ,x
−
n }, be the subsets of positive and negative

instances respectively.
Given ρ > 0, we define

AUCS,ρ(h) =

∑p
i=1

∑n
j=1 I(h(x+

i ) − h(x−
j ) ≥ ρ)

pn
,

where I(·) is the indicator function. The following theorem was presented by
Rudin and Schapire.
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Theorem 1 (Rudin and Schapire [21]). Let F be a set of ranking functions.
Then, for any ε > 0, ρ > 0, for any h ∈ F , the following holds

AUCD(h) ≥ AUCS,ρ(h) − ε (1)

with a probability of at least 1−2N
(
F , ρ

4

)
exp
{
−mε2E2

8

}
, where E is the expec-

tation of I(x+
i ∈ X+,x−

j ∈ X−) when x+
i and x−

j are drawn independently from
D, and N (F , ε) is the covering number of F , which is defined as the minimum
number of balls of radius ε needed to cover F using L∞ norm.

Here, note that the covering number is smaller if ρ is larger. So, a robust approach
to learn a hypothesis with high AUC is to enlarge AUCS,ρ(h) for some large ρ.

2.1 1-Norm Soft Margin over Pairs of Positive and Negative
Instances

In this paper, we assume a finite set H ={h1, h2, . . . , hN} of ranking functions,
which are functions from X to [−1,+1]. Our hypothesis class F is the set of
convex combination of ranking functions in H, i.e.,

F =

{
f
∣∣∣ f(x) =

N∑
k=1

αkhk(x), hk ∈ H,
N∑

k=1

αk = 1, αk ≥ 0

}
.

Now, our goal is to find a linear combination of ranking functions f ∈ F that
has a large margin ρ over pairs of instances in S+ and S−.

More formally, we formulate our problem as optimizing the soft margin over
pairs of positive and negative instances. For convenience, for any q ≥ 1, let Pq

be the q-dimensional probability simplex, i.e., Pq = {p ∈ [0, 1]q |
∑

i pi = 1}.
Then, for positive and negative sets of instances S+ and S−, the set H of ranking
functions, and any fixed ν ∈ {1, . . . , pn}, the 1-norm soft margin optimization
problem is given as follows:

(ρ∗,α∗, ξ∗) = max
ρ,α,ξ

ρ− 1
ν

p∑
i=1

n∑
j=1

ξij (2)

sub.to∑
k

αk(hk(x+
i ) − hk(x−

j ))/2 ≥ ρ− ξij (i = 1, . . . , p, j = 1, . . . , n),

α ∈ PN ,

ξij ≥ 0 (i = 1, . . . , p, j = 1, . . . , n).

In this problem, the goal is to maximize the margin ρ of the linear combination
α of ranking functions w.r.t. instances as well as to minimize the sum of “losses”
ξij , the quantity by which the target margin ρ is violated. Here ν ∈ {1, . . . , pn}
controls the tradeoff between the two objectives.
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Then, using Lagrangian multipliers, the dual problem is given as

(γ∗,d∗) =min
γ,d

γ (3)

sub.to∑
i,j

dij(hk(x+
i ) − hk(x−

j ))/2 ≤ γ (k = 1, . . . , N),

0 ≤ dij ≤ 1
ν

(i = 1, . . . , p, j = 1, . . . , n),

d ∈ Ppn.

Since the problem is a linear program, by duality, we have ρ∗ − 1
ν

∑
i,j ξ

∗
ij = γ∗.

Furthermore, by using KKT conditions, it can be shown that (see, e.g., [22,
24]), the optimal solution guarantees the number of pairs (x+

i ,x
−
j ) for which∑

k αk(hk(x+
i ) − hk(x−

j ))/2 ≤ ρ∗ is at most ν. In other words, setting f =∑
k=1 αkhk, we have that AUCS,ρ∗(f) is at least 1−ν/pn. Thus, solving 1-norm

soft margin optimization pairs is a quite natural approach for improving the
lower bound of AUCD(f).

3 1-Norm Hard Margin Optimization over Pairs

In this section, we show the equivalence between two hard margin optimization
problems, the 1-norm hard margin problem over pairs and the 1-norm hard
margin problem with bias. The hard margin optimization problem is a special
case of the soft margin problem in that the resulting classifier or ranking function
is supposed to predict all the instances or pairs correctly with a positive margin.

The first problem we consider is the 1-norm hard margin optimization over
pairs of positive and negative instances.

max
ρ,α∈PN

ρ (4)

sub.to
N∑

k=1

αk(hk(x+
i ) − hk(x−

j ))/2 ≥ ρ (i = 1, . . . , p, j = 1, . . . , n).

The second hard margin problem is the 1-norm hard margin optimization with
bias.

max
ρ,α∈PN ,b

ρ (5)

sub.to
N∑

k=1

αkhk(x+
i ) + b ≥ ρ (i = 1, . . . , p),

N∑
k=1

αkhk(x−
j )) + b ≤ −ρ (j = 1, . . . , n).



AUC Maximization by 1-Norm Soft Margin Optimization 329

In the following, we show that both of these problems are equivalent, in the
sense that we can construct an optimal solution of one problem from an optimal
solution of the other problem.

Theorem 2. Let (ρb,αb, bb) be an optimal solution of the 1-norm hard margin
optimization with bias (5). Then, (ρb,αb) is also an optimal solution of the
1-norm hard margin optimization over pairs (4).

Proof. Let (ρp,αp) be an optimal solution of the 1-norm hard margin optimiza-
tion over pairs. Clearly, (ρb,αb, bb) is a feasible solution of the 1-norm hard
margin optimization over pairs. So, ρb ≤ ρp. Next, we show that the opposite
is true. Let x+ and x− be positive and negative examples for which the margin
of αp is minimized. Note that for the pair (x+,x−) the constraint holds with
equality. Let

bp = −
∑

k αp,k(hk(x+) + hk(x−))
2

.

Then, (ρp,αp, bp) is a feasible solution of the 1-norm hard margin optimization
with bias. For any positive instance x+

i , observe that

N∑
k=1

αp,khk(x+
i ) + bp =

N∑
k=1

αp,k
hk(x+

i ) − hk(x−)
2

+
N∑

k=1

αp,k
hk(x+

i ) − hk(x+)
2

≥ ρp +
N∑

k=1

αp,k
hk(x+

i ) − hk(x−) − (hk(x+) − hk(x−))
2

≥ ρp + ρp − ρp = ρp.

A similar inequality holds for negative instances as well. Thus, we have
ρp ≤ ρb. 	


4 Reduction Methods from 1-Norm Soft Margin
Optimization over Pairs

In this section, we propose reduction methods from the 1-norm soft margin
optimization over pairs to that over instances.

4.1 Our Method

We would like to approximate the dual problem of the 1-norm soft margin opti-
mization over pairs (3). The dual problem is concerned with finding a distribution
over pn pairs of positive and negative instances satisfying the linear constraints.
Our key idea is to replace the distribution dij with a product distribution d+

i d
−
j ,

where d+, d− are distributions over positive and negative instances, respec-
tively.
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Letting dij = d+
i d

−
j , observe that

∑
i,j

dij

hk(x+
i ) − hk(x−

j )
2

=
∑
i,j

d+
i d

−
j

hk(x+
i ) − hk(x−

j )
2

=

∑
i d

+
i hk(x+

i )
∑

j d
−
j

2
−
∑

j d
−
j hk(x−

j )
∑

i d
+
i

2
=
∑

i

d+
i hk(x+

i )/2 −
∑

j

d−j hk(x−
j )/2.

Then, we obtain the following problem.

min
d,γ

γ (6)

sub.to
p∑

i=1

d+
i hk(x+

i )/2 −
n∑

j=1

d−j hk(x−
j )/2 ≤ γ (k = 1, . . . , N),

d+ ∈ Pp,d
− ∈ Pn,

0 ≤ d+
i d

−
j ≤ 1

ν
(i = 1, . . . , p, j = 1, . . . , n).

Since we restrict distributions to be products of two distributions, the optimal
solution yields a feasible solution of the original problem (2). This problem has
p + n + 1 variables, whereas the original problem has pn + 1 variables. So this
problem would be easier to solve. But, unfortunately, this problem is not convex
since the constraints d+

i d
−
j ≤ 1/ν (i = 1, . . . , p, j = 1, . . . , n) are not convex.

Later herein, we propose a method by which to find a local minimum of this
non-convex problem (6). First, however, we show a restricted the problem, the
solution of which has a certain amount of margin over pairs. In order to avoid
non-convex constraints, we fix ν+ and ν− such that ν = ν+ν− and enforce
d+

i ≤ 1/ν+ and d−j ≤ 1/ν−. Equivalently, we fix ν− = ν+/ν. As a result, we
obtain the following problem.

γ̂(ν+) = min
d+,d−,γ

γ (7)

sub.to∑
i

d+
i hk(x+

i )/2 −
∑

j

d−j hk(x−
j )/2 ≤ γ (k = 1, . . . , N),

d+ ∈ Pp,d
− ∈ Pn,

d+
i ≤ 1/ν+,

d−j ≤ 1/ν− = ν+/ν.

Note that if we optimize ν+, we obtain the minimum of problem (6), that is,
minν+ γ̂(ν+) = γ∗. Remember, however, that problem (6) is not convex w.r.t.
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ν+ (see Fig. 1 for an example). Therefore, it is not straightforward to obtain the
optimum.

On the other hand, for any fixed choice of ν+ and ν−, we can guarantee that
the solution of problem (7) has a certain margin for several pairs.

Theorem 3. Given ν+ and ν−, the solution of problem (7) has a margin of at
least γ∗ for at least pn− ν+n− ν−p+ ν+ν− pairs.

Proof. Using Lagrangian multipliers, it can be shown that the dual problem of
(7) is as follows:

(ρ̂, α̂, b̂, ξ̂
+
, ξ̂

−
) =arg max

α∈PN ,b,ξ+
,ξ−

ρ− 1
2ν+

p∑
i=1

ξ+i − 1
2ν−

n∑
j=1

ξ−j (8)

sub.to
N∑

k=1

αk(hk(x+
i ) + b ≥ ρ− ξ+i (i = 1, . . . , p),

−
N∑

k=1

αkhk(x−
j ) − b ≥ ρ− ξ−j (j = 1, . . . , n),

ξ+, ξ− ≥ 0.

By using the KKT conditions, ξ̂+i (d̂+
i − 1/ν+) = 0. Therefore, if ξ̂+i > 0 then

d̂+
i = 1/ν+. Similarly, if ξ̂−j > 0 then d̂−j = 1/ν−. Note that there are at most ν+

instances such that d̂+
i = 1/ν+. This implies that there are at most ν+ instances

whose corresponding ξ̂+i > 0. Again, similarly, there are at most ν− instances
with ξ̂−j > 0. There are therefore, for at least (p− ν+)(n− ν−) pairs, the margin
of which is at least ρ̂. Finally, by duality, ρ̂− (1/ν+)

∑
i ξ̂

+
i − (1/ν−)

∑
j ξ̂

−
j = γ̂.

Combined with the fact that γ̂ ≥ γ∗, we have ρ̂ ≥ γ∗, which completes the
proof. 	


We note that problem (8) in the proof is the primal form of the dual problem
(7). In particular, for the choice that ν = εpn, ν+ =

√
εp and ν− =

√
εn, we

obtain the following corollary.

Corollary 4. For ν = εpn, ν+ =
√
εp and ν− =

√
εn, a solution of problem (7)

has a margin of at least γ∗ for (1 −
√
ε)2pn pairs.

Here, the lower bound ν/n of ν+ is given so that the upper bound of d−j is at
least 1/n. Note that, the area under the tangent line of d+

i = 1/ν+ at ν∗ = ν+
c is

always included in the area d+
i ≤ 1/ν+. Thus, any feasible solution of problem

(9) is also a feasible solution of problem (6).

4.2 Practical Heuristics

Now we propose a practical method to find a local minimum of problem (6).
Recall that in problem (6), we have non-convex constraints d+

i ≤ 1/ν+ when we
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regard ν+ as a variable. In order to avoid non-convex constraints, we consider
a tangent line of 1/ν+ at some point ν+ = ν+

c . More precisely, we consider the
following problem.

(γ̃, d̃+, d̃−, ν̃+) =arg min
γ,d+,d−,ν+

γ (9)

sub.to
p∑

i=1

d+
i hk(x+

i )/2 −
n∑

j=1

d−j hk(x−
j )/2 ≤ γ (k = 1, . . . , N),

d+ ∈ Pp,d
− ∈ Pn,

d+
i ≤ − 1

(ν+
c )2

ν+ +
2
ν+

c
(i = 1, . . . , p),

d−j ≤ ν+

ν
(j = 1, . . . , n),

ν

n
≤ ν+ ≤ − (ν+

c )2

p
+ 2ν+

c .

Here the lower bound ν/n of ν+ is added so that the upper bound of d−j is at
least 1/n. Also, the upper bound of ν+ is given so that the upper bound of d+

i

is at least 1/p. Note that, the region under the tangent line of d+
i = 1/ν+ at

ν∗ = ν+
c is always contained in the region d+

i ≤ 1/ν+. Thus, any feasible solution
of problem (9) is also a feasible solution of problem (6).

Now we are ready to describe our heuristics:

1. Given some ν+
c , solve problem (9) and get a solution (γ̃, d̃+, d̃−, ν̃+).

2. Given ν+ = ν̃+, solve problem (7) and get a solution (γ̂, d̂+, d̂−).

Observe that the solution (γ̃, d̃+, d̃−) of problem (9) is a feasible solution of
problem (7) given ν+ = ν̃+. Thus, we have γ̂ ≤ γ̃. Furthermore, if we set
ν+

c = ν̂+, the solution (γ̂, d̂+, d̂−, ν̂+) is a feasible solution of problem (9), so

100 150 200 250 300 350
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Fig. 1. Illustration of the function γ̂(ν+) for an artificial data set
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+
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2

Fig. 2. Illustration of the heuristics. Here ν+
1 = ν+

c and ν+
2 is the solution of problem

(9) given ν+
c .

that the minimum γ̃′ of problem (9) satisfies γ̃′ ≤ γ̂. Therefore, by repeating
this procedure, we can obtain a monotonically decreasing sequence of γ, which
will converge to a local minimum of problem (6). In an algorithmic perspective,
the second step that solves problem (7) seems redundant. However, we add the
second step for numerical stability since problem (7) has simpler constraints.
Fig. 2 illustrates the heuristics.

5 Experiments

In this section, we present preliminary experimental results. The data sets in-
clude artificial data sets, and real data sets from the UCI Machine Learning
Repository and Reuters.

5.1 Artificial Data

For the first experiment, we used artificial data sets with r-of-k threshold func-
tions as target functions. An r-of-k threshold function f overN Boolean variables
is associated with some set A of k Boolean variables and f outputs +1 if at least
r of the k variables in A are positive and f outputs −1, otherwise. Assume that
the instance space is {+1,−1}N . In other words, the r-of-k threshold function
f is represented as follows

f(x) = sign(
∑
x∈A

x+ k − 2r + 1).

For N = 100, k = 30, and r = 1, 8, 15, we fix r-of-k threshold functions which
determine labels. Then for each set of parameters, we generate m = 1000 random
instances so that ratios of positive and negative instances are 5 : 5, 7 : 3, and
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9 : 1 respectively. Finally, we add random noise into labels by changing the label
of each instance with probabilities of 5%, 10%, and 15%. As hypotheses, we
use N Boolean variables themselves and the constant hypothesis which always
outputs +1.

We compare RankBoost [8], SoftRankBoost [15], 1-norm soft margin over pairs
(LP-Pair), and our method. For RankBoost, we set the number of iterations to
be T = 500,5000, and 10000, respectively. For the other methods, we set the
parameter ν = εpn, where ε ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. We evaluate each
method by 5-fold cross validation. As shown in Table 1, our method recorded
higher AUCs than the other algorithm for almost the data sets. In addition, in
2, our method achieves especially high AUCs, which are greater than or equal
to those of LP-Pair.

5.2 UCI Data

For the next experiment, we use data sets “hypothyroid”, “ionosphere”, “kr-vs-
kp”, “sick-euthroid”, “spambase” from the UCI Machine Learning Repository[1].
The parameters of each algorithm are the same as in Section 5.1. As shown in
Table 3, our method archives high AUCs for all data sets.

Table 1. AUCs for artificial data sets

data RankBoost SoftRankBoost LP-Pair our method

r niose 500 5000 10000

1 0.9313 0.9384 0.9378 0.7275 0.9745 0.9818
8 5(%) 0.9251 0.9239 0.9239 0.9325 0.9564 0.9596

15 0.9264 0.9262 0.9262 0.9401 0.952 0.9545

1 0.8777 0.8979 0.8979 0.7391 0.9125 0.994
8 10(%) 0.8857 0.8853 0.8853 0.9043 0.9136 0.9173

15 0.8727 0.8727 0.8727 0.869 0.9043 0.9007

1 0.8102 0.8389 0.8391 0.7442 0.8322 1.0
8 15(%) 0.8371 0.8372 0.8372 0.8793 0.8608 0.8643

15 0.8377 0.8337 0.8337 0.856 0.857 0.8525

Table 2. AUCs for artificial data sets with random noises 5%, 10%, and 15%

data RankBoost SoftRankBoost LP-Pair our method

p : n r 500 5000 10000

1 0.9177 0.9182 0.9179 0.7661 0.9472 0.9624
7:3 8 0.9018 0.9015 0.9015 0.9318 0.9292 0.9308

15 0.8959 0.8956 0.8956 0.9353 0.9294 0.9271

1 0.7695 0.7742 0.7738 0.7735 0.7924 0.9431
9:1 8 0.7736 0.7736 0.7736 0.7718 0.7818 0.7648

15 0.7247 0.7247 0.7247 0.8266 0.7426 0.7320
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Table 3. AUCs for UCI data sets, when N , p, and n stand for the dimension, the
number of positive and negative instances of each data sets, respectively

data RankBoost SoftRankBoost LP-Pair our method

N p n 1000 5000 10000

hypothyroid 43 151 3012 0.9488 0.9468 0.9468 0.96 0.9511 1.0

ionosphere 34 225 126 0.9327 0.9253 0.9253 0.9917 0.9768 0.9865

kr-vs-kp 73 1669 1527 0.8712 0.8721 0.8721 0.9085 1.0 0.9276

sick-euthroid 43 293 2870 0.7727 0.8706 0.8706 0.7847 1.0 1.0

spambase 57 1813 2788 0.8721 0.7735 0.735 0.9359 1.0 1.0

5.3 Reuters Data

Reuters data sets are data of Reuters news (Reuters-217582), which are 10710
articles labeld by topics. We choose 5 major topics and consider 5 binary clas-
sification problems whose objective is to classify if a given article blongs to the
topic. We prepare 30838 base classifiers which are decision stumps associated
with words. More precisely, each base classifier anwers 1 if the given article con-
tains the associated word and answers 0, otherwise. The results are summarized
in Table 4. For Reuters date sets, our method shows better performance than
RankBoost, but SoftRankBoost shows better AUCs for some topics (3 out of 5).

Table 4. AUCs for Reuters data sets, where p, and n stand for the number of positive
and negative instances included in each of data sets

data RankBoost SoftRankBoost our method

topics p n 1000 5000 10000

acq 2327 8383 0.9296 0.9347 0.9347 0.9363 0.9388

crude 592 10118 0.9133 0.9188 0.9203 0.9944 0.9329

earn 3802 6908 0.9567 0.9568 0.9566 0.9952 0.9652

money-fx 743 9967 0.9375 0.9335 0.9318 0.9608 0.9479

trade 529 10181 0.9290 0.9301 0.9291 0.9281 0.9450

5.4 Computation Time

Finally, we examine the computation time of LP-Pair and our method. We use a
machine with four Intel Xeon 5570 2.93-GHz cores and a memory of 32 GByte.
We use the artificial data that are used in Section 5.1, N = 100, k = 10, r = 3.
The sizes of the data sets are m = 100, 500, 1000, 1500, respectively. The ratio
of positive and negative instances is 5 : 5, and we add random noise of 5%. We
set ε = 0.2 for both LP-Pair and our method and evaluate each execution time
by 5-fold cross validation. As is shown in Table 5, clearly our method is clearly
faster than LP-Pair.

2 http://www.daviddlewis.com/resources/testcollections/reuters21578
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Table 5. Computation time(sec.)

m LP-Pair our method

100 0.102 0.11

500 24.51 0.514

1000 256.78 0.86

1500 1353 1.76

6 Conclusion and Future Work

In this paper, we have formulated AUC maximization as hard/soft margin op-
timization problems over pairs of positive and negative instances. In the hard
margin case, we showed that the original problem over pairs is equivalent to
the 1-norm soft margin problem over p+ n instances with the bias term. In the
soft margin case, we proposed a reduction method for the 1-norm soft margin
optimization problem over instances, which is generally non-convex. Our reduc-
tion method is guaranteed to obtain a certain amount of margin over pairs of
instances. Moreover, we have proposed heuristics that obtains more appropriate
parameters. We have tested this method for artificial and real data. In compar-
ison with other methods, our method achieved high AUCs in the experiments.

In the future, we intend to examine our methods for additional data sets
including very large data sets. In addition, we would like to investigate why our
method and SoftRankBoost sometimes achieve higher AUCs than the 1-norm
soft margin over pairs.
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Abstract. We provide a formal, simple and intuitive theory of rational
decision making including sequential decisions that affect the environ-
ment. The theory has a geometric flavor, which makes the arguments
easy to visualize and understand. Our theory is for complete decision
makers, which means that they have a complete set of preferences. Our
main result shows that a complete rational decision maker implicitly has
a probabilistic model of the environment. We have a countable version of
this result that brings light on the issue of countable vs finite additivity
by showing how it depends on the geometry of the space which we have
preferences over. This is achieved through fruitfully connecting rational-
ity with the Hahn-Banach Theorem. The theory presented here can be
viewed as a formalization and extension of the betting odds approach to
probability of Ramsey and De Finetti [Ram31, deF37].

Keywords: Rationality, Probability, Utility, Banach Space, Linear
Functional.

1 Introduction

We study complete decision makers that can take a sequence of actions to ratio-
nally pursue any given task. We suppose that the task is described in a reinforce-
ment learning framework where the agent takes actions and receives observations
and rewards. The aim is to maximize total reward in some given sense.

Rationality is meant in the sense of internal consistency [Sug91], which is how
it has been used in [NM44] and [Sav54]. In [NM44], it is proven that preferences
together with rationality axioms and probabilities for possible events imply the
existence of utility values for those events that explain the preferences as arising
through maximizing expected utility. Their rationality axioms are

1. Completeness: Given any two choices we either prefer one of them to the
other or we consider them to be equally preferable;

2. Transitivity: A preferable to B and B to C imply A preferable to C;
3. Independence: If A is preferable to B and t ∈ [0, 1] then tA + (1 − t)C is

preferable (or equal) to tB + (1 − t)C;
4. Continuity: If A is preferable to B and B to C then there exists t ∈ [0, 1]

such that B is equally preferable to tA+ (1 − t)C.

J. Kivinen et al. (Eds.): ALT 2011, LNAI 6925, pp. 338–352, 2011.
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In [Sav54] the probabilities are not given but it is instead proven that preferences
together with rationality axioms imply the existence of probabilities and utilities.
We are here interested in the case where one is given utility (rewards) and
preferences over actions and then deriving the existence of a probabilistic world
model. We put an emphasis on extensions to sequential decision making with
respect to a countable class of environments. We set up simple axioms for a
rational decision maker, which implies that the decisions can be explained (or
defined) from probabilistic beliefs.

The theory of [Sav54] is called subjective expected utility theory (SEUT)
and was intended to provide statistics with a strictly behaviorial foundation.
The behavioral approach stands in stark contrast to approaches that directly
postulate axioms that “degrees of belief” should satisfy [Cox46, Hal99, Jay03].
Cox’s approach [Cox46, Jay03] has also been found [Par94] to need additional
technical assumptions in addition to the common sense axioms originally listed
by Cox. The original proof by [Cox46] has been exposed as not mathematically
rigorous and his theorem as wrong [Hal99]. An alternative approach by [Ram31,
deF37] is interpreting probabilities as fair betting odds.

The theory of [Sav54] has greatly influenced economics [Sug91] where it has
been used as a description of rational agents. Seemingly strange behavior was
explained as having beliefs (probabilities) and tastes (utilities) that were different
from those of the person to whom it looked irrational. This has turned out
to be insufficient as a description of human behavior [All53, Ell61] and it is
better suited as a normative theory or design principle in artificial intelligence.
In this article, we are interested in studying the necessity for rational agents
(biological or not) to have a probabilistic model of their environment. To achieve
this, and to have as simple common sense axioms of rationality as possible, we
postulate that given any set of values (a contract) associated with the possible
events, the decision maker needs to have an opinion on wether he prefers these
values to a guaranteed zero outcome or not (or equal). From this setting and our
other rationality axioms we deduce the existence of probabilities that explain
all preferences as maximizing expected value. There is an intuitive similarity
to the idea of explaining/deriving probabilities as a bookmaker’s betting odds
as done in [deF37] and [Ram31]. One can argue that the theory presented here
(in Section 2) is a formalization and extension of the betting odds approach.
Geometrically, the result says that there is a hyper-plane in the space of contracts
that separates accept from reject. We generalize this statement, by using the
Hahn-Banach Theorem, to the countable case where the set of hyper-planes
(the dual space) depends on the space of contract. The answers for different
cases can then be found in the Banach space theory literature. This provides
a new approach to understanding issues like finite vs. countable additivity. We
take advantage of this to formulate rational agents that can deal successfully
with countable (possibly universal as in all computable environments) classes of
environments.

Our presentation begins in Section 2 by first looking at a fundamental case
where one has to accept or reject certain contracts defining positive and negative
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rewards that depend on the outcome of an event with finitely many possibilities.
To draw the conclusion that there are implicit unique probabilistic beliefs, it
is important that the decision maker has an opinion (acceptable, rejectable or
both) on every possible contract. This is what we mean when we say complete
decision maker.

In a more general setting, we consider sequential decision making where given
any contract on the sequence of observations and actions, the decision maker
must be able to choose a policy (i.e. an action tree). Note that the actions may
affect the environment. A contract on such a sequence can e.g. be viewed as
describing a reward structure for a task. An example of a task is a cleaning
robot that gets positive rewards for collecting dust and negative for falling down
the stairs. A prerequisite for being able to continue to collect dust can be to
recharge the battery before running out. A specialized decision maker that deals
only with one contract/task does not always need to have implicit probabilities,
it can suffice with qualitative beliefs to take reasonable decisions. A qualitative
belief can be that one pizza delivery company (e.g. Pizza Hut vs Dominos) is
more likely to arrive on time than the other. If one believes the pizzas are equally
good and the price is the same, we will chose the company we believe is more
often delivering on time. Considering all contracts (reward structures) on the
actions and events, leads to a situation where having a way of making rational
(coherent) decisions, implies that the decision maker has implicit probabilistic
beliefs. We say that the probabilities are implicit because the decision maker,
which might e.g. be a human, a dog, a computer or just a set of rules, might
have a non-probabilistic description of how the decisions are made.

In Section 3, we investigate extensions to the case with countably many pos-
sible outcomes and the interesting issue of countable versus finite additivity.
Savage’s axioms are known to only lead to finite additivity while [Arr70] showed
that adding a monotone continuity assumption guarantees countable additivity.
We find that in our setting, it depends on the space of contracts in an interesting
way. In Section 4, we discuss a setting where we have a class of environments.

2 Rational Decisions for Accepting or Rejecting
Contracts

We consider a setting where we observe a symbol (letter) from a finite alphabet
and we are offered a form of bet we call a contract that we can accept or not.

Definition 1 (Passive Environment, Event). A passive environment is a
sequence of symbols (letters) jt, called events, being presented one at a time. At
time t the symbols j1, ..., jt are available. We can equivalently say that a passive
environment is a function ν from finite strings to {0, 1} where ν(j1, ..., jt) = 1
if and only if the environment begins with j1, ..., jt.

Definition 2 (Contract). Suppose that we have a passive environment with
symbols from an alphabet with m elements. A contract for an event is an element
x = (x1, ..., xm) in Rm and xj is the reward received if the event is the j:th
symbol, under the assumption that the contract is accepted (see next definition).
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Definition 3 (Decision Maker, Decision). A decision maker (for some un-
known environment) is a set Z ⊂ Rm which defines exactly the contracts that are
acceptable. In other words, a decision maker is a function from Rm to {accepted,
rejected, either}. The function value is called the decision.

If x ∈ Z and λ ≥ 0 then we want λx ∈ Z since it is simply a multiple of
the same contract. We also want the sum of two acceptable contracts to be
acceptable. If we cannot lose money we are prepared to accept the contract. If
we are guaranteed to win money we are not prepared to reject it. We summarize
these properties in the definition below of a rational decision maker.

Definition 4 (Rationality I). We say that the decision maker (Z ⊂ Rm) is
rational if

1. Every contract x ∈ Rm is either acceptable or rejectable or both;
2. x is acceptable if and only if −x is rejectable;
3. x, y ∈ Z, λ, γ ≥ 0 then λx+ γy ∈ Z;
4. If xk ≥ 0 ∀k then x = (x1, ..., xm) ∈ Z while if xk < 0 ∀k then x /∈ Z.

If we want to compare these axioms to rationality axioms for a preference relation
on contracts we will say that x is better or equal (as in equally good) than y if
x−y is acceptable while it is worse or equal if x−y is rejectable. The first axiom
is completeness. The second says that if x is better or equal than y then y is
worse or equal to x. The third implies transitivity since (x−y)+(y−z) = (x−z).
The fourth says that if x has a better (or equal) reward than y for any event,
then x is better (or equal) than y.

2.1 Probabilities and Expectations

Theorem 5 (Existence of Probabilities). Given a rational decision maker,
there are numbers pi ≥ 0 that satisfy

{x |
∑

xipi > 0} ⊂ Z ⊆ {x |
∑

xipi ≥ 0}. (1)

Assuming
∑

i pi = 1 makes the numbers unique and we will use the notation
Pr(i) = pi.

Proof. See the proof of the more general Theorem 23. It tells us that the closure
Z̄ of Z is a closed half space and can be written as {x |

∑
xipi ≥ 0} for some

vector p = (pi) (since every linear functional on Rm is of the form f(x) =
∑
xipi)

and not every pi is 0. The fourth property tells us that pi ≥ 0 ∀i.

Definition 6 (Expectation). We will refer to the function g(x) =
∑
pixi from

(1) as the decision makers expectation. In this terminology, a rational decision
maker has an expectation function and accepts a contract x if g(x) > 0 and reject
it if g(x) < 0.

Remark 7. Suppose that we have a contract x = (xi) where xi = 1 for all i. If
we want g(x) = 1, we need

∑
pi = 1.
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We will write E(x) instead of g(x) (assuming
∑
pi = 1) from now on and call it

the expected value or expectation of x.

2.2 Multiple Events

Suppose that the contract is such that we can view the symbol to be drawn as
consisting of two (or several) symbols from smaller alphabets. That is we can
write a drawn symbol as (i, j) where all the possibilities can be found through
1 ≤ i ≤ m, 1 ≤ j ≤ n. In this way of writing, a contract is defined by real
numbers xi,j . Theorem 5 tells us that for a rational decision maker there exists
unique ri,j ≥ 0 such that

∑
i,j ri,j = 1 and an expectation function g(x) =∑

ri,jxi,j such that contracts are accepted if g(x) > 0 and rejected if g(x) < 0.

2.3 Marginals

Suppose that we can take rational decisions on bets for a pair of horse races,
while the person that offers us bets only cares about the first race. Then we are
still equipped to respond since the bets that only depend on the first race is a
subset of all bets on the pair of races.

Definition 8 (Marginals). Suppose that we have a rational decision maker
(Z) for contracts on the events (i, j). Then we say that the marginal decision
maker for the first symbol (Z1) is the restriction of the decision maker Z to
the contracts xi,j that only depend on i, i.e. xi,j = xi. In other words given a
contract y = (yi) on the first event, we extend that contract to a contract on
(i, j) by letting yi,j = yi and then the original decision maker can decide.

Suppose that xi,j = xi. Then the expectation
∑
ri,jxi,j can be rewritten as∑

pixi where pi =
∑

j ri,j . We write that

Pr(i) =
∑

j

Pr(i, j).

These are the marginal probabilities for the first variable that describe the
marginal decision maker for that variable. Naturally we can also define a marginal
for the second variable (considering contracts xi,j = xj) by letting qj =

∑
i ri,j

and Pr(j) =
∑

i Pr(i, j). The marginals define sets Z1 ⊂ Rm and Z2 ⊂ Rn of
acceptable contracts on the first and second variables separately.

2.4 Conditioning

Again suppose that we are taking decisions on bets for a pair of horse races, but
this time suppose that the first race is already over and we know the result. We
are still equipped to respond to bets on the second race by extending the bet to
a bet on both where there is no reward for (pairs of) events that are inconsistent
with what we know.
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Definition 9 (Conditioning). Suppose that we have a rational decision maker
(Z) for contracts on the events (i, j). We define the conditional decision maker
Zj=j0 for i given j = j0 by restricting the original decision maker Z to contracts
xi,j which are such that xi,j = 0 if j �= j0. In other words if we start with a
contract y = (yi) on i we extend it to a contract on (i, j) by letting yi,j0 = yi

and yi,j = 0 if j �= j0. Then the original decision maker can make a decision for
that contract.

Suppose that xi,j = 0 if j �= j0. The unconditional expectation of this contract is∑
i,j ri,jxi,j as usual which equals

∑
i ri,j0xi,j0 . This leads to the same decisions

(i.e. the same Z) as using
∑

i
ri,j0∑
k rk,j0

xi,j0 which is of the form in Theorem 5.
We write that

Pr(i|j0) =
Pr(i, j0)∑
k Pr(k, j0)

=
Pr(i, j0)
Pr(j0)

. (2)

From this it follows that

Pr(i0)Pr(j0|i0) = Pr(j0)Pr(i0|j0) (3)

which is one way of writing Bayes rule.

2.5 Learning

In the previous section we defined conditioning which lead us to a definition
of what it means to learn. Given that we have probabilities for events that are
sequences of a certain number of symbols and we have observed one or several of
them, we use conditioning to determine what our belief regarding the remaining
symbols should be.

Definition 10 (Learning). Given a rational decision maker, defined by pi1,...,iT

for the events (it)T
t=1 and the first t − 1 symbols i1, ..., it−1, we define the in-

formed rational decision maker for it by conditioning on the past i1, ..., it−1 and
marginalize over the future it+1, ..., iT . Formally,

P informed
it

(i) = Pr(i|i1, ..., it) =

∑
jt+1,...,jT

pi1,...,it,jt+1,...,jT∑
jt,...,jT

pi1,...,it−1,jt,...,jT

.

2.6 Choosing between Contracts

Definition 11 (Choosing contract). We say that to rationally prefer contract
x over y is (equivalent) to rationally consider x− y to be acceptable.

As before we assume that we have a decision maker that takes rational decisions
on accepting or rejecting contracts x that are based on an event that will be
observed. Hence there exist implicit probabilities that represent all choices and
an expectation function. Suppose that an agent has to choose between action a1
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that leads to receiving reward xi if i is drawn and action a2 that leads to receiving
yi in the case of seeing i. Let zi = xi−yi. We can now go back to choosing between
accepting and rejecting a contract by saying that choosing (preferring) a1 over
a2 means accepting the contract z. In other words if E(x) > E(y) choose a1 and
if E(x) < E(y) choose a2.

Remark 12. We note that if we postulate that choosing between contract x and
the zero contract is the same as choosing between accepting or rejecting x, then
being able to choose between contracts implies the ability to choose between
accepting and rejecting one contract. We, therefore, can say that the ability to
choose between a pair of contracts is equivalent to the ability to choose to accept
or reject a single contract.

We can also choose between several contracts. Suppose that action ak gives us
the contract xk = (xk

i )m
i=1. If E(xj) > E(xk) ∀k �= j then we strictly prefer

aj over all other actions. In other words a contract xj − xk would for all k be
accepted and not rejected by a rational decision maker.

Remark 13. If we have a rational decision maker for accepting or rejecting con-
tracts, then there are implicitly probabilities pi for symbol i that characterize
the decisions. A rational choice between actions ak leading to contracts xk is
taken by choosing action

a∗ = argmax
k

∑
i

pix
k
i . (4)

2.7 Choosing between Environments

In this section, we assume that the event that the contracts are concerned with
might be affected by the choice of action.

Definition 14 (Reactive environment). An environment is a tree with sym-
bols jt (percepts) on the nodes and actions at on the edges. We provide the
environment with an action at at each time t and it presents the symbol jt at the
node we arrive at by following the edge chosen by the action. We can also equiv-
alently say that a reactive environment ν is a function from strings a1j1, ..., atjt
to {0, 1} which equals 1 if and only if ν would produce j1, ..., jt given the actions
a1, ..., at.

We will define the concept of a decision maker for the case where one decision
will be taken in a situation where not only the contract, but also the outcome
can depend on the choice. We do this by defining the choice as being between
two different environments.

Definition 15 (Active decision maker). Consider a choice between having
contract x for passive environment env1 or contract y for passive environment
env2. A decision maker is a set Z ⊂ Rm1 × Rm2 which defines exactly the pairs
(x, y) for which we choose env1 with x over env2 with y.
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Definition 16 (Rational active choice). To choose between action a1 with
contract x and a2 with contract y in a situation where the action may affect
the event, we consider two separate environments, namely the environments that
result from the two different actions. We would then have a situation where we
will have one observation from each environment. Preferring a1 with x to a2

with y is (equivalent) to consider x− y to be an acceptable contract for the pair
of events.

Remark 17. Definition 16 means that a1 with x is preferred over a2 with y if a1

with x− y is preferred over a2 with the zero contract.

Proposition 18 (Probabilities for reactive setting). Suppose that we have
a reactive environment and a rational active decision maker that will make one
choice between action a1 and a2 as described in Definitions 15 and 16, then there
exist pi ≥ 0 and qi ≥ 0 such that action a1 with contract x is preferred over
action a2 with contract y if

∑
pixi >

∑
qiyi and the reverse if

∑
pixi <

∑
qiyi.

This means that the decision maker acts according to probabilities Pr(·|a1) and
Pr(·|a2).

Proof. Let Z̃ be all contracts that when combined with action a1 is preferred
over a2 with the zero contract. Theorem 1 guarantees the existence of pi such
that

∑
pixi > 0 implies that x ∈ Z̃ and

∑
pixi < 0 implies that x /∈ Z̃. The

same way we find qi that describe when we prefer a2 with y to a1 with the zero
contract. That these probabilities (pi and qi) explain the full decision maker as
stated in the proposition now follows directly from Definition 16 understood as
in Remark 17.

Suppose that we are going to make a sequence of T < ∞ decisions where at
every point of time we will have a finite number of actions to chose between. We
will consider contracts, which can pay out some reward at each time step and
that can depend on everything (actions chosen and symbols observed) that has
happened up until this time and we want to maximize the accumulated reward
at time T .

We can view the choice as just making one choice, namely choosing an action
tree. We will sometimes call an action tree a policy.

Definition 19 (Action tree). An action tree is a function from histories of
symbols j1, ..., jt and decisions a1, ..., at−1 to new decisions, given that the deci-
sions were made according to the function. Formally,

f(a1, j1, ..., at−1, jt−1) = at.

An action tree will assign exactly one action for any of the circumstances that
one can end up in. That is, given the history up to any time t < T of actions
and events, we have a chosen action. We can, therefore, choose an action tree at
time 0 and receive a total accumulated reward at time T . This brings us back
to the situation of one event and one rational choice.
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Definition 20 (Sequential decisions). Given a rational decision maker for
the events (jt)T

t=1 and the first t−1 symbols j1, ..., jt−1 and decisions a1, ..., at−1,
we define the informed rational decision maker at time t by conditioning on the
past a1, j1..., at−1, jt−1.

Proposition 21 (Beliefs for sequential decisions). Suppose that we have
a reactive environment and a rational decision maker that will take T < ∞
decisions. Furthermore, suppose that the decisions 0 ≤ t < T have been taken and
resulted in history a1, j1..., at−1, jt−1. Then the decision makers preferences at
this time can be explained (through expected utility maximization) by probabilities

Pr(jt, ..., jT |a1, j1..., at−1, jt−1, at, at+1..., aT ).

Proof. Definition 20 and Proposition 18 immediately lead us to the conclusion
that given a past up to a point t − 1 and a policy for the time t to T we have
probabilistic beliefs over the possible future sequences from time t to T and the
choice is categorized by maximizing expected accumulated reward at time T .

3 Countable Sets of Events

Instead of a finite set of possible outcomes, we will in this section assume a
countable set. We suppose that the set of contracts is a vector space of sequences
xk, k = 0, 1, 2, ... where we use pointwise addition and multiplication with scalar.
We will define a space by choosing a norm and let the space consist of the
sequences that have finite norm as is common in Banach space theory. If the
norm makes the space complete it is called a Banach sequence space [Die84].
Interesting examples are �∞ of bounded sequences with the maximum norm
‖(αk)‖∞ = max |αk|, c0 of sequence that converges to 0 equipped with the same
maximum norm and �p which for 1 ≤ p < ∞ is defined by the norm

‖(αk)‖p = (
∑

|αk|p)1/p.

For all of these spaces we can consider weighted versions (wk > 0) where

‖(αk)‖p,wk
= ‖(αkwk)‖p.

This means that α ∈ �p(w) iff (αkwk) ∈ �p, e.g. α ∈ �∞(w) iff supk |αkwk| < ∞.
Given a Banach (sequence) space X we use X ′ to denote the dual space that
consists of all continuous linear functionals f : X → R. It is well known that a
linear functional on a Banach space is continuous if and only if it is bounded, i.e.
that there is C < ∞ such that |f(x)|

‖x‖ ≤ C ∀x ∈ X . Equipping X ′ with the norm

‖f‖ = sup |f(x)|
‖x‖ makes it into a Banach space. Some examples are (�1)′ = �∞,

c′0 = �1 and for 1 < p < ∞ we have that (�p)′ = �q where 1/p+ 1/q = 1. These
identifications are all based on formulas of the form

f(x) =
∑

xipi
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where the dual space is the space that (pi) must lie in to make the functional
both well defined and bounded. It is clear that �1 ⊂ (�∞)′ but (�∞)′ also contains
“stranger” objects.

The existence of these other objects can be deduced from the Hahn-Banach
theorem (see e.g. [Kre89] or [NB97]) that says that if we have a linear function
defined on a subspace Y ∈ X and if it is bounded on Y then there is an ex-
tension to a bounded linear functional on X . If Y is dense in X the extension
is unique but in general it is not. One can use this Theorem by first looking at
the subspace of all sequences in �∞ that converge and let f(α) = limk→∞ αk.
The Hahn-Banach theorem guarantees the existence of extensions to bounded
linear functionals that are defined on all of �∞. These are called Banach lim-
its. The space (�∞)′ can be identified with the so called ba space of bounded
and finitely additive measures with the variation norm ‖ν‖ = |ν|(A) where A
is the underlying set. Note that �1 can be identified with the smaller space of
countably additive bounded measures with the same norm. The Hahn-Banach
Theorem has several equivalent forms. One of these identifies the hyper-planes
with the bounded linear functionals [NB97].

Definition 22 (Rationality II). Given a Banach sequence space X of con-
tracts, we say that the decision maker (subset Z of X defining acceptable con-
tracts) is rational if

1. Every contract x ∈ X is either acceptable or rejectable or both;
2. x is acceptable if and only if −x is rejectable;
3. x, y ∈ Z, λ, γ ≥ 0 then λx+ γy ∈ Z;
4. If xk ≥ 0 ∀k then x = (xk) is acceptable while if xk > 0 ∀k then x is not

rejectable.

Theorem 23 (Linear separation). Suppose that we have a space of contracts
X that is a Banach sequence space. Given a rational decision maker there is a
positive continuous linear functional f : X → R such that

{x | f(x) > 0} ⊂ Z ⊆ {x | f(x) ≥ 0}. (5)

Proof. The third property tells us that Z and −Z are convex cones. The second
and fourth property tells us that Z �= Rm. Suppose that there is a point x that
lies in both the interior of Z and of −Z. Then the same is true for −x according
to the second property and for the origin. That a ball around the origin lies
in Z means that Z = Rm which is not true. Thus the interiors of Z and −Z
are disjoint open convex sets and can, therefore, be separated by a hyperplane
(according to the Hahn-Banach theorem) which goes through the origin (since
according to the second and fourth property the origin is both acceptable and
rejectable). The first two properties tell us that Z∪−Z = Rm. Given a separating
hyperplane (between the interiors of Z and −Z), Z must contain everything on
one side. This means that Z is a half space whose boundary is a hyperplane that
goes through the origin and the closure Z̄ of Z is a closed half space and can be
written as {x | f(x) ≥ 0} for some f ∈ X ′. The fourth property tells us that f
is positive.
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Corollary 24 (Additivity). 1. If X = c0 then a rational decision maker is
described by a countably additive (probability) measure.
2. If X = �∞ then a rational decision maker is described by a finitely additive
(probability) measure.

It seems from Corollary 24 that we pay the price of losing countable additivity
for expanding the space of contracts from c0 to �∞ but we can expand the
space even more by looking at c0(w) where wk → 0 which contains �∞ and X ′

is then �1((1/wk)). This means that we get countable additivity back but we
instead have a restriction on how fast the probabilities pk must tend to 0. Note
that a bounded linear functional on c0 can always be extended to a bounded
linear functional on �∞ by the formula f(x) =

∑
pixi but that is not the unique

extension. Note also that every bounded linear functional on �∞ can be restricted
to c0 and there be represented as f(x) =

∑
pixi. Therefore, a rational decision

maker on �∞ contracts has probabilistic beliefs (unless pi = 0 ∀i), though it might
also take asymptotic behavior of a contract into account. For example (and here
pi = 0 ∀i), the decision maker that makes decisions based on asymptotic averages
limn→∞ 1

n

∑n
i=1 xi when they exist. That strategy can be extended to all of �∞

(a Banach limit). The following proposition will help us decide which decision
maker on �∞ is described with countably additive probabilities.

Proposition 25. Suppose that f ∈ (�∞)′. For any x ∈ �∞, let xj
i = xi if i ≤ j

and xj
i = 0 otherwise. If for any x,

lim
j→∞

f(xj) = f(x),

then f can be written as f(x) =
∑
pixi where pi ≥ 0 and

∑∞
i=1 pi < ∞.

Proof. The restriction of f to c0 gives us numbers pi ≥ 0 such that
∑∞

i=1 pi < ∞
and f(x) =

∑
pixi for x ∈ c0. This means that f(xj) =

∑j
i=1 pixi for any x ∈ �∞

and j < ∞. Thus limj→∞ f(xj) =
∑∞

i=1 pixi.

Definition 26 (Monotone decisions). We define the concept of a monotone
decision maker in the following way. Suppose that for every x ∈ �∞ there is
N < ∞ such that the decision is the same for all xj , j ≥ N (See Proposition 25
for definition) as for x. Then we say that the decision maker is monotone.

Example 27. Let f ∈ �∞ be such that if limαk → L then f(α) = L (i.e. f is
a Banach limit). Furthermore define a rational decision maker by letting the
set of acceptable contracts be Z = {x | f(x) ≥ 0}. Then f(xj) = 0 (where we
use notation from Proposition 25) for all j < ∞ and regardless of which x we
define xj from. Therefore, all sequences that are eventually zero are acceptable
contracts. This means that this decision maker is not monotone since there are
contracts that are not acceptable.

Theorem 28 (Monotone rationality). Given a monotone rational decision
maker for �∞ contracts, there are pi ≥ 0 such that

∑
pi < ∞ and

{x |
∑

xipi > 0} ⊂ Z ⊆ {x |
∑

xipi ≥ 0}. (6)
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Proof. According to Theorem 23 there is f ∈ (�∞)′ such that (the closure of
Z) Z̄ = {x| f(x) ≥ 0} . Let pi ≥ 0 be such that

∑
pi < ∞ and such that

f(x) =
∑
xipi for x ∈ c0. Remember that xj (notation as in Proposition 25) is

always in c0. Suppose that there is x such that x is accepted but
∑
xipi < 0.

This violate monotonicity since there exist N < ∞ such that
∑n

i=1 xipi < 0
for all n ≥ N and, therefore, xj is not accepted for j ≥ N but x is accepted.
We conclude that if x is accepted then

∑
pixi ≥ 0 and if

∑
pixi > 0 then x is

accepted.

4 Rational Agents for Classes of Environments

We will here study agents that are designed to deal with a large range of situa-
tions. Given a class of environments we want to define agents that can learn to
act well when placed in any of them, assuming it is at all possible.

Definition 29 (Universality for a class). We say that a decision maker is
universal for a class of environments M if for any outcome sequence a1j1a2j2...
that given the actions would be produced by some environment in the class, there
is c > 0 (depending on the sequence) such that the decision maker has probabil-
ities that satisfy

Pr(j1, ..., jt|a1, ..., at) ≥ c ∀t.
This is obviously true if the decision maker’s probabilistic beliefs are a convex
combination

∑
ν∈M wνν, wν > 0 and

∑
ν wν = 1.

We will next discuss how to define some large classes of environments and agents
that can succeed for them. We assume that the total accumulated reward from
the environment will be finite regardless of our actions since we want any policy
to have finite utility. Furthermore, we assume that rewards are positive and that
it is possible to achieve strictly positive rewards in any environment. We would
like the agent to perform well regardless of which environment from the chosen
class it is placed in.

For any possible policy (action tree) π and environment ν, there is a total
reward V π

ν that following π in ν would result in. This means that for any π
there is a contract sequence (V π

ν )ν , assuming we have enumerated our set of
environments. Let

V ∗
ν = max

π
V π

ν .

We know that V ∗
ν > 0 for all ν. Every contract sequence (V π

ν )ν lies in X =
�∞((1/V ∗

ν )) and ‖(V π
ν )‖X ≤ 1. The rational decision makers are the positive,

continuous linear functionals on X . X ′ contains the space �1(V ∗
ν ). In other words

if wν ≥ 0 and
∑
wνV

∗
ν < ∞ then the sequence (wν) defines a rational decision

maker for the contract spaceX . These are exactly the monotone rational decision
makers. Letting (which is the AIXI agent from [Hut05])

π∗ ∈ argmax
π

∑
ν

wνV
π
ν (7)
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we have a choice with the property that for any other π with∑
ν

wνV
π
ν <

∑
ν

wνV
π∗
ν .

Hence the contract (V π∗
ν − V π

ν ) is not rejectable. In other words π∗ is strictly
preferable to π. By letting pν = wνV

∗
ν , we can rewrite (7) as

π∗ ∈ argmax
π

∑
ν

pν
V π

ν

V ∗
ν

. (8)

If one further restricts the class of environments by assuming V ∗
ν ≤ 1 for all ν

then for every π, (V π
ν ) ∈ �∞. Therefore, by Theorem 28 the monotone rational

agents for this setting can be formulated as in (7) with (wν) ∈ �1, i.e.
∑

ν wν <
∞. However, since (pν) ∈ �1, a formulation of the form of (8) is also possible.
Normalizing p and w individually to probabilities makes (7) into a maximum
expected utility criterion and (8) into maximum relative utility. As long as our
w and p relate the way they do it is still the same decisions. If we would base both
expectations on the same probabilistic beliefs it would be different criteria. When
we have an upper bound V ∗

ν < b < ∞ ∀ν we can always translate expected utility
to expected relative utility in this way, while we need a lower bound 0 < a < V ∗

ν

to rewrite an expected relative utility as an expected utility. Note, the different
criteria will start to deviate from each other after updating the probabilistic
beliefs.

4.1 Asymptotic Optimality

Denote a chosen countable class of environments by M. Let V π
ν,k be the re-

wards achieved after time k using policy π in environment ν. We suppress the
dependence on the history so far. Let

Wπ
ν,k =

V π
ν,k

V ∗
ν,k

denote the skill (relative reward) of π in environment ν from time k. The maxi-
mum possible skill is 1. We would like to have a policy π such that

lim
k→∞

Wπ
ν,k = 1 ∀ν ∈ M.

This would mean that the agent asymptotically achieve maximum skill when
placed in any environment from M. Let I(hk, ν) = 1 if ν is consistent with
history hk and I(hk, ν) = 0 otherwise. Furthermore, let

pν,k =
pν,0∑

μ∈M pμ,0I(hk, μ)

be the agent’s weight for environment ν at time k and let πp be a policy that at
time k acts according to a policy in

argmax
π

∑
ν

pν,k

V π
ν,k

V ∗
ν,k

. (9)
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In the following theorem, we prove that for every environment ν ∈ M, the policy
πp will asymptotically achieve perfect relative rewards. We have to assume that
there exists a sequence of policies πk > 0 with this property (as for the similar
Theorem 5.34 in [Hut05] which dealt with discounted values). The convergence
in W -values is the relevant sense of optimality for our setting, since the V -values
converge to zero for any policy.

Theorem 30 (Asymptotic optimality). Suppose that we have a decision
maker that is universal (i.e. pν > 0 ∀ν) with respect to the countable class M of
environments (which can be stochastic) and that there exists policies πk such that
for all ν, Wπk,ν

k → 1 if ν is the actual environment (or the sequence is consistent
with ν). This implies that Wπp,μ

k → 1 where μ is the actual environment.

The proof technique is similar to that of Theorem 5.34 in [Hut05].

Proof. Let
0 ≤ 1 −Wπk,ν

k =: Δk
ν , Δ

k =
∑

ν

pν,kΔ
k
ν . (10)

The assumptions tells us that Δk
ν = Wπk,ν

k − 1 → 0 for all ν that are consistent
with the sequence (pν,k = 0 if ν is inconsistent with the history at time k) and
since Δk

ν ≤ 1 , it follows that

Δk =
∑

ν

pν,kΔ
k
ν → 0.

Note that pμ,k(1 − Wπp,μ
k ) ≤

∑
ν pν,k(1 − W ν

πp,k) ≤
∑

ν pν,k(1 − W k
πk,ν) =∑

pν,kΔ
k
ν = Δk. Since we also know that pμ,k ≥ pμ,0 > 0 it follows that

(1 −Wπp,μ
k ) → 0.

5 Conclusions

We studied complete rational decision makers including the cases of actions
that may affect the environment and sequential decision making. We set up
simple common sense rationality axioms that imply that a complete rational
decision maker has preferences that can be characterized as maximizing expected
utility. Of particular interest is the countable case where our results follow from
identifying the Banach space dual of the space of contracts.
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Abstract. From a point of view of Artificial General Intelligence, RL
learners like Hutter’s universal, Pareto optimal, incomputable AIXI heav-
ily rely on the definition of the rewards, which are necessarily given by
some “teacher” to define the tasks to solve. AIXI, as is, cannot therefore
be said to be a fully autonomous agent.

Furthermore, it has recently been shown that AIXI can converge to
a suboptimal behavior in certain situations, hence showing the intrinsic
difficulty of RL, with its non-obvious pitfalls.

We propose a new model of intelligence, the Knowledge-Seeking Agent
(KSA), halfway between Solomonoff Induction and AIXI, that defines
a completely autonomous agent that does not require a teacher. The
goal of this agent is not to maximize arbitrary rewards, but “simply” to
entirely explore its world in an optimal way. A proof of strong asymptotic
optimality for a class of horizon functions shows that this agent, unlike
AIXI in its domain, behaves according to expectation. Some implications
of such an unusual agent are proposed.

Keywords: Universal Artificial Intelligence, AIXI, Solomonoff Induc-
tion, Artificial General Intelligence.

1 Introduction

In 2000, Hutter proposed the first universal and formal, though incomputable
model of an intelligent agent, AIXI [3, 2, 1]. It relies on the Reinforcement
Learning framework [14] and should allow us (with computable approximations,
compare [15]) to solve any practical problem as long as we are able to define the
rewards.

However it was recently proved that AIXI can in certain situations stop ex-
ploring, leading to suboptimal behavior [8]. Instead of viewing this result as a
flaw of the model, given its natural definition, one can view this as a hint as to
why the Reinforcement Learning framework is intrinsically difficult: Given the
Pareto optimality of AIXI, no learner (computable or not) can hope to behave
better on average.

We propose a new model of a universal intelligent agent, where reward signals
are entirely removed. The goal of the agent is no more to maximize the expected
reward, but to entirely explore the world in an optimal way. We call this kind
of agents Knowledge-Seeking Agents (KSA).
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Passive Prediction, Active Learning, Reinforcement Learning. Solomonoff In-
duction is defined for passive prediction [13]: The agent does not output any
action and thus cannot influence the behavior of the environment. As a con-
sequence, learning is “easy”: The predictor converges to optimal prediction in
approximately K(q) errors, (where K is Kolmogorov’s complexity [6], and q is
the sequence to predict).

AIXI is defined in the Reinforcement Learning setting, which is much harder
than passive prediction because of the active setting, which means that the
decisions of the agent may modify the behavior of the environment, and because
there are rewards to maximize. For example, even in some simple classes of
environments, no learning agent can hope to converge in less than 2K(q) errors.

Knowledge-seeking agents are halfway between these two settings: They are
active learning (incomputable) agents, but do not use external rewards to guide
their behavior. We will show that this allows for a convergence proof in this
active setting that was not possible in the RL setting.

Artificial General Intelligence. Hutter described AIXI as a suitable model for
universal intelligence, in the sense that this agent should be able to solve any
computable problem we might give it.

But regarding Artificial General Intelligence (AGI), such an agent is not fully
autonomous. Indeed, it still requires a “teacher”, someone to give it the rewards:
Even though the RL framework supposes that the rewards are defined by the
environment (which gives to understand that we need not care about how to
define them), if we create an RL robot, we will still need to specify the rewards
completely, in order to define precisely what the agent should achieve. AIXI can
be viewed as a “servant” AGI agent, which must serve its teacher, whereas a
KSA could be viewed as a “free” AGI agent, depending on no one.

Furthermore, we will need to be extremely careful about how we define the
rewards and how they are given to the RL agent, supposedly vastly intelligent.
For example, how will the agent behave if it is not switched off when its task is
done? Will it want to undo it in order to do it again? Can it be switched off,
and will it resist being switched off, since this would prevent it from receiving
further rewards? Or can we make it like (with rewards) being switched off? If so
how can we prevent it from switching itself off to get rewards?

Another related concern is whether it would try to bypass the human con-
trol to give itself the rewards. RL agents tend to find “shortcuts” to make the
minimum effort to receive the rewards. This should be especially true for very
intelligent agents [9, 7]. We will then need to be careful that such unexpected
shortcuts do not exist, which may not be a trivial matter. Hutter writes [2]:

Sufficiently intelligent agents may increase their rewards by psychologi-
cally manipulating their human “teachers”, or by threatening them.

For example, if humans use a button to control the rewards of the agent, the
latter should by all means try to acquire the control of this button, which may
lead to undesirable situations.
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Hopefully all these problems have solutions, but this shows that defining re-
wards for a real-world RL AGI is far from a trivial matter.

Would a KSA be useful? A knowledge-seeking agent would not depend on any
external intelligent entity, and would be fully autonomous. One drawback would
of course be that we humans would have more difficulties to make it solve our
specific problems, as it would have its own drives. But it may still be possible
to use pieces of knowledge as rewards, at least up to some point. One other
possibility would be to show the agent that it would itself gain knowledge if it
helped us with some particular problem. Temporarily switching off the agent
could be used as a punishment, since during this time the agent cannot explore
the world. The agent could also be biased by showing only an adequate part of
the world, either real or simulated.

However, we believe it would not be the right way to use a KSA. In fact
the latter may be when on its own than directed like a RL agent with narrow
goals1. Indeed, a KSA would need to be inventive, creative to acquire as much
information about the world as possible, creating its own tools, designing its own
experiments, etc. For example, it may try to come up with its own unified theory
of physics, and may invent new mathematical tools. We humans could gain a
lot of knowledge by working along with (a computation variant of) it, instead of
directing it. It may create a lot of usable, novel byproducts in the process. Such
an agent could even be viewed as the optimal scientist. AGI knowledge-seeking
agents would therefore be perfect complements of AGI RL agents.

After some notation, we define a first knowledge-seeking agent, the Square-
KSA, and we prove convergence properties, showing that it behaves according
to expectation. The second agent, Shannon-KSA, based on Shannon’s entropy,
is then introduced, and some of its properties are exhibited. We finally conclude
with some remarks.

2 Notation

A string s1s2 . . . sn ∈ Sn is a succession of st ∈ S, ordered by t. We write
sn:m = snsn+1 . . . sm, and also s<t = s1:t−1. We note yxt ≡ ytxt.

At each new step t, the agent outputs an action yt ∈ Y depending on the his-
tory of interaction yx<t = y1x1y2x2 . . . yt−1xt−1, then the environment outputs
xt ∈ X depending on yx<tyt, and then the next step t+ 1 begins.

The size of a string is denoted |yx1:t| = |x1:t| = t. Note that this is different
from the length �(x) of a string which is defined as the number of bits used to
encode x on the device under consideration, such as a Turing machine.

We abbreviate yx<t into h when clear from the context.
Q is the set of all computable environments or programs. An environment

q ∈ Q is consistent with history yx<t if q(y<t) = x<t, i.e. if the execution of the
1 More broad goals could also be defined, but to define a universal goal we would need

automatic, internal rewards, as knowledge-seeking can be thought of. Also compare
[11].
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program q on the input string y<t outputs the string x<t. We note Qt or Qh the
set of environments/programs that are consistent with history yx<t = h.

Greek letters are probability distributions over interactions strings and priors
over programs. We will often write ρ(yxt:k | yx<t) for convenience, brevity and
clarity, whereas one should really read ρ(xt:k | yx<tyt:k) since the actions are not
random variables but are chosen deterministically by the agent.

For a set Qi of programs, we note ρ(Qi) :=
∑

q∈Qi
ρ(q).

3 Knowledge-Seeking Agents

First we recall the definition of AIXI [2]. After history of interaction yx<t, the
value of a future time step k after some predicted interaction yxt:k−1 is:

Vt(yx<k) = max
yk∈Y

∑
xk∈X

ξ(yxk | yx<k)(wt,k · rk + Vt(yx<kykxk))

where rk is the reward extracted from the input xk, wt,k is called the horizon
function and attributes a weight to each future time step k, depending on the
present time t. The prior ξ attributes a probability to each continuation of a
given input string. It is similar to Solomonoff’s prior [13]. With h = yx<t :

ξ(h) =
∑
Qh

ξ(q)

and ξ(q) = 2−�(q) where �(q) is the length in bits of q on a universal prefix Turing
machine.

The action at time step t is chosen by:

yt = arg max
y∈Y

Vt(yx<t) . (1)

Now we generalize AIXI from the RL setting: We replace the rewards rk by
a generic utility function ut(yx1:k), which allows also for incomputable internal
“rewards”; we also replace ξ by a generic universal distribution ρ satisfying:

∀q ∈ Q : 0 < ρ(q) < 1 (universality, probability) (2)∑
q∈Q

ρ(q) ≤ 1 ((semi-)measure) (3)

ρ(yxt:t+m | yx<t) =
ρ(yx1:t+m)
ρ(yx<t)

(chain rule) (4)

We also note: ρ(h) = ρ(Qh) =
∑

q∈Qh
ρ(q).

The generalized version of the value function is:

Vt(yx<k) = max
yk∈Y

∑
xk∈X

ρ(yxk | yx<k)(wt,k · ut(yx1:k) + Vt(yx1:k)) . (5)
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We call agents defined by (1–5) universal agents Aρ(wt,k, ut(yx1:k)).
In this paper, we will use two different horizon functions:

w≤
t,k =

{
1 if k ≤ mt

0 otherwise
w=

t,k =

{
1 if k = mt

0 otherwise

where mt = t+m′
t and mt is monotonically growing with t. The first one makes

the agent use its prediction for all the next m′
t steps, whereas the second one

makes the agent only care about one distant step mt.
As a simplification, in this paper we will only consider deterministic environ-

ments, but we expect all the results to extend smoothly to computable stochastic
environments.

4 Square Knowledge-Seeking Agent

Now let us specify the general value function (5) for some particular horizon
function and utility function.

We want our agent to converge as quickly as possible toward the true envi-
ronment, i.e. it must choose its actions in order to gain as much knowledge as
possible about the environment.

For this, we use a particular property of ρ (and hence of ξ): It dominates
all computable environments, which means that if q0 is the true environment,
then ρ(h) > ρ(q0). Hence, trying to minimize ρ(h) should make the agent discard
(render inconsistent) as many environments as possible (and preferably the most
probable ones first). Therefore we set ut(yx1:k) = −ρ(yxt:k | yx<t), and we define
Square-KSAρ with Aρ(w=

t,k,−ρ(yxt:k | yx<t)).
As in [2], by applying the chain rule (4) repeatedly, we can put equation (5)

in iterative form:

Vt(yx<t) = max
yt∈Y

∑
xt∈X

. . . max
ymt∈Y

∑
xmt∈X

ρ(yxt:mt | yx<t)[−wt,tρ(yxt | yx<t)

− wt,t+1ρ(yxt:t+1 | yx<t) . . .− wt,mtρ(yxt:mt | yx<t)]

= max
yt∈Y

∑
xt∈X

. . . max
ymt∈Y

∑
xmt∈X

−(ρ(yxt:mt | yx<t))2

= max
yt:mt∈Ymt−t+1

∑
xt:mt∈Xmt−t+1

−(ρ(yxt:mt | yx<t))2 . (6)

This value function is a maximization of a well-known entropy function [4].
Intuitively, the agent will try to take actions that will lead to future strings of

lower probability, which makes the agent gain the most information about the en-
vironment. However, such strings, being improbable, will gain much information
only with little probability. Conversely, highly probable strings have obviously
a high probability to occur, but give little information about the environment:
it is not informative to take actions which outcomes are predictable. Therefore,
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the agent must make a trade-off to gain as much information as possible, and
chooses actions that maximize the entropy over consistent environments2.

4.1 Optimal Non-learning Agent

On the model of AIMU for AIXI [2], we can define a generic optimal non-learning
agent Aμ, with which to compare the learning agent, for given utility and horizon
functions. This is done by simply changing ρ to μ in equation (5), where μ is
the probability distribution of the true environment. In the case of deterministic
environments, for a given string of actions y<t, μ(yx<t) = 1 if the environment
generates the string x<t, and 0 otherwise.
Theorem 1. The agent Aμ(wt,k, ut(yx1:k)) is optimal w.r.t. the horizon func-
tion wt,k and the utility function ut(yx1:k) in deterministic environments.

Proof. By construction: Aμ, knowing μ, and therefore knowing the future, knows
the exact outcome of each string of future actions. By (5) (with ρ replaced by μ),
it tests all of them and chooses the one with the highest utility. The existence
of an action string of higher utility would be a contradiction. 	

In the case of stochastic computable environments, an agent may find sometimes
a better string of actions than Aμ, but if its probability distribution over the
actions is different from μ, it would lose on average.

For Square-KSAρ, the optimal non-learning agent Square-KSAμ is defined by:

V μ
t (yx<t) = max

yt:tm

∑
xt:tm

−μ(yxt:mt | yx<t)ρ(yxt:mt | yx<t) . (7)

Thus we have: Square-KSAμ≡Aμ(w=
t,k,−ρ(yxt:mt |yx<t)).

Square-KSAμ will therefore always choose the optimal action, knowing how
the environment will respond, in order to decrease ρ(h) the most.

4.2 Asymptotic Optimality

It is difficult to give optimality criteria for universal agents, because some un-
expected problems may occur, as described in [2]. Therefore, Hutter provided
a new definition of optimality, called asymptotic learnability: In the limit, the
agent should behave as well as the optimal agent.

The original, weak version is:

lim
n→∞

1
n

n∑
t=1

V μ
t (yx<t) − V ρ

t (yx<t) = 0

which can be extended to a strong version as defined in [8]:

lim
t→∞

V μ
t (yx<t) − V ρ

t (yx<t)∑∞
k=t wt,k

= 0 . (8)

A convergence in the weak sense can still create an infinite cumulated loss com-
pared to a strong convergence.
2 This does not mean the agent tries to maximize entropy inside the true environment.
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5 Asymptotic Optimality of Square-KSAρ

We prove the convergence of Square-KSAρ to Square-KSAμ in the strong sense,
for a class of horizon functions so that mt = f(�f−1(t)�) where f is such that:
∀t1, t2, 0 < t1 < t2 : t1 < f(t1) < f(t2), which ensures that ∀t, k, 0 < t ≤ k ≤
mt : mk = mt (see lemma 6 in section 8 and table 1). For example, f(t) = 2t.

First we transform the value function of Square-KSAρ a bit:

Vt(yx<t) = max
yt:mt

∑
xt:mt

−(ρ(yxt:mt | yx<t))2

= max
yt:mt

∑
xt:mt

−
(
ρ(yx1:mt)
ρ(yx<t)

)2

= max
yt:mt

∑
xt:mt

−
(
ρ(Qmt+1)
ρ(Qt)

)2

(9)

where Qmt+1 is the set of environments that are consistent with one choice of
yxt:mt .

5.1 Separability

Definition 1. We say that two environments q1 and q2 are h−separable if there
exists a string of actions up to the horizon that makes these two environments
output a different string:

{q1, q2} ⊂ Qt : [∃yt:mt : q1(y1:mt) �= q2(y1:mt)] ⇔ yx<t-separable(q1, q2) .

By extension, we call q1 a h−separable environment if it is h−separable from
the true environment q0.

Lemma 1. If q1 and q2 are two h−separable environments, the Square-KSA
agent is assured to discard a number of environments which cumulated probability
is at least min(ρ(q1), ρ(q2))/2:

yx<t-separable(q1, q2) ⇒ ρ(Qmt+1) ≤ ρ(Qt) − min(ρ(q1), ρ(q2))/2 .

Proof. Let q1 and q2 be two h−separable environments at time t.
Let gt = ρ(Qt), bt = ρ(q1)

gt
, ct = ρ(q2)

gt
. Let ysep

t be a string of actions of size
mt − t + 1 that makes q1 and q2 h−separable, and let ymin

t be a string of the
same size that does not. If no ymin

t exists, then the lemma is trivially true.
For clarity during this proof, we omit the indexes t when clear from the

context.
As V is an entropy function, the minimum value achieved if q1 and q2 are

h−separable is when the distribution of the environments is as little spread
as possible. To do so, we arbitrarily choose all environments except q2 to be
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consistent with the true environment up to the horizon (but recall that q1 and
q2 have interchangeable roles). From (9), we have:

V (ysep) ≥ −(1 − c)2 − c2 .

Suppose there is an action string ymin so that V (ysep) < V (ymin), but that would
discard a minimal fraction d of g: 0 < d < min(b, c). Environments q1, q2 and
the true environment q0 must not be h−separable by ymin, otherwise we would
have d > min(b, c). At constant entropy, the minimal fraction d is achieved when
this fraction d is as spread as possible over the remaining “slots” (input strings
for a given action string). Therefore, for a value at least as high as V (ysep), the
agent is assured to gain at least this fraction d. We will then show that this
fraction has a minimum, ensuring a sufficient decrease in gt each time q1 and q2
are h−separable. Since q1 and q2 must not be separable by ymin, we also have
d < 1 − b− c. Thus d < min(b, c, 1 − b− c).

Maximum entropy with minimal gain d spread over Nt = |X |mt−t+1 − 1 slots
is achieved by:

V (ymin) = −(1 − d)2 −N(d/N)2 = −(1 − d)2 − d2/N

where we considered that q1 and q2 are not separable from q0.
We have:

V (ysep) < V (ymin)

−(1 − c)2 − c2 < −(1 − d)2 − d2/N

−1 − 2c2 + 2c < −1 − d2N + 1
N

+ 2d

d2N + 1
2N

− d+ c(1 − c) < 0 .

Solving this equation for d gives:

N

N + 1
(1 − δ) < d <

N

N + 1
(1 + δ) with δ =

√
1 − 2

N + 1
N

c(1 − c) .

We are only interested in the lower bound. From algebra (see section 8), we have:

0 ≤ c ≤ 0.5, N > 1 :
c

2
≤ N

N + 1
δ < d

and:

0.5 ≤ c ≤ 1, N > 1 :
b

2
≤ (1 − c)

2
≤ N

N + 1
δ < d .

So we have: min( bt

2 ,
ct

2 ) < dt < min(bt, ct, 1 − bt − ct) .
Note that at time k, t < k ≤ mt = mk, Vk(ymin

k ) is still the value for maximum
dispersion (with ymin

k suffix of ymin
t ), since yxt:k−1 only discarded whole “slots”
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(input sequences), so the distribution of the remaining consistent envrionments
over the remaining slots has not changed for a particular action string. Therefore,
like at time t, doing any other action string than ymin

k that has higher value than
Vk(ymin

k ) can only be better. 	


This lemma ensures that even if ysep is not chosen, and so neither q1 nor q2
may be discarded after the chosen string of actions, at least a certain fraction is
discarded.

Lemma 2. If q0 and q2 are sufficiently often h−separable environments, where
q0 is the true environment, then eventually q2 will be discarded:

∀t : (∀k > t : q2 ∈ Qk) ⇒ [∃T > t, ∀k > T : ¬(yx<k−separable(q0, q2))] .

Proof. From lemma 1 and its proof, where we identify q0 with q1, after executing
the chosen string of actions (either ysep or some ymin), we have: gmt < gt(1 −
min( bt

2 ,
ct

2 )). Since bt and ct can only grow with t, this implies that gmt decreases
to 0 at least as fast as a geometric progression with t, when q0 and q2 are
repeatedly h−separable. So either limt→∞ gt = 0, or either q0 or q2 is discarded
once 1−bt−ct < min( bt

2 ,
ct

2 ), i.e. the fraction of the cumulated probability of the
programs other than q0 and q2 is not sufficient to make an entropy that is higher
than discarding either q0 or q2. Since q0 cannot be discarded, q2 is eventually
discarded. 	


Lemma 3. In deterministic environments, when yx<t is chosen by Square-KSA:

lim
t→∞ ρ(yxt:mt | yx<t) = μ(yxt:mt | yx<t) .

Proof. Recursive application of lemma 2 for all environments shows that for any
ε > 0, any environment q with ρ(q) > ε either gets discarded at some point or
remains non separable from the true environment q0 forever after some time step
T . Therefore the relative probability of the sequence generated by program q0,
which is the same as the sequence generated by any non-h−separable (from q0)
environment, tends to 1. 	


Theorem 2. Square-KSAρ, with mt = f(�f−1(t)�), is strongly asymptotically
optimal in deterministic environments.

Proof. Follows immediately from lemma 3 and equations (6), (7) and (8). 	


This important property ensures that the agent cannot be “tricked” to prevent it
from achieving its goal, and does not get stuck in a sub-optimal behavior w.r.t.
its utility function, unlike AIXI.

As higher probability environments have a higher minimal entropy when
h−separable, the agent will take actions to eliminate such environments early.
We thus expect a fast, or even asymptotic optimally fast convergence to μ, but
this remains to be shown.

The only case where the agent may gain little knowledge is when ρ(q1)  ρ(q0)
and ρ(q1) > g/2. This means that q1 is very probable, not only a priori but also
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from experience. However, the agent will eventually choose a string of actions
that discard q1, but this may be long if all other environments (including q0)
are very improbable. Nonetheless, since the agent chooses its actions to try to
eliminate (roughly speaking) as many environments as possible, its behavior may
lead it, by “chance”, to discard q1 earlier.

5.2 Full Separability

Definition 2. Two environments q1 and q2 are h̄−separable if they are not
h−separable within the horizon mt but would be h−separable with a larger mt.

By extension, we call q1 a h̄−separable environment if it is h̄−separable from
the true environment q0.

It is plausible that some environments may be constantly h̄−separable, thus
constantly avoiding to be discarded.

First, it is not certain that such environments are computable, as they might
need to know what actions the agent will take in order to provably remain
h̄−separable.

Second, it must be noted that neither Square-KSAρ nor Square-KSAμ can
foresee the separability of an h̄−separable environment q′0 beyond the horizon,
so this does not prevent Square-KSAρ to converge to Square-KSAμ. From their
point of view, such environments behave exactly like the true environment.

Third, if the horizon m′
t = mt − t is growing, in the limit, the size of the

sequence that could separate q′0 would be infinite (although finite at any step
t), and therefore q′0 would become practically indistinguishable from q0. Hence
such environments may not be of real importance.

The speed at which m′
t is growing does not seem to be significant, unless it is

uncomputable. In that latter case, we show a full separability property:

Theorem 3. If the horizon mt grows faster than any computable function, no
environment can be h̄−separable an infinite number of times.

Proof. By contradiction.
For every computable function f(t) monotonically growing to infinity faster

than t, there exists a computable function ḟ(t) = f(f(t)) which grows faster
than f(t), and thus no computable function grows faster than all others. Hence
mt is not computable.

Let the computable environments q0 and q′0 be infinitely often h̄−separable
for the horizon mt by the string ysep

t . Finding ysep
t is computable: At a given

time t, enumerate (dove-tailing) all strings of actions in growing order, and take
the first one (no need to take the shortest one) which outputs differ for the two
environments. As ysep

t exists, we are assured that the process eventually halts.
The function defined by z(t) = maxk<t |ysep

k | (where |ysep
k | is the size of the

string ysep
k ), which should be computable if q0 and q′0 are computable, monoton-

ically grows at least as fast as mt by definition of ysep
t , and so is not computable.

Therefore q′0 is not computable. 	




Universal Knowledge-Seeking Agents 363

6 Shannon-KSA

We can also define a knowledge-seeking agent by taking the logarithm (base 2)
in the previous utility function: ut(yx1:k) = − log ρ(yxt:k | yx<t) . Hence for this
new agent Shannon-KSAρ:

Vt(yx<t) = max
yt:tm

∑
xt

ρ(xt | yx<t)

⎡⎣0 +
∑
xt+1

ρ(xt+1 | yx1:t)

⎡⎣0 +
∑
xt+2

. . .

∑
xmt

ρ(xmt | yx<mt)(− log ρ(yxt:mt | yx1:t) + 0)

⎤⎦⎤⎦
= max

yt:tm

∑
xt:tm

−ρ(yxt:mt | yx1:t) log ρ(yxt:mt | yx1:t)

using (4) repeatedly (and recall the notation shortcut for ρ(yxt:mt | yx1:t)). This
agent thus computes and compares Shannon’s entropy [12] for strings of actions.

Theorem 4. A universal agent with utility function ut,k = − log ρ(yxk | yx<k)
and horizon function wt,k = w≤

t,k is identical to a universal agent with utility
function ut,k = − log ρ(yxt:k | yx<t) and horizon function wt,k = w=

t,k.

Proof. We start with the first agent. For clarity, we omit the actions y.

Vt(yx<t) =
∑
xt

ρ(xt | x<t)

⎡⎣− log ρ(xt | x<t)
∑
xt+1

+
∑
xt+1

ρ(xt+1 | x1:t)

⎡⎣− log ρ(xt+1 | x1:t) +
∑
xt+2

. . .

⎤⎦⎤⎦
=
∑
xt

−ρ(xt | x<t) log ρ(xt | x<t)

+ ρ(xt | x<t)
∑
xt+1

ρ(xt+1 | x1:t)

⎡⎣− log ρ(xt+1 | x1:t) +
∑
xt+2

. . .

⎤⎦
=
∑

xt:mt

−ρ(xt:mt | x<t) log ρ(xt | x<t)

+
∑

xt:t+1

ρ(xt:t+1 | x<t)

⎡⎣− log ρ(xt+1 | x1:t) +
∑
xt+2

. . .

⎤⎦
. . .

=
∑

xt:mt

ρ(xt:mt | x<t) [− log ρ(xt | x<t) − log ρ(xt+1 | x1:t) − . . .]

=
∑

xt:mt

−ρ(xt:mt | x<t) log ρ(xt:mt | x<t) .
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We used the chain rule (4), the additivity property of the log function, and∑
xt
ρ(xt | x<t) · zt =

∑
xt:mt

ρ(xt:mt | x<t) · zt. 	


This shows that Shannon-KSA is not “merely” looking at the final step, but that
all intermediate steps are equally taken into account.

We expect Shannon-KSAρ to also be strongly asymptotically optimal.

6.1 Curiosity-Seeking Complexity

Suppose we take ρ = ξ. For each “slot” for the entropy (i.e. for each possible future
input string up to the horizon for a given action string), if we consider that lower
probability environments are of marginal contribution to ξ when compared to
the highest probability environment, the utility function becomes:

ut(yx1:k) = − log ξ(yxt:k | yx<t)

= − log
ξ(yx1:k)
ξ(yx<t)

= − log ξ(yx1:k) + log ξ(yx<t)
≈ K(yx1:k) −K(yx<t)

where K is the prefix Kolmogorov complexity [6]. Then we can interpret this
as follows: The agent chooses its actions to maximize its knowledge of the Kol-
mogorov complexity of the environment.

Shannon’s entropy, usually measured in bits, makes here a lot of sense: The
utility function says the agent tries to gain as many bits of information/com-
plexity as possible. This approximate formulation of Shannon-KSAξ has strong
links with Schmidhuber’s “curiosity learning” for RL [10, 11], where the agent
receives internal rewards for compressing the sequence predictor.

7 Discussion and Conclusion

We defined a new kind of universal intelligent agents, named knowledge-seeking
agents, which differ significantly from the traditional Reinforcement Learning
framework and its associated universal optimal learner AIXI: Their purpose is
not to solve particular, narrow tasks, given or defined by experts like humans,
but to be fully autonomous, and to depend on no external intelligent entity.
Full autonomy is an important property if we are to create Artificial General
Intelligences, that should match or surpass human or even humanity intelligence.

We believe such agents (or their computational variants) should turn out to
be useful to humanity in a different way than RL agents, since they should
constantly be creative and solve interesting problems that we may not yet know.

It seems that this kind of agent can still be directed to some extent, either
by using pieces of knowledge as rewards, or by controlling the parts of the envi-
ronment the agent interacts with, or by giving it prior knowledge. But these are
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only temporary biases that decrease in strength as the agent acquires knowledge,
in the convergence to optimality.

In the real world, where all agents are mortal in some way, it is unlikely that
a KSA would be too curious so as to threaten its own life, since a (predicted)
death would prevent it from acquiring more knowledge.

We proved convergence of Square-KSA to the optimal non-learning variant
of this agent for a class of horizon functions, meaning that it behaves according
to expectation, even in the limit, in all computable environments. If the horizon
function grows uncomputably fast, we also proved that any environment that is
different from the true one sufficiently often is eventually discarded. If the horizon
function grows only in a computable way, we showed that environments that may
not be discarded tend to be indistinguishable from the true environment in the
limit.

The related agent, Shannon-KSA, based on Shannon’s entropy, has interesting
properties and its value function can be interpreted in terms of how many bits
of complexity (information) the agent can expect to gain by doing a particular
string of actions, and we expect this agent to also be asymptotically optimal.

As for AIXI, we expect the various KSA properties to extend nicely to stochas-
tic computable environments.

We also expect Square-KSAρ or Shannon-KSAρ (or both) to be Pareto op-
timal, to converge quickly, in an optimal way to the true environment, i.e. no
learning agent should acquire knowledge faster.

We are currently trying to get rid of the horizon function in an optimal way.
One possibility could be to choose an horizon based on ρ(h).

Another important concern is obviously how to optimally (for some definition
of optimality) scale down Square-KSAρ to a computable agent.
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8 Technical Proofs

Lemma 4

∀c,N, 0 ≤ c ≤ 0.5, N > 1 :
c

2
≤ N

N + 1

(
1 −
√

1 − 2
N + 1
N

c(1 − c)

)
.

Proof

c

2
≤ N

N + 1

(
1 −
√

1 − 2
N + 1
N

c(1 − c)

)

1 − N + 1
2N

c ≥
√

1 − 2
N + 1
N

c(1 − c)

1 +
(
N + 1
2N

c

)2

− N + 1
N

c ≥ 1 − 2
N + 1
N

c(1 − c)

N + 1
8N

c− 1
2

≥ −(1 − c)

c
−7N + 1

8N
≥ −1

2

c ≤ 4N
7N − 1

which is true by the premises. 	
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Lemma 5

∀c,N, 0.5 ≤ c ≤ 1, N > 1 :
1 − c

2
≤ N

N + 1

(
1 −
√

1 − 2
N + 1
N

c(1 − c)

)
.

Proof

N + 1
2N

(1 − c) ≤ 1 −
√

1 − 2
N + 1
N

c(1 − c)

1 − N + 1
2N

(1 − c) ≥
√

1 − 2
N + 1
N

c(1 − c)(
N + 1
2N

(1 − c)
)2

− N + 1
N

(1 − c) ≥ −2
N + 1
N

c(1 − c)

(N + 1)(1 − c) − 4N ≥ −8Nc
−3N + 1 ≥ c(−7N + 1)

c ≥ 3N − 1
7N − 1

which is true by the premises. 	


Lemma 6

mt = f(�f−1(t)�) ∧ ∀t1, t2, 0 < t1 < t2 : t1 < f(t1) < f(t2)
⇒ ∀t, k, 0 < t ≤ k ≤ mt : mk = mt .

Proof

t ≤ k ≤ f(�f−1(t)�)
f(�f−1(t)�) ≤ f(�f−1(k)�) ≤ f(�f−1(f(�f−1(t)�))�) = f(�f−1(t)�)

mt ≤ mk ≤ mt

.

	


Remarks. Such horizon function mt is a “stair” function: the agent sets one point
in the future, takes this point for its horizon until it reaches it, then sets a new,
further point in the future and so on. The function f(t) can be any function
growing faster than t. Possible choices are f(t) = t2 and f(t) = 2t.

Table 1. Evolution of mt = 2�log2(t)� for the first values of t

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
mt 1 2 4 4 8 8 8 8 16 16 16 16 16 16 16 16 32 32
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Abstract. Artificial general intelligence aims to create agents capable of
learning to solve arbitrary interesting problems. We define two versions
of asymptotic optimality and prove that no agent can satisfy the strong
version while in some cases, depending on discounting, there does exist
a non-computable weak asymptotically optimal agent.
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1 Introduction

The dream of artificial general intelligence is to create an agent that, starting
with no knowledge of its environment, eventually learns to behave optimally. This
means it should be able to learn chess just by playing, or Go, or how to drive a car
or mow the lawn, or any task we could conceivably be interested in assigning it.

Before considering the existence of universally intelligent agents, we must be
precise about what is meant by optimality. If the environment and goal are
known, then subject to computation issues, the optimal policy is easy to con-
struct using an expectimax search from sequential decision theory [13]. However,
if the true environment is unknown then the agent will necessarily spend some
time exploring, and so cannot immediately play according to the optimal policy.
Given a class of environments, we suggest two definitions of asymptotic optimal-
ity for an agent.

1. An agent is strongly asymptotically optimal if for every environment in the
class it plays optimally in the limit.

2. It is weakly asymptotic optimal if for every environment in the class it plays
optimally on average in the limit.

The key difference is that a strong asymptotically optimal agent must eventually
stop exploring, while a weak asymptotically optimal agent may explore forever,
but with decreasing frequency.

In this paper we consider the (non-)existence of weak/strong asymptotically
optimal agents in the class of all deterministic computable environments. The
restriction to deterministic is for the sake of simplicity and because the results
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for this case are already sufficiently non-trivial to be interesting. The restriction
to computable is more philosophical. The Church-Turing thesis is the unprovable
hypothesis that anything that can intuitively be computed can also be computed
by a Turing machine. Applying this to physics leads to the strong Church-Turing
thesis that the universe is computable (possibly stochastically computable, i.e.
computable when given access to an oracle of random noise). Having made these
assumptions, the largest interesting class then becomes the class of computable
(possibly stochastic) environments.

In [7], Hutter conjectured that his universal Bayesian agent, AIXI, was weakly
asymptotically optimal in the class of all computable stochastic environments.
Unfortunately this was recently shown to be false in [14], where it is proven that
no Bayesian agent (with a static prior) can be weakly asymptotically optimal in
this class.1 The key idea behind Orseau’s proof was to show that AIXI eventually
stops exploring. This is somewhat surprising because it is normally assumed that
Bayesian agents solve the exploration/exploitation dilemma in a principled way.
This result is a bit reminiscent of Bayesian (passive induction) inconsistency
results [3, 4], although the details of the failure are very different.

We extend the work of [14], where only Bayesian agents are considered, to
show that non-computable weak asymptotically optimal agents do exist in the
class of deterministic computable environments for some discount functions (in-
cluding geometric), but not for others. We also show that no asymptotically
optimal agent can be computable, and that for all “reasonable” discount func-
tions there does not exist a strong asymptotically optimal agent.

The weak asymptotically optimal agent we construct is similar to AIXI, but
with an exploration component similar to ε-learning for finite state Markov deci-
sion processes or the UCB algorithm for bandits. The key is to explore sufficiently
often and deeply to ensure that the environment used for the model is an adequate
approximation of the true environment. At the same time, the agent must explore
infrequently enough that it actually exploits its knowledge. Whether or not it is
possible to get this balance right depends, somewhat surprisingly, on how forward
looking the agent is (determined by the discount function). That it is sometimes
not possible to explore enough to learn the true environment without damaging
even a weak form of asymptotic optimality is surprising and unexpected.

Note that the exploration/exploitation problem is well-understood in the Ban-
dit case [1, 2] and for (finite-state stationary) Markov decision processes [15]. In
these restrictive settings, various satisfactory optimality criteria are available.
In this work, we do not make any assumptions like Markov, stationary, ergod-
icity, or else besides computability of the environment. So far, no satisfactory
optimality definition is available for this general case.

2 Notation and Definitions

We use similar notation to [7, 14] where the agent takes actions and the envi-
ronment returns an observation/reward pair.

1 Or even the class of computable deterministic environments.
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Strings. A finite string a over alphabet A is a finite sequence a1a2a3 · · · an−1an

with ai ∈ A. An infinite string ω over alphabet A is an infinite sequence
ω1ω2ω3 · · · . An, A∗ and A∞ are the sets of strings of length n, strings of fi-
nite length, and infinite strings respectively. Let x be a string (finite or infi-
nite) then substrings are denoted xs:t := xsxs+1 · · ·xt−1xt where s, t ∈ N and
s ≤ t. Strings may be concatenated. Let x, y ∈ A∗ of length n and m respec-
tively, and ω ∈ A∞. Then define xy := x1x2 · · ·xn−1xny1y2 · · · ym−1ym and
xω := x1x2 · · ·xn−1xnω1ω2ω3 · · · . Some useful shorthands,

x<t := x1:t−1 yx<t := y1x1y2x2 · · · yt−1xt−1. (1)

The second of these is ambiguous with concatenation, so wherever yx<t appears
we assume the interleaving definition of (1) is intended. For example, it will be
common to see yx<tyt, which represents the string y1x1y2x2y3x3 · · · yt−1xt−1yt.
For binary strings, we write #1(a) and #0(a) to mean the number of 0’s and
number of 1’s in a respectively.

o1|r1

y1

o2|r2

y2

o3|r3

y3

o4|r4

y4

o5|r5

y5 · · ·

· · ·

agent, π environment, μ

Environments and Optimality. Let Y,
O and R ⊂ R be action, observation
and reward spaces respectively. Let X =
O × R. An agent interacts with an en-
vironment as illustrated in the diagram
on the right. First, the agent takes an ac-
tion, upon which it receives a new obser-
vation/reward pair. The agent then takes
another action, receives another observation/reward pair, and so-on indefinitely.
The goal of the agent is to maximise its discounted rewards over time. In this
paper we consider only deterministic environments where the next observa-
tion/reward pair is determined by a function of the previous actions, observations
and rewards.

Definition 1 (Deterministic Environment). A deterministic environment
μ is a function μ : (Y × X )∗ × Y → X where μ(yx<tyt) ∈ X is the observa-
tion/reward pair given after action yt is taken in history yx<t. Wherever we
write xt we implicitly assume xt = (ot, rt) and refer to ot and rt without defin-
ing them. An environment μ is computable if there exists a Turing machine that
computes it.

Note that since environments are deterministic the next observation need not
depend on the previous observations (only actions). We choose to leave the
dependence as the proofs become clearer when both the action and observation
sequence is more visible.

Assumption 1. Y and O are finite, R = [0, 1].

Definition 2 (Policy). A policy π is a function from a history to an action
π : (Y × X )∗ → Y.

As expected, a policy π and environment μ can interact with each other to
generate a play-out sequence of action/reward/observation tuples.
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Definition 3 (Play-out Sequence). We define the play-out sequence yxμ,π ∈
(Y × X )∞ inductively by yμ,π

k := π(yxμ,π
<k ) and xμ,π

k := μ(yxμ,π
<k y

μ,π
k ).

We need to define the value of a policy π in environment μ. To avoid the pos-
sibility of infinite rewards, we will use discounted values. While it is common
to use only geometric discounting, we have two reasons to allow arbitrary time-
consistent discount functions.

1. Geometric discounting has a constant effective horizon, but we feel agents
should be allowed to use a discount function that leads to a growing horizon.
This is seen in other agents, such as humans, who generally become less
myopic as they grow older. See [5] for a overview of generic discounting.

2. The existence of asymptotically optimal agents depends critically on the
effective horizon of the discount function.

Definition 4 (Discount Function). A regular discount function γ ∈ R∞ is a
vector satisfying γk ≥ 0 and 0 <

∑∞
t=k γt < ∞ for all k ∈ N.

The first condition is natural for any definition of a discount function. The second
condition is often cited as the purpose of a discount function (to prevent infinite
utilities), but economists sometimes use non-summable discount functions, such
as hyperbolic. The second condition also guarantees the agent cares about the
infinite future, and is required to make asymptotic analysis interesting. We only
consider discount functions satisfying all three conditions. In the following, let

Γt :=
∞∑
i=t

γi Ht(p) := min
h∈N

{
h :

1
Γt

t+h∑
k=t

γk > p

}
.

An infinite sequence of rewards starting at time t, rt, rt+1, rt+2, · · · is given a
value of 1

Γt

∑∞
i=t γiri. The term 1

Γt
is a normalisation term to ensure that values

scale in such a way that they can still be compared in the limit. A discount
function is computable if there exists a Turing machine computing it. All well
known discount functions, such as geometric, fixed horizon and hyperbolic are
computable. Note that Ht(p) exists for all p ∈ [0, 1) and represents the effective
horizon of the agent. After Ht(p) time-steps into the future, starting at time t,
the agent stands to gain/lose at most 1 − p.

Definition 5 (Values and Optimal Policy). The value of policy π
when starting from history yxμ,π

<t in environment μ is V π
μ (yxμ,π

<t ) :=
1
Γt

∑∞
k=t γkr

μ,π
k . The optimal policy π∗

μ and its value V ∗
μ are defined π∗

μ(yx<t) :=

argmaxπ V
π
μ (yx<t) and V ∗

μ (yx<t) := V
π∗

μ
μ (yx<t).

Assumption 1 combined with Theorem 6 in [9] guarantees the existence of π∗
μ.

Note that the normalisation term 1
Γt

does not change the policy, but is used to
ensure that values scale appropriately in the limit. For example, when discount-
ing geometrically we have, γt = γt for some γ ∈ (0, 1) and so Γt = γt

1−γ and
V π

μ (yxμ,π
<t ) = (1 − γ)

∑∞
k=t γ

k−trμ,π
k .
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Definition 6 (Asymptotic Optimality). Let M = {μ0, μ1, · · · } be a finite
or countable set of environments and γ be a discount function. A policy π is a
strong asymptotically optimal policy in (M,γ) if

lim
n→∞

[
V ∗

μ (yxμ,π
<n ) − V π

μ (yxμ,π
<n )
]

= 0, for all μ ∈ M. (2)

It is a weak asymptotically optimal policy if

lim
n→∞

1
n

n∑
t=1

[
V ∗

μ (yxμ,π
<t ) − V π

μ (yxμ,π
<t )
]

= 0, for all μ ∈ M. (3)

Strong asymptotic optimality demands that the value of a single policy π con-
verges to the value of the optimal policy π∗

μ for all μ in the class. This means that
in the limit, a strong asymptotically optimal policy will obtain the maximum
value possible in that environments.

Weak asymptotic optimality is similar, but only requires the average value of
the policy π to converge to the average value of the optimal policy. This means
that a weak asymptotically optimal policy can still make infinitely many bad
mistakes, but must do so for only a fraction of the time that converges to zero.
Strong asymptotic optimality implies weak asymptotic optimality.

While the definition of strong asymptotic optimality is rather natural, the
definition of weak asymptotic optimality appears somewhat more arbitrary. The
purpose of the average is to allow the agent to make a vanishing fraction of
serious errors over its (infinite) life-time. We believe this is a necessary condition
for an agent to learn the true environment. Of course, it would be possible to
insist that the agent make only o(logn) serious errors rather than o(n), which
would make a stronger version of weak asymptotic optimality. Our choice is the
weakest notion of optimality of the above form that still makes sense, which
turns out to be already too strong for some discount rates.

Note that for both versions of optimality an agent would be considered optimal
if it actively undertook a policy that led it to an extremely bad “hell” state from
which it could not escape. Since the state cannot be escaped, its policy would
then coincide with the optimal policy and so it would be considered optimal.
Unfortunately, this problem seems to be an unavoidable consequence of learn-
ing algorithms in non-ergodic environments in general, including the currently
fashionable PAC algorithms for arbitrary finite Markov decision processes.

3 Non-existence of Asymptotically Optimal Policies

We present the negative theorem in three parts. The first shows that, at least
for computable discount functions, there does not exist a strong asymptotically
optimal policy. The second shows that any weak asymptotically optimal policy
must be incomputable while the third shows that there exist discount functions
for which even incomputable weak asymptotically optimal policies do not exist.

Theorem 7. Let M be the class of all deterministic computable environments
and γ a computable discount function, then:
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1. There does not exist a strong asymptotically optimal policy in (M,γ).
2. There does not exist a computable weak asymptotically optimal policy in

(M,γ).
3. If γk := 1

k(k+1) then there does not exist a weak asymptotically optimal policy
in (M,γ).

Part 1 of Theorem 7 says there is no strong asymptotically optimal policy in
the class of all computable deterministic environments when the discount func-
tion is computable. It is likely there exist non-computable discount functions
for which there are strong asymptotically optimal policies. Unfortunately the
discount functions for which this is true are likely to be somewhat pathological
and not realistic.

Given that strong asymptotic optimality is too strong, we should search for
weak asymptotically optimal policies. Part 2 of Theorem 7 shows that any such
policy is necessarily incomputable. This result features no real new ideas and re-
lies on the fact that you can use a computable policy to hand-craft a computable
environment in which it does very badly [10]. In general this approach fails for
incomputable policies because the hand-crafted environment will then not be
computable. Note that this does not rule out the existence of a stochastically
computable weak asymptotically optimal policy.

It turns out that even weak asymptotic optimality is too strong for some
discount functions. Part 3 of Theorem 7 gives an example discount function
for which no such policy (computable or otherwise) exists. In the next section
we introduce a weak asymptotically optimal policy for geometric (and may be
extended to other) discounting. Note that γk = 1

k(k+1) is an example of a discount
function where Ht(p) = Ω(t). It is also analytically easy to work with.

All negative results are proven by contradiction, and follow the same basic
form.

1. Assume π is a computable/arbitrary weak/strong asymptotically optimal.
2. Therefore π is weak/strong asymptotically optimal in μ for some particular

μ.
3. Construct ν, which is indistinguishable from μ under π, but where π is not

weak/strong asymptotically optimal in ν.

It is worth remarking that for all counter-examples, the set of observations O
is empty and so all results apply also to bandits. Space does not permit us to
present the proofs of part 1 and 2, which in any case are substantially easier
than part 3.

Proof (Theorem 7, Part 3). Recall γk = 1
k(k+1) and so Γt = 1

t . Now let Y =
{up, down} and O = ∅. Define μ by

μ(yr<tyt) =

{
1
2 if yt = up
1
2 − ε if yt = down
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where ε ∈ (0, 1
2 ) will be chosen later. As before, V ∗

μ (yr<t) = 1
2 . Assume π is

weakly asymptotically optimal. Therefore

lim
n→∞

1
n

n∑
t=1

V π
μ (yrμ,π

<t ) =
1
2
. (4)

We show by contradiction that π cannot explore (take action down) too often.
Assume there exists an infinite time-sequence t1, t2, t3, · · · such that π(yrμ,π

<t ) =
down for all t ∈

⋃∞
i=1[ti, 2ti]. Then for t ∈ [ti, 3

2 ti] we have

V π
μ (yrμ,π

<t ) ≡ 1
Γt

∞∑
k=t

γkr
μ,π
k ≤ t

[
(
1
2

− ε)
2ti∑
k=t

γk +
1
2

∞∑
k=2ti+1

γk

]
(5)

=
1
2

− ε

[
1 − t

2ti + 1

]
<

1
2

− ε

4
(6)

where (5) is the definition of the value function and the previous assumption
and definition of μ. (6) by algebra and since t ∈ [ti, 3

2 ti]. Therefore

1
2ti

2ti∑
t=1

V π
μ (yrμ,π

<t ) <
1

2ti

⎡⎣ti−1∑
t=1

1
2

+

3
2 ti−1∑
t=ti

(
1
2

− ε

4

)
+

2ti∑
t= 3

2 ti

1
2

⎤⎦ =
1
2

− 1
16
ε. (7)

The first inequality follows from (6) and because the maximum value
of any play-out sequence in μ is 1

2 . The second by algebra. Therefore
lim infn→∞ 1

n

∑n
t=1 V

π
μ (yrμ,π

<t ) < 1
2 − 1

16ε < 1
2 , which contradicts (4). There-

fore there does not exist a time-sequence t1 < t2 < t3 < · · · such that
π(yrμ,π

<t ) = down for all t ∈
⋃∞

i=1[ti, 2ti].
So far we have shown that π cannot “explore” for t consecutive time-steps

starting at time-step t, infinitely often. We now construct an environment similar
to μ where this is required. Choose T to be larger than the last time-step t at
which yμ,π

s = down for all s ∈ [t, 2t] Define ν by

ν(yr<tyt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(yr<tyt) if t < T
1
2 if yt = down and there does not exist t′ ≥ T

such that ys = down∀s ∈ [t′, 2t′]
1 if yt = down and exists t′ ≥ T such that 2t′ < t and

ys = down∀s ∈ [t′, 2t′]
1
2 − ε otherwise

Now we compare the values in environment ν of π and π∗
ν at times t ≥ T . Since

π does not take action down for t consecutive time-steps at any time after T , it
never “unlocks” the reward of 1 and so V π

ν (yrν,π
<t ) ≤ 1

2 . Now let π̃(yr<t) = down
for all yr<t. Therefore, for t ≥ 2T ,
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V π̃
ν (yrν,π

<t ) ≡ 1
Γt

∞∑
k=t

γkr
ν,π̃
k ≥ t

[(
1
2

− ε

) 2t−1∑
k=t

γk +
∞∑

k=2t

γk

]
(8)

= t

[(
1
2

− ε

)(
1
t
− 1

2t

)
+

1
2t

]
=

3
4

− 1
2
ε (9)

where (8) follows by the definition of ν and π̃. (9) by the definition of γk

and algebra. Finally, setting ε = 1
4 gives V π̃

ν (yrν,π
<t ) ≥ 5

8 = 1
2 + 1

8 . Since
V ∗

ν ≥ V π̃
ν , we get V ∗

ν (yrν,π
<t ) − V π

ν (yrν,π
<t ) ≥ V π̃

ν (yrν,π
<t ) − V π

ν (yrν,π
<t ) ≥ 1

8 . Therefore
lim supn→∞

1
n

∑n
t=1 [V ∗(yrν,π

<t ) − V π
ν (yrν,π

<t )] ≥ 1
8 , and so π is not weakly asymp-

totically optimal. 	


We believe it should be possible to generalise the above to computable discount
functions with Ht(p) > cpt with cp > 0 for infinitely many t, but the proof will
likely be messy.

4 Existence of Weak Asymptotically Optimal Policies

In the previous section we showed there did not exist a strong asymptotically
optimal policy (for most discount functions) and that any weak asymptotically
optimal policy must be incomputable. In this section we show that a weak asymp-
totically optimal policy exists for geometric discounting (and is, of course, in-
computable).

The policy is reminiscant of ε-exploration in finite state MDPs (or UCB for
bandits) in that it spends most of its time exploiting the information it already
knows, while still exploring sufficiently often (and for sufficiently long) to detect
any significant errors in its model.

The idea will be to use a model-based policy that chooses its current model
to be the first environment in the model class (all computable deterministic
environments) consistent with the history seen so far. With increasing probability
it takes the best action according to this policy, while still occasionally exploring
randomly. When it explores it always does so in bursts of increasing length.

Definition 8 (History Consistent). A deterministic environment μ is con-
sistent with history yx<t if μ(yx<kyk) = xk, for all k < t.

Definition 9 (Weak Asymptotically Optimal Policy). Let Y = {0, 1}
and M = {μ1, μ2, μ3, · · · } be a countable class of deterministic environments.
Define a probability measure P on B∞ inductively by, P (zn = 1|z<n) :=
1
n , for all z<n ∈ Bn−1. Now let χ ∈ B∞ be sampled from P and define
χ̄, χ̇h ∈ B∞ by

χ̄k :=

{
1 if k ∈

⋃
i:χi=1[i, i+ log i]

0 otherwise
χ̇h

k :=

{
0 if χ̄k:k+h = 0h+1

1 otherwise
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Next let ψ be sampled from the uniform measure (each bit of ψ is independently
sampled from a Bernoulli 1/2 distribution) and define a policy π by,

π(yx<t) :=

{
π∗

νt
(yxπ,μ

<t ) if χ̄t = 0
ψt otherwise

(10)

where νt = μit with it = min {i : μi consistent with history yxπ,μ
<t } < ∞. Note

that it is always finite because there exists an i such that μi = μ, in which case
μi is necessarily consistent with yxπ,μ

<t .

Intuitively, χk = 1 at time-steps when the agent will explore for log k time-steps.
χ̄k = 1 if the agent is exploring at time k and ψk is the action taken if exploring
at time-step k. χ̇ will be used later, with χ̇h

k = 1 if the agent will explore at least
once in the interval [k, k+h]. If the agent is not exploring then it acts according
to the optimal policy for the first consistent environment in M.

Theorem 10. Let γt = γt with γ ∈ (0, 1) (geometric discounting) then the
policy defined in Definition 9 is weakly asymptotically optimal in the class of all
deterministic computable environments with probability 1.

Some remarks:

1. That Y = {0, 1} is only convenience, rather than necessity. The policy is
easily generalised to arbitrary finite Y.

2. π is essentially a stochastic policy. With some technical difficulties it is possi-
ble to construct an equivalent deterministic policy. This is done by choosing
χ to be any P -Martin-Löf random sequence and ψ to be a sequence that is
Martin-Löf random w.r.t to the uniform measure. The theorem then holds
for all deterministic environments. The proof is somewhat delicate and may
not extend nicely to stochastic environments. For an introduction to Kol-
mogorov complexity and Martin-Löf randomness, see [12]. For a reason why
the stochastic case may not go through as easily, see [8].

3. The policy defined in Definition 9 is not computable for two reasons. First,
because it relies on the stochastic sequences χ and ψ. Second, because the
operation of finding the first environment consistent with the history is not
computable.2 We do not know if there exists a weak asymptotically optimal
policy that is computable when given access to a random number generator
(or if it is given χ and ψ).

4. The bursts of exploration are required for optimality. Without them it will
be possible to construct counter-example environments similar to those used
in part 3 of Theorem 7.

Before the proof we require some more definitions and lemmas. Easier proofs are
omitted due to space limitations.
2 The class of computable environments is not recursively enumerable [12].
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Definition 11 (h-Difference). Let μ and ν be two environments consistent
with history yx<t, then μ is h-different to ν if there exists yxt:t+h satisfying

yk = π∗
μ(yx<k) for all k ∈ [t, t+ h],

xk = μ(yx<kyk) for all k ∈ [t, t+ h],
xk �= ν(yx<kyk) for some k ∈ [t, t+ h].

Intuitively, μ is h-different to ν at history yx<t if playing the optimal policy
for μ for h time-steps makes ν inconsistent with the new history. Note that
h-difference is not symmetric.

Lemma 12. If an ∈ [0, 1] and lim supn→∞
1
n

∑n
i=1 an = ε and α ∈ B∞ is an

indicator sequence with αi := [[ai ≥ ε/4]],3 then
∏∞

i=1

[
1 − αi

i

]
= 0.

Lemma 13. Let a1, a2, a3, · · · be a sequence with an ∈ [0, 1] for all n. The
following properties of χ are true with probability 1.

1. For any h, lim supn→∞
1
n#1(χ̇h

1:n) = 0.
2. If lim sup 1

n

∑n
i=1 ai = ε > 0 and αi := [[ai > ε/2]] then αi = χi = 1 for

infinitely many i.

Proof. 1. Let i ∈ N, ε > 0 and Eε
i be the event that #1(χ̇h

1:2i) > 2iε. Us-
ing the definition of χ̇h to compute the expectation E

[
#1(χ̇h

1:2i)
]
< i(i + 1)h

and applying the Markov inequality gives that P (Eε
i ) < i(i + 1)h2−i/ε.

Therefore
∑

i∈N
P (Eε

i ) < ∞. Therefore the Borel-Cantelli lemma gives that
Eε

i occurs for only finitely many i with probability 1. We now assume that
lim supn→∞

1
n#1(χ̇h

1:n) > 2ε > 0 and show that Eε
i must occur infinitely of-

ten. By the definition of lim sup and our assumption we have that there ex-
ists a sequence n1, n2, · · · such that #1(χ̇h

1:ni
) > 2niε for all i ∈ N. Let

n+ := mink∈N

{
2k : 2k ≥ n

}
and note that #1(χ̇h

1:n+
i

) > n+
i ε, which is ex-

actly Eε
log n+

i

. Therefore there exist infinitely many i such that Eε
i occurs and so

lim supn→∞
1
n#1(χ̇h

1:n) = 0 with probability 1.
2. The probability that αi = 1 =⇒ χi = 0 for all i ≥ T is P (αi = 1 =⇒ χi =
0∀i ≥ T ) =

∏∞
i=T

(
1 − αi

i

)
=: p = 0, by Lemma 12. Therefore the probability

that αi = χi = 1 for only finitely many i is zero. Therefore there exists infinitely
many i with αi = χi = 1 with probability 1, as required. 	


Lemma 14 (Approximation Lemma). Let π1 and π2 be policies, μ an en-
vironment and h ≥ Ht(1 − ε). Let yx<t be an arbitrary history and yxμ,πi

t:t+h be
the future action/observation/reward triples when playing policy πi. If yxπ1,μ

t:t+h =
yxπ2,μ

t:t+h then |V π1
μ (yx<t) − V π2

μ (yx<t)| < ε.

Recall that π∗
μ and π∗

ν are the optimal policies in environments μ and ν respec-
tively (see Definition 5).

3 [[expression]] = 1 if expression is true and 0 otherwise.
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Lemma 15 (h-difference). If |V π∗
μ

μ (yxπ,μ
<t ) − V

π∗
ν

μ (yxπ,μ
<t )| > ε then μ is Ht(1 −

ε)-different to ν on yxπ,μ.

We are now ready to prove the main theorem.

Proof (Theorem 10). Let π be the policy defined in Definition 9 and μ
be the true (unknown) environment. Recall that νt = μit with it =
min {i : μi consistent with history yxπ,μ

<t } is the first model consistent with the
history yxπ,μ

<t at time t and is used by π when not exploring. First we claim there
exists a T ∈ N and environment ν such that νt = ν for all t ≥ T . Two facts,

1. If μi is inconsistent with history yxπ,μ
<t then it is also inconsistent with yxπ,μ

<t+h

for all h ∈ N.
2. μ is consistent with yxπ,μ

<t for all π, t.

By 1) we have that the sequence i1, i2, i3, · · · is monotone increasing. By 2) we
have that the sequence is bounded by i with μi = μ. The claim follows since
any bounded monotone sequence of natural numbers converges in finite time.
Let ν := ν∞ be the environment to which ν1, ν2, ν3, · · · converges to. Note that
ν must be consistent with history yxμ,π

<t for all t. We now show by contradiction
that the optimal policy for ν is weakly asymptotically optimal in environment
μ. Suppose it were not, then

lim sup
n→∞

1
n

n∑
t=1

[
V ∗

μ (yxπ,μ
<t ) − V

π∗
ν

μ (yxπ,μ
<t )
]

= ε > 0. (11)

Let α ∈ B∞ be defined by αt := 1 if and only if,[
V ∗

μ (yxπ,μ
<t ) − V π

μ (yxπ,μ
<t )
]
≥ ε/4. (12)

By Lemma 13 there exists (with probability one) an infinite sequence t1, t2, t3, · · ·
for which χk = αk = 1. Intuitively we should view time-step tk as the start
of an “exploration” phase where the agent explores for log tk time-steps. Let
h := Htk

(1 − ε/4) = �log(ε/4)/ log γ�, which importantly is independent of tk
(for geometric discounting). Since log tk → ∞ we will assume that log tk ≥ h for
all tk. Therefore χ̄i = 1 for all i ∈

⋃∞
k=1[tk, tk + h]. Therefore by the definition

of π, π(yxπ,μ
<i ) = ψi for i ∈

⋃∞
k=1[tk, tk + h]. By Lemma 15 and Equation (12), μ

is h-different to ν on history yxπ,μ
<tk

. This means that if there exists a k such that
π plays according to the optimal policy for μ on all time-steps t ∈ [tk, tk + h]
then ν will be inconsistent with the history yxμ,π

1:tk+h, which is a contradiction.
We now show that π does indeed play according to the optimal policy for μ for
all time-steps t ∈ [tk, tk + h] for at least one k. Formally, we show the following
holds with probability 1 for some k.

ψi ≡ π(yxπ,μ
<i ) = π∗

μ(yxπ,μ
<i ), for all i ∈ [tk, tk + h]. (13)

Recall that ψ ∈ B∞ where ψi ∈ B is identically independently distributed accord-
ing to a Bernoulli(1

2 ) distribution. Therefore P (ψi = π∗
μ(yxπ,μ

<i )) = 1
2 . Therefore
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p := P (ψi = π∗
μ(yxπ,μ

<i )∀i ∈ [tk, tk + h]) =
∏tk+h

i=tk
P (ψi = π∗

μ(yxπ,μ
<i )) = 2−h−1 > 0

and P (∀k∃i ∈ [tk, tk + h] with ψi �= π∗
μ(yxπ,μ

<i )) =
∏∞

k=1(1 − p) = 0. Therefore
Equation (13) is satisfied for some k with probability 1 and so Equation (11)
leads to a contradiction. Therefore

lim
n→∞

1
n

n∑
t=1

[
V ∗

μ (yxπ,μ
<t ) − V

π∗
ν

μ (yxπ,μ
<t )
]

= 0. (14)

We have shown that the optimal policy for ν has similar μ-values to the optimal
policy for μ. We now show that π acts according to π∗

ν sufficiently often that it
too has values close to those of the optimum policy for the true environment, μ.
Let ε > 0, h := Ht(1 − ε) and t ≥ T . If χ̇h

t = 0 then by the definition of π and
the approximation lemma we obtain∣∣∣V π∗

ν
μ (yxπ,μ

<t ) − V π
μ (yxπ,μ

<t )
∣∣∣ < ε. (15)

Therefore

lim sup
n→∞

1
n

n∑
t=1

∣∣∣V π∗
ν

μ (yxπ,μ
<t ) − V π

μ (yxπ,μ
<t )
∣∣∣ ≤ lim sup

n→∞
1
n

∣∣∣∣∣
T−1∑
t=1

1 +
n∑

t=T

[
χ̇h

t (1 − ε) + ε
]∣∣∣∣∣

(16)

= ε+ (1 − ε) lim sup
n→∞

1
n

#1(χ̇h
T :n) (17)

= ε (18)

where (16) follows since values are bounded in [0, 1] and Equation (15). (17)
follows by algebra. (18) by part 1 of Lemma 13. By sending ε → 0,

lim
n→∞

1
n

n∑
t=1

[
V

π∗
ν

μ (yxπ,μ
<t ) − V π

μ (yxπ,μ
<t )
]

= 0. (19)

Finally, combining Equations (14) and (19) gives the result. 	


We expect this theorem to generalise without great difficulty to discount func-
tions satisfying Ht(p) < cp log(t) for all p. There will be two key changes. First,
extend the exploration time to some function E(t) with E(t) ∈ O(Hp(t)) for
all p. Second, modify the probability of exploration to ensure that Lemma 13
remains true.

5 Discussion

Summary. Part 1 of Theorem 7 shows that no policy can be strongly asymp-
totically optimal for any computable discount function. The key insight is that
strong asymptotic optimality essentially implies exploration must eventually
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cease. Once this occurs, the environment can change without the agent dis-
covering the difference and the policy will no longer be optimal.

A weaker notion of asymptotic optimality, that a policy be optimal on aver-
age in the limit, turns out to be more interesting. Part 2 of Theorem 7 shows
that no weak asymptotically optimal policy can be computable. We should not
be surprised by this result. Any computable policy can be used to construct
a computable environment in which that policy does very badly. Note that by
computable here we mean deterministic and computable. There may be com-
putable stochastic policies that are weakly asymptotically optimal, but we feel
this is unlikely.

Part 3 of Theorem 7, shows that even weak asymptotically optimal policies
need not exist if the discount function is sufficiently far-sighted. On the other
hand, Theorem 10 shows that weak asymptotically optimal policies do exist for
some discount rates, in particular, for the default geometric discounting. These
non-trivial and slightly surprising result shows that choice of discount function
is crucial to the existence of weak asymptotically optimal policies. Where weak
asymptotically optimal policies do exist, they must explore infinitely often and
in increasing contiguous bursts of exploration where the length of each burst is
dependent on the discount function.

Consequences. It would appear that Theorem 7 is problematic for artificial
general intelligence. We cannot construct incomputable policies, and so we can-
not construct weak asymptotically optimal policies. However, this is not as prob-
lematic as it may seem. There are a number of reasonable counter arguments:

1. We may be able to make stochastically computable policies that are asymp-
totically optimal. If the existence of true random noise is assumed then this
would be a good solution.

2. The counter-example environment constructed in part 2 of Theorem 7 is a
single environment roughly as complex as the policy itself. Certainly, if the
world were adversarial this would be a problem, but in general this appears
not to be the case. On the other hand, if the environment is a learning
agent itself, this could result in a complexity arms race without bound.
There may exist a computable weak asymptotically optimal policy in some
extremely large class of environments. For example, the algorithm of Section
4 is stochastically computable when the class of environments is recursively
enumerable and contains only computable environments. A natural (and
already quite large) class satisfying these properties is finite-state Markov
decision processes with {0, 1}-valued transition functions and rational-valued
rewards.

3. While it is mathematically pleasant to use asymptotic behaviour to char-
acterise optimal general intelligent behaviour, in practise we usually care
about more immediate behaviour. We expect that results, and even (pa-
rameter free) formal definitions of intelligence satisfying this need will be
challenging, but worthwhile.

4. Accept that even weak asymptotic optimality is too strong and find some-
thing weaker, but still useful.



Asymptotically Optimal Agents 381

Relation to AIXI. The policy defined in Section 4 is not equivalent to AIXI
[7], which is also incomputable. However, if the computable environments in M
are ordered by complexity then it is likely the two will be quite similar. The key
difference is the policy defined in this paper will continue to explore whereas it
was shown in [14] that AIXI eventually ceases exploration in some environments
and some histories. We believe, and a proof should not be too hard, that AIXI
will become weakly asymptotically optimal if an exploration component is added
similarly as in Section 4.

We now briefly compare the self-optimising property in [6] to strong
asymptotic optimality. A policy π is self-optimising in a class M if
limt→∞

[
V ∗

μ (yx<t) − V π
μ (yx<t)

]
= 0 for any infinite history yx1:∞ and for all

μ ∈ M. This is similar to strong asymptotic optimality, but convergence must be
on all histories, rather than the histories actually generated by π. This makes the
self-optimising property a substantially stronger form of optimality than strong
asymptotic optimality. It has been proven that if there exists self-optimising
policy for a particular class, then AIXI is also self-optimising in that class [6].

It is possible to define a weak version of the self-optimising property by in-
sisting that limn→∞ 1

n

∑n
t=1

[
V ∗

μ (yx<t) − V π
μ (yx<t)

]
= 0 for all yx1:∞ and all

μ ∈ M. It can then be proven that the existence of a weak self-optimising policy
would imply that AIXI were also weakly self-optimising. However, the policy de-
fined in Section 4 cannot be modified to have the weak self-optimising property.
It must be allowed to choose its actions itself. This is consistent with the work
in [14] which shows that AIXI cannot be weakly asymptotically optimal, and so
cannot be weak self-optimising either.

Discounting. Throughout this paper we have assumed rewards to be discounted
according to a summable discount function. A very natural alternative to dis-
counting, suggested in [11], is to restrict interest to environments satisfying∑∞

k=1 r
μ,π
k ≤ 1. Now the goal of the agent is simply to maximise summed re-

wards. In this setting it is easy to see that the positive theorem is lost while
all negative ones still hold! This is unfortunate, as discounting presents a major
philosophical challenge. How to choose a discount function?

Assumptions/Limitations. Assumption 1 ensures that Y and O are finite.
All negative results go through for countable Y and O. The optimal policy of
Section 4 may not generalise to countable Y. We have also assumed bounded
reward and discrete time. The first seems reasonable while the second allows for
substantially easier analysis. Additionally we have only considered deterministic
computable environments. The stochastic case is unquestionably interesting. We
invoked Church thesis to assert that computable stochastic environments are
essentially the largest class of interesting environments.

Many of our Theorems are only applicable to computable discount functions.
All well-known discount function in use today are computable. However [7] has
suggested γt = 2−K(t), where K(t) is the (incomputable) prefix Kolmogorov
complexity of t, may have nice theoretical properties.
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Abstract. A possibly immortal agent tries to maximise its summed
discounted rewards over time, where discounting is used to avoid in-
finite utilities and encourage the agent to value current rewards more
than future ones. Some commonly used discount functions lead to time-
inconsistent behavior where the agent changes its plan over time. These
inconsistencies can lead to very poor behavior. We generalise the usual
discounted utility model to one where the discount function changes with
the age of the agent. We then give a simple characterisation of time-
(in)consistent discount functions and show the existence of a rational
policy for an agent that knows its discount function is time-inconsistent.

Keywords: Rational agents, sequential decision theory, general dis-
counting, time-consistency, game theory.

1 Introduction

The goal of an agent is to maximise its expected utility; but how do we measure
utility? One method is to assign an instantaneous reward to particular events,
such as having a good meal, or a pleasant walk. It would be natural to measure
the utility of a plan (policy) by simply summing the expected instantaneous
rewards, but for immortal agents this may lead to infinite utility and also assumes
rewards are equally valuable irrespective of the time at which they are received.

One solution, the discounted utility (DU) model introduced by Samuelson in
[12], is to take a weighted sum of the rewards with earlier rewards usually valued
more than later ones.

There have been a number of criticisms of the DU model, which we will not
discuss. For an excellent summary, see [1]. Despite the criticisms, the DU model
is widely used in both economics and computer science.

A discount function is time-inconsistent if plans chosen to maximise expected
discounted utility change over time. For example, many people express a prefer-
ence for $110 in 31 days over $100 in 30 days, but reverse that preference 30 days
later when given a choice between $110 tomorrow or $100 today [4]. This behavior
can be caused by a rational agent with a time-inconsistent discount function.

Unfortunately, time-inconsistent discount functions can lead to extremely bad
behavior and so it becomes important to ask what discount functions are time-
inconsistent.

J. Kivinen et al. (Eds.): ALT 2011, LNAI 6925, pp. 383–397, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Previous work has focussed on a continuous model where agents can take
actions at any time in a continuous time-space. We consider a discrete model
where agents act in finite time-steps. In general this is not a limitation since
any continuous environment can be approximated arbitrarily well by a discrete
one. The discrete setting has the advantage of easier analysis, which allows us to
consider a very general setup where environments are arbitrary finite or infinite
Markov decision processes.

Traditionally, the DU model has assumed a sliding discount function. For-
mally, a sequence of instantaneous utilities (rewards) R = (rk, rk+1, rk+2, · · · )
starting at time k, is given utility equal to

∑∞
t=k dt−krt where d ∈ [0, 1]∞. We

generalise this model as in [6] by allowing the discount function to depend on the
age of the agent. The new utility is given by

∑∞
t=k d

k
t rt. This generalisation is

consistent with how some agents tend to behave; for example, humans becoming
temporally less myopic as they grow older.

Strotz [13] showed that the only time-consistent sliding discount function is
geometric discounting. We extend this result to a full characterisation of time-
consistent discount functions where the discount function is permitted to change
over time. We also show that discounting functions that are “nearly” time-
consistent give rise to low regret in the anticipated future changes of the policy
over time.

Another important question is what policy should be adopted by an agent that
knows it is time-inconsistent. For example, if it knows it will become temporarily
myopic in the near future then it may benefit from paying a price to pre-commit
to following a particular policy. A number of authors have examined this question
in special continuous cases, including [3, 10, 11, 13]. We modify their results to
our general, but discrete, setting using game theory.

The paper is structured as follows. First the required notation is intro-
duced (Section 2). Example discount functions and the consequences of time-
inconsistent discount functions are then presented (Section 3). We next state
and prove the main theorems, the complete classification of discount functions
and the continuity result (Section 4). The game theoretic view of what an agent
should do if it knows its discount function is changing is analyzed (Section 5).
Finally we offer some discussion and concluding remarks (Section 6).

2 Notation and Problem Setup

The general reinforcement learning (RL) setup involves an agent interacting se-
quentially with an environment where in each time-step t the agent chooses
some action at ∈ A, whereupon it receives a reward rt ∈ R ⊆ R and ob-
servation ot ∈ O. The environment can be formally defined as a probability
distribution μ where μ(rtot|a1r1o1a2r2o2 · · · at−1rt−1ot−1at) is the probability
of receiving reward rt and observation ot having taken action at after history
h<t := a1r1o1 · · ·at−1rt−1ot−1. For convenience, we assume that for a given his-
tory h<t and action at, that rt is fixed (not stochastic). We denote the set of all
finite histories H := (A×R×O)∗ and write h1:t to be a history of length t, h<t to
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be a history of length t−1. ak, rk, and ok are the kth action/reward/observation
tuple of history h and will be used without explicitly redefining them (there will
always be only one history “in context”).

S

1.0

0.8

0.7

0.81.0

0.5

0.7

0.81.0

0.5

A deterministic environment (where every
value of μ(·) is either 1 or 0) can be represented
as a graph with edges for actions, rewards of each
action attached to the corresponding edge, and
observations in the nodes. For example, the de-
terministic environment on the right represents
an environment where either pizza or pasta must be chosen at each time-step
(evening). An action leading to an upper node is eat pizza while the ones lead-
ing to a lower node are eat pasta. The rewards are for a consumer who prefers
pizza to pasta, but dislikes having the same food twice in a row. The starting
node is marked as S. This example, along with all those for the remainder of
this paper, does not require observations.

The following assumption is required for clean results, but may be relaxed if
an ε of slop is permitted in some results.

Assumption 1. We assume that A and O are finite and that R = [0, 1].

Definition 1 (Policy). A policy is a mapping π : H → A giving an action for
each history.

Given policy π and history h1:t and s ≤ t then the probability of reaching history
h1:t when starting from history h<s is P (hs:t|h<s, π) which is defined by,

P (hs:t|h<s, π) :=
t∏

k=s

μ(rkok|h<kπ(h<k)). (1)

If s = 1 then we abbreviate and write P (h1:t|π) := P (h1:t|h<1, π).

Definition 2 (Expected Rewards). When applying policy π starting from
history h<t, the expected sequence of rewards Rπ(h<t) ∈ [0, 1]∞, is defined by

Rπ(h<t)k :=
∑
ht:k

P (ht:k|h<t, π)rk.

If k < t then Rπ(h<t)k := 0.

Note while the set of all possible ht:k ∈ (A×R×O)k−t+1 is uncountable due to
the reward term, we sum only over the possible rewards which are determined
by the action and previous history, and so this is actually a finite sum.

Definition 3 (Discount Vector). A discount vector dk ∈ [0, 1]∞ is a vector[
dk
1 , d

k
2 , d

k
3 , · · ·

]
satisfying dk

t > 0 for at least one t ≥ k.

The apparently superfluous superscript k will be useful later when we allow the
discount vector to change with time. We do not insist that the discount vector
be summable,

∑∞
t=k d

k
t < ∞.
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Definition 4 (Expected Values). The expected discounted reward (or utility
or value) when using policy π starting in history h<t and discount vector dk is

V π
dk(h<t) := Rπ(h<t) · dk :=

∞∑
i=1

Rπ(h<t)id
k
i =

∞∑
i=t

Rπ(h<t)id
k
i .

The sum can be taken to start from t since Rπ(h<t)i = 0 for i < t. This means
that the value of dk

t for t < k is unimportant, and never will be for any result
in this paper. As the scalar product is linear, a scaling of a discount vector has
no affect on the ordering of the policies. Formally, if V π1

dk (h<t) ≥ V π2
dk (h<t) then

V π1
αdk(h<t) ≥ V π2

αdk(h<t) for all α > 0.

Definition 5 (Optimal Policy/Value). In general, our agent will try to
choose a policy π∗

dk to maximise V π
dk(h<t). This is defined as follows.

π∗
dk(h<t) := argmax

π
V π

dk(h<t), R∗
dk(h<t) := Rπ∗

dk (h<t),

V ∗
dk(h<t) := V

π∗
dk

dk (h<t).

If multiple policies are optimal then π∗
dk is chosen using some arbitrary rule.

Unfortunately, π∗
dk need not exist without one further assumption.

Assumption 2. For all π and k ≥ 1, limt→∞
∑

h<t
P (h<t|π)V π

dk(h<t) = 0.

Assumption 2 appears somewhat arbitrary. We consider:

1. For summable dk the assumption is true for all environments. With the
exception of hyperbolic discounting, all frequently used discount vectors are
summable.

2. For non-summable discount vectors dk the assumption implies a restriction
on the possible environments. In particular, they must return asymptotically
lower rewards in expectation. This restriction is necessary to guarantee the
existence of the value function.

From now on, including in theorem statements, we only consider environ-
ments/discount vectors satisfying Assumptions 1 and 2. The following theorem
then guarantees the existence of π∗

dk .

Theorem 6 (Existence of Optimal Policy). π∗
dk exists for any environment

and discount vector dk satisfying Assumptions 1 and 2.

The proof of the existence theorem is in the appendix.
An agent can use a different discount vector dk for each time k. This motivates

the following definition.

Definition 7 (Discount Matrix). A discount matrix d is a ∞ × ∞ matrix
with discount vector dk for the kth column.

It is important that we distinguish between a discount matrix d (written bold), a
discount vector dk (bold and italics), and a particular value in a discount vector
dk

t (just italics).



Time Consistent Discounting 387

Definition 8 (Sliding Discount Matrix). A discount matrix d is sliding if
dk

k+t = d1
t+1 for all k, t ≥ 1.

Definition 9 (Mixed Policy). The mixed policy is the policy where at each
time step t, the agent acts according to the possibly different policy π∗

dt .

πd(h<t) := π∗
dt(h<t) Rd(h<t) := Rπd(h<t).

We do not denote the mixed policy by π∗
d as it is arguably not optimal as

discussed in Section 5. While non-unique optimal policies π∗
dk at least result in

equal discounted utilities, this is not the case for πd. All theorems are proved
with respect to any choice πd.

Definition 10 (Time Consistency). A discount matrix d is time consistent if
and only if for all environments π∗

dk(h<t) = π∗
dj (h<t), for all h<t where t ≥ k, j.

This means that a time-consistent agent taking action π∗
dt(h<t) at each time

t will not change its plans. On the other hand, a time-inconsistent agent may
at time 1 intend to take action a should it reach history h<t (π∗

d0(h<t) = a).
However upon reaching h<t, it need not be true that π∗

dt(h<t) = a.

3 Examples

In this section we review a number of common discount matrices and give an
example where a time-inconsistent discount matrix causes very bad behavior.

Constant Horizon. Constant horizon discounting is where the agent only cares
about the future up to H time-steps away, defined by dk

t = [[t − k < H ]].1

Shortly we will see that the constant horizon discount matrix can lead to very
bad behavior in some environments.

Fixed Lifetime. Fixed lifetime discounting is where an agent knows it will not
care about any rewards past time-step m, defined by dk

t = [[t < m]]. Unlike
the constant horizon method, a fixed lifetime discount matrix is time-consistent.
Unfortunately it requires you to know the lifetime of the agent beforehand and
also makes asymptotic analysis impossible.

Hyperbolic. dk
t = 1/(1+κ(t−k)). The parameter κ determines how farsighted

the agent is with smaller values leading to more farsighted agents. Hyperbolic
discounting is often used in economics with some experimental studies explaining
human time-inconsistent behavior by suggesting that we discount hyperbolically
[14]. The hyperbolic discount matrix is not summable, so may be replaced by
the following (similar to [5]), which has similar properties for β close to 1.

dk
t = 1/(1 + κ(t− k))β with β > 1.

Geometric. dk
t = γt with γ ∈ (0, 1). Geometric discounting is the most com-

monly used discount matrix. Philosophically it can be justified by assuming an
1 [[expr]] = 1 if expr is true and 0 otherwise.
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agent will die (and not care about the future after death) with probability 1− γ
at each time-step. Another justification for geometric discount is its analytic
simplicity - it is summable and leads to time-consistent policies. It also models
fixed interest rates.

No Discounting. dk
t = 1, for all k, t. [8] and [7] point out that discounting

future rewards via an explicit discount matrix is unnecessary since the environ-
ment can capture both temporal preferences for early (or late) consumption, as
well as the risk associated with delaying consumption. Of course, this “discount
matrix” is not summable, but can be made to work by insisting that all envi-
ronments satisfy Assumption 2. This approach is elegant in the sense that it
eliminates the need for a discount matrix, essentially admitting far more com-
plex preferences regarding inter-temporal rewards than a discount matrix allows.
On the other hand, a discount matrix gives the “controller” an explicit way to
adjust the myopia of the agent.

S

1/2

0

2/3

0

3/4

0

4/5

0 0 0To illustrate the potential consequences
of time-inconsistent discount matrices we
consider the policies of several agents act-
ing in the following environment. Let agent
A use a constant horizon discount matrix
with H = 2 and agent B a geometric discount matrix with some discount rate
γ.

In the first time-step agent A prefers to move right with the intention of mov-
ing up in the second time-step for a reward of 2/3. However, once in second
time-step, it will change its plan by moving right again. This continues indefi-
nitely, so agent A will always delay moving up and receives zero reward forever.

Agent B acts very differently. Let πt be the policy in which the agent moves
right until time-step t, then up and right indefinitely. V πt

dk (h<1) = γt (t+1)
(t+2) .

This value does not depend on k and so the agent will move right until
t = argmax

{
γt (t+1)

t+2

}
< ∞ when it will move up and receive a reward.

The actions of agent A are an example of the worst possible behavior arising
from time-inconsistent discounting. Nevertheless, agents with a constant hori-
zon discount matrix are used in all kinds of problems. In particular, agents in
zero sum games where fixed depth mini-max searches are common. In practise,
serious time-inconsistent behavior for game-playing agents seems rare, presum-
ably because most strategic games don’t have a reward structure similar to the
example above.

4 Theorems

The main theorem of this paper is a complete characterisation of time consistent
discount matrices.

Theorem 11 (Characterisation). Let d be a discount matrix, then the fol-
lowing are equivalent.
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1. d is time-consistent (Definition 10)
2. For each k there exists an αk ∈ R such that dk

t = αkd
1
t for all t ≥ k ∈ N.

Recall that a discount matrix is sliding if dk
t = d1

t−k+1. Theorem 11 can be
used to show that if a sliding discount matrix is used as in [13] then the only
time-consistent discount matrix is geometric. Let d be a time-consistent slid-
ing discount matrix. By Theorem 11 and the definition of sliding, α1d

1
t+1 =

d2
t+1 = d1

t . Therefore 1
α1
d1
2 = d1

1 and d1
3 = 1

α1
d1
2 =

(
1

α1

)2

d1
1 and similarly,

d1
t =
(

1
α1

)t−1

d1
1 ∝ γt with γ = 1/α1, which is geometric discounting. This is

the analogue to the results of [13] converted to our setting.
The theorem can also be used to construct time-consistent discount rates. Let

d1 be a discount vector, then the discount matrix defined by dk
t := d1

t for all
t ≥ k will always be time-consistent, for example, the fixed lifetime discount
matrix with dk

t = 1 if t ≤ H for some horizon H . Indeed, all time-consistent
discount rates can be constructed in this way (up to scaling).

Proof (Theorem 11). 2 =⇒ 1: This direction follows easily from linearity of the
scalar product.

π∗
dk(h<t) ≡ argmax

π
V π

dk(h<t) ≡ argmax
π

Rπ(h<t) · dk = arg max
π

Rπ(h<t) · αkd1

(2)

= argmax
π

αkRπ(h<t) · d1 = arg max
π

Rπ(h<t) · d1 ≡ π∗
d1(h<t)

as required. The last equality of (2) follows from the assumption that dk
t = αkd

1
t

for all t ≥ k and because Rπ(h<t)i = 0 for all i < t.
1 =⇒ 2: Let d0 and dk be the discount vectors used at times 0 and k respec-

tively. Now let k ≤ t1 < t2 < · · · and consider the deterministic environment
below where the agent has a choice between earning reward r1 at time t1 or r2
at time t2. In this environment there are only two policies, π1 and π2, where
Rπ1(h<k) = r1et1 and Rπ2(h<k) = r2et2 with ei the infinite vector with all
components zero except the ith, which is 1.

S · · ·

· · ·

· · ·

r1

0

0

0

0 r20

0

Since d is time-consistent, for all r1, r2 ∈ R and k ∈ N we have:

arg max
π

V π
d1(h<k) ≡ argmax

π
Rπ(h<k) · d1 (3)

= argmax
π

Rπ(h<k) · dk ≡ argmax
π

V π
dk(h<k). (4)

Now V π1
dk ≥ V π2

dk if and only if dk ·[Rπ1(h<k) − Rπ2(h<k)] = [dk
t1 , d

k
t2 ] · [r1,−r2] ≥

0. Therefore we have that,

[d1
t1 , d

1
t2 ] · [r1,−r2] ≥ 0 ⇔ [dk

t1 , d
k
t2 ] · [r1,−r2] ≥ 0. (5)
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Letting cos θk be the cosine of the angle between [dk
t1 , d

k
t2 ] and [r1,−r2] then

Equation (5) becomes cos θ0 ≥ 0 ⇔ cos θk ≥ 0. Choosing [r1,−r2] ∝ [d1
t2 ,−d1

t1 ]
implies that cos θ0 = 0 and so cos θk = 0. Therefore there exists αk ∈ R such
that

[dk
t1 , d

k
t2 ] = αk[d1

t1 , d
1
t2 ]. (6)

Let k ≤ t1 < t2 < t3 < · · · be a sequence for which d1
ti
> 0. By the previous argu-

ment we have that, [dk
ti
, dk

ti+1
] = αk[d1

ti
, d1

ti+1
] and [dk

ti+1
, dk

ti+2
] = α̃k[d1

ti+1
, d1

ti+2
].

Therefore αk = α̃k, and by induction, dk
ti

= αkd
1
ti

for all i. Now if t ≥ k and
d1

t = 0 then dk
t = 0 by equation (6). By symmetry, dk

t = 0 =⇒ d1
t = 0. There-

fore dk
t = αkd

1
t for all t ≥ k as required. 	


In Section 3 we saw an example where time-inconsistency led to very bad behav-
ior. The discount matrix causing this was very time-inconsistent. Is it possible
that an agent using a “nearly” time-consistent discount matrix can exhibit sim-
ilar bad behavior? For example, could rounding errors when using a geometric
discount matrix seriously affect the agent’s behavior? The following Theorem
shows that this is not possible. First we require a measure of the cost of time-
inconsistent behavior. The regret experienced by the agent at time zero from
following policy πd rather than π∗

d1 is V ∗
d1(h<1) − V πd

d1 (h<1). We also need a
distance measure on the space of discount vectors.

Definition 12 (Distance Measure). Let dk,dj be discount vectors then define
a distance measure D by

D(dk,dj) :=
∞∑

i=max{k,j}
|dk

i − dj
i |.

Note that this is almost the taxicab metric, but the sum is restricted to i ≥
max {k, j}.
Theorem 13 (Continuity). Suppose ε ≥ 0 and Dk,j := D(dk,dj) then

V ∗
d1(h<1) − V πd

d1 (h<1) ≤ ε+D1,t +
t−1∑
k=1

Dk,k+1

with t = min
{
t :
∑

h<t
P (h<t|π∗

d1)V ∗
d1(h<t) ≤ ε

}
, which for ε > 0 is guaranteed

to exist by Assumption 2.

Theorem 13 implies that the regret of the agent at time zero in its future time-
inconsistent actions is bounded by the sum of the differences between the dis-
count vectors used at different times. If these differences are small then the regret
is also small. For example, it implies that small perturbations (such as rounding
errors) in a time-consistent discount matrix lead to minimal bad behavior.

The proof is omitted due to limitations in space. It relies on proving the result
for finite horizon environments and showing that this extends to the infinite
case by using the horizon, t, after which the actions of the agent are no longer
important. The bound in Theorem 13 is tight in the following sense.



Time Consistent Discounting 391

Theorem 14. For δ > 0 and t ∈ N and any sufficiently small ε > 0 there exists
an environment and discount matrix such that

(t− 2)(1 − ε)δ < V ∗
d1(h<1) − V πd

d1 (h<1) < (t+ 1)δ

≡ D1,t +
t−1∑
i=1

Di,i+1

where t = min
{
t :
∑

h<t
P (h<t|π∗

d1)V ∗
d1(h<t) = 0

}
< ∞ and where D(dk,dj) ≡

Dk,j = δ for all k, j.

Note that t in the statement above is the same as that in the statement of
Theorem 13. Theorem 14 shows that there exists a discount matrix, environment
and ε > 0 where the regret due to time-inconsistency is nearly equal to the bound
given by Theorem 13.

Proof (Theorem 14). Define d by

dk
i =

{
δ if k < i < t

0 otherwise

Observe that D(dk,dj) = δ for all k < j < t since dj
i = dk

i for all i except i = j.
Now consider the environment below.

S · · ·0 0 0

1 − ε 1 − ε2 1 − εt−1

1 − ε

1 − ε2

0

For sufficiently small ε, the agent at time zero will plan to move right and then
down leading to R∗

d1(h<1) = [0, 1 − ε, 1 − ε, · · · ] and V ∗
d1(h<1) = (t− 1)δ(1 − ε).

To compute Rd note that dk
k = 0 for all k. Therefore the agent in time-step

k doesn’t care about the next instantaneous reward, so prefers to move right
with the intention of moving down in the next time-step when the rewards are
slightly better. This leads to Rd(h<1) = [0, 0, · · · , 1 − εt−1, 0, 0, · · · ]. Therefore,

V ∗
d1(h<1) − V πd

d1 (h<1) = (t− 1)δ(1 − ε) − (1 − εt−1)δ ≥ (t− 2)δ(1 − ε)

as required. 	


5 Game Theoretic Approach

What should an agent do if it knows it is time inconsistent? One option is to
treat its future selves as “opponents” in an extensive game. The game has one
player per time-step who chooses the action for that time-step only. At the end
of the game the agent will have received a reward sequence r ∈ R∞. The utility
given to the kth player is then r · dk. So each player in this game wishes to
maximise the discounted reward with respect to a different discounting vector.
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For example, let d1 = [2, 1, 2, 0, 0, · · · ] and d2 =
[∗, 3, 1, 0, 0, · · · ] and consider the environment on the
right. Initially, the agent has two choices. It can ei-
ther move down to guarantee a reward sequence of r =
[4, 0, 0, · · · ] which has utility of d1 · [4, 0, 0, · · · ] = 8 or
it can move right in which case it will receive a reward
sequence of either r′ = [1, 3, 0, 0, · · · ] with utility 5 or
r′′ = [1, 1, 3, 0, 0, · · · ] with utility 9. Which of these two reward sequences it re-
ceives is determined by the action taken in the second time-step. However this
action is chosen to maximise utility with respect to discount sequence d2 and
d2 · r′ > d1 · r′′. This means that if at time 1 the agent chooses to move right,
the final reward sequence will be [1, 3, 0, 0, · · · ] and the final utility with respect
to d1 will be 5. Therefore the rational thing to do in time-step 1 is to move down
immediately for a utility of 8.

The technique above is known as backwards induction which is used to find
sub-game perfect equilibria in finite extensive games. A variant of Kuhn’s theo-
rem proves that backwards induction can be used to find such equilibria in finite
extensive games [9]. For arbitrary extensive games (possibly infinite) a sub-game
perfect equilibrium need not exist, but we prove a theorem for our particular
class of infinite games.

A sub-game perfect equilibrium policy is one the players could agree to play,
and subsequently have no incentive to renege on their agreement during play.
It isn’t always philosophically clear that a sub-game perfect equilibrium policy
should be played. For a deeper discussion, including a number of good examples,
see [9].

Definition 15 (Sub-game Perfect Equilibria). A policy π∗
d is a sub-

game perfect equilibrium policy if and only if for each t V
π∗
d

dt (h<t) ≥
V π̃

dt(h<t), for all h<t, where π̃ is any policy satisfying π̃(h<i) = π∗
d(h<i)∀h<i

where i �= t.

Theorem 16 (Existence of Sub-game Perfect Equilibrium Policy). For
all environments and discount matrices d satisfying Assumptions 1 and 2 there
exists at least one sub-game perfect equilibrium policy π∗

d.

Many results in the literature of game theory almost prove this theorem. Our
setting is more difficult than most because we have countably many players (one
for each time-step) and exogenous uncertainty. Fortunately, it is made easier
by the very particular conditions on the preferences of players for rewards that
occur late in the game (Assumption 2). The closest related work appears to be
that of Drew Fudenberg in [2], but our proof (see appendix) is very different.
The proof idea is to consider a sequence of environments identical to the original
environment but with an increasing bounded horizon after which reward is zero.
By Kuhn’s Theorem [9] a sub-game perfect equilibrium policy must exist in each
of these finite games. However the space of policies is compact (Lemma 21) and
so this sequence of sub-game perfect equilibrium policies contains a convergent
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sub-sequence converging to policy π. It is not then hard to show that π is a
sub-game prefect equilibrium policy in the original environment.

Proof (Theorem 16). Add an action adeath to A and μ such that if adeath is
taken at any time in h<t then μ returns zero reward. Essentially, once in the
agent takes action adeath, the agent receives zero reward forever. Now if π∗

d is
a sub-game perfect equilibrium policy in this modified environment then it is a
sub-game perfect equilibrium policy in the original one.

For each t ∈ N choose πt to be a sub-game perfect equilibrium policy in the
further modified environment obtained by setting ri = 0 if i > t. That is, the
environment which gives zero reward always after time t. We can assume without
loss of generality that πt(h<k) = adeath for all k ≥ t. Since Π is compact, the
sequence π1, π2, · · · has a convergent subsequence πt1 , πt2 , · · · converging to π
and satisfying

1. πti(h<k) = π(h<k), for all h<k where k ≤ i.
2. πti is a sub-game perfect equilibrium policy in the modified environment

with reward rk = 0 if k > ti.
3. πti(h<ti) = adeath.

We write Ṽ πti for the value function in the modified environment. It is now shown
that π is a sub-game perfect equilibrium policy in the original environment. Fix
a t ∈ N and let π̃ be a policy with π̃(h<k) = π(h<k) for all h<k where k �= t.
Now define policies π̃ti by

π̃ti(h<k) =

{
π̃(h<k) if k ≤ i

πti(h<k) otherwise

By point 1 above, π̃ti(h<k) = πti(h<k) for all h<k where k �= t. Now for all i > t
we have

V π
dt(h<t) ≥ V

πti

dt (h<t) − |V π
dt(h<t) − V

πti

dt (h<t)| (7)

≥ Ṽ
πti

dt (h<t) − |V π
dt(h<t) − V

πti

dt (h<t)| (8)

≥ Ṽ
π̃ti

dt (h<t) − |V π
dt(h<t) − V

πti

dt (h<t)| (9)

≥ V π̃
dt(h<t) − |V π

dt(h<t) − V
πti

dt (h<t)|

− |V π̃ti

dt (h<t) − Ṽ
π̃ti

dt (h<t)| − |V π̃ti

dt (h<t) − V π̃
dt(h<t)| (10)

where (7) follows from arithmetic. (8) since V ≥ Ṽ . (9) since πti is
a sub-game perfect equilibrium policy. (10) by arithmetic. We now show
that the absolute value terms in (10) converge to zero. Since V π(·) is
continuous in π and limi→∞ πti = π and limi→∞ π̃ti = π̃, we obtain
limi→∞

[
|V π

dt(h<t) − V
πti

dt (h<t)| + |V π̃ti

dt (h<t) − V π̃
dt(h<t)|

]
= 0. Now π̃ti(h<k) =

adeath if k ≥ ti, so |V π̃ti (h<t) − Ṽ π̃ti (h<t)| = 0. Therefore taking the limit as i
goes to infinity in (10) shows that V π

dt(h<t) ≥ V π̃
dt(h<t) as required. 	
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In general, π∗
d need not be unique, and different sub-game equilibrium poli-

cies can lead to different utilities. This is a normal, but unfortunate, prob-
lem with the sub-game equilibrium solution concept. The policy is unique if
for all players the value of any two arbitrary policies is different. Also, if
∀k(V π1

dk = V π2
dk =⇒ ∀jV π1

dj = V π2
dj ) is true then the non-unique sub-game

equilibrium policies have the same values for all agents. Unfortunately, neither
of these conditions is necessarily satisfied in our setup. The problem of how
players might choose a sub-game perfect equilibrium policy appears surprisingly
understudied. We feel it provides another reason to avoid the situation altogether
by using time-consistent discount matrices. The following example illustrates the
problem of non-unique sub-game equilibrium policies.

Example 17. Consider the example in Section 3 with an agent using a constant
horizon discount matrix with H = 2. There are exactly two sub-game perfect
equilibrium policies, π1 and π2 defined by,

π1(h<t) =

{
up if t is odd
right otherwise

π2(h<t) =

{
up if t is even
right otherwise

Note that the reward sequences (and values) generated by π1 and π2 are different
with Rπ1(h<1) = [1/2, 0, 0, · · · ] and Rπ2(h<1) = [0, 2/3, 0, 0, · · · ]. If the players
choose to play a sub-game perfect equilibrium policy then the first player can
choose between π1 and π2 since they have the first move. In that case it would
be best to follow π2 by moving right as it has a greater return for the agent at
time 0 than π1.

For time-consistent discount matrices we have the following proposition.

Proposition 18. If d is time-consistent then V ∗
dk = V πd

dk = V
π∗
d

dk for all k and
choices of π∗

dk and πd and π∗
d.

Is it possible that backwards induction is simply expected discounted reward
maximisation in another form? The following theorem shows this is not the case
and that sub-game perfect equilibrium policies are a rich and interesting class
worthy of further study in this (and more general) settings.

Theorem 19. ∃d such that π∗
d �= π∗

d̃
0 , for all d̃

0
.

The result is proven using a simple counter-example. The idea is to construct
a stochastic environment where the first action leads the agent to one of two
sub-environments, each with probability half. These environments are identical
to the example at the start of this section, but one of them has the reward 1
(rather than 3) for the history right, down. It is then easily shown that π∗

d is
not the result of an expectimax expression because it behaves differently in each
sub-environment, while any expectimax search (irrespective of discounting) will
behave the same in each.
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6 Discussion

Summary. Theorem 11 gives a characterisation of time-(in)consistent discount
matrices and shows that all time-consistent discount matrices follow the sim-
ple form of dk

t = d1
t . Theorem 13 shows that using a discount matrix that is

nearly time-consistent produces mixed policies with low regret. This is useful
for a few reasons, including showing that small perturbations, such as rounding
errors, in a discount matrix cannot cause major time-inconsistency problems. It
also shows that “cutting off” time-consistent discount matrices after some fixed
depth - which makes the agent potentially time-inconsistent - doesn’t affect the
policies too much, provided the depth is large enough. When a discount matrix is
very time-inconsistent then taking a game theoretic approach may dramatically
decrease the regret in the change of policy over time.

Some comments on the policies π∗
dk (policy maximising expected dk-

discounted reward), πd (mixed policy using π∗
dk at each time-step t) and π∗

d

(sub-game perfect equilibrium policy).

1. A time-consistent agent should play policy π∗
dk = πd for any k. In this case,

every optimal policy π∗
dk is also a sub-game perfect equilibrium policy.

2. πd will be played by an agent that believes it is time-consistent, but may
not be. This can lead to very bad behavior as shown in Section 3.

3. An agent may play π∗
d if it knows it is time-inconsistent, and also knows

exactly how (I.e, it knows dk for all k at every time-step). This policy is ar-
guably rational, but comes with its own problems, especially non-uniqueness
as discussed.

Assumptions. We made a number of assumptions about which we make some
brief comments.

1. Assumption 1, which states that A and O are finite, guarantees the ex-
istence of an optimal policy. Removing the assumption would force us to
use ε-optimal policies, which shouldn’t be a problem for the theorems to go
through with an additive ε slop term in some cases.

2. Assumption 2 only affects non-summable discount vectors. Without it, even
ε-optimal policies need not exist and all the machinery will break down.

3. The use of discrete time greatly reduced the complexity of the analysis.
Given a sufficiently general model, the set of continuous environments should
contain all discrete environments. For this reason the proof of Theorem 11
should go through essentially unmodified. The same may not be true for
Theorems 13 and 16. The former may be fixable with substantial effort (and
perhaps should be true intuitively). The latter has been partially addressed,
with a positive result in [3, 10, 11, 13].

Acknowledgements. We thank reviewers for valuable feedback on earlier
drafts.
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A Technical Proofs

Before the proof of Theorem 6 we require a definition and two lemmas.

Definition 20. Let Π = AS be the set of all policies and define a metric D
on Π by T (π1, π2) := mint∈N {t : ∃h<t s.t π1(h<t) �= π2(h<t)} or ∞ if π1 = π2

and D(π1, π2) := exp(−T (π1, π2)).

T is the time-step at which π1 and π2 first differ. Now augment Π with the
topology induced by the metric d.

Lemma 21. Π is compact.

Proof. We proceed by showing Π is totally bounded and complete. Let ε =
exp(−t) and define an equivalence relation by π ∼ π′ if and only if T (π1, π2) ≥ t.
If π ∼ π′ then D(π, π′) ≤ ε. Note that Π/∼ is finite. Now choose a representative
from each class to create a finite set Π̄ . Now

⋃
π∈Π̄ Bε(π) = Π , where Bε(π) is

the ball of radius ε about π. Therefore Π is totally bounded.
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Next, to show Π is complete. Let π1, π2, · · · be a Cauchy sequence with
D(πi, πi+j) < exp(−i) for all j > 0. Therefore πi(h<k) = πi+j(h<k)∀h<k with
k ≤ i, by the definition of D. Now define π by π(h<t) := πt(h<t) and note that
πi(h<j) = π(h<j)∀j ≤ i since πi(h<k) = πk(h<k) ≡ π(h<k) for k ≤ i. Therefore
limi→∞ πi = π and so Π is complete. Finally, Π is compact by the Heine-Borel
theorem. 	


Lemma 22. When viewed as a function from Π to R, V π
dk(·) is continuous.

(given Assumption 2)

Proof. Suppose D(π1, π2) < exp(−t) then π1 and π2 are identical on all histories
up to length t. Therefore

|V π1
dk (h<k) − V π2

dk (h<k)| ≤ dk · [Rπ1(h<k) + Rπ2(h<k)]

=
∞∑

i=k

dk
i (Rπ1(h<k)i +Rπ2

i (h<k)i) . (11)

Since π1 and π2 are identical up to time t, (11) becomes

∞∑
i=t

dk
i (Rπ1(h<k)i +Rπ2

i (h<k)i) =∑
h<t

[
P (h<t|h<k, π1)V π1

dk (h<t) + P (h<t|h<k, π2)V π2
dk (h<t)|

]
(12)

where (12) follows from the definition of the reward and value functions. By
Assumption 2, limt→∞

∑
h<t

P (h<t|h<k, πi)V πi

dk (h<t) = 0 for i ∈ {1, 2} and so,
V is continuous. 	


Proof (Theorem 6). Let Π be the space of all policies with the metric of Def-
inition 20. By Lemmas 21/22 Π is compact and V is continuous. Therefore
argmaxπ V

π
dk(h<1) exists by the extreme value theorem. 	
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Abstract. This paper demonstrates how existing distributional learning
techniques for context-free grammars can be adapted to simple context-
free tree grammars in a straightforward manner once the necessary no-
tions and properties for string languages have been redefined for trees.
Distributional learning is based on the decomposition of an object into
a substructure and the remaining structure, and on their interrelations.
A corresponding learning algorithm can emulate those relations in order
to determine a correct grammar for the target language.

1 Introduction

This paper is settled in the area of Grammatical Inference, i.e., the study of
algorithms that “learn” formal languages from only partial information. The
class that has been studied most extensively with respect to its algorithmical
learnability is that of regular string languages. The established learning algo-
rithms for regular string languages have soon been extended to more complex
structures, most notably to trees (see for example [1] for learning a subset of
regular tree languages from finite positive data, and [2, 3, 4] for learning regular
tree languages from queries and/or finite data).

However, recently a range of efforts have been made to explore other classes
beyond the regular one. While the class of context-free languages as a whole does
not seem to be learnable in any non-trivial setting considered so far, there exist
several context-free subclasses with certain properties that make them learnable
by accordingly adapted strategies which can be subsumed under the term of
distributional learning (see for example [5, 6, 7, 8, 9, 10], and references therein).

Every member w of a context-free string language L∗ ⊆ Σ∗ can be decom-
posed into a substring y and a context 〈x, z〉 ∈ Σ∗ ×Σ∗ such that w = xyz. The
theory of distributional learning is concerned with the question which of those
substrings and which of those contexts can be put back together to form an-
other grammatical member of L∗. If L∗ fulfils certain distributional properties,
a corresponding learning algorithm can exploit information on these particular
� The author is concurrently working in Hokkaido University. This work was supported
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simple context-free tree grammars

context-free string grammars
regular tree grammars

regular string grammars

Fig. 1.

distributions for example in order to determine nonterminals and production
rules of a grammar reflecting those interrelations, with the consequence that the
resulting grammar correctly generates L∗.

The technique of distributional learning can be extended to languages based
on more complex structures than the basic string once we have redefined such
notions as a substructure and its counterpart, the context or environment of a cer-
tain substructure, along with an unambiguous concatenation operation for those
two kinds of objects. Yoshinaka [10], for example, generalizes the learning algo-
rithm given in [6] for context-free grammars (cfgs) to multiple cfgs. Moreover,
Yoshinaka and Kanazawa [12] demonstrate that the techniques of distributional
learning developed so far can be likewise adapted to other kinds of objects and
formalisms in a rather abstract way via Abstract Categorial Grammars.

The contribution of our paper should be located in this line of research. We
concentrate on the case of trees and consider simple (i.e., non-duplicating and
non-deleting) context-free tree grammars (scftgs) as descriptions.1 Scftgs join
two directions of generalization: They can be seen as a natural context-free coun-
terpart of regular tree grammars and as a natural extension of cfgs to trees
(Fig. 1). Moreover, the class of string languages that can be associated with
scftgs is located in the so-called “mildly context-sensitive” family proposed by
Joshi [11] which is of particular importance in computational linguistics. In this
paper we demonstrate that distributional learning techniques for cfgs can be
translated in a straightforward way to techniques for scftgs and thereby estab-
lish a parallel to the fact that learning techniques for regular string languages can
be transferred directly to regular tree languages. We remark that although the
distributional learning of scftgs can be seen as a special case covered by [12],
in contrast to the generality of their discussion we obtain a much clearer and
detailed view on the close correspondence between the distributional learning
of cfgs and their immediate tree counterpart by basing our results directly on
notions and results from formal (tree) language theory.

Organization of the paper: In Section 2 we define the necessary notational
tools and we give the definition of scftgs. In Section 3 we establish the basic
principles for the distributional learning of scftgs and then present and dis-
cuss two different distributional learning algorithms for them, in two different
learning settings. We conclude and sketch some suggestions for future work in
Section 4.

1 scftgs have also been called linear context-free tree grammars in the literature.
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2 Preliminaries

2.1 Trees and Substitutions

We presume a basic knowledge of standard tree terminology. For a more com-
prehensive introduction to trees and associated concepts and theorems, see [13]
for example.

A ranked alphabet is a set of symbols Σ paired with a (total) function ρ : Σ →
N. For k ≥ 0, we write Σk = {a ∈ Σ | ρ(a) = k} to denote the set of all symbols
with rank k.

The set TΣ of all trees over a ranked alphabet Σ is defined as the smallest
set of expressions such that t = f(t1, . . . , tk) ∈ TΣ for every k ≥ 0, f ∈ Σk, and
t1, . . . , tk ∈ TΣ . The tree f() for f ∈ Σ0 is often abbreviated to f . The size of a
tree t, which is denoted by |t|, means the number of occurrences of symbols in
t, i.e., |f(t1, . . . , tk)| = 1 + |t1| + · · · + |tk|.

A subset of TΣ is called a tree language. For a finite tree language L ⊆ TΣ ,
we define the size of L by ‖L‖ =

∑
t∈L |t|.

Throughout this paper we assume a countably infinite set X of ordered vari-
ables x1, x2, . . . which have rank 0.

A tree t ∈ TΣ∪X is called an m-stub if only and all the variables x1, . . . , xm

occur exactly once in t for some m ∈ N.2 The set of all m-stubs is denoted by
Sm

Σ and we let SΣ =
⋃

m∈N
Sm

Σ . We note that S0
Σ = TΣ .

A leaf substitution η is a finite partial mapping from X to TΣ , which is
extended to a function η̂ : TΣ∪X → TΣ∪X as follows:

– for x ∈ X , let η̂(x) = η(x) if η(x) is defined and η̂(x) = x otherwise, and
– for f ∈ Σk, let η̂(f(t1, . . . , tk)) = f(η̂(t1), . . . , η̂(tk)).

We identify a leaf substitution η with its extension η̂. We often put η after
an argument as a postfix operator, i.e., tη instead of η(t). A leaf substitution
that maps xi1 , . . . , xim to t1, . . . , tm, respectively, is often denoted as [xi1 ←
t1, . . . , xim ← tm]. In cases where the domain is just {x1, . . . , xm}, we abbreviate
such an operator [x1 ← t1, . . . , xm ← tm] to [t1, . . . , tm].

Let Δ and Σ be ranked alphabets. An infix substitution σ is a mapping from
Δ to SΣ such that σ(f) ∈ Sk

Σ for all f ∈ Δk. σ is extended to a function
σ̂ : SΣ∪Δ → SΣ as follows:

– σ̂(f(s1, . . . , sk)) = σ(f)[σ̂(s1), . . . , σ̂(sk)] for f ∈ Δk,
– σ̂(f(s1, . . . , sk)) = f(σ̂(s1), . . . , σ̂(sk)) for f �∈ Δk.

We identify an infix substitution σ with its extension σ̂. The definition of an infix
substitution coincides with that of a leaf substitution when the domainΔ consists
only of symbols of rank 0. Hence we may denote an infix substitution that maps
Yi ∈ Δ to si ∈ SΣ for i = 1, . . . ,m as a postfix operator [Y1 ← s1, . . . , Ym ← sm]
without confusion.
2 What we call a stub is also called a ‘context’ in the literature on trees [13]. However,

we avoid this established terminology since in our framework a stub fulfills the role
of a substructure, and not of the remaining parts of a decomposition.
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Example 1. Let Σ = Σ0 ∪ Σ1 with Σ1 = {a, b, c, d}, Σ0 = {e} and Δ = Δ1 =
{Y1}. For s = b(c(x1)) ∈ S1

Σ , the result of the application of an infix substitution
[Y1 ← s] to a tree t = a(Y1(d(e))) ∈ TΣ∪{Y1} is t[Y1 ← s] = a(b(c(d(e)))).

Let Σ0 = {a, b, c}, Σ1 = {h}, Σ2 = {f, g} and Δ = Δ2 = {Y2}. For s =
f(x1, g(b, x2)) ∈ S2

Σ and t = h(Y2(a, c)) ∈ TΣ∪{Y2}, we have

t[Y2 ← s] = h(Y2(a, c))[Y2 ← f(x1, g(b, x2))] = h(f(a, g(b, c))).

Lemma 1. Let an infix substitution σ from Δ to SΣ and a symbol Y ∈ Σ be
such that Y �∈ Δ and σ(a) contains no occurrence of Y for any a ∈ Δ. Then
(s1[Y ← s2])σ = (s1σ)[Y ← (s2σ)].

2.2 Simple Context-Free Tree Grammars

We are now ready to specify the grammars that generate the kind of languages
we will consider as targets for our learning algorithms in Section 3.

Definition 1. Let r ∈ N be a natural number. We define an r-simple context-
free tree grammar (r-scftg) as a 4-tuple G = 〈Σ,N, I, P 〉 where

– Σ is a ranked alphabet of terminals with Σm = ∅ for all m > r,
– N is a ranked alphabet of nonterminals with Nm = ∅ for all m > r,
– I ⊆ N0 is a set of initial symbols,3 and
– P is a finite set of production rules of the form A → s with A ∈ Nm and
s ∈ Sm

Σ for some m ≥ 0.

We let Pm = {A → s ∈ P | A ∈ Nm and s ∈ Sm
Σ }.

For u, v ∈ Sn
Σ∪N , we write u ⇒G v if there is m ∈ N, A → s ∈ Pm and

t ∈ Sn
Σ∪N∪{Y } such that Y has rank m and occurs just once in t and

– u = t[Y ← A(x1, . . . , xm)] and
– v = t[Y ← s].

The relation ⇒∗
G on SΣ∪N is defined as the reflexive transitive closure of ⇒G.

The stub language L(G,A) generated by A ∈ Nm is the set

L(G,A) = { s ∈ Sm
Σ | A(x1, . . . , xm) ⇒∗

G s }.

We simply write LA for L(G,A) where G is understood. The tree language
generated by G is defined as L(G) =

⋃
A∈I LA.

Context-free (string) grammars (cfgs) can be interpreted as 1-scftgs and vice
versa.

Lemma 2. If A⇒∗
G u[Y ← B(x1, . . . , xm)] and B⇒∗

G v, then A⇒∗
G u[Y ← v]

for any A ∈ N , B ∈ Nm, u ∈ SΣ∪N∪{Y }, v ∈ Sm
Σ∪N and Y of rank m.

3 Contrary to the standard definition of cftgs, we allow multiple initial symbols.
Obviously this generalization does not affect the expressive power of the formalism,
yet our results will be conveniently presented in this non-standard form.
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Definition 2. We call an m-stub s non-permuting if the variables x1, . . . , xm

occur in this order from left to right in s.
An scftg is said to be normal if, for any rule A → s, the stub s ∈ SΣ∪N is

of one of the following two types:

I. f(x1, . . . , xk) for some f ∈ Σk or
II. B(x1, . . . , xi, C(xi+1, . . . , xj), xj+1, . . . , xk) for some B ∈ Nk−j+i+1 and C ∈

Nj−i with 0 ≤ i ≤ j ≤ k.

One can show that indeed every r-scftg admits an equivalent r-scftg in the
normal form by a technique similar to the proofs for corresponding theorems in
related formalisms (e.g., [14], [15]). For the rest of this paper we will assume all
stubs of Sm

Σ∪N to be non-permuting and all scftgs to be normal.

Proposition 1. Fix a positive integer r. The uniform membership problem for
r-scftgs, which asks whether t ∈ L(G), is decidable in polynomial time in the
size of an r-scftg G and a tree t.

Proof. The case of r-scftgs can be seen as a special case of a richer formalism
that has a polynomial-time parsing algorithm if instances are restricted to r-
scftgs (e.g., [16]). To make this paper self-contained, yet we outline a parsing
algorithm for r-scftgs based on the standard CKY algorithm for cfgs. We have
an (m + 1)-dimensional table Tm where each dimension corresponds to a node
position of the tree to be parsed for each m = 0, . . . , r. We keep and update the
tables so that each cell of Tm is occupied by nonterminals of rank m that can
generate the m-stub determined by the corresponding (m+1) positions. It is not
hard to see that if instances are normal, such an algorithm runs in polynomial
time, where the degree of the polynomial linearly depends on r.

3 Distributional Learning of Simple Context-Free Tree
Grammars

3.1 Decomposition of Trees

Consider a context-free string language L ⊆ Σ∗, and the decompositions of
members w of L into substrings w′ and contexts 〈u, v〉 ∈ Σ∗×Σ∗ with w = uw′v.
Distributional learning of cfgs is based on the analysis and emulation of the
specific relations between those particular strings and contexts that when put
together form a grammatical string of the language in question.

We (re)define suitable concepts corresponding to ‘substrings’ and ‘contexts’
for the tree case, with the goal of making distributional learning algorithms for
strings directly translatable into distributional learning algorithms for trees. In
our framework, the tree counterpart of a substring is a stub, which is the kind of
object that a nonterminal of an scftg derives. We specify our tree counterpart
of a context as follows.
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Definition 3. An m-environment is a tree over Σ ∪ {#m} in which #m occurs
exactly once, where #m �∈ Σ is a special symbol of rank m. The set of all m-
environments is denoted by Em

Σ . For an m-environment e ∈ Em
Σ and an m-stub

s ∈ Sm
Σ , we define a binary operation -m by

e-m s = e[#m ← s].

The domain and accordingly the range of the operation is naturally extended to
sets in the standard way.

The subscript m of -m is often suppressed. We note that the result of the
operation is always a tree in TΣ .

Definition 4 contains the essence of the substructure-environment relation for
a certain language in the tree case.

Definition 4. For a tree language L ⊆ TΣ and m, r ∈ N, we let

Subm(L) = { s ∈ Sm
Σ | e- s ∈ L for some e ∈ Em

Σ },

Sub≤r(L) =
⋃

m≤r

Subm(L),

Envm(L) = { e ∈ Em
Σ | e- s ∈ L for some s ∈ Sm

Σ },

Env≤r(L) =
⋃

m≤r

Envm(L).

We note that we always have #0 ∈ Env0(L) and x1 ∈ Sub1(L) unless L is
empty. Sub0(L) corresponds to the set of ‘subtrees’ in the usual sense.

Lemma 3. Fix a positive integer r. For any finite language L ⊆ TΣ, one can
compute the sets Sub≤r(L) and Env≤r(L) in polynomial time in ‖L‖.

We remark that the degree of the polynomial linearly depends on r.
Hereafter, we drop Σ to denote sets SΣ ,EΣ as S,E, when Σ is understood.

Example 2. Let Σ = Σ0 ∪ Σ2 where Σ0 = {a, b, c} and Σ2 = {f, g}. A tree
t = f(a, g(b, c)) ∈ T can be decomposed in many ways:

t = #0 - t (#0 ∈ Env0(t), t ∈ Sub0(t))
= f(a,#0) - g(b, c) (f(a,#0) ∈ Env0(t), g(b, c) ∈ Sub0(t))
= f(a,#1(b)) - g(x1, c) (f(a,#1(b)) ∈ Env1(t), g(x1, c) ∈ Sub1(t))
= f(a,#2(b, c)) - g(x1, x2) (f(a,#2(b, c)) ∈ Env1(t), g(x1, x2) ∈ Sub1(t))
= #2(a, c) - f(x1, g(b, x2)) (#2(a, c) ∈ Env2(t), f(x1, g(b, x2)) ∈ Sub2(t))

and so on.

In the following subsections, we illustrate how these adapted notions result in
distributional learning algorithms for trees by discussing some concrete examples
in detail.
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3.2 Substitutable Simple Context-Free Tree Languages

There are several properties that make context-free languages learnable using
distributional techniques. Among those properties, we will pick the strongest
one first: Substitutability. The class of substitutable cfgs and even the class
of substitutable multiple context-free grammars (mcfgs) have been shown to
be efficiently learnable from positive examples by Clark [6] and Yoshinaka [10],
respectively. Compared to other existing distributional learning algorithms those
learners are rather simple due to the great restriction of substitutability.

The learning setting we consider is the same as in the two references given
above: Identification in the limit from positive data [17]. Let G∗ be the tar-
get grammar. A learner A is given an infinite sequence of positive examples
t1, t2, · · · ∈ L(G∗) fulfilling the condition L(G∗) = { ti | i ≥ 1 }. For each n ≥ 1,
A constructs a conjecture grammar Gn based on the data t1, . . . , tn received so
far. We say that A identifies G∗ in the limit from positive data if for any sequence
of positive examples from L(G∗), there is a point n0 such that L(Gn0) = L(G∗)
and Gn = Gn0 for all n > n0.

This subsection presents an efficient algorithm that identifies every r-substi-
tutable scftg in the limit from positive data.

Definition 5. A tree language L ⊆ TΣ is said to be r-substitutable if the fol-
lowing holds:

– For any m ≤ r and s1, s2 ∈ Sm, if there is e0 ∈ Em with e0 - s1, e0 - s2 ∈ L
then we have e- s1 ∈ L iff e- s2 ∈ L for all e ∈ Em.

In such a case we say that s1 and s2 are substitutable for each other. An r-
substitutable scftg is an r-scftg G such that L(G) is r-substitutable.

Fix an r-substitutable scftg G∗ as our learning target. For a finite set D ⊆
L(G∗) of positive examples, our learner constructs an scftg GD = 〈Σ,N, I, P 〉
as follows. First, we take the substubs in Sub≤r(D) as nonterminal symbols:

Nm = { [[s]] | s ∈ Subm(D) } for m ≤ r,

I = { [[t]] ∈ N0 | t ∈ D }.

We want each nonterminal [[s]] to derive s′ ∈ S if and only if s and s′ are
substitutable for each other. Our grammar GD has rules of the following two
types.

I. [[s]] → a(x1, . . . , xm) for s ∈ Subm(D) and a ∈ Σm,
if there is e ∈ Envm(D) such that e- s ∈ D and e- a(x1, . . . , xm) ∈ D ;

II. [[s]] → [[s1]](x1, . . . , xi, [[s2]](xi+1, . . . , xj), xj+1, . . . , xm) for s ∈ Subm(D),
s1 ∈ Subm−j+i+1(D), s2 ∈ Subj−i(D), if there is e ∈ Envm(D) such that
e- s ∈ D and e- s1[x1, . . . , xi, s2[xi+1, . . . , xj ], xj+1, . . . , xm] ∈ D .

In other words, we obtain a rule of Type I if the learner finds a common en-
vironment for s and a(x1, . . . , xm) and can thus conclude that those two stubs
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are substitutable for each other, and accordingly a rule of Type II if the same
occurs for s and s1[x1, . . . , xi, s2[xi+1, . . . , xj ], xj+1, . . . , xm].

A trivial rule of Type I is [[a(x1, . . . , xm)]] → a(x1, . . . , xm) for a ∈ Σm. Once
the symbol a is observed in D, the learner constructs this trivial rule. Similarly,
if s ∈ Sub(D) is represented as s = s1[#x1, s2[#x2], #x3] for some s1, s2 ∈ Sub(D),
then we have the trivial rule of Type II

[[s1[#x1, s2[#x2], #x3]]] → [[s1]](#x1, [[s2]](#x2), #x3),

where #x1, #x2, #x3 = x1, . . . , xm. Successive applications of such trivial rules de-
compose a stub s into pieces in arbitrary ways and finally we obtain [[s]]⇒∗

GD
s

for all [[s]] ∈ N .
Algorithm 1 shows our learner for r-substitutable scftgs. It is clear by Propo-

sition 1 and Lemma 3 that the algorithm updates its conjecture Ĝ in polynomial
time in the size ‖D‖ of D.

Algorithm 1. Learning r-substitutable scftgs
Data: A sequence of positive examples t1, t2, . . .
Result: A sequence of scftgs G1, G2, . . .
let Ĝ be an scftg such that L(Ĝ) = ∅;
for n = 1, 2, . . . do

read the next example tn;
if tn ∈ L(Ĝ) then

let Ĝ = GD for D = {t1, . . . , tn};
end if
output Ĝ as Gn;

end for

Example 3. Let us sketch an example run for Algorithm 1.
Consider a target scftg G∗ = 〈Σ0 ∪ Σ3, N

∗
0 ∪ N∗

3 , I
∗, P ∗〉 where Σ0 =

{a, b, c, d, f}, Σ3 = {g, h}, N∗
0 = {A}, N∗

3 = {B}, I∗ = {A}, and P ∗ consists of
the following three rules

A → g(a,B(b, f, c), d), B → h(x1, x2, x3), B → g(a,B(b, g(x1, x2, x3), c), d) .

Figure 2 illustrates the rules of G∗ and example trees t1 = g(a, h(b, f, c), d) and
t2 = g(a, g(a, h(b, g(b, f, c), c), d), d) generated by G∗. Obviously G∗ is not in
normal form but since the learner only has to construct a grammar generating
the same language as G∗ we choose this representation for understandability.
Suppose the learner is given the tree t1 as its first datum. The learner will
react by constructing a grammar G{t1} = {Σ,N, I, P} as specified above. At
this first stage, I is the singleton of [[t1]] and all the constructed rules in P
are trivial ones. Thus this grammar does not generate any other tree but t1
itself. Suppose the next datum given to the learner is t2. This results in several
additional nonterminals and one more start symbol [[t2]]. The learner observes
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G  :*

t  :1

D :

t  :2

Fig. 2. Grammar G∗ and sample set D for the example run of Algorithm 1

that h(x1, x2, x3) and g(a, h(b, g(x1, x2, x3), c), d) are substitutable for each other
due to the environment g(a,#3(b, f, c), d):

t1 = g(a,#3(b, f, c), d) - h(x1, x2, x3) ∈ D,

t2 = g(a,#3(b, f, c), d) - g(a, h(b, g(x1, x2, x3), c), d) ∈ D.

The learner constructs a rule

[[h(x1, x2, x3)]] → [[g(a, x1, d)]]([[h(b, g(x1, x2, x3), c)]](x1, x2, x3))

by the fact g(a, h(b, g(x1, x2, x3), c), d) = g(a, x1, d)[x1 ← h(b, g(x1, x2, x3), c)].
Successive applications of trivial rules result in a derivation

[[h(x1, x2, x3)]] ⇒GD

[[g(a, x1, d)]]([[h(b, g(x1, x2, x3), c)]](x1, x2, x3))

∗⇒
GD

g(a, [[h(x1, x2, x3)]](b, g(x1, x2, x3), c), d),

which simulates the rule B → g(a,B(b, g(x1, x2, x3), c), d) of G∗. As a conse-
quence, GD generates every string in L(G∗).

Lemma 4. L(GD) ⊆ L(G∗) for any D ⊆ L(G∗).

Proof. Let GD = 〈Σ,N, I, P 〉 and σ an infix substitution from N to SΣ given
by σ([[s]]) = s for all [[s]] ∈ N . By induction on the length of derivation, we show
that if [[t]]⇒∗

GD
t′ for [[t]] ∈ I, then t′σ ∈ L(G∗). If [[t]] ∈ I, by definition it means

[[t]]σ = t ∈ L(G∗). Thus the claim holds for any zero-step derivation.
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Suppose that the last rule applied in the derivation process from [[t]] to t′ is

[[s]] → [[s1]](x1, . . . , xi, [[s2]](xi+1, . . . , xj), xj+1, . . . , xm).

That is, there is u ∈ Em such that

[[t]] ∗⇒
GD

u- [[s]](x1, . . . , xm)

⇒
GD

u- [[s1]](x1, . . . , xi, [[s2]](xi+1, . . . , xj), xj+1, . . . , xm) = t′.

For the sake of legibility, let us abbreviate x1, . . . , xi to #x1, xi+1, . . . , xj to #x2

and xj+1, . . . , xm to #x3. By the induction hypothesis, we have

(u - [[s]](#x1, #x2, #x3))σ = uσ - s[#x1, #x2, #x3] = uσ - s ∈ L(G∗)

by Lemma 1. By the presence of the rule, we know that s and s1[#x1, s2[#x2], #x3]
are substitutable for each other in L(G∗). The fact uσ - s ∈ L(G∗) implies
t′σ = uσ - s1[#x1, s2[#x2], #x3] ∈ L(G∗).

The case where the last applied rule is of Type I can be shown in the same
way. 	

Next we give a set of positive examples from which our learner constructs a right
conjecture. Let the target grammar G∗ = 〈Σ,N∗, I∗, P ∗〉. For each nonterminal
A ∈ N∗

m, arbitrarily fix an m-environment eA such that B⇒∗
G∗ eA - A(#x) for

some B ∈ I∗ and an m-stub sA such that A⇒∗
G∗ sA. We define

D∗ = { eA - a(x1, . . . , xm) | A → a(x1, . . . , xm) ∈ P ∗ with a ∈ Σ }
∪ { eA - sB[#x1, sC [#x2], #x3]] | A → B(#x1, C(#x2), #x3) ∈ P ∗ with B,C ∈ N∗ }.

Note that eA - sA ∈ D∗ for all A ∈ N∗ and eB = #0 for all B ∈ I∗.

Lemma 5. For any D ⊆ L(G∗), if D ⊇ D∗, we have L(GD) = L(G∗).

Proof. We show that every nonterminal A of G∗ is simulated by [[sA]] in GD. If
A ∈ I∗, then sA ∈ D and thus [[sA]] ∈ I.

For a rule A → a(x1, . . . , xm) ∈ P ∗, we have

eA - sA, eA - a(x1, . . . , xm) ∈ D∗.

By definition, GD has the corresponding rule of Type I:

[[sA]] → a(x1, . . . , xm).

Let us consider a rule

A → B(#x1, C(#x2), #x3) ∈ P ∗

of G∗. We have
eA - sA, eA - sB[#x1, sC [#x2], #x3]] ∈ D∗.

By definition, GD has the corresponding rule of Type II:

[[sA]] → [[sB]](#x1, [[sC ]](#x2), #x3)).

Consequently, every derivation of G∗ is simulated by a derivation of GD. 	
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Therefore, once the learner gets a superset of D∗, it always conjectures an scftg
that generates the target language. We also remark that the set D∗ is not too
big. D∗ consists of at most |P ∗| positive examples and if we choose eA and sA to
be minimal, each element in D∗ is a minimal tree that is obtained using a rule
of G∗.

Theorem 1. Algorithm 1 identifies every r-substitutable scftg in the limit
from positive data. It updates the conjecture in polynomial time and the number
of examples needed to converge is bounded by a polynomial in the number of rules
of the target grammar.

3.3 Finite Environment Property

In [18], Clark defines the notion of a Finite Context Property for cfgs and
proposes a corresponding learning algorithm. The learning setting he assumes
is identification in the limit from positive data and membership queries, which
is similar to the one from the previous subsection except that in addition the
learner has access to a membership oracle to ask if a certain object is in the
target language or not, and will receive an answer in constant time. This subsec-
tion defines an analogous property for scftgs and present a matching learning
algorithm. We base our algorithm on the one proposed for strings in [19], which
is a simpler version of Clark’s original.

Definition 6. We say that an r-scftg G has the p-Finite Environment Prop-
erty (p-fep) if for every A ∈ Nm, there is FA ⊆ Em such that |FA| ≤ p and

LA = { s ∈ Sm | FA - s ⊆ L(G∗) } .

We call such an environment set FA a characterizing environment set of A.

Before giving the overall view of our learning algorithm (Algorithm 2), we de-
scribe the construction and important properties of the scftg that the learner
maintains as its current conjecture.

Let G∗ be our learning target, an r-scftg with the p-fep, and L∗ = L(G∗).
Suppose we have two finite sets S ⊆ S and E ⊆ E such that a(x1, . . . , xm) ∈ S for
all a ∈ Σm and #0 ∈ E, which are computed from given positive data in a way
explained later. We define an scftg Gr,p(E,S) = 〈Σ,N, P, I〉 as follows. While
Algorithm 1 takes stubs as nonterminals, Algorithm 2 uses sets of environments
as nonterminals.

Nm = { [[F ]] | F ⊆ E ∩ Em and |F | ≤ p } for m ≤ r,

I = { [[{#0}]] }.

Note that |Nm| ≤ |E|p. We have rules of two types, which require the aid of the
oracle to be determined:

I. [[F ]] → a(x1, . . . , xm) with a ∈ Σm if F - a(x1, . . . , xm) ⊆ L∗;
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II. [[F ]] → [[F1]](#x1, [[F2]](#x2), #x3) if

for all s1, s2 ∈ S, F1 - s1, F2 - s2 ⊆ L∗ implies F - s1[#x1, s2[#x2], #x3] ⊆ L∗.

When learning an r-scftg with the p-fep, we want each nonterminal [[F ]] to
derive s if and only if F - s ⊆ L∗, that is, we want F to be a characterizing en-
vironment set of [[F ]]. Conversely, for each nonterminal A of the target grammar
G∗, we want our conjecture to simulate A by a nonterminal [[FA]] where FA is a
characterizing environment set for A extracted from the given data. From this
idea, rules of Type II of the form [[F ]] → [[F1]](#x1, [[F2]](#x2), #x3) are justified if for
all s1, s2 ∈ S,

F1 - s1, F2 - s2 ⊆ L∗ implies F - s1[#x1, s2[#x2], #x3] ⊆ L∗ (1)

since s1 ∈ L[[F1]], s2 ∈ L[[F2]] implies s1[#x1, s2[#x2], #x3] ∈ L[[F ]] under the presence of
the rule. However, since Sm is infinite for each m, one cannot check this property
(1). Instead, we use the finite set S. This is the idea behind the rule construction.

We say that a rule of Type II is correct if (1) holds.

Lemma 6. If E ⊆ F then L(Gr,p(E,S)) ⊆ L(Gr,p(F, S)).

Proof. Every rule of Gr,p(E,S) is also that of Gr,p(F, S). 	


Lemma 7. If S ⊆ T then L(Gr,p(E, T )) ⊆ L(Gr,p(E,S)).

Proof. Every rule of Gr,p(E, T ) is also that of Gr,p(E,S). 	


We want every rule of the conjectured grammar to be correct. The following
argument shows that for every finite set E ⊆ E, there is a finite set S ⊆ S such
that every rule of Gr,p(E,S) is correct.

For F ⊆ Em, F1 ⊆ Ek, F2 ⊆ Ej and i ≤ m− j such that m = k + j − 1, if a
rule of Type II

[[F ]] → [[F1]](x1, . . . , xi, [[F2]](xi+1, . . . , xi+j), xi+j+1, . . . , xm)

is not correct, there are s1, s2 ∈ S such that

F1 -s1, F2-s2 ⊆ L∗ and F -s1[x1, ..., xi, s2[xi+1, ..., xi+j ], xi+j+1, ..., xm] � L∗.

If s1, s2 ∈ S, the incorrect rule is suppressed. Hence, 2r|N |3 ≤ 2r|E|3p stubs
suffice to suppress all incorrect rules. We say that S is fiducial on E if every rule
of Gr,p(E,S) is correct.

Lemma 8. If every rule of Ĝ = Gr,p(E,S) is correct, we have L(Ĝ) ⊆ L∗.

Proof. One can prove by induction that for any [[F ]] ∈ N and s ∈ S, whenever
[[F ]]⇒∗

Ĝ
s, it holds that F - s ⊆ L∗. By definition of I, we have proven the

lemma. 	


Lemma 9. Let L∗ be generated by an r-scftg G∗ with the p-fep. Then L∗ ⊆
L(Gr,p(E,S)) if E includes a characterizing environment set FA of A for every
nonterminal A of G∗.
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Algorithm 2. Learning scftgs with the p-fep
Data: A sequence of trees t1, t2, · · · ∈ L(G∗); membership oracle O;
Result: A sequence of r-scftgs G1, G2, . . . ;
let D := ∅; E := ∅; S := ∅; Ĝ := Gr,p(E, S);
for n = 1, 2, . . . do

let D := D ∪ {tn}; S := Sub≤r(D);
if D � L(Ĝ) then

let E := Env≤r(D);
end if
output Ĝ = Gr,p(E, S) as Gn;

end for

Proof. Each nonterminal A of G∗ is simulated by [[FA]] in Gr,p(E,S) except the
very first step of a derivation from an initial symbol of G∗, where that initial
symbol of G∗ is simulated by [[{#0}]] in Gr,p(E,S). 	


Due to the nice properties presented in the lemmas above, our learning algorithm
is quite simple. Whenever we get a positive example that is not generated by our
current conjecture, we expand E (see Lemma 6). On the other hand, to suppress
incorrect rules, we keep expanding S (Lemma 7).

Theorem 2. Algorithm 2 identifies r-scftgs with the p-fep in the limit from
positive data and membership queries.

Proof. Let Dn = {t1, . . . , tn}. Lemma 9 ensures that Algorithm 2 does not up-
date E infinitely many times, because characterizing environment sets of non-
terminals in G∗ are finite subsets of Env(L∗) and at some point the learner will
have seen all of them. Let Em0 = Env(Dm0) be the limit and Sn0 = Sub(Dn0) be
fiducial on Em0 . Together with Lemma 8, we see that for any n ≥ max{m0, n0},
Algorithm 2 outputs Gn = Gr,p(Em0 , Sn0) such that L(Gn) = L(G∗). 	


Some remarks on the efficiency of our algorithm: It is easy to see that
‖E‖, ‖S‖ ∈ O(‖D‖r+1) and we have at most |E|p nonterminals. We need at
most a polynomial number of membership queries to determine rules among
those nonterminals. All in all, Algorithm 2 updates its conjecture in polyno-
mial time in the size ‖D‖ of the data D. Moreover, we do not need too much
data. To get characterizing environments of all nonterminals, p|N∗| examples
are enough, where N∗ is the set of nonterminals of the target scftg G∗. To
suppress incorrect rules, O(r|E|3p) stubs are enough by Lemma 8.

4 Conclusion

We have demonstrated how existing distributional learning techniques for cfgs
can be naturally extended to scftgs by giving the necessary theoretical foun-
dations and by discussing two concrete efficient algorithms for the distributional
learning of scftgs in detail. These are just two examples for the potential of our
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translation – in fact, any distributional algorithm for strings should be trans-
latable into an algorithm for trees by this method. This includes other learning
settings such as membership and equivalence queries – see [8,5] for distributional
algorithms based on this scenario.

We suggest Tree Adjoining Grammars (tags; [11]) as another prominent tree
generating formalism that becomes learnable via our distributional techniques by
modifying the definitions of substubs and environments accordingly. Moreover,
the shift from strings to trees executed in this paper can be easily continued to
context-free graph formalisms such as hyperedge replacement grammars [20] by
giving a similar translation and specifying in an analogous manner how a learner
would extract a sub-hypergraph from a given example of the target language to
construct his hypothesis. We have focused on simple cftgs as the most intuitive
extension of cfgs to trees – a further conceivable direction for future work is
the question of what happens if we allow subtrees to be duplicated.

Practical applications: As Clark [21] mentions in his conclusion, distributional
learning techniques are adaptable to a probabilistic paradigm by focussing on
the frequency with which the substrings and contexts of a language occur in
(large) sets of given data. Hence it seems a promising approach for example in
computational linguistics to consider applying probabilistically modified distri-
butional techniques to large corpora of linguistic data such as the Penn treebank,
from which a probabilistic cfg or also a tag can be extracted (see [22], [23]),
once we have specified distributional algorithms for tags as suggested above.

Acknowledgement. The authors are grateful to Alexander Clark and the
anonymous reviewers for valuable comments that have improved the quality
of this paper.
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[1] López, D., Sempere, J.M., Garćıa, P.: Inference of reversible tree languages. IEEE
Transactions on Systems, Man, and Cybernetics, Part B 34(4), 1658–1665 (2004)
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Abstract. We consider the problem of learning sparse parities in the
presence of noise. For learning parities on r out of n variables, we give

an algorithm that runs in time poly
(
log 1

δ
, 1

1−2η

)
n(1+(2η)2+o(1))r/2 and

uses only r log(n/δ)ω(1)

(1−2η)2
samples in the random noise setting under the

uniform distribution, where η is the noise rate and δ is the confidence
parameter. From previously known results this algorithm also works for
adversarial noise and generalizes to arbitrary distributions. Even though
efficient algorithms for learning sparse parities in the presence of noise
would have major implications to learning other hypothesis classes, our
work is the first to give a bound better than the brute-force O(nr). As
a consequence, we obtain the first nontrivial bound for learning r-juntas
in the presence of noise, and also a small improvement in the complexity
of learning DNF, under the uniform distribution.

1 Introduction

Designing efficient, noise-tolerant, learning algorithms is a fundamental and
important problem in part because real-world data is often corrupted, and algo-
rithms unable to handle errors in their training data are not practically deploy-
able. Angluin and Laird [3] formalize this notion in the “noisy PAC” setting,
where the learner is required to achieve an error of ε with probability 1 − δ,
where the labels of the training examples are flipped at random with probability
equal to the noise rate η. The statistical query (SQ) model [15] tries to capture
the properties of noise-tolerant algorithms; algorithms implementable in the SQ
model also work in the noisy PAC model of Angluin and Laird. Kearns’s charac-
terization has made it apparent that most algorithms that work in the noise-free
setting can be adapted to work in the presence of noise.
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The learning parity with noise (LPN) problem, however, is one notable
exception – techniques for learning parities in the noise-free setting cannot be
extended to the noisy PAC model. In the LPN problem, the target is a parity on
an unknown subset of variables, and the learning task is to discover this subset.
More formally, the algorithm receives random examples x ∈ {0, 1}n labeled by
� ∈ {0, 1} obtained as � = c∗ · x + e, where c∗ ∈ {0, 1}n is the hidden target
parity and e ∈ {0, 1} is a random bit set to 1 with probability η.

While the parity problem can be solved efficiently in the noise-free PAC setting
using Gaussian elimination, the search of an efficient noise-tolerant algorithm
has run into serious barriers. Most notably, the parity problem is uncondition-
ally known not to be learnable in the statistical query model [5, 15], where
a brute-force search is nearly optimal. The state-of-the-art algorithm, due to
Blum et al. [6], runs in time 2O(n/ log n), and it has not been improved since its
publication over a decade ago. Their approach, a clever adaptation of Gaussian
elimination, seems to reach its limits when trying to push these bounds further,
which implies that either fundamentally new algorithms or new hardness results
are needed for this problem.

The LPN problem is not only notoriously difficult, but also ubiquitous. It is
closely related to the famous problem of decoding random linear codes in coding
theory, and cryptosystems use the hardness of LPN and of the Learning With
Errors problem (its generalization over larger rings) as a security assumption [14,
22, 23]. A variant of LPN is a candidate problem for automated tests to tell
humans apart from computers [11], and as we discuss in the next section a
large class of function families reduce to the LPN problem, showing its central
importance to learning theory.

1.1 Sparse Parity

In this paper we focus on a variant of the LPN problem, where the target parity
c∗ has the additional property that it is sparse, namely only r of the n bits of
the target c∗ are set to 1. The sparse parity problem plays an important role
in learning, specially due to its connections to r-juntas (i.e. functions depending
on only r of the n variables), and DNF recently exhibited by Feldman et al. [9].
Namely, they show that an algorithm for learning noisy r-sparse parities running
in time polynomial in n implies a polynomial time algorithm for learning r-juntas
(Theorem 3). Similarly, learning s-term DNF can be reduced to learning noisy
(log s)-parities. Furthermore, they also show that learning r-parities corrupted
by an η fraction of random noise is at least as hard as the intuitively more
difficult task of learning an r-parity corrupted by adversarial noise of rate η.
Until this work, however, no algorithm better than the brute force O(nr) has
been exhibited for the sparse parity problem.

Our paper is the first to improve on this brute-force bound and gives a
poly

(
log 1

δ ,
1

1−2η

)
·n(1+(2η)2+o(1))r/2 algorithm for the uniform distribution (Cor-

ollary 1) and holds even for adversarial noise. This bound also generalizes to
learning r-parities with random classification noise for arbitrary distributions
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(Theorem 5). Moreover, our sample complexity of r log(n/δ)ω(1)
(1−2η)2 almost meets the

information theoretic lower bound. These bounds are comparable to the results
obtained by Klivans and Servedio [16] in the “attribute efficient” noiseless model,
which have been subsequently improved by Buhrman et al. [7]. Interestingly, the
same running time of Õ(nr/2) is obtained in [7] for learning parities in the related
“mistake-bound” model, but this is again in the noiseless case.

1.2 Implications to Related Problems

Given the state of the art for r-parities, clearly no algorithm better than O(nr)
has been found for r-juntas. However, due to connections between parities and
juntas discovered by Feldman et al. [9], our results have immediate implica-
tions for learning r-juntas. Namely, we obtain an algorithm for learning noisy r-
juntas that runs in time poly

(
log 1

δ ,
1

1−2η , 2
r
)
n(1−21−r(1−2η)+21−2r(1−2η)2+o(1))r

(Corollary 2). For the uniform distribution without noise, Mossel et al. [19] show
that juntas can be learned in time O(n

ωr
ω+1 ), where ω is the matrix multiplication

exponent. Our bound, however, is the first nontrivial result for noisy juntas.
Our sparse parity algorithm also has implications to learning DNF under

the uniform distribution, again using the reduction of Feldman et al. [9] from
DNF to noisy parities. While there has been significant recent progress on the
problem, including that random DNF are learnable under the uniform distri-
bution [12, 24, 25], virtually nothing is known about their learnability in the
worst case, even in the classical noiseless PAC model. In fact, there are seri-
ous impediments to learning DNF, including hardness results for their proper
learnability [1]. The previous best algorithm for learning s-term DNF from
random examples is due to Verbeurgt [27] and runs in quasipolynomial time
O(nlog s

ε ), where ε is the error rate. Our algorithm leads to an improved bound
of poly

(
log 1

δ ,
1
ε , s
)
n(1−Õ(ε/s)+o(1)) log s

ε for this problem in the uniform setting
(Corollary 4).

1.3 Our Approach

Our algorithm works roughly as follows. We consider all r
2 -parities and evaluate

them on m examples. For each parity we can view these evaluations as coor-
dinates for points on the m-dimensional Hamming cube, creating the set H1.
Similarly, we consider all these high dimensional points XOR-ed coordinate-wise
with the respective labels, creating the set H2. This gives us a set H of 2

(
n

r/2

)
points. Notice that in the noiseless case, two r

2 -parities comprising the target
c∗ have the property that the corresponding point in H1 of one of them is at
Hamming distance 0 from the corresponding point in H2 of the other. Moreover,
two points not comprising the target are far apart – this is a key point employed
in our exact learning algorithm for the uniform distribution. In the presence
of noise these distances are perturbed, and to actually find two nearby points
corresponding to the good parities we rely upon the recent approximate nearest
neighbor / closest pair algorithm of Andoni and Indyk [2]. A careful analysis of
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this approach when generalizing this observation to arbitrary distributions yields
a poly

(
log 1

δ ,
1
ε ,

1
1−2η

)
n(1+( η

ε+η−2εη )2+o(1))r/2 running time for proper learning
(Theorem 5). Furthermore, we can use the above approach to design a learner
that gives improved running time of poly

(
n, log 1

δ ,
1

ε−η ,
1

1−2η

)
n(1+(2η)2+o(1))r/2

(Theorem 6) for arbitrary distributions, but it only works for error rates up to
the noise rate.

Our approach is inspired by Hopper and Blum [11], who, in giving an overview
of candidate hard problems to use for secure human identification, informally
suggested a similar idea for an O(nr/2) algorithm for a closely related problem.
Their suggestion indeed works for the noiseless setting, but runs into unforeseen
difficulty when noise is introduced. We remark that Buhrman et al. [7] also invoke
the Hopper and Blum [11] approach for their results on learning sparse parities
in the mistake bound model, and they also note that the idea of using r

2 -parities
appears in results of Klivans and Servedio [16] (who in turn cite a personal
communication with Spielman). All these references, however, only treat the
noise-free model under the uniform distribution.

Following up on this idea, we are able to handle large noise rates and arbitrary
distributions.

1.4 Past Work

In their seminal work on the SQ model for noise-tolerant learning, Kearns [15]
and Blum et al. [5] prove unconditional lower bounds for both the sparse and
unrestricted versions of LPN of Ω(nr/c) and Ω(2n/c) (for constants c > 1), re-
spectively. In the SQ model, the learner can ask the oracle statistical properties
of the target, and this proves insufficient to efficiently learn parities. Then, in
a breakthrough result, Blum et al. [6] show that in the noisy PAC model (see
Section 2 for definition), one can circumvent the SQ lower bound of 2n/c and
give a Gaussian elimination type algorithm that runs in time 2O(n/ log n). By
considering parities on the first logn log logn bits of an example, they sepa-
rate the classes SQ and noisy PAC. For the sparse r-parity problem, no similar
breakthrough has occurred, and no algorithm better than the brute force O(nr)
is known (before this work) for the noisy PAC model. On the other hand, if
membership queries are allowed, the parity problem is solvable in polynomial
time [10, 17].

Another interesting direction in the literature is that of establishing non-
trivial tradeoffs between the sample and time complexity of the LPN problem,
both in the noisy and noise-free versions. In the noiseless model for r-parities,
one can trivially obtain an algorithm withO(r logn) sample complexity that runs
in time O(nr), and this is improved to O(nr/2) by Klivans and Servedio [16].
Additionally, Buhrman et al. [7] give a o(n) sample complexity for a running
time of 2O(r)+log n, and Klivans and Servedio [16] and Buhrman et al. [7] also
show polynomial time algorithms with a sample complexity of Õ(n1− 1

r ).
In the noisy PAC model, the Blum et al. [6] result (for parities of unrestricted

size) requires as many as 2O(n/ log n) samples, but it works for any noise rate η <
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1
2 − exp(−nδ). This sample complexity has been improved by Lyubashevsky [18]
to O(n1+ε) with higher running time and noise rate, and it remains open whether
this can be further improved to a sample complexity of O(n).

2 Notation and Preliminaries

In this paper, we are concerned with the model of PAC learning under ran-
dom classification noise [3]. Let c∗ ∈ C : X → {0, 1} be the target concept,
and D a distribution over X . In this model the learner has access to the oracle
EXη(c∗, D), which chooses x ∼ D and returns (x, �(x)), which is (x, c∗(x)) with
probability 1 − η and (x, 1 − c∗(x)) with probability η.

Definition 1. Algorithm L is said to PAC learn class C : X → {0, 1} by class
H in the presence of noise if, ∀ c∗ ∈ C, distribution D over X, error rate
0 < ε < 1

2 , failure rate 0 < δ < 1
2 , noise rate 0 ≤ η < 1

2 , if L is given inputs
ε, δ, η and access to EXη(c∗, D), then it will output hypothesis h ∈ H s.t. with
probability 1 − δ

Prx∼D[h(x) �= c∗(x)] < ε.

If H = C then we say the algorithm learns properly, otherwise it learns im-
properly. If the algorithm can recover c∗, we say it learns exactly. When
we consider learning boolean functions under the uniform distribution, we
restrict our attention to the distribution D over X = {0, 1}n that assigns a
probability of 1

2n to each length n vector. When we consider a noiseless setting,
we mean η = 0; this is the classical model of PAC learning [26]. Finally, if we
relax the learning requirement to ask the algorithm to achieve only an error
< 1/2 − γ, then we say the algorithm is a γ-weak learner for C.

Now we define the problem of learning r-parities. We note that operations on
parities are performed modulo 2.

Definition 2. In the (sparse) r-parity problem: the example domain is X =
{0, 1}n, the target class C consists of vectors c in {0, 1}n s.t. ||c||1 = r, and the
target c∗ ∈ C labels examples x ∈ X by c∗(x) =

∑n
i xic

∗
i ∈ {0, 1}.

Next we state some results from the literature that will be useful in our proofs.
The first is an approximate closest pair algorithm that our algorithm in Section 3
relies upon.

Theorem 1 (Corollary of Andoni and Indyk [2]). Given N points on the
d-dimensional Hamming cube, finding a pair of points whose distance is within
a factor ρ > 1 from the distance of the closest pair1 can be done in time

O(dN1+1/ρ2+O(log log N/ log1/3 N))) = O(dN1+1/ρ2+o(1)).

1 This is effectively done by running an approximate nearest neighbor algorithm on
each point in the data structure.
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We use the next theorem in Section 4 for an improved algorithm for improper
learning of parities for arbitrary distributions.

Theorem 2 (Kalai and Servedio [13]). For any 0 < η < ε < 1
2 , 0 < δ < 1

2 ,
there exists a boosting algorithm which, given access to a noise tolerant γ-weak
learner and an example oracle EXη(D, c∗), runs in time poly(log 1

δ ,
1

ε−η ,
1
γ ,

1
1−2η ),

and with probability δ outputs a hypothesis h such that Prx∼D[h(x) �= c∗(x)] < ε.

The following theorems are used in Section 5 to give improved bounds for learn-
ing juntas and DNF.

Theorem 3 (Feldman et al. [9]). Let A be an algorithm that learns parities
of r variables on {0, 1}n, under the uniform distribution, for noise rate η′ ≤ 1

2
in time T (n, r, η′). Then there exists an algorithm that exactly learns r-juntas
under the uniform distribution with noise rate η in time

O(r22rT (n, r, 1/2 − 2−r(1 − 2η)).

Theorem 4 (Feldman et al. [9]). Let A be an algorithm that learns parities
of r variables on {0, 1}n, under the uniform distribution, for noise rate η ≤ 1

2 in
time T (n, r, η) and sample complexity S(n, r, η). Then there exists an algorithm
that PAC learns s-term DNF under the uniform distribution in time

Õ

(
s4

ε2
T
(
n, log(Õ(s/ε)), 1/2 − Õ(ε/s)

)
· S2
(
n, log(Õ(s/ε)), 1/2 − Õ(ε/s)

))
.

3 Learning Sparse Parities

We begin by presenting our algorithm for r-parities and afterwards prove its
correctness and running time. As discussed in Section 1.3, our algorithm tries to
find two “nearby” r

2 -parities that compose to form the correct parity. We do this
by evaluating all the parities on a sufficiently large set of examples and finding
an approximate closest pair according to the evaluations and the evaluations
XORed with the labels. The exact procedure appears in Algorithm 1.

Algorithm 1. Learn r-Parities (r, n, ε, δ, η)

1: Obtain a set X̂ = {x1, . . . , xm} of examples drawn from the oracle EXη(c∗, D),

where m = r log(n/δ)ω(1)

(ε′−η)2
and ε′ = ε + η − 2εη.

2: For each r
2
-parity c, evaluate it on X̂ to obtain the corresponding 〈c·x1, c·x2, . . . , c·

xm〉 ∈ {0, 1}m and 〈c · x1 + �(x1), c · x2 + �(x2), . . . , c · xm + �(xm)〉 ∈ {0, 1}m. Let
H be the set of all these 2 · ( n

r/2

)
points on the Hamming cube.

3: Run the Approximate Closest Pair algorithm from Theorem 1 on H with the ap-
proximation parameter ρ = ε′/η, to obtain the closest pair of points in {0, 1}m

with corresponding r
2
-parities c1 and c2, respectively.

4: Return c1 + c2.

Now we state and prove our main theorem.
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Theorem 5. For any 0 < ε < 1
2 , 0 < δ < 1

2 , 0 ≤ η < 1
2 , and distribution D

over {0, 1}n, the class of r-parities can be properly PAC learned with random
classification noise using r log(n/δ)ω(1)

ε2(1−2η)2 samples in time

log(1/δ)n
(
1+( η

ε+η−2εη )2
+o(1)

)
r/2

ε2(1 − 2η)2
.

Proof. For convenience, in this proof, we define the quantity ε′ to be the error
we need to achieve on the noisy examples, drawn from EXη(c∗, D). There is a
simple relationship between ε′ and the quantities ε and η:

ε′ = 1 − ((1 − ε)(1 − η) + εη)
= ε+ η − 2εη.

Note that ε′ > η. To analyze Algorithm 1, we first define the empirical agreement
of a parity c on a sample X̂ = {x1, x2, . . . , xm} as

ˆagrX̂(c) =
∑
x∈X̂

c · x .

We define the set B of bad parities c′ as those whose error according to the
examples chosen from the noisy oracle is ≥ ε′, as in c′ ∈ B iff

Prx∼EXη(c∗,D)[c′(x) �= �(x)] ≥ ε′.

If we are able to find a parity not in the bad set, we will succeed in learning.
The empirical agreement of an r-parity c′ ∈ B can be bounded by Hoeffding’s

inequality as follows:

PrX̂∼EXη(c∗,D)

[
ˆagrX̂(c′) − EX̂∼EXη(c∗,D)[ ˆagrX̂(c′)] > t

]
< e−t2/m.

By the union bound we have that ∀ci, cj s.t. ci + cj = c′ ∈ B,

PrX̂∼EXη(c∗,D)

[
ˆagrX̂(c′) − EX̂∼EXη(c∗,D)[ ˆagrX̂(c′)] > t

]
< nre−t2/m.

Hence t =
√
mr log(n/δ) suffices to bound by (1 − δ) the probability that all

pairs of nr/2 agree on no more than t + E[ ˆagrX̂(c′)] positions. We can now,
with probability 1 − δ, bound the maximum agreement between two parities
comprising a parity in B by

max
c′∈B
(

ˆagrX̂(c′)
)
≤ max

c′∈B
(
E[ ˆagrX̂(c′)]

)
+
√
mr log(n/δ)

≤ (1 − ε′)m+
√
mr log(n/δ). (1)

Furthermore, we know that E[ ˆagrX̂(c∗)] = (1 − η)m and can similarly bound
from below the empirical agreement ˆagrX̂(c∗) to get with probability 1 − δ,

ˆagrX̂(c∗) ≥ (1 − η)m−
√
m log(1/δ). (2)
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We now rely on the following observation. If two r
2 -parities c1, c2 comprise the

target c∗, i.e. c1 + c2 = c∗, then their corresponding points 〈c1 ·x1, c1 ·x2, . . . , c1 ·
xm〉 and 〈c2 ·x1+�(x1), c2 ·x2+�(x2), . . . , c2 ·xm+�(xm)〉 in H are, by Equation 1,
w.h.p. within Hamming distance m − (1 − ε′)m −

√
mr log(n/δ), whereas if

c1 + c2 ∈ B, then by Equation 2, these points are at distance at least m −
(1 − η)m +

√
m log(1/δ). Hence by finding an approximate closest pair, with

parameters properly set, we can find a pair c1, c2 such that c1 + c2 /∈ B, which
suffices for learning. To do this, we appeal to Theorem 1, where we can set
N = O(nr/2) (the number of half-parities) and d = m (the sample complexity).

We choose2

m =
r log(n/δ)ω(1)

(ε′ − η)2
(3)

and

ρ =
m− (1 − ε′)m−

√
mr log(n/δ)

m− (1 − η)m+
√
m log(1/δ)

=
ε′ − (ε′ − η)/

√
ω(1)

η + (ε′ − η)
√

log(1/δ)/
√
r log(n/δ)ω(1)

=
ε′

η
− o(1).

This ensures that the method in Theorem 1 will return two half parities com-
posing a parity of error < ε′ with probability ≥ 1 − 2δ.

All that is left is to analyze the running time of the method above, which,
using Theorem 1 gives

O(dN1+1/ρ2+o(1)) = O

(
mn

(
1+( η

ε′ )
2
+o(1)

)
r/2
)
.

Substituting in m from Equation 3 and substituting ε′ = ε + η − 2εη gives the
statement of the theorem. �
For all settings of ε and η this beats the brute-force O(nr) bound.

Corollary 1. For all 0 < δ < 1
2 and 0 ≤ η < 1

2 , the class of r-sparse parities
can be learned exactly under the uniform distribution using m = r log(n/δ)ω(1)

(1−2η)2

samples and a running time of

log(1/δ)n(1+(2η)2+o(1))r/2

(1 − 2η)2
.

This bound holds even for adversarial noise.

Proof. We set ε = 1/2 in Theorem 5 and note that because every wrong parity
has error 1/2, if a parity has true error rate below 1/2, it must be correct, and the
target is therefore learned exactly. Furthermore, Feldman et al. [9] show that for
the uniform distribution, an algorithm for learning r-parities for random noise
works for adversarial noise, without a blow-up in the running time. �
2 Note that ω(1) = ωn(1).
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4 Improved Bounds for Improper Learning of r-Parities

In this section we present an algorithm which gives up on proper learning, but
can learn parities under noise without a dependence on the error rate ε in the
exponent. The following theorem holds for ε > η and uses the noise-tolerant
boosting algorithm of Kalai and Servedio [13].

Theorem 6. For any 0 < ε < 1
2 , 0 < δ < 1

2 , 0 ≤ η < 1
2 , and distribution D

over {0, 1}n, the class of r-parities can be learned improperly in time

poly
(
n, log

1
δ
,

1
ε− η

,
1

1 − 2η

)
n(1+(2η)2+o(1))r/2.

Proof. Our idea here is to use the argument in Theorem 5 in order to obtain a
parity c′ such that

Prx∼EXη(c∗,D)[c′(x) �= �(x)] < 1/2 − 1/n.

In order to do this we use the approximation factor ρ in the nearest neighbor
search set to

ρ =
1
η
(1/2 − 1/n) =

1
2η

− o(1).

This gives us a noise-tolerant 1
n -weak learner in time

poly(log
1
δ
,

1
ε− η

,
1

1 − 2η
)n(1+(2η)2+o(1))r/2,

which can be further used together with Theorem 2 to give us the final improved
result. This multiplies our running time and sample complexity by a factor of
poly(n), which goes into the o(1) in the exponent in our bound. �

5 Application to Learning Juntas and DNF

Using the results of the previous section and that learning juntas with noise
reduces to learning parities with noise under the uniform distribution [9], we get
an algorithm for learning sparse juntas with noise better than by brute-force.

Theorem 3 implies the following Corollary.

Corollary 2. For all 0 < δ < 1
2 , 0 ≤ η < 1

2 , r-juntas on n variables can be
learned exactly in time

poly
(

log
1
δ
,

1
1 − 2η

, 2r

)
n(1−21−r(1−2η)+21−2r(1−2η)2+o(1))r

under the uniform distribution.
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Proof. We combine Corollary 1 and Theorem 3 to get that r-juntas can be
learned in time

r22r log(1/δ)n(1+(2η′)2+o(1))r/2

(1 − 2η′)2
,

where η′ = 1/2 − 2−r(1 − 2η). Replacing η′ completes the proof. �

We can now specialize Corollary 2 for the noiseless case.

Corollary 3. For all 0 < δ < 1
2 , r-juntas with on n variables can be learned

exactly in time

poly
(

log
1
δ
, 2r

)
n(1−21−r+21−2r+o(1))r

in the noise-free setting, under the uniform distribution.

We end this section by stating the implication to DNF of our Corollary 1 and
Theorem 4 of Feldman et al. [9].

Corollary 4. For all 0 < ε < 1
2 , 0 < δ < 1

2 , the class s-term DNF can be
learned under the uniform distribution in time

poly
(

log
1
δ
,
1
ε
, s

)
n(1−Õ(ε/s)+o(1)) log s

ε .

We note that the log in the exponent is base 2. We further recall that, from
Theorem 1, the o(1) term in the exponent is log logN/ log1/3N , where N =
nlog(Õ(s/ε)). Therefore, the bound above is an improvement over Verbeurgt’s
bound [27] of O(nlog s

ε ) when s/ε = o
(

log1/3 n
log log n

)
.

6 Discussion

In this paper, we give an algorithm for learning r-parities in time essentially
nr/2 and show implications of this result to related problems. Our results draw
attention to a nice set of open problems related to the sparse version of LPN.
We give a proper algorithm running in time poly

(
log 1

δ ,
1

1−2η

)
n(1+(2η)2+o(1))r/2

for the uniform distribution and poly
(
log 1

δ ,
1
ε ,

1
1−2η

)
n(1+( η

ε+η−2εη )2
+o(1))r/2 for

arbitrary distributions, for the r-sparse LPN problem.
For improper learning, we give an poly

(
n, log 1

δ ,
1

ε−η ,
1

1−2η

)
n(1+(2η)2+o(1))r/2

algorithm, which requires ε > η and uses poly(n) samples. Obtaining an al-
gorithm without the restriction of ε > η, yet without the reliance on ε in the
exponent, would be an interesting direction. One observation is that an improper
learning algorithm achieving arbitrary low error can be converted to a proper
learning algorithm for the LPN problem by drawing n examples from D, labeling
them with the low-error algorithm (with the error parameter set < ε/n), and
running Gaussian elimination to find the correct parity. We note that a similar
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technique is used in Blum et al. [4] to obtain a proper learning algorithm for
linear threshold functions. Another interesting direction would be to remove the
dependence on η in the exponent.

We note that it is tempting to try to push the approach taken in the proof of
Theorem 5 further by considering, say, r

3 -parities. To improve our nr/2 bound
asymptotically, we would need an algorithm that, given a set of N points in
the Hamming cube, finds 3 of them that ‘approximately sum’ up to 0, and
runs in time substantially better than N2. This problem is somewhat related to
the famous 3-SUM question in computational geometry which asks if among N
elements of a set of integers there exist 3 that sum to 0. Erickson [8] presents the
N2 as a barrier and shows it is intrinsic in many difficult problems, giving some
weak evidence that extending our approach in this way is unlikely. We also point
out that the nearest neighbor algorithm of Andoni and Indyk [2] runs in time
essentially N1+1/ρ2

and almost matches the lower bounds for data-structures
[20, 21], suggesting again that obtaining even a n

r
3 algorithm for the r-parity

problem may require fundamentally new techniques. It remains open whether a
polynomial time algorithm exists for learning ω(1)-parities.

The implication of our results to learning juntas brings up immediate ques-
tions of whether one can extend the non-trivial bound from Corollary 2 to ar-
bitrary distributions, and furthermore, whether it is possible to improve the
running time to ncr, for some constant c < 1. As before, an important open
problem is whether a polynomial time algorithm exists for learning ω(1)-juntas.

Acknowledgments. We thank Avrim Blum and Adam Kalai for very helpful
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thank the anonymous reviewers for useful comments.
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Abstract. Co-training under the Conditional Independence Assump-
tion is among the models which demonstrate how radically the need for
labeled data can be reduced if a huge amount of unlabeled data is avail-
able. In this paper, we explore how much credit for this saving must
be assigned solely to the extra-assumptions underlying the Co-training
model. To this end, we compute general (almost tight) upper and lower
bounds on the sample size needed to achieve the success criterion of PAC-
learning within the model of Co-training under the Conditional Inde-
pendence Assumption in a purely supervised setting. The upper bounds
lie significantly below the lower bounds for PAC-learning without Co-
training. Thus, Co-training saves labeled data even when not combined
with unlabeled data. On the other hand, the saving is much less radical
than the known savings in the semi-supervised setting.

1 Introduction

In the framework of semi-supervised learning, it is usually assumed that there
is a kind of compatibility between the target concept and the domain distri-
bution.1 This intuition is supported by recent results indicating that, without
extra-assumptions, there exist purely supervised learning strategies which can
compete fairly well against semi-supervised learners (or even against learners
with full prior knowledge of the domain distribution) [3, 7].

In this paper, we go one step further and consider the following general ques-
tion: given a particular extra-assumption which makes semi-supervised learning
quite effective, how much credit must be given to the extra-assumption alone?
In other words, to which extent can labeled examples be saved by exploiting the
extra-assumption in a purely supervised setting? We provide a first answer to
this question in a case study which is concerned with the model of Co-training
under the Conditional Independence Assumption [4]. In this model (whose for-
mal definition will be recalled in Section 2), one labeled example is enough for
� This work was supported by the bilateral Research Support Programme between

Germany (DAAD 50751924) and Hungary (MÖB 14440).
1 See the introduction of [6] for a discussion of the most popular assumptions.
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achieving the success criterion of PAC-learning provided that there are suffi-
ciently many unlabeled examples [1].2 Recall that PAC-learning without any
extra-assumption requires d/ε labeled samples (up to logarithmic factors) where
d denotes the VC-dimension of the concept class and ε is the accuracy param-
eter [5]. The step from d/ε to just a single labeled example is a giant-one. In
this paper, we show however that part of the credit must be assigned to just the
Co-training itself. More specifically, we show that the number of sample points
needed to achieve the success criterion of PAC-learning in the purely supervised
model of Co-training under the Conditional Independence Assumption has a
linear growth in

√
d1d2/ε (up to some hidden logarithmic factors) as far as the

dependence on ε and on the VC-dimensions of the two involved concept classes is
concerned. Note that, as ε approaches 0,

√
d1d2/ε becomes much smaller than

the well-known lower bound Ω(d/ε) on the number of examples needed by a
traditional (not co-trained) PAC-learner.

The remainder of the paper is structured as follows. Section 2 clarifies the
notations and formal definitions that are used throughout the paper and men-
tions some elementary facts. Section 3 presents a fundamental inequality that
relates a suitably defined variant of Hanneke’s disagreement coefficient [9] to a
purely combinatorial parameter, s(C), which is closely related to the “unique
negative dimension” from [8]. This will later lead to the insight that the prod-
uct of the VC-dimension of a (suitably chosen) hypothesis class and a (suitably
defined) disagreement coefficient has the same order of magnitude as s(C). Sec-
tion 3 furthermore investigates how a concept class can be padded so as to
increase the VC-dimension while keeping the disagreement coefficient invariant.
The padding can be used to lift lower bounds that hold for classes of low VC-
dimension to increased lower bounds that hold for some classes of arbitrarily
large VC-dimension. The results of Section 3 seem to have implications for ac-
tive learning and might be of independent interest. Section 4.1 presents some
general upper bounds in terms of the relevant learning parameters (including ε,
the VC-dimension, and the disagreement coefficient, where the product of the
latter two can be replaced by the combinatorial parameters from Section 3).
Section 4.2 shows that all general upper bounds from Section 4.1 are (nearly)
tight. Interestingly, the learning strategy that is best from the perspective of a
worstcase analysis has one-sided error. Section 4.3 presents improved bounds for
classes with special properties. Section 5 contains some final remarks.

Due to space constraints, not all proofs are given in full detail. We plan to
give the missing parts in an upcoming journal version of this paper.

2 Definitions, Notations, and Facts

We assume the reader is familiar with Valiant’s model of Probably Approxi-
mately Correct Learning (PAC-learning) [11]. In Co-training [4], it is assumed
2 This is one of the results which impressively demonstrate the striking potential

of properly designed semi-supervised learning strategies although the underlying
compatibility assumptions are somewhat idealized and therefore not likely to be
strictly satisfied in practice. See [2, 12] for suggestions of relaxed assumptions.
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that there is a pair of concept classes, C1 and C2, and that random examples
come in pairs (x1, x2) ∈ X1 ×X2. Moreover, the domain distribution D, accord-
ing to which the random examples are generated, is perfectly compatible with
the target concepts, say h∗1 ∈ C1 and h∗2 ∈ C2, in the sense that h∗1(x1) = h∗2(x2)
with probability 1. (For this reason, we sometimes denote the target label as
h∗(x1, x2).) As in [4, 1], our analysis builds on the Conditional Independence
Assumption: x1, x2, considered as random variables that take “values” in X1

and X2, respectively, are conditionally independent given the label. As in [1],
we perform a PAC-style analysis of Co-training under the Conditional Indepen-
dence Assumption. But unlike [1], we assume that there is no access to unlabeled
examples. The resulting model is henceforth referred to as the “PAC Co-training
Model under the Conditional Independence Assumption”.

Let C be a concept class over domain X and H ⊇ C a hypothesis class over the
same domain. For every h∗ ∈ C and every X ′ ⊆ X , the corresponding version
space in H is given by VH(X ′, h∗) := {h ∈ H| ∀x ∈ X ′ : h(x) = h∗(x)}. Let
V ⊆ C. The disagreement region of V is given by DIS(V ) := {x ∈ X | ∃h, h′ ∈
V : h(x) �= h′(x)}. Let � denote a probability measure on X . We define the
following variants of disagreement coefficients:

θ(C,H|�, X ′, h∗) :=
�(DIS(VC(X ′, h∗)))

suph∈VH(X′,h∗)�(h �= h∗)

θ(C,H) := sup
�,X′,h∗

θ(C,H|�, X ′, h∗)

For sake of brevity, let θ(C) := θ(C, C). Note that

θ(C,H) ≤ θ(C) ≤ |C| − 1 . (1)

The first inequality is obvious from C ⊆ H and h∗ ∈ C, the second follows from

DIS(VC(X ′, h∗)) =
⋃

h∈VC(X′,h∗)\{h∗}
{x| h(x) �= h∗(x)}

and an application of the union bound.
As an example we will calculate θ for the following class, which will also be

useful for proving lower bounds in section 4.2:

SFn = {{0}, {0, 1}, {0, 2}, . . . , {0, n}}

Lemma 1. θ(SFn) = n.

Proof. Let � be uniform on {1, . . . , n}, let X ′ = h∗ = {0}. Then V :=
VSFn(X ′, h∗) = SFn and DIS(V ) := {1, . . . , n} has probability mass 1. Thus,

θ(SFn) ≥ θ(SFn, SFn|�, X ′, h∗) =
�(DIS(V ))

suph∈V �(h �= h∗)
=

1
1/n

= n .

Conversely, θ(SFn) ≤ |SFn| − 1 = n (according to (1)). 	
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The main usage this disagreement coefficient is as follows. First note that we
have �(DIS(VC(X ′, h∗))) ≤ θ(C,H) · suph∈VH(X′,h∗)�(h �= h∗) for every choice
of �, X ′, h∗. This inequality holds in particular when X ′ consists of m points in
X chosen independently at random according to �. According to classical sam-
ple size bounds in PAC-learning, there exists a sample size m = Õ(VCdim(H)/ε)
such that, with probability at least 1 − δ, suph∈VH(X′,h∗)�(h �= h∗) ≤ ε.
Thus, with probability at least 1 − δ (taken over the random sample X ′),
�(DIS(VC(X ′, h∗))) ≤ θ(C,H) · ε. This discussion (with ε/θ(C,H) substituted
for ε) is summarized in the following

Lemma 2. There exists a sample size m = Õ(θ(C,H) · VCdim(H)/ε) such that
the following holds for every probability measure � on domain X and for every
target concept h∗ ∈ C. With probability 1− δ, taken over a random sample X ′ of
size m, �((DIS(VC(X ′, h∗))) ≤ ε.

This lemma indicates that one should choose H so as to minimize θ(C,H) ·
VCdim(H). Note that making H more powerful leads to smaller values of θ(C,H)
but comes at the prize of an increased VC-dimension.

We say that H contains hypotheses with plus-sided errors (or minus-sided
errors, resp.) w.r.t. concept class C if, for every X ′ ⊆ X and every h∗ ∈ C,
there exists h ∈ VH(X ′, h∗) such that h(x) = 0 (h(x) = 1, resp.) for every
x ∈ DIS(VC(X ′, h∗)). A sufficient (but, in general, not necessary) condition for a
class H making plus-sided errors only (or minus-sided errors only, resp.) is being
closed under intersection (or closed under union, resp.).

Lemma 3. Let C ⊆ H. If H contains hypotheses with plus-sided errors and
hypotheses with minus-sided errors w.r.t. C, then θ(C,H) ≤ 2.

Proof. Consider a fixed but arbitrary choice of �, X ′, h∗. Let hmin be the hy-
pothesis in VH(X ′, h∗) that errs on positive examples of h∗ only, and let hmax

be the hypothesis in VH(X ′, h∗) that errs on negative examples of h∗ only. We
conclude that DIS(VC(X ′, h∗)) ⊆ {x| hmin(x) �= hmax(x)}. From this and the
triangle inequality, it follows that

�(DIS(VC(X ′, h∗))) ≤ �(hmin �= hmax) ≤ �(hmin �= h∗) +�(hmax �= h∗) .

The claim made by the lemma is now obvious from the definition of θ(C,H). 	


Example 1. Since POWERSET and HALFINTERVALS are closed under inter-
section and union, we obtain θ(POWERSET) ≤ 2 and θ(HALFINTERVALS) ≤
2. Let the class C consist of both the open and the closed homogeneous halfplanes
and let H be the class of unions and intersections of two halfplanes from C. It
is easy to see that H contains hypotheses with plus-sided errors (the smallest
pie slice with apex at 0 that includes all positive examples in a sample) and
hypotheses with minus-sided errors (the complement of the smallest pie slice
with apex at 0 that includes all negative examples in a sample) w.r.t. C. Thus,
θ(C,H) ≤ 2. Note that H is neither closed under intersection nor closed under
union.
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3 A Closer Look to the Disagreement Coefficient

In Section 3.1 we investigate the question how small the product VCdim(C) ·
θ(C,H) can become if H ⊇ C is cleverly chosen. The significance of this ques-
tion should be clear from Lemma 2. In Section 3.2 we introduce a padding
technique which leaves the disagreement coefficient invariant but increases the
VC-dimension (and, as we will see later, also increases the error rates in the PAC
Co-training Model).

3.1 A Combinatorial Upper Bound

Let s+(C) denote the largest number of instances inX such that every binary pat-
tern on these instances with exactly one “+”-label can be realized by a concept
from C. In other words: s+(C) denotes the cardinality of the largest singleton-
subclass of C. Let C+ denote the class of all unions of concepts from C. As usual,
the empty union is defined to be the empty set.

Lemma 4. C ⊆ C+, C+ is closed under union, and VCdim(C+) = s+(C). More-
over, if C is closed under intersection, then C+ is closed under intersection too,
and θ(C, C+) ≤ 2 so that VCdim(C+) · θ(C, C+) ≤ 2s+(C).

Proof. By construction, C ⊆ C+ and C+ is closed under union. From this it
follows that s+(C) ≤ VCdim(C+). Consider now instances x1, . . . , xd that are
shattered by C+. Thus, for every i = 1, . . . , d, there exists a concept hi in C+ that
contains xi but none of the other d−1 instances. Therefore, by the construction
of C+, C must contain some hypothesis h′i smaller than hi satisfying h′i(xi) = 1.
We conclude that VCdim(C+) ≤ s+(C). For the remainder of the proof, assume
that C is closed under intersection. Consider two sets A,B of the form A = ∪iAi

and B = ∪jBj where all Ai and Bj are concepts in C. Then, according to the
distributive law, A ∩ B = ∪i,jAi ∩ Bj . Since C is closed under intersection,
Ai ∩ Bj ∈ C ⊆ C+. We conclude that C+ is closed under intersection. Closure
under intersection and union implies that C+ contains hypotheses with plus-sided
errors and hypotheses with minus-sided errors w.r.t. C. According to Lemma 3,
θ(C, C+) ≤ 2. 	


We aim at a similar result that holds for arbitrary (not necessarily intersection-
closed) concept classes. To this end, we proceed as follows. Let s−(C) denote
the largest number of instances in X such that every binary pattern on these
instances with exactly one “−”-label can be realized by a concept from C. In
other words: s−(C) denotes the cardinality of the largest co-singleton subclass of
C. Let C− denote the class of all intersections of concepts from C. As usual, the
empty intersection is defined to be the full set X . By duality, Lemma 4 translates
into the following

Corollary 1. C ⊆ C−, C− is closed under intersection, and VCdim(C−) =
s−(C). Moreover, if C is closed under union, then C− is closed under union
too, and θ(C, C−) ≤ 2 so that VCdim(C−) · θ(C, C−) ≤ 2s−(C).
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We now arrive at the following general bound:

Theorem 1. Let H := C+∪C−. Then, C⊆H, VCdim(H)≤2 max{s+(C), s−(C)},
and θ(C,H) ≤ 2 so that VCdim(H) · θ(C,H) ≤ 4 max{s+(C), s−(C)} := s(C).

Proof. C ⊆ H is obvious. The bound on the VC-dimension is obtained as follows.
If m instances are given, then, by Lemma 4 and Corollary 1, the number of
binary patterns imposed on them by concepts from H = C+ ∪C− is bounded by
Φs+(C)(m) + Φs−(C)(m) where

Φd(m) =
{

2m if m ≤ d∑d
i=0

(
m
i

)
otherwise

is the upper bound from Sauer’s Lemma [10]. Note that Φd(m) < 2m−1 for
m > 2d. Thus, for m > 2 max{s+(C), s−(C)}, Φs+(C)(m) + Φs−(C)(m) < 2m−1 +
2m−1 = 2m. We can conclude that VCdim(H) ≤ 2 max{s+(C), s−(C)}. Finally
note that θ(C,H) ≤ 2 follows from Lemma 3 and the fact that, because of
Lemma 4 and and Corollary 1, H = C+ ∪ C− contains hypotheses with plus-
sided errors and hypotheses with minus-sided errors. 	


Please note that the parameter s−(C) was originally introduced by Mihály Geréb-
Graus in [8] as the “unique negative dimension” of C. He showed that it charac-
terizes PAC-learnability from positive examples alone.

3.2 Invariance of the Disagreement Coefficient under Padding

For every domain X , let X(i) and X [k] be given by

X(i) = {(x, i)| x ∈ X} and X [k] = X(1) ∪ · · · ∪X(k) .

For every concept h ⊆ X , let h(i) = {(x, i)| x ∈ h}. For every concept class C
over domain X , let

C[k] := {h(1)
1 ∪ · · · ∪ h

(k)
k | h1, . . . , hk ∈ C} .

Loosely speaking, C[k] contains k-fold “disjoint unions” of concepts from C. It is
obvious that VCdim(C[k]) = k · VCdim(C). The following result shows that the
disagreement-coefficient is invariant under k-fold disjoint union:

Lemma 5. For all k ≥ 1: θ(C[k],H[k]) = θ(C,H).

Proof. The probability measures � on X [k] can be written as convex combina-
tions of probability measures on the X(i), i.e., � = λ1�1 + · · · + λk�k where
�i is a probability measure on X(i), and the λi are non-negative numbers that
sum-up to 1. A sample S ⊆ X [k] decomposes into S = S(1) ∪ · · · ∪ S(k) with
S(i) ⊆ X(i). An analogous remark applies to concepts c ∈ C[k] and hypotheses
h ∈ H[k]. Thus,
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θ(C[k],H[k]|�, S, c) =
�(DIS(VC[k](S, c)))

suph∈VH[k] (S,c)�(h �= c)

=
∑k

i=1 λi

=:ai︷ ︸︸ ︷
�i(DIS(VC(i) (S(i), c(i))))∑k

i=1 λi sup
h
(i)
i ∈VH(i) (S(i),c(i))

�i(h(i) �= c(i))

︸ ︷︷ ︸
=:bi

≤ θ(C,H) .

The last inequality holds because, obviously, ai/bi ≤ θ(C(i),H(i)) = θ(C,H).
On the other hand, ai/bi can be made equal (or arbitrarily close) to θ(C,H) by
choosing �i, S

(i), c(i) properly. 	


4 Supervised Learning and Co-training

Let p+ = �(h∗ = 1) denote the probability for seeing a positive example of
h∗. Similarly, p− = �(h∗ = 0) denotes the probability for seeing a negative
example of h∗. Let �(·|+),�(·|−) denote probabilities conditioned to positive
or to negative examples, respectively. The error probability of a hypothesis h
decomposes into conditional error probabilities according to

�(h �= h∗) = p+ ·�(h �= h∗|+) + p− ·�(h �= h∗|−) . (2)

In the PAC-learning framework, a sample size that, with high probability, bounds
the error by ε typically bounds the plus-conditional error by ε/p+ and the minus-
conditional error by ε/p−. According to (2), these conditional error terms lead
to an overall error that is bounded by ε, indeed. For this reason, the hardness of
a problem in the PAC-learning framework does not significantly depend on the
values of p+, p−. As we will see shortly, the situation is much different in the PAC
Co-training Model under the Conditional Independence Assumption where small
values of pmin := min{p+, p−} (though not smaller than ε) make the learning
problem harder. Therefore, we refine the analysis and present our bounds on
the sample size not only in terms of distribution-independent quantities like
θ, ε and the VC-dimension but also in terms of pmin. This will lead to “smart”
learning policies that take advantage of “benign values” of pmin. In the following
subsections, we present (almost tight) upper and lower bounds on the sample size
in the PAC Co-training Model under the Conditional Independence Assumption.

4.1 General Upper Bounds on the Sample Size

Let us first fix some more notation that is also used in subsequent sections.
V1 ⊆ C1 and V2 ⊆ C2 denote the version spaces induced by the labeled sample
within the concept classes, respectively, and DIS1 = DIS(V1), DIS2 = DIS(V2)
are the corresponding disagreement regions. The VC-dimension of H1 is denoted
d1; the VC-dimension of H2 is denoted d2. θ1 = θ(C1,H1) and θ2 = θ(C2,H2).
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θmin = min{θ1, θ2} and θmax = max{θ1, θ2}. s+1 = s+(C1), s+2 = s+(C2), s−1 =
s−(C1), and s−2 = s−(C2). The learner’s empirical estimates for p+, p−, pmin

(inferred from the labeled random sample) are denoted p̂+, p̂−, p̂min, respectively.
Let h1 ∈ VH1 and h2 ∈ VH2 denote two hypotheses chosen according to some
arbitrary but fixed learning rules.

The error probability of the learner is the probability for erring on an un-
labeled “test-instance” (x1, x2). Note that the learner has a safe decision if
x1 /∈ DIS1 or x2 /∈ DIS2. As for the case x1 ∈ DIS1 and x2 ∈ DIS2, the situation
for the learner is ambiguous, and we consider the following resolution-rules, the
first two of which depend on the hypotheses h1 and h2:3

R1: If h1(x1) = h2(x2), then vote for the same label. If h1(x1) �= h2(x2), then
go with the hypothesis that belongs to the class with the disagreement
coefficient θmax.

R2: If h1(x1) = h2(x2), then vote for the same label. If h1(x1) �= h2(x2), then
vote for the label that occurred less often in the sample (i.e., vote for “+”
if p̂− ≥ 1/2, and for “−” otherwise).

R3: If p̂− ≥ 1/2, then vote for label “+”. Otherwise, vote for label “−”. (These
votes are regardless of the hypotheses h1, h2.)

Theorem 2. The number of labeled examples sufficient for learning (C1, C2) in
the PAC Co-training Model under the Conditional Independence Assumption by
learners applying one of the rules R1, R2, R3 is given asymptotically as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Õ
(√

d1d2
ε · θmin

pmin

)
if rule R1 is applied

Õ

(√
d1d2

ε · max
{

1
pmin

, θmax

})
if rule R2 is applied

Õ

(√
d1d2

ε · θ1θ2
)

if rule R3 is applied

(3)

Proof. Õ(1) examples are sufficient to achieve that (with high probability) the
following holds: if pmin < 1/4, then p̂min < 1/2. Assume that this is the case. For
reasons of symmetry, we may assume furthermore that θ1 = θmax and p̂− ≥ 1/2
so that p− ≥ 1/4. Please recall that the rules R1 to R3 are only applied if
x1 ∈ DIS1 and x2 ∈ DIS2. Assume first that ambiguities are resolved according
to rule R1. Note that the sample size specified in (3) is sufficient to bound (with
high probability) the error rate of hypotheses h1, h2, respectively, as follows [5]:

ε1 =
√
d1

d2
· pmin

θmin
· ε and ε2 =

√
d2

d1
· pmin

θmin
· ε

3 The choice applied in rules R2 and R3 could seem counterintuitive at first. However,
p̂+ > p̂− means that the learner has more information about the behaviour of the
target concept on the positive instances than on the negative ones, indicating that the
positive instances in the disagreement regions might have smaller probability than
the negative ones. This choice is also in accordance with the common strategy applied
in the “learning from positive examples only” model, which outputs a negative label
if in doubt, although the learner has never seen any negative examples.
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If R1 assigns a wrong label to (x1, x2), then, necessarily, h1 errs on x1 and
x2 ∈ DIS2. Thus the error rate induced by R1 is bounded (with high probability)
as follows:

�(h1(x1) = 0 ∧ x2 ∈ DIS2|+)p+ +�(h1(x1) = 1 ∧ x2 ∈ DIS2|−)p−

≤ 1
pmin

·
(
�(h1(x1) = 0|+)p+ ·�(x2 ∈ DIS2|+)p+

+�(h1(x1) = 1|−)p− ·�(x2 ∈ DIS2|−)p−
)

≤ 1
pmin

·
(
�(h1(x1) = 0|+)p+ +�(h1(x1) = 1|−)p−

)︸ ︷︷ ︸
≤ε1

·
(
�(x2 ∈ DIS2|+)p+ +�(x2 ∈ DIS2|−)p−

)︸ ︷︷ ︸
≤θ2ε2=θminε2

≤ θmin

pmin
· ε1ε2 = ε

The first inequality in this calculation makes use of Conditional Independence
and the third applies Lemma 2.
The proofs for rule R2 and R3 proceed analogously. We omit the details because
of space constrains. 	


We now describe a strategy named “Combined Rule” that uses rules R1, R2,
R3 as sub-routines. Given (x1, x2) ∈ DIS1 × DIS2, it proceeds as follows. If
ε > 4/(θ1θ2) and p̂+ ≤ ε/2 (or p̂− ≤ ε/2, resp.), it votes for label “−” (or for
label “+”, resp.). If ε ≤ 4/(θ1θ2) or p̂min := min{p̂+, p̂−} > ε/2, then it applies
the rule ⎧⎪⎨⎪⎩

R1 if θmin

θmax
≤ p̂min

R2 if 1
θ1θ2

≤ p̂min <
θmin

θmax

R3 if p̂min < 1
θ1θ2

. (4)

Corollary 2. If the learner applies the Combined Rule, then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Õ
(√

d1d2
ε · θmin

pmin

)
if θmin

θmax
≤ pmin

Õ

(√
d1d2

ε · θmax

)
if 1

θmax
≤ pmin < θmin

θmax

Õ
(√

d1d2
ε · 1

pmin

)
if 1

θ1θ2
≤ pmin < 1

θmax

Õ

(√
d1d2

ε · θ1θ2
)

if pmin <
1

θ1θ2

(5)

labeled examples are sufficient for learning C1, C2 in the PAC Co-training Model
under the Conditional Independence Assumption.

Proof. It is an easy application of multiplicative Chernov-bounds to show that
(with high probability) p̂min equals pmin up to a factor of 2 unless one of the
following special cases occurs:
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ε >
4

θ1θ2
, p̂min <

ε

2
and pmin <

ε

2
(6)

ε ≤ 4
θ1θ2

, p̂min <
1

θ1θ2
and pmin <

1
θ1θ2

(7)

In case of (6), the Combined Rule outputs the empirically more likely label,
and the error rate is bounded by pmin < ε/2. In case of (7), rule R3 is applied
which, according to Theorem 2, leads to the desired upper bound on the sample
size. Thus, we may now safely assume that p̂min equals pmin up to factor 2. If
none of the rules R1, R2, R3 is applied, then p̂min ≤ ε/2 and the error rate
will be pmin < ε. Thus, we may assume that Combined Rule proceeds according
to (4). If the learner could substitute the (unknown) pmin for p̂min within (4),
the corollary would follow immediately from Theorem 2. But it is easy to see
that even the knowledge of the empirical estimate p̂min is sufficient for this
purpose. 	


We can also give a completely combinatorial upper bound without referring to
θ. As we will see later this bound is tight up to logarithmic factors in the worst
case (i.e. small pmin):

Theorem 3. If the learner applies rule R3 and uses hypothesis classes Hb =

C+
b ∪ C−

b for b = 1, 2, then Õ
(√

max{s+1 s+2 , s−1 s−2 }/ε
)

labeled examples are suffi-
cient.

Proof. (Sketch) R3 always chooses one of the two hypotheses with one sided-
error: h− which always outputs “−” for (x1, x2) ∈ DIS1 ×DIS2, and h+ which
always outputs “+” on these instances. With an analysis similar as before one
can relate the error of h− to the errors of the smallest consistent hypotheses
in C−

1 and C−
2 , and then conclude using standard PAC-bounds and results from

Section 3.1 that with high probability Õ
(√

s−1 s
−
2 /(εp+)

)
many examples suffice

for h− to have an error of at most ε. For h+ the analogous bound on the number

of examples is Õ
(√

s+1 s
+
2 /(εp−)

)
. Because Õ(1) many examples are enough to

distinguish with high probability among the cases p− ≥ 1/2 and p− < 1/2,
choosing between the two learning strategies according to rule R3 yields the
desired bound. 	


Please note that finding the smallest consistent hypotheses in C−
b is possible using

positive examples only. This shows a strong connection to the results by Geréb-
Graus in [8], where it was shown that Õ

(
s−(C)/ε

)
many positive examples are

sufficient (and necessary) to PAC-learn a class C from positive examples alone.
A dual also holds for the largest consistent hypotheses in C+

b .

4.2 Lower Bounds on the Sample Size

In this section, we first derive a general lower bound which matches the upper
bound from Theorem 3. Both bounds are part of a worstcase analysis and the
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lower bound makes use of rather small values of pmin. Afterwards, we show that,
for more “benign” choices of pmin, the upper bound from Corollary 2 is tight by
exhibiting concrete concept classes that lead to a matching lower bound.

A useful concept class for the purposes of this section is SFn from Lemma 1.
Note that all lower bounds obtained for SFn immediately generalize to concept
classes containing SFn as subclass.

Lemma 6. Let n1, n2 ≥ 1, and let Cb = SFnb+2 so that θb = nb + 2 for b =
1, 2. Then, for every pmin ≤ 1/(θ1θ2) and every sufficiently small ε > 0, the
number of examples needed to learn C1, C2 in the PAC Co-training Model under
the Conditional Independence Assumption is at least Ω(

√
n1n2/ε).

Proof. Let p+ = pmin, let C1 be a concept class over domain {a0, a1, . . . , an1+2},
and let C1 be a concept class over domain {b0, b1, . . . , bn2+2}, respectively. Ob-
viously,

p+ = pmin ≤ 1
(n1 + 2)(n2 + 2)

=
1

θ1θ2
.

Note that n1n2p+ ≤ 1. Consider the following malign scenario:

– �(a0|+) = �(b0|+) = 1 −
√
ε/p+.

– Index s is uniformly chosen at random from {2, . . . , n1 + 2}. Index t is uni-
formly chosen at random from {2, . . . , n2+2}.�(as|+) = �(bt|+) =

√
ε/p+.

– �(a1|−) = 1 − 4 ·
√
n1ε/n2. �(b1|−) = 1 − 4 ·

√
n2ε/n1.

– The instances from X1 \ {a0, a1, as} evenly share a minus-conditional prob-
ability mass of 4 ·

√
n1ε/n2. The instances from X2 \ {b0, b1, bt} evenly share

a minus-conditional probability mass of 4 ·
√
n2ε/n1.

Let us assume that the sample size satisfies m ≤
√

n1n2

40 ·
√

1/ε. Let Z1 count
the number of sample points that hit X1 \ {a0, a1, as} (the “interesting negative
examples” in X1). Let Z2 be defined analogously. Then the following holds:

– The expectation of Zb is bounded by nb/10 for b = 1, 2. Thus, with proba-
bility at least 1 − 2/5, Z1 ≤ n1/2 and Z2 ≤ n2/2, which is assumed in the
sequel. Thus at least half of the interesting negative examples in X1 and at
least half of the interesting negative examples in X2 remain “hidden” from
the learner (i.e. do not occur in the sample), respectively.

– The expected number of occurrences of as (or bt, resp.) in the sample is
bounded by

p+ ·
√
ε/p+ ·

√
n1n2

40
·
√

1/ε =
√
n1n2p+/40 ≤ 1/40 .

Thus, with probability at least 1 − 1/15, neither as nor bt occurs in the
sample, which is assumed in the sequel.

Note that the assumptions that we made on the way are satisfied with a prob-
ability of at least 1 − 2/5 − 1/15 > 1/2. Given these assumptions, we now
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bound the smallest possible error rate from below. Let E+ (or E−, resp.) de-
note the set of instance-pairs which are labeled “+” (or labeled “−”, resp.).
For b = 1, 2, let Ub ⊆ Xb be the set of points in Xb that did not occur in the
sample, and let U = U1 × U2. For test-instances (x1, x2) /∈ U , the learner can
infer the label from the information provided by the sample. It can be shown by
a rigorous analysis (omitted here because of space constraints) that the Bayes-
decision leads to the same vote for all pairs from U : if �(E+ ∩U) ≥ �(E− ∩U)
vote for “+”, otherwise vote for “−”. Clearly, the resulting Bayes-error equals
min{�(E+ ∩ U),�(E− ∩ U)}. It can be bounded from below as follows:

�(U ∩ E+) ≥ p+ ·
(√

ε

p+

)2

= ε ,

because
√

ε
p+

coincides with the plus-conditional probability of as and bt, re-

spectively. A similar computation shows that

�(U ∩E−) ≥ (1 − p+)︸ ︷︷ ︸
≥1/2

·(2
√
n1ε/n2) · (2

√
n2ε/n1) ≥ 2ε .

Thus, the Bayes-error is at least ε. 	


Corollary 3. Let n1, n2, d1, d2 ≥ 1, and, for b = 1, 2, let Cb = SFnb+2 so that
θ(Cb) = θ(C[db]

b ) = nb +2. Then, for every pmin ≤ 1/(θ1θ2) and every sufficiently
small ε > 0, the number of examples needed to learn C[d1]

1 , C[d2]
2 in the PAC

Co-training Model under the Conditional Independence Assumption is at least
Ω(
√
d1d2n1n2/ε).

Proof. (Sketch) θ(Cb) = θ(C[db]
b ) follows from Lemma 5. A malign scenario for

the classes C[db]
b is obtained by installing the malign scenario from the proof of

Lemma 6 (with some minor modifications) for each of the d1 many copies of C1

and for each of the d2 many copies of C2. The main idea behind the proof is that
every disjoint copy of the “old scenario” is now served by fewer sample points.
In order to compensate this, the sample size must pop-up by factor

√
d1d2. 	


Here comes the lower bound that is tight from the perspective of a worstcase
analysis:

Theorem 4. Assume that4 3 ≤ s+b , s
−
b < ∞ for b ∈ {0, 1}. Then the following

holds. For every sufficiently small ε > 0, the number of examples needed to
learn C1, C2 in the PAC Co-training Model under the Conditional Independence

Assumption is at least Ω
(√

max{s+1 s+2 , s−1 s−2 }/ε
)
.

4 One can drop the restriction 3 ≤ s+
b , s−b and still prove tight bounds, but that needs

a tedious case distinction and is omitted due to space constraints.
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Proof. We show that a target-distribution pair exists that needs Ω
(√

s+1 s
+
2 /ε
)

many labels to be learned. By duality there is also a pair which needs at least

Ω
(√

s−1 s
−
2 /ε
)

many. Thus taking the maximum of both cases yields the theorem.
The former bound can be proved as follows: in the proof of Lemma 6, we may

set p+ = pmin = ε. Thus the probability assigned to the redundant points a0 and
b0 is now 0, respectively. Removal of the redundant point in a class of type SF
will lead to the class of singletons. Thus, the proof of Lemma 6 with the special
setting p+ = pmin = ε shows that at least the same number of examples is
needed for every pair C1, C2 of concept classes such that, for b = 1, 2, Cb contains
a singleton subclass of size nb + 2. 	


Note that the lower bound in Theorem 4 nicely matches with the upper bound
in Theorem 3 for small enough ε. Furthermore, this implies a weak converse
of Theorem 1 where we have shown that VCdim(H) · θ(C,H) ≤ s(C) for H =
C+ ∪ C−. More precisely s(C) = Õ

(
VCdim(H) · θ(C,H)

)
must hold for every

H ⊇ C because, otherwise, the lower bound in Theorem 4 would exceed the upper
bound Õ (s(C)/

√
ε), which follows directly from Corollary 2 and Theorem 1 with

C1 = C2 = C.
The next step will be to provide lower bounds that remain valid even when

pmin takes more “benign values” than it does in the worstcase. Actually, Corol-
lary 3 is a first step in this direction because the lower bound in this result
nicely matches with the upper bound in Corollary 2 when pmin ≤ 1/(θ1θ2). We
list here, without proof, some more lemmas of this kind which together witness
that all upper bounds mentioned in Corollary 2 are fairly tight.

For any concept class C over domain X , the class co(C) is given by co(C) =
{X \A| A ∈ C}. Clearly, VCdim(C) = VCdim(co(C)) and θ(C) = θ(co(C)).

Lemma 7. Let k, n ≥ 1, let C1 = SFkn+2, and let C2 = co(SFn+2), so that
θmax = θ(C1) = θ(C[d1]

1 ) = kn+2 and θmin = θ(C2) = θ(C[d2]
2 ) = n+2. Then, for

every sufficiently small ε > 0, the number of examples needed to learn C[d1]
1 , C[d2]

2

in the PAC Co-training Model under the Conditional Independence Assumption
is at least ⎧⎪⎨⎪⎩

Ω
(√

d1d2
ε · θmin

pmin

)
if θmin

θmax
≤ pmin ≤ 1

2

Ω

(√
d1d2

ε · θmax

)
if 1

θmax
≤ pmin ≤ θmin

θmax

.

Lemma 8. Let n ≥ 2, let C1 = C2 = SFn+2, so that θ1 = θ2 = θmax = n + 2.
Then, for every 1/(θ1θ2) ≤ pmin ≤ 1/θmax and every sufficiently small ε > 0,
the number of examples needed to learn C[d1]

1 , C[d2]
2 in the PAC Co-training Model

under the Conditional Independence Assumption is at least Ω
(√

d1d2
εpmin

)
.

The lower bounds in Corollary 3 and Lemmas 7 and 8 nicely match with the
general upper bounds given in Corollary 2.
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4.3 Sample Size in Case of One-Sided Errors

In the upper bounds presented in this section, any term of the form dbθb can
be safely replaced by s(Cb) provided that Hb = C+

b ∪ C−
b . The proofs will be

presented in the journal version.

Theorem 5. For b = 1, 2, let Cb,Hb be classes such that Hb contains hypotheses
with plus-sided errors (or with minus-sided errors, resp.) w.r.t. Cb. Then sample
size ⎧⎪⎨⎪⎩

Õ
(√

d1d2
ε · 1

pmin

)
if pmin ≥ 1

θ1θ2

Õ

(√
d1d2

ε · θ1θ2
)

otherwise

is asymptotically sufficient for learning C1, C2 with hypotheses from H1,H2 in
the PAC Co-training Model under the Conditional Independence Assumption.

Note that the upper bound from Theorem 5 applies to the special case where,
for b = 1, 2, Hb = Cb and Cb is intersection-closed (or union-closed, resp.). In this
case, the upper bound nicely matches with the lower bounds from Corollary 3
and Lemma 8.

Theorem 6. For b = 1, 2, let Cb,Hb be classes such that H1 contains hypotheses
with plus-sided errors w.r.t. C1, and H2 contains hypotheses with minus-sided
errors w.r.t. C2. Then sample size⎧⎪⎨⎪⎩

Õ
(√

d1d2
ε · θmin

pmin

)
if pmin ≥ θmin

θmax

Õ

(√
d1d2

ε · θmax

)
otherwise

is asymptotically sufficient for learning C1, C2 with hypotheses from H1,H2 in
the PAC Co-training Model under the Conditional Independence Assumption.

Note that the upper bound from Theorem 6 applies to the special case where
H1 = C1 is intersection-closed and H2 = C2 is union-closed. In this case, the
upper bound nicely matches with the lower bound from Lemma 7.

5 Final Remarks

It is known that semi-supervised learners in the Co-training framework also
benefit from assumptions weaker than conditional independence (see [2, 12]).
One can ask whether PAC-learners can also use this more relaxed assumptions to
their advantage. At least for the assumption introduced in [2] this is not generally
true: for Co-training with an α-expanding distribution and one-sided errors, one
can show that there are classes and distributions (e.g. “Example 1” from [2])
where every PAC-learner requires Ω(d/ε) many examples (with d denoting the
VC-dimension of both views), which coincides with the standard PAC bounds.
On the other hand, conditional independence given the label reduces the label
complexity to Õ(d/

√
ε). Details will follow in the journal version of this paper.
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We also looked into having more than two views. With k views under the
Conditional Independence Assumption we can show that the upper bound for
rule R3 becomes m = Õ

(
k
√
d1θ1 · · ·dkθk/ε

)
, and, as in the 2-view case, this has a

matching lower bound. The other bounds can be generalized in a similar fashion.
The lower bound given in Theorem 4 is only valid for finite s+b , s

−
b , because the

constraint on ε is essentially 1/ε ≥ max{s+1 s+2 , s−1 s−2 }. In case the singleton size
is infinite, however, this theorem still implies some lower bound, namely Ω(1/ε).
Nevertheless, this rules out the drastic reduction of the label complexity that we
saw for s+b , s

−
b < ∞. To determine how much the Co-training assumption can

help in this situation is work in progress.
In a broader context, it would be interesting to see whether the techniques of

this paper can be applied to get new bounds on the unlabeled sample complexity
in semi-supervised learning. Another interesting question is whether existing up-
per bounds in active learning (at least in the realizable case) can be reformulated
in completely combinatorial terms using Theorem 1.
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Abstract. We introduce a new model of learning, Known-Labeling-
Classifier-Learning (KLCL). The goal of such learning is to find a low-
error classifier from some given target-class of predictors, when the correct
labeling is known to the learner. This learning problem can be viewed as
measuring the information conveyed by the identity of input examples,
rather than by their labels.

Given some class of predictors H, a labeling function, and an i.i.d.
unlabeled sample generated by some unknown data distribution, the goal
of our learner is to find a classifier in H that has as low as possible error
with respect to the sample-generating distribution and the given labeling
function. When the labeling function does not belong to the target class,
the error of members of the class (and thus their relative quality as label
predictors) varies with the marginal of the underlying data distribution.

We prove a trichotomy with respect to the KLCL sample complexity.
Namely, we show that for any learnable concept class H, its KLCL sample
complexity is either 0 or Θ(1/ε) or Ω(1/ε2). Furthermore, we give a
simple combinatorial property of concept classes that characterizes this
trichotomy.

Our results imply new sample-size lower bounds for the common ag-
nostic PAC model - a lower bound of Ω(1/ε2) on the sample complexity
of learning deterministic classifiers, as well as novel results about the
utility of unlabeled examples in a semi-supervised learning setup.

1 Introduction

Most of the work in classification learning focuses on learning a good labeling
function. We consider a somewhat different problem - learning to classify when
the target labeling is known. Can learning a classifier be a challenge to a learner
that already knows the correct classification of every domain point? It can, if
the classifier is required to belong to a given class of classifiers, and the correct
classification is not a member of that class. In such cases, in order to discover
the minimal error classifier in the class, one needs to estimate the underlying
marginal distribution of the data.
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In the common PAC learning model, the empirical information available to the
learner is in the form of a randomly generated sample of labeled points. Such
a sample can be viewed as containing two types of information: information
about the labeling rule, and information about the underlying (marginal) data
distribution. In this work we wish to focus on the second aspect. We do so by
taking an unusual step - assuming that the data labeling rule is a priori known to
the learner (and is deterministic, so there is no labeling uncertainty whatsoever).

1.1 Our Results

Our analysis yields a trichotomy with respect to the KLCL sample complex-
ity. Namely, we show that for any learnable concept class H, its KLCL sample
complexity is either 0 or Θ(1/ε) or Ω(1/ε2). Furthermore, we give a simple com-
binatorial property of concept classes that characterizes this trichotomy.

Since in the KLCL model the labels are known to the learner, clearly, learning
in this model is easier than learning in the PAC model. In particular, any sample
complexity upper bound for (proper) PAC learning readily applies to the KLCL
setup as well. The more intriguing question seems to be lower bounds; how hard
can it be to learn a predictor when the complete labeling information is known
right from the onset of the learning process? The focus of this paper is, therefore,
on lower bounding the sample complexity of learning in the KLCL model. Our
main lower bound result is based on deriving a lower bound on the number of die
rolls needed to detect a bias in a k-face die, and may be of independent interest.

On the other hand, we show that KLCL is strictly easier than PAC learning
in the following sense: there exist classes H that are KLCL learnable but not
PAC learnable (they have infinite VC-dimension).

In contrast with that, we show in Section 6 that KLCL is not easier than usual
classification learning, in the sense that for every concept class H there is a corre-
sponding class HL such that learning the class HL in the KLCL model w.r.t. the
constant zero function is as hard as learning H in the agnostic PAC model.

1.2 Applications to Semi-supervised Learning

The distinction between the information conveyed by the labels of sample points
and the information conveyed by the identity of the sampled points (regardless of
their labels) arises naturally in the context of semi-supervised learning (SSL). In
that model, one basically asks ”to what extent can unlabeled samples be utilized
to reduce the size of the labeled sample needed for learning?” By separating the
two types of sample information, as described above, we can alternatively ask
”how much of the needed sample is required to learn the labeling in comparison
to how much of it is required to learn the relevant patterns of the data marginal
distribution?” This distinction can be put into use in the proper SSL learning
task, where the learner is required to output a classifier that belongs to some
pre-determined class H. Proper learning arises in situations where either the
simplicity of a predictor (say, from the point of view of the speed of prediction it
allows) or its interpretability are of primal importance. For example, the learner’s
goal might be to provide patients with some medical advice. In such cases, the
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learner may wish to sacrifice some of the accuracy of a predictor to allow coming
up with a more user friendly predicting rule. In that model, a possible learning
strategy may be to first learn a low error predictor, f , not necessarily in H, and
then use the unlabeled data to determine which h ∈ H is closest to that first
predictor w.r.t the marginal distribution. Namely, find h ∈ H that minimizes
D(hΔf) (where D is the marginal of the data distribution); see [4] for more
details on such an approach. This second step is exactly what our model focuses
on. Our sample complexity lower bounds readily translate into lower bounds on
the needed unlabeled sample size for carrying out the second step of the above
proper SSL learning paradigm.

1.3 Outline of the Paper

We start in Section 2 by introducing our combinatorial characterization of KLCL
trichotomy of concept classes. In Section 3 we state the main trichotomy theorem,
1, and prove its first (and easy) part. In Section 4 we prove an upper bound as
well as a matching lower bound for the KLCL sample complexity of concept
classes of infinite VC-dimension that do not shatter some infinite set, proving
the second part of theorem 1. We present our main statistical tool, the biased
dice problem, and analyze its information complexity in subsection 5.1. The
following subsection, 5.2, proves the reduction from the biased dice problem to
the KLCL learning problem, proving the third part of theorem 1. In Section 6
we show a sample complexity preserving reduction of agnostic PAC learning to
KLCL learning, just showing that the KLCL framework gives rise to some hard
and also un-learnable tasks. Finally, in Section 7 we summarize our work and
call attention to some major remaining open problems.

2 Basic Definitions

Given some domain set X and a hypothesis class H of classifiers over X , the
Known-Labeling Classifier Learning (KLCL) problem for H is defined as follows:

Input: A function f : X → {0, 1} and a sample (x1, . . . , xm) of members of X
generated i.i.d. by some unknown probability distribution, D, over X .

Goal: Find h ∈ H that minimizes the error Errf
D(h)

def
= D[{x ∈ X : f(x) �=

h(x)}].

In this work, we are interested in the sample complexity of this problem, as a
function of the structure of the hypothesis class H.

Definition 1. Given X and H as above,

1. A KLCL learner for H (an H-learner, in short) is a function L : {0, 1}X ×⋃∞
m=1X

m → H. That is, a learner that takes as input a labeling function
f : X → {0, 1} and a finite sample of points in X and outputs a classifier
from H.
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2. Given a probability distribution, D, over X,

ErrfD(H)
def
= inf{ErrfD(h) : h ∈ H}.

3. Given ε, δ > 0 and a class H, the (ε, δ)-sample-complexity of a learner L over
H is the minimum sample size m such that, for every f : X → {0, 1} and
every D, if L is given f , then with probability exceeding 1 − δ over samples
S ∼ Dm,

ErrfD(L(f, S)) < Errf
D(H) + ε.

4. The (ε, δ)-sample-complexity of a class H is the minimum (ε, δ)-sample-
complexity over all H learners.

Definition 2. We say that a class of functions H is redundant over some do-
main element x ∈ X if for all h, h′ ∈ H, h(x) = h′(x).

Definition 3. Define AH = {x ∈ X : H is not redundant over x}. We classify
the possible classes of functions H over a domain set X into three mutually
exclusive types, based on their behavior on AH.

1. We say that H is simple if H shatters AH.
2. We say that H is pseudo-simple if AH is infinite and H does not shatter

AH, but shatters every finite subset of AH.
3. We say that H is non-simple if H there exists some finite subset of AH that

is not shattered by H.

It is straightforward to check that each class of functions H is of exactly one of
the above three types. In addition, if H has finite VC dimension, then H cannot
be pseudo-simple.

We are now ready to state our main theorem.

3 Main Result

The central result of this paper is the following crisp characterization of the
KLCL sample complexity of a given class as a function of the accuracy param-
eter ε.

Theorem 1 (The Main Theorem). For any hypothesis class H,

1. If H is simple then the KLCL sample complexity of H is zero.
2. If H is pseudo-simple and X is countable, then the KLCL sample complexity

of H is Θ
(

1
ε log 1

δ

)
.

3. If H is non-simple, then the KLCL sample complexity of H is Ω
(

1
k

1
ε2 log 1

δ

)
,

assuming ε < 1
k+1 .

The k factor in the above theorem is the ”all-shattered dimension” of H: the
largest integer such that all subsets of AH of size k are shattered by H. Notice
that k is bounded above by the VC dimension of H, but is often much smaller.
For example, if H is the class of linear half spaces in some Rd, then its VC
dimension is d+1, while its all-shattered dimension is just 2, regardless of what
d is.
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Some Remarks:

– The theorem does not deal with the case that X is uncountable and H is
pseudo-simple.

– When X is countable and H is pseudo-simple, then H has infinite VC di-
mension, and hence part 2 of the theorem implies that it is possible to learn
in the KLCL model even when H is not learnable in the usual agnostic PAC
sense (since it has infinite VC dimension).

Corollary 1. If H is a non-simple hypothesis class then the sample complexity
of learning H in the agnostic PAC model w.r.t deterministic labeling functions
is Ω(1/ε2) (where ε is the excess error of the learned hypothesis over that of the
best predictor in H.)

Proof (of the corollary). Just note that KLCL learning is strictly easier than PAC
learning. Having access to the labeling function, f , and an unlabeled sample of
points a KLCL learner can readily label the sample and use it as an input to an
agnostic PAC learner. The success measure is the same in both models.

Proof (of part 1 of the theorem). Suppose H is simple, and consider any labeling
function f . Find h ∈ H that agrees with f on AH (this is possible as H shatters
AH). Then Errf

D(H) = Errf
D(h) and a learner L that outputs h without seeing

any input has error equal to ErrfD(h) with probability 1, so the difference between
the two is always 0. This means the learner L satisfies every (ε, δ) pair without
seeing any input, so the sample complexity is zero.

The remainder of the paper is devoted to proving parts 2 and 3 of theorem 1.

4 KLCL of Classes of Infinite VC Dimension

In this section we prove claim 2 of theorem 1. Namely, that if a H is a pseudo-
simple class over some countable domain set, X , then the KLCL sample com-
plexity of H is Θ

(
1
ε log 1

δ

)
. We need to prove both lower and upper bounds on

the sample complexity of H.

Lemma 1 (Upper bound). If H is pseudo-simple over some countable domain
set, X, then, there exists a KLCL learner, L, that for every f : X → {0, 1} and
every probability distribution, D, over X, if m ≥ log(1/δ)

ε then, with probability
> (1 − δ) over samples S ∼ Dm, ErrfD(L(S)) ≤ ErrfD(H) + ε.

Proof. Let X = {an : n ∈ N}. Let L be a learner that, upon seeing a sample S
outputs some h ∈ H such that, for all x ∈ {an : ∃ai ∈ S such that n ≤ i} ∩AH,
f(x) = h(x). Note that such an h exists due to the pseudo-simplicity of H.

Now, given any probability distribution D over X , let k(ε,D) be the maximal
number, k, such that D({an : n > k}) > ε. Clearly, of S∩{an : n > k(ε,D)} �= ∅
then indeed ErrfD(L(S)) ≤ Errf

D(H)+ ε. It follows that the probability of failure
of L satisfies δ ≤ (1 − ε)m. Standard calculation shows that this implies that
m(ε, δ) ≤ log(1/δ)

ε .



Learning a Classifier when the Labeling Is Known 445

Lemma 2 (Lower bound). Let X be a countable domain and H a pseudo-
simple class over X. Given ε, δ > 0, let m < C(1/ε), for some constant C.
Then, there exists a function f : X → {0, 1} such that for every KLCL learner
for H, there exists a probability distribution D over X, such that with probability
> δ over samples S ∼ Dm, Errf

D(L(S)) ≥ Errf
D(H) + ε.

Proof. Let f : X → {0, 1} be such that for every h ∈ H there exists x ∈ AH
such that h(x) �= f(x). Pick some x0 ∈ X . Now given any learner L for H,
and a number m, let S be a sample of size m consisting of just repetitions of
x0. Let y0 ∈ AH be such that f(y0) �= L(S)(y0) (such y0 exists by our choice
of f). We define D to be the distribution whose support is {x0, y0} and picks
x0 with probability 1 − ε and picks y0 with probability ε. Clearly, whenever a
sample S does not include the point y0, ErrfD(L(S)) ≥ Errf

D(H) + ε. The proof
is concluded by noting that in order to drive the probability of missing y0 bellow
δ, the needed sample size is Ω

(
1
ε log 1

δ

)
.

5 KLCL Learning of Finite VC-Classes

In this section we prove the third part of theorem 1. We do that by analyzing
the information complexity of some weighted dice bias-detection problem, and
reducing it to our KLCL task.

5.1 The Weighted Dice Problem

Consider the following problem. There are k ≥ 2 dice, each of which has k sides,
numbered 1 through k. For the i-th die, the probability of rolling i is ε less than
the probability of rolling every other number, but the die is otherwise unbiased.
We denote the i-th die by Pi, with the notation that Pi(j) is the probability that
rolling the i-th die gives j. Then

Pi(j) =

{
1+ε
k if i �= j

1+ε
k − ε if i = j

One of these dice is rolled m times. A learner gets the outcome of these m die
rolls, and has to determine which of the k dice generated that sample.

The idea behind lower bounding the sample complexity of learning in the
KLCL model (in the non-simple case) is to reduce the weighted die problem to
the given learning task and apply a sample size lower bound for the weighted
die problem.

Theorem 2. If the die is picked randomly, with probability 1/k for each die,
then for any 0 < δ < 1/4 and any 0 < ε < 1, if the number of seen die rolls, m,
is at most

k

⎢⎢⎢⎣1
k

(
1

k − 1
− ε

(
1 − 1

k
+ ε

))
1
ε2

ln

⎛⎝ 1

4 k
k−1δ

(
1 − k

k−1δ
)
⎞⎠⎥⎥⎥⎦
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then any algorithm for the weighted die problem (i.e., a function that takes the
outcome of the die rolls as input and outputs a die Pi for some i ≤ k) will output
a wrong die with probability at least δ.

Note that a simpler but weaker bound that follows from the above is that if
ε < 1

k and m is less than

k

⌊
1
k

(
1

k − 1
− ε

)
1
ε2

ln
(

1
4δ

(
1 − 1

k

))⌋
then any algorithm has probability of error above δ. When ε and δ are small
relative to 1/k, this lower bound is roughly equal to(

1
k − 1

)
1
ε2

ln
(

1
δ

)
Our analysis extends the analysis of estimating the parameter of a Bernoulli
variable, as carried out in the proof of Lemma 5.1 of [1]. We first argue that
the learner which picks the die corresponding to the face least seen is the best
possible learner.

Definition 4. Let L0 be the learner that counts the number of occurrences of
each face j in the given sample, and outputs die j only if j is a face with least
occurrences in the sample. In the case of a tie, L0 outputs j if j is the least index
such that face j is a face with least occurrences in the sample.

Let L be any other learner. We claim that the probability of error of L is at least
that of L0. The proof of this is simple and follows a similar argument to the one
in the proof of Lemma 5.1 in [1].

Proof. We analyze the probability of error of L0 given a sample of size m. We
first analyze the conditional probability that L0 makes an error given that the
correct die is Pi. Under this condition, the probability that L0 makes an error
is at least the probability that face i is not a face of least occurrence.

We restrict ourselves to the case where m is a multiple of k. Notice that if face
i occurs more than m/k times in the sample, then it cannot be a face of least
occurrence, since there must be a face which occurs at most m/k times in the
sample. Moreover, if face i occurs exactly m/k times, then there will still be a
face occurring less times than face i unless all faces occur exactly m/k times; in
that case, L0 still makes an error unless i = 1. We restrict ourselves to the case
that i �= 1. In this case, we conclude that given that the correct die is Pi, the
probability that L0 makes an error is at least the probability that face i occurs
at least m/k times.

Now, if the correct die is Pi, let S denote the random variable for the number
of occurrences of face i in the sample. Then S follows a binomial distribution with
probability of success 1+ε

k − ε. Therefore, if there are m die rolls, the probability
that the number of occurrences of face i in the sample exceeds m/k is P [S ≥ m

k ].
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We use Slud’s inequality ([2]), which states that if S ∼ Bin(m, p) where p ≤ 1
2

and b is an integer with mp ≤ b ≤ m(1 − p) then

P [S ≥ b] ≥ P

[
Z ≥ b−mp√

mp(1 − p)

]

where Z ∼ N(0, 1) is a normally distributed random variable with mean of 0
and standard deviation of 1. We then apply a normal tail bound [3] which states
that if x ≥ 0 then

P [Z ≥ x] ≥ 1
2

(
1 −
√

1 − e−x2
)
.

Our bound is based on the composition of Slud’s inequality with this normal tail
bound.

Set p = 1+ε
k − ε and b = m

k . Then S ∼ Bin(m, p). We first verify that Slud’s
inequality applies (that is, we check that the required conditions on m, p, and b
all hold).

We have

p =
1 + ε

k
− ε =

1
k

− ε

(
1 − 1

k

)
<

1
k

≤ 1
2
,

since k ≤ 2 and ε > 0. Also, since p < 1
k , we have

b =
m

k
> mp.

Finally, since p < 1
k ≤ 1

2 , 1 − p > 1
k , and therefore m(1 − p) ≥ m

k = b. so
Thus Slud’s inequality applies. We can now write

P [S ≥ b] ≥ P

[
Z ≥ b−mp√

mp(1 − p)

]

= P

⎡⎣Z ≥
m
k −m

(
1
k − ε

(
1 − 1

k

))√
m
(

1
k − ε

(
1 − 1

k

))
(1 + ε)k−1

k

⎤⎦
= P

⎡⎣Z ≥
mεk−1

k√
m (1 − ε (k − 1)) (1 + ε)k−1

k2

⎤⎦
= P

[
Z ≥

√
mε2(k − 1)

(1 − ε (k − 1)) (1 + ε)

]

Composing this with the normal tail bound gives

P
[
S ≥ m

k

]
≥ 1

2

(
1 −

√
1 − exp

(
− mε2(k − 1)

(1 − ε (k − 1)) (1 + ε)

))
.
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We conclude that the conditional probability that L0 makes an error given that
the die is Pi with i �= 1 is at least

1
2

(
1 −

√
1 − exp

(
− mε2(k − 1)

(1 − ε (k − 1)) (1 + ε)

))
,

where m is the size of the sample and is assumed to be a multiple of k. We now
write

P [L0 makes an error] =
k∑

i=1

P [L0 makes an error | the die is i]P [the die is i]

=
k∑

i=1

P [L0 makes an error | the die is i]
1
k

>
1
k

k∑
i=2

P [L0 makes an error | the die is i]

(note that we removed the case i = 1)

≥ 1
k

k∑
i=2

1
2

(
1 −

√
1 − exp

(
− mε2(k − 1)

(1 − ε (k − 1)) (1 + ε)

))

=
k − 1
2k

(
1 −

√
1 − exp

(
− mε2(k − 1)

(1 − ε (k − 1)) (1 + ε)

))

Thus, if the probability of error of an algorithm L is less than δ given a sample
of size m where m is a multiple of k, then we have

δ >
k − 1
2k

(
1 −

√
1 − exp

(
− mε2(k − 1)

(1 − ε (k − 1)) (1 + ε)

))
.

Separating m out of the above inequality gives

m >

(
1

k − 1
− ε

(
1 − 1

k
+ ε

))
1
ε2

ln

⎛⎝ 1

4 k
k−1δ

(
1 − k

k−1δ
)
⎞⎠ .

Finally, we deal with the case that m is not a multiple of k by rounding it up to
the nearest multiple of k. Hence we conclude that if the probability of error is
at most δ, then

m > k

⎢⎢⎢⎣ 1
k

(
1

k − 1
− ε

(
1 − 1

k
+ ε

))
1
ε2

ln

⎛⎝ 1

4 k
k−1δ

(
1 − k

k−1δ
)
⎞⎠⎥⎥⎥⎦

and the desired result follows.



Learning a Classifier when the Labeling Is Known 449

5.2 Reducing the Dice Problem to KLCL Learning

We now apply the lower bound on the biased dice problem to prove part 3 of
theorem 1.

Proof. Assume H is not simple, let A ⊆ AH be a set un-shattered by H of
minimum size and let f : A → {0, 1} be unrealized by H . Then every subset of
A is shattered by H . Notice that the size of A is at most one more than the VC-
dimension of H , which is assumed to be finite. Let k = |A|− 1. Notice that each
subset of A of size k is shattered by H , so that k is the all-shattered dimension
of H. Moreover, for each subset B ⊂ A of size k, there is some hB ∈ H such that
hB|B = f |B (that is, hB agrees with f on B). Let C = {hB : B ⊂ A and |B| =
k} ⊆ H .

We now reduce the weighted dice problem with k + 1 dice, for fixed ε, and
probability of error δ to the problem of finding h ∈ H with Errf

P (h) ≤ Errf
P (H)+

ε with probability of error δ. We do this by defining k+1 probability distributions
on the domain set, each of which has zero weight outside of the set A. The
distributions will be the same as those in the weighted dice problem.

Label the elements of A by the set {1, 2, . . . , k + 1}, so that we have A =
{a1, a2, . . . , ak+1}. Let ε ∈ (0, 1/(k+ 1)) and δ ∈ (0, 1/4). For i = 1, 2, . . . , k+ 1,
define the probability distribution Pi on A by

Pi(aj) =

{
1+ε
k+1 if i �= j
1+ε
k+1 − ε if i = j

.

Suppose we have a learner L with the property that for all probability distribu-
tions P on the domain, if S is an i.i.d. P sample of size m, then, with probability
≥ 1 − δ,

ErrfP (L(f, S)) < Errf
P (H) + ε.

In particular, L will have this property for the distributions Pi, i = 1, 2, . . . , k+
1. Notice that for each i, the best approximation to f under the probability
distribution Pi is one of the functions in C, since those are the functions that
agree with f on all of A except for one element. In addition, for each i, we have

Errf
Pi

(hi) =
1 + ε

k + 1
− ε

where hi is the function in C that agrees with f on all of A except for ai, and

ErrfPi
(h) =

1 + ε

k + 1

for any function other function h ∈ H . Thus

ErrfPi
(H) ≥ 1 + ε

k + 1
− ε,

and since
Errf

P (L(f, S)) < Errf
P (H) + ε
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we must have
L(f, S) = hi

with probability at least 1 − δ.
Now pick i with uniform distribution on {1, 2, . . . , k + 1} and generate an

i.i.d. sample S of m elements of A with distribution Pi. Then with probability
at least 1 − δ, we have L(f, S) = hi. Since we can determine i from hi, we have
an algorithm for the weighted dice problem which uses m rolls of the dice and
has probability of error less than δ. By theorem 2, we have

m ≥ (k + 1)

⌊
1

k + 1

(
1
k

− ε

(
1 − 1

k + 1
+ ε

))
1
ε2

ln

(
1

4k+1
k δ
(
1 − k+1

k δ
))⌋ .

We conclude that the (ε, δ)-sample complexity of H is at least

(k + 1)

⌊
1

k + 1

(
1
k

− ε

(
1 − 1

k + 1
+ ε

))
1
ε2

ln

(
1

4k+1
k δ
(
1 − k+1

k δ
))⌋

= Ω

(
1
k

1
ε2

log
1
δ

)
,

as desired.

6 Reduction of Usual Learning to KLCL and Classes
That Are Not KLCL Learnable

In this section we show that the usual agnostic PAC learning problem can be
reduced to KLCL. Furthermore, using that reduction, we construct a hypothesis
class H that is not KLCL learnable.

Given a hypothesis class h : X → {0, 1}, define a function hL : X × {0, 1} →
{0, 1} by setting hL(x, �) = 0 if h(x) = � and hL(x, �) = 1 if h(x) �= �. Given a
hypothesis class H over some domain set X , let HL be the class {hL : h ∈ H}
of predictors over X × {0, 1}.

Given any probability distribution, P over X × {0, 1}, note that, for every
h : X → {0, 1}, the error of h w.r.t. P equals the error Err0̄P (hL), where 0̄ is the
constant zero function.

It follows that, for every class H over X and every ε, δ > 0), if the class HL

can be (ε, δ) learned from m(ε, δ) examples in the KLCL model, then the class
H is (ε, δ) learned from m(ε, δ) examples in the usual agnostic PAC model.

It is now easy to construct a class H0 that is not KLCL learnable. To achieve
that, take any class of functions, H, over some domain set X , that has infinite
VC dimension (and thus, it is not learnable), now the class HL (over the domain
X × {0, 1}) is not learnable in the KLCL model, even just w.r.t. the all-zero
labeling function.
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7 Conclusions and Future Work

In this work we defined a new variant of the statistical learning problem. Our
KLCL problem focuses on the information conveyed by the unlabeled part of
a training sample (or, if you wish, the marginal of the empirical probability).
Our way of addressing that aspect is by considering proper learning when the
learner already knows what the labeling function is. Lower bounds on the sample
complexity of learning in this model readily apply to the sample complexity of
learning with deterministic labeling functions in the usual PAC model. In this
paper, most of our analysis focused on lower bounding that sample complexity.
It turns out that a critical parameter in such lower bounds is the ”all-shattered-
dimension” - the maximal size so that every non-redundant domain subset of
that size is shattered. The all-shattered-dimension is always bounded by the
VC-dimension, but is much lower for many common classes. Considering sample
complexity upper bounds, clearly any upper bound in the usual agnostic PAC
model applies to our model as well. However there is a curious discrepancy
between such upper bounds and the lower bound proven here. The known upper
bounds grow with the VC dimension, while our lower bound shrinks as the all-
shattered-dimension grows. In section 6, we show that KLCL is not easier than
the usual classsification learning in the sense that for every concept class H
there is a corresponding class HL such that learning the class HL in the KLCL
model w.r.t. the constant zero function is as hard as learning H in the agnostic
PAC model. An interesting open question is therefore to classify when the KLCL
problem for a class H can be solved with sample sizes lower than those needed
for PAC learning H.

We hope that this paper will stimulate further research in these directions,
research that will shed more light on the distinction between the information
conveyed by the labels of a training sample and the information conveyed by its
marginal (empirical) distribution.
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Bubeck, Sébastien 144

Carpentier, Alexandra 189
Cortes, Corinna 308
Crammer, Koby 114

Dalalyan, Arnak S. 129
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