
What’s Decidable about Weighted Automata?

Shaull Almagor1, Udi Boker1,2, and Orna Kupferman1

1 Hebrew University, School of Engineering and Computer Science, Jerusalem, Israel
2 IST, Austria

Abstract. Weighted automata map input words to numerical values.
Applications of weighted automata include formal verification of quanti-
tative properties, as well as text, speech, and image processing.

In the 90’s, Krob studied the decidability of problems on rational
series, which strongly relate to weighted automata. In particular, it fol-
lows from Krob’s results that the universality problem (that is, deciding
whether the values of all words are below some threshold) is decidable
for weighted automata with weights in � ∪ {∞}, and that the equality
problem is undecidable when the weights are in � ∪ {∞}.

In this paper we continue the study of the borders of decidability in
weighted automata, describe alternative and direct proofs of the above
results, and tighten them further. Unlike the proofs of Krob, which are
algebraic in their nature, our proofs stay in the terrain of state machines,
and the reduction is from the halting problem of a two-counter machine.
This enables us to significantly simplify Krob’s reasoning and strengthen
the results to apply already to a very simple class of automata: all the
states are accepting, there are no initial nor final weights, and all the
weights are from the set {−1, 0, 1}. The fact we work directly with au-
tomata enables us to tighten also the decidability results and to show
that the universality problem for weighted automata with weights in
� ∪ {∞}, and in fact even with weights in �≥0 ∪ {∞}, is PSPACE-
complete. Our results thus draw a sharper picture about the decidability
of decision problems for weighted automata, in both the front of equality
vs. universality and the front of the � ∪ {∞} vs. the � ∪ {∞} domains.

1 Introduction

Traditional automata accept or reject their input, and are therefore Boolean. A
weighted finite automaton (WFA, for short) has numeric weights on its transi-
tions and maps each word to a numeric value. Applications of weighted automata
include formal verification, where they are used for the verification of quanti-
tative properties, for reasoning about probabilistic systems, and for reasoning
about the competitive ratio of on-line algorithms, as well as text, speech, and im-
age processing, where the weights of the automaton are used in order to account
for the variability of the data and to rank alternative hypotheses [5].

The rich structure of weighted automata makes them intriguing mathematical
objects. Fundamental problems that have been solved decades ago for Boolean
automata are still open or known to be undecidable in the weighted setting. Two
problems of great interest in the context of automata are the universality and

T. Bultan and P.-A. Hsiung (Eds.): ATVA 2011, LNCS 6996, pp. 482–491, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

What’s Decidable about Weighted Automata? 483

containment problems. In the Boolean setting, the universality problem asks,
given a nondeterministic automaton (NFA) A, whether all the words in Σ∗ are
accepted by A. In the weighted setting, the “goal” of words is not just to get
accepted, but also to do it with a minimal value. Accordingly, the universality
problem for WFAs asks, given a WFA A and a threshold v, whether A assigns
a value that is smaller than v to all words in Σ∗. Similarly, the containment
problem in the weighted setting naturally extends the Boolean one by asking,
given two WFAs A and B, whether for all words w ∈ Σ∗, the value of w in B is
less than or equal to its value in A. In the Boolean setting, the complexity for
the two problems coincide, and is PSPACE-complete [8]. As we shall see in this
paper, in the weighted setting the picture is more involved.

Recall that weighted automata map words to numerical values. Technically,
each weighted automaton is defined with respect to an algebraic semiring. For
example, 〈�∪{∞}, min, +,∞, 0〉 is a semiring whose sum operator is min (with
∞ being the identity element) and whose product operator is + (with 0 being
the identity element). Such a min-sum semiring is called a tropical semiring.
The value of a run is the semiring-product of the weights along the transitions
traversed (and the initial and final weights). The value of a word is the semiring-
sum of the values of the accepting runs on it. A formalism that is analogous to
the one of weighted automata is the one of rational series [10]. There too, the
series is defined with respect to a semiring, and maps words to values from the
domain of the semiring.

In [6], Krob proved that the universality problem for rational series is unde-
cidable for the tropical semiring with domain � ∪ {∞}, and that this implies
undecidability of the containment problem for the tropical semiring with domain
� ∪ {∞}. Moreover, in [7], Krob proved that universality for rational series de-
fined with respect to the tropical semiring with domain � ∪ {∞} is decidable.
The analogy between rational series and weighted automata implies the same
results for the universality and containment problems for weighted automata.

In this paper we describe alternative and direct proofs of the above results.
Our clean reduction enables us to strengthen the result to a weaker model of
automata, and to make the proof generalizable to automata over infinite words.

Our proofs offer the following advantages. First, unlike the undecidability
proofs of Krob, which refer to rational series and are therefore algebraic in their
nature, our proofs stay in the terrain of state machines: while Krob’s reduction
is from Hilbert’s 10th problem (solving a Diophantine equation), ours is from
the halting problem of a two-counter machine. This enables us to significantly
simplify Krob’s reasoning and make the undecidability result accessible to the
automata-theoretic community.

Second, the clean reduction enables us to strengthen the result and show that
undecidability applies already to a very simple class of automata: the weights
of the automaton are in {−1, 0, 1}, it has no initial nor final weights, and all
its states are accepting. We note that Krob’s reduction does not capture this
weaker class of automata.

484 S. Almagor, U. Boker, and O. Kupferman

Third, the pure algebraic view of rational series has the drawback that it
cannot be generalized to some natural extensions of the weighted setting. For
example, rational series cannot capture weighted automata on infinite words
(where one cannot speak about final states or final weights), nor can it capture
discounted-sum automata over finite and infinite words [2,1]. For these cases,
the non-algebraic, automata-theoretic definition, is useful [2,4,3].

Our proof uses ideas similar to those presented in [4]. Given a two counter
machine M, we define a weighted automaton A whose alphabet is the set of M’s
operations. We show that A assigns a positive value to a word w if and only if
w describes the actual run of M and this run is halting with both counters
having value 0. Hence, we have that M halts iff A is not universal with respect
to the threshold 1. A direct corollary is that the containment problem is also
undecidable.

Recall that when rational series are defined with respect to the tropical semir-
ing with domain � ∪ {∞}, universality becomes decidable [7]. The fact that we
work directly with the automata enables us to tighten this result too. By bound-
ing the length of the shortest witness to non-universality we are able to show
that the universality problem for weighted automata defined with respect to
the tropical semiring with domain � ∪ {∞} is PSPACE-complete. We extend
this good news also to weighted automata defined with respect to the tropical
semiring with domain �≥0 ∪ {∞}. On the other hand, we show that restricting
to the domain � ∪ {∞} is not helpful for the containment problem, which is
undecidable. We conclude that, unlike the Boolean case, the universality and
containment problems do not have the same complexity in the weighted setting,
and are in fact on different sides of the border of decidability. Moreover, this
border crucially depends on whether the weights of the weighted automaton are
all of the same polarity (all in � ∪ {∞} or all in −�∪ {−∞}) or are mixed (as
in � ∪ {∞}).

Due to the lack of space, full proofs and examples are omitted from this
version. A full version can be found in the authors’ home pages.

2 Preliminaries

A weighted finite automaton (WFA, for short) is A = 〈Σ, Q, Δ, c, Q0, F, i, f〉,
where Σ is a finite input alphabet, Q is a finite set of states, Δ ⊆ Q×Σ×Q is a
transition relation, c : Δ → � is a cost function, Q0 ⊆ Q is a set of initial states,
F ⊆ Q is a set of final states, i : Q0 → �∪{∞} is an initial-weight function, and
f : F → � ∪ {∞} is a final-weight function. A transition d = 〈q, a, p〉 ∈ Δ (also
written as Δ(q, a, p)) can be taken by A when reading the input letter a in the
state q, and it causes A to move to the state p with cost c(d). Note that a WFA
A may be nondeterministic in the sense that it may have many initial states,
and that for some q ∈ Q and a ∈ Σ, it may have Δ(q, a, p1) and Δ(q, a, p2), with
p1 	= p2. We say that A is complete if Δ is total; that is, for every state q ∈ Q
and letter a ∈ Σ, there is at least one state p ∈ Q such that Δ(q, a, p).

For a word w = w1 . . . wn ∈ Σ∗, and states q, q′ ∈ Q, a run of A on w is a
sequence r = r0r1 . . . rn ∈ Q+, where r0 ∈ Q0, rn ∈ F , and for all 1 ≤ i ≤ n, we

What’s Decidable about Weighted Automata? 485

have di = 〈ri−1, wi, ri〉 ∈ Δ. The cost of the run r is c(r) = i(r0) +
∑n

i=1 c(di) +
f(rn). Note that if A is nondeterministic, it may have several runs on w. The
cost of w in A is LA(w) = min {c(r) : r is a run of A on w }. If the minimum
is taken over an empty set, then w is not in the range of LA. 1 Recall that
in the binary setting, the universality problem asks, given a nondeterministic
automaton (NFA) A, whether L(A) = Σ∗. Thus, all the words in Σ∗ have to
be accepted by the automaton. In the weighted setting, the “goal” of words is
not just to get accepted, but also to do it with a minimal value. Accordingly,
the universality problem for WFAs asks, given a WFA A and a threshold v ∈ �
given in binary, whether LA(w) < v for all w ∈ Σ∗. We denote the latter
fact by LA < v. The containment and equality problems for NFAs are lifted
to the weighted setting in a similar manner: Given two WFAs A and B, the
containment problem is to decide whether LA(w) ≥ LB(w) for all w ∈ Σ∗. We
refer to ⊥ as being greater than ∞, thus if LB(w) = ⊥ then LA(w) = ⊥ too.
Thus, the domain of A has to be contained in the domain of B. 2 Similarly,
the equality problem is to decide whether LA(w) = LB(w) for all w ∈ Σ∗. In
particular, the domains of LA and LB coincide. It is easy to see that an upper
bound on the containment problem implies upper bounds on the equality and the
universality problems. Also, a lower bound on the universality problem implies
a lower bound on the containment and the equality problems. In the Boolean
setting, the complexity for the three problems coincide, and is PSPACE-complete
[8]. As we shall see in this paper, in the weighted setting the picture is more
involved, and depends on the domain of the weights in the WFA. Studying
the universality problem, it is more convenient to consider its dual, namely the
non-universality problem. There, given A and v, we ask whether there is a word
w ∈ Σ∗ such that LA(w) ≥ v. Thus, the non-universality problem asks whether
there exists a word for which all the runs of A have value of at least v.

3 Weighted Automata with Integer Weights

In this section we show that the universality problem, and therefore also the
containment problem, are undecidable for WFAs with weights in �. In fact,
even when only considering complete automata where all states are final, and

1 In general, a WFA may be defined with respect to a semiring 〈K,⊕,⊗, 00,�〉. The
cost of a run is then the semiring product of the initial weight of the first state,
the weights along the run, and the final weight of the last state. The cost of an
accepted word is the semiring sum over the costs of all accepting runs on it. In this
work, we focus on weighted automata defined with respect to the min-sum semiring,
〈� ∪ {∞}, min, +,∞, 0〉, sometimes called the tropical semiring, as defined above.

2 For our confused readers, the ≥ in the LA(w) ≥ LB(w) condition is not a typo:
recall that the goal of words is to get accepted, and with a minimal value. When A
is contained in B, it is more challenging for words to satisfy their goal in A rather
than in B. In the Boolean setting, this amounts to L(A) being a subset of L(B).
In the weighted setting, this amounts to the values that words are mapped to in A
being greater than the values to which they are mapped in B.

486 S. Almagor, U. Boker, and O. Kupferman

without initial or final weights, in which the weights are only in {−1, 0, 1}, the
problems remain undecidable.

We show this by a reduction from the halting problem for two-counter
(Minsky) machines. Our proof uses ideas similar to those presented in [4]. A
two-counter machine M is a sequence (l1, . . . , ln) of commands involving two
counters x and y. We refer to {1, . . . , n} as the locations of the machine. There
are five possible forms of commands:

inc(c), dec(c), goto li, if c=0 goto li else goto lj , halt,

where c ∈ {x, y} is a counter and 1 ≤ i, j ≤ n are locations. Since we can always
check whether c = 0 before a dec(c) command, we assume that the machine
never reaches dec(c) with c = 0. That is, the counters never have negative
values. Given a counter machine M, deciding whether M halts is known to be
undecidable [9]. Given M, deciding whether M halts with both counters having
value 0 is also undecidable. Indeed, given a counter machine M, we can replace
every halt command with code that clears the counters before halting. Thus,
the halting problem can be reduced to the latter problem, termed the 0-halting
problem.

We are going to reduce the 0-halting problem to the non-universality problem
for complete WFAs with weights in {-1,0,1}, without initial weights or final
weights, in which all the states are final.

Theorem 1. The universality problem for complete WFAs over the semiring
〈�∪ {∞}, min, +,∞, 0〉 with weights in {-1,0,1}, without initial weights or final
weights, in which all the states are final, is undecidable.

Proof. We show a reduction from the 0-halting problem for two-counter ma-
chines to the non-universality problem. Let M be a two-counter machine with
commands (l1, . . . , ln). A halting run of a two-counter machine with commands
from the set L = {l1, . . . , ln} is a sequence ρ = ρ1, . . . , ρm ∈ (L ×�×�)∗ such
that the following hold.

1. ρ1 = 〈l1, 0, 0〉.
2. For all 1 < i ≤ m, let ρi−1 = (lk, α, β) and ρi = (l′, α′, β′). Then, the

following hold.
– If lk is a inc(x) command (resp. inc(y)), then α′ = α + 1, β′ = β (resp.

β = β + 1, α′ = α), and l′ = lk+1.
– If lk is a dec(x) command (resp. dec(y)), then α′ = α−1, β′ = β (resp.

β = β − 1, α′ = α), and l′ = lk+1.
– If lk is a goto ls command, then α′ = α, β′ = β, and l′ = ls.
– If lk is an if x=0 goto ls else goto lt command, then α′ = α, β′ = β,

and l′ = ls if α = 0, and l′ = lt otherwise.
– If lk is a if y=0 goto ls else goto lt command, then α′ = α, β′ = β,

and l′ = ls if β = 0, and l′ = lt otherwise.
– If l′ is a halt command, then i = m. That is, a run does not continue

after halt.
3. ρm = 〈lk, α, β〉 such that lk is a halt command.

What’s Decidable about Weighted Automata? 487

Observe that the machine M is deterministic. We say that a machine M
0-halts if its run ends in 〈l, 0, 0〉.

We say that a sequence of commands τ ∈ L∗ fits a run ρ, if τ is the projection
of ρ on its first component.

The command trace π = π1, . . . , πm of a run ρ = ρ1, . . . , ρm is defined as
follows. For every 1 ≤ i ≤ m, if the command taken in ρi is not of the form
if c=0 goto lk else goto lk′ , then πi = li. Otherwise, πi = goto ls, where
s is the location of the command in ρi+1.

We start by explaining the intuition behind the reduction. We construct a
WFA A such that M 0-halts iff there exists w ∈ Σ∗ such that LA(w) ≥ 1. The
alphabet of A consists of the following n + 5 letters:

Σ = {inc(x),dec(x), inc(y),dec(y),halt} ∪ {goto li : i ∈ {1, . . . , n}}.
When A reads a sequence of commands w, it tries to simulate the run of M that
induces the command trace w. If the sequence of commands fits the actual run,
and this run 0-halts, then all the runs of A cost at least 1. Thus, the word w is
such that LA(w) ≥ 1. If, however, the sequence of commands does not fit the
actual run, then the violation is detected and A has a run on w with non-positive
cost.

We now construct the WFA A = 〈Σ, Q, Δ, c, Q0〉. Observe that we omit F, i
and f , as all the states are accepting, and there are no initial nor final weights.
A detailed example can be found in the full version.

We designate a state qfreeze such that for all σ ∈ Σ, the WFA A has the
transition Δ(qfreeze, σ, qfreeze) with c((qfreeze, σ, qfreeze)) = 0. There is also a
state qhalt with the transition Δ(qhalt, σ, qfreeze) and c((qhalt, σ, qfreeze)) = −1
for all σ ∈ Σ (see Figure 1).

qfreeze qhalt
Σ,−1

Σ, 0

Fig. 1. qfreeze and qhalt

In order to define A, we first define a “skeleton” ComCheck, which is an
underspecified WFA. We then compose A from variants of ComCheck.

The skeleton ComCheck consists of states q1, . . . , qn that correspond to the com-
mands l1, . . . , ln. For two locations i and j, there is a transition from qi to qj iff lj
can locally follow li in a run of M. That is, either j = i + 1 and li is an inc or
dec command, li is a goto lj command, or li is an if c=0 goto lk else goto l′k
command, with j ∈ {k, k′}. The letters labeling the transition from qi to qj cor-
responds to the command trace. That is, the letter is li, except the case li is an
if c=0 goto lk else goto l′k command with j ∈ {k, k′}, in which case the letter
is goto lj . The weights on the transitions, as well as additional transitions, are
specified below in every variant of ComCheck.

The WFA A is composed of 5 gadgets, each responsible for checking a certain
type of violation in the description of a 0-halting run of M. The gadgets are
obtained from ComCheck as described below.

488 S. Almagor, U. Boker, and O. Kupferman

Command Checker. The first gadget we construct is the command checker.
This gadget checks for local violations of succesive commands. That is, it makes
sure that the letter wi represents a command that can follow the command
represented by wi−1 in M. The test is local, as this gadget does not check for
violations involving illegal jumps due to the value of the counters. The command
checker consists of a ComCheck in which all the weights are 0. In addition, we
add transitions labeled by halt from every state qi such that li = halt to
qhalt. These transitions cost 1. Every other transition that is not specified in
ComCheck leads to qfreeze with weight 0. For example, reading a command that
does not correspond to li in qi leads to qfreeze with weight 0. Note that indeed,
if a word represents the command trace of a halting run, it ends with a halt
letter from a state qi such that li = halt. Thus, the last transition has weight 1.
Otherwise, the run of the command checker on w ends with a 0 weight transition.

Positive Jump Checker. The second gadget we need is the positive jump
checker, which is defined for each counter c ∈ {x, y}. This gadget checks for vio-
lations in conditional jumps. In every if c=0 goto lj else goto lk command,
it makes sure that if the jump goto lk is taken, then the value of c is indeed
greater than 0.

This gadget is a variant of ComCheck in which the weights are defined as
follows. Every transition that is taken upon reading inc(c) has weight 1, and
every transition that is taken upon reading dec(c) has weight −1. In every
state qi such that li = if c=0 goto lj else goto lk, we add a transition
〈qi,goto lk, qfreeze〉 with weight −1. We add an initial state q0 that, intu-
itively, has an ε transition with weight 1 to q1 in ComCheck. Since we do not
allow ε transitions, we remove the transition by connecting q0 to the appropriate
descendants of q1. All the other transitions induced by ComCheck have weight 0.
In addition, for every state q in ComCheck we add a transition 〈q,halt, qfreeze〉
with weight 0 (See Figure 2).

The intuition behind this gadget is as follows. Along the run, the cost of the
run reflects the value of the counter c plus 1. Whenever a conditional jump is
taken, A nondeterministically moves to qfreeze, accumulating a weight of −1. If
the jump is legal, then the value of the counter is at least 1, so the cost of the
run so far is at least 1 + 1 = 2. Thus, the nondeterministic run that follows this
route has weight at least 1 when it reaches qfreeze. Otherwise, the value of the
counter is 0, so the cost of the run is 1, and the nondeterministic move to qfreeze

induces a run with cost 0, thus “detecting” the violation.

inc(x), 1

dec(x),−1
qi

qfreeze

qkqj
goto lj , 0 goto lk, 0

goto lk,−1

Fig. 2. Positive Jump Checker for x, where li : if x=0 goto lj else goto lk

What’s Decidable about Weighted Automata? 489

Zero Jump Checker. Dually to the positive jump checker, we define the gadget
zero jump checker for each counter c ∈ {x, y}.

This gadget checks for the dual violations in conditional jumps. Thus, in every
command of the form if c=0 goto lj else goto lk, it makes sure that if the
jump goto lj is taken, then the value of c is indeed 0.

This gadget is a variant of ComCheck in which the weights are as follows. Ev-
ery transition that is taken upon reading inc(c) has weight −1, and every transi-
tion that is taken upon reading dec(c) has weight 1. In every state qi such that
li = if c=0 goto lj else goto lk, we add a transition 〈qi,goto lj, qfreeze〉
with weight 0. We add an initial state q0 exactly as in the positive jump checker.
All the other transitions in ComCheck have weight 0. In addition, for every
state q in ComCheck we have a transition 〈q,halt, qfreeze〉 with weight 0 (See
Figure 3).

inc(x),−1

dec(x), 1
qi

qfreeze

qkqj
goto lj , 0 goto lk, 0

goto lj , 0

Fig. 3. Zero Jump Checker for x, where li : if x=0 goto lj else goto lk

To complete the definition of the automaton, we define Q0 to include the
states corresponding to l1 in the command checker gadget and the q0 states
defined for the jump checkers for each counter c ∈ {x, y}.

We claim that M 0-halts iff there exists w ∈ Σ∗ such that LA(w) ≥ 1. Observe
that the runs of A consist of all the runs in the underlying gadgets. Thus, it is
enough to prove that M 0-halts iff there exists w ∈ Σ∗ such that all the runs of
all the gadgets of A on w have cost of at least 1. A formal correctness proof can
be found in the full version. �

4 Weighted Automata with Positive Weights

In many models, the complexity of the universality problem and of the contain-
ment problem coincide. This is the case with Boolean automata, in which they
are both PSPACE-complete [8], as well as with weighted automata over integer
weights, for which the previous section shows undecidability. In this section we
show that the model of weighted automata over positive integers is different:
while the universality problem is PSPACE-complete, the containment problem
is undecidable.

4.1 Universality Is PSPACE-Complete

In this section we prove that the universality problem for WFAs defined over
the tropical semiring with domain � ∪ {∞}, and in fact even �≥0 ∪ {∞}, is
decidable, and is PSPACE-complete.

490 S. Almagor, U. Boker, and O. Kupferman

Theorem 2. The universality problem for WFAs defined with respect to the
semiring 〈� ∪ {∞}, min, +,∞, 0〉 is PSPACE-complete.

The idea behind the proof is as follows. Consider a WFA A and a threshold
v ∈ �. The fact the weights are all positive enables us to bound the length of a
shortest witness to non-universality by (v +2)|Q|. Intuitively, it follows from the
fact that the relevant information about the runs of A after reading a prefix u can
be summarized by a function from each state q to ⊥, in case q is not reachable
by reading u, or the minimum between v and the cost of reaching q by reading u;
that is, a total of v + 2 values. Moreover, in a witness of a shortest length, such
an information need not repeat. Consequently, it is possible to reason about a
bounded unwinding (one of depth (v + 2)|Q|) of A into a deterministic WFA,
which can be done on-the-fly in PSPACE.

A careful anlysis of the proof of Theorem 2 shows that the result can be
extended to the semiring 〈�≥0 ∪{∞}, min, +,∞, 0〉, by multiplying the weights
by a common denominator. We can thus conclude with the following.

Theorem 3. The universality problem for WFAs defined with respect to the
semiring 〈�≥0 ∪ {∞}, min, +,∞, 0〉 is PSPACE-complete.

4.2 Containment Is Undecidable

We now show that the containment problem is undecidable for WFAs with
weights in �. In fact, the problem is undecidable already for complete WFAs
with weights in {0,1,2}, without initial or final weights, in which all the states
are final.

The decidability result for the universality problem used the monotonicity of
weights accumulated in weighted automata with weights in �. One may wonder
why a similar approach cannot work for the containment problem. The reason
is that the containment problem relates to the difference between two WFAs.
Consequently, the underlying function, which is the difference in the weight
accumulated in the two WFAs, is not monotonic even when the automata have
only positive weights.

The undecidability proof is by a reduction from the containment problem for
WFAs defined with respect to the domain �. It follows an analogous lemma in
[6], according to which, two WFAs with domain � are equal iff so are WFAs
that they induce, and that are with domain �. Intuitively, the induced WFAs
are obtained by increasing all the weights in the original WFAs. Formally, we
have the following.

Theorem 4. The containment and equality problems for complete WFAs over
the semiring 〈� ∪ {∞}, min, +,∞, 0〉 with weights in {0,1,2}, without initial or
final weights, in which all the states are final, is undecidable.

Proof. We start by defining a “weight-increase” operation on WFAs. Consider
a number k ∈ � and a WFA A over � with a cost function c. We define the
k-increase of A, denoted A+k, to be a WFA with a cost function c+k that is

What’s Decidable about Weighted Automata? 491

equivalent to A, except for having all weights increased by k; that is, for every
transition d of A, we have that c+k(d) = c(d) + k.

We claim that for every word w, we have that LA+k(w) = LA(w) + k|w|.
Indeed, consider a run r of A on w, such that c(r) = LA(w). Since A+k has
the same transitions as A, there is a run r′ of A+k on w that follows the same
transitions as r. Thus, c(r′) = c(r)+k|w|, and therefore LA+k(w) ≤ LA(w)+k|w|.
Analogously, we have that LA(w) ≤ LA+k(w)− k|w|, choosing the same run for
A as the one used for A+k. Hence, LA+k(w) = LA(w) + k|w|.

Now, consider two automata, A and B, over �. Let k be the maximal absolute
value of a weight in the transitions of A and B. It is easy to see that all the
weights in A+k and B+k are positive, thus they are defined with respect to
the domain �. We claim that LA ≤ LB iff LA+k ≤ LB+k . Indeed, for every
word w, LA+k(w) ≤ LB+k(w) iff LA+k(w) + k|w| ≤ LB+k(w) + k|w|. Hence,
the containment problem of WFAs over � can be reduced to the containment
problem of WFAs over �, which is undecidable by Theorem 1. Furthermore, as
the automata in Theorem 1 can be restricted to have weights in {−1, 0, 1}, their
corresponding automata over � can be restricted to have weights in {0, 1, 2}.

We now reduce the containment problem to the equality problem, showing
that the latter is undecidable as well. For WFAs A and B, observe that LA ≤ LB
iff LA = min{LA, LB}. Since we can easily construct a WFA for min{LA, LB},
then we can indeed reduce the containment problem to the equality problem.

�

References

1. Boker, U., Henzinger, T.A.: Determinizing discounted-sum automata. In: Proc.
20th Annual Conf. for Computer Science Logic (2011)

2. Chatterjee, K., Doyen, L., Henzinger, T.: Quantative languages. In: Proc. 17th
Annual Conf. for Computer Science Logic, pp. 385–400 (2008)

3. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties
for quantitative languages. Logical Methods in Computer Science 6(3) (2010)

4. Degorre, A., Doyen, L., Gentilini, R., Raskin, J., Torunczyk, S.: Energy and mean-
payoff games with imperfect information. In: Proc. 19th Annual Conf. for Computer
Science Logic, pp. 260–274 (2010)

5. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.
Springer, Heidelberg (2009)

6. Krob, D.: The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. Int. J. of Algebra and Computation 4(3), 405–425 (1994)

7. Krob, D.: Some consequences of a fatou property of the tropical semiring. Journal
of Pure and Appllied Algebra 93(3), 231–249 (1994)

8. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential time. In: Proc. 13th IEEE Symp. on Switching
and Automata Theory, pp. 125–129 (1972)

9. Minsky, M.L.: Computation: Finite and Infinite Machines, 1st edn. (1967)
10. Simon, I.: Recognizable sets with multiplicitives in the tropical semiring. In:

Koubek, V., Janiga, L., Chytil, M.P. (eds.) MFCS 1988. LNCS, vol. 324, pp. 107–
120. Springer, Heidelberg (1988)

	What’s Decidable about Weighted Automata?
	Introduction
	Preliminaries
	Weighted Automata with Integer Weights
	Weighted Automata with Positive Weights
	Universality Is PSPACE-Complete
	Containment Is Undecidable

	References

