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Preface

This volume contains the proceedings of the 9th International Symposium on
Automated Technology for Verification and Analysis (ATVA) held during
October 11–14, 2011 in Taipei, Taiwan. The goal of the ATVA conferences is
to promote research on theoretical and practical aspects of automated analy-
sis, verification and synthesis by providing a forum for interaction between the
regional and the international research communities and industry in the field.

There were 75 papers submitted to ATVA 2011, and among these the Pro-
gram Committee accepted 23 regular papers, 2 tool papers and 11 short papers.
Each paper received at least three reviews which was followed by an online dis-
cussion conducted using the EasyChair system. In addition to the presentation
of the accepted papers, the ATVA 2011 program included three keynote talks
and tutorials by Edmund M. Clarke (Carnegie Mellon University, USA), Orna
Kupferman (Hebrew University, Israel) and Daniel Kroening (Oxford Univer-
sity, UK), as well as two invited talks by Masahiro Fujita (University of Tokyo,
Japan) and Moonzoo Kim (KAIST, Korea), resulting in an exceptionally strong
technical program of the highest quality.

ATVA 2011 was co-located with the Infinity Workshop (co-chaired by Fang
Yu and Chao Wang) and the Embedded Systems Week which consisted of three
leading conferences: International Conference on Compilers, Architectures and
Synthesis of Embedded Systems (CASES), International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), and the Inter-
national Conference on Embedded Software (EMSOFT). The co-location of these
events created a unique environment for interaction among many researchers
from a variety of areas which contributed to the success of ATVA 2011.

We would like to acknowledge the contributions that made ATVA 2011 a suc-
cessful event. First, we would like to thank all the authors who submitted their
work to ATVA and we hope that they continue to submit their high-quality
work to ATVA in future years. We thank the Program Committee members
and the external reviewers for their hard work in providing a rigorous and fair
evaluation of each submission, and providing detailed comments and feedback
to help authors improve their work. We are very grateful to the keynote and
invited speakers for enriching the symposium by presenting their distinguished
and internationally recognized research. We would like to thank the Steering
Committee members for their guidance. We would like to thank the ATVA 2011
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General Chair Hsu-Chun Yen and ATVA 2011 Local Arrangements Chair Farn
Wang. Their contributions were crucial in making ATVA 2011 a successful event.
Finally, we would like to thank the institutions that sponsored ATVA 2011.

We are proud of the quality of the ATVA 2011 proceedings and we sincerely
hope that the readers find them informative and rewarding.

July 2011 Tevfik Bultan
Pao-Ann Hsiung
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Statistical Model Checking

for Cyber-Physical Systems�

Edmund M. Clarke and Paolo Zuliani

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA, USA
{emc,pzuliani}@cs.cmu.edu

Abstract. Statistical Model Checking is useful in situations where it
is either inconvenient or impossible to build a concise representation
of the global transition relation. This happens frequently with cyber-
physical systems: Two examples are verifying Stateflow-Simulink models
and in reasoning about biochemical reactions in Systems Biology. The
main problem with Statistical Model Checking is caused by rare events.
We describe how Statistical Model Checking works and demonstrate the
problem with rare events. We then describe how Importance Sampling
with the Cross-Entropy Technique can be used to address this problem.

1 Introduction

Cyber-Physical Systems are characterized by the tight interaction between a
digital computing component (the Cyber part) and a continuous-time dynam-
ical system (the Physical part). The concept is better explained by examples.
A modern airliner governed by the autopilot is a typical Cyber-Physical System
(CPS). The autopilot is a software which provides inputs to the aircraft’s engines
and flight control surfaces (e.g., rudder, flaps, etc.) on the basis of various sensor
readings and an appropriate control law. The autopilot greatly reduces the pi-
lot’s workload and can improve the aircraft’s fuel economy. Another example of
CPS is a car equipped with an Anti-lock Braking System. The ABS modulates
braking power to avoid a complete lock-up of the car’s wheels in hard braking
or low adherence situations. In this way, the friction between the tires and the
road surface is maintained, thereby allowing the driver to keep control of the
vehicle and improving safety.

Cyber-Physical Systems enjoy wide adoption in our society, even in safety-
critical applications, but are difficult to reason about. In particular, to automat-
ically prove behavioral properties of a CPS is exceedingly difficult. One of the
� This research was sponsored by the National Science Foundation under contracts

no. CNS0926181 and no. CNS0931985, the SRC under contract no. 2005TJ1366,
General Motors under contract no. GMCMUCRLNV301, the Air Force (Van-
derbilt University) under contract no. 18727S3, the GSRC under contract
no. 1041377 (Princeton University), the Office of Naval Research under award
no. N000141010188, and DARPA under contract FA8650-10-C-7077.

T. Bultan and P.-A. Hsiung (Eds.): ATVA 2011, LNCS 6996, pp. 1–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 E.M. Clarke and P. Zuliani

obstacles is due to the fact that currently we do not know how to interface formal
verification techniques for the cyber part with the well-established engineering
techniques used to design the physical part of the system [12]. Another obstacle
is that most CPSs feature stochastic effects, because of uncertainties present in
the system components or the environment. For example, a flight control sys-
tem needs to be able to cope with (possibly) unreliable readings from sensors,
or to recognize and react appropriately when hit by “random” cosmic radiation
at high altitudes. As a result, fully formal verification of a CPS is currently
not possible, while validation boils down to extensive system simulations and
bench/live tests. However, in the past decade there has been progress towards
formal verification for CPSs.

In this paper we single out one particular verification technique that aims
at tackling both obstacles above: Statistical Model Checking [22,21,16,5]. This
technique addresses the verification problem for general stochastic systems, i.e.,
to compute the probability that a stochastic model satisfies a given temporal
logic property. For example, we would like to know the probability of a fuel-
control system failing to ensure an optimal air-fuel flow ratio, given unreliable
readings from the engine’s sensors. We express such properties in Bounded Linear
Temporal Logic (BLTL), a variant of LTL [13] in which the temporal operators
are equipped with time bounds. As CPS models, we use a stochastic version of
control systems modeled in Stateflow/Simulink - the de facto standard tool for
embedded system design.

Numerical methods [1,2,3,4,7] have been developed to compute with high pre-
cision the probability that a stochastic system satisfies a temporal logic formula,
but they are generally only feasible for systems with up to 108−109 states [10,18].
The state space of modern CPSs very often exceeds this limit (or is infinite),
hence the need for methods such as Statistical Model Checking, which solve the
verification problem for stochastic systems in a less precise, yet rigorous and
more efficient way.

Statistical model checking addresses the verification problem as a statisti-
cal inference problem: it samples behaviors (simulations) of the system model,
checks their conformance with respect to the temporal formula, and finally ap-
plies a statistical estimation technique to compute an approximate value for the
probability that the formula is satisfied. The returned value will be, with high
probability, close to the true probability that the formula holds. The key obser-
vation behind statistical model checking’s efficiency is that for large, complex
systems, simulation is generally easier and faster than building a concise repre-
sentation of the global transition relation of the system.

Statistical model checking was introduced by Younes [20], and phrased as a
hypothesis testing problem. In that setting, the task is to decide whether the
temporal formula is satisfied with a probability greater than a given threshold.
Later work [6,16] generalized statistical model checking using statistical estima-
tion techniques (e.g., the Chernoff bound). Hypothesis-testing methods are more
efficient than estimation techniques when the probability that the formula holds
is distant from the user-specified threshold [19]. Sequential Bayesian techniques
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for both hypothesis testing and estimation were introduced in [8,23] and shown
to perform very well.

The main problem with statistical model checking is caused by rare events,
i.e., temporal formulae whose satisfaction probability is very small. When es-
timating the probability of such formulae, the number of simulations needed
to ensure a good estimate becomes unfeasible. In this paper we show that Im-
portance Sampling and the Cross-Entropy method can efficiently address this
problem.

2 Background

Statistical model checking is essentially a Monte Carlo technique, since it is based
on randomized sampling of simulations of a stochastic model. In this Section, we
first describe the temporal logic used to express properties and how statistical
model checking works. Next, we give a summary of the Monte Carlo method and
the rare-event problem.

2.1 Statistical Model Checking

We start by defining the Bounded Linear Temporal Logic (BLTL) [11,8]. For
a model M, we denote by SV the finite set of real-valued state variables. An
Atomic Proposition (AP ) over SV is a Boolean predicate of the form y∼v,
where y ∈ SV , ∼ is one of {≥,≤, =}, and v ∈ R. A BLTL property is built on a
finite set of Boolean predicates over SV using Boolean connectives and temporal
operators. The syntax of the logic is given by the following grammar:

φ ::= y∼v | (φ1 ∨ φ2) | (φ1 ∧ φ2) | ¬φ1 | (φ1Utφ2),

where ∼ ∈ {≥,≤, =}, y ∈ SV , v ∈ Q, and t ∈ Q≥0.
The formula φ1Utφ2 holds true if and only if, within time t, φ2 will be true

and φ1 will hold until then. Bounded versions of the usual F and G operators
are easily defined: Ftφ = true Utφ requires φ to hold true within time t; Gtφ =
¬Ft¬φ requires φ to hold true up to time t. Also, BLTL can be seen as a sublogic
of Metric Temporal Logic [9].

The semantics of BLTL is defined with respect to executions (traces) of M.
A trace σ is a sequence (s0, t0), (s1, t1), . . ., with the meaning that the system
moved to state si+1 after having sojourned for time ti in state si. We assume
non-Zeno behavior about M, i.e., for any trace σ it must be

∑∞
i=0 ti = ∞.

In other words, the system cannot make an infinite number of transitions in a
finite amount of time. This assumption is necessary for ensuring termination of
statistical model checking.

The fact that a trace σ satisfies the BLTL property φ is denoted by σ |= φ.
We denote the trace suffix starting at step i by σi, where σ0 denotes the full
trace σ.

Definition 1. The semantics of BLTL for a trace σk (k ∈ N) is:
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– σk |= AP iff AP holds true in state sk;
– σk |= φ1 ∨ φ2 iff σk |= φ1 or σk |= φ2;
– σk |= φ1 ∧ φ2 iff σk |= φ1 and σk |= φ2;
– σk |= ¬φ1 iff σk |= φ1 does not hold;
– σk |= φ1Utφ2 iff ∃i ≥ 0 such that

a)
∑i−1

l=0 tk+l ≤ t, and

b) σk+i |= φ2, and

c) ∀ 0 ≤ j < i, σk+j |= φ1.

Statistical model checking is based on checking system simulations, i.e., finite
traces (naturally, simulations need to be finite in length). Therefore, one has to
prove that σ |= φ has a well-defined semantics and will not change its truth-
value by continuing the simulation. In [23] we proved well-definedness and the
fact that a finite prefix of the trace is sufficient for BLTL model checking, which
is crucial for termination.

Definition 2. [11,23] The sampling bound #(φ) ∈ Q≥0 of a BLTL formula φ
is defined as:

#(y ∼ v) = 0
#(¬φ1) = #(φ1)

#(φ1 ∨ φ2) = max(#(φ1), #(φ2))
#(φ1 ∧ φ2) = max(#(φ1), #(φ2))
#(φ1Utφ2) = t + max(#(φ1), #(φ2))

Since we assumed non-zenoness, any trace will reach the sampling bound with a
finite prefix (not necessarily of the same length). We have the following lemma.

Lemma 1. [23] For any BLTL formula φ and trace σ, the relation σ |= φ is
well-defined and can be checked using only a finite prefix of σ of duration #(φ).

The verification problem for a stochastic systemM and a BLTL formula φ is the
following: to compute the probability that M satisfies φ. We are in particular
interested in discrete-time stochastic systems, since statistical model checking
is based on simulation. The problem is well-posed, as it can be shown that the
set of traces ofM satisfying φ is measurable, thereby defining the probability p
that M satisfies φ [22].

Suppose now that the stochastic systemM satisfies the BLTL formula φ with
some (unknown) probability p = Prob{σ | σ |= φ}. The key idea behind statis-
tical model checking [22] is that the behavior of M (with respect to property
φ) can be modeled by a Bernoulli random variable with success parameter p.
This random variable can be repeatedly evaluated via system simulation in the
following way. Let σ be a trace of M, then one can define the Bernoulli ran-
dom variable B that returns 1 if σ |= φ and 0 otherwise. In other words, the
probability mass function of B is

Prob(B(σ) = 1) = p (σ |= φ) (1)

Prob(B(σ) = 0) = 1− p (σ |= ¬φ)
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Therefore, by running a simulation of M and by checking φ on the resulting
trace we can obtain a sample of B.

2.2 The Monte Carlo Method

We consider the problem of estimating the probability of rare events in a stochas-
tic CPS by means of randomized (i.e., Monte Carlo) techniques. An event is said
to be rare when its probability of occurrence is very low, say 10−8. The Monte
Carlo approach for estimating probabilities is by means of relative frequencies.
Let X be a random variable defined over a probability space (Ω,F , P). Suppose
we want to estimate p = P(X ∈ B), the probability that X belongs to a given
Borel set B. We first obtain a number of independent realizations of IB(X),
the indicator function of B — IB(x) is 1 if x ∈ B (“X ∈ B has occurred”), 0
otherwise — and then compute their average to estimate p.

The theoretical justification of the Monte Carlo method is the strong law of
large numbers. It states that if X1, X2, . . . is a sequence of independent and
identically distributed (iid) random variables with E[|X1|] <∞, then

P
(

lim
n→∞

Sn

n
= μ

)
= 1

where Sn = X1 + · · · + Xn and μ = E[X1]. This means that the measure of
the set of sample points for which Sn

n converges to μ is 1. Therefore, we can
approximate μ by taking the average of a finite number of realizations (samples)
of X1, since we know that the average will not converge to μ only for a negligible
subset of realizations (a set of measure 0).

Returning to our problem of estimating P(X ∈ B) = p for a given random
variable X and Borel set B, note that the random variable IB(X) is a Bernoulli
of success parameter p, that is, P(IB(X) = 1) = p. Also, note that p = E[IB(X)].
Now, given a finite sequence X1, . . . , XN of random variables iid as X , the crude
Monte Carlo estimator p̂ = 1

N

∑N
i=1 IB(Xi) will converge to p as N →∞ (with

probability 1) by the strong law of large numbers. The estimator p̂ is readily
shown to be unbiased (i.e., E[p̂] = p) and its variance is:

Var(p̂) =
Var(IB(X))

N
.

Also, from the central limit theorem it follows that for large N the distribution of
p̂ is approximately a normal distribution of mean p̂ and variance Var(IB(X))/N .
The variance of p̂ will thus tends to 0 as we increase the sample size N , leading
to more precise estimates. However, a small variance does not necessarily imply
a good estimate.

The relative error associated with the estimate p̂ is an important quantity for
assessing the quality of an estimator, especially in the rare-event case (p � 1).
It is defined as the ratio

RE(p̂) =

√
Var(p̂)
E[p̂]
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and intuitively it is a “measure” of the accuracy of the estimator p̂ with respect
to its standard deviation. Since the crude Monte Carlo estimator is unbiased,
the sample X1, . . . , XN is iid, and p� 1, it follows that

RE(p̂) =

√
Var(IB(X))/N

p
=

√
p(1− p)
p
√

N
≈

√
1

Np
.

Now, if N is kept constant and p → 0, it follows that RE(p̂) → ∞. For exam-
ple, to estimate p = 10−8 with a relative error of 0.01 we would need about
N ≈ 1

pRE2(p̂)
= 1012 samples — an unfeasible quantity. Therefore, in order to

keep the relative error low as X ∈ B becomes rarer, we need to increase the sam-
ple size, thereby meaning that crude Monte Carlo is not an efficient technique
for estimating very low probabilities. Alternatively, one can try to find another
estimator whose variance is smaller than Var(p̂), for a given sample size. Impor-
tance sampling is a technique for devising estimators with reduced variance, and
thus with low relative error.

3 Importance Sampling

Importance Sampling is a variance-reduction technique for the Monte Carlo
method, developed in the late 1940s. Here we present a brief overview of Impor-
tance Sampling — more details and applications can be found, for example, in
Srinivasan’s book [17].

3.1 Basics

We consider the more general case of estimating c = E[g(X)] <∞ for a random
variable X and a measurable function g:R → R�0. (By defining g(X) = IB(X)
we recover the previous case.) We assume that the distribution of X is abso-
lutely continuous with respect to the Lebesgue measure, and denote by f the
corresponding density. The crude Monte Carlo (MC) estimator is

ĉ =
1
N

N∑
i=1

g(Xi)

where X1, . . . , XN be random variables iid with density f . By the strong law of
large numbers, ĉ converges to c with probability 1. Also, it is unbiased, and its
variance is

Var(ĉ) =
1
N

(E[g2(X)]− c2) . (2)

In our statistical model checking setting, we are interested in determining the
probability that a stochastic system satisfies a certain temporal logic formula
φ. In this setting, the random variables X1, . . . , XN are independent executions
(simulations) σ1, . . . , σN of the system, represented by time series of the system
variables (traces). The function g is just the model checker that verifies whether
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a trace satisfies φ. Therefore, given a trace σ the random variable g(σ) is again
a Bernoulli — 1 if the trace σ satisfies φ, and 0 otherwise. Also, it is the random
variable previously defined in (1).

We now introduce Importance Sampling. Suppose we had another (absolutely
continuous) distribution for X , with corresponding density f∗, such that the
ratio f/f∗ is well-defined. The entire theory of importance sampling rests upon
the following fundamental identity:

c = E[g(X)]

=
∫

R

g(x)f(x) dx

=
∫

R

g(x)
f(x)
f∗(x)

f∗(x) dx

=
∫

R

g(x)W (x)f∗(x) dx

= E∗[g(X)W (X)] (3)

where E∗[·] denotes expectation with respect to the density f∗. The term W (x) =
f(x)
f∗(x) is the weighting function, or likelihood ratio. Naturally, for all x such that
g(x)f(x) > 0, it must be f∗(x) > 0. The density f∗ is known as the biasing (or
proposal) density.

The Importance Sampling (IS) estimator is

ĉIS =
1
N

N∑
i=1

g(Xi)W (Xi)

where W (x) = f(x)/f∗(x) is the likelihood ratio and X1, . . . , XN are random
variables iid with density f∗ (the biasing density). The IS estimator is unbiased
by (3), and its variance is:

Var(ĉIS) =
1
N

(E∗[g2(X)W 2(X)]− c2) . (4)

The crucial problem in importance sampling is to find a biasing density such
that the variance (4) of the IS estimator is smaller than the variance (2) of the
crude MC estimator.

It turns out that there exists a biasing density which can minimize the variance
(4) of the IS estimator. In particular, it is easy to verify that when the function
g is non-negative the following optimal biasing density actually results in a zero-
variance estimator:

f∗(x) =
g(x)f(x)

c
.

But in practice it is difficult to sample from f∗, since it depends on c = E[g(X)],
the (unknown) quantity we are trying to estimate. Therefore, instead of try-
ing to come up with the optimal density, it may be preferable to search in a
parametrized family of densities for a biasing density “close” to the optimal one.
This is exactly the approach taken by the cross-entropy method.
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4 The Cross-Entropy Method

The cross-entropy method was introduced in 1999 by Rubinstein [14]. Assume
that the original (or nominal) density f of X belongs to a parametric family
{f(·, u) |u ∈ U}, and in particular f(·) = f(·, v) for some fixed v ∈ U . (For ex-
ample, a common family is the natural exponential family.) The method chooses
the biasing density from the family such that the Kullback-Leibler divergence
between the optimal biasing density and the chosen density is minimal.

The cross-entropy method has two basic steps:

1. find a density with minimal Kullback-Leibler divergence with respect to the
optimal biasing density;

2. perform importance sampling with the biasing density computed in step 1
to estimate E[g(X)].

We will see that step 1 actually requires to sample X . In practice, the number
of samples generated for step 2 will be larger than for step 1.

Definition 3. The Kullback-Leibler divergence of two densities f, h is

D(f, h) =
∫

R

f(x) ln
f(x)
h(x)

dx.

The Kullback-Leibler divergence is also known as the cross-entropy (CE). For-
mally, D is not a distance, since it is not symmetric, i.e., D(f, h) �= D(h, f)
in general. However, it can be shown that D is always non-negative, and that
D(f, h) = 0 iff f = h. Therefore, the CE can be useful in assessing how close
two densities are.

We recall that our task is to estimate c = E[g(X)], where X is a random
variable with density f and g is a non-negative, measurable function. We want
to find a density in the parametric family such that the CE with the optimal
biasing density f∗ is minimal. Therefore, we need to solve the minimization
problem:

u∗ = argmin
u∈U

D(f∗(·), f(·, u))

where f∗(x) = g(x)f(x, v)/c is the optimal biasing density. This can be turned
into a maximization problem as follows:

argmin
u∈U

D(f∗(·), f(·, u)) = argmin
u∈U

E∗

[
ln

f∗(X)
f(X, u)

]
= argmin

u∈U

∫
R

f∗(x) ln f∗(x) dx −
∫

R

f∗(x) ln f(x, u) dx

= argmax
u∈U

∫
R

f∗(x) ln f(x, u) dx

= argmax
u∈U

∫
R

g(x)f(x, v) ln f(x, u) dx

= argmax
u∈U

E[g(X) ln f(X, u)]
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where in the second step we used the fact is D is non-negative and that the first
integral does not depend on u. It turns out that for certain families of densities
the maximization problem can be solved analytically [15, Chapter 3].

We now assume that X is a random vector, i.e., X:Ω → Rn, which implies
that function g must be defined over Rn. Note that this does not change what
we obtained so far. The optimal parameter u∗ = argmaxu∈U E[g(X) ln f(X, u)]
when X is in an exponential family of distributions is:

u∗
j =

E[g(X)Xj ]
E[g(X)]

where u∗ = (u∗
1, . . . , u

∗
n) and Xj is the j-th component of X.

The optimal parameter thus depends on the quantity we wish to estimate,
i.e., E[g(X)], and therefore u∗ needs itself to be estimated by MC simulation. In
the one-dimensional case we have that

u∗ =
E[g(X)X ]
E[g(X)]

and u∗ may be estimated from a sample X1, . . . , XN iid with density f (the
nominal density) as:

û∗ =
∑N

i=1 g(Xi)Xi∑N
i=1 g(Xi)

. (5)

However, in statistical model checking g(Xi) is either 1 or 0 — a sample trace
either satisfies a temporal logic property or it does not. Furthermore, in the
rare event case it will be very unlikely to “see” a sample trace that satisfies the
temporal logic property, which means that for reasonable sample sizes Eq.(5)
would just give 0

0 .
The problem can be circumvented by noting that

u∗ =
E[g(X)X ]
E[g(X)]

=
Ew[g(X)W (X, w)X ]
Ew[g(X)W (X, w)]

where W (x, w) = f(x)/f(x, w) and w ∈ U is an arbitrary parameter (recall
that f(x) = f(x, v) is the nominal density of X). Note that the expectation is
computed with respect to the biased density f(·, w). Again, u∗ can be estimated
by

û∗ =
∑N

i=1 g(Xi)W (Xi, w)Xi∑N
i=1 g(Xi)W (Xi, w)

(6)

where each Xi is distributed as f(·, w). Basically, we use importance sampling
with a biasing density given by the parameter w. Intuitively, w would have to
be chosen in such a way that the estimator (6) is well-defined. This means that
w should substantially increase the probability of the event g(X) = 1. In the
literature w is know as the tilting parameter.
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In the random vector case, we have samples X1, . . . ,XN iid as f(·, w) and the
j-th component of the optimal parameter u∗ is estimated by

û∗
j =

∑N
i=1 g(Xi)W (Xi, w)Xij∑N

i=1 g(Xi)W (Xi, w)

where Xij is the j-th component of Xi.

5 Experiments

We report preliminary results showing that our technique can be utilized to
efficiently address the rare-event problem in statistical model checking. We have
considered an example of CPS that is part of the Stateflow/Simulink package
demos. The model1 describes a fault-tolerant fuel control system for a gasoline
engine. It detects sensor failures, and dynamically adjusts the control law to
provide seamless operation. The system aims at keeping the air-fuel ratio close
to the stoichiometric ratio of 14.6. The “correct” fuel rate is estimated by taking
into account sensor readings for the amount of oxygen present in the exhaust gas
(EGO), for the engine speed, throttle command and manifold absolute pressure.
In the event of a single sensor fault, e.g., the EGO sensor, the system detects
the situation, computes an estimate for the sensor’s reading, and operates the
engine with a higher fuel flow rate. If two or more sensors fail, the engine is shut
down, since the system cannot reliably control the air-fuel ratio.

The Stateflow control logic of the system has a total of 24 locations, grouped
in 6 parallel states. The Simulink part of the system is described by several
nonlinear equations and a linear differential equation with a switching condition.
Overall, this model provides a representative summary of the important features
of a CPS.

Our stochastic system is obtained by introducing random faults in the EGO,
speed and manifold pressure sensors. We model the faults by three independent
Poisson processes with different arrival rates. When a fault occurs, it is “repaired”
with a fixed service time of one second (i.e., the sensor remains in fault condition
for one second, then it resumes normal operation). The model has no free inputs,
since the throttle command provides a periodic triangular input, and the nominal
speed is never changed. This ensures that, once we set the three fault rates, for any
given temporal logic property φ the probability that the model satisfies φ does not
change.

For our experiments we model checked the following BLTL formula φ:

φ = F100G1(FuelF lowRate = 0)).

Informally, we would like to estimate the probability that within 100 seconds
the fuel flow rate stays at zero for one second. The nominal fault rates for the
1 More information on the model is available at http://mathworks.com/products/

simulink/demos.html?file=/products/demos/shipping/simulink/sldemo

fuelsys.html
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three sensors are all equal to 1/3600. Since engine shutdown occurs when two
or more sensors are faulty, the probability that the system satisfies φ is likely to
be very close to 0. To compute the optimal biasing density we used tilting rates
all equal to 1/10.

In the table below we report our preliminary results. We performed two ex-
periments, depending on the number of samples used to compute the optimal
CE rates (step 1) and in the importance sampling phase (step 2). In the table
we report the estimate for the probability that φ holds, the (approximate) rela-
tive error, and the total computation time (i.e., simulation, model checking, and
CE method). The experiments have been performed on a 2.2GHz Opteron 6174
computer running Matlab R2010b on Linux (64-bit).

Estimate RE Time (h)

Samples

step 1 : 1, 000
step 2 : 10, 000 5.1× 10−15 0.47 1.7

step 1 : 10, 000
step 2 : 100, 000 2.17× 10−14 0.13 17.8

From the magnitude of the probability estimates, we see that a crude Monte
Carlo estimation would require about 1014 samples just to obtain one “success”
sample. With feasible sample sizes of the order of 105, the Monte Carlo estimator
would most likely return 0, thus incurring in a high error. Techniques based on
confidence interval computation (e.g., Chernoff bound) would require even larger
sample sizes.

6 Conclusions

Statistical model checking efficiently addresses verification by combining the
Monte Carlo method with temporal logic model checking. The technique is es-
pecially useful for verifying systems with very large state spaces, such as cyber-
physical systems. The main problem with statistical model checking is caused by
rare events. We have showed that Importance Sampling and the Cross-Entropy
method can address this problem. In particular, we have successfully verified a
representative example of cyber-physical system coded as a Stateflow-Simulink
model, for which traditional verification techniques are not feasible.
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Abstract. In the traditional Boolean setting of formal verification, al-
ternating automata are the key to many algorithms and tools. In this set-
ting, the correspondence between disjunctions/conjunctions in the speci-
fication and nondeterministic/universal transitions in the automaton for
the specification is straightforward. A recent exciting research direction
aims at adding a quality measure to the satisfaction of specifications
of reactive systems. The corresponding automata-theoretic framework is
based on weighted automata, which map input words to numerical values.
In the weighted setting, nondeterminism has a minimum semantics – the
weight that an automaton assigns to a word is the cost of the cheapest
run on it. For universal branches, researchers have studied a (dual) max-
imum semantics. We argue that a summation semantics is of interest
too, as it captures the intuition that one has to pay for the cost of all
conjuncts.

We introduce and study alternating weighted automata on finite words
in both the max and sum semantics. We study the duality between the
min and max semantics, closure under max and sum, the added power
of universality and alternation, and arithmetic operations on automata.
In particular, we show that universal weighted automata in the sum
semantics can represent all polynomials.

1 Introduction

Formal verification is the study of algorithms and tools for the development
of correct hardware and software systems. Traditional formal verification is
Boolean: the system may either satisfy its specification or not satisfy it. A recent
exciting research direction aims at adding a quality measure to the satisfaction
of specifications of reactive systems, and using it in order to formally define and
reason about quality of systems and in order to improve the quality of automat-
ically synthesized systems.

The automata-theoretic approach uses the theory of automata as a unifying
paradigm for system specification, verification, and synthesis [17,19]. By viewing
computations as words (over the alphabet of possible assignments to variables
of the system), we can view both the system and its specification as languages,
and reduce problems like model checking, satisfiability, and synthesis, to ques-
tions about automata. The automata-theoretic approach has proven to be very
versatile and fruitful.

T. Bultan and P.-A. Hsiung (Eds.): ATVA 2011, LNCS 6996, pp. 13–27, 2011.
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Traditional automata accept or reject their input, and are therefore Boolean.
A weighted automaton maps each word to a value from some semiring [13]. We
focus on the tropical semiring. There, each transition of the automaton has a
cost in �, and the value of a run is the sum of the costs of the transitions
taken along the run. A nondeterministic automaton A may have several runs on
a word, and the weight of a word w in A is the value of the cheapest run on
it. Applications of weighted automata over the tropical semiring include formal
verification, where WFAs are used for the verification of quantitative properties
[3,4,6,9,15] for reasoning about probabilistic systems [2], and for reasoning about
the competitive ratio of on-line algorithms [1], as well as text, speech, and image
processing, where the costs of the automaton are used in order to account for
the variability of the data and to rank alternative hypotheses [5,14].

The rich structure of weighted automata makes them intriguing mathematical
objects. Fundamental problems that have been solved decades ago for Boolean
automata are still open or known to be undecidable in the weighted setting. This
includes the problem of deciding whether a given nondeterministic weighted au-
tomaton can be determinized, and the problem of deciding whether the language
of one automaton is contained (in the weighted sense) in the language of another
automaton [8].

In the Boolean setting, the model of alternating automata has proven to be
especially useful in the context of formal verification. While in a nondeterminis-
tic automaton the transition function specifies only existential requirements on
the run, in an alternating automaton it specifies both existential and univer-
sal requirements. The universal requirements correspond to conjunctions in the
specifications, making the translation of temporal-logic formulas to alternating
automata simple and linear [7,18], as opposed to the exponential translation to
nondeterministic automata [19]. The linear translation of temporal logic to alter-
nating automata is essential in automata-based algorithms for model checking
of branching temporal logic formulas [12], and is useful for further minimization
of the automata [16], for handling of incomplete information [11], for algorithms
that avoid determinization [10], and more.

In the Boolean setting, the semantics of both disjunctions and conjunctions is
straightforward.Recall that in a nondeterministicweighted automaton, the weight
of a word is the value of the cheapest run on it. This meets our intuition of a“min-
imum semantics” for disjunctions in the weighted setting. It is less clear what the
semantics of conjunctions should be. If we want to maintain the traditional helpful
dualization between disjunctions and conjunctions, then an appropriate semantics
for conjunction is a maximum semantics. The maximum semantics is also suitable
for an analysis in which the weights correspond to a confidence or a truth-level
indication. However, if the analysis is used in order to study the cost of the sat-
isfaction, then an appropriate semantics is a summation semantics, in which the
cost of satisfying a conjunction ϕ1 ∧ϕ2 is not the maximal cost of satisfying ϕ1 or
ϕ2, but rather the sum of these costs. Note that for the motivation of quantitative
specifications, where one wants to replace Boolean satisfaction by a quantitative
value that describes the quality of the satisfaction, both the maximum and the
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summation semantics are of interest. The two possible semantics for conjunctions
in the weighted setting induce two different semantics for universal branches in
alternating weighted automata.

We study alternating weighted automata on finite words, in both the max-
imum and summation semantics. We refer to the automata by max-AWAs
and sum-AWAs, respectively. We start with the max semantics. We study the
expressive power of max-AWAs, their closure properties with respect to the
operators min, max, and negation of weighted languages, the power of alter-
nation with respect to nondeterminism, and arithmetics with max-AWAs. We
also formalize the duality between the min semantics of existential transitions
and the max semantics of universal transitions by means of a negation opera-
tor on weighted languages. Alternating automata with the max semantics are
studied in [4]. The automata there are on infinite words.1 The fact we work
with finite words, where the value of a sequence of costs follows the tropical
semiring, enables us to get a clear picture on the effect of adding alternation
on top of nondeterminism. Indeed, in the case of infinite words, several max
semantics are possible for an infinite sequence of costs (c.f., limit average, dis-
counted sum, and more). This makes the setting more involved and yields a
less uniform picture [4]. Nevertheless, the picture we obtain, and in particular
the fact alternation cannot be removed, are similar to the general picture ob-
tained for the different variants of the max semantics in the setting of infinite
words.

We continue and study the sum semantics.A key difference betweenmax-AWAs
and sum-AWAs is the fact that in the sum semantics the weight of a word may
be exponentially larger than its length (even when all costs in the automaton are
bounded by a constant). One immediate implication of this is that alternation can-
not be removed in sum-AWA. We also study closure properties for sum-AWA, and
the added expressive power of alternation even in languages in which the weight
of a word does not go beyond its length.

An interesting feature of sum-AWA is their ability to represent polynomials.
We say an automaton A over a singleton alphabet {a} represents a function
f : � \ {0} → �, if for all n ∈ � \ {0}, we have that LA(an) = f(n). We show
that sum-AWA (in fact, we even do not need nondeterminism) can represent all
polynomials. Moreover, when the coefficients of the polynomial are non-negative,
we can construct A so that it has only non-negative costs. It is interesting to
compare these results with the fact that regular automata on finite words cannot
recognize polynomials (for example, the language of all words of the form an2

is
not regular).

Due to the lack of space, some proofs are omitted and can be found in the full
version, in the authors’ home pages.

1 More work on weighted automata on infinite words, all in the nondeterministic set-
ting, include different semantics of the value of a run (for example, in B-automata
[9], the value depends on counters whose values are manipulated during the run),
and the relation to quantitative variants of LTL or MSO [6].
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2 Alternating Weighted Automata

For a finite alphabet Σ, a word w = σ1 · σ2 · · ·σn is a finite sequence of letters
from Σ. We use Σ∗ to denote the set of all finite words over the alphabet Σ. A
nondeterministic finite weighted automaton (NWA) is a tuple A = 〈Σ, Q, Q0, δ〉,
where Σ is a finite non-empty alphabet, Q is a finite non-empty set of states,
Q0 ⊆ Q is a non-empty set of initial states , and δ : Q×Σ → 2Q×� is a weighted
transition function. Intuitively, when the automaton is in state q and it reads
the letter σ, it moves to state q′ at cost c, for some 〈q′, c〉 ∈ δ(q, σ).

A run r of A on a finite word w = σ1 · · ·σn ∈ Σ∗ is a sequence r =
(q0, c0), (q1, c1), . . ., (qn, cn) of n + 1 pairs in Q×� such that q0 ∈ Q0, c0 = 0,
and for all 0 ≤ i < n, we have (qi+1, ci+1) ∈ δ(qi, σi+1). We associate the
run r with the two sequences S(r) = q0, ..., qn and C(r) = c0, ..., cn. We define
val(r) = c0 + c1 + ... + cn to be the value of the run r. Thus, the costs of the
transitions taken along the run are accumulated, and induce the value of the
run.2

A weighted automaton A assigns weights to words in Σ∗. The weight of
w ∈ Σ∗, denoted LA(w), is the value of the cheapest run of A on w. Formally,
LA(w) = min{val(r) : r is a run of A on w}. If there are no runs of A on w,
then LA(w) is undefined. The function LA is called the (weighted) language of
A, and we say that A recognizes LA. We use dom(LA) to denote the domain of
LA.

In an alternating automaton, the transition function may specify not only
existential choices, but also universal ones. Below we define alternating weighted
automata formally. For a given set X , let B+(X) be the set of positive Boolean
formulas over X (i.e., Boolean formulas built from elements in X using ∧ and
∨), where we also allow the formulas true and false. For Y ⊆ X , we say that Y
satisfies a formula θ ∈ B+(X) iff the truth assignment that assigns true to the
members of Y and assigns false to the members of X \ Y satisfies θ. The set Y
minimally satisfies θ if Y satisfies θ and no set that is contained in Y satisfies θ.
For example, the sets {x1, x3} and {x2, x3} both minimally satisfy the formula
(x1 ∨ x2) ∧ x3, while the set {x1, x2} does not satisfy this formula, and the set
{x1, x2, x3} satisfies it but not minimally.

A weighted alternating automaton (AWA, for short) is a tupleA = 〈Σ, Q, q0, δ〉,
where Σ and Q are as in nondeterministic automata, q0 ∈ Q is an initial state3 and
δ : Q×Σ → B+(Q×�) is a weighted transition function. In order to define runs
of alternating automata, we first have to define trees and weighted labeled trees.

2 Other common models for weighted automata include initial and final costs on states,
transitions with an infinite cost, and accepting/non-accepting states. Our model
here is simpler, yet our results can be easily extended to other models. Also, in
general, an NWA may be defined with respect to any semiring 〈IK,⊕,⊗, 0, 1〉. The
value of a run is then the semiring product of the costs along the run. The weight
of a word is the semiring sum over the costs of all accepting runs on it. In this
work, we focus on weighted automata defined with respect to the min-sum semiring,
〈� ∪ {∞}, min, +,∞, 0〉 (sometimes called the tropical semiring), as defined above.

3 We could have assumed an initial foruma in B+(Q) instead.
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A tree is a prefix closed set T ⊆ �∗ (i.e., if x · c ∈ T , where x ∈ �∗ and c ∈ �,
then also x ∈ T ). The elements of T are called nodes. For every x ∈ T , the nodes
x · c, with c ∈ �, are the successors of x. A node is a leaf if it has no successors. We
sometimes refer to the length |x| of x as its level in the tree. A path π of a tree T is
a prefix-closed set π ⊆ T such that ε ∈ π and for every x ∈ π, either x is a leaf or
there exists a unique c ∈ � such that x · c ∈ π. A path is full if it contains a leaf.

An edge in T is a pair 〈x, x · c〉 ∈ T × T . The set of edges in T is denoted
Edge(T ). We sometimes refer to a path π as a sequence of edges. Then, we say
that an edge 〈x, x · c〉 is in π iff both x and x · c are in π. Given an alphabet Σ, a
weighted Σ-labeled tree is a triple 〈T, V, C〉, where T is a tree, V : T → Σ maps
each node of T to a letter in Σ, and C : Edge(T )→ � maps each edge of T to
a cost in �.

A run of a nondeterministic weighted automaton on a word can be thought
of as a Q-labeled weighted tree with branching degree 1. Extending this notion,
a run of an alternating automaton is a “real”Q-labeled weighted tree. Formally,
given a word w = σ1 · σ2 · · ·σn, a run of A on w is a Q-labeled weighted tree
τ = 〈Tr, r, ρ〉, such that the following hold:

– ε ∈ Tr and r(ε) = q0.
– Consider a node x ∈ Tr with r(x) = q and δ(q, σ|x|+1) = θ. There is a (pos-

sibly empty) set S = {(q1, c1), . . . , (qk, ck)} ⊆ 2Q×� such that S minimally
satisfies θ and for all 1 ≤ d ≤ k, we have that x · d ∈ Tr, r(x · d) = qd, and
ρ(x, x · d) = cd.

For example, if δ(q0, σ1) = ((q1, 2) ∨ (q2, 3)) ∧ ((q3, 0) ∨ (q4,−2)), then possible
runs of A on σ1 have a root labeled q0, have one node in level 1 labeled q1 (and
the weight of the edge to it is 2) or q2 (with edge weight 3), and have another
node in level 1 labeled q3 (with edge weight 0) or q4 (with edge weight −2).
Note that if θ = true, then x need not have children. This is the reason why Tr

may have leaves before level n. Also, since there exists no set S as required for
θ = false, we cannot have a run that takes a transition with θ = false.

An AWA in which all the transitions are disjunctions is simply an NWA. An
automaton in which all the transitions are conjunction is universal. An automa-
ton that is both universal and nondeterministic (that is, δ(q, σ) ∈ Q×� for all
q and σ) is deterministic.

As in the nondeterministic case, we want to define LA to assign weights to
words in Σ∗. To be consistent with the nondeterministic case, we want to define
LA(w) = min{(val(τ)) : τ is a run of A on w}. If A does not have runs on w,
then w is not in the domain of LA. For this definition to be complete, we need
to define val(τ) for a run τ . As discussed in Section 1, we suggest and study two
semantics for val. Let τ = 〈T, r, ρ〉.

– In the max semantics, the value of every path in the tree is the sum of costs
along the path, and the value of a run is the maximal value of a full path.
Formally, max-val(τ) = max{

∑
e∈π(ρ(e)) : π is a path in T }.

– In the sum semantics, the value of a run is the sum over all the costs in the
edges of τ . Formally, sum-val(τ) =

∑
e∈Edge(T ) ρ(e).
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Note that the two semantics are relevant only for universal transitions (that is,
for transitions with ∧). Note also that the sum semantics involves some nontrivial
technical issues. To see this, note for example our requirement for the set S in
the definition of a run tree to minimally satisfy the transition function. In the
Boolean setting, as well as in the max semantics, we can remove the minimality
requirement, as runs are monotonic: the more branches we have in the run tree,
the more difficult it is for the run to be accepting or to have a minimal value.
On the other hand, in the sum semantics, since A may have transitions with
negative costs, sending more copies may actually reduce the value of a run.
Moreover, even when all costs are positive, in the Boolean or the max semantics,
it is clear that we have no reason to have multiple copies of the same state in
the same level of the run tree. This is why S is a set of states, and no multiple
occurrences of the same state are possible. In the sum semantics, one could argue
that such multiple occurrences should be allowed, as they reflect the fact that
some mission has to be fulfilled (and payed for) several times. We preferred not
to proceed with this multiple-occurrence semantics, as it can be simulated by
our sum semantics (by duplicating states).

We abbreviate the different types of automata by acronyms in {max-, sum-}×
{A, U, N, D}×{WA}. For example, max-UWA refers to a universal weighted au-
tomaton in the max semantics. For nondeterministic or deterministic automata
we omit the semantics prefix and simply use NWA and DWA, respectively.

For two weighted languages L1 and L2, and c ∈ �, we use −L1, L1 + L2,
max{L1, L2}, and c ·L1 to denote the weighted languages that negate L1, sum L1

and L2, take their maximum, and multiply L1 by c. Thus, for every word w ∈ Σ∗,
we have that (−L1)(w) = −L1(w), (L1 + L2)(w) = L1(w)+ L2(w), max{L1, L2}
(w) = max{L1(w), L2(w)}, and (c · L1)(w) = c · L1(w). Note that (L1 + L2)(w)
and max{L1, L2}(w) are defined only if both L1(w) and L2(w) are defined.

We say that two AWAs A1 and A2 are equivalent if for all w ∈ Σ∗ it holds
that LA1(w) = LA2(w). For two classes of automata γ1 and γ2, we say that γ2 is
more expressive than γ1, denoted γ1 ≤ γ2, if every language L that is recognized
by an automaton in γ1 can also be recognized by an automaton in γ2. We also
use the notations γ1 �≤ γ2, γ1 < γ2, and γ1 �= γ2, derived as expected from
γ1 ≤ γ2.

3 The Max Semantics

In this section we study the max semantics. As we mentioned above, one moti-
vation for the max semantics is the duality with the min semantics of nondeter-
minism. We first formalize this duality and then study other properties of the
max semantics.

3.1 The Duality between the Min and the Max Semantics

For a formula θ ∈ B+(Q×�), let θ̃ be the formula obtained from θ by switching
∧’s and ∨’s, switching true’s and false’s, and negating all the costs in the atoms
of θ. If, for example, θ = (p, 3)∨(true∧(q,−5)), then θ̃ = (p,−3)∧(false∨(q, 5)).
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For a transition function δ, let δ̃ be the transition function obtained from by
dualizing δ. That is, for all q ∈ Q and σ ∈ Σ, we have that δ̃(q, σ) = δ̃(q, σ).
Given an AWA A = 〈Q, Σ, q0, δ〉, its dual AWA is Ã = 〈Q, Σ, q0, δ̃〉.

Dualizing an alternating automaton in the unweighted setting complements
the language of the automaton. Intuitively, it follows from the fact dualization
amounts to switching the roles between the two players in the two-player game
that the automaton models. In the case of max-AWAs, dualization is more in-
volved and corresponds to negating the language of the automaton. Formally,
we have the following.

Lemma 1. Let A be a max-AWA. Then, L(Ã) = −L(A).

Proof. We first prove that for every word w ∈ Σ∗, we have that LÃ(w) is
the maximal value of a minimal path in a run of −A on w, where −A is the
max-AWA obtained from A by multiplying all the costs by −1. Proofs of duality
claims such as this are usually technical. We give the main idea of the proof.
The value of a word w in LA can be thought of as the outcome of the following
two-player game. The set of states in the game is Q. The game starts in the
state q0. In every round, Player 1 (the maximizer) chooses a set E ⊆ Q that
satisfies δ(qi, wi). Player 2 (the minimizer) then chooses a state qi+1 ∈ E, and
the game continues in the same manner from qi+1, reading wi+1, and so on. The
game ends when the last letter in w is read, and the value of the game is the
sum of values along the selected transitions. The goal of Player 1 is to maximize
the value, and the goal of Player 2 is to minimize it.

When the same game is played on Ã, the roles of the players are interchanged.
Thus, Player 1 is now the minimizer, and Player 2 is the maximizer. The path
induced by this game corresponds to a minimal path in a maximal run ofA on w.
Indeed, Player 1 determines which path is taken in every run of A, and Player 2
determines which run is taken. This implies that the value of every w ∈ Σ∗ in
LÃ is the value of the minimal path in a maximal run of A on w.

Now, for every word w ∈ Σ∗, we have that LÃ(w) = max{min{
∑

e∈π(−ρ(e)) :
π is a path in τ} : τ is a run of A on w} = max{min{−

∑
e∈π(ρ(e)) : π is a path

in τ} : τ is a run of A on w} = max{−max{
∑

e∈π(ρ(e)) : π is a path in τ} : τ
is a run of A on w} = −min{max{

∑
e∈π(ρ(e)) : π is a path in τ} : τ is a run of

A on w} = −LA(w).

A special case of Lemma 1 is when the automaton A is an NWA, in which case
Ã is a max-UWA. We then have the following.

Corollary 1. A weighted language L is recognizable by an NWA iff −L is rec-
ognizable by a max-UWA.

3.2 Expressive Power

In the Boolean setting, natural questions to ask in the context of expressive
power include closure to Boolean operators, and the added power of each of the
branching modes. It is well known that in the Boolean setting, alternation and
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nondeterminism do not add to the expressive power of deterministic automata,
and the latter are closed under union, intersection, and complementation. In the
weighted setting, the operators that correspond to the Boolean ones are min,
max, and negation. As we have seen above, max-AWAs are closed under nega-
tion. As in the Boolean setting, closure under min and max is easy, and follows
from the semantics of the transitions of max-AWAs. Likewise, max-UWAs are
closed under max.

In the Boolean setting, nondeterministic automata are closed under intersec-
tion. Indeed, the “product construction” enables us to trace several automata
in parallel. Moreover, the “subset construction” enables us to trace even an un-
bounded type of intersection. Consequently, in the Boolean setting, alternation
can be removed. We now turn to study the added expressive power of universal
branches in the max semantics. We show that NWAs are not closed under max,
and conclude that alternation in max-AWAs cannot be removed.

Let Σ = {a, b}. For σ ∈ Σ, let Lσ be the language that maps w ∈ Σ∗ to the
number of occurrences of σ in w. In [4], the languages La and Lb are used in
order to show that DWAs are not closed under min. Here we follow similar ideas
and use them in the study of closure under max.

Theorem 1. NWAs and DWAs are not closed under max.

Proof. Consider the language L = max{La, Lb}. The language La can be defined
by a DWA with a single self loop that has cost 1 to a and cost 0 to b, and similarly
for Lb. In the full version, we prove that no NWA can recognizes L. Essentially, it
follows from the fact that all the reachable a-cycles in an NWA for L must have
a strictly positive cost, which implies that runs on the word an+1bn+1, where
n is the number of states in the NWA, suggest runs with value strictly smaller
than n + 1 to words of the form ajbn+1, for j < n + 1.

Since max-UWAs dualize NWAs, we can dualize Theorem 1 as follows.

Theorem 2. max-UWAs and DWAs are not closed under min.

Proof. We start with max-UWAs. Assume by way of contradiction that A is a
max-UWA that recognizes L = min{La, Lb}. From Lemma 1, we get that Ã is
an NWA such that LÃ = −LA. Consider the NWA B obtained from Ã by adding
1 to the cost of every transition. It is easy to verify that for every word w, we
have that LB(w) = |w|−LA(w). On the other hand, max{La(w), Lb(w)} = |w|−
min{La(w), Lb(w)} = |w| −LA(w). It follows that B is an NWA that recognizes
max{La, Lb}, which contradicts the proof of Theorem 1. Finally, observe that
if A is a DWA, then B is a DWA as well, again contradicting the proof of
Theorem 1.

Since max-UWAs are closed under max (in particular, Fig. 1 describes a
max-UWA for max{La, Lb}), Theorem 1 implies that alternation cannot be re-
moved in the weighted setting with the max semantics. Combining this with
dualization, we conclude with the following.

Corollary 2. max-UWA �= NWA, max-AWA > NWA, and max-AWA >
max-UWA.
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a, 1
b, 0

a, 0
b, 1

a, 1
b, 0

a, 0
b, 1

Fig. 1. A max-UWA for max{La, Lb}

3.3 Arithmetics

In the weighted setting, additional interesting properties of automata are related
to the fact they manipulate real values. In this section we consider the closure
of max automata under addition and multiplication by a scalar.

Theorem 3. DWAs, NWAs, max-UWAs, and max-AWAs are closed under
addition.

Proof. The proof is by construction: Given automata A1 and A2, we construct
an automaton A of the same class such that LA = LA1 + LA2 . We describe the
construction in detail in the full version. Essentially, the state space of A is the
product of the state spaces of A1 and A2, and the transitions from 〈q1, q2〉 sum
the corresponding transitions from q1 and q2.

Next, we consider scalar multiplication. Clearly, multiplying all the costs of an
AWA by a scalar c causes the value of every run to be multiplied by c (since the
costs are summed along a path in the run tree). If c ≥ 0, then multiplying by
c is a monotonic (increasing) function. That is, if r1 and r2 are two runs, and
val(r1) ≤ val(r2), then c · val(r1) ≤ c · val(r2). Therefore, the cheapest run stays
the cheapest run, implying the following theorem.

Theorem 4. max-AWAs, max-UWAs, NWAs and DWAs are closed under mul-
tiplication by a positive scalar.

The case of a negative scalar is different, as multiplication is an anti-monotonic
(decreasing) function. Dualization, together with Th. 4, imply that max-AWAs
are closed under multiplication by a negative scalar. For the other classes, the
fact that such a multiplication causes the cheapest run to become the most
expensive run is crucial:

Theorem 5. NWAs and max-UWAs are not closed under multiplication by a
negative scalar.

Proof. In the proof of Theorem 1, we saw that there is no NWA for max{La, Lb}.
On the other hand, there is an NWA A for min{La, Lb}. Assume by way of
contradiction that NWAs are closed under multiplication by a negative scalar.
Then, by multiplying A by −1 we can obtain an NWA A′ for −min{La, Lb}.
For every word w, we have that max{La(w), Lb(w)} = |w|−min{La(w), Lb(w)}.
It is easy to construct an automaton B the recognizes the language L(w) = |w|.
By Lemma 3, NWAs are closed under addition. By adding A′ and B we obtain
an NWA C such that LC(w) = |w| −min{La(w), Lb(w)} = max{La(w), Lb(w)}.
So, C is an NWA that recognizes max{La, Lb}, contradicting the fact that no
such NWA exists. The proof for max-UWAs is dual.
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4 The Sum Semantics

Recall that in a sum-AWA A, the value of a run is the sum of all the costs in the
run tree. This corresponds to the intuition thatA spawns copies that fulfill differ-
ent tasks and has to pay for the costs of all tasks. The first observation we make
about sum-AWAs, which makes them an interesting arithmetic tool, is that they
can recognize languages in which the weight of a word is not linear in its length.

4.1 Exponential Weights

In NWAs, and in fact even in max-AWAs, the value of a run of A on a word w
of length n is bounded from above by cmax · n, where cmax is the maximal cost
in A. Indeed, even if several copies of the automaton run on the same prefix of
the word, only one copy contributes to the value of the run, which is therefore
linear in the length of the word. When we allow summing over all the weights in
a tree, this is no longer true, and the weight of a word may become exponential.
Consider for example the automaton Aexp in Fig. 2 (we draw UWAs the same
way we draw NWAs. but keep in mind that in UWAs, transitions with the same
label are conjunctively related). The single run tree of Aexp on the word an is a
complete binary tree of depth n. Each level doubles the number accumulated so
far (starting with 2), and so LAexp(an) = 2n.

Aexp: a, 1

a, 0
a, 0a, 1

Ala:

a, 0

b, 0

b,−1

a, 0 a, 0
a, 0
b, 0

Fig. 2. The sum-UWAs Aexp and Ala

Since the number of edges in a run tree on a word w is bounded by d|w|+1,
where d is the branching degree of the tree, and d is bounded by the number
of states of the automaton, we cannot go beyond an exponential weight, either
positive of negative:

Lemma 2. Let A be a sum-AWA with n states. For every word w ∈ Σ∗, we
have that min{0, cmin · n|w|+1} ≤ LA(w) ≤ cmax · n|w|+1, where cmin and cmax

are the minimal and maximal costs in A, respectively.

4.2 Expressive Power

One could argue that it is not “fair” to compare sum-AWAs with NWA, due
to the ability of the first to assign super-linear weights. As we show now, al-
ternation cannot be removed even if we restrict attention to sum-UWAs with
linear-bounded language. To see this, consider the “leading a’s” sum-UWA Ala

in Fig. 2. One can verify that for all w ∈ {a, b}∗, we have that
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LAla
(w) =

{
−k if w ∈ ak · b · (a + b)∗ for k ≥ 0,

0 otherwise.

It is not hard to prove that there is no NWA for LAla
. Thus, the power of

sum-AWAs goes beyond the ability to assign super-linear weights.
We now turn to study closure properties for sum-AWAs. As in the Boolean

setting, closure under min and summation is straightforward, as they correspond
to existential and universal transitions.
Also, as has been the case in the max semantics, closure under multiplication by
a positive scalar c is easy, as we only have to multiply the costs of A by c. Such
a multiplication would work also with a negative scalar in case the automaton
is universal. Indeed, all the costs in the single run are multiplied by the scalar.
The general case, of a negative scalar and sum-AWAs is less clear, and is related
to the problem of closure under max. For this problem, we have examples to the
lack of closure for following two fragments of sum-AWAs.

Theorem 6. sum-UWAs and sum-AWAs with non-negative costs are not closed
under max.

Proof. Consider the language L = max{La, Lb}. Recall that La and Lb are recog-
nized by DWAs with non-negative costs, which are a special case of sum-AWAs.
We prove that there is no sum-UWA nor sum-AWA with non-negative costs for
L.

Consider a sum-UWA A with n states, and consider the run τ of A on w =
an+1bn+1. Each level of τ consists of states of A, where every state appears 0 or
more times. We characterize the levels by vectors in �Q, which we represent as
�n. For example, the vector (2, 0, 1) means that in this level there are 2 copies
of q0, 1 copy of q2 and no copies of q1. Thus, τ can be thought of as a sequence
of vectors. We say that a vector β is a configuration of A.

Let β be a configuration, and consider what A does when it reads b. Every
state qi ∈ Q sends out βi copies of states in δ(qi, b). That is, there are di

1, ..., d
i
n

such that qi moves to the vector (di
1, ..., d

i
n). Intuitively, qi sends di

j copies of
qj . Let D be the �n×n matrix whose entries are Dij = di

j . It is easy to verify
that when A reads b in configuration β, it moves to the vector Dβ (where β is
considered as a column vector). Furthermore, when A is in configuration β and
reads b, every state qi accumulates wi cost in the transition. Thus, the total cost
accumulated in the transition is

∑n
i=1 βiwi = 〈β, w〉 (where w = (w1, ..., wn) and

〈·, ·〉 denotes the standard inner product).
Let α0, ..., αn, β0, ..., βn be the levels of τ . For all 0 < i ≤ n it holds that

βi = Dβi−1. Observe that β0, ..., βn are n + 1 vectors in �n. Thus, there exists
an index 1 ≤ k ≤ n such that βk is linearly dependent on β0, ..., βk−1, so we can
write βk =

∑k−1
j=0 cjβj for some c0, ..., ck−1 ∈ �. Consider what happens when

A reads b from βk. The new configuration is

Dβk = D
k−1∑
j=0

ckβj =
k−1∑
j=0

cjDβj =
k−1∑
j=0

cjβj+1 =
k−1∑
j=1

cj−1βj + ck−1

k−1∑
j=0

ckβj
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In particular, βk+1 is also linearly dependent on β0, ..., βk−1. It is easy to prove by
induction that for all t ≥ k it holds that βt is linearly dependent on β0, ..., βk−1.

Next, observe that since A has a single run, then the run must accumulate
the cost n + 1 by configuration αn+1, and must stay 0 through β0, ..., βn+1. Let
w = (w0, ..., wn) denote the cost vector accumulated at a b-transition, then for
all 0 ≤ i ≤ n+1 it holds that 〈βi, w〉 = 0. Let γ =

∑k−1
j=0 ejβj for e1, ..., ek−1 ∈ �,

then the cost accumulated from γ when reading b is

〈γ, w〉 =
k−1∑
j=0

ej〈βj , w〉 =
k−1∑
j=0

ej · 0 = 0

We conclude that when A reads to an+1bn+2 it accumulates cost 0 in all the
transitions on the b-block. Hence, the weight assigned by A to an+1bn+2 is n+1,
which is a contradiction.

We proceed to sum-AWA with non-negative costs. Let A be a sum-AWA
with n states and non-negative costs. Consider the cheapest run τ of A on
w = a2n+1b2n+1. Since every prefix of this run is also a run of A on a prefix
of w, we get that after reading a2n+1, the accumulated cost must be exactly
2n +1. Indeed, a lower cost would imply that the value of a2n+1 in A is less than
2n + 1, and, since accumulated costs are nonnegative, a higher cost implies that
the weight of w is greater than 2n + 1. As we show in the full version, it follows
that we can pump w to a word w′ = a2n+1bk, with k > 2n + 1, such that A
assigns to w′ a weight smaller than k.

Since sum-AWAs are closed under multiplication by a negative scalar, the fact
they cannot recognize max{La, Lb} implies they also cannot recognize
min{La, Lb}, which can be recognized by an NWA.4 Thus, keeping in mind
the ability of sum-AWA to assign super-linear weights, we can conclude with the
following.

Corollary 3. sum-UWA �= NWA, sum-AWA > NWA, and sum-AWA >
sum-UWA.

4.3 sum-UWA and Polynomials

For an automaton A over a singleton alphabet {a} and a function f : � \ {0} →
�, we say that A represents f if for all n ∈ �\{0}, we have that LA(an) = f(n).
In this section, we study the presentation of polynomials by sum-UWAs. Note
that this study is not interesting in the context of NWAs or max-AWAs, as the
latter can only represent linear functions.

Since we restrict attention to the alphabet {a}, all the words are of the form
an for some n, and we abbreviate LA(an) by LA(n). Observe that for every AWA

4 A popular example for the added power of NWA with respect to DWA is the language
that maps a · bi · c to i and a · bi · d to 2i [13]. Interestingly, this language can be
recognized by a sum-UWA.
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A we have LA(0) = 0, which is why we consider the domain � \ {0}. By adding
ε-transitions, we can easily extend the results to functions f : �→ �.
We start by describing our basic “building blocks”. Consider the sequence of
sum-UWAs A1, A2, A3, . . . appearing in Fig. 3. It is easy to see that A1 defines
the polynomial f1(n) = n. As for Ad, for d ≥ 2, note that a run of Ad on an

sends a copy of Ad and a copy of Ad−1 to read an−1. Accordingly, a copy of Ad−1

is sent to read ai for all 0 ≤ i ≤ n − 1. Thus, LAd
(n) =

∑n
i=0 LAd−1(n − i) =∑n−1

i=0 LAd−1(i). Let fd(n) = LAd
(n).

Ad:
Ad−1

a, 0

a, 0

A1:

a, 1

Fig. 3. The automata Ad

Lemma 3. For all n ≥ 1 and d ≥ 1, we have that fd(n) =

{(
n
d

)
if d ≤ n

0 otherwise.

Since
(
n
d

)
is a polynomial of degree d, the set {A1, ...,Ad} of sum-UWAs repre-

sents a set of polynomials of degrees {1, ..., d}. It is easy to construct a DWA A0

such that LA0(n) = 1. Thus, the set {A0,A1, ...,Ad} represents a set of poly-
nomials with degrees {0, 1, ..., d}. We claim that this set allows us to represent
every polynomial. To prove this, we use the following lemma (the proof is a basic
exercise in linear algebra).

Lemma 4. Let {p0, ..., pd} be polynomials over a commutative ring R such that
pi is of degree i. The set {p0, ..., pd} forms a basis to the space of polynomials of
degree at most d.

By Lemma 4, and by the closure of sum-UWAs under addition and scalar multi-
plication, we conclude that sum-UWAs can span the entire space of polynomials
of degree at most d. Note that according to Lemma 4, spanning the space requires
coefficients from the ring R. On the positive side, in order to span a polynomial
with coefficients in � or �, we only need costs in � or �, respectively. On the
negative side, this implies that for coefficients in � we may need costs from �

(which is the minimal ring containing �). Note that while we only proved exis-
tence, it is easy to make the proof explicit and construct, given a polynomial p,
a sum-UWA that represents it. In order to do it, one simply multiplies Ad by
the desired coefficient for nd, then multiplies Ad−1 by a proper scalar so as to
fix the coefficient for nd−1, and so on.

The fact that in order to represent a polynomial with coefficients in � we
may need negative costs is disturbing. We now proceed to show that it is indeed
not necessary: for every polynomial p with non-negative coefficients, we can
construct a sum-UWA Ap with non-negative costs such that LAp(n) = p(n). We
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also give an explicit construction of Ap. As above, it is enough to show that we
can construct a sum-UWA for every monomial nd.
Recall that fd(n) is

(
n
d

)
for d ≤ n, and is 0 otherwise. The following lemma

shows how to define nd using {f1(n), ..., fd(n)}. It is a well known result and we
give the proof in the full version. The lemma and the proof refer to S(n, k) – the
Stirling number of the second kind, which is the number of ways to partition a
set of size n into k subsets.

Lemma 5. nd =
∑d

k=1 k!S(d, k)fk(n).

By Lemma 5, we can define nd using {f1(n), ..., fd(n)}, and the coefficients are
non-negative. By adding 1 = n0 to the set {n1, ..., nd} we conclude that we can
span any polynomial with non-negative coefficients using sum-UWAs with non-
negative costs. Moreover, we observe that all our constructions are of sum-UWAs
with self loops only. This follows from the definition of the basic blocks and the
constructions proving the closure of sum-UWA to addition and multiplication
by a scalar, which preserve this property.

We can thus conclude with the following (the result about non-positive co-
efficients follows from the closure under multiplication by a negative scalar).

Theorem 7. For every polynomial p with coefficients in a ring R ∈ {�,�,�},
we can construct a sum-UWA A that defines p (with cost in �,� or �, respec-
tively). Moreover, if the coefficients of p are all non-negative (non-positive), then
we can construct A with non-negative (non-positive, resp.) costs only.

5 Discussion

We introduced and studied two semantics – max and sum, for universal transitions
of alternating weighted automata on finite words. The two semantics correspond
to different interpretations of conjunctions in a weighted setting, and are of interest
in quantitative formal reasoning. We showed that in both semantics, alternation
strictly increases the expressive power of the automata. Also, in the sum seman-
tics, it enables the automaton to represent super-linear functions, making universal
transitions more significant then their dual nondeterministic transitions.

We plan to continue our study in several directions. In the theoretical front,
we find the ability to represent polynomial by automata very interesting. In par-
ticular, it is interesting to see which operations on polynomials can be performed
on the sum-AWAs that represent them. Our results here already include addition
of two polynomials and their multiplication by a scalar. It is a nice exercise to see
that given a sum-AWA that represents a polynomial p, we can easily construct
a sum-AWA for the derivative of p, or its integration. More challenging are con-
structions that correspond to multiplication of polynomials, decision procedures
about their roots, and so on. In the more practical front, we are developing a
weighted version of LTL that can specify quality of satisfaction. Conjunctions in
the new logic can be interpreted in both semantics, and the translation to AWAs
is a basic procedure in reasoning about specifications in the logic. Problems like
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membership (that is, finding weights) are easily decidable, and we are study-
ing fragments for which language containment (that is, its weighted variant) is
decidable. We are also studying an extension to automata on infinite words.
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16. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emer-

son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer,
Heidelberg (2000)

17. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer
Science, pp. 133–191 (1990)

18. Vardi, M.Y.: Nontraditional applications of automata theory. In: Hagiya, M.,
Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 575–597. Springer, Heidelberg
(1994)

19. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and
Computation 115(1), 1–37 (1994)



Making Software Verification Tools Really Work�

Jade Alglave, Alastair F. Donaldson, Daniel Kroening, and Michael Tautschnig

Department of Computer Science, University of Oxford, Oxford, UK

Abstract. We discuss problems and barriers which stand in the way of producing
verification tools that are robust, scalable and integrated in the software
development cycle. Our analysis is that these barriers span a spectrum from theo-
retical, through practical and even logistical issues. Theoretical issues are the in-
herent complexity of program verification and the absence of a common, accepted
semantic model in tools. Practical hurdles include the challenges arising from
real-world systems features, such as floating-point arithmetic and weak memory.
Logistical obstacles we identify are the lack of standard benchmarks to drive tool
quality and efficiency, and the difficulty for academic research institutions of allo-
cating resources to tool development. We propose simple measures which we, as
a community, could adopt to make the design of serious verification tools easier
and more credible. Our long-term vision is for the community to produce tools
that are indispensable for a developer but so seamlessly integrated into a devel-
opment environment, as to be invisible.

1 Introduction

The sophistication and scalability of practical software verification tools has increased
dramatically over the last decade. In particular, semi-automatic analysis of moderate-
sized software using model checking has become viable due to the development of two
primary methods: counterexample-guided abstraction refinement (CEGAR) [19] and
bounded model checking (BMC) [15]. Counterexample-guided abstraction refinement,
realised via predicate abstraction [30] and symbolic model checking [17] of Boolean
programs [2], lies at the heart of Microsoft’s Static Driver Verifier [4], which is now
routinely used by developers of Windows device drivers. Other software model check-
ers, including BLAST [12], SATABS [21] and CPACHECKER [13] have followed this
model and had impact within the research community. Bounded model checking was
conceived as a hardware verification technique based on a natural encoding of circuits
in propositional logic. Dramatic advances in the performance of SAT and SMT solvers
have allowed this technique to be lifted to analyse the behaviour of programs, through
a bit-level encoding of variables and operations. Bounded model checking tools such
as CBMC [20] and F-SOFT [35] are effective at finding bugs in system-level software,
and have been applied in the automotive domain [41]. Recent applications of the k-
induction method [43] to software verification [25] have facilitated the use of BMC for
verification, not just falsification, of race-freedom properties in software for the Cell
BE processor [27].
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We believe that a long-term vision for the field is to produce verification tools that
are a necessary component of any serious development environment. Despite current
success stories, formal verification using model checking based techniques is a long
way from such mainstream adoption. Our analysis is that this is due to the following
barriers, amongst others:

1. the difficulty of justifying the allocation of resources to tool development in an
academic environment;

2. a lack of consensus on what software verification tools should handle, and as a
consequence a lack of comparability;

3. a lack of guidance during the software development process, e.g., via unified bench-
marks to drive quality and efficiency.

Past articles and discussions have addressed the topic of making verification tech-
nology practical, focusing on technology transfer of verification techniques [36] and
the role of formal methods in software engineering [44]. The ambitious Verified Soft-
ware Initiative [32] aims to exactly address the problem of practical verification tools,
stating as one of its goals “[the construction of] a coherent toolset that automates the
theory and scales up to the analysis of industrial-strength software”.

In this position paper, we add our voices to the discussion. We believe the above
challenges can be addressed via three means: investment in tools, encouraged by more
stringent requirements for experimental repeatability when submitting verification pa-
pers, and a new category of “experimental validation” papers at verification confer-
ences; a standardisation process to allow commonality in the way tools are designed
and operated; and challenge benchmarks to allow tools to be easily tested, improved
and compared, thus driving quality.

2 Community Support for Tool Development

Numerous technical problems have to be solved when designing software verification
tools, and there is a need for robust tools in order to conduct proper scientific investi-
gation in verification. We briefly discuss ways in which the verification community can
support tool development efforts.

2.1 Allocating Resources to Tool Development

A significant portion of research in software verification is carried out by academics,
but there are significant barriers for tool development in this community:

It is difficult to obtain research funding for tool development. Proposals for aca-
demic funding usually focus on a “big idea” – something novel, seriously challenging,
and perhaps a little bit crazy. Without centering on the big idea, a funding proposal will
likely be rejected as tame. This sort of blue-sky thinking is important for the devel-
opment of ground-breaking, non-incremental ideas, but provides no means to develop
serious tools over a long period of time. Crucially, resources for long-term tool mainte-
nance and regression testing are usually not requested in a funding proposal.
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The priorities of publication venues are a disincentive to building robust tools. Get-
ting a paper accepted to a prestigious venue in automatic verification tends to require
a new, deep theoretical idea. While some experimental evaluation is also usually ex-
pected, putting together a minimal prototype and concentrating on the theoretical side
of a piece of work is a better short-term strategy for getting a paper accepted than
painstakingly conducting a rigorous experimental evaluation on a large benchmark set,
comparing with a range of other tools. Little or no credit will be given for ensuring that
the tool being presented is robust and usable beyond the benchmark set used for evalu-
ation. Understandably, time-pressured reviewers tend to scrutinise the theoretical detail
of a novel technique readily available in the text of the paper, rather than investing time
downloading, installing and experimenting with the associated implementation. They
will often not clock whether a reported implementation is a minimal prototype, or a
serious piece of software.

In today’s environment, two of the main factors used to measure academic success
are amount of research money raised, and number of high-quality publications. In this
light, the above barriers suggest that an academic who pushes their research group to
knock together a series of minimal prototype tools in the run up to major conference
deadlines will have greater short-term success than an academic who invests significant
time and effort in building robust tools.

2.2 The Need for Robust Tools

One might argue that it is not the responsibility of academics to build robust tools:
instead, the job of an academic researcher is to push the boundaries of science by
developing novel algorithms, investigating their theoretical properties, and providing
proof-of-concept experimental demonstrations. For such proofs-of-concept, aren’t min-
imal prototypes OK? Of course, we are not arguing that academic researchers should be
responsible for building industrial-strength tools. But basing research solely on minimal
prototypes can be a barrier to scientific progress.

Non-robust tools can lead to vacuous verification. The SLAM verification engine is
at the absolute opposite end of the spectrum from being a minimal prototype tool: it is
a serious collection of software developed over several years by a dedicated team of re-
searchers, and has led to major uptake of verification technology by industry. This long-
term effort has resulted in new insights not possible with the early prototypes: recent
work describing the version 2 of the SLAM engine identifies device driver benchmarks
where verification using SLAM 2 takes longer than with the original engine, despite
a wealth of new optimisations [3]. The reason is that the original version of SLAM is
less accurate, and as a result sometimes reported “verification successful” without hav-
ing established a complete correctness argument. This report on a mature tool suggests
that we should be skeptical of experimental results reported for quick prototypes, and
illustrates the added value of long-term tool maintenance for research.

Without solid tools, we cannot really do science. Natural sciences hinge upon re-
peatability of experiments, and the ability to compare complementary or competing
techniques in a controlled way. With verification tools, repeatability is often not possi-
ble: tools are sometimes to immature to be made available, or snapshots of the versions
used to generate experimental results for a given paper are not taken. Tool comparison is
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also a challenge. Reviewers quite reasonably expect an implementation of a new method
to be compared with prior implementations of competing techniques, but it is hard for
authors to conduct such a comparison when prior implementations are not available or
no longer work.

3 Program Semantics: Minimum Requirements

Designing software verification tools is hindered by the inherent difficulty of the task in
general, and the complexity of real-world languages. The inherent difficulty of verifica-
tion leads to no clear minimum bar for the sorts of input programs that all tools should
be capable of handling. The complexity of real-world languages leads to pragmatic de-
cisions related to the handling of semantic features, which are not usually documented
and often differ from tool to tool. We now discuss a selection of these issues in some
detail.

The specification for a compiler is relatively simple: given semantics for languages
A and B, an A → B compiler should take any valid program in language A and
transform it into a semantically equivalent program in language B. The time taken
for transformation should be roughly linear in the size of A. Of course, implementing
compilers is challenging, due to the lack of formal specifications for source and target
languages, but it is clear that the task of building a compiler is achievable (barring
pathological examples [45]).

In contrast, we know from basic undecidability results in computer science that we
will never be able to build a verifier that takes an arbitrary program in a Turing-complete
language, and decides whether that program is correct (under some appropriate notion
of correctness) within some reasonable time bound.

3.1 What Should All Software Verification Tools Handle, a minima?

Because of this inherent difficulty, it is clear that a given software verification tool will
not be capable of handling certain input programs. But we would expect that there
should be large classes of very simple programs which any respectable software verifi-
cation tool should be able to cope with. For instance, although loops are hard to analyse
in general, a simple program involving loops with a fixed-and-small number of itera-
tions should not be problematic to handle. While pointer-manipulating programs can be
tough to analyse, support for straightforward parameter passing by reference via point-
ers should be non-negotiable. In particular, any verifier should be capable of correctly
processing a program with a small and finite state-space (say with fewer than 10,000
states).

In practice, this is often not the case: a prototype verification tool may implement
sophisticated algorithms geared towards solving a particular class of problems, but may
diverge or crash when invoked on some trivial example program that does not fall within
this class. Our viewpoint is that the difficulty of program verification in general is not
an excuse for tools to perform abysmally, or produce unsound or incomplete results, on
simple examples. We need to set the bar somewhere.
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3.2 The Challenges of Semantic Features in Real-World Languages

Research dealing with full-scale languages with complex semantics cannot realistically
handle all of their features in all cases. However, it is important that tool designers
identify those features which are not handled, and clearly document what the limitations
of their tool are. We briefly consider some examples of semantically challenging issues
faced by verification tools for C programs:

Bit-level accuracy. Languages in the C family represent numeric types by fixed-width
bit-vectors. Thus arithmetic operations may overflow, breaking standard mathematical
identities such as x + 1 > x. Because arithmetic over/underflow can be the source of
subtle bugs, especially in system-level software, it is vital that software verifiers for C-
like languages reason with bit-level accuracy. This means parametrising the verifier by
a given machine word-size. While early software verifiers tended to use a mathemati-
cal model of integers with infinite range, advances in bit-vector solvers led to bit-level
accurate tools such as CBMC [20] and F-SOFT [35]. Nowadays, bit-level accurate rea-
soning is commonplace and widely accepted, primarily owing to the progress modern
SAT and SMT solvers have made.

Floating point. Reasoning directly about floating point arithmetic can in principle be
achieved by bit-blasting, following the IEEE 754 standard. While this approach is im-
plemented, e.g., by the CBMC tool, it does not scale well due to the immense complexity
of floating point circuits. Pragmatic alternatives to supporting floating-point reasoning
include treating floating point variables as fixed point, or as intervals of real numbers,
in which case a real arithmetic solver can be exploited. The difficulty with such ap-
proaches are that they do not provide accurate results for real programs. While for some
users this may be acceptable, for others it may not be, thus such decisions should be
clearly documented. Alternative approaches avoid direct reasoning by soundly approxi-
mating floating-point computation, either through abstraction [16] or expression canon-
ization [22]. An important open problem is to design fast SMT solvers for floating-point
arithmetic [42].

Weak memory models. Analysis tools for concurrent programs need to consider the
problem of weak memory models exhibited by all modern multicore architectures (e.g.,
x86 or Power), where the model of computation is not sequentially consistent (SC) [38].
Soundness in the presence of weak memory involves considering all possible ways in
which memory accesses could be resolved by the hardware, greatly increasing the (al-
ready high) complexity of concurrent software analysis. As a result, it is understandable
that practical concurrent software verifiers may pragmatically assume an unrealistically
strong memory model.

If a tool that aims at handling concurrent programs running on modern multicores
supposes SC to be the execution model [26], the tool is strictly unsound, yet perhaps
practically useful in finding concurrency bugs or increasing confidence in the correct-
ness of concurrent software. Some programming disciplines such as the data race free
guarantee (DRF) [1] allow the tool to ignore the details of the memory model, for the
discipline enforces the illusion of SC. Hence, tools that assume their input programs to
be DRF and SC to be the execution model, e.g., [23], are sound. However, this means
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that they cannot handle lock-free synchronisation [29], a programming style favoured
by engineers for its performance, such as for example in the Linux kernel [40].

Again, whether a concurrent software verifier handles weak memory in a sound or
restricted manner should be a clearly stated design decision.

System-level features. When applying verification tools to embedded systems soft-
ware, users typically require support for low-level features such as interrupts, inline as-
sembly and DMA. Correctness for this sort of software often requires careful layout of
memory according to machine-specific alignment constraints. These kinds of features
are platform-specific, and therefore we do not anticipate a general solution. However,
at present, system-level features tend to be modelled in an ad hoc manner for individual
applications. A generic framework for describing system-level characteristics relevant
to verification, which could then be customised by users for specific needs, does not
currently exist and would be be a major step beyond the current state of the art.

Handling source code which is not standard-compliant. While a compiler is typically
free to generate arbitrary code where an input program does not conform to the language
standard, software verifiers cannot be free to assign specific, arbitrary semantics in such
cases. Because bug-finding is an important goal of a software verifier and bugs often
arise from lack of adherence to language standards, strictly speaking a verifier should
consider every possible effect for a statement whose semantics are undefined. Naturally,
this strict requirement may not be achievable in practice, and the way to handle or
implement certain language features can be controversial. In the absence of a consensus,
we believe that developers should state explicitly, and as precisely as possible, how they
handle a certain underspecified feature. As an instance, program verifiers may use a
fixed order of evaluation of expressions with side effects, while the language standard
permits any ordering.

4 The Lack of Guidance in the Process of Writing Tools

Given an input language with well-defined semantics, the question about how to pro-
ceed to arrive at a practically useful software verification tool arises. As it is impossible
to solve all technical problems in a single step, a suitable form of incremental devel-
opment must be found. The realization of a research idea, which often involves novel
algorithms, effectively results in a conflict of interest: both the novel algorithm must be
implemented as efficiently as possible, and several technical hurdles must be overcome.
The latter will in parts be well known, whereas other technical challenges might only
become visible once the tool has evolved far enough to be applied in verification of real
software systems.

To date, we are still in the unfortunate situation that there is only very little pre-
existing code that offers both high quality and comprehensive documentation to cover
all those fundamental technical issues. Such a code base would need to provide a for-
mally defined intermediate representation for at least one major programming language.
Furthermore, standard program analyses, as available in compilers, would be expected.

The development of decision procedures, in particular SAT and SMT solvers, has
made a lot more progress in the last decade than the development of software verifi-
cation tools has. Despite continuing evolution and improvement, gritty technical issues
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tend not to hinder the integration of new algorithms with existing solvers. We identify
some of the key advantages in the history of the development of decision procedures,
compared with software verifiers:

Publication of technical aspects of decision procedures. Both algorithmic and techni-
cal challenges are acknowledged, well documented (in terms of scientific publications
– cf. [28,14] for prime examples), and hence technical aspects relevant to tool develop-
ment are well-understood by the community at large, and easily available to outsiders.
Compare this situation to software verification, where entire tools (implemented in hun-
dreds of thousands of lines of code) are often documented in no more than a single
conference or journal publication, usually focussing on the tool’s core algorithms, pre-
sented at a high level of abstraction. It seems that researchers in software verification
tools are reluctant to write up technical details, perhaps due to the perception that highly
technical papers will be considered engineering, not research, and rejected.

SAT/SMT software architectures have become mature. As a consequence of shar-
ing knowledge about algorithms and problems, in terms of publications and often also
source code, developers of decision procedures benefit from lessons learned in other
tools [14], hence avoiding redundant re-invention.

Well-defined input languages. Decision procedures benefit from simpler and more
formally defined input languages [24,10], compared with software verifiers. The stan-
dardisation of programming languages such as C or C++ still leaves many aspects in-
tentionally undefined. A sound software verification tool must thus consider all possible
interpretations or offer controllable parameters to the user.

Comparability and competitions. An essential part of any scientific work is a fair and
comprehensive comparison to related work. For software verification tools, this is – at
present – largely impossible. As such, we are unable to assess progress.

Again, decision procedures have done much better. First, publicly available stan-
dard benchmark sets exist to perform comparisons. Second, well established competi-
tions1,2,3provide additional incentive to adhere to common input languages, and pro-
vide reward for technical improvements. Third, theories and benchmark categories pro-
vide precise guidance to users of the technologies, enabling them to select the most suit-
able tool for their needs [9]. All these measurable facts (performance on standard bench-
mark sets and supported theories) permit precise, scientific assessment of progress.

We cannot (and should not) change the fact that software verification tools have to
deal with complex general-purpose input languages. Yet many such problems could be
offloaded to a front end that builds a formally defined intermediate representation. For
the reasons laid out in Sec. 2, however, it is challenging for research groups to invest in
building such a front end. As an alternative, software verification tool developers could
team up to define a subset of a widely used programming language the support of which
can be expected from any tool claiming to perform software verification.

Any such standardisation effort will foster comparability; yet two further problems
need to be addressed to fully enable comparability: a) for performance comparison, a

1 http://www.satcompetition.org/
2 http://www.smtcomp.org/
3 http://www.cs.miami.edu/˜tptp/CASC/

http://www.satcompetition.org/
http://www.smtcomp.org/
http://www.cs.miami.edu/~tptp/CASC/
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publicly available set of benchmarks in the standardised language must be made avail-
able; b) a categorisation similar to theories, as found in SMT, must be established.

5 Proposals for Supporting the Development of Software
Verification Tools

Based on the critical assessment of the present situation we propose a way forward. We
first discuss possible evolutions in our community, and note the long-term benefits that
can be associated with building recognised tools. We then steer towards solutions of
technical problems.

5.1 Publication Incentives

As discussed in Sec. 2, serious development of tools is not rewarded by the evaluation
criteria of publication venues. We propose two strategies for improving this situation:

Repeatability requirements. Publication venues in formal verification should require
authors to make implementations of novel algorithms available for inspection and val-
idation by reviewers. To avoid reviewer anonymity being compromised by IP address
logging, publication venues should make use of secure means for implementations and
benchmarks to be uploaded as part of a paper submission. Such features are already
available in submission management systems such as EasyChair. Authors should also
provide comprehensive instructions on how to operate the provided software in order
to reproduce the paper’s results. Reviewers should be encouraged to try to reproduce
a selection of results using the provided implementation, and should be encouraged to
comment explicitly on whether they have attempted to do so. Review reports should
discuss the experience of using the reported implementation, and it should be reason-
able to suggest rejecting a paper because the implementation does not work, fails on
reasonable examples beyond the benchmark set reported in the paper, or cannot be used
due to a lack of comprehensible operating instructions. Working towards standardised
interfaces, as proposed in Sec. 5.3, will considerably simplify such evaluations, both for
authors and reviewers.

There are two immediate thorny issues associated with such a scheme. First, it relies
on reviewers and authors having a common working environment (e.g., using the same
operating system and machine word size), and some papers may report experiments on
hardware or software which is not universal, or even proprietary. Second, it makes it
difficult for industrial practitioners to publish research results where it is not possible
to release associated implementations. Reasonable measures would need to be taken to
work around these issues, without discouraging valuable contributions from industry.
Possible solutions include:

– Requesting that implementations target a specific, widely available OS (virtual ma-
chine images may be an option as well).

– Where this is not possible, or where implementations are proprietary, requiring
authors to build a web interface through which reviewers can interact with a tool
without actually downloading the tool executable.
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Also concerned by the problem of experimental repeatability, the databases commu-
nity has taken exemplary steps to address this at least four years ago [39]. The Call for Pa-
pers of the 2008 ACM SIGMOD/PODS Conference includes Experimental Repeatability
Requirements in its guidelines for research papers,4 which are summarised as follows:

“To help published papers achieve an impact and stand as reliable reference-
able works for future research, the SIGMOD 2008 reviewing process includes
an assessment of the extent to which the presented experiments are repeatable
by someone with access to all the required hardware, software, and test data.
Thus, we attempt to establish that the code developed by the authors exists,
runs correctly on well-defined inputs, and performs in a manner compatible
with that presented in the paper.”

We strongly believe that the verification community should take a similar stand.

Encouraging experimental validation papers. The databases and systems community
also encourages validation of previously published techniques via independent exper-
iments to the extent that it is possible to have a paper accepted by a top databases
conference or journal merely by re-implementing and comprehensively evaluating a
technique reported previously by a different research group. For example, the Call for
Papers of the VLDB 2012 conference includes an Experiments and Analysis Track,
which “seeks papers that focus on the experimental evaluation of existing algorithms
and data structures”. This includes explicitly the category of Result Verification, for
“papers that verify or refute results published in the past and that, through the renewed
analysis, help to advance the state of the art”.5

This publication model allows serious implementation work to be rewarded by presti-
gious publications, reducing the problem discussed in Sec. 2.1 of implementation work
being at odds with short-term goals.

Currently, Calls for Papers at top verification conferences include no such encourage-
ment of result verification, and it is not clear whether a Result Verification-style paper
would be taken seriously, or rejected due to lack of novelty. We recommend that active
steps should be taken to change this situation. The HCI community also discussed the
issue of result replication recently via a panel at the 2011 ACM CHI Conference [46].

A note on tool demonstration papers. One might ask at this stage whether tool demon-
stration papers, which are common in Calls for Papers at verification conferences, serve
the goal of encouraging serious implementation. We do not believe this to be the case;
tool demonstration papers can often only provide a bite-sized overview of a particular
technique.

5.2 Benefits from Building Tools

The benefits of robust tools to the verification community and beyond are clear but,
as discussed in Sec. 2.1, there is little short-term reward for tool development in an
academic environment. However, there are longer-term benefits to serious tool devel-
opment. We illustrate this by considering three well-known verification tools:

4 http://www.sigmod08.org/sigmod_research.shtml
5 http://www.vldb2012.org/call-for-contributions/experiments-
and-analysis-track/
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– SPIN, an explicit-state model checker designed at Bell Labs, and now maintained
by the NASA/JPL laboratory for reliable software

– SLAM, a CEGAR-based software model checker, designed at Microsoft Research
– PRISM, a probabilistic symbolic model checker designed at the University of Birm-

ingham, and now maintained at the University of Oxford.

Serious software tools can be highly cited. We consider citation counts for the two
most highly cited papers on each of these tools:6

– SPIN [33,34]: cited 5323 times
– SLAM [6,5]: cited 929 times
– PRISM [37,31]: cited 735 times

These large citation counts indicate significant recognition for the efforts that have gone
into development of these tools.

Serious software tools boost research. A robust tool can be used as the basis for a great
deal of further research. Looking at the publication records of the key designers of the
above tools, we find that each tool has led to tens of further high-quality publications. In
the long term, the effort expended in producing a high-quality verification tool pays off,
since one does not need to repeatedly construct throw-away prototypes for individual
paper deadlines.

5.3 Standards for Tool Interfaces

In order for a software verification tool to be used (either to reproduce experimental
results, or simply to be applied by a practitioner), it is important that the user a) knows
how to operate the tool from the command-line or via a GUI, and b) is aware of “magic”
keywords and syntactic constructs used in input programs for property specification
and/or environment modelling.

To compare two software verification tools geared towards the same input language,
one must understand equivalences between command-line or GUI options of both tools,
and how equivalent properties and/or environmental assumptions can be specified/mod-
elled using the respective syntactic constructs provided by the tools.

Tool options together with syntax for modelling and specification, together with the
language which a verification tool targets, comprise the interface of the tool. Clearly
the tasks of using an unfamiliar tool and making comparisons between two tools would
be eased by standards for tool interfaces.

We make the following recommendations in this area:

Focus first on ANSI-C. Given the wide range of programming languages being used
today, we cannot expect a long-term convergence on a single language to be supported
by all software verification tools. If more front ends for input language processing were
available, possibly a convergence towards some intermediate representation could be
sought. At present, however, the best we can do is focus on the single programming

6 Citation counts are taken from Google Scholar on 11 July 2011. For each tool, we have
summed the citation count for its key papers. Self-citations have not been excluded.
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language most widely supported by the community: ANSI-C. We propose working out
a standard interface for ANSI-C verifiers, as discussed below, then using this interface
as a basis for tool operation and comparison. If successful, a similar process could be
followed for other languages.

Focusing on ANSI-C still requires tools to agree on, or at least identify differences
between the precise way in which features that are left undefined in the standard are
modelled. We propose a benchmark-based solution to this in Sec. 5.4.

Property specification and environment modelling. In current software verification
tools we find a wide range of techniques and assumptions used both in property spec-
ification and environment modelling. For example, the BLAST model checker uses
the magic variable BLAST NONDET to specify a nondeterministic value, while with
CBMC one obtains a nondeterministic value of type T by calling a function declared
with return value of type T but the body of the function being unavailable. A common
verification-level construct is the assume statement, which restricts verification to con-
sider only paths on which, when executed, the assume statement’s guard φ evaluates to
true. Individual tools tend to provide bespoke syntax for assume statements (e.g., CBMC

uses CPROVER assume(φ)). Most verifiers unsoundly but pragmatically agree that
the effect of calling a function whose body is unavailable should be a no-op, but that the
function should return a nondeterministic result; however, this is rarely a documented
feature. Correctness properties may be expressed in some tools via external specifica-
tion languages [7,11], language extensions [8], or may be embedded in comments using
a tool-specific syntax [18].

Given input programs that deviate from the ANSI-C standard, e.g., by reading from
invalid memory, or depending on the order in which side-effecting actual parameter
expressions are passed, distinct verification tools tend to explore specific behaviours
decided upon by the tool implementers. While it is fine for a compiler to behave ar-
bitrarily on non-compliant programs, this is not the case for a verifier, which should
a) detect and report non-compliance, and ideally b) explore all possible ways in which
the non-compliant feature could be implemented, in order to catch potential bugs in an
implementation-independent manner.

As a result of this variety of approaches, it is currently in general impossible to run
the same input program, without modification, through different software verification
tools and obtain consistent results. We propose:

– the design of a standard set of syntactic constructs for property specification and
environment modelling in C programs. This would be derived from a careful study
of the constructs used by existing tools, and possibly also building upon the ad-
vances made in other programming languages, such as Spec# [8] or JML [18]. The
adoption of such a standard would allow C benchmarks to be evaluated, without
modification, by a range of tools.

– the construction of benchmarks to categorise the ways in which verifiers handle
non-standard ANSI-C programs. This would allow tool users to understand the
sorts of bugs a verifier will find, and whether two distinct tools will behave similarly
when given non-compliant programs.
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A standard command-line interface. A much more straightforward proposal is that
a standard command-line interface for C verifiers be agreed on. The standard would
specify arguments to indicate files to be checked, the main function or functions to be
analysed, and possibly even the sorts of generic properties (such as division-by-zero
or buffer overflows) to be analysed. We recommend that specification of preprocessor
macros, include directories, and other commands shared with compilers, should follow
the interface of the widely used GNU C compiler. This standard interface would make
it easy to write generic scripts to invoke C verifiers, further easing comparison between
tools. Furthermore, the standard would make it possible to build user interfaces in a
tool-independent manner, allowing at least simple input programs to be verified with
the press of a single button.

5.4 Benchmarks to Drive Quality, Comparability, and Competition

The possibility of comparability afforded by a common interface will enable building
standard benchmark sets that serve as a basis for fair and scientific comparison. Bench-
marks and fair comparison lead towards measurements of progress, and will ultimately
enable setting up competitions. We acknowledge that deriving a fair and representa-
tive benchmark suite will clearly be even more challenging than, e.g., in case of SAT
solvers. Random programs are likely not useful. Different input languages, such as C
or Java will require separate benchmark suites. Even if common interfaces are estab-
lished, different verification tools will remain geared towards different tasks, thus fair
comparisons on benchmarks are hard to achieve. We do expect, however, that branding,
described below, will help to categorise different verification tools according to their
strengths.

We expect the design of such a benchmark suite to have several further benefits:

Setting a minimum bar for verification tools. Software model checkers have been
available for more than a decade, thus users should reasonably expect them to perform
sensibly on small input programs. A set of small benchmark programs will therefore
permit to label a given analysis tool a true software verification tool. This set of bench-
marks will only define minimal standards, as discussed in Sec. 3.1. Yet these standard
benchmarks will help make tool development easier – one immediately has tests to
work towards.

Semantic foundations. A set of benchmarks with precisely defined semantics and
independently validated verification results can serve as test whether a tool matches
expected semantics for particular language features. As discussed in Sec. 3.2, we ac-
knowledge that not all tools will faithfully handle all semantic aspects of real-world
programming languages, and may treat challenging features (e.g., floating-point arith-
metic and weak memory) in an unsound but pragmatic way. The proposed benchmark
suite will serve as litmus test for verification tools, determining whether a tool faithfully
treats a particular language feature, and when this is not the case perhaps even inferring
that the tool conforms to a specific known deviation in the way this feature is handled
(e.g., determining that fixed-point or real number semantics are used for what should be
floating-point reasoning). The benchmarks will allow branding of software verification
tools, allowing users to quickly get a feeling for whether a tool will be applicable to
their particular problem. Our hope is that designers of verification tools will strive for
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a high-quality branding by the benchmark suite, spurring them on to build robust and
usable software.

Driving quality and scalability. If the verification community widely adopts such a
benchmark suite, a new verification technique will be taken seriously only if it operates
correctly and reasonably efficiently on these benchamrks. This will drive competitive-
ness, as was observed in the case of decision procedures. If a sufficient level of interface
compatibility is achieved, we will be able to run automated competitions, which will
provide an incentive to work towards better scalability.

Competition. A competition event with high visibility would foster the transfer of the-
oretical and conceptual advancements in software verification into practical tools, and
would also give credit and benefits to students who spend considerable amounts of time
developing verification algorithms and software packages. The first such competition
event will compare state-of-the-art software verifiers with respect to effectiveness and
efficiency, and the results will be represented at TACAS 2012. 7

6 Summary

We have discussed the barriers we currently perceive to advancing of the state of the art
in software verification tools. We have proposed a number of simple measures which
we believe could seriously help this situation: encouragement from the community in
the form of a new category of paper and more stringent requirements for experimental
reproducibility (inspired by similar measures within the databases and systems com-
munity); a common interface for ANSI-C verifiers to enable benchmark compatibility
and tool comparison; and a suite of benchmarks which will set a minimum bar for the
sophistication of verification tools, provide litmus tests to automatically infer whether
and how particular semantic features are handled, and drive the quality and scalability
of tools through competitions (inspired by the dramatic competition-driven success in
the field of decision procedures).

Technology transfer of hardware verification techniques into practical use proceeded
via a sequence of “small steps” [36]. We hope that our proposed measures will act as
small steps to continue the transfer of software verification techniques into mainstream
practice, which has been gaining more and more momentum over the last decade.
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42. Rümmer, P., Wahl, T.: An SMT-LIB theory of binary floating-point arithmetic. In: Interna-

tional Workshop on Satisfiability Modulo Theories (SMT) (2010)
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Abstract. In general on-chip communication protocols, such as OCP[1],
can be specified and represented with finite state machines (FSM). Such
communication protocols are basically collections of individual transac-
tions or commands, such as simple read/write and bust read/write, and
each transaction or command can be specified with a FSM. So a given
communication protocol can be represented with a set of FSMs which
work jointly. Based on these FSM-based specifications, we have been de-
veloping not only pure formal and semi-formal verification techniques us-
ing FSMs as specifications, but also synthesis and debugging techniques,
such as automatic generation of protocol converters and post-silicon veri-
fication/debugging supports. In this paper, we show first how FSM-based
specifications can describe sate-of-the-art on-chip communication proto-
cols, and then their application to such synthesis and verification/debug
for SoC designs are presented.

1 Introduction

Generally speaking, it is good if we can have clear separation between com-
munication and computation when designing large and complicated systems,
such as SoC designs. Reuses of IP cores would become much simpler, and ver-
ification of entire systems would become much easier. One way to realize such
separation is to introduce formal specifications for communication protocols to
be used for synthesis and verification in pre- and post-silicon stages as shown
in Figure 1. In this paper, first we define on-chip communication protocols with
FSM (Finite State Machine) oriented descriptions, and then they are used for
various synthesis and verification problems found in SoC designs. FSM oriented
representations are commonly used when specifying communication protocols
both in software and hardware. By specifying them with formal methods, rea-
soning about communication can be separated from their computations, which
makes the design process much more clear. Here FSM-based specifications tar-
geting state-of-the-art on-chip communication protocols, such as OCP[1] and
AXI[2], are introduced. Those FSM can immediately be used as properties for
simulation-based and formal verification through inclusion/equivalence checking
of communication parts of the designs and/or model checking with properties
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Fig. 1. Synthesis and verification using protocol specification in FSM

generated by decomposition from FSMs. Besides direct verification of designs
with FSM representations, various problems relating to SoC designs can be pro-
cessed with them. In the following sections, after showing how state-of-the-art
on-chip communication protocols can be specified with FSMs, two of their appli-
cations, automatic generation of protocol converters and automatic mapping of
simulation/chip traces among different levels of design descriptions are shown.

2 FSM-Based Specification of On-Chip Communication
Protocols

As shown in [3], simple blocking protocols can be specified with regular ex-
pressions which are practically equivalent to FSMs. Each blocking command/
transaction in the given protocol, where the next command must wait until a
response of the current command has been received, is specified with one FSM.
Modern communication protocols, however, use non-blocking protocols, where
the next command can be issued before receiving a response for the current
command. In order to specify such non-blocking protocols, two separated FSMs
are required [4], one for request and the other for response. Such FSM represen-
tation for “simple read” command of OCP is shown is Figure 2. The FSM for
request is in charge of issuing request, and the one for response is in charge of
receiving response. As they are running in parallel, non-blocking protocols can
be processed.

State-of-the-art protocols also have “burst mode” where multiple data are
sent with a single command. In [4], a multi-level FSM has been introduced to
deal with various bust modes in communication. Example FSM representations
for “burst read” command in AXI protocol are shown in Figure 3. Here a super
state is introduced which represents a FSM in lower level as shown in the figure.
By repeatedly visiting such super states, multiple data transfers in burst modes
can be described with FSM in a uniform way.



Synthesis, Verification, and Debugging with FSM-Based Specification 45

Request Phase

idle

cmd

ack

MCMD==OCP_RD
MADDR=addr1

(MCMD==IDLE)

SCmdAccept=>1
SCmdAccept=>0
MADDR=addr1

Response Phase

idle

(SResp=>NULL)

SResp=>OCP_DVA
SDATA=>data1

Fig. 2. Automaton for OCP simple read transaction

Real-life protocols can be defined as collections of individual commands. This
naturally introduces a hierarchical model of protocols as shown in Figure 4,
where a protocol is modelled as a set of sequences [4]. Sequences correspond to
command and are mutually exclusive transactions sharing the same initial state.
Also, a sequence have at most two FSMs to represent behavior of request and
response separately.

3 Automatic Generation of On-Chip Communication
Protocol Converters

Protocol converters interpret the given two protocols and realize the communi-
cation between them by applying appropriate transformations to control as well
as data signals. In other words, a protocol converter follow both protocols, and
basically it can be realized by computing the cross product of the two protocols.
As protocols are represented as collections of sequences or FSMs, a protocol con-
verter is a collection of FSMs that are the products of two sets of corresponding
FSM for each sequence. For the synthesis of each product, basically cross pro-
ducing two FSMs [3] is computed by taking care of “dependency” among data
variable, i.e., a protocol converter can send out data to slave sides only after it
received it from master sides. As state-of-the-art on-chip communication proto-
cols need both of request and response FSMs as well as multi-level ones, this
cross product computation has been extended [4]. With the hierarchical proto-
col representations, size of exploration space, when computing cross product,
is reduced and becomes manageable. Parallelism between request and response
FSMs, which is essential for non-blocking protocols, is realized by synthesizing
transducer FSMs for request and response separately.

[4] also gave ideas to hide loops in FSM, so that explosions of exploration
spaces are avoided. Two kinds of edges, returning ones and loop transition ones,
which make a loop are defined as shown in Figure 5. Returning edges are the
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Request Phase

idle
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(ARVALID=>0)
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ARTAG=>tag
ARADDR=>addr1

ARREADY==0
ARVALID=>1
ARBURST=>INCR
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ARTAG=>tag
ARADDR=>addr1

ARREADY==1

Fig. 3. Automaton for AXI burst read transaction
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R esponse A utom aton

Fig. 4. Hierarchical model of protocol

edges whose destinations are the initial states. Before computing the cross prod-
uct, returning edges are removed by adding the end state. The destination of
returning edges are replaced to the end state. On the other hand, loop transi-
tion edges are the ones heading to the already visited states when traversing a
FSM. Loop transition edges are removed by replacing Subgraphs containing loop
transition edges with superstates. A Subgraph corresponding to the superstate
is called KernelGraph, while the owner of the superstate is called ShellGraph.
The cross product computation is applied to a pair of KernelGraphs and a pair
of ShellGraphs separately. After that, a pair of superstates in the FSM resulting
from ShellGraphs is replaced with the FSM resulting from KernelGraphs.

The synthesis flow of partial transducers with datapaths (shown in Figure 6)
consists of the following 4 steps, assuming that FSMs for both protocols and
specification of data words are given. As step1, a datapath to handle incompat-
ibility of data words/behaviors is designed by hand. A datapath can be either
combinational or sequential circuit. For semantical incompatibilities, combina-
tional circuits such as adders and tables are used. To realize behaviors depending
on the values of data words, sequential circuits such as counters and accumulator
are used. As step2, a FSM to drive the datapath is designed manually. Activities
of the driver FSM includes setting initial values, waiting for data-ready signal,
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and getting resulting values. As step3, cross product computation is applied to
protocol FSM and the driver FSM. After synthesis, a partial transducer FSM
is obtained which connects the master, the slave and the datapath. Finally as
step4, a partial transducer is obtained by putting the datapath and the partial
transducer FSM together. For protocols with multiple sequences, partial trans-
ducers are concatenated to make a whole transducer. Datapaths can be shared
among partial transducer FSMs when internal state of datapaths can be shared.

Please note that by supplying customized datapath for the synthesis processes,
some sorts of computation, such as bit-width conversions and error correction,
can also be included in the protocol converters generated.

4 Post-Silicon Verification and Debugging of SoC with
FSM-Based Specifications of On-Chip Communication
Protocols

One of the most important issues, when verifying and debugging SoC designs, is
how to convert and translate test vectors and execution traces among different
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Fig. 7. An interface of chip A that transfers data in handshake protocol and that of
the corresponding high-level design B

levels of design stages, such as system level in C/C++, RTL, gate and actual
implementations on chips. Manual conversion is time consuming and can easily
introduce errors. Moreover, for long traces, such as the ones generated from
actual chip runs, manual conversion is simply impossible. We have proposed
a post-silicon debugging framework utilizing high-level designs instead of low-
level designs [5,6] by automatically translating chip traces into the ones for high
level designs referring to the specification in FSM for on-chip communication
protocols. Generally speaking, I/O sequences of chip execution cannot be used as
they are in high-level design simulation, because (1) the signal values on the chip
I/O sequences are not valid at every cycle, (2) data can be transferred in various
ways through on chip interfaces, (3) there is also variation in the structures
of interface ports. Therefore, a mapping method to convert the I/O sequences
of chip execution to the corresponding ones in high-level design simulation is
prerequisite to realize such post-silicon debugging approach first introduced in
[5]. For a simple example, consider the two circuits shown in Figure 7, where
Circuit A is a chip implementation and Circuit B is the corresponding high-level
design. In A, when the signal value of the port a e is high, the signals on the
port data is valid for the value of the port a of B. In the same way, the port
data is valid for b and c, when the signal values of ports b e and c e are high,
respectively. Intuitively, the expected I/O sequence mapping for this example
is to generate the I/O sequence for each port of B, that is, < 2, 7, · · · > for
a, < 1, 0, · · · > for b, < 5, · · · > for c, from the sequence < 101, xxx, 001,
xxx, 101, 111, 000, · · · > of data, where x is a don’t care value. This kind of
conversions can be made automatically once protocol specification in FSM for
the chip implementation are given, as this is sort of automatic conversion of
protocols in different levels and the techniques shown in the previous section
can be used.

Figure 8 shows the post-silicon debugging framework based on automatic trace
conversion with FSM-based protocol specifications. When an error is detected in
a chip execution, the erroneous I/O sequence revealing the error is obtained as
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Fig. 8. A post-silicon debugging framework using high-level design description[5]

a counter-example. Such erroneous I/O sequences of the chip execution should
be converted to the I/O sequences of the corresponding high-level design. Then,
debugging is conducted using the high-level design simulation with the converted
I/O sequences.

Let us discuss with an example shown in Figure 9(a) where Module A is a
chip implementation and Module B is a corresponding high-level design. Here, we
assume that A has a 12-bit output port data, and that B has three output ports,
a, b, and c, declared as integers. Module A is designed to transfer consecutive
three output values at each clock cycle at a port data and each output value
occupies four bits. Whereas, module B generates the corresponding three output
values from the three different ports at the same time. For example, the upper
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Fig. 9. Pairs of I/O sequences of a chip and a high-level design
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four bits of data at the first clock cycle in A corresponds to the value of a at the
first cycle in B, and the next four bits at the first clock cycle in A corresponds
to the value of b at the first cycle in B.

Clearly this is a problem of protocol conversions with some data manipula-
tions, and so the techniques shown in the previous section can be utilized. That
is, referring to the two protocols that correspond to the two levels of designs, a
sort of protocol converters are generated and executed in order to convert the
chip traces into the ones for high level. As reserve protocol converters can also
be automatically generated, high level simulation vectors can be translated into
the ones for lower levels as well.

5 Concluding Remarks

In this paper synthesis and verification/debugging techniques based on FSM-
based protocol specification targeting SoC designs are summarized. Their details
can be found in the literatures. FSM-based specifications can also be applied
to hardware supports for post-silicon debugging, such as [7,8], where hardware
which traces communication among blocks/cores in SoC can be automatically
generated from FSM-based specifications of communication protocols.

As a summary it can be concluded that the FSM-based specification for on-
chip communication protocol can take the central roles in SoC designs where
their communication and computation can be separately analyzed.
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Abstract. For the last few decades, automated software analysis techniques such
as software model checking and concolic testing have advanced in a large degree.
However, such techniques are not frequently applied to industrial software due to
steep learning curve and hidden costs to apply these techniques to industrial soft-
ware in practice. Therefore, to enable technology transfer to industry, it is essen-
tial to conduct concrete case studies applying automated techniques to real-world
industrial software. These studies can serve as references for field engineers who
want to improve quality of software by adopting automated analysis techniques.
Furthermore, concrete applications of such techniques can guide new research
goals and directions to solve practical limitations observed in the studies. In this
paper, we describe our experience of applying various automated software anal-
ysis techniques to industrial embedded software such as flash memory storage
platform and smartphone platform.

1 Introduction

Manual testing is a de-facto standard method to improve the quality of software in in-
dustry. However, conventional testing methods frequently fail to detect faults in target
programs, since it is infeasible for a test engineer to manually create test cases sufficient
to detect subtle errors in specific/exceptional execution paths among an enormous num-
ber of different execution paths. These limitations are serious issues in many industrial
projects, particularly in embedded system domains where high reliability is required
and product recall for bug-fixing incurs significant economic loss.

To solve such limitations, many researchers have worked to develop automated soft-
ware analysis techniques such as model checking [5], software model checking [8], and
concolic testing (a.k.a., dynamic symbolic execution) [13,6]. However, such techniques
are not frequently applied to industrial software due to steep learning curve and hidden
costs to apply these techniques to industrial software in practice. For example, although
model checking is a fully automated technique, model creation/extraction is a mostly
manual process which causes large cost in an industrial setting. In addition, for software
model checking, a user does not have to make a target model unlike model checking,
but still he/she has to build a valid environment model to obtain meaningful verification
results. Furthermore, to achieve effective and efficient analysis results, a user has to
understand the limitations of automated techniques, which are not clearly described in
related technical papers. Consequently, field engineers often hesitate to adopt automated
analysis techniques in their projects.
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To realize the benefits of automated software analysis techniques in practical set-
tings, our group has worked to apply automated analysis techniques such as software
model checking and concolic testing (a.k.a. dynamic symbolic execution) to industrial
software by collaborating with consumer electronics companies such as Samsung Elec-
tronics. Through the collaboration, we realized that it is essential to conduct concrete
case studies of applying automated techniques to real-world industrial software. These
studies can serve as references for field engineers who want to improve quality of soft-
ware by adopting automated analysis techniques. Furthermore, concrete applications
of such techniques can guide new research directions to solve practical limitations ob-
served in the studies. In this paper, we share our experience of applying various tools of
model checking, software model checking, and concolic testing to flash memory storage
platform [9,11,10] and smartphone platform [12].

2 Unified Storage Platform for OneNAND Flash Memory

2.1 Overview of the Unified Storage Platform

The unified storage platform (USP) is a software solution for OneNAND based embed-
ded systems. Figure 1 presents an overview of the USP: it manages both code storage
and data storage. USP allows processes to store and retrieve data on OneNAND through
a file system. USP contains a flash translation layer (FTL) through which data and pro-
grams in the OneNAND device are accessed. FTL is a core part of the storage platform
for flash memory, since logical data can be mapped to separated physical sectors due
to the physical characteristics of flash memory (see Section 2.2). FTL consists of the
three layers: a sector translation layer (STL), a block management layer (BML), and a
low-level device driver layer (LLD).

OneNAND Flash Memory Devices

Low Level (LLD) 
Device Driver

Block
Management (BML)

Sector
Translation (STL)

Demand Paging 
Manager (DPM)

OS
Adaptation

Module

Unified
Storage
Platform
(USP)

Process1 Process2 Process3

Flash
Translation 

Layer (FTL)

File
System

Generic
I/O requests

Prioritized
read requests

Fig. 1. Overview of the USP
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Generic I/O requests from processes are fulfilled through the file system, STL, BML,
and LLD, in that order. Although the USP allows concurrent I/O requests from multi-
ple processes through the STL, the BML operations must be executed sequentially, not
concurrently. For this purpose, the BML uses a binary semaphore to coordinate concur-
rent I/O requests from the STL. In addition to generic I/O requests, a process can make
a prioritized read request for executing a program through the demand paging manager
(DPM) and this request goes directly to the BML. A prioritized read request from the
DPM can preempt generic I/O operations requested by STL. After the prioritized read
request is completed, the preempted generic I/O operations should be resumed again.

2.2 Logical-to-Physical Sector Translation

A NAND flash device consists of a set of pages that are grouped into blocks. A unit can
be equal to a block or multiple blocks. Each page contains a set of sectors. Operations
are either read/write operations on a page, or erase operations on a block. NAND can
write data only on an empty page and the page can be emptied by erasing the block
containing the page. Therefore, when new data is written to the flash memory, rather
than directly overwriting old data, the data is written on empty physical sectors and the
physical sectors that contain the old data are marked as invalid. Since the empty physical
sectors may reside in separate physical units, one logical unit (LU) containing data is
mapped to a linked list of physical units (PU). STL manages the mapping from the
logical sectors (LS) to the physical sectors (PS). This mapping information is stored in
a sector allocation map (SAM), which returns the corresponding PS offset from a given
LS offset. Each PU has its own SAM. Figure 2 illustrates the mapping from logical
sectors to physical sectors where one unit contains one block and a block consists of
four pages, each of which has one sector.
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Fig. 2. Mapping from logical sectors to physical sectors
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2.3 Analysis Results and Discussions

Multi-sector Read Function. We began by analyzing a multi-sector read (MSR) func-
tion in STL (see Section 2.2) that reads multiple physical sectors that correspond to
logical sectors specified by a user. We selected MSR as it is a core function of USP
and relatively small (157 lines of C code) but with complex control (i.e., four-level
nested loops) and data structure (i.e., LU, PU, and SAM). The requirement property we
checked is that the read buffer of MSR should contain corresponding data in physical
sectors at the end of MSR. In addition, to obtain valid verification results, we had to
provide an operational environment of MSR such as following:

1. For each logical sector, at least one physical sector that has the same value exists.
2. If the ith LS is written in the kth sector of the jth PU, then the (i mod m)th offset

of the jth SAM is valid and indicates the PS number k, where m is the number of
sectors per unit.

3. The PS number of the ith LS must be written in only one of the (i mod m)th offsets
of the SAM tables for the PUs mapped to the � i

m�th LU.

We applied model checking techniques to MSR through a symbolic model checker
NuSMV [3], an explicit model checker Spin [7], and C-bounded model checker
CBMC [4] (more detail can be found in [9]) using 64 bit Linux machine equipped
with 3 Ghz Xeon dual-core cpu. For NuSMV and Spin, we built a model for MSR man-
ually. We found that it was a highly challenging task to build a NuSMV model for a C
program with complex control and data structure (a corresponding MSR model is 1000
lines long). The above model checkers did not detect a violation of the requirement
property in problem instances up to 10 physical units and 6 logical sectors. Figure 3
shows the verification performances of the above model checkers in terms of time and
memory. NuSMV spent more than 90% of time in dynamic reordering of BDD vari-
ables due to hard-to-abstract SAMs and showed an order-of-magnitude slower speed
than Spin. For memory consumption, NuSMV showed better performance than Spin.
CBMC showed better performance in terms of both time and memory than Spin and
NuSMV. Note that CBMC demonstrated relatively slow increases of time/memory cost
as the problem size grows up (i.e., scalability of CBMC is better than NuSMV and
Spin due to the underlying industrial-strength SAT solver). Though the verification was
conducted on a small-scale, this exhaustive result provided good confidence on the cor-
rectness of MSR. Thus, we found that a software model checker could be used as an
effective unit-testing tool for embedded software.

BML and LLD Layers. We applied software model checkers Blast [1] and CBMC to
several components in the BML and LLD layers (we could not apply Spin and NuSMV,
since translation from BML/LLD C code to formal models would require large human
effort). In these experiments, we had to build valid environment models for target units
as we did for MSR. We found several bugs including a preemption error caused by
a prioritized read operation and an error that does not propagate a BML semaphore
exception to STL, which is required to reset USP (Section 2.1). Figure 4 shows a call
graph of the topmost STL functions toward BML functions. When a BML function
such as BML GetVolInfo raises a semaphore exception for any reason, that exception
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Fig. 3. Comparison of verification performance among NuSMV, Spin, and CBMC

should be handled by STL functions, but GetSInfo does not pass the exception to its
caller in some cases. Total size of all functions from STL to BML is around 2500 lines
of C code on average. Blast failed to detect the error and raised false alarms due to its
limitations on handling bitwise operators and nested data structures. CBMC detected
this error in 12 minutes with consuming 3 Gbyte of memory on average (details of the
experiments can be found in [11]).

Fig. 4. Call graph of the topmost STL functions using the BML semaphore

In these analyses, however, we found that both Blast and CBMC had limitations for
complex embedded C programs. For example, Blast often analyzed array operations
incorrectly and its result could not be trusted. In contrast, CBMC did not suffer ac-
curacy problems, but due to its loop unwinding scheme, extensive loop analysis (i.e.,
unwinding many times) was infeasible. In addition, when a target code invokes external
libraries, the analysis accuracy decreases unless a user makes an environment model
for such libraries. Consequently, we decided to focus on more scalable and automated
analysis techniques and concentrated on concolic testing techniques (see Section 3).

3 Concolic Testing Technique

Concolic (CONCrete + symbOLIC) testing [13,6] combines both a concrete dynamic
analysis and a symbolic static analysis to automatically explore all possible execution
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paths of a target program by negating every branching decision in execution paths.
Thus, concolic testing aims to overcome the limitation of conventional testing as well
as software model checking. Concolic testing can analyze a target program with less
memory than state model checking, since it does not store the entire state space, but an-
alyzes each execution path one by one in a systematic manner (i.e., through depth first
search strategy). In addition, concolic testing can analyze a target program faster than
state model checking, since search space of concolic testing (i.e., explicit path model
checking) is usually smaller than that of state model checking. Although concolic test-
ing may fail to detect bugs which can be discovered by state model checkers, concolic
testing techniques can be a good trade-off between effectiveness and efficiency. In addi-
tion, unlike model checking, external library calls can be handled using concrete input
and output values, thus achieving better applicability. Lastly, concolic testing generates
concrete test cases, which are invaluable assets for industrial software projects (i.e.,
through conventional testing, regression testing, and product line testing, etc.).

It is, however, still necessary to check the effectiveness and efficiency of concolic
testing on industrial software through concrete case studies, since this technique is rel-
atively new and depends on many other static and dynamic components. These compo-
nents potentially include SMT solvers, virtual machines, code instrumenters, compilers,
etc. In addition, in our experience we found that successful application of concolic test-
ing depends on the expertise of a human engineer, as they must determine what should
be declared as symbolic input and what should be the initial input from which symbolic
analysis begins, which search strategy should be chosen, etc.

4 Samsung Linux Platform (SLP) for Smartphones
4.1 File Manager
The SLP file manager (FM) monitors a file system and notifies corresponding applica-
tions of events in the file system. FM uses an inotify system call to register directo-
ries/files to monitor. When the directories and files that are being monitored change, the
Linux kernel generates inotify events and adds these events to an inotify queue.
FM reads an event from the queue and notifies corresponding programs of the event
through a D-BUS inter-process communication interface. For example, when a user
adds an MP3 file to a file system, FM notifies a music player to update its playlist au-
tomatically. A fault in FM can cause serious problems in SLP, since many applications
depend on FM. FM is written in C and around 10,000 lines long.

Symbolic Inputs. To apply concolic testing, we must specify symbolic variables in a
target program, based on which symbolic path formulas are generated at runtime. We
specified inotify event as a symbolic input, whose fields are defined as follows:
struct inotify_event {

int wd; /*Watch descriptor */
uint32_t mask; /*Event */
uint32_t cookie;/*Unique cookie associating events*/
char name[];/*Optional null-terminated name */};
uint32_t len; /*Size of ’name’ field */

wd indicates the watch for which this event occurs. mask contains bits that describe
the type of an event. cookie is a unique integer that connects related events. name[]
represents a file/directory path name for which the current event occurs and len indi-
cates a length of the file/directory path name. Among the five fields, we specified wd,
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mask, and cookie as symbolic variables, since name and len are optional fields.
We built a symbolic environment to provide an inotify event queue that contains
up to two symbolic inotify events.

Analysis Results. By using a concolic testing tool CREST [2], we detected an infinite
loop fault in FM in one second. After FM reads an inotify event in the queue, the
event should be removed from the queue to process the other events in the queue. For a
normal event, the wd field of the event is positive. Otherwise, the event is abnormal. We
found that FM did not remove an abnormal event from the queue and caused an infinite
loop when an abnormal event was added to the queue. This bug had not been detected
before because original developers did not make test cases that contained abnormal
events, which were hard to trigger. Note that external SLP libraries used by FM could be
handled by CREST without difficulty (but with decreased path coverage), since CREST
simply used concrete values for library calls without building a corresponding symbolic
path formula.

4.2 Security Library

The security library in SLP provides API functions for various security applications on
mobile platforms such as SSH (secure shell) and DRM (digital right management). The
security library consists of security function layer (security APIs such as AES or SHA),
complex math function layer (elliptic curve, large prime number generators, etc), and
a large integer function layer. Most functions in the library are well documented and
its input/output behaviors are clearly defined based on mathematical semantics. We
analyzed a large integer function layer (around 2500 lines long) using CREST.

Symbolic Inputs. A large integer is represented by the L INT data structure:
struct L_INT {
unsigned int size;//Allocated mem size in 32 bits
unsigned int len; //# of valid 32 bit elements
unsigned int *da; //Pointer to the dynamically allocated data array.
unsigned int sign;//0:non-negative, 1: negative }

To test large integer functions, we built a symbolic large integer generator that returns
a symbolic large integer n (line 12) as shown in Figure 5. Lines 3-5 allocate memory
for n (line 5). Line 3 declares the size of n as a symbolic variable of unsigned
char type. Note that line 4 enforces a constraint on size such that min≤size≤max.
Without this constraint,size can be 255, which will generate unnecessarily many large
integers, since the number of generated large integers increases as the size increases.
Line 5 allocates memory for n using L INT Init(). For simple analysis, we assume
that len==size (line 6). Lines 8-9 fill out a data array of n, if necessary (line 7).
Since we assume that size==len, we do not allow the most-significant bytes to be
0 (line 10). Using gen s int(), we developed test drivers for all 14 large integer
functions to checks their basic mathematical properties such as (n1 + n2)%m ==
(n2 + n1)%m for L INT ModAdd(n1, n2, m).

Analysis Results. We inserted 40 assertions in the 14 large integer functions and found
that all 14 large integer functions violated some assertions. CREST running on a Linux
machine (3.6Ghz Core2Duo) generates 7537 test cases for the 14 large integer func-
tions in five minutes. For example, test L INT ModAdd() generated 831 test cases
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01:L_INT* gen_s_int(int min,int max,int to_fill) {
02: unsigned char size, i;
03: CREST_unsigned_char(size); //symbolic variable
04: if(size> max || size< min) exit(0);
05: L_INT *n=L_INT_Init(size);
06: n->len=size;
07: if(to_fill){// sym. value assignment
08: for(i=0; i < size; i++) {
09: CREST_unsigned_int(n->da[i]);}
10: if(n->da[size-1]==0) exit(0); }
11: return n;}

Fig. 5. Symbolic large integer generator

to test L INT ModAdd(). 17 of the 831 test cases violated (n1 + n2)%m == (n2 +
n1)%m. We analyzed L INT ModAdd(L INT d,L INT n1,L INT n2,L INT
m) and found that this function did not check the size of d (destination). Thus, if the
size of d is smaller than (n1+n2)%m, this function writes beyond the allocated mem-
ory for d, which may corrupt d later by other memory writes. This bug had not been
caught before, since high level security functions invoked L INT ModAdd() with m
that is smaller than n1 and n2, thus escaping from exceptional error-triggering sce-
narios. Automated analysis techniques are very effective to explore such corner case
scenarios and detect hidden bugs.

5 Conclusion and Future Work

We have shown that difficult verification problems in industrial software can be han-
dled successfully using automated formal analysis tools. Though the projects were con-
ducted on a small-scale, Samsung Electronics highly valued the analysis results. At the
same time, the experience gained in these projects led the authors to realize the practi-
cal limitations on the scalability and applicability of software model checking and the
necessity of conducting further research to develop an advanced concolic testing tech-
nique for complex embedded software such as smartphone platforms. Currently, we are
working with University of Nebraska to develop a hybrid concolic testing technique
that utilizes a genetic algorithm to cover the weaknesses of pure concolic testing. In ad-
dition, Samsung Elctronics and KAIST continue collaboration to analyze Android 2.3
platform using concolic testing techniques.
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Abstract. We present a recursive algorithm to update a Kripke model
so as to satisfy a formula of the Computation-Tree Logic (CTL).
Recursive algorithms for model update face a difficulty: deleting (adding)
transitions from (to) a Kripke model to satisfy a universal (an existen-
tial) subformula may dissatisfy some existential (universal) subformulas.
Our method employs protected models to overcome this difficulty. We
demonstrate our algorithm with a classical example of automatic syn-
thesis described by Emerson and Clarke in 1982. From a dummy model,
where the accessibility relation is the identity relation, our algorithm can
efficiently generate a model to satisfy a specification of mutual exclusion
in a variant of CTL. Such a variant extends CTL with an operator that
limits the out-degree of states. We compare our method with a generate-
and-test algorithm and outline a proof of soundness and completeness
for our method.

1 Introduction

A Computation-Tree Logic (CTL) model checker is an automated tool that has
as input (1) a Kripke model formalizing a system, (2) a CTL formula expressing
a desirable property of this system, and (3) a set of distinguished initial states of
the model. The output is either a confirmation or a denial that the model satisfies
the formula at all the initial states, meaning that the system respectively has, or
does not have, the required property. In case of denial, the model checker often
produces a counterexample, consisting of an error trace. This counterexample
is intended as a guide for manually updating or repairing the model, or high-
level description of the model, so that the unsatisfied property is fulfilled. We
believe that even a partial automation of such a repairing process could have a
big impact on the use of the model checking technique.

In spite of its relevance, the problem of mechanically updating a Kripke model
has been little studied. As far as we know, Buccafurri et al. [1] proposed the first
work on CTL model update by using abduction to repair Kripke models with
the addition and removal of transitions. In a later work, Calzone et al. [2] gave
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a method for updating Kripke models with the addition and removal not only
of transitions, but of labels as well, dependent on biases determined by the
application domain (biochemical networks). More recently, Zhang and Ding [7]
have devised a generate-and-test model-repair algorithm.

Model update methods based on counterexamples produced by a model checker
have a drawback. The model repair focused on invalidating one particular coun-
terexample to a universal property does not guarantee that the repaired model
satisfies this property, because there may be more than one counterexample, and
all counterexamples must be treated simultaneously. Furthermore, if the defective
model does not satisfy an existential property, the model checker does not provide
a useful counterexample. Hence, this drawback invites considering a method based
on a concept other than that of counterexamples.

We present a recursive method for repairing models in a nondeterministic way,
based on the preservation of the satisfaction of subformulas via a mechanism
of protections. To update a model with respect to a formula ϕ, our method
recursively updates the model with respect to the subformulas of ϕ. Every time
our method updates a model to satisfy a subformula α, the satisfaction of α is
protected. This protection ensures that if α is a proper subformula of β, and β is
a subformula of ϕ, then an update to satisfy β causes no loss of the satisfaction
of α achieved with a previous update. To facilitate the treatment of negation, our
algorithm requires that CTL formulas be in negation normal form and written
with a set of operators closed under duality.

Emerson and Clarke [5] anticipated the problem of CTL model update when
they gave an automated method for a closely related problem: synthesizing a
model from a specification in a variant of CTL. Emerson and Clarke [5] ask
themselves whether their method can be developed into a practical software tool
and encourage further research:

Similarly [to SAT solvers and model checkers], the average case perfor-
mance of the decision procedure used by the synthesis method may be
substantially better than the potentially exponential time worst case [. . .]
We therefore believe that this approach may in the long run turn out to
be quite practical.

Supporting this belief, we show that a software tool that implements our
algorithm can efficiently synthesize a model from a specification of the mu-
tual exclusion problem written in CTL augmented with an operator to limit the
out-degree of states. We carry out such a synthesis by repairing a dummy model
(where the accessibility relation is the identity relation) to satisfy the given CTL
specification. A comparison with the execution time of a direct algorithm, based
on generation and testing, exhibits the advantages of our algorithm.

After fixing the notation in Section 2, we treat CTL model update in Section 3.
Next, we show in Section 4 the performance of our algorithm through an applica-
tion to faulty models of mutual exclusion. Section 5 compares our algorithm with
others and summarizes some conclusions.
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2 Technical Preliminaries

This section gives some introductory definitions and fixes the notation. We as-
sume some familiarity with CTL model checking and refer the reader to [4] for
a more thorough treatment.

A signature Σ = 〈S, V 〉 consists of a pair of nonempty finite sets. We call the
elements of S and V , states, and (propositional) variables, respectively. Unless
otherwise stated, we assume that Σ = 〈S, V 〉 is an arbitrary fixed signature. The
set of literals over V is Lit(V ) = V ∪ {¬p | p ∈ V }. The complement of literals
is defined by p = ¬p and ¬p = p, ∀p ∈ V . If X ⊆ Lit(V ) then: X = {� | � ∈ X};
X is consistent iff ∀ � ∈ X , �̄ /∈ X ; and X is V -maximal iff ∀ p ∈ V , p ∈ X or
¬p ∈ X . If R ⊆ S2 then R is total iff ∀ s ∈ S, ∃ t ∈ S such that (s, t) ∈ R.
The set of successors of s under R is R[s] = {t | (s, t) ∈ R}. If C and D are
sets then: ID is the identity on D, ID = {(t, t) | t ∈ D}; and CD is the constant
C on D, CD : D → {C}, CD(t) = C ∀t ∈ D. If A ∩ B = ∅, f : A → C, and
g : B → D, f ∪ g is the function f ∪ g : A ∪B → C ∪D, f ∪ g(t) = f(t) if t ∈ A
and f ∪ g(t) = g(t) if t ∈ B.

Definition 1 (Kripke Σ-models). We say that M = 〈SM, RM, LM〉 is a
Kripke Σ-model iff: SM = S, RM ⊆ S2 is total, and LM : SM → 2Lit(V ) is
such that ∀ t ∈ SM, LM(t) is consistent and V -maximal.

If (s, t) ∈ R we call (s, t) a transition from s to t and we abbreviate this to sRt.
We call L the labeling function of M. If � ∈ Lit(V ) and s ∈ S, then L[s ⊕ �]
denotes the labeling function such that L[s ⊕ �](s) = (L(s) ∪ {�}) − {�} and
L[s⊕ �](t) = L(t) for t �= s. KΣ denotes the set of Σ-models.

Models are often represented graphically as in Section 4, writing only positive
literals as labels of the states. We identify the components of Σ-models and
signatures by using superscripts:M = 〈SM, RM, LM〉, Σ = 〈SΣ, V Σ〉.

Next, we define an extension of CTL [4]. We use a base of operators closed
under duality. The following pairs are dual operators : (⊥,�), (∨,∧), (EX,AX),
(EU,AR), and (AU,ER). We restrict formulas to a negation normal form
(NNF), by limiting the application of negation to variables. However, since we
use a base of operators closed under duality, other instances of negation may
be considered as shorthand. We add to CTL out-degree formulas OD ≤ n, and
their duals OD > n, to limit the number of transitions going out of a state.

Definition 2 (Σ-CTL and Σ-XCTL). Formulas of signature Σ of the
Computation-Tree Logic, Σ-CTL (abbreviated Φ), have the following syntax:

Φ ::= ⊥ | � | � | (Φ ∨ Φ) | (Φ ∧ Φ) | (EXΦ) | (AXΦ) |
E[ΦUΦ] | A[ΦRΦ] | A[ΦUΦ] | E[ΦRΦ] | (OD ≤ n) | (OD > n)

where � stands for any literal in Lit(V ) and n ∈ N.
We will single out the modal fragment of Σ-CTL. Σ-XCTL formulas (abbre-

viated Ψ) have the following syntax:

Ψ ::= ⊥ | � | � | (Ψ ∨ Ψ) | (Ψ ∧ Ψ) | (EXΨ) | (AXΨ)
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We use ϕ ∈ Σ-CTL to indicate that ϕ is a Σ-CTL formula. The size of ϕ,
written |ϕ|, is the number of operators occurring in ϕ. We view other temporal
operators (EF , AF , EG , AG ) and propositional operators (→, ↔, exclusive
or �) as abbreviations.

The above CTL syntax is a key point in the simplicity of our model update
algorithm. Any syntax that has a base of operators similar to those used in model
checking [4], e.g. {¬,∧,EX,AF,EU}, complicates model update w.r.t. formulas
¬α, AFα, and E[αUβ] (e.g. [7]). Another key point is that our algorithm
focuses on Σ-XCTL formulas, and more complex operators EU, AR, AU, and
ER, are treated by means of their fixed-point characterizations [4].

Next, we provide basic definitions for the protection mechanism.

Definition 3 (Σ-Protections). P = 〈E, A, L〉 is a Σ-protection iff

1. E ⊆ A ⊆ S2, and
2. L : S → 2Lit(V ) is such that ∀t ∈ S, L(t) is consistent.

We call states in E[s] (A[s]) successors of s existentially (universally) protected.
We will use PΣ to denote the set of Σ-protections.

Definition 4 (Protected models, PM, and P⊥). Let M ∈ KΣ be a model
and P ∈ PΣ . We say that M is protected by P , and we write M� P iff:

1. EP ⊆ RM ⊆ AP , and
2. ∀t ∈ SM : LM(t) ⊇ LP (t).

We say that (M, P ) is a protected Σ-model iff M � P , and we use KPΣ

to denote the set of protected Σ-models. The full protection for M is PM =
(RM, RM, LM). The empty protection for any M ∈ KΣ is P⊥ = (∅, SΣ ×
SΣ, L⊥), where L⊥(s) = ∅ for all s ∈ SΣ.

If R ⊆ S2 and s ∈ S, a path in R beginning at s, is a sequence π : N → S, such
that π(0) = s and ∀ n ∈ N, π(n)Rπ(n + 1). We write πn instead of π(n) and we
use ΠR,s to denote the set of paths in R beginning at s.

Definition 5 (Σ-CTL protected semantics). If (M, P ) ∈ KPΣ is a pro-
tected Σ-model, s ∈ SM and ϕ ∈ Σ-CTL, then we say that (M, P ) satisfies ϕ
at s, and we write (M, P ), s |= ϕ, according to:

1. (M, P ), s �|= ⊥. (M, P ), s |= �. (M, P ), s |= � iff � ∈ LP (s).
2. (M, P ), s |= α ∨ β iff (M, P ), s |= α or (M, P ), s |= β.
3. (M, P ), s |= α ∧ β iff (M, P ), s |= α and (M, P ), s |= β.
4. (M, P ), s |= EXα iff ∃t ∈ EP [s] such that (M, P ), t |= α.
5. (M, P ), s |= AXα iff ∀t ∈ AP [s], (M, P ), t |= α.
6. (M, P ), s |= E[α Uβ] iff ∃π ∈ ΠEP ,s, and ∃j ∈ N such that

(M, P ), πj |= β and ∀i ∈ N, i < j → (M, P ), πi |= α.
7. (M, P ), s |= A[αU β] iff ∀π ∈ ΠAP ,s, ∃j ∈ N such that

(M, P ), πj |= β and ∀i ∈ N, i < j → (M, P ), πi |= α.
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8. (M, P ), s |= E[α Rβ] iff ∃π ∈ ΠEP ,s such that either
(a) ∀k ∈ N, (M, P ), πk |= β, or
(b) ∃j ∈ N such that (M, P ), πj |= α and ∀i ∈ N, i ≤ j → (M, P ), πi |= β.

9. (M, P ), s |= A[αR β] iff ∀π ∈ ΠAP ,s, either
(a) ∀k ∈ N, (M, P ), πk |= β, or
(b) ∃j ∈ N such that (M, P ), πj |= α and ∀i ∈ N, i ≤ j → (M, P ), πi |= β.

10. (M, P ), s |= OD ≤ n iff |AP [s]| ≤ n.
11. (M, P ), s |= OD > n iff |EP [s]| > n.

Definition 6 (Σ-CTL semantics). If M is a Σ-model, s ∈ SM and ϕ ∈
Σ-CTL, we say that M satisfies ϕ at s, M, s |= ϕ, iff (M, PM), s |= ϕ.

We extend Σ-CTL protected semantics to sets of states and sets of formulas. If
S ⊆ SM then (M, P ), S |= ϕ iff for all s ∈ S, (M, P ), s |= ϕ. If Γ ⊆ Σ-CTL
then (M, P ), s |= Γ iff for all ϕ ∈ Γ , (M, P ), s |= ϕ. If ϕ1, ϕ2 are two Σ-CTL
formulas, we say that ϕ1 and ϕ2 are logically equivalent, and we write ϕ1 ≡ ϕ2,
iff for allM ∈ KΣ and all s ∈ SM: M, s |= ϕ1 iff M, s |= ϕ2.

We use the following equivalences, known as fixed-point characterizations, to
recursively compute a model update w.r.t. EU, AU, ER, and AR formulas:

E[αU β] ≡ β ∨ (α ∧EX E[αU β])
A[αU β] ≡ β ∨ (α ∧AX A[αUβ])

E[αRβ] ≡ β ∧ (α ∨EX E[αR β])
A[αRβ] ≡ β ∧ (α ∨AX A[αRβ])

A model update w.r.t. EU and AU formulas can be computed with a least
fixed-point (lfp) operator, while a model update w.r.t. ER and AR can be
computed with a greatest fixed-point (gfp) operator [4, page 63].

3 CTL Update Algorithms

In this section, we describe an algorithm that uses protected models for model
update w.r.t. Σ-CTL formulas. After a brief explanation of the pseudo-code and
basic update operations, we describe two model update algorithms for Σ-XCTL
formulas. The first one is a direct algorithm that we include here with the sole
purpose of emphasizing the main features of the model-update problem. The
second one implements our method for model update using protected models.
After this, we describe how to extend our method for considering all Σ-CTL
formulas, and an operation to add states in the update process. Finally, we state
the main theorems of soundness and completeness for our algorithm.

3.1 Nondeterministic Pseudo-Code

We use a high level nondeterministic pseudo-code. If A is a finite set, the com-
mand “guess x ∈ A” computes the nondeterministic choice of an element u from
A and assigns u to x; if A = ∅, the computation fails. The command “x← e” is a
nondeterministic assignment equivalent to “guess x ∈ Ae”, where Ae is the set
of values produced by the nondeterministic computation of e; if Ae is a singleton
we write “x := e” instead of “x← e”.
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If P is a nondeterministic procedure, i.e. P has some occurrence of guess,
and P (a1, . . . , an) is a call to P with arguments a1, . . . , an, the computation of
P (a1, . . . , an) consists of a set of computation paths. Each occurrence of a com-
mand guess x ∈ A allows to continue a computation on different computation
paths, one path for each element of A.

We use two commands to indicate the end of a computation path in a nondeter-
ministic procedure P : “return r” expresses that r is one of the results computed
by P ; and fail halts the computation of a path without returning any result.
Computation paths ending with return are successful paths, and those ending
with fail are unsuccessful paths. The set of results computed by P (a1, . . . , an),
is denoted by P [a1, . . . , an]. Thus, P [a1, . . . , an] = ∅ means that, for the given
arguments, all the computation paths of P are unsuccessful; in this case we say
that P fails.

3.2 Modification of Models

We build our algorithm for model update by using a few basic operations to
gradually change the input model.

Definition 7 (Update operations). Let M ∈ KΣ, s, s′ ∈ SM, � ∈ Lit(V ),
S′ ⊆ SM, and S′′ a finite set, such that S′ �= ∅ and S′′ ∩ SM = ∅. The update
operations on Kripke models are:

1. Lu(M, s, �) = 〈SM, RM, LM[s⊕ �]〉. Add � to LM(s), and remove �̄.
2. T+(M, s, s′) = 〈SM, RM ∪ {(s, s′)}, LM〉. Add (s, s′) to RM.
3. Tu(M, s, S′) = 〈SM, (RM − ({s} ×RM[s])) ∪ ({s} × S′), LM〉.

Set RM[s] = S′.
4. S+(M, S′′) = 〈SM ∪ S′′, RM ∪ IS′′ , LM ∪ V S′′〉.

Add S′′ to SM, add IS′′ to RM, and label all t ∈ S′′ with negative literals.

The above operations are sufficient to transform a given Σ-model into any other
Σ-model. Besides, the operations Lu, T+ and Tu make the modification of a
model satisfy literals, EX formulas, and AX formulas, respectively. Note that
S+(M, S′′) has additional states and therefore does not preserve Σ.

Below, we give a precise definition of what we regard as an acceptable modi-
fication of a model M w.r.t. a formula ϕ.

Definition 8 (Modifications of M w.r.t. ϕ). If M is a Σ-model, s ∈ SM

and ϕ ∈ Σ-XCTL, we define, by recursion on ϕ, the set of modifications of M
w.r.t. ϕ at s, Modif (M, s, ϕ):

1. Modif (M, s,⊥) = ∅ and Modif (M, s,�) = {M}
2. Modif (M, s, �) = {Lu(M, s, �)}
3. Modif (M, s, α ∨ β) = Modif (M, s, α) ∪Modif (M, s, β)
4. Modif (M, s, α ∧ β) = {M′ ∈ KΣ | M′ ∈ Modif F (M, s, {α, β})

&M′, s |= {α, β}}
5. Modif (M, s,EXα) = {M′ ∈ KΣ | ∃s′ ∈ SM.

M′ ∈ Modif (T+(M, s, s′), s′, α) &M′, s |= EXα}
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6. Modif (M, s,AXα) = {M′ ∈ KΣ | ∃S′ ∈ 2SM − {∅}.
M′ ∈ Modif ∗(Tu(M, s, S′), S′, α)
&M′, s |= AXα}

Where Modif F (M, s, Γ ) is the extension of Modif (M, s, ϕ) to Γ ⊆ Σ-XCTL:

Modif F (M, s, Γ ) =

⎧⎪⎨⎪⎩
{M} if Γ = ∅
{M′ ∈ KΣ | ∃ψ ∈ Γ. ∃M′′ ∈ Modif (M, s, ψ).
M′ ∈ Modif F (M′′, s, Γ − {ψ})} if Γ �= ∅

and Modif ∗(M, S, ϕ) is the extension of Modif (M, s, ϕ) to S ⊆ SM:

Modif ∗(M, S, ϕ) =

⎧⎪⎨⎪⎩
{M} if S = ∅
{M′ ∈ KΣ | ∃t ∈ S. ∃M′′ ∈ Modif (M, t, ϕ).
M′ ∈ Modif ∗(M′′, S − {t}, ϕ)} if S �= ∅

Observe that for allM′ ∈ Modif (M, s, ϕ), M′, s |= ϕ.

3.3 A Direct Update Algorithm for Σ-XCTL

We now define a direct algorithm, XUpd1, that we use as reference to compare
our algorithm that updates protected models. For simplicity, we temporarily
ignore some concerns that will be considered in the following sections. We now
focus on Σ-XCTL, we do not include an operation for adding states, and we are
not concerned about efficiency. XUpd1 is an algorithm similar to generate-and-
test methods. First, using basic update operations, XUpd1 generates models to
satisfy the simplest subformulas of the given formula. Then, XUpd1 modifies
these models to satisfy more complex subformulas. Finally, the produced models
are tested to verify whether or not they satisfy the whole formula.

XUpd1(M, s, ϕ) % Find models for ϕ at state s modifying M.
INPUT: M∈ KΣ, s ∈ SM, ϕ ∈ Σ-XCTL
OUTPUT: Modif (M, s, ϕ)
1 ifM, s |= ϕ then M′ :=M
2 else case ϕ of
3 ⊥ : fail
4 � : M′ :=M
5 � : M′ := Lu(M, s, �)
6 α ∨ β : {guess δ ∈ {α, β}; M′ ← XUpd1(M, s, δ )}
7 α ∧ β : M′ ← XUpd

F
1 (M, s, {α, β})

8 EXα : {guess s′ ∈ SM; M′ ← XUpd1(T+(M, s, s′), s′, α)}
9 AX α : {guess S′ ∈ 2SM − {∅}; M′ ← XUpd

∗
1(Tu(M, s, S′), S′, α)}

10 ifM′, s |= ϕ then return M′ else fail

where XUpd
F
1 (M, s, Γ ) and XUpd

∗
1(M, S, ϕ) are procedures that implement

Modif F (M, s, Γ ) and Modif ∗(M, S, ϕ), respectively. I.e., XUpd
F
1 (M, s, Γ ) up-

dates a model M w.r.t. a set of formulas Γ at s and XUpd
∗
1(M, S, ϕ) updates

a model M w.r.t. ϕ at a set of states S.
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Line (10) of XUpd1 is necessary to guarantee that the returned model, M′,
meets the requirementM′, s |= ϕ in three cases of ϕ: (i) if ϕ = α∧β, and at line
(7) XUpd

F
1 applies a first update to satisfy α and a second update to satisfy β,

then α may be dissatisfied by the second update, e.g. ϕ = (EX p) ∧ (EX¬p);
(ii) if ϕ = EXα, the update of XUpd1 at line (8) may remove the transition
(s, s′) and dissatisfy EXα at s, e.g. ϕ = EX (p ∧AX q); (iii) if ϕ = AXα, the
update of XUpd

∗
1 at line (9) may add a transition (s, s′) such that α is not true

at s′ and dissatisfy AXα at s, e.g. ϕ = AX (p ∧EX q).
We illustrate the need for line (10) in XUpd1 for case (ii). Let M0 be the

model in Fig. 1(a). First, XUpd1(M0, s0,EX (p ∧AX q)) guesses s0 and calls
XUpd1(T+(M0, s0, s0), s0, p ∧ AX q). Then, XUpd1(T+(M0, s0, s0), s0, p)
producesM′

1 (Fig. 1(b)). Finally, XUpd1(M′
1, s0, AX q) guesses {s1} and calls

XUpd
∗
1(T

u(M′
1, s0, {s1}), {s1}, q) that produces M′

2 (Fig. 1(c)). Transition
(s0, s0) was removed andM′

2, s0 �|= EX (p∧AX q), but line (10) prevents XUpd1

from returningM′
2.

     
s 0  

     
s 1  

(a) M0

 p    
s 0  

     
s 1  

(b) M′
1

 p    
s 0  

 q    
s 1  

(c) M′
2

Fig. 1. The need for line (10) in XUpd1(M0, s0,EX (p ∧ AX q))

3.4 An Algorithm for Updating Protected Models

Intuitively, a call to XUpdprot((M, P ), s, ϕ) gradually transformsM attempting
to satisfy the subformulas of ϕ. Models M′ produced by XUpdprot to satisfy a
subformula ψ are accompanied by a “protection” P ′ containing a part ofM′ suf-
ficient to satisfy ψ. In this case, we will say that “M′ is protected by P ′”. A key
feature of XUpdprot is that ifM is protected by P and XUpdprot((M, P ), s, ψ)
produces (M′, P ′), then M′ is protected by P ′ and P ′ is a protection “no
smaller” than P (Definition 11). Hence, XUpdprot preserves satisfaction of pre-
viously treated subformulas.

Definition 9 (Update operations on protected models). Let (M, P ) ∈
KPΣ, s ∈ SM, � ∈ Lit(V ), s′ ∈ AP [s], S′ ⊆ AP [s], and S′′ a finite set, such
that EP [s] ⊆ S′ �= ∅ and S′′ ∩ SM = ∅. The update operations on protected
models are:

1. Lu((M, P ), s, �) = (Lu(M, s, �), 〈EP , AP , LP [s⊕ �]〉).
Update label � of state s and protect � in LP (s).

2. T+
∃ ((M, P ), s, s′) = (T+(M, s, s′), 〈EP ∪ {(s, s′)}, AP , LP 〉).

Add transition (s, s′) and existentially protect (s, s′) in EP .
3. Tu

∀((M, P ), s, S′) = (Tu(M, s, S′), 〈EP , AP − ({s} × (AP [s]− S′)), LP 〉).
Update RM[s] to S′ and set the universal protection of s to S′.
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4. S+
∀ ((M, P ), S′′) = (S+(M, S′′), 〈EP , AP ∪ S′′ × (SM ∪ S′′), LP ∪ ∅S′′〉).

Add states S′′ to M and ∀t ∈ S′′, set AP [t] to SM ∪ S′′ and LP [t] to ∅.

Note that all the above operations, except S+
∀ , preserve the signature.

We extend to protected models our definition of modification of a model.

Definition 10 (Modifications of (M, P ) w.r.t. ϕ). If (M, P ) ∈ KPΣ is a
protected model, s ∈ SM and ϕ ∈ Σ-XCTL, we define, by recursion on ϕ, the
set of modifications of (M, P ) w.r.t. ϕ at s, Modif ((M, P ), s, ϕ):

1. Modif ((M, P ), s,⊥) = ∅ and Modif ((M, P ), s,�) = {(M, P )}

2. Modif ((M, P ), s, �) =

{
∅ if � ∈ LP (s)
{Lu((M, P ), s, �)} if � �∈ LP (s)

3. Modif ((M, P ), s, α ∨ β) = Modif ((M, P ), s, α) ∪Modif ((M, P ), s, β)
4. Modif ((M, P ), s, α ∧ β) = Modif F ((M, P ), s, {α, β})
5. Modif ((M, P ), s,EXα) = {(M′, P ′) ∈ KPΣ | ∃s′ ∈ AP [s].

(M′, P ′) ∈ Modif (T+
∃ ((M, P ), s, s′), s′, α)}

6. Modif ((M, P ), s,AXα) = {(M′, P ′) ∈ KPΣ | ∃S′ ⊆ AP [s].
EP [s] ⊆ S′ �= ∅ &
(M′, P ′) ∈ Modif ∗(Tu

∀((M, P ), s, S′), S′, α)}

where Modif F ((M, P ), s, Γ ) and Modif ∗((M, P ), S, ϕ) are defined analogously
to Modif F (M, s, Γ ) and Modif ∗(M, S, ϕ), respectively.

Next, we define an algorithm for updating protected models. XUpdprot( (M,
P ), s, ϕ) finds models for ϕ at state s by modifying M and respecting the pro-
tection P . The initial call to XUpdprot may use the empty protection P⊥.

XUpdprot((M, P ), s, ϕ) % Find (M′, P ′) w.r.t. ϕ at s.
INPUT: (M, P ) ∈ KPΣ , s ∈ SM, and ϕ ∈ Σ-XCTL
OUTPUT: Modif ((M, P ), s, ϕ)
1 if (M, P ), s |= ϕ then (M′, P ′) := (M, P )
2 else case ϕ of
3 ⊥ : fail
4 � : (M′, P ′) := (M, P )
5 � : if �̄ ∈ LP (s) then fail
6 else (M′, P ′) := Lu((M, P ), s, �)
7 α ∨ β : {guess δ ∈ {α, β};
8 (M′, P ′)← XUpdprot((M, P ), s, δ )}
9 α ∧ β : (M′, P ′)← XUpd

F
prot((M, P ), s, {α, β})

10 EXα : {guess s′ ∈ AP [s];
11 (M′, P ′)← XUpdprot(T+

∃ ((M, P ), s, s′), s′, α)}
12 AX α : {guess S′ ∈ {X ⊆ AP [s] | EP [s] ⊆ X & X �= ∅};
13 (M′, P ′)← XUpd

∗
prot(T

u
∀((M, P ), s, S′), S′, α)}

14 return (M′, P ′)

where XUpd
F
prot((M, P ), s, Γ ) and XUpd

∗
prot((M, P ), S, ϕ) are procedures that

implement Modif F ((M, P ), s, Γ ) and Modif ∗((M, P ), S, ϕ), respectively.
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Observe that XUpdprot does not need a verification similar to the verification
in line (10) of XUpd1. Protections guarantee that the returned model, (M′, P ′),
meets the requirement (M′, P ′), s |= ϕ. For basic formulas (�, �), XUpdprot

meets such a requirement. Besides, when XUpdprot modifies the labeling, or
adds or removes transitions, XUpdprot uses the current protection to preserve
the satisfaction of previously treated subformulas.

3.5 Model Update for Σ-CTL and Addition of States

We extend XUpdprot to formulas that use the operators EU, AR, AU, and
ER. These operators are replaced by their fixed-point characterizations and then
treated by a mechanism for detecting loops. For this loop-detecting mechanism
we add to the parameters a set of visited states W ⊆ S ×Σ-CTL. We illustrate
how to modify the pseudo-code in the cases of EU and AR; the modifications
for AU and ER are similar.

Updprot((M, P, W ), s, ϕ) % Find (M′, P ′, W ′) w.r.t. ϕ at s.
INPUT: (M, P ) ∈ KPΣ , W ⊆ S ×Σ-CTL, s ∈ SM, and ϕ ∈ Σ-CTL.
OUTPUT: Modif ((M, P, W ), s, ϕ)
1 if (M, P ), s |= ϕ then (M′, P ′, W ′) := (M, P, W )
2 else case ϕ of

...
14 E[αU β]: if (s, ϕ) ∈W then fail % default for lfp
15 else (M′, P ′, W ′)← Updprot ((M, P, {(s, ϕ)} ∪W ), s,

β ∨ (α ∧EXϕ))
16 A[αRβ]: if (s, ϕ) ∈W

then (M′, P ′, W ′) := (M, P, W ) % default for gfp
17 else (M′, P ′, W ′)← Updprot ((M, P, {(s, ϕ)} ∪W ), s,

β ∧ (α ∨AX ϕ))
18 return (M′, P ′, W ′)

State addition is only necessary when a model update fails to find a model
with a given signature. For example, if ϕ = EX p∧EX¬p, Σ = ({s0}, {p}), and
(M, P ) is a protected Σ-model, then XUpdprot[(M, P ), s0,EX p∧EX¬p] = ∅.
Assuming that n = |ϕ|, we can extend our model update procedure for adding
states to M until XUpdprot[(M, P ), s, ϕ] �= ∅ or |SM| > n8n. This bound on
the number of states is justified by a small model theorem for CTL [6]: if ϕ is
satisfiable then ϕ is satisfiable in a model of size less than or equal to n8n.

XUpdS+((M, P ), s, ϕ) % Add states until XUpdprot[(M, P ), s, ϕ] �= ∅.
INPUT: (M, P ) ∈ KPΣ , s ∈ SM, ϕ ∈ Σ-XCTL
OUTPUT: Modif (S+

∀ ((M, P ), SΣ′ − SΣ), s, ϕ)
Where, assuming n = |ϕ|, Σ′ is the minimal signature such that: Σ′ ⊇ Σ

and (Modif (S+
∀ ((M, P ), SΣ′ − SΣ), s, ϕ) �= ∅ or |SΣ′ | > n8n ).

1 n := |ϕ|; m := n8n;
2 while XUpdprot[(M, P ), s, ϕ] = ∅ and |SM| ≤ m do
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3 {Let s′′ /∈ SM; % s′′ is a new state
4 (M, P ) := S+

∀ ((M, P ), {s′′})}
5 (M′, P ′)← XUpdprot((M, P ), s, ϕ) % “←” fails if XUpdprot fails
6 return (M′, P ′)

3.6 Soundness and Completeness of XUpdprot

We outline here a proof of soundness and completeness for XUpdprot.
First, the application of XUpdprot to a protected model (M, P ) should pro-

duce protected models (M′, P ′) such that P ′ is not “smaller” than P . Therefore,
we define a partial order on protections suitable for model update.

Definition 11 (Partial order on protections). If P, P ′ ∈ PΣ are two pro-
tections, then we say that P ′ is not smaller than P , and we write P ′ � P iff:
EP ′ ⊇ EP , AP ′ ⊆ AP , and ∀t ∈ S : LP ′

(t) ⊇ LP (t).

Second, observe that XUpdprot implements Modif . Models computed by
XUpdprot are exactly modifications of the input model.

Theorem 1 (XUpdprot = Modif ). For all (M, P ) ∈ KPΣ, s ∈ SM, and
ϕ ∈ Σ-XCTL: XUpdprot[(M, P ), s, ϕ] = Modif ((M, P ), s, ϕ).

Hence, soundness of XUpdprot is a consequence of the following theorem.

Theorem 2 (Modifications w.r.t. ϕ satisfy ϕ). If (M, P ) ∈ KPΣ, s ∈ SM,
and ϕ ∈ Σ-XCTL, then: (M′, P ′) ∈ Modif ((M, P ), s, ϕ)⇒ (M′, P ′), s |= ϕ.

To prove completeness of XUpdprot, it is important to know whether there is a
modification of (M, P ) for ϕ, i.e. whether (M, P ) is “ϕ-modifiable”.

Definition 12 (ϕ-modifiable). Let (M, P ) ∈ KPΣ, s ∈ S, and ϕ ∈ Σ-CTL.
We say that (M, P ) is ϕ-modifiable at s iff Modif ((M, P ), s, ϕ) �= ∅.

In addition, we need to prove that if ϕ is “satisfiable” then XUpdprot produces
at least one result. Thus, we need to clarify the notion of “satisfiable”.

Definition 13 (Satisfiable). Let ϕ ∈ Σ-CTL, P ∈ PΣ , and s ∈ S.
(1) ϕ is P -satisfiable at s iff ∃ (M′, P ′) ∈ KPΣ . (M′, P ′), s |= ϕ & P ′ � P .
(2) ϕ is KΣ-satisfiable at s iff ∃ M′ ∈ KΣ .M′, s |= ϕ.

Fortunately, P -satisfiable and ϕ-modifiable have a nice relationship.

Theorem 3 (P -satisfiable ≈ ϕ-modifiable). For all (M, P ) ∈ KPΣ, s ∈
SM, ϕ ∈ Σ-XCTL: ϕ is P -satisfiable at s iff (M, P ) is ϕ-modifiable at s.

Finally, completeness of XUpdprot is a consequence of the following Corollary.

Corollary 1 (KΣ-satisfiable ≈ ϕ-modifiable). For all M ∈ KΣ, s ∈ SM,
and ϕ ∈ Σ-XCTL: ϕ is KΣ-satisfiable at s iff (M, P⊥) is ϕ-modifiable at s.
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Proof. (⇒). Let M′ ∈ KΣ such that M′, s |= ϕ. Then, (M′, PM′), s |= ϕ and
PM′ � P⊥. Therefore, by Theorem 3, Modif ((M, P⊥), s, ϕ) �= ∅.

(⇐). If (M′, P ′) ∈ Modif ((M, P⊥), s, ϕ) then (M′, P ′), s |= ϕ and PM′ � P ′.
Hence, (M′, PM′), s |= ϕ andM′, s |= ϕ. "#

In summary, we have that XUpdprot is sound and complete:

Theorem 4 (XUpdprot is sound and complete). For allM ∈ KΣ, s ∈ SM,
and ϕ ∈ Σ-XCTL:

1. If (M′, P ′) ∈ XUpdprot[(M, P⊥), s, ϕ] then (M′, P ′), s |= ϕ.
2. If ϕ is KΣ-satisfiable at s then XUpdprot[(M, P⊥), s, ϕ] �= ∅.

4 Synthesizing a Model of the Mutual Exclusion
Problem

We illustrate our model update method with an application to a mutual exclusion
problem described by Emerson and Clarke [5] (we show other examples at the
web site of Updprot, http://turing.iimas.unam.mx/ctl_upd3/form1.prl).
Emerson and Clarke present a method to automatically synthesize synchroniza-
tion skeletons, from a CTL specification, through the synthesis of a model of the
specification. In the conclusions, Emerson and Clarke wonder if their synthesis
method can be developed into a practical software tool. With this example, we
contribute to the belief in a positive answer to this question.

The specification of the mutual exclusion problem by Emerson and Clarke
uses a variant of CTL with processes [5]. We adapt such a specification to our
definition of Σ-CTL. Thus, our specification of the mutual exclusion problem is
the conjunction of the following formulas, where i, j ∈ {1, 2} and i �= j (in tests
of our prototype, we factorized the occurrences of the AG operator):

1. Start state. Both processes are in their noncritical region: (n1 ∧ n2)
2. Each process i is always exactly in one of the three code regions:

AG ((ni ∨ ti ∨ ci) ∧ (ni → ¬(ti ∨ ci)) ∧ (ti → ¬(ni ∨ ci)) ∧ (ci → ¬(ni ∨ ti)))
3. Any move that process i makes from its noncritical (critical) region is into

its trying (noncritical) region, and such a move is always possible:
AG ((ni → ((AX (ti ∨ni))∧ (EX ti))) ∧ (ci → ((AX (ni∨ ci))∧ (EX ni))))

4. Any move that process i makes from its trying region is into its critical region
and such a move is possible when it is the turn of process i:
AG ((ti → (AX (ci ∨ ni))) ∧ ((ti ∧ turni)→ (EX ci)) )

5. A transition by one process cannot cause a move by the other. If process i
is in region ri ∈ {ni, ti, ci} and process j moves, then i remains in ri:
AG ( ((ri ∧ nj)→ (AX (tj → ri))) ∧ ((ri ∧ tj)→ (AX (cj → ri))) ∧

((ri ∧ cj)→ (AX (nj → ri))) )
6. Some process can always move. If some process is in its noncritical region

then both processes can move; otherwise only one process can move:
AG (((n1 ∨ n2)→ (turn1 ∧ turn2)) ∧ ((¬n1 ∧ ¬n2)→ (turn1 � turn2)) )

http://turing.iimas.unam.mx/ctl_upd3/form1.prl
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7. Each transition is due to the movement of exactly one process:
AG (((turn1 ∧ turn2)→ (OD ≤ 2)) ∧ ((¬turn1 ∨ ¬turn2)→ (OD ≤ 1))).

8. Split state s = (t1, t2, turn1, turn2) into states (t1, t2, turn1,¬turn2) and
(t1, t2,¬turn1, turn2) and separate the transitions going towards s. This re-
quirement reflects a preference of Emerson and Clarke to distinguish all
states by their propositional labels [5, p. 258]:
AG ((ti ∧ nj)→ (EX (tj ∧ turni)))

We tested Updprot by updating the dummy model in Fig. 2 w.r.t. the above
specification of the mutual exclusion problem. The first solution generated by
Updprot is the model in Fig. 3 having the expected structure [5, Fig. 11, p. 259].

     
s 0  

     
s 1  

     
s 2  

     
s 3  

     
s 4  

     
s 5  

     
s 6  
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Fig. 2. A dummy model of nine states
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   s7      s8

Fig. 3. Model produced by Updprot (variables turni are omitted)

In the above specification, we include only formulas to specify the local struc-
ture of the system, through the operators AX and EX and an outermost
operator AG . We do not include formulas to specify global behavior of the
system by using operators F,G,U, or R. Global behavior formulas, for ex-
ample AG (ti → EF ci) and AG¬EF (c1 ∧ c2), are generally expected to be a
consequence of formulas for local structure. Intuitively, it is relatively easier to
synthesize a model to satisfy formulas specifying local structure than to syn-
thesize a model to satisfy formulas specifying global behavior. Global behavior
formulas can be used instead to update a faulty model, presumably close to a
correct model. A difference between model synthesis and model update is related
to the difference between these two kinds of formula.

By using the non-trivial specification above, Updprot produces the model in
Fig. 3 from the dummy model in Fig. 2 after 16.43 seconds (Table 1).
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Table 1. Upd1 vs. Updprot in the repair of a faulty model of mutual exclusion. N
indicates the number of changes needed to repair the model. Input models are obtained
by removing, according to the marks ✗, transitions (si, sj) and labels ni in sj , from
the model of Fig. 3. A mark ✗ in the column “all” means that the input model is that
of Fig. 2. Option -cN restricts the search to a maximum of N changes. Entries “—”
mean “no answer after 1 hour”. Times reported are those required to produce the first
solution by using a PC with a dual-core processor at 2.0 GHz and 2 GB of RAM.

Removed parts (✗) Time (seconds)

N s0s1 s1s3 s3s7 s2s5 n1s0 n2s1 all Upd1 -cN Updprot -cN Upd1 Updprot

1 ✗ 1.91 0.61 — 1.79
2 ✗ ✗ 5.72 0.66 — 1.81
3 ✗ ✗ ✗ 67.00 0.80 — 1.83
4 ✗ ✗ ✗ ✗ 1161.49 0.94 — 8.98
5 ✗ ✗ ✗ ✗ ✗ 1274.80 0.95 — 8.99
6 ✗ ✗ ✗ ✗ ✗ ✗ — 1.22 — 9.16

55 ✗ ✗ ✗ ✗ ✗ ✗ ✗ — 14.96 — 16.43

5 Related Work and Conclusions

We compare our work with other CTL updaters and give concluding remarks.
Calzone et al. [2] present a modeling system, Biocham, that can translate

a biochemical network N into a Kripke model MN . If ϕ is a CTL formula
expressing a property of N , andMN does not satisfies ϕ, then, for some instances
of ϕ, Biocham can generate an update of N , N ′, such thatMN ′ does satisfy ϕ.

Biocham’s update algorithm classifies CTL formulas into three classes: univer-
sal (existential) formulas contain only non-negated universal (existential)
operators; unclassified formulas contain both universal and existential operators.

If ϕ is universal, Biocham uses NuSMV [3] to compute a counterexample, i.e.
a path π that makes ϕ false. Then, Biocham generates and tests models by delet-
ing transitions occurring in π. If ϕ is existential, Biocham generates and tests
models by adding transitions with a bias taken from the application domain. If ϕ
is unclassified, then Biocham treats ϕ by deleting and adding transitions. How-
ever, the deletions (additions) for satisfying universal (existential) formulas may
dissatisfy some existential (universal) or unclassified formulas. Therefore, trying
to satisfy the three kinds of formulas, Biocham uses a heuristic: it first treats the
existential formulas, then the unclassified ones, and finally the universal ones. If
some formulas are dissatisfied by the last step, the process repeats.

Compared with our method, a drawback of Biocham is that the use of biases
and heuristics makes it incomplete. Another disadvantage is that the use of
domain-dependent biases makes it a non-general method.

Zhang and Ding [7] propose a model-update method w.r.t. CTL formulas,
that employs “constraints” when updating formulas containing a conjunction
α ∧ β of two nonpropositional formulas. Once the first conjunct α is treated,
producing a modelM′ satisfying α, the second conjunct β is dealt with, using α
as a constraint as follows. The modelM′ is updated so as to obtain a modelM′′
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satisfying β. Next, a model checker is called to determine whether or not M′′

satisfies α also. Models satisfying β are repetitively computed until one is found
that does satisfy α [7, pp. 141, 143]. Therefore, Zhang and Ding’s algorithm, as
Upd1, is similar to methods based on generation and testing.

Compared with Updprot, an implementation of Zhang and Ding’s algorithm
would be as inefficient as Upd1 (Table 1). Another disadvantage of Zhang and
Ding’s algorithm is that, because it uses an operator base ({EX,AF,EU})
more appropriate for model checking than for model update, it is less clear than
Updprot. For example, it is not clear how Zhang and Ding’s algorithm updates
a model to satisfy any of the formulas AXα, EFα, or A[α Uβ].

We have shown that, by using protected models, Updprot overcomes inher-
ent difficulties in the update of CTL formulas having universal and existential
quantifiers, and preserves the satisfaction of subformulas through the updating
process. We showed that Updprot can efficiently update a dummy model w.r.t. a
specification of the mutual exclusion problem in a variant of CTL, and we out-
lined a proof of soundness and completeness for Updprot. Future work includes
formalizing an order on protected models, using selection strategies in the imple-
mentation of nondeterministic choices, and experimental comparison with other
CTL updaters.
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Abstract. Gordon and Jeffrey developed a type system for verification of asym-
metric and symmetric cryptographic protocols. We propose a modified version of
Gordon and Jeffrey’s type system and develop a type inference algorithm for it,
so that protocols can be verified automatically as they are, without any type anno-
tations or explicit type casts. We have implemented a protocol verifier SPICA2
based on the algorithm, and confirmed its effectiveness.

1 Introduction

Security protocols play a crucial role in today’s Internet technologies including elec-
tronic commerce and voting. Formal verification of security protocols is thus an impor-
tant, active research topic, and a variety of approaches to (semi-)automated verification
have been proposed [8,5,15]. Among others, type-based approaches [1,14,15] have ad-
vantages that protocols can be verified in a modular manner, and that it is relatively easy
to extend them to verify protocols at the source code level [4]. They have however a dis-
advantage that users have to provide complex type annotations, which require expertise
in both security protocols and type theories. Kikuchi and Kobayashi [18] developed a
type inference algorithm but it works only for symmetric cryptographic protocols.

To overcome the limitation of the type-based approaches and enable fully automated
protocol verification, we integrate and extend the two lines of work – Gordon and Jef-
frey’s work [15] for verifying protocols using both symmetric and asymmetric cryp-
tographic protocols, and Kikuchi and Kobayashi’s work. The outcome is an algorithm
for automated verification of authenticity in symmetric and asymmetric cryptographic
protocols. The key technical novelty lies in the symmetric notion of obligations and ca-
pabilities attached to name types, which allows us to reason about causalities between
actions of protocol participants in a general and uniform manner in the type system. It
not only enables automated type inference, but also brings a more expressive power,
enabling, e.g., verification of multi-party cryptographic protocols. We have developed a
type inference algorithm for the new type system, and implemented a protocol verifica-
tion tool SPICA2 based on the algorithm. According to experiments, SPICA2 is very
fast; it could successfully verify a number of protocols in less than a second.

The rest of this paper is structured as follows. Section 2 introduces spi-calculus [2]
extended with correspondence assertions as a protocol description language. Sections 3
and 4 present our type system and sketches a type inference algorithm. Section 5 reports
implementation and experiments. Sections 6 and 7 discuss extensions and related work
respectively. Proofs are found in the full version of this paper [10].
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2 Processes

This section defines the syntax and operational semantics of the spi-calculus extended
with correspondence assertions, which we call spiCA. The calculus is essentially the
same as that of Gordon and Jeffrey [15], except (i) there are no type annotations or
casts (as they can be automatically inferred by our type inference algorithm), and (ii)
there are no primitives for witness and trust; supporting them is left for future work.

We assume that there is a countable set of names, ranged over by m, n, k, x, y, z, . . ..
By convention, we often use k, m, n, . . . for free names and x, y, z, . . . for bound names.

The set of messages, ranged over by M , is given by:

M ::= x | (M1, M2) | {M1}M2 | {|M1|}M2

(M1, M2) is a pair consisting of M1 and M2. The message {M1}M2 ({|M1|}M2
, resp.)

represents the ciphertext obtained by encrypting M1 with the symmetric (asymmetric,
resp.) key M2. For the asymmetric encryption, we do not distinguish between encryp-
tion and signing; {|M1|}M2

denotes an encryption if M2 is a public key, while it denotes
signing if M2 is a private key.

The set of processes, ranged over by P , is given by:

P ::= 0 |M1!M2 |M?x.P | (P1 |P2) | ∗P | (νx)P | (νsymx)P | (νasymx, y)P
| check M1 is M2.P | split M is (x, y).P |match M1 is (M2, y).P
| decrypt M1 is {x}M2 .P | decrypt M1 is {|x|}M2

−1 .P
| beginM.P | endM

The names denoted by x, y are bound in P . We write [M1/x1, . . . , Mn/xn]P for the
process obtained by replacing every free occurrence of x1, . . . , xn in P with M1, . . . ,
Mn. We write FN(P ) for the set of free (i.e. non-bounded) names in P .

Process 0 does nothing, M1!M2 sends M2 over the channel M1, and M1?x.P waits
to receive a message on channel M1, and then binds x to it and behaves like P . P1 |P2

executes P1 and P2 in parallel, and ∗P executes infinitely many copies of P in parallel.
We have three kinds of name generation primitives: (νx) for ordinary names, (νsymx)

for symmetric keys, and (νasymx1, x2,) for asymmetric keys. (νasymx1, x2, P ) creates
a fresh key pair (k1, k2) (where k1 and k2 are encryption and decryption keys respec-
tively), and behaves like [k1/x1, k2/x2]P . The process check M1 is M2.P behaves
like P if M1 and M2 are the same name, and otherwise behaves like 0. The process
split M is (x, y).P behaves like [M1/x, M2/y]P if M is a pair (M1, M2); otherwise
it behaves like 0. match M1 is (M2, y).P behaves like [M3/y]P if M1 is a pair of
the form (M2, M3); otherwise it behaves like 0. Process decrypt M1 is {x}M2 .P
(decrypt M1 is {|x|}M2

−1 .P , resp.) decrypts ciphertext M1 with symmetric (asym-
metric, resp.) key M2, binds x to the result and behaves like P ; if M1 is not an encryp-
tion, or an encryption with a key not matching M2, then it behaves like 0. The process
beginM.P raise an event beginM and behaves like P , while endM just raises an
event endM ; they are used to express expected authenticity properties.

Example 1. We use the three protocols in Figure 1, taken from [15], as running ex-
amples. POSH and SOSH protocols aim to pass a new message msg from B to A, so
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POSH:

A->B: n
B begins msg
B->A: {|(msg,n)|}skB

A ends msg

SOPH

A->B: {|(msg,n)|}pkB

B begins msg
B->A: n
A ends msg

SOSH

A->B: {|n|}pkB

B begins msg
B->A: {|msg,n|}pkA

A ends msg

Fig. 1. Informal Description of Three Protocols

(νasymskB , pkB)(net!pkB | (* create asymmetric keys for B and make pkB public *)
(νnon)(net!non | (* A creates a nonce and sends it *)
net?ctext.decrypt ctext is {|x|}pkB

−1 . (* receive a cypertext and decrypt it*)
split x is (m, non′).check non is non′. (* decompose pair x and check nonce *)
endm) | (* believe that m came from B *)

net?n. (* B receives a nonce *)
(νmsg)begin msg. (* create a message and declare that it is going to be sent*)
net!{|(msg, n)|}skB

) (* encrypt and send (msg, n) *)

Fig. 2. Public-Out-Secret-Home (POSH) protocol in spiCA

that A can confirm that msg indeed comes from B, while SOPH protocol aims to pass
msg from A to B, so that A can confirm that msg has been received by B. The sec-
ond and fourth lines of each protocol expresses the required authenticity by using Woo
and Lam’s correspondence assertions [20]. “B begins msg” on the second line of
POSH means “B is going to send msg”, and “A ends msg” on the fourth line means
“A believes that B has sent msg”. The required authenticity is then expressed as a cor-
respondence between begin- and end-events: whenever an end-event (“A ends msg”
in this example) occurs, the corresponding begin-event (“B begins msg”) must have
occurred.1 In the three protocols, the correspondence between begin- and end-events is
guaranteed in different ways. In POSH, the correspondence is guaranteed by the signing
of the second message with B’s secret key, so that A can verify that B has created the
pair (msg, n). In SOPH, it is guaranteed by encrypting the first message with B’s public
key, so that the nonce n, used as an acknowledgment, cannot be forged by an attacker.
SOSH is similar to POSH, but keeps n secret by using A and B’s public keys.

Figure 2 gives a formal description of POSH protocol, represented as a process in
spiCA. The first line is an initial set-up for the protocol. An asymmetric key pair for B is
created and the decryption key pkB is sent on a public channel net, on which an attacker
can send and receive messages. The next four lines describe the behavior of A. On the
second line, a nonce non is created and sent along net. On the third line, a ciphertext
ctext is received and decrypted (or verified) with B’s public key. On the fourth line,
the pair is decomposed and it is checked that the second component coincides with the
nonce sent before. On the fifth line, an end-event is raised, meaning that A believes that

1 There are two types of correspondence assertions in the literature: non-injective (or one-to-
many) and injective (or one-to-one) correspondence. Throughout the paper we consider the
latter.
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msg came from B. The last three lines describe the behavior of B. On the sixth line, a
nonce n is received from net. On the seventh line, a new message msg is created and
a begin-event is raised, meaning that B is going to send msg. On the last line, the pair
(msg, n) is encrypted (or signed) with B’s secret key and sent on net. "#

Following Gordon and Jeffrey, we call a process safe if it satisfies correspondence as-
sertions (i.e. for each end-event, a corresponding begin-event has occurred before), and
robustly safe if a process is safe in the presence of arbitrary attackers (representable in
spiCA). Proving robust safety automatically is the goal of protocol verification in the
present paper. To formalize the robust safety, we use the operational semantics shown
in Figure 3. A runtime state is a quadruple 〈Ψ, E, N,K〉, where Ψ is a multiset of pro-
cesses, and E is the set of messages on which begin-events have occurred but the match-
ing end-events have not. N is the set of names (including keys) created so far, and K
is the set of key pairs. The special runtime state Error denotes that correspondence
assertions have been violated. Note that a reduction gets stuck when a process does not
match a rule. For example, split M is (x, y).P is reducible only if M is of the form
(M1, M2). Using the operational semantics, the robust safety is defined as follows.

〈Ψ 	 {n?y.P, n!M}, E,N,K〉 −→ 〈Ψ 	 {[M/y]P}, E, N,K〉 (R-COM)

〈Ψ 	 {P |Q}, E, N,K〉 −→ 〈Ψ 	 {P, Q}, E, N,K〉 (R-PAR)

〈Ψ 	 {∗P}, E, N,K〉 −→ 〈Ψ 	 {∗P , P}, E, N,K〉 (R-REP)
〈Ψ 	 {(νx)P}, E, N,K〉 −→ 〈Ψ 	 {[n/x]P}, E, N ∪ {n},K〉 (n /∈ N ) (R-NEW)

〈Ψ 	 {(νsymx)P}, E, N,K〉 −→ 〈Ψ 	 {[k/x]P}, E, N ∪ {k},K〉 (k /∈ N ) (R-NEWSK)

〈Ψ 	 {(νasymx, y)P}, E, N,K〉
−→ 〈Ψ 	 {[k1/x, k2/y]P}, E, N ∪ {k1, k2},K ∪ {(k1, k2)}〉 (k1, k2 /∈ N )

(R-NEWAK)

〈Ψ 	 {check n is n.P}, E, N,K〉 −→ 〈Ψ 	 {P}, E, N,K〉 (R-CHK)

〈Ψ 	 {split (M, N) is (x, y).P}, E,N,K〉 −→ 〈Ψ 	 {[M/x, N/y]P}, E, N,K〉
(R-SPLT)

〈Ψ 	 {match (M, N) is (M, z).P}, E, N,K〉 −→ 〈Ψ 	 {[N/z]P}, E, N,K〉
(R-MTCH)

〈Ψ 	 {decrypt {M}k is {x}k.P}, E, N,K〉 −→ 〈Ψ 	 {[M/x]P}, E, N,K〉 (R-DECS)

〈Ψ 	 {decrypt {|M |}k1
is {|x|}k2−1 .P}, E, N,K〉

−→ 〈Ψ 	 {[M/x]P}, E, N,K〉 (if (k1, k2) ∈ K)
(R-DECA)

〈Ψ 	 {begin M.P}, E, N,K〉 −→ 〈Ψ 	 {P}, E 	 {M}, N,K〉 (R-BGN)

〈Ψ 	 {endM}, E 	 {M}, N,K〉 −→ 〈Ψ, E,N,K〉 (R-END)

〈Ψ 	 {endM}, E, N,K〉 −→ Error (if M ∈ E) (R-ERR)

Fig. 3. Operational Semantics
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Definition 21 (safety, robust safety) A process P is safe if 〈{P}, ∅,FN(P ), ∅〉 �−→∗

Error. A process P is robustly safe if P |O is safe for every spiCA process O that
contains no begin/end/check operations.2

3 Type System

This section presents a type system such that well-typed processes are robustly safe.
This allows us to reduce protocol verification to type inference.

3.1 Basic Ideas

Following the previous work [14,15,18], we use the notion of capabilities (called effects
in [14,15]) in order to statically guarantee that end-events can be raised only after the
corresponding begin-events. A capability ϕ is a multiset of atomic capabilities of the
form end(M), which expresses a permission to raise “end M” event. The robust safety
of processes is guaranteed by enforcing the following conditions on capabilities: (i)
to raise an “end M” event, a process must possess and consume an atomic end(M)
capability; and (ii) an atomic end(M) capability is generated only by raising a “begin
M” event. Those conditions can be statically enforced by using a type judgment of the
form: Γ ; ϕ % P , which means that P can be safely executed under the type environment
Γ and the capabilities described by ϕ. For example, x :T ; {end(x)} % endx is a valid
judgment, but x :T ; ∅ % endx is not. The two conditions above can be locally enforced
by the following typing rules for begin and end events:

Γ ; ϕ + {end(M)} % P

Γ ; ϕ % beginM.P Γ ; ϕ + {end(M)} % endM

The left rule ensures that the new capability end(M) is available after the begin-event,
and the right rule for end ensures that the capability end(M) must be present.

The main difficulty lies in how to pass capabilities between processes. For example,
recall the POSH protocol in Figure 2, where begin- and end-events are raised by differ-
ent protocol participants. The safety of this protocol can be understood as follows: B
obtains the capability end(msg) by raising the begin event, and then passes the capabil-
ity to A by attaching it to the nonce n. A then extracts the capability and safely executes
the end event. As n is signed with B’s private key, there is no way for an attacker to
forge the capability. For another example, consider the SOPH protocol in the middle
of Figure 1. In this case, the nonce n is sent in clear text, so that B cannot pass the
capability to A through the second message. Instead, the safety of the SOPH protocol
is understood as follows: A attaches to n (in the first message) an obligation to raise the
begin-event. B then discharges the obligation by raising the begin-event, and notifies of
it by sending back n. Here, note that an attacker cannot forge n, as it is encrypted by
B’s public key in the first message.

2 Having no check operations is not a limitation, as an attacker process can check the equality
of n1 and n2 by match (n1, n1) is (n2, x).P .
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To capture the above reasoning by using types, we introduce types of the form
N(ϕ1, ϕ2), which describes names carrying an obligation ϕ1 and a capability ϕ2. In
the examples above, n is given the type N(∅, {end(msg)}) in the second message of
POSH protocol, and the type N({end(msg)}, ∅) in the first message of SOPH protocol.

The above types N(∅, {end(msg)}) and N({end(msg)}, ∅) respectively correspond
to response and challenge types in Gordon and Jeffrey’s type system [15]. Thanks to the
uniform treatment of name types, type inference for our type system reduces to a problem
of solving constraints on capabilities and obligations, which can further be reduced to
linear programming problems by using the technique of [18]. The uniform treatment
also allows us to express a wider range of protocols (such as multi-party cryptographic
protocols). Note that neither obligations nor asymmetric cryptography are supported by
the previous type system for automated verification [18]; handling them requires non-
trivial extensions of the type system and the inference algorithm.

3.2 Types

Definition 31 The syntax of types, ranged over by τ , is given by:

τ ::= N�(ϕ1, ϕ2) | SKey(τ) | DKey(τ) | EKey(τ) | τ1 × τ2

ϕ ::= {A1 &→ r1, . . . , Am &→ rm} capabilities
A ::= end(M) | chk�(M, ϕ) atomic cap.
ι ::= x | 0 | 1 | 2 | · · · extended names
� ::= Pub | Pr name qualifiers

Here, ri ranges over non-negative rational numbers.

The type N�(ϕ1, ϕ2) is assigned to names carrying obligations ϕ1 and capabilities ϕ2.
Here, obligations and capabilities are mappings from atomic capabilities to rational
numbers. For example, N�({end(a) &→ 1.0}, {end(b) &→ 2.0}) describes a name that
carries the obligation to raise begina once, and the capability to raise end b twice.
Fractional values are possible: N�(∅, {end(b) &→ 0.5}) means that the name carries a
half of the capability to raise end b, so that if combined with another half of the capa-
bility, it is allowed to raise end b. The introduction of fractions slightly increases the
expressive power of the type system, but the main motivation for it is rather to enable ef-
ficient type inference as in [18]. When the ranges of obligations and capabilities are inte-
gers, we often use multiset notations; for example, we write {end(a), end(a), end(b)}
for {end(a) &→ 2, end(b) &→ 1}. The atomic capability chk�(M, ϕ) expresses the ca-
pability to check equality on M by check M is M ′.P : since nonce checking releases
capabilities this atomic effect is used to ensure that each nonce can only be checked
once. The component ϕ expresses the capability that can be extracted by the check
operation (see the typing rule for check operations given later).

Qualifier � attached to name types are essentially the same as the Public/Private
qualifiers in Gordon and Jeffrey’s type system and express whether a name can be made
public or not. We often write Un for NPub(∅, ∅).

The type SKey(τ) describes symmetric keys used for decrypting and encrypting
values of type τ . The type EKey(τ) (DKey(τ), resp.) describes asymmetric keys
used for encrypting (decrypting, resp.) values of type τ . The type τ1 × τ2 describes
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pairs of values of types τ1 and τ2. As in [18], we express the dependency of types
on names by using indices. For example, the type Un ×N�(∅, {end(0)}) denotes a
pair (M1, M2) where M1 has type Un and M2 has type N�(∅, {end(M1)}). The type
Un×(Un×NPub(∅, {end(0, 1) &→ r}) describes triples of the form (M1, (M2, M3)),
where M1 and M2 have type Un, and M3 has type NPub(∅, {end(M2, M1) &→ r}).
In general, an index i is a natural number referring to the i-th closest first component
of pairs. In the syntax of atomic capabilities end(M), M is an extended message that
may contain indices. We use the same metavariable M for the sake of simplicity.

Predicates on types. Following Gordon and Jeffrey, we introduce two predicates Pub
and Taint on types, inductively defined by the rules in Figure 4. Pub(τ) means that a
value of type τ can safely be made public by e.g. sending it through a public channel.
Taint(τ) means that a value of type τ may have come from an untrusted principal
and hence cannot be trusted. It may for instance have been received through a public
channel or have been extracted from a ciphertext encrypted with a public key.

The first rule says that for N�(ϕ1, ϕ2) to be public, the obligation ϕ1 must be empty,
as there is no guarantee that an attacker fulfills the obligation. Contrary, for N�(ϕ1, ϕ2)
to be tainted, the capability ϕ2 must be empty if � = Pub, as the name may come from
an attacker and the capability cannot be trusted.3

Pub and Taint are a sort of dual, flipped by the type constructor EKey. In terms
of subtyping, Pub(τ) and Taint(τ) may be understood as τ ≤ Un and Un ≤ τ
respectively, where Un is the type of untrusted, non-secret data. Note that DKey is
co-variant, EKey is contra-variant, and SKey is invariant; this is analogous to Pierce
and Sangiorgi’s IO types with subtyping [19].

� = Pub ϕ1 = ∅
Pub(N�(ϕ1, ϕ2))

� = Pub ⇒ ϕ2 = ∅
Taint(N�(ϕ1, ϕ2))

Pub(τ1) Pub(τ2)

Pub(τ1 × τ2)

Taint(τ1) Taint(τ2)

Taint(τ1 × τ2)

Pub(τ ) Taint(τ )

Pub(SKey(τ ))

Pub(τ ) Taint(τ )

Taint(SKey(τ ))

Taint(τ )

Pub(EKey(τ ))

Pub(τ )

Taint(EKey(τ ))

Pub(τ )

Pub(DKey(τ ))

Taint(τ )

Taint(DKey(τ ))

Fig. 4. Predicates Pub and Taint

Operations and relations on capabilities and types. We write dom(ϕ) for the set
{A | ϕ(A) > 0}. We identify capabilities up to the following equality ≈:

ϕ1 ≈ ϕ2 ⇐⇒ (dom(ϕ1) = dom(ϕ2) ∧ ∀A ∈ dom(ϕ1).ϕ1(A) = ϕ2(A)).

We write ϕ ≤ ϕ′ if ϕ(A) ≤ ϕ′(A) holds for every A ∈ dom(ϕ) and we define the
summation of two capabilities by: (ϕ1 + ϕ2)(A) = ϕ1(A) + ϕ2(A). This is a natural
extension of the multiset union. We write ϕ1−ϕ2 for the least ϕ such that ϕ1 ≤ ϕ+ϕ2.

3 These conditions are more liberal than the corresponding conditions in Gordon and Jef-
frey’s type system. In their type system, for Public Challenge ϕ1 (which corresponds to
NPub(ϕ1, ∅) in our type system) to be tainted, ϕ1 must also be empty.
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As we use indices to express dependent types, messages may be substituted in types.
Let i be an index and M a message. The substitution [M/i]τ is defined inductively in
the straight-forward manner, except for pair types where

[M/i](τ1 × τ2) = ([M/i]τ1)× ([M/(i + 1)]τ),

such that the index is shifted for the second component.

3.3 Typing

We introduce two forms of type judgments: Γ ; ϕ % M : τ for messages, and Γ ; ϕ % P
for processes, where Γ , called a type environment, is a sequence of type bindings of the
form x1 : τ1, . . . , xn : τn. Judgment Γ ; ϕ % M : τ means that M evaluates to a value
of type τ under the assumption that each name has the type described by Γ and that
capability ϕ is available. Γ ; ϕ % P means that P can be safely executed (i.e. without
violation of correspondence assertions) if each free name has the type described by Γ
and the capability ϕ is available. For example, x : Un; {end(x)} % endx is valid but
x : Un; ∅ % endx is not.

We consider only the judgements that are well-formed in the sense that (i) ϕ refers
to only the names bound in Γ , and (ii) Γ must be well-formed, i.e., if Γ is of the
form Γ1, x : τ, Γ2 then τ only refers to the names bound in Γ1 and x is not bound in
neither Γ1 nor Γ2. See [10] for the formal definition of the well-formedness of type
environments and judgments. We freely permute bindings in type environments as long
as they are well-formed; for example, we do not distinguish between x :Un, y :Un and
y : Un, x : Un.

Typing. The typing rules are shown in Figure 5. The rule T-CAST says that the current
capability can be used for discharging obligations and increasing capabilities of the
name. T-CAST plays a role similar to the typing rule for cast processes in Gordon and
Jeffrey’s type system, but our cast is implicit and changes only the capabilities and
obligations, not the shape of types. This difference is important for automated type
inference. The other rules for messages are standard; T-PAIR is the standard rule for
dependent sum types (except for the use of indices).

In the rules for processes, the capabilities shown by can be any capabilities. The
rules are also similar to those of Gordon and Jeffrey, except for the rules T-OUT, T-IN,
T-NEWN, and T-CHK. In rule T-OUT, we require that the type of message M2 is public
as it can be received by any process, including the attacker. Similarly, in rule T-IN we
require that the type of the received value x is tainted, as it may come from any process.
This is different from Gordon and Jeffrey’s type system where the type of messages
sent to or received from public channels must be Un, and a subsumption rule allows
any value of a public type to be typed as Un and a value of type Un to be typed as any
tainted type. In effect, our type system can be considered a restriction of Gordon and
Jeffrey’s such that the subsumption rule is only allowed for messages sent or received
via public channels. This point is important for automated type inference.

In rule T-NEWN, the obligation ϕ1 is attached to the fresh name x and recorded in
the atomic check capability. Capabilities corresponding to ϕ1 can then later be extracted
by a check operation if the obligation has been fulfilled. In rule T-CHK, chk�(M1, ϕ4)
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Γ, x : τ ;ϕ � x : τ
(T-VAR)

Γ ;ϕ1 � M1 : τ1 Γ ; ϕ2 � M2 : [M1/0]τ2

Γ ; ϕ1 + ϕ2 � (M1, M2) : τ1 × τ2

(T-PAIR)

Γ ;ϕ1 � M1 : τ1 Γ ;ϕ2 � M2 : SKey(τ1)

Γ ; ϕ1 + ϕ2 � {M1}M2 : N�(∅, ∅)
(T-SENC)

Γ ; ϕ1 � M1 : τ Γ ; ϕ2 � M2 : EKey(τ )

Γ ;ϕ1 + ϕ2 � {|M1|}M2
: N�(∅, ∅)

(T-AENC)

Γ ;ϕ1 � M : N�(ϕ2, ϕ3)

Γ ;ϕ1 + ϕ′
2 + ϕ′

3 � M : N�(ϕ2 − ϕ′
2, ϕ3 + ϕ′

3)
(T-CAST)

Γ ; ∅ � 0
(T-ZERO)

Γ ; ϕ1 � P1 Γ ;ϕ2 � P2

Γ ; ϕ1 + ϕ2 � P1 |P2

(T-PAR)

Γ ; ∅ � P

Γ ; ∅ � ∗P
(T-REP)

Γ ;ϕ′ � P ϕ′ ≤ ϕ

Γ ; ϕ � P
(T-CSUB)

Γ ; ϕ1 � M1 : N�(∅, ∅)
Γ ;ϕ2 � M2 : τ Pub(τ )

Γ ;ϕ1 + ϕ2 � M1!M2

(T-OUT)

Γ ; ϕ1 � M : N�(∅, ∅)
Γ, x : τ ;ϕ2 � P Taint(τ )

Γ ; ϕ1 + ϕ2 � M?x.P
(T-IN)

Γ, x : SKey(τ ); ϕ � P

Γ ; ϕ � (νsymx)P
(T-NEWSK)

Γ, x : N�(ϕ1, ∅), ϕ + {chk�(x, ϕ1)} � P

Γ ;ϕ � (νx)P
(T-NEWN)

Γ, k1 : EKey(τ ), k2 : DKey(τ );ϕ � P

Γ ; ϕ � (νasymk1, k2)P
(T-NEWAK)

Γ ;ϕ1 � M1 : N�( , ) Γ ;ϕ2 � M2 : SKey(τ ) Γ, x : τ ;ϕ3 � P

Γ ;ϕ1 + ϕ2 + ϕ3 � decrypt M1 is {x}M2 .P
(T-SDEC)

Γ ;ϕ1 � M1 : N�( , ) Γ ;ϕ2 � M2 : DKey(τ ) Γ, x : τ ;ϕ3 � P

Γ ;ϕ1 + ϕ2 + ϕ3 � decrypt M1 is {|x|}M2−1 .P
(T-ADEC)

Γ ;ϕ1 � M1 : N�( , ) Γ ;ϕ2 � M2 : N�(∅, ϕ5) Γ ; ϕ3 + ϕ4 + ϕ5 � P

Γ ; ϕ1 + ϕ2 + ϕ3 + {chk�(M1, ϕ4)} � check M1 is M2.P
(T-CHK)

Γ ;ϕ1 � M : τ1 × τ2 Γ, y : τ1, z : [y/0]τ2; ϕ2 � P

Γ ; ϕ1 + ϕ2 � split M is (y, z).P
(T-SPLIT)

Γ ; ϕ1 � M1 : τ1 × τ2 Γ ; ϕ2 � M2 : τ1 Γ, z : [M2/0]τ2; ϕ3 � P

Γ ; ϕ1 + ϕ2 + ϕ3 � match M1 is (M2, z).P
(T-MATCH)

Γ ;ϕ + {end(M)} � P

Γ ; ϕ � beginM.P
(T-BEGIN) Γ ; ϕ + {end(M)} � endM

(T-END)

Fig. 5. Typing Rules

in the conclusion means that the capability to check M1 must be present. If the check
succeeds, the capability ϕ5 attached to M2 can be extracted and used in P . In addition,
the obligations attached to M2 must be empty, i.e. all obligations initially attached to the
name must have been fulfilled, and hence the capability ϕ4 can be extracted and used
in P . The above mechanism for extracting capabilities through obligations is different
from Gordon and Jeffrey’s type system in a subtle but important way, and provides more
expressive power: see [10]. The remaining rules should be self-explanatory.
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The following theorem guarantees the soundness of the type system. The proof is
given in the full version [10].

Theorem 1 (soundness). If x1 : Un, . . . , xm : Un; ∅ % P , then P is robustly safe.

Example 2. Recall the POSH protocol in Figure 2. Let τ be Un×NPub(∅, {end(0)}).
Then the process describing the behavior of B (net?n. · · · in the last five lines) is typed
as the upper part of Figure 6. Here, Γ = net : Un, skB : EKey(τ), n : Un, msg : Un.

Γ ; ∅ � msg : Un

Γ ; ∅ � n : NPub(∅, ∅)
Γ ; {end(msg)} � n : NPub(∅, {end(msg)})

Γ ; {end(msg)} � (msg, n) : τ
· · ·

Γ ; {end(msg), chkPub(msg, ∅)} � net!{|(msg, n)|}skB

Γ ; {chkPub(msg, ∅)} � begin msg. · · ·
net : Un, skB : EKey(τ ), n : Un; ∅ � (νmsg) · · ·

net : Un, skB : EKey(τ ); ∅ � net?n. · · ·

Γ3; {end(m)} � endm

Γ3; {chkPub(non, ∅)} � check non is non′. · · ·
Γ2, x : τ ; {chkPub(non, ∅)} � split x is (m, non). · · ·

Γ2; {chkPub(non, ∅)} � decrypt ctext is {|x|}pkB
−1 . · · ·

Fig. 6. Partial Typing of the POSH Protocol

Similarly, the part decrypt ctext is {|x|}pkB
−1 . · · · of process A is typed as the lower

part of Figure 6. Here, Γ2 = net : Un, pkB : DKey(τ), non : Un, ctext : Un and
Γ3 = Γ2, x : τ, m :Un, non′ :NPub(∅, {end(m)}). Let P1 be the entire process of the
POSH protocol. It is typed by net : Un; ∅ % P1.

The SOPH and SOSH protocols in Figure 1 are typed in a similar manner. We show
here only key types:

SOPH
pkB : EKey(Un×NPub({end(0)}, ∅)), skB : DKey(Un ×NPub({end(0)}, ∅))

SOSH
pkA : EKey(Un×NPr(∅, {end(0)})), skA : DKey(Un×NPr(∅, {end(0)}))
pkB : EKey(Un×NPr(∅, ∅)), skB : DKey(Un×NPr(∅, ∅))

Note that for POSH and SOPH the name qualifier must be Pub, and only for the SOSH
protocol may it be Pr. "#

4 Type Inference

We now briefly discuss type inference. For this we impose a minor restriction to the type
system, namely that in rule T-PAIR, if M1 is not a name then the indice 0 cannot occur
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in τ2. Similarly, in rule T-MATCH we require that index 0 does not occur unless M2

is a name. These restrictions prevent the size of types and capabilities from blowing
up. Given as input a process P with free names x1, . . . , xn, the algorithm to decide
x1 : Un, . . . , xn : Un; ∅ % P proceeds as follows:

1. Determine the shape of the type (or simple type) of each term via a standard unifi-
cation algorithm, and construct a template of a type derivation tree by introducing
qualifier and capability variables.

2. Generate a set C of constraints on qualifier and capability variables based on the
typing rules such that C is satisfiable if and only if x1 : Un, . . . , xn : Un; ∅ % P .

3. Solve the qualifier constraints.
4. Transform the capability constraints to linear inequalities over the rational numbers.
5. Use linear programming to determine if the linear inequalities are satisfiable.

In step 1, we can assume that there are no consecutive applications of T-CAST and
T-CSUB. Thus, the template of a type derivation tree can be uniquely determined: for
each process and message constructor there is an application of the rule matching the
constructor followed by at most one application of T-CAST or T-CSUB.

At step 3 we have a set of constraints C of the form:

{�i = �′i | i ∈ I} ∪ {(�′′j = Pub)⇒ (ϕj = ∅) | j ∈ J} ∪ C1

where I and J are finite sets, �i, �
′
i, �

′′
j are qualifier variables or constants, and C1 is

a set of effect constraints (like ϕ1 ≤ ϕ2). Here, constraints on qualifiers come from
equality constraints on types and conditions Pub(τ) and Taint(τ). In particular, (�′′j =
Pub)⇒ (ϕj = ∅) comes from the rule for Taint(N�′′j (ϕ, ϕj)). By obtaining the most
general unifier θ of the first set of constraints {�i = �′i | i ∈ I} we obtain the constraint
set C′ ≡ {(θ�′′j = Pub)⇒ (θϕj = ∅) | j ∈ J}∪θC1. Let γ1, . . . , γk be the remaining
qualifier variables, and let θ′ = [Pr/γ1, . . . ,Pr/γk]. Then C is satisfiable if and only
if θ′C′ is satisfiable. Thus, we obtain the set θ′C′ of effect constraints that is satisfiable
if and only if x1 : Un, . . . , xn : Un; ∅ % P holds.

Except for step 3, the above algorithm is almost the same as our previous work and
we refer the interested reader to [17,18]. By a similar argument to that given in [18] we
can show that under the assumptions that the size of each begin/end assertion occurring
in the protocol is bounded by a constant and that the size of simple types is polynomial
in the size of the protocol, the type inference algorithm runs in polynomial time.

Example 3. Recall the POSH protocol in Figure 2. By the simple type inference in step
1 we get the following types for names:

non, non′ : N, pkB : DKey(N×N), . . .

By preparing qualifier and capability variables we get the following elaborated types
and constraints on those variables:

non : Nγ1(ξ0,o, ξ0,c), non′ : Nγ′
1
(ξ′0,o, ξ

′
0,c), . . .

Pub(Nγ1(ξ0,o, ξ0,c)) γ1 = γ′
1 ξ6 ≤ ξ3 + ξ4 + ξ5

ξ2 ≥ ξ′0,o + (ξ5 − ξ′0,c) ξ7 ≥ ξ1 + ξ2 + ξ3 + {chkγ1(non, ξ4)} · · ·
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Here, the constraint Pub(Nγ1(ξ0,o, ξ0,c)) comes from net!non, and the other con-
straints from check non is non. · · ·. By solving the qualifier constraints, we get γ1 =
γ′
1 = Pub, . . ., and are left with constraints on capability variables. By computing (an

over-approximation of) the domain of each capability, we can reduce it to constraints on
linear inequalities. For example, by letting ξi = {chkPub(non, ξ4) &→ xi, end(m) &→
yi, . . .}, the last constraint is reduced to:

x7 ≥ x1 + x2 + x3 + 1 y7 ≥ y1 + y2 + y3 + 0 · · ·

5 Implementation and Experiments

We have implemented a protocol verifier SPICA2 based on the type system and infer-
ence algorithm discussed above. The implementation is mostly based on the formaliza-
tion in the paper, except for a few extensions such as sum types and private channels to
securely distribute initial keys. The implementation can be tested athttp://www.kb.
ecei.tohoku.ac.jp/˜koba/spica2/.

We have tested SPICA2 on several protocols with the results of the experiments
shown in Table 1. Experiments were conducted using a machine with a 3GHz CPU and
2GB of memory.

The descriptions of the protocols used in the experiments are available at the above
URL. POSH, SOPH, and SOSH are (spiCA-notations of) the protocols given in Figure 1.
GNSL is the generalized Needham-Schroeder-Lowe protocol [9]: see [10] for details.
Otway-Ree is Otway-Ree protocol using symmetric keys. Iso-two-pass is from
[15], and the remaining protocols are the Needham-Schroeder-Lowe protocol and its
variants, taken from the sample programs of Cryptyc [16] (but with type annotations
and casts removed).ns-flawed is the original flawed version,nsl-3 and nsl-7 are
3- and 7-message versions of Lowe’s fix, respectively. See [16] for the other three. As
the table shows, all the protocols have been correctly verified or rejected. Furthermore,
verification succeeded in less than a second except for GNSL. For GNSL, the slow-down
is caused by the explosion of the number of atomic capabilities to be considered, which
blows up the number of linear inequalities obtained from capability constraints.

Table 1. Experimental results

Protocols Typing Time (sec.)
POSH yes 0.001
SOPH yes 0.001
SOSH yes 0.001
GNSL yes 7.40
Otway-Ree yes 0.019
Iso-two-pass yes 0.004

Protocols Typing Time (sec.)
ns-flawed no 0.007
nsl-3 yes 0.015
nsl-7 yes 0.049
nsl-optimized yes 0.012
nsl-with-secret yes 0.023
nsl-with-secret-optimized yes 0.016

http://www.kb.
ecei.tohoku.ac.jp/~koba/spica2/
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6 Extensions

In this section, we hint on how to modify our type system and type inference algorithm
to deal with other features. Formalization and implementation of the extensions are left
for future work.

Our type system can be easily adopted to deal with non-injective correspondence [13],
which allows multiple end-events to be matched by a single begin-event. It suffices to
relax the typing rules, for example, by changing the rules for begin- and end-events to:

Γ ; ϕ + {end(M) &→ r} % P r > 0
Γ ; ϕ % beginM.P

r > 0
Γ ; ϕ + {end(M) &→ r} % endM

Fournet et al. [12] generalized begin- and end-events by allowing predicates to be
defined by Datalog programs. For example, the process:

assume employee(a); expect canRead(a, handbook)

is safe in the presence of the clause “canRead(X,handbook) :- employee(X)”. Here,
the primitives assume and expect are like non-injective versions of begin and end. A
similar type system can be obtained by extending our capabilities to mappings from
ground atomic formulas to rational numbers (where ϕ(L) > 0 means L holds), and
introducing rules for assume and expect similar to the rules above for begin and end-
events. To handle clauses like “canRead(X,handbook) :- employee(X)”, we can add the
following rule:

Γ ; ϕ + {L &→ r} % P There is an (instance of) clause L : − L1, . . . , Lk

r ≤ ϕ(Li) for each i ∈ {1, . . . , k}
Γ ; ϕ % P

This allows us to derive a capability for L whenever there are capabilities for L1, . . . , Lk.
To reduce capability constraints to linear programming problems, it suffices to extend
the algorithm to obtain the domain of each effect [18], taking clauses into account (more
precisely, if there is a clause L : −L1, . . . , Lk and θL1, . . . , θLk are in the domain of
ϕ, we add θL to the domain of ϕ).

To deal with trust and witness in [15], we need to mix type environments and capa-
bilities, so that type environments can also be attached to names and passed around. The
resulting type system is rather complex, so that we leave the details to another paper.

7 Related Work

The present work extends two lines of previous work: Gordon and Jeffrey’s type sys-
tems for authenticity [14,15], and Kikuchi and Kobayashi’s work to enable type infer-
ence for symmetric cryptographic protocols [18]. In our opinion the extension is non-
trivial, requiring the generalization of name types and a redesign of the type system.
This has yielded a fully-automated and efficient protocol verifier. As for the expressive
power, the fragment of Gordon and Jeffrey’s type system (subject to minor restrictions)
without trust and witness can be easily embedded into our type system. On the other
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hand, thanks to the uniform treatment of name types in terms of capabilities and obliga-
tions, our type system can express protocols that are not typable in Gordon and Jeffrey’s
type system, like the GNSL multi-party protocol [9]. See [10] for more details.

Gordon et al. [3,4] extended their work to verify source code-level implementation
of cryptographic protocols by using refinement types. Their type systems still require
refinement type annotations. We plan to extend the ideas of the present work to enable
partial type inference for their type system. Bugliesi, Focardi, and Maffei [6,11,7] have
proposed a protocol verification method that is closely related to Gordon and Jeffrey’s
type systems. They [11] developed an algorithm for automatically inferring tags (which
roughly correspond to Gordon and Jeffrey’s types in [14,15]). Their inference algorithm
is based on exhaustive search of taggings by backtracking, hence our type inference
would be more efficient. As in Gordon and Jeffrey type system, their tagging and typing
system is specialized for the typical usage of nonces in two-party protocols, and appears
to be inapplicable to multi-party protocols like GNSL.

There are automated protocol verification tools based on other approaches, such as
ProVerif [5] and Scyther [8]. Advantages of our type-based approach are: (i) it allows
modular verification of protocols4; (ii) it sets up a basis for studies of partial or full
type inference for more advanced type systems for protocol verification [4] (for an
evidence, recall Section 6); and (iii) upon successful verification, it generates types as a
certificate, which explains why the protocol is safe, and can be independently checked
by other type-based verifiers [15,4]. On the other hand, ProVerif [5] and Scyther [8]
have an advantage that they can generate an attack scenario given a flawed protocol.
Thus, we think that our type-based tool is complementary to existing tools.

Acknowledgment. This work was partially supported by the Mitsubishi Foundation.

References

1. Abadi, M.: Secrecy by typing in security protocols. JACM 46(5), 749–786 (1999)
2. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The Spi Calculus. Infor-

mation and Computation 148(1), 1–70 (1999)
3. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement types for

secure implementations. In: Proceedings of the 21st IEEE Computer Security Foundations
Symposium (CSF 2008), pp. 17–32 (2008)

4. Bhargavan, K., Fournet, C., Gordon, A.D.: Modular verification of security protocol code by
typing. In: Proceedings of POPL 2010, pp. 445–456 (2010)

5. Blanchet, B.: From Secrecy to Authenticity in Security Protocols. In: Hermenegildo, M.V.,
Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 342–359. Springer, Heidelberg (2002)

6. Bugliesi, M., Focardi, R., Maffei, M.: Analysis of typed analyses of authentication protocols.
In: 18th IEEE Computer Security Foundations Workshop (CSFW-18 2005), pp. 112–125
(2005)

4 Although the current implementation of SPICA2 only supports whole protocol analysis, it
is easy to extend it to support partial type annotations to enable modular verification. For
that purpose, it suffices to allow bound variables to be annotated with types, and generate
the corresponding constraints during type inference. For example, for a type-annotated input
M?(x : τ1).P , we just need to add the subtype constraint τ1 ≤ τ to rule T-IN.



Type-Based Automated Verification of Authenticity 89

7. Bugliesi, M., Focardi, R., Maffei, M.: Dynamic types for authentication. Journal of Computer
Security 15(6), 563–617 (2007)

8. Cremers, C.J.F.: Unbounded verification, falsification, and characterization of security pro-
tocols by pattern refinement. In: Proceedings of ACM Conference on Computer and Com-
munications Security (CCS 2008), pp. 119–128 (2008)

9. Cremers, C.J.F., Mauw, S.: A family of multi-party authentication protocols - extended ab-
stract. In: Proceedings of WISSEC 2006 (2006)
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Abstract. The mathematical concept of Markov chains is widely used
to model and analyze many engineering and scientific problems. Marko-
vian models are usually analyzed using computer simulation, and more
recently using probabilistic model-checking but these methods either do
not guarantee accurate analysis or are not scalable. As an alternative,
we propose to use higher-order-logic theorem proving to reason about
properties of systems that can be described as Markov chains. As the
first step towards this goal, this paper presents a formalization of time
homogeneous finite-state Discrete-time Markov chains and the formal
verification of some of their fundamental properties, such as Joint prob-
abilities, Chapman-Kolmogorov equation and steady state probabilities,
using the HOL theorem prover. For illustration purposes, we utilize our
formalization to analyze a simplified binary communication channel.

1 Introduction

In probability theory, Markov chains are used to model time varying random
phenomena that exhibit the memoryless property [3]. In fact, most of the ran-
domness that we encounter in engineering and scientific domains has some sort
of time-dependency. For example, noise signals vary with time, duration of a
telephone call is somehow related to the time it is made, population growth is
time dependant and so is the case with chemical reactions. Therefore, Markov
chains have been extensively investigated and applied for designing systems in
many branches of science and engineering. Some of their important applications
include functional correctness and performance analysis of telecommunication
and security protocols, reliability analysis of hardware circuits, software testing,
internet page ranking and statistical mechanics.

Traditionally, simulation has been the most commonly used computer-based
analysis technique for Markovian models. The approximate nature of simula-
tion poses a serious problem in highly sensitive and safety critical applications,
such as, nuclear reactor control and aerospace software engineering. To improve
the accuracy of the simulation results, Markov Chain Monte Carlo (MCMC)
methods [16], which involve sampling from desired probability distributions by
constructing a Markov chain with the desired distribution, are frequently ap-
plied. The major limitation of MCMC is that it generally requires hundreds of

T. Bultan and P.-A. Hsiung (Eds.): ATVA 2011, LNCS 6996, pp. 90–104, 2011.
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thousands of simulations to evaluate the desired probabilistic quantities and be-
comes impractical when each simulation step involves extensive computations.
Other state-based approaches to analyze Markovian models include software
packages, such as Markov analyzers and reliability or performance evaluation
tools, which are all based on numerical methods [27]. Although these software
packages can be successfully applied to analyze large scale Markovian models,
the results cannot be guaranteed to be accurate because the underlying iterative
methods are not 100% precise. Another technique, Stochastic Petri Nets (SPN )
[9], has been found as a powerful method for modeling and analyzing Markovian
systems because it allows local state modeling instead of global modeling. The
key limiting factor of the application of SPN models using this approach is the
complexity of their analysis.

Formal methods are able to conduct precise system analysis and thus over-
come the inaccuracies of the above mentioned techniques. Due to the extensive
usage of Markov chains in analyzing safety-critical systems, probabilistic model
checking [24] has been recently proposed for analyzing Markov chains. It offers
exact solutions but is limited by the state-space explosion problem [2] and the
time of analyzing a system is largely dependent on the convergence speed of the
underlying algorithms. Similarly, we cannot verify generic mathematical prop-
erties using probabilistic model checking due to the inherent state-based nature
of the approach. Thus, the probabilistic model checking approach, even though
is capable of providing exact solutions automatically, is quite limited in terms
of handling a variety of systems and properties.

In this paper, we propose to use higher-order-logic theorem proving [7] as a
complementary technique for analyzing Markovian models and thus overcome
the limitations of the above mentioned techniques. Time-homogeneousity is an
important concept in analyzing Markovian models. In particular, we formalize a
time-homogeneous Discrete-Time Markov Chain (DTMC) with finite state space
in higher-order logic and then, building upon this definition, formally verify some
of the fundamental properties of a DTMC, such as, Joint Probability Distribu-
tion, Chapman-Kolmogorov Equation, and Steady-state Probabilities [3]. These
properties play a vital role in reasoning about many interesting characteristics
while analyzing the Markovian models of real-world systems as well as pave the
path to the verification of more advanced properties related to DTMC. In order
to illustrate the effectiveness of our work and demonstrate its utilization, we
present the formal analysis of a simplified binary communication channel.

2 Related Work

As described above, Markov Analyzers, such as MARCA [17] and DNAmaca [15],
which contain numerous matrix manipulation and numerical solution procedures,
are powerful autonomous tools for analyzing large-scale Markovian models. Un-
fortunately, most of their algorithms are based on iterative methods that begin
from some initial approximation and end at some convergent point, which is the
main source of inaccuracy in such methods.
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Many reliability evaluation software tools integrate simulation and numerical
analyzers for modeling and analyzing the reliability, maintainability or safety of
systems using Markov methods, which offer simplistic modeling approaches and
are more flexible compared to traditional approaches, such as Fault Tree [14].
Some prevalent tool examples are Möbius [19] and Relex Markov [23]. Some
other software tools for evaluating performance, e.g. MACOM [25] and HYDRA
[6], take the advantages of a popular Markovian algebra, i.e., PEPA [21], to
model systems and efficiently compute passage time densities and quantities in
large-scale Markov chains. However, the algorithms used to solve the models are
based on approximations, which leads to inaccuracies.

Stochastic Petri Nets provide a versatile modeling technique for stochastic
systems. The most popular softwares are SPNP [4] and GreatSPN [8]. These
tools can model, validate, and evaluate the distributed systems and analyze
the dynamic events of the models using something other than the exponential
distribution. Although they can easily manage the size of the system model, the
iterative methods employed to compute the stationary distribution or transient
probabilities of a model result in inaccurate analysis.

Probabilistic model checking [1,24] is the state-of-the-art formal Markov chain
analysis technique. Numerous probabilistic model checking algorithms and
methodologies have been proposed in the open literature, e.g., [5,20], and based
on these algorithms, a number of tools, e.g., PRISM [22] and VESTA [26] have
been developed. They support the analysis of probabilistic properties of DTMC,
Continuous-Time Markov chains, Markov decision processes and Semi-Markov
Process and have been used to analyze many real-world systems including com-
munication and multimedia protocols. But they suffer from state-space explosion
as well as do not support the verification of generic mathematical expressions.
Also, because of numerical methods implemented in the tools, the final results
cannot be termed 100% accurate. The proposed HOL theorem proving based
approach provides another way to specify larger systems and accurate results.

HOL theorem proving has also been used for conducting formal probabilis-
tic analysis. Hurd [13] formalized some measure theory in higher-order logic
and proposed an infrastructure to formalize discrete random variables in HOL.
Then, Hasan [10] extended Hurd’s work by providing the support to formalize
continuous random variables [10] and verify the statistical properties, such as,
expectation and variance, for both discrete and continuous random variables
[10,11]. Recently, Mhamdi [18] proposed a significant formalization of measure
theory and proved Lebesgue integral properties and convergence theorems for
arbitrary functions. But, to the best of our knowledge, the current state-of-the-
art high-order-logic theorem proving based probabilistic analysis do not provide
any theory to model and verify Markov systems and reasoning about their cor-
responding probabilistic properties. The main contribution of the current paper
is to bridge this gap. We mainly build upon Hurd’s work to formalize DTMC
and verify some of their basic probabilistic properties. The main reason behind
choosing Hurd’s formalization of probability theory for our work is the availabil-
ity of formalized discrete and continuous random variables in this framework, as
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described above. These random variables can be utilized along with our formal-
ization of DTMC to formally represent real-world systems by their correspond-
ing Markovian models in higher-order logic and reason about these models in a
higher-order-logic theorem prover.

3 Probability Theory and Random Variables in HOL

A measure space is defined as a triple (Ω, Σ, μ) where Ω is a set, called the
sample space, Σ represents a σ-algebra of subsets of Ω and the subsets are
usually referred to as measurable sets, and μ is a measure with domain Σ. A
probability space is a measure space (Ω, Σ,Pr) such that the measure, referred
to as the probability and denoted by Pr, of the sample space is 1.

The measure theory developed by Hurd [13] defines a measure space as a pair
(Σ, μ). Whereas the sample space, on which this pair is defined, is implicitly
implied from the higher-order-logic definitions to be equal to the universal set
of the appropriate data-type. Building upon this formalization, the probability
space was also defined in HOL as a pair (E , P), where the domain of P is the set
E , which is a set of subsets of infinite Boolean sequences B∞. Both P and E are
defined using the Carathéodory’s Extension theorem, which ensures that E is a
σ-algebra: closed under complements and countable unions.

Now, a random variable, which is one of the core concepts in probabilistic
analysis, is a fundamental probabilistic function and thus can be modeled in
higher-order logic as a deterministic function, which accepts the infinite Boolean
sequence as an argument. These deterministic functions make random choices
based on the result of popping the top most bit in the infinite Boolean sequence
and may pop as many random bits as they need for their computation. When
the functions terminate, they return the result along with the remaining portion
of the infinite Boolean sequence to be used by other programs. Thus, a random
variable which takes a parameter of type α and ranges over values of type β can
be represented in HOL by the following function.

F : α→ B∞ → β ×B∞

As an example, consider a Bernoulli(1
2 ) random variable that returns 1 or 0

with equal probability 1
2 . It has been formalized in higher-order logic as follows

∀ s. bit s = if shd s then 1 else 0, stl s

where the functions shd and stl are the sequence equivalents of the list opera-
tions ’head’ and ’tail’, respectively. The function bit accepts the infinite Boolean
sequence s and returns a pair. The first element of the returned pair is a random
number that is either 0 or 1, depending on the Boolean value of the top most
element of s. Whereas, the second element of the pair is the unused portion of
the infinite Boolean sequence, which in this case is the tail of the sequence.

Once random variables are formalized, as mentioned above, we can utilize
the formalized probability theory infrastructure to reason about their proba-
bilistic properties. For example, the following Probability Mass Function (PMF)
property can be verified for the function bit using the HOL theorem prover.
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% P {s | FST (bit s) = 1} = 1
2

where the function FST selects the first component of a pair and {x|C(x)} rep-
resents a set of all x that satisfy the condition C.

The above approach has been successfully used to formally verify most basic
probability theorems [13], such as the law of additivity, and conditional proba-
bility related properties [12]. For instance, the conditional probability has been
formalized as:

Definition: Conditional Probability
% ∀ A B.

cond prob A B = P(A
⋂

B) / P(B)

which plays a vital role in our work. Another frequently used formally verified
theorem, in our work, is the Total Probability Theorem [12], which is described,
for a finite, mutually exclusive, and exhaustive sequence Bi of events and an
event A, as follows

Pr(A) =
n−1∑
i=0

Pr(Bi)Pr(A|Bi). (1)

We also verified the following closely related property in HOL

Pr(B)Pr(A|B) = Pr(A)Pr(B|A) (2)

where events A and B are measurable. This property will be used in verifying
some important Markov chain properties later.

4 Formal Modeling of Discrete-Time Markov Chains

Given a probability space, a stochastic process {Xt : Ω → S} represents a se-
quence of random variables X , where t represents the time that can be discrete
(represented by non-negetive integers) or continuous (represented by real num-
bers) [3]. The set of values taken by each Xt, commonly called states, is referred
to as the state space. The sample space Ω of the process consists of all the pos-
sible sequences based on a given state space S. Now, based on these definitions,
a Markov process can be defined as a stochastic process with Markov property.
If a Markov process has finite or countably infinite state space, then it is called
a Markov chain and satisfies the following Markov property.

For all k and p, if p < t, k < p and xt+1 and all the states xi (i ∈ [k, t)) are
in the state space, then

Pr{Xt+1 = xt+1|Xt = xt, . . . , Xp = xp . . . , Xk = xk} =
Pr{Xt+1 = xt+1|Xt = xt}.

(3)

Additionally, if t ranges over nonnegative integers or, in other words, the time is
a discrete quantity, and the states are in a finite state space, then such a Markov
chain is called a Finite-state Discrete-Time Markov Chain. A Markov chain, if
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with the same conditional probabilities Pr(Xn+1 = a | Xn = b), is referred to as
the time-homogeneous Markov chain [3]. Time-homogeneousity is an important
concept in analyzing Markovian models and therefore, in our development, we
focus on formalizing Time-homogeneous Discrete-Time Markov Chain with finite
space, which we refer to in this paper as DTMC. A DTMC is usually expressed
by specifying:

– an initial distribution defined by π0(s) = Pr(X0 = s), π0(s) ≥ 0(∀s ∈ S),
and

∑
s∈S π0(s) = 1.

– transition probabilities pij defined as ∀i, j ∈ S, pij = Pr{Xt+1 = j|Xt = i},
pij ≥ 0 and

∑
j∈S pij = 1

Based on the above mentioned definitions, we formalize the notion of a DTMC
in HOL as the following predicate:

Definition 1:
Time homogeneous Discrete-Time Markov Chain with Finite state space
% ∀ f l x Linit Ltrans.
Time homo mc f l x Linit Ltrans =
(∀ i. (i < l) ⇒

(P{s | FST (f 0 s) = xi} = EL i Linit) ∧
(
∑l−1

k=0(EL i Linit = 1))) ∧
(∀ t i j. (i < l) ∧ (j < l) ⇒

(P{s | FST (f (t + 1) s) = xj}|{s | FST (f t s) = xi} =
(EL (i * l + j) Ltrans)) ∧

(
∑l−1

k=0(EL (i * l + k) Ltrans = 1))) ∧
(∀ t k. (k < l) ⇒ measurable {s | FST (f t s) = xk}) ∧
(∀ t.

⋃l−1
k=0 {s | FST (f t s) = xk} = UNIV) ∧

(∀ t u v. (u < l) ∧ (v < l) ∧ (u �= v) ⇒
disjoint ({s | FST (f t s) = xu} {s | FST (f t s) = xv})) ∧

(∀ i j m r t w L Lt.
((∀ k. (k ≤ r) ⇒ (EL k L < l)) ∧ (i < l) ∧ (j < l) ∧
(Lt ⊆ [m, r]) ∧ (m ≤ r) ∧ (w + r < t)) ⇒
(P({s | FST (f (t + 1) s) = xj}|{{s | FST (f t s) = xi}

⋂
(
⋂

kεLt {s | FST (f (w + k) s) = x(EL k L)})}) =
P({s | FST (f (t + 1) s) = xj}|{s | FST (f t s)= xi}))) ∧

(∀ t n i j.
(i < l) ∧ (j < l) ⇒
(P({s | FST (f (t + 1) s) = xj}|{s | FST (f t s) = xi}) =
P({s | FST (f (n + 1) s) = xj}|{s | FST (f n s) = xi})))

The function Time homo mc accepts a sequence of random variables f, the cardi-
nality of the set of their possible states l, a function x that accepts the index and
returns the state corresponding to the given DTMC, and two real lists: the initial
states probability distribution Linit and the transition probabilities Ltrans.
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The predicate Time homo mc adheres to following five conditions:

– the DTMC must follow the given initial distribution Linit, in which the
summation of all the elements is 1. The transition probabilities Ltrans, in
which the summation of each l elements is 1, is an intrinsic characteristic of
a stochastic matrix.

– all events involving the Markov chain random variables are measurable (∀ t
k. (k < l) ⇒ measurable {s | FST (f t s) = xk}).

– the union of all states forms the state space as a universal set UNIV (∀ t.⋃l−1
k=0

{s | FST (f t s) = xk} = UNIV).
– the fifth condition ensures that the states in the state space of a given Markov

chain are mutually exclusive (∀ t u v. (u < l) ∧ (v < l) ∧ (u �= v)
⇒ disjoint ({s | FST (f t s) = xu} {s | FST (f t s) = xv})).

– the sixth condition corresponds to the memoryless property in Equation (3).
Mathematically, if xt+1, xt, xi and xj are the states in the state space, and
w + k < t, then the following equation holds

Pr{Xt+1 = xt+1|Xt = xt, . . . , Xw+k = xi, Xk = xj , . . .} =
Pr{Xt+1 = xt+1|Xt = xt}.

(4)

We model history of states in our formalization by a list L, which contains the
state elements ranging from 0 to l− 1. Thus, the list L, with r + 1 elements
or less, represents the indices of passed states and its elements have to be less
than l (∀ k. (k ≤ r) ⇒ (EL k L < l)). In (

⋂
k∈Lt {s | FST (f (w +

k) s) = x(EL k L)}), where the function (EL k L) returns the kth element
of the list L, it gives a general time index of every event and a flexible length
of the event sequence. (k ε Lt) makes sure that the passed states can be
freely chosen from a set Lt, which includes natural numbers and is a subset
of the interval [m, r] (Lt ⊆ [m, r]). Condition (w + r < t) ensures that
the states in this intersection set are passed states.

– the last condition represents the time homogeneousity of a discrete-time
Markov chain f .

It is important to note that for generality our definition can work with discrete-
time random variables of any data type.

5 Verification of Discrete-Time Markov Chain Properties

In this section, we present the formal verification of the most important proper-
ties of discrete-time Markov Chain.

5.1 Joint Probability of a Markov Chain

The joint probability of a Markov chain defines the probability of events involving
two or more random variables associated with a chain. Joint probability is very
useful in analyzing multi-stage experiments when an event chain happens, and
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reversible stochastic processes. Also, this concept is the basis for joint probability
generating function, which is used in many different fields. Mathematically, the
joint probability of n + 1 discrete random variables X0, X1, . . ., Xn in a Markov
chain can be expressed as [3]:

Pr{Xt = x0, · · · , Xt+n = xn} =
n−1∏
k=0

Pr{Xt+k+1 = xk+1|Xt+k = xk}Pr{Xt = x0}.

(5)

In Equation (5), Pr{Xt+k+1 = xk+1|Xt+k = xk} can be found in the given
one-step transition probabilities.

We formalize this property in HOL as following theorem:

Theorem 1: Joint Probability
% ∀ f l x t n L Linit Ltrans.

(Time homo mc f l x Linit Ltrans) ∧
(EVERY (λa. a < l) L) ∧ (n + 1 ≤ LENGTH L) ⇒
P(

⋂n
k=0{s | FST (f (t + k) s) = x(EL k L)}) =∏n−1

k=0P({s | FST (f (t + k + 1) s) = x(EL (k+1) L)}|
{s | FST (f (t + k) s) = x(EL k L)})

P{s | FST (f t s) = x(EL 0 L)}

The variables above are used in the same context as Definition 1. The first
assumption ensures that f is a Markov chain. All the elements of the indices se-
quence L are less than l and the length of L is larger than or equal to the length
of the segment considered in the joint events. The conclusion of the theorem
represents Equation (5) in higher-order logic based on the probability theory
formalization, presented in Section 3. The proof of Theorem 1 is based on in-
duction on the variable n, Equation (1) and some arithmetic reasoning.

5.2 Chapman-Kolmogorov Equation

The well-known Chapman-Kolmogorov equation [3] is a widely used property of
time homogeneous Markov chains as it facilitates the use of a matrix theory for
analyzing large Markov chains. It basically gives the probability of going from
state i to j in m+n steps. Assuming the first m steps take the system from state
i to some intermediate state k, which is in the state space Ω and the remaining n
steps then take the system from state k to j, we can obtain the desired probability
by adding the probabilities associated with all the intermediate steps.

pij(m + n) =
∑
k∈Ω

pkj(n)pik(m) (6)

The notation pij(n) denotes the n-step transition probabilities from state i to j.

pij(n) = Pr{Xt+n = xj |Xt = xi} (7)
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Based on Equation (6), and Definition 1, the Chapman-Kolmogorov equation
is formalized as follows

Theorem 2: Chapman-Kolmogorov Equation
% ∀ f i j x l m n Linit Ltrans.
(Time homo mc f l x Linit Ltrans) ∧ (i < l) ∧ (j < l) ∧
(∀ r. (r < l) ⇒ (0 < P{s | FST (f 0 s) = xr})) ⇒
P({s | FST (f (m + n) s) = xj}|{s | FST (f 0 s) = xi}) =∑l−1

k=0(P({s | FST (f n s) = xj}|{s | FST (f 0 s) = xk})
P({s | FST (f m s) = xk}|{s | FST (f 0 s) = xi}))

The variables m and n denote the steps between two states and both of them
represent time. The first assumption ensures that the random process f is a
time homogeneous DTMC, using Definition 1. The following two assumptions,
i < l and j < l, define the allowable bounds for the index variables. The last
assumption is used to exclude the case when Pr{X0 = xj} = 0. Because it
makes no sense to analyze the conditional probability when the probability of a
state existing is 0. The conclusion of the theorem formally represents Equation
(6).

The proof of Theorem 2 again involves induction on the variable n and both
of the base and step cases are discharged using the following lemma.

Lemma 1: Multistep Transition Probability
% ∀ f i j x n Linit Ltrans.
(Time homo mc f l x Linit Ltrans) ∧ (i < l) ∧ (j < l) ∧
(0 < P{s | FST (f 0 s) = xi}) ⇒
P({s | FST (f (n + 1) s) = xj}|{s | FST (f 0 s) = xi}) =∑l−1

k=0P({s | FST (f 1 s) = xj}|{s | FST (f 0 s) = xk})
P({s | FST (f n s) = xk}|{s | FST (f 0 s) = xi})

The proof of Lemma 1 is primarily based on the Total Probability theorem (1).

5.3 Absolute Probabilities

The unconditional probabilities associated with a Markov chain are referred to as
the absolute probabilities [3]. If the initial probability distribution of the system
being in a state, which has index k is given by Pr{X0 = xk}, then the absolute
probability of the system being in state j is given by

pj(n) = Pr{Xn = xj} =
l−1∑
k=0

Pr{X0 = xk}Pr{Xn = xj |X0 = xk}. (8)

This shows that, given an initial probability distribution and the n-step tran-
sition probabilities, the absolute probabilities in the state j after n step from the
start time 0 can be obtained by using this equation.

Based on our formal Markov chain definition, this property has been formal-
ized as the following theorem:
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Theorem 3: Absolute Probability
% ∀ f j x l n t Linit Ltrans.
(Time homo mc f l x Linit Ltrans) ∧ (j < l) ∧
(∀ r. (r < l) ⇒ (0 < P{s | FST (f 0 s) = xr})) ⇒
P{s | FST (f n s) = xj} =∑l−1

k=0P{s | FST (f 0 s) = xk}
P({s | FST (f n s) = xj}|{s | FST (f 0 s) = xk})

The proof of Theorem 3 is based on the Total Probability theorem along with
some basic arithmetic and probability theoretic reasoning.

5.4 Steady State Probabilities

In many applications, analyzing the stability of Markovian models is of prime
importance. For example, we are interested in the probability of states as time
tends to infinity under certain conditions, like irreducibility and aperiodicity.

Let Xn, n≥ 0, be a Markov chain having state space Ω and one-step transition
probability P (x, y) for going from state with value x to a state with value y. If
π(x), x ∈ Ω, are nonnegative numbers summing to one, and if

π(y) =
∑
x∈Ω

π(x)P (x, y), y ∈ Ω (9)

then π is called a stationary distribution. The corresponding HOL definition is as
follows. In this definition, xk and xi represent the variables x and y of Equation
(9), respectively.

Definition 2: Stationary Distribution
% ∀ p f n x l. stationary dist p f n x l =
∀ i.
(0 ≤ (p xi)) ∧(

∑l−1
k=0 (p xk) = 1) ∧

(p xi =
∑l−1

k=0(p xk)P({s | FST (f (n + 1) s) = xi}|
{s | FST (f n s) = xk}))

As a finite Markov chain, the steady state probabilities are defined to be a
vector Vj = limn→∞P(n). For a time homogeneous finite Markov chain with one-
step transition probability P (x, y), if Vj exists for all j ∈ Ω, then Vj is known as
the stationary probability vector of that Markov chain. In other words, Vj is a
stationary distribution of a Markov chain if

– limn→∞pj(n) =
∑l−1

i=0limn→∞pi(n)pij , j = 0, 1, 2, · · · , (l - 1)
–

∑l−1
i=0 limn→∞ pi(n) = 1

– 0 ≤ limn→∞ pj(n)

The steady state probability is formalized in HOL as follows

Theorem 4: Steady State Probability
% ∀ f n x l Linit Ltrans.
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(Time homo mc f l x Linit Ltrans) ∧
(∀ x j. ∃u. P{s | FST (f n s) = xj} → u) ⇒
(stationary dist (λx k. limn→∞P{s | FST (f n s) = xk}) f n x l)

The proof of Theorem 4 is primarily based on the linearity of limit of a
sequence and the linearity of real summation.

5.5 Generalized Stationary Distribution

If a Markov chain with state space Ω and one-step transition probability P (x, y)
has a probability π that satisfies the detailed balance equations, given below,
then this distribution π is stationary for P (x, y). This theorem is called a gen-
eralized stationary theorem and can be mathematically described as follows:

π(x)P (x, y) = π(y)P (y, x), ∀x, y ∈ Ω (10)

The detailed balance equations can be formalized as follows, where xi and xj

represent variables x and y of Equations (10), respectively.

Definition 3: Detailed Balance Equations
% ∀ p f l. db equations p f l =
∀ x i j n.
(i < l) ∧ (j < l) ∧
((p xi)P({s | FST (f (n + 1) s) = xj}|{s | FST (f n s) = xi}) =
(p xj)P({s | FST (f (n + 1) s) = xi}|{s | FST (f n s) = xj}))

The first input variable p in the above predicate is a function that accepts
the state as the parameter and returns the probability given in Equation (10).
Based on this definition, the stationary theorem can be defined as follows:

Theorem 5: Generalized Stationary Distribution
% ∀ f x l n Linit Ltrans.
(db equations (λx i. P{s | FST (f n s) = xi}) f l) ∧
(Time homo mc f l x Linit Ltrans) ⇒
(stationary dist (λx k. P{s | FST (f n s) = xk}) f n x l)

Here, π(x) is specified as a function λx i. P{s | FST (f n s) = xi}. The proof
of Theorem 5 is based on the Total Probability theorem, given in Equation (1),
and the following Lemma:

Lemma 3: Summation of Transition Probability
% ∀ f x l i n Linit Ltrans.
(Time homo mc f l x Linit Ltrans) ∧ (i < l) ⇒∑l−1

j=0P({s | FST (f n s) = xj}|{s | FST (f 0 s) = xi} = 1

The proof script1for the formalization of Markov chain, presented in this sec-
tion, consists of approximately 2600 lines of HOL code. These results not only
ensure the correctness of our formal Markov chain definitions, presented in Sec-
tion 4, but also play a vital role in analyzing real-world systems that are modeled
by DTMC, as will be demonstrated in the next section.
1 Available at http://users.encs.concordia.ca/∼liy liu/code.html
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6 Application: Binary Communication Channel

In order to illustrate the usefulness of the proposed approach, we use our re-
sults to analyze a simplified binary communication channel model [28]. Also, we
compare the analysis of the same example using probabilistic model checking.

A binary communication channel is a channel with binary inputs and outputs.
The transmission channel is assumed to be noisy or imperfect, i.e., it is likely that
the receiver gets the wrong digit. This channel can be modeled as a two-state
time homogenous DTMC with the following state transition probabilities.

Pr{Xn+1 = 0 | Xn = 0} = 1 - a; Pr{Xn+1 = 1 | Xn = 0} = a;
Pr{Xn+1 = 0 | Xn = 1} = b; Pr{Xn+1 = 1 | Xn = 1} = 1 - b

The corresponding state diagram and channel diagram are given in Fig. 1.
The binary communication channel is widely used in telecommunication theory
as more complicated channels are modeled by cascading several of them. Here,
variables Xn−1 and Xn denote the digits leaving the systems (n−1)th stage and
entering the nth one, respectively. a and b are the crossover bit error probabilities.
Because variables X0 is also a random variable, the initial state is not determined,
Pr (X0 = 0) and Pr (X0 = 1) could not be 0 or 1.

1

1

Fig. 1. State Diagram and Channel Diagram of the Binary Channel Model

Although the initial distribution is unknown, the given binary communication
channel has been formalized in HOL as a generic model, using Definition 2.

Definition 4: Binary Communication Channel Model
% ∀ f x a b p q.
(binary communication channel model f a b p q) =
(Time homo mc f (2:num) x [p; q] [1 - a; a; b; 1 - b]) ∧
(|1 - a - b| < 1) ∧ (0 ≤ a ≤ 1) ∧ (0 ≤ b ≤ 1) ∧
(p + q = 1) ∧ (0 < p < 1) ∧ (0 < q < 1)

In this formal model, variable f represents the Markov chain and variables a,
b, p and q are parameters of the functions of initial distribution and transition
probabilities. The variable x represents a function that provides the state at a
given index.

The first condition ensures that f is a time-homogeneous DTMC, with which
the number of states l is 2, because there are only two states in the state
space. List [p; q] corresponds to Linit in Definition 1 and another list [1 -
a; a; b; 1 - b] gives the one-step transition probability matrix by combining
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all the rows into a list and corresponds to Ltrans in Definition 1. The next
three conditions define the allowable intervals for parameters a and b to restrict
the probability terms in [0,1]. It is important to note that, |1 - a - b| < 1
ensures that both a and b cannot be equal to 0 and 1 at the same time and thus
avoids the zero transition probabilities. The remaining conditions correspond to
one-step transition probabilities.

Next, we use our formal model to reason about the following properties.

Theorem 6: nth step Transition Probabilities
% ∀ f x a b n p q.
(binary communication channel model f x a b p q) ⇒
(P({s|FST (f n s)=x0}|{s|FST (f 0 s))=x0})= b+a(1−a−b)n

a+b ) ∧
(P({s|FST (f n s)=x1}|{s|FST (f 0 s))=x0})=a−a(1−a−b)n

a+b ) ∧
(P({s|FST (f n s)=x0}|{s|FST (f 0 s))=x1})= b−b(1−a−b)n

a+b ) ∧
(P({s|FST (f n s)=x1}|{s|FST (f 0 s))=x1})=a+b(1−a−b)n

a+b )

Theorem 7: Limiting State Probabilities
% ∀ f x a b p q.
(binary communication channel model f x a b p q) ⇒
(limn→∞P({s|FST (f n s)=x0}|{s|FST (f 0 s))=x0})= b

a+b) ∧
(limn→∞P({s|FST (f n s)=x1}|{s|FST (f 0 s))=x0})= a

a+b) ∧
(limn→∞P({s|FST (f n s)=x0}|{s|FST (f 0 s))=x1})= b

a+b) ∧
(limn→∞P({s|FST (f n s)=x1}|{s|FST (f 0 s))=x1})= a

a+b)

Theorem 6 has been verified by performing induction on n and then applying
Theorem 2 and Lemma 3 and along with some arithmetic reasoning. Theorem
6 is then used to verify Theorem 7 along with limit of real sequence principles.

This small 2-state Markov chain case study clearly illustrates the main strength
of the proposed theorem proving based technique against the probabilistic model
checking approach, where we verified the desired probabilistic characteristics as
generic theorems that are universally quantified for all allowable values of vari-
ables a, b and n. These variables can also be specialized to specific values to obtain
corresponding precise conditional probabilistic values.

7 Conclusions

This paper presents a higher-order-logic formalization of time homogeneous
DTMC. We built upon this formalization and verified fundamental DTMC prop-
erties using the HOL theorem prover. This infrastructure can be used to formally
model systems, which can be expressed as DTMC and formally reason about
their probabilistic properties. Due to the inherent soundness of this approach, it
is guaranteed to provide exact answers, which is a very useful feature while ana-
lyzing the Markovian models associated with safety or mission-critical systems.

For illustration, we analyzed a binary communication channel. Our results
exactly matched the corresponding paper-and-pencil based analysis, which as-
certains the precise nature of the proposed approach.
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To the best of our knowledge, the proposed work is the first of its kind and
opens the doors of a new but very promising research direction, i.e., integrating
HOL theorem proving in the domain of analyzing Markov chain based system
models. We are currently working on extending the set of formally verified prop-
erties regarding DTMCs and applying a matrix theory on this set of properties,
which will enable us to target a wider set of systems. We also plan to build
upon the formalization of continuous random variables [10] and statistical prop-
erties [10,11] to formalize Continuous-Time Markov chains to be able to formally
reason about statistical characteristics of a wider range of Markovian models.

Acknowledgment. We would like to thank Dr. Shengzhen Jin from the Chinese
Academy of Sciences and Dr. Dongyu Qiu from Concordia University, for the
useful discussions on Markov Chain theory and their feedback on the reported
formalization.
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Abstract. Due to the complexity and time-based aspects of modern
systems, compositional verification and abstraction-based verification
techniques have been proposed to deal with these issues by consider-
ing the verification of system components separately (composition) and
working on more abstract structures (refinement). In this paper, we pro-
pose a revised definition of the product of timed automata (TA) and give
a compositional semantics based on individual timed transition system
(TTS) semantics. Moreover, we establish a new compositional refinement
property where the refinement of timed systems composition is given by
the refinement of each component. For this purpose, starting from the
basic timed transition systems, we introduce an original composition op-
erator endowed with good properties (associativity, trace inclusion, etc)
and supporting communications via shared variables and synchronization
of actions. Thereafter, we instantiate this framework for timed automata
where we show how to associate such a TTS with two-levels static prior-
ity (committedness) to a TA and establish the compositionality theorem
introduced by [5] with the mentioned refinement property.

Keywords: composition, refinement, timed automata.

1 Introduction

Timed automata have been studied for a long time now. However, a composi-
tional framework is lacking. Until recently, the semantics of networks of timed
automata were given in a monolithic way (vs a compositional way). Recently,
[5] have analyzed thoroughly the problem and criticized existing solutions.

During the last two decades, software design has been known a surge of
progress which leads to build complex systems through assemblies of compo-
nents. In order to make the verification of such systems more efficient, compo-
sitional verification has been introduced. In fact, compositional verification [9]
reduces the problem of checking whether a system S = S1 ‖ . . . ‖ Sn satis-
fies a property P to the simple problem of checking whether each component
Si satisfies a property Pi where P is a composition of Pi. It is important to
note that S is not actually constructed. If we consider the refinement prop-
erty, this method can be reformulated as A = A1 ‖ . . . ‖ An is refined by
S if each component Si refines Ai. Defining such a composition and finding a

T. Bultan and P.-A. Hsiung (Eds.): ATVA 2011, LNCS 6996, pp. 105–119, 2011.
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suitable refinement relation for more complex models, such as timed automata
with invariants, communication and shared variables, became more sophisti-
cated. In this paper, we are interested in setting a formal framework for reasoning
about timed automata. Thus, we can summarize our proposal in the following:

Fig. 1. TA product semantics

– A compositional product of extended
symbolic timed transition systems with
communication via shared variables
and synchronization of actions where
the associativity and trace inclusion
properties hold.

– A refinement relation depending on the
semantics of the former parallel com-
position operator and stating that the
refinement of timed systems composi-
tion is given by the refinement of each
component.

– An instantiation of the former compo-
sitional framework for timed automata
composition.

On a synchronization, to enable the receiver component to consider the updates
made by the sender action on shared variables, we define a new semantics for
the composition where the input transition guard is only checked after taking
into account the effect of the output transition action. It comes to applying the
join operator of relational algebra to compose send and receive actions.

Finally, thanks to this framework, a network of timed automata N satisfies a
property P on a global space if the network of timed automata N ′ corresponding
to the refinement of all TA of N satisfies P . Also, we revisit the results proposed
by [5]. The rest of the paper is organized as follows. Section 2 presents related
work. In Section 3, we state the problem of the interaction of communicating
timed automata and motivate our proposal. Section 4 presents the formal basis of
our work by introducing timed extensions of Labelled Transition Systems (LTS),
sufficient conditions for bisimilarity and define associative products. Section 5
introduces Timed Automata (TA) and Networks of Timed Automata (NTA),
their different ETTS (Extended Timed Transition Systems) semantics and es-
tablish relations between them as illustrated by Fig.1. Section 6 gathers some
important theorems established within our framework.

2 Related Work

Composition and refinement of extended timed systems, particularly timed au-
tomata, have been studied [7,2,11,5,4] during the last decade. However, a com-
positional framework is lacking. About this subject, we are only interested in
work [2,5] focusing on the composition of extended timed systems with commu-
nication, committedness and variables.
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The authors of [2] define a framework with a non compositional semantics
for Uppaal timed automata product with a naive composition of send/receive
actions. On a synchronization, such a model checks the guards of the involved
transitions before applying any action. Moreover, the resulting transition action
is the composition of send and receive actions.

[5] describes a framework for compositional abstraction and defines a parallel
composition operator for Uppaal timed automata. To establish their results, the
authors of [5] restrict both TA and TTS structures so that their input transition
guards and location invariant do not refer to shared variables. Furthermore, in
TA a committed location should have an outgoing transition.

In this paper, we propose a new composition approach where the input transi-
tion guard is checked after taking into account the effect of the output transition
action. Otherwise stated, the output transition action is simulated, it becomes
effective if the guard evaluates to true. In fact, we consider a more abstract no-
tion of timed transition systems. These changes solve the previous restrictions.
Thus, our result is in fact independent of the way the pairs (guard/action) of
the two timed automata are composed.

3 A New Composition of Timed Automata

This section motivates our work informally. We explain our proposal and com-
pare it with [2,5]. Then, we present a synchronization pattern implemented
thanks to our proposal.

3.1 Differences with Existing Approaches

s1 s2

true/c!/e:=e+1 e>0/c?/e:=e-1

Fig. 2. Synchronization skeleton

Defining the product of timed automata is
not an easy task because of the interaction
of communicating processes through global
variables. We illustrate this problem in Fig.2
that shows two timed automata where e is a
shared variable initialized to 0. By now, the
notation g/l/a states a transition guarded by
g, labelled by l and with an action a. More-
over, c! (output) and c? (input) are corre-
sponding to a send/receive handshake com-
munication over a channel c.

1. When submitting this model (Fig.2.) to the Uppaal tool, it blocks because
Uppaal checks that the guards of all involved transitions hold which is
not the case in s2 when e = 0. To sum up, Uppaal synchronization can be
described by: gs/c!/as ‖ gr/c?/ar = gs ∧ gr/τ/as; ar

2. [5] does not allow the skeleton of Fig.2. because the guard of the input tran-
sition (e > 0) depends on the shared variable e. The (guard/action) tuples
are composable if [as]gr ≡ gr as gs/c!/as ‖ gr/c?/ar = gs ∧ [as]gr/τ/as; ar.
Under this condition, this definition is equivalent to that of Uppaal.
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We propose an alternative approach which changes the Uppaal semantics: the
input transition guard is checked after the execution of the output transition
action, (here e:=e+1) which updates the value of the variable e to 1. Therefore,
the guard e > 0 of the input transition will be satisfied. This proposal can be
written as gs/c!/as ‖ gr/c?/ar = gs ∧ [as]gr/τ/as; ar where restrictions of [5]
have been suppressed.

3.2 Benefits of the Proposal

Thanks to this new definition of timed automata composition, which consists
in evaluating the guard of the receive event only after the assignment of the
corresponding send event has been performed, we establish genuine composition
and refinement results (Theorems 5 and 6). Moreover, the implementation of a
conditional reception through shared variables becomes easy.

Conditional reception. Currently Uppaal offers pure synchronization only. We
consider here the extension which consists in superposing message exchange
to synchronization. Moreover, thanks to the proposed semantics, conditional
reception where reception is enabled only if a condition over the received message
is true, can be implemented easily. The following table, proposes a syntax and
a translation for this construction, where v is a local variable, C(v) is a boolean
expression depending on v and local variables of the receiver, shc is a fresh shared

syntax translation using our proposal

◦ g/c!e/a−−−−−→ ◦ ◦ g/c!/shc:=e;a−−−−−−−−−→ ◦
◦ g/c?v/a where C(v)−−−−−−−−−−−−−→ ◦ ◦ g∧C(shc)/c?/v:=shc;a−−−−−−−−−−−−−−→ ◦

variable dedicated to the communication over the synchronization channel c and
e is an expression. We remark that such a feature is especially interesting for
implementing resource allocators where requests are accepted according to the
resources currently available. Actually, this synchronization pattern requires a
guard depending on the local state but also a condition depending on the request.
The following transitions illustrate such a pattern1 .

client requests allocator

◦ R!100−−−→ ◦
◦ R!c−−→ ◦ ◦ R?g where g≤a/a:=a−g−−−−−−−−−−−−−−−−→ ◦

3.3 Transformation to Basic Uppaal

In order to reuse the Uppaal model checker, we outline a model transformation
converting our proposal to Uppaal. The basic idea of such a transformation is to
move the “late” reception guards evaluations to the sending point. We consider
three steps:
1 We use the conventions that an omitted guard defines a � guard and an omitted

action defines a skip action.
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Step 1 local variables occurring in guards of receptions become global. This
transformation allows to evaluate guards out of their local initial context.

Step 2 distinguishing receptions. This transformation allows to retrieve the
succeeding reception. Each reception is distinguished by a dedicated
channel.

Step 3 moving reception conditions. The reception condition is moved to the
sender side after calculating the effect of the sender command.

We summarize the preceding steps by the following table2.

Step 1

i:

�

�

�

�

int l;

◦ gr(l)/c?/ar(l)−−−−−−−−−→ ◦
→

int i l;

i:

�

�

�

	◦ gr(i l)/c?/ar(i l)−−−−−−−−−−−→ ◦
Step 2 Step 3

g/c!/as

gi/c?/ai
→ []ig/ci!/as

gi/ci?/ai

g/ci!/a
gi/ci?/ai

→ g ∧ [a]gi/ci!/a
�/ci?/ai

Remark. The semantics of the conditional reception (3.2) as a translation to
basic Uppaal would be much more complicated than the one relying on our
semantics. Furthermore, we envision to formally validate these translations in a
future work. We give them as a justification for modifying Uppaal semantics.

4 Transition System Extensions

Transition systems are an elegant model to represent behavioral aspects of active
systems. They are essentially composed of states and transitions. States corre-
spond to the configurations reached by the modeled system whereas transitions
link these states through the actions made by such a system. Here, we introduce
composable symbolic transition systems and define their associative product.

4.1 Labelled Transition Systems

Labelled transition systems [1] are the reference model used to express and to
compare behaviors.

Definition 1 (LTS). A labelled transition system (LTS) over an alphabet Σ is
a triple 〈Q, Q0 ⊆ Q,→⊆ Q× Σ ×Q〉 where Q is the state space, Q0 is the set
of initial states and → the transition relation. We note q

l→ q′ for (q, l, q′) ∈→.

Definition 2 (Simulation). Given two transition systems Tc = 〈Qc, Q
0
c ,→c 〉

(concrete) and Ta = 〈Qa, Q0
a,→a〉 (abstract), Ta simulates Tc through a relation

R, denoted by Ta )R Tc, if:

– ∀qc ∈ Q0
c , there exists qa ∈ Q0

a such that R(qc, qa),

2 [] denotes the non deterministic choice operator.
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– ∀qc q′c qa l, if qc
l→c q′c and R(qc, qa) there exists q′a ∈ Qa such that qa

l→a q′a
and R(q′c, q′a).

Two LTSs T and T ′ are bisimilar through a relation R ⊆ Q×Q′ which we note
T ∼R T ′, if T )R T ′ and T ′ )R−1 T .

4.2 Composable Labelled Transition Systems

In order to make transition systems communicate, we specialize the state space
and the alphabet to allow several communication protocols:

– via a shared space: we distinguish a local and a global state space and we
introduce abstract actions that update the global state space. These actions
may be non-deterministic and blocking.

– via CCS-like channels: we introduce a set C of send-receive channels where
two transitions synchronize if their actions are complementary. The resulting
transition of such a synchronization corresponds to an internal transition in
the composition.

– via CSP-like synchronization: we introduce a set S of many-to-many syn-
chronization events. Such a synchronization is used to model a system tran-
sition where all processes make a lock-step [13]. Here, we will use such a
synchronization to model the evolution of time.

Furthermore, the concept of Committedness is a high level mechanism to express
that committed transitions are given priority. Committedness-based hiding is
supposed to be static: a non firable committed transition due to a blocking action
can hide a firable non committed transition. A location q is said to be committed
(Comm(q) = �) if at least one of its outgoing transitions is committed.

Definition 3 (CLTS). A composable LTS (CLTS) over a shared space G, an
action language3 A, a set of one-to-one channels C and a set of synchronization
events S is a tuple 〈Q, q0, G0 ⊆ G,→〉 where:

– Q is the set of locations (local states) and q0 ∈ Q is the initial location,
– G0 is the set of initial global states,
– →⊆ Q×L×A×B×Q is the transition relation where L = C?∪C!∪S∪{τ}

is the set of labels, C!, resp C?, is the set of sending, resp receiving, events
through channels of C and τ is the internal event. The boolean component
specifies the transition committedness.

Furthermore, a CLTS must satisfy a wellformedness condition: synchronization
transitions (with a label in S) are supposed to be non committed.

We note q
l/a→b q′ for (q, l, a, b, q′) ∈→. If absent, b is considered to be false.

Therefore, we define formally the predicate Comm by:

Comm(q) =

{
� if ∃ l a q′ | q l/a−−→ q′

⊥ else

3 The action language A will be defined in section 5.4.
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The semantics of a CLTS is specified by its associated LTS defined below. It
allows comparing CLTSs through simulation and bisimulation.

Definition 4 (Semantics of a CLTS). Given a global state space G and the
semantics of the action language [[.]] : A → 2G×G , the semantics of the CLTS
〈Q, q0, G0,→〉 is the LTS 〈 Q× G, {q0} ×G0, {((q, g), l, (q′, g′)) | ∃ a ∈ A, ∃ b,

q
l/a→b q′ and (g, g′) ∈ [[a]] and ¬b⇒ q

/
�} 〉 where q

/
� means that there is no

outgoing committed transition from q.

The presence of the committed flag makes the semantics of CLTSs rather com-
plex. In order to avoid managing priorities during simulation proofs, we consider
a sufficient condition expressed as the simulation of the corresponding LTSs
where the committed flag is considered as part of the label. The negated con-
dition appearing in CLTSs semantics is replaced by a condition over committed
states.

Definition 5 (Sufficient simulation condition). Given two CLTSs Tc (con-
crete) and Ta (abstract) and refinement relations Rl ⊆ Qc ×Qa, Rg ⊆ Gc × Ga

where Gc, resp Ga, is the global space of Tc, resp Ta. Ta simulates Tc, we note
Ta )Rg,Rl

Tc, if

1. The associated LTSs satisfy the sufficient condition for simulation, i.e:
– Rl(q0

c , q0
a),

– ∀x ∈ G0
c , ∃y ∈ G0

a | Rg(x, y),
– ∀qc, q′c, qa, l, a1 ∈ A, b, x, x′, y, if qc

l/a1−−−−→ c
b q′c and (x, x′) ∈ [[a1]],

Rl(qc, qa), Rg(x, y) there exist q′a ∈ Qa, a2 ∈ A, y′ such that

qa
l/a2−−−−→ a

b q′a
∧ (y, y′) ∈ [[a2]] ∧Rl(q′c, q

′
a) ∧Rg(x′, y′)

2. ∀qc qa, Rl(qc, qa)⇒ Comm(qa)⇒ Comm(qc).

Theorem 1. If Ta )Rg,Rl
Tc then Ta and Tc are similar, i.e. their associated

LTSs are similar.

Proof (sketch). Given a concrete LTS transition labeled (l, b), a concrete CLTS
transition with label l and committedness b starts from the same state and is
not hidden. The sufficient condition (1) ensures the existence of an abstract
CLTS transition with the same label and committedness. If it is not hidden, it is
present in the LTS, which establishes the refinement property. Otherwise, it is not
committed (b = ⊥) and a committed transition hides it. Thus, the abstract state
is committed which implies the committedness of the concrete state (condition
2). It means that some concrete outgoing transition is committed which would
hide the given concrete transition. �

4.3 Product of Composable Labelled Transition Systems

The product of composable transition systems is parameterized by two internal
operations defined on the action language:
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– a1 �a2 is used to compose actions associated to send-receive communication.
– a1*a2 is used to compose actions associated to global synchronizations (lock-

step). This operation is supposed to be commutative (resp. associative) in
order to establish the commutativity (resp. the associativity) of the product.

It follows that our definition of the product is a generalized version of that given
in [5].

Definition 6 (N-ary product of a family of CLTSs). Given an indexed
family of CLTSs Ti = 〈Qi, q

0
i , G0

i ,→i〉i∈I over the same shared space and action
language, their product Πi∈ITi is defined by the CLTS 〈

⊗
i Qi, (q0

1 , . . . , q0
n),

⋂
i G0

i ,
→〉 where → is the smallest relation such that:

qi

l/a−−→i,bq′
i l∈C!∪C?

q
l/a−−→bq[i←q′

i ]
(asynci)

qi

τ/a−−→i,bq′
i (

∨
j∈I Comm(qj))⇒b

q
τ/a−−→bq[i←q′

i]
(τi)

qi

c!/ai−−−→i,bi
q′

i qj

c?/aj−−−→j,bj
q′

j i�=j (
∨

k∈I Comm(qk))⇒bi∨bj

q
τ/ai�aj−−−−−→bi∨bj

q[i←q′
i,j←q′

j ]

(sri,j)

(∀i∈I) qi

s/ai−−−→iq
′
i s∈S

q
s/

⊙
i ai−−−−−→q′

(sync)

I = {1, .., n} is the set of indices. The notation q[i ← q′i] states the replace-
ment of the ith location of the vector q4 by location q′i. Moreover, the condition

Comm(q)⇒ b with qi
l/a−−→i b q′i means that this transition should be committed

if there exists another outgoing committed transition from q. Otherwise stated:
a prioritary transition cannot be hidden by a prioritary transition. The product
rules are explained in the following:

– The rule asynci allows a CLTS Ti to synchronize with another CLTS Tj (j /∈
I) of the external environment, for a future composition.

– The rule τi corresponds to an internal transition τ of the CLTS Ti. The
resulting transition is uncommitted if the elements of the source state vector
are all uncommitted.

– The rule sr (for send/receive) states that both Ti and Tj will be synchronized
as a sender/receiver on the same channel c. The resulting transition of such
a synchronization is committed if either the send or the receive transition
has priority over all the other transitions. Otherwise, sr provides that the
elements of the source state vector are all uncommitted.

– The rule sync defines a multiple synchronization of a set of uncommitted
transitions on the same event s.

Lemma 1 (Committedness). The committedness of a CLTSs product state
is the disjunction of the committedness of locations that it contains.

Comm(〈q1, . . . , qn〉) =
∨

i Comm(qi)

The proof of this lemma is similar to the proof of [5] done for two processes.

4 q is an element of the product
⊗

i Qi.
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Theorem 2 (Generalized associativity). If * is associative, i.e. *i∈I*j∈Ji

ai,j = *i∈I,j∈Jiai,j, the product of CLTSs is associative, i.e.:
Πi∈I(Πj∈JiTi,j) ∼ Πi∈I,j∈JiTi,j

Proof (sketch). Again, this (tedious) proof is similar to that of [5] except that it
is generalized to n-ary product and it relies on weaker assumptions.

4.4 CLTS with Location Invariants

In this section, we introduce location invariants in CLTS to restrict the set of
states by reducing the global space valuations.

Definition 7 (CLTSI). Given a global space G, a CLTS with location invari-
ants is a tuple 〈Q, q0, G0, I,→〉 where 〈Q, q0, G0,→〉 is a CLTS over G and
I : Q→ 2G associates an invariant on global variables to each location.

By now, we define the semantics of CLTSIs through LTS and CLTS structures.

Definition 8 (Semantics of a CLTSI). Given the global space G and the ac-
tion language semantics [[.]] : A → 2G×G. The semantics of the CLTSI 〈Q, q0,

G0, I,
/−−→ 〉 is the LTS 〈Q × G, {q0} × (G0 ∩ I(q0)),→/GInv

〉 where GInv =
{(q, I(q))|q ∈ Q} and 〈Q × G, {q0} × G0,→〉 is the semantics of the associated
CLTS.

Theorem 3 (Sufficient simulation condition). Given two CLTSIs Tc (con-
crete) and Ta (abstract) on the same global space and the refinement relation
R ⊆ Qc ×Qa then Ta simulates Tc through R if their associated CLTSs satisfy
the sufficient condition for simulation and ∀qc qa, R(qc, qa)⇒ I(qc) ⊆ I(qa).

Proof. It is straightforward.

Definition 9 (Product of CLTSIs). The product of CLTSIs is the product of
their associated CLTSs with for each composed location, an invariant defined as
the conjunction of the invariants of each elementary location.

Theorem 4 (CLTSI product associativity). If * is associative, the product
of CLTSIs is associative.

This theorem is a generalized version of Theorem 2, where the associativity of
CLTSIs product is proved using the associativity of CLTSs product.

Restriction of a CLTSI. In networks of TA, unmatched synchronizing transitions
are ignored. Here, we define the corresponding operation on CLTSI, which is
called restriction: a restriction of a CLTSI over a set of channels is a CLTSI
where transitions composable over these channels have been deleted.

Definition 10 (CLTSIs restriction). Let T = 〈Q, q0, G
0, I,−→〉 be a CLTSI

over a shared space G, an action language A and a set of one-to-one channels
C. Let C′ ⊆ C, we define T \C′ to be the CLTSI 〈Q, q0, G

0, I,−→′〉 where

−→′=−→ \{q l/a→b q′ | l ∈ C′! ∪C′?} .
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4.5 Timed Transition Systems Extensions

Timed transition systems (TTS) [12] are the reference model to define the se-
mantics of real-time formalisms. Basically, a TTS is a labeled transition system
where labels are events or delays. In this section, we will consider actions as
tuples (guard, assignment) to define the ETTS structure. In fact, an extended
timed transition system (ETTS) is a CLTSI which synchronizes on time. Fur-
thermore, we consider the global state space structured as valued variables.

Definition 11 (ETTS). An Extended Timed Transition System (ETTS) on a
set of variables V valued over a domain D and a set of channels C is a CLTSI
over the global space G = DV where the n-ary synchronization events S are time
instants of T = R≥0. Its action language is defined as the set of tuples (guard,
assignment) where a guard is a predicate over V and an assignment maps some
variables to expressions built on V.

The semantics of an ETTS depends on its action language semantics. Here, we
have chosen the following definition for the (guard, assignment) tuple5:

Actionlanguage Semantics
a:= g/ ‖v∈V v := ev[[g/ ‖v∈V v := ev]](x, x′) = g(x) ∧

∧
v∈V x′(v) = [[ev]](x)

| a � a
| *i∈I ai

The notation g/ ‖v∈V states the parallel update of variables of V as an as-
signment guarded by g. Both action composition operators * and � are still
left undefined. Their semantics will be chosen to conform with Timed Automata
composition semantics. Concerning verification, our refinement relation preserves
a class of properties (trace inclusion, system invariants, etc). Here, we are only
interested in timed traces.

4.6 ETTS Timed Traces

The trace concept is extensively used to study the behavioral equivalences of
timed transition systems and to define the language of properties to be checked.
Different definitions of timed traces have been established [8]. They define the
timed trace as a sequence of visible events, each one tagged by a date d corre-
sponding to the sum of delays of all transitions preceding it. These definitions
cannot be used in our framework, because we consider time-transitions as visible,
they change the global space. Furthermore, τ−transitions stating a change of the
ETTS global space are considered as visible too. In this section, we establish a
new definition of ETTSs (diverging) timed traces.

Definition 12 (ETTS executions). Let T = 〈Q, q0, G0, I,→〉 be an ETTS
over a shared space G, a set of channels C and an action language A. An exe-
cution is an infinite sequence of tuples (qi, li, G

i) where qi is a location, li is a

5 x, x’ are valuations of G.
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label of an outgoing transition from qi and Gi is the shared space corresponding
to qi. The set of all executions of T , denoted by Exec(T ), is formally given by:

Exec(T ) = {(q0, l0, G
0).〈(qi, li, G

i)〉i∈N∗ | ∀i qi gi/li/ai−−−−−→b qi+1 ∧ (Gi, Gi+1) ∈ [[ai]] ∧
∀g′

i l′i a′
i b′ qi′qi g′

i/l′i/a′
i−−−−−→b′ qi′ ⇒ (b′ ⇒ b)}

Moreover, an execution e = 〈(q0, l0, G0).(q1, l1, G1)..〉 is said time-diverging if∑
li∈T

li is diverging (not bounded).
For an an execution sequence e, we denote by (ei.q, ei.l, ei.G) the ith element

of e, and by ei..∞ the sub-sequence of e starting from the ith element.

Definition 13 (Diverging timed traces). A timed trace is an infinite se-
quence of triplets 〈l, d, G〉 where l is a label, d is a date corresponding to the
sum of all delay labels preceding the current triplet and G is a global state. Each
triplet corresponds to a transition stating a change of the global space or labelled
by an external event. Furthermore, a timed trace e = (〈l0, d0, G0)〉.〈l1, d1, G1〉...)
is time-diverging if values di diverge (lim i→∞ di =∞).

By now, we adapt the previous definition of timed traces for ETTSs where we
associate a triplet to each transition labelled by an event (discrete ot timed) or
stating a change of the global state.

Definition 14 (ETTS timed traces). Let T = 〈Q, q0, G0, I,→〉 be an ETTS.
A trace of T is the projection erasing local states and stuttering of a time-
diverging execution of T . The Tr function associates a trace to a time-diverging
execution. It is defined by: Tr(e) = Tr0(e)

Trd(e) = 〈(ei0 .l, d, ei0 .G).T rd+|ei0 .l|(e(i0+1)..∞)〉
where i0 = min{i | (ei.l = τ ⇒ ei.G �= ei+1.G) ∨ ei.l �= 0} and |ei.l| =
ei.l if ei.l ∈ T or 0 otherwise. The set TR of timed traces of T is defined
as TR(T ) = {Tr(e)|e ∈ Exec(T )}.

5 Networks of Timed Automata

In the literature, several semantics for TA composition have been studied [2,5,14]
and various parallel composition operators have been proposed, the well known
ones are those of CCS [16] and CSP [13]. The semantics of both TA and networks
of TA are expressed using generalized timed transition systems.

5.1 Timed Automata

A timed automaton is an abstract model of a timed system where all clocks are
initialized to zero and increased synchronously. Several notions of committedness
have been considered in the literature:

– In Uppaal [2], committedness is associated to states.
– In order to define a compositional semantics of timed automata using prod-

ucts of TTS, [5] proposes a restriction on Uppaal so that a committed state
has always a firable outgoing transition and both location invariants and
input transition guards do not depend on global variables.
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– Our proposal does not require such restrictions but uses a slightly modified
definition of a TTS [12], where location invariants have been introduced and
the input transition guard is checked after taking into account the effect of
the output transition action.

Definition 15 (Timed Automaton). A timed automaton on a set of clocks χ
and a set of channels C is a tuple 〈Q, q0, K, I,→〉 where:

– Q is the set of locations with q0 ∈ Q the initial location,
– K ⊆ Q is the set of committed locations,
– I : Q→ 2χ→T associates a clock invariant to each location,
– →⊆ Q × 2χ→T × 2χ × Σ ×Q is the transition relation defined with a clock

guard and a reset set. Σ = C? ∪ C! ∪ {τ} is the set of transition labels.

We note q
g/l/r−−−→ q′ for (q, g, r, l, q′) ∈→.

5.2 Semantics of Timed Automata

Different definitions of TA semantics through TTS models have been proposed
[5,3,14]. Here, we define the semantics of a TA over an ETTS.

Definition 16 (ETTS of a timed automaton). Given a timed automaton
〈Q, q0, K, I,→ta〉 over a set X of clocks, its semantics is defined as an ETTS
over the variables X by 〈Q, q0, G0, I,→〉 where G0 = X × {0} and → is the
smallest relation such that:

q
g/l/r−−−→taq′

q
g/l/‖x∈rx:=0−−−−−−−−−→q∈K q′

(action) q∈K

q
⊥/τ/skip−−−−−−→�q

(empty) q �∈K

q
�/d/‖x∈Xx:=x+d−−−−−−−−−−−−→q

(time)

Remarks. The empty transition is not firable. It is used to hold the committed-
ness information of TA locations. The time transitions do not update local states.
Throughout this paper, we consider the semantics of the reset as an action.

Simulation. We say that a TA Tc refines another TA Ta if the simulation relation
holds between their associated ETTSs: Ta ) Tc � ETTS(Ta) ) ETTS(Tc).

5.3 Networks of Timed Automata

In order to model concurrency and communication of concurrent systems, timed
automata have been extended with parallel composition, giving rise to networks
of TA (NTA). The Uppaal language [15] has adopted the CCS parallel compo-
sition operator.

Definition 17 (Network of timed automata). A network of timed automata
is a finite collection of timed automata defined on the same sets of clocks X and
channels C.



An Alternative Definition for Timed Automata Composition 117

5.4 Semantics of a NTA

Several definitions of NTA semantics through transition systems have been es-
tablished [2,5]. Here, we define the semantics of a NTA as an extended timed
transition system. It is parameterized by the way guarded actions are composed
on a send/receive synchronization, i.e. (gs/as) � (gr/ar). First, let us choose the
following action language and its underlying semantics for ETTSs:

Action language Semantics
a:= a � a

| *i∈I ai [[*iai]](x, x′) =
∧

i[[ai]](x, x′)
| (g/r) [[g/r]](x, x′) = g(x) ∧

∧
c∈r x′(c) = 0 ∧

∧
c/∈r x′(c) = x(c)

| (g/c := c + d) [[g/c := c + d]](x, x′) = g(x) ∧ x′(c) = x(c) + d
| (g/skip) [[g/skip]](x, x′) = g(x) ∧ (x′ = x)

The semantics [[a � a]] depends on the semantics chosen for TA composition, and
is still unspecified.

Definition 18 (NTA semantics). Given a network of timed automata
〈Qj , q

0
j , Kj, Ij ,→j〉j∈J , its semantics is defined by the ETTS 〈

⊗
j Qj, (q0

1 , . . . , q0
n),∧

j G0
j , I,→ 〉 where I(q) =

∧
j Ij(qj) and→ is the smallest relation such that:

qj

g/τ/r−−−−→jq′
j (

∨
i∈J qi∈Ki)⇒qj∈Kj

q
g/τ/‖x∈rx:=0−−−−−−−−−→qj∈Kj

q[j←q′
j ]

(τj)

qi
gi/c!/ri−−−−−→i q′i qj

gj/c?/rj−−−−−→j q′j i �= j g/r = gi/ri � gj/rj

(
∨

k∈J qk ∈ Kk)⇒ qi ∈ Ki ∨ qj ∈ Kj

q
g/τ/r−−−−→qi∈Ki∨qj∈Kj

q[i←q′
i,j←q′

j ]
(sri,j)

qj∈Kj

q
⊥/τ/skip−−−−−−→�q

(empty)
∧

j qj �∈Kj

q
�/d/

⊙
j xj :=xj+d

−−−−−−−−−−−−→q

(time)

Remark. NTA semantics [2] is not compositional according to [5] because it
is not clear how to define the committedness of product locations. Thus, the
internal product of TA cannot be defined.

Consequence (NTA refinement). Refinement between networks of timed au-
tomata is defined as refinement between their associated ETTSs. Formally, given
two NTA Nc and Na; then: Na ) Nc � ETTS(Na) ) ETTS(Nc).

Theorem 5 (Compositionality). The ETTS of a network of TA is bisimilar
to the restriction to time and τ-transitions of the product of ETTSs associated
to individual timed automata. Formally, ETTS(NTA) ∼ ΠiETTS(TAi)\C.

Proof. It is direct because we have the same composition rules in both sides. The
difference resides in the occurrence of unmatched communication transitions in
the ETTSs product, but these transitions will be suppressed when applying the
restriction. �
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6 Composition and Refinement

In this section, we propose some compositionality results. Given the following
definition of the operator � (join6) : [[a1 � a2]](x, y) = ∃z, [[a1]](x, z) ∧ [[a2]](z, y).

Theorem 6 (Refinement and parallel composition).
Let T1, T2, T3, T4 be ETTSs and Rg, R

1,2
l , R3,4

l refinement relations where Rg

is supposed to be functional from the concrete system to the abstract one. Then,
we have: T1 )Rg,R1,2

l
T2 ∧ T3 )Rg,R3,4

l
T4 ⇒ T1||T3 )Rg,R1,2

l ⊗R3,4
l

T2||T4 where
R⊗R′(q1, q3)(q2, q4) = R(q1, q2) ∧R′(q3, q4).

Remark. Compared to [5], this theorem enables the refinement of both global
spaces in one simulation step, whereas [5] requires that the variables shared by
T1 and T3 be refined through the identity relation.

Theorem 7 (Refinement and restriction). Let Ti, Tj be two ETTSs on the
same set of channels C and R be a refinement relation. Then ∀C′ ⊆ C Ti )R

Tj ⇒ Ti\C′ )R Tj\C′.

Consequence . Let N = 〈T1, .., Tn〉, N ′ = 〈T ′
1, .., T

′
n〉 be two networks of timed

automata. Then, we have (∀i Ti ) T ′
i )⇒ 〈T1, .., Tn〉 ) 〈T ′

1, .., T
′
n〉.

Theorem 8 (Refinement and trace properties). Let Ti, Tj be two ETTSs
on the same global space G, Rl be a refinement relation of local spaces and P be
a property over timed traces TR, then ((Ti )Id,Rl

Tj) ∧ (Tj |= P )) ⇒ Ti |= P

where T |= P � ∀t ∈ TR(T ), P (t).

Consequence. Let 〈T1, .., Tn〉 and 〈T ′
1, .., T

′
n〉 be two NTA on the same global

space. 〈T1, .., Tn〉 |= P ∧ (∀i Ti ) T ′
i )⇒ 〈T ′

1, .., T
′
n〉 |= P .

7 Conclusion

In this paper, we have defined an alternative TA composition and justified it
through the definition of communication patterns and compositionality results.
For this parallel composition operator, we have defined a corresponding refine-
ment relation. We can resume our framework by Fig.1. where we distinguish two
ways to establish the TA product semantics, with an important refinement prop-
erty showing that: if each individual TA of a NTA refines another individual TA
of another NTA, then the semantics of the first NTA refines that of the second
NTA. Furthermore, the theorems7 established within our framework have been
validated using the Coq [10] theorem prover. We also intend to define formally
synchronization patterns as the one proposed in section 3.2, compare their direct
and translation-based semantics and validate such translations. We also wish to
extend our framework to time Petri net based systems. This formal framework
will be used as a basis for the extensions of the Fiacre language [6].
6 The operator join of relational algebra.
7 The proofs are available at: ”http://www.irit.fr/PERSONNEL/ACADIE/bodeveix/
COQ/NTA/”. The detailed proofs will be published in a forthcoming paper.
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Abstract. In this paper we study the problem of model checking the
logic EGF over Basic Parallel Processes (BPP). The logic EGF is ob-
tained by extending the logic EF with the CTL* notation EGF, which
means that there exists an infinite path on which there are infinitely
many entries satisfying certain property. We prove that this problem is
PSPACE-complete, and Σp

d -complete for certain classes of fixed formula
with the nesting depth d of modal operators.

Keywords: infinite-state systems, Basic Parallel Processes, model
checking, EGF.

1 Introduction

Verification of infinite structures has been studied intensively in the past two
decades [2]. An important subarea is model checking of infinite-state systems. A
model checking problem takes two parameters: a state s and a logical formula
Φ. The task is to check if s satisfies the property encoded by Φ, or formally if
s |= Φ. In this paper, we study the model-checking problem of the logic EGF
over Basic Parallel Processes.

Basic Parallel Processes (BPP) [3] are elementary infinite models for paral-
lelism. In a BPP, a component of a parallel system is modeled as a symbol,
and a state as a parallel composition of symbols. A symbol can produce more
symbols through transitions, thus typically a BPP generates an infinite-state
system. However the transition semantics of BPP is asynchronous, thus a BPP
can be viewed as a communication-free Petri Net.

In [4] Esparza proved that model checking the logic EG [4] over BPP is
undecidable, where the logic EG is obtained by extending Hennessy-Milner
Logic (HML) with the EG operator. Consequently, the model-checking prob-
lem for BPPs is undecidable under Computation Tree Logic (CTL) and modal
μ-calculus. The only branching-time logic not covered by the Logic EG is the
Logic EF, which is HML equipped with the EF operator. For this logic Esparza
has shown in [4] that the model-checking problem is decidable, where the atomic
formulae are allowed to be arbitrary semilinear sets. On the other hand, he also
proved that the problem is PSPACE-hard and Σp

d -hard for fixed formula, where
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d is the nesting depth of modal operators. Later, Mayr [7] showed that the prob-
lem can be solved in PSPACE and in Σp

d for fixed formulae with nesting depth
d that start with a modal operator. Thus model-checking the Logic EF over
BPPs is PSPACE-complete, and Σp

d -complete for such classes of fixed formulae.
Mayr’s method relies on the analysis of finite transition sequences under a BPP.

EGF is a CTL* notation which means that “there exists a path such that
a certain property holds infinitely often”. In regular model checking [1], EGF
corresponds to a kind of liveness property and recurrent reachability. By adding
EGF to the Logic EF, we obtain the logic EGF, which is a meaningful fragment
of CTL* that expresses reachability properties and certain kind of recurrent
reachability properties. It is a natural study to investigate the decidability and
complexity for the logic EGF. In the viewpoint of the author of this paper, the
method in [7] is specific to EF which involves only one-stage satisfaction, and
can not be extended to EGF which involves infinite stages of satisfaction. In [9],
To showed that model checking the logic EGF over BPPs is decidable, where
the atomic formulae are tree-regular sets closed under permutation. However
the corresponding complexity is non-primitive, since it requires negation of tree-
automaton at each iteration.

In this paper, we restrict to the atomic formulae as in [7]. We prove that
model checking the logic EGF over BPPs lies in PSPACE, and Σp

d for certain
classes of fixed formula with the nesting depth d of modal operators. We show
that any satisfaction set of a given EGF-formulae can be characterized by a
special semilinear structure, which is already used in [8] to tackle the state
explosion problem of the model checking of Petri Net. Based on this symbolic
representation, we prove our complexity results.

2 Preliminaries

Let V ar = {X, Y, Z, ...} and Act = {a, b, c, ...} be a countable set of symbols and
actions, respectively.

For any set C, we denote C∗ resp. C⊕ to be the free monoid resp. the free
commutative monoid generated by C. Given a word w of C∗ or C⊕, we denote
�w� to be the set {u ∈ C | u appears in w} and mu(w) to be the number of
occurrence of u in w. Elements of V ar⊕ are indicated by α, β and γ.

Basic Parallel Processes (BPP)

A BPP is a tuple (V, Δ) where V ⊆ V ar is a finite set of symbols, and Δ

is a finite set of rules where each rule has the form X
a−→ α with X ∈ V , a ∈ Act

and α ∈ V ⊕. Each BPP (V, Δ) specifies a labeled transition system where the
state space is V ⊕ and the transition relation is generated by the following rule:

X
a−→ α ∈ Δ

βXγ
a−→ βαγ

In this paper, elements of V ⊕ are called BPP expressions.
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Note that BPP expressions are considered modulo commutativity, e.g. XY Z,
ZY X and Y XZ are deemed as one element. Intuitively, BPP expressions are
parallel compositions of symbols, where each symbol can perform transitions
independently of others.

Below in this section we fix a BPP (V, Δ). We write →∗ resp. →+ to be
the reflexive transitive closure resp. transitive closure of the one-step transition
relation { a−→}a∈Act, where actions are not relevant here. We use the predicate
Tr({αi}i≥0) to indicate that the infinite sequence {αi}i≥0 satisfies the condition
that αi →+ αi+1 for all i ≥ 0.

For each r ∈ Δ (e.g. X
a−→ α), we define •r to be the symbol at the left hand

side (e.g. X), and r• to be the expression at the right hand side (e.g. α). We
write α→r β if α = γ•r and β = γr•, for some γ. Given σ ∈ Δ∗ a finite sequence
of rules, we write α→σ β if either σ = ε and α = β, or σ = r1r2 . . . rk and there
is {γl}1≤l≤k−1 such that α→r1 γ1 →r2 γ2 . . . γk−1 →rk

β.
We define the following size functions:

– |α|: the length of α (where |ε| = 0)
– |V |: the number of symbols of V
– ‖Δ‖: the number of rules of Δ
– |r| := |r•|+ 2 (where r ∈ Δ)
– |Δ| :=

∑
r∈Δ |r|

By commutativity, we can represent α as a multiset {mX(α)}X∈V , where mX(α)
(the number of occurrence of X in α) is represented in binary encoding. Fur-
ther we can represent all expressions appearing in Δ in binary. In this way, a
BPP (V, Δ) and a BPP expression α can be stored in O(|V |‖Δ‖ log |Δ|) and
O(|V | log |α|) space, respectively.

We use the notation γk to denote the parallel composition of k copies of γ,
e.g., γ3 stands for the expression γγγ and γ0 stands for ε.

The Logic EGF

The logic EGF is obtained from the logic EF [4,7] by adding the CTL* no-
tation EGF, which means that “there exists a path such that a certain property
holds infinitely often”. The syntax is as follows:

φ ::= λ | ¬φ | φ ∧ φ | 〈a〉φ | EFφ| EGFφ

where a ∈ Act and λ is an atomic formula specific to BPP. We will use φ, ψ, ϕ
to range over formulae of this logic. The size of φ, i.e., the length of the word
representation of φ, is denoted |φ| where the length of atomic formulae |λ| is
defined to be 1.

We follow the restriction on atomic formulae adopted in [7] that λ has the form
X ≥ k, where X ∈ V and k ∈ N0 (where N0 is the set of nonnegative natural
numbers). The number k is represented (in its syntax) in binary encoding. We
denote kφ to be the largest k that appears in φ.

Before defining the semantics of our logic, we first introduce some notations.
For any set R ⊆ V ⊕, we define
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– �a�[R] := {α ∈ V ⊕ | ∃β.(α a−→ β ∧ β ∈ R)}
– �EF�[R] := {α ∈ V ⊕ | ∃β.(α→∗ β ∧ β ∈ R)}
– �EGF�[R] := {α ∈ V ⊕ | ∃{αi}i≥0.(α = α0∧Tr({αi}i≥0)∧∀i > 0.(αi ∈ R))}

The semantics of the logic EGF over BPPs is inductively defined as follows,
where �φ� is the satisfaction set of φ (i.e. the set of all states that satisfy φ).

– �X ≥ k� := {α ∈ V ⊕ | mX(α) ≥ k}
– �¬φ� := V ⊕ − �φ�
– �φ ∧ ψ� := �φ� ∩ �ψ�
– �〈a〉φ� := �a�[�φ�]
– �EFφ� := �EF�[�φ�]
– �EGFφ� := �EGF�[�φ�]

Note that the semantics of EGFφ states that α ∈ �EGFφ� iff there is an infinite
path starting from α along which there are infinitely many entries belonging to
�φ�. Instead of α ∈ �φ� we also write α |= φ.

3 Model Checking the Logic EGF

In this section we present a PSPACE algorithm for the model-checking problem
of the Logic EGF over BPPs. The model-checking problem is defined as follows:

– INPUT: a BPP (V, Δ), an BPP expression α and a formula φ
– OUTPUT: whether α |= φ or not

The input size is defined as |V | log |α|+ |V |‖Δ‖ log |Δ|+ |φ| log kφ.

The General Approach. A core in our PSPACE algorithm is a special semi-
linear structure which will be called “semisegment” in this paper. Semisegments
already appear in [8], which are used to tackle the state explosion problem of
the model checking on Petri Net. Here we show that the set of BPP expres-
sions that satisfy any given EGF-formula can be “effectively” represented by a
semisegment. This effective representation allows us to model-check the Logic
EGF over BPPs in PSPACE.

Below we fix a BPP (V, Δ). We use r to range over Δ. The following two
definitions introduce the notions of “segment” and “semisegment”.

Definition 1. A segment is a pair 〈α, U〉 where α ∈ V ⊕ and U ⊆ V . The set
of BPP expressions spanned by 〈α, U〉, denotation P(〈α, U〉), is defined by:

P(〈α, U〉) := {β ∈ V ⊕ | ∃γ ∈ U⊕.β = αγ}

The width of 〈α, U〉, denotation ‖〈α, U〉‖, is defined as maxX∈V {mX(α)}.

Definition 2. A semisegment is a finite set of segments. For convenience, we
represent a semisegment by {〈αi, Ui〉}i∈I where I is a finite indexing set and
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〈αi, Ui〉 for i ∈ I are segments of the semisegment. The set of BPP expressions
spanned by a semisegment B = {〈αi, Ui〉}i∈I , denotation P(B), is defined by:

P(B) =
⋃
i∈I

P(〈αi, Ui〉)

By convention P(B) = ∅ if I = ∅. The width of B, denotation ‖B‖, is defined
as maxi∈I{‖〈αi, Ui〉‖} if I �= ∅, and zero if I = ∅.
For example, the set {γ | mX(γ) > 2} is spanned by the segment 〈X3, V 〉 with
width 3; {γ | mX(γ) > 2, mY (γ) = 5} by the segment 〈X3Y 5, V − {Y }〉 with
width 5; and {γ | mX(γ) < 3} by the semisegment {〈X i, V −{X}〉}i∈{0,1,2} with
width 2.

Our aim is to prove that for every formula φ, the set �φ� can be effectively
spanned by a semisegment. For atomic formulae X ≥ k the situation is clear:
the semisegment contains just one segment 〈Xk, V 〉. We show that semisegments
are effectively closed under all operators of our logic.

We introduce more notations related to →∗ and →+. Let U ⊆ V . We write
β →∗ [α]U if there is γ ∈ U⊕ such that β →∗ αγ. And we write β →+ [α]U if
there is γ ∈ U⊕ such that β →+ αγ.

First we prove the effective closedness for boolean operators and one-step next
operators. The closedness for these operators are already known (see e.g. [8]).
However here we focus on the effectiveness which lies in the width of segments
and semisegments.

Proposition 1. Let B1, B2 be two semisegments. Then there is a semisegment
B with ‖B‖ ≤ max{‖B1‖, ‖B2‖} such that P(B) = P(B1) ∩ P(B2).

Proof. Let B1 = {〈αi, Ui〉}i∈I and B2 = {〈αj , Uj〉}j∈J with I, J two disjoint
indexing sets. For each (i, j) ∈ I × J , we clarify three cases as follows:

1. There is X ∈ V such that X �∈ Ui and mX(αi) < mX(αj). Then
P(〈αi, Ui〉) ∩ P(〈αj , Uj〉) = ∅

because if there is α ∈ P(〈αi, Ui〉)∩P(〈αj , Uj〉), then mX(α) = mX(αi) and
mX(α) ≥ mX(αj); contradiction.

2. There is X ∈ V such that X �∈ Uj and mX(αj) < mX(αi). Then similarly
in this case P(〈αi, Ui〉) ∩ P(〈αj , Uj〉) = ∅.

3. Both the previous two cases do not hold. Then we show that
P(〈αi, Ui〉) ∩ P(〈αj , Uj〉) = P(〈α(i,j), U(i,j)〉)

where α(i,j) is determined by: mX(α(i,j)) = max{mX(αi), mX(αj)} for all
X ∈ V , and U(i,j) := Ui∩Uj . Suppose α ∈ P(〈αi, Ui〉)∩P(〈αj , Uj〉). Then for
any X ∈ V , mX(α) ≥ max{mX(αi), mX(αj)} and further if X �∈ Ui∩Uj then
mX(α) = max{mX(αi), mX(αj)}. Hence α ∈ P(〈α(i,j), U(i,j)〉). Suppose
now α ∈ P(〈α(i,j), U(i,j)〉). For any X ∈ V , if X �∈ Ui then mX(αi) ≥
mX(αj) and hence mX(α) = mX(αi). Thus α ∈ P(〈αi, Ui〉). Similarly we
have α ∈ P(〈αj , Uj〉). Thus α ∈ P(〈αi, Ui〉) ∩ P(〈αj , Uj〉).

Then either P(〈αi, Ui〉)∩P(〈αj , Uj〉) is emptyset or can be spanned by a segment
with width no greater than max{‖〈αi, Ui〉‖, ‖〈αj , Uj〉‖}. Then we form B by the
following simple fact:
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P(B1) ∩ P(B2) =
⋃

(i,j)∈I×J (P(〈αi, Ui〉) ∩ P(〈αj , Uj〉)).

From the construction one can see that ‖B‖ ≤ max{‖B1‖, ‖B2‖}. "#

Proposition 2. Let B be a semisegment. Then there is a semisegment B′ with
‖B′‖ ≤ ‖B‖+ 1 such that P(B′) = V ⊕ − P(B).

Proof. If B = ∅, then B′ is just 〈ε, V 〉 which spans V ⊕. Suppose B �= ∅ and
B = {〈αi, Ui〉}i∈I . For any i ∈ I, we can directly obtain from the definition
that V ⊕ − P(〈αi, Ui〉) is the set of all α’s such that either mX(α) < mX(αi) or
mX(α) > mX(αi) with X �∈ Ui, for some X ∈ V . Thus:

V ⊕−P(〈αi, Ui〉) =
⋃

(X,k)∈Ki
P(〈Xk, V − {X}〉)∪

⋃
X∈V −Ui

P(〈XmX(αi)+1, V 〉)

where the index set Ki = {(X, k) ∈ V ×N0 | k < mX(αi)}. Thus V ⊕−P(〈αi, Ui〉)
can be spanned by a semisegment with width bounded by ‖〈αi, Ui〉‖+ 1. Then
the result follows from V ⊕−P(B) =

⋂
i∈I(V

⊕−P(〈αi, Ui〉)) and Proposition 1.
"#

It is worth noting that after the negation, the space needed to store the semiseg-
ment may grow exponentially, however its width grows only linearly.

Proposition 3. Let B be a semisegment. Then there is a semisegment B′ with
‖B′‖ ≤ ‖B‖+ 1 such that P(B′) = �a�[P(B)].

Proof. Let B = {〈αi, Ui〉}i∈I . It is clear that �a�[P(B)] =
⋃

i∈I �a�[P(〈αi, Ui〉)].
Thus we need only to prove the proposition for each 〈αi, Ui〉. Fix a 〈αi, Ui〉. By
definition, α ∈ �a�[P(〈αi, Ui〉)] iff there are X, α′, β′, β, γ such that

1. α = α′Xγ, X
a−→ β′β ∈ Δ and αi = α′β′;

2. both β and γ lies in U⊕
i .

Then it is not hard to verify that the set �a�[P(〈αi, Ui〉)] is spanned by the
semisegment {〈α′X, Ui〉}(α′,X)∈K where the index set K ⊆ V ⊕ × V is defined
as follows: (α′, X) ∈ K iff there is β′, β such that X

a−→ β′β ∈ Δ, β ∈ U⊕
i and

αi = α′β′. Moreover, ‖{〈α′X, Ui〉}(α′,X)∈K‖ ≤ ‖〈αi, Ui〉‖+ 1. "#

Now we consider the operators EF and EGF. The case for the operator EF is
covered by the following proposition.

Proposition 4. Let B be a semisegment. Then there is a semisegment B′ with
‖B′‖ ≤ |V | · ‖B‖ such that P(B′) = �EF�[P(B)].

Proof. Let B = {〈αi, Ui〉}i∈I . It suffices to show that �EF�[P(〈αi, Ui〉)] can be
spanned by a semisegment with width bounded by |V |‖〈αi, Ui〉‖ for each i ∈ I.
Suppose α ∈ �EF�[P(〈αi, Ui〉)], then we have α →∗ [αi]Ui . We prove that there
is β, α′ with |β| ≤ |αi| such that α = βα′, β →∗ [αi]Ui and α′ →∗ [ε]Ui . For
α = ε the situation is clear. Now suppose |α| > 0. Let α = X1 . . . Xk where
k = |α|. By the transition semantics of BPP, there are {γj}1≤j≤k, {γ′

j}1≤j≤k

such that Xj →∗ γjγ
′
j and γ′

j ∈ U⊕
i for all 1 ≤ j ≤ k, and αi = γ1 . . . γk. Note
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that
∑k

j=1 |γj | = |αi|, so there are at most |αi| j’s such that γj �= ε, which are
listed as j1, . . . , jl (where l ≤ |αi|). Let β = Xj1 . . . Xjl

and α′ be the expression
such that α = βα′. Then |β| ≤ |αi|. Further β →∗ [αi]Ui and α′ →∗ [ε]Ui .

Then one can verify that the set �EF�[P(〈αi, Ui〉)] is spanned by the semiseg-
ment {〈β, U ′〉}β∈K where the index set K ⊆ V ⊕ is defined as follows:

β ∈ K iff |β| ≤ |αi| and β →∗ [αi]Ui ,

and U ′ = {Y ∈ V | Y →∗ [ε]Ui}. Further the width of the semisegment is
bounded by |V |‖〈αi, Ui〉‖. "#

To tackle EGF, we need the following crucial lemma, which says that EGF can
be effectively reduced to EF.

Lemma 1. Let S be a segment. Then α ∈ �EGF�[P(S)] iff there is α →∗ Xβ
and X →+ Xγ such that Xβ ∈ P(S) and Xβγ ∈ P(S).

Proof. Let S = 〈α′′, U〉. We prove the two directions.

“if”: From Xβ ∈ P(S) and Xβγ ∈ P(S), it follows from the definition of
segments that γ ∈ U⊕. Thus Xβγn ∈ P(S) for all n ∈ N0. Then we can con-
struct the following infinite path: Xβγ0 →+ Xβγ1 →+ Xβγ2 . . . . It follows that
α ∈ �EGF�[P(S)].

“only if”: Since α ∈ �EGF�[P(S)], there is an infinite path α→+ α1 →+ α2 . . .
such that αn ∈ P(S) for all n ∈ N. By Dickson’s Lemma, there is n1, n2 ∈ N
with n1 < n2 such that αn2 = αn1γ

′′ for some γ′′. It follows from the definition
that γ′′ ∈ U⊕. Our task is to find an X in αn1 such that X →+ Xγ with γ ∈ U⊕.

By decomposing the transition sequence αn1 →+ αn1γ
′′ into transitions of

single symbols, there is an expression α′ and three finite sequences {Xl}1≤l≤k,
{β′

l}1≤l≤k, {γ′
l}1≤l≤k (for some k ∈ N) such that:

1. αn1 = X1X2. . .Xkα′ and X1. . .Xk = β′
1. . .β

′
k.

2. Xl →+ β′
lγ

′
l for all 1 ≤ l ≤ k.

3. γ′′ = γ′
1. . .γ

′
k (therefore γ′

l ∈ U⊕ for all 1 ≤ l ≤ k).

Intuitively, the path from αn1 to αn2 is caused by transitions of {Xl}1≤l≤k, while
α′ stays still and the “spin-offs” {γ′

l}1≤l≤k form γ′′. Here we view {Xl}1≤l≤k

as distinct symbols distinguished by their subscripts and denote V to be the
set {X1, . . . , Xk}. Then from X1. . .Xk = β′

1. . .β
′
k we can construct a partition

π = {π1, . . . , πk} of V (where πl : 1 ≤ l ≤ k can be ∅) such that for all 1 ≤ l ≤ k,
β′

l = Y1 . . . Y|πl| with πl = {Y1, . . . , Y|πl|} (here β′
l = ε corresponds to πl = ∅).

Consider now a directed graph G where the vertex set is V , and there is an
edge from Xl1 to Xl2 iff Xl2 ∈ πl1 . Two immediate observations are as follows:

1. (†) Each Xl has exactly one parent, i.e., there is exactly one edge into Xl;
2. (‡) If Xl has no children (i.e. πl = ∅), then β′

l = ε (hence Xl →+ γ′
l).
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By (†), there is a cycle (possibly a self-loop) in G. Let L be a cycle of G (chosen
arbitrarily) which sequentially goes through distinct vertices X ′

1, . . . , X
′
k′ then

back to X ′
k′+1 with X ′

k′+1 = X ′
1. Further by (†), the only edges between vertices

{X ′
l}1≤l≤k′ are edges of L. Now consider any vertex Z such that Z �∈ L but the

parent of Z lie on L. We prove that Z →+ [ε]U .
Let X ′

l be the parent of Z on L. First we prove that any Z ′ reachable from Z
cannot be on any cycle of G. Suppose not, let L′ be a cycle that contains such a
Z ′. Using (†), we can prove inductively that Z ∈ L′ and X ′

l ∈ L′ by back-tracing
the walk from X ′

l to Z and then to Z ′. Moreover, the child of X ′
l on L′ is Z.

We can also prove by induction that all vertices of L lie on L′ by back-tracing
L from X ′

l . Since Z ∈ L′ we have L �= L′. Let X ′
l′ be the child of X ′

l that lies on
L. Then since X ′

l′ ∈ L′ and the child of X ′
l on L′ is Z, we have X ′

l′ has another
parent on L′ different from X ′

l . Contradiction to (†).
Then we define the set U ⊆ V as the least set satisfying the following

conditions:

– For all Xl ∈ V , if Xl has no children then Xl ∈ U (i.e. U contains all Xl that
has no children)

– For all Xl ∈ V , if all children of Xl belongs to U , then Xl ∈ U

It can be proved by induction that Xl →+ [ε]U for all Xl ∈ U , where (‡) is
used for the base step. We show that Z ∈ U . Suppose not, then Z has a child
and there is a child Z1 of Z with Z1 �∈ U . Then from Z1 we can find Z2 by the
same argument. Recursively we construct an infinite sequence {Zl}l∈N such that
Zl �∈ U for all l ∈ N. Then since V is finite, the infinite sequence must contain a
cycle starting from some Zl reachable from Z, contradiction.

Then for every 1 ≤ l ≤ k′, we have X ′
l →+ [X ′

l+1]U . Thus if we start from X ′
1,

then go through L and then back to X ′
1, we obtain that X ′

1 →+ [X ′
1]U , i.e., there

is γ ∈ U⊕ such that X ′
1 →+ X ′

1γ. Now let X be X ′
1 and β be the expression

satisfying αn1 = X ′
1β. By the definition of segments, it is clear that Xβ ∈ P(S)

and Xβγ ∈ P(S). "#

Proposition 5. Let B be a semisegment. Then there is a semisegment B′ with
‖B′‖ ≤ |V |(‖B‖+ 1) such that P(B′) = �EGF�[P(B)].

Proof. Let B = {〈αi, Ui〉}i∈I . Since I is finite, we have:

�EGF�[P(B)] =
⋃
i∈I

�EGF�[P(〈αi, Ui〉)]

Thus we need only to show that each �EGF�[P(〈αi, Ui〉)] can be spanned by a
semisegment with width bounded by |V |(‖〈αi, Ui〉‖+ 1). By Lemma 1, we have
α ∈ �EGF�[P(〈αi, Ui〉)] iff there is X , β, γ such that α →∗ Xβ ∈ P(〈αi, Ui〉),
X →+ Xγ and Xβγ ∈ P(〈αi, Ui〉). The assertion Xβ ∈ P(〈αi, Ui〉) further falls
into two cases:

1. β = αiβ
′ and Xβ′γ ∈ U⊕

i .
2. β = α′

iβ
′, αi = Xα′

i and β′γ ∈ U⊕
i .
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Then the set �EGF�[P(〈αi, Ui〉)] is equal to
⋃

β∈K �EF�[P(〈β, Ui〉)] where the
index set K ⊆ V ⊕ is as follows: β ∈ K iff

1. either β = Xαi for some X such that X ∈ Ui and X →+ [X ]Ui ; (this
corresponds to the first case)

2. or β = αi and there is X such that mX(β) > 0 and X →+ [X ]Ui . (this
corresponds to the second case)

By Proposition 4, �EGF�[P(〈αi, Ui〉)] can be spanned by a semisegment with
width bounded by |V |(‖〈αi, Ui〉‖+ 1). "#

Through Proposition 1 – 5, we obtain the following theorem which can be proved
by induction on the structure of φ.

Theorem 1. For any formula φ, there exists a semisegment Bφ with ‖Bφ‖ ≤
b(φ) such that P(Bφ) = �φ�, where the function b(φ) is inductively defined by:

b(X ≥ k) = k b(〈a〉φ) = b(φ) + 1
b(¬φ) = b(φ) + 1 b(EFφ) = |V | · b(φ)
b(φ ∧ ψ) = max{b(φ), b(ψ)} b(EGFφ) = |V | · (b(φ) + 1)

Moreover, b(φ) = O((kφ + |φ|)|V ||φ|).

Theorem 1 only illustrates the existence of a semisegment with well-controlled
width. However in the proofs of Proposition 1 – 5 we do construct out explic-
itly a semisegment that fulfill the proposition. For example, In Proposition 3
“{〈α′X, Ui〉}(α′,X)∈K” is constructed for each “�a�[P(〈αi, Ui〉)]”, and then the
target “B′” can be constructed. And in Proposition 5, “

⋃
β∈K �EF�[P(〈β, Ui〉)]”

is constructed for each “�EGF�[P(〈αi, Ui〉)]”; then by further construction in
the proof of Proposition 4, we can construct out the target “B′”. In Theorem 2,
we will deal with the computational aspect of semisegments, where those con-
structions in the proofs of Proposition 1 – 5 correspond directly to our PSPACE
algorithm.

We first prove some useful lemmas. Recall here that every expression α can be
represented by its equivalent multiset. It follows that a segment S with ‖S‖ ≤ k
can be stored in O(|V | log k) space.

Lemma 2. For any two segments S1, S2, if P(S1) = P(S2) then S1 = S2.

Proof. Straightforward from Definition 1. "#

Lemma 3. Let U ⊆ V . The problems if β →+ [α]U and if β →∗ [α]U can both
be decided in NP in log(|α| · |β| · |Δ|) and |V |, ‖Δ‖.

Proof. In [5, Theorem 3.1], Esparza proved that for β, β′ and ρ ∈ Δ⊕, there
exists σ ∈ Δ∗ such that the Parikh image of σ is ρ and β →σ β′ iff

1. mZ(β) +
∑

r∈Δ(mZ(r•)−mZ(•r)) ·mr(ρ) = mZ(β′) for all Z ∈ V .
2. for each r ∈ �ρ�, there isσ′ ∈ �ρ�∗ andβ′′ such thatβ →σ′ β′′ andm•r(β′′) > 0.
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Based on this result, we proceed as follows. Let U, α, β be the input. We assign
to each Z ∈ V an integer variable vZ , and to each rule r of Δ an integer variable
vr. Then we guess a set Δ′ ⊆ Δ (Δ′ can be stored in O(|V |‖Δ‖ log |Δ|) space)
and check if the following conditions hold:

1. the integer programming problem which contains the following restrictions
(a) vZ + mZ(α) = mZ(β) +

∑
r∈Δ(mZ(r•)−mZ(•r)) · vr, for all Z ∈ V ;

(b) vZ ≥ 0 and vr > 0, for all Z ∈ V and r ∈ Δ′;
(c) vZ = 0 and vr = 0, for all Z �∈ U and r ∈ Δ−Δ′.
has an solution. This can be solved in NP (see [6, pp. 339]). Note that all
numbers appeared above are stored in binary.

2. for each r ∈ Δ′, there is σ′ ∈ Δ′∗ such that β →σ′ •rβ′ for some β′. This
can be done by performing a reachability test on the directed graph whose
vertex set is V and there is an edge from X to Y iff X →r′ Y β′ for some
r′ ∈ Δ′ and β′.

Then one can obtain that Δ′ satisfies the conditions above iff there is σ ∈ Δ∗

such that �σ� = Δ′ and β →σ αγ for some γ ∈ U⊕. Thus β →∗ [α]U iff there
exists such Δ′; and β →+ [α]U iff there exists such Δ′ which is nonempty. "#

In the following theorem, we present our model checking algorithm.

Theorem 2. The problem if α |= φ is in PSPACE.

Proof. In the proof we will use the important fact that for any formula φ,
a semisegment B that spans the set �φ� can have a width bounded by b(φ)
(cf. Theorem 1). It follows that any segment 〈α, U〉 ∈ B can be stored in
O(|φ||V |(log(|φ||V |kφ))) space, which is polynomial in |φ|, log kφ and |V |.

The core of the proof is a procedure Seg(φ,S) which takes as input a EGF-
formula φ and a segment S with ‖S‖ ≤ b(φ). The procedure will have the
following two properties:

1. Seg(φ,S) can be computed in PSPACE in |V | log b(φ) and ‖Δ‖ log |Δ|;
2. The semisegment {S | Seg(φ,S) = 1} spans the set �φ�, for any φ.

With these properties, we can decide in PSPACE if α |= φ as follows: enumerate
all segments S with ‖S‖ ≤ b(φ) and check if Seg(φ,S) = 1 and α ∈ P(S); we
answer ‘yes’ if there is such segment, and ‘no’ otherwise. Below we show the
procedure, which is recursive on the structure of φ.

– Seg(X ≥ k,S) = 1 if S = 〈Xk, V 〉.
– Seg(¬φ,S) = 1 if ‖S‖ ≤ b(φ) + 1 and for all S′ such that ‖S′‖ ≤ b(φ) and

Seg(φ,S′) = 1, P(S) ∩ P(S′) = ∅.
– Seg(φ ∧ ψ,S) = 1 if there are S1, S2 with ‖S1‖ ≤ b(φ), ‖S2‖ ≤ b(ψ) such

that Seg(φ,S1) = 1, Seg(ψ,S2) = 1 and P(S) = P(S1) ∩ P(S2).
– Seg(〈a〉φ, 〈α, U〉) = 1 if there is 〈α′, U ′〉 and X, α′′, β′, β such that

1. ‖〈α′, U ′〉‖ ≤ b(φ) and Seg(φ, 〈α′, U ′〉) = 1
2. α = α′′X , X

a−→ β′β ∈ Δ and α′ = α′′β′.
3. U = U ′ and β ∈ U⊕.
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– Seg(EFφ, 〈α, U〉) = 1 if there is 〈β, U ′〉 such that
1. ‖〈β, U ′〉‖ ≤ b(φ) and Seg(φ, 〈β, U ′〉) = 1
2. |α| ≤ |β| and α→∗ [β]U ′ .
3. Y ∈ U iff Y →∗ [ε]U ′ , for all Y ∈ V .

– Seg(EGFφ, 〈α, U〉) = 1 if there is 〈α′, U ′〉 and X ∈ V such that
1. ‖〈α′, U ′〉‖ ≤ b(φ) and Seg(φ, 〈α′, U ′〉) = 1.
2. X →+ [X ]U ′ .
3. either X ∈ U ′, |α| ≤ |Xα′| and α→∗ [Xα′]U ′ ,

or mX(α′) > 0, |α| ≤ |α′| and α→∗ [α′]U ′ .
4. Y ∈ U iff Y →∗ [ε]U ′ , for all Y ∈ V .

– In other cases Seg(φ,S) = 0.

Note that the problem if P(S) = P(S1)∩P(S2) is decidable in polynomial time in
log max{|S|, |S1|, |S2|} and |V | through the proof of Proposition 1 and Lemma 2.
The problem if P(S1)∩P(S2) = ∅ is similar. Then by Lemma 3, one can obtain
that the space needed for computation at each recursion step of the procedure
is polynomial in log kφ, log |Δ| and |φ|, |V |, ‖Δ‖. Moreover, since the recursion
depth of the procedure is at most O(|φ|), the procedure can be implemented in
polynomial space in |φ| log kφ + |V |‖Δ‖ log |Δ|.

Now we prove the second property of the procedure Seg(φ,S). The proof is
by induction on the structure of φ. The base step where φ = X ≥ k is clear.
For the inductive step, the cases when φ = ψ ∧ ϕ, φ = 〈a〉ψ, φ = EFψ and
φ = EGFψ correspond directly to the constructions in the proofs of Propo-
sition 1 and Proposition 3 – 5, respectively. For example, the semisegment
B′ = {S | Seg(EFφ,S) = 1} is exactly the result of the construction from
B = {S | Seg(φ,S) = 1} in the proof of Proposition 4. The situation for
φ = EGFψ is the same but a bit complicated, since we need to insert the con-
struction in the proof of Proposition 4 into the one in the proof of Proposition 5.

The only exception is the case φ = ¬ψ which follows from the fact that for
any semisegment B and natural number k ≥ ‖B‖, V ⊕ − P(B) can be spanned
by the semisegment:

B′ = {〈α, U〉 | P(〈α, U〉) ∩ P(B) = ∅ and ‖〈α, U〉‖ ≤ k + 1}

By definition, P(B′) ⊆ V ⊕−P(B). And by Proposition 2, there is a semisegment
B′′ with ‖B′′‖ ≤ ‖B‖ + 1 such that P(B′′) = V ⊕ − P(B) and P(B′′) ⊆ P(B′).
Thus V ⊕ − P(B) = P(B′). "#

Remark 1. It is worth noting that from the proof of Theorem 2, we can compute
a semisegment that spans the set �φ� for any formula φ in PSPACE, except for
the space for the output tape.

In [7], Mayr proved that model checking the logic EF (which is the logic EGF
without the EGF operator) over BPPs is PSPACE-complete. Thus, we have the
following theorem.

Theorem 3. The model-checking problem for the logic EGF over Basic Parallel
Processes is PSPACE-complete.



Model Checking EGF on Basic Parallel Processes 131

4 Fixed Formula

In this section we consider the complexity of EGF model-checking problem over
BPPs for fixed formula. The “fixed” case is formalized as follows.

Definition 3. The depth of a formula φ is recursively defined as follows:

– depth(X ≥ k) = 0
– depth(¬φ) = depth(φ)
– depth(φ ∧ ψ) = max{depth(φ), depth(ψ)}
– depth(�φ) = depth(φ) + 1 where � ∈ {EF, EGF, 〈a〉}.

We define Fd as the set of all formulae of depth at most d, and F ′
d as the set

of all formulae of the form �φ where � ∈ {EF, EGF, 〈a〉} and φ ∈ Fd. The
model-checking problem for fixed formula is formally defined as follows:

– PARAMETER: d ∈ N0, the depth of formula
– INPUT: BPP (V, Δ), expression α and formula φ ∈ F ′

d.
– OUTPUT: if α |= φ.

The input size is defined again as |V | log |α|+ |V |‖Δ‖ log |Δ|+ |φ| log kφ.

Below we fix a BPP (V, Δ). We prove by induction on d that the problem is
in Σp

d+1, using oracle characterization of polynomial hierarchy. To this purpose,
we need another two lemmas for EF and EGF, which are less dependent on
segments and bases.

We introduce more notations. Let U ⊆ V , β and k ∈ N0. We define ,β-
as maxX∈V {mX(β)}, �β�k as the set {Y ∈ V | mY (β) ≥ k}, and θU as the
expression satisfying: mZ(θU ) = 1 if Z ∈ U , and mZ(θU ) = 0 if Z �∈ U , for all
Z ∈ V .

Lemma 4. Let B be a semisegment with ‖B‖ ≤ k. Then α ∈ �EF�[P(B)] iff
there is β such that β ∈ P(B), ,β- ≤ k + 1 and α→∗ [β]�β�k+1

.

Proof. “if”: Let 〈α′, U ′〉 ∈ B be a segment such that β ∈ P(〈α′, U ′〉). Since
‖〈α′, U ′〉‖ ≤ k, we have �β�k+1 ⊆ U ′. Thus α →∗ [β]�β�k+1

implies α →∗ [β]U ′ .
It follows that α ∈ �EF�[P(B)].

“only if”: Suppose that α ∈ �EF�[P(B)]. Then there is 〈α′, U ′〉 ∈ B and γ such
that α→∗ γ and γ ∈ P(〈α′, U ′〉). Let β be given by: mY (β) = min{mY (γ), k+1}
for all Y ∈ V . By ‖〈α′, U ′〉‖ ≤ k, �γ�k+1 ⊆ U ′. Thus β ∈ P(B). Then the result
follows from the fact that α→∗ [β]�β�k+1

. "#

Lemma 5. Let B be a semisegment with ‖B‖ ≤ k. Then α ∈ �EGF�[P(B)] iff
there is X, β and U ⊆ V such that the following conditions hold:

1. X →+ [XθU ]U , mX(β) > 0 and ,β- ≤ k + 1;
2. βθk+1

U ∈ P(B) and α→∗ [βθk+1
U ]W where W := �β�k+1 ∪ U .
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Proof. “if”: Let 〈α′, U ′〉 ∈ B be a segment such that βθk+1
U ∈ P(〈α′, U ′〉). By

‖B‖ ≤ k, we have W ⊆ U ′. Then βθk+n
U γ′ ∈ P(〈α′, U ′〉) for any n ∈ N and any

γ′ ∈W⊕. Since X →+ [XθU ]U and U ⊆W , we have βθk+n
U →+ [βθk+n+1

U ]W for
all n ∈ N. Then by α→∗ [βθk+1

U ]W , α ∈ �EGF�[P(〈α′, U ′〉)].

“only if”: Let 〈α′, U ′〉 ∈ B be a segment such that α ∈ �EGF�[P(〈α′, U ′〉)]. Then
from the proof of Proposition 5, there must be X, β′, γ, γ′ such that the following
holds:

1. α→∗ β′γ ∈ P(〈α′, U ′〉), X →+ Xγ′ and γγ′ ∈ U ′⊕;
2. either X ∈ U ′ and β′ = Xα′, or mX(β′) > 0 and β′ = α′.

Let β be given by: mY (β) = min{mY (β′γ), k + 1} for all Y ∈ V (note that
mX(β) > 0). And let U = �γ′� (then U ⊆ U ′). Then X →+ [XθU ]U , α →∗

[β]�β�k+1
and then α→∗ [βθk+1

U ]W (W = �β�k+1 ∪U). From ‖B‖ ≤ k, we obtain
that W ⊆ U ′. Thus we have βθk+1

U ∈ P(〈α′, U ′〉) by β′γ ∈ P(〈α′, U ′〉). "#

The main result for fixed formula is as follows.

Theorem 4. Let α ∈ V ⊕ and φ ∈ F ′
d. The problem if α |= φ can be solved in

Σp
d+1.

Proof. Let φ = �ψ with � ∈ {EF, EGF, 〈a〉} and ψ ∈ Fd. The proof is by in-
duction on d. Recall that every expression can be represented in its multiset form.

Base Step: d = 0. Then ψ contains only atomic formulae and boolean op-
erators. For φ = 〈a〉ψ, we guess a transition α

a−→ β and check if β |= ψ in
polynomial time by a simple recursive procedure on the structure of ψ. For
φ = EGFψ, we know that there is a semisegment B with ‖B‖ ≤ b(ψ) such that
P(B) = {β | β |= ψ}. Then by Lemma 5, we can check if α |= EGFψ by checking
if there is X, β and U ⊆ V such that the following conditions hold:

1. X →+ [XθU ]U , mX(β) > 0 and ,β- ≤ b(ψ) + 1;
2. βθ

b(ψ)+1
U |= ψ and α→∗ [βθ

b(ψ)+1
U ]W where W := �β�b(ψ)+1 ∪ U .

Since ,β- ≤ b(ψ)+1, we can store βθ
b(ψ)+1
U inO(|V | log b(ψ)) space. By Lemma 3

and through deciding βθ
b(ψ)+1
U |= ψ in polynomial time, the checking can be

solved in Σp
1 = NP. For φ = EFψ, we proceed as for EGFψ, however we use

Lemma 4 instead.

Inductive Step: Let φ ∈ F ′
d+1 and O be an oracle for F ′

d. We only clarify
the case when φ = EGFψ with ψ ∈ Fd, the other cases are similar. We proceed
much as the same as in the base step, however instead of checking βθ

b(ψ)+1
U |= ψ

directly, we check if βθ
b(ψ)+1
U |= ψ recursively on the structure of ψ and we

query O when we meet modal operators. Thus the problem can be solved in
NPΣp

d+1 = Σp
d+2. "#

In [4], the following hardness result is shown.
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Lemma 6. For any α ∈ V ⊕ and ψ ∈ Fd, the problem if α |= EFψ is Σp
d+1-hard.

Combing this hardness result, we have the following theorem:

Theorem 5. For any α ∈ V ⊕ and φ ∈ F ′
d, the problem if α |= φ is Σp

d+1-
complete.

5 Conclusion

We have shown that model checking the logic EGF is PSPACE-complete over
BPPs, and Σp

d -complete for certain classes of fixed formula with nesting depth
d of modal operators. These results coincide with the ones for the Logic EF
obtained in [7]. Thus, adding EGF does not increase the complexity level.

Our method is different from and incorporates Mayr’s for the Logic EF [7]. In
general, we show that the set of expressions that satisfy a given formula can be
“effectively” characterized by a simple semilinear structure called “semisegment”
in this paper, which is already used in [8] to tackle the state explosion problem
of the model checking of Petri Net. This symbolic representation also refines
the semilinear sets used in [4]. The effectiveness of the representation lies in
the “width” of the semisegment, which is a key factor in our PSPACE model
checking algorithm.

The symbolic representation in our paper is syntactically simple. This simplic-
ity provides a room for extension. A possible future work here is to study if this
method can be extended to other meaningful CTL* fragments, e.g., other fair-
ness fragments. It is also possible to extend this representation to quantitative
verification such as verification of probabilistic properties.
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Abstract. We study nondeterministic strategies in parity games with
the aim of computing a most permissive winning strategy. Following
earlier work, we measure permissiveness in terms of the average num-
ber/weight of transitions blocked by a strategy. Using a translation into
mean-payoff parity games, we prove that deciding (the permissiveness of)
a most permissive winning strategy is in NP ∩ coNP. Along the way,
we provide a new study of mean-payoff parity games. In particular,
we give a new algorithm for solving these games, which beats all pre-
viously known algorithms for this problem.

1 Introduction

Games extend the usual semantics of finite automata from one to several players,
thus allowing to model interactions between agents acting on the progression of
the automaton. This has proved very useful in computer science, especially for
the formal verification of open systems interacting with their environment [20].
In this setting, the aim is to synthesise a controller under which the system
behaves according to a given specification, whatever the environment does. Usu-
ally, this is modelled as a game between two players: Player 1 represents the
controller and Player 2 represents the environment. The goal is then to find
a winning strategy for Player 1, i.e. a recipe stating how the system should react
to any possible action of the environment, in order to meet its specification.

In this paper, we consider multi-strategies (or non-deterministic strategies,
cf. [1, 3]) as a generalisation of strategies: while strategies select only one possible
action to be played in response to the behaviour of the environment, multi-
strategies can retain several possible actions. Allowing several moves provides
a way to cope with errors (e.g., actions being disabled for a short period, or timing
imprecisions in timed games). Another quality of multi-strategies is their ability
to be combined with other multi-strategies, yielding a refined multi-strategy,
which is ideally winning for all of the original specifications. This offers a modular
approach for solving games.
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Classically, a strategy is more permissive than another one if it allows more
behaviours. Under this notion, there does not need to exist a most permissive win-
ning strategy [1]. Hence, we follow a different approach, which is of a quantitative
nature: we provide a measure that specifies how permissive a given multi-strategy
is. In order to do so, we consider weighted games, where each edge is equipped
with a weight, which we treat as a penalty that is incurred when disallowing
this edge. The penalty of a multi-strategy is then defined to be the average sum
of penalties incurred in each step (in the limit). The lower this penalty is, the
more permissive is the given multi-strategy. Our aim is to find one of the most
permissive multi-strategies achieving a given objective.

We deal with multi-strategies by transforming a game with penalties into a
mean-payoff game [11, 22] with classical (deterministic) strategies. A move in the
latter game corresponds to a set of moves in the former, and is assigned a (neg-
ative) reward depending on the penalty of the original move. The penalty of a
multi-strategy in the original game equals the opposite of the payoff achieved by
the corresponding strategy in the mean-payoff game. In previous work, Bouyer
et al. [3] introduced the notion of penalties and showed how to compute permis-
sive strategies wrt. reachability objectives. We extend the study of [3] to parity
objectives. This is a significant extension because parity objectives can express
infinitary specifications. Using the above transformation, we reduce the problem
of finding a most permissive strategy in a parity game with penalties to that of
computing an optimal strategy in a mean-payoff parity game, which combines a
mean-payoff objective with a parity objective.

While mean-payoff parity games have already been studied [9, 2, 7], we pro-
pose a new proof that these games are determined and that both players have
optimal strategies. Moreover, we prove that the second player does not only have
an optimal strategy with finite memory, but one that uses no memory at all. Fi-
nally, we provide a new algorithm for computing the values of a mean-payoff
parity game, which is faster than the best known algorithms for this problem;
the running time is exponential in the number of priorities and polynomial in
the size of the game graph and the largest absolute weight.

In the second part of this paper, we present our results on parity games
with penalties. In particular, we prove the existence of most permissive multi-
strategies, and we show that the existence of a multi-strategy whose penalty
is less than a given threshold can be decided in NP ∩ coNP. Finally, we adapt
our deterministic algorithm for mean-payoff parity games to parity games with
penalties. Our algorithm computes the penalties of a most permissive multi-
strategy in time exponential in the number of priorities and polynomial in the
size of the game graph and the largest penalty.

Due to space restrictions, most proofs are omitted in this extended abstract;
they can be found in the full version of this paper [5].

Related Work. Penalties as we use them were defined in [3]. Other notions of
permissiveness have been defined in [1, 19], but these notions have the drawback
that a most permissive strategy might not exist. Multi-strategies have also been
used for different purposes in [16].
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The parity condition goes back to [12, 18] and is fundamental for verification.
Parity games admit optimal memoryless strategies for both players, and the
problem of deciding the winner is in NP ∩ coNP. As of this writing, it is not
known whether parity games can be solved in polynomial time; the best known
algorithms run in time polynomial in the size of the game graph but exponential
in the number of priorities.

Another fundamental class of games are games with quantitative objectives.
Mean-payoff games, where the aim is to maximise the average weight of the
transitions taken in a play, are also in NP∩coNP and admit memoryless optimal
strategies [11, 22]. The same is true for energy games, where the aim is to always
keep the sum of the weights above a given threshold [6, 4]. In fact, parity games
can easily be reduced to mean-payoff or energy games [13].

Finally, several game models mixing several qualitative or quantitative objec-
tives have recently appeared in the literature: apart from mean-payoff parity
games, these include generalised parity games [10], energy parity games [7] and
lexicographic mean-payoff (parity) games [2] as well as generalised energy and
mean-payoff games [8].

2 Preliminaries

A weighted game graph is a tuple G = (Q1, Q2, E,weight), where Q := Q1 ∪̇Q2
is a finite set of states, E ⊆ Q × Q is the edge or transition relation, and
weight: E → R is a function assigning a weight to every transition. When
weighted game graphs are subject to algorithmic processing, we assume that
these weights are integers; in this case, we set W := max{1, |weight(e)| | e ∈ E}.

For q ∈ Q, we write qE for the set {q′ ∈ Q | (q, q′) ∈ E} of all successors
of q. We require that qE �= ∅ for all states q ∈ Q. A subset S ⊆ Q is a subarena
of G if qE ∩ S �= ∅ for all states q ∈ S. If S ⊆ Q is a subarena of G, then we
can restrict G to states in S, in which case we obtain the weighted game graph
G � S := (Q1 ∩ S,Q2 ∩ S,E ∩ (S × S),weight � S × S).

A play of G is an infinite sequence ρ = ρ(0)ρ(1) · · · ∈ Qω of states such that
(ρ(i), ρ(i + 1)) ∈ E for all i ∈ N. We denote by OutG(q) the set of all plays ρ
with ρ(0) = q and by Inf(ρ) the set of states occurring infinitely often in ρ.

A play prefix or a history γ = γ(0)γ(1) · · ·γ(n) ∈ Q+ is a finite, nonempty
prefix of a play. For a play or a history ρ and j < k ∈ N, we denote by
ρ[j, k) := ρ[j, k− 1] := ρ(j) · · · ρ(k− 1) its infix starting at position j and ending
at position k − 1.
Strategies. A (deterministic) strategy for Player i inG is a function σ : Q∗Qi → Q
such that σ(γq) ∈ qE for all γ ∈ Q∗ and q ∈ Qi. A strategy σ is memoryless if
σ(γq) = σ(q) for all γ ∈ Q∗ and q ∈ Qi. More generally, a strategy σ is finite-
memory if the equivalence relation ∼ ⊆ Q∗×Q∗, defined by γ1 ∼ γ2 if and only
if σ(γ1 · γ) = σ(γ2 · γ) for all γ ∈ Q∗Qi, has finite index.

We say that a play ρ of G is consistent with a strategy σ for Player i if
ρ(k+1) = σ(ρ[0, k]) for all k ∈ N with ρ(k) ∈ Qi, and denote by OutG(σ, q0) the
set of all plays ρ of G that are consistent with σ and start in ρ(0) = q0. Given
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a strategy σ of Player 1, a strategy τ of Player 2, and a state q0 ∈ Q, there exists
a unique play ρ ∈ OutG(σ, q0) ∩OutG(τ, q0), which we denote by ρG(σ, τ, q0).
Traps and Attractors. Intuitively, a set T ⊆ Q of states is a trap for one of
the two players if the other player can enforce that the play stays in this set.
Formally, a trap for Player 2 (or simply a 2-trap) is a subarena T ⊆ Q such that
qE ⊆ T for all states q ∈ T ∩Q2, and qE ∩ T �= ∅ for all q ∈ T ∩Q1. A trap for
Player 1 (or 1-trap) is defined analogously.

If T ⊆ Q is not a trap for Player 1, then Player 1 has a strategy to reach
a position in Q \ T . In general, given a subset S ⊆ Q, we denote by AttrG1 (S)
the set of states from where Player 1 can force a visit to S. From every state
in AttrG1 (S), Player 1 has a memoryless strategy σ that guarantees a visit to S
in at most |Q| steps. We call the set AttrG1 (S) the 1-attractor of S and σ an
attractor strategy for S. The 2-attractor of a set S, denoted by AttrG2 (S), and
attractor strategies for Player 2 are defined symmetrically. Notice that for any
set S, the set Q \ AttrG1 (S) is a 1-trap, and if S is a subarena (2-trap), then
AttrG1 (S) is also a subarena (2-trap). Analogously, Q \AttrG2 (S) is a 2-trap, and
if S is a subarena (1-trap), then AttrG2 (S) is also a subarena (1-trap).
Convention. We often drop the superscriptG from the expressions defined above,
if no confusion arises, e.g. by writing Out(σ, q0) instead of OutG(σ, q0).

3 Mean-Payoff Parity Games

In this section, we establish that mean-payoff parity games are determined, that
both players have optimal strategies, that for Player 2 even memoryless strategies
suffice, and that the value problem for mean-payoff parity games is in NP∩coNP.
Furthermore, we present a deterministic algorithm which computes the values
in time exponential in the number of priorities, and runs in pseudo-polynomial
time when the number of priorities is bounded.

Formally, a mean-payoff parity game is a tuple G = (G,χ), where G is
a weighted game graph, and χ : Q→ N is a priority function assigning a priority
to every state. A play ρ = ρ(0)ρ(1) · · · is parity-winning if the minimal priority
occurring infinitely often in ρ is even, i.e., if min{χ(q) | q ∈ Inf(ρ)} ≡ 0 (mod 2).
All notions that we have defined for weighted game graphs carry over to mean-
payoff parity games. In particular, a play of G is just a play of G and a strategy
for Player i in G is nothing but a strategy for Player i in G. Hence, we write
OutG(σ, q) for OutG(σ, q), and so on. As for weighted games graphs, we often
omit the superscript if G is clear from the context. Finally, for a mean-payoff
parity game G = (G,χ) and a subarena S of G, we write G�S for the mean-payoff
parity game (G � S, χ � S).

We say that a mean-payoff parity game G = (G,χ) is a mean-payoff game
if χ(q) is even for all q ∈ Q. In particular, given a weighted game graph G,
we obtain a mean-payoff game by assigning priority 0 to all states. We denote
this game by (G, 0).

For a play ρ of a mean-payoff parity game G that is parity-winning, its payoff
is defined as
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Fig. 1. A mean-payoff parity game for which infinite memory is necessary

payoffG(ρ) = lim inf
n→∞

1
n

n−1∑

i=0
weight(ρ(i), ρ(i+ 1)) ;

if ρ is not parity-winning, we set payoffG(ρ) := −∞. If σ is a strategy for Player 1
in G, we define its value from q0 ∈ Q as valG(σ, q0) = infρ∈OutG(σ,q0) payoffG(ρ).
Analogously, the value valG(τ, q0) of a strategy τ for Player 2 is defined as the
supremum of payoffG(ρ) over all ρ ∈ OutG(τ, q0). The lower and upper value
of a state q0 ∈ Q are defined by valG(q0) = supσ valG(σ, q0) and valG(q0) =
infτ valG(τ, q0), respectively. Intuitively, valG(q0) and valG(q0) are the maximal
(respectively minimal) payoff that Player 1 (respectively Player 2) can ensure (in
the limit). We say that a strategy σ of Player 1 is optimal from q0 if valG(σ, q0) =
valG(q0). Analogously, we call a strategy τ of Player 2 optimal from q0 if valG

(τ, q0) = valG(q0). A strategy is (globally) optimal if it is optimal from every
state q ∈ Q. It is easy to see that valG(q0) ≤ valG(q0). If valG(q0) = valG(q0), we
say that q0 has a value, which we denote by valG(q0).

Example 1. Consider the mean-payoff parity game G depicted in Fig. 1, where a
state or an edge is labelled with its priority, respectively weight; all states belong
to Player 1. Note that valG(q1) = 1 since Player 1 can delay visiting q2 longer
and longer while still ensuring that this vertex is seen infinitely often. However,
there is no finite-memory strategy that achieves this value.

It follows from Martin’s determinacy theorem [17] that mean-payoff parity games
are determined, i.e., that every state has a value. Moreover, Chatterjee et al. [9]
gave an algorithmic proof for the existence of optimal strategies. Finally, it can
be shown that for every x ∈ R ∪ {−∞} the set {ρ ∈ Qω | payoff(ρ) ≥ x} is
closed under combinations. By Theorem 4 in [15], this property implies that
Player 2 even has a memoryless optimal strategy. In the full version of this
paper [5], we give a purely inductive proof of determinacy and the existence of
(memoryless) optimal strategies. We thus have the following theorem.

Theorem 2. Let G be a mean-payoff parity game.

1. G is determined;
2. Player 1 has an optimal strategy in G;
3. Player 2 has a memoryless optimal strategy in G.

A consequence of the proof of Theorem 2 is that each value of a mean-payoff
parity game is either −∞ or equals one of the values of a mean-payoff game
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played on the same weighted graph (or a subarena of it). Since optimal memory-
less strategies exist in mean-payoff games [11], the values of a mean-payoff game
with integral weights are rational numbers of the form r/s with |r| ≤ |Q| ·W
and |s| ≤ |Q|. Consequently, this property holds for the (finite) values of a
mean-payoff parity game as well.

We now turn towards the computational complexity of mean-payoff parity
games. Formally, the value problem is the following decision problem: Given
a mean-payoff parity game G (with integral weights), a designated state q0 ∈ Q,
and a number x ∈ Q, decide whether valG(q0) ≥ x. By Theorem 2, to decide
whether valG(q0) < x, we can guess a memoryless strategy τ for Player 2 and
check whether valG(τ, q0) < x. It follows from a result of Karp [14] that the latter
check can be carried out in polynomial time. Hence, the value problem belongs
to coNP.

Corollary 3. The value problem for mean-payoff parity games is in coNP.

Via a reduction to energy parity games, Chatterjee and Doyen [7] recently proved
that the value problem for mean-payoff parity games is in NP. Hence, these
games do not seem harder than parity or mean-payoff games, which also come
with a value problem in NP ∩ coNP.

Theorem 4 (Chatterjee-Doyen). The value problem for mean-payoff parity
games is in NP.

A Deterministic Algorithm. We now present a deterministic algorithm for
computing the values of a mean-payoff parity game, which runs faster than all
known algorithms for solving these games. Algorithm SolveMPP

is based on the classical algorithm for solving parity games, due to Zielonka [21].
The algorithm employs as a subprocedure an algorithm SolveMP for solving
mean-payoff games. By [22], such an algorithm can be implemented to run in
time O(n3 ·m ·W ) for a game with n states and m edges. We denote by f �g and
f � g the pointwise maximum, respectively minimum, of two (partial) functions
f, g : Q → R∪ {±∞} (where (f � g)(q) = (f � g)(q) = f(q) if g(q) is undefined).

The algorithm works as follows: If the least priority p in G is even, the algo-
rithm first identifies the least value of G by computing the values of the mean-
payoff game (G, 0) and (recursively) the values of the game G �Q \Attr1(χ−1(p)),
and taking their minimum x. All states from where Player 2 can enforce a visit
to a state with value x in one of these two games must have value x in G. In the
remaining subarena, the values can be computed by calling SolveMPP recur-
sively. If the least priority is odd, we can similarly compute the greatest value
of G and proceed by recursion. The correctness of the algorithm relies on the
following two lemmas.

Lemma 5. Let G be a mean-payoff parity game with least priority p even, T =
Q \Attr1(χ−1(p)), and x ∈ R. If val(G,0)(q) ≥ x for all q ∈ Q and valG�T (q) ≥ x
for all q ∈ T , then valG(q) ≥ x for all q ∈ Q.
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Algorithm. SolveMPP(G)

Input: mean-payoff parity game G = (G,χ)
Output: valG

if Q = ∅ then return ∅
p := min{χ(q) | q ∈ Q}
if p is even then
g := SolveMP(G, 0)
if χ(q) = p for all q ∈ Q then return g
T := Q \AttrG1 (χ−1(p)); f := SolveMPP(G � T )
x := min(f(T ) ∪ g(Q)); A := AttrG2 (f−1(x) ∪ g−1(x))
return (Q → R ∪ {−∞} : q �→ x) 	 SolveMPP(G �Q \ A)

else
T := Q \AttrG2 (χ−1(p))
if T = ∅ then return (Q → R ∪ {−∞} : q �→ −∞)
f := SolveMPP(G � T ); x := max f(T ); A := AttrG1 (f−1(x))
return (Q → R ∪ {−∞} : q �→ x) 
 SolveMPP(G �Q \ A)

end if

Lemma 6. Let G be a mean-payoff parity game with least priority p odd, T =
Q \ Attr2(χ−1(p)), and x ∈ R. If valG(q) ≥ x for some q ∈ Q, then T �= ∅ and
valG�T (q) ≥ x for some q ∈ T .

Theorem 7. The values of a mean-payoff parity game with d priorities can be
computed in time O(|Q|d+2 · |E| ·W ).

Proof. We claim that SolveMPP computes, given a mean-payoff parity game G,
the function valG in the given time bound. Denote by T (n,m, d) the worst-case
running time of the algorithm on a game with n states, m edges and d priori-
ties. Note that, if G has only one priority, then there are no recursive calls to
SolveMPP. Since attractors can be computed in time O(n+m) and the running
time of SolveMP is O(n3 ·m ·W ), there exists a constant c such that the numbers
T (n,m, d) satisfy the following recurrence:

T (1,m, d) ≤ c,
T (n,m, 1) ≤ c · n3 ·m ·W,
T (n,m, d) ≤ T (n− 1,m, d− 1) + T (n− 1,m, d) + c · n3 ·m ·W .

Solving this recurrence, we get that T (n,m, d) ≤ c · (n + 1)d+2 ·m ·W , which
proves the claimed time bound.

It remains to be proved that the algorithm is correct, i.e. that SolveMPP(G) =
valG . We prove the claim by induction over the number of states. If there are no
states, the claim is trivial. Hence, assume that Q �= ∅ and that the claim is true
for all games with less than |Q| states. Let p := min{χ(q) | q ∈ Q}. We only
consider the case that p is even. If p is odd, the proof is similar, but relies on
Lemma 6 instead of Lemma 5.
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Let T , f , g, x and A be defined as in the corresponding case of the algorithm,
and let f∗ = SolveMPP(G). If χ(Q) = {p}, then f∗ = g = val(G,0) = valG ,
and the claim is fulfilled. Otherwise, by the definition of x and applying the
induction hypothesis to the game G � T , we have val(G,0)(q) ≥ x for all q ∈ Q
and valG�T (q) = f(q) ≥ x for all q ∈ T . Hence, Lemma 5 yields that valG(q) ≥ x
for all q ∈ Q. On the other hand, from any state q ∈ A Player 2 can play an
attractor strategy to f−1(x) ∪ g−1(x), followed by an optimal strategy in the
game G � T , respectively in the mean-payoff game (G, 0), which ensures that
Player 1’s payoff does not exceed x. Hence, valG(q) = x = f∗(q) for all q ∈ A.

Now, let q ∈ Q \A. We already know that valG(q) ≥ x. Moreover, since Q \A
is a 2-trap and applying the induction hypothesis to the game G � Q \ A, we
have valG(q) ≥ valG�Q\A(q) = SolveMPP(G �Q \ A)(q). Hence, valG(q) ≥ f∗(q).
To see that valG(q) ≤ f∗(q), consider the strategy τ of Player 2 that mimics an
optimal strategy in G � Q \ A as long as the play stays in Q \ A and switches
to an optimal strategy in G as soon as the play reaches A. We have valG(τ, q) ≤
max{valG�Q\A(q), x} = f∗(q). ��

Algorithm SolveMPP is faster and conceptually simpler than the original algo-
rithm proposed for solving mean-payoff parity games [9]. Compared to the recent
algorithm proposed by Chatterjee and Doyen [7], which uses a reduction to en-
ergy parity games and runs in time O(|Q|d+4 · |E| · d ·W ), our algorithm has
three main advantages: 1. it is faster; 2. it operates directly on mean-payoff par-
ity games, and 3. it is more flexible since it computes the values exactly instead
of just comparing them to an integer threshold.

4 Mean-Penalty Parity Games

In this section, we define multi-strategies and mean-penalty parity games. We re-
duce these games to mean-payoff parity games, show that their value problem is
in NP ∩ coNP, and propose a deterministic algorithm for computing the values,
which runs in pseudo-polynomial time if the number of priorities is bounded.

Syntactically, a mean-penalty parity game is a mean-payoff parity game with
non-negative weights, i.e. a tuple G = (G,χ), where G = (Q1, Q2, E,weight) is a
weighted game graph with weight: E → R≥0 (or weight: E → N for algorithmic
purposes), and χ : Q → N is a priority function assigning a priority to every
state. As for mean-payoff parity games, a play ρ is parity-winning if the minimal
priority occurring infinitely often (min{χ(q) | q ∈ Inf(ρ)}) is even.

Since we are interested in controller synthesis, we define multi-strategies only
for Player 1 (who represents the system). Formally, a multi-strategy (for Player 1)
in G is a function σ : Q∗Q1 → P(Q)\{∅} such that σ(γq) ⊆ qE for all γ ∈ Q∗ and
q ∈ Q1. A play ρ of G is consistent with a multi-strategy σ if ρ(k+1) ∈ σ(ρ[0, k])
for all k ∈ N with ρ(k) ∈ Q1, and we denote by OutG(σ, q0) the set of all plays ρ
of G that are consistent with σ and start in ρ(0) = q0.

Note that, unlike for deterministic strategies, there is, in general, no unique
play consistent with a multi-strategy σ for Player 1 and a (deterministic)
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Fig. 3. The corresponding mean-payoff parity
game

strategy τ for Player 2 from a given initial state. Additionally, note that ev-
ery deterministic strategy can be viewed as a multi-strategy.

Let G be a mean-penalty parity game, and let σ be a multi-strategy. We in-
ductively define penaltyGσ(γ) (the total penalty of γ wrt. σ) for all γ ∈ Q∗ by
setting penaltyGσ(ε) = 0 as well as penaltyGσ(γq) = penaltyGσ(γ) if q ∈ Q2 and

penaltyGσ(γq) = penaltyGσ(γ) +
∑

q′∈qE\σ(γq)

weight(q, q′)

if q ∈ Q1. Hence, penaltyGσ(γ) is the total weight of transitions blocked by σ
along γ. The mean penalty of an infinite play ρ is then defined as the average
penalty that is incurred along this play in the limit, i.e.

penaltyGσ(ρ) =

⎧
⎨

⎩
lim sup
n→∞

1
n penaltyGσ(ρ[0, n)) if ρ is parity-winning,

∞ otherwise.

The mean penalty of a multi-strategy σ from a given initial state q0 is defined as
the supremum over the mean penalties of all plays that are consistent with σ, i.e.

penaltyG(σ, q0) = sup{penaltyGσ(ρ) | ρ ∈ OutG(σ, q0)}.

The value of a state q0 in a mean-penalty parity game G is the least mean penalty
that a multi-strategy of Player 1 can achieve, i.e. valG(q0) = infσ penaltyG(σ, q0),
where σ ranges over all multi-strategies of Player 1. A multi-strategy σ is called
optimal if penaltyG(σ, q0) = valG(q0) for all q0 ∈ Q.

Finally, the value problem for mean-penalty parity games is the following de-
cision problem: Given a mean-penalty parity game G = (G,χ), an initial state
q0 ∈ Q, and a number x ∈ Q, decide whether valG(q0) ≤ x.
Example 8. Fig. 2 represents a mean-penalty parity game. Note that weights of
transitions out of Player 2 states are not indicated as they are irrelevant for the
mean penalty. In this game, Player 1 (controlling circle states) has to regularly
block the self-loop if she wants to enforce infinitely many visits to the state with
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priority 0. This comes with a penalty of 2. However, the multi-strategy in which
she blocks no transition can be played safely for an arbitrary number of times.
Hence Player 1 can win with mean-penalty 0 (but infinite memory) by blocking
the self-loop once every k moves, where k grows with the number of visits to q2.

In order to solve mean-penalty games, we reduce them to mean-payoff parity
games. We construct from a given mean-penalty parity game G an exponential-
size mean-payoff parity game G′, similar to [3] but with an added priority func-
tion. Formally, for a mean-penalty parity game G = (G,χ) with game graph
G = (Q1, Q2, E,weight), the game graph G′ = (Q′1, Q′2, E′,weight′) of the corre-
sponding mean-payoff parity game G′ is defined as follows:

– Q′1 = Q1 and Q′2 = Q2 ∪ Q̄, where Q̄ := {(q, F ) | q ∈ Q, ∅ �= F ⊆ qE};
– E′ is the (disjoint) union of three kinds of transitions:

(1) transitions of the form (q, (q, F )) for each q ∈ Q1 and ∅ �= F ⊆ qE,
(2) transitions of the form (q, (q, {q′})) for each q ∈ Q2 and q′ ∈ qE,
(3) transitions of the form ((q, F ), q′) for each q′ ∈ F ;

– the weight function weight′ assigns 0 to transitions of type (2) and (3), but
weight′(q, (q, F )) = −2

∑
q′∈qE\F weight(q, q′) to transitions of type (1).

Finally, the priority function χ′ of G′ coincides with χ on Q and assigns priority
M := max{χ(q) | q ∈ Q} to all states in Q̄.

Example 9. Fig. 3 depicts the mean-payoff parity game obtained from the mean-
penalty parity game from Example 8, depicted in Fig. 2.

The correspondence between G and G′ is expressed in the following lemma.

Lemma 10. Let G be a mean-penalty parity game, G′ the corresponding mean-
payoff parity game, and q0 ∈ Q.

1. For every multi-strategy σ in G there exists a strategy σ′ for Player 1 in G′
such that val(σ′, q0) ≥ − penalty(σ, q0).

2. For every strategy σ′ for Player 1 in G′ there exists a multi-strategy σ in G
such that penalty(σ, q0) ≤ − val(σ′, q0).

3. valG
′
(q0) = − valG(q0).

It follows from Theorem 2 and Lemma 10 that every mean-penalty parity game
admits an optimal multi-strategy.

Corollary 11. In every mean-penalty parity game, Player 1 has an optimal
multi-strategy.

We now show that Player 2 has a memoryless optimal strategy of a special kind
in the mean-payoff parity game derived from a mean-penalty parity game. This
puts the value problem for mean-penalty parity games into coNP, and is also a
crucial point in the proof of Lemma 14 below.
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Lemma 12. Let G be a mean-penalty parity game and G′ the corresponding
mean-payoff parity game. Then in G′ there is a memoryless optimal strategy τ ′
for Player 2 such that for every q ∈ Q there exists a total order ≤q on the set qE
with τ ′((q, F )) = min≤q F for every state (q, F ) ∈ Q̄.

Proof (Sketch). Let τ be a memoryless optimal strategy for Player 2 in G′. For a
state q, we consider the set qE and order it in the following way. We inductively
define F1 = qE, qi = τ((q, Fi)) and Fi+1 = Fi \ {qi} for every 1 ≤ i ≤ |qE|.
Note that {q1, . . . , q|qE|} = qE. We set q1 ≤q q2 ≤q · · · ≤q q|qE| and define a new
memoryless strategy τ ′ for Player 2 in G′ by τ ′((q, F )) = min≤q F for (q, F ) ∈ Q̄
and τ ′(q) = τ(q) for all q ∈ Q2. It can be shown that val(τ ′, q0) ≤ val(τ, q0) for
all q0 ∈ Q, which proves that τ ′ is optimal. ��
In order to put the value problem for mean-penalty parity games into NP ∩ coNP,
we propose a more sophisticated reduction from mean-penalty parity games to
mean-payoff parity games, which results in a polynomial-size mean-payoff parity
game. Intuitively, in a state q ∈ Q1 we ask Player 1 consecutively for each outgo-
ing transition whether he wants to block that transition. If he allows a transition,
then Player 2 has to decide whether she wishes to explore this transition. Finally,
after all transitions have been processed in this way, the play proceeds along the
last transition that Player 2 has desired to explore.

Formally, let us fix a mean-penalty parity game G = (G,χ) with game graph
G = (Q1, Q2, E,weight), and denote by k := max{|qE| | q ∈ Q} the maximal
out-degree of a state. Then the polynomial-size mean-payoff parity game G′′ has
vertices of the form q and (q, a, i,m), where q ∈ Q, a ∈ {choose, allow, block},
i ∈ {1, . . . , k+ 1} and m ∈ {0, . . . , k}; vertices of the form q and (q, choose, i,m)
belong to Player 1, while vertices of the form (q, allow, i,m) or (q, block, i,m)
belong to Player 2. To describe the transition structure of G, let q ∈ Q and
assume that qE = {q1, . . . , qk} (a state may occur more than once in this list).
Then the following transitions originate in a state of the form q or (q, a, i,m):

1. a transition from q to (q, choose, 1, 0) with weight 0,
2. for all 1 ≤ i ≤ k and 0 ≤ m ≤ k a transition from (q, choose, i,m) to

(q, allow, i,m) with weight 0,
3. if q ∈ Q1 then for all 1 ≤ i ≤ k and 0 ≤ m ≤ k a transition from

(q, choose, i,m) to (q, block, i,m) with weight 0, except if i = k and m = 0;
4. for all 0 ≤ m ≤ k a transition from (q, choose, k+ 1,m) to qm with weight 0

(where q0 can be chosen arbitrarily),
5. for all 1 ≤ i ≤ k and 0 ≤ m ≤ k a transition from (q, allow, i,m) to

(q, choose, i+ 1, i) with weight 0,
6. for all 1 ≤ i ≤ k and 1 ≤ m ≤ k a transition from (q, allow, i,m) to

(q, choose, i+ 1,m) with weight 0,
7. for all 1 ≤ i ≤ k and 0 ≤ m ≤ k a transition from (q, block, i,m) to

(q, choose, i+ 1,m) with weight −2(k + 1) · weight(q, qi).

Finally, the priority of a state q ∈ Q equals the priority of the same state in G,
whereas all states of the form (q, a, i,m) have priority M = max{χ(q) | q ∈ Q}.
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Fig. 4. The game G′′ associated with the game G of Fig. 2

Example 13. For the game of Fig. 2, this transformation would yield the game
depicted in Fig. 4. In this picture, a, b and c stand for allow, block and choose,
respectively; zero weights are omitted.

It is easy to see that the game G′′ has polynomial size and can, in fact, be
constructed in polynomial time from the given mean-penalty parity game G.
The following lemma relates the game G′′ to the mean-payoff parity game G′ of
exponential size constructed earlier and to the original game G.

Lemma 14. Let G be a mean-penalty parity game, G′ the corresponding mean-
payoff parity game of exponential size, G′′ the corresponding mean-payoff parity
game of polynomial size, and q0 ∈ Q.

1. For every multi strategy σ in G there exists a strategy σ′ for Player 1 in G′′
such that val(σ′, q0) ≥ − penalty(σ, q0).

2. For every strategy τ for Player 2 in G′ there exists a strategy τ ′ for Player 2
in G′′ such that val(τ ′, q0) ≤ val(τ, q0).

3. valG
′′
(q0) = − valG(q0).

Since the mean-payoff game G′′ can be computed from G in polynomial time,
we obtain a polynomial-time many-one reduction from the value problem for
mean-penalty parity games to the value problem for mean-payoff parity games.
By Corollary 3 and Theorem 4, the latter problem belongs to NP ∩ coNP.

Theorem 15. The value problem for mean-penalty parity games belongs to
NP ∩ coNP.
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Algorithm. SymbSolveMPP(G)

Input: mean-penalty parity game G = (G,χ)
Output: valG

if Q = ∅ then return ∅
p := min{χ(q) | q ∈ Q}
if p is even then
g := SymbSolveMP(G, 0)
if χ(q) = p for all q ∈ Q then return g
T := Q \AttrG1 (χ−1(p)); f := SymbSolveMPP(G � T )
x := max(f(T ) ∪ g(Q)); A := AttrG2 (f−1(x) ∪ g−1(x))
return (Q → R ∪ {∞} : q �→ x) 
 SymbSolveMPP(G �Q \ A)

else
T := Q \AttrG2 (χ−1(p))
if T = ∅ then return (Q → R ∪ {∞} : q �→ ∞)
f := SymbSolveMPP(G � T ); x := min f(T ); A := AttrG1 (f−1(x))
return (Q → R ∪ {∞} : q �→ x) 	 SymbSolveMPP(G �Q \ A)

end if

A Deterministic Algorithm. Naturally, we can use the polynomial trans-
lation from mean-penalty parity games to mean-payoff parity games to solve
mean-penalty parity games deterministically. Note that the mean-payoff parity
game G′′ derived from a mean-penalty parity game has O(|Q| · k2) states and
O(|Q| · k2) edges, where k is the maximum out-degree of a state in G; the num-
ber of priorities remains constant. Moreover, if weights are given in integers and
W is the highest absolute weight in G, then the highest absolute weight in G′′ is
O(k ·W ). Using Theorem 7, we thus obtain a deterministic algorithm for solving
mean-penalty parity games that runs in time O(|Q|d+3 · k2d+7 ·W ). If k is a
constant, the running time is O(|Q|d+3 ·W ), which is acceptable. In the general
case however, the best upper bound on k is the number of states, and we get an
algorithm that runs in time O(|Q|3d+10 ·W ). Even if the numbers of priorities
is small, this running time would not be acceptable in practical applications.

The goal of this section is to show that we can do better; namely we will
give an algorithm that runs in time O(|Q|d+3 · |E| ·W ), independently of the
maximum out-degree. The idea is as follows: we use Algorithm SolveMPP on
the mean-payoff parity game G′ of exponential size, but we show that we can
run it on G, i.e., by handling the extra states of G′ symbolically during the
computation. As a first step, we adapt the pseudo-polynomial algorithm by Zwick
and Paterson [22] to compute the values of a mean-penalty parity game with a
trivial parity objective.

Lemma 16. The values of a mean-penalty parity game with priority function
χ ≡ 0 can be computed in time O(|Q|4 · |E| ·W ).

Algorithm SymbSolveMPP is our algorithm for computing the values of a mean-
penalty parity game. The algorithm employs as a subroutine an algorithm
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SymbSolveMP for computing the values of a mean-penalty parity with a trivial
priority function (see Lemma 16). Since SymbSolveMP can be implemented to
run in time O(|Q|4 ·|E|·W ), the running time of the procedure SymbSolveMPP is
O(|Q|d+3 · |E| ·W ). Notably, the algorithm runs in polynomial time if the number
of priorities is bounded and we are only interested in the average number of edges
blocked by a strategy in each step (i.e. if all weights are equal to 1).

Theorem 17. The values of a mean-penalty parity game with d priorities can
be computed in time O(|Q|d+3 · |E| ·W ).

Proof (Sketch). From Lemma 16 and with the same runtime analysis as in the
proof of Theorem 7, we get that SymbSolveMPP runs in time O(|Q|d+3 · |E| ·W ).
To prove that the algorithm is correct, we show that there is a correspondence
between the values the algorithm computes on a mean-penalty parity game G and
the values computed by Algorithm SolveMPP on the mean-payoff parity game G′.
More precisely, we show that SolveMPP(G′) � Q = − SymbSolveMPP(G). The
correctness of the algorithm thus follows from Lemma 10, which states that
valG

′
�Q = − valG . ��

5 Conclusion

In this paper, we have studied mean-payoff parity games, with an application
to finding permissive strategies in parity games with penalties. In particular,
we have established that mean-penalty parity games are not harder to solve
than mean-payoff parity games: for both kinds of games, the value problem is
in NP ∩ coNP and can be solved by an exponential algorithm that becomes
pseudo-polynomial when the number of priorities is bounded.

One complication with both kinds of games is that optimal strategies for
Player 1 require infinite memory, which makes it hard to synthesise these strate-
gies. A suitable alternative to optimal strategies are ε-optimal strategies that
achieve the value of the game by at most ε. Since finite-memory ε-optimal
strategies are guaranteed to exist [2], a challenge for future work is to mod-
ify our algorithms so that they compute not only the values of the game but also
a finite-memory ε-optimal (multi-)strategy for Player 1.

Acknowledgement. We thank an anonymous reviewer for pointing out the poly-
nomial reduction from mean-penalty parity games to mean-payoff parity games,
which has simplified the proof that mean-penalty parity games are in NP.
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Abstract. We present algorithms to synthesize component-based systems that
are safe and deadlock-free using priorities, which define stateless-precedence
between enabled actions. Our core method combines the concept of fault-
localization (using safety-game) and fault-repair (using SAT for conflict resolu-
tion). For complex systems, we propose three complementary methods as
preprocessing steps for priority synthesis, namely (a) data abstraction to reduce
component complexities, (b) alphabet abstraction and 
-deadlock to ignore com-
ponents, and (c) automated assumption learning for compositional priority
synthesis.

1 Introduction

Priorities [15] define stateless-precedence relations between actions available in
component-based systems. They can be used to restrict the behavior of a system in order
to avoid undesired states. They are particularly useful to avoid deadlock states (i.e., states
in which all actions are disabled), because they do not introduce new deadlock states and
therefore avoid creating new undesired states. Furthermore, due to their stateless prop-
erty and the fact that they operate on the interface of a component, they are relatively
easy to implement in a distributed setting [17,9]. In a tool paper [11], we presented the
tool VISSBIP1 together with a concept called priority synthesis, which aims to auto-
matically generate a set of priorities such that the system constrained by the synthesized
priorities satisfies a given safety property or deadlock freedom. In this paper, we explain
the underlying algorithm and propose extensions for more complex systems.

Priority synthesis is expensive; we showed in [12] that synthesizing priorities for
safety properties (or deadlock-freedom) is NP-complete in the size of the state space of
the product graph. Therefore, we present an incomplete search framework for priority
synthesis, which mimics the process of fault-localization and fault-repair (Section 3).
Intuitively, a state is a fault location if it is the latest point from which there is a way to
avoid a failure, i.e., there exists (i) an outgoing action that leads to an attracted state, a

1 Shortcut for Visualization and synthesis for simple BIP systems.

T. Bultan and P.-A. Hsiung (Eds.): ATVA 2011, LNCS 6996, pp. 150–167, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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state from which all paths unavoidably reach a bad state, and (ii) there exists an alterna-
tive action that avoids entering any of the attracted states. We compute fault locations
using the algorithm for safety games. Given a set of fault locations, priority synthesis
is achieved via fault-repair: an algorithm resolves potential conflicts in priorities gen-
erated via fault-localization and finds a satisfying subset of priorities as a solution for
synthesis. Our symbolic encodings on the system, together with the new variable or-
dering heuristic and other optimizations, helps to solve problems much more efficiently
compared to our preliminary implementation in [11]. Furthermore, it allows us to inte-
grate an adversary environment model similar to the setting in Ramadge and Wonham’s
controller synthesis framework [22].

Abstraction or compositional techniques are widely used in verification of infinite
state or complex systems for safety properties but not all techniques ensure that syn-
thesizing an abstract system for deadlock-freeness guarantees deadlock-freeness in the
concrete system (Section 4). Therefore, it is important to find appropriate techniques
to assist synthesis on complex problems. We first revisit data abstraction (Section 4.1)
for data domain such that priority synthesis works on an abstract system composed
by components abstracted component-wise [7]. Second, we present a technique called
alphabet-abstraction (Section 4.2), handling complexities induced by the composition
of components. Lastly, for behavioral-safety properties (not applicable for deadlock-
avoidance), we utilize automata-learning [3] to achieve compositional priority synthesis
(Section 4.3).

We implemented the presented algorithms (except connection with the data abstrac-
tion module in D-Finder [8]) in the VISSBIP tool and performed experiments to eval-
uate them (Section 5). Our examples show that the process using fault-localization and
fault-repair generates priorities that are highly desirable. Alphabet abstraction enables
us to scale to arbitrary large problems. We also present a model for distributed commu-
nication. In this example, the priorities synthesized by our engine are completely local
(i.e., each priority involves two local actions within a component). Therefore, they can
be translated directly to distributed control. We summarize related work and conclude
with an algorithmic flow in Section 6 and 7.

2 Component-Based Modeling and Priority Synthesis

2.1 Behavioral-Interaction-Priority Framework

The Behavior-Interaction-Priority (BIP) framework2 provides a rigorous component-
based design flow for heterogeneous systems. Rigorous design refers to the strict sepa-
ration of three different layers (behaviors, interactions, and priorities) used to describe a
system. A detailed description of the BIP language can be found in [6]. To simplify the
explanations, we focus on simple systems, i.e., systems without hierarchies and finite
data types. Intuitively, a simple BIP system consists of a set of automata (extended with
data) that synchronize on joint labels.

Definition 1 (BIP System). We define a (simple BIP) system as a tuple S = (C, Σ,P),
where

2 http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html?lang=en
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– Σ is a finite set of events or interaction labels, called interaction alphabet,
– C =

⋃m
i=1 Ci is a finite set of components. Each component Ci is a transition

system extended with data. Formally, Ci is a tuple (Li, Vi, Σi, Ti, l
0
i , e

0
i ):

• Li = {li1 , . . . , lin} is a finite set of control locations.
• Vi = {vi1 , . . . , vip} is a finite set of (local) variables with a finite domain. Wlog

we assume that the domain is the Boolean domain B = {True,False}. We
use |Vi| to denote the number of variables used in Ci. An evaluation (or assign-
ment) of the variables in Vi is a functions e : Vi → B mapping every variable
to a value in the domain. We use E(Vi) to denote the set of all evaluations over
the variables Vi. Given a Boolean formula f ∈ B(Vi) over the variables in Vi

and an evaluation e ∈ E(Vi), we use f(e) to refer to the truth value of f under
the evaluation e.
• Σi ⊆ Σ is a subset of interaction labels used in Ci.
• Ti is the set of transitions. A transition ti ∈ Ti is of the form (l, g, σ, f, l′),

where l, l′ ∈ Li are the source and destination location, g ∈ B(Vi) is called the
guard and is a Boolean formula over the variables Vi. σ ∈ Σi is an interaction
label (specifying the event triggering the transition), and f : Vi → B(Vi) is
the update function mapping every variable to a Boolean formula encoding the
change of its value.
• l0i ∈ Li is the initial location and e0

i ∈ E(Vi) is the initial evaluation of the
variables.

– P is a finite set of interaction pairs (called priorities) defining a relation ≺ ⊆
Σ × Σ between the interaction labels. We require that ≺ is (1) transitive and (2)
non-reflexive (i.e., there are no circular dependencies) [15]. For (σ1, σ2) ∈ P , we
sometimes write σ1 ≺ σ2 to highlight the property of priority.

Definition 2 (Configuration). Given a system S, a configuration (or state) c is a tuple
(l1, e1, . . . , lm, em) with li ∈ Li and ei ∈ E(Vi) for all i ∈ {1, . . . , m}. We use CS to
denote the set of all reachable configurations. The configuration (l01, e

0
1, . . . , l

0
m, e0

m) is
called the initial configuration of S and is denoted by c0.

Definition 3 (Enabled Interactions). Given a systemS and a configuration c = (l1, e1,
. . . , lm, em), we say an interaction σ ∈ Σ is enabled (in c), if the following conditions
hold:

1. (Joint participation) ∀i ∈ {1, . . . , m}, if σ ∈ Σi, then ∃gi, fi, l
′
i such that (li, gi, σ,

fi, l
′
i) ∈ Ti and gi(ei) = True.

2. (No higher priorities enabled) For all other interaction σ̄ ∈ Σ satisfying joint
participation (i.e., ∀i ∈ {1, . . . , m}, if σ̄ ∈ Σi, then ∃(li, ḡi, σ̄, f̄i, l̄

′
i) ∈ Ti such

that ḡi(ei) = True), (σ, σ̄) �∈ P holds.

Definition 4 (Behavior). Given a system S, two configurations c = (l1, e1, . . . , lm,
em), c′ = (l′1, e

′
1, . . . , l

′
m, e′m), and an interaction σ ∈ Σ enabled in c, we say c′ is a

σ-successor (configuration) of c, denoted c
σ−→ c′, if the following two conditions hold

for all components Ci = (Li, Vi, Σi, Ti, l
0
i , e

0
i ):
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– (Update for participated components) If σ ∈ Σi, then there exists a transition
(li, gi, σ, fi, l

′
i) ∈ Ti such that gi(ei) = True and for all variables v ∈ Vi, e′i =

fi(v)(ei).
– (Stutter for idle components) Otherwise, l′i = li and e′i = ei.

Given two configurations c and c′, we say c′ is reachable from c with the interaction
sequence w = σ1 . . . σk , denoted c

w−→ c′, if there exist configurations c0, . . . , ck such
that (i) c0 = c, (ii) ck = c′, and (iii) for all i : 0 ≤ i < k, ci

σi+1−−−→ ci+1. We denote the set
of all configuration of S reachable from the initial configuration c0 byRS . The language
of a system S, denoted L(S), is the set {w ∈ Σ∗ | ∃c′ ∈ RS such that c0 w−→ c′}. Note
that L(S) describes the behavior of S, starting from the initial configuration c0.

In this paper, we adapt the following simplifications:

– We do not consider uncontrollable events (of the environment), since the BIP lan-
guage is currently not supporting them. However, our framework would allow us to
do so. More precisely, we solve priority synthesis using a game-theoretic version of
controller synthesis [22], in which uncontrollability can be modeled. Furthermore,
since we consider only safety properties, our algorithms can be easily adapted to
handle uncontrollable events.

– We do not consider data transfer during the interaction, as it is merely syntactic
rewriting over variables between different components.

2.2 Priority Synthesis for Safety and Deadlock Freedom

Definition 5 (Risk-Configuration/Deadlock Safety). Given a system S = (C, Σ,P)
and the set of risk configuration Crisk ⊆ CS (also called bad states), the system is safe
if the following conditions hold. (A system that is not safe is called unsafe.)

– (Deadlock-free) ∀c ∈ RS , ∃σ ∈ Σ, ∃c′ ∈ RS : c
σ−→ c′

– (Risk-state-free) Crisk ∩RS = ∅.
Definition 6 (Priority Synthesis). Given a system S = (C, Σ,P), and the set of risk
configuration Crisk ⊆ CS , priority synthesis searches for a set of priorities P+ such
that

– For P ∪ P+, the defined relation ≺P∪P+ ⊆ Σ × Σ is also (1) transitive and (2)
non-reflexive.

– (C, Σ,P ∪ P+) is safe.

Given a system S, we define the size of S as the size of the product graph induced by
S, i.e, |RS |+ |Σ|. Then, we have the following result.

Theorem 1 (Hardness of priority synthesis [12]) Given a system S = (C, Σ,P),
finding a set P+ of priorities such that (C, Σ,P ∪ P+) is safe is NP-complete in the
size of S.

We briefly mention the definition of behavioral safety, which is a powerful notion to
capture erroneous behavioral-patterns for the system under design.

Definition 7 (Behavioral Safety). Given a system S = (C, Σ,P) and a regular lan-
guageL¬P ⊆ Σ∗ called the risk specification, the system is B-safe if L(S)∩L¬P = ∅.
A system that is not B-safe is called B-unsafe.
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It is well-known that the problem of asking for behavioral safety can be reduced to the
problem of risk-state freeness. More precisely, since L¬P can be represented by a finite
automaton A¬P (the monitor), priority synthesis for behavioral safety can be reduced
to priority synthesis in the synchronous product of the system S andA¬P with the goal
to avoid any product state that has a final state of A¬P in the second component.

3 A Framework of Priority Synthesis Based on Fault-Localization
and Fault-Repair

In this section, we describe our symbolic encoding scheme, followed by presenting our
priority synthesis mechanism using a fault-localization and repair approach.

3.1 System Encoding

Our symbolic encoding is inspired by the execution semantics of the BIP engine, which
during execution, selects one of the enabled interactions and executes the interaction. In
our engine, we mimic the process and create a two-stage transition: For each iteration,

– (Stage 0) The environment raises all enabled interactions.
– (Stage 1) Based on the raised interactions, the controller selects one enabled inter-

action (if there exists one) while respecting the priority, and updates the state based
on the enabled interaction.

Given a system S = (C, Σ,P), we use the following sets of Boolean variables to
encode S:

– {stg, stg′} is the stage indicator and its primed version.
–

⋃
σ∈Σ{σ, σ′} are the variables representing interactions and their primed version.

We use the same letter for an interaction and the corresponding variable, because
there is a one-to-one correspondence between them.

–
⋃

i=1...m Yi ∪ Y ′
i , where Yi = {yi1, . . . , yik} and Y ′

i = {y′
i1, . . . , y

′
ik} are the

variables and their primed version, respectively, used to encode the locations Li.
(We use a binary encoding, i.e., k = ,log|Li|-). Given a location l ∈ Li, we use
enc(l) and enc′(l) to refer to the encoding of l using Yi and Y ′

i , respectively.
–

⋃
i=1...m

⋃
v∈Vi
{v, v′} are the variables of the components and their primed

version.

We use Algorithm 1 and 2 to create transition predicates Tstage0 and Tstage1 for Stage 0
and 1, respectively. Note that Tstage0 and Tstage1 can be merged but we keep them
separately, in order to (1) have an easy and direct way to synthesize priorities, (2) allow
expressing the freedom of the environment, and (3) follow the semantics of the BIP
engine.

– In Algorithm 1, Line 2 computes for each interaction σ the predicate Pσ repre-
senting all the configurations in which σ is enabled in the current configuration. In
Line 3, starting from the first interaction, Tstage0 is continuously refined by con-
joining σ′ ↔ Pσ for each interaction σ, i.e., the variables σ′ is true if and only if
the interaction σ is enabled. Finally, Line 4 ensures that the system configuration
does not change in stage 0.
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Algorithm 1. Generate Stage-0 transitions
input : System S = (C, Σ,P)
output: Stage-0 transition predicate Tstage0
begin

for σ ∈ Σ do
let predicate Pσ := True1

for σ ∈ Σ do
for i = {1, . . . , m} do

if σ ∈ Σi then Pσ := Pσ ∧
∨

(l,g,σ,f,l′)∈Ti
(enc(l) ∧ g)2

let predicate Tstage0 := stg ∧ ¬stg′

for σ ∈ Σ do
Tstage0 := Tstage0 ∧ (σ′ ↔ Pσ)3

for i = {1, . . . , m} do
Tstage0 := Tstage0 ∧

∧
y∈Yi

y ↔ y′ ∧
∧

v∈Vi
v ↔ v′

4

return Tstage0
end

Algorithm 2. Generate Stage-1 transitions
input : System S = (C, Σ,P)
output: Stage-1 transition predicate Tstage1
begin

let predicate Tstage1 := False
for σ ∈ Σ do

let predicate Tσ := ¬stg ∧ stg′

for i = {1, . . . , m} do
if σ ∈ Σi then

Tσ := Tσ ∧
∨

(l,g,σ,f,l′)∈Ti
(enc(l)∧ g ∧σ ∧σ′ ∧ enc′(l′)∧

∧
v∈Vi

v′ ↔ f(v))1

for σ′ ∈ Σ, σ′ �= σ do
Tσ := Tσ ∧ σ′ = False2

for i = {1, . . . , m} do
if σ �∈ Σi then Tσ := Tσ ∧

∧
y∈Yi

y ↔ y′ ∧
∧

v∈Vi
v ↔ v′

3

Tstage1 := Tstage1 ∨ Tσ

for σ1 ≺ σ2 ∈ P do
Tstage1 := Tstage1 ∧ ((σ1 ∧ σ2) → ¬σ1

′)4

return Tstage1
end

– In Algorithm 2, Line 1, 2, 3 are used to create the transition in which interaction σ
is executed (Line 2 ensures that only σ is executed; Line 3 ensures the stuttering
move of unparticipated components). Given a priority σ1 ≺ σ2, in configurations in
which σ1 and σ2 are both enabled (i.e., σ1 ∧ σ2 holds), the conjunction with Line 4
removes the possibility to execute σ1 when σ2 is also available.

3.2 Step A. Finding Fix Candidates Using Fault-Localization

Synthesizing a set of priorities to make the system safe can be done in various ways, and
we use Figure 1 to illustrate our underlying idea. Consider a system starting from state
c1. It has two risk configurations c6 and c7. In order to avoid risk using priorities, one
method is to work on the initial configuration, i.e., to use the set of priorities {e ≺ a, d ≺
a}. Nevertheless, it can be observed that the synthesized result is not very desirable, as
the behavior of the system has been greatly restricted.
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a

d
e

c1
c2

c4

c3 c5

Attr(Crisk)

Crisk

c6

c7
b

a

c8

c

b
a

c9

Reach({c1})

g

Fig. 1. Locating fix candidates

Alternatively, our methodol-
ogy works backwards from the
set of risk states and finds states
which is able to escape from
risk. In Figure 1, as states c3, c4,
c5 unavoidably enter a risk state,
they are within the risk-attractor
(Attr(Crisk)). For state c2, c8,
and c9, there exists an interac-
tion which avoids risk. Thus, if
a set of priorities P+ can ensure
that from c2, c8, and c9, the system can not enter the attractor, then P+ is the result of
synthesis. Furthermore, as c9 is not within the set of reachable states from the initial
configuration (Reach({c1}) in Figure 1), then it can be eliminated without considera-
tion. We call {c2, c8} a fault-set, meaning that an erroneous interaction can be taken to
reach the risk-attractor.

Under our formulation, we can directly utilize the result of algorithmic game solv-
ing [16] to compute the fault-set. Algorithm 3 explains the underlying computation: For
conciseness, we use ∃Ξ (∃Ξ ′) to represent existential quantification over all umprimed
(primed) variables used in the system encoding. Also, we use the operator SUBS
(X, Ξ, Ξ ′) for variable swap (substitution) from unprimed to primed variables in X :
the SUBS operator is common in most BDD packages.

– In the beginning, we create Pini for initial configuration, Pdead for deadlock (no
interaction is enabled), and Prisk for risk configurations.

– In Part A, adding a stage-0 configuration can be computed similar to adding the
environment state in a safety game. In a safety game, for an environment configu-
ration to be added, there exists a transition which leads to the attractor.

– In Part A, adding a stage-1 configuration follows the intuition described earlier. In
a safety game, for a control configuration c to be added, all outgoing transitions
of c should lead to the attractor. This is captured by the set difference operation
PointTo \ Escape in Line 5.

– In Part B, Line 7 creates the transition predicate entering the attractor. Line 8 cre-
ates predicate OutsideAttr representing the set of stage-1 configuration outside
the attractor. In Line 9, by conjuncting with OutsideAttr we ensure that the al-
gorithm does not return a transition within the attractor.

– Part C removes transitions whose source is not within the set of reachable states.

3.3 Step B. Priority Synthesis via Conflict Resolution – From Stateful to
Stateless

Due to our system encoding, in Algorithm 3, the return value Tf contains not only
the risk interaction but also all possible interactions simultaneously available. Recall
Figure 1, Tf returns three transitions, and we can extract priority candidates from
each transition.

– On c2, a enters the risk-attractor, while b, g, c are also available. We have the fol-
lowing candidates {a ≺ b, a ≺ g, a ≺ c}.
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Algorithm 3. Fault-localization
input : System S = (C, Σ,P), Tstage0 , Tstage1
output: Tf ⊆ Tstage1 as the set of stage-1 transitions starting from the fault-set but entering the risk attractor
begin

let Pini := stg ∧
∧

i=1...m(enc(l0i ) ∧
∧

v∈Vi
v ↔ e0

i (v))

let Pdead := ¬stg ∧
∧

σ∈Σ ¬σ

let Prisk := ¬stg ∧
∨

(l1,e1,...,lm,em)∈Crisk
(enc(l1) ∧

∧
v∈V1

v ↔ e1(v) ∧ . . .

enc(lm) ∧
∧

v∈Vm
v ↔ em(v))

// Part A: solve safety game
let Attrpre := Pdead ∨ Prisk , Attrpost := False
while True do1

// add stage-0 (environment) configurations
Attrpost,0 := ∃Ξ′ : (Tstage0 ∧ SUBS((∃Ξ′ : Attrpre), Ξ, Ξ′))2
// add stage-1 (system) configurations
let PointTo := ∃Ξ′ : (Tstage1 ∧ SUBS((∃Ξ′ : Attrpre), Ξ, Ξ′))3
let Escape := ∃Ξ′ : (Tstage1 ∧ SUBS((∃Ξ′ : ¬Attrpre), Ξ, Ξ′))4
Attrpost,1 := PointTo \ Escape5
Attrpost := Attrpre ∨ Attrpost,0 ∨ Attrpost,1; // Union the result6
if Attrpre ↔ Attrpost then break; // Break when the image saturates
else Attrpre := Attrpost

// Part B: extract Tf

PointTo := Tstage1 ∧ SUBS((∃Ξ′ : Attrpre), Ξ, Ξ′))7
OutsideAttr := ¬Attrpre ∧ (∃Ξ′ : Tstage1 )8
Tf := PointTo ∧ OutsideAttr9

// Part C: eliminate unused transition using reachable states
let Reachpre := Pini , Reachpost := False
while True do10

Reachpost := Reachpre ∨ SUBS(∃Ξ : (Reachpre ∧ (Tstage0 ∨ Tstage1 )), Ξ′, Ξ)

if Reachpre ↔ Reachpost then break; // Break when the image saturates
else Reachpre := Reachpost

return Tf ∧ Reachpost11
end

– On c2, g enters the risk-attractor, while a, b, c are also available. We have the fol-
lowing candidates {g ≺ b, g ≺ c, g ≺ a}3.

– On c8, b enters the risk-attractor, while a is also available. We have the following
candidate b ≺ a.

From these candidates, we can perform conflict resolution and generate a set of prior-
ities that ensures avoiding the attractor. For example, {a ≺ c, g ≺ a, b ≺ a} is a set of
satisfying priorities to ensure safety. Note that the set {a ≺ b, g ≺ b, b ≺ a} is not a le-
gal priority set, because it creates circular dependencies. In our implementation, conflict
resolution is performed using SAT solvers: In the SAT problem, any priority σ1 ≺ σ2 is
presented as a Boolean variable σ1 ≺ σ2, which can be set toTrueorFalse. If the gen-
erated SAT problem is satisfiable, for all variables σ1 ≺ σ2 which is evaluated to True,
we add priority σ1 ≺ σ2 to P+. The synthesis engine creates four types of clauses.

3 Notice that at least one candidate is a true candidate for risk-escape. Otherwise, during the
attractor computation, c2 will be included within the attractor.
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1. [Priority candidates] For each edge t ∈ Tf which enters the risk attractor using σ
and having σ1, . . . , σe available actions (excluding σ), create clause
(
∨

i=1...e σ ≺ σi)4.
2. [Existing priorities] For each priority σ ≺ σ′ ∈ P , create clause (σ ≺ σ′).
3. [Non-reflective] For each interaction σ used in (1) and (2), create clause (¬σ ≺ σ).
4. [Transitive] For any three interactions σ1, σ2, σ3 used in (1) and (2), create clause

((σ1 ≺ σ2 ∧ σ2 ≺ σ3)⇒ σ1 ≺ σ3).

When the problem is satisfiable, we only output the set of priorities within the priority
candidates (as non-reflective and transitive clauses are inferred properties). Admittedly,
here we still solve an NP-complete problem. Nevertheless,

– The number of interactions involved in the fault-set can be much smaller than Σ.
– As the translation does not involve complicated encoding, we observe from our

experiment that solving the SAT problem does not occupy a large portion (less than
20% for all benchmarks) of the total execution time.

3.4 Optimization
c2

Attr(Crisk)

Crisk

b
a

c1 b
a

Fig. 2. A simple scenario where con-
flicts are unavoidable on the fault-set

Currently, we use the following optimization tech-
niques compared to the preliminary implementa-
tion of [11].

(Handling Unsatisfiability). In the resolution
scheme in Section 3.3, when the generated SAT
problem is unsatisfiable, we can redo the process
by moving some states in the fault-set to the at-
tractor. This procedure is implemented by select-
ing a subset of priority candidates and annotate to the original system. We call this
process priority-repushing. E.g., consider the system S = (C, Σ,P) in Figure 2.
The fault-set {c1, c2} is unable to resolve the conflict: For c1 the priority candidate is
a ≺ b, and for c2 the priority candidate is b ≺ a. When we redo the analysis with
S = (C, Σ,P ∪ {a ≺ b}), this time c2 will be in the attractor, as now c2 must re-
spect the priority and is unable to escape using a. Currently in our implementation, we
supports the repushing under fixed depth to increase the possibility of finding a fix.

(Variable Ordering Heuristics). As we use BDDs to compute the risk-attractor, a good
initial variable ordering can greatly influence the total required time solving the game.
We adapt the concept in the FORCE heuristic [2] where in the variable ordering, an
interaction is placed approximately on the center-of-gravity of all participated compo-
nents. This heuristic enables our solver to solve much larger problems. In addition, we
allow the user to provide an initial variable ordering, such that FORCE heuristic can be
applied more efficiently.

(Dense Variable Encoding). The encoding in Section 3.1 is dense compared to the en-
coding in [11]. In [11], for each component Ci participating interaction σ, one separate

4 In implementation, Algorithm 3 works symbolically on BDDs and proceeds on cubes of the
risk-edges (a cube contains a set of states having the same enabled interactions and the same
risk interaction), hence it avoids enumerating edges state-by-state.
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variable σi is used. Then a joint action is done by an AND operation over all variables,
i.e.,

∧
i σi. This eases the construction process but makes BDD-based game solving

very inefficient: For a system S, let Σuse1 ⊆ Σ be the set of interactions where only
one component participates within. Then the encoding in [11] uses at least 2|Σ \Σuse1|
more BDD variables than the dense encoding.

4 Handling Complexities

In verification, it is standard to use abstraction and modularity to reduce the complexity
of the analyzed systems. Abstraction is also useful in synthesis. However, note that if
an abstract system is deadlock-free, it does not imply that the concrete system is as
well (see the extended report [10] for examples). In the following, we propose three
techniques.

4.1 Data Abstraction

Data abstraction techniques presented in the previous work [7] and implemented in the
D-Finder tool kit [8] are deadlock preserving, i.e., synthesizing the abstract system to
be deadlock free ensures that the concrete system is also deadlock free. Basically, the
method works on an abstract system composed by components abstracted component-
wise from concrete components. For example, if an abstraction preserves all control
variables (i.e., all control variables are mapped by identity) and the mapping between
the concrete and abstract system is precise with respect to all guards and updates (for
control variables) on all transitions, then it is deadlock preserving. For further details,
we refer interested readers to [7,8].

4.2 Alphabet Abstraction
a

b

ca b ef e f . . .

C1 C2 C3 Cm

l11 l12

l13

l21

l22

l31

l32

a

b

ca b �� � � . . .

C1Φ C2Φ C3Φ CmΦ

l11 l12

l13

l21

l22

l31

l32

� �

S

SΦ

i h

Fig. 3. A system S and its 
-abstract system SΦ,
where ΣΦ = Σ \ {a, b, c}

Second, we present alphabet abstrac-
tion, targeting to synthesize priorities to
avoid deadlock (but also applicable for
risk-freeness with extensions). The un-
derlying intuition is to abstract concrete
behavior of components out of concern.
All proofs are listed in our extended
report [10].

Definition 8 (Alphabet Transformer). Given a set Σ of interaction alphabet. Let
ΣΦ ⊆ Σ be abstract alphabet. Define α : Σ → (Σ \ ΣΦ) ∪ {�} as the alphabet
transformer, such that for σ ∈ Σ,

– If σ ∈ ΣΦ, then α(σ) := �.
– Otherwise, α(σ) := σ.

Definition 9 (Alphabet Abstraction: Syntax). Given a system S = (C, Σ,P) and
abstract alphabet ΣΦ ⊆ Σ, define the �-abstract system SΦ to be (CΦ, (Σ \ ΣΦ) ∪
{�},PΦ), where

– CΦ =
⋃

i=1...m CiΦ, where CiΦ = (Li, Vi, ΣiΦ, TiΦ, l0i , e
0
i ) changes from Ci by

syntactically replacing every occurrence of σ ∈ Σi to α(σ).
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– P =
⋃

i=1...k σi ≺ σ′
i changes to PΦ =

⋃
i=1...k α(σi) ≺ α(σ′

i), and the relation
defined by PΦ should be transitive and nonreflexive.

The definition for a configuration (state) of a �-abstract system follows Definition 2.
Denote the set of all configuration of SΦ reachable from c0 as CSΦ . The update of
configuration for an interaction σ ∈ Σ \ ΣΦ follows Definition 3. The only difference
is within the semantics of the �-interaction.

Definition 10 (Alphabet Abstraction: Semantics for �-interaction). Given a config-
uration c = (l1, v1, . . . , lm, vm), the �-interaction is enabled if the following conditions
hold.

1. (≥ 1 participants) Exists i ∈ {1, . . . , m} where � ∈ ΣiΦ, ∃ti = (li, gi, �, fi, l
′
i) ∈

TiΦ such that g(vi) = True.
2. (No higher priorities enabled) There exists no other interaction σ� ∈ Σ, (�, σ�) ∈
PΦ such that ∀i ∈ {1, . . . , m} where σ� ∈ Σi, ∃ti� = (li, gi�, σi�, fi�, l

′′
i ) ∈ Ti,

gi�(vi) = True.

Then for a configuration c = (l1, v1, . . . , lm, vm), the configuration after taking an
enabled �-interaction changes to c� = (l�1, v

�
1, . . . , l

�
m, v�

m):

– (May-update for participated components) If � ∈ Σi, then for transition ti =
(li, gi, �, fi, l

′
i) ∈ TiΦ such that gi(vi) = True, either

1. l�i = l′i, v�
i = fi(vi), or

2. l�i = li, v�
i = vi.

Furthermore, at least one component updates (i.e., select option 1).
– (Stutter for unparticipated components) If � �∈ Σi, l�i = li, v�

i = vi.

Lastly, the behavior of a �-abstract system follows Definition 4. In summary, the above
definitions indicate that in a �-abstract system, any local transitions having alphabet
symbols within ΣΦ can be executed in isolation or jointly. Thus, we have the following
result.

Lemma 1 Given a system S and its �-abstract system SΦ, define RS (RSΦ) be the
reachable states of system S (corresponding �-abstract system) from from the initial
configuration c0. ThenRS ⊆ RSΦ .

As alphabet abstraction looses the execution condition by overlooking paired interac-
tions, a �-abstract system is deadlock-free does not imply that the concrete system is
deadlock free. E.g., consider a system S′ composed only by C2 and C3 in Figure 3.
When Φ = Σ \ {b}, its �-abstract system S′Φ is shown below. In S′, when C2 is at lo-
cation l21 and C3 is at location l31, interaction e and f are disabled, meaning that there
exists a deadlock from the initial configuration. Nevertheless, in S′Φ, as the �-interaction
is always enabled, it is deadlock free.

In the following, we strengthen the deadlock condition by the notion of �-deadlock.
Intuitively, a configuration is �-deadlocked, if it is deadlocked, or the only interaction
available is the �-interaction.
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Definition 11 (�-deadlock). Given a �-abstract system SΦ, a configuration c ∈ CSΦ is
�-deadlocked, if �σ ∈ Σ \ΣΦ, c′ ∈ CSΦ such that c

σ−→ c′.

In other words, a configuration c of SΦ is �-deadlocked implies that all interactions
labeled with Σ \ΣΦ are disabled at c.

Lemma 2 Given a system S and its �-abstract system SΦ, define D as the set of dead-
lock states reachable from the initial state in S, and D� as the set of �-deadlock states
reachable from the initial state in SΦ. Then D ⊆ D�.

Theorem 2 Given a system S and its �-abstract system SΦ, if SΦ is �-deadlock-free,
then S is deadlock-free.

(Algorithmic issues) Based on the above results, the use of alphabet abstraction and the
notion of �-deadlock offers a methodology for priority synthesis working on abstraction.
Detailed steps are presented as follows.

1. Given a system S, create its �-abstract system SΦ by a user-defined ΣΦ ⊆ Σ. In
our implementation, we let users select a subset of components Cs1 , . . . , Csk

∈ C,
and generate ΣΦ = Σ \ (Σs1 ∪ . . . ∪Σsk

).
– E.g., consider system S in Figure 3 and its �-abstract system SΦ. The abstrac-

tion is done by looking at C1 and maintaining Σ1 = {a, b, c}.
– When a system contains no variables, the algorithm proceeds by eliminateing

components whose interaction are completely in the abstract alphabet. In Fig-
ure 3, as for i = {3 . . .m}, ΣiΦ = {�}, it is sufficient to eliminate all of them
during the system encoding process.

2. If SΦ contains �-deadlock states, we could obtain a �-deadlock-free system by syn-
thesizing a set of prioritiesP+, where the defined relation≺+⊆ ((Σ\ΣΦ)∪{�})×
(Σ \ΣΦ) using techniques presented in Section 3.

– In the system encoding, the predicate P�dead for �-deadlock is defined as stg =
False ∧

∧
σ∈Σ\ΣΦ

σ = False.
– If the synthesized priority is having the form � ≺ σ, then translate it into a set

of priorities
⋃

σ′∈ΣΦ
σ′ ≺ σ.

4.3 Assume-Guarantee Based Priority Synthesis

We use an assume-guarantee based compositional synthesis algorithm for behavior
safety. Given a system S = (C1 ∪ C2, Σ,P) and a risk specification described by a
deterministic finite state automaton R, where L(R) ⊆ Σ∗. We use |S| to denote the
size of S and |R| to denote the number of states of R. The synthesis task is to find a
set of priority rules P+ such that adding P+ to the system S can make it B-Safe with
respect to the risk specification L(R). This can be done using an assume-guarantee rule
that we will describe in the next paragraph.

We first define some notations needed for the rule. The system S+ = (C1∪C2, Σ,P∪
P+) is obtained by adding priority rules P+ to the system S. We use S1 = (C1, Σ,P ∩
Σ ×Σ1) and S2 = (C2, Σ,P ∩Σ ×Σ2) to denote two sub-systems of S. We further
partition the alphabet Σ into three parts Σ12, Σ1, and Σ2, where Σ12 is the set of inter-
actions appear both in the sets of components C1 and C2 (in words, the shared alphabet
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of C1 and C2), Σi is the set of interactions appear only in the set of components Ci (in
words, the local alphabet of Ci) for i = 1, 2. Also, we require that the decomposition of
the system must satisfy that P ⊆ Σ × (Σ1 ∪Σ2), which means that we do not allow a
shared interaction to have a higher priority than any other interaction. This is required
for the soundness proof of the assume-guarantee rule, as we also explained in the ex-
tended report [10] that we will immediately lose soundness by relaxing this restriction.
For i = 1, 2, the system Si+ = (Ci ∪ {di}, Σ, (P ∩ Σ ×Σi) ∪ Pi) is obtained by (1)
adding priority rules Pi ⊆ Σ ×Σi to Si and, (2) in order to simulate stuttering transi-
tions, adding a component di that contains only one location with self-loop transitions
labeled with symbols in Σ3−i (the local alphabet of the other set of components). Then
the following assume-guarantee rule can be used to decompose the synthesis task into
two smaller sub-tasks:

L(S1+) ∩ L(R) ∩ L(A) = ∅ (a) L(S2+) ∩ L(A) = ∅ (b)
L(S+) ∩ L(R) = ∅ (c)

The above assume-guarantee rule says that S+ is B-Safe with respect to L(R) iff there
exists an assumption automaton A such that (1) S1+ is B-Safe with respect to L(R) ∩
L(A) and (2) S2+ is B-Safe with respect to L(A), where A is the complement of A,
P+ = P1∪P2 and no conflict in P1 and P2. The above rule is both sound and complete
for behavior safety verification (see [10]). However, it is unsound for deadlock freeness.
An example can be found at the beginning of Section 4.

Notice that (1) the complexity of a synthesis task is NP-complete in the number of
states in the risk specification automaton product with the size of the system and (2)
|S| is approximately equals to |S1| × |S2|5. Consider the case that one decomposes the
synthesis task of S with respect to L(R) into two subtasks using the above assume-
guarantee rule. The complexity original synthesis task is NP-complete in |S| × |R| and
the complexity of the two sub-tasks are |S1| × |R| × |A| and |S2| × |A|6, respectively.
Therefore, if one managed to find a small assumption automaton A for the assume-
guarantee rule, the complexity of synthesis can be greatly reduced. We propose to use
the machine learning algorithm L* [3] to automatically find a small automaton that is
suitable for compositional synthesis. Next, we will first briefly describe the L* algo-
rithm and then explain how to use it for compositional synthesis.

The L* algorithm works iteratively to find a minimal deterministic automaton rec-
ognizing a target regular language U . It assumes a teacher that answers two types of
queries: (a)membership queries on a string w, where the teacher returns true if w is in
U and false otherwise, (b)equivalence queries on an automaton A, where the teacher
returns true if L(A) = U , otherwise it returns false together with a counterexample
string in the difference of L(A) and U . In the i-th iteration of the algorithm, the L* al-
gorithm acquires information of U by posing membership queries and guess a candidate
automaton Ai. The correctness of the Ai is then verified using an equivalence query. If
Ai is not a correct automaton (i.e., L(A) �= U ), the counterexample returned from the
teacher will be used to refine the conjecture automaton of the (i + 1)-th iteration. The
learning algorithm is guaranteed to converge to the minimal deterministic finite state

5 This is true only if the size of the alphabet is much smaller than the number of reachable
configurations.

6 Since A is deterministic, the sizes of A and its complement A are identical.
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Fig. 4. The flow of the assume-guarantee priority synthesis

automaton of U in a polynomial number of iterations7. Also the sizes of conjecture
automata increase strictly monotonically with respect to the number of iterations (i.e.,
|Ai+1| > |Ai| for all i > 0).

The flow of our compositional synthesis is in Figure 4. Our idea of compositional
synthesis via learning is the following. We use the notations S+

i to denote the system
Si equipped with a stuttering component. First we use L* to learn the language L(S+

2 ).
Since the transition system induced from the system S+

2 has finitely many states, one
can see that L(S+

2 ) is regular. For a membership query on a word w, our algorithm
simulates it symbolically on S+

2 to see if it is in L(S+
2 ). Once the L* algorithm poses an

equivalence query on a deterministic finite automaton Ai, our algorithm tests conditions
L(S+

1 ) ∩ L(R) ∩ L(Ai) = ∅ and L(S+
2 ) ∩ L(Ai) = ∅ one after another. So far,

our algorithm looks very similar to the compositional verification algorithm proposed
in [14]. There are a few possible outcomes of the above test

1. Both condition holds and we proved the system is B-Safe with respect to L(R) and
no synthesis is needed.

2. At least one of the two conditions does not hold. In such case, we try to synthesize
priority rules to make the system B-Safe (see the details below).

3. If the algorithm fails to find usable priority rules, we have two cases:
(a) The algorithm obtains a counterexample string ce in L(S+

1 ) ∩ L(R) \ L(Ai)
from the first condition. This case is more complicated. We have to further test
if ce ∈ L(S+

2 ). A negative answer implies that ce is in L(Ai) \ L(S+
2 ). This

follows that ce can be used by L* to refine the next conjecture. Otherwise, our
algorithm terminates and reports not able to synthesize priority rules.

(b) The algorithm obtains a counterexample string ce in L(S+
2 ) \ L(Ai) from the

second condition, in such case, ce can be used by L* to refine the next conjec-
ture.

The deterministic finite state automata R, Ai, and also its complement Ai can be treated
as components without data and can be easily encoded symbolically using the approach

7 In the size of the minimal deterministic finite state automaton of U and the longest counterex-
ample returned from the teacher.
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in Section 3.1. Also the two conditions can be tested using standard symbolic reacha-
bility algorithms.

Compositional Synthesis. Recall that our goal is to find a set of suitable priority rules
via a small automaton Ai. Therefore, before using the ce to refine and obtain the next
conjecture Ai+1, we first attempt to synthesis priority rules using Ai as the assumption
automaton. Synthesis algorithms in previous sections can then be applied separately to
the system composed of {S+

1 , R, Ai} and the system composed of {S+
2 , Ai} to obtain

two non-conflicting priority rules P1i ⊆ (Σ1∪Σ12)×Σ1 and P2i ⊆ (Σ2∪Σ12)×Σ2.
Then P1i ∪ P2i is the desired priority for S to be B-Safe with respect to R. To be more
specific, we first compute the CNF formulae f1 and f2 (that encode all possible priority
rules that are local, i.e., we remove all non-local priority candidates) of the two systems
separately using the algorithms in Section 3, and then check satisfiability of f1 ∧ f2.
The priority rules P1i and P2i can be derived from the satisfying assignment of f1∧f2.

5 Evaluation

We implemented the presented algorithms (except connection the data abstraction mod-
ule in D-Finder [8]) in the VISSBIP8 tool and performed experiments to evaluate them.
To observe how our algorithm scales, in Table 1 we summarize results of synthesizing
priorities for the dining philosophers problem9. Our preliminary result in [11] fails to
synthesize priorities when the number of philosophers is greater than 15 (i.e., a total
of 30 components), while currently we are able to solve problems of 50 within rea-
sonable time. By analyzing the bottleneck, we found that 50% of the execution time
are used to construct clauses for transitive closure, which can be easily parallelized.
Also the synthesized result (i) does not starve any philosopher and (ii) ensures that each
philosopher only needs to observe his left and right philosopher, making the resulting

Table 1. Experimental results

Time (seconds) # of BDD variables
Problem NFM1Opt.2 Ord.3 Abs.4 NFM Opt. Ord. Abs. Remark
Phil. 10 0.813 0.303 0.291 0.169 202 122 122 38 1 Engine based on [11]
Phil. 20 - 86.646 0.755 0.166 - 242 242 38 2 Dense var. encoding
Phil. 25 - - 1.407 0.183 - - 302 38 3 Initial var. ordering
Phil. 30 - - 3.740 0.206 - - 362 38 4 Alphabet abstraction
Phil. 35 - - 5.913 0.212 - - 422 38 - Timeout/Not evaluated
Phil. 40 - - 10.210 0.228 - - 482 38
Phil. 45 - - 18.344 0.213 - - 542 38
Phil. 50 - - 30.384 0.234 - - 602 38

DPU v1 5.335 0.299 x x 168 116 x x R Priority repushing
DPU v2 4.174 0.537 1.134R x 168 116 116R x x Not evaluated

Traffic x x 0.651 x x x 272 x

8 Available for download at http://www6.in.tum.de/˜chengch/vissbip
9 Evaluated under Intel 2.93GHz CPU with 2048Mb RAM for JVM.

http://www6.in.tum.de/~chengch/vissbip
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priority very desirable. Contrarily, it is possible to select a subset of components and
ask to synthesize priorities for deadlock freedom using alphabet abstraction. The exe-
cution time using alphabet abstraction depends on the number of selected components;
in our case we select 4 components thus is executed extremely fast. Of course, the syn-
thesized result is not very satisfactory, as it starves certain philosopher. Nevertheless,
this is unavoidable when overlooking interactions done by other philosophers. Except
the traditional dining philosophers problem, we have also evaluated on (i) a BIP model
(5 components) for data processing in digital communication (DPU; See [10] for de-
scription) (i) a simplified protocol of automatic traffic control (Traffic). Our preliminary
evaluation on compositional priority synthesis is listed in [10].

6 Related Work

For deadlock detection, well-known model checking tools such as SPIN [18]
and NuSMV [13] support deadlock detection by given certain formulas to specify the
property. D-Finder [8] applies compositional and incremental methods to compute in-
variants for an over-approximation of reachable states to verify deadlock-freedom au-
tomatically. Nevertheless, all the above tools do not provide any deadlock avoidance
strategies when real deadlocks are detected.

Synthesizing priorities is subsumed by the framework of controller synthesis
proposed by Ramadge and Wohnham [22], where the authors proposed an automata-
theoretical approach to restrict the behavior of the system (the modeling of environ-
ment is also possible). Essentially, when the environment is modeled, the framework
computes the risk attractor and creates a centralized controller. Similar results using
centralized control can be dated back from [5] to the recent work by Autili et al [4] (the
SYNTHESIS tool). Nevertheless, the centralized coordinator forms a major bottleneck
for system execution. Transforming a centralized controller to distributed controllers
is difficult, as within a centralized controller, the execution of a local interaction of a
component might need to consider the configuration of all other components.

Priorities, as they are stateless, can be distributed much easier for performance and
concurrency. E.g., the synthesized result of dining philosophers problem indicates that
each philosopher only needs to watch his left and right philosophers without considering
all others. We can continue with known results from the work of Graf et al. [17] to
distribute priorities, or partition the set of priorities to multiple controllers under layered
structure to increase concurrency (see work by Bonakdarpour et al. [9]). Our algorithm
can be viewed as a step forward from centralized controllers to distributed controllers,
as architectural constraints (i.e., visibility of other components) can be encoded during
the creation of priority candidates. Therefore, we consider the work of Abujarad et
al.[1] closest to ours, where they proceeds by performing distributed synthesis (known
to be undecidable [21]) directly. In their model, they take into account the environment
(which they refer it as faults), and consider handling deadlock states by either adding
mechanisms to recover from them or preventing the system to reach it. It is difficult to
compare two approaches directly, but we give hints concerning performance measure:
(i) Our methodology and implementation works on game concept, so the complexity of
introducing the environment does not change. (ii) In [1], for a problem of 1033 states,
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Priority synthesis via localization and repair
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Fig. 5. The framework of priority synthesis presented in this paper, where the connection with the
D-Finder tool [8] is left for future work

under 8-thread parallelization, the total execution time is 3837 seconds, while resolving
the deadlock of the 50 dining philosophers problem (a problem of 1038 states) is solved
within 31 seconds using our monolithic engine.

Lastly, the research of deadlock detection and mechanisms of deadlock avoidance
is an important topic within the community of Petri nets (see survey paper [20] for
details). Concerning synthesis, some theoretical results are available, e.g., [19], but ef-
ficient implementation efforts are, to our knowledge, lacking.

7 Conclusion

In this paper, we explain the underlying algorithm for priority synthesis and propose ex-
tensions to synthesize priorities for more complex systems. Figure 5 illustrates a poten-
tial flow of priority synthesis. A system can be first processed using data abstraction to
create models suitable for our analysis framework. Besides the monolithic engine, two
complementary techniques are available to further reduce the complexity of problem
under analysis. Due to the stateless property and the fact that they preserve deadlock-
freedom, priorities can be relatively easily implemented in a distributed setting.
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Abstract. SPKI/SDSI is a distributed Public Key Infrastructure (PKI)
framework that allows for issuing authorisation certificates granting per-
missions to access selected parts of privileged data not only to single
principals, but also to user-defined groups. The fact that the protocol
is decentralised and there is no designated entity that verifies the iden-
tity of the users of the system makes the trustfulness vary significantly
from one user to another. In order to tackle this problem in decentralised
PKI systems many trust metrics were created for computing how much
one user can trust another even if they have never interacted with each
other before, e.g. the Web of Trust in PGP. We show how to apply two
of these metrics in the SPKI/SDSI setting. Specifically, a metric that
interprets these values as a probability of non-failure and a metric inter-
preting them as flows. The fact that SPKI/SDSI is essentially as power-
ful as pushdown systems makes computation of these trust metrics a lot
harder in our setting than when the system can be represented as a finite
graph. Actually, both of these problems are shown to be #P-complete,
but at the same time we show a randomised approximation algorithm
for the trust metric based on the probabilistic interpretation. Finally, to
test how fast these values can be computed in practise, we implemented
them in a tool called Spookey. Spookey allows for representing an ar-
bitrary system of SPKI/SDSI certificates labelled with trust values. We
present the performance results obtained by using our tool.

1 Introduction

Internet allows people around the globe to freely communicate with each other,
share files and photos, engage in financial transactions, e.g. on eBay, or buy prod-
ucts online in shops. But such an open environment becomes an easy target for
abuse and it is common to encounter agents fraudulently masquerading them-
selves as a person or an online shop that we trust. The two problems that we need
to challenge in this setting are authentication, which is verifying that the entity
we interact with is really the one that we think it is, and authorisation, which
is verifying whether a given entity who was successfully authenticated has the
rights to access some resource. Public Key Infrastructure (PKI) was developed
to tackle the authentication problem. The currently widely adopted solution is
defined by protocol X.509 that relies on the existence of so called Certifica-
tion Authorities (CAs). A CA is an institution that is responsible for granting
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certificates to trustworthy principals and whose responsibility is to check that
the details specified in the issued certificate correspond to the valid information
about that person or organisation. Only once this personal information is thor-
oughly verified, such a certificate can be signed by the CA’s private key. The
main assumption of this framework is that every user is in the possession of the
valid public keys of all the CAs. Usually it is done by embedding these keys into
the operating systems or the web browsers. The other underlying assumption
is that each CA can be fully trusted. Any not fully trustworthy CA makes it
easy to compromise the whole system and indeed there were cases when CAs
signed fraudulent certificates. However, decentralised PKI systems emerged as
an alternative to this approach. One of them is PGP [24] (Pretty Good Privacy),
the most popular solution for confidential e-mail communication, another one is
SPKI/SDSI [8] (Simple Public Key Infrastructure/Simple Distributed Security
Infrastructure).

In PGP each user first generates his own private-public cryptographic key pair
and then sends his public key bound together with his name and e-mail address
to one of the key servers for storage and easy retrieval. To increase the reliability
of these bindings, PGP introduced a security fault tolerance mechanism called
the Web of Trust that works as follows. Each user can sign a public key that he
trusts with his own private key. Such a signature is called a certificate and it
can be easily verified whether it is valid and to which public key it corresponds
to; such certificates are stored along the public keys at the key servers. Now,
if someone trusts a given person and he possesses his valid public key then he
should as well trust all the public keys that were certified correctly by that
person’s private key. This mechanism was later also used in other systems, e.g.
the SSL certificates issued free of charge by CAcert.org [5] to the public have
associated assurance points that increase with the number of times the identity
of the owner of the certificate has been verified in person by the other users of the
system. However, trusting equally all public keys that can be reached by such a
certificate chain is problematic, because intuitively long certificate chains should
be less trusted than short ones, while on the other hand, multiple independent
certificate chains should increase our confidence. This was already pointed out in
[24] and lead to the design of the first simple trust metric for the PGP’s Web of
Trust, i.e. a way of estimating how much confidence one should have in a given
public key based on the information about the system. Since that time many
more trust metrics were proposed. We will examine some of them later, after we
define the SPKI/SDSI authorisation framework first.

SPKI/SDSI (pronounced “spooky-sudsy”) is a distributed authorisation
framework first specified in [8]. It was created by combining SPKI’s style au-
thorisation certificates and SDSI’s S-expression naming schema and in short
looks as follows. Any person, host or an organisation participating in the system
is called a principal and it is identified with its public key. The public key of
principal X will be denoted by KX . An identifier is any non-empty word over
some fixed alphabet and is used to assign roles to principals. A term is a key
followed by an arbitrary (and possibly empty) list of identifiers, i.e. public key
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<list of ids>. Each principal defines in his own namespace many-to-one con-
nections between roles and principals by issuing name certificates (in short name
certs). The SDSI specification allows for referring to principals by roles defined
in other principal’s namespaces. For instance KAlice friend → KBob specifies
that Bob is a friend of Alice, KAlice friend → KBob friend specifies that all
Bob’s friends are also friends of Alice, and KAlice friend friend → KAlice

friend specifies that all friends of friends of Alice are also her friends. Formally,
a name cert looks as follows: public key id → t, where t is an arbitrary term.
Principals can also issue authorisation certificates (in short auth certs). Such
certificates grant particular principals or user’s specified roles, permission to op-
erate on some of the resources the issuer owns. This allows the user to grant
permission to a whole group of people not just individuals. For auth certs in
SPKI/SDSI user can specify what resources he is granting the permission to
and the validity period of the certificate. However, we will not consider these
aspects in our analysis, because all expired auth certs can be easily removed
at the very beginning of the analysis together with all auth certs that concern
resources we are not interested in. Thanks to this assumption, an auth cert can
simply be represented as: public key id � → t �/�, where t is again an arbi-
trary term. The difference between an auth cert ending with � and one with �
is the following: the principal granted access to a resource with � can delegate
this authorisation further, while an authorisation with � does not allow for such
a delegation. For any name or auth cert x → y, x would be called its head and y
would be called its tail. As pointed out in [6], certificates can be interpreted as
prefix rewrite rules that can be composed iff they are compatible with each other,
i.e. the prefix of the tail of the first one is the same as the head of the other.
For instance, a name certs K1 id1 → K2 id2 id3 can be composed with name
cert K2 id2 → K3 id4 to give a name cert K1 id1 → K3 id4 id3 or an auth
cert K1 � → K2 id1 � can be composed with a name cert K2 id1 → K3 to
give an auth cert K1 � → K3 �. By repeating this procedure we can generate
the closure of a given certificate set that can potentially contain infinitely many
certificates. Now, a principal Y is allowed to access resources of principal X ,
denoted by KX ↪→ KY , iff this closure contains the certificate KX � → KY � or
KX � → KY �. The problem of deciding whether KX ↪→ KY holds was already
solved in [6], by computing the name-reduction closure of a certificate set; such
a set of certificates is always finite.

Jha and Reps in [12] observed that any SPKI/SDSI certificate set is essentially
a Pushdown System, where the set of control states is the same as the set of public
keys and the stack alphabet contains the set of all identifiers plus the two special
symbols � and �. A state of such a Pushdown System is a pair (public key, <a
list/stack of ids>) and it was shown there that the state (KY ,�/�) is reachable
from (KX ,�) in such a transition system iff KX ↪→ KY holds in the original
SPKI/SDSI certificate set. This algorithm has certain advantages over the name-
reduction closure one as it allows to answer a lot more general authorisation
problems using existing theory of pushdown systems.
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Coming back to the Web of Trust in PGP, the problem with trusting equally
all certificate chains of arbitrary length is that one cannot be always 100% sure
that a given public key really belongs to the person he thinks it belongs to, i.e.
how much he trusts that this key binding is correct. So the assigned trust to a
certificate chain should intuitively decrease with its length. Moreover, even if the
key binding to a given person is correct, we may have doubts how trustworthy
she actually is when it comes to issuing certificates. Some people can be really
careless when signing public keys while others take extra measures in order to
verify the identity of the owner of a public key and will not sign it until they
are absolutely sure that everything is right. In order to be on the safe side, we
would need to remove all delegations to principals that we do not fully trust.
An alternative solution is to allow the user to specify for each certificate how
often, he thinks, the owner of the certified public key verifies her connections
correctly. As in real-life trust values can vary between completely untrusted to
completely trusted and all intermediate degrees are possible, so it is natural
to represent the confidence by real numbers from 0 to 100%. Unlike the trust
assigned to a key binding, the confidence of one person towards another should
not be revealed publicly. A trust metric is a function that assigns a trust value
to a given request or a public key from the perspective of another public key
based on the full description of the trust network. A problem arises how can one
compute the value of a trust metric without having to ask for the trust values
that should be kept private. In our setting, we will simply assume that the user
assigns just a single trust value to each of his certificates which in a way blends
these private and public trust values together.

Every good trust metric should have the following set of intuitive properties.
As pointed out in [19], one of them is that its value should have a clear intuitive
meaningful interpretation. On top of that, trust should increase with the number
of certificate chains that certify that a given public key is correct, but it should
also take into consideration dependencies between such chains. If all of them
depend on a single certificate then the assigned trust cannot be higher than
the trust assigned to that crucial certificate. On the other hand, if there are
multiple completely independent certification chains, the trust value should be
higher than the maximum of the trust value assigned to any of them. It is simply
because even if the certificate chain with the maximum trust value fails, there
is still another chain that certifies that a given public key is valid.

A natural quantitative trust model for PGP’s Web of Trust that captures all
these phenomena was introduced by Maurer in [16]. Maurer considered the trust
to range from marginal to ultimately trusted and so it can take any possible value
between 0 (completely untrusted) and 1 (fully trusted). The trust assigned to a
certificate is interpreted as the probability of that certificate being valid. In this
model, the Web of Trust is represented by a finite graph where nodes correspond
to the public keys and edges correspond to the certificates between them. Each
edge is labelled with the probability of that edge actually existing in this graph.
Now, the probability that there is a path from node u to node v in such a graph is
the absolute trust the owner of the public key u should have in the public key v.
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This model, in a natural way, also captures dependencies between certification
chains and reinforcement of trust in the case of independent certification chains
existing in a given system. Maurer also distinguished between the trust assigned
to the key binding and the trust in the other person’s reliability when it comes
to signing other public keys. As pointed out before, we will not consider the
distinction between these two values in our models, but we could quite easily
extend them to handle it if necessary.

In exactly the same way we can assign and then interpret the trust values on
the name and auth certs in SPKI/SDSI systems. In other words, a cert in such a
system is valid with probability equal to the trust assigned to that rule. In this
interpretation, the trust we should assign to the authorisation request K ↪→ K′

is the probability that the closure of the certificate set, after all the invalid
certificates were removed from it, contains K � → K′ �. Let us consider the
following example, where each certificate is annotated with its trust value.

KAlice � 0.9→ KAlice Dept of CS Bob �

KAlice Dept of CS
0.8→ KAlice Uni of Liverpool Dept of CS

KAlice Uni of Liverpool
0.9→ KUoL

KUoL Dept of CS
0.9→ KDoCS

KDoCS Bob
0.9→ KBob

KAlice � 0.9→ KAlice Bob �

KAlice Bob
0.2→ KBob

We would like to know whether Bob can access Alice’s computer. Alice requires
a confidence of at least 60% in order to allow the access. In the Pushdown
System interpretation of this example, we are looking for a path starting in
(KAlice,�) and ending in (KBob,�/�). There are two such paths: KAlice � 0.9→
KAlice Dept of CS Bob � 0.8→ KAlice Uni of Liverpool Dept of CS Bob � 0.9→
KUoL Dept of CS Bob � 0.9→ KDoCS Bob � 0.9→ KBob � and KAlice � 0.9→
KAlice Bob � 0.2→ KBob �. The assigned confidence would be the probability
of both of these independent certification chains not failing which is equal to
1 − (1 − 0.8 · 0.94) · (1 − 0.9 · 0.2) ≈ 0.61 and the access would be granted.

In the past ten years there was a substantial research in devising new more
robust trust metrics for distributed PKI and many new trust metrics emerged,
e.g. [19,15,14], the first such properly defined metric being [3]. These metrics
were compared to each other in [15] in respect how strong they are against
various possible attack scenarios. An attack of a malicious person whose public
key is part of the system and who issues extra certificates in order to manipulate
the other users’ value of the trust metric, and also an attack where one of the
trustworthy private keys in the system has been compromised were considered. It
has turned out that a metric proposed in [15,19] based on interpreting the trust
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values as flows in a finite graph and computing the maximal flow from the source
public key to the target public key is the most resistant one according to the
suggested criteria. Moreover, such a metric in the setting of finite graphs has a
big advantage of being computable in polynomial time using a classical algorithm
for finding maximum flow in a graph [9]. The only undesirable property of this
trust metric is that a long chain consisting of not fully trusted certificates, e.g.
all having the trust value p < 1, will have the same trust assigned to it as a
short chain with all certificates having the trust value p.

When we try to apply this trust metric to the SPKI/SDSI setting, we would
like to keep the following intuition behind it: In the situation where the weights
on all certificates are 1 (i.e. they are all fully trusted) the value of the metric for
a given authorisation request is equal to the number of completely independent
derivations of that request. Specifically, if the value of the metric is k, this means
that we can find k disjoint certificate subsets C1, . . . , Ck of the whole certificate
set such that in each certificate set Ci the authorisation request succeeds. In
the case when not all the trust values are equal to 1, then each set Ci comes
with some weight ∈ [0, 1] and a single certificate can be in multiple such sets
as long as the total weight of the sets that contain it do not exceed the trust
value of that certificate. This is similar to the situation in the flow networks
where multiple flow carrying paths can use the same edge as long as they do
not exceed its capacity. We will later formally define our trust metric based on
the minimum cut of the certificate set, i.e. the minimum sum of the trust values
among all subsets of certificates whose removal from the system causes a given
authorisation request to fail. Therefore, we will call this metric the mincut trust
metric. As it is well-known, for finite graphs the value of the minimum cut and
the maximum flow coincide. Similarly here, the intuition behind the value of
the just defined trust metric and the minimum cut formulation give the same
value. For the same example presented before, the value of the mincut trust
metric is 0.8 + 0.2 = 1, because it suffices to remove the KAlice Dept of CS

0.8→
KAlice Uni of Liverpool Dept of CS and KAlice Bob

0.2→ KBob certificates to
invalidate both of the chains certifying KAlice ↪→ KBob. The value 1 of the mincut
trust metric in this case is the same as if one fully trusted path connecting KAlice

with KBob existed in this system.
We think that our extension of SPKI/SDSI with trust values specification can

be useful for constructing authorisation systems with an integrated trust man-
agement system. For an overview how to define trust and how trust management
systems are being used in practice see [10,13,21].

Related Work: The first attempt to allow for assigning trust values to the
certificates in the SPKI/SDSI system was already done in [12] where the con-
nection between SPKI/SDSI and Pushdown Systems was established. The trust
metric proposed there is based on labelling each certificate with a trust value
from a bounded idempotent semiring and using this semiring’s ⊗ operator to
compute the value of the trust metric for a single path and this semiring’s ⊕
operator to compute the trust metric for a set of paths in order to derive the
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final value of the trust metric for a given authorisation request. This effectively
implies that there are only finitely many levels of trust, e.g. low, medium, high.
Also, the value of the trust metric for several completely independent certifi-
cate chains is the same as the maximum trust value assigned to any of them,
essentially as if the other certificate chains did not exist in the system. Another
model that extends SPKI/SDSI certificates with trust values was given in [4].
An authorisation certificate in their setting is interpreted as recommendation
rather than authorisation. The values assigned to the certificates are normalised
so that they sum up to 1 for all certificates with the same head. These values are
then interpreted as the probability of using a given certificate once it becomes
applicable. One can then compute how often a given key occurs during such a
random walk on this certificate set and use this value as a measure of reputation
of the owner of this key when compared to the other principals. Notice, however,
that this does not help in deciding whether a given principal should be allowed
to access a given resource, because the relative trustworthiness of the principals
is the same in the case where all of them are completely untrustworthy and in
the case where they are all completely trustworthy.

2 Formal Definitions

As mentioned before, Pushdown Systems (PDSs) can directly encode arbitrary
SPKI/SDSI certificate sets ([12]), and so we will formally define our trust metrics
for PDSs only.

A Pushdown System (PDS), P , is a 3-tuple (Q,Γ,Δ) consisting of a finite set
of control states Q, a finite stack alphabet Γ , and a set of transition rules Δ ⊆
Q×Γ×Q×Γ ∗. We will write pX → qα to denote (p,X, q, α) ∈ Δ. When looking
at a PDS as a SPKI/SDSI system, some of these rules will correspond to auth
certs, some to name certs and some can make no sense in the SPKI/SDSI setting
(e.g. p � → q � �). A configuration of a PDS is a pair pα ∈ Q×Γ ∗ consisting
of a control state and the content of the stack. The set of all configurations of
a given PDS P will be denoted by conf(P). A PDS P generates in a natural
way a transition system SP = (conf(P),→P) on the set of configurations of P
as follows. There is a transition in →P from the state (u,Xα) to (v, βα), where
u, v ∈ Q, X ∈ Γ and α, β ∈ Γ ∗, iff (u,X, v, β) ∈ Δ. We will write ⇒P for the
reflexive transitive closure of →P . We say that a given request pα ↪→ qβ holds in
P iff pα ⇒P qβ. Notice that this means that in the SPKI/SDSI setting K ↪→ K
always succeeds for any K regardless of the set of the transition rules (i.e. the
certificates present in the system).

A Labelled Pushdown System (LPDS) is a PDS that comes with a labelling
function of the transition rules, Λ : Δ → [0, 1], that assigns a real number
between 0 and 1 to each rule. In general, the label could be taken from some
arbitrary set, but for our purposes we restrict it to the [0, 1] interval only.

The value of the probabilistic trust metric (PTM), for a given LPDS
P = (Q,Γ,Δ,Λ) and request pα ↪→ qβ is defined as follows. First, let us define
an indicator function χ : 2Δ → {0, 1}, such that for any certificate set Δ′ ⊆ Δ
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we have χ(Δ′) = 1 if pα ⇒P′ qβ holds in the pushdown system P ′ = (Q,Γ,Δ′)
and χ(Δ′) = 0 otherwise. The value of the trust metric PTM is given by:

PTM(P) =
∑

Δ′⊆Δ

χ(Δ′)
∏

e∈Δ′
Λ(e) ·

∏
e∈Δ\Δ′

(1 − Λ(e)).

Intuitively, this adds up the probability of all pushdown systems resulting from
removing some of the rules from P and for which the given authorisation request
succeeds. The probability of a given pushdown system occurring is equal to the
product of trust values of the rules that it contains times the product of one
minus the trust value of the rules that were removed.

On the other hand, the value of the mincut trust metric (MTM) for a given
LPDS P = (Q,Γ,Δ,Λ) and request pα ↪→ qβ, where pα 	= qβ, is defined as
follows.

MTM(P) = min
{Δ′⊆Δ|χ(Δ\Δ′)=0}

∑
e∈Δ′

Λ(e)

Intuitively, it is the minimum sum of the trust values of rules that once removed
fromΔ cause the given request to fail. For finite graphs this problem is equivalent
to finding the maximum flow in a graph. When pα = qβ we set MTM(P) = ∞,
because even if we remove all rules the request will succeed and such a request
should be assigned the highest possible trust value; for this metric it is ∞, for
PTM it would be 1.

Notice that we can transform any LPDS P = (Q,Γ,Δ,Λ) into an LPDS
P ′ = (Q′, Γ,Δ′, Λ′) such that PTM(P) = PTM(P ′) and MTM(P) = MTM(P ′)
and all rules in Δ′ have at most two stack symbols on the right-hand side, i.e.
Δ′ ⊆ Q × Γ × Q × Γ≤2, in the following way. We start with Q′ = Q and
for every rule (p,X, q, Y1Y2 . . . Yn) ∈ Δ such that n > 2 we add new control
states q1, q2, . . . , qn−2 to Q′ and the following rules to Δ′: (p,X, qn−2, Yn−1Yn),
(qn−2, Yn−1, qn−3, Yn−2Yn−1),. . .,(q1, Y2, q, Y1Y2). Moreover, we set

Λ′((p,X, qn−2, Yn−1Yn)) := Λ((p,X, q, Y1Y2 . . . Yn))

and for all other newly added rules r we set Λ′(r) := 1. For rules r = (p,X, q, α) ∈
Δ such that |α| ≤ 2 we just add r to Δ′ and set Λ′(r) := Λ(r). Such a LPDS is
then said to be in a normal form.

3 Complexity of Computing the Trust Metrics

In the rest of the paper, whenever we say that we cannot efficiently compute
something we mean that we cannot do it in polynomial time unless P = NP or
some even stronger computational complexity assumption holds.

Probabilistic graphs are a standard model studied since the 1970s in the con-
text of reliability estimation of telecommunication networks (see [1] for a sur-
vey). In such finite graphs an edge fails between two nodes with some given
probability. Our Labelled Pushdown systems can obviously simulate all possible
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probabilistic graphs and so the problem of computing the value of the prob-
abilistic trust metric for a given authorisation problem is at least as hard as
computing the probability of connectedness of two particular nodes (called s-t
connectedness problem) in a probabilistic graph. This problem was shown to be
#P -complete in [17]. The complexity class #P was defined by Valiant in [22]
as a class of function problems that output the number of accepting paths of a
given nondeterministic polynomial time Turing machine. Clearly, any problem
that is #P-hard is also NP-hard, because it is easier to check whether there is
at least one accepting path than to count the number of them. Since then many
other natural computational problems were shown to be #P-hard. We will now
show that computing the mincut trust metric for a given authorisation request is
also #P-hard. On the other hand, using the techniques from [22] one can check
that computing the value of these two trust metrics is in #P, so both problems
are #P-complete.

Theorem 1. The problem of computing the mincut trust metric for weighted
SPKI/SDSI certificate sets is #P-complete and even the problem of outputting a
value that is no more than O(logm) times bigger than the optimum value, where
m is the number of name certs in the certificate set, is NP-hard.

Proof. The proof is by reduction from the minimum set cover problem, which
is #P-complete [22] and defined as follows: Given a set X of n elements and a
family S of m subsets, S1, . . . , Sm, of X such that

⋃
S = X , output a subfamily

C of S with the minimum size such that
⋃
C = X . The problem of approximating

the minimum size of such a family C to within a O(logm) relative factor (i.e.
the problem of outputting for any given instance a number which is at most
O(logm) times bigger than the optimum value) is NP-hard [18].

In fact, we will show that the problem is #P-hard even if the weighted
SPKI/SDSI certificate set, D, have just two keys and all weights are equal to 1.
The two keys will be denoted by K and K′, and {S1, . . . , Sm} will be the set of
identifiers. For each x ∈ X we add a single auth cert to D. This auth cert looks
as follows: let Si1 , Si2 , . . . , Sil

be the list of all sets in the family S that contain x;
the auth cert to add is K � → K′ Si1Si2 . . . Sil

�. Moreover, for each set Si ∈ S
we add the following name cert: K′ Si → K′ . We show that the (X,S) has a
minimum set cover of size k iff the minimum number of certificates needed to be
removed from D in order for the authorisation request K ↪→ K′ to fail is k.

(⇒) Take the minimum set cover C and for every S ∈ C remove all the name
certs of the form K′ S → K′ from D. Notice that, because C is a set cover, the
tail of every auth cert in D will have at least one identifier whose corresponding
name cert was removed and this will not let the rewriting of that auth cert to
proceed. Therefore, K ↪→ K′ will not hold in such a system.

(⇐) Let R be a set of certificates such that K ↪→ K′ does not to hold in D\R
and whose cardinality is minimal and equals k. Notice that we can assume that
R does not contain any auth cert of the form K � → K′ Si1 . . . Sil

�, because
removing the name cert K′ Si1 → K′ instead would make it impossible for
that auth cert to be rewritten and at the same time preserves the cardinality
of R. Therefore, let R = {K Si1 → K , . . . ,K Sik

→ K }. It is now easy to
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see that C = {Si1 , . . . , Sik
} is a set cover of X , because otherwise the auth cert

corresponding to any x ∈ X \
⋃
C would prove that K ↪→ K′ .

We require two keys in this reduction only because of a technical issue that
for any key K, the authorisation K ↪→ K succeeds by default straight from
the definition. Certificate sets with only one key can be seen as Context-Free
Grammars and therefore we can easily obtain the following result of independent
interest.

Corollary 2. The following problem is #P-complete: Given a Context-Free
Grammar G, a word w generated by G, output the minimum number of rewrite
rules that have to be removed from G so that the word w is no longer generated
by G.

Moreover, it follows from the proof that not only we cannot efficiently compute
the value of the mincut trust metric for D, but also we cannot approximate
it better than within O(logn) relative factor, where n is the number of name
certs in D. If we require D to be in a normal form, then this inapproximability
threshold will not hold anymore as transforming the auth certs used in the
reduction to a normal form will introduce many new name certs into D. However,
even in that case we can show that it is NP-hard to approximate that value to
a relative factor better than 1.3606 by reducing from the minimum vertex cover
[7], which is defined as follows: Given a undirected graph (V,E), compute the
minimum cardinality of a set V ′ ⊆ V such that for all (s, t) ∈ E, we have
s ∈ V ′ or t ∈ V ′. The reduction is given by the following certificate set D:
For each vertex s ∈ V we have a symbol Vs and a name cert K′ Vs → K′ .
For each edge (s, t) ∈ E we introduce a symbol Es,t together with a name cert
K′ Es,t → K′ VsVt and an auth cert K � → K′ Es,t�. Using the same reasoning
as before we can show that the minimum vertex cover of (V,E) is k iff the
minimum number of rules needed to be removed from D for the authorisation
request K ↪→ K′ to fail is k.

4 Approximation of the Trust Metrics

Although computing the probabilistic trust metric is #P-complete, this does not
rule out the possibility of efficiently approximating it for any given SPKI/SDSI
certificate set. Unfortunately, it was shown in [17] that even approximation of
the s-t connectedness of a probabilistic graph within a given ε > 0 additive error
(specified as a rational number in the binary notation) is #P-hard, so the same
holds for the approximation of our metric. On the other hand, another option is a
Monte Carlo algorithm (see, e.g. [20]), that basically randomly samples the state
space and computes how often such a picked instance satisfies the property. When
such an algorithm is run for a “long enough” time, the frequency of the property
being satisfied by randomly chosen instances is a good approximation (but only
with some probability less than 1) of the actual probability that the property
is satisfied. The drawback of such a solution is that we cannot verify whether
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the returned value is a good approximation or not. In order to know what “long
enough” is, we will make use of a special case of the Hoeffding’s inequality when
applied to the case where all the random variables are identically distributed
and whose value can only be 0 or 1.

Theorem 3 (derivable from [11]). If X1, . . . , Xn are independent identically
distributed random variables such that Prob(Xi ∈ {0, 1}) = 1, then

Prob
(∣∣∣∣X1 + . . .+Xn

n
− E(X1)

∣∣∣∣ ≥ ε

)
≤ 2e−2ε2n.

For a given LPDS P = (Q,Γ,Δ,Λ), notice that χ defined in Section 2 is a
random variable over the sample space 2Δ that takes only values from {0, 1}.
Moreover, Eχ = PTM(P), so we just need to define each Xj to be χ.

Assuming that no person assigns trust values with precision higher than,
e.g. 10%, it does not make sense to approximate the value of the metric with
precision much higher than that 10%. Therefore, we will simply set ε = 0.05
in our calculations. Now, according to Theorem 3, in order to be 99.5% sure
that the value our algorithm returns is within ε of the real value of the trust
metric, we need 2e−2ε2n to be ≤ 0.5%. After simple calculations, we get that it
suffices to set n = 3/ε2 = 1200 to achieve this. Our implementation of the Monte
Carlo method in Spookey performs exactly that many random samplings from
the sample space 2Δ.

As for the mincut trust metric, the situation is a lot worse, because we already
know that there is no efficient algorithm that could approximate its value to
within any constant factor in general. Therefore, we will settle for a heuristic
instead. Our algorithm provides an upper bound on the value of the mincut
trust metric as follows. First, we perform a reachability analysis on the whole
certificate set to check which authorisation requests fail even without removing
any certificates from D; these requests will have their trust value set to zero.
Next, for any other authorisation request K1 ↪→ K2 we compute the sum of all
the trust values on the auth certs having K1 as their head. Clearly, by cutting
all of them at once no authorisation request whose head’s key is K1 can succeed.
This is our first rough upper bound on the value of the mincut trust metric.
Finally, we perform a number of random trials (in our algorithm set to one
thousand) were we remove random certificates from D. We stop a single trial
once all the authorisation requests fail in the current certificate set or the cost
of the current trial is already higher than the maximum currently assigned value
to any authorisation request (and so no value can be improved with the current
trial anymore). Unfortunately, we cannot provide any performance guarantee
on the values return by this algorithm. However, we experimentally tested it
against an algorithm that enumerates all possible cuts while pruning along the
way the cuts that clearly cannot improve the current value of the trust metric.
The dataset consisted of ten SPKI/SDSI certificate sets, each having three keys,
each key having five auth certs and six name certs randomly generated for it. For
some of them the enumeration algorithm needed more than twenty minutes to
finish, despite the fact that it has successfully pruned most of the possible cuts
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along the way. We found that the trust value returned by our heuristic for this
dataset was on the average only 22% higher than the optimal value, although it
ran 2500 times faster.

5 Spookey and Experimental Results

In order to test for how large SPKI/SDSI certificate sets we can com-
pute the approximations of these two metrics, we created a tool called
Spookey. Spookey is implemented entirely in Java and allows for inputting
arbitrary SPKI/SDSI certificate sets and computes the approximate value
of the probabilistic trust metric by a Monte Carlo method and the min-
cut trust metric using the proposed heuristic. The tool comes with a graph-
ical user interface, but the performance results presented here were obtained
by running it from the command line. Spookey can be downloaded from
http://homepages.inf.ed.ac.uk/s0571094/spookey which also contains the
description of the input format and example certificates sets.

We tested the performance of our implementation on randomly generated
SPKI/SDSI certificate sets in normal form of various sizes; the tests were run us-
ing JVM version 1.6 with 1GB of available memory on Intel Core2 Duo 2.26GHz
system. We considered three distinct random models. In the first one each key
has exactly five auth certs and ten name certs randomly generated for it (the
target key and all ids are picked uniformly at random). In the second, the ex-
pected number of auth certs and name certs is again five and ten, but their exact
number is govern by a Poisson distribution. Finally, in the third model each key
has again exactly five auth certs and ten name certs, but the target key is chosen
using a preferential attachment method [2], i.e. the more incoming certs a key
has the more likely it will be chosen as the target key for the next cert. This
is meant to model scale-free properties of social networks that contain so-called
hub nodes, nodes that have the number of connections many times higher than
the average; such nodes are very unlikely to occur in uniformly random gener-
ated networks. Hubs in this case could be, e.g. institutions that contain name
certificates for the public keys of all their employees; such a namespace is very
likely to be linked to.

Table 1. The average running times of the probabilistic trust metric’s approximation
for each of the three random models: In the Constant model each key has five auth certs
and ten name certs, in the Poisson model the number of auth certs and name certs is Pois-
son distributed with mean value five and ten, respectively, and in the Scale-free model
each key has five auth certs and ten name certs, but the target key of a cert is chosen
using a preferential attachment method; size denotes the number of keys in the set.

Type / Size 10 20 50 100 200

Constant 0.38 0.67 1.66 4.85 17.34

Poisson 0.38 0.68 1.66 4.84 17.27

Scale-free 0.38 0.67 1.66 4.85 17.37
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Table 2. The average running times of the mincut trust metric’s approximation for
each of the three random models

Type / Size 10 20 50 100 200

Constant 1.25 2.16 7.38 22.96 91.93

Poisson 1.19 2.24 7.14 22.48 85.32

Scale-free 1.14 2.03 6.70 21.09 82.56

For each of these three random models, we generated fifty examples with 10,
20, 50, 100 keys and twenty examples with 200 keys. For each key used, K, we
generated exactly one authorisation request of the form K ↪→ K′, where K′ is
chosen uniformly at random, so for a model with x keys we computed the value
of the trust metric for x authorisation requests. Notice that this does not affect
the running time significantly, because our approximation algorithms compute
the outcome of every possible authorisation request at each step anyway, so the
value of the trust metric for all the authorisations requests can be approximated
at the same time in parallel. The average running times for the probabilistic
trust metric are presented in Table 1 and for the mincut trust metric in Table 2.
Notice that the computation of the probabilistic trust metric does not depend
on the random model chosen, but the mincut trust metric does, although not
significantly; it is just about 10% slower for the random model with target keys
chosen uniformly at random than with target keys chosen using preferential
attachment. The computation of the probabilistic trust metric is significantly
faster and naturally more accurate than the mincut trust metric, but even for
a relatively big certificate set with two hundred keys, the running time of one
minute and a half for the approximation of the mincut trust metric may still be
acceptable in practise. If we compare the running times given in [4] of approxi-
mating the metric proposed there for SPKI/SDSI certificate sets of size 50 with
the running time of our approximation algorithms for certificate sets of that size,
we can see that the approximation of our trust metrics is faster even though it
was run on a computer with a slower processor and had less memory available to
it. Also, let us note that our approximation algorithms are easily parallelisable
and could be computed much faster when run on multiple computers at once.

6 Future Work

An important question to consider is whether there is a trust metric that could
be efficiently computed for SPKI/SDSI certificate sets and that meets the intu-
itive criteria that we laid out in the introduction. Ideally, one that is resistant
to the possible attacks considered in [15], and that could be computed in a
decentralised manner. The presence of adversarial clients in our system can be
modelled by a game extensions of our model; this would correspond to Pushdown
Games [23], but with the type of winning conditions that were not studied for
them before. Moreover, in practise, certificates would be added or removed from
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the SPKI/SDSI certificate set incrementally. Devising an efficient algorithm for
computing the outcome of a single update to the certificate set would have a
high practical value.
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Thomas Brihaye1, Véronique Bruyère2, Laurent Doyen3,
Marc Ducobu1, and Jean-Francois Raskin4
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Abstract. We consider the problem of QBF solving viewed as a reachability
problem in an exponential And-Or graph. Antichain-based algorithms for reach-
ability analysis in large graphs exploit certain subsumption relations to leverage
the inherent structure of the explored graph in order to reduce the effect of state
explosion, with high performance in practice.

In this paper, we propose simple notions of subsumption induced by the struc-
tural properties of the And-Or graphs for QBF solving. Subsumption is used to
reduce the size of the search tree, and to define compact representations of certifi-
cates (in the form of antichains) both for positive and negative instances of QBF.
We show that efficient exploration of the reduced search tree essentially relies on
solving variants of Max-SAT and Min-SAT. Preliminary stand-alone experiments
of this algorithm show that the antichain-based approach is promising.

1 Introduction

The problem of evaluating the truth value of a quantified Boolean formula (QBF) is one
of the most popular PSPACE-complete problems, like SAT (the satisfiability problem
for Boolean formulas) is the typical NP-complete problem. QBF is a simple and ele-
gant formalism in which many problems of practical interest can be encoded, in a large
number of areas such as automated planning, artificial intelligence, logic reasoning,
and verification [14,6]. For instance, QBF can encode reachability problems more suc-
cinctly than SAT with a formula that is logarithmic in the diameter of the system when
it can only be done linearly in the diameter with a SAT formula [18]. As another exam-
ple, SAT and QBF can be integrated for bounded model-checking where the existence
of a path is encoded by SAT, and termination is checked with QBF [10].

The simple form of QBF makes the problem appealing and accessible to a large
community. However, despite its apparent simplicity, the design of efficient algorithmic
solutions remains challenging. Recent progress has been observed in the practical ap-
proaches to this problem. In particular, generalizations of heuristics and optimizations
used in SAT solving have been applied to QBF with some success [24,27].

Many algorithms have been proposed in the literature to solve QBF and competitive
events like QBFEVAL aim at assessing the advances in reasoning about QBF [27,15].
Several leading QBF solvers are search-based. They typically use pruning techniques
that extend the DPLL search strategy from SAT to QBF [8]. Common heuristics are unit

T. Bultan and P.-A. Hsiung (Eds.): ATVA 2011, LNCS 6996, pp. 183–197, 2011.
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ψ = (x1 ∨ y4 ∨ y7)︸ ︷︷ ︸
c1

∧ (x2 ∨ ȳ4 ∨ x6)︸ ︷︷ ︸
c2

∧ (x1 ∨ x3 ∨ y5 ∨ ȳ7)︸ ︷︷ ︸
c3

∧

(x̄3 ∨ ȳ5 ∨ x̄6 ∨ y7)︸ ︷︷ ︸
c4

∧ (x̄1 ∨ x2 ∨ y4)︸ ︷︷ ︸
c5

∧ (x̄2 ∨ ȳ7)︸ ︷︷ ︸
c6

∧ (x1 ∨ x2 ∨ x3 ∨ y7)︸ ︷︷ ︸
c7

Fig. 1. The CNF formula ψ for the QBF formula f = ∀x1x2x3 · ∃y4y5 · ∀x6 · ∃y7 · ψ

propagation, conflict learning and back-jumping, which are implemented in tools like
QuBE [16,17] and DepQBF [22,23]. Recent works have focused on certifying (rather
than just evaluating) QBF formulas, as certificates can help in extracting error traces in
QBF-encoded problems. The tool suites ChEQ and sKizzo/ozziKs evaluate and certify
QBF formulas [3,17,24].

In verification and automata theory, a typical PSPACE-complete problem is the uni-
versality problem for nondeterministic finite automata. Despite its worst-case exponen-
tial complexity, dramatic performance improvements have been obtained recently for
this problem by antichain algorithms [11,12]. One key idea of antichain algorithms
is to exploit the underlying structure of automata constructions (classically, powerset-
based constructions) to define subsumption relations, yielding compact symbolic rep-
resentations, as well as sound pruning of the search space. Although QBF is also a
PSPACE-complete problem, this natural idea has never been used in QBF solving.

In this paper, we identify structural properties of QBF and we define pruning strate-
gies to obtain antichain algorithms for QBF. The purpose is to define and evaluate
antichain-based techniques for QBF solving, and to suggest that their integration in
other search-based solvers could be valuable. We take the classical view of QBF as a
reachability problem in an exponential And-Or graph, where the nodes represent sub-
formulas (the And-nodes correspond to universal quantifications, and the Or-nodes to
existential quantifications). We illustrate the main ideas of the algorithm on the follow-
ing running example. Let f = ∀x1x2x3 · ∃y4y5 · ∀x6 · ∃y7 ·ψ where ψ (shown in Fig. 1)
is a CNF formula viewed as the set of clauses {c1, c2, . . . , c7}. The And-Or graph for f
is a DAG where each level corresponds to a block of quantifiers (see a partial expansion
in Fig. 2 where each clause ci is identified with its index i). Nodes of the DAG are
subsets ϕ ⊆ ψ of clauses which remain to be satisfied in the evaluation game. The root
of the DAG is the set ψ of all clauses. The successors of a node at level i are the sets of
clauses obtained by assigning the variables quantified in the ith block of the formula.
In the game interpretation, two players P∀ and P∃ choose the successor of the nodes
(player P∀ in And-nodes, and P∃ in Or-nodes) by assigning the variables quantified in
the block of the level of the node. The goal of player P∃ is to reach a node ∅ where all
clauses are satisfied, and to avoid nodes where all literals of a clause are false (denoted
by ⊥). The QBF formula is true if and only if P∃ has a winning strategy to reach ∅
from the initial node ψ in the game. A key observation is that set inclusion is a sub-
sumption relation that can be used to substantially reduce the size of the search tree: if
player P∃ has a winning strategy from a node ψ1 at level i, then player P∃ also has a
winning strategy from all nodes ψ2 ⊆ ψ1 at level i, because in ψ2 less clauses remain
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{1,2,3,4,5,6,7}
∀x1x2x3

∃y4y5

∀x6

∃y7

{1,2,3,7} {1,2,4} {1,3,6} {1,4,6} {2,5} {2,4,5} {6} {4,6}

··· ··· ···
⊥ ⊥ {2} {2,4}

···

··· ···

⊥

Fig. 2. Search tree for the formula of Fig. 1

to be satisfied. This has two implications in the search through the DAG. First, player
P∃ should only consider valuations that make true a maximal subset of the remaining
clauses, while player P∀ should make true a minimal subset. Computing such variable
assignments reduces to solving variants of Max-SAT and Min-SAT problems [19,21].
Second, the set of winning nodes at level i is downward-closed, and the set of losing
nodes at level i is upward-closed. Therefore, antichains of incomparable sets of clauses
are the appropriate representation of winning and losing nodes. We exploit this struc-
ture when backward propagating the information collected during the exploration of the
DAG, and we never explore a node which is smaller than a winning node (or greater
than a losing node) at the same level. Finally, the information stored in the antichains
at the end of the search is so rich that it immediately provides compact certificates for
both positive and negative instances of QBF. Note that compact certificates represented
by antichains is a new notion.

We propose an antichain algorithm which is search-based and reduces the search
space using antichains of winning and losing nodes of the And-Or graph. Antichains
can be viewed as compact symbolic representations which can be exponentially suc-
cinct, thus it also has the flavor of symbolic procedures. In contrast, traditional symbolic
QBF solvers rely on binary decision diagrams (BDD) and they are based on quantifier
elimination, such as Skolemization-based approaches [2] (with the aim at eliminating
existentially quantified variables), or symbolic quantifier elimination by clause resolu-
tion or BDD algorithms [25]. The tool sKizzo falls in this category of solvers [5].

We have implemented the ideas presented in this paper in a stand-alone prototype
in order to push and evaluate the approach, independently of the established heuristics
commonly used in search-based QBF solvers. While some benchmarks are solved more
efficiently with our prototype (e.g., see Fig. 5), the results are encouraging beyond the
absolute performance. In particular the experiments and comparison with state-of-the-
art solvers show that:

• the search trees constructed by our algorithm are generally much smaller (by orders
of magnitude) as compared to the entire search space, thanks to subsumption (e.g.,
see Table 1);

• our algorithm automatically provides certificates with no additional cost, whereas
in other approaches, additional computation is required to extract certificates after
evaluation of the formula;
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• difficult instances (several hundreds of variables, thousands of clauses) are solved
by our prototype (e.g., see Table 1), and on several families of formulas, the overall
behaviour of our algorithm scales better or similarly as the size of the formulas
increases (e.g., see Figs. 5-8).

2 Preliminaries

2.1 Notations and QBF Problem

Let V = {x1, x2, . . . , xm} be a set of m Boolean variables, we use X,X1, X2, . . . to
denote subsets of V . A literal � is either a variable x ∈ V or the negation x̄ of a variable
x ∈ V , and a clause c is a disjunction of literals, or equivalently a set of literals. We
use notations such as � ∈ c, x̄ ∈ c, etc. A CNF formula is a conjunction of clauses, or
equivalently a set of clauses. The empty CNF formula is denoted by 1, and the empty
clause by 0. In the figures we use the notations ∅ and ⊥ instead of 1 and 0 respectively.
Given a set X ⊆ V and a CNF formula ψ over V , we denote by πX(ψ) the projection
of ψ over X , with πX(ψ) = {πX(c) | c ∈ ψ} and πX(c) = {l ∈ c | (l = x ∨ l =
x) such that x ∈ X}.

A quantified Boolean formula (QBF) is an expression Q1X1 · Q2X2 · · ·QnXn · ψ
where each Qi ∈ {∃, ∀} for 1 ≤ i ≤ n, the sets X1, . . . , Xn (called blocks) form a
partition of V , and ψ is a CNF formula over V . We also write Q1x1 ·Q2x2 · · ·Qnxn ·ψ
when each block Xi contains one variable (Xi = {xi}). Since ψ is in CNF we assume
w.l.o.g. that the last block is existential (i.e., Qn = ∃). The truth value of a QBF formula
is defined as usual. The QBF evaluation problem is to decide whether a given QBF
formula is true or false. This problem is PSPACE-complete [26].

A valuation for X ⊆ V is a function v : X → {0, 1}. The domain of v is dom(v) =
X . If X = {x1, . . . , xk}, a valuation v : X → {0, 1} can be identified with a word
a1a2 · · · ak ∈ {0, 1}|X| such that al = v(xl) for all 1 ≤ l ≤ k. The empty word ε
corresponds to dom(v) = ∅. Given a partition P = X1 ∪X2 ∪ · · · ∪Xn of V , let X≤i

be the set of variables X1 ∪X2 · · · ∪Xi (with X≤0 = ∅), and let X≥i = V \X≤i−1.
Given the valuations v : X≤i−1 → {0, 1} and w : Xi → {0, 1}, let vw be the valuation
identified with the concatenation of the words representing v and w.

A clause c is satisfied by a valuation v (written v |= c) if there exists x ∈ dom(v)
such that either x ∈ c and v(x) = 1, or x̄ ∈ c and v(x) = 0. Given a CNF formula ψ,
we denote by satv(ψ) the set of clauses c ∈ ψ such that v |= c. We denote by ψ[v] the
CNF formula obtained by replacing in ψ each variable x ∈ dom(v) by its value v(x).
Formula ψ[v] is supposed to be simplified using the laws c ∨ 1 = 1, c ∨ 0 = c with c
being a clause, and ϕ ∧ 1 = ϕ, ϕ ∧ 0 = 0 with ϕ being a CNF formula.

Let ψ be an unsatisfiable CNF formula. An unsatisfiable core ψ′ of ψ is any subset
of clauses of ψ, minimal for the inclusion, such that ψ′ is still unsatisfiable.

2.2 QBF Problem as a Game

It is classical to view the QBF evaluation problem as reachability in an And-Or graph,
or equivalently as a two-player reachability game [26]. For the formula f = Q1x1 ·



Antichain-Based QBF Solving 187

Q2x2 · · ·Qmxm ·ψ over V = {x1, x2, . . . , xm}, the game is played in m rounds (num-
bered 1, . . . ,m) by the existential player P∃ and the universal player P∀. In round i, the
truth value of the variable xi is chosen by player PQi . After m rounds, the players have
constructed a valuation v : V → {0, 1}, and player P∃ wins if ψ[v] = 1 (all clauses are
satisfied by v), otherwise player P∀ wins. It is easy to see that P∃ has a winning strategy
in this game iff the formula f is true. Note that instead of having one round for each
variable, we can also consider a game with one round for each block of variables, such
that the blocks correspond to quantifier alternations in f . The players then choose a val-
uation for all the variables in the block at once, and the number of rounds is equal to the
number of quantifier alternations. As the algorithms proposed in this paper are based
on this game metaphor, we present the And-Or graph on which the game is played.

Let P = X1 ∪ X2 ∪ · · · ∪ Xn be a partition of V = {x1, x2, . . . , xm}, and let
f = Q1X1 · Q2X2 · · ·QnXn · ψ be a QBF formula over V . We define the And-Or
graph Gf = (S, S∃, S∀, s0, E, F ) where:

– S = {ψ[v] | dom(v) = X≤i−1, for i, 1 ≤ i ≤ n+ 1};
– S∃ = {ψ[v] | dom(v) = X≤i−1∧Qi = ∃, for i, 1 ≤ i ≤ n} is the set of P∃ nodes;
– S∀ = {ψ[v] | dom(v) = X≤i−1∧Qi = ∀, for i, 1 ≤ i ≤ n} is the set of P∀ nodes;
– s0 = ψ is the initial node;
– E = {(ψ[v], ψ[vw]) | dom(v) = X≤i−1 ∧ dom(w) = Xi, for i, 1 ≤ i ≤ n} is the

set of edges;
– F = {ψ[v] ∈ S | ψ[v] = 1} is the set of final nodes.

The set S is naturally partitioned into levels as follows: S = Level1 ∪ Level2 ∪ · · · ∪
Leveln+1 where Leveli = {ψ[v] | dom(v) = X≤i−1} for each 1 ≤ i ≤ n + 1. The
objective of player P∃ is to reach the set F of nodes ψ[v] such that all clauses of ψ
are satisfied by v. The game starts in node s0 and player PQ (Q ∈ {∃, ∀}) chooses the
successor of node s if s ∈ SQ. Thus if s = ψ[v] ∈ S∃ and dom(v) = X≤i−1, then
player P∃ chooses one of the 2|Xi| possible successors of s in E, corresponding to a
valuation w : Xi → {0, 1}. A node s is winning for player P∃ if he has a strategy to
force reaching a node in F from s, no matter the choices of P∀; otherwise it is losing.
We denote by W the set of winning nodes for player P∃, and by L = S \W the set of
losing nodes for P∃. We say that P∃ is winning the game if s0 ∈ W . In the sequel, we
use the notations Wi (resp. Li) to denote W ∩ Leveli (resp. L ∩ Leveli).

Proposition 1. A QBF formula f is true iff player P∃ is winning the game Gf .

Note that in the graph Gf , each node ψ[v] with dom(v) = X≤i−1 can be associated
with the formula Formula(ψ[v]) ≡ QiXi · · ·QnXn · ψ[v], and we can strengthen the
previous proposition as follows.

Proposition 2. Given a QBF formula f , the set of winning nodes in the graph Gf is
W = {ψ[v] ∈ S | Formula(ψ[v]) is true}, and the set of losing nodes is L = {ψ[v] ∈
S | Formula(ψ[v]) is false}.

2.3 Structure in the And-Or Graph and Antichains

We present in the next section an algorithm to solve the game played on Gf which
exploits the following subsumption relation on QBF formulas. We write f1 � f2 if
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Level1{1,2,3,4,5,6,7}

∀x1x2x3

Level2{1,2,3,7} {1,2,4} {1,3,6} {1,4,6} {2,5} {2,4,5} {6} {4,6}

000 001 010 011 100 101 110 111

Fig. 3. Level1 and Level2 of Gf and the 5 minimal valuations of P∀

f1 = QiXi · · ·QnXn · ψ1 and f2 = QiXi · · ·QnXn · ψ2 are two QBF formulas with
the same quantifier prefix, and ψ1 ⊆ ψ2. Intuitively, f1 is more promising than f2 for
player P∃ because all strategies that are winning from ψ2 are also winning from ψ1.

Proposition 3. Suppose that f1 � f2. If f2 is true, then f1 is true; and if f1 is false,
then f2 is false.

As a direct consequence of Propositions 2 and 3, we obtain the next corollary.

Corollary 1. In the graph Gf , for all nodes s1, s2 ∈ Leveli such that s1 ⊆ s2, i.e.
Formula(s1) � Formula(s2), if s2 ∈ Wi, then s1 ∈ Wi; and if s1 ∈ Li, then s2 ∈ Li.

Hence, Wi is ⊆-downward closed and Li is ⊆-upward closed. The set of ⊆-maximal
elements of Wi, noted �Wi�, is an antichain for the partial order ⊆ (i.e., a set of pair-
wise incomparable elements) that canonically and compactly represents Wi. Similarly,
the set of ⊆-minimal elements of Li, noted �Li�, is an antichain that canonically and
compactly represents Li. Elements of these antichains are denoted α, β.

3 Algorithms

In Section 3.1, we discuss the computation of optimal valuations to explore only the
most promising nodes, and in Section 3.2, we propose an antichain-based algorithm for
solving the QBF evaluation game.

3.1 Maximal and Minimal Valuations

According to Corollary 1, when it is the turn for P∃ to play in node s = ϕ in Leveli,
he can restrict his choices among valuations w : Xi → {0, 1} that maximize the set of
clauses of ϕ that are satisfied. Symmetrically, player P∀ can restrict his choices among
valuations w : Xi → {0, 1} that minimize the set of clauses of ϕ that are satisfied.

We define the notion of maximal and minimal valuations as follows. Let ϕ be a
CNF formula over X≥i. A valuation w : Xi → {0, 1} is ϕ-maximal if for all w′ :
Xi → {0, 1}, satw(ϕ) ⊆ satw′(ϕ) implies satw(ϕ) = satw′(ϕ). Symmetrically, w
is ϕ-minimal if for all w′ : Xi → {0, 1}, satw′(ϕ) ⊆ satw(ϕ) implies satw(ϕ) =
satw′(ϕ).

Example 1. Consider the CNF formula ψ of Fig. 1, viewed as the set of clauses {c1, c2,
. . . , c7}. In Level1, we have X1 = {x1, x2, x3} which are universal variables. Among
the 23 = 8 valuations, 5 are ψ-minimal (shaded in Fig. 3, where each clause ci is
identified with i). Remember that the nodes in the And-Or graph are the clauses that
remain to be satisfied, thus maximal such sets correspond to minimal valuations. Note
also that we may need to compute all maximal (or minimal) valuations in a node.
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Maximal and minimal valuations can be computed by multiple calls to a SAT solver.
Let us give the intuition for maximal valuations. Let ϕ be a set of clauses over X≥i.
First notice that a valuation w : Xi → {0, 1} is ϕ-maximal if and only if it is πXi(ϕ)-
maximal. Thus we can assume w.l.o.g. that ϕ is a set of clauses over Xi (instead of
X≥i). Using a set of new variables Y = {yc | c ∈ ϕ}, called selectors, we transform
the set of clauses ϕ into a set of clauses ϕ′ over Xi ∪ Y with the following property : if
a valuation w : Xi ∪ Y → {0, 1} satisfying ϕ′ is such that w(yc) = 1, then w satisfies
c. By a first call to a SAT solver on ϕ′, we get a valuation w and a subset C of clauses
of ϕ that are satisfied by w. Then we modify ϕ′ into ϕ′′ by imposing the constraint that
at least one of the variables yc such that w(yc) = 0 is true in ϕ, so that a second call to a
SAT solver provides a subset of satisfied clauses of ϕ that strictly contains C. Iterating
this procedure, we finally obtain a valuation that satisfies a maximal set of clauses in ϕ.

Computing maximal and minimal valuations can also be achieved thanks to solvers
for variants of the Maximum Satisfiability (Max-SAT) and Minimum Satisfiability (Min-
SAT) problems [19,21]. Given a CNF formula ϕ, the Max-Sat problem asks to compute
a valuation that maximizes the number of satisfied clauses in ϕ (Min-Sat is defined
symmetrically). Note that such a valuation is ϕ-maximal but the converse is not neces-
sarily true. Given a CNF fomula ϕ = ϕh∧ϕs where ϕh represents the hard clauses and
ϕs represents the soft clauses, the partial Max-SAT problem consists in finding a valu-
ation such that all hard clauses are satisfied and the number of satisfied soft clauses is
maximized. This variant of Max-SAT can be used to generate all ϕ-maximal valuations
as follows. The first ϕ-maximal valuation is computed by a call to a Max-SAT solver.
The next ones are computed thanks to a partial Max-SAT solver, such that hard clauses
with selectors impose that for each already computed ϕ-maximal valuation w, at least
one new clause c 	∈ satw(ϕ) is satisfied.

3.2 Antichain-Based Algorithm

In this section we present an antichain-based algorithm to evaluate a QBF formula
f = Q1X1 · · ·QnXn · ψ. It is a search-based algorithm of the And-Or graph Gf

with backward propagation of the information collected during the exploration. Such
a forward-backward exploration was also used with success in timed games [9].

Our algorithm consists of two recursive procedures named ATCSearch∃(ϕ, i) and
ATCSearch∀(ϕ, i) where ϕ is a node of Gf and i is the recursion level (see Algo-
rithms 1 and 2). Initially, we make a call to ATCSearch∃(ψ, 1) if Q1 = ∃, and to
ATCSearch∀(ψ, 1) if Q1 = ∀. These procedures determine whether a node ϕ is win-
ning or losing for P∃, i.e. whetherϕ ∈ Wi or ϕ ∈ Li. The setsWi andLi are updated as
global variables and compactly stored by antichains �Wi� and �Li� respectively. They
are used to prune the search by the subsumption checks (see lines 8, 11 in Algorithm 1).

The details of ATCSearch∃(ϕ, i) are as follows. If ϕ is not even satisfiable, then
it is a losing node; if ϕ is satisfiable and i = n, then it is winning since ϕ belongs
to S∃; otherwise, the procedure enumerates the ϕ-maximal valuations w (line 7) and
checks if ϕ[w] is winning at level i+1. For player P∃, maximal valuations are sufficient
because the set of winning nodes is downward-closed (see Corollary 1). The recursive
call to ATCSearch∀(ϕ[w], i+ 1) can be avoided if ϕ[w] is in the downward-closure of
�Wi+1� (line 8), or if ϕ[w] is in the upward-closure of �Li+1� (line 11). Finally, if all
ϕ-maximal valuations have been explored, then ϕ is losing (line 17).
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Algorithm 1. ATCSearch∃(ϕ, i)
Require: node ϕ ∈ S∃ ∩ Leveli, i ≤ n.
Ensure: Win if ϕ ∈ Wi, Lose if ϕ ∈ Li.
1: if ¬IsSat(ϕ) then
2: Add(ϕ, �Li�)
3: return Lose
4: if i = n then
5: Add(ϕ, �Wi�)
6: return Win
7: for each ϕ-maximal valuation w : Xi →

{0, 1} do
8: if ∃α ∈ �Wi+1� s.t. ϕ[w] ⊆ α then
9: Add(ϕ, �Wi�)

10: return Win
11: if ¬(∃α ∈ �Li+1� s.t. α ⊆ ϕ[w])

then
12: R ← ATCSearch∀(ϕ[w], i + 1)
13: if R = Win then
14: Add(ϕ, �Wi�)
15: return Win
16: Add(ϕ, �Li�)
17: return Lose

Algorithm 2. ATCSearch∀(ϕ, i)
Require: node ϕ ∈ S∀ ∩ Leveli, i < n.
Ensure: Win if ϕ ∈ Wi, Lose if ϕ ∈ Li.
1: if ¬IsSat(ϕ) then
2: Add(ϕ, �Li�)
3: return Lose
4: for each ϕ-minimal valuation w : Xi →

{0, 1} do
5: if ∃α ∈ �Li+1� s.t. α ⊆ ϕ[w] then
6: Add(ϕ, �Li�)
7: return Lose
8: if ¬(∃α ∈ �Wi+1� s.t. ϕ[w] ⊆ α)

then
9: R ← ATCSearch∃(ϕ[w], i + 1)

10: if R = Lose then
11: Add(ϕ, �Li�)
12: return Lose
13: Add(ϕ, �Wi�)
14: return Win

The procedure ATCSearch∀(ϕ, i) for nodesϕ ∈ S∀ is dual. Note that the case i = n
is not relevant since Qn = ∃. By a symmetrical argument, P∀ needs to consider only
the ϕ-minimal valuations.

In these two procedures, the ϕ-maximal and ϕ-minimal valuations are computed as
explained in Section 3.1, by either using a SAT solver or a partial Max-SAT solver.
Procedure IsSat(ϕ) tests whether formula ϕ is satisfiable by a call to a SAT solver. The
antichains �Wi� and �Li� (for 1 ≤ i ≤ n) are initially empty. The antichain structure is
maintained by the procedure Add which computes �{ϕ} ∪Wi� and �{ϕ} ∪ Li�.

Example 2. Consider the CNF formula ψ of Fig. 1. Since Q1 = ∀, the algorithm starts
with ATCSearch∀(ψ, 1) which needs to explore the 5 minimal valuations of Fig. 3. As-
sume that the first valuation is (x1 �→ 0, x2 �→ 0, x3 �→ 0), denoted 000, which satisfies
clauses 4, 5, 6. Then, the game proceeds to the node ψ[w] = ψ[000] = {1, 2, 3, 7} of
remaining clauses where the turn is to player P∃. The subgraph of Gf rooted at ψ[000]
is shown in the first tree of Fig. 4. Among the 4 possible valuations for player P∃, only
2 are maximal, namely 01 and 11. For valuation 01, only clauses 1 and 7 remain. At this
point, all variables are instantiated except x6 and y7, and player P∃ wins by choosing
y7 �→ 1 which satisfies ψ no matter the value of x6 chosen by player P∀.

Thus nodes {1, 7} at Level3, and {1, 2, 3, 7} at Level2 are winning, and the related
antichains are updated as follows: �W3� = {{1, 7}} and �W2� = {{1, 2, 3, 7}}.

At the root node of Gf , the valuation 000 is not a good choice for player P∀, and no
conclusion can be drawn yet for this node (Fig. 3). We need to explore another choice
for player P∀. The second tree of Fig. 4 shows the subgame rooted at node ψ[001].
In this case, with minimal valuation 00, player P∃ reaches node {1} in Level3. Since
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Level2
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Level4

Level5

∃y4y5
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Fig. 4. Subgames rooted at ψ[000], ψ[001], and ψ[101]

{1} ∈ W3 (indeed {1} ⊆ {1, 7} ∈ �W3�, and W3 is the downward-closure of �W3�),
he knows immediately that he is winning without further exploring the graph. This
situation illustrates the power of the subsumption which allows to prune the search for
nodes smaller than previously visited winning ones. The antichain �W2� is then updated
to {{1, 2, 3, 7}, {1, 2, 4}}. Valuation 001 is again a bad choice for P∀.

One can check that valuations 010 and 011 are bad choices for P∀ and their explo-
ration leads to the following update of the antichains: �W2� = {{1, 2, 3, 7}, {1, 2, 4},
{1, 3, 6}, {1, 4, 6}} and �W3� = {{1, 7}, {6}}. The last minimal valuation is 101 and
for all choices of player P∃, there is a choice of player P∀ to falsify the formula (see the
last tree in Fig. 4). Therefore P∃ is losing the game and the formula f is false.

The correctness of this algorithm is established using the notion of certificate presented
in the next section.

Theorem 1. Let f be a QBF formula. Applying Algorithms 1 and 2 on f returns Win
if and only if f is true.

4 Certificates

In the previous section we have described a search-based algorithm to evaluate a QBF
formula f . This algorithm computes the sets of winning nodes and losing nodes for
each level of the graph Gf , and these sets are compactly represented by antichains.

Our algorithm gathers enough information in these antichains to easily build compact
certificates for both true and false QBF formulas. Intuitively, if f is true, that is, player
P∃ is winning the game Gf , then a certificate is given by the antichains �Wi�, 1 ≤
i ≤ n, and for each α ∈ Wi by the maximal valuation computed by Algorithm 1 when
α has been declared winning. If f is false, a certificate is defined similarly from the
antichains �Li�. To the best of our knowledge these certificates are different from the
ones considered in the literature [3,24].

We first define positive certificates as a witness for true QBF formulas. A positive
certificate for a formula f ≡ Q1X1 · · ·QnXn · ψ is a pair 〈(C+

i )1≤i≤n,w〉 such that:

– each C+
i is a set of nodes at the ith level of the graph Gf , that is, C+

i ⊆ Leveli;
– for each i such that Leveli ⊆ S∃, w is a function that assigns a valuation w(α) :
Xi → {0, 1} to each α ∈ C+

i ;
– and the following properties are verified:
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1. C+
1 = {ψ}.

2. for each i < n such that Leveli ⊆ S∃, for all α ∈ C+
i , there exists β ∈ C+

i+1

such that α[w(α)] ⊆ β.
3. for each i < n such that Leveli ⊆ S∀, for all α ∈ C+

i , for all w : Xi → {0, 1},
there exists β ∈ C+

i+1 such that α[w] ⊆ β.
4. for i = n, for all α ∈ C+

i , α[w(α)] = 1.

Clearly, there exists a nondeterministic polynomial time algorithm to recognize pairs
〈(C+

i )1≤i≤n,w〉 that are not positive certificate. All the verification related to Condi-
tions 1, 2 and 4 can be done in deterministic polynomial time while Condition 3 requires
nondeterminism. Therefore, verifying the validity of a positive certificate is a problem
in coNP.

Lemma 1. If 〈(C+
i )1≤i≤n,w〉 is a positive certificate for a QBF formula f , then f is

true.

Lemma 2. Let �Wi�, 1 ≤ i ≤ n, be the antichains built by the execution of Algo-
rithms 1 and 2 on formula f . For each i such that Leveli ⊆ S∃, for all α ∈ �Wi�, let
w(α) be the valuation used by Algorithms 1 when α has been declared winning. If f is
true, then 〈(�Wi�)1≤i≤n,w〉 is a positive certificate for f .

The next theorem directly follows from the two previous lemmas.

Theorem 2. Let f be a QBF formula. Then f is true if and only if there exists a positive
certificate for f .

Negative certificates are defined in a way similar to positive certificates; they are a
witness for false formulas f .

5 Optimizations

5.1 Guiding the Search to Promising Valuations

We recall that in Algorithm 1, when ϕ is a satisfiable formula, and i ≤ n − 1, player
P∃ traverses all the maximal valuations w : Xi → {0, 1} in the hope to find w such
that ϕ[w] is winning. The first optimization that we consider tries to guide the search to
promising maximal valuations.
Improving ATCSearch∃. When considering all the maximal valuations w : Xi →
{0, 1}, we observe that player P∃ is winning as soon as he can find a valuation w such
that ϕ[w] ⊆ α for some α ∈ �Wi+1� (see Corollary 1). So, it is better for P∃ to first
try to find such a valuation w. Suppose now that player P∃ cannot win by exploiting
the elements of �Wi+1�. Then he should avoid considering maximal valuations w such
that α ⊆ ϕ[w] for some α ∈ �Li+1� as ϕ[w] is losing (see Corollary 1). These two
observations are exploited by the new algorithm.

Improving ATCSearch∀. We can improve the choice of minimal valuations for player
P∀ in a symmetric manner. Indeed, P∀ should first look for a valuationw such that there
exists α ∈ �Li+1� with α ⊆ ϕ[w]. If such a valuation does not exist, then he should
only consider minimal valuations that avoid the set �Wi+1� of winning nodes.
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5.2 Improving the Information about Losing and Winning Nodes

Our algorithms can be seen as mixing a forward exploration of the And-Or graph Gf

with a backward propagation of the information about the winning and losing nodes.
We present below several ways of improving the propagation phase.

At initialization. Recall that the antichain �Li� is initially empty in Algorithms 1 and 2.
We can add some useful information to �Li� in the following case. Consider the initial
node ψ of Gf , and let i, 1 ≤ i ≤ n− 1. Suppose that the projection d = πX≥i

(c) of a
clause c in ψ on X≥i has all its literals universally quantified. Then the clause d must be
satisfied by a valuation generated before reaching Leveli since otherwise player P∀ can
falsify it. So, at initialization we can add {d} to �Li� for any such d (all sets of clauses
that contain d are losing at Leveli).

Some other information can be initially stored in the antichains �Wi� and �Li� to
better guide the search. Consider the initial node ψ of Gf , and its projection ϕ =
πX≥i

(ψ). If ϕ is unsatisfiable, then any unsatisfiable core of ϕ can be extracted and
added to �Li�. On the other hand, if ϕ is satisfiable and we further restrict ϕ to the
existentially quantified variables, then we can compute a ϕ-maximal valuation w to get
a maximal subset of satisfied clauses ϕ′ = satw(ϕ). The set ϕ′ can be added to �Wi�
because player P∃ has a winning strategy at Leveli if the set of clauses not in ϕ′ are
satisfied when the game enters this level.

When updating �Wi� and �Li�. We now give an optimization that can be applied when
updating the sets of winning and losing nodes during the search. We consider two sce-
narios. First, assume that node ϕ is declared winning by the algorithm ATCSearch∃
in Leveli. This means that there exists a valuation w : Xi → {0, 1} such that either
ϕ[w] ⊆ α for some α ∈ �Wi+1�, or ϕ[w] is declared winning by the recursive call to
ATCSearch∀. Notice that ϕ is a subset of the set of clauses in the root ψ (projected on
variables X≥i). It may happen that other clauses c ∈ ψ are also satisfied by the valua-
tion w. Thus, in a way to have bigger elements in �Wi�, it is preferable to add the set
ϕ′ = ϕ ∪ {c | c ∈ satw(ψ)} instead of ϕ to �Wi�.

Second, assume that ϕ is declared losing by Algorithm ATCSearch∃ in Leveli with
i = n. This means that ϕ is unsatisfiable. Instead of adding ϕ to �Li�, we can add any
unsatisfiable core ϕ′ ⊆ ϕ instead.

6 Experimental Results

Setting. We have implemented the algorithms of Section 3 with the optimizations of
Section 5 in a stand-alone prototype in order to evaluate the impact of the antichain
approach. Thus none of the classical heuristics used in search-based QBF solvers, like
backjumping, unit propagation, and monotone literals elimination [8] has been inte-
grated. The code is written partly in C for the low level operations on the data struc-
tures, and partly in Python to implement high level operations like the exploration of
the And-Or graph, and for the construction of CNF formulas submitted to the SAT or
partial Max-SAT solvers. We use Python to facilitate the fast evaluation of different
ideas even if some price has to be paid at the performance level. We use the SAT solver
MiniSat [13] and the partial Max-SAT solver Akmaxsat [20] to compute the maximal
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and minimal valuations as explained in Section 3.1, and PicoSAT [7] to compute unsat-
isfiable cores as described in Section 5.

In a preprocessing step, the formula is simplified with PreQuel [28] and then pre-
sented in a tree-like structure [4]. This is standard practice in QBF solving. The experi-
ments were run on a PC equipped with a Intel i7 2.8GHz processor, 6 GB of RAM and
running Linux Ubuntu 2.6.

Instances. We tested our algorithm on several instances proposed during the seventh
QBF solvers evaluation (QBFEVAL’10) [27] and compared the results with the ones
obtained with three state-of-the-art QBF solvers: QuBE-7.0, sKizzo-v0.8.2-beta and
DepQBF-0.1 (winner of QBFEVAL’10). QuBE and DepQBF are search-based solvers,
whereas sKizzo uses symbolic Skolemization.

The families k-∗ correspond to the encoding of the satisfiability problem for modal
K formulas into QBF, and they are known to give difficult instances for search-based
solvers. The families k-∗ have a deep level of quantifier alternations while the families
Toilet∗ and aim-∗ have three quantifier alternations.

Results. In Table 1, Var (resp. Cl, Blocs) gives the number of variables (resp. clauses,
blocs) of the instance and Value is its truth value. Nodes is the number of nodes of
the And-Or graph that have been explored. The columns ATC, QuBE, DepQBF, and
sKizzo present the execution times in seconds (with a timeout of 600 seconds) of our
antichain-based solver and the three other solvers. The experimental results obtained
with our solver are encouraging.

• According to pure performance, our prototype already performs better than the
three state-of-the-art solvers for the families k-path-n and k-path-p.

For other families in k-∗, QuBE and DepQBF solvers (which are search-based)
have often an execution time beyond 600 seconds.

See Table 1, Fig. 5 and 6.
• The antichain approach leads to search trees that are amazingly small as compared

to the size of the entire search space (see the Nodes entry in Table 1 as compared
to the size of the entire search space in O(2Var)); the antichains are thus also very
small as they are composed of nodes of the search tree.

• For several families from the QBFLIB library [15] (including Toilet∗ and aim-∗),
the execution times of our solver follow the same shape of curve (at logarithmic
scale, with a timeout of 600 seconds) as for the other three state-of-the-art solvers,
see for instance the family aim-100 in Fig. 7 (true instances) and Fig. 8 (false
instances).

Table 1. Family k-path-n

Instance Var Cl Blocs Value Nodes ATC QuBE DepQBF sKizzo
k-path-n-01 108 275 7 1 14 0.22 0.01 0.005 0.01
k-path-n-02 180 481 9 1 43 0.93 0.01 0.02 0.05
k-path-n-05 384 1051 15 1 120 4.17 2.53 39.97 0.08
k-path-n-06 456 1257 17 1 142 7.54 13.74 / 0.26
k-path-n-10 732 2033 25 1 247 16.33 / / 45.87
k-path-n-11 804 2234 27 1 269 27.36 / / 445.71
k-path-n-20 1428 3992 45 1 503 95.19 / / /
k-path-n-21 1488 4155 47 1 452 88.81 / / /
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Fig. 5. Family k-path-n Fig. 6. Family k-path-p

Fig. 7. Family aim-100 (true - log scale) Fig. 8. Family aim-100 (false - log scale)

As explained in Section 3.1, the maximal and minimal valuations can be computed ei-
ther with a SAT solver of with a partial Max-SAT solver. In Section 5.2, we described
several ways to improve the information about losing and winning nodes in the an-
tichains. These different approaches have been tested, and the experiments show the
best approach can vary with the family of formulas that is tested (the table and figures
always present the results for the best approach). For instance, depending on the family,
the size of the search space can be either increased or decreased when using a partial
MaxSAT solver instead of a SAT solver.

Along with deciding if a given QBF formula is true or false, our solver provides
compact certificates in the form of antichains both for positive and negative instances
of QBF, and without any additional computation (see Section 4). DepQBF solver does
not construct certificates. For sKizzo and QuBE solvers, additional computation is re-
quired to extract certificates [3,17,24]. The log produced by sKizzo is evaluated by
ozziKs to construct certificates (only for true instances); QuBE-cert (in the suite ChEQ)
is an extension of QuBE that adds to QuBE the instrumentation required to generate
certificates (for both true and false instances). In [3], experiments have been done with
the family adder∗ with “the surprising phenomenon that the time taken to reconstruct
a model may overcome the time needed to solve the instance”.
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7 Conclusion and Perspectives

The approach presented in this paper for QBF solving is inspired by previous works
on effective antichain algorithms for PSPACE-complete problems in automata theory
which are based on simple subsumption relations [11,12]. While the And-Or graph of
QBF formulas enjoys such a subsumption relation, this idea has not been exploited
in search-based QBF solvers. In a prototypical implementation, we have evaluated the
feasibility of antichain-based algorithms for QBF. Experimental results show that on
several benchmarks the size of the search tree is drastically reduced, and that some
instances are solved more efficiently than by the leading QBF solvers. This shows that
the antichain approach is promising and it provides a new research direction in the
area. Its integration in standard search-based QBF solvers is worth investigating. On
the other hand, our algorithm provides automatically compact certificates represented
by antichains with no additional cost, and for both true and false instances.

We now plan to improve our algorithm with respect to the computation of the valu-
ations. Indeed, we observed on the experiments that the execution time is partly spent
when computing maximal and minimal valuations. Our current solver computes the
best valuations since they are restricted to maximal/minimal ones, and exploit as much
as possible the information stored in the antichains. We could instead compute approx-
imate valuations in a way to decrease the execution time while keeping the advantages
of the antichains [1].

Our work also provides a new application of the Max-SAT problem. We intend to
submit instances coming from our experiments to the Evaluation of Max-SAT Solvers
that is yearly organized as an affiliated event of the International Conference on Theory
and Applications of Satisfiability Testing (SAT)1. We believe that the difficult instances
we produce could be of interest to the Max-SAT community and that antichain-based
QBF solving would benefit from their improvements.

Acknowledgements. We thank Marco Benedetti, the author of sKizzo, for his great
help, Florian Lonsing for explanations about DepQBF, the QuBE’s team for answers
about their solver, and Nicolas Maquet for his guidance in the implementation.
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Abstract. We consider a discretization based approach to controller synthesis
of hybrid systems that allows to handle non-linear dynamics. In such an ap-
proach, states are grouped together in a finite index partition at the price of a
non-deterministic over approximation of the transition relation. The main contri-
bution of this work is a technique to reduce the state explosion generated by the
discretization: exploiting structural properties of ODE systems, we propose a hi-
erarchical approach to the synthesis problem by solving it first for sub problems
and using the results for state space reduction in the full problem. A secondary
contribution concerns combined safety and liveness control objectives that ap-
proximate stabilization.

1 Introduction

The model of hybrid systems constitutes a very rich modeling framework as it allows
the combination of continuous and discrete-event dynamics. It is used in numerous ap-
plications such as the control of physical or chemical processes by computer programs,
avionics, etc. For such systems, except under strong restrictions on the continuous dy-
namics, the set of reachable configurations cannot be computed exactly. As a conse-
quence, numerous approximation techniques have been devised, with the objective of
building an abstract system for which analysis is possible. The basic setting of this work
is the discretization in both time and (continuous) variables of the system. In particular,
we allow arbitrary dynamics, and especially nonlinear ones. To simplify the presenta-
tion, we thus focus on the continuous dynamics, and do not consider general hybrid
systems, but simply systems of ODEs.

Most works related to hybrid systems are concerned with verification, and especially
focus on the approximate computation of the reachability set. We tackle here the (more
difficult) problem of controller synthesis. The purpose of this work is to progress in the
direction of realistic controller synthesis for nonlinear ODE systems. Given a plant (an
open dynamical system), controller synthesis aims at designing a system which interacts
with the plant in order to satisfy a given objective. A natural setting, which subsumes
standard safety and reachability objectives, consists of the design of a feedback con-
troller which allows to stabilize the system around a target configuration. There are two
main contributions of this work. One concerns the formalisation and algorithmic han-
dling of a pragmatic choice of control objectives that approximate the ideal of systems
stabilized under control. The other, the main objective, concerns a state space reduction
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approach that helps render the synthesis problem feasible despite combinatory explo-
sion in multi-variate nonlinear dynamics: a dedicated slicing technique is introduced
for controller synthesis to rapidly eliminate « hopeless » states from the search space.

The most widespread notions of games found in control applications are safety
games (such as Ramadge-Wonham games) where the controller is supposed to avoid
something bad from happening (by forbidding some controllable transitions), and reach-
ability games, where the controller is supposed to drive the system into a good state
within a finite amount of time. Consider the objective of stabilizing an inverted pen-
dulum in its vertical top position. With a game based approach, we would not know
how to express convergence as a goal, but for a given distance ε, we can state that we
want the pendulum to reach a neighbourhood of radius ε around the desired point and
to stay forever within that region. We formalize these combined until and safety objec-
tives, and provide an efficient, on-the-fly, linear algorithm for solving such stabilization
games. This algorithm is derived from model-checking algorithms for the alternation-
free fragment of the propositional μ-calculus [7,12].

State-space explosion in the number of variables is inherent in discretization tech-
niques. To combat this problem, we propose an original hierarchical approach for the
controller synthesis problem. It amounts to identifying subsets of variables of the ODE
system whose dynamics is independent from all other variables. We formulize the in-
duced relation as a bisimulation, and prove that it ensures the preservation of control-
lability in the subproblems w.r.t. stabilization objectives we consider. More precisely,
winning states in the global problem are projected on winning states in the subproblems,
which allows a strong reduction of the state space explored for the global problem. For
simplicity, we only discuss ODE systems in the paper, but our work naturally applies
to periodic controller synthesis for hybrid systems. A prototype implementation is pre-
sented, and experiments conducted on the inverted pendulum case study prove the vast
improvement provided by this hierarchical approach.

Related work on hybrid systems in general and for the discretized approach in partic-
ular is vast. There is an obvious tradeoff between state explosion and non-determinism
when discretizing hybrid systems for state space analysis. When the synthesis fails, it
may not be clear whether this is due to the actual hybrid system or due to an overly
coarse discretization. Discrete-state abstractions of nonlinear systems have been con-
sidered in [2,15], and the possibility of building as rough as possible abstractions by
successive abstractions has been explored [6,1,13]. The problem of controller synthesis
for nonlinear hybrid systems is also considered in [16], but only for safety objectives.
Finally note that the notion of hierarchy we consider in ODE systems in our approach
is not the same as hierarchical decomposition of controllers such as in [14].

Formalization of our notion of stabilization games is presented in Section 2. We
present the discretization of a nonlinear ODE system in Section 3. Section 4 contains
the presentation of our hierarchical approach, and Section 5 reports experiments.

2 Controller Synthesis for Stabilization Games

A standard way of modeling the control of synchronous systems is a two player game
with alternating moves : for the duration of an interval, the controller can (determinis-
tically) set the control parameters and the system replies at the end of the interval with
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a perturbed target, a non-deterministic response. The set of states thus decomposes into
a bipartite graph of controllable and uncontrollable states. We fix finite sets of environ-
ment actions ΣE , controller actions ΣC , and atomic propositions Γ .

Definition 1 (Control Game Structure (CGS)). A CGS over (ΣE , ΣC , Γ ) is a tuple
C = 〈SE , SC , T, S0, λ〉 where SC is the set of controller states, SE the set of environ-
ment states, S := SE�SC , a transition relation T ⊆ (SE×ΣE×SC)∪(SC×ΣC×SE),
an initial state set S0 ⊆ S, and λ : S → 2Γ labels states by atomic propositions.

We require the environment to be deadlock free, i.e. for every s ∈ SE there exists at
least one (s, a, s′) ∈ T and we require controller actions to be deterministic, i.e. for
every s ∈ SC and a ∈ ΣC there exists a unique s′ ∈ SE such that (s, a, s′) ∈ T . For a
state s ∈ S, we let #Succ(s) = |{s′ ∈ S | (s, a, s′) ∈ T for some a ∈ ΣE ∪ΣC}|.

The game is turn-based and played as follows: starting from a controller state s ∈
SC , the controller chooses an action σ ∈ ΣC , which leads the system in a (single)
environment state s′ (as the controller actions are deterministic). Then, a turn of the
environment in state s′ ∈ SE consists of determining a state y such that (s′, σ′, y) ∈
T for some σ′ ∈ ΣE . Such an interaction builds a path which is a finite or infinite
sequence ρ = (s0, a1, s1, a2, . . .) such that (sk, ak+1, sk+1) ∈ T for every k ≥ 0 (we
do not require a path to begin with an initial state). To determine whether the controller
or the environment wins, a control objective is given as a set W of (winning) paths,
which defines which paths are winning for the controller.

Our work falls in the (well-studied) setting of parity games, which are memoryless
determined (see for instance [9] for details). As a consequence, and to simplify the
presentation, we directly focus on memoryless strategies (a.k.a controllers).

A (memoryless) controller is a mapping c : SC → 2ΣC associating to a controller
state s ∈ SC a non-empty set of controller actions c(s). A path s0, a1, s1, a2, . . . is
controlled by c iff for every si ∈ SC we have ai+1 ∈ c(si). Given a state s, we say
that a controller c guarantees a control objective W from s iff every path ρ beginning
at s and controlled by c belongs to W . A state s is winning for control objective W iff
there exists a controller c that guarantees W from s. Finally, a control game structure is
winning for control objective W iff every initial state is winning for W .

We recall the widely used operator CPre : 2S −→ 2S (controllable predecessors).
Intuitively, it aims at computing, given a set of target states X , the set of states from
which the controller can guarantee to end up inX in one step. More formally, we define:

CPre(X) = {s ∈ SC | ∃(s, a, s′) ∈ T.s′ ∈ X} ∪ {s ∈ SE | ∀(s, a, s′) ∈ T.s′ ∈ X}

Note that if s ∈ SC , there must exist a controllable action leading to X while if s ∈ SE ,
we require that all possible successors for the environment must be in X .

2.1 Stabilization Games

Basic control objectives. We now consider more specific control objectives for hybrid
systems with initial conditions. We define two basic control objectives:

STAY: Given a set of states A ⊆ S, stay forever in the set A. Formally, we define:

WStay(A) = {ρ = (s0, a1, s1, a2, . . .) | ∀i ≥ 0, si ∈ A}
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UNTIL: Given two sets of states AB ⊆ S, reach a state of B in a finite number of steps
without leaving the set of allowed states A, where we require1 that B ⊆ A. Formally:

WUntil(A,B) = {ρ = (s0, a1, s1, a2, . . .) | ∃k ≥ 0.sk ∈ B ∧ ∀0 ≤ i < k, si ∈ A}

Stay(C, A) denotes the set of winning states of C w.r.t. the control objective WStay(A)

and Until(C, A,B) denotes the set of winning states w.r.t. WUntil(A,B). Intuitively, these
objectives correspond to the linear time temporal logic properties GA and A U B.

Fixpoint characterization. These winning sets can be defined in terms of fixpoints of
operators over sets of states. Therefore, we define the two following operators:

OStay(A)(X) = A ∩ CPre(X) (1)

OUntil(A,B)(X) = B ∪ (A ∩ CPre(X)) (2)

Intuitively, to stay forever in A, the controller should own an action which leads him
to a winning state. This explains equation (1). To characterize Until(C, A,B) (equation
(2)), one starts from sets in B and computes the least fixpoint of states from which the
controller can reach such states, using again the CPre operator. Then, we obtain the
following fixpoint characterizations:

Stay(C, A) =
⋂
n≥0

On
Stay(A)(S) and Until(C, A,B) =

⋃
n≥0

On
Until(A,B)(∅)

Here, we use the notation for the n-fold application of operators : O0(X) = X and
On+1(X) = O(On(X)). Note, that for the (finite) set lattice over S the approximation⋃

n O
n(∅) is equal to the least fixpoint of O, i.e. the least set S′ such that O(S′) = S′

and similarly
⋂

n O
n(S) is equal to the greatest fixpoint.

Controllers’ computation. For a state s ∈ Until(C, A,B), we moreover define the dis-
tance between s and B as the least n such that s ∈ On+1

Until(A,B)(∅). Notably, if s ∈ B

its distance from B is 0. We denote by d(s,B) this value. In order to obtain controllers
from these winning sets, one can proceed as follows. Let A,B ⊆ S. We distinguish the
two objectives:

Stay(C, A): for a state s ∈ Stay(C, A) ∩ SC , the controller has to choose any action
a ∈ ΣC such that s′ ∈ Stay(C, A) for the unique triple (s, a, s′).

Until(C, A,B): for a state s ∈ Until(C, A,B) ∩ SC , if s ∈ B, then we do not need
a strategy for this objective. Otherwise, if s 	∈ B, we must ensure progress towards
the set B. This can be guaranteed if the controller chooses an action a such that the
target state s′ (i.e. such that (s, a, s′) ∈ T ) verifies d(s′, B) < d(s,B). By the fixpoint
characterization of the set Until(C, A,B), this is possible.

1 The practically relevant objective is Until(A,A∩B), which is equal to Until(A, B) under this
assumption.
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Stabilization objective. Recall that in our setting, our objective is to synthesize a con-
troller for a dynamical system, which, starting from an intial configuration, leads the
system towards a desirable configuration. To express our stabilization objective, we
start from the two following properties: Goal is a set of goal states which describes
a neigbourhood around the desirable configuration, Allow is a set of allowed states,
which describes the legal configurations of the system. In the sequel, we assume that
the inclusion Goal ⊆ Allow holds.

Intuitively, we are interested in synthesizing a controller

G
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�

�

�

�

�

�

�

�

S

which is able to guide the system from an initial state, while
staying in the set Allow, towards a state from which it can
stay in the set Goal forever. We will express formally this
objective using the operators Stay and Until. In order to ob-
tain efficient algorithms, we will use computations starting
from initial configurations. We thus introduce some addi-

tional definitions. We formalize a subset of « reachable » states from the initial condi-
tion while respecting the description of « allowed » states. Formally, this set is defined
as follows:

Acc(C,Allow) = {s ∈ S | ∃ρ = (s0, a1, . . . , an−1, sn) such that s0 ∈ S0,
sn = s and ∀i ≤ n, si ∈ Allow}

We are now equipped to formalize the sets of states we are interested in:

Stabilize(C,Allow,Goal) = Until(C,Acc(C,Allow),Stay(C,Goal∩Acc(C,Allow)))

Intuitively, it reads as Acc(C,Allow) U Stay(C,Goal ∩ Acc(C,Allow)). Note that the
strategy for Stabilize is memoryless: it is a simple combination of the strategies for
Stay (for states in Stay) and Until (for the other states) indicated above.

For the reader familiar with the μ-calculus, we note that Acc, Stay and Until can be
characterized by the following formulae:

Post(X) = {s′ ∈ S | ∃s ∈ X s.t. s → s′ ∈ T } (3)

Acc(C, A) : μX.S0 ∨ (A ∧ Post(X)) (4)

Stay(C, A) : νX.A ∧ CPre(X) (5)

Until(C, A,B) : μX.B ∨ (A ∧ CPre(X)) (6)

Note the identity CPre(X) = 〈ΣC〉X ∨ [ΣE ]X . In particular, this allows to deduce a
μ-calculus formula characterizing the states in Stabilize(C,Allow,Goal).

2.2 Algorithm for Stabilization Games

In the sequel, we present the (efficient) algorithm we used to solve the controller syn-
thesis problem. This algorithm is used for each “level” in the hierarchical approach in
Section 4.

This algorithm is derived from model checking algorithms for the alternation free
μ-calculus, notably integrating concepts first published in [7,12]. In [5], the authors
observe that these local algorithms can be used to decide reachability properties in
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(un)timed games. We extend this observation to the more complex specifications we
consider here. This statement holds because the specification Stabilize can be expressed
as a propsitional μ-calculus formula without alternation. This is a local algorithm, in the
sense that the exploration of the transition system is started from initial states, and that
the exploration of losing states is stopped.

The algorithm we consider is presented as Algorithm 1. Given a CGS C, and two
sets of states Goal, Allow such that Goal ⊆ Allow, this algorithm returns a pair of sets
of states, whose first component is Stabilize(C,Allow,Goal), and second component
is Stay(C,Goal ∩ Acc(C,Allow)).

The algorithm consists of three phases:

1. the first while loop consists in a forward exploration of the reachability graph,
restricted to states in Allow. At the end of this phase, the list Passed exactly
contains the set Acc(C,Allow). In addition, the list NIG (standing for “Not In
Goal”) contains all the states outside Goal that can be reached from states in
Passed. Finally, the dependance lists (elements depend[s]) contain, for each state
s ∈ Passed ∪NIG, the set of predecessor states in Passed.

2. the second while loop aims at computing the set Stay(C,Goal ∩ Acc(C,Allow)),
via variable STAY . Therefore, it proceeds in a backward propagation of states
of NIG, by exploring the reachability graph (restricted to states in Allow) in a
backward manner, using the dependency lists. States are added to the Waiting
list iff they are declared as losing. For environment states, this happens as soon
as a successor is losing, while for controller states, it occurs when no successor is
winning (a counter is used to check this).

3. the third while loop computes the set Stabilize(C,Allow,Goal), via variable
UNTIL. As in the previous case, it proceeds in a backward propagation. How-
ever, the computation is dual: while for the computation of Stay (greatest fixpoint),
the propagation concerns losing states, for the computation of Until (least fixpoint),
it concerns winning states.

Note that the two first while loops can be merged, and thus performed simultaneously.
In our implementation (see Section 5), we have given a higher priority to the backward
propagation, thus avoiding the exploration of some losing states. The third loop must be
performed once the second one has finished, as each edge will be explored only once,
the status of the target state must be known when it is explored.

3 Nonlinear Systems and Discretizations

3.1 Nonlinear Systems with Inputs

We consider (possibly nonlinear) systems of ordinary differential equations:

Definition 2 (ODE system). A system of ordinary differential equations (ODE system
for short) is given by a triple O = (f,S, U) where U is a finite set of input parameter
values, S ⊆ Rn denotes the state space of the system, and f : S × U → Rn defines a
parameterized system of differential equations 2:

ẋ = f(x, u), with x : R → S, u ∈ U (7)

2 As usual, ẋ denotes the first derivative of x.



204 J. Malinowski, P. Niebert, and P.-A. Reynier

Algorithm 1. Local Algorithm Local-Stabilize for a Stabilization Objective

Data: C = 〈SE, SC , T, S0, λ〉,Allow,Goal
Result: UNTIL = Stabilize(C, Allow, Goal); STAY = Stay(C, Goal ∩ Acc(C, Allow))

Waiting ← S0; NIG ← ∅; Passed ← ∅;

while Waiting = ∅ do
s ← pop(Waiting); Passed ← Passed∪ {s};
foreach (s, a, s′) ∈ T do

if s′ ∈ Goal then NIG ← NIG ∪ {s′} ;
depend[s′] ← depend[s′] ∪ {s};
if s′ ∈ Allow ∧ s′ ∈ Passed then Waiting ← Waiting ∪ {s′};

end
end

∀s ∈ Passed∩ SC ; counterC(s) ← #Succ(s);
Waiting ← NIG; STAY ← Passed;

while Waiting = ∅ do
s ← pop(Waiting);
STAY ← STAY \ {s};
if s ∈ SC then

foreach s′ ∈ depend[s] do
if s′ ∈ STAY then Waiting ← Waiting ∪ {s′};

end
else

foreach s′ ∈ depend[s] do
counterC(s′) ← counterC(s′) − 1;
if counterC(s′) = 0 then Waiting ← Waiting ∪ {s′};

end
end

end

∀s ∈ Passed∩ SE , counterE(s) ← #Succ(s) ;
Waiting ← STAY ; UNTIL ← ∅ ;
while Waiting = ∅ do

s ← pop(Waiting);
UNTIL ← UNTIL ∪ {s};
if s ∈ SC then

foreach s′ ∈ depend[s] do
counterE(s′) ← counterE(s′) − 1;
if counterE(s′) = 0 then Waiting ← Waiting ∪ {s′};

end
else

foreach s′ ∈ depend[s] do
if s′ ∈ UNTIL then Waiting ← Waiting ∪ {s′};

end
end

end
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A configuration of O is a pair c = (x, u) ∈ S × U . An initial value problem (IVP for
short) is a pair E = (O, c0) composed of an ODE system O and a (initial) configuration
c0 = (x0, u0) of O.

In the sequel, to ensure the existence of a unique solution to the IVP, we assume that
for any u ∈ U , the function f(·, u) is locally Lipschitz.

Definition 3 (Trajectory). Let O = (f,S, U) be an ODE system. Given an initial
configuration c0 = (x0, u0) of O, a trajectory of an ODE system starting from c0 is a
triple (I, σ,X ) where:

– I = {Ik | 0 ≤ k ≤ N} is a sequence of intervals such that:
• if N = +∞, then for all k ∈ N, Ik = [tk, t′k] with t′k = tk+1,
• if N < +∞, then IN = [tN , t′N ] or IN = [tN ,+∞) and for all 0 ≤ k ≤
N − 1, Ik = [tk, t′k] with t′k = tk+1,

• in both cases, the initial time is t0 = 0,
– σ = {σk | 0 ≤ k ≤ N} is a sequence of elements of U such that σ0 = u0, and
– X = {xk | 0 ≤ k ≤ N} is a sequence of continuous, piecewise differentiable

functions. For all 0 ≤ k ≤ N, xk : Ik → Rn is the solution of the IVP (O, ck),
where, for k ≥ 1, ck = (xk−1(tk), σk).

We say that a trajectory is finite (resp. infinite) if N < +∞ (resp. N = +∞).
Intuitively, the controller acts on the value of the input parameter u. It has to decide

when to change this value (this defines the intervals I) and which value has the input
(this defines the sequence σ). Controller synthesis can thus be understood as the syn-
thesis of a mapping which, given the history of the system (a finite trajectory), gives the
timestamp of the next input change and the new value of the parameter.

Example 1 (An inverted pendulum). A cart of mass M carries an inverted pendulum of
length l with a mass m at the end. The cart can be accelerated somehow by a horizontal
force F . This classical control problem can be characterized by a system of four ODEs
including as variables θ, the angle of the pendulum relative to the vertical axis, and x,
its horizontal position relative to some origin :

θ

x

FM

m

l

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = x2

ẋ2 = F+(l.x2
4−g. cos x3).m. sin x3

M+m. sin2 x3

ẋ3 = x4

ẋ4 = g. sin x3.M−cos x3.F+(g−l.x2
4. cos x3).m. sin x3

l.M+l.m. sin2 x3

where x1 = x and x3 = θ

3.2 Discretizations

As nonlinear differential equations cannot be solved in general, we will approximate
the system by a finite state system, which can be analyzed. Therefore, we first restrict
the behaviour of the controller by considering a discrete-time controller, obtained by
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a sampling rate η ∈ Q>0. This means that discrete changes on the value of the input
parameter u can only occur at timestamps in η.N.

Then, it remains to approximate the infinite-state dynamics of the ODE system by a
finite-state one. In the sequel, we fix an ODE system O, together with an initial con-
figuration c0 = (x0, u0) of O and let E = (O, c0) be the resulting IVP. We assume
that the state-space S of the system is given by a hyper-rectangle I1 × · · · × In of
Rn. This assumption is not restrictive for standard ODE systems. Then, we consider
a mesh of the state-space obtained by the product of partitionings of each interval Ij ,
with 1 ≤ j ≤ n. More precisely, we consider, for each 1 ≤ j ≤ n, a partitioning Pj of
Ij . This yields a finite state abstraction of the infinite state space of the system. Follow-
ing definitions introduced in Section 2, we aim at obtaining a control game structure
C(E) = 〈SE , SC , T, S0, λ〉 over some alphabets (ΣE , ΣC , Γ ).

In this definition, the controller chooses the value of the input parameter, by choos-
ing a letter in ΣC . On the other side, the environment resolves the non-determinism
associated with the ODE system. In particular, we do not need to label the transitions
of the enviroment. This yields the following definitions:

SC = Πn
j=1Pj ΣC = U

SE = SC × U ΣE = {e}, for some letter e
S0 = {(r0, u0)} where r0 is such that x0 ∈ r0

Transitions of the controller are the following ones:

T ∩ SC ×ΣC × SE = {s u−→ (s, u) | u ∈ U, s ∈ SC}

Regarding transitions of the environment, we want to approximate, given a cell of the
mesh (i.e. a partition of S), and a value of the input, the reachable cells after a delay of
η time units. Note that the assumption that for each value of u, the function f(·, u) is lo-
cally Lipschitz ensures the existence and the unicity of a solution to the IVP associated
with the ODE system. However, as we consider here as possible initial values any value
of a given cell (and a single value of u), there are infinitely many such problems. As a
consequence, different cells can be reached from a single one. The problem of the com-
putation of these successors has already been studied by several authors: interval nu-
merical methods [10], standard mathematical techniques based on the evaluation of the
Lipschitz constant [3], simulation of the system based on sensitivity analysis [8]. . . We
do not detail here how such approximations can be obtained, as this is orthogonal to
the purpose of this paper. However, to obtain a sound method, the transitions of the
finite-state system should over-approximate the transitions of the ODE system:

Definition 4 (Sound over-approximation). Let E = (O, c0) be an IVP. The CGS
C = 〈SE , SC , T, S0, λ〉 is a sound over-approximation of E if it satisfies the following
property: ∀(s, u) ∈ SE , ∀x0 ∈ s, let x(t) be the unique solution to the IVP (f, x0, u).
Then for any s′ ∈ SC such that x(η) ∈ s′, we have (s, u) e−→ s′ ∈ T .

Finally, we define the labelling function λ. Given a set of atomic propositions Γ , inter-
preted as subsets of S by a given mapping χ, we define λ as follows:

∀γ ∈ Γ, ∀s ∈ SC , γ ∈ λ(s) ⇐⇒ s ∩ χ(γ) 	= ∅
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We extend this mapping over SE by letting λ(s, u) = λ(s) for any u ∈ U . This is
coherent as propositions in Γ are intended to express properties over states but not over
parameter values. The above definitions ensure that the discretized CGS built from the
partitionning of the state space simulates the behaviour of the ODE system:

Proposition 1 (Simulation). Let O = (f,S, U) be an ODE system, c0 be a configura-
tion of O, and C be a CGS that is a sound over-approximation of E = (O, c0). Then, for
any trajectory (I, σ,X ) of O such that any interval I ∈ I is of the form [kη, (k + 1)η]
for some k ∈ N, there exists a path ρ = (s0, a1, s1, a2, . . .) in C such that σ = (ai)i,
and for each i, we have xi(ti) ∈ si.

Assume that the partitionings Pj are compatible with the properties labelings χ, in the
sense that for any s ∈ SC and any γ ∈ Γ , we have s∩χ(γ) 	= ∅ if, and only if, s ⊆ χ(γ).
Then the property of simulation entails that if we can synthesize a controller for the
CGS C w.r.t. some control objective, then this controller can be used as a discrete-time
controller for the ODE system O w.r.t. the same control objective. The only difference
is that the atomic properties are ensured only at sampled timestamps.

4 Hierarchical Approach to Controller Synthesis

In this section, we present an original approach for the analysis of the discretizations of
ODE systems. In principle, the discretization explodes with the number of variables.
Our technique exploits dependencies between variables of the system to first solve
smaller subsystems and then use the analysis results to dramatically reduce the size
of the state space to explore with the full set of variables.

4.1 Abstractions Preserving Controllability

We present a particular abstraction used in the sequel, which is a bisimulation w.r.t. pos-
sible transitions, but only a simulation w.r.t. properties satisfaction. Within this setting,
C2 can be seen as an abstraction of the system C1.

Definition 5. Consider two CGS Ci = 〈Si
E , S

i
C , T

i, Si
0, λ

i〉, and let Si = Si
E �Si

C for
i = 1, 2. We consider a surjective mapping α : S1 → S2, and the associated relation
R ⊆ S1 × S2 defined by s1 R s2 iff α(s1) = s2.

We say that α yields a property asymmetric bisimulation relation R if, and only if,
for any pair s1 R s2:

1. either s1 ∈ S1
C and s2 ∈ S2

C , or s1 ∈ S1
E and s2 ∈ S2

E ,
2. if s1 ∈ S1

0 , then also s2 ∈ S2
0 ,

3. for any γ ∈ Γ , if γ ∈ λ1(s1), then also γ ∈ λ2(s2),
4. for (s1, a, s′1) ∈ T 1 there exists s′2 such that (s2, a, s′2) ∈ T 2 and s′1 R s′2, and
5. for (s2, a, s′2) ∈ T 2 there exists s′1 such that (s1, a, s′1) ∈ T 1 and s′1 R s′2.

The following proposition states that winning states of the abstract system cover the
winning states of the concrete one. This property can be seen as a particular instance of
the properties of zig-zags bisimulations, see e.g. [4].
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Proposition 2. Let Ci, i = 1, 2 be two CGS, and α : S1 → S2 be a mapping yielding
a property asymmetric bisimulation relation. Let3 γ, γ′ ∈ Γ . Then we have:

Stay(C1, γ) ⊆ α−1(Stay(C2, γ)) and Reach(C1, γ, γ
′) ⊆ α−1(Reach(C2, γ, γ

′))

Proof (Sketch). We first prove the following property:

∀X1 ⊆ S1, X2 ⊆ S2, α(X1) ⊆ X2 ⇒
{

α(Post1(X1)) ⊆ Post2(X2)
α(CPre1(X1)) ⊆ CPre2(X2)

where Posti (resp. CPrei) denotes the operator Post (resp. CPre) in the CGS Ci. These
properties easily follow from points 1., 4. and 5. of Definition 5. As a consequence,
this entails α(Acc(C1, γ)) ⊆ Acc(C2, γ). Indeed, the property holds for initial states
(point 2. of Definition 5). Second, consider the characterization of sets Stay(Ci, γ) and
Reach(Ci, γ, γ

′) by fixpoints presented in Section 2. We will prove the result by induc-
tion on the number of iterations of the fixpoint computation. Initially, the property holds
for atomic properties by point 3. of Definition 5, and for the set of reachable states by
the above result. The induction follows from the above property of CPrei. !"

4.2 Hierarchical Abstractions in ODE Systems

Formally, we consider an ODE system O = (f,S, U) over real variables x1, . . . , xn,
to be as follows: ⎧⎪⎨⎪⎩

ẋ1 = f1(x1, . . . , xn, u)
...
ẋn = fn(x1, . . . , xn, u)

where for each 1 ≤ i ≤ n, fi : S × U → R is supposed to be locally Lispchitz
(notations are taken from Section 3).

Definition 6 (Dependency). Let i, j ∈ {1, . . . , n}. We say that mapping fi does not
depend on variable xj iff for any y, y′ ∈ Rn such that yk = y′k for all k 	= j, we have
fi(y) = fi(y′). Otherwise, we say that fi depends on xj .

In particular, for standard ODE systems in which mappings fi’s are given by explicit
expressions involving polynomials, sine, cosine, . . . , the mapping does not depend on
a variable as soon as it does not appear in this expression. For instance, regarding the
inverted pendulum example, one can note that mappings f3 and f4 only depend on
variables x3 and x4.

Definition 7 (Independent subset of variables). Let J ⊂ {1, . . . , n}. We say that
the subset of variables J is independent if the subsystem obtained by the restriction to
variables {xj | j ∈ J} constitutes an independent subsystem, i.e. iff for any j ∈ J ,
mapping fj only depends on variables in the set {xj | j ∈ J}.

For the example of the inverted pendulum, there are four independent subsets of vari-
ables : ∅, {x3, x4}, {x2, x3, x4} and {x1, x2, x3, x4}.

3 For readability, we shortcut λiγ by simply γ in the expression Stay(Ci, λi(γ)) and similarly
for Reach.
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Proposition 3. The independent subsets of variables of an ODE system is a complete
lattice.

Definition 8. Let O be an ODE system. We denote by L(O) the complete lattice of its
independent subsets of variables. In addition, given J, J ′ ∈ L(O), we write J ′ ≺ J iff
J ′ � J , and there does not exist a set J ′′ ∈ L(O) such that J ′ � J ′′ and J ′′ � J .

Definition 9. Consider an IVP E = (O, c0), and a set of partitionings Pj , for 1 ≤ j ≤
n. For any set J ∈ L(O), we denote by CJ(E) the discretization of the subsystem of O
restricted to J , w.r.t. partitionings Pj , with j ∈ J .

Let J, J ′ ∈ L(O) such that J ′ ⊆ J . We denote by πJ,J′ the projection from states
of CJ(E) to states of CJ′(E) obtained by erasing components of J not in J ′. We simply
write πJ to denote the projection π{1,...,n},J .

The following Lemma states that independent subsets of variables can be used for hier-
archical computations:

Lemma 1. Let J, J ′ ∈ L(O) such that J ′ ⊆ J . The mapping πJ,J′ yields an asymmet-
ric property bisimulation relation between CJ(E) and CJ′(E).

Proof (Sketch). Let R denote the relation associated with πJ,J′ . We have to prove that
R satisfies point 1. to 5. of Definition 5. Points 1. to 4. easily follow by definition of a
projection mapping, and would be true for any sets J, J ′ such that J ′ ⊆ J . Point 4 holds
because J and J ′ are independent subset of variables. This implies that any trajectory
(I ′, σ′,X ′) in the ODE system O restricted to J ′ can be extended into a trajectory
(I, σ,X ) in O restricted to J whose projection on J ′ coincides with (I ′, σ′,X ′). !"

Algorithm 2. Hierarchical Algorithm for the Synthesis w.r.t. Stabilization Objectives

Data: E = (O, c0),Allow,Goal
Result: Stabilize(C(E),Allow,Goal)

Compute the lattice L(O) ;
foreach J ∈ L(O), ordered by increasing size do

A ← πJ(Allow) ∩
⋂

J′≺J π
−1
J,J′(U(J ′));

G ← πJ(Goal) ∩
⋂

J′≺J π
−1
J,J′(S(J ′));

(U(J), S(J)) ← Local-Stabilize(CJ(E), A,G) ;
end
Return U({1, . . . , n});

This allows us to derive Algorithm 2, which first solves the control problem for
smaller sets of variables, and uses the results to limit the domain explored by further
resolutions of the control problem: compute incrementally for all independent subsets
bottom up the set of winning states for Stay and Until objectives, and exploit the asym-
metric bisimulation and property inheritance (Proposition 2) to eliminate states from
these two sets if they are not in Stay or Until in the projection.

This approach allows, based on the analysis on subsets of variables, to reduce the
exploration space by observing what happens in the projection. To understand this intu-
itively, let us consider the independent subsets of the inverted pendulum. If the control
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objective is to go to a certain position and keep the pendulum close to the vertical po-
sition, three different problems have to be solved : first we solve the problem only for
angular speed and position which means to solve the problem of balancing the pendu-
lum independently of the vehicle movement. If, afterwards, the problem is extended to
include vehicle speed and then vehicle position, states for which it is not possible to bal-
ance the pendulum are immediately removed from the sets of candidates with additional
objectives for the position.

STAY

UNTIL

Position of initial 
state at lowest 

potential

Fig. 1. A strategy simulation for a swing up and a representation of winning states

5 Experiments

We have realized a prototype implementation of the algorithms described in this paper
and demonstrate its capacities using the example of the inverted pendulum.

As an illustration of what can be achieved with specifica-
tions, we consider the “swing up” problem: we suppose that the
pendulum is initially hanging at its lowest potential energy (see
image on the right) and we ask for a controller which lifts it
to the vertical upright position. Figure 1 at left shows a sim-
ulated trajectory obtained from a synthetized controller which
illustrates how the angle θ of the pendulum is raised from the
lowest position (radiant angle π) with several swings before sta-
bilizing with tiny oscillations at the vertical position (radiant 0). The image on the right
shows the winning sets Stay (black) and Until (gray and black) for the stated swingup
problem, a small box indicates the initial configuration.

Concerning the reduction potential of the hierarchical algorithm, we give sample fig-
ures for the synthesis of a controller limiting all four variables of the pendulum. We
count in particular the number of states explored with and without the hierarchical ap-
proach. The third line (exploration ratio, explored

|SC | ∗ 100) gives an impression of the
advantage of the combined local and hierarchical approach over a global approach: for
the biggest example, only 11% of the states are visited. The difference of the local
approach with and without hierarchy is explored in the fourth and fifth line: using re-
sults from {x3, x4} in the computation for {x2, x3, x4} allows a state space reduction of
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48%. Data for {x1, x2, x3, x4} without the hierarchical approach is not available since
it was beyond our current implementation and available hardware.

{x3, x4} {x2, x3, x4} {x1, x2, x3, x4}
|SE ∩ Allow| 1.049.600 136.448.000 6.822.400.000
|SC ∩ Allow| 25.600 3.328.000 166.400.000

explored part of SC ∩ Allow 17.616 815.643 18.261.684
exploration ratio 68% 24% 11%

explored without hierarchy 17.616 1.571.127 n/a
savings by hierachical approach 0% 48% n/a

|SC ∩ Stay| 1.683 50.787 1.305.059
|SC ∩ Until| 10.121 432.547 9.678.467

Optimizations in the prototype. We discuss some of the optimizations we introduced
in the prototype to make it work with case studies of the size of the pendulum.

The first two while loops of 1 can actually be merged and combined with a com-
putation of Stay(C,Allow ∩ Acc(C,Allow)). This combination has the advantage of
avoiding the exploration of certain states and making the algorithm a bit more local.

It turned out that an explicit representation of depend[s] by lists creates a major bot-
tleneck in terms of memory usage: looking at the figures for SE in the table, one can
understand why, there are billions of transitions involved over which backward propa-
gation may take place. The experiments shown here therefore add a symbolic overap-
proximation technique that allows to safely track supersets of the actual predecessors.
Using these supersets in backward propagation is like adding non-determinism to the
environment, thus, if a controller with this overapproximation exists, so does one for
the case without.

In the future, we want to look into the possibility of optimizing memory usage of the
algorithms by exploiting more knowledge about the structure of the state space.

6 Conclusions and Future Work

We have developped an approach for the synthesis of stabilizing controllers of hybrid
systems that exploits the structure of differential equations for state reduction.

The combinatory explosion due to the non-deterministic overapproximation intro-
duced by discretization is the big challenge and many techniques must be combined
to make such approaches realistic. In our experiments, we found that the slicing ap-
proach helps in finding good abstractions for the independent variable subsets before
going to more complex levels. This is orthogonal and complementary to compositional
approaches such as [14] which are needed if one wants to synthesize controllers for
complex systems: in hybrid systems there are limits to decomposition and this is where
our slicing type approach can help. Another promising direction is the use of counter-
example guided refinements for controller synthesis [11].

The reduction approach uses a notion of bisimulation for its correctness and the al-
gorithms are fundamentally based on a certain fragment of the μ-calculus [4] : formulae
without negation on the properties. The hierarchical reduction framework is thus open
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for extension to a much larger class of properties which can be expressed in the alterna-
tion free fragment of the μ-calculus, and it is not difficult to extend the proofs in Section
4 to a more general case.

In the future, we want to extend our work to the case of control objectives changing
with time while preserving stabilization in the sense we use it here.
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Abstract. In [2], we showed how viewing online algorithms as reactive systems
enables the application of ideas from formal verification to the competitive analy-
sis of online algorithms. Our approach is based on weighted automata, which as-
sign to each input word a cost in IR≥0. By relating the “unbounded look ahead” of
optimal offline algorithms with nondeterminism, and relating the “no look ahead”
of online algorithms with determinism, we were able to solve problems about the
competitive ratio of online algorithms and the memory they require.

In this paper we improve the application in three important and technically
challenging aspects. First, we allow the competitive analysis to take into account
assumptions about the environment. Second, we allow the online algorithm to
have a bounded lookahead. Third, we describe a symbolic version of the model-
checking algorithm and demonstrate its applicability. The first two contributions
broaden the scope of our approach to settings in which the traditional analysis
of online algorithms is particularly complicated. The third contribution improves
the practicality of our approach and enables it to handle larger state spaces.

1 Introduction

In formal verification, we verify that a system has a desired property by checking
whether a model of the system satisfies a formal specification of the property. An im-
portant feature of formal verification is that it enables reasoning about reactive systems,
which maintain an on-going interaction with their environment [18].

Online algorithms for optimization problems can be viewed as reactive systems. An
online algorithm processes requests in real-time: At each round, the environment issues
a request, and the algorithm should process it. The sequence of requests is not known in
advance, and the goal of the algorithm is to minimize the overall cost of processing all
the requests in the sequence. For example, in the paging problem, we have a two-level
memory hierarchy: A slow memory that contains n different pages, and a cache that
contains at most k different pages (typically, k & n). Pages that are in the cache can be
accessed at zero cost. If a request is made to access a page that is not in the cache, the
page should be brought into the cache, at a cost of 1, and if the cache is full, some other
page should first be evicted from the cache. The paging problem is, given a sequence
of requested pages, to decide which page to evict whenever an eviction is needed. The
goal is to minimize the total cost. Online algorithms for many problems have already
been extensively studied for several decades, and have aroused much interest, both from
a practical and a theoretical point of view [6].
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The interaction described above between an online algorithm and its environment
is at the heart of formal verification. Still, the questions that are traditionally answered
by formal-verification techniques are very different from those that are asked in the
context of online algorithms. In formal verification, a system is checked with respect to
a given specification. The specification can be qualitative (e.g., “whenever a request to
a page is made, and this page is not in the cache, the page is brought into the cache”)
or quantitative (e.g., “what is the maximal number of page faults within a window of
k rounds?”) [11]. The most interesting question about an online algorithm, however, is
of a different nature, and refers to its competitive ratio: the worst-case (with respect to
all input sequences) ratio between the cost of the algorithm and the cost of an optimal
solution (one that may be given by an offline algorithm, which knows the input sequence
in advance). Thus, we can specify the model-checking problem of online algorithms as
follows: Consider an optimization problem P . Given an algorithm g and a competitive
ratio α, is g α-competitive with respect to an optimal offline algorithm for P ?

Recently, we extended the scope of formal verification to reasoning about online
algorithms [2]. The approach in [2] is based on weighted finite automata (WFAs, for
short) [24,26]. A WFA A induces a partial cost function from Σ∗ to IR≥0. Technically,
each transition of A has a cost associated with it. The cost of a run is the sum of the costs
of the transitions taken along the run, and the cost of a word w, denoted cost(A, w),
is the minimum cost over all accepting runs on it (the cost is undefined if no run on
the word is accepting). Consider an optimization problem P with requests in Σ. An
algorithm for P can be viewed as a mapping of words in Σ+ to a set of actions available
to the algorithm [5]. For a finite set S of configurations, we say that an algorithm uses
memory S if there is a regular mapping of Σ∗ into S such that the algorithm behaves
in the same manner on identical continuations of words that are mapped to the same
configuration.

The set of online algorithms for P that use memory S induces a WFA AP , with al-
phabetΣ and state space S, such that the transitions of AP correspond to actions of the
algorithms and the cost of each transition is the cost of the corresponding action. It is
shown in [2] that many optimization problems have algorithms that use finite memory
and can be modeled by weighted automata as described above. Moreover, the “un-
bounded look ahead” of the optimal offline algorithm corresponds to nondeterminism
in AP , and the “no look ahead” of online algorithms corresponds to deterministic au-
tomata embedded in AP . Consequently, questions about the competitive ratio of online
algorithms can be reduced to questions about determinization and approximated deter-
minization of WFAs [3]. In particular, the model-checking problem for an online algo-
rithm g can be reduced to the problem of deciding whether the pruning of AP induced
by g results in a deterministic automaton Ag

P that α-approximates AP (that is, the au-
tomaton Ag

P accepts the same set of words as AP , and cost(Ag
P , w) ≤ α ·cost(AP , w)

for all words w in this set). In addition, the synthesis problem for online algorithms can
be reduced to the problem of deciding whether AP contains an embedded deterministic
automaton that α-approximates AP .

The competitive analysis of online algorithms takes into account the most hostile
environment. Indeed, an online algorithm g is α-competitive if its cost with respect to
every input sequences is at most α times the cost of an optimal solution. Quite often,
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however, the nature of the problem restricts the set of possible input sequences. Much
research has been carried out in the online-algorithm community studying the compet-
itive analysis of online algorithms under different assumptions about the environment
[6]. For example, for the paging problem, Borodin et al. studied the access graph model
[7], which takes into account the locality of reference principle. In the access graph
model, the paging problem is equipped with a graph whose vertices are the pages, and
two pages can be requested successively only if they are connected in the graph.

The first contribution of this paper is an extension of the framework in [2] to a setting
in which assumptions about the environment can be taken into account. The issue of re-
stricted environments is well studied in formal verification. Ideas like fairness [16],
assume-guarantee reasoning [27], and synthesis under restricted environments [12],
have been suggested in order to take assumptions about the environment into account.
We study the competitive analysis of online algorithms in which assumptions about
the environment are given by means of a nondeterministic finite automaton (NFA, for
short). In this setting, the competitive ratio of an online algorithm is defined only with
respect to input sequences that belong to the language of the assumption NFA. Our
definition generalizes restrictions such as the one induced by the access graph — it sup-
ports all regular assumptions. In addition, it nicely combines with the automata-based
approach initiated in [2]. Consider an online problem P , a set of configurations S for it,
an approximation factor α, an online algorithm g that uses configurations in S, and an
assumption NFA U . We show that the problem of deciding whether g is α-competitive
with respect to input sequences in L(U) (model checking with assumptions) can be
solved in polynomial time. On the other hand, the problem of deciding whether there
is an online algorithm that uses configurations in S and is α-competitive with respect
to input sequences in L(U) (synthesis with assumptions) is NP-complete. We note that
NP-hardness holds already for unweighted automata and α = 1, and even when U is
deterministic. This is in contrast to the setting with no assumptions studied in [2], in
which synthesis with α = 1 can be solved in polynomial time. Thus, interestingly, the
addition of assumptions makes the problem substantially more complex.

The second contribution of this paper is an extension of the framework in [2] to a set-
ting in which the online algorithm has a bounded lookahead on the requests yet to come.
Since an offline algorithm can be viewed as an online algorithm with an unbounded
lookahead, the setting of a bounded lookahead covers the “middle-ground” between
onlineness and offlineness. However, considering online algorithms with lookahead is
also interesting from a practical point of view. In practical applications, requests do not
always arrive one by one, but sometimes naturally occur in bursts. Also, some appli-
cations benefit from delaying requests so that a block of requests can be served all at
once, minimizing common overhead. Finally, in some applications requests are gen-
erated faster than they can be served, and thus the online algorithm has to maintain a
buffer containing requests that are pending service. The challenges of manually analyz-
ing online algorithms are even bigger in the setting of lookahead [1,8,31]. Indeed, the
analysis has to take into an account the extended memory of the algorithm and the parti-
tion of the input stream to requests that are in the lookahead and those that are not. The
automata-theoretic approach can be naturally extended to handle bounded lookahead
in online algorithms by means of automata with a bounded lookahead. Such automata
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read, in each transition, a sequence of the next l+ 1 letters, for a fixed parameter l (that
is, the look ahead). We study the problems of determinization and approximated deter-
minization of nondeterministic weighted automata with a bounded lookahead, and how
questions about online algorithms can be reduced to them. Unfortunately, the analysis
is exponential in the lookahead. A similar computational cost is needed in the analysis
of lookahead in regular infinite games [19], and we prove that the cost indeed cannot be
polynomial.

One of the main challenges in formal verification is the need to cope with very big,
often infinite, state spaces. In our context, the state space often involves weights, and
is thus very big. The third contribution of the paper is a description of a symbolic
algorithm [10] for the problem of model-checking of online algorithms. In symbolic
reasoning, the state space and the transitions of the system are given symbolically by
characteristic functions over a set of variables that encode the state space of the sys-
tem. The operations allowed to the verification algorithm correspond to manipulations
of predicates over the set of variables. The fact a symbolic algorithm has to manipulate
predicates over variables forces it to refer to sets of elements rather than to individual
elements. The idea behind the algorithm is as follows. Consider a WFA A. We say that
a state q of A, (α, i, t)-approximates a state q′, for a competitive ratio α, an integer
i ≥ 0, and an additive factor t, if there is a deterministic automaton Aq with initial
state q that is embedded in A and in which cost(Aq, w) ≤ t + α · cost(Aq′

, w) for
every word w of length at most i, where Aq′

is A with initial state q′. We show that
given a symbolic representation of pairs 〈q, q′〉 such that q (α, i, t)-approximates q′, it
is possible to generate a symbolic representation of pairs 〈q, q′〉 such that q (α, i+1, t′)-
approximates q′, for the minimal t′ for which such an approximation exists. Note that
t′ ≥ t. The symbolic algorithm then calculates a fixed-point of the above transforma-
tion. In the process, it detects cycles along which Aq′

is “unboundedly better” than
Aq . The algorithm then concludes that t′ should be increased to infinity. Finally, the
answer to the model-checking problem is positive iff there is an initial state q such that
q (α, i, 0)-approximates q′ for all the initial states q′ of A and the iteration i in which
a fixed-point was reached1. The symbolic implementation can handle also assumptions
about the environment and algorithms with lookahead. We implemented our symbolic
algorithm, and describe its application in reasoning about two online algorithms for the
paging problem.

Due to the lack of space, some proofs and examples are omitted. The full version can
be found in the authors’ home pages.

2 Preliminaries
2.1 Weighted Automata

Standard automata map words in Σ∗ to either “accept” or “reject”. A weighted au-
tomaton can be viewed as a partial function (defined only for accepted words) from

1 In [14], the authors use an iterative (non-symbolic) procedure that checks for α-competitive
algorithms to the server problem. There, a fixed-point has been reached iff such an algo-
rithm exists. By [2], the procedure can be terminated after two rounds of quadratically many
iterations.
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Σ∗ to IR≥0. Formally, a weighted finite automaton (WFA, for short) is a 6-tuple
A = 〈Σ,Q,Δ, c,Q0, F 〉, where Σ is a finite input alphabet, Q is a finite set of states,
Δ ⊆ Q ×Σ × Q is a transition relation, c : Δ → IR≥0 is a cost function, Q0 ⊆ Q is
a set of initial states, and F ⊆ Q is a set of final states. A transition d = 〈q, a, p〉 ∈ Δ
(also written as Δ(q, a, p)) can be taken when A reads the input letter a, and it causes
A to move from state q to state p with cost c(d). The transition relation Δ induces a
transition function δ : Q×Σ → 2Q in the expected way. Thus, for a state q ∈ Q and a
letter a ∈ Σ, we have δ(q, a) := {p : Δ(q, a, p)}. A WFA A may be nondeterministic
in the sense that it may have many initial states, and that for some q ∈ Q and a ∈ Σ,
it may have Δ(q, a, p1) and Δ(q, a, p2), with p1 	= p2. If |Q0| = 1 and for every state
q ∈ Q and letter a ∈ Σ we have |δ(q, a)| ≤ 1, then A is a deterministic weighted finite
automaton (DWFA, for short).

For a word w = w1 . . . wn ∈ Σ∗, a run of A on w is a sequence r = r0r1 . . . rn ∈
Q+, where r0 ∈ Q0 and for every 1 ≤ i ≤ n, we have 〈ri−1, wi, ri〉 ∈ Δ. The run r
is accepting if rn ∈ F . The word w is accepted by A if there is an accepting run of A
on w. The (unweighted) language of A is L(A) = {w : w is accepted by A}. The cost
of an accepting run is the sum of the weights of the transitions that constitute the run.
Formally, let r = r0r1 . . . rn be an accepting run of A on w, and let d = d1 . . . dn ∈ Δ∗

be the corresponding sequence of transitions. The cost of r is cost(A, r) =
∑n

i=1 c(di).
The cost of w, denoted cost(A, w), is the minimal cost over all accepting runs of A on
w. Thus, cost(A, w) = min{cost(A, r) : r is an accepting run of A on w}.

For two WFAs A1 = 〈Σ,Q1, Δ1, c1, Q
0
1, F1〉 and A2 = 〈Σ,Q2, Δ2, c2, Q

0
2, F2〉,

and α ≥ 1, we say that A2 α-approximates A1 if L(A1) = L(A2) and for all words w
in both languages, we have cost(A2, w) ≤ α·cost(A1, w). We say that A2 is embedded
in A1 if Q2 = Q1, Q0

2 ⊆ Q0
1, Δ2 ⊆ Δ1, c2 agrees with c1 on Δ2, and F1 = F2.

Thus, A2 can be obtained from A1 by decreasing its nondeterminism. Finally, given an
approximation factor α ≥ 1, we say that A is α-determinizable by pruning (α-DBP, for
short) if A has an embedded DWFA that α-approximates A.

2.2 Online Algorithms

A problem associates with each possible input I a set F (I) of feasible solutions. In an
optimization problem (of cost minimization), each solution in F (I) has a cost in IR≥0,
and the goal is to find a feasible solution that minimizes the cost.

An online algorithm for an optimization problem P is an algorithm that gets as input
a finite sequence of requests, and has to process each request (and end up in a feasible
solution) without knowing the requests yet to come. In contrast, an offline algorithm for
P gets the entire sequence in advance, and its decisions as to how to process a request
may depend on the requests yet to come.

Formally, if we denote by Σ the set of requests, and denote by Γ the set of ac-
tions that are available to the algorithm, then an online algorithm corresponds to a
function g : Σ+ → Γ . The processing of an input sequence σ1 . . . σn by g is then
g(σ1), g(σ1σ2), g(σ1σ2σ3), . . .. In typical optimization problems, there is a cost func-
tion action cost : Γ → IR≥0 that associates a cost with each action. The cost of
processing an input sequence is the sum of the costs of the actions taken in order to pro-
cess it. The performance of an online algorithm is typically worse than that of an offline
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algorithm for the same problem. For analyzing the performance of online algorithms
we use competitive analysis, which compares the two performance values.

For an online algorithm g and an input w ∈ Σ+, let g(w) denote the cost of pro-
cessing w by g, and let OPT(w) denote the cost of processing w by the optimal offline
algorithm. We say that an online algorithm g is α-competitive if there exists a constant
β such that for all input sequences w ∈ Σ+ we have that g(w) ≤ α·OPT(w) + β. The
competitive ratio of g is the smallest α for which g is α-competitive. In the rest of the
paper we restrict attention to the multiplicative factor α and ignore the additive factor
β, except for places where it is not immediately clear how to handle β.

2.3 An Automata-Theoretic Approach to Reasoning about Online Algorithms

Recall that an online algorithm corresponds to a function g : Σ+ → Γ that maps se-
quences of requests (the history of the interaction so far) to an action to be taken. For
a finite set S of configurations, we say that g uses memory S, if there is a regular map-
ping of Σ∗ into S such that g behaves in the same manner on identical continuations
of words that are mapped to the same configuration.We model the set of online algo-
rithms that use memory S and solve an optimization problem P with requests in Σ and
actions in Γ , by a WFA AP = 〈Σ,S,Δ, c, S0, S〉, where Δ and c describe transitions
between configurations and their costs, and S0 is a set of possible initial configura-
tions. Formally, Δ(s, σ, s′) if the set Γ ′ ⊆ Γ of actions that process the request σ
from configuration s by updating the configuration to s′ is non-empty, in which case
c(〈s, σ, s′〉) = minγ∈Γ ′ action cost(γ). Note that all the states of AP are accepting.
Thus, AP assigns a cost to all sequences in Σ∗.

As demonstrated in [2], many optimization problems have online algorithms that re-
quire finite memory. Below we describe the modeling of the paging problem, presented
in Section 1.

Example 1. [The paging problem [28]] A paging problemP with parametersn (num-
ber of pages) and k (size of the cache) induces a WFA AP = 〈Σ,S,Δ, c, S0, S〉, where
Σ = {1, . . . , n} is the set of possible requests (page indices), S = {C ⊆ {1, . . . , n} :
|C| ≤ k} is a set of finite configurations, each describing the set of pages currently in
the cache, Δ and c describe how (and at which cost) requests are served, and S0 = {∅},
indicating that the cache is initially empty. Thus, Δ(C, i, C′) iff one of the following
holds: (1) i ∈ C, in which case C′ = C and c(〈C, i, C′〉) = 0, (2) i 	∈ C, |C| < k,
and C′ = C ∪ {i}, in which case c(〈C, i, C′〉) = 1, or (3) i 	∈ C, |C| = k, and there is
j ∈ C such that C′ = (C \ {j}) ∪ {i}, in which case c(〈C, i, C′〉) = 1. Note that by
the definition of S, a configuration stores only the set of pages currently in the cache,
and there are no provisions for storing any extra information such as time-stamps, etc.
A different automaton for the problem could have defined S in a way that allows the
storage of such extra information. We will elaborate on this point in the sequel.

Note that the above modeling restricts attention to lazy (a.k.a. demand paging) algo-
rithms, which minimize the change of configurations so that only the current request is
served. By [25], for every non-lazy algorithm, there exists a lazy one that performs at
least as well.
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Let P be an optimization problem, and let AP = 〈Σ,S,Δ, c, S0, S〉 be a WFA for
its algorithms that use memory S. Given a finite sequence of requests w ∈ Σ∗, each
run of AP on w corresponds to a way of serving the requests in w by an algorithm
with configurations in S. The set of all runs includes all such algorithms, thus the cost
of w in AP is the cost of w in an optimal offline algorithm whose configurations are
based on S (the configurations of the offline algorithm may also maintain the suffix
of the input yet to be processed. This information, however, would be implicit in the
nondeterminism of AP ). On the other hand, an online algorithm has to process each
request as soon as it arrives, without knowing the requests yet to arrive. Accordingly,
an online algorithm that uses memory S corresponds to a DWFA embedded in AP

(note that this correspondence is lost if we consider unrestricted determinization of
AP ). Formally, given an online algorithm g : Σ+ → Γ that uses memory S, let
h : Σ∗ → S be the regular mapping that witnesses that g uses memory S. Then, the
DWFA embedded in AP and induced by g is an automaton Ag

P in which, for all states
s ∈ S and requests σ ∈ Σ, we have δ(s, σ) = s′, where s′ is the configuration obtained
by applying the action g(w · σ) from s, and w is such that h(w) = s. In other words,
for all w ∈ Σ∗, we have δ(h(w), σ) = h(w · σ).

Theorem 2. [2] Given an online problem P and a set S of configurations, let AP be a
WFA, with state space S, that models online algorithms for P that use memory S. An
online algorithm g, that uses memory S, is α-competitive iff Ag

P α-approximates AP .

Note that the setting describes above forces the online algorithm to have the same state
space as the offline one. In [2] we described how the framework can handle also online
algorithms with a richer state space. The same idea can be applied to the extensions
studied in the current paper.

3 Adding Assumptions on the Environment

As discussed in Section 1, an online algorithm can be viewed as a reactive system. The
fact that a reactive system has to satisfy its specification with respect to all input se-
quences is analogous to the fact that an α-competitive online algorithm has to satisfy
g(w) ≤ α·OPT(w) for all input sequences w ∈ Σ+. When reasoning about reactive
systems, it is sometimes desirable to restrict the universal quantification over all input
sequences to a subset of the possible inputs. The automata-theoretic approach natu-
rally formalizes such assumptions in the context of online algorithms. We begin our
study with unweighted automata, where things are typically simpler, and then move to
weighted automata, which immediately translates to the context of online algorithms.

Given two NFAs, A and U , we say that A is determinizable by pruning with respect
to assumptions in U (U-DBP, for short), if A has an embedded DFA A′ such thatL(A)∩
L(U) ⊆ L(A′). Thus, A is U-DBP if it can be pruned to a deterministic automaton that
accepts all the words in L(A) that are also in L(U). In this case we say that A′ is a
witness for A being U-DBP. Similarly, for the weighted case, given a WFA A, an NFA
U , and an approximation factor α ≥ 1, we say that A is α-U-DBP if A has an embedded
DWFA A′ such that for all w ∈ L(A) ∩ L(U) we have cost(A′, w) ≤ α · cost(A, w).
Intuitively, the NFA U specifies assumptions about the environment. In particular, usual
determinization by pruning is a special case of the above, with L(U) = Σ∗.
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The relaxed-α-DBP problem is to decide, given a WFA A, an approximation factor
α ≥ 1, and an NFA U , whether A is α-U-DBP. The relaxed-α-DBP witness-checking
problem is to decide, given a WFA A, an NFA U , α ≥ 1, and a DFA (DWFA) A′ em-
bedded in A, whether A′ is a witness for A being α-U-DBP. When A and A′ are NFAs
(that is, unweighted), no approximation factor is given and we refer to the problems as
the relaxed-DBP and the relaxed-DBP witness-checking problems.

The relaxed-α-DBP problem corresponds to the synthesis problem, whereas the
witness-checking problem corresponds to model checking. In the setting with no as-
sumptions about the environment, it was shown in [2] that the DBP-problem is polyno-
mial for the unweighted case or for the weighted case with α = 1, and is NP-complete
for the weighted case with α > 1. As the following theorem shows, adding assump-
tions makes the relaxed-DBP problem NP-complete already for the unweighted case,
and thus significantly harder. On the positive side, adding assumptions does not make
the problem harder in the weighted case with α > 1, where it stays NP-complete, as in
the setting with no assumptions.

Theorem 3. [Relaxed-DBP]

1. The relaxed-DBP (relaxed-α-DBP) witness-checking problem is NLOGSPACE-
complete (in PTIME, respectively).

2. The relaxed-DBP and the relaxed-α-DBP problems are NP-complete.

Proof: For the witness-checking problem, the proof is based on reasoning about the
product of A and U , and can be found in the full version. For the relaxed-DBP and the
relaxed-α-DBP problems, note that the problems are in NP since given A and U , we
can guess a DFA A′ embedded in A and check whether it is a witness. By the above,
this can be done in polynomial time.

In order to show that the problems are NP-hard, we describe a reduction from 3SAT
to the relaxed-DBP problem. Let θ be a 3CNF formula with m clauses, c1, . . . , cm, over
the variables x1, . . . , xn. We construct an NFA Aθ and a DFA Uθ over the alphabet
{#, 1, ...,m}, such that Aθ is Uθ-DBP iff θ is satisfiable.

The NFA Aθ has the form of a DAG with four levels. On the first level of the DAG
there is a single initial state q0. On the second level there are n states, x1, . . . , xn,
corresponding to the variables in θ. For each state xi, there are m transitions, labeled
1, . . . ,m from q0 to xi. On the third level there are 2n states, 1true , 1false , . . . , ntrue ,
nfalse , corresponding to possible truth assignments to the variables. For every 1 ≤ i ≤
n, there are transitions, labeled #, from xi to itrue and ifalse . On the fourth level there
is a single accepting state qacc. For every 1 ≤ i ≤ n, value val ∈ {true, false}, and
letter 1 ≤ j ≤ m, there is a transition labeled j from ival to qacc iff assigning val to
variable i satisfies the clause cj . For example, if the literal ¬x5 appears in clause c2,
then there is a transition labeled 2 from the state 5false to qacc. It is easy to see that
the language of Aθ is {j#k : 1 ≤ j ≤ m, 1 ≤ k ≤ m}. The DFA Uθ is such that
L(Uθ) = {j#j : 1 ≤ j ≤ m}. It is easy to define Uθ with m + 2 states. In the full
version we prove that θ is satisfiable iff Aθ is Uθ-DBP. !"

By Theorem 2, the application of our results to online algorithms is as follows.
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Corollary 1. Consider an optimization problem P with a set S of configurations, an
approximation factor α ≥ 1, and an NFA U .

– [model checking] Given an online algorithm g for P that uses configurations in
S, deciding whether g is α-competitive with respect to environments restricted to
input sequences in L(U) can be solved in time polynomial in S and U .

– [synthesis] Deciding whether there is an α-competitive online algorithm for P that
uses configurations in S, with respect to environments restricted to input sequences
in L(U), is NP-complete.

4 Reasoning about Online Algorithms with Look-Ahead

In this section we describe a framework for reasoning about online algorithms that have
a bounded lookahead on the requests yet to come. We consider the case where the online
algorithm can see not only the next request, but rather the next l + 1 requests for some
constant l ≥ 0. For several classes of optimization problems, like dynamic location and
online graph problems, it was shown that online algorithms with a lookahead above
a certain minimal length can achieve better competitive ratios than algorithms with a
shorter (or no) lookahead [15,21]. To the best of our knowledge, there are also problems,
like online bipartite matching [22], for which it is not fully known how beneficial a
lookahead can be.

An online algorithm with lookahead l for an optimization problem P is an algorithm
that at each point i > 0 in time, reads the next l+1 requests ri, . . . , ri+l that need to be
processed, and serves the request ri. The requests ri+1, . . . , ri+l (i.e., the lookahead)
are not served at time i, but rather when their respective times come. The use of the
lookahead at time i is only to guide the algorithm in serving the request ri. 2 Formally,
given a set Σ of requests, and a set Γ of actions, let ⊥ be a new symbol designating the
end of the input. A word x = x1 · · ·xn ∈ (Σ ∪ {⊥})+ is legal if for all 1 ≤ j < n, if
xj = ⊥ then xj+1 = ⊥. For n > 0, we denote by Σn

⊥ = {x ∈ (Σ∪{⊥})n : x is legal}
the set of all legal lookahead words of length n, and byΣ+

⊥ the set
⋃

n>0 Σ
n
⊥ of all legal

words in (Σ ∪ {⊥})+. An online algorithm with lookahead l corresponds to a function
g : Σ+ × Σl

⊥ → Γ . The processing of a sequence of requests σ1 · · ·σn ∈ Σn by g
is then g(σ1, σ2 · · ·σl+1), g(σ1σ2, σ3 . . . σl+2), . . . , g(σ1 . . . σn, σn+1 . . . σn+l), where
σi = ⊥ for every i > n. Note that at time i > 0 the lookahead is σi+1 · · ·σi+l, and it
contains the end-of-input symbol for every position after the last request σn. Similar to
the case with no lookahead, we say that an online algorithm with lookahead of length
l uses a finite memory S, if there is a regular mapping of Σ∗ × Σl

⊥ to S such that g
behaves in the same manner on identical continuations of words that are mapped to the
same configuration. The definitions of the cost of processing a sequence of requests, as
well as the definitions of α-competitiveness and the competitive ratio of g, are carried
over from the definitions given in Section 2 for online algorithms with no lookahead.

2 Note that while this is perhaps the most natural kind of lookahead, other types of lookahead
have also been considered in the literature. However, these (for example, the “strong looka-
head” of [1] for paging) are usually specifically tailored for a specific class of optimization
problems.
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In order to handle algorithms with lookahead, we construct (instead of the automaton
AP of Section 2.3) an automaton AP,l such that every online algorithm for P that uses
memory S and lookahead of length l is embedded in AP,l. The construction of AP,l

is very similar to that of AP , the main difference being that now the alphabet of AP,l

is Σ × Σl
⊥, to match the way requests are presented to an online algorithm with a

lookahead of length l. Observe that not all sequences of letters in Σ × Σl
⊥ need be

considered. Indeed, if (σ, y), (σ′, y′) ∈ Σ×Σl
⊥ are two consecutive blocks of requests

presented to the online algorithm, then it must be that y = σ′ · y′1 · · · y′l−1, i.e., that
the lookahead y indeed matches the following l requests. In order to make sure that
irrelevant sequences have no influence, AP,l does not accept such sequences (in fact, it
simply crashes when reading such a sequence). To this end, AP,l has to remember the
lookahead in every input letter that it reads.

Formally, AP,l = 〈Σ ×Σl
⊥, S0 ∪ (S ×Σl

⊥), Δ, c, S0, S × {⊥l}〉, where S0 ⊆ S is
the subset of initial configurations of S; For a source state u of the form u = s ∈ S0

or u = (s, x) ∈ S ×Σl
⊥, an input (σ, y) ∈ Σ ×Σl

⊥, and a destination state (s′, x′) ∈
S × Σl

⊥, we have that 〈u, (σ, y), (s′, x′)〉 ∈ Δ iff (i) y = x′, and if u is of the form
u = (s, x) then x1 = σ and x2 · · ·xl ·x′l = y, (ii) the set Γ ′ ⊆ Γ of actions that process
the request σ from configuration s, by updating the configuration to s′, is non-empty;
the cost of such a transition is c(〈u, (σ, y), (s′, x′)〉) = minγ∈Γ ′ action cost(γ); Note
that the accepting states are all configurations that are coupled with a lookahead of ⊥l,
which indicates that the input sequence has ended.

Let P be an optimization problem, and let AP,l be a WFA for its algorithms that
use memory S and lookahead of length l. Observe that, like AP , the automaton AP,l

represents the optimal offline algorithm for P in the sense that given a finite sequence
of requests w ∈ Σ∗, the cost of w in AP is the cost of w in an optimal offline algorithm
whose configurations are in S. On the other hand, it is not hard to see that an online
algorithm with lookahead of length l, that uses memory S, corresponds to a DWFA
embedded in AP,l. Formally, given such an online algorithm g : Σ+ × Σl

⊥ → Γ ,
the DWFA embedded in AP,l and induced by g is an automaton Ag

P,l in which, for
every configuration s ∈ S, and every request (with lookahead) (σ, y) ∈ Σ × Σl

⊥, we
have that δ(s, (σ, y)) = (s′, y) for every initial configuration s ∈ S0, and δ(〈(s, σ ·
y1 · · · yl−1), (σ, y)〉) = (s′, y) for all s ∈ S; where s′ is the configuration obtained by
applying the action g(w · σ, y) from s, and w is such that h(w, σ · y1 · · · yl−1) = s.

Theorem 4. Given an optimization problemP , a set S of configurations, and l ≥ 0. Let
AP,l be a WFA that models online algorithms for P that use memory S and lookahead
of length l. An online algorithm g that uses memory S and lookahead of length l is
α-competitive iff Ag

P,l α-approximates AP,l.

By [2], given AP,l, deciding if it has an embedded DWFA that α-approximates it (and
also obtaining such DWFAs) can be done in time polynomial in the size of AP,l if α =
1, and is NP-complete for α > 1; whereas given Ag

P,l, deciding if it α-approximates
AP,l can be done in polynomial time for all values of α. Thus, Theorem 4 implies the
following:

Corollary 2. Consider an optimization problem P with a set S of configurations, an
approximation factor α ≥ 1, and some l ≥ 0.
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– [model checking] Given an online algorithm g for P that uses configurations in S
and lookahead of size l, deciding whether g is α-competitive can be solved in time
polynomial in S and exponential in l.

– [synthesis] Deciding whether there is an α-competitive online algorithm for P that
uses memory S and lookahead of length l, can be done in polynomial deterministic
(nondeterministic) time in S for α = 1 (α > 1, respectively) and time exponential
in l.

Note that the model-checking and synthesis algorithms that we get are exponential in l.
While we do not prove a matching lower bound, we were able to prove co-NP-hardness
in l (by a reduction from the problem of deciding whether an NFW accepts all words of
length l or less). Also, earlier work on lookahead in ω-regular games suggests that an
exponential cost in the lookahead cannot be avoided [19].

5 Symbolic Model-Checking Algorithm

In this section we describe a symbolic model-checking algorithm for online algorithms.
The explicit algorithm of [2] gets as input a WFA A1 = 〈Σ,Q1, Δ1, c1, S1, F1〉, a
DWFA A2 = 〈Σ,Q2, Δ2, c2, s2, F2〉 embedded in A1, and an approximation factor α,
and decides in polynomial time whether A2 α-approximates A1.

Let m = |Q1| = |Q2|. The algorithm is based on iteratively calculating functions
fi : Q1 × Q2 → Z ∪ {−∞,∞}. The dependency in m is reflected both in the size
of the required data structure, and the number of iterations that the algorithm performs.
A symbolic algorithm cannot avoid the time complexity that the iterative calculation
involves, but it copes with the space complexity by working with a symbolic represen-
tation of all the components of the automata and of the functions fi.

The data structures we work with are Binary Decision Diagrams (BDDs, for short)
[9] and multi-valued BDDs (MVBDDs, for short). While a BDD represents a Boolean
function, MVBDDs assign to each truth assignment of the variables a value in Z ∪
{−∞,∞}. We implement an MVBDD by an array of BDDs, each encoding a single
bit of the value. Using b BDDs, the value of the MVBDD is then a b-bit signed two’s
complement integer. It has a minimum value of−2b−1 and a maximum value of 2b−1−1
(inclusive). In addition, we maintain two BDDs, for −∞ and ∞.

We now move to a detailed description of the symbolic model-checking algorithm
(Figure 1). In addition to α, the algorithm gets as input a symbolic representation of
A1 and A2. The sets of variables X and W are used in order to encode Q1 and
Σ, respectively. Accordingly, the transition function Δ1 is described by an MVBDD
trans1 : X × W × X ′ → IN ∪ ∞, where X ′ is a tagged copy of X . Formally,
trans1(〈q1, a, q′1〉) is c(〈q1, a, q′1〉) for 〈q1, a, q′1〉 ∈ Δ1, and is ∞ otherwise. Note that
the domain of trans1 are truth assignments to the variables in X,W , and X ′, and not
tuples in Q1 × Σ × Q1; since, however, the variables encode such triples, we abuse
notation and refer to trans1(〈q1, a, q′1〉). Note that we use weights in IN rather than in
IR≥0. The sets S1 and F1 are described by the BDDs init1 and fin1 over X , respec-
tively. The WFA A2 is described in a similar manner, with variables in Y and W . Let
V = X ∪X ′∪W ∪Y ∪Y ′. For convenience, we refer to all BDDs as functions from V
(even though the function they maintain may be independent of some of the variables).
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The algorithm uses the following operators.

– The functions not : BDD → BDD and and : BDD ×BDD → BDD operate
as the corresponding logical operators of negation and conjunction, respectively.

– The operator set value gets an MVBDD f , a BDD cond, and a value val, and sets
the value of f to val for the inputs characterized by cond.

– The operator prime gets an MVBDD f whose function is independent of X ′ and
Y ′ and turns it into an MVBDD that corresponds to the function obtained from f
by replacing the variables in X and Y by their tagged copies in X ′ and Y ′.

– The functions add, sub,max : MVBDD × MVBDD → MVBDD return the
MVBDD obtained by applying addition, subtraction, and maximum, respectively,
on the given MVBDDs.

– The function get BDD : MVBDD → BDD returns a BDD whose value is 1 ex-
actly on the inputs on which the value of the given MVBDD is not ∞. In particular,
get BDD(trans) returns a BDD representing the (un-weighted) transitions.

– The function less than : MVBDD×MVBDD → BDD gets two MVBDDs, f and
g, and returns a BDD h such that for all v ∈ 2V , we have h(v) = 1 iff f(v) ≤ g(v).

– The function var max : 2V × MVBDD → MVBDD gets a set U of variables
and an MVBDD g and returns an MVBDD f such that for all v ∈ 2V , we have
f(v) = max{g(v′) : v′ agrees with v on the variables not in U}. Note that f(v)
is independent of the variables in U . The function cond max : 2V × BDD ×
MVBDD → MVBDD is similar, but gets in addition a BDD s, and the maximum
of the MVBDD g is taken only over v′’s that agree with v on the variables not in U
and satisfy s(v′) = 1. If no such v′ exists, then f(v) = −∞.

The algorithm calculates functions fi : X × Y → Z ∪ {−∞,∞}, for 0 ≤ i ≤ 2m2.
The function fi indicates the competitiveness of A2 with respect to words of length
at most i. Formally, for every two states q1 ∈ Q1 and q2 ∈ Q2, the value fi(q1, q2),
for 0 ≤ i ≤ m2, equals −∞ if no word of length at most i is accepted from q1,
it equals ∞ if there exists a word of length at most i that is accepted from q1 but
not from q2, and it equals t ∈ Z if t is the maximal value such that there exists a
word of size at most i that is accepted from q1 at a cost of c, and from q2 at a cost of
α · c + t. For m2 ≤ i ≤ 2m2, the algorithm takes into account cycles along which the
performance of A1 is “unboundedly better” than that of A2, in which case the value of
fi(q1, q2) is increased to ∞. As proved in [2], such cycles would be detected after at
most m2 iterations, and their influence on the ability of A2 to α-approximate A1 would
be detected after another round of m2 iterations. Thus, the algorithm needs not compute
fi for i > 2m2.

The algorithm first defines f0 so that f0(q1, q2) is −∞ if q1 /∈ F1, is 0 if q1 ∈ F1

and q2 ∈ F2, and is ∞ if q1 ∈ F1 and q2 /∈ F2. Each loop iteration gets fi−1 and calcu-
lates fi. For that, the algorithm calculates an MVBDD g. After executing Line 8, we have
g(〈q1, q′1, a, q2, q′2〉) = fi−1(q′1, q

′
2)+c2(q2, a, q′2)−α·c1(q1, a, q′1). Thus, after Line 14,

we have fi(q1, q2) = max{fi−1(q1, q2),maxa∈Σ fa(q1, q2)}, where fa(q1, q2) =
maxq′

1∈δ1(q1,a)[fi−1(q′1, δ2(q2, a)) + c2(q2, a, δ2(q2, a)) − α · c1(q1, a, q′1)]. If i ≥ m2

and fi(q1, q2) ≥ fi−1(q1, q2), then fi(q1, q2) is further increased, in Line 17, to ∞.
Finally, note that the fact we only care about embedded DWFA (only DWFA corre-

spond to deterministic online algorithms) is crucial for the correctness of the algorithm.
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Symbolic model-checking (init1, trans1, fin1, init2, trans2, fin2, α)

1: set value(f0,not(fin1),−∞);
2: set value(f0,and(fin1, fin2), 0);
3: set value(f0,and(fin1,not(fin2)),∞);
4: i := 0;
5: repeat
6: i + +;
7: prime(fi−1);
8: MVBDD g := sub(add(fi−1, trans2), α · trans1);
9: BDD t1 := get BDD(trans1);

10: BDD t2 := get BDD(trans2);
11: BDD match trans := and(t1, t2);
12: MVBDD fa := cond max(D, match trans, g);
13: MVBDD h := var max(W,fa);
14: fi := max {fi−1, h};
15: if i ≥ m2 then
16: BDD diff := less than(fi−1, h);
17: set value(fi, diff,∞);
18: end if
19: until (fi == fi−1) or (i == 2m2);
20: BDD init states := and(init1, init2);
21: MVBDD approx := var max(X ∪ Y, init states, fi);
22: if (approx < ∞) return true; else return false;

Fig. 1. The symbolic model-checking algorithm

Indeed, the calculation of fa(q1, q2) makes use of the fact that in a DWFA, the state q1
has only a single a-successor.

When implementing the symbolic algorithm, we have tried to minimize the maximal
number of variables for a single MVBDD, but (as is the case with other symbolic algo-
rithms that relate two systems) we could not avoid the construction of the MVBDD g
that depends on all the variables in V .

We note here that the implementation of the symbolic algorithm is applicable also for
the results appearing in the previous sections. The algorithm given in Section 3 for de-
ciding whether a given online algorithm is α-competitive with respect to a given restric-
tion on the environment actually uses the algorithm described above as a sub-routine.
Before running the algorithm it should only compute a product of two automata. This
can be easily implemented symbolically. As for the algorithm given in Section 4 for rea-
soning about online algorithms with lookahead, it simply uses the algorithm described
above as a black-box.

Experimental Results. Before describing our experimental results, we would like to
stress that the main contribution of the paper is the ideas behind the algorithm – our
implementation is not a suggestion for a ready-to-run tool, but rather a justification for
the argument that our algorithm can actually be implemented symbolically. It is very
likely that researchers with more experience in implementations could have come up
with a much better implementation. We still find it encouraging that even our naive
implementation has led us to interesting and practical insights, as described below.
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The most natural modeling of paging is by a WFA whose set of states corresponds
to the configurations of the cache. Such a modeling corresponds to non-marking algo-
rithms, as it does not allow the algorithm to use information beyond the set of pages
that are currently in the cache. In the course of applying our implementation of the
symbolic algorithm to paging, we have realized that the only non-marking competitive
algorithm for paging we are aware of, Flush-when-Full (FWF) [6,23], is not lazy (also
referred to as “demand paging” in [6]); that is, it may evict from the cache more than a
single page in case an eviction is required. From a practical standpoint, such evictions
are wasteful, and a reasonable implementation of FWF would keep the cache full at
all times and only mark the pages spuriously evicted by FWF – thus treating FWF as
a marking algorithm. This has led us to the development of an online algorithm that is
both lazy and non-marking. Unfortunately for us, we later discovered that this algorithm
already appears as ROTATE in [13], where it is proved to be k-competitive, by means
of amortized analysis. The descriptions of both FWF and ROTATE can be found in the
full version.

We have studied the k-competitiveness of ROTATE and FWF using an implemen-
tation of the symbolic algorithm written in Java, using JavaBDD [30] as a high level
object oriented layer, on top of the BDD library CUDD [29]. As our test platform, we
used a Pentium 4, 3.2Ghz Linux Machine with 4GB of RAM. Due to the limitations of
the 32bit Java Virtual Machine we used, our program was limited to using at most 2GB
of memory. A table with our experimental results can be found in the full version. The
experimental results achieved with our naive implementation are not impressive, but we
find them encouraging. First, they prove that formal reasoning about competitive ratios
of online algorithms is feasible, both in theory and practice. Second, even though the
instances we considered were very small, they have led us to rediscover the algorithm
ROTATE, showing that a lot of insight can be gained even when working with small in-
stances. Third, we discovered that while in the worst case the symbolic algorithm may
run for 2m2 iterations, in practice it converges many orders of magnitude faster. For
example, while some of our experiments have a value of 2m2 above 250, in all cases
the algorithm converged to termination in at most 6 iterations! In fact, the main bot-
tleneck seems to be the memory requirements of our BDD based implementation, and
the associated time required to handle very big BDDs. It is our belief that representing
MVBDDS not by arrays of BDDs, but rather by utilizing more efficient constructs such
as Multi Terminal BDDs (MTBDDs) [17], or Algebraic Decision Diagrams (ADDs) [4],
would enable much larger instances to be handled.
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Abstract. Modal transition systems (MTS) is a well established formal-
ism used for specification and for abstract interpretation. We consider its
disjunctive extension (DMTS) and we provide algorithms showing that
refinement problems for DMTS are not harder than in the case of MTS.
There are two main results in the paper. Firstly, we identify an error in
a previous attempt at LTL model checking of MTS and provide algo-
rithms for LTL model checking of MTS and DMTS. Moreover, we show
how to apply this result to compositional verification and circumvent
the general incompleteness of the MTS composition. Secondly, we give
a solution to the common implementation and conjunctive composition
problems lowering the complexity from EXPTIME to PTIME.

1 Introduction

Specification and verification of programs is a fundamental part of theoretical
computer science and is nowadays regarded indispensable when designing and
implementing safety critical systems. Therefore, many specification formalisms
and verification methods have been introduced. There are two main approaches
to this issue. The behavioural approach exploits various equivalence or refinement
checking methods, provided the specifications are given in the same formalism
as implementations. The logical approach makes use of specifications given as
formulae of temporal or modal logics and relies on efficient model checking al-
gorithms. In this paper, we combine these two methods.

The specifications are rarely complete, either due to incapability of capturing
all the required behaviour in the early design phase, or due to leaving a bunch of
possibilities for the implementations, such as in e.g. product lines [1]. One thus
begins the design process with an underspecified system where some behaviour
is already prescribed and some may or may not be present. The specification is
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Fig. 1. An example of (a) a modal transition system (b) its implementation

then successively refined until a real implementation is obtained, where all the
behaviour is completely determined. Of course, we require that our formalism
allow for this stepwise refinement.

Furthermore, since supporting the component based design is becoming cru-
cial, we need to allow also for the compositional verification. To illustrate this,
let us consider a partial specification of a component that we design, and a third
party component that comes with some guarantees, such as a formula of a tempo-
ral logic describing the most important behaviour. Based on these underspecified
models of the systems we would like to prove that their interaction is correct,
no matter what the hidden details of the particular third party component are.
Also, we want to know if there is a way to implement our component specifica-
tion so that the composition fulfills the requirements. Moreover, we would like
to synthesize the respective implementation. We address all these problems.

Modal transition systems (MTS) is a specification formalism introduced by
Larsen and Thomsen [2,3] allowing for stepwise refinement design of systems and
their composition. A considerable attention has been recently paid to MTS due
to many applications, e.g. component-based software development [4,5], interface
theories [6,7], or modal abstractions and program analysis [8,9,10], to name just
a few.

The MTS formalism is based on transparent and simple to understand model
of labelled transition systems (LTS). While LTS has only one labelled transition
relation between the states determining the behaviour of the system, MTS as
a specification formalism is equipped with two types of transitions: the must
transitions capture the required behaviour, which is present in all its imple-
mentations; the may transitions capture the allowed behaviour, which need not
be present in all implementations. Figure 1 depicts an MTS that has arisen as
a composition of three systems and specifies the following. A request from a client
may arrive. Then we can process it directly or make a query to a database where
we are guaranteed an answer. In both cases we send a response.

Such a system can be refined in two ways: a may transition is either imple-
mented (and becomes a must transition) or omitted (and disappears as a transi-
tion). On the right there is an implementation of the system where the processing
branch is implemented and the database query branch is omitted. Note that an
implementation with both branches realized is also possible. This may model
e.g. behaviour dependent on user input. Moreover, implementations may even
be non-deterministic, thus allowing for modelling e.g. unspecified environment.
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On the one hand, specifying may transitions brings guarantees on safety. On the
other hand, liveness can be guaranteed to some extent using must transitions. Nev-
ertheless, at an early stage of design we may not know which of several possible dif-
ferent ways to implement a particular functionality will later be chosen, although
we know at least one of them has to be present. We want to specify e.g. that ei-
ther processing or query will be implemented, otherwise we have no guarantee on
receiving response eventually. However, MTS has no way to specify liveness in this
setting. Therefore, disjunctive modal transition systems (DMTS) (introduced in
[11] as solutions to process equations) are the desirable extension appropriate for
specifying liveness. This has been advocated also in [12] where a slightmodification
of DMTS is investigated under the name underspecified transition systems. Instead
of forcing a particular transition, the must transitions in DMTS specify a whole set
of transitions at least one of which must be present. In our example, it would be the
set consisting of processing and query transitions. DMTS turn out to be capable of
forcing any positive Boolean combination of transitions, simply by turning it into
the conjunctive normal form. Another possible solution to this issue is offered in
[13] where one-selecting MTS are introduced with the property that exactly one
transition from the set must be present.

As DMTS is a strict extension of MTS a question arises whether all funda-
mental problems decidable in the context of MTS remain decidable for DMTS,
and if so, whether their complexities remain unchanged. We show that this is
indeed the case. Therefore, using the more powerful DMTS is not more costly
than using MTS.

There is also another good reason to employ the greater power of DMTS in-
stead of using MTS. Often a set of requirements need to be satisfied at once.
Therefore, we are interested in the common implementation (CI) problem, where
one asks whether there is an implementation that refines all specifications in a
given set, i.e. whether the specifications are consistent. (In accordance with the
traditional usage, the states of (D)MTS specifications shall be called processes.)
Moreover, we also want to construct the most general process refining all pro-
cesses, i.e. the greatest lower bound with respect to the refinement. We call this
process a conjunction as this composition is the analog of logical and. We show
there may not be any process that is a conjunction of a given set of processes,
when only considering MTS processes. However, we also show that there is al-
ways a DMTS process that is a conjunction of a given set of (D)MTS processes.
This again shows that DMTS is a more appropriate framework than MTS.

As the first main result, we show a new perspective on these problems, namely
we give a simple co-inductive characterization yielding a straightforward fix-
point algorithm. This characterization unifies the view not only (i) in the MTS
vs. DMTS aspect, but also (ii) in the cases of number of specifications being fixed
or a part of the input, and most importantly (iii) establishes connection between
CI and the conjunction. Our new view provides a solution for DMTS and yields
algorithms for the aforementioned cases with the respective complexities being
the same as for CI over MTS as determined in [14,15]. So far, conjunction has
been solved for MTS enriched with weights on transitions in [16], however, only
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for the deterministic case. Previous results on conjunction over DMTS [11] yield
an algorithm that requires exponential time (even for only two processes on
input). Our algorithm runs in polynomial time both for conjunction and CI for
any fixed number of processes on input.

As the second main result, as already mentioned we would like to supplement
the refinement based framework of (D)MTS with model checking methods. Since
a specification induces a set of implementations, we apply the thorough approach
of generalized model checking of Kripke structures with partial valuations [17,18]
in our setting. Thus a specification either satisfies a formula ϕ if all its implemen-
tations satisfy ϕ; or refutes it if all implementations refute it; or neither of the
previous holds, i.e. some of the implementations satisfy and some refute ϕ. This
classification has also been adopted in [3] for CTL model checking MTS. Sim-
ilarly, [19] provides a solution to LTL model checking over deadlock-free MTS,
which was implemented in the tool support for MTS [20]. However, we identify
an error in this LTL solution and provide correct model checking algorithms.
The erroneous algorithm for the deadlock-free MTS was running in PSPACE,
nevertheless, we show that this problem is 2-EXPTIME-complete by reduction
to and from LTL games. The generalized model checking problem is equivalent
to solving the problems (i) whether all implementations satisfy the given formula
and if they do not then (ii) whether there exists an implementation satisfying the
formula. We provide algorithms for both the universal and the existential case,
and moreover, for the cases of MTS, deadlock-free MTS and DMTS, providing
different complexities. Due to our reduction, the resulting algorithm can be also
used for synthesis, i.e. if there is a satisfying implementation, we automatically
receive it. Not only is the application in the specification area clear, but there is
also an important application to abstract interpretation. End-users are usually
more comfortable with linear time logic and the analysis of path properties re-
quires to work with abstractions capturing over- and under-approximation of a
system simultaneously. MTS are a perfect framework for this task, as may and
must transitions can capture over- and under-approximations, respectively [8].
Our results thus allow for LTL model-checking of system abstractions, including
counterexample generation.

Finally, we show how the model checking approach can help us getting around
the fundamental problem with the parallel composition. There are MTS pro-
cesses S and T , where the composed process S ‖ T contains more implemen-
tations than what can be obtained by composing implementations of S and T .
Hence the composition is not complete with respect to the semantic view. Some
conditions to overcome this difficulty were identified in [15]. Here we show the
general completeness of the composition with respect to the LTL formulae sat-
isfaction, and generally to all linear time properties.

The rest of the paper is organized as follows. We provide basic definitions and re-
sults on refinements inSection2.The results onLTLmodel checking and its relation
to the parallel composition can be found in Section 3. The “logical and” composi-
tion is investigated in Section 4. Section 5 concludes and discusses future work.Due
to space limitations the proofs are omitted and can be found in [21].
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2 Preliminaries

In this section we define the specification formalism of disjunctive modal transi-
tion systems (DMTS). A DMTS can be gradually refined until we get a labelled
transition system (LTS) where all the behaviour is fully determined. The seman-
tics of a DMTS will thus be the set of its refining LTSs. The following definition
is a slight modification of the original definition in [11].

Definition 2.1. A disjunctive modal transition system (DMTS) over an action
alphabet Σ and a set of propositions Ap is a tuple (P , ��	,−→, ν) where P is
a set of processes, ��	 ⊆ P ×Σ × P and −→ ⊆ P × 2Σ×P are may and must
transition relations, respectively, and ν : P → 2Ap is a valuation. We write
S

a��	 T meaning (S, a, T ) ∈ ��	, and S −→ T meaning (S, T ) ∈ −→. We
require that whenever S −→ T then (i) T 	= ∅ and (ii) for all (a, T ) ∈ T we also
have S

a��	 T .

The original definition of DMTS does not include the two requirements, thus
allowing for inconsistent DMTS, which have no implementations. Due to the
requirements, our DMTS guarantee that all must obligations can be fulfilled.
Hence, we do not have to expensively check for consistency1 when working with
our DMTS. And there is yet another difference to the original definition. Since
one of our aims is model checking state and action based LTL, we not only have
labelled transitions, but we also equip DMTS with a valuation over states.

Clearly, the must transitions of DMTS can be seen as a positive boolean for-
mula in conjunctive normal form. Arbitrary requirements expressible as positive
boolean formulae can be thus represented by DMTS, albeit at the cost of possible
exponential blowup, as commented on in [22].

Example 2.2. Figure 2 depicts three DMTSs. The may transitions are drawn
as dashed arrows, while each must transition of the form (S, T ) is drawn as
a solid arrow from S branching to all elements in T . Due to requirement (ii) it
is redundant to draw the dashed arrow when there is a solid arrow and we never
depict it explicitly.

While in DMTS we can specify that at least one of the selected transitions has to
be present, in modal transition systems (MTS) we can only specify that a partic-
ular transition has to be present, i.e. we need to know from the beginning which
one. Thus MTS is a special case of DMTS. Further, when the may and must
transition relations coincide, we get labelled transition systems (with valuation).

Definition 2.3. A DMTS S = (P , ��	,−→, ν) is an MTS (with valuation) if
S −→ T implies that T is a singleton. We then write S a−→ T for T = {(a, T )}.
If moreover S

a��	 T implies S a−→ T , then S is an LTS. Processes of an LTS
are called implementations.
1 Checking consistency is an EXPTIME-complete problem. It is polynomial [11] only

under an assumption that all “conjunctions” of processes are also present in the given
DMTS which is very artificial in our setting. For more details, see [21].
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A DMTS S = (P , ��	,−→, ν) is deterministic if for every process S and
action a there is at most one process T with S

a��	 T .

For the sake of readable notation, when speaking of a process, we often omit
the underlying DMTS if it is clear from the context. Moreover, we say that S
is deterministic (an MTS etc.) meaning that the DMTS on processes reachable
from S is deterministic (MTS etc.). Further, when analyzing the complexity we
assume we are given finite DMTSs.

SMI

e$


 ≤m

e$ coffee tea coffeecoffeecoffeee$ coffee

Fig. 2. An implementation I , a process M of an MTS, and a process S of a DMTS
such that I 
 M ≤m S

When refining a process, we need to satisfy two conditions: (1) the respective
refining process cannot allow any new behaviour not allowed earlier; and (2) if
there is a requirement to implement an action by choosing among several options,
the refining process can only have more restrictive set of these options.

Definition 2.4 (Modal refinement). Let (P , ��	,−→, ν) be a DMTS. Then
R ⊆ P × P is called a modal refinement relation if for all (A,B) ∈ R

– ν(A) = ν(B), and
– whenever A

a��	 A′ then B
a��	 B′ for some B′ with (A′, B′) ∈ R, and

– whenever B −→ B′ then A −→ A′ for some A′ such that for all (a,A′) ∈ A′

there is (a,B′) ∈ B′ with (A′, B′) ∈ R.

We say that S modally refines T , denoted by S ≤m T , if there exists a modal
refinement relation R with (S, T ) ∈ R.

Note that since a union of modal refinement relations is a modal refinement
relation, the relation ≤m is the greatest modal refinement relation. Also note
that on implementations the modal refinement coincides with bisimulation.

We now define the semantics of a process as a set of implementations that are
refining it. The defined notion of thorough refinement is a semantic counterpart
to the syntactic notion of modal refinement.

Definition 2.5 (Thorough refinement). Let I, S, T be processes. We say that
I is an implementation of S, denoted by I 
 S, if I is an implementation and
I ≤m S. We say that S thoroughly refines T , denoted by S ≤t T , if J 
 S
implies J 
 T for every implementation J .

While the syntactic characterization is sound, it is not complete since it is incom-
plete already for MTS. However, completeness can be achieved on a reasonable
subclass.
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Proposition 2.6. Let S and T be processes. Then S ≤m T implies S ≤t T . If
T is deterministic then S ≤t T implies S ≤m T .

Next we show that both refinement problems are not harder for DMTS than for
MTS. This allows for using more powerful DMTS instead of MTS. The following
is proven similarly as in [15]. In order to prove the last claim significantly involved
modifications of the approach of [23] are needed.

Theorem 2.7. Deciding ≤m is PTIME-complete. Deciding ≤m when restricted
to the refined (i.e. right-hand-side) process being deterministic is NLOGSPACE-
complete. Deciding ≤t is EXPTIME-complete.

3 LTL Model Checking

This section discusses the model checking problem for linear temporal logic
(LTL) [24] and its application on compositional verification. The following defi-
nition of state and action based LTL is equivalent to that of [25], with a slight
difference in syntax.

Definition 3.1 (LTL syntax). The formulae of state and action based LTL
(LTL in the following) are defined as follows.

ϕ ::= tt | p | ¬ϕ | ϕ ∧ ϕ | ϕU ϕ | Xϕ | Xa ϕ

where p ranges over Ap and a ranges over Σ.

We use the standard derived operators, such as Fϕ = ttUϕ and Gϕ = ¬F¬ϕ.

Definition 3.2 (LTL semantics). Let I be an implementation. A run of I is
a maximal (finite or infinite) alternating sequence of state valuations and actions
π = ν(I0), a0, ν(I1), a1, . . . such that I0 = I and Ii−1

ai−1−→ Ii for all i > 0. If a run
π is finite, we denote by |π| the number of state valuations in π, we set |π| = ∞
if π is infinite. We also define the ith subrun of π as πi = ν(Ii), ai, ν(Ii+1), . . .
Note that this definition only makes sense when i < |π|. The set of all runs of I
is denoted by R∞(I), the set of all infinite runs is denoted by Rω(I).

The semantics of LTL on π = ν0, a0, ν1, a1, . . . is then defined as follows:

π |= tt always
π |= p ⇐⇒ p ∈ ν0

π |= ¬ϕ ⇐⇒ π 	|= ϕ

π |= ϕ ∧ ψ ⇐⇒ π |= ϕ and π |= ψ

π |= ϕU ψ ⇐⇒ ∃ 0 ≤ k < |π| : πk |= ψ and ∀ 0 ≤ j < k : πj |= ϕ

π |= Xϕ ⇐⇒ |π| > 1 and π1 |= ϕ

π |= Xa ϕ ⇐⇒ |π| > 1, a0 = a and π1 |= ϕ

We say that an implementation I satisfies ϕ on infinite runs, denoted as I |=ω ϕ,
if for all π ∈ Rω(I), π |= ϕ. We say that an implementation I satisfies ϕ on all
runs, denoted as I |=∞ ϕ, if for all π ∈ R∞(I), π |= ϕ.
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The use of symbols ω and ∞ to distinguish between using only infinite runs or
all runs is in accordance with standard usage in the field of infinite words.

It is common to define LTL over infinite runs only. In that respect, our defini-
tion of |=ω matches the standard definition. In the following, we shall first talk
about this satisfaction relation only, and comment on |=∞ afterwards.

The generalized LTL model checking problem for DMTS can be split into two
subproblems – deciding whether all implementations satisfy a given formula, and
deciding whether at least one implementation does. We therefore introduce the
following notation: we write S |=ω

∀ ϕ to mean ∀I 
 S : I |=ω ϕ and S |=ω
∃ ϕ to

mean ∃I 
 S : I |=ω ϕ ; similarly for |=∞.
Note that |=ω

∃ contains a hidden alternation [26] of quantifiers, as it actually
means ∃I 
 S : ∀π ∈ Rω(I) : I |=ω ϕ. No alternation is present in |=ω

∀ . This
observation hints that the problem of deciding |=ω

∀ is easier than deciding |=ω
∃ .

Our first two results show that indeed, deciding |=ω
∀ is not harder than the

standard LTL model checking whereas deciding |=ω
∃ is 2-EXPTIME-complete.

The only known correct result on LTL model checking of MTS is that deciding
MTS |=ω

∀ over MTS is PSPACE-complete [19]. This holds also for DMTS.

Theorem 3.3. The problem of deciding |=ω
∀ over DMTS is PSPACE-complete.

Proof (Sketch). All implementations of S satisfy ϕ if and only if the may struc-
ture of S satisfies ϕ. !"

In [18] the generalized model checking of LTL over partial Kripke structures
(PKS) is shown to be 2-EXPTIME-hard. Further, [27] describes a reduction
from generalized model checking of μ-calculus over PKS to μ-calculus over MTS.
However, the hardness for LTL over MTS does not follow since the encoding of
an LTL formula into μ-calculus includes an exponential blowup. There is thus no
straightforward way to use the result of [27] to provide a polynomial reduction.
Therefore, we prove the following theorem directly.

Theorem 3.4. Theproblemofdeciding |=ω
∃ overDMTS is 2-EXPTIME-complete.

Proof (Sketch). We show the reduction to and from the 2-EXPTIME-complete
problem of deciding existence of a winning strategy in an LTL game [28]. An LTL
game is a two player positional game over a finite Kripke structure. The winning
condition is the set of all infinite plays (sequences of states) satisfying a given
LTL formula.

Thus, an LTL game may be seen as a special kind of DMTS over unary
action alphabet. Here the processes are the states of the Kripke structure, the
may structure is the transition relation of the Kripke structure, and the must
structure is built as follows. Every process corresponding to a state of Player I
has one must transition spanning all may-successors; every process corresponding
to a state of Player II has several must transitions, one to each may-successor.
The implementations of such DMTS now correspond to strategies of Player I in
the original LTL game. Thus follows the hardness part of the theorem.

For the containment part, we provide an algorithm that transforms the given
DMTS into a Kripke structure with states assigned to the two players. This
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Fig. 3. Transformation from DMTS into a two player game

construction bears some similarities to the construction transforming Kripke
MTS into alternating tree automata in [29].

The transformation from a DMTS into a two player game proceeds as follows.
We first eliminate all may transitions that are not covered by any must transi-
tions. We then modify the must transitions. For each S −→ U we create a unique
new process SU and set S τ−→ SU and SU

a−→ T for all (a, T ) ∈ U . We thus now
have a labelled transition system, possibly with valuation. We then eliminate
actions by encoding them into their target state, thus obtaining a Kripke struc-
ture. States that were created from processes of the original DMTS belong to
Player II, states created from must transitions belong to Player I. The construc-
tion is illustrated in Fig. 3. We then modify the LTL formula in two steps. First,
we add the possibility of a τ action in every odd step. Second, we transform
the state-and-action LTL formula into a purely state-based one. The resulting
game over the Kripke structure together with the modified LTL formula form
the desired LTL game. !"

There are constructive algorithms for solving LTL games, i.e. not only do they
decide whether a winning strategy exists, but they can also synthesize such
a strategy. Furthermore, our reduction effectively transforms a winning strategy
into an implementation satisfying the given formula. We can thus synthesize an
implementation of a given DMTS satisfying a given formula in 2-EXPTIME.

Although the general complexity of the problem is very high, various sub-
classes of LTL have been identified in [30] for which the problem is computa-
tionally easier. These complexity results can be easily carried over to generalized
model checking of DMTS.

Interestingly enough, deciding |=ω
∃ is much easier over MTS.

Theorem 3.5. The problem of deciding |=ω
∃ over MTS is PSPACE-complete.

Proof (Sketch). The proof is similar to the proof of Theorem 3.3, only instead
of checking the may structure of S, we check the must structure of S. !"

However, despite its lower complexity, |=ω
∃ over MTS is not a very useful

satisfaction relation. As we only considered infinite runs, an MTS may (and
frequently will) possess trivial implementations without infinite runs. The state-
ment S |=ω

∃ ϕ then holds vacuously for all ϕ. Two natural ways to cope with
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Fig. 4. No deadlock-free implementation of S satisfies GXa tt

this issue are (a) using |=∞
∃ (see below) and (b) considering only deadlock-free

implementations, i.e. with infinite runs only.
The deadlock-free approach has been studied in [19] and the proposed solution

was implemented in the tool MTSA [20]. However, the solution given in [19] is
incorrect. In particular, existence of a deadlock-free implementation satisfying
a given formula is claimed even in some cases where no such implementation
exists. A simple counterexample is given in Fig. 4. Clearly, S has no deadlock-
free implementation with action a only, i.e. satisfying GXa tt. Yet the method
of [19] as well as the tool [20] claim that such an implementation exists.

Furthermore, there is no chance that the approach of [19] could be easily fixed
to provide correct results. The reason is that this approach leads to a PSPACE
algorithm, whereas we prove again by reduction from LTL games that finding
a deadlock-free implementation of a given MTS is 2-EXPTIME-hard. For more
details see [21]. The containment in 2-EXPTIME is then proved by reduction to
the problem of deciding |=ω

∃ for DMTS. The basic idea is to modify all processes
without must transitions, enhancing them with one must transition spanning all
may-successors.

Proposition 3.6. The problem of deciding the existence of a deadlock-free im-
plementation of a given MTS satisfying a given LTL formula, is 2-EXPTIME-
complete.

We now turn our attention to the (a) option, i.e. all (possibly finite) runs, and
investigate the |=∞ satisfaction. Checking properties even on finite runs is indeed
desirable when considering (D)MTS used for modelling non-reactive systems. We
show that deciding |=∞

∃ and |=∞
∀ over DMTS has the same complexity as deciding

|=ω
∃ and |=ω

∀ over DMTS, respectively. We also show that contrary to the case of
infinite runs, the problem of deciding |=∞

∃ remains 2-EXPTIME-hard even for
standard MTS.

Theorem 3.7. The problem of deciding |=∞
∃ over (D)MTS is 2-EXPTIME-

complete, the problem of deciding |=∞
∀ over (D)MTS is PSPACE-complete.

Although we have so far considered the more general state and action based LTL,
this costs no extra overhead when compared to state-based or action-based LTL.

Proposition 3.8. The complexity of deciding |=

∃ and |=


∀ for � ∈ {ω,∞} re-
mains the same if the formula ϕ is a purely state-based or a purely action-based
formula.
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Table 1. Complexities of generalized LTL model checking

|=∀ |=∃
MTS |=ω PSPACE-complete PSPACE-complete

MTS |=df PSPACE-complete 2-EXPTIME-complete

MTS |=∞ PSPACE-complete 2-EXPTIME-complete

DMTS PSPACE-complete 2-EXPTIME-complete

The results of this section are summed up in Table 1. We use |=df to de-
note that only deadlock-free implementations are considered. Recall that the
surprising result for |=ω

∃ over MTS is due to the fact that the formula may hold
vacuously.

The best known time complexity bounds with respect to the size of system |S|
and the size of LTL formula |ϕ| are the following. In all PSPACE-complete cases
the time complexity is O(|S| · 2|ϕ|); in all 2-EXPTIME-complete cases the time
complexity is |S|2O(|ϕ|) ·22O(|ϕ| log|ϕ|)

. The latter upper bound is achieved by trans-
lating the LTL formula into a deterministic Rabin automaton of size 22O(|ϕ| log|ϕ|)

with 2O(|ϕ|) accepting pairs, thus changing the LTL game into a Rabin game.
State of the art algorithm for solving Rabin games can be found e.g. in [31].

3.1 Parallel Composition

We conclude this section with an application to compositional verification. In [3]
the composition of MTS is shown to be incomplete, i.e. there are processes
S1, S2 such that their composition S1 ‖ S2 has an implementation I that does
not arise as a composition I1 ‖ I2 of any two implementations I1 
 S1, I2 
 S2.
Completeness can be achieved only under some restrictive conditions [15]. Here
we show that composition is sound and complete with respect to every logic of
linear time, i.e. it preserves and reflects all linear time properties.

For the sake of readability, we present the results on MTS only. Nevertheless,
the same holds for the straightforward extension of ‖ to DMTS, see [21].

The composition operator used is based on synchronous message passing,
since it is the most general one. Indeed, it encompasses the synchronous product
as well as interleaving. It is defined as follows. Let Γ ⊆ Σ be a synchronizing
alphabet. Then

– for a ∈ Γ , we set S1 ‖ S2
a��	 S′

1 ‖ S′
2 whenever S1

a��	 S′
1 and S2

a��	 S′
2;

– for a ∈ Σ \ Γ , we set S1 ‖ S2
a��	 S′

1 ‖ S2 whenever S1
a��	 S′

1, and similarly
S1 ‖ S2

a��	 S1 ‖ S′
2 whenever S2

a��	 S′
2;

and analogously for the must transition relation. As for valuations, we can con-
sider any function f : 2Ap × 2Ap → 2Ap to define ν(S1 ‖ S2) = f(ν(S1), ν(S2)),
such as e.g. union.

The completeness of composition with respect to linear time logics holds for
all discussed cases: both for MTS and DMTS, both for infinite and all runs, and
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both universally and existentially. We do not define linear properties formally
here, see e.g. [32]. As a special case, one may consider LTL formulae.

Theorem 3.9. Let S1, S2 be processes, ϕ a linear time property, and � ∈ {ω,∞}.
Then S1 ‖ S2 |=


∀ ϕ if and only if I1 ‖ I2 |=
 ϕ for all I1 
 S1 and I2 
 S2.

Theorem 3.10. Let S1, S2 be processes, ϕ a linear time property, and � ∈
{ω,∞}. Then S1 ‖ S2 |=


∃ ϕ if and only if there exist I1 
 S1 and I2 
 S2

such that I1 ‖ I2 |=
 ϕ.

The idea of the proof is that the minimal (w.r.t. the set of runs) implementations
of S1 ‖ S2 are decomposable, i.e. they can be written as I1 ‖ I2 where I1 
 S1

and I2 
 S2. The same holds for the maximal implementations of S1 ‖ S2.
The results imply that although the composition is incomplete with respect to
thorough refinement no new behaviour arises in the composition.

4 Common Implementation Problem and Conjunction

In the following, we study composing (D)MTS in the sense of logical conjunc-
tion. The common implementation problem (CI) is to decide whether there is
an implementation refining all processes from a given set. Furthermore, we also
want to construct the conjunction, i.e. the process that is the greatest lower
bound for a given set of processes w.r.t. the modal refinement, if it exists. We
show that although MTSs may not have an MTS conjunction, there is always
a conjunction expressible as a DMTS. The complexity depends on the number
of the input processes. We examine the complexity both for the case when it is
fixed and when it is a part of the input.

Theorem 4.1. For the number of input processes being a part of the input, the
CI problem is EXPTIME-complete and conjunction can be computed in expo-
nential time. For any fixed number of input processes, CI is PTIME-complete
and conjunction can be computed in polynomial time.

We first give a coinductive syntactic characterization of the problem and proceed
by constructing the greatest lower bound.

Definition 4.2 (Consistency relation). Let (P , ��	,−→, ν) be a DMTS and
n ≥ 2. Then C ⊆ Pn is called a consistency relation if for all (A1, . . . , An) ∈ C

– ν(A1) = ν(A2) = . . . = ν(An), and
– whenever there exists i such that Ai −→ Bi, then there is some (a,Bi) ∈ Bi

such that there exist Bj for all j 	= i with Aj
a��	 Bj and (B1, . . . , Bn) ∈ C.

In the following, we will assume an arbitrary, but fixed n. Clearly, arbitrary
union of consistency relations is also a consistency relation, we may thus assume
the existence of the greatest consistency relation for a given DMTS. We now
show how to use this relation to construct a DMTS that is the greatest lower
bound with regard to modal refinement (taken as a preorder).
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Definition 4.3. Let S = (P , ��	,−→, ν) be a DMTS and Con its greatest consis-
tency relation. We define a new DMTS SCon = (Con, ��	Con,−→Con, νCon), where

– νCon((A1, . . . , An)) = ν(A1),
– (A1, . . . , An)

a��	Con (B1, . . . , Bn) whenever ∀i : Ai
a��	 Bi, and

– whenever ∃j : Aj −→ Bj, then (A1, . . . , An) −→Con B where
B = {(a, (B1, . . . , Bn)) | (a,Bj) ∈ Bj and (A1, . . . , An)

a��	Con (B1, . . . , Bn)}.

Clearly, the definition gives a correct DMTS due to the properties of Con, no-
tably, B is never empty. The following two theorems state the results about the
CI problem and conjunction construction, respectively. The second theorem also
states that the actual result is stronger than originally intended.

Theorem 4.4. Let S1, . . . , Sn be processes. Then S1, . . . , Sn have a common
implementation if and only if (S1, . . . , Sn) ∈ Con.

Theorem 4.5. Let (S1, . . . , Sn) ∈ Con. Then the set of all implementations
of (S1, . . . , Sn) is exactly the intersection of the sets of all implementations of
all Si. In other words, I 
 (S1, . . . , Sn) if and only if I 
 Si for all i. Therefore,
(S1, . . . , Sn) as a process of SCon is the greatest lower bound of S1, . . . , Sn with
regard to the modal as well as the thorough refinement.

The greatest consistency relation can be computed using standard greatest fixed
point computation, i.e. we start with all ntuples of processes and eliminate those
that violate the conditions. One elimination step can clearly be done in poly-
nomial time. As the number of all ntuples is at most |P|n, this means that the
common implementation problem may be solved in PTIME, if n is fixed; and in
EXPTIME, if n is a part of the input. The problem is also PTIME/EXPTIME-
hard, which follows from (a) PTIME-hardness of bisimulation of two LTSs and
(b) EXPTIME-hardness of the common implementation problem for ordinary
MTS [14]. The statement of Theorem 4.1 thus follows.

Note that even if S1, . . . , Sn are MTSs, (S1, . . . , Sn) may not be an MTS.
Indeed, there exist MTSs without a greatest lower bound that is also an MTS;
there may only be several maximal lower bounds, see Fig. 5. This gives another
justification for using DMTS instead of MTS. However, if the MTSs are moreover
deterministic, then the greatest lower bound is—as our algorithm computes it—
also a deterministic MTS [16].

S1 S2 (S1, S2)

a
a

b, c

a a

b c b c

M1 M2

a a a a

b c b c

Fig. 5. MTSs S1, S2, their greatest lower bound (S1, S2), and their two maximal MTS
lower bounds M1, M2
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5 Conclusion and Future Work

Our generalization of the known algorithms has shown that refinement prob-
lems on DMTS are not harder than for MTS. As the first main result, we have
solved the LTL model checking and synthesis problems and shown how the model
checking approach helps overcoming difficulties with the parallel composition.

We have implemented the algorithm in
−→=⇒���
MoTraS, our prototype tool available

at http://anna.fi.muni.cz/~xbenes3/MoTraS/ (the site includes further de-
tails about the tool and its functionality). As the second main result, we have
given a general solution to the common implementation problem and conjunctive
composition.

There are several possible extensions of DMTS such as the mixed variant
(where must transition need not be syntactically under the may transitions)
or systems with partial valuation on states [3]. Yet another modification adds
weights on transitions [16]. It is not clear whether all results of this paper can
be extended to these systems and whether the respective complexities remain
the same.
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Abstract. The paper considers several issues related to efficient use of tree au-
tomata in formal verification. First, a new efficient algorithm for inclusion check-
ing on non-deterministic tree automata is proposed. The algorithm traverses the
automaton downward, utilizing antichains and simulations to optimize its run.
Results of a set of experiments are provided, showing that such an approach of-
ten very significantly outperforms the so far common upward inclusion checking.
Next, a new semi-symbolic representation of non-deterministic tree automata,
suitable for automata with huge alphabets, is proposed together with algorithms
for upward as well as downward inclusion checking over this representation of
tree automata. Results of a set of experiments comparing the performance of these
algorithms are provided, again showing that the newly proposed downward inclu-
sion is very often better than upward inclusion checking.

1 Introduction

Finite tree automata play a crucial role in several formal verification techniques, such
as (abstract) regular tree model checking [3,5], verification of programs with complex
dynamic data structures [6,11], analysis of network firewalls [7], and implementation
of decision procedures of logics such as WS2S or MSO [15], which themselves have
numerous applications (among the most recent and promising ones, let us mention at
least verification of programs manipulating heap structures with data [16]).

Recently, there has been notable progress in the development of algorithms for ef-
ficient manipulation of non-deterministic finite tree automata (TA), more specifically,
in solving the crucial problems of automata reduction [1] and of checking language
inclusion [18,4,2]. As shown, e.g., in [4], replacing deterministic automata by non-
deterministic ones can—in combination with the new methods for handling TA—lead
to great efficiency gains. In this paper, we further advance the research on efficient
algorithms for handling TA by (i) proposing a new algorithm for inclusion checking
that turns out to significantly outperform the existing algorithms in most of our exper-
iments and (ii) by presenting a semi-symbolic multi-terminal binary decision diagram
(MTBDD) based representation of TA, together with various important algorithms for
handling TA working over this representation.
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The classic textbook algorithm for checking inclusion L(AS) ⊆ L(AB) between two
TA AS (Small) and AB (Big) first determinizes AB, computes the complement automa-
ton AB of AB, and then checks language emptiness of the product automaton accepting
L(AS)∩L(AB). This approach has been optimized in [18,4,2] which describe variants
of this algorithm that try to avoid constructing the whole product automaton (which
can be exponentially larger than AB and which is indeed extremely large in many prac-
tical cases) by constructing its states and checking language emptiness on the fly. By
employing the antichain principle [18,4], possibly combined with using upward simula-
tion relations [2], the algorithm is often able to prove or refute inclusion by constructing
a small part of the product automaton only1. We denote these algorithms as upward al-
gorithms to reflect the direction in which they traverse automata AS and AB.

The upward algorithms are sufficiently efficient in many practical cases. However,
they have two drawbacks: (i) When generating the bottom-up post-image of a set S of
sets of states, all possible n-tuples of states from all possible products S1× . . .×Sn, Si ∈
S need to be enumerated. (ii) Moreover, these algorithms are known to be compatible
with only upward simulations as a means of their possible optimization, which is a
disadvantage since downward simulations are often richer and also cheaper to compute.

The alternative downward approach to checking TA language inclusion was first pro-
posed in [13] in the context of subtyping of XML types. This algorithm is not derivable
from the textbook approach and has a more complex structure with its own weak points;
nevertheless, it does not suffer from the two issues of the upward algorithm mentioned
above. We generalize the algorithm of [13] for automata over alphabets with an arbi-
trary rank ([13] considers rank at most two), and, most importantly, we improve it sig-
nificantly by using the antichain principle, empowered by a use of the cheap and usually
large downward simulation. In this way, we obtain an algorithm which is complemen-
tary to and highly competitive with the upward algorithm as shown by our experimental
results (in which the newly proposed algorithm significantly dominates in most of the
considered cases).

Certain important applications of TA such as formal verification of programs with
complex dynamic data structures or decision procedures of logics such as WS2S or
MSO require handling very large alphabets. Here, the common choice is to use the
MONA tree automata library [15] which is based on representing transitions of TA
symbolically using MTBDDs. However, the encoding used by MONA is restricted to
deterministic automata only. This implies a necessity of immediate determinisation after
each operation over TA that introduces nondeterminism, which very easily leads to
a state space explosion. Despite the extensive engineering effort spent to optimize the
implementation of MONA, this fact significantly limits its applicability.

As a way to overcome this difficulty, we propose a semi-symbolic representation
of non-deterministic TA which generalises the one used by MONA, and we develop

1 The work of [18] does, in fact, not use the terminology of antichains despite implementing
them in a symbolic, BDD-based way. It specialises to binary tree automata only. A more gen-
eral introduction of antichains within a lattice-theoretic framework appeared in the context of
word automata in [19]. Subsequently, [4] has generalized [19] for explicit upward inclusion
checking on TA and experimentally advocated its use within abstract regular tree model check-
ing [4]. See also [10] for other combinations of antichains and simulations for word automata.
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algorithms implementing the basic operations on TA (such as union, intersection, etc.)
as well as more involved algorithms for computing simulations and for checking inclu-
sion (using simulations and antichains to optimize it) over the proposed representation.
We also report on experiments with a prototype implementation of our algorithms show-
ing again a dominance of downward inclusion checking and justifying usefulness of our
symbolic encoding for TA with large alphabets.

The rest of this paper is organised as follows. Section 2 contains basic definitions
for tree automata, tree automata languages, and simulations. Section 3 describes our
downward inclusion checking algorithm and its experimental comparison with the up-
ward algorithms. Further, Section 4 presents our MTBDD-based TA encoding, the algo-
rithms working over this encoding, and an experimental evaluation of these algorithms.
Section 5 then concludes the paper.

2 Preliminaries

A ranked alphabet Σ is a set of symbols together with a ranking function # : Σ →
N. For a ∈ Σ, the value #a is called the rank of a. For any n ≥ 0, we denote by Σn

the set of all symbols of rank n from Σ. Let ε denote the empty sequence. A tree t
over a ranked alphabet Σ is a partial mapping t : N∗ → Σ that satisfies the following
conditions: (1) dom(t) is a finite prefix-closed subset of N∗ and (2) for each v ∈ dom(t),
if #t(v) = n ≥ 0, then {i | vi ∈ dom(t)}= {1, . . . ,n}. Each sequence v ∈ dom(t) is called
a node of t. For a node v, we define the ith child of v to be the node vi, and the ith subtree
of v to be the tree t ′ such that t ′(v′) = t(viv′) for all v′ ∈N∗. A leaf of t is a node v which
does not have any children, i.e., there is no i ∈ N with vi ∈ dom(t). We denote by TΣ the
set of all trees over the alphabet Σ.

A (finite, non-deterministic) tree automaton (abbreviated sometimes as TA in the
following) is a quadruple A = (Q,Σ,Δ,F) where Q is a finite set of states, F ⊆ Q is
a set of final states, Σ is a ranked alphabet, and Δ is a set of transition rules. Each
transition rule is a triple of the form ((q1, . . . ,qn),a,q) where q1, . . . ,qn,q ∈ Q,a ∈ Σ,
and #a = n. We use equivalently (q1, . . . ,qn)

a−→ q and q
a−→ (q1, . . . ,qn) to denote

that ((q1, . . . ,qn),a,q) ∈ Δ. The two notations correspond to the bottom-up and top-
down representation of tree automata, respectively. (Note that we can afford to work
interchangeably with both of them since we work with non-deterministic tree automata,
which are known to have an equal expressive power in their bottom-up and top-down
representations.) In the special case when n = 0, we speak about the so-called leaf rules,
which we sometimes abbreviate as

a−→ q or q
a−→.

For an automaton A = (Q,Σ,Δ,F), we use Q# to denote the set of all tuples of
states from Q with up to the maximum arity that some symbol in Σ has, i.e., if r =
maxa∈Σ #a, then Q# =

⋃
0≤i≤r Qi. For p ∈ Q and a ∈ Σ, we use downa(p) to denote the

set of tuples accessible from p over a in the top-down manner; formally, downa(p) =
{(p1, . . . , pn) | p

a−→ (p1, . . . , pn)}. For a ∈ Σ and (p1, . . . , pn) ∈ Q#a, we denote by
upa((p1, . . . , pn)) the set of states accessible from (p1, . . . , pn) over the symbol a in
the bottom-up manner; formally, upa((p1, . . . , pn)) = {p | (p1, . . . , pn)

a−→ p}. We also
extend these notions to sets in the usual way, i.e., for a ∈ Σ, P ⊆ Q, and R ⊆ Q#a,
downa(P) =

⋃
p∈P downa(p) and upa(R) =

⋃
(p1,...,pn)∈R upa((p1, . . . , pn)).
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Let A = (Q,Σ,Δ,F) be a TA. A run of A over a tree t ∈ TΣ is a mapping π : dom(t)→
Q such that, for each node v ∈ dom(t) of rank #t(v) = n where q = π(v), if qi = π(vi)

for 1 ≤ i ≤ n, then Δ has a rule (q1, . . . ,qn)
t(v)−→ q. We write t

π=⇒ q to denote that
π is a run of A over t such that π(ε) = q. We use t =⇒ q to denote that t

π=⇒ q for
some run π. The language accepted by a state q is defined by LA(q) = {t | t =⇒ q},
while the language of a set of states S ⊆ Q is defined as LA(S) =

⋃
q∈S LA(q). When

it is clear which TA A we refer to, we only write L(q) or L(S). The language of A
is defined as L(A) = LA (F). We also extend the notion of a language to a tuple of
states (q1, . . . ,qn) ∈ Qn by letting L((q1, . . . ,qn)) = L(q1)×·· ·×L(qn). The language
of a set of n-tuples of sets of states S ⊆ (2Q)n

is the union of languages of elements of
S, the set L(S) =

⋃
E∈S L(E). We say that X accepts y to express that y ∈ L(X).

A downward simulation on TA A = (Q,Σ,Δ,F) is a preorder relation *D⊆ Q×Q
such that if q *D p and (q1, . . . ,qn)

a−→ q, then there are states p1, . . . , pn such that
(p1, . . . , pn)

a−→ p and qi *D pi for each 1 ≤ i ≤ n. Given a TA A = (Q,Σ,Δ,F) and
a downward simulation *D, an upward simulation *U⊆ Q×Q induced by *D is a re-
lation such that if q *U p and (q1, . . . ,qn)

a−→ q′ with qi = q, 1 ≤ i ≤ n, then there are
states p1, . . . , pn, p′ such that (p1, . . . , pn)

a−→ p′ where pi = p, q′ *U p′, and q j *D p j

for each j such that 1 ≤ j 	= i ≤ n.

3 Downward Inclusion Checking

Let us fix two tree automata AS = (QS,Σ,ΔS,FS) and AB = (QB,Σ,ΔB,FB) for which we
want to check whether L(AS) ⊆ L(AB) holds. If we try to answer this query top-down
and we proceed in a naı̈ve way, we immediately realize that the fact that the top-down
successors of particular states are tuples of states leads us to checking inclusion of the
languages of tuples of states. Subsequently, the need to compare the languages of each
corresponding pair of states in these tuples will again lead to comparing the languages
of tuples of states, and hence, we end up comparing the languages of tuples of tuples of
states, and the need to deal with more and more nested tuples of states never stops.

For instance, given a transition q
a−→ (p1, p2) in AS, transitions r

a−→ (s1,s2) and
r

a−→ (t1,t2) in AB, and assuming that there are no further top-down transitions from q
and r, it holds that L(q) ⊆ L(r) if and only if L((p1, p2)) ⊆ L((s1,s2))∪L((t1, t2)).
Note that the union L((s1,s2))∪L((t1, t2)) cannot be computed component-wise, this
is, L((s1,s2))∪L((t1,t2)) 	= (L(s1)∪L(t1))× (L(s2)∪L(t2)). For instance, provided
L(s1) = L(s2) = {b} and L(t1) = L(t2) = {c}, it holds that L((s1,s2))∪L((t1, t2)) =
{(b,b),(c,c)}, but the component-wise union is (L(s1)∪L(t1))× (L(s2)∪L(t2)) =
{(b,b),(b,c),(c,b),(c,c)}. Hence, we cannot simply check whether L(p1) ⊆ L(s1)∪
L(t1) and L(p2) ⊆ L(s2)∪L(t2) to answer the original query, and we have to proceed
by checking inclusion on the obtained tuples of states. However, exploring the top-down
transitions that lead from the states that appear in these tuples will lead us to dealing
with tuples of tuples of states, etc.

Fortunately, there is a way out of the above trap. In particular, as first observed in [13]
in the context of XML type checking, we can exploit the following property of the
Cartesian product of sets G,H ⊆ U: G×H = (G×U)∩ (U×H).
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Hence, when we continue with our example, we get L((p1, p2)) = L(p1)×L(p2)⊆
L((s1,s2))∪L((t1,t2)) = (L(s1)×L(s2))∪(L(t1)×L(t2)) = ((L(s1)×TΣ)∩(TΣ ×
L(s2)))∪ ((L(t1)× TΣ)∩ (TΣ ×L(t2))). This can further be rewritten, using the dis-
tributive laws in the (2TΣ×TΣ ,⊆) lattice, as L(p1)×L(p2) ⊆ ((L(s1)×TΣ)∪ (L(t1)×
TΣ)) ∩ ((L(s1)× TΣ) ∪ (TΣ × L(t2))) ∩ ((TΣ × L(s2)) ∪ (L(t1) × TΣ)) ∩ ((TΣ ×
L(s2))∪ (TΣ ×L(t2))). It is easy to see that the inclusion holds exactly if it holds for
all components of the intersection, i.e., if and only if L(p1)×L(p2) ⊆ ((L(s1)×TΣ)∪
(L(t1)×TΣ)) ∧ L(p1)×L(p2) ⊆ ((L(s1)×TΣ)∪ (TΣ ×L(t2))) ∧ L(p1)×L(p2) ⊆
((TΣ ×L(s2))∪ (L(t1)×TΣ)) ∧ L(p1)×L(p2) ⊆ ((TΣ ×L(s2))∪ (TΣ ×L(t2))).

Two things should be noted in the above condition: (1) If we are computing the union
of languages of two tuples such that they have TΣ at all indices other than some index
i, we can compute it component-wise. For instance, L(p1)×L(p2) ⊆ ((L(s1)×TΣ)∪
(L(t1)× TΣ)) = (L(s1)∪ L(t1))× TΣ. This clearly holds iff L(p1) ⊆ L(s1)∪ L(t1).
(2) If TΣ does not appear at the same positions as in the inclusion L(p1)×L(p2) ⊆
((L(s1)×TΣ)∪(TΣ ×L(t2))), it must hold that either L(p1)⊆ L(s1) or L(p2)⊆ L(t2).

Using the above observations, we can finally rewrite the equation L(p1)×L(p2) ⊆
L((s1,s2))∪L((t1,t2)) into the following formula that does not contain languages of
tuples but of single states only: L(p1) ⊆ L(s1)∪L(t1) ∧ (L(p1) ⊆ L(s1)∨L(p2) ⊆
L(t2)) ∧ (L(p1) ⊆ L(t1)∨L(p2) ⊆ L(s2)) ∧ L(p2) ⊆ L(s2)∪L(t2).

The above reasoning can be generalized to dealing with transitions of any arity as
shown in Theorem 1, proved in [12]. In the theorem, we conveniently exploit the notion
of choice functions. Given PB ⊆QB and a∈Σ, #a = n≥ 1, we denote by cf (PB,a) the set
of all choice functions f that assign an index i, 1≤ i≤ n, to all n-tuples (q1, . . . ,qn)∈Qn

B
such that there exists a state in PB that can make a transition over a to (q1, . . . ,qn);
formally, cf (PB,a) = { f : downa(PB) →{1, . . . ,#a}}.

Theorem 1. Let AS = (QS,Σ,ΔS,FS) and AB = (QB,Σ,ΔB,FB) be tree automata. For
sets PS ⊆ QS and PB ⊆ QB it holds that L(PS) ⊆ L(PB) if and only if ∀pS ∈ PS ∀a ∈ Σ :
if pS

a−→ (r1, . . . ,r#a),

then

⎧⎪⎪⎨⎪⎪⎩
downa(PB) = {()} if #a = 0,

∀ f ∈ cf (PB,a) ∃1 ≤ i ≤ #a : L(ri) ⊆
⋃

u∈downa(PB)
f (u)=i

L(ui) if #a > 0.

3.1 Basic Algorithm of Downward Inclusion Checking

Next, we construct a basic algorithm for downward inclusion checking on tree automata
AS = (QS,Σ,ΔS,FS) and AB = (QB,Σ,ΔB,FB). The algorithm is shown as Algorithm 1.
Its main idea relies on a recursive application of Theorem 1 in function expand1.
The function is given a pair (pS,PB) ∈ QS × 2QB for which we want to prove that
L(pS) ⊆ L(PB)—initially, the function is called for every pair (qS,FB) where qS ∈ FS.
The function enumerates all possible top-down transitions that AS can do from pS (lines
3–8). For each such transition, the function either checks whether there is some tran-
sition pB

a−→ for pB ∈ PB if #a = 0 (line 5), or it starts enumerating and recursively
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checking queries L(p′S) ⊆ L(P′
B) on which the result of L(pS) ⊆ L(PB) depends ac-

cording to Theorem 1 (lines 9–16).
The expand1 function keeps track of which inclusion queries are currently be-

ing evaluated in the set workset (line 2). Encountering a query L(p′S) ⊆ L(P′
B) with

(p′S,P
′
B) ∈ workset means that the result of L(p′S) ⊆ L(P′

B) depends on the result of
L(p′S) ⊆ L(P′

B) itself. In this case, the function immediately successfully returns be-
cause the result of the query then depends only on the other branches of the call tree.

Algorithm 1. Downward inclusion
Input: Tree automata AS = (QS,Σ,ΔS,FS),AB = (QB,Σ,ΔB,FB)
Output: true if L(AS) ⊆ L(AB), false otherwise
foreach qS ∈ FS do1

if ¬expand1(qS,FB, /0) then return false;2
return true;3

Function. expand1(pS, PB, workset)

/* pS ∈ QS, PB ⊆ QB, and workset ⊆ QS ×2QB */
if (pS,PB) ∈ workset then return true;1
workset := workset∪{(pS,PB)};2
foreach a ∈ Σ do3

if #a = 0 then4
if downa(pS) 	= /0∧downa(PB) = /0 then return false;5

else6
W := downa(PB);7

foreach (r1, . . . ,r#a) ∈ downa(pS) do /* pS
a−→ (r1, . . . ,r#a) */8

foreach f ∈ {W → {1, . . . ,#a}} do9
found := false;10
foreach 1 ≤ i ≤ #a do11

S := {qi | (q1, . . . ,q#a) ∈W, f ((q1, . . . ,q#a)) = i};12
if expand1(ri,S,workset) then13

found := true;14
break;15

if ¬found then return false;16
return true;17

Using Theorem 1 and noting that Algorithm 1 necessarily terminates because all its
loops are bounded, and the recursion in function expand1 is also bounded due to the
use of workset, it is not difficult to see that the following theorem holds.

Theorem 2. When applied on TA AS = (QS,Σ,ΔS,FS) and AB = (QB,Σ,ΔB,FB), Algo-
rithm 1 terminates and returns true if and only if L(AS) ⊆ L(AB).

3.2 Optimized Algorithm of Downward Inclusion Checking

In this section, we propose several optimizations of the basic algorithm presented above
that, according to our experiments, often have a huge impact on the efficiency of the
algorithm—making it in many cases the most efficient algorithm for checking inclusion
on tree automata that we are currently aware of. In general, the optimizations are based
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Algorithm 2. Downward inclusion (antichains + preorder)

Input: TA AS = (QS,Σ,ΔS,FS),AB = (QB,Σ,ΔB,FB),*⊆ (QS ∪QB)2

Output: true if L(AS) ⊆ L(AB), false otherwise
Data: NN := /0
foreach qS ∈ FS do1

if ¬expand2(qS,FB, /0) then return false;2
return true;3

Function. expand2(pS, PB, workset)

/* pS ∈ QS, PB ⊆ QB, and workset ⊆ QS ×2QB */
if ∃(p′

S,P
′
B) ∈ workset : pS * p′

S ∧P′
B *∀∃ PB then return true;1

if ∃(p′
S,P

′
B) ∈ NN : p′

S * pS ∧PB *∀∃ P′
B then return false ;2

if ∃p ∈ PB : pS * p then return true;3
workset := workset∪{(pS,PB)};4
foreach a ∈ Σ do5

if #a = 0 then6
if downa(pS) 	= /0∧downa(PB) = /0 then return false;7

else8
W := downa(PB);9

foreach (r1, . . . ,r#a) ∈ downa(pS) do /* pS
a−→ (r1, . . . ,r#a) */10

foreach f ∈ {W → {1, . . . ,#a}} do11
found := false;12
foreach 1 ≤ i ≤ #a do13

S := {qi | (q1, . . . ,q#a) ∈W, f ((q1, . . . ,q#a)) = i};14
if expand2(ri,S,workset) then15

found := true;16
break;17

if 	 ∃(r′,H) ∈ NN : r′ * ri ∧S *∀∃ H then18
NN := (NN \{(r′,H) | H *∀∃ S,ri * r′})∪{(ri,S)};19

if ¬found then return false;20
return true;21

on an original use of simulations and antichains in a way suitable for the context of
downward inclusion checking.

In what follows, we assume that there is available a preorder *⊆ (QS ∪QB)2 com-
patible with language inclusion, i.e., such that p * q =⇒ L(p) ⊆ L(q), and we use
P *∀∃ R where P,R ⊆ (QS ∪QB)2 to denote that ∀p ∈ P∃r ∈ R : p * r. An example of
such a preorder, which can be efficiently computed, is the (maximal) downward simu-
lation *D. We propose the following concrete optimizations of the downward checking
of L(pS) ⊆ L(PB):
1. If there exists a state pB ∈ PB such that pS * pB, then the inclusion clearly holds

(from the assumption made about *), and no further checking is needed.
2. Next, it can be seen without any further computation that the inclusion does not

hold if there exists some (p′S,P
′
B) such that p′S * pS and PB *∀∃ P′

B, and we have al-
ready established that L(p′S) 	⊆ L(P′

B). Indeed, we have L(PB)⊆ L(P′
B) 	⊇L(p′S)⊆

L(pS), and therefore L(pS) 	⊆ L(PB).
3. Finally, we can stop evaluating the given inclusion query if there is some (p′S,P

′
B)∈

workset such that pS * p′S and P′
B *∀∃ PB. Indeed, this means that the result of

L(p′S) ⊆ L(P′
B) depends on the result of L(pS) ⊆ L(PB). However, if L(p′S) ⊆

L(P′
B) holds, then also L(pS) ⊆ L(PB) holds because we have L(pS) ⊆ L(p′S) ⊆

L(P′
B) ⊆ L(PB).



250 L. Holı́k et al.

Table 1. Percentages of cases in which the respective methods were the fastest

Size Pairs Timeout Up Up+s Down Down+s Avg up Avg down
speedup speedup

50–250 323 20 s 31.21 % 0.00 % 53.50 % 15.29 % 1.71 3.55
400–600 64 60 s 9.38 % 0.00 % 39.06 % 51.56 % 0.34 46.56

The version of Algorithm 1 including all the above proposed optimizations is shown
as Algorithm 2. The optimizations can be found in the function expand2 that replaces
the function expand1. In particular, line 3 implements the first optimization, line 2 the
second one, and line 1 the third one. In order to implement the second optimization, the
algorithm maintains a new set NN. This set stores pairs (pS,PB) for which it has already
been shown that the inclusion L(pS) ⊆ L(PB) does not hold2.

As a further optimization, the set NN is maintained as an antichain w.r.t. the pre-
order that compares the pairs stored in NN such that the states from QS on the left are
compared w.r.t. *, and the sets from 2QB on the right are compared w.r.t. ,∃∀ (line 19).
Clearly, there is no need to store a pair (pS,PB) that is bigger in the described sense
than some other pair (p′S,P

′
B) since every time (pS,PB) can be used to prune the search,

(p′S,P
′
B) can also be used.

Taking into account Theorem 2 and the above presented facts, it is not difficult to see
that the following holds.

Theorem 3. When applied on TA AS = (QS,Σ,ΔS,FS) and AB = (QB,Σ,ΔB,FB), Algo-
rithm 2 terminates and returns true if and only if L(AS) ⊆ L(AB).

3.3 Experimental Results

We have implemented Algorithm 1 (which we mark as Down in what follows) as well as
Algorithm 2 using the maximum downward simulation as the input preorder (which is
marked as Down+s below). We have also implemented the algorithm of upward inclu-
sion checking using antichains from [4] and its modification using upward simulation
proposed in [2] (these algorithms are marked as Up and Up+s below). We tested our
approach on 387 tree automata pairs of different sizes generated from the intermediate
steps of abstract regular tree model checking of the algorithm for rebalancing red-black
trees after insertion or deletion of a leaf node [4].

The results of the experiments are presented in the following tables. Table 1 com-
pares the methods according to the percentage of the cases in which they were the
fastest when checking inclusion on the same automata pair. The results are grouped
into two sets according to the size of the automata measured in the number of states.
The table also gives the average speedup of the fastest upward approach compared to
the fastest downward approach in case the upward computation was faster than the
downward one (and vice versa). Table 2 provides a comparison of the methods that

2 In [12], a further optimization exploiting that L(pS) ⊆ L(PB) has been shown to hold is pro-
posed, but it is much more complicated in order to avoid memorizing possibly invalid assump-
tions made during the computation.
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Table 2. Percentages of cases in which the methods were the fastest
when not counting the time for computing the simulation

Size Pairs Timeout Up+s Down+s Avg up Avg down
speedup speedup

50–250 323 20 s 81.82 % 18.18 % 1.33 3.60
400–600 64 60 s 20.31 % 79.69 % 9.92 2116.29

Table 3. Percentages of successful runs that did not timeout

Size Pairs Timeout Up Up+s Down Down+s
50–250 323 20 s 100.00 % 100.00 % 74.92 % 99.07 %

400–600 64 60 s 51.56 % 51.56 % 39.06 % 90.62 %

use simulation (ei-
ther upward for Up+s
or downward for
Down+s) without
counting the time for
computing simulation
(in such cases they
were always faster
than the methods not
using simulations).
This comparison is
motivated by the ob-
servation that inclu-
sion checking may be
used as a part of a
bigger computation that anyway computes the simulation relations (which happens,
e.g., in abstract regular model checking where the simulations are used for reducing the
size of the encountered automata). Finally, Table 3 summarizes how often the particular
methods were successful in our testing runs (i.e., how often they did not timeout.).

The results show that the overhead of computing upward simulation is too high in all
the cases that we have considered, causing upward inclusion checking using simulation
to be the slowest when the time for computing the simulation used by the algorithm is
included3. Next, it can be seen that for each of the remaining approaches there are cases
in which they win in a significant way. However, the downward approaches are clearly
dominating in significantly more of our test cases (with the only exception being the
case of small automata when the time of computing simulations is not included). More-
over, the dominance of the downward checking increases with the size of the automata
that we considered in our test cases.

4 Semi-symbolic Representation of Tree Automata

We next consider a natural, semi-symbolic, MTBDD-based encoding of non-determin-
istic TA, suitable for handling automata with huge alphabets. We propose algorithms
for computing downward simulations and for efficient downward inclusion checking on
the considered representation. Due to space restrictions, we defer algorithms for further
operations on the considered semi-symbolic representation of TA, including upward
inclusion checking, to [12].

4.1 Binary Decision Diagrams

Let B = {0,1} be the set of Boolean values. A Boolean function of arity k is a func-
tion of the form f : Bk → B. We extend the notion of Boolean functions to an arbitrary

3 Note that Up+s was winning over Up in the experiments of [2] even with the time for computing
simulation included, which seems to be caused by a much less efficient implementation of the
antichains in the original algorithm.
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nonempty set S where a k-ary Boolean function extended to the domain set S is a func-
tion of the form f : Bk → S.

A reduced ordered binary decision diagram (ROBDD) [8] r over n Boolean variables
x1, . . . ,xn is a connected directed acyclic graph with a single source node (denoted as
r.root) and at least one of the two sink nodes 0 and 1. We call internal the nodes which
are not sink nodes. A function var assigns each internal node a Boolean variable from
the set X = {x1, . . . ,xn}, which is assumed to be ordered by the ordering x1 < x2 <
· · · < xn. For every internal node v there exist 2 outgoing edges labelled low and high.
We denote by v.low a node w and by v.high a node z such that there exists a directed edge
from v to w labelled by low and a directed edge from v to z labelled by high, respectively.
For each internal node v, it must hold that var(v)< var(v.low) and var(v)< var(v.high)
and also v.low 	= v.high. A node v represents an n-ary Boolean function �v� : Bn → B
that assigns to each assignment to the Boolean variables in X a corresponding Boolean
value defined in the following way (using x as an abbreviation for x1 . . .xn): �0�= λ x . 0,
�1� = λ x . 1, and �v� = λ x . (¬xi ∧ �v.low�)∨ (xi ∧ �v.high�) for var(v) = xi. For every
two nodes v and w, it holds that v 	= w =⇒ �v� 	= �w�. We say that an ROBDD r
represents the Boolean function �r� = �r.root�. Dually, for a Boolean function f , we
use 〈 f 〉 to denote the ROBDD representing f , i.e., f = �〈 f 〉�.

We generalise the standard Apply operation for manipulation of Boolean functions
represented by ROBDDs in the following way: let op1, op2, and op3 be in turn arbitrary
unary, binary, and ternary Boolean functions. Then the functions Apply1, Apply2, and
Apply3 produce a new ROBDD which is defined as follows for ROBDDs f , g, and h:
Apply1( f ,op1) = 〈λ x . op1(� f (x)�)〉, Apply2( f ,g,op2) = 〈λ x . op2(� f (x)�,�g(x)�)〉,
and Apply3( f ,g,h,op3) = 〈λ x . op3(� f (x)�,�g(x)�,�h(x)�)〉. In practice, one can also
use Apply operations with side-effects.

The notion of ROBDDs is further generalized to multi-terminal binary decision dia-
grams (MTBDDs) [9]. MTBDDs are essentially the same data structures as ROBDDs,
the only difference being the fact that the set of sink nodes is not restricted to two nodes.
Instead, it can contain an arbitrary number of nodes labelled uniquely by elements of
an arbitrary domain set S. All standard notions for ROBDDs can naturally be extended
to MTBDDs. An MTBDD m then represents a Boolean function extended to S, i.e.,
�m� : Bn → S. Further, the concept of shared MTBDDs is used. A shared MTBDD s is
an MTBDD with multiple source nodes (or roots) that represents a mapping of every
element of the set of roots R to a function induced by the MTBDD corresponding to the
the given root, i.e., �s� : R → (Bn → S).

4.2 Encoding the Transition Function of a TA Using Shared MTBDDs

We fix a tree automaton A = (Q,Σ,Δ,F) for the rest of the section. We consider both
a top-down and a bottom-up representation of its transition function. This is because
some operations on A are easier to do on the former representation while others on the
latter. We assume w.l.o.g. that the input alphabet Σ of A is represented in binary using
n bits. We assign each bit in the binary encoding of Σ a Boolean variable from the set
{x1, . . . ,xn}. We can then use shared MTBDDs with a set of roots R and a domain set S
for encoding the various functions of the form R → (Σ → S) that we will need.

Our bottom-up representation of the transition function Δ of the TA A uses a shared
MTBDD Δbu over Σ where the set of root nodes is Q#, and the domain of labels of
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sink nodes is 2Q. The MTBDD Δbu represents a function �Δbu� : Q# → (Σ → 2Q)
defined as �Δbu� = λ (q1, . . . ,qp) a . {q | (q1, . . . ,qp)

a−→ q}. It clearly holds that
�Δbu((q1, . . . ,qp),a)� = upa((q1, . . . ,qp)).

Our top-down representation of the transition function Δ of the TA A uses a shared
MTBDD Δtd over Σ where the set of root nodes is Q, and the domain of labels of sink
nodes is 2Q#

. The MTBDD Δtd represents a function �Δtd� : Q → (Σ → 2Q#
) defined as

�Δtd� = λ q a . {(q1, . . . ,qp) | q
a−→ (q1, . . . ,qp)}. Clearly, �Δtd(q,a)� = downa(q).

Sometimes it is necessary to convert between the bottom-up and top-down repre-
sentation of a TA. For instance, when computing downward simulations (as explained
below), one needs to switch between the bottom-up and top-down representation. For-
tunately, the two representations are easy to convert (cf. [12]).

4.3 Downward Simulation on Semi-symbolically Encoded TA

We next give an algorithm for computing the maximum downward simulation rela-
tion on the states of the TA A whose transition function is encoded using our semi-
symbolic representation. The algorithm is inspired by the algorithm from [14] proposed
for computing simulations on finite (word) automata. For use in the algorithm, we ex-
tend the notion of downward simulation to tuples of states by defining (q1, . . . ,qn) *D

(r1, . . . ,rn) to hold iff ∀1 ≤ i ≤ n : qi *D ri.
Our algorithm for computing downward simulations, shown as Algorithm 3, starts

with a gross over-approximation of the maximum downward simulation, which is then
pruned until the maximum downward simulation is obtained. The algorithm uses the
following main data structures:

– For each q ∈ Q, sim(q) ⊆ Q is the set of states that are considered to simulate q at
the current step of the computation. Its value is gradually pruned during the compu-
tation. At the end, it encodes the maximum downward simulation being computed.

– The set remove ⊆ Q# × Q# contains pairs ((q1, . . . ,qn),(r1, . . . ,rn)) of tuples of
states, for which it is known that (q1, . . . ,qn) 	*D (r1, . . . ,rn), for processing.

– Finally, cnt is a shared MTBDD encoding a function �cnt� : Q# → (Σ → (Q → N))
that for each (q1, . . . ,qn) ∈ Q#, a ∈ Σ, and q ∈ Q, gives a value h ∈ N such that
(q1, . . . ,qn) can make a bottom-up transition over a to h distinct states r ∈ sim(q).

The algorithm works in two phases. We assume that we start with a TA whose transition
function is represented bottom-up. In the initialization phase, the dual top-down repre-
sentation of the transition function is first computed (note that we can also start with a
top-down representation and compute the bottom-up representation as both are needed
in the algorithm). The three main data structures are then initialized as follows:

– For each q ∈ Q, the set sim(q) is initialized as the set of states that can make top-
down transitions over the same symbols as q, which is determined using the Apply
operation on line 9. This is, when starting the main computation loop on line 17,
the value of sim for each state q∈ Q is sim(q) = {r | ∀a∈ Σ : q

a−→ (q1, . . . ,qn) =⇒
r

a−→ (r1, . . . ,rn)}.
– The remove set is initialized to contain each pair of tuples of states ((q1, . . . ,qn),

(r1, . . . ,rn)) for which it holds that the relation (q1, . . . ,qn)*D (r1, . . . ,rn) is broken
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Algorithm 3. Computing downward simulation on semi-symbolic TA

Input: Tree automaton A = (Q,Σ,Δbu,F)
Output: Maximum downward simulation *D⊆ Q2

/* initialization */
Δtd := invertMTBDD(Δbu);1
remove := /0;2

initCnt := 〈λ a . /0〉 ; /* �initCnt� : Σ → (Q → N) */3
foreach q ∈ Q do4

sim(q) := /0;5

initCnt := Apply2(Δtd(q), initCnt,(λ X Y . Y ∪{(q, |X |)});6
foreach r ∈ Q do7

isSim := true;8

Apply2(Δtd(q),Δtd(r),(λ X Y . if (X 	= /0∧Y = /0) then isSim := false)) ;9
if isSim then10

sim(q) := sim(q)∪{r};11
else12

foreach (q1, . . . ,qn) ∈ Q#,(r1, . . . ,rn) ∈ Q# : ∃1 ≤ i ≤ n : qi = q∧ ri = r do13
remove := remove∪{((q1, . . . ,qn),(r1, . . . ,rn))};14

cnt := 〈λ (q1, . . . ,qn) a . /0〉 ; /* �cnt� : Q# → (Σ → (Q → N)) */15

foreach (q1, . . . ,qn) ∈ Q# do cnt((q1, . . . ,qn)) := initCnt;16
/* computation */
while ∃((q1, . . . ,qn),(r1, . . . ,rn)) ∈ remove do17

remove := remove\{((q1, . . . ,qn),(r1, . . . ,rn))};18
cnt((q1, . . . ,qn)) :=19

Apply3(Δbu((r1, . . . ,rn)),Δbu((q1, . . . ,qn)),cnt((q1, . . . ,qn)),(refine sim remove));
return {(q,r) | q ∈ Q,r ∈ sim(q)};20

Function. refine(&sim, &remove, upaR, upaQ, cntaQ)
newCntaQ := cntaQ;1
foreach s ∈ upaR do2

newCntaQ(s) := newCntaQ(s)−1;3
if newCntaQ(s) = 0 then4

foreach p ∈ upaQ : s ∈ sim(p) do5
foreach (p1, . . . , pn) ∈ Q#,(s1, . . . ,sn) ∈ Q# : ∃1 ≤ i ≤ n : pi = p∧ si = s do6

if ∀1 ≤ j ≤ n : s j ∈ sim(pj) then7
remove := remove∪{((p1, . . . , pn),(s1, . . . ,sn))};8

sim(p) := sim(p)\{s};9
return newCntaQ;10

even for the initial approximation of *D, i.e., for some position 1 ≤ i ≤ n there is
a pair qi,ri ∈ Q such that ri /∈ sim(qi).

– To initialize the shared MTBDD cnt, the algorithm constructs an auxiliary MTBDD
initCnt representing a function �initCnt� : Σ → (Q → N). Via the Apply operation
on line 6, this MTBDD gradually collects, for each symbol a ∈ Σ, the set of pairs
(q,h) such that q can make a top-down transition to h distinct tuples over the symbol
a. This MTBDD is then copied to the shared MTBDD cnt for each tuple of states
(q1, . . . ,qn) ∈ Q#. This is justified by the fact that we start by assuming that the
simulation relation is equal to Q×Q, which for a symbol a ∈ Σ and a pair (q,h) ∈
cnt((q1, . . . ,qn)) means that (q1, . . . ,qn) can make a bottom-up transition over a to
h distinct states r ∈ sim(q).
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The main computation phase gradually restricts the initial over-approximation of the
maximum downward simulation being computed. As we have said, the remove set con-
tains pairs ((q1, . . . ,qn),(r1, . . . ,rn)) for which it holds that (q1, . . . ,qn) cannot be simu-
lated by (r1, . . . ,rn), i.e., (q1, . . . ,qn) 	*D (r1, . . . ,rn). When such a pair is processed, the
algorithm decrements the counter �cnt((q1, . . . ,qn),a,s)� for each state s for which there
exists a bottom-up transition over a symbol a ∈ Σ such that (r1, . . . ,rn)

a−→ s. The mean-
ing is that s can make one less top-down transition over a to some (t1, . . . ,tn) such that
(q1, . . . ,qn)*D (t1, . . . ,tn). If �cnt((q1, . . . ,qn),a,s)� drops to zero, it means that s cannot
make a top-down transition over a to any (t1, . . . ,tn) such that (q1, . . . ,qn)*D (t1, . . . ,tn).
This means, for all p∈Q such that p can make a top-down transition over a to (q1, . . . ,qn),
that s no longer simulates p, i.e., p 	*D s. When the simulation relation between p and
s, p *D s, is broken, then the simulation relation between all m-tuples (p1, . . . , pm) and
(s1, . . . ,sm) such that ∃1 ≤ j ≤ m : p j = p∧ s j = s must also be broken, therefore the
pair ((p1, . . . , pm),(s1, . . . ,sm)) is put to the remove set (unless the simulation relation
between some other states in the tuples has already been broken before).

Correctness of the algorithm is summarised in the below theorem, which can be
proven analogically as correctness of the algorithm proposed in [14], taking into ac-
count the meaning of the above described MTBDD-based structures and the operations
performed on them.

Theorem 4. When applied on a TA A = (Q,Σ,Δ,F) whose transition function is en-
coded semi-symbolically in the bottom-up way as Δbu, Algorithm 3 terminates and re-
turns the maximum downward simulation on Q.

4.4 Downward Inclusion Checking on Semi-symbolically Encoded TA

We now proceed to an algorithm of efficient downward inclusion checking on semi-
symbolically represented TA. The algorithm we propose for this purpose is derived from
Algorithm 2 by plugging the expand3 function instead of the expand2 function. It is
based on the same basic principle as expand2, but it has to cope with the symbolically
encoded transition relation. In particular, in order to inspect whether for a pair (pS,PB)
and all symbols a ∈ Σ the inclusion between each tuple from downa(pS) and the set of
tuples downa(PB) holds, the doesInclusionHold parameter initialized to true is passed
to the Apply operation on line 9 of the expand3 function. If the algorithm finds out that
the inclusion does not hold in some execution of the procDown function in the context
of a single Apply, doesInclusionHold is assigned the false value, which is later returned
by expand3. Otherwise expand3 returns its original true value.

4.5 Experimental Results

We have implemented a prototype of a library for working with TA encoded semi-
symbolically as described above. We have used the CUDD library [17] as an imple-
mentation of shared MTBDDs. The prototype contains the algorithms presented in this
section and some more presented in [12]. The results on downward inclusion checking
that we have obtained with the explicitly represented TA encouraged us to also com-
pare performance of the upward inclusion checking and downward inclusion checking
on automata with large alphabets using our prototype.
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Function. expand3(pS, PB, workset)

/* pS ∈ QS, PB ⊆ QB, and workset ⊆ QS ×2QB */
if ∃(p′

S,P
′
B) ∈ workset : pS * p′

S ∧P′
B *∀∃ PB then return true;1

if ∃(p′
S,P

′
B) ∈ NN : p′

S * pS ∧PB *∀∃ P′
B then return false ;2

if ∃p ∈ PB : pS * p then return true;3
workset := workset∪{(pS,PB)};4
tmp := 〈λ a . /0〉;5
foreach pB ∈ PB do6

tmp := Apply2(tmp,Δtd
B (pB),(λ X Y . X ∪Y ));7

doesInclusionHold := true;8

Apply2(Δtd
S (pS), tmp,(procDown doesInclusionHold workset));9

return doesInclusionHold;10

Function. procDown(&doesInclusionHold, &workset, downa pS, downaPB)

if () ∈ downa pS ∧ () /∈ downaPB then1
doesInclusionHold := false;2

else3
W := downaPB;4

foreach (r1, . . . ,rn) ∈ downa pS do /* pS
a−→ (r1, . . . ,rn) */5

foreach f ∈ {W →{1, . . . ,n}} do6
found := false;7
foreach 1 ≤ i ≤ n do8

S := {qi | (q1, . . . ,qn) ∈W, f ((q1, . . . ,qn)) = i};9
if expand3(ri,S,workset) then10

found := true;11
break;12

if 	 ∃(r′,H)∈ NN : r′ * ri ∧S *∀∃ H then13
NN := (NN \{(r′,H) | H *∀∃ S,ri * r′})∪{(ri,S)};14

if ¬found then15
doesInclusionHold := false;16
return;17

We have compared the upward inclusion checking algorithm from [4] adapted for
semi-symbolically represented tree automata, which is given in [12] (and marked as
UpSym in the following), with the downward inclusion checking algorithm presented
above. In the latter case, we let the algorithm use either the identity relation, which
corresponds to downward inclusion checking without using any simulation (this case is
marked as DownSym below), or the maximum downward simulation (which is marked
as DownSym+s in the results). We have not considered upward inclusion checking with
upward simulation due to its negative results in our experiments with explicitly encoded
automata4. For the comparison, we used 97 pairs of tree automata with a large alphabet
which we encoded into 12 bits. The size of the automata was between 50 and 150 states
and the timeout was set to 300 s. The automata were obtained by taking the automata
considered in Section 3.3 and labelling their transitions by randomly generated sets of
symbols from the considered large alphabet.

The results that we have obtained are presented in the following tables. Table 4 com-
pares the methods according to the percentage of the cases in which they were the

4 We, however, note that possibilities of implementing upward inclusion checking combined
with upward simulations over semi-symbolically encoded TA and a further evaluation of this
algorithm are still interesting subjects for the future.
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fastest when checking inclusion on the same automata pair. This table also presents the
average speedup of the upward approach compared to the fastest downward approach
in case the upward computation was faster than the downward one (and vice versa).
Table 5 summarizes how often each of the methods was successful in the testing runs.

Table 4. Percentages of cases in which the respective meth-
ods were the fastest

UpSym DownSym DownSym+s Avg up Avg down
speedup speedup

6.67 % 90.67 % 2.67 % 24.39 4389.76

Table 5. Successful runs that did not timeout (in %)

UpSym DownSym DownSym+s
77.32 % 77.32 % 26.08 %

When we compare theabove
experimental results with the
results obtained on the explic-
itly represented automata pre-
sented in Section 3.3, we may
note that (1) downward inclu-
sion checking is again signifi-
cantly dominating, but (2) the
advantage of exploiting down-
ward simulation has decreased.
According to the information
we gathered from code profil-
ing of our implementation, this
is due to the overhead of the CUDD library which is used as the underlying layer for
storage of shared MTBDDs of several data structures (which indicates a need of a dif-
ferent MTBDD library to be used or perhaps of a specialised MTBDD library to be
developed).

We also evaluated performance of the implementation of the described algorithms
using a semi-symbolic encoding of TA with performance of the algorithms using an
explicit encoding of TA considered in Section 3 on the automata with the large alphabet.
The symbolic version was in average 8676 times faster than the explicit one as expected
when using a large alphabet.

5 Conclusion

We have proposed a new algorithm for checking language inclusion over non-determi-
nistic TA (based on the one from [13]) that traverses automata in the downward manner
and uses both antichains and simulations to optimize its computation. This algorithm
is, according to our experimental results, mostly superior to the known upward algo-
rithms. We have further presented a semi symbolic MTBDD-based representation of
non-deterministic TA generalising the one used by MONA, together with important
tree automata algorithms working over this representation, most notably an algorithm
for computing downward simulations over TA inspired by [14] and the downward lan-
guage inclusion algorithm improved by simulations and antichains proposed in this
paper. We have experimentally justified usefulness of the symbolic encoding for non-
deterministic TA with large alphabets.

Our experimental results suggest that the MTBDD package CUDD is not very ef-
ficient for our purposes and that better results could probably be achieved using a
specialised MTBDD package whose design is an interesting subject for further work.
Apart from that, it would be interesting to encode antichains used within the language
inclusion checking algorithms symbolically as, e.g., in [18]. An interesting problem
here is how to efficiently encode antichains based not on the subset inclusion but on a
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simulation relation. Finally, as a general target, we plan to continue in our work towards
obtaining a really efficient TA library which could ultimately replace the one of MONA.
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Abstract. Sessions are a central paradigm in Web services to implement
decentralized transactions with multiple participants. Sessions enable the
cooperation of workflows while at the same time avoiding the mixing of
workflows from distinct transactions. Languages such as BPEL, ORC,
AXML that implement Web Services usually realize sessions by attach-
ing unique identifiers to transactions. The expressive power of these lan-
guages makes the properties of the implemented services undecidable. In
this paper, we propose a new formalism for modelling web services. Our
model is session-based, but avoids using session identifiers. The model
can be translated to a dialect of Petri nets that allows the verification of
important properties of web services.

1 Introduction

Web services consist of interactions between multiple parties. In developing a
formal model for web services, we have to consider two different points of view.
The first focus is on the interactions themselves: they are typically structured
using what we will call sessions. An example of a session could include sending
an email or making an online payment. Informally, a session is a functionally
coherent sequence of interactions between agents playing specific roles, such as
server and client.

The second requirement is to capture the perspective of each agent. Typically,
agents participate in more than one session at a time: while composing a mail,
an agent may also participate in an online chat and, on the side, browse a
catalogue to select an item to purchase from an online retailer. While some
concurrent sessions may be independent of each other, there may also be non-
trivial connections between sessions. For instance, to purchase an item online,
one has to first participate in a session with the retailer to choose an item, then
make the online payment in a session with the bank, which typically returns the
agent to the shopping session with a confirmation of the transaction. Thus, we
need a mechanism to describe how an agent moves between sessions, including
the possibility of invoking multiple concurrent sessions.
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We propose a formal model for sessions to capture both these aspects. A
guiding principle is that the model should support some formal verification.
We base our approach on finite automata and model interaction through shared
actions. These shared actions can update local variables of agents, which permits
information to be transferred across agents. The local variables record the state
of an agent across sessions to permit coordination between sessions.

Our model can be translated into a class of Petri nets called Reset Post-G
nets [6] for which coverability is decidable. In terms of our model, this means, for
instance, that asking whether a specific type of session occurs is decidable. The
paper is organized as follows. After briefly discussing related work, we introduce
our model through an example in the next section. This is followed by a formal
definition of our model of session systems. Section 4 translates the semantics of
session systems into Reset Post-G nets, and highlights decidability results for
our model. We end with a brief conclusion. Due to lack of space, and also to
improve readability, some proofs are only sketched.

Related Work. Several other frameworks propose sessions and mechanisms to
orchestrate sessions into larger applications. The range of approaches includes
agent-centric formalisms, such as BPEL [3], workflow-based formalisms such as
Orc [8, 9], and declarative, rule-based formalisms such as AXML [1, 2]. Each
approach has its advantages and drawbacks.

A BPEL specification describes a set of independent communicating agents
equipped with a rich set of control structures. Coordination across agents is
achieved through message-passing. Interactions are grouped into sessions im-
plicitly by defining correlations which specify data values that uniquely identify
a session—for instance, a purchase order number for an online retail transaction.
This makes it difficult to identify the structure of sessions from the specification,
and workflows are often implicit, known only at runtime. Orc is a programming
language for the orchestration of services. It allows any kind of algorithmic ma-
nipulation of data, with an orchestration overlay that helps start new services
and synchronize their results. Orc has better mechanisms to define workflows
than BPEL, but lacks the notion of correlation that is essential to establish ses-
sions among the participants in a service. AXML defines web services as a set
of rules for transforming semi-structured documents described, for instance, in
XML. However, it does not make workflows explicit, and does not have a native
notion of session either. So, transactions must be defined using complex guards.
A common feature of these formalisms is that they aim to describe implemen-
tations of web services or orchestrations. BPEL, Orc and AXML can easily
simulate Turing Machines, hence rendering undecidable simple properties such
as the termination of a service. In [4], the authors develop a model for shared
experience services where multiple users participate in sessions by simultane-
ously accessing a shared communication interface—examples include conference
calls and internet chat. Though this model has a superficial resemblance to our
work—they define session data types and use finite automata to describe session
behaviours—the main aim is to provide an event-driven programming language
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to describe such systems, without any support for verification, so their model
has little in common with ours.

At a different level, Petri nets have often been used to specify workflows [10]
or to serve as targets for translating high-level description languages such as
BPEL [11, 7]. However, Petri nets are not expressive enough to model sessions
with correlations as in BPEL, hence translations either are restricted to a subset
of the workflow description language [11] or they are aimed at coloured extensions
of Petri nets [7] for which many properties are undecidable. Our model can
be translated to a less powerful class of Petri Nets which allows us to decide
properties such as coverability and termination.

2 Motivational Example

To motivate the constructs that we incorporate into our model, we look at an
example. We model an online retail system with three types of participants:
clients (the buyers), servers (the sellers), and banks. The interactions between
these entities can be broken up into two distinct phases: selecting and confirming
the items to be purchased online, and paying for these items. The first phase,
online sale, only concerns clients and servers while the second phase, online
payment, involves all three types of entities.

In an online sale, a client logs in to a server and selects a set of items to buy.
Selecting an item involves browsing the items on offer, choosing some of them,
perhaps revoking some earlier choices and finally deciding to pay for the selected
items. At this point, the client has to choose between several modes of payment.
Once this choice is made, the online sale interaction is suspended and the second
phase is triggered.

The second phase, online payment, involves the client and the server as well as
a bank that is chosen by the server according to the mode of payment selected
by the client. The server transfers the transaction amount to the bank. The
bank then asks the client for credentials to authenticate itself and authorize this
transaction. Based on the information provided by the client, the bank either
accepts or rejects the transaction. This decision is based on several parameters,
including the correctness of the authentication data provided and the client’s
credit limit. For simplicity, we can omit the details of how the bank arrives at
this decision and model this as a nondeterministic choice between success and
failure of the payment. When the payment phase ends, the client and server
resume their interaction in the online sale. If the payment was successful, the
server generates a receipt. Otherwise, the server generates an appropriate error
notification. In case of a payment failure, the client can choose to abort the sale
or retry the payment.

This example illustrates both aspects of web services identified in the Intro-
duction. Online sale and online payment are examples of sessions—structured
interactions involving multiple agents. On the other hand, the clients, servers
and banks that participate in these sessions are examples of agents, each with
its own control structure that determines how it evolves and moves from one
session to another.
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n0

n2

n1 n3

n4

n5 n6

n7

C, S:Login

C,S:Exit

C, S:Exit

C, S:Browse

C, S:Add

C, S:Remove

C, S:PayCardA

C, S:PayCardB C, S:Receipt

C, S:Reject

C, S:Abort

C, S:Retry

Fig. 1. Session template for Online Purchase

n0 n1 n2

n3

n4

B, S:GetTransaction C, B:Authenticate C, B, S:Confirm

C, B, S:Refuse

Fig. 2. Session template for Payment

We propose to use finite-state automata to describe session schemes and
agents. These prescribe the underlying structure from which concrete sessions
are instantiated. Figure 1 depicts a session scheme for online sale, while Figure 2
shows a scheme for online payment. In these automata, transitions are labelled
by shared actions, such as PayCardA and Authenticate. Each shared action is
annotated with the names of the participants: for instance, C, S : Login indicates
that the action Login is shared by C and S. Here, C and S are not agents but
abstract roles, to be played by actual agents when the scheme is instantiated as
a concrete session.

Each session scheme has a start node, denoted by an incoming arrow and
global final nodes marked by an outgoing arrow. Nodes with double circles are
return nodes where one or more participants can exit the session without termi-
nating the session itself. A session terminates when all participants have exited.

To ensure coordination between agents and across sessions, we need to equip
the system with data. Each agent has a set of local variables that are updated as
it evolves. In addition, each concrete session has variables to indicate its state,
including the identities of the agents playing the various roles defined in the
underlying session scheme. We will allow transitions to be guarded, so that a
shared action may be enabled or disabled depending on the current state of the
participating agents.

In a session system, several sessions that are active simultaneously may share
agents—for instance, a customer may participate in online sales with two distinct
retailers with the same bank. Sessions sharing an agent share the variables of this
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n0

Spawn(OnlinePay(*,*,self))

Bank

n0

Seller

Spawn(OnlineSale(*,self))

Join(OnlinePay(cid,self,Bank))

n0

Join(OnlineSale(self,Seller))

Join(OnlinePay(self,sid,*))
Buyer

Fig. 3. Agents for Banks, Sellers and Buyers

agent, so one has to take care to avoid unwanted interferences across sessions. For
example, if payment information pertaining to different sessions gets mixed, an
authorization for a low-cost transaction may be misused to complete a high-cost
purchase beyond the customer’s credit limit. As we shall see, our model allows us
to enforce controlled access to critical sections through variables and guards, and
also verify that mutual exclusion is achieved through formal analysis of the model.
For the sake of readability, we have not represented variables and guards in the
examples here. Details can be found in the extended version of this work [5].

The other half of the system description consists of specifications for the
agents. The agents Bank, Seller and Client are shown in Figure 3. There is one
automaton for each agent: in this example, each agent has only a single state.

The typical actions of an agent are to spawn a new instance of a session scheme
and to join an existing session. In this example, OnlinePay sessions are spawned
by the bank and joined by the buyer and seller while OnlineSale sessions are
spawned by the seller and joined by the buyer. The actions Spawn and Join refer
to a session scheme with parameters that denote the association of agents to
roles. For instance, the bank’s action Spawn(OnlinePay(*,*,self)) spawns a new
instance of the session scheme OnlinePay in which the current bank agent, self,
plays the third role and the other two roles are left open for arbitrary agents. On
the other hand, the buyer’s action Join(OnlineSale(self,Seller)) says that the agent
is willing to join any existing OnlineSale session in which the other participant is
an instance of Seller, while Join(OnlinePay(self,sid,*)) says that the agent wants
to join an OnlinePay session with a specific seller agent sid in the second role,
but without any constraint on the bank playing the third role.

3 Session Systems

A session system has a finite set of agents identified by names. Each agent
has a finite data store and a finite repository of links to other agents. Agents
operate at two levels. Individually, an agent executes a sequence of commands
that determine its interactions with the other agents. Collectively, interactions
are grouped into sessions. Within sessions, sets of agents perform synchronized
actions, updating their respective data stores and link repositories.
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An agent can spawn sessions from predefined session schemes or join existing
sessions. It can also kill sessions and quit them. Each agent has a set of local
variables—the state of an agent is given by the current values of these variables.

Session schemes provide templates for interaction patterns involving an ab-
stract set of roles. A session is an instance of such a scheme in which concrete
agents are associated with the abstract roles. A session progresses through the
execution of synchronized actions involving subsets of the participating agents.
These actions are enabled through guards that depend on the identities and
states of the participating agents.

There may be multiple instances of a given session scheme running at a given
time. Agents cannot “name” or “address” individual sessions. However, agents
can supply constraints when creating or joining sessions to filter out sessions from
the collection of active sessions. Agents can join existing sessions synchronously
or asynchronously. Agents that join a session synchronously are normally released
just before the session dies.

Each session has a set of role variables that are used to describe the current
mapping of abstract roles to concrete agents as well as to record constraints on
the identity and type of agents that may join in the future to play roles that are
currently unassociated.

In addition to sessions and agents, our model presupposes a global scheduler
that manages sessions and serves requests for joining sessions. Agents can query
this scheduler for the presence of a session of some kind. Queries are answered
only if such session exists in the system.

3.1 Preliminaries

Let A denote a fixed, finite set of agents and B = {tt,ff} denote the set of
boolean values. We assume the existence of two distinguished values ⊥ and -,
whose interpretation will be explained later.

Each agent manipulates a set of local variables, organized as follows. There is a
fixed set X = XA�XB of variable names, where XA is the set of agent variables,
including the distinguished variable self , and variables in XB are boolean. A
valuation of X is a pair of maps V = (VA, VB) where VA : XA → A ∪ {⊥} and
VB : XB → B ∪ {⊥}. The variable self is a fixed read-only value: for agent a,
VA(self ) always evaluates to a.

Each agent has a local copy of the set X . For a ∈ A and x ∈ X , a.x denotes
agent a’s local copy of x. Though variables are local to agents, shared actions can
observe and update local variables of all participating agents. When referring
to variables and valuations of multiple agents simultaneously, we write Xa =
Xa

A � Xa
B and V a = (V a

A , V
a
B) to refer to the local variables and valuation of

agent a, respectively.
In addition, session schemes are provided with a finite set Y of role variables,

including a distinguished variable owner . Variables in Y are used to keep track
of agents joining a session. A valuation of Y is a map W : Y → A∪{⊥,-}. The
value - indicates that a role has been completed, so the corresponding agent is
released from the session. When W (y) is defined, we write y.x as an abbreviation
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for W (y).x, the local copy of variable x in agent W (y). In addition, we also equip
each session with a constraint map C : Y → 2A that specifies constraints on the
agents that can play each role. The set C(y) indicates the set of agents that is
compatible with the role y. We interpret C(y) = ∅ as an unconstrained role,
rather than as a role that is impossible to fulfil.

3.2 Session Schemes

A session scheme is a finite automaton with guarded transitions labelled by
shared actions. Formally, a session scheme over a set of role variables Y is a
tuple S = (N,n0, Σ, �, δ), where:

– N is a finite set of session nodes, with an initial node n0.
– Σ is a finite alphabet of actions that includes the special action Die that

prematurely kills a session.
– � : Σ × Y → {⊥,+,-} defines for each shared action σ ∈ Σ and role y ∈ Y

the participation of y in σ.

• If �(σ, y) = ⊥, y is not involved in σ: σ can execute even if W (y) = ⊥.
• If �(σ, y) 	= ⊥, y is involved in σ: we must have W (y) 	= ⊥ for σ to occur.
• If �(σ, y) = -, y terminates with action σ, and then agent W (y) is

released if it joined the session synchronously.

– δ ⊆ N ×G×Σ ×U ×N , is a transition relation between nodes, where G is
the set of guards, and U is the set of update functions.

A transition (n, g, σ, u, n′) means that a session can move from node n to node n′

when guard g holds with respect to W , the current valuations of Y and {V a}a∈A,
the current valuations of all the agents in the system. These valuations are then
updated as specified by u. The guard g and update u can only read and modify
values of variables for roles y such that �(σ, y) 	= ⊥. A guard g is a boolean
combination of assertions of the form y.x1 and y1 = y2.x2. The literal y.x1

is true if W (y) = a ∈ A and V a
B(x1) = tt. The literal y1 = y2.x2 is true if

W (y1) 	= -, W (y2) = a ∈ A and W (y1) = V a
A(x2). We lift this in the usual way

to define the truth of the guard g.

3.3 Sessions

A session is an instance of a session template with roles assigned to agents in A.
Not all roles need to be defined in order for a session to be active—an action σ
can be performed provided W (y) is defined for every role that takes part in σ.

The constraint map C controls which agents can join the session in as yet
undefined roles, as we shall see later.

We associate with each session a partial return map ρ from roles to states of
agents. If ρ(y) is defined, it means that the agent W (y) is blocked and waiting
for the session to end. Whenever W (y) terminates in this session, or the session
executes the action Die or it is killed by another agent, W (y) resumes in the
state ρ(y).
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3.4 Agents

The behaviour of an agent a is described by a tuple (Q,E,Δ, q0) where

– Q is the set of control states, with initial state q0.
– Δ ⊆ Q×G × E ×Q is the transition relation, where G is the set of guards

over Xa. For simplicity, we define a guard as any function that maps each
valuation V a = (V a

A , V
a
B) of a to either tt or ff.

– E is a set of labels defining the effect of the transition, as described below.

Variable Assignment. x := e, where x ∈ X and e is an expression over A ∪
B ∪ {⊥} ∪X that is compatible with the type of x.

Asynchronous Session Creation. ASpawn(s, l), where s is a session scheme,
and l is a list of constraints of the form y = x where y ∈ Y and x ∈ XA. The
variables self and owner should not appear in the constraints. ASpawn(s, l)
does not execute if V (x) = ⊥ for some variable x occurring in the constraints.
The new session is created with a valuationW such thatW (owner) = V (self )
and W (y) = ⊥ for every other y ∈ Y . We also define the constraint map for
the session as follows: V (x) ∈ C(y) if and only if the constraint y = x is in l.

Synchronous Session Creation. SSpawn(s, l), like asynchronous session cre-
ation, with the difference that the agent gives up control. This action sets
the return map ρ(owner) to the target state of the transition carrying the
spawn instruction to indicate where control returns when this agent’s role
terminates, when the session dies, or when the session is killed.

Asynchronous Join. AJoin(s, y, l), where the variable y is the role of session
scheme s that the process takes on joining the session and l specifies con-
straints of the form y′ = x′, with y′ ∈ Y and x′ ∈ XA. AJoin(s, y, l) does
not execute if V (x′) = ⊥ for any variable x′ occurring in the constraints.
Otherwise, it produces a pending join request (a, s, y, φ) where a = V (self ).
The map φ : Y → 2A serves to filter out sessions from the collection of
running sessions and is defined by V (x′) ∈ φ(y′) if and only if the constraint
y′ = x′ appears in l.

The join request AJoin(s, y, l) is granted with respect to a session of
type s with valuation W and constraint C if W (y) = ⊥ and V (self ) ∈
C(y) and also, for each y′, W (y′) ∈ φ(y′). Pending requests are dealt with
asynchonously: that is, control returns to the agent immediately, without
waiting for the join request to be granted.

Plain Join. PJoin(s, y, l) is like asynchronous join, except that this command
can be executed only if and when a session of type s meeting contraint l
exists. Thus, after the command, the agent has already a role in the joined
session and proceeds in the target state of the transition with the join in-
struction.

Synchronous Join. SJoin(s, y, l), like plain join, except that control returns
to the agent only after the session that it joins ends: that is, this agent’s role
terminates, the session dies or the session is killed. This action sets the return
map ρ(y) to the target state of the transition carrying the join instruction
to indicate where control returns.
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Query. Query(s, l), where list l specifies constraints of the form x = y for x ∈
XA and y ∈ Y (the variables self and owner may appear in these constraints).
Query(s, l) may execute even though V (x) = ⊥ for some variable x occurring
in the constraints. This command executes in an atomic step when some
session with scheme s and valuation W satisfies all constraints x = y: that
is, for every x ∈ XA, if V (x) 	= ⊥ then V (x) = W (y) and if V (x) = ⊥ then
W (y) /∈ {⊥,-}. If the query succeeds, for each constraint x = y, V (x) is
updated to W (y). In particular, if V (x) was earlier ⊥, x now acquires the
value W (y).

Kill. Kill , kills all sessions created by the agent V (self ). This has the same
effect as when these sessions execute the action Die.

Quit. Quit , agent V (self ) leaves all sessions that it has entered. This has no
effect other than removing this agent from all session environments.

A major difference between creating and joining a session is that the creator of
a session owns the session and can kill it, whereas an agent that has joined a
session can only quit, in which case the session stays active if some roles have
not yet terminated.

Joining a session asynchronously is like thread creation: the agent that makes
a join request does not have to wait for the completion of the activities resulting
from the firing of the join transition.

On the other hand, joining a session synchronously is like a remote proce-
dure call from the perspective of the joining agent since it loses control. From
the perspective of the joined session, no new incarnation of a session scheme
is produced. The calling agent recovers control when the session it has joined
terminates—the return state of the calling agent is kept track of by the joined
session in the return map ρ.

Let us now comment about plain joins, which are in between asynchronous and
synchronous joins. Like a synchronous join, a plain join PJoin(s, y, l′) cannot
be executed before there exists some session of the specified scheme s with role
y free. Like an asynchronous join, an agent that executes a plain join does not
have to wait for the completion of the activities resulting from the firing of the
join transition. Thus, for an agent a, using a transition PJoin(s, y, l′) amounts
to waiting for another agent a′ to spawn a new session, if needed, before a
moves to another state. With the three forms of joins, one can easily model
synchronization mechanisms, remote procedure calls, or threading mechanisms.

Finally, we comment on the difference between quit and kill. An agent that
Quits leaves all sessions it has entered—that is, it stops playing a role in each
of them, but does not otherwise affect the continuation of these sessions for
those agents still engaged in active roles. This is essential to model collaborative
frameworks in which the number of participants is not fixed in advance—for
example, consider chat sessions where participants can join and leave freely.
Conversely, Kill allows the owner of a session to close it unilaterally, hence
stopping the service (but without killing the participants . . . )—note that, to
ensure robustness, only the owner of a session can kill it.
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3.5 Scheduling

The effect of agents’ actions on sessions and session actions are handled by the
scheduler. We do not give details about how this scheduler is implemented—for
instance, it could be via a shared memory manager. We assume that the scheduler
keeps track of all active sessions and pending session requests. Serving a session
request just consists of finding a running session of type s whose valuation W
is compatible with the constraint φ of a session demand sd = (a, s, y, φ) and
assigning role y to agent a in this running session. We denote this by a specific
action labelled Serve.

4 Semantics of Session Systems

Session Systems and Configurations

Let A be a set of agents, X a set of variables, Y a set of role variables and S
a set of sessions defined over X and Y . The tuple (A,S, X, Y ) defines a session
system. A session configuration is a tuple (s, n,W,C, ρ), where s is a session
scheme name, n is a state of session scheme s, W is a valuation of Y , C is a
constraint on roles and ρ is a return map.

An agent configuration for an agent a ∈ A is a pair (q, V ) where q is a
state of the agent, and V is a valuation for variables in X . A session system
configuration is a triple (Ψ, Γ, P ), where Ψ associates a configuration to each
agent a ∈ A, Γ is a set of session configurations, and P is a set of pending
demands to join sessions. The following proposition ensures that configurations
can be represented as finitely indexed multisets, and encoded as vectors, or as
markings of a Petri net.

Proposition 1. Let A be a finite set of agents and S be a set of session schemes
over finite sets of variables X and Y . If A and S are defined over finite sets of
states QP and QS, respectively, then the set C of session systems configurations
that are definable over A,S, X, Y is isomorphic to Q

|A|
P × 2|XB|·|A|×A|XA|·|A|×

NK , where K = |S| · |QS | · |Y |2|A|+|QP |+2 + |A| · |S| · |Y ||A|+1

A session system moves from one configuration to another by performing an ac-
tion. The obvious actions are process moves from E (spawning a session, joining
a session, query, kill, quit) and session moves from Σ (shared actions, including
the special action Die). In addition, we have internal system moves that serve
requests to join a session. We say that a configuration χ′ is a successor of a
configuration χ via action σ ∈ E ∪Σ ∪ {Serve}, and write χ σ−→ χ′, if and only
if starting from χ, the effect of applying σ produces configuration χ′.

Reset Post-G Nets
A (labelled) Petri net is a structure (P, T, λ,m0, F ) where P is a set of places,
T is a set of transitions, λ is a function that associates a label to each transition
of T , m0 : p → N associates a non-negative integer to each place of P , and
F : (P × T ) ∪ (T × P ) → N is a weighted flow relation. A marking m : P → N
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distributes tokens across the places. A transition t is enabled at m if each place
p has at least F (p, t) tokens. When t fires, the marking m is transformed to a
new marking m′ such that m′(p) = m(p) − F (p, t) + F (t, p) for every place p.

In a generalized self-modifying net (G-net), the flow relation is enhanced to
be of the form F : (P × T ) ∪ (T × P ) → N[P ]. In other words, the weights on
the edges between places and transitions are polynomials over the contents of
places in P . These polynomials are evaluated relative to the current marking to
determine whether a transition is enabled and compute the effect of firing it.

In Reset Post-G nets, the input polynomials F (p, t) are restricted so that
F (p, t) = {p} or F (p, t) ∈ N. The term reset refers to the fact that every edge
from a place p to a transition t weighted by a marking-dependent polynomial
is in fact weighted by the monomial p, which corresponds to resetting place p.
Reset Post-G nets are a very expressive class of Petri Nets, but yet several key
properties of nets such as termination and coverability remain decidable for this
class [6]. In the rest of the paper, we will only consider Reset Post-G nets such
that F (p, t) = p or F (p, t) ∈ {0, 1}, and such that F (t, p) ∈ {0, 1} or F (t, p) is a
sum of places p′ such that F (p′, t) = p′.

Claim. Let (A,S, X, Y ) be a session system starting in a configuration χ0. Then
the transition system (C, χ0,−→) is the marking graph of a Reset Post-G net.

We establish this claim by building a Reset Post-G net whose marking graph is
isomorphic to the set of configurations of the session system, and whose tran-
sitions encode moves from one configuration to another. From (A,S, X, Y ), we
build the following subsets of places:

– PQ,A = {pq,a, . . .} associates a place to each pair (q, a) where a ∈ A is an
agent and q is a state of a. Since the set of states QP of all agents is finite,
the set PQ,A is finite as well.

– PV,A = {pv,a, . . .} associates a place to each pair (v, a) where a ∈ A is an
agent and v is a valuation of X . Since X is finite and the variables in X
range over finite domains, PV,A is a finite set.

– PSC = {psc, . . .} is a set of places indexed by session configurations—that
is, there exists a place psc for every tuple sc = (s, n,W,C, ρ) that describes
a valid session configuration.

– Finally, PD = {psd, . . .} is a set of places indexed by join requests—that is,
we have one place for every tuple sd = (a, s, y, φ) representing a join action.

We can now define the transitions of the Reset Post-G net. As discussed earlier,
each action that transforms a session configuration is either a process move, or
a session move, or an internal system move that serves a pending join request.
Each move of the session system is represented by a finite set of net transitions.
This representation is not a bijection, because, for instance, a move of an agent
can be enabled in more than one valuation and in more than one environment.

For each agent a = (Q,E,Δ, q0), and transition t = (q, g, e, q′) in Δ, we build
net transitions and flow relations as follows:
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– When t = (q, g, e, q′) is a variable assignment, for every valuation v satisfying
the guard g, we construct a transition te,v such that λ(te,v) = e, with preset
{pv,a, pq,a}, postset {pv′,a, pq′,a}, and flow relations F (pv,a, t) = F (pq,a, t) =
F (t, pv′,a) = F (t, pq′,a) = 1, where v′ = e(v) is the result of applying e to v.

– When t = (q, g, e, q′) with e = ASpawn(s, l), we construct one transition tv,e

for each valuation v that satisfies the guard g, with preset {pv,a, pq,a}, postset
{pv,a, pq′,a, psc}, letting sc = (s, n0,W,C, ρ∅) where n0 is the initial state of
s, W (owner) = a and W (y) = ⊥ for all other roles y, C is generated by l
and ρ∅ is the empty map. As for assignment transitions, we let F (pv,a, t) =
F (pq,a, t) = F (t, pv,a) = F (t, pq′,a) = F (t, psc) = 1.

– When t = (q, g, e, q′) with e = SSpawn(s, l), we construct one transition tv,e

for each valuation v that satisfies the guard g, with preset {pv,a, pq,a} and
postset {pv,a, psc}, letting sc = (s, n0,W,C, ρ) where n0 is the initial state of
s, W (owner) = a and W (y) = ⊥ for all other roles y, C is generated by l and
ρ(owner) = q′. We also let F (pv,a, t) = F (pq,a, t) = F (t, pv,a) = F (t, psc) =
1. Note that with synchronous session creation, agent a loses control, and
will resume in state q′ after its role in s terminates. This information is kept
in the return map ρ in sc.

– When t = (q, g, e, q′) with e = AJoin(s, y, l), we construct a transition tv,e

labelled by e for each valuation v that satisfies the guard g, with preset
{pv,a, pq,a} and postset {pv,a, pq′,a, psd}, where sd = (a, s, y, φ) with map φ
derived from the constraints in l. The flow relation is given by F (pv,a, t) =
F (pq,a, t) = F (t, pv,a) = F (t, pq′,a) = F (t, psd) = 1.

– When t = (q, g, e, q′) with e = SJoin(s, y, l′), we construct a transition tv,e,sc

labelled by e for every valuation v that satisfies the guard g and for ev-
ery session configuration sc = (s, n,W,C, ρ) meeting constraint l′ such that
W (y) = ⊥ and a ∈ C(y). The preset of each transition is {pv,a, pq,a, psc}
and the postset is {pv,a, psc′}, where sc′ = (s, n,W ′, C′, ρ′) is an updated
session configuration in which W ′(y) = a, ρ′(y) = q′, and C′ is obtained by
adding to C the constraints in l′. The flow relation is given by F (pv,a, t) =
F (pq,a, t) = F (psc, t) = F (t, pv,a) = F (t, psc′) = 1.

– When t = (q, g, e, q′) with e = PJoin(s, y, l′), we construct a transition
tv,e,sc labelled by e for every valuation v satisfying the guard g and for
every session configuration sc = (s, n,W,C, ρ) meeting constraint l′ such that
W (y) = ⊥ and a ∈ C(y). The preset of each transition is {pv,a, pq,a, psc} and
the postset is {pv,a, pq′,a, psc′}, where sc′ = (s, n,W ′, C′, ρ) is an updated
session configuration in which W ′(y) = a and C′ is obtained by adding
to C the constraints in l′. Unlike with synchronous join, the return map
ρ is unchanged in sc′ and control is returned via the output place pq′,a
to the agent executing the join instruction. The flow relation is given by
F (pv,a, t) = F (pq,a, t) = F (psc, t) = F (t, pv,a) = F (t, pq′,a) = F (t, psc′) = 1.

– When t = (q, g, e, q′) with e = Query(s, l), we construct a transition tv,e,v′

labelled by e for every valuation v satisfying the guard g, for every session
configuration sc = (s, n,W,C, ρ) meeting constraint l, and for every valua-
tion v′ computed from v by adding the bindings of agents induced by the
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constraints in l and the bindings of agents in W . The preset of each transi-
tion is {pv,a, pq,a, psc} and the postset is {pv′,a, pq′,a, psc}. The flow relation
is given by F (pv,a, t) = F (pq,a, t) = F (psc, t) = F (t, pv′,a) = F (t, pq′,a) =
F (t, psc) = 1. Note that the transition does not consume any token from the
place psc—it only tests the presence of a token.

– When t = (q, g, e, q′) with e = Kill , we construct a transition tv,e for every
valuation v satisfying the guard g. Each of these transitions has as preset
{pv,a, pq,a} ∪ {psci | sci = (s, n,W,C, ρ) ∧W (owner) = a}. The postset of
the transition is the union of {pv,a, pq′,a} and the set of all places pqj ,bj such
that bj is a process which has issued a Synhronous Join with return state qj .
The flow relation is defined as follows: F (pv,a, t) = F (pq,a, t) = F (t, pv,a) =
F (t, pq′,a) = 1, F (psci , t) = psci for every session configuration sci owned by
agent a (the transition consumes all sessions created by a), and F (t, pqj ,bj ) =∑

{psc | sc = (s′, n′,W ′, C′, ρ′) ∧ W ′(y) = bj ∧ ρ′(y) = qj}. Note that an
agent bj can be blocked in at most one session, so F (t, pqj ,bj ) ≤ 1 and control
is returned to agent bj only when it was blocked.

– When t = (q, g, e, q′) with e = Quit , we construct a transition tv,e for ev-
ery valuation v satisfying the guard g. Each of these transitions has preset
{pv,a, pq,a} ∪ NT , where NT = {psci | sci = (s, n,W,C, ρ) ∧ (∃y)(W (y) =
a)}. The postset of the transition is {pv,a, pq′,a}∪NT ′, where NT ′ is the set
of places psc′i representing session configurations sc′i = (s, n,W ′, C, ρ) such
that, for some sci = (s, n,W,C, ρ) in NT , W (y) = a ⇒ W ′(y) = - and
W ′(y) = W (y) otherwise for all y, and W ′(y) 	= - for some y. The flow rela-
tion is defined as follows: F (pv,a, t) = F (pq,a, t) = F (t, pv,a) = F (t, pq′,a) =
1, F (psci , t) = psci for every session configuration sci appearing in NT (the
transition consumes all sessions involving a), and F (t, psc′i) = psci for every
session configuration sc′i in NT ′. This way, session configurations involving
a, but still having other non-terminated roles, are transformed into session
configurations without agent a.

The second part of the translation concerns the internal progress of sessions. We
will distinguish two kinds of transitions, depending on whether the translated
action brings the session to termination or not.

We consider first the non terminating actions σ 	= Die. Let sc = (s, n,W,C, ρ)
be a session configuration, and let (n, g, σ, u, n′) ∈ δ with guard g and update
u. Executing such an action in sc is conditioned to the satisfaction of guard g
w.r.t. W and transforms sc into a configuration sc′ = (s, n′,W ′, C′, ρ), where
W ′(y) = - if �(σ, y) = - and W ′(y) = W (y) otherwise. Then for every valuation
v that satisfies g, we construct a transistion tsc,v with preset {pv,a, psc} and
postset {psc′ , pv′,a} ∪ Pρ,σ, where Pρ,σ = {pq′′,a | ∃y,W (y) 	= W ′(y) ∧ ρ(y) =
q′′∧W (y) = a} and v′ = u(v) is the result of applying u to v. In other words, all
agents that have joined the session synchronously and that leave the session by
action σ resume their activity in the control state q′′ specified at join time. The
flow relation is F (pv,a, tsc,v) = F (psc, tsc,v) = F (tsc,v, psc′) = F (tsc,v, pv′,a) = 1.
Moreover, for every place pq′′,a in Pρ,σ, we let F (tsc,v, pq′′,a) = 1.
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We now consider the terminating action Die. For every session configuration
sc = (s, n,W,C, ρ), and for every (n, g, σ, u, n′) ∈ δ such that σ = Die and guard
g is satisfied w.r.t. W , we construt a transition tsc,die labeled by action Die with
the preset psc and the postset Pρ = {pq′′,a | ∃y, ρ(y) = q′′∧W (y) = a}. The flow
relation is F (psc, tsc,die) = 1, and F (tsc,die, p) = 1 for every p in Pρ.

Finally, we have to translate into net transitions the system moves that serve
pending join requests. Serving a request just consists of removing the request
from the set of pending requests and modifying the configuration of a session
compatible with this request in the set of session configurations.

For every Asynchronous Join pending demand sd = (a, s, y, φ) and for every
session configuration sc = (s, n,W,C, ρ) compatible with this request, we con-
struct a transition tsc,sd labeled with the internal action Serve. The preset of
tsc,sd is {psc, psd} and its postset is {psc′}, where sc′ = (s, n,W ′, C′, ρ) is ob-
tained from sc by setting W ′(y) = a (and W ′(y′) = W (y′) for every y′ 	= y) and
letting C′ be C augmented by the constraints in φ. The flow relation is given by
F (psc, tsc,sd) = F (psd, tsc,sd) = F (tsc,sd, psc′) = 1.

Note that for every transition of the global Petri net obtained in the end, the
weight of the flow relation from a place p to a transition t is either 0 or 1 or
F (p, t) = p, whereas the weight of the flow relation from a transition t to a place
p is either 0 or 1 or a polynomial over the contents of a set of places. Hence, the
semantic model for session systems corresponds to Reset Post-G nets.

Definition 1. Let χ = (Ψ, Γ, P ) and χ′ = (Ψ ′, Γ ′, P ′) be two configurations of a
session system. Configuration χ′ is reachable from χ if and only if there exists a
sequence of moves starting from χ that leads to configuration χ′. Configuration
χ′ covers χ, denoted by χ � χ′, iff Ψ ′ = Ψ , and for every session configuration sc
and session demand sd we have Γ [sc] ≤ Γ ′[sc] and P [sd] ≤ P ′[sd]. Configuration
χ′ is coverable from χ iff there exists a sequence of moves starting from χ and
leading to a configuration χ′′ such that χ′ � χ′′. A session system is bounded
iff there exists some constant B such that Γ [sc] ≤ B and P [sd] ≤ B for every
sc and sd in any reachable configuration χ = (Ψ, Γ, P ).

Proposition 2. Given a session system (A,S, X, Y ) with initial configuration
χ0 and a configuration χ ∈ C, one can decide whether one can reach a marking χ′

from χ0 that covers χ. Termination—that is, the absence of infinite runs starting
from χ0— is also decidable.

Proof: This proposition stems directly from the properties of Reset Post-G Nets,
for which coverability of a given configuration and termination are decidable. !"
Coverability is an important issue for the kind of services we want to model. To
illustrate this, let us return to the example of Section 2, where we wanted to
check that an agent a does not participate in two payments at the same time.
This property may be expressed as follows: “There is no reachable configuration
of the system in which agent a participates as a customer in at least two purchase
sessions s, s′ whose states are included in {n3, n5}”. This property reduces to a
coverability check in the Reset Post-G net modelling the session system.
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Proposition 3. Given a session system (A,S, X, Y ) with initial configuration
χ0, one can decide neither upon the reachability of a given configuration χ ∈ C
from χ0 nor on the boundedness of the session system.
Proof Sketch: One can simulate Reset Petri Nets with session systems. Now,
boundedness and exact reachability are undecidable for Reset Petri Nets. !"

5 Conclusion

We have proposed a session-based formalism for modeling distributed orches-
trations. We voluntarily limited the expressiveness of the language to ensure
decidability of some important practical properties. Indeed, many properties of
session systems, such as the possibility for an agent or for a session to perform a
given sequence of transitions, may be expressed as a coverability problem on Re-
set Post-G nets. As deadlock and exact reachability are undecidable in general,
a natural question is how to restrict the model to enhance decidability.

A second issue to consider is the implementation of session systems. The
natural implementation is a distributed architecture in which agents use only
their local variables. However, agents share sessions that have to be managed
globally, along with requests and queries. This means, in particular, that an
implementation of session systems has to maintain a kind of shared memory
that can be queried by agents. This can be costly, and a challenge is to provide
implementations with the minimal synchronization.

A third issue is to consider session systems as descriptions of security pro-
tocols, and to see whether an environment can break security through legal
use of the protocol. For instance, the well known session replay attack of the
Needham-Schroeder protocol can apparently be modelled by a simple session
type system, and the failure of the protocol (the existence of a session involving
unexpected pairs of users) can be reduced to a coverability issue. Whether such
an approach can be extended to more complex protocols for detecting unknown
security failures is an open question.
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Abstract. Modal transition systems (MTS) is a well-studied specifi-
cation formalism of reactive systems supporting a step-wise refinement
methodology. Despite its many advantages, the formalism as well as its
currently known extensions are incapable of expressing some practically
needed aspects in the refinement process like exclusive, conditional and
persistent choices. We introduce a new model called parametric modal
transition systems (PMTS) together with a general modal refinement
notion that overcome many of the limitations and we investigate the
computational complexity of modal refinement checking.

1 Introduction

The specification formalisms of Modal Transition Systems (MTS) [11,1] grew
out of a series of attempts to achieve a flexible and easy-to-use compositional
development methodology for reactive systems. In fact the formalism of MTS
may be seen as a fragment of a temporal logic [5], while having a behavioural
semantics allowing for an easy composition with respect to process constructs.

In short, MTS are labelled transition systems equipped with two types of
transitions: must transitions which are mandatory for any implementation, and
may transitions which are optional for an implementation. Refinement of an
MTS now essentially consists of iteratively resolving the unsettled status of may
transitions: either by removing them or by turning them into must transitions.

It is well admitted (see e.g. [15]) that MTS and their extensions like dis-
junctive MTS (DMTS) [12], 1-selecting MTS (1MTS) [6] and transition systems
with obligations (OTS) [4] provide strong support for a specification formalism
allowing for step-wise refinement process. Moreover, the MTS formalisms have
applications in other contexts, which include verification of product lines [8,10],
interface theories [17,15] and modal abstractions in program analysis [7,9,13].

Unfortunately, all of these formalisms lack the capability to express some intu-
itive specification requirements like exclusive, conditional and persistent choices.
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In this paper we extend considerably the expressiveness of MTS and its variants
so that it can model arbitrary Boolean conditions on transitions and also allows
to instantiate persistent transitions. Our model, called parametric modal transi-
tion systems (PMTS), is equipped with a finite set of parameters that are fixed
prior to the instantiation of the transitions in the specification. The generalized
notion of modal refinement is designed to handle the parametric extension and
it specializes to the well-studied modal refinements on all the subclasses of our
model like MTS, disjunctive MTS and MTS with obligations.

To the best of our knowledge, this is the first sound attempt to introduce persis-
tence into a specification formalism based on modal transition systems. The most
related work is by Fecher and Schmidt on 1-selecting MTS [6] where the authors
allow to model exclusive-or and briefly mention the desire to extend the formalism
with persistence. However, as in detail explained in [3], their definition does not
capture the notion of persistence. Our formalism is in several aspects semantically
more general and handles persistence in a complete and uniform manner.

The main technical contribution, apart from the formalism itself, is a compre-
hensive complexity characterization of modal refinement checking on all of the
practically relevant subclasses of PMTS. We show that the complexity ranges
from P-completeness to Πp

4-completeness, depending on the requested generality
of the PMTS specifications on the left-hand and right-hand sides.

2 Parametric Modal Transition Systems

In this section we present the formalism of parametric modal transition systems
(PMTS), starting with a motivating example and continuing with the formal
definitions, followed by the general notion of modal refinement.

2.1 Motivation

Modal transition systems and their extensions described in the literature are
lacking the capability to express several specification requirements like exclusive,
conditional and persistent choices. We shall now discuss these limitations on an
example as a motivation for the introduction of parametric MTS formalism with
general Boolean conditions in specification requirements.

Consider a simple specification of a traffic light controller that can be at any
moment in one of the four predefined states: red , green, yellow or yellowRed .
The requirements of the specification are: when green is on the traffic light may
either change to red or yellow and if it turned yellow it must go to red afterward;
when red is on it may either turn to green or yellowRed , and if it turns yellowRed
(as it is the case in some countries) it must go to green afterwords.

Figure 1a shows an obvious MTS specification (defined formally later on) of
the proposed specification. The transitions in the standard MTS formalism are
either of type may (optional transitions depicted as dashed lines) or must (re-
quired transitions depicted as solid lines). In Figure 1c, Figure 1d and Figure 1e
we present three different implementations of the MTS specification where there
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Φ(red) = (go, green) ⊕ (ready, yellowRed)

(f) Specification S3
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Parameters: {reqYfromR, reqYfromG}
Obligation function:
Φ(green) = ((stop, red) ⊕ (ready , yellow))

∧(reqYfromG ⇔ (ready, yellow))
Φ(red) = ((go, green) ⊕ (ready, yellowRed))

∧(reqYfromR ⇔ (ready, yellowRed))

(g) PMTS specification S4

Fig. 1. Specifications and implementations of a traffic light controller

are no more optional transitions. The implementation I1 does not implement
any may transition as it is a valid possibility to satisfy the specification S1. Of
course, in our concrete example, this means that the light is constantly green and
it is clearly an undesirable behaviour that cannot be, however, easily avoided.
The second implementation I2 on the other hand implements all may transitions,
again a legal implementation in the MTS methodology but not a desirable im-
plementation of a traffic light as the next action is not always deterministically
given. Finally, the implementation I3 of S1 illustrates the third problem with
the MTS specifications, namely that the choices made in each turn are not per-
sistent and the implementation alternates between entering yellow or not. None
of these problems can be avoided when using the MTS formalism.
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A more expressive formalism of disjunctive modal transition systems (DMTS)
can overcome some of the above mentioned problems. A possible DMTS speci-
fication S2 is depicted in Figure 1b. Here the ready and stop transitions, as well
as ready and go ones, are disjunctive, meaning that it is still optional which
one is implemented but at least one of them must be present. Now the system
I1 in Figure 1c is not a valid implementation of S2 any more. Nevertheless, the
undesirable implementations I2 and I3 are still possible and the modelling power
of DMTS is insufficient to eliminate them.

Inspired by the recent notion of transition systems with obligations [4], we can
model the traffic light using specification as a transition system with arbitrary1

obligation formulae. These formulae are Boolean propositions over the outgo-
ing transitions from each state, whose satisfying assignments yield the allowed
combinations of outgoing transitions. A possible specification called S3 is given
in Figure 1f and it uses the operation of exclusive-or. We will follow an agree-
ment that whenever the obligation function for some node is not listed in the
system description then it is implicitly understood as requiring all the available
outgoing transitions to be be present. Due to the use of exclusive-or in the obli-
gation function, the transition systems I1 and I2 are not valid implementation
any more. Nevertheless, the implementation I3 in Figure 1e cannot be avoided
in this formalism either.

Finally, the problem with the alternating implementation I3 is that we can-
not enforce in any of the above mentioned formalisms a uniform (persistent)
implementation of the same transitions in all its states. In order to overcome
this problem, we propose the so-called parametric MTS where we can, more-
over, choose persistently whether the transition to yellow is present or not via
the use of parameters. The PMTS specification with two parameters reqYfromR
and reqYfromG is shown in Figure 1g. Fixing a priori the (Boolean) values of the
parameters makes the choices permanent in the whole implementation, hence we
eliminate also the last problematic implementation I3.

2.2 Definition of Parametric Modal Transition System

We shall now formally capture the intuition behind parametric MTS introduced
above. First, we recall the standard propositional logic.

A Boolean formula over a setX of atomic propositions is given by the following
abstract syntax

ϕ ::= tt | x | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ

where x ranges over X . The set of all Boolean formulae over the set X is denoted
by B(X). Let ν ⊆ X be a truth assignment, i.e. a set of variables with value
true, then the satisfaction relation ν |= ϕ is given by ν |= tt, ν |= x iff x ∈ ν, and
the satisfaction of the remaining Boolean connectives is defined in the standard
way. We also use the standard derived operators like exclusive-or ϕ⊕ ψ = (ϕ ∧
¬ψ) ∨ (¬ϕ ∧ ψ), implication ϕ ⇒ ψ = ¬ϕ ∨ ψ and equivalence ϕ ⇔ ψ =
(¬ϕ ∨ ψ) ∧ (ϕ ∨ ¬ψ).

We can now proceed with the definition of parametric MTS.
1 In the transition systems with obligations only positive Boolean formulae are allowed.
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Definition 1. A parametric MTS (PMTS) over an action alphabet Σ is a tuple
(S, T, P,Φ) where S is a set of states, T ⊆ S×Σ×S is a transition relation, P is
a finite set of parameters, and Φ : S → B((Σ×S)∪P ) is an obligation function
over the atomic propositions containing outgoing transitions and parameters.
We implicitly assume that whenever (a, t) ∈ Φ(s) then (s, a, t) ∈ T . By T (s) =
{(a, t) | (s, a, t) ∈ T } we denote the set of all outgoing transitions of s.

We recall the agreement that whenever the obligation function for some node is
not listed in the system description then it is implicitly understood as Φ(s) =∧
T (s), with the empty conjunction being tt.
We call a PMTS positive if, for all s ∈ S, any negation occurring in Φ(s) is

applied only to a parameter. A PMTS is called parameter-free if P = ∅. We can
now instantiate the previously studied specification formalisms as subclasses of
PMTS.

Definition 2. A PMTS is called

– transition system with obligation (OTS) if it is parameter-free and positive,
– disjunctive modal transition system (DMTS) if it is an OTS and Φ(s) is in

the conjunctive normal form for all s ∈ S,
– modal transition system (MTS) if it is a DMTS and Φ(s) is a conjunction

of positive literals (transitions) for all s ∈ S, and
– implementation (or simply a labelled transition system) if it is an MTS and

Φ(s) =
∧
T (s) for all s ∈ S.

Note that positive PMTS, despite the absence of a general negation and the
impossibility to define for example exclusive-or, can still express useful require-
ments like Φ(s) = p ⇒ (a, t) ∧ ¬p ⇒ (b, u) requiring in a state s a conditional
presence of certain transitions. Even more interestingly, we can enforce binding
of actions in different states, thus ensuring certain functionality. Take a simple
two state-example: Φ(s) = p ⇒ (request , t) and Φ(t) = p ⇒ (response, s). We
shall further study OTS with formulae in the disjunctive normal form that are
dual to DMTS and whose complexity of parallel composition is lower [4] while
still being as expressive as DMTS.

2.3 Modal Refinement

A fundamental advantage of MTS-based formalisms is the presence of modal
refinement that allows for a step-wise system design (see e.g. [1]). We shall
now provide such a refinement notion for our general PMTS model so that it
will specialize to the well-studied refinement notions on its subclasses. In the
definition, the parameters are fixed first (persistence) followed by all valid choices
modulo the fixed parameters that now behave as constants.

First we set the following notation. Let (S, T, P,Φ) be a PMTS and ν ⊆ P be a
truth assignment. For s ∈ S, we denote by Tranν(s) = {E ⊆ T (s) | E∪ν |= Φ(s)}
the set of all admissible sets of transitions from s under the fixed truth values
of the parameters. We can now define the notion of modal refinement between
PMTS.
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Fig. 2. Example of modal refinement

Definition 3 (Modal Refinement). Let (S1, T1, P1,Φ1) and (S2, T2, P2,Φ2)
be two PMTSs. A binary relation R ⊆ S1 ×S2 is a modal refinement if for each
μ ⊆ P1 there exists ν ⊆ P2 such that for every (s, t) ∈ R holds

∀M ∈ Tranμ(s) : ∃N ∈ Tranν(t) : ∀(a, s′) ∈ M : ∃(a, t′) ∈ N : (s′, t′) ∈ R ∧
∀(a, t′) ∈ N : ∃(a, s′) ∈ M : (s′, t′) ∈ R .

We say that s modally refines t, denoted by s ≤m t, if there exists a modal
refinement R such that (s, t) ∈ R.

Example 4. Consider the rightmost PMTS in Figure 2. It has two parameters
reqYfromG and reqYfromR whose values can be set independently and it can
be refined by the system in the middle of the figure having only one parameter
reqY . This single parameter simply binds the two original parameters to the same
value. The PMTS in the middle can be further refined into the implementations
where either yellow is always used in both cases, or never at all. Notice that there
are in principle infinitely many implementations of the system in the middle,
however, they are all bisimilar to either of the two implementations depicted in
the left of Figure 2.

In the next section, we shall investigate the complexity of positive subclasses of
PMTS. For this reason we prove the following lemma showing how the definition
of modal refinement can be simplified in this particular case.

We shall first realize that in positive PMTS and for any truth assignment ν,
Tranν(s) is upward closed, meaning that if M ∈ Tranν(s) and M ⊆ M ′ ⊆ T (s)
then M ′ ∈ Tranν(s).

Lemma 5. Consider Definition 3 where the right-hand side PMTS is positive.
Now the condition in Definition 3 can be equivalently rewritten as a conjunction
of conditions (1) and (2)
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∀M ∈ Tranμ(s) : ∀(a, s′) ∈ M : ∃(a, t′) ∈ T (t) : (s′, t′) ∈ R (1)
∀M ∈ Tranμ(s) : matcht(M) ∈ Tranν(t) (2)

where matcht(M) denotes the set {(a, t′) ∈ T (t) | ∃(a, s′) ∈ M : (s′, t′) ∈ R}. If
the left-hand side PMTS is moreover positive too, Condition (1) is equivalent to

∀(a, s′) ∈ T (s) : ∃(a, t′) ∈ T (t) : (s′, t′) ∈ R . (3)

Proof. We shall first argue that the condition of modal refinement is equivalent
to the conjunction of Conditions (4) and (5).

∀M ∈ Tranμ(s) : ∃N ∈ Tranν(t) : ∀(a, s′) ∈ M : ∃(a, t′) ∈ N : (s′, t′) ∈ R (4)
∀M ∈ Tranμ(s) : ∃N ∈ Tranν(t) : ∀(a, t′) ∈ N : ∃(a, s′) ∈ M : (s′, t′) ∈ R (5)

Let μ, ν, R, s and t be fixed. Definition 3 trivially implies both Conditions (4)
and (5). We now prove that (4) and (5) imply the condition in Definition 3.

Let M ∈ Tranμ(s) be arbitrary. There is some N1 ∈ Tranν(t) satisfying (4)
and some N2 ∈ Tranν(t) satisfying (5). Let now N ′

1 = {(a, t′) ∈ N1 | ∃(a, s′) ∈
M : (s′, t′) ∈ R}. Consider N = N ′

1 ∪N2. Clearly, as Tranν(t) is upward closed,
N ∈ Tranν(t). Moreover, due to Condition (4) we have some (a, t′) ∈ N1 such
that (s′, t′) ∈ R. Clearly, (a, t′) ∈ N ′

1 and thus also in N .
Now let (a, t′) ∈ N be arbitrary. If (a, t′) ∈ N2, due to Condition (5) we have

some (a, s′) ∈ M such that (s′, t′) ∈ R. If (a, t′) 	∈ N2 then (a, t′) ∈ N ′
1. The

existence of (a, s′) ∈ M such that (s′, t′) ∈ R is then guaranteed by the definition
of N ′

1.
Let us now proceed with proving the claims of the lemma. Condition (4)

is trivially equivalent to (1) since Tranν(t) is upward closed. Condition (5) is
equivalent to (2). Indeed, (2) clearly implies (5) and we show that also (5) implies
(2). Let M be arbitrary. We then have some N satisfying (5). Clearly, N ⊆
matcht(M). Since Tranν(t) is upward closed, N ∈ Tranν(t) implies matcht(M) ∈
Tranν(t). Due to the upward closeness of both Tranμ(s) and Tranν(t) in the case
of a positive left-hand side, the equivalence of (1) and (3) follows. !"

Theorem 6. Modal refinement as defined on PMTS coincides with the standard
modal refinement notions on MTS, DMTS and OTS. On implementations it
coincides with bisimulation.

Proof. The fact that Definition 3 coincides with modal refinement on OTS as
defined in [4] is a straightforward corollary of Lemma 5 and its proof. Indeed, the
two conditions given in [4] are exactly conditions (3) and (5). As the definition of
modal refinement on OTS coincides with modal refinement on DMTS (as shown
in [4]) and thus also on MTS, the proof is done.

However, for the reader’s convenience, we present a direct proof that Defini-
tion 3 coincides with modal refinement on MTS. Assume a parameter-free PMTS
(S, T, P,Φ) where Φ(s) is a conjunction of transitions for all s ∈ S, in other words
it is a standard MTS where the must transitions are listed in the conjunction
and the may transitions are simply present in the underlying transition system
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Table 1. Complexity of modal refinement checking of parameter-free systems

Boolean Positive pCNF pDNF MTS

Boolean Πp
2-complete coNP-complete

∈ coNP
coNP-complete

∈ coNP
P-hard P-hard

Positive Πp
2-complete coNP-complete P-complete coNP-complete P-complete

pCNF Πp
2-complete coNP-complete P-complete coNP-complete P-complete

pDNF Πp
2-complete P-complete P-complete P-complete P-complete

MTS Πp
2-complete P-complete P-complete P-complete P-complete

Impl NP-complete P-complete P-complete P-complete P-complete

but not a part of the conjunction. Observe that every transition (s, a, t) ∈ T
is contained in some M ∈ Tran∅(s). Further, each must transition (s, a, t) ∈ T
is contained in all M ∈ Tran∅(s). Therefore, the first conjunct in Definition 3
requires that for all may transition from s there be a corresponding one from
t with the successors in the refinement relation. Similarly, the second conjunct
now requires that for all must transitions from t there be a corresponding must
transition from s. This is exactly the standard notion of modal refinement as
introduced in [11]. !"

3 Complexity of Modal Refinement Checking

We shall now investigate the complexity of refinement checking on PMTS and its
relevant subclasses. Without explicitly mentioning it, we assume that all consid-
ered PMTS are now finite and the decision problems are hence well defined. The
complexity bounds include classes from the polynomial hierarchy (see e.g. [14])
where for example Σp

0 = Πp
0 = P, Πp

1 = coNP and Σp
1 = NP.

3.1 Parameter-Free Systems

Since even the parameter-free systems have interesting expressive power and the
complexity of refinement on OTS has not been studied before, we first focus on
parameter-free systems. Moreover, the results of this subsection are then applied
to parametric systems in the next subsection. The results are summarized in
Table 1. The rows in the table correspond to the restrictions on the left-hand
side PMTS while the columns correspond to the restrictions on the right-hand
side PMTS. Boolean denotes the general system with arbitrary negation. Positive
denotes the positive systems, in this case exactly OTS. We use pCNF and pDNF
to denote positive systems with formulae in conjunctive and disjunctive normal
forms, respectively. In this case, pCNF coincides with DMTS. The special case of
satisfaction relation, where the refining system is an implementation is denoted
by Impl. We do not include Impl to the columns as it makes sense that an
implementation is refined only to an implementation and here modal refinement
corresponds to bisimilarity that is P-complete [2] (see also [16]). The P-hardness
is hence the obvious lower bound for all the problems mentioned in the table.

We start with the simplest NP-completeness result.
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Proposition 7. Modal refinement between an implementation and a parameter-
free PMTS is NP-complete.

Proof. The containment part is straightforward. First we guess the relation R.
As s is an implementation then the set Tran∅(s) is a singleton. We thus only
need to further guess N ∈ Tranν(t) and then in polynomial time verify the two
conjuncts in Definition 3.

The hardness part is by a simple reduction from SAT. Let ϕ(x1, . . . , xn) be an
given Boolean formula (instance of SAT). We construct two PMTSs (S, T, P,Φ)
and (S′, T ′, P ′,Φ′) such that (i) S = {s, s′}, T = (s, a, s′), P = ∅, Φ(s) = (a, s′)
and Φ(s′) = tt and (ii) S′ = {t, t1, . . . , tn}, T = {(t, a, ti) | 1 ≤ i ≤ n.}, P ′ = ∅,
Φ(t) = ϕ[(a, ti)/xi] and Φ(ti) = tt for all i, 1 ≤ i ≤ n. Clearly, ϕ is satisfiable if
and only if s ≤m t. !"

Next we show that modal refinement is Πp
2-complete. The following lemma in-

troduces a gadget used also later on in other hardness results. We will refer to
it as the ∗-construction.

Proposition 8. Modal refinement between two parameter-free PMTS is Πp
2-hard

even if the left-hand side is an MTS.

Proof. The proof is by polynomial time reduction from the validity of the quan-
tified Boolean formula ψ ≡ ∀x1 . . .∀xn∃y1 . . . ∃ym : ϕ(x1, . . . , xn, y1, . . . , ym) to
the refinement checking problem s ≤m t where s and t are given as follows.

s

s′

· · ·x1 x2 xn ∗

Φ(s) = (∗, s′)

t

t′ t1 t2 tm

· · ·

· · ·

x1 x2 xn ∗ ∗ ∗ ∗

Φ(t) = ϕ[(xi, t
′)/xi, (∗, ti)/yi]

Assume that ψ is true. Let M ∈ Tran∅(s) (clearly (∗, s′) ∈ M) and we want
to argue that there is N ∈ Tran∅(t) with (∗, t′) ∈ N such that for all (xi, s

′) ∈ M
there is (xi, t

′) ∈ N (clearly the states s′, t′ and ti are in modal refinement) and
for all (xi, t

′) ∈ N there is (xi, s
′) ∈ M . Such an N can be found by simply

including (xi, t
′) whenever (xi, s

′) ∈ M and by adding also (∗, t′) into N . As ψ
is true, we include into N also all (∗, ti) whenever yi is set to true in ψ. Hence
we get s ≤m t.

On the other hand if ψ is false then we pick M ∈ Tran∅(s) such that M
corresponds to the values of xi’s such that there are no values of y1, . . . , ym that
make ψ true. This means that from t there will be no transitions as Tran∅(t) = ∅
assuming that (xi, t

′) have to be set to true whenever (xi, s
′) ∈ M , otherwise

the refinement between s and t will fail. However, now (∗, s′) ∈ M cannot be
matched from t and hence s 	≤m t. !"

Proposition 9. Modal refinement between two parameter-free PMTS is in Πp
2 .
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Proof. The containment follows directly from Definition 3 (note that the pa-
rameters are empty) and the fact that the last conjunction in Definition 3 is
polynomially verifiable once the sets M and N were fixed. The relation R could
be in principle guessed before it is verified, however, this would increase the
complexity bound to Σp

3 . Instead, we will initially include all pairs (polynomi-
ally many) into R and for each pair ask whether for every M there is N such
that the two conjuncts are satisfied. If it fails, we remove the pair and continue
until we reach (after polynomially many steps) the greatest fixed point. The
complexity in this way remains in Πp

2 . We shall use this standard method also
in further proofs and refer to it as a co-inductive computation of R. !"

Positive Right-Hand Side. We have now solved all the cases where the right-
hand side is arbitrary. We now look at the cases where the right-hand side is
positive. In the proofs that follow we shall use the alternative characterization of
refinement from Lemma 5. The following proposition determines the subclasses
on which modal refinement can be decided in polynomial time.

Proposition 10. Modal refinement on parameter-free PMTS is in P, provided
that both sides are positive and either the left-hand side is in pDNF or the right-
hand side is in pCNF.

Proof. Due to Lemma 5, the refinement is equivalent to the conjunction of (3)
and (2). Clearly, (3) can be checked in P. We show that Condition (2) can be
verified in P too. Recall that (2) says that

∀M ∈ Tranμ(s) : matcht(M) ∈ Tranν(t)

where matcht(M) = {(a, t′) ∈ T (t) | ∃(a, s′) ∈ M : (s′, t′) ∈ R}.
First assume that the left-hand side is in pDNF. If for some M the Condi-

tion (2) is satisfied then it is also satisfied for all M ′ ⊇ M , as Tranμ(s) is upwards
closed. It it thus sufficient to verify the condition for all minimal elements (wrt.
inclusion) of Tranμ(s). In this case it correspond to the clauses of Φ(s). Thus we
get a polynomial time algorithm as shown in Algorithm 1.

Algorithm 1. Test for Condition (2) of modal refinement (pDNF)
Input : states s and t such that Φ(s) is in positive DNF and Φ(t) is positive,

relation R
Output: true if s, t satisfy the refinement condition, false otherwise
foreach clause (a1, s1) ∧ · · · ∧ (ak, sk) in Φ(s) do

N ← {(a, t′) ∈ T (t) | ∃i : ai = a ∧ (si, t
′) ∈ R};

if N ∈ Tranν(t) then return false;

return true;

Second, assume that the right-hand side is in pCNF. Note that Condition (2)
can be equivalently stated as

∀M : matcht(M) 	∈ Tranν(t) ⇒ M 	∈ Tranμ(s) (6)
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As Φ(t) is in conjunctive normal form then N ∈ Tranν(t) is equivalent to say-
ing that N has nonempty intersection with each clause of Φ(t). We may thus
enumerate all maximal N 	∈ Tranν(t). Having a maximal N 	∈ Tranν(t), we can
easily construct M such that N = matcht(M). This leads to the polynomial
time Algorithm 2.

Algorithm 2. Test for Condition (2) of modal refinement (pCNF)
Input : states s and t such that Φ(s) is positive and Φ(t) is in positive CNF,

relation R
Output: true if s, t satisfy the refinement condition, false otherwise
foreach clause (a1, t1) ∨ · · · ∨ (ak, tk) in Φ(t) do

M ← T (s) \ {(a, s′) ∈ T (s) | ∃i : ai = a ∧ (s′, ti) ∈ R};
if M ∈ Tranμ(s) then return false;

return true;

The statement of the proposition thus follows. !"

Proposition 11. Modal refinement on parameter-free PMTS is in coNP, if the
right-hand side is positive.

Proof. Due to Lemma 5 we can solve the two refinement conditions separately.
Furthermore, both Condition (1) an (2) of Lemma 5 can be checked in coNP. The
guessing of R is done co-inductively as described in the proof of Proposition 9.

!"

Proposition 12. Modal refinement on parameter-free systems is coNP-hard,
even if the left-hand side is in positive CNF and the right-hand side is in positive
DNF.

Proof. We reduce SAT into non-refinement. Let ϕ(x1, . . . , xn) be a formula in
CNF. We modify ϕ into an equivalent formula ϕ′ as follows: add new variables
x̃1, . . . , x̃n and for all i change all occurrences of ¬xi into x̃i and add new clauses
(xi ∨ x̃i) and (¬xi ∨ ¬x̃i).

Observe now that all clauses contain either all positive literals or all negative
literals. Let ψ+ denote a CNF formula that contains all positive clauses of ϕ′

and ψ− denote a CNF formula that contains all negative clauses of ϕ′. As ϕ′ =
ψ+ ∧ ψ− it is clear that ϕ′ is satisfiable if and only if (ψ+ ⇒ ¬ψ−) is not valid.

Now we construct two PMTSs (S, T, P,Φ) and (S′, T ′, P ′,Φ′) over Σ =
{x1, . . . , xn, x̃1, . . . , x̃n} as follows: (i) S = {s, s′}, T = {(s, xi, s

′), (s, x̃i, s
′) |

1 ≤ i ≤ n}, P = ∅, Φ(s) = ψ+[(xi, s
′)/xi, (x̃i, s

′)/x̃i] and Φ(s′) = tt,
and (ii) S′ = {t, t′}, T ′ = {(t, xi, t

′), (t, x̃i, t) | 1 ≤ i ≤ n}, P ′ = ∅,
Φ(t) = ¬ψ−[(xi, t

′)/xi, (x̃i, t
′)/x̃i] and Φ(t′) = tt. Note that by pushing the

negation of ψ− inside, this formula can be written as pDNF. It is easy to see
that now s ≤m t if and only if (ψ+ ⇒ ¬ψ−) is valid. Therefore, s 	≤m t if and
only if ϕ is satisfiable. !"
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Table 2. Complexity of modal refinement checking with parameters

Boolean positive pCNF pDNF

Boolean Πp
4-complete Πp

3-complete
∈ Πp

3 Πp
3-complete

Πp
2-hard

positive Πp
4-complete Πp

3-complete Πp
2-complete Πp

3-complete

pCNF Πp
4-complete Πp

3-complete Πp
2-complete Πp

3-complete

pDNF Πp
4-complete Πp

2-complete Πp
2-complete Πp

2-complete

MTS Σp
3 -complete NP-complete NP-complete NP-complete

Impl NP-complete NP-complete NP-complete NP-complete

Note that the exact complexity of modal refinement with the right-hand side
being in positive CNF or MTS and the left-hand side Boolean remains open.

3.2 Systems with Parameters

In the sequel we investigate the complexity of refinement checking in the general
case of PMTS with parameters. The complexities are summarized in Table 2.
We start with an observation of how the results on parameter-free systems can
be applied to the parametric case.

Proposition 13. The complexity upper bounds from Table 1 carry over to Ta-
ble 2, as follows. If the modal refinement in the parameter-free case is in NP,
coNP or Πp

2 , then the modal refinement with parameters is in Πp
2 , Πp

3 and Πp
4 ,

respectively. Moreover, if the left-hand side is an MTS, the complexity upper
bounds shift from NP and Πp

2 to NP and Σp
3 , respectively.

Proof. In the first case, we first universally choose μ, we then existentially choose
ν and modify the formulae Φ(s) and Φ(t) by evaluating the parameters. This
does not change the normal form/positiveness of the formulae. We then perform
the algorithm for the parameter-free refinement. For the second case note that
implementations and MTS have no parameters and we may simply choose (ex-
istentially) ν and run the algorithm for the parameter-free refinement. !"

We now focus on the respective lower bounds (proof of Proposition 15 can be
found in [3]).

Proposition 14. Modal refinement between an implementation and a right-
hand side in positive CNF or in DNF is NP-hard.

Proof. The proof is by reduction from SAT. Let ϕ(x1, . . . , xn) be a formula in
CNF and let ϕ1, ϕ2, . . . , ϕk be the clauses of ϕ. We construct two PMTSs
(S, T, P,Φ) and (S′, T ′, P ′,Φ′) over the action alphabet Σ = {a1, . . . , ak} as
follows: (i) S = {s, s′}, T = {(s, ai, s

′) | 1 ≤ i ≤ k}, P = ∅, Φ(s) =
∧

1≤i≤k(ai, s
′)

and Φ(s′) = tt and (ii) S′ = {t} ∪ {ti | 1 ≤ i ≤ k}, T ′ = {(t, ai, ti) | 1 ≤ i ≤ k},
P ′ = {x1, . . . , xn}, Φ′(t) =

∧
1≤i≤k(ai, ti) and Φ′(ti) = ϕi for all 1 ≤ i ≤ k.
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Notice that each ϕi in Φ′(ti) is in positive form as we negate only the parameters
xi and every clause ϕi is trivially in DNF. Now we easily get that s ≤m t if and
only if ϕ is satisfiable. !"

Proposition 15. Modal refinement is Σp
3-hard even if the left-hand side is MTS.

The following proof introduces a gadget used also later on in other hardness
results. We refer to it as CNF-binding. Further, we use the ∗-construction here.

Proposition 16. Modal refinement is Πp
4-hard even if the left-hand side is in

positive CNF.

Proof (Sketch). Consider a Πp
4-hard QSAT instance, a formula ψ = ∀x∃y∀z∃w :

ϕ(x, y, z, w) with ϕ is in CNF and x, y, z, w vectors of length n. We construct two
system s and t and use the variables {x1, . . . , xn} as parameters for the left-hand
side system s, and {y1, . . . , yn} as parameters for the right-hand side system t.

s

s′

ti fi zi ∗

Φ(s) = (∗, s′) ∧ CNF-binding

t

t′ ui

ti fi zi ∗ ∗

Φ(t) = (∗, s′) ∧ ϕ[(ti, t
′)/xi, (fi, t

′)/¬xi,

(zi, t
′)/zi, (∗, ui)/wi]

for all 1 ≤ i ≤ n

On the left we require Φ(s) = (∗, s′)∧
∧

1≤i≤n

(
(xi ⇒ (ti, s′))∧(¬xi ⇒ (fi, s

′)
)

and call the latter conjunct CNF-binding. Thus the value of each parameter xi is
“saved” into transitions of the system. Note that although both ti and fi may be
present, a “minimal” implementation contains exactly one of them. On the right-
hand side the transitions look similar but we require Φ(t) = (∗, t) ∧ ϕ′ where ϕ′

is created from ϕ by changing every positive literal xi into (ti, t′), every negative
literal ¬xi into (fi, t

′), every zi into (zi, t
′), and every wi into (∗, ui).

We show that ψ is true iff s ≤m t. Assume first that ψ is true. Therefore,
for every choice of parameters xi there is a choice of parameters yi so that
∀z∃w : ϕ(x, y, z, w) is true and, moreover, ti or fi is present on the left whenever
xi or ¬xi is true, respectively (and possibly even if it is false). We set exactly
all these transitions ti and fi on the right, too. Further, for every choice of
transitions zi on the left there are wi’s so that ϕ(x, y, z, w) holds. On the right,
we implement a transition (zi, t

′) for each zi set to true and (∗, ui) for each wi set
to true. Now ϕ′ is satisfied as it has only positive occurrences of (ti, t′) and (fi, t

′)
and hence the extra ti’s and fi’s do not matter. Now for every implementation
of s we obtained an implementation of t. Moreover, their transitions match.
Indeed, ti’s and fi’s were set the same as on the left, similarly for zi’s. As for the
∗-transition, we use the same argumentation as in the original ∗-construction.
On the left, there is always one. On the right, there can be more of them due to
wi’s but at least one is also guaranteed by Φ(t).

Let now s ≤m t. Then for every choice of xi’s—and thus also for every choice
of exactly one transition of ti, fi for each i—there are yi’s so that every choice of
transitions zi can be matched on the right so that ϕ′ is true with some transitions
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(∗, ui). Since choices of ti/fi correspond exactly to choices of xi it only remains
to set wi true for each transition (∗, ui) on the right, thus making ϕ true. !"

Based on the idea of CNF-binding, the following propositions are proved in [3].

Proposition 17. Modal refinement is Πp
3-hard for the left-hand side in positive

CNF and the right-hand side in positive DNF.

Proposition 18. Modal refinement is Πp
2-hard even if both sides are in positive

CNF.

The last three propositions use a modification of the CNF-binding idea called
DNF-binding. Instead of (xi ⇒ (ti, s′)) ∧ (¬xi ⇒ (fi, s

′)) we use (xi ∧ (ti, s′)) ∨
(¬xi ∧ (fi, s

′)) to bind parameters of the left-hand side system with transitions
of the right-hand side system. Details are in [3].

Proposition 19. Modal refinement is Πp
2-hard even if left-hand side is in posi-

tive DNF and right-hand side is in positive CNF.

Proposition 20. Modal refinement is Πp
2-hard even if left-hand side is in posi-

tive DNF and right-hand side is in positive DNF.

Proposition 21. Modal refinement is Πp
4-hard even if the left-hand side is in

positive DNF.

Although the complexity may seem discouraging in many cases, there is an
important remark to make. The refinement checking may be exponential, but
only in the outdegree of each state and the number of parameters, while it is
polynomial in the number of states. As one may expect the outdegree and the
number of parameters to be much smaller than the number of states, this means
that the refinement checking may still be done in a rather efficient way. This
claim is furthermore supported by the existence of efficient SAT solvers that
may be employed to check the inner conditions in the modal refinement.

4 Conclusion and Future Work

We have introduced an extension of modal transition systems called PMTS for
parametric systems. The formalism is general enough to capture several features
missing in the other extensions, while at the same time it offers an easy to un-
derstand semantics and a natural notion of modal refinement that specializes to
the well-known refinements already studied on the subclasses of PMTS. Finally,
we provided a comprehensive overview of complexity of refinement checking on
PMTS and its subclasses.

We believe that our formalism is a step towards a more applicable notion
of specification theories based on MTS. In the future work we will study logical
characterizations of the refinement relation, investigate compositional properties
and focus on introducing quantitative aspects into the model in order to further
increase its applicability.
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Abstract. Policy Iteration is an algorithm for the exact solving of op-
timization and game theory problems, formulated as equations on min
max affine expressions. It has been shown that the problem of finding
the least fixpoint of semantic equations on some abstract domains can
be reduced to such optimization problems. This enables the use of Pol-
icy Iteration to solve such equations, instead of the traditional Kleene
iteration that performs approximations to ensure convergence.

We first show in this paper that the concept of Policy Iteration can be
integrated into numerical abstract domains in a generic way. This allows
to widen considerably its applicability in static analysis. We then con-
sider the verification of programs manipulating Boolean and numerical
variables, and we provide an efficient method to integrate the concept
of policy in a logico-numerical abstract domain that mixes Boolean and
numerical properties. Our experiments show the benefit of our approach
compared to a naive application of Policy Iteration to such programs.

1 Introduction

Kleene Iteration. Abstract Interpretation is a framework for solving verification
problems expressed by semantic equations on a (concrete) lattice. Typically, it
is used to compute an overapproximation of the reachable states of a program.
The computation is performed by a Kleene iteration which starts at the bottom
of an (abstract) lattice and applies the semantic equations until no new state
is reached. In order to ensure and accelerate the termination of this process, an
extrapolation operator (called widening) is used at the cost of additional approx-
imations. Eventually, the result can be refined in a process called narrowing. We
call the whole process Kleene iteration with widening (pictured on Fig. 3).

Running example. Consider the program of Fig. 1(a), taken from [1], with its
Control Flow Graph (CFG), Fig. 1(b). It contains two nested loops and two
integer variables. If the program reaches the program point 5 , then i = 100.
However, the Kleene iteration with widening on the boxes abstract domain fails
to infer it: it infers only i ≥ 100. The widening operator (applied at points 0

and 2 ) looses the constraint i<100 at point 2 ), and narrowing does not recover
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int i=1; 0

while (i<100){ 1

int j=100; 2

while (j>1){
j = j-i; 3

}
i = i+1; 4

} 5

end

(a) Original Program

0 5

1

2

3

4

i≥100

i<100?

j =100

j >1?
j =j−i

j≤1?
i= i+1

(b) CFG

bool always,ext,inner;
int i=1;
while ((always||ext)&&i<100){

int j=100;
while ((always||inner)&&j>1){
j = j-i;

}
i = i+1;

}
end

(c) Addition of Booleans

Fig. 1. Two loops running example

it because of the back-edge 3 → 2 of the inner loop. The problem we face here
is not a weakness of the abstract domain, since the octagons or the polyhedra do
not infer either i = 100, but a weakness of the Kleene Iteration with widening.

Policy Iteration. Introduced in [1], the use of policy iteration techniques for solv-
ing semantics equations with fixpoint allows to infer box-like invariants, among
which the correct invariant at program point 5 . This technique avoids the inac-
curacy issues faced by the Kleene iteration with widening. The algorithm of [1]
combines an iteration on a set of policies, that defines sound variations of the
semantic equations, with a linear programming solver for solving them.

This approach is tailored to purely numerical (and linear) programs and can-
not be applied directly to the program of Fig. 1(c), which is the program of
Fig. 1(a) with additional Boolean variables.

– Policy iteration based on linear programming is precise but does not handle
Boolean variables;

– Some abstract domains do handle the Boolean variables, but the use of
Kleene iteration with widening for solving the abstract equations often de-
livers inaccurate results.

This article aims at taking the best of both worlds by performing policy iteration
on Kleene iterations with widening. In particular we address the question of deal-
ing with programs having both Boolean and numerical variables (eg. Fig. 1(c)).

Contributions. We first show how to integrate the concept of policy inside a
numerical abstract domain (see Section 4). This was implemented in the generic
abstract domain library Apron and enabled the precise analysis of Fig. 1(a) in
the Abstract-Interpretation-based tool Interproc. We then show the advan-
tage of this integration by implementing efficiently policies for logico-numerical
abstract domains on top of our numerical policies. These policies have been
implemented using Mtbdds and integrated in the BddApron library (see Sec-
tion 5). We could eventually perform the analysis of Fig. 1(c), for which Kleene
iteration is not precise and for which policy iteration of [1] is not possible as is.
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Outline. Section 2 recalls the basics of Abstract Interpretation, focusing on
the abstract domains. Section 3 details the use of Kleene iteration and policy
iteration for the resolution of semantic equations. Sections 4 and 5 present our
contributions. Section 6 provides experiments which illustrate the questions of
precision and efficiency. Section 7 will conclude and emphasize the interest in
integrating the precision improvements due to policy iteration into traditional
abstract interpretation frameworks.

2 Abstract Interpretation and Abstract Domains

Many static analysis problems come down to the computation of the least solu-
tion of a fixpoint equation X = F (X), X ∈ C where C is a domain of concrete
properties, and F a function derived from the semantics of the analysed pro-
gram. Abstract Interpretation [2] provides a theoretical framework for reducing
this problem to the solving of a simpler equation

Y = G(Y ), Y ∈ A (1)

in a domain A of abstract properties. Having performed this static approximation,
one is left with the problem of solving Eqn. (1). The paper contributes to this
problem, which is detailed in the next section.

We detail first how this general method will be instantiated (see also [2]).

– We consider simple programs without procedures that manipulate n scalar
variables taking their values in a set D, as exemplified by the programs of
Figs. 1(a) and 1(c). Their state-space has the structure S = K ×Dn, where
K is the set of nodes of the control flow graph (CFG).

– We focus on the inference of invariants. The domain of concrete properties
is C = P(S) = K → P(Dn): an invariance property is defined by the set of
possible values for variables at each node.

– The equation to be solved is X = F (X) = I ∪ post(X), where I is the set
of initial states and post is the successor-state function. The least solution
lfp(F ) of this equation is the strongest inductive invariant of the program.
This equation is actually partitioned along the nodes and edges of the CFG:

Xk = Ik ∪
⋃

(k′,k)
�op(k′,k)�(Xk′

) , Xk ∈ P(Dn) (2)

�op(k′,k)� : P(Dn) → P(Dn) reflects the semantics of the program instruc-
tion op(k′,k) associated with the CFG edge (k′, k). We consider here for op
assignments x :=expr and tests bexpr?.

– Given an abstract domain A for P(Dn), abstracting Eqn. (2) in A consists
in substituting ∪ and �op� functions in it with their abstract counterpart
denoted with ∪�, �op��. We obtain a system

Y k = I�k ∪�
⋃�

(k′,k)
�op(k′,k)��(Y k′

) , Y k ∈ A (3)
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Numerical abstract domains. If the considered program manipulates only
numerical variables, D = Q, and C = K → P(Qn). Many numerical abstract
domains have been designed for approximating subsets of Qn:

– The box domain [3] approximates such subsets by their bounding boxes.
The abstract semantics of assignments and conditionals is based on classical
interval arithmetic.

– The octagons domain [4] approximates such subsets by conjunction of O(n2)
inequalities of the form aixi + ajxj ≥ b where ai, aj ∈ {−1, 0, 1} and the
bounds b’s are inferred. The abstract semantics of octagons relies on a mix-
ture of interval arithmetic and constraint propagation.

– These two domains are generalized by the template polyhedra domain [5] that
considers conjunctions of M linear inequalities of the form T m ·x ≥ bm, 1 ≤
m ≤ M , where the T m are linear expressions provided by some external
means and the bounds bm are inferred. The abstract semantics is computed
by linear programming.

Observe that some domains are more complex, like the convex polyhedra domain
[6] that approximates numerical subsets by convex polyhedra: it infers not only
bounds, but also the (unbounded) set of linear expressions to be bounded.

The Apron library [7] provides a common high-level API to such numerical
domains, and defines a concrete semantics that should be correctly abstracted
by the compliant abstract domains.

The BddApron logico-numerical abstract domain. The Apron concrete
semantics and the abstract domains provided with it do not provide the ade-
quate operations for programs that manipulate also Boolean and enumerated
variables, which may contain instructions like

x := if b and x<=5 then x+1 else 0 or b := b and x<=3

In this case D = B � Q and P(Dn) / P(Bp × Qq). A naive solution is to elimi-
nate Boolean variables by encoding them in the control, so as to obtain a purely
numerical program. However this solution (i) is neither efficient – the enumera-
tion of Boolean valuations induces an exponential blow-up, (ii) nor it provides a
high-level view on invariants and their manipulation. The BddApron library [8]
addresses issue (ii) by offering support for expressions and constraints that freely
combine Boolean and numerical subexpressions and by leveraging any Apron-
compliant numerical abstract domain to a logico-numerical abstract domain.
Given a numerical abstract domain A0 for P(Qq), it abstracts concrete proper-
ties in P(Bp × Qq) / Bp → P(Qq) with functions in Bp → A0. The efficiency
issue (i) is addressed by representing functions f : Bp → A0 with Mtbdds [9],
see Fig. 2. This representation does not improve the worst-case complexity in
O(2p), but the complexity of the representation and the operations becomes a
function of the number of nodes of the Bdds/Mtbdds rather than a function
of the number of (reachable) Boolean valuations. As in many applications the
first number is is much smaller than the second one, the practical complexity is
significantly improved.
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b0

b2

[0, 2]

b1

b3

[1, 3] [−5, 0]

Represents the function

(¬b0 ∨ ¬b1)∧¬b2  → [0, 2]
(¬b0∧b2 ∨ b0∧b1)

∧¬b3  → [1, 3]
(¬b0∧b2 ∨ b0∧b1)

∧b3  → [−5, 0]

of signature B4 → I

Fig. 2. Example of Mtbdd
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Fig. 3. Kleene iteration with
widening and narrowing
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Fig. 4. Policy iteration

The contribution of this paper is to show how policy iteration solving
techniques, which are described in the next section and currently apply to equa-
tions on numerical properties, can be efficiently leveraged to equations on logico-
numerical properties by a generic integration to the abstract domain.

3 Abstract Equation Solving and Policy Iteration

The traditional way to solve the abstract semantic equation Y = G(Y ), Y ∈ A
(e.g., Eqn. (1)) is Kleene iteration with widening and narrowing. This consists
in computing successively (c.f. Fig. 3)

– the ascending sequence Y0 = ⊥, Yn+1 = Yn∇G(Yn), which converges in a
finite number of steps to a post-fixpoint Y∞;

– the descending sequence Z0 = Y∞, Zn+1 = G(Zn), up to some rank N .

∇ : A × A → A is a widening operator that ensures convergence at the cost of
additional dynamic approximations. The problem is that such approximations
are often too strong, and that the descending sequence often fails to recover useful
information, as discussed in the introduction. This is why this paper focuses on
an alternative resolution method.

Policy iteration is an algorithm that has been developed originally in control
and game theory. It has been introduced by Howard [10] and then extended by
Hoffman and Karp [11] for stochastic games. It basically finds the value of a
game, which is the unique fixpoint of the Shapley operator [12], which is the min
of a max of certain affine functions.

Abstract semantic equations as min-max affine equations. As observed
in [1], the abstract box semantics of programs with linear assignments and con-
ditionals can be formulated as equations on lower and upper bounds, in which
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int i=1; 0

while (i<100){ 1

int j=100; 2

while (j>1){
j = j-i; 3

}
i = i+1; 4

} 5

end

(a) Program

0 5

1

2

3

4

i≥100

i<100?

j =100

j >1?
j =j−i

j≤1?
i= i+1

(b) CFG

i0 = [1, 1] ∪� i4
i1 = �i<100?��(i0)

(i2, j2) = (i1, [100, 100]) ∪� (i3, j3)
(i3, j3) = �j =j−i�� ◦ �j >1?��(i2, j2)

(i4, j4) = �i= i+1�� ◦ �j≤1?��(i2, j2)

i5 = �i≥100?��(i0)

ik =[i−k , i+k ] and jk =[j−k , j+
k ] are the intervals

associated with var. i and j at CFG node k

(c) Abstract Box Semantics

i−0 = min(1, i−4 ) i+0 = max(1, i+4 )

i−1 = i−0 i+1 = min(99, i+0 )

i−2 = min(i−1 , i−3 ) i+2 = max(i+1 , i+3 )
j−2 = min(100, j−3 ) j+

2 = max(100, j+
3 )

i−3 = i−2 i+3 = i+2
j−3 = max(2, j−2 ) − i+2 j+

3 = j+
2 − i−2

i−4 = i−2 + 1 i+4 = i+2 + 1
j−4 = j−2 j+

4 = min(1, j+
2 )

i−5 = max(100, i−0 ) i+5 = i+0
(min and max are min max policies)

(d) Equivalent equations on bounds

−i−0 = max(−1,−i−4 )

−i−1 = −i−0
−i−2 = max(−i−1 ,−i−3 )
−j−2 = max(−100,−j−3 )

−i−3 = −i−2
−j−3 = min(−2,−j−2 ) + i−2
−i−4 = −i−2 − 1
−j−4 = −j−2
−i−5 = min(−100,−i−0 )

(e) Normalizing equations on inf
bounds

Fig. 5. Abstract Interpretation and Game Theory views of semantic equations on boxes

each bound is the min of a max of affine functions. Fig. 5 illustrates this point.
Fig. 5(c) instantiates Eqn. (3) on the program of Fig. 5(a). Fig. 5(d) reformulates
this as equations on bounds. Selecting the least solution in Fig. 5(c) is equivalent
to maximizing lower and minimizing upper bounds in Fig. 5(d). In order to reg-
ularize this problem, we replace lower bounds of intervals with upper bounds by
negating them, see Fig. 5(e), so as to manipulate only upper bounds subject to
minimization. Such a formulation can be viewed a deterministic game problem
between a min-player and a max-player. Several plays are possible, but we are
interested in the optimal strategy (i.e. policy) of the min player that minimizes
the bounds. Min policy iteration provides a solution to this problem.

Policy and policy iteration. In the context of an equation Y = G(Y ) where
Y is a vector of upper bounds and G a min of max of affine functions, a (min)
policy π is a choice of one argument per min in G, which results in a simpler
function Gπ ⊇� G which is the max of affine functions. By observing that for
any fixpoint of G and any min operator in G, the min will be reached by at least
one argument, one deduces that the least fixpoint of G is also the least fixpoint
of some Gπ .

The policy iteration algorithm, illustrated by Fig. 4, works by
1. choosing an initial policy π0;
2. at each step i, computing the least solution Yi = lfp(Gπi) of Y = Gπi(Y );
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3. if Yi is a solution of Y = G(Y ), the algorithm terminates, otherwise the
policy improvement step consists in choosing a new policy πi+1 such that
lfp(Gπi+1) ⊆� lfp(Gπi), and to go back to step 2.

How is it done? As Gπi ⊇� G and Y 	= G(Y ), Yi = Gπi(Yi) �� G(Yi).
Therefore, for some pnth component of the vector Yi, we have

G(Yi)(p) = min(e1, . . . , en) < Y
(p)
i = (Gπi(Yi))(p) = ej

where j results from the choice performed by the policy πi, and e1, . . . , en

are the values of the max expressions evaluated on Yi. The principle is to
replace in πi+1 the choice j by a choice j′ such that ej′ = min(e1, . . . , en).
This ensures that Gπi+1(Yi) �� Yi = lfp(Gπi), hence lfp(Gπi+1) �� lfp(Gπi).

It is shown in [1] that for boxes, this method will terminate on a fixpoint of G,
which is guaranteed to be the least fixpoint when G is not expansive for the
sup norm. Some improvements of the original method of [1] have been made
for dealing with degenerate cases in an efficient manner in [13]. Extensions of
the method to deal with the zone, octagon, linear and quadratic templates are
discussed in [14,15].

Policy iteration can also be seen as a Newton method for solving a system of
min-max equation Y = G(Y ). Any of the expressions under the min operator can
indeed be seen as a possible differential/linearization of G. A policy is the choice
of such a differential, and solving Y = Gπ(Y ) is akin to solving the linearization
of G in one step in the classical Newton method.

Two methods for solving Y = Gπ(Y ). Once a policy π is applied, one has
to compute the least solution of a simpler equation Y = Gπ(Y ) where G is the
max of affine functions. This can be done either by linear programming as in
[14], or by standard Kleene iteration as in [1].

1. Linear programming always computes the least solution, but presents some
shortcomings:

(a) It requires to write down the full equation system on bounds (whereas
Kleene iteration works in practice by incremental exploration);

(b) It does not allow to see the abstract domain (boxes, octagons, . . . ) and
a policy linked to it as an abstract datatype (ADT).

(c) If the program contains non-linear expressions, these must be linearized
statically before the analysis (thus when no information is available. . . )

2. Kleene iteration with widening does not offer the guarantee of delivering the
least solution (thus we loose theoretical results about policy improvement).
However it exhibits better behaviour w.r.t. the points mentioned above:

(a)(b) It integrates well in existing static analysers (such as Interproc,
[7,16]) that manipulates abstract properties as abstract datatypes through
normalized APIs (such as the Apron and the BddApron APIs men-
tioned in Section 2).
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(c) Linearization of non-linear expressions can be done dynamically as in
[17], using the (under)approximations provided by the current Kleene
iteration step.

One might object that as this technique still resorts to widening to ensure
convergence, it should not improve on traditional Kleene iteration (without
policies). The point is actually that here Kleene iteration is applied to simpler
equations, with fewer dependency cycles (hence less widening points) and on
which the descending sequence is likely to be more effective. The experiments
in [1] and Section 6 confirms this conjecture.

For example, on Fig. 5, if one chooses the left policy for all min equations,
like i+1 = 99 for the policy i+1 = min(99, i+0 ), the Kleene iteration solves the
simpler equations in one iteration and finds i1 = [100, 100] to be compared
to i1 = [100,+∞] obtained by the global iteration without policies

In the next section, we show how the concept of policy can be integrated in
an abstract domain and can be viewed as an ADT. This allows to leverage in
Section 5 the use of policy iterations in logico-numerical domains.

4 Integrating Policies in Numerical Abstract Domains

Integrating policies in an abstract domain as described in Section 2 means in
practice to “instrument” the equations of Fig. 5(c) with policies, in order to
emulate the translation from these equations to the equations of Fig. 5(d) (in
the case of the box abstract domain).

Instrumenting abstract operations with policies. The original seman-
tic equations are made of the three operators described in Section 2: (i) ∪�,
(ii) �bexpr?��, and (iii) �x :=expr��. For all of the template-based numerical ab-
stract domains for which policies have been used, min operators are introduced
only by tests (ii) and assignments (iii). Hence only those two latter operations
needs to be equipped with a policy. We thus introduced in the Apron API two
new generic functions:

meet cond apply policy0 : P0 × A0 × Cond0 → A0

assign var apply policy0 : P0 × A0 × Var×Expr0 → A0
(4)

where P0 denotes the set of policies, A0 the numerical abstract domain, Expr0 the
set of (linear) numerical expressions, and Cond0 the set of Boolean formula on
(linear) numerical constraints under disjunctive normal form (DNF).

The exact structure of policies depends on the considered abstract domain. We
illustrate the case of the box abstract domain. In this domain, min expressions
will be always decomposed into min expressions with two operands. Therefore,
the domain of a bound policy is {l, r}, which stands for left and right: (l) if π = l,
minπ(e1, e2) = e1, (r) if π = r, minπ(e1, e2) = e2. Consider now the intersection
of an abstract property a =

∏n
k=1 Ik with a single numerical constraint c =∑

k′∈K′
αk′xk′ −

∑
k′′∈K′′

αk′′xk′′ + β ≥ 0 with αk′ , αk′′ > 0 and K ′ ∩K ′′ = ∅. We
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want to express a′ = meet cond apply policy0(π, a, c). The constraint c can be
rewritten as

xk ≥ 1
αk

( ∑
k′∈K′\{k}

−αk′xk′ +
∑

k′′∈K′′
αk′′xk′′ + β

)
if k ∈ K ′

xk ≤ 1
αk

( ∑
k′∈K′

αk′xk′ −
∑

k′′∈K′′\{k}
αk′′xk′′ + β

)
if k ∈ K ′′

Hence a′ =
∏n

k=1 I
′
k can be expressed as:

−(I ′k)− =

⎧⎨⎩minπk,−
(
−I−k , 1

αk

(
−

∑
k′∈K′\{k}

αk′I−k′ +
∑

k′′∈K′′
αk′′I+

k′′ + β
))

if k ∈ K ′

−I−k otherwise

(I ′k)+ =

⎧⎨⎩minπk,+

(
I+
k ,

1
αk

( ∑
k′∈K′

αk′I+
k′ −

∑
k′′∈K′′\{k}

αk′′I−k′′ + β
))

if k ∈ K ′′

I+
k otherwise

In practice, we associate a bound policy πk,+/− to each interval bound, hence
π ∈ {l, r}2q for the intersection with a single linear inequality in q dimensions.
Equalities are handled as the conjunction of two inequalities. This “instrumen-
tation” with policies is generalized to conjunctions of m linear inequalities and
equalities, which results in a policy in {l, r}2qm. The meet of a with a general
Boolean formula under DNF form

∨p
i=1

∧
j ci,j is handled as the disjunction of

the meet of a with the p conjuncts
∧

j ci,j .
Assignments do not imply min operators in the box abstract domains. On

octagons an assignment like x1 = 2x2 + 4 is performed by introducing a primed
variable x′1, intersecting the octagon with x′1 = 2x2 + 4 (which implies min
operators), eliminating x1 and renaming x′1 in x1. Still, ultimately only the
meet cond operation needs to be equipped with a policy. It is however not the
case for more general linear templates.

Improving policies. Remind from Section 3 that given a solution Y = Gπ(Y ),
we need to improve the policy π if G(Y ) �� Y . We thus introduce in the API
two new generic functions

meet cond improve policy0 : P0 × A0 × Cond0 → P0

assign var improve policy0 : P0 × A0 × Var×Expr0 → P0
(5)

meet cond improve policy(π, a, c) proceeds as follows (assign var improve policy0

proceeds exactly in the same way).

– it computes a′ = meet cond0(a, c) and a′′ = meet cond apply policy0(π, a, c);
– if a′ = a′′, it returns π; otherwise, it chooses a new policy π′ such that
a′ = meet cond apply policy0(π′, a, c), following the principle explained in
Section 3, and it returns it.
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Integration in the policy iteration process. Once abstract operations are
instrumented with policies, one parametrizes Eqn. (3) by associating to each
operation �op(k′,k)�� a policy π(k′,k):

Y k = I�k ∪�
⋃�

(k′,k)
op apply(k′,k)(π(k′,k), Y k′

, args . . .) (6)

We apply the process described in Section 3. We fix an initial global policy π0,
and at each policy iteration step i,

1. We solve Eqn. (6) with π = πi using Kleene iteration with widening and
narrowing; we obtain a solution Yi.

2. We compute the new policy with π(k′,k)
i+1 = op improve(π(k′,k)

i , Y
(k′)
i , args . . .).

If πi+1 	= πi, we iterate the process, otherwise we have a solution.

Implementation. Augmenting the Apron API with the 4 functions intro-
duced by Eqns. (4)-(5) allowed us to integrate nicely policy iteration in the
Interproc interprocedural analyser, based on the Apron numerical abstract
domain libraries and the Fixpoint equation solver [18]. Currently, we imple-
mented these functions only for the box abstract domain. In the static analyser,
we needed to add about 100 OCaml LOC to take care of the policy iteration pro-
cess (creating policies, updating them and testing convergence). Once a policy
π is fixed, we reuse the existing code for solving the equation Y = Gπ(Y ).

As Interproc also addresses recursive programs, two additional abstract
operations appear in the semantic equations: (i) procedure call, which involves
projection and variable renaming, hence no policy; (ii) procedure returns, which
involves the meet of two abstract values. We did not yet instrument the meet
operation, but there is no theoretical problem to do it. Moreover, as we solve
Y = Gπ(Y ) by Kleene iteration, we can deal with more complex functions Gπ

than if we were tied to problems expressed as linear programs.

5 Policy for Logico-Numerical Abstract Domain

We showed in Section 4 how the concept of policy can be integrated into a
numerical abstract domain in a generic way. The practical advantage was the
ability to add the boxpolicy domain to the Apron library, and ultimately to the
Interproc analyser, and to benefit for free from all the techniques it implements
(e.g., non-linear arithmetic and interprocedural analysis). In this section we show
that this integration can be pushed further to the BddApron logico-numerical
abstract domain, which acts as a functor on top of an Apron domain, and that
this can be done efficiently with Mtbdds.

BddApron abstract operation. As explained in Section 2, the BddApron

library proposes to abstract logico-numerical properties in P(Bp × Qq) by func-
tions in A = Bp → A0. Extending the conditional and assignment operations
from A0 to A is easy under the following conditions:
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meet cond : A × Cond → A
assign var : A × NVar×Expr → A

assign bvar : A × BVar×BExpr → A

meet cond(f, c) = λb .meet cond0

(
f(b), c(b)

)
assign var(f, xk, e) = λb . assign var0

(
f(b), xk, e(b)

)
assign bvar(f, bk, ϕ) = λb .

{
(if bk ⇔ ϕ+(b) then f+(b) else ⊥0)

∪�
0 (if bk ⇔ ϕ−(b) then f−(b) else ⊥0)

where f = ite(bk, f+, f−) and ϕ = ite(bk, ϕ+, ϕ−)
are decomposed into their cofactors w.r.t. bk

Fig. 6. BddApron abstract operations

– Conditions in tests are put under the form Cond = Bp → Cond0 .
– Assigned expressions are

• either numerical expressions in Expr = Bp → Expr0 ;
• or purely Boolean expressions in BExpr = Bp → B.

In other words, they do not involve conditions on numerical variables. Exam-
ples are b0 = (b1 or (b2 and not b3)), x0 = (if b1 then x1+1 else x2-1).

Under these assumptions where the conditions and expressions are pointwise
extensions of the conditions and expressions considered in A0, tests and assign-
ments in A can be defined as in Fig. 6. Notice that “forbidden” assignments
like x = (if x>10 then 0 else x+1) or b = (x>=0) can be emulated by replac-
ing conditional expressions with conditional assignments.

Boolean extension of numerical operations with policies. Observe the
meet cond operation in Fig. 6: it applies pointwise the meet cond0 operation to
f(b) and c(b) for every b ∈ Bp. If we want to parameterize it with a policy, we
need one policy π(b) ∈ P0 for each b ∈ Bp. If we have such a logico-numerical
policy π : Bp → P0, we apply meet cond apply policy0 pointwise to π(b), f(b)
and c(b) for each b ∈ Bp. We get the following definition.

Definition 1 (Logico-numerical policy). If P0 denotes the set of policies
associated with the numerical abstract domain A0, the set of policies associated
with the logico-numerical domain A = Bp → A0 is P = Bp → P0 .

The op apply policy and op improve policy operations in A are defined in Fig. 7
by extending pointwise the corresponding operations in A0. As the operation
assign bvar involves only the numerical operation ∪�

0, it does not need a policy.
We have set exactly the same framework than the one of Section 4. We can

thus analyse logico-numerical programs with the BddApron extension of any
numerical domain equipped with policies (like the box domain). In this new
context, the solution Yi of Y = Gπi(Y ) computed by Kleene iteration actually
provides two kinds of information: the set of reachable Boolean valuations at a
node, and the numerical invariant associated with each of them.
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meet cond apply policy : P × A × Cond → A
meet cond improve policy : P × A × Cond → P
assign var apply policy : P × A × Var×Expr → A
assign var improve policy : P × A × Var×Expr → P

meet cond apply policy(π, f, c) = λb . meet cond apply policy0

(
π(b), f(b), c(b)

)
meet cond improve policy(π, f, c) = λb . meet cond improve policy0

(
π(b), f(b), c(b)

)
assign var apply policy(π, f, xk, e) = λb . assign var apply policy0

(
π(b), f(b), xk, e(b)

)
assign var improve policy(π, f, xk, e) = λb . assign var improve policy0

(
π(b), f(b), xk, e(b)

)
Fig. 7. Parametrization of logico-numerical operations with policies

Implementation with Mtbdds. Our operations involve functions of signature
Bp → T . If they are represented with a tabulated representation, the complexity
of abstract operations is in O(2p). In particular we need 2p numerical policies in
P0 at each edge of the program CFG.

The solution is to reuse the principle behind the BddApron library, which
is to represent functions of signature Bp → T with Mtbdds [9]. As mentioned
in Section 2, the complexity of an operation defined as

op : (Bp → T1) × (Bp → T2) → (Bp → T )
(f1, f2) �→ op(f1, f2) = λb . op0 (f1(b), f2(b))

with op0 : T1 × T2 → T

(7)

is O(2p) with a tabulated representation of f1 and f2, and O(|f1| · |f2|) with a
Mtbdd representation of f1 and f2 with |f1| and |f2| nodes. In the latter case
the function op is implemented by a parallel, recursive descent of the Mtbdds
f1 and f2, using memoization techniques to avoid exploring already explored
pairs of subgraphs. As the functions of Fig. 7 follow the pattern of Eqn. (7),
they benefit from such techniques.

The condition on a set T for representing functions in Bp → T with Mtbdds
is the ability (i) to test the equality of two elements in T , (ii) and to have a
reasonably efficient hash function. In the case of the box domain, policies are
elements of sets of the form {l, r}N , as discussed in Section 4, and meet these
requirements. It is also the case for policies for the octagon domain [14].

Concerning the initial policy, our (naive) tactic is to associate to each opera-
tion op of the CFG a constant policy π

(k′,k)
0 = λb . p0∈P0.

6 Experiments

This section presents experimental results showing that policy iteration on logico-
numerical abstract domains, as presented in Section 2, allows precise and tractable
analysis of programs involving Boolean variables, numerical variables and even
concurrency.The experiments were performed with the ConcurInterproc analyser,
using BddApron and logico-numerical policies.
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Table 1. Experiments with modified examples of [1]

Program Nesting #B #Q
Control Boxes Boxes+policies
points only No sharing Full sharing Precision

test1’ 1 2 1 4 8ms 17ms 15ms (2 it.) =
test2’ 1 3 2 5 18ms 42ms 34ms (2 it.) =
test3’ 1 2 3 4 8ms 15ms 13ms (1 it.) =
test4’ 1 10 5 12 226ms 25 300ms 480ms (3 it.) =
test5’ 2 4 2 6 23ms 79ms 47ms (2 it.) >
test6’ 2 6 2 8 44ms 520ms 124ms (3 it.) >
test7’ 2 6 3 8 40ms 310ms 81ms (2 it.) >
test8’ 3 6 3 8 60ms 280ms 113ms (2 it.) =
test9’ 3 6 3 8 58ms 360ms 116ms (2 it.) >

Table 2. Experiments with concurrent programs

Program Threads, #B, #Q, control
Boxes Boxes+policies
only No sharing Full sharing Disting. Prec.

BlueTooth 2T, 5B, 3Q, 87cpt 0.21s 0.99s 0.84s (3 it.) 17% =
Preemptive 2T, 9B, 1Q, 352cpt 0.83s 18.64s 1.37s (1 it.) 0.7% =
Barrier 2T, 5B, 2Q, 95cpt 0.79s 3.05s 1.96s (2 it.) 9.5% >
Loop2TML 2T, 1B, 6Q, 37cpt 0.10s 0.22s 0.21s (2 it.) 70% >

Analysis of the running example. We perform the analysis of the programs
shown on Figures 1(a) and 1(c). For these two programs, the analysis with boxes
(only) does not infer the most precise bounds for i and j while the analysis with
boxes and policies does. The use of policy iteration have little impact on the
analysis times. Thanks to the Mtbdds, the analysis times for the program of
Fig. 1(c) is of the same order of magnitude than the ones of Fig. 1(a), in spite
of the eight possible Boolean valuations to consider.

Examples from [1] plus Booleans. We modify the programs experimented
in [1] by introducing in a systematic way Boolean variables in order to demon-
strate that:
1. Policy Iteration on boxes is more precise than boxes only.
2. Analysis time does not increase as fast as the number of boolean valuations.

We added a Boolean variable for each loop, each conditional and each variable
modification. These Boolean variables are then used as additional condition to
enter the loop, enter the then branch and perform the modification. For example,
it introduces the uninitialized Boolean variables a and b in the following program:

while (x<100)

x=x+1;
−→ while (a && x<100)

if (b) x=x+1;

The results are shown in Table 1. Column program gives the name of the original
program with an additional ’ to recall the transformation. Column nesting gives
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the maximum nesting depth of the loops. Column #Q and #B count respectively
the number of numerical and Boolean variables (the latter being introduced by
the transformation). The results obtained by our approach are shown in the
column boxes+policies, full sharing and are to be compared with the ones without
policies, taking into account whether the box abstract domain reach the same
precision as policies (=) or not (>).

We also experimented the loss of efficiency that could be endured if we do not
share the policies. The column no sharing indicates the analysis time when we
take one policy per Boolean valuation instead of an Mtbdd of policies.

All the analyses using policy iteration discover here the best invariant one
could hope for boxes. The symbols > indicate cases where traditional boxes
cannot infer this optimal invariant. The experiments show that for boxes with
policy iteration timings tends to be proportional to the timings using the classical
BddApron boxes multiplied by the number of iterations. The idea of applying
the method of [1] using one policy per boolean valuation does not scale (eg.,
test4’ need to consider one thousand policies per meet operation).

Analysis of concurrent programs. Table 2 shows the results of experiments
involving concurrent programs performing synchronisation using shared Boolean
variables. The columns have to be interpreted like the ones of Tab. 1, with
an additional column disting. containing the percentage of policies that truly
need to be distinguished. Note that procedures have been inlined, and that the
commutation between threads creates large control flow graphs with many cycles.

The results obtained by policy iterations can be far more precise than the ones
obtained without, as it is the case for the program Barrier (which explains the
increase of the analysis cost). The timings confirm that when both analyses are
equally precise, our implementation is slower by a factor close to the number
of policy explored. The experiments we have performed also showed that the
iterations tend to be faster as the policies get improved.

7 Conclusion

We first showed in this paper how to integrate in a generic way the concept of
policy into a numerical abstract domain. This is done at the cost of giving up the
ability to solve exactly the equation Y = Gπ(Y ) parametrized with the policy
π using linear programming.However we believe that this shortcoming is largely
counter-balanced by the gains, which are

(i) the easy integration in existing static analysis tool, such as [18];
(ii) the ability to build more complex abstract domains on top of such policy-

equipped numerical domains and to address programs with other datatypes.

We demonstrated point (i) by equipping the box domain implemented in the
Apron library with policies, and by integrating it in the Interproc tool. Our
major contribution is however the demonstration of point (ii) in the case of
programs manipulating Boolean and numerical variables. Instead of assigning a
numerical policy to each Boolean valuation, we showed that we can use Mtbdds
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techniques to assign a single policy to a (potentially large) set of Boolean valua-
tions. This efficient representation of logico-numerical policies was integrated in
the BddApron library.

Our experiments illustrated two points. They first showed that this latter tech-
nique improves in a spectacular way the efficiency of policies, compared to their
naive application, even for simple programs with a dozen of Boolean variables.
They also showed that despite the theoretical shortcoming of our approach men-
tioned above w.r.t. precision, in practice our combination of policy and Kleene
iteration yields more precise results than the traditional approach that relies
only on Kleene iteration.

A perspective opened by this work is the use of policy iteration in complex
abstract domains that are parametrized by a numerical abstract domain, like
the one proposed in [19] for dynamically allocated data-structures. Our approach
enables the use of policies in this context, whereas the traditional approach based
on translation to min-max equations as in Fig. 5(d) seems hardly feasible.

In some situations however, solving Y = Gπ(Y ) by linear programming may
be preferrable. Another perspective would be to apply the technique of this paper
to obtain an initial overapproximation of the least solution of Y = Gπ(Y ), and
then to exploit the implicit partition of Bp provided by the Mtbdds of Y and/or
π to generate a linear program without enumerating all Boolean valuations, and
to solve it exactly.
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Small Strategies for Safety Games
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Abstract. We consider safety games on finite, edge-labeled graphs and
present an algorithm based on automata learning to compute small
strategies. Our idea is as follows: we incrementally learn regular sets
of winning plays until a winning strategy can be derived. For this pur-
pose we develop a modified version of Kearns and Vazirani’s learning
algorithm. Since computing a minimal strategy in this setting is hard
(we prove that the corresponding decision problem is NP-complete), our
algorithm, which runs in polynomial time, is an interesting and effective
heuristic that yields small strategies in our experiments.

1 Introduction

For the verification of soft- and hardware, especially for reactive systems, various
techniques have been developed. The most important ones, such as testing [11]
and model checking [2], have gained a wide industrial acceptance. All of these
techniques have in common that they are naturally applied at the end of the
developing process. Errors that are detected at this stage are often costly to fix.

A complementary approach is positioned earlier in the development process.
Instead of implementing the whole system by hand, parts can be automatically
synthesized from given specifications. This can be done in the following way: the
specifications are translated into an infinite, two-person game on a finite graph
in such a way that a winning strategy for one of the players corresponds to a
system that satisfies the specifications.

During the last decades, much research has been spend on efficient algorithms
to solve such infinite games, i.e., to determine the winner and to compute a
winning strategy (see [7] for an overview). However, from a software engineering
point of view it is less important how fast a winning strategy can be computed.
More important is the question how much memory is needed to realize a winning
strategy, i.e., how large the resulting system really is. In fact, this question seems
to be hard to settle and untill today there is no satisfactory answer (although
some approaches have been made, e.g., in [6], [3], and [8]). Even more intriguing
is the task to compute winning strategies of small size or even minimal ones.

In this work we focus on the task of computing small strategies for safety
games. A safety game is an infinite, two-person game played on a finite graph
that is composed of safe and unsafe vertices. The objective is to stay inside
the set of safe vertices no matter how the malevolent opponent plays. For this
type of game there exist linear time algorithms that compute positional winning
strategies, i.e., strategies that do only depend on the current position a play

T. Bultan and P.-A. Hsiung (Eds.): ATVA 2011, LNCS 6996, pp. 306–320, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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has reached. However, a controller (or program) realizing a positional strategy
can be large because it needs to keep track of the exact position of a play. Thus,
although these algorithms are fast, they do not necessarily produce small results.

In the following we present a polynomial time algorithm that computes strate-
gies for safety games, which often have a small representation. Our algorithm
is based on automata learning in an active learning environment as it has been
introduced by Angluin [1]. In this setting, a learner learns a regular language
in interaction with a teacher. The idea of our approach is to interpret prefixes
of winning plays as finite words and define winning strategies in terms of finite
automata that have special structural properties (Section 2). Since we can solve
safety games efficiently, we can easily determine which play prefix belongs to a
winning play and which does not. Based on this knowledge we start learning
regular sets of winning play prefixes until one of these sets realizes a winning
strategy (Section 3). Since learning algorithms typically produce conjectures with
increasing size, it is often possible to find small solutions. Moreover, a modified
version of Kearns and Vazirani’s learning algorithm [9], which we develop in
Section 3.2, yields even better results than existing learning algorithms.

Unfortunately, in this setting computing minimal strategies is hard; we show
that the corresponding decision problem “Given a safety game and k ∈ N. Does
an automaton with at most k states realizing a winning strategy exist?” is NP-
complete (Section 2). Hence, our algorithm, which runs in polynomial time, is a
heuristic, but it turns out that this heuristic produces good, i.e., small, results
in our experiments (Section 4). In fact, these results are several times smaller
than those derived from positional strategies.

2 Safety Games and Strategies

In this work, we consider safety games on deterministic edge-labeled arenas
where the edge labels, or actions, are picked from some alphabet Σ. Formally,
such an arena is a tuple A = (V0, V1, E) where the set V0 of Player 0 vertices
(drawn as circles) and the set V1 of Player 1 vertices (drawn as squares) form
a partition of the finite set V = V0 ·∪ V1 of all vertices, and E ⊆ V × Σ × V
is a directed, deterministic, Σ-labeled edge relation such that (v, a, v′) ∈ E and
(v, a, v′′) ∈ E implies v′ = v′′. Moreover, to avoid dealing with finite plays, we
require that all vertices have at least one outgoing edge.

A safety game G = (A, F ) consists of an arena A and a set F ⊆ V of safe
vertices. It is played by two players, Player 0 and Player 1, as follows: a token
is placed on some initial vertex v0 and, depending on whether v0 ∈ V0 or v0 ∈
V1, the corresponding player chooses an edge (v0, a0, v1) ∈ E and the token is
moved to vertex v1. This process is then repeated ad infinitum and results in
an infinite sequence ρv0 = a0a1 . . . ∈ Σω of actions, which we call a play. Since
A is deterministic, each play uniquely induces a path π(ρv0 ) = v0v1 . . . ∈ V ω.
However, the converse is not true: there may be distinct plays (even starting in
the same initial vertex) that induce the same path. We write G : v0

w−→ v, if there
exists a finite play prefix w = a0 . . . an ∈ Σ∗ such that π(w) = v0 . . . vn+1 with
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vn+1 = v. A play ρv0 is called winning for Player 0 if π(ρv0 ) stays inside the set
of safe vertices, i.e., vi ∈ F for all i ∈ N. If a play is not winning for Player 0,
then it is winning for Player 1. Moreover, we define that a player loses if he picks
in one of his vertices an action for which no outgoing edge exists. Note that a
play itself does not carry the information in which vertex it starts. Hence, we
write ρv0 to indicate that the play starts in v0. If the initial vertex is clear from
the context, we often omit the subscript v0.

A strategy for Player i, i ∈ {0, 1}, is a partial mapping f : Σ∗ → Σ that
maps a finite play prefix w ∈ Σ∗ leading to a vertex v ∈ Vi to an action a ∈ Σ
with (v, a, v′) ∈ E. Intuitively, a strategy tells a player how to continue a play
whenever it is his turn. A strategy is called a winning strategy from vertex v0

if all plays starting in v0 and played according to f are winning for Player i.
The set of all vertices from which Player i has a winning strategy is called the
winning region of Player i and is denoted by Wi ⊆ V . Since safety games are
determined, the winning region of Player 1 − i is W1−i = V \Wi (cf. [7]).

Computing winning regions and winning strategies in safety games can be
done using a straight-forward fixed-point computation: starting with the set
U0 = F , we remove from a set Ui all vertices v ∈ V0 that do not have an edge
(v, a, v′) ∈ E with v′ ∈ Ui. Moreover, we remove all vertices v ∈ V1 that have
an edge (v, a, v′) ∈ E with v′ 	∈ Ui. Since V is finite, this process terminates
after at most |V | steps and we obtain W0 = U|V |. A possible winning strategy
for Player 0 simply picks for a vertex v ∈ W0 ∩ V0 some action a ∈ Σ such
that there exists an edge (v, a, v′) ∈ E with v′ ∈ W0. The described fixed-point
computation can be done efficiently in time and space linear in |E|. The winning
region and a winning strategy for Player 1 can be computed using a similar
fixed-point algorithm, e.g., as described in [7].

Since determining the winning region of both players can be done efficiently,
and we are interested in finding small strategies, we concentrate on computing
strategies for Player 0 and fix an initial vertex v0 ∈ W0 for the rest of this paper.

Representation of Strategies. The sketched fixed-point algorithm shows that
both players can win (in their winning regions) using strategies that do not
depend on the history of the play, but only on the current vertex the play
has reached. Such strategies are called positional (or sometimes “memoryless”).
However, a device (e.g., a controller or a program) that realizes a positional
winning strategy needs to keep track of the current vertex a play has reached. A
common way to do so is to use the arena A and delete all edges leaving Player 0
vertices that are not picked by the strategy. In fact, it is already enough to keep
the part of this restricted arena that can still be reached from v0. For a positional
strategy f , we denote this part as Af and call it a representation of f .

Our approach in this work is to encode winning strategies (not necessarily
positional ones) differently in terms of finite automata. As we show later (cf.
Section 4), this often allows us to find small representations. A deterministic
finite automaton A = (Q,Σ, q0, δ, FA) is defined in the usual way: Q is a finite
set of states, Σ is the input alphabet, q0 ∈ Q is the initial state, δ : Q×Σ → Q is
the transition function, and FA ⊆ Q is the set of final states. A run of A on some
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input w = a0 . . . an ∈ Σ∗ is a sequence q0 . . . qn+1 such that δ(qi, ai) = qi+1

for i ∈ {1, . . . , n}; we then write A : q0
w−→ qn+1. A word w is accepted by A

if A : q0
w−→ qn+1 and qn+1 ∈ FA. The language accepted by A is defined as

L(A) = {w ∈ Σ∗ | w is accepted by A}. A language L is called regular if there
exists a deterministic finite automaton A such that L = L(A). We define the
size |A| of an automaton A as |Q|, i.e., the number of its states.

Our encoding of strategies works as follows: for a fixed initial vertex v0 ∈ W0,
a strategy f induces a set of plays, which is generated by the different choices of
Player 1. If f is positional (or a finite memory strategy, e.g., defined in [7]), then
the corresponding set of finite play prefixes is regular. Conversely, the following
definition characterizes when a regular language realizes a winning strategy.

Definition 1. A finite automaton A = (Q,Σ, q0, δ, FA) realizes a winning strat-
egy for Player 0 in the safety game G = (A, F ) from vertex v0 if it fulfills the
following properties:

1. L(A) is prefix closed, i.e., for a0 . . . an ∈ L(A) also a0 . . . an−1 ∈ L(A) holds,
and ε ∈ L(A).

2. For all w ∈ L(A) with G : v0
w−→ v the condition v ∈ F holds.

3. For all w ∈ L(A) with G : v0
w−→ v, v ∈ V0 there exists (v, a, v′) ∈ E such

that wa ∈ L(A).
4. For all w ∈ L(A) with G : v0

w−→ v, v ∈ V0 there exists no a ∈ Σ such that
wa ∈ L(A) and (v, a, v′) 	∈ E for all v′ ∈ V .

5. For all w ∈ L(A) with G : v0
w−→ v, v ∈ V1 and for all (v, a, v′) ∈ E the

condition wa ∈ L(A) is satisfied.

If a finite automaton A satisfies Definition 1, we call A a strategy automaton. In
fact, a strategy automaton does not necessarily realize a unique strategy as it
may allow more than one choice in Player 0 vertices. A derived strategy fA then
looks as follows: let w ∈ L(A) such that G : v0

w−→ v, v ∈ V0. Then, fA(w) = a
for an arbitrary but fixed a ∈ Σ such that wa ∈ L(A). Due to condition 3 of
Definition 1, such a symbol always exists, but may not be unique. Let us show
that fA is in fact a winning strategy for Player 0.

Proof. An induction over the length of a play prefix w using conditions 2 to 5
of Definition 1 shows that if w is played according to fA, then w ∈ L(A). In
particular, whenever a play reaches a vertex v ∈ V0, Player 0 can pick an action
a ∈ Σ such that wa ∈ L(A). Since all finite plays w ∈ L(A) stay inside F (cf.
condition 2) and ε ∈ L(A) (cf. condition 1), Player 0 can in fact win from v0. !"
Note that Definition 1 is sound: for any safety game G (with finitely many
vertices) and an initial vertex v0 ∈ W0 one can construct an automaton realizing
a winning strategy in G from v0 in a straight-forward manner: we use the set W0

itself as states of the automaton (together with a new sink state qs) and the edges
restricted to W0 as transitions. The resulting automaton AG = (Q,Σ, q0, δ, FAG )
is called canonical strategy automaton and is defined as follows: Q = W0 ·∪ {qs},
q0 = v0, FAG = W0, and δ(v, a) = v′ ⇔ v, v′ ∈ W0 and (v, a, v′) ∈ E as well
as δ(q, a) = qs in any other case. It is not hard to verify that AG is in fact a
strategy automaton since it accepts exactly the finite prefixes of winning plays.
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Size of Strategies. In order to compare positional strategies and strategies
realized by strategy automata, we need a proper measure. For this purpose we
define the size of a strategy in the following way.

Definition 2. The size of a positional strategy f is the number of vertices in
the restricted arena Af (cf. page 308), denoted by |Af |. The size of a strategy
realized by a strategy automaton A is |A|, i.e., the number of A’s states.

At this point we should note that for some special cases, e.g., if V0 = ∅ or if the
game has very few edges, Definition 2 may be too coarse. In the first case, |Af |
may be too large to correctly reflect the the amount of memory actually needed
to realize a positional strategy. In the latter case, Af also has very few edges,
whereas in strategy automata for every action a transition is defined. However,
besides these very special cases and for all experiments shown later, we claim
that size as defined above is a reasonable measure to compare strategies.

In the sense of Definition 2, strategy automata can be very compact repre-
sentations of strategies. For instance, consider the following family of safety
games (Gn)n∈N

over Σ = {a, b}, which is depicted in Figure 1: for n ∈ N
let Gn = (V n

0 , V
n
1 , En, Fn) be a safety game with V n

0 = {1, . . . , n}, V n
1 = ∅,

En = {(i, a, (i + 1 mod n) + 1) | 1 ≤ i ≤ n} ∪ {(n, b, 1)}, and Fn = V n
0 . Since

all vertices are safe, W0 = V 0
n holds.

1 2 n
a a

a, b

Fig. 1. The safety game Gn

a

b

a, b

Fig. 2. A strategy automaton realizing
a winning strategy in Gn

Now, consider a positional strategy f . Such a strategy picks in every vertex
an action that leads to the unique successor vertex. Hence, Af covers the whole
arena and we have |Af | = |V n

0 | = n. However, for all n ∈ N, the automaton
depicted in Figure 2 is a strategy automaton for any v0 ∈ V n

0 . In contrast to Af ,
this automaton always has the same constant size. Clearly, in this example the
realization of a positional strategy suffers from the fact that it exactly remembers
which vertex a play has reached. This is of course superfluous in this example,
and there are ways to minimize Af once it is computed (cf. Section 4). However,
it is unclear how a small positional strategy can be computed in general.

Minimal Strategy Automata. As we show later (cf. Section 3.1), checking
whether a given automaton A is a strategy automaton (i.e., satisfies Definition 1)
can be done in polynomial time. However, the decision problem “Given a safety
game G, v0 ∈ V and k ∈ N. Does a strategy automaton with at most k states that
realizes a winning strategy from v0 exist?” is NP-complete. Thus, constructing
a minimal strategy automaton is a computationally hard task.



Small Strategies for Safety Games 311

To prove the NP-hardness of this decision problem, we define a reduction from
3-SAT (satisfiability of Boolean formulae, cf. [12]), which is a simplified version
of a reduction shown in [5]. In fact, the NP-hardness follows from results of an
extended, but not published version of [5], but since this results are unavailable,
we decided to show our reduction. Kupferman et al. [10] study a similar problem
in the context of bounded synthesis, but their results cannot be transfered easily
to our setting.

Our reduction works as follows: from a 3-SAT formula ϕ, we construct a
polynomial-size safety game Gϕ such that there exists a “small” strategy au-
tomaton realizing a winning strategy if and only if ϕ is satisfiable. Let us il-
lustrate this with the example depicted in Figure 3. We consider the formula
ϕ := (¬x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ ¬x4), which consists of
m = 3 clauses and n = 4 variables. The resulting safety game Gϕ is shown in
Figure 3. All but the gray-shaded vertices belong to F . The idea is as follows: the
game consists of one sub-graph per clause. In each sub-graph, Player 0 can win by
moving along a {0, 1}-labeled path (followed by ⊥ω) that avoids the gray-shaded
vertex. Such a path corresponds to an evaluation of the variables x1, . . . , xn that
satisfies the clause: the first move assigns a value to x1, the second to x2, etc.

v0

0

1

2

1
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Fig. 3. Safety game Gϕ for the formula ϕ := (¬x1 ∨
¬x2 ∨x3)∧ (x1 ∨¬x3 ∨x4)∧ (¬x1 ∨x2 ∨¬x4). All but
the gray-shaded vertices belong to F .

0,1,2

1

0

0

0
⊥

Fig. 4. An automaton (with
dotted sink state) realizing a
winning strategy for Player 0
from v0

Now, if ϕ is satisfiable, then there exists an interpretation of the variables that
satisfies all clauses. From this interpretation we can derive a strategy automaton
with at most n + 3 states (cf. Figure 4) that, no matter what edge Player 1
chooses in v0, avoids the gray-shaded vertices. Contrary, if ϕ is unsatisfiable,
then there are at least two sub-graphs in which Player 0 needs to follow distinct
paths to avoid the gray-shaded vertices. However, an automaton realizing such
a winning strategy needs strictly more than n + 3 states.

The following lemma states this idea formally and shows that the decision
problem from above is NP-hard.
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Lemma 1. Let ϕ be a 3-SAT formula ranging over n variables. Then, there
exists a strategy automaton A = (Q,Σ, q0, δ, FA) with |Q| = n+3 states realizing
a winning strategy for Player 0 in the safety game Gϕ from vertex v0 if ϕ is
satisfiable. If ϕ is unsatisfiable, then any such strategy automaton has strictly
more that n+ 3 states.

Beyond that, the results from the extended version of [5] show that the NP-
hardness still holds for safety games with only one player (so-called solitary
games) over an alphabet Σ with |Σ| = 2. A nondeterministic algorithm that
guesses an automaton for a given safety game and verifies in polynomial time
that the guessed automaton is a strategy automaton (cf. Section 3.1) proves that
the decision problem is in fact NP-complete.

3 Learning Small Strategies

In the following we present our learning-based algorithm to compute strategy
automata for safety games. Our algorithm is based on the active learning frame-
work, which has been introduced by Angluin in [1]. In this setting, a learner
wants to learn a regular target language L ⊆ Σ∗ over an a priori fixed alphabet
Σ in interaction with a teacher. In order to do so, the learner is allowed to pose
two different types of queries to the teacher. The first type is called a membership
query, in which the learner presents the teacher an arbitrary word w ∈ Σ∗. The
teacher then checks whether w ∈ L and replies either “yes” or “no”.

The second type of query is called equivalence query. There, the learner pro-
poses a conjecture, typically given as an automaton A, and the teacher checks
whether L = L(A). If L(A) equals L, then the teacher replies “yes”. If this is not
the case, the teacher has to provide a counter-example w ∈ L \ L(A) ∪ L(A) \L
as a witness that L and L(A) are different.

Angluin showed in [1] that every regular language can be learned efficiently,
i.e., in time polynomial in the size of the minimal automaton accepting L and
the length of the longest counter-example replied by the teacher. Afterwards,
this result has been improved, e.g., in [13] and [9].

All these algorithms have in common that they produce conjectures of in-
creasing size during the learning process. Our algorithm exploits this fact and
works as shown in Algorithm 1.

At the latest, Algorithm 1 terminates once L(AG) has been learned. However,
one of the conjectures produced during the learning process may already be a

Algorithm 1. Learning algorithm for strategy automata
1 For a given safety game G and initial vertex v0 we compute W0 (cf. Section 2)

and construct the canonical strategy automaton AG .

2 We construct a teacher for the language L(AG).

3 We run a learning algorithm of our choice and terminate the learning process as
soon as a conjecture realizes a winning strategy in G from v0.
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valid strategy automaton. In this case we terminate the learning process early
and return this conjecture. Since the learning algorithm produces conjectures of
increasing size, the resulting automaton has as most as many states as AG has
but can be much smaller.

However, the quality of the results of our algorithm mainly depends on two
aspects: the choice of the learning algorithm and how counter-examples are com-
puted by the teacher. As it turns out in our experiments, the standard algorithms
(i.e., the algorithms described in [1], [13] and [9]) often produce conjectures that
are either large or do not satisfy Definition 1 (i.e., do not encode a winning strat-
egy). Therefore, in Section 3.2 we develop an improved version of Kearns and
Vazirani’s learning algorithm [9], which circumvents some on the problems and
yields better results in our experiments. The question how to compute “useful”
counter-examples is beyond the scope of this paper since it largely depends on
domain-specific characteristics of a game. However, in Section 3.1 we present a
teacher capable of answering both types of queries in a generic way.

3.1 A Teacher for Strategy Automata

Our teacher is not designed to teach exactly the language L(AG). Instead, it uses
AG only to answer membership queries, i.e., to “guide” the learner to come up
with a conjecture realizing a winning strategy. The teacher answers equivalence
queries by checking whether the proposed conjecture realizes a winning strategy.
If this is not the case, it uses AG and the arena A to obtain a counter-example.

Answering Membership Queries. Based on the automaton AG , answering
membership queries is straight-forward. For a word w ∈ Σ∗ the teacher simulates
the run of AG on w and returns “yes” or “no”, depending on whether w ∈ L(AG).

Answering Equivalence Queries. On equivalence queries, the learner pro-
poses a conjecture A = (Q,Σ, q0, δ, FA) and the teacher needs to check whether A
is a strategy automaton, i.e., whether it satisfies Definition 1. First, we check for
ε ∈ L(A) (cf. condition 1). If this is not the case, we return ε as counter-example.

Then, we verify that L(A) is prefix closed (cf. condition 1). L(A) is not prefix
closed if there are words w 	∈ L(A) and wa ∈ L(A). We can find such words by
searching for states q, q′ ∈ Q (both reachable from q0) such that δ(q, a) = q′ for
some a ∈ Σ and q 	∈ F , q′ ∈ F . Since L(AG) is prefix closed, either w or wa is
classified incorrectly by the conjecture. We can check which one by simulating
AG on both w and wa and return the respective word as counter-example.

Finally, to verify conditions 2 to 5, we construct the product A × A of the
arena A and the conjecture A. The product A × A = (Q′, Σ, q′0, δ

′, FA×A) is
again a finite automaton formally given as follows: Q′ = (V ·∪ {vs}) × Q (vs is
a new sink vertex), FA×A is unimportant and can be chosen arbitrarily, and for
all a ∈ Σ we define δ′((v, q), a) = (v′, δ(q, a)) if a (unique) v′ with (v, a, v′) ∈ E
exists, or δ′((v, q), a) = (vs, δ(q, a)) otherwise. Moreover, δ′((vs, q), a) = (vs, q)
for all a ∈ Σ and q ∈ Q. Note that whenever there is no edge (v, a, v′) in E, the
transition δ′((v, q), a) in the product points to a sink state (vs, q).
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Starting in q′0, we now perform a breadth-first search. For each state of the
product reached during the search, we can check whether one of the conditions 2
to 5 is violated. Once a violation is detected, a word reaching the state in question
is used to derive a counter-example, which is then returned. If no violation is
found, the search terminates after visiting all states in the product. In this case,
the conjecture realizes a winning strategy and we return “yes”.

Runtime of the Teacher. To construct the teacher, we first need to construct
the automaton AG . Using the fixed point algorithm described in Section 2, this
can be done in time linear in |E| ∈ O(|V | · |Σ|). The automaton AG has size
|W0| + 1 ∈ O(V ).

Once the teacher is constructed, answering membership queries can be done
in time |w| if w is the query asked.

The time needed to answer equivalence queries is dominated by the construc-
tion of A×A and the following depth-first search. The product has size |V | · |Q|
and a depth-first search is linear in the size of the product. If necessary, a counter-
example can be computed on-the-fly and its length can be bounded by |A ×A|.
Hence, answering equivalence queries, i.e., checking whether an automaton is a
strategy automaton, can be done in time O(|V | · |Q|).

3.2 An Improved Learning Algorithm

The original learning algorithms (i.e., [1], [13] and [9]) have in common that, once
a new state of the automaton to learn is discovered, all outgoing transitions
of this state are examined. In our setting, this behavior is often undesirable.
For instance, consider a finite prefix w of a winning play that reaches a vertex
v ∈ V0 and has the run A : q0

w−→ q on a conjecture. In this circumstance, one
outgoing transition from q would suffice, but the original algorithms examine
all transitions. This means that not only one way to successfully play on is
considered, but all. As a result, often the automaton AG is learned.

In order to circumvent this issue, we develop an improvement of Kearns and
Vazirani’s algorithm [9] that learns so-called incompletely specified finite au-
tomata. In such automata, not every transition needs to be defined, i.e., the
transition function δ is a partial mapping δ : Q×Σ → Q. If there is no run of A
on some input u, then we define that A rejects u. In essence, our modification
works as the original algorithm, but additionally maintains a set Δ of defined
transitions along with the data gathered in the learning process. Every time a
conjecture is produced, the algorithm only creates transitions contained in Δ.

For the remaining section, let L be a regular language (the target language)
over a fixed alphabet Σ and AL = (QL, Σ, q

L
0 , δL, FL) the minimal automaton

accepting L. We assume L 	= ∅ and L 	= Σ∗ since both special cases can be cov-
ered by equivalence queries with the corresponding trivial one-state automata.

As the original algorithm, our algorithm organizes its data in sets S,D ⊆ Σ∗.
Moreover, it maintains a set Δ ⊆ S×Σ. The set S consists of access strings that
are used to identify the states of AL: each u ∈ S corresponds to the unique state
q ∈ QL that AL reaches on reading u. The learner makes sure that all access
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strings are distinct in the sense that there are no two access strings in S that
lead to the same state of AL, thus, preserving |S| ≤ |QL|. The set D contains
distinguishing strings that are used to witness that two access string in fact lead
to different states. Formally, this means that for each two u 	= u′ ∈ S there is
a v ∈ D such that uv ∈ L ⇔ u′v 	∈ L. Finally, the set Δ ⊆ S × Σ is the set of
defined transitions and determines which transition are existing in a conjecture.

The learner organizes S and D in a binary tree called a classification tree
t(D,S). The inner nodes are the strings from D while the leaf nodes are the
strings from S. The idea is to place some distinguishing string v ∈ D at the
root and partition all access string u ∈ S depending on whether uv ∈ L or not;
the access string with uv ∈ L are put in the right subtree while all others are
put in the left subtree. This procedure is recursively repeated at each subtree
until all access string are put in their own leaf node. In this way, each two access
strings u 	= u′ are distinguished by their least common ancestor. Finally, the
learner guarantees that ε is the root node, i.e., final and non-final states are
distinguished, and that ε ∈ S, i.e., the initial state of AL is always accessible.
Starting with an initial classification tree, the learner grows the tree in a non-
trivial manner preserving the properties mentioned above.

From a given classification tree t(D,S), we can derive a finite automaton
At = (Qt, Σ, q

t
0, δt, Ft). Since access strings are meant to identify states of AL,

we set Qt = S. Final states are exactly those access strings u ∈ S that are
located in the right subtree of the root node ε, i.e., for which u · ε ∈ L holds.
Finally, the initial state is qt

0 = ε.
In contrast to the original algorithm, in our modification a transition δt(u, a)

of At is only defined if (u, a) ∈ Δ. If a transition is defined, then it is derived by
a so-called sifting operation. Suppose that we want to know the destination of
an a-transition from state u ∈ S. Clearly, this destination should have the same
“behavior” (with respect to the distinguishing strings) as ua has. Such an access
string can be derived by sifting ua down t: we start at the root node ε and at an
inner node labeled with a distinguishing string v we descend either right or left
depending on whether uav ∈ L or not. This step is repeated recursively until a
leaf node u′ ∈ S is reached. We can perform such a sifting operation efficiently
using membership queries and write sift(u) = u′ if u′ is the leaf node reached by
sifting u down t. Then, the transitions of At are defined by δt(u, a) = sift(ua)
for all (u, a) ∈ Δ. It may happen that not all access strings are reachable from
ε. In this case, we drop all non-reachable states from Qt.

Figure 5 sketches the learning algorithm. First, we initialize the tree t with
D = {ε} and S = {ε, w} for some w ∈ L ⇔ ε /∈ L. Since L 	= ∅ and L 	= Σ∗

Initialize t Build At L(At) = L?

Equivalence
query on At

Return At
Yes

Process w

No, counter-example wSplit t or
add transition

Fig. 5. The modified Kearns & Vazirani learning algorithm
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such a word is returned on an equivalence query with an automaton accepting
Σ∗. Then, we repeatedly build At, ask an equivalence query on At, and process
a potential counter-example until an automaton accepting L is learned.

As long as |S| < |QL| the automaton At is necessarily different from AL and
an equivalence query on At will return a counter-example w = a1 . . . an such
that w ∈ L ⇔ w 	∈ L(At). We can use this counter-example to identify either a
new state of AL and, thus, a new access string, or a missing transition.

For a given counter-example w = a1 . . . an, we search for the smallest index
i ∈ {1, . . . , n} such that either At : q0

a1...ai−−−−→ ui and sift(a1 . . . ai) = u′i with
ui 	= u′i, or At : q0

a1...ai−−−−→ ui and δt(ui, ai+1) is undefined. In the first case, by
the choice of i, this means that the state At reaches on reading a1 . . . ai−1 is
sift(a1 . . . ai−1) = ui−1, but a1 . . . ai−1 is in fact a new access string that should
be distinguished from any other access string. Moreover, the string aiv, where
v is some distinguishing string for ui and u′i, distinguishes a1 . . . ai−1 and ui−1.
To reflect this new knowledge, we update t and replace the leaf node ui−1 by
an inner node aiv and two new leaf nodes ui−1 and a1 . . . ai−1. This update is
performed efficiently using membership queries. Finally, we set Δ := ∅. In the
second case, we add the pair (ui, ai+1) to Δ. Note that the transition δt(ui, ai+1)
is in fact needed, since At rejects w, but w has to be accepted.

The learning terminates as soon as an equivalence query on At indicates that
L(At) = L. Hence, it is enough to show that our learner terminates eventually.
Let us first argue that for every counter-example w = a1 . . . an there is an index
i ∈ {1, . . . , n} such that either At : q0

a1...ai−−−−→ ui and sift(a1 . . . ai) = u′i with
ui 	= u′i, or At : q0

a1...ai−−−−→ ui and δt(ui, ai+1) is undefined. To see that, suppose
that no such index exists. Then, we have At : q0

w−→ u (since all transitions used
are defined) and sift(w) = u. In particular, this means that u ·ε ∈ L ⇔ w ·ε ∈ L.
By definition of Ft, we know that u ∈ Ft ⇔ u · ε ∈ L ⇔ w = w · ε ∈ L. Hence,
w ∈ L(At) ⇔ w ∈ L, which yields a contradiction since w is a counter-example.

Every time a counter-example is processed, the learner makes progress. Either
a new access string is inserted into S, i.e., |S| increases by one, or a new transition
is added and |Δ| increases by one. Moreover, we know that |S| is bounded by
|QL| and |Δ| ≤ |S × Σ|. Hence, the learner terminates eventually and returns
an automaton At with L(At) = L. During the learning process the learner asks
O(|QL|2 · |Σ|) equivalence queries and O(|QL| ·m · log |QL|+ |Σ| · |QL| · log |QL|)
membership queries, where m is the length of the longest counter-example.

As in Kearns and Vazirani’s original algorithm, on termination the automa-
ton At has the least number of states among all deterministic finite automata
recognizing L. This is due to the fact that all deterministic finite automata recog-
nizing L need at last |QL| many states. Moreover, among all minimal automata
it has the least number of transitions. Note that the presented algorithm not only
works in our particular setting, but can be used to learn every regular languages.

3.3 Main Result

Let us conclude Section 3 by stating the main result of this work.
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Theorem 1. Let G = (A, F ) be a safety game with arena A. Then, for each
v0 ∈ W0 a strategy automaton A realizing a winning strategy for Player 0 in G
from v0 can be learned in polynomial time such that |A| ≤ |W0| + 1 ≤ |V | + 1.

As described above, our algorithm terminates at the latest once the automaton
AG is learned. Thus, |A| ≤ |AG | ≤ |W0| + 1 ≤ |V | + 1. Moreover, if we plug
in our modified learning algorithm, then the algorithm asks at most O(|V |2 ·
|Σ|) equivalence queries and O(|V | ·m · log |V | + |Σ| · |V | · log |V |) membership
queries; again m denotes the length of the longest counter-example returned
on an equivalence query. If we use a breadth-first search to answer equivalence
queries, then we can compute the shortest counter-example, whose length can
be bounded by |A × AG | ≤ |V |2. Moreover, note that Theorem 1 still holds for
any other learning algorithm that learns a regular language in polynomial time.

4 Experiments

We have implemented a proof-of-concept of Algorithm 1 in C++ using the
libalf automata learning framework [4]. For general automata related oper-
ations, we use the AMoRE(++) library [4]. All experiments were run on an Intel
Q9550 quad core processor with 4 GB of RAM. However, our implementation
is not parallelized (hence, only uses one core) and no experiment consumed
more than approximately 200 MB of RAM. Since almost all experiments fin-
ished within less than five minutes, we decided not to impose any timeout limit.

The general experimental setup was always the same: we constructed safety
games G over Σ = {0, . . . , n} and compared the size of the winning region W0,
the size of minimized automaton AG (denoted by Amin

G ), the size of the automaton
A∗

KV learned using our modified version of Kearns and Vazirani’s algorithm, and
the size of a positional strategy Af . For the latter, we have implemented an
algorithm that computes a positional strategy using a fixed-point computation
and then picks for every Player 0 vertex the smallest action (for the natural order
on Σ) that stays inside his winning region. Once this is done, we compute Af ,
interpret it as finite automaton, and minimize it. The result is denoted by Amin

f .
In the following, results of Algorithm 1 using Kearns and Vazirani’s original
algorithm are not shown because in most cases the automaton AG was learned.

An Artificial Example. Let us first present an example designed to show
that our algorithm finds small solutions whereas all other described approaches
necessarily produce larger ones. Hence, consider the safety game G
 over Σ =
{0, 1} depicted in Figure 6. The idea of the game is as follows: starting from v0,
Player 1 chooses two bits b1, b2 ∈ {0, 1}. Afterwards, Player 0 needs to avoid
the vertex vs. He can do so by choosing the actions a0 = 1, a1 ∈ {b1, 1}, and
a2 ∈ {b2, 1} one after the other ad infinitum. Hence, W0 = V \ {vs}.

Since Player 1 can decide which part of the arena a play reaches, all positional
strategies f necessarily cover the whole arena (except for the vertex vs). Thus,
|Af | = |V | − 1. Moreover, the game is designed such that both Amin

f and the
minimal automaton Amin

G	 also have size |V | − 1. However, the result of our
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Fig. 6. The safety game G�. All but the gray shaded ver-
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algorithm using the improved version of Kearns and Vazirani’s algorithm, which
is depicted in Figure 7, has only size 4.

The idea of the game G
 can be generalized: instead of only two bits, Player 1
chooses n bits b1, . . . , bn ∈ {0, 1} and in order to win, Player 0 needs to choose
actions a0 = 1, a1 ∈ {b1, 1} to an ∈ {bn, 1} ad infinitum. Again, Amin

f and Amin
G	

have size |V |−1 whereas our experiments show that up to n = 20 the automaton
A∗

KV has the same structure as shown in Figure 7 and comprises O(log |V |) states
(note that the number of vertices of G
 grows exponentially in n).

Experiments on Random Graphs. To benchmark our algorithm on more
natural games, we implemented a random game generator. This generator pro-
duces safety games that are structurally similar to systems that arise when com-
posing several subsystems. More precisely, our generator produces games over
the alphabet Σ = {0, . . . ,m} and works as follows. In the first step, it creates
c “components”, each of which consist of n vertices. In each component, the
vertices have one outgoing edge pointing into their own component, and the
generator makes sure that each component is strongly connected. All vertices
belong to F , and with a probability of p0 a vertex belongs to V0. Then, the
generator inserts a safe and an unsafe sink. In the second step, the generator
creates additional edges. With a probability of a an edge points to a sink (to
the unsafe sink if the source of the edge is a Player 0 vertex, or to the safe sink
otherwise), and with a probability of b an edge points to a vertex that lies in-
side another component. In all other cases, an edge points to a vertex inside the
same component. The initial vertex is chosen uniform randomly from all vertices
inside W0.

Figures 8 and 9 show the results of our experiments. In both cases, we fixed
Σ = {0, 1, 2}, p0 = 0.5, a = 0.1, and b = 0.2. For Series 1 of experiments
(Figure 8), we fixed the number of component c = 5 and varied the size of the
components n. For Series 2 (Figure 9), we fixed n = 25 and varied c. For each
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Fig. 9. Results of Series 2 (c varies; n = 25, p0 = 0.5, a = 0.1, and b = 0.2)

combination, we generated 1000 games and averaged the results. Thus, each data
point in the charts corresponds to the arithmetic mean of 1000 experiments.

The figures show |W0| as a point of reference. In both series, positional strate-
gies do on average not cover the whole arena, but are larger than automata based
strategies. In Series 1, positional strategies are approximately 4.2 times larger
than automata based strategies. In Series 2, automata based strategies are even
of constant size (|Amin

G | ≈ 27, |A∗
KV| ≈ 21.5) whereas positional strategies grow

with the number of components. In both series, our algorithm often succeeded
in learning strategy automata smaller than Amin

G
Finally, let us emphasize two observation: first, in both series automata based

strategies outperform positional strategies significantly. Second, our learning
based approach together with the modified Kearns and Vazirani’s algorithm
computes the smallest strategies in our experiments.

5 Conclusion

In this work we have considered the task of computing small winning strategies
for safety games and have presented a polynomial time algorithm based on au-
tomata learning. Since computing minimal strategies in this setting is hard, our



320 D. Neider

algorithm is a heuristic, which, however, yields good results compared to posi-
tional winning strategies. To improve the quality of our results, we have devel-
oped a domain-specific modification of Kearns and Vazirani’s learning algorithm.

However, our modification does not yet exploit that the target languages in
our setting are prefix-closed, and besides straight-forward filter operations on
membership queries (e.g., do not ask queries for prefixes of accepting words),
it is not clear how an intelligent learning algorithm for prefix-closed languages
should be designed. Since prefix-closed languages occur not only in this particular
setting, a an optimized learning algorithm would be of general interest.

Finally, we would like to apply the idea of learning winning strategies to games
with more complex winning condition such as Büchi, Muller or parity conditions.
Thereto, it would be necessary to develop efficient algorithms capable of learning
languages of infinite words.
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Abstract. The LTL Model Checking problem is reducible to finding
accepting cycles in a graph. The Nested Depth-First Search (Ndfs) al-
gorithm detects accepting cycles efficiently: on-the-fly, with linear-time
complexity and negligible memory overhead. The only downside of the al-
gorithm is that it relies on an inherently-sequential, depth-first search. It
has not been parallelized beyond running the independent nested search
in a separate thread (dual core).

In this paper, we introduce, for the first time, a multi-core Ndfs
algorithm that can scale beyond two threads, while maintaining exactly
the same worst-case time complexity. We prove this algorithm correct,
and present experimental results obtained with an implementation in the
LTSmin tool set on the entire Beem benchmark database. We measured
considerable speedups compared to the current state of the art in parallel
cycle detection algorithms.

1 Introduction

Moore’s Law [18] states that the number of transistors that can be placed inex-
pensively on an integrated circuit doubles approximately every two years. Since
several years, though, the law no longer relates to the processing speed, while
it still relates to the memory capacity of computer hardware. In order to miti-
gate the declining increase of processing speed, hardware developers have opted
for so-called multi-core architectures, where multiple cores exist on a processing
unit. However, for many algorithms where the main bottleneck was traditionally
memory related, a shift to speed related issues can be observed, since these al-
gorithms do not automatically run faster on a multi-core machine. Instead, the
introduction of multi-core machines demands a redesign of those algorithms.

This also holds for Model Checking (MC) algorithms; typically, in order to
fully verify whether a system specification adheres to a given temporal property,
an MC algorithm needs to store the entire so-called state space in memory. A
state space is a directed graph which explicitly describes all potential behavior
of the system specification. Recent observations [2] support that research should
be focused on achieving faster MC; currently, memory capacity of the latest
hardware allows the analysis of very large state spaces, but the required time to
do so is often impractically long.
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One advanced MC task is the verification of full Linear Temporal Logic (LTL)
properties [1]. LTL can be subdivided into two classes of properties: safety prop-
erties, e.g. “nothing bad ever happens”, and liveness properties, e.g. “eventually
something good happens”. While safety properties can be handled with so-called
reachability, which entails visiting all states in the state space reachable from
the initial state, liveness properties require a more complicated analysis.

An algorithm introduced by Courcoubetis et al. [5], often referred to as Nested
Depth-First Search (Ndfs), is particularly useful for checking liveness properties.
It has a linear time-complexity and runs on-the-fly, i.e. without the need to
generate the whole state space, and requires only two bits per state [21].

While reachability has been parallelized efficiently [16], a linear-time multi-
core LTL MC algorithm was still unknown. Ndfs cannot trivially be adapted to a
multi-core setting, since it relies on depth-first search (Dfs), which is inherently
sequential [20]. And even though many other parallel LTL MC algorithms have
been introduced over the course of years, none of them exhibits a worst-case
linear-time complexity (or even O(n× log(n)), with n the number of states) and
the complete on-the-fly property [2, 3, 4].

Recent developments, which we group here under the term Swarm Verification
(SV) [13, 14], have introduced new Dfs-based techniques [6, 22] to perform MC
tasks in parallel. Although mainly targeted at distributed-memory settings, in
which multiple machines are employed, SV can trivially be used on a multi-core,
i.e., shared-memory, machine as well. However, when doing so, the fact that the
memory is shared is obviously not exploited.

In this paper, we first propose SV-based multi-core Ndfs with shared state
storage. While this speeds up cycle detection significantly, in the absence of
accepting cycles each core still has to traverse the complete state space. Next,
we introduce a fine-grained and basic sharing mechanism between threads. Even
though parallel search may endanger the correctness of a multi-core Ndfs by
breaking the post-order, we prove that our algorithm is in fact correct. We
subsequently add several known Ndfs optimizations [21] to the new parallel
setting. Finally, we demonstrate its usefulness in practice by comparing many
experimental results obtained with an implementation of our algorithm with
results obtained with existing parallel LTL MC algorithms.

Contributions. We present the first multi-core on-the-fly LTL model checking
algorithm which is linear-time in the size of the input graph, and has a potential
speedup greater than two. We provide a rigorous proof of its correctness and
many benchmarks. Though the new algorithm does not scale perfectly for all
inputs yet, we still believe to have come one step closer to solving the open
question, put forth by Holzmann et al. and Barnat et al. [4, 12], of finding a
time-optimal, scalable, parallel algorithm for accepting cycle detection.

Next, in Section 2, the preliminaries behind LTL MC are explained. Related
work is discussed in Section 3. We propose a multi-core Ndfs algorithm, prove
its correctness and provide optimizations in Section 4. Section 5 contains a dis-
cussion on the experiments we conducted. Finally, in Section 6, considerations
are addressed, conclusions are drawn and possibilities for future work are given.



Multi-core Nested Depth-First Search 323

2 Background (LTL Model Checking)

LTL MC entails checking that a system under verification P satisfies an LTL
property φ, which may be a liveness property that reasons over infinite traces
of the system (“eventually something good happens”). In order to reason about
this, we first introduce the notion of a Büchi automaton:

Definition 1. A Büchi automaton (BA) is a quadruple B = (S, sI , post,A),
with S a finite set of states, sI the initial state, post : S → 2S the successor
function, and A ⊆ S a set of accepting states.

If for s, t ∈ S, we have t ∈ post(s), then we can also write s → t. The reflexive
transitive closure of → is denoted by →∗, and the transitive closure by →+. We
call s →∗ t and s →+ t paths through B, i.e. sequences of states connected by
the successor function. Sometimes we interpret a path π as a set of states, and
write s ∈ π, meaning that s ∈ S is included in the sequence of states of π. A run
through B is an infinite path starting at sI . Finally, we call a run π accepting if
and only if for infinitely many s ∈ π, we have s ∈ A. Checking the existence of
such a run is called the emptiness problem.

To check an LTL property φ on P , it suffices to solve the emptiness problem
for the product of the state graph GP and the Büchi automaton B¬φ (e.g. [23]).
Here, GP is an explicit representation of all possible behavior of P in the form of a
graph, and B¬φ is the Büchi automaton accepting all infinite paths described by
the negation of φ. A counterexample for φ in B = GP ×B¬φ exists iff there exists
some a ∈ A such that sI →∗ a and a →+ a (i.e. there is an accepting run), where
the latter is called an “accepting cycle”. Hence, solving the emptiness problem
corresponds with determining the reachability of an accepting cycle. The use of a
successor function instead of a transition relation more closely corresponds with
the setting for on-the-fly MC, where the graph structure is unknown in advance.

The first linear-time algorithm to detect accepting runs was proposed by Cour-
coubetis et al. [5] and, today, is often referred to as Ndfs. Over the years, exten-
sions to Ndfs have been proposed in, e.g., [9, 15, 21]. In this paper, we propose
a multi-core Ndfs (Mc-ndfs), which is based on Nndfs from [21]. Alg. 1 most
closely resembles Nndfs from [21] with one minor modification: it does not in-
clude early cycle detection in dfs_blue, for this extension does not contribute to
the understanding of Mc-ndfs.

As in all Ndfs algorithms, nndfs(sI) initiates a Dfs from state sI , here called
the blue Dfs, since explored states are colored blue (note that initially, all states
are white). As is usual, dfs_blue is performed with a stack, and a state is colored
cyan if it is on the stack of dfs_blue. Hence, a newly visited state is first colored
cyan, and after exploration, it is colored blue. At l.16, if the blue Dfs backtracks
over a state s ∈ A, then dfs_red(s) is called, which is a secondary Dfs to
determine whether there exists a cycle containing s. As described in [21], on l.6,
if a successor of s is colored cyan, then an accepting cycle is found, and the
Nndfs exits. Otherwise, for each blue successor, dfs_red is called on l.10. Note
that an accepting state s is colored red only after its red Dfs is finished (l.18).
During its red Dfs it is cyan, hence it can be detected at l.6.
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1 proc nnd f s (sI )
2 dfs_b lue (sI )
3 r epo r t no c y c l e

4 proc dfs_red ( s )
5 f o r a l l t i n pos t ( s ) do
6 i f t . c o l o r=cyan
7 r epo r t c y c l e & e x i t
8 e l s e i f t . c o l o r=b lu e
9 t . c o l o r := r ed

10 dfs_red ( t )

11 proc dfs_b lue ( s )
12 s . c o l o r := cyan
13 f o r a l l t i n pos t ( s ) do
14 i f t . c o l o r=wh i t e
15 dfs_b lue ( t )
16 i f s ∈ A
17 dfs_red ( s )
18 s . c o l o r := r ed
19 e l s e
20 s . c o l o r := b lu e

Alg. 1. An adapted New Ndfs algorithm

Nndfs runs in linear time, since each reachable state is at most visited twice,
once in the blue Dfs and once in a red Dfs. The algorithm is correct due to the
fact that the red Dfss are initiated according to the post-order of the accepting
states imposed by the blue Dfs (i.e. the last visited accepting state is considered
first, the last but one next, etc.), hence an already red state does not need to
be re-explored later in another red Dfs. This intuition is demonstrated with an
abstract proof in [5]. In [9], a standalone correctness proof is given for Nndfs
with early cycle detection and an extension called allred (both are explained in
Section 3). In Section 4.4, we show how these extensions can be introduced in
Mc-ndfs in an elegant and correct way.

3 Related Work

Twoprominent classes of linear-timealgorithms todetect accepting runs are formed
by theNdfs-basedand theStronglyConnectedComponent (Scc)-basedalgorithms.
The performance of both classes of algorithms is known to be similar, up to some
exceptions: Algorithms in the Ndfs class use less memory, while algorithms in the
Scc class tend to find counter-examples faster [9, 10, 21]. Since we propose an
Ndfs-based algorithm, the emphasis here is on related work in the Ndfs class.
Finally, we also discuss breadth-first search (Bfs)-based algorithms.

Ndfs. As mentioned in Section 2, Ndfs was introduced in [5]. There, a correct-
ness proof is given based on the fact that red Dfss are initiated for accepting
states based on the post-order enforced by the blue Dfs. Holzmann et al. [15]
observe that it suffices in a red Dfs to check the reachability of a state currently
on the stack of the blue Dfs, i.e. a state colored cyan in Nndfs, since such a
state can reach the accepting state which initiated the current red Dfs, closing
an accepting cycle.

Schwoon and Esparza [21] combine all of the above extensions and observe
that some combinations of colors can never occur. This allows them to introduce
a two-bit color encoding, also encoding a cyan color for states on the stack of
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the blue Dfs. Finally, Gaiser and Schwoon [9] introduce the allred extension and
give a standalone proof for their Nndfs. The allred extension incorporates an
additional check in the blue Dfs: if all successors of a state s are red, then s
can be colored red as well. This avoids some calls of dfs_red. We will show later
that for our Mc-ndfs, this extension is very useful.

Parallel Ndfs. Holzmann and Bošnački [11] proposed a dual-core Ndfs based
on the observation that a transition initiating a red Dfs is an “irreversible state
transition”, i.e. it splits the state graph. A new thread is launched to handle the
red Dfs. Since both Dfss are still inherently sequential, the number of threads
cannot exceed two, and both potentially have to search the entire state graph.
Courcoubetis et al. already mentioned that the two Dfss could be interleaved.

Prominent model checking approaches primarily aimed at settings with dis-
tributed memory, e.g., when using a cluster or grid, are swarm verification
(SV) [13, 14] and Parallel Randomized DFS [6, 22] (Prdfs). These are so-called
embarrassingly parallel [8] techniques, since the individual workers operate fully
independently, i.e. without communication with the other workers. From here
on, when mentioning SV, we refer to existing SV and Prdfs techniques. Note
that the search direction of a Dfs is determined by the order in which states are
selected for exploration from post(s) (for any s ∈ S), e.g. on l.13 of Alg. 1. In SV,
basically each worker performs a Dfs with a unique ordering of the successor
states. In this way, workers explore different parts of the reachable state graph
first. This method has proven to be very successful for bug-hunting. In the ab-
sence of bugs, though, the graph will be explored N times, with N the number
of workers, since the workers are unaware of each other’s results. Although not
explicitly mentioned before, SV can be performed in a multi-core setting as well
with each worker performing the Ndfs algorithm.

Table 1. Multi-core Bfs-based LTL MC algorithms
and their worst-case time complexity and on-the-fly
property. (T the set of reachable transitions, and h
the height of the Scc quotient graph).

Algorithm Time complexity On-the-fly
Map [2] O(|A|2 · |T |) Heur.
Owcty [4] O(h · |T |) No
Otf_Owcty [4] O(h · (|T | + |S|)) Heur.

Bfs-based methods. Several
other LTL MC methods ex-
ists which are not Dfs-based.
Instead these algorithms rely
on Bfs techniques and are
therefore easier to parallelize,
even in a distributed setting.
On the down side, the linear-
time complexity and on-the-
fly property is often lost.
Tab. 1 gives a brief overview of those parallel LTL MC algorithms that have
been found suitable for implementation in a multi-core setting [2, 3].

Map preserves the on-the-fly property to the extent that it is heuristic: cycles
can be detected early, but this is not guaranteed. By combining Map with One-
Way-Catch-Them-Young (Owcty), the same property is transferred to the new
on-the-fly Owcty (Otf_Owcty) algorithm. For the important class of weak
LTL, the algorithm has been shown to be time-optimal [4], therefore it is the
current state of the art in multi-core LTL MC.
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4 Multi-core Ndfs

4.1 A Basic Multi-core Swarmed Ndfs

As already mentioned, SV is compatible with a shared-memory setting. However,
the independence of workers in SV may result in duplicated states on the differ-
ent machines, hence, when mapped naively to a multi-core machine, the shared
memory is not exploited. Therefore, we store all states in a shared lockless hash
table that has been shown to scale well for this purpose [16].

A basic SV Ndfs algorithm executes an instance of Alg. 1 for each worker i
with thread-local color variables. The two bits needed per state per worker are
small compared to the state itself and for a dozen or so workers, memory usage
is still lower than for Scc-based algorithms [21]. Local permutations of the post
function direct workers to different regions of the state graph, resulting in fast
bug-finding typical for SV. With postb

i (postr
i ) we denote the permutation of

successors used in the blue (red) Dfs by worker i. For inputs without accepting
cycles this solution does not scale. In the next section, we attack this problem.

4.2 Multi-core Ndfs with Global Coloring

A naive sharing of colors between multi-core workers is prone to influence the inde-
pendent post-orders on which the correctness of the Ndfs algorithm relies [5]. In
the current section, we present a color-sharing approach which preserves correct-
ness. The next section provides a correctness proof of this Mc-ndfs algorithm.

The basic idea behind Mc-ndfs in Alg. 2 is to share information in the
backtrack of the red Dfss (dfs_red). A new (local) color pink is introduced to
signify states on the stack of a red Dfs, analogous to cyan for a blue Dfs. When
a red Dfs backtracks, the states are globally colored red. These red states are
now ignored by both all blue and red Dfss, thus pruning the search spaces for
all workers i.

1 proc mc−nd f s ( s , N )
2 dfs_b lue (s, 1)‖..‖dfs_b lue (s, N)
3 r epo r t no c y c l e

4 proc dfs_b lue ( s , i )
5 s . c o l o r [i] := cyan
6 f o r a l l t i n pos t b

i ( s ) do
7 i f t . c o l o r [i]=wh i t e∧¬ t . r ed
8 dfs_b lue ( t , i )
9 i f s ∈ A

10 s . count := s . count + 1
11 dfs_red ( s , i )
12 s . c o l o r [i] := b lu e

13 proc dfs_red ( s , i )
14 s . p ink [i] := t rue
15 f o r a l l t i n pos t r

i ( s ) do
16 i f t . c o l o r [i]=cyan
17 r epo r t c y c l e & e x i t a l l
18 i f ¬ t . p ink [i] ∧ ¬ t . r ed
19 dfs_red ( t , i )
20 i f s ∈ A
21 s . count := s . count − 1
22 awa it s . count=0
23 s . r ed := t rue
24 s . p ink [i] := f a l s e

Alg. 2. A Multi-core Ndfs algorithm, coloring globally red in the backtrack
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a b

t

vu w

Fig. 3. Counter example
to correctness of Mc-ndfs
without await statement

Additionally, we count the number of workers
that initiate dfs_red in s.count (l.10) and wait with
backtracking until this counter is 0 (l.21,22). This
enforces that if multiple workers call dfs_red from
the same accepting state, they will finish simulta-
neously. Fig. 3 illustrates the necessity of this syn-
chronization by a simple counter example that could
occur in absence of this synchronization.

A worker 1 could explore a, b, u, v, w, backtrack
from w, explore t and backtrack all the way to the
accepting state b where it will call a dfs_red at l.11.
Then this dfs_red(b, 1) could explore u, v, w and halt for a while. Now, a worker 2
could start dfs_red(b, 2) in a similar fashion. Next, it could explore w, v, u, back-
track, mark u red and halt for a while. Then worker 1 continues to mark w red.

Note that the two accepting cycles contain red states, but both workers can
still detect a cycle by continuing to explore v and t (b is cyan in the local coloring
of both workers). However, a third worker can endanger this potential, while the
first two workers halt for a while. After worker 3 searches a and subsequently t
and b in a blue Dfs, it will start a dfs_red at b, but because its successors are
now red, worker 3 will backtrack and mark b red. Note that exactly this step is
prevented by adding the await statement. Continuing with dfs_red(a, 3), states
t and a will also become red, obstructing workers 1 and 2 from finding a cycle.

No worker finds a cycle in this way, which thus constitutes a counter example
for correctness. However, because worker 3 is forced to wait for the completion
of the red Dfss of workers 1 and 2 before it can backtrack from state b in
dfs_red(b, 3), this counter example is invalid for Mc-ndfs.

Finally, we note that Mc-ndfs in Alg. 2 is presented in a form that eases
analysis of correctness: without superfluous details. For example, the pink vari-
able of states is separate from the color variable, which stores only the colors
white, blue and cyan. The two-bit color encoding of [21] is thus dropped for a
while. In the following section, we prove correctness of Mc-ndfs, after which we
amend the algorithm in Section 4.4 with the extensions discussed in Section 3.
The allred extension is shown to improve sharing between workers significantly.

4.3 Correctness Proof

In this section, we provide a correctness proof for Mc-ndfs. We assume that each
line of the code above is executed atomically. The global state of the algorithm
is the coloring of the input graph B and the program counter of each worker.

We use the following notations: The sets Whitei , Cyani , Bluei and Pinki
contain all the states colored white, cyan, blue, and pink by worker i, and Red
contains all the red states. E.g., if s.color [i] = blue, we write s ∈ Bluei . It
follows from the assignments of the respective colors to the color variable that
Whitei , Cyani and Bluei are disjoint. Also, we denote the state of one worker as
dfs_red(s, i)@X , meaning that worker i is executing l.X in dfs_red for a state s.
Finally, we use the modal operator s ∈ �X to express that ∀t ∈ post(s) : t ∈ X .
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Correctness of Mc-ndfs hinges on the fact that it will never miss all reachable
accepting cycles, i.e. it will always find one if one exists. Recall from Section 2
that Ndfs ensures that all reachable states are visited only once by both dfs_blue
and dfs_red. Mc-ndfs ensures that each reachable state is visited at least once
by both some dfs_blue and dfs_red, therefore for a reachable a ∈ A, there is at
least one dfs_red(a, i)@11 for some i, that initiates the recursion of the dfs_red.

s

a1 t

r

a2

Fig. 4. An obstructed
accepting cycle

This recursion continues at l.19, where it tries to find
a t ∈ Cyani at l.16 that would close the cycle. Now, if
the cycle a →+ a exists, worker i will either find a t ∈
Cyani , or is obstructed because it encounters a t ∈ Red
at l.18. Fig. 4 illustrates that workers can obstruct each
other from finding cycles. For example, it is possible that
a worker 1 initiates a dfs_red for a1, marking r red. Then,
a worker 2, with a different postbi , could start a dfs_red
for a2 and be obstructed from finding cycle {a2, r, t, s}.

We first state invariants that express basic relations be-
tween the colors in Mc-ndfs. Then, after Lemma 1, we prove the crucial insight
(Thm. 1), termination (Thm. 2) and our main correctness result (Thm. 3).

L1. ∀i : Bluei ∪ Pinki ⊆ �(Bluei ∪ Cyani ∪Red)
L2. Red ⊆ �(Red ∪

⋃
i(Pinki \ Cyani ))

L3. ∀i, a ∈ A : a ∈ Bluei =⇒ a ∈ Red
L4. ∀i, a ∈ A : a ∈ Pinki =⇒ a ∈ Cyani

L5. ∀i : Pinki ⊆ (Bluei ∪ Cyani)

Lemma 1. The following invariant holds for Mc-ndfs: ∀s ∈ Red , a ∈ A\Red :
s →∗ a =⇒ (∃i , p ∈ Pinki , c ∈ Cyani : s →+ p¬Red−→+c →∗ a)

Proof. We show that the property follows from the previous invariants L1-4.
Assume s →∗ a for some s ∈ Red and a ∈ Acc with a 	∈ Red . Let s′ ∈ Red be the
last red state on the path s →∗ a. Then, since s′ 	= a, it has a successor t 	∈ Red
in this path. By L2 we obtain t ∈ Pinki for some worker i, so let p := t.

Note that t 	= a, otherwise by L4 t ∈ Cyani and by L2 t 	∈ Cyani . So we
find another successor t′ such that s →∗ s′ → t → t′ →∗ a. Assume towards a
contradiction that no state on the path t′ →∗ a is in Cyani; recall that t′ →∗ a
contains no Red states either. Then by L1, all states on t′ →∗ a are in Bluei.
But then also a ∈ Bluei and by L3, a ∈ Red , contradiction. So there exists a
c ∈ Cyani with s→∗ p →+ c →∗ a.

Theorem 1. Mc-ndfs cannot miss all accepting cycles.

Proof. Assume an Mc-ndfs run would miss all accepting cycles. Since there are
only finitely many cycles, we can investigate the last “obstructed cycle” in this
run, i.e., the last time that a dfs_red (which originated from some accepting
state a on a cycle) encounters Red . That is, we are in dfs_red(s, i)@18 but we
see t ∈ Red , although s → t →∗ a.
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Note that a 	∈ Red : Just before dfs_red(a, i)@11, a.count was increased by
l.10. Therefore, no other worker can make a red, because they are all forced to
wait at l.221.

a

s

t

p

c

a′
Pinki∧
Cyani∧
¬Red

Pinki

Red

Pinkj

Pinkj∧
Cyanj∧
¬Red

Cyanj

∗

+

¬Red ,+ ∗
∗

∗

Fig. 5. Snapshot of the cycle in the last “ob-
structed cycle search”. Edges with ∗, + indicate
paths of length ≥ 0 and > 0. Dotted arrows de-
note node colors and ¬Red , + a path without red.

Hence we can apply Lemma 1,
to obtain a path p¬Red−→+c for
some p ∈ Pinkj and c ∈ Cyanj .
It follows that there is an a′ ∈ A
with c →∗ a′ →∗ p (property
of Dfs stacks). Fig. 5 provides
an overview of the shape of the
subgraph that we just discussed
with the deduced colorings.

But now we have constructed
a cycle for worker j which has
not yet been obstructed. This
contradicts the fact that we were
considering the last obstructed cycle. We conclude that there is no last obstructed
cycle, hence there exists no run that misses all cycles. !"

This proves partial correctness of Mc-ndfs. In order to prove that an accepting
cycle will eventually be reported, the algorithm is required to terminate.

Theorem 2. Mc-ndfs always terminates with some report at l.3 or l.17.

Proof. Assuming dfs_red terminates, we can conclude termination of dfs_blue
from the fact that for each worker i the set Bluei ∪ Cyani grows monotonically
(blue is never removed). Eventually, all the states are in the set and the blue
search ends. Termination of the await statement at l.22 state follows from the
basic observation that every worker i can have at most one counter increment on
some accepting state, which is decremented at l.21 before waiting. Hence, when
worker i is waiting, there can be no other worker waiting for i. Finally, all red
Dfss terminate because also the set Red ∪ Pinki grows monotonically. !"

Theorem 3. Mc-ndfs reports cycle if there exists a reachable accepting cycle
in the input graph B and it reports no cycle otherwise.

Proof. By Theorem 2, the algorithm terminates with some report. If a cycle is
reported at l.17 by worker i, we find an s ∈ Pinki and t ∈ Cyani with s → t. In
that case there is a state a ∈ Acc on the stack such that t →∗ a →∗ s → t, so
there is indeed an accepting cycle.

Otherwise, if no cycle is reported at l.3, all workers have terminated without
reporting a cycle. By Theorem 1 there is no accepting cycle in the graph. !"
1 A race condition can occur here, because worker i could increase a.count right after

some worker j passed the check at l.22 in dfs_red(a, j). Next, worker i would start
its dfs_red(a, i), and find that a ∈ �(Red). So i will also make a red and return
from dfs_red. It does not matter whether i or j makes a red first. Therefore, we can
safely ignore such race conditions.
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4.4 Extensions

We can improve Mc-ndfs further. Alg. 3 presents Mc-nndfs, which is Mc-ndfs
with the extensions discussed in Section 3. First, we opted to extend Mc-ndfs
with allred [9] (l.16 and l.24–27). Since the parallel workload of the Mc-ndfs
algorithm depends entirely on the proportion of the state graph that can be
marked red (see Section 5.2), allred can improve the scalability. Second, early
cycle detection in dfs_blue (l.19–21) is needed to compete with Scc-based algo-
rithms. Finally, the introduction of the two-bit color-encoding from [21] for each
worker will eliminate the extra bit per worker used for the pink color.

Sketch of Correctness. The allred extension in dfs_blue introduces a new red
coloring of a state s at l.27, affecting the proof of Lemma 1. But, since s ∈
�(Red), the induction hypothesis can be applied for the successor t of s.

Due to the early cycle detection at l.19–21, some accepting cycles can be
detected already in the blue search. The stack configuration of the blue search
thus guarantees us that indeed a cycle with an accepting state exists that is
reachable from sI : sI →∗ t →∗ s → t with t ∈ A ∨ s ∈ A (l.20).

The two-bit color encoding overwrites the value of the s.color[i] at l.5. How-
ever, L5 shows that only Cyani and Bluei are affected (not Whitei). The removal
of s from Bluei does not affect dfs_red, since it is insensitive to Bluei . The re-
moval of s from Cyani seems more problematic, since cycle detection on l.7
depends on it. However, we also know that the only case where s is removed
from Cyani , is in the initial dfs_red call from l.11 (recursive dfs_red calls are
never made on Cyani states, since a cycle would be detected at l.16 and l.19
would not have been reached). Hence, s ∈ A. It turns out that if there exists a

1 proc mc−nd f s ( s , N )
2 dfs_b lue (s, 1)‖..‖dfs_b lue (s, N)
3 r epo r t no c y c l e

4 proc dfs_red ( s , i )
5 s . c o l o r [i] := p ink
6 f o r a l l t i n pos t r

i ( s ) do
7 i f t . c o l o r [i]=cyan
8 r epo r t c y c l e & e x i t a l l
9 i f t . c o l o r [i] =p ink∧¬ t . r ed

10 dfs_red ( t , i )
11 i f s ∈ A
12 s . count := s . count − 1
13 awa it s . count=0
14 s . r ed := t rue

15 proc dfs_b lue ( s , i )
16 a l l r e d := t rue
17 s . c o l o r [i] := cyan
18 f o r a l l t i n pos t b

i ( s ) do
19 i f t . c o l o r [i]=cyan ∧
20 (s ∈ A ∨ t ∈ A)
21 r epo r t c y c l e & e x i t a l l
22 i f t . c o l o r [i]=wh i t e∧¬ t . r ed
23 dfs_b lue ( t , i )
24 i f ¬ t . r ed
25 a l l r e d := f a l s e
26 i f a l l r e d
27 s . r ed := t rue
28 e l s e i f s ∈ A
29 s . count := s . count + 1
30 dfs_red ( s , i )
31 s . c o l o r [i] := b lu e

Alg. 3. Mc-ndfs with extensions (Mc-nndfs)



Multi-core Nested Depth-First Search 331

path π ≡ s →∗ s with (π \ s) ∩Cyani = ∅, this accepting cycle would have been
detected by early cycle detection in dfs_blue (sI →∗ s →∗ s′ → s with s ∈ A).
Hence, we do not need any provisions to fix the removal of s from Cyani . This
fact was overlooked by Schwoon et al.[9, 21], leading them to complicate their
Nndfs algorithm (Alg. 1) with delayed red coloring of accepting states.

5 Experiments

We implemented Nndfs, multi-core SV Nndfs and Mc-nndfs in the multi-core
backend of the LTSmin model checking tool suite [17]. This enabled us to use
the same input models (without translation) and the same language frontend
(compiler). We also implemented randomized posti functions to direct threads
to different regions of the state space, as discussed in Section 4.1.

We performed experiments on an AMD Opteron 8356 16-core (4 × 4 cores)
server with 64 GB RAM, running a patched Linux 2.6.32 kernel. All tools were
compiled using gcc 4.4.3 in 64-bit mode with high compiler optimizations (-O3).
For comparison purposes, we used all 453 models with properties of the Beem
database [19]. To mitigate random effects in the benchmarks, runtimes are always
averaged over 6 benchmark runs. We compared Mc-nndfs against multi-core SV
Nndfs to answer the question whether a more integrated multi-core approach
can win against an embarrassingly parallel algorithm. Furthermore, we compared
with the best existing parallel LTL MC algorithm Otf_Owcty, as implemented
in DiVinE 2.5.1 [3].

Due to the on-the-fly nature of LTL algorithms, we distinguish models con-
taining accepting cycles from models that do not contain them. On the former
set, algorithms that build the state space on-the-fly and terminate early when a
counter example can be found, are expected to perform very well.

5.1 Models with Accepting Cycles

We demonstrate the merits of multi-core SV Nndfs by comparing the runtimes
with the sequential Nndfs. As expected, SV speeds up the detection of accepting
cycles (crosses in Fig. 4) significantly compared to sequential Nndfs runs. We
do not expect to see perfect speedups (16× on 16 cores) across all benchmarks,
since the search is undirected and some threads traverse parts of the state space
which do not contribute to finding a cycle. However, for some models, multi-core
SV Nndfs does exhibit perfect speedups, or even superlinear speedups. Due to
randomization, multiple workers are more likely to find counter examples[6, 22].

Both multi-core SV Nndfs and Mc-nndfs find accepting cycles roughly
within the same time (Fig. 5), there is only a small edge for Mc-nndfs (most
crosses are in the upper half of the figure), due to work sharing effects. Appar-
ently, the global red coloring does not cause much “obstruction” (see Section 4.3).

We isolated those runs of Mc-nndfs on models with cycles, that have a run-
time longer than 0.1 sec, because only those yield meaningful scalability figures.



332 A. Laarman et al.

Fig. 4. Log-log scatter plot of multi-core
SV Nndfs / sequential Nndfs runtimes

Fig. 5. Log-log scatter plot of Mc-nndfs
/ multi-core SV Nndfs runtimes

Fig. 6. Log-log scatter plot of Mc-nndfs /
Otf_Owcty runtimes

Fig. 7 on the next page shows
that these models scale very
well (the figure is cut off af-
ter a speedup of 20, but it
extends well beyond speedups
of 100). Out of 54 models
with cycles (and runtimes ≥
0.1 sec), ≈ 75 % exhibit at
least eight-fold speedups and
almost half exhibit superlin-
ear speedups (factor > 16).

Finally, a comparison with
Otf_Owcty unsurprisingly
shows that Mc-nndfs finds
counter examples much faster
(crosses in Fig. 6), due to its
depth-first on-the-fly nature,
while Otf_Owcty is only
heuristically on-the-fly.

5.2 Models without Accepting Cycles

For models without accepting cycles, on-the-fly algorithms lose their edge over
other algorithms, as the state space has to be traversed fully. We demonstrate
this with our multi-core SV Nndfs benchmark runs, which degrade timewise to
sequential Nndfs (dots in Fig. 4). We note that multi-core SV Nndfs causes
little overhead compared to the sequential Nndfs version, hence it would be safe
to run multi-core SV if the presence of a counter example is uncertain.
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Fig. 7. Model counts of speedups with Mc-nndfs
(base case: sequential Nndfs)

However, when comparing
multi-core SV Nndfs against
Mc-nndfs (Fig. 5), we observe
significant speedups, in some
cases more than ten-fold (dotted
line) on 16 cores. Again, we iso-
lated the runs of Mc-nndfs on
models without cycles that run
more than 1 sec (Fig. 7). We ob-
served at least ten-fold speedups
for 11 models out of 58 such
models. In the Beem database,

we verified the nature of the 40 models that exhibit speedup greater than factor
two. These include: leader election and other communication protocols, hardware
models, controllers, cache coherence protocols and mutual exclusion algorithms.

Fig. 6 reveals that Mc-nndfs can mostly keep up with the performance of
Otf_Owcty. However, on some models without accepting cycles DiVinE is
faster by a factor of 10 on 16 cores. Which algorithm performs best in these
cases likely depends on model characteristics, which we have yet to investigate.

However, we did investigate the lack of Mc-nndfs scalability for some models
without cycles in Fig. 7. All these cases lack states colored red by dfs_red.
However, this does not hold the other way around: many models with few of these
red states still exhibit speedups. This can be attributed to the red coloring by the
allred extension. In fact, for all models without cycles, the proportion of states
colored red by dfs_red turned out to be negligible, while allred accounts for the

s

t u

a

Fig. 8. Exploration
order can influence rN

vast majority of the red colorings.
We found that the number of red colorings is strongly

dependent on the exploration order (posti). Fig. 8 illus-
trates that this is indeed possible. If a search advances
first from s through t, then t cannot be colored red. This
also holds for s, because one of its successors remains
blue. However, if a is visited first, then u becomes red,
hence later also t and s. It would be interesting to find a
heuristic that maximizes red colorings.

We also observed that the speedup SN is dependent on the fraction of red
states rN , as can be expected from the fact that rN is the fraction of work
that can be parallelized: SN ≈ Tseq

Tseq×(1−rN )+Tseq×rN /N = 1
1−(1−1/N)rN

, where
Tseq × (1 − rN ) is duplicated work. This shows us that the algorithm barely
waits for a long time at l.22, which is also confirmed by direct measurements.

6 Conclusions

In this paper, we introduced a multi-core Ndfs algorithm, starting from a multi-
core SV version, and proved its correctness. Its time complexity is linear in the
size of the input graph, and it acts on-the-fly, addressing an open question put



334 A. Laarman et al.

forward by Holzmann et al. and Barnat et al. [4, 12]. However, in the worst case,
each worker might still traverse the whole graph. We showed empirically that
the algorithm scales well on many inputs. The on-the-fly property of Mc-nndfs,
combined with the speedups on cycle-free models, makes Mc-nndfs highly com-
petitive to Otf_Owcty.

The experiments were needed because Mc-nndfs is a heuristic algorithm:
in the worst case (no accepting states, hence no red states) no work is shared
between workers and the performance reduces to the SV version. However, in
these cases no other known linear-time parallel algorithm obtains any speedup
(including dual-core Ndfs [11]).

The space complexity of Mc-nndfs remains decent: per state 2 × N local
color bits, log2(N) bits for the count variable, and one global red color bit,
with N the number of workers. The count variable could be omitted, at the
expense of inspecting the pink flags of all other workers. However, this would
lead to a significant memory contention. The overhead of log2(N) bits per state
is insignificant next to the space required by the local colors.

Recent development. After preparing this final version, we noticed that another
approach on parallelizing Ndfs appears in this same volume [7]. Their approach
seems complementary, since they share the blue color, where we share red. In-
stead of our synchronization, they speculatively continue parallel execution and
call a sequential repair procedure in the case of dangerous situations.

Future work. We have strong indications that Mc-nndfs can be improved. The
previous section showed that a heuristic for exploration order might be of great
benefit for the scalability. Furthermore, we think that early cycle detection and
work sharing can be improved with Scc-like techniques.

Acknowledgements. We thank Elwin Pater for providing feedback on our
algorithms and proofs.
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Abstract. We present the Self-Loop Aggregation Product (SLAP), a new hybrid
technique that replaces the synchronized product used in the automata-theoretic
approach for LTL model checking. The proposed product is an explicit graph of
aggregates (symbolic sets of states) that can be interpreted as a Büchi automa-
ton. The criterion used by SLAP to aggregate states from the Kripke structure is
based on the analysis of self-loops that occur in the Büchi automaton express-
ing the property to verify. Our hybrid approach allows on the one hand to use
classical emptiness-check algorithms and build the graph on-the-fly, and on the
other hand, to have a compact encoding of the state space thanks to the symbolic
representation of the aggregates. Our experiments show that this technique often
outperforms other existing (hybrid or fully symbolic) approaches.

1 Introduction

Model checking for Linear-time Temporal Logic (LTL) is usually based on converting
the property into a Büchi automaton, composing the automaton and the model (given
as a Kripke structure), and finally checking the language emptiness of the composed
system [20]. This verification process suffers from a well known state explosion prob-
lem.Among the various techniques that have been suggested as improvement, we can
distinguish two large families: explicit and symbolic approaches.

Explicit model checking approaches explore an explicit representation of the prod-
uct graph. A common optimization builds the graph on-the-fly as required by the empti-
ness check algorithm: the construction stops as soon as a counterexample is found [4].

Another source of optimization is to take advantage of stuttering equivalence be-
tween paths in the Kripke structure when verifying a stuttering-invariant property [8]:
this has been done either by ignoring some paths in the Kripke structure [13], or by
representing the property using a testing automaton [12]. To our knowledge, all these
solutions require dedicated algorithms to check the emptiness of the product graph.

Symbolic model checking tackles the state-explosion problem by representing the
product automaton symbolically, usually by means of decision diagrams (a concise way
to represent large sets or relations). Various symbolic algorithms exist to verify LTL us-
ing fix-point computations (see [9,18] for comparisons and [14] for the clarity of the
presentation). As-is, these approaches do not mix well with stuttering-invariant reduc-
tions or on-the-fly emptiness checks.

T. Bultan and P.-A. Hsiung (Eds.): ATVA 2011, LNCS 6996, pp. 336–350, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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However explicit and symbolic approaches are not exclusive, some combinations
have already been studied [2,10,17,15] to get the best of both worlds. They are referred
to as hybrid approaches. Most of these approaches consist in replacing the Kripke
structure by an explicit graph where each node contains sets of states (called aggregates
throughout this paper), that is an abstraction preserving properties of the original struc-
ture. For instance in Biere et al.’s approach [2], each aggregate contains states that share
their atomic proposition values, and the successor aggregates contain direct successors
of the previous aggregate, thus preserving LTL but not branching temporal properties.
The Symbolic Observation Graph [10] takes this idea one step further in the context of
stuttering invariant properties: each aggregate contains sets of consecutive states that
share their atomic proposition values. In both of these approaches, an explicit product
with the formula automaton is built and checked for emptiness, allowing to stop early
(on-the-fly) if a witness trace is found.

Sebastiani et al.’s approach [17] is a bit different, as it builds one aggregate for each
state of the Büchi automata (usually few in number), and uses a partitioned symbolic
transition relation to check for emptiness of the product, thus resorting to a symbolic
emptiness-check (based on a symbolic SCC hull computation).

The hybrid approach we define in this paper is based on explicit graphs of aggregates
(symbolic sets of states) that can be interpreted as Büchi automata. With this combina-
tion, we can use classical emptiness-check algorithms and build the graph on-the-fly,
moreover the symbolic representation of aggregates gives us a compact encoding of the
state space along with efficient fixpoint algorithms.

The aggregation criterion is based on the study of the self-loops around the current
state of the Büchi automaton. Roughly speaking, consecutive states of the system are
aggregated when they are compatible with the labels of self-loops. We allow to stutter
according to a boolean formula computed as the disjunction of the labels of self-loops
of the automaton. This aggregation graph is called the Self-Loop Aggregation Product
(SLAP) and preserves full Büchi expressible properties.

This paper is organized as follows. Section 2 introduces our notations and presents
the basic automata-theoretic approach. Section 3 defines our new hybrid construction
SLAP. We explain how we implemented this approach and how it compares to others
in Section 4.

2 Preliminaries

2.1 Boolean Formulas

Let AP be a set of (atomic) propositions, and let � = {⊥,-} represent Boolean val-
ues. We denote �(AP) the set of all Boolean formulas over AP, i.e., formulas built
inductively from the propositions AP, �, and the connectives ∧, ∨, and ¬.

An assignment is a function ρ : AP→� that assigns a truth value to each proposition.
We denote �AP the set of all assignments of AP. Given a formula f ∈ �(AP) and an
assignment ρ ∈�AP, we denote ρ( f ) the evaluation of f under ρ1. In particular, we will

1 This can be defined straightforwardly as ρ( f ∧g) = ρ( f )∧ρ(g), ρ(¬ f ) = ¬ρ( f ), etc.
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Fig. 1. Examples

write ρ |= f iff ρ is a satisfying assignment for f , i.e., ρ |= f ⇐⇒ ρ( f ) = -. The set
�
�(AP) = { f ∈�(AP) | ∃ρ ∈�AP,ρ |= f} contains all satisfiable formulas.
We will use assignments to label the states of the model we want to verify, and the

propositional functions will be used as labels in the automaton representing the property
to check. The intuition is that a behavior of the model (a sequence of assignments) will
match the property if we can find a sequence of formulas in the automaton that are
satisfied by the sequence of assignments.

It is sometimes convenient to interpret an assignment ρ as a formula that is only
true for this assignment. For instance the assignment {a �→ -,b �→ -,c �→ ⊥} can be
interpreted as the formula a∧b∧¬c. So we may use an assignment where a formula is
expected, as if we were abusively assuming that �AP ⊂�(AP).

2.2 TGBA

A Transition-based Generalized Büchi Automaton (TGBA) is a Büchi automaton in
which generalized acceptance conditions are expressed in term of transitions that must
be visited infinitely often. The reason we use these automata is that they allow a more
compact representation of properties than traditional Büchi automata (even generalized
Büchi automata) [7] without making the emptiness check harder [5].

Definition 1 (TGBA). A Transition-based Generalized Büchi Automata is a tuple A =
〈AP,Q ,F ,δ,q0〉 where

– AP is a finite set of atomic propositions,
– Q is a finite set of states,
– F 	= /0 is a finite and non-empty set of acceptance conditions,
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– δ ⊆ Q ×��(AP)× 2F × Q is a transition relation. We will commonly denote

q1
f ,ac−−→ q2 an element (q1, f ,ac,q2) ∈ δ,

– q0 ∈ Q is the initial state.

An execution (or a run) of A is an infinite sequence of transitions π = (s1, f1,ac1,d1) · · ·
(si, fi,aci,di) · · · ∈ δω with s1 = q0 and ∀i,di = si+1. We shall simply denote it as π =

s1
f1,ac1−−−→ s2

f2,ac2−−−→ s3 · · · . Such an execution is accepting iff it visits each acceptance
condition infinitely often, i.e., if ∀a ∈ F , ∀i > 0, ∃ j ≥ i, a ∈ ac j. We denote Acc(A) ⊆
δω the set of accepting executions of A.

A behavior of the model is an infinite sequence of assignments: ρ1ρ2ρ3 · · · ∈ (�AP)ω,
while an execution of the automaton A is an infinite sequence of transitions labeled by
Boolean formulas. The language of A, denoted L(A), is the set of behaviors compatible

with an accepting execution of A: L(A) = {ρ1ρ2 · · · ∈ (�AP)ω | ∃s1
f1,ac1−−−→ s2

f2,ac2−−−→
·· · ∈ Acc(A) and ∀i ≥ 1,ρi |= fi}

The non-emptiness constraint on F was introduced into definition 1 to avoid consid-
ering F = /0 as a separate case. If no acceptance conditions exist, one can be artificially
added to some edges, ensuring that every cycle of the TGBA bears one on at least an
edge. Simply adding this artificial acceptance condition to all edges might seriously hurt
subsequent verification performance, as some emptiness-check algorithms are sensitive
to the position of acceptance conditions.

Fig. 1a represents a TGBA for the LTL formula aUb. The black dot on the self-

loop q1
-,{ }−−−−→ q1 denotes an acceptance conditions from F = { }. The labels on edges

(ab̄,b and -) represent the Boolean expressions over AP = {a,b}. There are many other
TGBA in Fig. 1, that represent product constructions of this TGBA and the Kripke
Structure of Fig. 1b.

2.3 Kripke Structure

For the sake of generality, we use Kripke Structures (KS for short) as a framework,
since the formalism is well adapted to state-based semantics.

Definition 2 (Kripke structure). A Kripke structure is a 4-tuple T = 〈AP,Γ,λ,Δ,s0〉
where:

– AP is a finite set of atomic propositions,
– Γ is a finite set of states,
– λ : Γ → �

AP is a state labeling function,
– Δ ⊆ Γ×Γ is a transition relation. We will commonly denote s1 −→ s2 the element

(s1,s2) ∈ Δ.
– s0 ∈ Γ is the initial state.

Fig. 1b represents a Kripke structure over AP = {a,b,c}. The state graph of a system
is typically represented by a KS, where state labels in the KS give the atomic proposition
truth values in a given state of the system.

We now define a synchronized product for a TGBA and a KS, such that the language
of the resulting TGBA is the intersection of the languages of the two automata.
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Definition 3 (Synchronized product of a TGBA and a Kripke structure). Let A =
〈AP′,Q ,F ,δ,q0〉 be a TGBA and T = 〈AP,Γ,λ,Δ,s0〉 be a Kripke structure over AP ⊇
AP′.

The synchronized product of A and T is the TGBA denoted by A ⊗ T =
〈AP,Q×,F ,δ×,q0

×〉 defined as:
– Q× = Q ×Γ,
– δ× ⊆ Q××��(AP)×2F ×Q× where

δ× =

{
(q1,s1)

f ,ac−−→ (q2,s2)

∣∣∣∣∣s1 −→ s2 ∈ Δ, λ(s1) = f and

∃g ∈��(AP) s.t. q1
g,ac−−→ q2 ∈ δ and λ(s1) |= g

}
– q0

× = (q0,s0).

Fig. 1c represents such a product of the TGBA aUb of Fig.1a and the Kripke structure
of Fig. 1b. State (s0,q0) is the initial state of the product. Since λ(s0) = ab̄c we have
λ(s0) |= ab̄, successors {s1,s4} of s0 in the KS will be synchronized through the edge

q0
ab̄, /0−−→ q0 of the TGBA with q0. In state (q0,s4) the product can progress through the

q0
b, /0−→ q1 edge of the TGBA, since λ(s4) = abc̄ |= b. Successor s5 of s4 in the KS is thus

synchronized with q1. The TGBA state q1 now only requires states to verify - to vali-
date the acceptance condition , so any cycle in the KS from s5 will be accepted by the
product. The resulting edge of the product bears the acceptance conditions contributed
by the TGBA edge, and the atomic proposition Boolean formula label that comes from
the KS. The size of the product in both nodes and edges is bounded by the product of
the sizes of the TGBA and the KS.

3 Self-Loop Aggregation Product (SLAP)

This section presents a specialized synchronized product that aggregates states of the
KS as long as the TGBA state does not change, and no new acceptance conditions are
visited.

3.1 Definition

The notion of self-loop aggregation is captured by SF(q,ac), the Self-loop Formulas
(labeling edges q −→ q) that are weaker in terms of visited acceptance conditions than
ac.

When synchronizing with an edge of the property TGBA bearing ac leading to q,
successive states of the Kripke will be aggregated as long as they model SF(q,ac).
More formally, for a TGBA state q and a set of accepting condition ac ⊆ F , let us
define

SF(q,ac) =
∨

q
f ,ac′−−−→q∈δ s.t. ac′⊆ac

f

Moreover, for a ⊆ Γ and f ∈ �(AP), we define FSucc(a, f ) = {s′ ∈ Γ | ∃s ∈ a, s →
s′ ∈ Δ∧λ(s) |= f}. That is, first Filter a to only keep states satisfying f , then produce
their Successors. We denote by FReach(a, f ) the least subset of Γ satisfying both a ⊆
FReach(a, f ) and FSucc(FReach(a, f ), f ) ⊆ FReach(a, f ).
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Definition 4 (SLAP of a TGBA and a KS). Given a TGBA A = 〈AP′,Q ,F ,δ,q0〉 and
a Kripke structure T = 〈AP,Γ,λ,Δ,s0〉 over AP ⊇ AP′ , the Self-Loop Aggregation
Product of A and T is the TGBA denoted A � T = 〈 /0,Q�,F ,δ�,q

0
�〉 where:

– Q� = Q × (2Γ \ { /0})

– δ� =

⎧⎪⎨⎪⎩(q1,a1)
-,ac−−→ (q2,a2)

∣∣∣∣∣∣∣
∃ f ∈�(AP′) s.t. q1

f ,ac−−→ q2 ∈ δ,
q1 = q2 ⇒ ac 	= /0, and

a2 = FReach(FSucc(a1, f ),SF(q2,ac))

⎫⎪⎬⎪⎭
– q0

� = (q0,FReach({s0},SF(q0, /0)))

Note that because of the way the product is built, it is not obvious what Boolean
formula should label the edges of the SLAP product. Since in fact this label is irrelevant
when checking language emptiness, we label all arcs of the SLAP with - and simply

denote (q1,a1)
ac−→ (q2,a2) any transition (q1,a1)

-,ac−−→ (q2,a2).
Q ×2Γ might seem very large but, as we will see in section 4.2 in practice the reach-

able states of the SLAP is a much smaller set than that of the product Q × Γ. Fur-
thermore the FReach operation can be efficiently implemented as a symbolic least fix
point.

Fig. 1d represents the SLAP built from our example KS, and the TGBA of aUb. The
initial state of the SLAP iteratively aggregates successors of states verifying SF(q0, /0)=

ab̄. Then following the edge q0 b, /0−→ q1, states are aggregated with condition SF(q1, /0) =
⊥. Hence q1 is synchronized with successors of states in {s0,s1,s2,s3,s4} satisfying b
(i.e., successors of {s4}). Because SF(q1, /0) =⊥ the successors of {s5} are not gathered

when building (q1,{s5}). Finally, when synchronizing with edge q1
-,−−→ q1, we have

SF(q1,{ }) = -, hence all states of the cycle {s4,s5,s6,s7} are added.

3.2 Proof of Correctness

Our ultimate goal is to establish that, given a KS and a TGBA, the emptiness of the
language of the corresponding SLAP is equivalent to the emptiness of the language of
the original synchronized product (see Theorem 1). This result is progressively demon-
strated in the following. We proceed by construction, i.e., if there exists an accepting
run of the SLAP then we build an accepting run of the original product and vice versa.
In order to ease the proof, we introduce some intermediate lemmas.

Lemma 1. Let A and T be defined as in Definition 4. Let (q1,a1)
ac−→ (q2,a2) ∈ δ� be

a transition of the SLAP A �T . For any state s2 ∈ a2 there exists at least one (possibly

indirect) ancestor s1 ∈ a1 such that (q1,s1)
ac−→ (q2, t1)

α1−→ (q2,t2)
α2−→ ·· · (q2,tn)

αn−→
(q2,s2) is a sequence of the synchronized product A⊗T with ∀i, ti ∈ a2, and ∀i, αi ⊆ ac.

For example consider transition (q1,a1)
ac−→ (q2,a2) on Fig. 2, and some state in a2, say

s2. Then s1 ∈ a1 is an indirect ancestor of s2 s.t. (q1,s1)
ac−→ (q2,x2)

α2−→ (q2,s2).

Proof. Let us define the set of input states of the aggregate a2 as In(a2) = {s′ ∈ a2 |
∃s ∈ a1,s −→ s′ ∈ Δ}. This set cannot be empty since (q1,a1)

ac−→ (q2,a2).
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ac1 ac2 ac3

q1 q2 q3

x1

s1

x2 x3

x4 s2

x5

x6

s3

a1 a2 a3

ac1α1 ac2 ac3α2 α3

α4

Fig. 2. A prefix (q1,a1)
ac1−−→ (q2,a2)

ac2−−→ (q2,a2) of a run of some SLAP A � T (with different
A and T from Fig. 1) is shown using big ellipses and bended arrows. The straight lines also
shows the underlying connections between the states {q1,q2,q3, . . .} of the automaton A and
between the states {s1,s2, . . . ,x1,x2 . . .} of the Kripke structure T that have been aggregated as
a1,a2,a3 . . . The acceptance conditions have been depicted as aci or αi and the labels of the
transitions have been omitted for clarity. The dotted ellipses show the set of input states (In(a1),
In(a2), In(a3)) as used in the proof of Lemma 1.

Consider a state s2 ∈ a2. By construction of a2, s2 is reachable from some state in
t1 ∈ In(a2), so there exists a path t1 −→ t2 −→ ·· · −→ s2 in the Kripke structure.

By definition of δ�, if t1,t2, . . . ,s2 belong to a2, the transitions between these states

of T have been synchronized with self-loops q2
αi−→ q2 of A with αi ⊆ ac. Therefore the

sequence (q2,t1)
α1−→ (q2,t2)

α2−→·· ·(q2,tn)
αn−→ (q2,s2) is a sequence of the synchronized

product A ⊗T .
Moreover, since t1 ∈ In(a2), there exists a state s1 in a1 such that (q1,s1)

ac−→ (q2,t1).
Consequently, the path (q1,s1)

ac−→ (q2, t1)
α1−→ (q2,t2)

α2−→ ·· ·(q2,tn)
αn−→ (q2,s2) sat-

isfies the lemma.

Lemma 2. If there exists σ ∈ Acc(A � T ) an infinite run accepted by the SLAP, then
there exists an accepting run π ∈ Acc(A ⊗T ) in the classical product.

Proof. Let us denote σ = (q1,a1)
ac1−−→ (q2,a2)

ac2−−→ (q3,a3)
ac3−−→ ·· · an accepting run of

A � T . Let us build an infinite tree in which all nodes (except the root) are states of
A ⊗T . Let us call - the root, at depth 0. The set of nodes at depth n > 0 is exactly the
finite set of pairs {(qn,s) | s ∈ an} ⊆ Q ×Γ.

The parent of any node at level 1 is -. For any i > 0, the parent of a node (qi+1,s′)
with s′ ∈ ai+1 is the node (qi,s) for is any state s ∈ ai such that (qi,s) is a (possibly
indirect) ancestor of (qi+1,s′) such that we observe aci on the path between these two
states. We know such a state (qi,s) exists because of Lemma 1. As a consequence of
this parenting relation, every edge in this tree, except those leaving the root, correspond
to a path between two states of A ⊗T .

Because the set of nodes at depth n> 0 is finite, this infinite tree has finite branching.
By König’s Lemma it therefore contains an infinite branch. By following this branch
and ignoring the first edge, we can construct a path of A ⊗T that starts in (q1,s1) for
some s1 ∈ a1, and that visits at least all the acceptance conditions aci of σ in the same
order (and maybe more). To prove that this accepting path we have constructed actually
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occurs in a run of A ⊗ T , it remains to show that (q1,s1) is a state that is accessible
from the initial state of A ⊗T .

Obviously q1 = q0 because (q1,a1) = q0
� is the initial state of A � T . Furthermore

we have s1 ∈ a1, so by definition of q0
�, (q0,s1) must be reachable from (or equal to)

(q0,s0) in A ⊗T .

Lemma 3. For a given n and a finite path πn = (q0,s0)
f0,ac0−−−→ (q1,s1) · · ·

fn−1,acn−1−−−−−−→
(qn,sn) of A ⊗ T , there exists a finite path σn = (q′0,a0)

acϕ(0)−−−→ (q′1,a1) · · ·
acϕ(m−1)−−−−−→

(q′m,am) of A �T , with m≤ n, qn = q′m, sn ∈ am and ϕn : {0, . . . ,m−1}→{0, . . . ,n−1}
is a strictly increasing function such that ∀ j (∃i,ϕn(i) = j ⇐⇒ aci 	= /0).

Proof. Let us prove this lemma by induction on n. It is true if n = 0: Given π0 =
(q0,s0), the path σ0 = (q′0,a0) = q0

� = (q0,FReach({s0},{λ(s0)}∩λ(q0, /0)) satisfies
the conditions (with ϕ being a null function).

Let us now demonstrate that the lemma is true for n + 1 assuming it is true for n.

Given a path πn+1 = πn
fn,acn−−−→ (qn+1,sn+1), we know by hypothesis that we have a

matching σn for πn. Let us consider how to extend σn into σn+1 to handle the new

transition (qn,sn)
fn,acn−−−→ (qn+1,sn+1) of πn+1.

There are two cases to consider:
1. If qn = qn+1 and accn = /0 and λ(sn+1) |= SF(qn,ac), then by definition of FSucc

and SF the last state of σn, (q′m,am) is such that sn+1 ∈ am and q′m = qn = qn+1. In
that case σn+1 = σn, and ϕn+1 = ϕn.

2. If qn 	= qn+1 or accn 	= /0 or λ(sn+1) 	|= SF(qn,ac), then because λ(sn) |= fn and sn −→
sn+1, by definition of δ� there exists (q′m,am) accn−−→ (q′m+1,am+1) such that sn+1 ∈
am+1 and q′m+1 = qn+1. In this case, we can define σn+1 = σn

accn−−→ (q′m+1,am+1)
with ∀i < n, ϕn+1(i) = ϕn(i) and ϕn+1(n) = n.

So by induction this lemma is true for all n ∈�.

Lemma 4. If there exists an infinite path π ∈ Acc(A ⊗T ) accepting in A ⊗T . Then
there exists an accepting path in A � T as well.

Proof. A ⊗ T has a finite number of states, so if Acc(A ⊗ T ) 	= /0 then it contains at
least one infinite path π∈ Acc(A⊗T ) that can be represented as a finite prefix followed
by a finite cycle that is repeated infinitely often.

Lemma 3 tells us that any prefix πn of π corresponds to some prefix σn of a path
in A � T in which the acceptance conditions of πn occur in the same order. We have
|σn| ≤ |πn| = n but because π will visit all acceptance conditions infinitely often, and
these transitions will all appear in σn (only transition without acceptance conditions
can be omitted from δ�), we can find some value of n for which |σn| is arbitrary large.
Because |σn| can be made larger than the size of the SLAP, at some point this finite
sequence will have to loop in a way that visits the acceptance conditions exactly in the
same order as they appear in the cycle part of π. By repeating this cycle part of σn we
can therefore construct an infinite path σ that is accepted by A � T .

Theorem 1. Let A be a TGBA, and T be a Kripke structure. We have

Acc(A ⊗T ) 	= /0 ⇐⇒ Acc(A � T ) 	= /0
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In other words, the SLAP of A and T accepts a run if and only if the synchronized
product of these two structures accepts a run.

Proof. ⇐= follows from Lemma 2; =⇒ follows from Lemma 4.

3.3 Mixing SLAP and Fully Symbolic Approaches

This section informally presents a variation on the SLAP algorithm, to use a fully sym-
bolic algorithm in cases where the automaton state will no longer evolve.

The principle is the following: when the product has reached a state where the TGBA
state is terminal (i.e., it has itself as only successor), we proceed to use a fully symbolic
search for an accepted path in the states of the current aggregate. This variant is called
SLAP-FST, standing for Fully Symbolic search in Terminal states. Note that we suppose
here that such a terminal state allows accepting runs, otherwise semantic simplifications
would have removed the state from the TGBA.

In this variant, if q1 is a terminal state, i.e., �q1
f ,ac−−→ q2 ∈ δ, with q1 	= q2, a state

(q1,a1) of the product has itself as sole successor through an arc labeled (-,F ) if
and only if a1 admits a solution computed using a fully symbolic algorithm, or has no
successors otherwise.

The fully symbolic search uses the self-loop arcs on the formula TGBA state to
compute the appropriate transition relation(s), and takes into account possibly multiple
acceptance conditions.

The rationale is that discovering this behavior when the aggregate is large, and par-
ticularly if there are long prefixes before reaching the SCC that bears all acceptance
conditions, tends to create large SLAP structures in explicit size. The counterpart is that
when no such solution exists, the fully symbolic SCC hull search may be quite costly.

In practice this variation on the SLAP was proposed after manually examining cases
where SLAP performance was disappointing. As discussed in the performance section,
this variation is on average more effective than the basic SLAP algorithm.

4 Experimentations

4.1 Implementation

We have implemented several hybrid or fully symbolic algorithms within our frame-
work to allow fair algorithmic comparisons. The software, available from ddd.lip6.fr,
builds upon two existing components: Spot and SDD/ITS.

Spot (http://spot.lip6.fr) is a model checking library [7]: it provides bricks to
build your own model checker based on the automata-theoretic approach using TGBAs.
It has been evaluated as ”the best explicit LTL model-checker” [16]. Spot provides
translation algorithms from LTL to TGBA, an implementation of a product between
a Kripke structure and a TGBA (def. 3), and various emptiness-check algorithms to
decide if the language of a TGBA is empty (among other things). The library uses
abstract interfaces, so any object that can be wrapped to conform to the Kripke or TGBA
interfaces can interoperate with the algorithms supplied by Spot.

ddd.lip6.fr
http://spot.lip6.fr
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SDD/ITS (http://ddd.lip6.fr) is a library representing Instantiable Transition
Systems efficiently using Hierarchical Set Decision Diagrams [19]. ITS are essentially
an abstract interface for (a variant of) labeled transition systems, and several input for-
malisms are supported (discrete time Petri nets, automata, and compositions thereof).
SDD are a particular type of decision diagram that a) allow hierarchy in the state encod-
ing, yielding smaller representations, b) support rewriting rules that allow the library to
automatically [11] apply the symbolic saturation algorithm [3]. These features allow
the SDD/ITS package to offer very competitive performance.

The fully symbolic OWCTY (One-Way Catch Them Young) and EL (Emerson-Lei)
algorithms [9,18] were implemented directly on top of the ITS interface; they use an
ITS representing the TGBA derived from the LTL formula by Spot composed (at the
ITS formalism level) with the ITS representing the system. The resulting ITS is then
analyzed using OWCTY or EL with the forward transition relation.

The SOG [10] (Symbolic Observation Graph) and BCZ [2] (Biere-Clarke-Zhu) are
implemented as objects conforming to Spot’s Kripke interface. They load an ITS model,
then build the SOG or BCZ on the fly, as required by the emptiness check of the product
with the formula automaton.

The SLAP is implemented as an object conforming to Spot’s product interface. The
SLAP class takes an ITS model and a TGBA (the formula automaton) as input pa-
rameters, and builds its specialized product on the fly, driven by the emptiness-check
algorithm.

4.2 Benchmark

We use here classic scalable Petri net examples taken from Ciardo’s benchmark set [3]:
slotted ring, Kanban, flexible manufacturing system, and dining philosophers. The model
occurences we used had from a few million to 1066 reachable states. More details are
available in our technical report [6].

The formulas considered include a selection of random LTL formulas, which were
filtered to have a (basic TGBA/Kripke) product size of at least 1000 states. We also
chose to have as many verified formulas (empty products) as violated formulas (non-
empty products) to avoid favoring on-the-fly algorithms too much. To produce TGBA
with several acceptance conditions, this benchmark includes 200 formulas for each
model built from fairness assumptions of the form: (GF p1 ∧GF p2 . . .) =⇒ ϕ.

We also used 100 random formulas that use the next operator, and hence are not
stuttering invariant (these were not used for SOG that does not support them).

We killed any process that exceeded 120 seconds of runtime, and set the garbage
collection threshold at 1.3GB. Cases where all considered methods performed under
0.1s were filtered out from the results presented here: these trivial cases represent only
4.2% of the entire benchmark, and were too fast to allow any pertinent comparison.

Table 1 gives a synthetic overview of the results presented hereafter. SLAP or SLAP-
FST are the fastest methods in over half of all cases, and they are rarely the slowest.
Furthermore, they have the least failure rate. This table also shows that BCZ has the
highest failure rate and that the fully symbolic algorithms (OWCTY, EL) have trouble
with non-empty products.

http://ddd.lip6.fr
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Table 1. On all experiments (grouped with respect to the existence of a counterexample), we
count the number of cases a specific method has (Fast) the best time or (Slow) it has either run
out of time or it has the worst time amongst successful methods. The Fail line shows how much of
the Lost cases were timeouts. The sum of a line may exceed 100% if several methods are equally
placed.

OWCTY EL BCZ SOG SLAP SLAP-FST
empty Fast 118 (3%) 189 (5%) 53 (1%) 595 (18%) 1359 (42%) 1811 (56%)

(3227 cases) Slow 259 (8%) 271 (8%) 2909 (90%) 509 (15%) 245 (7%) 93 (2%)
Fail 220 (6%) 252 (7%) 1785 (55%) 301 (9%) 212 (6%) 86 (2%)

non empty Fast 3 (0%) 10 (0%) 209 (5%) 782 (19%) 2510 (62%) 1406 (34%)
(4046 cases) Slow 1869 (46%) 1390 (34%) 1940 (47%) 315 (7%) 70 (1%) 40 (0%)

Fail 803 (19%) 817 (20%) 1069 (26%) 262 (6%) 69 (1%) 33 (0%)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  20  40  60  80  100  120

SLAP
SLAP-FST

SOG
BCZ

EL
OWCTY

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  20  40  60  80  100  120

SLAP
SLAP-FST

SOG
BCZ

EL
OWCTY

Fig. 3. Cumulative plots comparing the time of all methods. Non-empty products are shown on
the left, and empty products on the right.

Table 1 presents only the best and the worst methods. While Fig. 3 allows to compare
the different methods in a finer manner.

For each experiment (model/formula pair) we first collect the maximum time reached
by a technique that did not fail, then compute for the other approaches what percentage
of this maximum was used. The vertical segments visible at 100% thus show the number
of runs for which this technique was the worst of those that did not fail. Any failures
are plotted arbitrarily at 120%. This gives us a set of values between 0% and 120% for
which we plot the cumulative distribution function. For instance, if a curve goes through
the (20%,2000) point, it means that for this technique, 2000 experiments took at most
20% of the time taken by the worst technique for the same experiments.

The behavior at 120% represents the “Fail” line of previous table, while the behavior
at 100% represents the difference between the “Slow” and “Fail” lines (“Slow” methods
include methods that failed).
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Fig. 4. Comparison of SLAP-FST against SLAP. Left: time; Right: product size.

The left plot for the non-empty cases shows that the on-the-fly mechanism allows
all hybrid algorithms (SLAP, SLAP-FST, SOG, BCZ) to outperform the symbolic ones
(OWCTY, EL). However as seen previously, BCZ still fails more often than other meth-
ods. The SLAP and SLAP-FST method take less than 10% of the time of the slowest
method in 80% of the cases.

The right plot for the empty cases shows that fully symbolic algorithm behave rela-
tively far better (all methods have to explore the full product anyway). BCZ spends too
much time exploring enormous products, and timeouts.

SLAP-FST and SLAP have similar performance, with a slight edge for SLAP-FST
when the product is empty.

EL appears slightly superior to OWCTY in the non-empty case, while they have
similar performances in the empty case.

SOG shows good results when there is a counterexample, and it performs better than
BCZ in most cases. However SOG only supports stuttering-invariant properties.

To study the differences between SLAP and SLAP-FST consider the scatter plots
from Fig. 4. The performances are presented using a logarithmic scale. Each point rep-
resents an experiment, i.e., a model and formula pair. We plot experiments that failed
(due to timeout) as if they had taken 360 seconds, so they are clearly separated from
experiments that didn’t fail (by the wide white band).

SLAP is on the average faster (and consume less memory [6]) than SLAP-FST, but
fails more often. Indeed the explicit product size of SLAP-FST is always smaller than
that of SLAP, and often by several orders of magnitude. In some cases the SLAP degen-
erates to a state-space proportional to size of the explicit product while the SLAP-FST
is able to keep the symbolic advantage.

In Fig. 5 we compare SLAP-FST to the four other methods from the literature, using
the same kind of logarithmic scatter plots in time. Unsurprisingly, the only method
that appears competitive is SOG; but to our advantage, SOG is not able to handle non
stuttering-invariant properties.
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Fig. 5. Comparison of SLAP-FST against the four other methods

5 Conclusion and Perspectives

We have presented a new hybrid technique, the Self-Loop Aggregation Product, that
exploits the self-loops of the property automaton even if it does not express a stuttering
formula.

During our evaluation, we have found that SLAP (and especially its variant SLAP-
FST) significantly outperforms the other hybrid and symbolic methods we implemented.
In presence of a counterexample we can benefit from the on-the-fly mechanism, while
purely symbolic methods like EL and OWCTY cannot. On empty products, the SLAP-
FST has a small explicit size, allowing to outperform other hybrid algorithms.

This work opens several perspectives.
It would be interesting to compare our approach to the property-driven partition-

ing [17] even if this hybrid algorithm uses a fully symbolic emptiness check and is not
based on an aggregation criterion.
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Another class of methods we would like to compare against, are purely explicit ones,
in particular those based on partial order reductions.

The SLAP technique replaces the product used in the traditional automata-theoretic
approach to model-checking in order to reduce the product graph while preserving the
result of the emptiness-check.

We also used this idea to improve the SOG, by working at the product-level and
reducing the set of observed propositions according to the current state of the TGBA.
This technique called Symbolic Observation Product (SOP) is described in our technical
report [6].

Another idea would be to take advantage of the inclusion between the aggregates
to detect cycles earlier. This would require a dedicated emptiness check such as those
proposed by Baarir and Duret-Lutz [1].

Finally, since the SOG is a Kripke structure, and the SLAP is built upon a KS, it is
possible to construct the SLAP of SOG. This is something we did not implement due
to technical issues: in this case the aggregates are sets of sets of states.
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Abstract. A problem common to most of the tools based on the ab-
straction refinement paradigm is the divergence of the CEGAR process.
In particular, infinitely many (spurious) counterexamples may arise from
unfolding the same (while- or for-) loop in the given program again and
again; this leads to an infinite or at least too large sequence of refine-
ment steps. Loop summarization is an approach that permits to overcome
this problem. It consists of abstracting not just states but also the state
changes (transition relation) induced by structured program statements.
The effectiveness of this approach depends on two factors: (a) the com-
putation of loop summaries must not be the bottleneck of the verification
algorithm (b) loop summaries must be precise enough to prove the prop-
erty of interest. We present a technique that permits to achieve both
goals. It uses inference rules to compute summaries. A lightweight test is
performed to check whether a given loop matches the premise of a given
rule. If so, a summary is automatically inferred by instantiating the rule.
Despite its simplicity, our technique performs well in practice. We were
able to verify safety properties for many examples which are out of the
scope of several existing tools.

1 Introduction

Software model checking is a popular approach for program verification. Many
tools based on this approach have been developed (e.g. SLAM [1], BLAST [12],
MAGIC [2] and TERMINATOR [5]) and successfully applied to real world
software. Abstraction is the key to the effectiveness of software model check-
ing. All these tools combine the predicate abstraction technique [11] with the
counterexample guided abstraction refinement paradigm [3], commonly known
as CEGAR, to efficiently abstract programs. A problem common to most of
the tools based on the abstraction refinement paradigm is the divergence of the
CEGAR process. In particular, infinitely many (spurious) counterexamples may
arise from unfolding the same (while- or for-) loop in the given program again
and again; this leads to an infinite or at least too large sequence of refinement
steps. The divergence of the abstraction refinement loop is not just a theoretical
problem but one that hits us in our practical use of software model checking.
We present a solution to this problem based on the idea of abstracting not just
states but also the state changes induced by structured program statements, in-
cluding for- and while-statements. We propose a lightweight mechanism, based
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1 main(){
2
3 char x[101], y [101], z [201];
4 int i , j ;
5
6 i = 0;
7 while(x[i] != 0){
8 z[ i ] = x[i ];
9 i++;

10 }
11 /∗ length of x is less than 100 ∗/
12 assume(i < 100);
13
14 j = 0;
15 while(y[j] != 0){
16 z[ i ] = y[j ];
17 i++;
18 j++;
19 }
20 /∗ length of y is less than 100 ∗/
21 assume(j < 100);
22
23 z[ i ] = 0;
24 /∗ prove we don’t overflow z ∗/
25 if ( i >= 200)
26 {ERROR: goto ERROR;}
27 }

1 main(){
2
3 char x[101], y [101], z [201];
4 int i , j ;
5
6 i = 0;
7 while(x[i] != 0){
8 z[ i ] = x[i ];
9 i++;

10 }
11 /∗ length of x is less than 100 ∗/
12 assume(i < 100);
13
14 j = 0;
15 if (y[ j ] != 0){
16 assume((j 1 − j)==(i 1 − i));
17 i = i 1;
18 j = j 1;
19 z = z 1;
20 }
21 /∗ length of y is less than 100 ∗/
22 assume(j < 100);
23
24 z[ i ] = 0;
25 /∗ prove we don’t overflow z ∗/
26 if ( i >= 200)
27 {ERROR: goto ERROR;}
28 }

(a) (b)

Fig. 1. Example in C code before and after transformation

on a set of inference rules, for generating loop summaries. A correspondence
test is performed to check whether a given loop matches the premise of a given
rule. If so, a summary is automatically inferred by instantiating the rule without
having to perform any fixpoint computation. Another advantage of our method
is its generic implementation scheme which is based on a source-to-source trans-
formation. Thus, our approach can be seamlessly integrated into other software
verification tools as black-box.

Let us consider the program in Figure 1(a) which is taken from the list of
benchmarks that were used by McMillan and Jhala in [14]. This program per-
forms the concatenation of two strings. The key word assume is used to com-
municate additional assumptions to the model checker. When applied to the
example of Figure 1(a), a classical refinement, based on weakest precondition,
unrolls the loop (15, 16, 17, 18, 19, 15) as many times as the number of loop iter-
ations in a real execution. This leads to the generation of predicates i ≥ 200, j <
100, i+1 ≥ 200, j+1 < 100, i+2 ≥ 200, j+2 < 100 . . . i+99 ≥ 200, j+99 < 100.
Moreover, if we want to verify a generic version of the example (with arbitrary
string length), by substituting size for 100 at lines 12 and 21, and size ∗ 2 for
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200 at line 25, the refinement process completely diverges. This problem is in-
herent to the CEGAR scheme in its present form (based on state abstraction),
where each transition in the concrete system corresponds to one transition in
the abstract system. As the refinement fails to find an adequate loop invariant,
the execution of loop (15, 16, 17, 18, 19, 15) is simulated in the abstract system
by unfolding it over and over again. For this example, neither the interpolation
approach nor the split prover method seem to help [14]1. As alternative to the
iterative unfolding of loops, we propose an approach based on the abstraction of
state changes (transition relation) induced by loop execution.

Cycle detection. The first step of our method is the extraction of transition
constraints that form the cycle (15, 16, 17, 18, 19, 15). In our case, the cycle is
constituted of one transition constraint which is2

pc=15 ∧ y(j) 	= 0 ∧ z′ = z[i := y(j)] ∧ i′ = i+ 1 ∧ j′ = j + 1 ∧ pc′ = 15. (1)

Cycle abstraction. Constraints expressing relationships over program variables
that are modified within the cycle are extracted. For example, the formula i′−i =
j′−j is extracted as both variables i and j increase by the same constant amount.
Also, constraint z′ 	= z is introduced to express that array z is modified. We
obtain transition constraint (1’).

pc = 15 ∧ i′ − i = j′ − j ∧ z′ 	= z ∧ pc′ = 15. (1’)

Finally, transition constraint (1) in the program is replaced by its abstraction
(1’). In the verification phase we monitor paths by disallowing transition (1’) to
be successively taken more than once as it already overapproximates the effect
of unfolding cycle (15, 16, 17, 18, 19, 15) an arbitrary number of times.

Source-to-source transformation. To express the abstraction of a cycle in terms of
source-to-source transformation, we write the transition constraint as a program
expression (using an uninitialized auxiliary variable x 1 for the primed version
of the variable x) and use the program expression in an assume statement and
then add assignment statements of the form x = x 1, see Figure 1(b). The cycle
(15, 16, 17, 18, 19, 15) is replaced by an ’if’ block which models the unrolling
of the cycle an arbitrary number of times. Our tool succeeds to prove that the
code resulting from the transformation (Figure 1(b)) is safe.

The reminder of this paper is organized as follows: section 2 introduces in-
ference rules for generating summaries. Section 3 presents our program trans-
formation algorithm to integrate summaries into the target program. Section 4
illustrates our new CEGAR algorithm which is extended with the loop sum-
marization phase. Section 5 presents results obtained with our implementation.
Section 6 compares our technique with similar work in the literature. Finally,
section 7 concludes the paper.
1 According to experiments performed by author.
2 In a transition constraint, an array a is represented by an uninterpreted function

symbol. The notation a[x := e] stands for a function update.
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2 Inferring Summary Constraints

We consider three examples that illustrate divergence patterns observed in our
experiments. Based on these observations, we specify function Infer which com-
putes summaries. Function Infer is based on other functions: EXT, INT, QR and
QW. We specify each of these functions along this section in terms of inference
rules. With each function we associate an inference rule that describes the func-
tion outcome depending on the cycle C taken as argument by the function. Let
us first introduce some preliminary material.

Program. For the purpose of the formal presentation, we assume that a pro-
gram comes as a set T C of transition constraints. A transition constraint τ is a
formula of the form

τ ≡ g(X) ∧ x′1 = e1(X) ∧ . . . ∧ x′n = en(X) (1)

where X = 〈x1, . . . , xn〉 is a tuple (vector) of program variables including the
program counter pc. In (1) unprimed variables refer to the program state before
performing the transition and primed ones represent the program state after
performing the transition. Formula g(X) is called the guard and the remaining
part of τ is the update or assignment.

Composition of Transition Constraints. Given two transition constraints
τ1(X,X ′) and τ2(X,X ′) , their composition is defined as

τ1 ◦ τ2 ≡ g1(X) ∧ τ2[〈e1(X), . . . , en(X)〉/X ]. (2)

Definition 1. A cycle C is a sequence of transition constraints τ1, . . . , τk such
that ∀i ∈ [1..k− 1]. τi.pc′ = τi+1.pc

3 and τ1.pc = τk.pc
′. A program loop consists

of at least one cycle.

Definition 2. Given a cycle C = τ1; . . . ; τk (τ1.pc = τk.pc
′), we call main loca-

tion of C the value of τ1.pc (τk.pc′) that we denote by Cm. I.e., it represents the
location where the cycle C begins and where it ends.

2.1 Cycle Exit Information

If g is the condition of a given loop and X := E corresponds to variable updates
within the loop (X is the tuple of variables) then we have

– the negation of the loop condition holds after exiting the loop: ¬g[X ′/X ].
– before the last iteration, the loop condition holds: g[X ′′/X ]∧X ′ = E[X ′′/X ]

(X ′′ is fresh)

3 The notation ’.’ is used for field access, τ.pc refers to the value of the program counter
at the pre-state of transition τ .
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Function EXT infers such information, it is specified by rule EXIT below.

C = (g(X) ∧X ′ = E(X) ∧ pc = Cm ∧ pc′ = Cm)
EXT(C) ≡ (¬g[X ′/X ] ∧ g[X ′′/X ] ∧X ′ = E[X ′′/X ])

Γ (exit)

Γ : X ′′is fresh

In rule exit, Γ represents a side condition.

Remark 1. When we write cycle C in a logical formula as in the rule EXIT, we
mean the transition resulting from the composition of transitions forming C.

The intuition behind the application of rule exit is that in some cases informa-
tion about the state following loop execution is sufficient to prove the specified
assertion, without having to consider intermediary computations (states) leading
to that state.

2.2 Inter Variable Relations

We want to keep track of relations correlating program variables. We restrict
our study to relations over variables which are incremented (decremented) with
constant numbers. I.e., assignments of the form x := x + c (c is a constant).
Function INT infers such formulas, it is specified below via rule INTER.

C ⇒ (x′
1 = x1 + c1 ∧ x′

2 = x2 + c2 ∧ . . . ∧ x′
k = xk + ck)

INT(C) ≡ ((x′
1 − x1) ∗ c2 = (x′

2 − x2) ∗ c1 ∧ . . . ∧ (x′
1 − x1) ∗ ck = (x′

k − xk) ∗ c1)
(inter)

As the rule inter shows, we do not have to consider all combinations of two
variables, it is sufficient to combine one variable (e.g., x1) with all remaining
variables. Although the relation between variables x2 and xk does not syntacti-
cally appear in the result, it is implicitly represented. One can easily check that
the result of function INT implies (x′2 − x2) ∗ ck = (x′k − xk) ∗ c2.

Applying rule inter to the example of Figure 1(a), we infer formula i′ − i =
j′ − j. In terms of source-to-source transformation, the computed summary is
illustrated in Figure 1(b). Despite restrictions on the form of assignments, our
method performs well in practice. In fact, loops are often composed of assign-
ments of the form x := x+ c. However, more general relationships over program
variables can be inferred using sophisticated techniques such as Karr’s analy-
sis [15] [18] or template-based techniques [20].

2.3 Quantified Array Formulas

We noticed from our observations that aggregate data types such as arrays are
often a cause for CEGAR divergence. Thus, we want summaries to carry infor-
mation about collections of array elements.

Definition 3. Given a counter i for a cycle C, i.e., C ⇒ i′ = i+ 1 (i′ = i− 1),
the parameterization of C through i that we denote Ci is the cycle obtained as
follows:
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– rewrite all integer variables appearing in guards in C in terms of i
– if the left side expression of an assignment (update) is an array expression

then rewrite all integer variables in both the left and right side of the assign-
ment in terms of i

The parameterization of a formula (expression) ϕ is denoted by ϕi which con-
tains i as unique integer variable. For the formula resulting from the substitution
ϕi[x/i] we simply write ϕx. For an array expression a[i], i is called the index ex-
pression and a the array name. Given a formula (expression) ϕ, function Array(ϕ)
returns the set of array names contained in ϕ, function Index(ϕ) returns the set of
index expressions in ϕ and function Ids(ϕ) returns the set of identifiers (variable
names not including arrays) in ϕ.

Proposition 1. Given a cycle C and a counter i for C, if all updates in C are
restricted to the form x := x+ c (c is a constant) then there exists a parameter-
ization Ci for C, where each variable is represented by a linear expression that
exclusively involves variable i.

Proof. (Proposition 1) An extended version of the paper containing the proof is
available from author upon request.

Read-once formulas. We propose function QR to infer universally quantified
array formulas based on expressions that appear in the guard of cycle C. Function
QR is specified by rule quant-read below.

Ci ⇒ (ϕi ∧ i′ = i+ 1 ∧ (
∧

a∈Array(ϕi)

a′ = a))

QR(C) ≡ ((∀x. i ≤ x < i′ ⇒ ϕx) ∧ (
∧

a∈Array(ϕi)

a′ = a))
Γ (quant-read)

Γ ≡ ∃e ∈ Index(ϕi). i ∈ Ids(e)

Rule quant-read simply says: if ϕi holds at each loop (cycle) iteration, and
all arrays appearing in ϕi are not affected by assignments in the cycle, then ϕi

holds on the whole interval in which i ranges during cycle execution. The side
condition Γ imposes that ϕi contains at least one index expression that refers
to i, otherwise the rule does not make sense.

Write-once formulas. The rule quant-write specifies the function QW
which uses information regarding array updates in the cycle to infer quantified
formulas.

Ci ⇒ ((i′ = i+ 1 ∧ b′ = b[di := ei] ∧ (
∧

a∈Array(ei)

a′ = a))

QW(C, b) ≡ ((∀x. (x ∈ [i, i′[⇒ (b′(dx) = ex))
∧(x 	∈ [i, i′[⇒ (b′(dx) = b(dx)))) ∧ (

∧
a∈Array(ei)

a′ = a))

Γ (quant-write)
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Γ ≡ i ∈ Ids(di)

As the rule quant-write shows, function QW takes two arguments, the cycle
C and an array b. The side condition Γ indicates that i must occur in the index
expression di, otherwise the rule does not make sense. We can define another
version of QW which only takes the cycle C as parameter as follows

QW(C) ≡
∧

b∈Array(C)

QW(C, b).

The rule quant-write stipulates that having an assignment to an array element
of the form b[di] := ei, if b is exclusively modified through that assignment and if
no array expression in ei is modified then, after the loop execution, the equality
b[di] = ei holds on the whole interval in which i ranges.

Proposition 2. The transition resulting from unfolding a cycle C an arbitrary
number n (n > 0) of times is overapproximated by QR(C) and QW(C, b) (i.e.,
QW(C)). Formally, we have

C〈n〉 ⇒ QR(C)

and
C〈n〉 ⇒ QW(C, b) thus C〈n〉 ⇒ QW(C)

Proof. (Proposition 2) Available from author upon request.

2.4 Function Infer

Before defining function Infer let us mention that each of the functions EXT,
INT, QR and QW returns true if the premise of the associated rule is not valid.
Function Infer is simply defined as

Infer(C) def= pc = Cm ∧ EXT(C) ∧ INT(C) ∧ QR(C) ∧ QW(C) ∧ pc′ = Cm

From the definition, it is clear that Infer soundly overapproximates C〈n〉 for an
arbitrary n (n > 0) as each of its components (EXT, INT, QR and QW) is an
overapproximation of C〈n〉.

3 Cycle Elimination

To apply loop summarization (abstraction) on demand, we must be able to detect
situations where the refinement process is diverging. Based on the observation
that divergence of the refinement is due to the presence of a cycle which is
unfolded again and again, we propose a simple heuristic to detect potential
divergence situations.
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3.1 Divergence (Cycle) Detection

Given a trace π = τ1; τ2; . . . ; τk−1; τk, the location projection π� corresponding
to π is the sequence of program locations traversed by the trace, i.e., π� =
τ1.pc, τ1.pc

′, τ2.pc
′, . . . , τk−1.pc

′, τk.pc
′.

Our cycle detection approach works as follows: given a trace π, we check
whether it contains a cycle which is repeated k times such that k is given as
parameter. We are interested in simple cycles C that do not contain other cycles,
i.e., if C′ is a cycle included in C then C = C′. The cycle detection algorithm
DetectCycle takes as argument a trace π and a natural number k. As output it
returns a cycle C if C〈k〉 is a subtrace of π, otherwise the empty trace is returned.
The notation C〈k〉 means k times unfolding of cycle C.

3.2 Cycle Replacement

We propose a program transformation that replaces a cycle C with a set of
transition constraints SC namely the summary. In program T C, the set of entry
transitions with respect to a cycle C, denoted by Ce, is the set of transition
constraints whose pre-state pc value does not belong to cycle C and whose post-
state pc value belongs to C. Formally, we have

Ce = {τ | τ ∈ T C ∧ τ 	∈ C ∧ ∃τ ′ ∈ C. τ.pc′ = τ ′.pc}.

Similarly, the set of exit transitions is denoted by Cx and defined as

Cx = {τ | τ ∈ T C ∧ τ 	∈ C ∧ ∃τ ′ ∈ C. τ.pc = τ ′.pc}.

Algorithm ReplaceCycle (Algorithm 1) takes a cycle C and a program T C (set of
transition constraints) as arguments and returns a program T C′. The resulting
program T C′ is free of transitions forming the cycle C; instead it contains the
summary SC of cycle C. This program transformation is conservative with respect
to reachability. Formally speaking

∀�, �′. (REACH(�, �′, T C) ∧ �, �′ 	∈ C�) ⇒ REACH(�, �′, T C′) (3)

such that REACH(�, �′, T C) is a predicate expressing that location �′ is reach-
able from location � in the program T C. The symbol C� denotes the projection
of cycle C on locations that it traverses. A sketch for proving (3) is provided
in an extended version of this papers which can be obtained from author upon
request.

In our study, we focus on cycles having a single entry point (Cm), this is
expressed by the test at line 5 of Algorithm 1. In general, most of the loops
encountered in practice have one entry point.

Algorithm 1 calls functions Compose and SubTrace. Function Compose takes
a trace π = τ1; . . . ; τn as argument and returns the transition resulting from the
composition of transitions forming π, i.e., Compose(τ1; . . . ; τn) = τ1 ◦ . . . ◦ τn.

Procedure SubTrace takes as parameters a trace π and two transition con-
straints τ and τ ′. It returns the subtrace of π that has τ as initial transition
and τ ′ as final transition. If π does not contain such a trace then empty trace is
returned.
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Algorithm 1. ReplaceCycle
Input: set of transition constraints (program) T C, cycle C
Output: set of transition constraints (program)
Var S: set of transition constraints;1

if Ce ∩ Cx = ∅ then2

return T C;3

end4

if ∃. τ ∈ Ce ∧ τ.pc′ = Cm then5

return T C;6

end7

foreach τ ∈ Cx do8

if τ.pc = Cm then9

Let τ ′ ∈ C s.t. τ ′.pc = Cm;10

Let τ ′′ ∈ C s.t. τ ′′.pc′ = τ.pc;11

π := SubTrace(C, τ ′, τ ′′);12

τ ′ := Compose(π);13

τ ′ := Compose(τ ′, τ );14

S := S ∪ {τ ′};15

end16

end17

S := S ∪ {Infer(C)};18

Let S′ = {τ | τ ∈ C};19

S := (T C − S′) ∪ S;20

return S;21

4 Extended CEGAR

First, we introduce the main ingredients and concepts on which the CEGAR
algorithm is based, then we present the CEGAR algorithm extended with loop
summarization.

State symbolic representation. A set of (or single) program states is sym-
bolically represented by a formula ϕ over program variables.

State transformer. For a formula ϕ, the application of the operator pre with
respect to the transition constraint τ returns a formula representing the set of
all predecessor states of ϕ under the transition constraint τ , formally

pre(τ, ϕ(X)) ≡ g(X) ∧ ϕ[〈e1(X), . . . , en(X)〉/X ].

The state transformer pre with respect to the whole program is given by

pre(ϕ(X)) ≡
∨

τ∈T C
pre(τ, ϕ(X)).

For a trace π = τ1; . . . ; τn we have

pre(τ1; τ2; . . . ; τn, ϕ) = pre(τ1, . . .pre(τn−1, pre(τn, ϕ))).

If pre(π, ϕ) is not equal to false then the trace π is feasible and ϕ is satisfiable
after the execution of π.
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Program correctness. In order to specify correctness, we fix formulas nonInit
and unsafe denoting the complement of the set of initial and safe states, respec-
tively. We define the given program to be correct if no unsafe state is reachable
from an initial state. This can be proven by showing the condition below. Here,
lfp(pre, ϕ) stands for the least fixpoint of the operator pre above ϕ.

lfp(pre, unsafe) ≤ nonInit

If the least fixpoint is disjoint from the set of initial states then it represents
an inductive backward safe invariant that we denote by ψ. This is an invariant
which is inductive under pre and implies nonInit, i.e.,

– unsafe ≤ ψ (ϕ ≤ ϕ′ means ϕ ⇒ ϕ′),
– pre(ψ) ≤ ψ,
– ψ ≤ nonInit.

Predicate abstraction. As the domain of formulas is not finite, there is no
guarantee for computing an inductive backward invariant. Predicate abstraction
permits to approximate a state ϕ with a formula ϕ′ built up from a finite set
P of base predicates. As the set of predicates is finite we obtain a finite domain
of formulas. Thus, if an inductive invariant is expressible via the set of base
predicates, we can compute it. Given a formula ϕ, its abstraction is obtained via
the function α as follows

α(ϕ) ≡
∧

p | p ∈ P ∧ ϕ ⇒ p.

The abstract domain of states (formulas) is not closed under the pre operator.
Thus, we define pre� the abstract version of pre under which the domain is closed

pre�(τ, ϕ) = α(pre(τ, ϕ)) =
∧

p | p ∈ P ∧ pre(τ, ϕ) ⇒ p.

Let ψ denotes the fix point lfp(pre�, unsafe) for operator pre� above unsafe. If ψ
is disjoint from the set of initial states then it is an inductive backward safe
invariant, as we have

– unsafe ≤ ψ,
– pre�(ψ) ≤ ψ implies pre(ψ) ≤ ψ as pre(ψ) ≤ pre�(ψ),
– ψ ≤ nonInit.

4.1 Integrating Loop Summarization into CEGAR

Algorithm ExtendedCEGAR (Algorithm 2) illustrates our counterexample guided
abstraction refinement method. It proceeds by iteratively building abstractions
of increasing precision. If it computes an inductive invariant which is disjoint
from the set of initial states (line 5 in the algorithm) then the system is proven
to be safe. Otherwise a trace (counterexample) leading from an initial state to
an error state exists. If the trace is real, i.e., feasible (test at line 10), then it is
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returned and the algorithm terminates, otherwise the trace is spurious. In this
case we need to make the abstraction more precise, this is carried out by adding
predicates needed to eliminate the spurious trace (line 19). The notation pre�

P

indicates that pre� is computed with respect to the set of predicates P . It is easy
to see that by adding predicates we increase the precision of pre� as we have
P ⊆ P ′ ⇒ pre�

P ′ ≤ pre�
P . Phases that we have described so far are common

to most of CEGAR-based tools. The specific part of our algorithm is the code
portion from line 15 to line 18. Function DetectCycle, presented previously, is
called to check whether the spurious counterexample contains a cycle which is
repeated k times (k is a parameter), if so, the cycle is summarized by calling
function ReplaceCycle (Algorithm 1). Note the flexibility of the integration of our
approach. By removing the code fragment between lines 15 and 18, we obtain
the classical CEGAR algorithm, and no further modifications are required.

Algorithm 2. ExtendedCEGAR
Input: set of transition constraints (program) T C
Var P : set of predicates, ψ: formula, k: natural;1

P := ∅;2

while true do3

ψ := lfp(pre�
P , error);4

if ψ ∧ init ≡ false then5

print(”system is safe”);6

exit;7

end8

Let π be a trace such that pre�
P (π, error) ≡ false;9

if pre(π, error) ≡ false then10

print(”counterexample found”);11

print(π);12

exit;13

end14

C := DetectCycle(π, k);15

if C = empty trace then16

T C := ReplaceCycle(T C, C);17

else18

find a set of predicates P ′ s.t. pre�
P ′(π, error) ≡ false;19

P := P ∪ P ′;20

end21

end22

Discussion. The proposal of the previously seen rules is based on the obser-
vation of different divergence patterns. However, triggering a particular rule is
not just syntactically based. This is expressed by having a logical implication
in the premise of rules (except rule EXIT) rather than an equality. Regarding
the cycle detection algorithm, we have seen that it handles simple cycles, this
does not mean that our approach is not able to handle nested loops. In fact, all
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depends on the state exploration strategy, if the inner loop is treated (unfolded)
first then the summarization is applied. However, if the outer loop is treated first
then the summarization is not applied as the unfolded cycle is not a simple one.
In the former case, as transition τ corresponding to the computed summary is in
a loop, it can be applied several times and thus have several occurrences within a
same trace. Let us assume that x is a variable that appears in the summary. We
have seen (Figure 1) how the after-value corresponding to x can be modeled via
a fresh variable x 1. If τ occurs several times within a trace, we use a new fresh
variable x i in each occurrence of τ as we have no guarantee that the after-value
corresponding to x is the same for each application of the summary τ .

5 Experimental Evaluation

We implemented our cycle abstraction approach in the ACSAR software model
checker [21]. We performed tests using an X41 Thinkpad laptop with 1 GB of
RAM and a 1.6 GHz CPU, running Linux. ACSAR uses Yices [7] and Sim-
plify [6] for computing the abstraction and analyzing spurious counterexamples.
The communication with Yices is performed through its API Lite and it is
performed through pipes with Simplify. The input to ACSAR is a C program
annotated with assertions to be verified. The output is either an invariant that
implies the correctness of the annotated program or a counterexample trace.
One can also obtain the transformed part of the code (abstracted loop) in terms
of transition constraints.

Results of our experiments are illustrated in Table 1. Column ”Time” repre-
sents the verification time in seconds, considering the whole verification process
(parsing, transition constraint generation, theorem prover requests, etc.). The
column “#LS” contains the number of loops which were summarized in order to

Table 1. Experimental results obtained with ACSAR for the benchmarks used in [14]

Program Time (s) #LS Rule

anubhav 0.32 1 inter

array init 0.79 0 -

copy1 0.84 0 -

cousot 0.85 2 exit + inter

loop1 0.76 1 quant-write

loop1-fixed 0.54 1 quant-write

scan 0.19 0 -

simple 0.80 1 quant-read

string concat1 0.34 1 inter

string concat 5.15 2 inter + quant-read + quant-write

string copy 0.28 0 -

substring1 1.49 1 quant-read

substring 0.40 0 -
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verify the specified assertion. Column ”Rule” represents the rule whose applica-
tion is relevant to the verification of the target assertion. For cycle detection, we
have set the number of successive cycles to 2. It means that if a cycle is unfolded
successively twice by the refinement process, the loop summary procedure is
applied.

The 13 examples presented in Table 1 were used by Jhala and McMillan in [14].
According to their report, apart from string concat1, they were able to handle the
remaining 12 examples. In their experiments, they used a version of the model
checker BLAST [9] which is augmented with a split prover [14]. The basic version
of BLAST fails to handle 4 of the 12 examples which are handled by the split
prover based method. They also conducted a comparative study involving other
tools: MAGIC [8] and SATABS [4]. According to their experiments, neither
MAGIC nor SATABS were able to verify any of the examples in Table 1. Using
our cycle abstraction approach, we are able to handle all examples in a short
time. Except for string concat and substring1, the verification time for each of
the remaining examples is less than one second.

6 Related Work

A variety of solutions have been proposed in the literature to cope with problems
related to loops. Sharygina and Browne proposed a loop abstraction approach
based on a syntactic transformation [22]. Their technique abstracts branches
within the loop body such that the flow of operations in each path is preserved.
This abstraction does not deliver the kind of information we are interested in.
Moreover, their method is applied to a dialect of UML, our approach is applied
to source code. Jhala and Majumdar presented an idea to deal with long traces
based on path slicing [13]. Given a program trace, their technique computes rele-
vant statements that show the (in)feasibility of that trace. Thus, irrelevant loops
within the trace are ignored (abstracted away). An advantage of their approach
is that, under the assumption of loop termination, it can abstract loops in real
counterexamples. Hence, it provides a concise form of the counterexample. How-
ever, their method does not solve the divergence problem if the loop is relevant
to the target property as in Figure 1(a). Kroening and Weissenbacher proposed
an approach for treating traces that contain loops [17]. Their method is based on
the parameterization of loops with their iteration counter n. First, they associate
a recurrence equation to each variable. Next, they compute the closed form for
each equation, a formula that expresses the actual value of each variable in terms
of n the loop iteration counter. Finally, They compute the strongest post con-
dition with respect to the loop body and obtain a formula parameterized with
n as result. The existence of a value for n that satisfies the resulting formula
decides about the feasibility of the counterexample that involves the loop. Their
approach can be seen as complimentary to ours, we can use it to generate and
represent real error traces which are long. The SMASH algorithm [10] is able
to reason about long error traces using must summaries. It can also prove ab-
sence of bugs using may summaries. While our technique summarizes loops and
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SMASH computes summaries for procedures, we think that a must analysis can
also be combined with our method as well to compute summaries that show the
absence of bugs. Closer to our approach is the technique proposed by Kroening
et al. [16]. Their method is based on replacing code fragments, including loops,
with the corresponding abstract transformers. Their approach is more general
than ours as they treat nested loops. However, they assume that the invariant is
provided, which is not the case for our method. Moreover, they summarize the
whole code in advance before the verification phase. In our approach the summa-
rization procedure is part of CEGAR and is applied on demand. In the context of
proving termination of programs, Rybalchenko and Podelski proposed the con-
cept of transition invariants [19] which allows to overapproximate the transition
relation induced by pre- and post-state of program statements. Their approach
provides information about variable progress but does not deliver information
about the final state when loop terminates. Thus, alone their method can not
reason precisely about (in)feasibility of traces.

7 Conclusion

We presented an approach to handle the divergence problem of CEGAR. In par-
ticular, the problem related to the infinitely many (spurious) counterexamples
that may arise from unfolding the same (while- or for-) loop in the given pro-
gram. Our solution consists of abstracting (summarizing) not just states but also
the state changes induced by structured program statements, including for- and
while-statements. A lightweight mechanism based on inference rules is used to
generate summaries. If the premise of a given rule matches a loop a summary is
automatically generated by just instantiating the rule with information from the
loop. Thus, no fixpoint computation is required. We proposed a generic scheme
for the implementation of our loop abstraction technique which is based on a
source-to-source transformation. Hence, our approach can be seamlessly inte-
grated into other software verification tools as black-box. Our loop summariza-
tion technique is applied on demand within CEGAR, i.e., whenever a potential
divergence situation is detected. Despite restrictions on the form of loops that
we handle, experimental results show that our method performs well in practice.
We are able to verify all benchmarks used in [14]. Most of these benchmarks are
not handled by several existing tools.
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Abstract. We present a novel canonical automaton model, based on
register automata, that can easily be used to specify protocol or program
behavior. More concretely, register automata are reminiscent of control
flow graphs: they comprise a finite control structure, assignments, and
conditionals, allowing to assign values of an infinite domain to regis-
ters (variables) and to compare them for equality. A major contribution
is the definition of a canonical automaton representation of any lan-
guage recognizable by a deterministic register automaton, by means of a
Nerode congruence. Not only is this canonical form easier to comprehend
than previous proposals, but it can also be exponentially more succinct
than these. Key to the canonical form is the symbolic treatment of data
languages, which overcomes the structural restrictions in previous for-
malisms, and opens the way to new practical applications.

1 Introduction

Automata models that process words or trees over infinite alphabets are becom-
ing increasingly important in many areas, including specification, verification,
and testing (e.g., [2,21]), databases [1], and user modeling [5]. A natural form
for such models consists of a finite control structure, augmented by a finite set
of registers (aka state variables), processing input symbols using a predefined
set of operations (tests and updates) over input data and registers. Specialized
classes, such as timed automata [2], counter automata, and data-independent
transition systems [17] have long been used for specification and verification.
From a language-theoretic perspective, decision problems and connections with
logics have been studied (e.g., [10,8,7,23]).

Modeling and reasoning with automata models can be made much more effi-
cient if it is possible to transform models into a canonical form. Transformation
into a canonical form is heavily used in verification, equivalence checking, and
refinement checking, e.g., using (bi)simulation based criteria [16,20]. While for
finite automata, there are standard algorithms for determinization and mini-
mization, based on the Myhill-Nerode theorem [13,19], it has proven difficult to
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carry over such constructions and define canonical forms for automata models
over infinite alphabets, including timed automata [24]. Often, canonical forms
are obtained at the price of (re-)encoding extensive information about the rela-
tion between parameter values in the state space (e.g., [18,3]).

In this paper, we present a novel canonical automaton model, based on a form
of register automata (RA). We define a form of RAs that are particularly suited
to faithfully model a large class of systems that do not compute or manipulate
data but manage their adequate distribution, e.g., protocols, as well as certain
mediators and connectors. This class of systems is the backbone to support
the large-scale, seamless integration and orchestration of, e.g., (Web) services
to complex business applications running on the (Inter)net. One concrete cur-
rent example for the application of such automata models is the CONNECT
Project [14], which aims at dynamically synthesizing required connectors based
on descriptions of component behavior in the form of automata.

RAs have a finite control structure. They process words over an infinite al-
phabet consisting of terms with parameters from an infinite domain. RAs can
thus can be regarded as a simple programming language, with variables, parallel
assignments, and conditions. In contrast to other types of automata that have
been suggested for data languages [23,6], our form of RAs does not restrict the
access to variables to a specific order or pattern, nor do they constrain the con-
tents of the variables (e.g., by uniqueness). This supports a much more intuitive
modeling of data languages, while leaving the expressiveness untouched.

We present a Nerode congruence for RAs that yields a canonical form. Key to
this generalization of Nerode’s right congruence ([13,19]) to RAs is the symbolic
treatment of data languages in a way that abstracts from concrete data values
and rather concentrates on the relations between parameter values. This allows
for the required flexibility, and also leads to a more elegant canonical form,
which may even be exponentially more succinct than other suggested canonical
forms. This is very important in many applications. For instance, in automata
learning, the complexity of the learning procedure directly depends on the size
of the minimal canonical form of the automaton.

We could compare the difference between the automata of [11,3] and our
canonical form to the difference between the region graph and zone graph con-
structions for timed automata. The region graph considers all possible combina-
tions between constraints on clock values, be they relevant to acceptance of the
input word or not, whereas the zone graph construction aims to consider only
relevant constraints. Our form of RAs is, however, always more succinct than
those of [11,3].

In summary, the contribution of this paper is a succinct and intuitive RA
formalism that can easily be used to specify protocol or program behavior, with
a canonical representation of any (deterministic) RA-recognizable data language
by means of a Nerode congruence.

Related Work. Generalizations of regular languages to infinite alphabets have
been studied previously. Kaminski and Francez [15] introduced finite memory
automata (FMA) that recognize languages with infinite input alphabets. Since
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then, a number of formalisms have been suggested (pebble automata, data au-
tomata, . . . ) that accept different flavors of data languages (see [23,8,6,7] for an
overview). Most of these formalisms recognize data languages that are invariant
under permutations on the data domain. In [9] a logical characterization of data
languages is given plus a transformation from logical descriptions to automata.

While most of the above mentioned work focuses on non-deterministic au-
tomata and are concerned with closedness properties and expressiveness results
of data languages, we are interested in a framework for deterministic RAs that
can be used to model the behavior of protocols or (restricted) programs. This
includes in particular, the development of canonical models on the basis of a
new Myhill Nerode-like theorem.

In [11,3], a Myhill-Nerode theorem for a form of register automata is presented.
Canonicity is achieved by restricting how state variables are stored, which leads
to complex and hardly comprehensible models, as argued in [12]. These compli-
cations are overcome in our structurally much easier RA-based approach.

Organization. In the next section we introduce the RA model as a basis for
representing data languages. In Section 3, we introduce a succinct represen-
tation of data languages, which suppresses non-essential tests, in the form of
a novel, decision tree-like structure called constraint decision trees (CDTs).
Based on this representation, in Section 4 we define a Nerode congruence, and
prove that it characterizes minimal canonical forms of deterministic RAs, called
(right-invariant) DRAs. In Section 5 we relate our canonical form to previously
suggested ones, and establish some exponential succinctness results before we
conclude in Section 6.

2 Data Languages and Register Automata

In this section, we introduce formally the notions of data languages and register
automata. While a very general definition of data languages would define them
simply as sets of data words, for our modeling purposes, focus is on data lan-
guages that are closed under permutations on the data domain. Such languages
are agnostic to the concrete identitiy of data values, which they all treat alike.
With this restriction, data languages are ideal to describe the flow of data as
required for an adequate modeling of systems, whose behavior does not depend
on the data content they distribute.

We assume an unbounded domain D of data values and a set I of actions.
Each action has a certain arity which determines how many parameters it takes
from the domain D. A data symbol is a term of form α(d1, . . . , dn), where α is
an action with arity n, and d1, . . . , dn are data values in D. A data word is a
(finite) sequence of data symbols. A data language is a set of data words, which
is closed under permutations on D. We will often represent a data language as
a mapping from the set of data words to {+,−}, e.g. accept and reject.

We will now present an automaton model that recognizes data languages.
Assume a set of formal parameters, ranged over by p1, . . . , pn, and a finite set
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of variables (or registers), ranged over by x1, . . . , xn. A parameterized symbol is
a term of form α(p1, . . . , pn), consisting of an action α and formal parameters
p1, . . . , pn (respecting the arity of α). A guard is a conjunction of equalities and
inequalities (here, an inequality means a negated equality, e.g., x2 	= p3) over
formal parameters and variables. We write p for p1, . . . , pn and d for d1, . . . , dn.

Definition 1. A Register Automaton (RA) is a tuple A = (L, l0, X, T, λ), where

– L is a finite set of locations,
– l0 ∈ L is the initial location
– X maps each location l ∈ L to a finite set X(l) of variables, where X(l0) is

the empty set,
– T is a finite set of transitions, each of which is of form 〈l, α(p), g, π, l′〉, where
l is a source location, l′ is a target location, α(p) is a parameterized symbol,
g is a guard over p and X(l), and π (the assignment) is a mapping from
X(l′) to X(l)∪ p (intuitively, the value of x ∈ X(l′) is assigned to the value
of π(x)), and

– λ : L �→ {+,−} maps each location to either + (accept) or − (reject),

such that for any location l and action α, the disjunction of all guards g in
transitions of form 〈l, α(p), g, π, l′〉 in T is equivalent to true (i.e., A should be
completely specified). !"

Example: We model the behavior of a fragment of the XMPP protocol [22] as a
running example (shown in Figure 1). XMPP is widely used in instant messaging.
In our fragment of XMPP, a user can register an account (providing a username
and a password), log in using this account, change the password, and delete the
account. In the figure, arcs are labeled with actions, guards, and assignments.
Actions and guards are written above the horizontal delimiter; assignments are
written below it. Accepting locations (where the user is logged in) are denoted
by two concentric circles. For example, the user Bob could register his account
with the action register(Bob, secret) (providing his username and password),
and then log in with the action login(Bob, secret). Once logged in, he could
change his password to boblovesalice with the action pw(boblovesalice).
(For reasons of brevity, several transitions are omitted.) !"
A register automaton A classifies data words as either accepted or rejected.
One way to describe how this is done is to define a state of A as consisting of

l0

l1

l2

register(p1,p2) | true
x1:=p1,x2:=p2

login(p1,p2) | x1=p1∧x2=p2
−

logout() | true
−

delete() | true
−

pw(p1) | true
x2:=p1

Fig. 1. Partial model for a fragment of XMPP
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a location and an assignment to the variables of that location. Then, one can
describe how A processes a data word symbol by symbol: on each symbol, A finds
a transition with a guard that is satisfied by the parameters of the symbol and the
current assignment to variables; this transition determines a next location and an
assignment to the variables of the new location. For the purposes of this paper,
it will be more convenient to use a different but equivalent definition. A run of
A is defined as a pair consisting of a sequence of parameterized symbols and a
guard over its formal parameters. Each run is extracted from some sequence of
transitions, and is used to classify the data words that match its sequence of
symbols and satisfy its guards. We will now discuss this in more detail.

A parameterized word w is a sequence of parameterized symbols in which
all formal parameters are distinct; we assume a (re)naming scheme that avoids
clashes. For a mapping π from a set X of variables, let π̃ denote the mapping
obtained by extending the domain of X to include the set of formal parameters;
these are all mapped to themselves (i.e., π̃(x) = π(x) if x is a variable, and
π̃(p) = p if p is a formal parameter); we extend π̃ to expressions and guards in
the natural way.

A sequence σ of transitions of A from l0 to lk is of form

σ = 〈l0, α1(p1), g1, π1, l1〉 〈l1, α2(p2), g2, π2, l2〉 · · · 〈lk−1, αk(pk), gk, πk, lk〉 ,

which starts in l0 and ends in lk. We define

– the parameterized word of σ as α1(p1)α2(p2) · · ·αk(pk), and
– the guard of σ as g = g1∧ π̃1(g2∧ π̃2(g3∧ π̃3(· · ·∧ π̃k−1(gk)))), i.e., essentially

as the conjunction the guards g1, . . . , gk in σ, where the result of applying
the mappings π̃1, . . . , π̃k−1 is that each variable is replaced by the formal
parameter from which it originally received its value.

A run of an RA A is a pair 〈w, g〉 such that w is the parameterized word and g is
the guard of some sequence of transitions σ from the initial location l0 to some
lk. A run is accepting if λ(lk) = +. It is rejecting if λ(lk) = −. (A run may be
both accepting and rejecting if it can be extracted from two different sequences
of transitions.)

A data word wd = α1(d1) · · ·αk(dk) satisfies a run 〈w, g〉, denoted wd |= 〈w, g〉,
if wd has the same sequence of actions as w, and the parameters of wd satisfy
g in the obvious way (i.e., dip = djq whenever pip = pjq is a conjunct in g, and
dip 	= djq whenever pip 	=pjq is a conjunct in g).

Example: The data word register(Bob, secret)login(Bob, secret) takes the au-
tomaton in Figure 1 from l0 to l2. The sequence σ of transitions is of the
form 〈l0, register(p1, p2), true, π, l1〉〈l1, login(p3, p4), (x1 = p3 ∧ x2 = p4), id, l2〉,
where π is (x1 := p1, x2 := p2) (note that parameters have been renamed
to avoid clashes). The guard of σ is g = (true ∧ π̃(x1 = p3 ∧ x2 = p4)), i.e.,
g = (p1 =p3 ∧ p2 =p4). Then 〈register(p1, p2)login(p3, p4), g〉 is a run of A. !"
An RA is determinate (called a DRA) if no data word satisfies both accepting
and rejecting runs. A data word is accepted (rejected) by a DRA A if all runs
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that it satisfies are accepting (rejecting). We define A(wd) to be + (−) if wd is
accepted (rejected) by A. The language recognized by A is the set of data words
that it accepts.

We have chosen to work with determinate, rather than deterministic, RAs,
since a determinate RA can be easily transformed into a deterministic RA by
strengthening its guards, and a deterministic RA, by definition, is also deter-
minate. Our construction of canonical automata in Theorem 2 will generate
determinate RAs which are not necessarily deterministic. They can easily be
made deterministic, but this conversion can be done in several ways.

We call two variables xi, xj ∈ X(l) in the same location of a DRA independent
if the behavior of the DRA does not depend on the relation between the values
of xi and xj . Technically, this means that (1) no guard of any transition may
compare xi and xj when l is the source location, and (2) no combination of a
guard and an assignment may imply the equality of xi and xj when l is the target
location of a transition. If all variables of a DRA are pairwise independent, i.e.,
no relation between variables influences the DRA’s branching behavior, we refer
to it as a right-invariant DRA (in reminiscence of the right-congruence that is
represented in the locations of the automaton).

For the remainder of this paper we will restrict our attention to right-invariant
DRAs. Any DRA A can be transformed into an equivalent right-invariant DRA
by expanding locations with dependent variables into sub-locations representing
different valuations of the variables. This may, however, result in an exponential
(in the number of variables) blow-up of the number of locations.

3 Symbolic Representation of Data Languages

A given data language may be accepted by many different DRAs. In order to
obtain a succinct, canonical form of DRAs, we will in this section define a canon-
ical representation of data languages; in the next section we will describe how
to derive canonical DRAs from this representation.

Our plan for this section is to first introduce a canonical form for runs of a
DRA, called constrained words, which can only contain equalities (no inequali-
ties) between parameters. Since now constrained words are less expressive than
runs, each data word typically satisfies several constrained words. We therefore
define a new notion of satisfaction between sets of constrained words and data
words, which intuitively selects a “best matching” constrained word for a given
data word. We can then use sets of constrained words, together with a classi-
fication of these words as “accepted” or “rejected”, as a representation of data
languages. We establish, as a central result (in Theorem 1), that any data lan-
guage can be represented by a minimal set of constrained words. This minimal
set will correspond to the set of runs of our canonical automaton, and will serve
several purposes during automata construction:

(1) it will allow us to keep only the essential relations between data values and
filter out inessential (“accidental”) relations between data values, (2) from it, we
can derive the parameters an automaton must store in variables after processing
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a data word, and (3) we can transform parts of it directly into transitions when
constructing the canonical DRA.

Constrained Words. A constraint is a conjunction of equalities over formal pa-
rameters (i.e., without any inequalities). We always write constraints as ordered
lists of equalities without parentheses (using associativity). We use true to de-
note the empty constraint. For a parameterized word w, let p �w p′ denote that
p and p′ are formal parameters in w such that p occurs before p′.

A constrained word is a pair 〈w,ϕ〉 consisting of a parameterized word w and
a constraint ϕ of form p1 =p′1∧p2 =p′2∧· · ·∧pk =p′k over the formal parameters
of w, in which the constraint ϕ satisfies the following conditions:

– pi �w p′i for each i = 1, . . . , k,
– p′1 �w · · · �w p′k, and
– all p1, . . . , pk are distinct.

In other words, in each equality the arguments are ordered, the right-hand sides
of ϕ are ordered, and each parameter occurs at most once as a left-hand side.
Constrained words that differ only by permutation of formal parameters are
regarded as equivalent. We can easily see that for each pair 〈w,ϕ〉 of a parame-
terized word w and constraint ϕ, there is a unique equivalent constrained word.

Since a constrained word is a special case of a run, we directly inherit a defini-
tion of satisfaction between data words and constrained words. Let cw[wd] be the
’strongest’ (w.r.t. number of equalities) constrained word that wd satisfies, i.e.,
cw[wd] contains exactly the equalities that wd satisfies, put on the special form of
constrained words. For example, cw[register(Bob, secret)login(Bob, secret)] =
= 〈register(p1, p2)login(p3, p4), p1 =p3 ∧ p2 =p4〉.

Constraint Decision Trees. We will now define how sets of constrained words
can be used to classify data words as accepted or rejected. This view of a set of
constrained words is called a constraint decision tree (CDT). A CDT consists of
a set of constrained words together with a mapping from this set to {+,−}, and
classifies a data word by finding a “best matching” constrained word.

A set Φ of constrained words is prefix-closed if 〈wv, ϕ∧ψ〉 ∈ Φ implies 〈w,ϕ〉 ∈
Φ whenever 〈w,ϕ〉 is a constrained word. (We recall that constraints are regarded
as ordered lists of equalities, so that 〈wv, ϕ ∧ ψ〉 is a constrained word when
equalities appear exactly in the order defined by ϕ and ψ.) It is extension-closed
if 〈w,ϕ〉 ∈ Φ implies 〈wv, ϕ〉 ∈ Φ for any parameterized word v. It follows that
any non-empty prefix-closed and extension-closed set of constrained words also
contains 〈w, true〉 for each parameterized word w.

Definition 2. A constraint decision tree (CDT) T pair 〈Dom(T ), λT 〉 where
Dom(T ) is a non-empty prefix-closed and extension-closed set of constrained
words, and λT : Dom(T ) �→ {+,−} is a mapping from Dom(T ) to {+,−}. !"

For a constraint ψ, let p �w ψ denote that p �w pj whenever pi = pj is an
equality in ψ (note that ψ may also be empty). We define a strict partial order
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< on constrained words by defining 〈w,ϕ〉 < 〈w′, ϕ′〉 if w = w′ and there are
constraints ϕ′′, ψ, and ψ′, such that

– ϕ is of form ϕ′′ ∧ ψ, and
– ϕ′ is of form ϕ′′ ∧ p=p′ ∧ ψ′, with p′ �w ψ.

Example: For w = register(p1, p2)login(p3, p4) we have 〈w, p1 =p3〉 < 〈w, p1 =p2〉
since p1 =p2 is not present in 〈w, p1 =p3〉, and since p2 �w (p1 =p3). !"
For a set Φ of constrained words, define a relation *Φ between constrained words
in Φ and data words, by letting 〈w,ϕ〉 *Φ wd iff 〈w,ϕ〉 is a maximal (w.r.t. <)
constrained word in Φ such that wd |= 〈w,ϕ〉.

Intuitively, if 〈w,ϕ〉 *Φ wd, then 〈w,ϕ〉 can be viewed as a constrained word
in Φ which “best matches” wd, obtained by adding equalities in ϕ from left to
right. More precisely, given wd, we successively build 〈w,ϕ〉 as the limit of a
sequence of constrained words in Φ. We start with 〈w, true〉, and whenever we
have built 〈w,ϕ〉 we extend it to some 〈w,ϕ∧pi =pj〉, where pi =pj is chosen such
that wd satisfies the equality pi = pj , and such that there is no other extension
〈w,ϕ ∧ p′i = p′j〉 with p′j �w pj , where wd satisfies p′i = p′j . If there is no such
extension (of form 〈w,ϕ ∧ pi =pj〉), we know that 〈w,ϕ〉 *Φ wd.

We call a CDT T determinate (a DCDT) if λT (〈w,ϕ〉) = λT (〈w,ϕ′〉) when-
ever 〈w,ϕ〉 *Dom(T ) wd and 〈w,ϕ′〉 *Dom(T ) wd for some data word wd.

Example: A partially specified prefix of a DCDT for our running example can
be seen in Figure 2. Here, the root node is the leftmost one, and the ordering
< is from top to bottom in the figure (i.e., lower nodes are bigger w.r.t. <).
Let us illustrate the process of finding the maximal (w.r.t. <) constrained word
〈w,ϕ〉 that wd = register(Bob, secret)login(Bob, secret) satisfies. The idea is
to start from the root node and then successively add equalities to the con-
straint ϕ, until we have obtained the maximal one. We start with 〈w,ϕ〉 =
〈register(p1, p2)login(p3, p4), true〉 and add the equality p1 = p3 which wd satis-
fies. We can finally add the equality p2 =p4, and we see that 〈w, p1 =p3 ∧ p2 =
p4〉 *Φ wd. (In fact, we also see that 〈w, p1 =p3〉 < 〈w, p1 =p3 ∧ p2 =p4〉.) !"
We can now define the data language represented by a DCDT, i.e., as a mapping
from the set of data words to {+,−}.

Definition 3. For a DCDT T , define λT (wd) = λT (〈w,ϕ〉) whenever
〈w,ϕ〉 *Dom(T ) wd. !"

We now establish as a central result that for any data language λ there is a
unique minimal DCDT that recognizes λ.

Theorem 1 (Minimal DCDT). For any data language λ, there is a unique
minimal DCDT T such that λ = λT . !"

By minimal, we mean that if T ′ is any other DCDT with λ = λT ′ , then
Dom(T ) ⊆ Dom(T ′). We will sometimes use the term λ-essential (constrained)
words for members of Dom(T ) where T is the minimal DCDT with λ = λT .
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−

+

register(p1, p2)
true

login(p3, p4)
p1 = p3

true

p2 = p4

true

Fig. 2. Partially specified prefix of minimal DCDT for the XMPP language

Proof. (Sketch) We prove Theorem 1 by defining how a minimal set Dom(T )
of constrained words can be constructed incrementally for any data language λ.
We first extend the ordering < so that it relates constrained words of different
lengths, by defining 〈w,ϕ〉 < 〈w′, ϕ′〉 if w is a prefix of w′ or vice versa and
〈w′′, ϕ〉 < 〈w′′, ϕ′〉, where w′′ is the longest of the two words w and w′. We
construct Dom(T ) incrementally, starting with the set of constrained words of
form 〈w, true〉, and then considering constrained words in increasing <-order
(using the extended definition of <). Each such constrained word is added to
Dom(T ) if it is needed in order to classify some data word correctly.

More precisely, consider a constrained word 〈w,ϕ〉, and let ϕ′ be such that
〈w,ϕ〉 is of form 〈w,ϕ′∧p=p′〉. Let Φ<〈w,ϕ〉 be the set of λ-essential constrained
words that are less than (w.r.t. <) 〈w,ϕ〉. Then 〈w,ϕ′ ∧ p = p′〉 is λ-essential
if 〈w,ϕ′〉 is λ-essential (by prefix-closure), and if there is a data word wd, a
constraint ψ, and some extension w′ = wv of w such that

– cw[wd] = 〈w′, ϕ′ ∧ p=p′ ∧ ψ〉,
– 〈w′, ϕ′′〉 *Φ<〈w,ϕ〉 wd for some λ-essential constrained word 〈w′, ϕ′′〉∈Φ<〈w,ϕ〉,
– and λ(〈w′, ϕ′′〉) 	= λ(wd).

The incremental construction works, because only the set Φ<〈w,ϕ〉 of λ-essential
constrained words is needed to determine whether 〈w,ϕ〉 is λ-essential. !"

Example: To illustrate the above procedure, we will partially sketch how to obtain
the λ-essential constrained words of the form 〈w1, ϕ〉 where w1 = register(p1, p2),
and of the form 〈w2, ϕ〉 where w2 = register(p1, p2)login(p3, p4). Initially, the
words 〈w1, true〉 and 〈w2, true〉 are λ-essential.

We then consider constrained words in increasing <-order, beginning with
a smallest constrained word, say 〈w2, p2 = p4〉. We find a data word wd =
register(Bob, secret)login(Alice, secret) such that cw[wd] = 〈w2, p2 = p4〉. We
also find a λ-essential word 〈w2, true〉 such that 〈w2, true〉 *Φ<〈w2,p2=p4〉 wd. Since
λ(wd) = − and λ(w2, true) = − we see that wd is already correctly classified and
thus 〈w2, p2 =p4〉 is not λ-essential.

Next, we pick the constrained word 〈w2, p1 =p3〉 which is larger than 〈w2, p2 =
p4〉 w.r.t.<. Consider the data word w′d = register(Bob, secret)login(Bob, secret)
such that cw[w′d] = 〈w2, p1 =p3 ∧ p2 =p4〉. We find a λ-essential word 〈w2, true〉
such that 〈w2, true〉 *Φ<〈w2,p1=p3〉 w′d. Since λ(w′d) = + but λ(〈w2, true〉) = − we
see that w′d is incorrectly classified and thus 〈w2, p1 =p3〉 is λ-essential.
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We now test the constrained word 〈w2, p1 = p3 ∧ p2 = p4〉 with w′d. However,
since the set of λ-essential constrained words has increased, we get a different
λ-essential word 〈w2, p1 = p3〉 such that 〈w2, p1 = p3〉 *Φ<〈w2,p1=p3∧p2=p4〉 w′d. We
see that λ(w′d) = + but λ(〈w2, p1 = p3〉 = −, so 〈w2, p1 = p3 ∧ p2 = p4〉 is also
λ-essential.

The λ-essential constrained words are now 〈w2, p1 =p3∧p2 =p4〉, 〈w2, p1 =p3〉,
〈w2, true〉, and 〈w1, true〉. Note that these (together with the empty word) are
exactly the constrained words in the DCDT of Figure 2. !"

4 Nerode Congruence and Canonical Form

In this section, we define a Nerode-type congruence on the set of constrained
words of some (minimal) DCDT, which is then used to construct a succinct
DRA that recognizes a data language.

Following standard Nerode, we will define equivalence of words w.r.t. suffixes.
When splitting a constrained word into a prefix and a suffix, however, the equal-
ities between parameters in the prefix and parameters in the suffix are also split.
In the resulting RA, the “loose” connections will be represented by variables.
These will be derived from the concept of memorable parameters, which is the
set of parameters that need to be remembered after processing a prefix. Based
on the minimal DCDT representation, this will guarantee that the number of
variables stored by a canonical DRA is minimal. Similar definitions of data val-
ues that need to be remembered after a sequence of input symbols are also found
in [4,3].

In order for our canonical form to capture exactly the causal relations between
parameters, we will allow memorable parameters to be re-shuffled when compar-
ing words. Two words will be considered equivalent if they require equivalent
parameters to be stored, independent of their ordering or their names.

Let us first see how a constrained word can be split into a prefix and a suffix.
Consider a constrained word 〈w,ϕ〉, where w is a concatenation uv. We can make
a corresponding split of ϕ as ϕ′ ∧ ψ, where the right-hand sides of equalities in
ϕ′ are parameters of u and the right-hand sides of equalities in ψ are parameters
of v. Then 〈u, ϕ′〉 (the prefix) is a constrained word, but 〈v, ψ〉 (the suffix) is in
general not, since ψ refers to parameters that are not in v. We therefore define
a 〈w,ϕ〉-suffix as a tuple 〈v, ψ〉, where ψ is a constraint in which right-hand
sides of equalities are parameters of v, and such that 〈uv, ϕ∧ψ〉 (which we often
denote 〈u, ϕ′〉; 〈v, ψ〉) is a constrained word.

We define the potential of a constrained word 〈w,ϕ〉, denoted pot[〈w,ϕ〉],
as the set of formal parameters in w that do not occur as the left argument
of any equality in ϕ; for example, pot[〈α1(p1, p2)α2(p3, p4), p1 =p2 ∧ p2 =p3〉] =
{p3, p4}.

Definition 4 (Memorable). Let λ be a data language, and let T be the min-
imal DCDT recognizing λ. The λ-memorable parameters of a constrained word
〈w,ϕ〉 ∈ Dom(T ), denoted memλ(〈w,ϕ〉), is the set of parameters in pot[〈w,ϕ〉]
that occur in some 〈w,ϕ〉-suffix 〈v, ψ〉 such that 〈w,ϕ〉; 〈v, ψ〉 ∈ Dom(T ). !"
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We are now ready to define our Nerode congruence on constrained words.

Definition 5 (Nerode Congruence). Let λ be a data language, and let T
be the minimal DCDT recognizing λ. We define the equivalence ≡λ on con-
strained words by 〈w,ϕ〉 ≡λ 〈w′, ϕ′〉 if there is a bijection γ : memλ(〈w,ϕ〉) �→
memλ(〈w′, ϕ′〉) such that

– 〈v, ψ〉 is a 〈w,ϕ〉-suffix with 〈w,ϕ〉; 〈v, ψ〉 ∈ Dom(T ) iff 〈v, γ(ψ)〉 is a
〈w′, ϕ′〉-suffix with 〈w′, ϕ′〉; 〈v, γ(ψ)〉 ∈ Dom(T ), and then

– λ(〈w,ϕ〉; 〈v, ψ〉) = λ(〈w′, ϕ′〉; 〈v, γ(ψ)〉),

where γ(ψ) is obtained from ψ by replacing all parameters in memλ(〈w,ϕ〉) by
their image under γ. !"

Intuitively, two constrained words are equivalent if they induce the same residual
languages modulo a remapping of their memorable parameters. The equivalence
≡λ is also a congruence in the following sense. If 〈w,ϕ〉 ≡λ 〈w′, ϕ′〉 is established
by the bijection γ : memλ(〈w,ϕ〉) �→ memλ(〈w′, ϕ′〉), then for any memλ(〈w,ϕ〉)-
suffix 〈v, ψ〉 we have 〈w,ϕ〉; 〈v, ψ〉 ≡λ 〈w′, ϕ′〉; 〈v, γ(ψ)〉.
Example: In the data language that is accepted by the DRA of Figure 3,
the word 〈register(p1, p2)login(p3, p4)pw(p5), p1 = p3 ∧ p2 = p4〉 and the word
〈register(p1, p2)login(p3, p4), p1 = p3 ∧ p2 = p4〉 are equivalent w.r.t. ≡λ. For
the remapping γ(p4) = p5, and γ(p3) = p3 the residuals become identical.
E.g., the suffix 〈logout()login(p6, p7), p3 = p6 ∧ p4 = p7〉, will become the suf-
fix 〈logout()login(p6, p7), p3 =p6∧p5 =p7〉 under remapping. Concatenation with
the original words will lead to accepted words in both cases. !"

Guard transformation. We will introduce a transformation from suffixes to
guards, which will be needed in Theorem 2 when constructing DRAs from
DCDTs.

Let Φ be a set of constrained words, with 〈w,ϕ〉 ∈ Φ. We say that pi 	= pj is
an implicit inequality of 〈w,ϕ〉 w.r.t. Φ if ϕ is of form ϕ′ ∧ ψ for some ψ with
pj �w ψ, and Φ contains a constrained word of form 〈w,ϕ′ ∧ pi = pj ∧ ψ′〉. Let
ineqsΦ(〈w,ϕ〉) be the conjunction of all implicit inequalities of 〈w,ϕ〉 w.r.t. Φ.
Define the guard g

〈w,ϕ〉
Φ as g

〈w,ϕ〉
Φ ≡ ϕ ∧ ineqsΦ(〈w,ϕ〉). Then, g〈w,ϕ〉

Φ has the
property that wd |= 〈w, g〈w,ϕ〉

Φ 〉 iff 〈w,ϕ〉 *Φ wd

Example: Consider the DCDT from Figure 2. Let Φ contain 〈w, true〉, 〈w, p1 =
p3〉, and 〈w, p1 = p3 ∧ p2 = p4〉, and let w = register(p1, p2)login(p3, p4). Then
p1 	= p3 is an implicit inequality of 〈w, true〉, because p3 �w true, and because
〈w, p1 = p3〉 contains p1 = p3. Similarly, p2 	= p4 is an implicit inequality of
〈w, p1 =p3〉. We then obtain the guard g

〈w,true〉
Φ as p1 	=p3, the guard g

〈w,p1=p3〉
Φ

as p1 =p3 ∧ p2 	=p4, and the guard g
〈w,p1=p3∧p2=p4〉
Φ as p1 =p3 ∧ p2 =p4. !"

We now state the main result of our paper, which relates our Nerode congruence
to DRAs.
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Theorem 2 (Myhill-Nerode). A data language λ is recognizable by a DRA
iff the equivalence ≡λ on λ-essential words has finite index.

Proof. If: The if-direction follows by constructing a DRA from a given ≡λ, as
the DRA A = ( locs, l0, X, T, λ), where

– L is given by the finitely many equivalence classes of the equivalence relation
≡λ on λ-essential words. For each equivalence class, we choose a representa-
tive λ-essential constrained word.

– l0 is [〈ε, true〉]≡λ
, with the empty word as representative element.

– X maps each location [〈w,ϕ〉]≡λ
with representative word 〈w,ϕ〉 to the set

X([〈w,ϕ〉]≡λ
) of λ-memorable parameters of 〈w,ϕ〉. Note that we here use

parameters as variables.
– T is constructed as follows. For each location l = [〈w,ϕ〉]≡λ

in L with repre-
sentative element 〈w,ϕ〉 and each λ-essential one-symbol extension of 〈w,ϕ〉
of form 〈w,ϕ〉; 〈α(p), ψ〉, there is a transition in T of form 〈l, α(p), g, γ, l′〉,
where
• l′ = [〈w,ϕ〉; 〈α(p), ψ〉]≡λ

; let 〈w′, ϕ′〉 be the representative element of the
equivalence class [〈w,ϕ〉; 〈α(p), ψ〉]≡λ

,
• γ is the bijection γ : memλ(〈w′, ϕ′〉) �→ memλ(〈w,ϕ〉; 〈α(p), ψ〉) which is

used to establish 〈w′, ϕ′〉 ≡λ 〈w,ϕ〉; 〈α(p), ψ〉 in Definition 5,
• g is obtained as gψ

Φ , where Φ is the set of all λ-essential extensions
of 〈w,ϕ〉 by the action α, i.e., the set of λ-essential words of form
〈w,ϕ〉; 〈α(p), ψ′〉.

– λ([〈w,ϕ〉]≡λ
) = λ(wd) whenever 〈w,ϕ〉 = cw[wd].

The constructed DRA is well defined: it has finitely many locations since the
index of ≡λ is finite, the initial location is defined as the class of the empty
word, and λ is defined from λ for the representative elements of the locations. The
transition relation is total and determinate. This is guaranteed by construction
of guards from DCDTs, and by construction of DCDTs.

To complete this direction of the proof, we need to show that the constructed
automaton A indeed recognizes λ. Consider an arbitrary sequence of transitions
of A, of form

〈l0, α1(p1), g1, π1, l1〉 · · · 〈lk−1, αk(pk), gk, πk, lk〉 ,

which generates a run of form 〈α1(p1) · · ·αk(pk) , g〉, where g is g1 ∧ π̃1(· · · ∧
π̃k−1(gk))). Let w = α1(p1) · · ·αk(pk), and let ϕ be the ordered sequence of
equalities in g (i.e., omitting inequalities). By construction, 〈w,ϕ〉 is a λ-essential
constrained word such that g is equivalent to g

〈w,ϕ〉
Dom(T ), which implies that wd |=

〈w, g〉 iff 〈w,ϕ〉 *Dom(T ) wd for any data word wd. In summary, this implies that
A correctly classifies data words that satisfy any of its runs.

Only if: For the only-if direction, we assume any (right-invariant) DRA that
accepts λ. The proof idea then is to show that two λ-essential constrained words
corresponding to sequences of transitions that lead to the same location are also
equivalent w.r.t. ≡λ, i.e., that one location of a DRA cannot represent more than
one class of ≡λ. This can be shown straight-forwardly using right-invariance. !"
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l0

l1

l2

register(p1,p2) | true
x1:=p1,x2:=p2

login(p1,p2) | p1=x1∧p2=x2
−

logout() | true
−

delete() | true
− pw(p1) | p1 �=x1

x2:=p1

l1
′

l2
′

register(p1,p2) | p1=p2
x1:=p2

login(p1,p2) | p1=x1∧p2=x1
−

delete() | true
−

pw(p1) | p1=x1
−

logout() | true
−

pw(p1) | p1 �=x1
x2:=p1

pw(p1) | p1=x1
−

Fig. 3. Partial DURA model for a fragment of XMPP

We get as a corollary result from the only-if direction of the proof that the
automaton generated in the first part of this proof is in fact a minimal (in the set
of locations) right-invariant DRA recognizing λ. As stated already, minimality of
the DCDT representation guarantees that the automaton will also use a minimal
number of variables.

5 Comparison between Different Automata Models

In this section we will compare our register automata to previously proposed
formalisms. We will show that our models can be exponentially more succinct.

There are already proposals for DRAs that accept data languages, which,
however, fail to be simple and do not exactly match the flavor of data languages
we are using [15,3]. For instance, in these automata, variables have to be unique,
or can only be accessed in a queue-like fashion. A Myhill-Nerode-like theorem
has been proposed for these data languages and automata [11,3]. It is, however,
formulated on the level of concrete data words. This makes it difficult to identify
essential relations between parameters in the corresponding canonical form.

Both the design of the DRAs and the Nerode congruence on the level of
data words thus require encoding information about accidental relations between
parameters into the set of locations. This makes the models harder to understand
and work with. We will show that in the worst case the resulting canonical models
can be exponentially bigger than our canonical models.

Let us define a class of RAs that resembles the automata of [3]. An RA is
unique-valued (called a URA) if the valuation σ in any reachable state 〈l, σ〉
is injective, i.e., two variables can never store the same data value. An RA is
ordered (called an ORA) if state variables are ordered (we will use < to represent
this ordering), and data values are stored only in order of appearance. That is
if xi and xj are two state variables with xi < xj , then in any reachable state,
either xj is undefined, or the transition at which xi was assigned a value must
coincide with or precede the transition at which xj was last assigned a value. We
will also define an OURA, which is both ordered and unique-valued. We will refer
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to the automata resulting from our Nerode congruence as DRAs. The automata
of [3] correspond to deterministic OURAs (DOURAs).

In the worst case, there are two exponential blow-ups: between DRAs and
DURAs, and between DURAs and DOURAs. The first exponential blow-up be-
tween DRAs and DURAs can be shown by constructing a DRA that can store
n independent variables, while the corresponding DURA has to maintain in the
set of locations which of the n variables have the same value. The second expo-
nential blow-up between DURAs and DOURAs can be shown by constructing
a DURA that allows random (write) access to n variables. The corresponding
DOURA has to maintain in the set of locations the order in which the variables
are written.

These blow-ups will not always be exponential. We will illustrate the dif-
ference between DURAs and our canonical form using our running example.
Figure 3 shows a partial DURA model for the DRA from Figure 1. The DURA
has to maintain if provided username and password (p1, p2 from register(p1, p2))
accidentally coincide. In this case this leads to replication of each location from
which these two data values can be accessed, namely l1 and l2. A DOURA in
this case would look the same as the DURA. Adding a primitive to change the
username, however, would lead to another blow-up in the DOURA: the order in
which username and password have been set would have to be encoded in the
set of locations.

6 Conclusions and Future Work

In this paper, we present a novel form of register automata, which also has
an intuitive and succinct minimal canonical form, which can be derived from a
Nerode-like right congruence.

Our immediate plans are to use these results to generalize Angluin-style ac-
tive learning to data languages over infinite alphabets, which can be used to
characterize protocols, services, and interfaces. Another obvious problem is to
generalize the canonical model to more expressive signatures with other simple
operations on data values, e.g., including comparisons of various forms.
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Abstract. Even though the well-known nested-depth first search algorithm for
LTL model checking provides good performance, it cannot benefit from the re-
cent advent of multi-core computers. This paper proposes a new version of this
algorithm, adapted to multi-core architectures with a shared memory. It can ex-
hibit good speed-ups as supported by a series of experiments.

1 Introduction

The model checking problem aims at verifying whether a given hardware or software
system meets its specification. For the analysis of properties expressed in the Linear-
time Temporal Logic (LTL) this problem is often reduced to checking the emptiness of
a Büchi automaton defined as the product of the system and an automaton negating the
formula to check [26]. Thus, model checking boils down to find a cycle in a directed
graph, and more precisely, to verify the existence of an accepting cycle. The latter is
defined as a cycle (in the sense of graph theory) containing at least one accepting state.

This problem has been intensively explored because of its importance, using diverse
techniques. In the context of explicit-state model checking, algorithms usually rely on
depth-first-search (DFS) strategies allowing to check for Büchi emptiness in linear time.
They are split in two main families: Nested DFS (ndfs), originally proposed by Cour-
coubetis et al [11], consist of two procedures where the first one allows to find and
sort the accepting states while the second one, interleaved with the first one, searches
for cycles containing these states ; SCC (strongly-connected components) based algo-
rithms [12, 17] exploit the fact that a counter-example exists if and only if a strongly
connected component containing an accepting state is reachable from the initial state.

Despite the existence of algorithms with linear complexity for this emptiness check,
combinatorial aspects remain due to the state space size of real systems, their exact anal-
ysis often being intractable. However, recent hardware developments, such as 64-bits
technologies, contribute to harnessing formal verification memory limitations. Hence,
the problem we can now often face is a “time explosion” rather than a lack of memory.
For instance, using aggressive memory reduction techniques [21] one can hope to anal-
yse state space graphs with e.g. 1010–1011 states. Even with the fastest tools available,
such as SPIN [19], a full exploration of such a graph would require weeks.

T. Bultan and P.-A. Hsiung (Eds.): ATVA 2011, LNCS 6996, pp. 381–396, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The use of parallel search algorithms can naturally leverage this time explosion.
Most algorithms of this category were initially designed for distributed-memory archi-
tectures [1,5,7,8,9], fostered by easy access to networks of workstations. The availabil-
ity of multi-core chips on desktop computers now offers opportunities to speed up tasks
execution and also for the development of new approaches to model checking [3, 22].

Our contribution is a parallel algorithm designed for shared memory and multi-core
architectures: Multi-Core ndfs (mc-ndfs). It solves the Büchi emptiness problem by
launching multiple instances of ndfs. The use of both randomisation and synchronisa-
tions allows, to some extent, to force processes to visit different parts of the graph and to
avoid, as much as possible, multiple revisits of a same state. Thus, even if our algorithm
is theoretically not scalable it provides significant speed-ups for many case studies as
attested by a wide range of experiments.

The paper is organised as follows. Section 2 presents related works: the well-known
ndfs algorithm is recalled and existing parallel algorithms for LTL model checking
summarised after outlining the accepting cycle detection problem. Section 3 details the
proposed algorithm and gives its formal proof. Section 4 presents experimental results.
Our work is concluded by Section 5 that also gives some perspectives for future work.

2 Background

In order to facilitate the understanding of our algorithm and its comparison with algo-
rithms from the literature, we begin with a brief state of the art: LTL model checking,
some algorithms based on ndfs, and parallel algorithms for LTL model checking.

2.1 The LTL Model Checking Problem

This paper addresses LTL model checking of finite-state systems where both the sys-
tems and their properties are modelled as automata. Then, verification is often reduced
to checking the emptiness of a Büchi automaton defined as the product of the system
and the negated formula [26]. This problem can be stated in its basic form as follows:

Definition 1 (Synchronised graph). A synchronised graph is a tuple G =(S ,T ,A ,s0),
where S is a finite set of states; T ⊆ S × S is a set of transitions; A ⊆ S is the set of
accepting states, and s0 ∈ S is an initial state.

The set of successors of s ∈ S is denoted by succ(s) = {s′|(s,s′) ∈ S}. A path is a
sequence of states s1 . . . sk with (si,si+1) ∈ T for all i ∈ {1, . . . ,k−1} denoted by s1 
sk. A cycle is a path with s1 = sk. An accepting cycle is a cycle that contains at least one
state a ∈ A . An accepting run is a path from s0 to sl through sk where sk . . .sl form an
accepting cycle. The accepting cycle detection problem aims at determining if a given
graph G contains an accepting cycle. The major algorithms addressing this problem
are based either on nested DFS (ndfs) or on SCCs (originating from Tarjan’s algorithm
for decomposing the graph into strongly connected components). Since the algorithm
proposed in this paper is essentially based on ndfs, we shall focus on this one only.
Details on SCC-based algorithms can be found elsewhere [12, 17].
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2.2 Algorithms Based on Nested Depth-First Search

The well-known nested-depth first search algorithm for LTL model checking, was ini-
tially introduced in [11]. All algorithms belonging to this category still follow the same
scheme. The ndfs algorithm (see Algorithm 1.1) is defined by two procedures called
dfsBlue and dfsRed. The first one, which is the main loop, allows for marking each
newly visited state as blue. The second one tries to find a loop back to a given accepting
state s, and marks all encountered states as red. If a cycle is detected then a counterex-
ample is reported, otherwise the first DFS continues and the red markings remain. Note
that each DFS visits each state at most once and requires one bit per state. Procedure
dfsBlue performs a depth-first search and sets the blue bits of all visited states. Proce-
dure dfsRed is invoked when the search from an accepting state s finishes. Finally, if
dfsRed finds that some accepting state s can be reached from itself, an accepting cycle
is returned, otherwise the graph does not contain any cycle.

Since its introduction, several improvements have been proposed. Some aim at re-
porting accepting runs faster [13, 14, 15, 18] while others [16] focus on the length of
counter-examples. Nested DFS is now implemented by a large range of explicit state
model checkers among which SPIN [19] was historically the first.

2.3 Parallel Algorithms for LTL Model Checking

The best known enumerative sequential algorithms in the area of LTL model checking
are Nested DFS and SCC-based algorithms. Adapting them to take advantage of par-
allel architectures is difficult since they rely on inherently sequential depth-first search
postorder. Hence, it is necessary to propose new techniques and algorithms. Before get-
ting into the details of the proposed algorithm, seven existing parallel algorithms are
outlined: Maximal Accepting Predecessor (map), One Way Catch Them Young (owcty),
One Way Catch Them Young On-The-Fly (owcty-otf), Negative Cycle (negc), Back-Level
Edges (bledge), Back-Level Edges On-The-Fly (bledge-otf), and SPIN’s double DFS (2-
ndfs). All except the last one have been initially designed for distributed memory archi-
tectures, but it is well known that they can easily be transformed into shared memory
algorithms. To compare the different complexities of these algorithms the following no-
tations are used: n = |S |, m = |T |, a = |A |, p = number of working processes and h
(height) is the smallest integer s.t. s0 can reach all states using at most h transitions.

Algorithm map [8] uses an order relation on states to compute the maximal accepting
predecessor function map mapping each state s to the identity of the greatest accepting
state that is backward reachable from s.

Algorithm 1.1. The ndfs algorithm adapted from [11]
1 procedure ndfs(s) is
2 initialise all flags to false
3 dfsBlue(s0)
4 if ¬ cycle reported then
5 report no-cycle

6 procedure dfsBlue(s) is
7 s.blue := true
8 for s′ ∈ succ(s) do
9 if ¬s′.blue then

10 dfsBlue(s′)
11 if s ∈ A then
12 seed := s
13 dfsRed(s)

14 procedure dfsRed(s) is
15 s.red := true
16 for s′ ∈ succ(s) do
17 if s′ = seed then
18 report cycle
19 else if ¬s′.red then
20 dfsRed(s′)
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The key idea behind algorithm owcty is to repeatedly remove from the graph states
that cannot lead to an accepting cycle [9], according to two rules: a state s can be
removed if it has no successor in the graph and/or it cannot lead to an accepting state.
An extension of owcty algorithm is presented in [2]. The owcty-otf algorithm employs
back-level edges as computed by the breadth-first search.

An extension of the owcty algorithm is presented in [4]. The owcty-otf algorithm
combines the basic owcty algorithm with a limited propagation of selected accepting
states as performed within the map algorithm.

Algorithm negc [7] reduces the LTL model checking problem to a negative cycle
detection problem. To do so, the initial graph is transformed: every edge exiting an ac-
cepting state is labeled with -1 while every edge exiting a non-accepting state is labeled
with 0 (a counter-example exists iff the transformed graph contains a negative cycle).

Every accepting cycle contains at least one accepting state and one back-level edge
(s,s′) such that d(s) ≥ d(s′), where d(x) is the length of the shortest path from s0 to x.
Algorithm bledge [1] stems from this observation. It detects all back-level edges using a
distributed BFS and then checks in parallel whether at least one back-level edge belongs
to a cycle by using DFS. In [2], an extension of the bledge algorithm has been proposed
(bledge-otf) that allows on-the-fly accepting cycle detection.

An extension of ndfs for a dual-core machine, called double-DFS (2-ndfs) hereafter,
is presented in [22] and implemented in SPIN [19]. It is based on the observation that
the blue and the red DFS can be performed independently. The linear complexity of
ndfs is kept although the algorithm can only be applied to dual-core systems.

After preparing this final version, we noticed that another approach on parallelising
Nested Depth First Search appears in this same volume [23]. Both approaches appear
to be complementary, since the colours shared are not the same, thus affecting different
parts of the program execution. Moreover, in the other approach, a synchronisation
mechanism is required whereas we use randomised executions with a repair procedure.

Table 1 summarises explicit states algorithms designed for LTL model checking.
It provides, for each algorithm, the reference introducing it, its time complexity, the
number of core(s) it can be run on, the acceleration (experimentally observed) that can
be provided and finally its “on-the-flyness” as defined in [4]:

level 0. The algorithm has to explore the whole graph before checking emptiness.
level 1. The algorithm can find an accepting run before building the whole synchro-

nised graph but is not guaranteed to do so.
level 2. The algorithm works on-the-fly. There is always an exploration order of tran-

sitions guaranteeing an early termination in the presence of an accepting run.

Note that, with our new algorithm mc-ndfs, the aggregate work performed by all pro-
cesses increases as more processes get involved in the verification. Hence mc-ndfs does
not scale in theory and, in the worst case, does not offer any improvement with respect
to a sequential ndfs. Our algorithm is therefore a heuristic algorithm: we can hope to re-
duce the exploration time through the mechanism it implements, but for some problems
it may be equivalent to spawning multiple instances of ndfs. Nevertheless, even in this
pathological situation, the use of randomisation can help to report counter-examples
faster. This is one of the founding principles of the Swarm tool [20].
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Table 1. Explicit state algorithms for Büchi emptiness check

Algorithm Source Time Complexity Scalability Acceleration On-the-flyness
ndfs [11] O(n+m) 1 core - 2

couv-tarjan [12] O(n+m) 1 core - 2
GV-tarjan [17] O(n+m) 1 core - 2

2-ndfs [22] O(n+m) 1–2 core(s) average 2
map [8] O(a2 ·m) 1–N core(s) excellent 1

owcty [9] O(h ·m) 1–N core(s) excellent 0
owcty-otf [4] O((h · (m+n))) 1–N core(s) excelent 1

negc [7] O(n ·m) 1–N core(s) excellent 0
bledge [1] O(m · (n+m)) 1–N core(s) excellent 0

bledge-otf [2] O(m · (n+m)) 1–N core(s) excellent 2
mc-ndfs this paper O(p · (n+m)) 1–N core(s) average-good 2

3 mc-ndfs, a Multi-core Algorithm for LTL Model Checking

This section introduces mc-ndfs, a new algorithm for LTL model checking, designed for
multi-core, shared memory architectures. It first emphasises the difficulty of parallelis-
ing ndfs. The principle of mc-ndfs is then explained, the algorithm detailed and formally
proven. Finally, its complexity is discussed and a possible extension introduced.

Throughout this section, we denote by G = (S ,T ,A ,s0) a synchronised graph and
by P = {1, . . . ,P} a pool of running processes.

3.1 Difficulty of Parallelising ndfs

Fig. 1(a) describes a synchronised graph used as a running example throughout this
section. Accepting states are drawn, as usual, using double circles. This graph contains
a single accepting run 0→1→2→1 highlighted using thick arcs.

Let us consider a naive multi-core version of the ndfs algorithm: processes execute
procedure ndfs and share all data (i.e. blue and red flags). Running this algorithm with
two processes p1 and p2 on the graph of Fig. 1(a) will not necessarily report the accept-
ing cycle, as shown by the execution in Fig. 1(b).

0

1 3

2

(a)

Process p1 Process p2 Blue states Red States Seed
dfsBlue(0) dfsBlue(0) 0 - -
dfsBlue(1) 0, 1 - -
dfsBlue(2) 0, 1, 2 - 1
dfsRed(1) 0, 1, 2 1 1

dfsBlue(3) 0, 1, 2, 3 1 3
dfsRed(3) 0, 1, 2, 3 1, 3 3
dfsRed(2) 0, 1, 2, 3 1, 2, 3 3

(b)

Fig. 1. A synchronised graph (1(a)) and a possible faulty execution with a naive parallel version
of ndfs (1(b))
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The blue DFS launched by p1 starts exploring the left part of the graph and colours
the states it meets in blue (i.e. 0, 1 and 2). When backtracking from 2 and then 1, process
p1 initiates a red DFS on state 1. Suppose that meanwhile the blue DFS launched by
process p2 visits the right part of the graph. It colours state 3 in blue and then reaches
state 2 previously marked blue by p1. Since all successors of state 3 are blue, p2 can
start a red DFS on this same state. If p2 progresses faster than p1, it will colour states
3 and 2 in red before terminating. Process p1, when evaluating the successor of state 1,
will only find state 2 (already red) and terminate without noticing the accepting cycle.

This small example highlights the key idea behind the correctness of ndfs: the red
DFS being nested in the blue DFS guarantees that the invocation sequence of dfsRed
respects a DFS post-ordering of states. Hence, if two accepting states a1 and a2 are
such that a1  a2 ∧¬(a2  a1) (noted a1 > a2 in the sequel) then for all executions
the red DFS on a1 cannot start unless the red DFS on a2 did terminate. Otherwise the
red DFS started on a1 would colour in red the states of the accepting cycle including
a2 (if any), which would then not be detected by the red DFS initiated on a2. In all
other cases, the invocation order is irrelevant: either the two red DFS cannot interfere
(¬(a1  a2)∧¬(a2  a1)), or a1 and a2 belong to the same accepting cycle (a1 
a2 ∧ a2  a1) and this cycle will be detected anyway. This naive parallel version of
ndfs exhibits the first situation since the DFS post-order is not respected anymore (with
a2 = 1 and a1 = 3 in our example).

Solving this kind of conflict constitutes the core difficulty when designing a multi-
core version of ndfs.

3.2 Principle of the Algorithm

The previous problem has first been detailed in [5] that proposes an algorithm designed
for distributed memory algorithms. Its underlying principle is to maintain a dependency
graph that avoids these conflicts and ensures that the red DFS is initiated in the appro-
priate order: a1 > a2 ⇒ dfsRed(a2) terminates before dfsRed(a1) starts. The principle
of mc-ndfs is instead to detect, on-the-fly, configurations in which the invocation order
of the red DFS is broken. It is optimistic in the sense that processes evolve without pre-
venting conflicts, and operations to fix problems are performed a posteriori. Thus, all
synchronisations required in [5] are avoided, but states may be revisited if a conflict is
detected. More precisely, a process notifies its peers by marking state a2 as dangerous.
It must then be treated differently as explained below. In our previous example, process
p2 would detect that the red DFS it initiated on state 3 interferes with the one on state
1 still handled by p1. This conflict is detected by p2 and reported to p1 by marking
state 1 as dangerous. In this situation, p1 restarts a nested DFS using Algorithm 1.1 but
exploits local data only. Hence, the red flag set to true by p2 (i.e. 2.red) during the red
DFS it performed on state 3 is ignored by p1, which reports the cycle 1→2→1.

Marking an accepting state a as dangerous is thus a means for a process to warn its
peers that a red DFS it performed has potentially corrupted the outcome of a red DFS on
a. The easiest way to proceed is then, after the red DFS on a has terminated, to reinitiate
a nested depth-first search on a since an accepting state could have been missed. Hence,
mc-ndfs can be viewed as a two levels algorithm: a multi-core level with inter-processes
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synchronisations to distribute work among processes; and an emergency level without
any synchronisation and triggered in case of failure of the first level.

3.3 Details of the Algorithm

Algorithm 1.2 shows the pseudo-code of our new algorithm. States have several at-
tributes. Some are local to a process p (attributes s.bluep and s.redp for p ∈ P ) while
others are global and shared by all processes (s.blue,s.dangerous,s.red).

The main procedure (ll. 1–6) first initialises all boolean attributes of states to false
and spawns P working processes that will start a blue DFS on the initial state. If they
terminate without reporting any accepting cycle, the algorithm reports that none exists.

Roughly speaking, two modifications have been brought to the sequential algorithm.
First, to ensure, as much as possible, that processes will engage in different parts of the
graph, successor states are visited in a random order thanks to the shuffle function (l. 11
and l. 20). Second, inter-process synchronisations have been integrated to both DFSs
— through the global attributes s.blue and s.red — in order to limit the visits of a same
state by different processes (see l. 16 and l. 21).1

Modifications to the blue DFS. First, states visited by the red DFS are not directly
marked as red but instead put in set Rp to be later marked by the blue DFS once the red
search has terminated (ll. 28–30). Note that a dangerous state may not be marked as red,
unless it is the state currently visited. Second, a state s, marked as dangerous by another
process, is revisited with ndfsp (ll. 31–32). Red and blue attributes associated with each
state s by ndfsp — the same as in Algorithm 1.1 except for the few minor changes
listed below — are distinct from those used by mc-ndfs and local to each process so
that data computed by another process may not corrupt the result that will come out
from a call to procedure ndfsp. Moreover, the computation result of an invocation of
ndfsp can be used during subsequent calls to this same procedure. Therefore, a state
cannot be visited more than once by a process p with procedure ndfsp. Consequently,
the initialisation step (l. 2 of Algorithm 1.1) is not performed during an invocation of
ndfsp and local flags used in this procedure can be initialised at l. 1 of Algorithm 1.2.

Modifications to the red DFS. First, a successor state s′ of s is marked as dangerous
(ll. 14–15) when it is accepting but not red. In this situation, the red DFS on s′ has not
terminated (since¬s′.red) although it may have started. The red flags of states reachable
from s′ that the current process p will set to true (at l. 30) must thus be ignored by any
process q 	= p that will later launch ndfsq(s′) if dfsRedq(s′) does not report a cycle.
This situation corresponds to the kind of conflict exhibited by our previous example.

1 Attribute s.blue is set to true as soon as s is backtracked from a process whereas it could
instead be set before the exploration loop of ll. 20–22. This second alternative would have
severely limited the degree of parallelism: as soon as a process p would push a state s on its
blue DFS stack, it would prevent all other processes from visiting s and all its successors. For
instance, if the initial state had a single successor mc-ndfs would then most likely degenerate
into a sequential ndfs. However, by doing so, we leave the possibility to have different pro-
cesses visiting the same state with the blue DFS: this is thus a tradeoff between the degree of
parallelism and the amount of work performed.
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Algorithm 1.2. The mc-ndfs algorithm for P working processes
1 initialise all flags to false
2 execute dfsBlue1(s0) || . . . || dfsBlueP(s0)
3 wait for termination of
4 dfsBlue1, . . . , dfsBlueP
5 if ¬ cycle reported then
6 report no-cycle
7

8 procedure dfsRedp(s) is
9 s.redp := true

10 Rp := Rp ∪{s}
11 for s′ ∈ shuffle(succ(s)) do
12 if s′ = seedp then
13 report cycle
14 if s′ ∈ A ∧¬s′.red then
15 s′.dangerous := true
16 if ¬s′.red∧¬s′.redp then
17 dfsRedp(s′)

18 procedure dfsBluep(s) is
19 s.bluep := true
20 for s′ ∈ shuffle(succ(s)) do
21 if ¬s′.blue∧¬s′.bluep then
22 dfsBluep(s′)
23 s.blue := true
24 if s ∈ A then
25 seedp := s
26 Rp := /0
27 dfsRedp(s)
28 for r ∈ Rp do
29 if ¬r.dangerous∨ s = r then
30 r.red := true
31 if s.dangerous then
32 ndfsp(s)

Another major change with respect to ndfs is that mc-ndfs marks states as red when a
red DFS terminates (ll. 28–30) by storing in Rp all states visited by the DFS. Indeed, as
a red DFS terminates, all states it visited are guaranteed not to belong to an accepting
cycle unless a state marked as red led to a non-red and accepting state (hence marked
dangerous, as explained above). This information can also be used by other processes.
The proof of the algorithm will clarify the motivation for marking states as red only
when the red DFS terminates and not earlier.

3.4 Proof of the Algorithm

Intuitively, the correctness of our algorithm stems from the way states are marked red
and dangerous. When a red DFS on an accepting state a1 is triggered by process p
before the red DFS has terminated on a state a2 with a1 > a2, some states s ∈ Rp around
a2 will be marked red and a2 dangerous. However, since a2 is marked as dangerous
before states of Rp become red (states are marked as dangerous during the red DFS
while states become red once the red DFS has terminated), if an accepting cycle on
state a2 is not discovered, then it is due to the fact that the red DFS on a2 reached a red
state which in turn implies that a2 has been marked as dangerous. Hence, ndfsp(a2) will
necessarily be triggered after the red DFS, and the cycle will be reported.

The proof proceeds in five steps. First, it is straightforward that all states will be
visited by a blue DFS and thus all accepting states will be visited by a red DFS.

Proposition 1. After the termination of algorithm mc-ndfs, either an accepting cycle is
reported or ∀s ∈ S ,s.blue∧ s ∈ A ⇒ s.red.

Second, it is an invariant property that an accepting state a can only be marked red after
the termination of dfsRedp(a) (for a process p ∈ P ).
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Proposition 2. Let a ∈ A . There exists p ∈ P such that dfsRedp(a) is initiated by mc-
ndfs with a.red = false.

Proof. Initially, s.red = false,∀s ∈ S . From the conditions at l. 29 and l. 14, it holds that
dfsBluep(s) changes r.red from false to true (at l. 30) if and only if r /∈ A ∨r = s. Hence,
if a ∈ A , a.red can be set to true by p ∈ P after the termination of dfsRedp(a). Since,
from Prop. 1, ∀a ∈ A ,a.red = true when mc-ndfs terminates, our claim is proven. !"

Third, all accepting states reachable from a red state are either red or dangerous.

Proposition 3. For any (s,s′) ∈ S ×A: s.red∧ s  s′ ⇒ s′.red∨ s′.dangerous.

Proof. The proof proceeds by induction on set S . Initially, s.red = false,∀s ∈ S and the
proposition holds. Let s ∈ S be a state marked as red at l. 30 by dfsBluep. Now assume
that the proposition does not hold for s: ∃a ∈ A with s  a∧¬a.red∧¬a.dangerous.

Necessarily, dfsRedp(s) has been initiated and terminated (since s has been put in
Rp). Let us consider a path s = s0 → . . .→ sn → a. After the initiation of dfsRedp(s) we
necessarily reached a configuration where dfsRedp(si) is initiated; and s j = si+1 is not
visited by the red DFS: s j.red∨ s j.redp. Otherwise it would hold, from ll. 14–15, that
a.dangerous. Now two possibilities arise:

s j.red — Using our induction hypothesis, s j.red ⇒ a.dangerous (since s j  a) which
leads to a contradiction.

¬s j.red∧ s j.redp — s j.redp implies that dfsRedp(s j) has been initiated. By recursively
applying the same reasoning with path s j → . . .→ sn → a we will necessarily find
sk ∈ {s j, . . . sn} with sk.red which, again, leads to a contradiction.

Hence, if the proposition holds before the assignment at l. 30 then so does it after its
execution. Using the induction hypothesis, the proposition holds. !"

The fourth point is the key to ensure the correctness of our algorithm: for any accepting
cycle going through accepting states a1 . . .an, at least one process p will, by executing
dfsRedp(ai) for some ai, report the cycle or revisit ai through the execution of ndfsp(ai)
because ai.dangerous has been set to true by another process before dfsRedp(ai) termi-
nates.

Proposition 4. Let a1 ∈ A , . . . ,an ∈ A belong to the same accepting cycle. Then there
exists p ∈ P , ai ∈ {a1, . . . ,an} such that either dfsRedp(ai) reports the accepting cycle
or ai.dangerous = true once dfsRedp(ai) has terminated.

Proof. Let us consider an accepting cycle s1 . . . sn with s1 = sn ∈ A . In this proof we
assume that dfsRedp(s1) starts for some p ∈ P and that s1.red = false. This will neces-
sarily happen thanks to Prop. 2. If dfsRedp(s1) does not report this accepting cycle we
necessarily reach the following configuration:

1. States s1, . . . ,si (with i < n) are (in this order) on the red DFS stack of process p.
2. When visiting the successor(s) of si, dfsRedp(si) ignores state s j = si+1 and does

not launch dfsRedp(s j).
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This situation occurs since otherwise the cycle would be discovered by process p. From
the condition at l. 16, there are two possibilities:

s j.red — From Prop. 3, s1.dangerous = true since s j  s1 ∧ s j.red = true∧ s1.red =
false. Hence, since s1.dangerous = true when dfsRedp(s1) terminates, our proposi-
tion holds.

¬s j.red∧ s j.redp — s j.redp has necessarily been set to true during a previous invo-
cation of dfsRedp. Hence, s j was previously added to Rp and it holds that either
s j.red = true (which leads to a contradiction), or s j.dangerous and, again, our
proposition holds since we had s j.dangerous when dfsRedp(s j) terminated. !"

At last we can prove that the nested DFS initiated, at l. 32, on a dangerous state s will
report any accepting cycle containing a or a′ reachable from a.

Proposition 5. For any a ∈ A , p ∈ P , ndfsp(a) reports an accepting cycle if and only
if there is an accepting cycle around state a′ ∈ A with a  a′.

Proof. The correctness of Prop. 5 is a direct consequence of the correctness of algo-
rithm ndfs (see [11]). If ndfsp(a) is initiated and if a cycle containing a′ ∈ A (with
a  a′) is not reported then ndfsp(a) necessarily reaches a state s belonging to the cycle
and already visited by a previous invocation of ndfsp(a′′). This is however impossible,
since the cycle would have been visited during this previous search. !"

Theorem 1 establishes the correctness of mc-ndfs as a consequence of Prop. 2, 4 and 5.

Theorem 1. Algorithm mc-ndfs reports an accepting cycle if and only if there is an
accepting cycle in G .

Proof. Let us consider an accepting cycle containing a ∈ A . From Prop. 2, there exists
p ∈ P s.t. dfsRedp(a) will be invoked with a.red = false. From Prop. 4, it will report the
accepting cycle, or a.dangerous = true will hold after the termination of dfsRedp(a). In
the latter case, ndfsp(a) will be initiated and the accepting cycle reported (from Prop. 5).

!"

3.5 Complexity of the Algorithm

It is straightforward to see that a state will be visited at most four times by each process:
by the blue and red DFS of mc-ndfs and by the blue and red DFS of ndfs. Hence,
following the notations of Section 2, the time complexity of mc-ndfs is O(p · (m+ n)).

To encode flags associated with a state 3 + 4 · p bits are required: 3 bits for global
attributes (dangerous, blue, and red); and 4 bits for local process attributes (bluep, redp

for mc-ndfs and ndfs). This is negligible if we perform an exact exploration and store
full state vectors, but a trade-off has to be made if we use e.g. bitstate hashing [21]
that encodes the graph as a large bit vector where each bit represents a single state. For
instance, with 8 cores and 16 GB, we can visit graphs with up to 3.8 · 109 states and
may divide the execution time by 8. With the same amount of RAM and 16 cores, the
execution time can drop by the same factor, but the graph size is limited to 2 ·109 states.
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3.6 Using Tarjan’s Algorithm in Nested Searches

Algorithm mc-ndfs waits for a red DFS to be completed before reporting new red states.
However, one could proceed more efficiently. Indeed, the important property to be ver-
ified is that dangerous states are discovered and reported as such before states leading
to them become red. Hence, we could easily replace the existing dfsRedp procedure
by Tarjan’s algorithm for SCC decomposition and register red states as the search pro-
gresses. When Tarjan’s algorithm pops states belonging to a same strongly connected
component scc, we are sure that all states reachable from s ∈ scc (and hence, all states
potentially dangerous) have already been visited. Therefore all states of a same compo-
nent can become red as the component is backtracked from. Although this extension is
expected to improve the time performance of our algorithm, it also requires the use of
extra memory (2 integers per state, see [25] for details on Tarjan’s algorithm), which,
once again, can be problematic if we combine mc-ndfs with bitstate hashing.

4 Experimental Results

We implemented a prototype of the mc-ndfs algorithm on top of the pthread library
and experimented with it on a 16-core machine. Instead of selecting the execution time
as a performance criterion, we consider the maximal number of visited states over all
CPU cores. Several reasons motivated this choice. First the input graphs analysed were
given implicitly as a disk file. Therefore, all time-consuming operations (e.g. succes-
sor computation, state comparison, insertion in hash table) were already performed and
synchronisations dominate the whole execution times. This observation is not only valid
for mc-ndfs but also with the map algorithm, that we also implemented in our prototype.
Therefore using time as a performance criterion did give a good insight of their perfor-
mances. Moreover this measure is more reliable than the execution time as it gives a
very accurate idea on the “theoretical” scalability of an algorithm: it is independent of
the implementation; and it focuses on the search algorithm by putting aside all other
time consuming operations like, e.g. synchronisations or data structure initialisations.
All measurements reported in this section are expressed this way. These results and the
accompanying comments must therefore be taken with care: they do not show the exact
acceleration of mc-ndfs but what can be achieved in the ideal situation. As explained in
Section 5 our next goal is to provide a real implementation of algorithm mc-ndfs in a
verification platform to evaluate its concrete performance.

Input models. All models are issued from the BEEM database [24] that includes more
than 50 models of different categories, e.g. mutual exclusion algorithms, communica-
tion protocols. We deliberately removed instances of families Puzzles (9 models) and
Planning (5 models) that contain mostly toy examples and only experimented with
graphs containing more than 106 states. This finally represented a total of 163 input
graphs out of which 44 do not have an accepting run while the other 119 do. The results
shown below deal only with the former family. Indeed, in most cases, ndfs could easily
report an accepting cycle by visiting only a few hundreds of states. Therefore, it did not
make much sense to experiment with mc-ndfs on these instances. We found only very
few graphs (6 out of 119) for which the use of mc-ndfs could significantly speed up the
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Fig. 2. Acceleration of mc-ndfs on some selected instances

reporting of an accepting run w.r.t. ndfs. Due to space constraints we have selected a
few representative instances from our experiments to be presented in this section. The
description of all models used can be found on the BEEM webpage [24].

Accelerations. We first analysed the acceleration of mc-ndfs, defined, for N cores, as
the ratio of the performance (as defined above) with 1 core over the performance with N
cores (using the same algorithm on the same model instance). Figure 2 shows the accel-
eration as a function of the number of processing cores used for some selected instances.
We tried to select a representative set of instances according to different criteria: char-
acteristics of the state graph (width, height, SCC graph structure, . . . ), type of system
modeled (mutual exclusion algorithm, communication protocol, . . . ), complexity of the
model (from simple models to industrial protocols).

The results observed are more or less in line with expectations. The performance
of our algorithm is largely impacted by the graph structure. Indeed, for graphs com-
posed of a single or few large SCCs (e.g. lup, public-subscribe) processes often visit
the same part of the graph and the use of additional cores does not always bring sig-
nificant improvements. In contrast, when the graph is clustered into unconnected parts
(e.g. pgm-protocol) or acyclic (e.g. leader-filters) processes engage in different parts of
the graph, thanks to the use of randomisation, and the acceleration observed is much
better. An important parameter also seems to be the length of the longest elementary
cycle (i.e. a cycle that does not contain two occurrences of the same state). Since, our
algorithm proceeds in a depth-first manner, it is obvious that at least one of the blue
DFSs performed concurrently will have, at some point, all the states of this cycle in its
stack, and the acceleration will stay low. We also applied mc-ndfs on some graphs ran-
domly generated with long such cycles and the acceleration observed was negligible.
Fortunately, real-life systems usually do not exhibit this characteristic.



Parallel Nested Depth-First Searches for LTL Model Checking 393

Table 2. Process workload of mc-ndfs for 16 cores on instances of Figure 2

Instance Prop. States Min. Max. Avg. Std. Dev.
anderson.6 4 36,119,671 5,894,164 7,396,706 6,617,656 12,956

bopdp.4 4 15,923,138 1,291,852 1,625,304 1,396,039 10,203
elevator.4 3 1,006,453 187,061 232,980 209,744 14,128
lamport.7 4 74,413,141 9,938,566 12,723,438 10,958,991 5,308

leader-filters.7 2 26,302,351 2,983,182 3,902,860 3,383,017 7,068
lifts.9 2 7,831,426 1,016,685 1,161,696 1,093,915 12,757
lup.5 2 34,425,340 4,797,633 6,107,470 5,453,463 13,906

peterson.4 4 2,239,039 247,738 332,069 279,644 8,841
pgm-protocol.10 3 7,233,361 458,128 618,476 509,445 5,808

public-subscribe.4 1 1,977,587 248,933 258,743 253,194 2,410
rether.8 5 25,405,545 3,252,470 3,541,148 3,397,022 11,524

synapse.8 3 19,045,831 1,079,676 1,871,015 1,362,764 15,684

Workload. Table 2 provides for instances of Figure 2: the number of states visited by the
least and most loaded processes (columns Min. and Max.), the arithmetic average work-
load (column Avg.) and the standard deviation in the workload (column Std. Dev.) for
16 cores only. It appears the work is usually well balanced among processes although
there can be some important variations between the most and least loaded processes.
This is clear from the low standard deviation, even in these cases.

Comparison with the map algorithm. Algorithm map uses a modified parallel breadth-
first search to compute maximal accepting predecessors. It is as such a very good candi-
date for parallelisation and, indeed, we observed that mc-ndfs can not compete with it if
we compare them w.r.t. acceleration: map always provides a quasi-optimal acceleration
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Fig. 3. Absolute performances of mc-ndfs and map on 23 instances for 16 cores
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regardless of the model considered. Nevertheless, since map has a polynomial com-
plexity, mc-ndfs often outperforms it when considering their absolute performances.
For some selected model instances the ratio of the performance of mc-ndfs over the
performance of map for 16 cores only is plotted on Figure 3. Hence, above 1 (resp. be-
low 1), map behaves better (resp. worse) than mc-ndfs. Algorithm map provides better
results for a few instances, but in most cases, mc-ndfs is faster, and sometimes signif-
icantly. Especially for graphs having a large proportion of accepting states (e.g. lifts.9
with property 2), mc-ndfs often outperforms map. In contrast, map is to be preferred
for problems having few or no accepting states (e.g. bopdp.4 with property 4), in which
case map reduces to a parallel BFS.

5 Conclusion and Perspectives

We have proposed in this paper a new parallel algorithm for the accepting cycle de-
tection problem. It is a variation of the well-known nested depth-first search algorithm
dedicated to multi-core and shared memory architectures. Although, it does not the-
oretically scale, our experiments revealed that it could provide good accelerations on
a variety of interesting instances through the mechanisms it implements. Moreover,
similar to the sequential algorithm it is built on, mc-ndfs can detect accepting cycles
on-the-fly which few parallel algorithms designed so far are able to do.

We focus on several perspectives for this work. Our experiment only revealed the
optimal acceleration that can possibly be achieved using mc-ndfs but the experimen-
tation context can not lead to any conclusion concerning the effective speed-up of our
algorithm. A first short term goal is thus to integrate our algorithm into a verification
platform such as Divine [6] that also implements many other algorithms (e.g. map,
owcty) and will allow a direct comparison of these. Second, we would like to study the
combination of our algorithm with existing reduction techniques. Indeed, although mc-
ndfs is intended to reduce search times its use can still face the state explosion problem
that can only be tackled using dedicated techniques. If mc-ndfs can clearly be combined
with some of these techniques, such as bitstate hashing [21] that is a state representation
techniques independent of the search algorithm. This observation is not that trivial for
some other algorithms such as partial order reduction [10]. An implementation of this
technique is typically made of two components: a selection mechanism (independent of
the search algorithm and, hence, compatible with mc-ndfs) that filters executable transi-
tions of a given state and an ignoring problem solver ensuring that a transition will not
always be forgotten by the selection function. This solver usually relies on the model
checking algorithm. We therefore have to investigate if existing provisos used to pre-
vent the ignoring problem can be safely used in conjunction with mc-ndfs and, if not,
to devise another solution to this problem, tailored for this algorithm.
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tomata. In: MEMICS 2009 (2009)

16. Gastin, P., Moro, P., Zeitoun, M.: Minimization of Counterexamples in SPIN. In: Graf, S.,
Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 92–108. Springer, Heidelberg (2004)

17. Geldenhuys, J., Valmari, A.: Tarjan’s Algorithm Makes On-the-Fly LTL Verification More
Efficient. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 205–219.
Springer, Heidelberg (2004)

18. Godefroid, P., Holzmann, G.J.: On the Verification of Temporal Properties. In: PSTV 1993,
pp. 109–124. North-Holland Publishing Co., Amsterdam (1993)

19. Holzmann, G.J.: The Model Checker SPIN. IEEE Transactions on Software Engineer-
ing 23(5), 279–295 (1997)

20. Holzmann, G.J., Joshi, R., Groce, A.: Swarm Verification Techniques. IEEE Transactions on
Software Engineering (2010)

21. Holzmann, G.J.: An Analysis of Bistate Hashing. In: PSTV 1995, pp. 301–314 (1995)
22. Holzmann, G.J., Bosnacki, D.: The Design of a Multi-Core Extension of the Spin Model

Checker. IEEE Trans. on Software Engineering 33(10), 659–674 (2007)



396 S. Evangelista, L. Petrucci, and S. Youcef

23. Laarman, A., Langerak, R., van de Pol, J., Weber, M., Wijs, A.: Multi-core nested depth-first
search. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011, pp. 321–335. Springer, Heidelberg
(2011)
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Abstract. We perform a comprehensive experimental evaluation of off-
the-shelf solvers for satisfiability of propositional LTL. We consider a
wide range of solvers implementing three major classes of algorithms:
reduction to model checking, tableau-based approaches, and temporal
resolution. Our set of benchmark families is significantly more compre-
hensive than those in previous studies. It takes the benchmark families of
previous studies, which only have a limited overlap, and adds benchmark
families not used for that purpose before.

We find that no solver dominates or solves all instances. Solvers focused
on finding models and solvers using temporal resolution or fixed point
computation show complementary strengths and weaknesses. This moti-
vates and guides estimation of the potential of a portfolio solver. It turns
out that even combining two solvers in a simple fashion significantly in-
creases the share of solved instances while reducing CPU time spent.

1 Introduction

More and more, system specifications are not only used for classical verification
of the correctness of a given system, e.g., via model checking, but they themselves
become the subject of investigation (e.g., [56, 33]). This is justified by observa-
tions in industry that many specifications contain errors (e.g., [16]) as well as by
transition to property-based design (e.g., [57]). Propositional Linear Temporal
Logic (LTL) [29] is a popular choice for system specifications and many checks
on specifications reduce to determining (un)satisfiability (see, e.g., [56, 33, 60]).
Hence, satisfiability of LTL is of considerable practical relevance.

A broad range of techniques for determining satisfiability of LTL has been de-
veloped: tableau-based methods (e.g., [68,48,63]), temporal resolution (e.g., [32]),
and reduction to model checking (e.g., [60, 69, 25]). Despite the relevance of the
problem and the range of techniques, we are not aware of a recent, comprehen-
sive experimental comparison of solvers for satisfiability of propositional LTL on
a broad set of benchmarks. In fact, the only line of work containing a represen-
tative from each of the above mentioned techniques that we know is the one by
Hustadt et al. [45, 42, 46] (see below), which is somewhat dated.

In this paper we make the following contributions. 1. We perform an ex-
perimental evaluation of solvers for satisfiability of propositional LTL using
ALASKA [1,69], LWB [2,41], NuSMV [3,26], pltl [4], TRP++ [5,44], and TSPASS [6,51].
Both the range of techniques in the solvers we use and the set of benchmarks
we collected are significantly more comprehensive than in any previous study we
know. We have made our data available for further analysis [7]. 2. We consider

T. Bultan and P.-A. Hsiung (Eds.): ATVA 2011, LNCS 6996, pp. 397–413, 2011.
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number of solved instances, run time, memory usage, and model size. The analy-
sis is greatly helped by using contour/discrete raw data plots, which complement
the traditional cactus plots by preserving the relationship between benchmark
instances. 3. The analysis shows complementary behavior between some solvers.
This motivates estimating the potential of a portfolio solver. We consider port-
folio solvers without communication between members of the portfolio for a best
case scenario (which is unrealistic) and a reference case scenario (which any
portfolio solver should aim to beat). Finally, we show that even a trivially im-
plementable solver that sequentially executes one solver first for a short amount
of time and, if necessary, then invokes another solver reduces the number of
unsolved instances as well as the average run time.
Related Work. Rozier and Vardi compare several explicit state and symbolic
BDD-based model checkers for LTL satisfiability checking [60]. They find the
symbolic tools to be superior in terms of performance and, generally, also in
terms of quality. They do not consider SAT-based bounded model checkers,
tableau-based solvers, or temporal resolution. While they perform an in-depth
comparison of solvers using very similar techniques, our focus is on comparing
selected representatives of a broad variety of techniques. We also use more bench-
mark families and consider memory usage and model size. The same authors
compare symbolic constructions of Büchi automata in [59] using the BDD-based
engine of Cadence SMV as backend solver. They show that a portfolio approach
to automata construction is advantageous. De Wulf et al. compare NuSMV and
ALASKA [69]. For a detailed discussion see Sect. 6. Hustadt et al. perform several
comparisons [45,42,46] of TRP, a version of LWB, and a version of SMV on the trp
benchmark set (see Sect. 4). Goré and Widmann perform an experimental com-
parison of solvers for CTL [37]. Goranko et al. [35] compare an implementation of
Wolper’s tableau construction with pltl. For references on solver competitions
and on their methodology see App. A of [62].

We are not aware of previous work on portfolio approaches to LTL satisfia-
bility, except for [59]. We use entire solvers as members of a portfolio, while [59]
uses different frontends for Büchi automata construction all relying on the same
BDD-based backend solver. For other problem classes see, e.g., [43] (graph col-
oring, web browsing), [49] (winner determination problem), [34] (constraint sat-
isfaction, mixed integer programming), [70] (SAT), or [58] (QBF).
Organization. In Sect. 2 we introduce notation. In Sect. 3, 4, and 5 we de-
scribe solvers, benchmarks, and methodology. Section 6 contains the results of
our evaluation. An estimation of the potential of a portfolio solver follows in
Sect. 7. Section 8 concludes. Due to space constraints the following parts are
in appendices [62]: general concepts and terminology (App. A), details on our
benchmark set (App. B), discussion (App. C), and some plots (App. D).

2 Preliminaries

We consider formulas in future time propositional LTL with temporal operators
F, G, R, U, X. We assume familiarity with LTL; otherwise see [29].
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The terminology we use is largely standard (e.g., [64, 19]); a reader unfamil-
iar with competition terminology is referred to App. A of [62]. A somewhat
non-standard term we use is configuration, which denotes a tool (solver) with
specific option values. A tool is a state-of-the-art contributor (sota) if an instance
is solved only by configurations of that tool (see also [66]). Given a set of config-
urations C the virtual best solver (vbs) is the hypothetical solver using the best
configuration in C on any given instance (e.g., [19]). We use bold font for sets
of benchmark instances and teletype for configurations.

3 Solvers

Choice of Solvers. We consider tools to solve satisfiability of propositional LTL
from 3 major classes of approaches: 1. reduction to model checking, 2. tableau-
based algorithms, and 3. temporal resolution. Tools were chosen as detailed be-
low. To the best of our knowledge this set of solvers is the most diverse considered
in an evaluation of solvers for satisfiability of propositional LTL to date.
Reduction to Model Checking. We chose ALASKA [1, 69] and NuSMV [3, 26] using
BDDs (NuSMV-BDD) and SAT (NuSMV-SBMC). We ruled out explicit state model
checkers, as they did not scale as well as BDD-based symbolic model checkers
for LTL satisfiability in [60]. The BDD-based engine of Cadence SMV [8] per-
formed comparable to NuSMV-BDD in [60]. sal-smc [54] constructs explicit Büchi
automata and was found not to scale [60]. The BDD-based variant of VIS [67]
uses explicit construction of Büchi automata; initial experiments confirmed that
this does not scale for satisfiability of LTL. sal-bmc [54] can only prove safety
properties [53]. For an alternative using SAT-based symbolic model checking we
contacted the VIS group for advice on recommended configurations (the space
of configurations is quite large), but have not received an answer yet. Finally, we
checked the publicly available versions of the participants of HWMCC’10 [20];
as far as we could see, the solvers that are not included in our study only handle
safety properties.
Tableau-Based Algorithms. We chose LWB [2, 41] and pltl [4]. TWB [15] is super-
seded by pltl [36]. LTL Tableau turns out to be inferior to pltl [35].
Temporal Resolution. We chose TRP++ [5, 44] and TSPASS [6, 51]. An alternative
tool is TeMP [47]. TeMP was shown to be inferior to TRP++ on propositional prob-
lems in [47] and comparable to TSPASS on monodic problems in [51]. Note, that
TSPASS is fair, while TeMP is not [50].

Solver Descriptions. Below we briefly describe the tools we consider as well as
the set of their options that we take into account. Note that not all combinations
of options are valid. Due to space constraints the descriptions have to be kept
short, and we refer the reader to the respective tool documentation.
ALASKA performs model checking and satisfiability checking of LTL via symbolic
computation of fixed points using antichains [1,69]. Relevant options are: noc/c
dis-/enables model construction, nos/s uses a semisymbolic/fully symbolic algo-
rithm, and nob/b switches between forward and backward image computation.
We use version 0.4 with an additional patch by N. Maquet.
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LWB [2, 41] implements tableau-based algorithms for LTL by Janssen [48] (no
model construction) in the function “satisfiable” and by Schwendimann [63]
(model construction) in the function “model”. Neither has relevant options. We
designate the former by sat and the latter by mod. We use version 1.1.

NuSMV-BDD In this evaluation we treat NuSMV [3, 26] as two tools NuSMV-BDD
and NuSMV-SBMC. NuSMV-BDD performs symbolic model checking of LTL using
symbolic fixed point computation with BDDs [27]. Experience with NuSMV-BDD
allows us to restrict experiments to the following options. nodcx/dcx en-/disables
model construction, nofflt/fflt dis-/enables forward computation of reachable
states in the model and tableau for the LTL formula, nodyn/dyn dis-/enables
dynamic reordering, and elbwd/elfwd switches between backward and forward
image computation in the Emerson-Lei algorithm [30,40]. We use version 2.5.0.

NuSMV-SBMC performs incremental simple bounded model checking [39] of LTL
using MiniSat [9]. Options considered are nodcx/dcx to en-/disable model con-
struction and noc/c to dis-/enable checking completeness. With the latter dis-
abled NuSMV-SBMC cannot solve unsat instances. We use version 2.5.0.

pltl [4] implements tableau-based algorithms for LTL along the lines of [38]
via the command line argument “graph” and by Schwendimann [63] via the com-
mand line argument “tree”. Neither has model construction or relevant options.
We designate the former by graph and the latter by tree. We use version r1424.

TRP++ [5, 44] uses temporal resolution for LTL [32]. Relevant options: nos/s
to dis-/enable simplification, nor/r to dis-/enable rewriting, noal/al to ex-
/include an order statement, dfs/bfs to choose dfs/bfs in loop search, nop/p
to dis-/enable pre-test for sometime resolution, and nofsr/fsr to dis-/enable
forward subsumption resolution. TRP++ cannot construct models. We use v. 2.x.

TSPASS [6, 51] is a temporal resolution solver for monodic first-order temporal
logic with model construction for propositional LTL [52]. We consider noext/ext
to dis-/enable extended step clauses, nogrp/grp to dis-/enable regrouping of X,
nosev/sev to dis-/enable transforming multiple eventualities into a single one,
log/sub to select logical equivalence or subsumption in loop tests, nosls/sls to
dis-/enable sequential loop search, norfmrr/rfmrr (resp. norbmrr/rbmrr) to dis-
/enable forward (resp. backward) matching replacement resolution, nomod/mod
to dis-/enable model construction, and mur/mor to select unordered or ordered
resolution in model construction. We use version 0.94-0.16.

4 Benchmarks

In Tab. 1 we give an overview of the benchmark families we use. To our knowledge
this set of benchmarks is the most comprehensive used for evaluating proposi-
tional LTL satisfiability solvers so far. [60] used rozier counter, rozier pattern,
and rozier formulas. [69] used alaska lift, alaska szymanski, and subsets of
rozier counter and rozier formulas. [46] used trp. Note that there is little



Evaluating LTL Satisfiability Solvers 401

Table 1. Overview of benchmark families, grouped by benchmark categories. The first
column lists the name of the family. Columns 2 – 5 show the size (see App. A of [62]) of
the largest instance and the number of sat , unsat , and unknown instances, respectively,
in that family. The 6th column provides references to the source and the 7th column
gives a brief description.

family max. num. num. num. source description
size sat unsat unkn.

application

acacia demo-v22 76 10 – – [10,31] window screens
acacia demo-v3 426 36 – – [10,31] arbiters (scaled up, added variants)
acacia example 144 25 – – [10,31] mostly arbiters and traffic light controllers
alaska lift 4450 102 34 – [1,69] lifts (scaled up, added variants, added fixes [61])
alaska szymanski 183 4 – – [1,69] mutual exclusion protocols
anzu amba 6173 43 – 8 [11,23] microcontroller buses (scaled up, added variants)
anzu genbuf 5805 48 – 12 [11,24] generalized buffers (scaled up, added variants)
forobots 636 14 25 – [17] foraging robots

crafted

rozier counter 751 78 – – [12,60] serial counters (long models)
rozier pattern 7992 244 – – [12,60] patterns to test explicit state model checkers (scaled up)
schuppan O1formula 4007 – 27 – (new) patterns that trigger exponential behavior in some
schuppan O2formula 6001 – 15 12 solvers
schuppan phltl 40501 – 10 8 (new) temporal formulation of pigeonhole principle [22]

random

rozier formulas 185 1943 57 – [12,60] random formulas as in [28] (subset of original family)
trp 1422 573 397 – [13,46] random formulas from fixed conjunctive normal form tem-

plates (subset of original family)

overlap. [60, 69] and [46] represent separate communities. We added the follow-
ing benchmark families that, to our knowledge, had not been used to evaluate
solvers for propositional LTL satisfiability before: acacia, anzu, and forobots.1

To provide more challenging instances we scaled up some families. Moreover, for
the families acacia demo-v3, anzu amba, and anzu genbuf, which consist
of a set of assumptions and a set of guarantees, we not only used the form
(
∧

i ai) → (
∧

i gi) but also (
∧

i ai)∧ (
∧

i gi) (marked by “c” in the family name).
For acacia demo-v3, alaska lift, anzu amba, and anzu genbuf we added
variants with liveness conditions to trigger nontrivial behavior (marked by “l”
in the family name). For alaska lift we also use a fixed [61] variant (marked by
“f” in the family name). Finally, we added the families schuppan O1formula,
schuppan O2formula, and schuppan phltl. Our set of benchmarks contains
3723 instances. All benchmarks are available from [7].

5 Methodology

Hardware and Software. We used machines with Intel Xeon 3.0 GHz pro-
cessors and 4 GB memory running Red Hat Linux 5.4 with 64 bit kernel 2.6.18-
164.2.1.el5. Run time and memory usage were measured with run [21].

Input Format and No Shuffling. We converted all instances into NuSMV
format and from there to the input formats of the other tools. We did not syn-
tactically alter instances as there was no risk of cheating by syntactic recognition
of benchmarks (e.g., [18]) and we, too, think that syntactic information should
be preserved for the benefit of solvers (e.g., [64]).
1 While the full version of [59] uses acacia and anzu, these were included based on a

previous submission of this paper that we made available to the authors of [59].
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Stages. The valid option combinations of the options in Sect. 3 yield the follow-
ing number of configurations (model construction dis-/enabled): ALASKA 4/2, LWB
1/1, NuSMV-BDD 6/4, NuSMV-SBMC 2/2, pltl 2/-, TRP++ 64/-, TSPASS 128/128.

The number of configurations of TRP++ and TSPASS is too large to include
all of them in the main stage of our evaluation. We therefore performed a pre-
liminary stage with a time limit of 10 seconds and a memory limit of 2 GB on
a representative subset of instances. In that stage we used all 64 combinations
of TRP++. For TSPASS we considered the following subset of configurations: all
options at their default value (sometimes implied by other options) as well as
a single option switched to its non-default value. This resulted in 24/24 con-
figurations. We then fixed options that either had a clear benefit one way or
the other or clearly had little effect to the corresponding values and kept the
remaining configurations for the main stage (see Sect. 6). In the main stage all
configurations of ALASKA, LWB, NuSMV-BDD, NuSMV-SBMC, and pltl as well as the
remaining configurations of TRP++ and TSPASS were run with a time limit of 60
seconds and a memory limit of 2 GB.

In each stage, each configuration was run only once on each instance. While
performing more than one run would provide more accurate information about
run time distributions [55] performing only a single run allows to use more
configurations, more instances, or higher time bounds with equal resources.

Tracks. We have two tracks: one for configurations with model construction
dis- or enabled (e.g., LWB using mod constructs models but is superior to sat
that doesn’t) and one for configurations with model construction enabled. The
former considers all instances; the latter is restricted to sat instances.

Correctness of Solvers is a recurring issue in tool competitions and com-
parisons (e.g., [60]). Besides obvious cross checking of the sat/unsat results re-
ported by different configurations for the same instance we used the fact that
NuSMV-SBMC produces shortest (possibly plus one) models as an additional cor-
rectness check. We did not perform further validation of generated models.

Scoring. We essentially use scoring based on a higher number of solved instances
and lower time taken on solved instances (see Sect. 2) as it preserves and clearly
shows what we consider two important performance indicators.

However, there are fairly big differences in the number of instances in our
benchmark families. Still, we would like to consider many benchmarks rather
than only sampling the larger families. Hence, we modify the above scoring
method as follows. We consider the benchmark families as a tree. We then com-
pute the share of solved instances and the average run time on solved instances
for each leaf (here all instances have equal weight). Then, for each non-leaf node,
aggregate values are computed as averages with equal weights for all children of
that node. For the tree of families see App. B.2 of [62].

6 Results

For more plots and data see App. D of the full version [62] and the website [7].
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Table 2. Selecting a winning configuration per tool (separately for tracks). The left-
most column lists the tool name. Next come 2 groups of 4 columns. The 1st group
is for configurations with model construction dis- or enabled, the 2nd with model
construction enabled. In each group the 1st column shows the winning configuration
per tool. The 2nd column shows its score, the 3rd column shows the worst score, and
the 4th column shows the score of the vbs of all configurations of that tool.

model construction dis- or enabled (all instances) model construction enabled (sat instances)
tool winning configuration max min vbs winning configuration max min vbs

ALASKA noc nos nob 0.581 0.322 0.595 c nos nob 0.595 0.318 0.595
LWB mod 0.740 0.656 0.800 mod 0.795 0.795 0.795
NuSMV-BDD dcx fflt dyn elbwd 0.743 0.607 0.823 nodcx fflt dyn elbwd 0.754 0.625 0.771
NuSMV-SBMC nodcx c 0.723 0.651 0.726 nodcx noc 0.860 0.857 0.861
pltl tree 0.694 0.687 0.702 — — — —
TRP++ s r noal bfs nop fsr 0.752 0.593 0.776 — — — —
TSPASS ext nogrp nosev sub nosls rfmrr-

norbmrr nomod mor

0.667 0.479 0.670 ext grp sev sub nosls rfmrr-

rbmrr mod mor

0.531 0.495 0.538

Preliminary Stage. For TRP++ configurations with s nor proved inferior so
that only s r, nos r, and nos nor were kept. The effects of noal/al, dfs/bfs,
and nofsr/fsr are unclear; hence all combinations were kept. nop/p had little
effect so that we set it to its default nop. All in all this left us with 24 configu-
rations.

For TSPASS ext, nosev, sub, and mor turned out to be advantageous. The
effects of nogrp/grp, norfmrr/rfmrr, and norbmrr/rbmrr are unclear and we
kept all. nosls/sls had little effect so that we disabled it as is default. This
resulted in 8 configurations each with model construction disabled and enabled.

We now move to the main stage.

Correctness of Solvers. We found no bug in pltl but 1 or 2 bugs in each
of NuSMV, ALASKA, TRP++, and TSPASS. All of them were kindly fixed by the
respective tool authors. As of now we are not aware of wrong results or bugs
triggered in the above tools by our benchmark set. In LWB we found several bugs.
We emailed our findings to the developers but have not received a response.
There are currently 187 out of 7446 (non-negated and negated) instances known
to us that trigger bugs in LWB; 13 are wrong results. Hence, LWB is hors-concours.
Some large instances failed in ALASKA and TSPASS due to certain built-in limits.
These instances were rerun with increased limits.

Selecting Winning Configurations per Tool. To focus the subsequent com-
parison we select one winning configuration per tool to be used for the compar-
isons between tools in the remainder of this section. We choose the configuration
with the highest weighted share of solved instances (see Sect. 5) for each tool. We
distinguish between model construction dis- or enabled and model construction
enabled as model construction is not available for some tools or options.

Table 2 provides a summary. For all tools except NuSMV-BDD and LWB the
weighted share of instances solved by the winning configurations is close to that
of the vbs of all configurations of that tool (Tab. 2). Below we mostly restrict
the analysis to the winning configurations. We use the tool name to identify the
respective winning configurations.
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Track Model Construction Disabled. In Fig. 1 we show contour/discrete
raw data plots of the run time for the winning configurations with model con-
struction dis- or enabled. The name is taken from [65]. A somewhat related way
to display results of a solver competition was used in Pseudo-Boolean Competi-
tions [14].

Contrary to cactus plots contour/discrete raw data plots retain the relation-
ship between instances (one x-coordinate corresponds to the same rather than
different instances) but are more legible than line plots. They allow to see the
performance of the solvers on benchmark families that are a subfamily of the
one comprising a plot. A particular advantage is that they permit identification
of similar and complementary behavior in performance. They also allow to see
how difficult a particular instance or subfamily is. However, these plots make it
harder to determine a ranking of solvers by higher number of solved instances
with ties broken by lower average time taken on solved instances. Due to space
constraints we cannot show both kinds of plots for the same data. We chose to
use the contour/discrete raw data plots here to demonstrate their utility. For
corresponding cactus plots see Fig. 10–13 in App. D.2 of [62].

Overall Picture. In this paragraph we refer to all configurations used in the
main stage. No configuration solves all instances. 8–12 instances in anzu amba,
anzu genbuf, schuppan O2formula, and schuppan phltl remain unsolved.
The instances in the former two families are expected to be sat , in the latter un-
sat . The smallest unsolved instance is O2formula50 (size 301). NuSMV-BDD is a
sota on a number of (unsat) instances in alaska lift and schuppan O2formula;
NuSMV-SBMC on instances in alaska lift, anzu amba, and anzu genbuf (all
sat); TRP++ on instances in rozier counter (sat); LWB on instances in schup-
pan phltl (unsat). See also Fig. 8 in App. D.1 of [62].

Families. The majority of benchmark families contain instances that are chal-
lenging for some solver. In category application the 3 families with larger in-
stances, alaska lift, anzu amba, and anzu genbuf, are the more difficult ones.
Among them the variants that were modified to trigger meaningful behavior are
the hardest. In category crafted the (unsat) families schuppan O2formula
and schuppan phltl are the most difficult. rozier counter is hard for most
solvers, except for TRP++ and TSPASS (and NuSMV-BDD in a configuration us-
ing only backward fixed point computation). The two families in category ran-
dom show very different pictures. Family rozier random is solved well by non-
resolution-based tools but somewhat more difficult for TRP++ and TSPASS; roles
are reversed in family trp. Note that trp comes from the temporal resolution
community, while rozier random is taken from the model checking community.

Solvers: Similarities and Differences. Figure 1 shows that TRP++ and TSPASS,
which both use temporal resolution, have similar strengths and weaknesses.
TSPASS tends to improve over TRP++ on trp, while TRP++ tends to be faster on
most of the remaining families. Between the two tools using symbolic fixed point
computation NuSMV-BDD mostly dominates ALASKA; the latter has a higher start
up time than the other tools. The strengths and weaknesses of NuSMV-BDDmostly
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Fig. 1. Contour/discrete raw data plots of run time for winning configurations with
model construction dis- or enabled (all instances). Instances are on the x-axes (only
identified by their families), configurations on the y-axes. Each rectangle represents
the run time of one configuration on one instance. sz abbreviates alaska szymanski,
roz cnt abbreviates rozier counter, and demo stands for acacia demo. Run times
are encoded using the following colors:

≤ 0.1 sec; > 0.1 sec, ≤ 1 sec; > 1 sec, ≤ 10 sec; > 10 sec, ≤ 60 sec;
unsolved.

resemble those of TRP++ and TSPASS. Intuitively, symbolic fixed point compu-
tation [30] is closer in spirit to temporal resolution as performed in TRP++ [44]
than to searching models (stating a more formal relationship is left as future
work). LWB, NuSMV-SBMC, and pltl display similar characteristics. Note that
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these solvers essentially try to find models, although NuSMV-SBMC uses a fairly
different technique than pltl and LWB. It is important to note that the strengths
and weaknesses of NuSMV-BDD, TRP++, and TSPASS are somewhat complementary
to those of LWB, NuSMV-SBMC, and pltl.

Sat versus Unsat Instances. NuSMV-SBMC exhibits the largest difference in its
behavior between sat and unsat instances. NuSMV-SBMC solves most sat instances
among the solvers. A notable exception is rozier counter, which has shortest
models of exponential size; few shortest models outside rozier counter have size
larger than 3 (see below). On the contrary, NuSMV-BDD and ALASKA, which are
based on symbolic fixed computation, are hardly affected. For plots see Fig. 14–
17 in App. D.3 of [62] and Fig. 18–21 in App. D.4 of [62].

Instance Size. The two tools based on symbolic fixed point computation, ALASKA
and NuSMV-BDD, show a fairly clear influence of the size of an instance on their run
time. At the other end of the spectrum are LWB and pltl, trying to find models.
They solve some large instances in almost no time. For plots see Fig. 22–25 in
App. D.5 of [62].

Non-negated versus Negated Instances. The relevance of negated versions of in-
stances is questionable. We have not included negated versions of instances in any
part of this paper, except where stated explicitly. However, we briefly comment
on one aspect because of the size of the observed effect. On the rozier formulas
family — where negation should not change any relevant characteristic of the
benchmark set — the variation in performance between the non-negated and the
negated version of an instance is considerably higher for TSPASS and TRP++ than
for NuSMV-BDD and ALASKA. For scatter plots see Fig. 26 in App. D.6 of [62].

Memory. Memory usage turned out to be less of a problem than time taken,
therefore we do not report detailed results. In fact, very rarely a configuration
used more than 300 MB when it solved an instance. ALASKA typically used most
memory. For plots see App. D of [62].

VBS rather than Winning Configurations. While the findings above were mostly
stated for the winning configurations of each tool, the picture does not change
significantly when comparing the vbs of each tool (for plots see App. D of [62]).
As suggested by Tab. 2 notable improvements only happen for NuSMV-BDD, LWB,
and, to a lesser extent, TRP++.

Track Model Construction Enabled. We focus on model size. Figure 2 shows
a cactus plot for the winning configurations with model construction enabled (sat
instances). A vbs of all configurations with model construction enabled solves all
but the largest instances of anzu amba, anzu genbuf, and rozier counter.
NuSMV-BDD is a sota based on instances in rozier counter; NuSMV-SBMC on in-
stances in alaska lift, anzu amba, anzu genbuf, and rozier pattern; LWB
on instances in rozier pattern.

95 % of the satisfiable instances have shortest models of size 3 or less. Instances
with shortest models of size larger than 11 are either from rozier counter or
from the variants in application modified to trigger meaningful behavior.
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NuSMV-SBMC mostly produces shortest models, while NuSMV-BDD produces the
longest ones. On the other hand, NuSMV-BDD solves more instances of the
rozier counter family (which has very long models) than the other tools.

A Performance Advantage of ALASKA over NuSMV-BDD? In [69] De Wulf
et al. perform a comparison between ALASKA and NuSMV-BDD for satisfiabil-
ity and model checking of LTL. For LTL satisfiability they find that ALASKA
outperforms NuSMV-BDD on alaska lift, alaska szymanski, and a subfamily of
rozier formulas, while NuSMV-BDD performs better on rozier counter.

A comparison of the antichain-based algorithm in ALASKA [69] and the
Emerson-Lei algorithm [30] used in NuSMV-BDD shows that the algorithm in [69]
computes fixed points using forward image computation, while NuSMV-BDD up to
version 2.4.3 only uses (as is common) backward image computations for [30].
This triggered us to implement a forward version (e.g., [40]) of the Emerson-
Lei algorithm in NuSMV-BDD. Figure 3 shows that the forward version per-
forms considerably better than the backward version on the rozier formulas
family. Using forward image computation NuSMV-BDD outperforms ALASKA on
rozier formulas. Note also that ALASKA can be switched to perform backward
image computation in which case its performance degrades considerably.

Our evaluation shows that NuSMV-BDD can solve the alaska lift and
alaska szymanski families easily (and faster than ALASKA) by restricting com-
putation to reachable states (fflt) and enabling dynamic reordering (dyn).

7 Potential of a Portfolio Solver

In the previous section we saw that some configurations behave complementarily.
This motivates constructing portfolio solvers that consist of a set of configura-
tions with the goal that the resulting solver performs better than any of its
constituent configurations (e.g., [43]). Different modes of execution are consid-
ered for portfolio solvers in the literature (e.g., [43, 49, 34, 70]).
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Fig. 4. Potential of a portfolio solver consisting of subsets of the winning configurations
with model construction dis- or enabled using a perfect oracle. Portfolios are identified
by their constituent configurations: 0: ALASKA; 1: LWB; 2: NuSMV-BDD; 3: NuSMV-SBMC;
4: pltl; 5: TRP++; 6: TSPASS. On the x-axis are the portfolios sorted in increasing
order of weighted share of solved instances; ties are broken by decreasing order of
weighted average run time on solved instances. For each portfolio the weighted share
of solved instances is marked by a red vertical/horizontal cross (scale on the left y-
axis); the corresponding weighted average run time on solved instances is marked by a
green diagonal cross (scale on the right y-axis). “all” considers all configurations with
model construction dis- or enabled rather than only the winning configurations. For an
enlarged plot see App. D.8 of [62].

Perfect Oracle. We assume an oracle that for each instance predicts (using
no time and memory) an optimal configuration in a portfolio and then executes
that configuration on that instance (see, e.g., [49]). I.e., the performance of a
portfolio solver on an instance is determined by the performance of an optimal
configuration in a portfolio on that instance. If configurations do not collabo-
rate (e.g., by exchanging partial results) that is a bound on the performance
of a practical solver using that portfolio. An alternative view of this mode of
execution is that each member of the portfolio is run on a separate processor in
parallel until one configuration finishes while taking into account only the cost
of one processor and disregarding the cost of other processors.

We estimate the potential of such a portfolio solver by considering all portfo-
lios consisting of subsets of winning configurations with model construction dis-
or enabled from Tab. 2. Figure 4 shows the result.

While individual configurations solve at most a weighted share of 0.752, using
a portfolio helps to solve up to 0.931. All portfolios that solve a weighted share of
0.866 or more contain at least one of ALASKA, NuSMV-BDD, TRP++, and TSPASS and
at least one of LWB, NuSMV-SBMC, and pltl. All that solve 0.9 or more contain
at least one of LWB and NuSMV-SBMC and at least one of TRP++ and TSPASS.
The 4 best portfolios with two configurations are (LWB, TRP++), (LWB, TSPASS),
(NuSMV-SBMC, TRP++), and (NuSMV-SBMC, TSPASS). Adding ALASKA to a portfolio
that contains NuSMV-BDD does not help in most cases.

Perfect Task Switcher. We now assume that all configurations of a port-
folio are executed on a single processor in a time-sharing fashion with equal
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Table 3. Performance of the 4 best 2-configuration portfolios in various execution
modes. After the portfolio members in the 1st column there are 8 groups of 2 columns.
In each group the 1st column shows the weighted share of solved instances, the 2nd
column shows the weighted average run time on solved instances in seconds. The 1st
and 2nd column groups are for the 1st and 2nd member of each portfolio in isolation.
The 3rd and 4th groups are for perfect oracle and perfect task switcher modes. The
5th and 6th groups are for fast presolver mode with 1 and 2 seconds time limit when
the 1st member of the portfolio is used as a fast presolver; the 7th and 8th groups are
analogous for the 2nd member as a fast presolver. The time limits of 1 and 2 seconds
were chosen among some that we tried as they represent a sweet spot that exhibits both
an increase in weighted share of solved instances and a decrease in weighted average
run time on solved instances.

1st in 2nd in perfect perf. task 1st as fast presolver 2nd as fast presolver
isolation isolation oracle switcher 1 second 2 seconds 1 second 2 seconds

share time share time share time share time share time share time share time share time

(LWB, TRP++) 0.740 2.59 0.752 3.03 0.896 0.89 0.894 1.12 0.880 1.09 0.885 1.30 0.841 1.26 0.850 1.45
(LWB, TSPASS) 0.740 2.59 0.667 1.91 0.889 1.16 0.881 1.27 0.868 0.88 0.874 1.10 0.850 1.20 0.858 1.48
(NuSMV-SBMC, TRP++) 0.723 1.47 0.752 3.03 0.880 1.11 0.874 1.37 0.823 1.03 0.841 1.18 0.860 0.97 0.862 1.31
(NuSMV-SBMC, TSPASS) 0.723 1.47 0.667 1.91 0.867 1.41 0.853 1.60 0.813 1.00 0.831 1.21 0.837 1.17 0.840 1.42

and infinitely small time slices, no task switching overhead, and memory usage
not an issue (e.g., [43]). I.e., rather than assuming a perfect oracle, we only as-
sume a perfect task switcher. Now the performance of a portfolio solver with k
configurations on an instance is determined by the performance of an optimal
configuration in a portfolio on that instance multiplied by k (that might induce
time-out even if some configuration solves the instance). If configurations do not
collaborate this can be considered a portfolio solver that any practical portfo-
lio solver using that portfolio should aim to beat. An alternative view is that
each portfolio member runs on a separate processor in parallel until one member
finishes and taking into account the cost for all processors.

For a plot analogous to Figure 4 see App. D.8 of [62]. Here the best portfolio
considered is (LWB,NuSMV-BDD,NuSMV-SBMC,TRP++),which solves a weighted share
of 0.922. Otherwise, similar remarks as for the case of a perfect oracle apply.

Fast Presolver. We now show that even a simplistic portfolio solver (imple-
mentable as shell script) can yield considerable benefits. We take the 4 best
2-configuration portfolios from above and use one of the two solvers as fast pre-
solver [70] by executing it until it either solves an instance or reaches its (short)
time limit. If the instance is not yet solved, then we execute the other solver for
the remaining time (60 seconds minus the time limit of the presolver).

Results are shown in Tab. 3. In each case the portfolios using a fast presolver
significantly increase the weighted share of solved instances while decreasing the
weighted average run time over the respective portfolio members in isolation.

8 Conclusion

Benchmarks and data from our evaluation, available at [7], identify reference
solvers with their command line options at the level of benchmark instances.
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This helps to improve existing solvers, provides a point of reference in the eval-
uation of new techniques, and can serve as a basis for developing heuristics for
portfolio solvers. Our evaluation shows that solvers have different, complemen-
tary strengths and weaknesses. We do not declare any solver to be the winner
(those who disagree are referred to Tab. 2). Instead, for a solver aiming to be
competitive on a broad range of benchmarks we advocate a portfolio approach.
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37. Goré, R., Widmann, F.: An Experimental Comparison of Theorem Provers for

CTL. In: CLoDeM (2010)
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412 V. Schuppan and L. Darmawan

45. Hustadt, U., Schmidt, R.A.: Formulae which Highlight Differences between Tem-
poral Logic and Dynamic Logic Provers. Issues in the Design and Experimental
Evaluation of Systems for Modal and Temporal Logics. Dipartimento, di Ingeg-
neria dell’Informazione, Unversitá degli Studi di Siena (2001)
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Abstract. We present McAiT, a tool for estimating the Worst-Case
Execution Times (WCET) of programs running on multicore processors.
The highlight of McAiT is that it leverages timed automata to model
both the timing behaviors of the programs’ interaction with its environ-
ment (based on the results of local cache analysis by abstract interpre-
tation) and a broad range of on-chip shared resources, such as shared
buses and shared caches. McAiT also allows for modeling complex task
models, such as synchronization, jitter, etc. High analysis precision is
achieved by the McAiT approach, which is demonstrated by extensive
experiments. The tool also supports the classical Implicit Path Enumera-
tion Technique (IPET) combined with worst-case shared resource access
delay for WCET estimation, to provide the users with the flexibility to
trade analysis precision for efficiency.

1 Introduction

Multicores are predicted to be increasingly used in future real-time embedded
systems, but the downside of this trend is that timing predictability of multicore
software is serverly degraded due to inter-core conflicts when programs access
shared resources concurrently. Estimating WCET becomes a key challenge on
multicore architectures, since it is very difficult to tightly bound the time to
access shared resources. Existing tools [1] cannot provide satisfactory results, in
that they are either designed for single-core architectures or hard to produce
precise bounds on the access delays in the presence of resource contention.

We present McAiT, a tool for WCET estimation of programs running on
multicores with on-chip shared resources. McAiT exploits abstract interpre-
tation (AI) for local cache analysis of each program on each core, and auto-
matically generates a timed automaton (TA) to capture the precise timing be-
havior of the program’s interaction with its environment, i.e., all the time se-
quences of the program for accessing the shared resources and complex task re-
lations (such as synchronization) with programs on different cores. The generated
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automata are used for the WCET estimation of the programs using UPPAAL,
based on the abstract behavior of the shared resources, modeled also as timed
automata. High analysis precision is achieved by the McAiT approach, which
is demonstrated by extensive experiments. The tool also supports the classical
IPET technique [2] combined with worst-case resource access delay for WCET
estimation, to provide the users with the flexibility to trade analysis precision
for efficiency. Technical details on applying the McAiT approach in the analysis
of shared buses was presented in [3]. This paper describes the complete tool
features and the implementation details of McAiT developed jointly by Uppsala
University (Sweden) and Northeastern University (China). McAiT is available
at: http://www.neu-rtes.org/mcait
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Fig. 1. The architecture of McAiT

2 Main Features and Implementation of McAiT

Fig.1 illustrates the architecture and the components of McAiT, the core features
of which is detailed below.

The Graphical User Interface (GUI). The GUI of McAiT provides the
users with functionalities to manage analysis projects (such as creating, copying
and removing a project) and guide the analysis procedure (either “one-click”
WCET estimation or step-by-step progressing). Users may start multiple anal-
ysis projects concurrently thanks to the multi-threaded architecture of McAiT.
The GUI is designed using the Qt SDK1, since Qt is portable to most popular
platforms and has good performance due to the C++ implementation.

CFG Reconstruction from Program Binaries. McAiT works on program
binaries instead of source files, since compiler optimization may produce an ex-
ecutable file with a control flow significantly different from that of the source
file. In such cases, estimations based on source files may be very imprecise. How-
ever, McAiT allows source files of any procedural language as input, as long as
they can be compiled to the target architecture, i.e., the PISA instruction set
supported by McAiT. The program binaries are disassembled, from which the
Control Flow Graph (CFG) of each program is reconstructed by identifying the
jump instructions. This component is developed based on the Chronos tool [4].
1 http://qt.nokia.com
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AI-Based Cache Analysis. McAiT employs AI presented in [5] for local cache
analysis. An abstract cache state (ACS) is maintained on each program point
(basic block boundary) for each of the three independent analyses (MUST, MAY,
PERSISTENCE). The results of these analyses are the cache hit/miss classifi-
cations for each program instruction. Currently, McAiT is able to handle multi-
level private instruction caches with LRU replacement policy. But the analysis
framework of McAiT allows for integration of analysis for any replacement policy
other than LRU as long as it can be analyzed by AI.

WCET Estimation by IPET. If there is no effective technique to analyze
inter-core conflicts, then one has to assume that each time a cache miss occurs,
the accesses to shared resources take the longest possible delay. Based on the
results of cache analysis and this assumption, McAiT allows to estimate the
WCET for each program independently by the classical IPET technique: the
WCET of each basic block of a program is calculated, and then finding the
longest path (w.r.t. execution time) is modeled as an Integer Linear Program-
ming (ILP) problem. McAiT automatically generate the ILP formulation and
invokes an ILP solver to calculate the WCET estimation of the program.

Automatic TA Model Generation. In multicores, shared resource access
time may be very unpredictable mainly due to inter-core conflicts. Assuming
worst-case access delay usually leads to pessimistic estimations. To tighten the
bounds, McAiT offers a novel approach which introduces model checking to pre-
cisely model and analyze the behaviors of shared resource accesses. The timing
behavior of each program is modeled as a timed automaton, which carries infor-
mation on when the program accesses shared resources based on the results of
local cache analysis. When a program tries to access a shared resource, the pro-
gram TA will communicate with the TA model for the resource access protocol
via a standard interface, “accessSR[pid]”, defined by McAiT (see Fig.2(a)). This
standard interface detaches program modeling and shared resource modeling, so
any new resource model can be integrated as long as it conforms to the interface.
The WCET estimations are tight since by this technique the timing of shared
resource accesses is precisely preserved.

McAiT allows for the modeling of other complex task models, e.g., synchro-
nization and jitter. Once task synchronization is identified from the program
code and marked within the CFG, a channel provided by UPPAAL is created
in the program TA to accept signals which make the program TA to proceed
execution. If different task phasing are modeled, some conflicts on the shared
resources are safely excluded, which may further tighten the WCET bounds.

Modeling Shared Resources. For any shared resource, McAiT uses a timed
automaton (or a set of timed automata) to model the resource access protocol
(which could be arbitration policies for buses or replacement policies for caches).
The TA for the shared resource receives access requests from the programs’ TA
via the standard interface and simulates the access protocol, exactly modeling
how long each access may take. Fig.2(b) and Fig.2(c) show the TA models for a
First-Come-First-Service shared bus and a shared L2 Cache, which are provided
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Fig. 2. The TA models for programs, shared bus and shared cache

by McAiT. Other shared resources could also be modeled similarly and integrated
into McAiT. To obtain the WCET bounds, McAiT invokes UPPAAL to explore
the models for both the programs and the shared resources.

We refer interested readers to an appendix [6] for the results on the analysis
precision and the analysis overhead for the case of shared buses. The McAiT
User Manual [7] provides details on how to install the tool from scratch and an
example showing the complete procedure of WCET estimation by McAiT.
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Abstract. Modal Input/Output interfaces (MIOs) is a new specifica-
tion theory for systems communicating via inputs and outputs. The ap-
proach combines the advantages of both modal automata and interface
automata, two dominant specification theories for component-based de-
sign. This paper presents the MIO Workbench that is the first complete
implementation of the MIO theory.

1 Context

Evolution of computer science technology has permitted the development of
large size systems that facilitate (if not govern) our daily life. Such systems,
which have to interact with uncertain environments, are much too complex to
be developed by a single team or unit. Rather, the current trend in software
engineering suggests that huge systems shall result from the assembly of several
subsystems called components, each of them being developed by a dedicated
team. This component-based design view has the advantage of not only reducing
complexity but also hiding code information/secrets of individual participants.

While this view offers flexibility in the design, there is still the need that
all the participants agree on what the interface of each component shall be.
Such an interface precises the behaviors expected from the component as well
as the environment in where it can be used. According to state of practice,
interfaces are typically described using Word/Excel text documents or modeling
languages such as UML/XML. A series of recent works, now widely accepted by
industrials [5,15], instead recommend relying most possibly on mathematically
sound formalisms, thus best reducing ambiguities.

Existing interface models [13,9,4,2,8] are generally nothing more than transition
systems whose transitions are equipped with labels on which a dedicated semantic
can be built. Many of those powerful theories have recently been
unified through the Modal Input/Output interface (MIO) theory. Like modal au-
tomata [8], the formalism allows to finitely model a possibly infinite set of systems
(aka implementations)bydistinguishing thosebehaviors (transitions) thatmustal-
waysbe implemented fromthose thatmaynotbe implemented.Moreover, similarly
to I/O automata [10], MIOs communicate via input and output actions and propose
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the optimistic structural composition from interface automata[2].Thismeans that,
contrary to I/O automata, MIOs are not input-enabled and a state in a composed
system, where one component can perform an output that cannot be caught by a
receiving component, is declared as an error state. However, reaching an error state
does not necessarily mean that the two components cannotwork properly together.
Instead, two components can be composed if there exists an environment in where
no such communication errors occur. As a summary, the MIO theory is equipped
with structural (optimistic and pessimistic) composition together with compatibil-
ity, refinement (that allows to compare two sets of implementations), satisfiabil-
ity (that allows to check whether an implementation matches the requirements of
the specification), and a logical composition that allows to combine requirements
represented by interfaces. In addition, there is a quotient operator that allows to
synthesize missing interface requirements in a large size design. Finally the theory
also permit independent implementability [3].

It is clear that interface theories can be used to facilitate the development of
real-life applications. But, surprisingly, only a few tools exist for specific theo-
ries [6,1]. This paper introduces the MIO Workbench toolset, that is the very
first complete implementation of the MIO theory. The paper presents the tool
architecture and describes the basic creation and analysis facilities the MIO
Workbench provides. Details about theory and tool can be found at [12].

2 Tool Architecture

The MIO Workbench is implemented in Java as a series of Eclipse plug-ins [7]
which makes it easily extendable in case new operations are added to the MIO
theory. We have used the Eclipse Modeling Framework (EMF) to define a meta-
model for MIOs. This allowed us to generate code for creation and access of
(objects representing) MIOs, thus code maintenance is much easier and flexible,
particularly for later changes and extensions of the domain model. The architec-
ture of the tool is briefly described hereafter. For details, see [11,12].

The graphical user interface of the tool consists of an editor for drawing MIOs,
a verification view to execute operations on MIOs (composition, refinement, . . . ),
and finally, a command-line shell which is a powerful interface of computing com-
plex tasks (e.g., combining operations and checks). An overview of the standard
perspective of the tool can be seen in Fig. 1.
The MIO Editor displays MIOs as a graph in the classical way by using nodes
as states and edges as transitions. May and must transitions are drawn with
dashed and solid arrows, respectively. Furthermore, each transition is equipped
with an internal action (black arrow), input action (suffixed with ?, green arrow),
or output action (suffixed with !, red arrow). The MIO editor offers all the usual
operations such as adding new states and transitions, moving them around,
changing labels, types, and manual layouting.
The MIO Workbench Verification View provides a way to visually execute in-
dividual operations and depict the results graphically. Two MIOs can be placed
on the left hand and right hand side, by dragging .mio files from the project
explorer and dropping them on one side of the verification view; then all the
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Fig. 1. MIO Workbench and its editor and views

MIO operations are available from the middle panel. The output of perform-
ing a refinement or compatibility check is a refinement relation or the matching
states side-by-side between the two input MIOs in the positive case, or in the
negative case the view graphically displays, side-by-side, the path which led to
an erroneous state or the transition possible in one automaton, but not in the
other. The output of composition, conjunction and quotient is a MIO which can
be saved and reused.

The MIO Workbench Shell is a shell-like interpreter that facilitates combination
of operations. MIOs from the project explorer can be made available in the
shell by drag-and-drop. All the operations can be executed by entering simple
commands. For instance, if S and T are variables, then the command S <= T
performs a refinement check. To construct new MIOs, we can compose two MIOs
S1 and S2 and store the result in a new variable by executing C := (S1 || S2).
The main advantage is the possibility of performing complex verification tasks
like (S && T && U) <= (A - B) (where && is conjunction and - is quotient).
The complete input grammar as well as a tutorial can be found at [12].

3 Experiments and Future Work

As of yet, interface theories are not used on a large scale in industry. However,
together with industrials, we believe that such theories can greatly facilitate the
development of real-life applications, and that the major stumbling block to their
deployment lies in the unavailability of tools, to which the MIO Workbench is
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a remedy. We have already applied the MIO Workbench and the implemented
interface theories in the context of the EU project Sensoria [14], where we have
worked with industry partners to model and verify service-based architectures
(based on Web services) from the domains of Finance, Automotive, and Edu-
cation. Using the UML profile UML4SOA [16,11] for modeling the system, we
were able to automatically translate the models into MIOs and perform a rigor-
ous analysis with the MIO Workbench, like compatibility and refinement checks,
which was later re-annotated to the UML model. This analysis has proven helpful
in finding the more subtle problems in the UML models.

For future work, we plan to integrate our recent work on extensions of modal
interfaces to include data by an efficient BDD-based implementation. Also, code
generation transforming MIOs to correct implementations is of interest.
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Abstract. Distributed control for enforcing a global invariant can be achieved
based on calculating the knowledge of processes. When the local knowledge of
individual processes is insufficient, processes can temporarily join their knowl-
edge by means of synchronization. While synchronization can be used to guaran-
tee progress, it is computationally expensive and should be used sparsely. In this
paper, we introduce several solutions for minimizing the synchronization over-
head. One possibility is to calculate the knowledge of a process of whether or
not the system can progress without it. This knowledge can be used by the pro-
cess to avoid unnecessary synchronization. Because of the distributed nature of
the system, mutual passing of responsibility, based on such knowledge may re-
sult in deadlocks. We discuss three independent solutions to this problem. Our
first solution breaks the symmetry between processes in order to avoid such sit-
uations, while our second solution is based on chance (coin tossing). Finally, we
use automatically constructed stable properties to increase the joint knowledge of
processes in order to minimize the number of processes that need to interact.

1 Introduction

While formal verification techniques allow for debugging existing systems, synthesis
techniques are used to construct correct-by-design systems from their specification.
Synthesis is highly intractable for sequential systems and undecidable for distributed
systems [11], although there exist some cases and architectures where this is decid-
able [3,7,15]. Adding control to an existing distributed system in order to satisfy further
properties, including invariants, turns out to be undecidable as well [4,16,17].

In a series of papers [1,2,4,5], we developed a synthesis method for controlling dis-
tributed systems to satisfy invariant properties based on knowledge. The problem be-
comes decidable when further temporary synchronization between processes is allowed
for in order to obtain knowledge that may not be available locally. Unfortunately, the
addition of temporary synchronization is rather expensive.

The mechanism for controlling the system to enforce a global invariant involves
precalculating the local knowledge of processes. This knowledge can be used at runtime
to support the firing of a transition, while guaranteeing that the imposed invariant is
maintained. When such knowledge does not exist locally, processes can check their
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knowledge about other processes (knowledge of knowledge), or hang on a supervisor
that collects the local information until enough joint knowledge is achieved [5]. A single
supervisor can be responsible for multiple processes and may make different decisions
according to the order in which processes hang on it. As these interactions between
processes and their supervisor are expensive, our goal here is to minimize them without
introducing new deadlocks to the system.

A major source of redundancy appears when processes do not have enough local
knowledge, but other processes, teaming up together, are sufficient for achieving their
goal (in our case, to decide on executing a transition). In fact, a process may calculate its
knowledge regarding the joint knowledge of other processes. A naive approach would
instruct this process to wait instead of hanging on a supervisor. However, carefully
observing this solution reveals that the system may deadlock: it is possible that multiple
processes know that other processes are sufficient for coordination, while not enough
processes are volunteering to make the coordination themselves. If we want to take
advantage of such knowledge of processes about other processes, we need to break
the cycle of passing responsibility in order to make a correct decision when to avoid
coordination.

The first solution we propose involves the breaking of symmetry. Processes are as-
signed indexes. A process of lower index can avoid coordination if it has the knowledge
that processes of higher indexes have enough combined knowledge. This solution may
create some imbalance in the system on both, coordination and progress, according to
this prioritization. A second solution is probabilistic, tossing a coin when local knowl-
edge is lacking, but knowledge about the coordination of other processes exists. A third
solution is to improve the knowledge that a set of processes may have together. This is
done by calculating stable properties that depend on the set of processes that are ready
to coordinate. The calculation of such invariants use the constructions known in Petri
Net theory as traps and siphons [10]. Increasing the knowledge available to the set of
coordinating processes can reduce the number of processes needed for synchronization.

2 Knowledge Based Control in a Nutshell

The model used in this paper is Petri Nets. It was chosen due to its visual represen-
tation. The method and algorithms developed here can equally apply to other models,
e.g., transition systems, communicating automata, etc. We use the same terminology as
in [5]. Due to space restrictions, we only give a brief summary in this section.

A (1-safe) Petri Net N is a tuple (P,T,E,s0) where P is a finite set of places, the states
are defined as S = 2P where s0 ∈ S is the initial state, T is a finite set of transitions, and
E ⊆ (P× T )∪ (T ×P) is a bipartite relation between the places and the transitions.
For a transition t ∈ T , we define the set of input places •t as {p ∈ P | (p, t) ∈ E}, and
output places t• as {p ∈ P | (t, p) ∈ E}. Similarly, for a place p ∈ P, we denote by p•

the transitions {t ∈ T | (p, t) ∈ E}, and by •p the transitions {p ∈ P | (t, p) ∈ E}.
Figure 1 shows two Petri Nets. Transitions are visualized as lines, places as cir-

cles, and the relation E is represented using arrows. In Figure 1(a), there are places
p1, p2, . . . , p7 and transitions a, b, c, d. We depict a state by putting full circles, called
tokens, inside its places. In the example in Figure 1(a), the initial state s0 is {p1, p2, p7}.
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Fig. 1. Petri Nets: (a) without priorities and (b) with priorities a & d and b & c

We extend the definitions of input and output to sets of places and transitions by
means of union, e.g., for L ⊆ P, •L = ∪p∈L

•p. A transition t is enabled in a state s,
denoted s[t〉, if •t ⊆ s and t•∩ s ⊆• t. A state s is in deadlock if there is no enabled
transition from it. A transition t can be fired (or executed) from state s to state s′, denoted
by s[t〉s′, when t is enabled at s. Then, s′ = (s \• t)∪ t•. An execution of a Petri Net N
is a maximal alternating sequence s0[t1〉s1[t2〉s2 . . ., where s0 is the initial state of N. An
execution is sometimes referred to by writing only the sequence of states or sequence
of transition fired. Two transitions t1 and t2 are dependent if (•t1 ∪ t1•)∩ (•t2 ∪ t2•) 	= /0.
Let D ⊆ T ×T be the dependence relation. Two transitions are independent if they are
not dependent.

The transitions that are enabled from the initial state in the Petri Net of Figure 1(a)
are a and b. If we fire a from the initial state, the tokens from p1 and p7 will be removed,
and a token will be placed in p3. In this Petri Net, all transitions are dependent on each
other, since they all involve the place p7. Removing p7, see Figure 1(b), makes both a
and c become independent from both b and d. A process π of a Petri Net N is a subset of
the transitions T satisfying that, for each pair t1, t2 ∈ π of independent (i.e., (t1, t2) 	∈ D)
transitions in π, there is no reachable state s in which both t1 and t2 are enabled.

We will represent the separation of transitions of a Petri Net into processes using
dotted lines. We assume a given set of processes C that covers all transitions of the
net, i.e.,

⋃
π∈C π = T . A transition can belong to several processes, e.g., when it models

a synchronization between processes. For the Petri Net in Figure 1(a), there are two
executions: acbd and bdac. There are two processes: the left process πl = {a,c} and
the right process πr = {b,d}. We use the same partitioning of transitions to processes
in Figure 1(b).

The neighborhood of a set of processes Π, denoted ngb(Π), includes all places that
are either inputs or outputs to transitions of Π. We say that a set of processes Π owns
the places in their neighborhood that cannot gain or lose a token by a transition that is
not exclusively in Π, and denote the places owned by a set of processes Π own(Π) =
ngb(Π)\ ngb(C \Π).

When a notation refers to a set of processes Π, we will often replace writing the
singleton process set {π} by writing π, e.g., we write own(π). Note that ngb(Π1)∪
ngb(Π2) = ngb(Π1 ∪Π2), while own(Π1)∪own(Π2) ⊆ own(Π1 ∪Π2). The neighbor-
hood of process πl is {p1, p3, p5, p7}. Place p7 in Figure 1(a) is neither owned by πl ,
nor by πr, but it is owned by {πl,πr}. It belongs to the neighborhood of both processes
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and acts as a semaphore. It can be captured by the execution of a or of b, guaranteeing
that ¬(p3 ∧ p4) is an invariant of the system.

We use weak and strong knowledge without recall [8]. For weak knowledge, Kw
Πϕ

holds in a state s if for all the reachable states of the Petri Net that have the same
full and empty places in the neighborhood of Π as in s, ϕ holds. Similarly, for strong
knowledge, Ks

Πϕ is defined based on the places that the processes in Π own rather than
their neighborhood.

In control theory, a transformation takes a system and allows blocking some tran-
sitions in order to impose some constraint on the system. This is done by adding a
supervisor process [12,19,14], which is usually an automaton that runs synchronously
with the controlled system. This (finite state) automaton observes the controlled sys-
tem, progresses according to the transitions it observes, and blocks some of the enabled
transitions, depending on its current state [19]. This is often insufficient for obtaining
distributed control [13]. This section briefly summarizes results & constructions of [5].

Our control goal is to restrict the system such that each reachable state and subse-
quent transition t would belong to a given set Ψ ⊆ S× T . As a preparatory stage, we
calculate a predicate ϕgood(t) that encodes the states, where executing t according to Ψ
is allowed (see [5]). In order to control the execution of the system, a transition can fire,
when enabled, only if it is also supported by a process, or by a supervisor, as described
below. A transition t is supported by a process π that contains t (t ∈ π) if π weakly
knows that a transition t is good:

Kw
π ϕgood(t),

Thus, a process π supports some transition, when

κπ
1 =

∨
t∈π

Kw
π ϕgood(t).

A process knows that another process supports a transition, when

κπ
2 = Kw

π
∨

π′ 	=π
κπ′

1 .

In [5], we proposed a control mechanism with supervisors that run asynchronously with
the controlled processes. The set C of processes is partitioned into a set S = {Πi | i =
1, . . . ,k} of supervisors. When a process does not have the local knowledge to support
a transition or to trust another process to do so, it hangs on a supervisor.

The decision by a process π to either support a transition t ∈ π, wait, or hang on a
supervisor such that π ∈ Πi is as follows:

1. If a process π knows that a transition is good, i.e., κπ
1 holds, then it supports it.

2. Otherwise, if a process π knows that, for some transition t, a different process
knows that it is good, i.e., κπ

2 holds, then π idles (i.e., supports no transition).
3. Otherwise, π hangs on its supervisor.

A supervisor Πi collects the local information of the processes that hang on it. The sub-
tle distinction between local state and local information plays a major role here. While
a process may base its (weak) knowledge on the local information, there is nothing to
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guarantee that the local information of the hung processes will not be changed by other
processes. Thus, the supervisor collects their joint local state, which cannot change as
long as these processes do not progress. The local information of a hung process may
still be changed by another process. In this case, the process may unhang, and support
a transition based on its local knowledge, after updating the supervisor.

A supervisor Πi can support a transition t when a set of processes Π ⊆ Πi are hung
on it such that t ∈ π ∈ Π when Ks

Πϕgood(t) holds. We define

κΠ =
∨

t∈∪Π
Ks

Πϕgood(t).

Theorem 1. [5] If ϕG → (
∨

π∈C κπ
1 ∨

∨
Πi∈S κΠi) holds, then the knowledge based con-

trol achieves the desired invariant without introducing new deadlocks.

Theorem 1 provides a condition under which the supervised control does not lead to
any new deadlocks. This is guaranteed when (there is a global solution and) there is just
a single supervisor, containing all processes. The proof of Theorem 1 makes use of a
translation to extended Petri Nets, where the extension is used for the communication
between the supervisors and the processes they supervise.

3 Reducing Process Hanging and Passing Responsibility

In the proposed solution for controlling a distributed system to satisfy a global invariant,
the process/supervisor interaction may be expensive. Hanging can be necessary for the
accumulation of joint knowledge that helps the system to progress. But hanging is an
expensive operation, and it can be the case that, if a process refrains from hanging,
another process may change its local information and subsequently facilitate knowledge
to support a transition. In this section, we suggest two techniques to reduce process
hanging: the introduction of a (partial) order on the processes and the introduction of
randomized actions.

Order. The introduction of a partial order 2 on the set of processes leads to a situa-
tion, where a smaller process w.r.t. 2 can avoid hanging on its supervisor if the bigger
processes together can progress. Besides the advantage of reducing the number of calls
to supervisors, it also allows for providing a preference to important processes, giving
them an advanced access to supervisor support while reducing supervisor interaction
for lesser processes significantly.

This makes use of nested knowledge, a generalization of the property κπ
2 to a set

of processes. The intuition is that a process can check whether it knows that the joint
knowledge of the other processes, besides itself, is sufficient to support a transition:

Kw
π

∨
t∈∪C\{π}

Ks
C\{π}ϕgood(t).

In that case, a process may decide not to hang, but to rather let the others provide the
joint local state needed for making the progress decision. However, this solution makes
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Fig. 2. Priorities: a & d, b & c, a′ & d′, and b′ & c′

it possible that too many processes will decide to delegate responsibility to others, with-
out informing them. This can lead to the introduction of a deadlock.

As an example, consider the Petri Net with priorities from Figure 2. This net dupli-
cates the net in Figure 1(b) and adds two new transitions. It consists of four processes:
π1 = {a,c}, π2 = {b,d,e}, π3 = {a′,c′} and π4 = {b′,d′,e′}. In the initial state, each
process does not have enough knowledge to support a transition. However, each process
locally knows that the other processes together (in particular, two of the other processes)
have enough knowledge to support a transition. For example, process π1 knows that the
joint knowledge of π3 and π4 together is sufficient to support one of the transitions
of these processes, whatever their local state is. If, based on this knowledge about the
other processes, each process will abstain from hanging, the supervisor will not be able
to collect enough knowledge to support any move and the system will deadlock.

One way of dealing with the situation where too many processes independently ‘pass
the buck’ to other processes to contribute to the joint knowledge, is to break symmetry
in the decision to hang. For simplicity, assume first that we use a single supervisor.
We number the processes in some way π1, π2, . . . ,πn. Then the ith process also checks
whether or not it (weakly) knows that the joint (strong) knowledge of the processes with
higher indexes is sufficient to support a transition (see Theorem 2). That is,

κπi
1 ∨κπi

2 ∨Kw
πi

κ{π j| j>i}

becomes a sufficient condition for process πi to avoid calling the supervisor. More gen-
erally, we can use any partial order 2 on the processes and any set of distributed con-
trollers, and change the control strategy as follows.

For a supervisor Πi and a process π, we denote with Π2π
i = {π′ ∈ Πi | π′ 2 π}

the processes of Πi that are strictly greater than π with respect to the partial order 2.
Naturally, a supervisor Πi would support some transition based on the knowledge of the
processes in Π2π

i if κΠ2π
i holds. A process π can thus idle if it knows

κπ
3 = Kw

π
∨

Πi∈S
κΠ2π

i .

This is used to reduce the states in which a process hangs on its supervisor.
The control strategy of the supervisors is not affected. The ordered control strategy

is as follows:
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1. If a process π knows that a transition is good, i.e., if κπ
1 holds, then it supports it.

2. Otherwise, if a process π knows that, for some transition t ∈ π, a different process
knows that t is good, i.e., if κπ

2 holds, then π idles.
3. Otherwise, if a process π knows that, for some supervisor Πi, the joint knowledge

of Π2π
i is that some t ∈ Π2π

i is good, i.e., if κπ
3 holds, then π idles.

4. Otherwise, π hangs on its supervisor.

Ordered control does not introduce new deadlocks, and the sufficient condition for un-
ordered control strategies also applies to ordered control strategies:

Theorem 2. If ϕG → (
∨

π∈C κπ
1 ∨

∨
Πi∈S κΠi) holds, then the ordered knowledge based

control strategy introduces no deadlocks.

Chance. An alternative solution is to allow processes to randomly hang on their super-
visors if they do not know whether or not the system could progress without them. The
advantage of hanging randomly rather than deterministically on a supervisor is a means
to avoid, with high probability, a situation where a process hangs on its supervisor,
while the system could progress. The solution based on breaking symmetry is biased
towards processes with lower indexes: processes with low indexes would avoid hang-
ing as soon as they know that the cooperation between processes with higher indexes
suffices to prevent blocking. Our solution for regaining symmetry1 is simple: when a
process π has checked that neither κπ

1 nor κπ
2 hold, it makes a random choice either to

wait or to hang.
Correctness of this algorithm is independent of the actual probability of each individ-

ual probabilistic selection by a process. In a situation where no process knows locally
how to proceed, the system will wait indefinitely with probability 0.

Using chance and order to reduce the situations in which processes hang on their
supervisors are independent of each other. For generality, we discuss the extension of
the technique proposed in the previous section, bearing in mind that the case where all
processes are incomparable by 2 reflects the unordered case. For the ordered case,
however, we suggest that a process π should hang immediately if it knows that no
supervisor Πi has, based on the processes in Π2π

i , sufficient knowledge to support a
transition; that is, if

κπ
4 = Kw

π ¬
∨

Πi∈S
κΠ2π

i

holds. The local control strategy of the processes is to follow the randomized control
strategy described below:

1. If a process π knows that a transition is good, i.e., if κπ
1 holds, then it supports it.

2. Otherwise, if a process π knows that, for some transition t ∈ π, a different process
knows that t is good, i.e., if κπ

2 holds, then π idles.
3. Otherwise, if a process π knows that, for some supervisor Πi, the joint knowledge

of Π2π
i is that some t ∈ Π2π

i is good, i.e., if κπ
3 holds, then π idles.

4. Otherwise, if a process π knows that, for no supervisor Πi, the joint knowledge of
Π2π

i is that some t ∈ Π2π
i is good, i.e., if κπ

4 holds, then π hangs.

1 Symmetry is not defined here in a strict manner as in [6], where processes are not aware of
their index value. Our solution is symmetric in the sense of not giving an a priory advantage
to hang according to their index.
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5. Otherwise, π tosses a coin to decide whether to hang on its supervisor or to wait
further and then repeat this strategy.

The only formal requirement that we put on the random choice is that, if the local
knowledge of a process π eventually always never changes, then π will almost surely
eventually always hang on its supervisor. For randomized control, a deadlock occurs in
a state of a Petri Net unless the system will almost surely eventually progress from this
state. The control strategy of the supervisors is again unaffected.

Randomized control does not introduce new deadlocks, and the sufficient condition
for unordered control strategies also applies to randomized control strategies:

Theorem 3. If ϕG → (
∨

π∈C κπ
1 ∨

∨
Πi∈S κΠi) holds, then the randomized control strat-

egy provides a deadlock free solution.

4 Refinig Knowledge

In our synthesis approach, it is important to minimize the number of processes that are
hung until enough knowledge is available for a supervisor to support some transition.
Deepening the knowledge is one way of progressing towards this goal. One possibility is
to use knowledge of perfect recall [8,1]; however, this is very costly. Another possibility
is to use weak knowledge based on joint local information through a powerful (and very
expensive) synchronization protocol like α-core [9,4].

We present a solution, which uses knowledge that is in between strong and weak
knowledge. The idea is to exploit some conditionally stable properties, i.e., properties
that, once started to hold under some condition, do not cease to hold while this condition
lasts. As our approach does not allow us to freeze the joint local information, this will at
least allow us to limit the number of possible states by exploiting the value of the entire
local information of the process when it hangs.

Definition 1. A conditionally stable property Jϕ for a condition ϕ is a state predicate
(over the places of the system) such that, while ϕ holds, if Jϕ starts to hold then it
continues to hold.

In temporal logic, one can write �((ϕ∧ Jϕ) → (Jϕ W ¬ϕ)), where W is the temporal
weak until operator. In order to calculate stable properties for a given Petri Net, we can
use the concepts of siphons and traps [10] in Petri Nets.

Definition 2. A set of places L ⊆ P is a siphon if •L ⊆ L• and a trap if L•⊆• L.

A siphon L induces the stable property σL =
∧

p∈L¬p that there is no token in any of
the places in L. A trap L induces the stable property σL =

∨
p∈L p such that there is a

token in at least one place in L [10].
We can strengthen weak or strong knowledge by taking into account only states, in

which a given property η holds.

Definition 3. Given a state property η, for s ∈ G, s |= η, the guarded (weak or strong)
knowledge Kη,Π operator satisfies that s |= Kη,Πϕ if, for each s′ such that s ≡Π s′ and
s′ |= η, it holds that s′ |= ϕ.
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Suppose that we are at a point where a new process π hangs. According to our approach,
π communicates to its supervisor the value of the places that will complete a joint local
state with the processes already hung. The guarded knowledge allows us to take advan-
tage of stable properties that hold while these processes do not support a transition. (If
one of them does, then the information on the supervisor may become stale and needs to
be updated before the supervisor can support a transition.) Thus, we need to calculate
traps and siphons that hold under the condition of a particular joint local state. Now,
when a process π hangs and is added to the already hanging Π (then π ∈ Π), the infor-
mation in ngb(π)\ own(Π) can be used to check whether or not a conditionally stable
property that is induced by a siphon or a trap L holds at the time of hanging. This is
done using the following exclusion procedure:

1. Remove from the net all the transitions that belong only to the processes Π that are
hung on a supervisor Πi ⊇ Π, i.e., t ∈ (∪Π)\∪(C \Π). These transitions will not
fire while these processes are hung.

2. Remove all the places that are input or output only to the transitions removed in the
previous step.

3. For the remaining Petri Net, calculate siphons L ⊆ ngb(π)\ own(Π) whose places
are all empty at the point when π is hanging, and traps L such that L∩ (ngb(π) \
own(Π)) 	= /0 and have at least one nonempty place when π is hanging. These are
the active siphons and traps (for current joint local state of Π and local information
of π). Deadlocks and traps can be calculated, e.g, according to the algorithm [18].

Theorem 4. Let ϕr be the characterizing formula2 for the joint local state r of the
processes Π when hung on Πi. Then the active sipons and traps, calculated using the
exclusion procedure for r, are the siphons and the traps, respectively, of the original
Petri Net N, conditioned on ϕr.

Consequently, while there is no change to the set of hung processes, the conjunction
of the active conditionally stable properties that held on time of hanging, still holds.
Let µr be the conjunction of the formulas σL, associated with active siphons or traps
L calculated by the exclusion procedure for a given joint local state r. In this case, the
guarded strong knowledge Ks

µr ,Π can be used instead of the strong knowledge Ks
Π in the

algorithms presented in the previous sections.
Note that traps and siphons are not the only possible stable properties. However, their

calculation is well studied and quite efficient.
A special case of our construction are places p that belong to the local information of

the hanging process π, but not to the joint local state of the hung processes Π (including
π). In particular, such a place could have a token at the time of hanging that it cannot
lose (or be empty and unable to obtain a token) by any transition of processes not in Π.

There is a tradeoff associated with the construction suggested in this section. On one
hand, it can increase the joint knowledge of the hung processes, eliminating the need to
wait for further processes to hang before a transition can be supported by the supervisor.
On the other hand, it can enlarge the number of cases handled by the supervisor: a

2 This formula is the conjunction of the places in own(Π), negated when a place is empty and
nonnegated when it has a token.
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case of a joint local state may now be split according to the traps and siphons that are
associated with different local information of the newly hung process.

References

1. Basu, A., Bensalem, S., Peled, D., Sifakis, J.: Priority Scheduling of distributed Systems
Based on Model Checking. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 79–93. Springer, Heidelberg (2009)

2. Bensalem, S., Bozga, M., Graf, S., Peled, D., Quinton, S.: Methods for Knowledge Based
Controlling of Distributed Systems. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS,
vol. 6252, pp. 52–66. Springer, Heidelberg (2010)

3. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: LICS 2005, Chicago, IL, pp.
321–330 (2005)

4. Graf, S., Peled, D., Quinton, S.: Achieving Distributed Control Through Model Checking. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 396–409. Springer,
Heidelberg (2010)

5. Katz, G., Peled, D., Schewe, S.: Synthesis of Distribute Control through Knowledge Accu-
mulation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 510–
525. Springer, Heidelberg (2011)

6. Lehman, D., Rabin, M.O.: On the Advantages of Free Choice: A symmetric and Fully Dis-
tributed Solution to the Dining Philosophers Problem. In: POPL 1981, Williamsburg, Vir-
ginia, pp. 133–138 (1981)

7. Madhusudan, P., Thiagarajan, P.S.: Distributed Controller Synthesis for Local Specifications.
In: Yu, Y., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 396–
407. Springer, Heidelberg (2001)

8. van der Meyden, R.: Common Knowledge and Update in Finite Environment. Information
and Computation 140, 115–157 (1980)
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Abstract. A network of communicating FSMs (NCFSMs) is a useful
formalism to model complex concurrent systems, but its use demands
efficient analysis algorithms. We propose a new symbolic framework for
NCFMS verification and test generation. We explore the use of the
breadth-first search (BFS) and saturation algorithms to compute the
“unstable transitive closure” of transitions for the observable product
machine of an NCFSM. Our framework can verify properties such as
livelock freeness and includes a fully automatic test generation based on
mutation analysis. Being symbolic, our framework can efficiently man-
age a large number of mutants with moderate resource consumption and
derive a test suite to distinguish all non-equivalent first-order mutants.

1 Introduction

Concurrent systems, such as communication and multiprocessor systems, consist
of several components connected via FIFO queues and can be naturally modeled
as a network of communicating finite state machines (NCFSMs) where each
component is a communicating finite state machine (CFSM). While the state
space of an NCFSM with unbounded queues is infinite, the slow environment
assumption [8] satisfied by most systems avoids the need to manage infinite state
spaces. Our slow environment NCFSMs require a single global queue of size one.

Both structural and fault-based testing can be employed on NCFSMs. Ap-
proaches to structural testing either transform an NCFSM into a behaviorally
equivalent FSM, the observable product machine, or try to restrict the model
to allow only local transition tests, but suffer from state-space explosion [7] or
require an exhaustive search to generate executable test cases [6,9]. Fault-based
testing adopts mutation analysis, which scales well in web applications and other
collaborative systems, but requires dealing with a large number of mutants and
must generate a distinguishing sequence for each non-equivalent mutant [13].

The lack of an efficient and fully automated verification and test derivation
framework for NCFSMs limits their applicability and results in large manual test-
ing efforts. As symbolic methods such as binary decision diagrams (BDDs) [3]
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have had great success in verification, we propose a framework for critical prop-
erty verification and test generation using a symbolic strategy and mutation
analysis. We use multiway decision diagrams (MDDs) [10] to compute the un-
stable transitive closure of the transition relation for the observable product ma-
chine, then employ verification techniques to check critical properties and provide
counter-examples. Finally, we generate first-order mutants through specification
mutant operators and use edge-value decision diagrams [5] to symbolically obtain
distinguishing sequences (a test suite) that “kill” all non-equivalent mutants.

The remainder of this paper is organized as follows. Sect. 2 provides some
background. Sect. 3 elaborates our symbolic framework and preprocessing algo-
rithms. Sect. 4 focuses on verification algorithms and Sect. 5 on automatic test
derivation algorithms. Sect. 6 gives experimental results. We conclude in Sect. 7.

2 Preliminaries

A CFSM Mk is a tuple (Sk,Xk,Yk, δk, λk, sk) where Sk is a finite set of local
states, Xk is a finite set of input symbols generated from the environment or
other CFSMs, Yk is a finite set of output symbols absorbed by the environment
or other CFSMs, δk : Sk × Xk → Sk is the local state transition function,
λk : Sk × Xk → Yk is the output function, and sk ∈ Sk is the initial state. If
δk(i, a) = j and λk(i, a) = b, we let i [Mk, a/b〉 j denote this local transition from
state i to j caused by input a and output b in Mk.

An NCFSM M consists of K CFSMs M1,M2, ...,MK with pairwise disjoint
sets of input symbols and a FIFO buffer β containing symbols in transit be-
tween CFSMs. The semantics of an NCFSM is defined by the product FSM
(S,X ,Y, δ, λ, sinit) where X =

⋃
1≤k≤K Xk, Y =

⋃
1≤k≤K Yk, S = ({ε}∪Y∪X )×

S1×...×SK is the set of global states, δ : S×({ε}∪X )→S and λ : S×({ε}∪X )→Y
are the global state transition and output functions, respectively, which will be
defined later, and sinit =(ε, s1, ..., sK)∈S is the initial global state.

Let Zint =X ∩Y be the set of internal symbols that can appear in buffer β (we
underline these symbols, e.g., a). Let X \Y⊆Xext⊆X and Yext =Y\X be the set
of external input and external output symbols. Yext contains the output symbols
observable outside the system. Xext must contain all the symbols that only the
environment can place into the buffer β, thus X \Y, but it may include symbols
in Zint. Given i = (i1, ..., iK), define i|k:jk

to be the vector (i1, ..., jk, ..., iK)
obtained by setting the kth component of i to jk. A (global) state (iβ , i1, ..., iK)
is stable if iβ = ε, we write it as i, otherwise it is unstable, we write as a.i, with
a ∈ Zint. Let Sst and Sunst be the set of reachable stable and unstable states,
respectively, and Srch =Sst ∪ Sunst. If ik [Mk, a/x〉 jk, λ and δ satisfy:

– δ(i,a)= i|k:jk
and λ(i,a)=x, if a∈Xext, x∈Yext, written as i [M, a/x〉 i|k:jk

, or
simply i [a/x〉 i|k:jk

if M is clear from the context.
– δ(i,a)=x.i|k:jk

and λ(i,a)=ε, if a∈Xext, x∈Zint, written as i [a/x〉x.i|k:jk
.

– δ(a.i,ε)= i|k:jk
and λ(a.i, ε)=x, if a∈Zint, x∈Yext, written as a.i [a/x〉 i|k:jk

.
– δ(a.i,ε)=x.i|k:jk

andλ(a.i,ε)=ε, ifa∈Zint,x∈Zint, written as a.i [a/x〉x.i|k:jk
.



434 X. Jin et al.

The NCFSMs we study conform to the slow environment assumption [8]: if
the output symbol a of a CFSM can be absorbed by another CFSM as an
input symbol, then the system does not accept any other input symbol from the
environment until a has been consumed. A buffer of size one is sufficient under
this assumption, as β can only be empty or contain one symbol from Zint.

As neither unstable states nor the symbols in β are observable, we focus on
stable state transitions: if i [a/a(1)〉a(1).i(1)[a(1)/a(2)〉 · · · [a(n−1)/a(n)〉a(n).i(n)

[a(n)/b〉 j,
where n≥ 1, i, j ∈ Sst, a ∈ Xext, a(1)· · ·a(n) ∈ Zint and b ∈ Yext, we merge this
sequence into a stable transition i [[a/b〉〉 j. We define the observable transition
function δobs and output function λobs, δobs(i, a) = j and λobs(i, a) = b if i [[a/b〉〉 j.
Then, we define the observable product machine Mobs of an NCFSM as a six-
tuple (Sst,Xext,Yext,δobs,λobs,sinit). Sect. 3 presents our symbolic algorithm to
generate Mobs, needed to verify NCFSM equivalence and used in test derivation
and test selection [12]. We let a1/b1, ..., an/bn∈(Xext×Yext)∗ be a sequence from
state i ∈ Sst if λobs(i, a1a2· · ·an)=λobs(i, a1)λobs(δobs(i, a1), a2· · ·an)=b1b2· · ·bn.

2.1 Decision Diagrams

Symbolic encodings such as BDDs [3] and MDDs [10] work well for formal veri-
fication. We use MDDs to encode boolean functions for sets and EV+MDDs [5]
to encode partial integer functions, where ∞ means “undefined”.

Given L domain variables vl (1≤ l≤L) having finite domain Vvl
and a boolean

range variable v0, ordered vL2· · ·2v12v0, a (quasi-reduced) MDD is a directed
acyclic edge-labeled graph where:

– Each node p is associated with a domain variable vl. We write p.v=vl.
– The terminal nodes are 0 and 1, and are the only nodes with 0.v=1.v=v0.
– A nonterminal node p with p.v=vl has, for each i∈Vvl

, an edge pointing to
node q, with q.v=vl−1 or q=0. We write p[i]=q. We must have at least one
p[i] 	=0.

– For canonicity, there are no duplicates : given two nonterminal nodes p and
q with p.v = q.v, there must be at least one i ∈ Vp.v such that p[i] 	= q[i].

A nonterminal MDD node p with p.v= vl encodes the set of tuples recursively
defined by Bp =

⋃
i∈Vvl

{i}·Bp[i], with terminal cases B0 =∅, the empty set, and
B1={ε}, the empty tuple, where “·” indicates tuple concatenation.

To encode partial integer functions, we use a variant of the above. A normal-
ized EV+MDD [5] is a directed acyclic edge-labeled graph where:

– Ω is the only terminal node, with Ω.v=v0.
– A nonterminal node a with a.v = vl has, for each i ∈ Vvl

, an edge labeled
with ρ ∈ N∪{∞} pointing to node b. We write a[i] = 〈ρ,b〉, b = a[i].node,
and ρ = a[i].val. We must have b = Ω if ρ = ∞, b.v = vl−1 otherwise, and
at least one a[i].val = 0.

– For canonicity, there are no duplicates : given two nonterminal nodes a and b
with a.v = b.v, there must be at least one i ∈ Vp.v such that a[i] 	= b[i], i.e.,
a[i].node 	= b[i].node, or a[i].val 	= b[i].val, or both.
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Fig. 1. System framework

Given EV+MDD node a with a.v= vl and ρ∈N, 〈ρ,a〉 encodes the function
f〈ρ,a〉 :Vvl

×· · ·×Vv1 → N∪{∞} recursively defined by f〈ρ,a〉=ρ+fa[vl], with base
case f〈ρ,Ω〉=ρ.

To make MDDs and EV+MDDs more compact and their manipulation more
efficient, edges can skip variables under various reduction rules [3,17]. These rules
still ensure canonicity and implicitly define the meaning of these “long” edges,
but we do not discuss them further in the interest of clarity and brevity.

Or(a, b) and And(a, b) are two operators used to compute the MDD encoding
Ba∪Bb and Ba∩Bb. Analogously, Min(〈ρ,a〉, 〈σ,b〉), returns the EV+MDD encod-
ing min(f〈ρ,a〉, f〈σ,b〉), and Normalize puts an EV+MDD in canonical form [5].

2.2 Previous Work

Structural test generation approaches for NCFSMs mostly fall into two classes.
One transforms an NCFSM into its Mobs [12] which may encounter state-space
explosion problem, then applies standard FSM test derivation techniques, such
as the W-method, Wp-method, and UIO-method. However, a high complexity
limits the applicability of these well-known approaches. More importantly, even
if all CFSMs are deterministic, minimal, completely specified, and strongly con-
nected, the resulting Mobs might not be. Mobs is deterministic and completely
specified iff M is livelock-free while, if Yext ⊂ Y, minimal and strongly con-
nected properties may be lost. In these cases, standard structural FSM-based
test derivation algorithms are not directly applicable.

The other category of approaches [6,9,11] avoids building Mobs and uses in-
stead branching coverage [11] or heuristic techniques [6]. These methods check
local transitions instead of global transitions, and reduce testing efforts under
the assumption that the system only has one fault. However, for some complex
models, exhaustive searches or heuristic algorithms must be employed.

Our work falls into the first class. Our fully symbolic techniques copes with the
large computational cost to generate Mobs for verification and test generation.
Moreover, we adopt mutation analysis for test derivation, thus we do not require
Mobs to be minimal, completely specified, or strongly connected.
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3 System Framework and Symbolic Encoding

Both specification or implementation errors can cause system failures. Our sym-
bolic framework takes in an NCFSM model described in XML as the system
specification and aims at detecting both types of errors. It has two stages: veri-
fication and test derivation, as in Fig. 1. The verification stage checks three im-
portant properties of the specification: livelock freeness, strong connectedness,
and absence of dead transitions. If a check fails, counter-examples are generated
to help fixing the error. The test derivation stage generates a test suite using
mutation analysis, to test the consistency between the implementation under
test (IUT) and the specification.

Given an NCFSM with K component CFSMs and a system buffer, we use an
MDD with variables (wK , ..., w1, wb) to encode sets of global states. The first K
variables correspond to each CFSM local state, wb corresponds to the current
buffer content. A next-state function T :S×(X∪{ε})→S×(Y∪{ε}) encoded using
MDDs on 2(K+1) variables (wK ,w′

K ,...,w1,w
′
1,wb,w

′
b), captures the global state

transition function δ and output function λ, so that T (x,y)=(x′,y′) iff δ(x,y)=x′

and λ(x,y) = y′, where x and x′ are global states and y, y′ ∈ X ∪ Y ∪ {ε}. We
define Ts =

⋃
1≤k≤K Tk, where Tk encodes the next-state function of Mk. Thus,

T = Ts ∪ Tβ , where Tβ encodes the interaction with the environment.
Generation of the state-space Srch = {sinit} ∪ T (sinit) ∪ T 2(sinit) ∪ · · · is

often the first step in formal verification. Srch can be built by standard symbolic
state-space generation algorithms [4] and we can split it into Sst and Sunst based
on the status of the system buffer wb: if wb = ε, the state is stable, otherwise it
is unstable.

To compute the stable next-state function Tobs encoding δobs and λobs, we
first define the unstable transitive closure (UTC ): given Ts, UTC is the smallest
relation containing Ts and satisfying

(c.j, ε) ∈ Ts(b.i, ε) ∧ (b.i, ε) ∈ UTC (a.h, ε) ⇒ (c.j, ε) ∈ UTC (a.h,ε),
(c.j, ε) ∈ Ts(b.i, ε) ∧ (b.i, ε) ∈ UTC (h,a) ⇒ (c.j, ε) ∈ UTC (h, a),

(j, c) ∈ Ts(b.i, ε) ∧ (b.i, ε) ∈ UTC (a.h, ε) ⇒ (j, c) ∈ UTC (a.h, ε),
(j, c) ∈ Ts(b.i, ε) ∧ (b.i, ε) ∈ UTC (h, a) ⇒ (j, c) ∈ UTC (h, a).

UTC captures all transition sequences in M that do not pass through stable
states. We use UTC to build Tobs, by applying the And operator (Sect. 2) to
select the elements with wb ∈ Xext and w′

b ∈ Yext, corresponding to input and
output symbols leading from stable to stable states. UTC is the most time and
memory consuming step in our framework. First, we define a ComRP operator
to calculate this composition effect of next-state functions, taking two 2(K+1)-
variable MDDs and returning the result composition 2(K+1)-variable MDD.
UTC can be obtained by repeatedly applying ComRP to Ts: UTC = Ts ∪
ComRP(Ts) ∪ ComRP2(Ts) ∪ · · · . Thus, UtcBfs performs a global fixpoint in
BFS style at Line 2-5 and uses ComRP with Line 26b in Fig. 2.

However, for asynchronous systems, saturation [4] is often orders of magnitude
more efficient in memory and runtime than BFS algorithms, due to its effective
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mdd ComRP(mdd p, mdd r)

1 if r = 1 or p = 1 then • terminal
2 return p;
3 endif
4 mdd t←0, s←0;
5 if CHitComRP(p, r, t) then
6 return t; • cache hit
7 endif
8 if p.v = r.v then
9 for i,i′∈Vp.v s.t. p[i][i′] �=0,r[i′] �=0

do
10 if r.v = r[i′].v then
11 for j ∈ Vr.v do
12 s ← ComRP(p[i][i′], r[i′][j]);
13 t[i][j] ← Or(t[i][j], s);
14 endfor
15 else • r[i′]’s edge skips 1 variable
16 s ← ComRP(p[i][i′], r[i′]);
17 t[i][i′] ← Or(t[i][i′], s);
18 endif
19 endfor
20 else • r’s edges skip 2 variables
21 for i, i′ ∈ Vp.v s.t. p[i][i′] �= 0 do
22 s ← ComRP(p[i][i′], r);
23 t[i][i′] ← Or(t[i][i′], s);
24 endfor
25 endif

26b t←UniIns(t); • for UtcBfs

26s t←UtcSat(UniIns(t));• for UtcSat

27 CAddComRP (p, r, t); • store in cache
28 return t;

mdd UtcSat(mdd p)

1 if p.v = v0 then return z; • terminal
2 mdd t←0, s←0;
3 if CHitUtcSat (z, t) then return t;
4 for i, i′∈Vp.v s.t. p[i][i′] �=0 do
5 t[i][i′]←UtcSat(p[i][i′]);
6 endfor • saturate all lower variables
7 repeat • local fixpoint iteration
8 for i, i′∈Vp.v, r∈Ts s.t. t.v = r.v,

p[i][i′] �= 0, r[i′] �= 0 do
9 if r.v = r[i′].v then

10 for j ∈ Vr.v s.t. r[i′][j] �= 0 do
11 s ← ComRP(p[i][i′], r[i′][j]);
12 t[i][j] ← Or(t[i][j], s);
13 endfor
14 else • r[i′]’s edge skips 1 variable
15 s ← ComRP(p[i][i′], r[i′]); • 26s
16 t[i][i′] ← Or(t[i][i′], s);
17 endif
18 endfor
19 until t does not change;
20 t←UniIns(t); • for canonicity
21 CAddUtcSat(z, t); • store result in cache
22 return t;

mdd UtcBfs(mdd Ts)

1 mdd z←Ts, s←0, zp ← 0;
2 repeat • global fixpoint iteration
3 zp ← z;
4 z←Or(zp,ComRP(zp,Ts)); • 26b
5 until z = zp; return z;

Fig. 2. The ComRP operator, the UtcBfs, and the UtcSat algorithms.

utilization of locality (transitions in Tk only affecting ik of Mk and β) through
a series of light-weight recursions. Our saturation algorithm UtcSat chooses a
different iteration strategy to approach the fixpoint with exhaustive utilization
of locality. Thus, instead of taking Ts as one MDD, UtcSat uses its disjunctive
form as K MDDs and divides the whole procedure into K phases. The kth phase
starts when the lower (k − 1)th phases end at Line 4-6 and extends the fixpoint
using Tk until node p is “saturated” (no more new states can be found) at Line
7-19. If it finds new states during this phase, only these need to be resaturated
by all previous k−1 phases by using ComRP with Line 26s. Saturation works
bottom-up and the result of local fixpoint for the Kth phase converges to the
same global fixpoint as BFS. An operation cache avoids wasteful recomputations
(Procedures CAdd and CHit are used to insert and retrieve computed results).
Newly created nodes are inserted in a unique table (Procedure UniIns) to ensure
MDD canonicity by avoiding duplicates. Our experience shows that the larger K
is, the greater improvement saturation achieves. After building UTC , we obtain
its restriction to stable transitions as Tobs = {(a.i, b.j) ∈ UTC : i, j ∈ Sst, a ∈
Xext, b∈Yext}.
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4 Symbolic NCFSM Verification

Symbolic Livelock Check. An NCFSM does not terminate if it reaches a live-
lock (a cycle of unstable transitions): a(1).i(1)[a(1)/a(2)〉 · · · a(n).i(n)

[a(n)/a(1)〉a(1).i(1).
Since livelock is a fatal design error, we need to guarantee livelock-freeness before
test generation. If an NCFSM contains livelocks, the MDD encoding UTC has
transitions where the “from” global state is the same as the “to” global state, and
the input symbol equals the output symbol and belongs to Zint. Thanks to our
MDD encoding, we can find all reachable states originating a livelock by And-ing
Srch and the “from” global states of the UTC . We not only verify livelock free-
ness, but also generate sequences from sinit to all livelocks, which is similar to
distinguishing sequence generation, discussed in the next section.

Symbolic Strong Connectedness Check. Many traditional FSM-based test
derivation algorithms require the FSM to be strongly connected. While our ap-
proach does not require this property, strong connectedness can be checked in
our framework. An NCFSM is strongly connected iff the initial state sinit is
reachable from every reachable state i ∈ Sst. To check this property, we build
the MDD for T −1, defined by i[a/x〉j∈T ⇔ j[x/a〉i∈T −1, by switching the “from”
and “to” variables. Then, we perform a backward state-space search from sinit

along T −1 and build the set of reachable states S−1
st using BFS or saturation.

The global state space is strongly connected iff Sst = S−1
st ∩Srch. Note that T −1

might be non-deterministic even if T is deterministic, but this does not hinder
the applicability of symbolic state-space exploration.

Symbolic Dead Transition Check. Transition ik [Mk, a/b〉 jk is dead if it does
not contribute to building Mobs. Dead transitions reflect wasteful designs or
useless functions, which should be reported to the designer. As Srch = Sst∪Sunst

is available, dead transitions can be detected symbolically. For each ik [Mk, a/b〉 jk,
we can first check if Sunst contains an unstable state with wk = ik and wb = a; if
it does, ik [Mk, a/b〉 jk is not dead. Otherwise, if a ∈ Xext, we check if Srch contains
a stable state with wk = ik; if it does, ik [Mk, a/b〉 jk is not dead, since a can be
received from the environment in that state. Otherwise, ik [Mk, a/b〉 jk is dead.

5 Symbolic NCFSM Test Derivation

Given specification NCFSM M , we apply the following mutant operators, cor-
responding to possible error classes, to generate a set of first-order mutants U .

– Alter the initial state: create a mutant by changing one of the local states
in the initial state sinit. This generates

∑
1≤k≤K(|Sk| − 1) mutants.

– Alter the output of a local transition: create a mutant by changing
local transition i [Mk, a/b〉 j to i [Mk, a/b′〉 j, for b′ ∈ Yk \ {b}. This generates∑

1≤k≤K |δk|(|Yk|−1) mutants, where |δk| is the number of local transitions
in Mk, thus |δk| = |Xk|·|Sk| if the model is completely specified.

– Alter the destination state of a local transition: create a mutant by
changing local transition i [Mk, a/b〉 j to i [Mk, a/b〉 j′, where j′ ∈ Sk \ {j}. This
generates

∑
1≤k≤K |δk|(|Sk| − 1) mutants.
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evmdd PairRP(evmdd 〈μ,p〉, mdd g1, mdd g2)
1 if g1.v=wb or g2.v=wb then
2 return 〈μ,MDD2EV (g1)〉; • g1 = g2

3 if CHitPairRP(p, g1, g2, 〈λ,r〉) then return〈λ + μ,r〉;
4 node t ← 0;
5 for i, i′∈Vp.v, s.t. p[i].val �=∞∧ g1[i][i

′] �=0 do
6 for j,j′∈Vp.v s.t. g2[j][j

′ ] �=0 ∧ p[i][j].val �=∞ do
7 evmdd 〈η,u〉←PairRP(p[i][j],g1[i][i

′],g2[j][j
′ ]);

8 t[i′][j′] ← Min(t[i′][j′], 〈η,u〉);
9 endfor

10 endfor
11 〈λ,t〉 ← Normalize(t);
12 UniIns(t); • For canonicity
13 CAddPairRP (p, g1, g2, 〈λ,t〉);
14 return 〈λ + μ,t〉;

seq TCGen(evmdd r,
mdd G, evmdd fdis, seq a/x)

1 seq tr ← a/x;
2 while r.val > 0 do
3 for Gb/y ∈ G do
4 if t∈f−1

dis(fdis(r)−1)∧
r=Gb/y(t) then

5 r ← t; • predecessor
6 tr ← b/y · tr;
7 break;
8 endif
9 endfor

10 endwhile
11 return tr

Fig. 3. Algorithms for the PairRP operator and test case generation.

Given a mutant M of specification M (“a” indicates quantities related to the
mutant), we seek a sequence a1/b1,. . ., an/bn that kills this mutant, if not equiv-
alent to M , where each ai/bi pair corresponds to an input symbol and the cor-
responding expected output in M . Let α = a1a2 · · · an−1 and β = b1b2 · · · bn−1,
then λobs(s,α)=β=λobs(s,α) and λobs(δobs(s, α), an) = bn 	= λobs(δobs(s, α), an).

If the state pair set is P = Sst × Sst, define the next-state-pair function G=
{Ga/b :a∈X , b∈Y} and the distinguishable-state-pairs D={Da/b :a∈X , b∈Y}:

Ga/b = {
(
(a.i, b.j), (a.i, b.j)

)
: (a.i, b.j) ∈ Tobs ∧ (a.i, b.j) ∈ Tobs},

Da/b = {(a.i, b.i) : ∃(a.i, b.j) ∈ Tobs ∧ ∃(a.i, b.j) ∈ Tobs ∧ b 	= b},

which can be built through symbolic operations on Sst, Tobs, and Tobs.
Our test derivation algorithm takes in input the set U of mutants, the stable

next-state function Tobs, and pinit = (iinit, iinit). For each mutant M , we first
run the current test suite to check whether an existing test kills M . If not, we
build Tobs and encode the next-state-pair function G and the distinguishable-
state-pairs D. Fig. 3 shows the PairRP operator that is analogous to state-space
exploration except that we explore pairs of states (one from M , one fromM), and
keep track of the distance of each such pair from pinit by using a 2(K+1)-variable
EV+MDD to encode the distance function fdis : P → N ∪ {∞} s.t. fdis(p) =
min{d : p∈Gd(pinit)}. Thus, fdis(p)=∞ iff p has not yet been reached in the
exploration, initialized with fdis(pinit) = 0 and fdis(p) = ∞ for p 	= pinit. We
also define the reverse function f−1

dis(d) = {p : fdis(p)=d}, where d ∈ N.
The algorithm uses a BFS algorithm to generate the distance function for

reachable state pairs until the search reaches a distinguishing state pair perr in
D. perr is used to generate a sequence as a new test case which is added to
the test suite C. Then, the algorithm TCGen in Fig. 3 use f−1

dis(d) to generate
a sequence leading M and M from pinit to perr. This is the same approach
proposed in [5] to generate the shortest path to a target state, except that now
we target a pair of states perr. Starting from p at distance n, there must exist
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a predecessor q, i.e., satisfying p = G(q), at distance n− 1, as Line 4. Thus, we
keep reducing the distance value until reaching pinit, at distance 0. If no such
pair perr is instead reachable, M is equivalent to M , and the algorithm builds
a fixpoint Prch containing all the pairs of states that can be reached from pinit

by providing the same input sequence to both M and M . Finally, the algorithm
eliminates test cases subsumed by other test cases, to form a minimal test suite.

6 Experimental Results

We implemented the proposed framework using our MDD library [17], and re-
port experimental results on an Intel Xeon 2.53GHz workstation with 36GB
RAM running Linux. The main metrics of our comparison are runtime and peak
memory. For BFS and saturation, we compare the cumulative time to compute
the UTC on all mutants (UTC bfs and UTC sat ), and the total runtime and
peak memory (Totbfs and Totsat ) using BFS and saturation respectively. For
each model, we list the number of components (K), of mutants (Tot), of non-
equivalent mutants (NE), of test cases (Num), and the average length of the tests
in the suite (Avg). The total time includes preprocessing, livelock checking, and
test suite generation.

Table 1 presents results for two sets of models. The first set, shown under
“Ideal models”, consists of Mse [8] and Mhs [9]. All components are completely
specified, minimized, strongly connected, and deterministic. The second set con-
tains control systems, communication protocols, and two corresponding incom-
pletely specified models M

′
se and M

′
hs by eliminating some self-loops. Three

control systems include a heating controller system [2] and a train gate con-
troller [1] with two trains, Mtr, or three trains, Mtr3. Three communication

Table 1. Test derivation results (time in seconds or hours, memory in MB or GB)

Model Mutants Test Suite UTC bfs UTC sat Totbfs Tot sat
M K Tot NE Num Avg time time mem time mem time

Ideal models

Mse 3 96 96 27 3.19 0.053 s 0.021 s 3.63 M 0.427 s 3.42 M 0.235 s

Mhs 3 81 81 16 2.81 0.044 s 0.018 s 3.60 M 0.301 s 3.30 M 0.158 s

Not ideal and real models

M
′
se 3 90 90 23 3.30 0.039 s 0.014 s 3.28 M 0.245 s 3.10 M 0.192 s

M
′
hs 3 77 77 13 3.08 0.041 s 0.012 s 3.24 M 0.252 s 3.00 M 0.126 s

Mhcs 4 179 157 12 11.17 0.17 s 0.03 s 7.01 M 1.00 s 6.54 M 0.48 s

Mtr 4 177 150 12 2.5 0.17 s 0.09 s 6.72 M 1.00 s 5.33 M 0.20 s

Mtr3 5 1024 849 43 3.14 4.69 s 3.35 s 69.75 M 9.25 s 50.72 M 7.74 s

ABP 2 96 81 12 3.83 0.005 s 0.004 s 2.90 M 0.49 s 2.90 M 0.32 s

BGP 4 4898 1613 79 5.16 344.26 s 24.1 s 96.48 M 1230.0 s 82.41 M 438.6 s

EGP 3 69066 27883 3501 9.24 11.14 h 5.28 h 6.78 G 21.58 h 4.51 G 14.03 h
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protocols contain the alternating bit protocol (ABP) [16], the border gateway
protocol (BGP) [15], and the exterior gateway protocol (EGP ) [14].

Saturation works better in both time and memory, although only minor im-
provements are observable for some models. For communication protocols, BGP
and EGP are two important TCP/IP exterior routing protocols. BGP is cur-
rently used on the Internet and other larger autonomous systems. For these two
models, we only consider mandatory events. Thus, including the component for
the environment, we encode the model with 5 variables. Saturation is clearly
superior, 14 times faster than BFS when computing the UTC for all mutants.
Similar trends can be observed for EGP with three peers: saturation saves al-
most 8 hours and over 2GB over BFS (there are about 1.2×105 global states,
6.7×105 local transitions, and 1.5×106 global transitions).

The benefit of symbolic encodings can be clearly seen in our results, as the
memory consumption remains stable even if the number of generated mutants
increases by an order of magnitude when growing the number of components.
Also, we observe that the number of generated test cases and the average length
of the test suite are stable even if the number of mutants increases dramatically.
This is important for complex models in practice, as it reduces testing efforts.

7 Conclusion

We presented a new symbolic framework for NCFSM verification and test gen-
eration. We encode an NCFSM with MDDs and use the BFS and saturation
algorithms to generate the unstable transitive closure of transitions. We sym-
bolically check for livelocks, dead transitions, and strong connectedness. Then,
we propose a symbolic mutation-based test generation algorithm. The experi-
mental results demonstrate the effectiveness of this framework. A further ad-
vantage of our symbolic framework is that no constraints are required of IUTs.
Some of those requirements by other test generation methods might not be met
by many real models. Moreover, our framework guarantees a test suite with
minimal-length tests to kill all non-equivalent mutants and it could be extended
to non-deterministic NCFSMs by returning, instead of distinguishing sequences,
pairs consisting of an input string and a set of all correct output strings.
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Abstract. This paper introduces a novel counterexample generation
approach for the verification of discrete-time Markov chains (DTMCs)
with two main advantages: (1) We generate abstract counterexamples
which can be refined in a hierarchical manner. (2) We aim at minimizing
the number of states involved in the counterexamples, and compute a
critical subsystem of the DTMC whose paths form a counterexample.
Experiments show that with our approach we can reduce the size of
counterexamples and the number of computation steps by several orders
of magnitude.

1 Introduction

Discrete-time Markov chains (DTMCs) are a well-known modeling formalism
for probabilistic systems. The probabilistic computation tree logic (PCTL) [6]
is suited to express bounds on the probability mass of all paths satisfying some
properties. Efficient algorithms and tools are available to verify PCTL properties
of DTMCs. Prominent model checkers like Prism [9] and Mrmc [8] offer methods
based on the solution of linear equation systems [6].

If verification reveals that a system does not fulfill a required property, the
ability to provide diagnostic information is crucial for bug fixing. A counterex-
ample carries an explanation why the property is violated. E. g., for Kripke
structures and linear temporal logic (LTL) formulae, a counterexample is a path
that violates the property, which can be generated by LTL model checking as
a by-product without additional overhead. State-of-the-art model checking algo-
rithms for probabilistic systems do not exhibit this feature. After model checking,
current techniques have to apply additional methods to generate probabilistic
counterexamples.

Even for large state spaces, a counterexample consisting of a single path gives
an intuitive explanation why the property is violated. In the probabilistic set-
ting, instead of a single path we need a set of paths whose total probability
mass violates the bound specified by the PCTL formula [5]. It is much harder
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to understand the behavior represented by such a probabilistic counterexample
as it may consist of a large or even infinite number of paths. To ease under-
standing, most approaches aim at finding counterexamples with a small number
of paths having high probabilities. To generate more compact counterexamples,
also the usage of regular expressions [5], the detection of loops [11], and the
abstraction of strongly connected components (SCCs) [4] have been proposed,
as well as diagnostic subgraphs [3], which is most related to our counterexample
representation.

We suggested in [2] a model checking approach based on the hierarchical ab-
straction of SCCs. We abstract each SCC by a small loop-free graph in a recursive
manner by the abstraction of sub-SCCs. The result is an abstract DTMC con-
sisting of a single initial state and absorbing states, and transitions carrying the
total probabilities of reaching target states. In [2] we also gave an idea of how to
use the SCC-based model checking result for counterexample generation. In this
paper we generalize this approach and suggest a novel method which computes
a critical subsystem whose paths induce a counterexample. While other meth-
ods concentrate on minimizing the number of paths, our computation regards
the system structure and aims at reducing the number of involved states and
transitions.

Critical subsystems are computed hierarchically. We refine a critical subsys-
tem by concretizing abstract states and reducing the concretized parts, such that
the reduced subsystem still induces a counterexample. This hierarchical approach
increases the usability of counterexamples for large state spaces. Concretization
of only the user-relevant parts of the abstract critical subsystem allows for an
intuitive approach for error correction.

The computation of critical subsystems is based on finding most probable
paths or path fragments to be contained in the critical subsystem. We propose
two approaches. The global method searches for paths through the entire system.
Our main contribution is the local search which aims at connecting most probable
path fragments. In contrast to most of the other approaches, our method is
complete, i. e., termination is always guaranteed.

Experiments for two well-known case studies show that our approach reduces
the size of counterexamples and the number of computation steps by several
orders of magnitude.

The paper is structured as follows: Section 2 contains some preliminaries.
We recall our model checking algorithm in Section 3. Section 4 describes our
counterexample generation method, for which we give some experimental results
in Section 5. A more detailed version of this paper, including examples and
illustrations, can be found in [1].

2 Preliminaries

Definition 1. Assume a set AP of atomic propositions. A discrete-time Markov
chain (DTMC) is a tuple M = (S, I, P, L) with a non-empty finite state set S,
an initial discrete probability distribution I : S → [0, 1] with

∑
s∈S I(s) = 1, a
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transition probability matrix P : S × S → [0, 1] with
∑

s′∈S P (s, s′) = 1 for all
s ∈ S, and a labeling function L : S → 2AP .

To reduce notation, we refer to the components of a DTMC Mu
l by Su

l , Iu
l , Pu

l ,
and Lu

l . E.g., we use S′ to denote the state set of the DTMC M ′. Assume in the
following a set AP of atomic propositions and a DTMC M = (S, I, P, L).

We say that there is a transition from a state s ∈ S to a state s′ ∈ S iff
P (s, s′) > 0. A path of M is a finite or infinite sequence π = s0s1 . . . of states
si ∈ S such that P (si, si+1) > 0 for all i. We say that the transitions (si, si+1) are
contained in the path π, written (si, si+1) ∈ π. We write PathsM

inf for the set of
all infinite paths of M , and PathsM

inf (s) for those starting in s ∈ S. Analogously,
PathsM

fin is the set of all finite paths of M , PathsM
fin(s) of those starting in s, and

PathsM
fin(s, t) of those starting in s and ending in t. A state t is called reachable

from another state s iff PathsM
fin(s, t) 	= ∅.

A state set S′ ⊆ S is called absorbing in M iff there is a state in S′ from which
no state outside S′ is reachable in M . We call S′ bottom in M if this holds for
all states in S′. States s ∈ S with P (s, s) = 1 are also called absorbing states.

We call M loop-free, if all of its loops are self-loops on absorbing states. A set
S′ ⊆ S is strongly connected in M iff for all s, t ∈ S′ there is a path from s to
t visiting states from S′ only. A strongly connected component (SCC) of M is a
maximal strongly connected subset of S.

The probability measure for finite paths π ∈ PathsM
fin is defined by PrM

fin(π) =∏
(si,si+1)∈π P (si, si+1). For a set R ⊆ PathsM

fin of paths we have PrM
fin(R) =∑

π∈R′ PrM
fin(π) with R′ = {π ∈ R | ∀π′ ∈ R. π′ is no prefix of π}.

The syntax of probabilistic computation tree logic (PCTL) [6] is given by1

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | P∼λ(ϕ U ϕ)

for (state) formulae with p ∈ AP , λ ∈ [0, 1] ⊆ R, and ∼ ∈ {<, ≤, ≥, >}. We
define ♦ and � in the usual way.

For a property P≤λ (ϕ1 U ϕ2) refuted by M , a counterexample is a set C ⊆
PathsM

fin , PrM
fin(C) > λ of finite paths starting in an initial state and satisfying

ϕ1 U ϕ2. For P<λ (ϕ1 U ϕ2), the probability mass has to be at least λ. We consider
upper probability bounds; see [5] for the reduction of lower bounds to this case.

Model checking of PCTL properties can be reduced to checking properties of
the form P∼λ(♦ϕ). The ϕ-states are also called target states. We concentrate on
this case and assume DTMCs to have single initial and target states. Note that
each DTMC can be equivalently transformed to satisfy these requirements.

3 SCC-Based Model Checking

Next we recall our model checking algorithm from [2]. Given a DTMC M , we
are interested in the total probability of reaching its target state from its initial
1 In this paper we only consider unbounded properties.
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state. Each non-bottom SCC S′ of M induces a DTMC Mind : those states of
the SCC through which paths may enter it are the initial states of Mind ; we
call them input states. Those states outside the SCC to which paths may exit,
the so-called output states, are absorbing states in Mind . The remaining graph
of Mind is defined by the SCC’s structure. We use InpM (S′) = {t ∈ S′ | I(t) >
0∨∃s ∈ S\S′. P (s, t) > 0} and OutM (S′) = {t ∈ S\S′ | ∃s ∈ S′. P (s, t) > 0} for
the set of input respectively output states, and call states from S′ inner states.
Let in the following M = (S, I, P, L) be a DTMC and S′ ⊆ S a not absorbing
state set in M .

Definition 2. The DTMC induced by S′ in M , written DTMC (S′,M), is
Mind = (Sind , Iind , Pind , Lind ) with

1. Sind = S′ ∪OutM (S′),
2. ∀s ∈ Sind .

(
Iind (s) > 0 ↔ s ∈ InpM (S′)

)
,

3. Pind (s, t) =

⎧⎪⎨⎪⎩
P (s, t) for s ∈ S′ and t ∈ Sind ,

1 for s = t ∈ OutM (S′),
0 else.

4. ∀s ∈ Sind . Lind (s) = L(s).

We use the notation Inp(Mind ) = {s ∈ Sind | Iind (s) > 0} and Out(Mind ) =
{s ∈ Sind | Pind (s, s) = 1}.

The model checking procedure replaces inside M the subgraph Mind by a smaller
subgraph Mabs with the input and output states as state set and transitions
from each input state s to each output state t carrying the total probability
mass PrMind

(
PathsMind

fin (s, t)
)
.

Definition 3. Let DTMC (S′,M) = Mind = (Sind , Iind , Pind , Lind ) and

ps,t = PrMind

fin

(
{ss1 . . . snt ∈ PathsMind

fin | ∀1 ≤ i ≤ n. si 	= s ∧ si 	= t}
)

for all s ∈ Inp(Mind ) and t ∈ Out(Mind ). We define the abstraction of Mind ,
written Abs(Mind ), to be the DTMC Mabs = (Sabs , Iabs , Pabs , Labs) with

1. Sabs = Inp(Mind ) ∪Out(Mind ),
2. Iabs(s) = Iind (s) for all s ∈ Sabs ,

3. Pabs(s, t)=

⎧⎪⎨⎪⎩
ps,t/

(∑
t′∈Out(Mind ) ps,t′

)
for s ∈ Inp(Mind ), t ∈ Out(Mind ),

1 for s = t ∈ Out(Mind ),
0 else.

4. Labs(s) = Lind (s) for all s ∈ Sabs .

Next we formalize the abstraction and the concretization of an SCC.

Definition 4. Let DTMC (S′,M) = M1 = (S1, I1, P1, L1), and M2 = (S2, I2,
P2, L2) a DTMC satisfying S2 ∩ (S\S1) = ∅ such that either M2 = Abs(M1) or
M1 = Abs(M2). Then the result of the substitution of M1 by M2 in M , written
M [M2/M1], is the DTMC Msub = (Ssub, Isub, Psub, Lsub) with
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Algorithm 1.

Model check(DTMC M = (S, I, P, L), PCTL-formula P∼λ (♦ p))
begin

(M,Sub) := Abstract SCC(M, ∅); (1)

result :=
(∑

s∈Inp(M)

∑
t∈Out(M) (I(s) · P (s, t)) ∼ λ

)
; (2)

return (result, M,Sub) (3)
end

Abstract SCC(DTMC M = (S, I, P, L), Abstractions Sub)
begin

for all non-bottom SCCs K in DTMC (S\Inp(M), M) do (4)
MK := DTMC (K, M); (Mabs

K , Sub) := Abstract SCC(MK , Sub); (5)
M := M [Mabs

K /MK ] (6)
end for (7)
Mabs := Abs(M); Sub := Sub ∪

{
(M, Mabs)

}
; (8)

return (Mabs,Sub) (9)
end

1. Ssub = (S\S1) ∪ S2,
2. Isub(s) = I(s) for s ∈ Ssub and 0 otherwise,
3. Psub(s, t) = P2(s, t) for s ∈

(
S2\Out(M2)

)
and t ∈ S2, and P (s, t) otherwise,

4. Lsub(s) = L2(s) for s ∈ S2 and L(s) otherwise.

The replacement of an SCC by its abstraction and vice versa does not affect the
total probabilities of reaching a target state from an initial state in M [1].

To compute the abstraction Mabs of an induced DTMC Mind , we determine
the probabilities ps,t recursively as follows. We detect all non-bottom SCCs in
Mind that do not contain any input states of Mind , and replace them by their
abstractions recursively. The result is a DTMC M ′

ind which is loop-free in case
Mind has a single input state (multiple input states need a special treatment,
see [2]), such that the probabilities ps,t can be computed easily.

The model checking algorithm is shown in Algorithm 1. We use a global
variable Sub to store the pairs of abstracted DTMCs and their abstractions for
the concretization during counterexample generation.2

4 Counterexample Generation

Our computation is based on the detection of single paths, which we use to
determine a subgraph (closure) of the original system. We call the closure a
critical subsystem if its paths form a counterexample for the violated property.

The closure is computed according to a selection m ⊆ S×S. We use extendM :
(2S×S × PathsM

fin) → 2S×S defined by extend(m,π) =
{
(s, s′) ∈ S × S

∣∣ (s, s′) ∈
m ∨ (s, s′) ∈ π

}
to extend a selection m with the transitions of a path π.

2 Instead of copying, the implementation uses different markings to specify sub-graphs.



448 N. Jansen et al.

Algorithm 2.

SearchAbstractCex(DTMC M , PCTL-formula P∼λ (♦ p))
begin

(result, Mce,Sub) := ModelCheck(M , P∼λ (♦ p)); (10)
if result = true then return ⊥ (11)
else (12)

mmax :=
{
(s0, t)

}
; (13)

while true do (14)
mmin := mmax; (15)
(ready, Mce, mmin, mmax) := Concretize(Mce, mmin, mmax,Sub); (16)
if (ready = true) then return closureMce(mmax) (17)
else mmax := CriticalSubsystem

(
Mce, mmin, mmax, P∼λ(♦ p)

)
; (18)

end if (19)
end while (20)

end if (21)
end

Definition 5 (Closure). For a DTMC M = (S, I, P, L), target state t, and
a selection m ⊆ S × S, the closure closureM (m) = (Scl, Icl, Pcl, Lcl) of m in
M is given by Scl = S � {s⊥}, Icl(s) = I(s), Lcl(s) = L(s) for s ∈ S and
Icl(s⊥) = 0, Lcl(s⊥) = ∅ and

Pcl(s, s′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P (s, s′) for (s, s′) ∈ m,

1 −
∑

(s,s′′)∈m P (s, s′′) for s ∈ S\{t} and s′ = s⊥,

1 for s = s′ = t or s = s′ = s⊥,

0 otherwise.

Given a PCTL property ϕ, we call a DTMC M ′ a critical subsystem of M for
ϕ if M ′ = closureM (m) for some selection m and M ′ violates ϕ.

4.1 The Basic Hierarchical Algorithm

We compute counterexamples in a hierarchical manner (see Algorithm 2): Intu-
itively, at first we compute a critical subsystem for the resulting abstract DTMC
of the model checking procedure. Then we refine the DTMC stepwise hand in
hand with its critical subsystem. For each refinement step, the abstract and the
refined critical subsystems differ only in states and transitions affected by the
refinement step.

The initial critical subsystem is given by the closure closureMce(mmax) where
the selection mmax contains the only transition from the initial state s0 to the
target state t of Mce (line 13). Note that this initial subsystem represents all
paths of M from its initial to its target state.

The Concretize method (Algorithm 3) concretizes some heuristically deter-
mined abstract states in Mce. Thereby we remove all transitions from mmax

that were removed by the concretization and add all transitions added by the
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Algorithm 3.

Concretize(DTMC Mce, Selection mmin, Selection mmax, Abstractions Sub)
begin

first = true; (22)
while true do (23)

sa := ChooseAbstractState(closureMce(mmax)); (24)
if (sa = ⊥) then return (first, Mce, mmin, mmax) (25)
else (26)

first := false; (27)
Let (Mabs , Mcon ) ∈ Sub s. t. sa ∈ Inp(Mabs); (28)
Trabs :=

{
(s, s′) ∈ Sabs×Sabs

∣∣ s /∈ Out(Mabs) ∧ Pabs(s, s
′) > 0

}
; (29)

Trcon :=
{
(s, s′) ∈ Scon×Scon

∣∣ s /∈ Out(Mcon) ∧ Pcon(s, s′) > 0
}
; (30)

mmin := mmin\Trabs ; mmax :=
(
mmax\Trabs

)
∪ Trcon ; (31)

Mce := Mce[Mcon/Mabs ]; (32)
end if (33)

end while (34)
end

Algorithm 4. Global Search

CriticalSubsystem(DTMC Mce, Selection mmin, Selection mmax, Formula P∼λ (♦ p))
begin

k := 0; Mmax := closureMce(mmax); (35)
Let s0 be the initial and t the target state of Mmax; (36)
repeat (37)

k := k + 1; π := FindNextPath(s0, t, Mmax, k); mmin := extend(mmin, π); (38)
until ModelCheck(closureMce(mmin), P∼λ (♦ p)) reports violation; (39)
return mmin; (40)

end

concretization (line 31). If the closure of mmax in Mce represents a counterex-
ample, then also the closure of the updated selection mmax in the concretization
of Mce represents a counterexample with the same probability. However, this
counterexample may be unnecessarily large. CriticalSubsystem searches for a
smaller selection included in mmax that still contains all transitions that were
not affected by the concretization.

4.2 Search Algorithms

Global Search. An implementation for CriticalSubsystem, which we call the
global search algorithm, is proposed in Algorithm 4. Similarly to [5], we search
for most probable paths from the initial state to the target state in the subsystem
Mmax = closureMce(mmax) (line 35). After a next most probable path has been
found (line 38), the algorithm extends mmin with the found path (line 38). This
procedure is repeated until the closure of mmin is large enough to represent a
counterexample (line 39).
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Algorithm 5. Local Search

CriticalSubsystem(DTMC Mce, Selection mmin, Selection mmax,
PCTL-formula P∼λ (♦ p))

begin
Mcl := closureMce(mmin); (41)
while ModelCheck(Mcl, P∼λ (♦ p)) reports satisfaction do (42)

Msearch := closureMce(mmax\mmin); (43)
Π :=

{
π′ ∈ PathsMsearch

fin (s, t)
∣∣ s ∈ Inp(Msearch ) ∧ t ∈ Out(Msearch )

}
; (44)

π := arg maxπ∈Π Prfin (π); (45)
mmin := extend(mmin, π); Mcl := closureMce(mmin); (46)

end while (47)
return mmin (48)

end

Local Search. The global search is complete, but it may find most proba-
ble paths which do not extend the minimal selection mmin. This can be time-
consuming, e. g., when many different traversals of loops are considered.

Our second implementation for CriticalSubsystem (Algorithm 5), which we
call the local search, overcomes this problem and finds only paths that extend the
minimal selection and increase the target reachability probability of its closure.
Instead of searching for paths from the initial to the target state, it aims at
finding most probable path fragments that connect fragments of already found
paths to new paths. The path fragments should, as the paths for the global
search, lie in the closure of mmax. But this time they should (1) start at states
reachable from an initial state via transitions of mmin, (2) end in states from
which the target state is reachable via transitions from mmin, and (3) contain
transitions from mmax\mmin only. I. e., we only search for path fragments in the
subgraphs inserted by the last concretization step, which connect path fragments
in the closure of mmin to whole paths from the initial to the target state.

5 Experimental Results

We developed a C++ implementation with exact arithmetic for both search al-
gorithms, and used it to run experiments on a 2.4 GHz dual core CPU with
4 GB RAM. We used Prism [9] to generate models for different instances
of the parametrized synchronous leader election protocol [?] and the crowds
protocol [10].

The global and the local search work on hierarchical data types. However, they
can also directly be applied to concrete models. We consider this non-hierarchical
approach to obtain a fair comparison to [5]. Table 1 compares the global method
with the k-shortest path search for the leader election protocol, where the prob-
ability of reaching a target state is always 1. Table 2 depicts results for the
crowds benchmark additionally containing the local search. The global search
finds paths in the same order as k-sp, but due to the closure computation ear-
lier termination, a significantly smaller number of needed paths, and therefore
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Table 1. Results for the leader benchmark on concrete models (TO > 1h)

states 3902 12302

transitions 5197 16397

prob. threshold 0.92 0.93 0.95 0.95 0.96 0.97

k-sp # paths 1193 8043 41636 3892 53728 -TO-

# states 3593 3903 3903 11690 12302 12302

global # paths 1193 1301 1850 3892 4360 5870

# states 3593 3634 3676 11690 11815 11941

prob. 0.9205 0.9302 0.9501 0.9502 0.9600 0.9700

Table 2. Results for the crowds benchmark on concrete models (TO > 1h)

states 396 3515 18817

transitions 576 6035 32677

total prob. 0.1891 0.2346 0.4270

prob. threshold 0.12 0.15 0.1 0.12 0.15 0.21 0.23 0.2 0.25

k-sp # paths 1301 26184 3974 26981 488644 -TO- -TO- -TO- -TO-
# states 133 133 671 831 1071 -TO- -TO- -TO- -TO-

global # paths 38 76 91 220 935 3478 151639 3007 56657
# closures 24 29 58 73 181 364 623 302 767
# states 89 93 143 169 631 671 1071 663 2047
prob. 0.1339 0.1514 0.1014 0.1203 0.1501 0.2101 0.2300 0.2002 0.2500

local # paths 26 32 60 68 98 326 665 202 798
# states 55 67 99 104 171 670 900 326 1439
prob. 0.1238 0.1509 0.1018 0.1211 0.1525 0.2101 0.2300 0.2001 0.2508

a smaller number of computation steps are achieved. For probability thresholds
near the total probability, the number of paths for k-sp is several orders of mag-
nitude larger. The number of considered states can also be reduced significantly.
The local search not only leads to smaller critical subsystems in most cases, but
also needs a much smaller number of found path fragments in comparison to the
global search. The probability mass for all types of counterexamples is always
very close to the specified probability threshold. Note that for our methods we
model check only extended subsystems, while for the local search actually every
new path extends the system.

The search for hierarchical counterexamples is motivated by their usefulness
and understandability. The results in Table 3 show that the hierarchical search
leads to critical subsystems of comparable size (the third last column is the
hierarchical version of the global search in the second last column of Table 2).
The number of found paths is much larger in the hierarchical approach, because
we have to search at each abstraction level. However, due to abstraction, the
found paths are shorter, especially for the local search, and the concretization
up to the concrete level seems not necessary for many cases. We did experiments
using different heuristics for the number of abstract states that are concretized
in one step (e. g., either a single one or

√
n with n the number of abstract
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Table 3. Results for a crowds instance (18817 states, 32677 transitions, 0.2 probability
threshold) on the hierarchical model

search type global local

# abstract states to concretize in one step
√

single
√

single

heuristic to choose the next abstract state prob none prob none prob prob

# paths 13525 912455 38379 594881 496 545

# closures 728 730 728 729 496 545

# states 457 457 458 457 319 347

# refinements 13 10 37 37 9 28

states). We also tried two different heuristics for the choice of the next abstract
state, either being just the next one found (“none”), or the one whose outgoing
transitions have the maximal average probability (“prob”).
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Abstract. Symbolic execution is a successful technique used in software
verification and testing. A key limitation of symbolic execution is in deal-
ing with code containing loops. We introduce a technique which, given
a start location above some loops and a target location anywhere below
these loops, returns a feasible path between these two locations, if such a
path exists. The technique infers a collection of constraint systems from
the program and uses them to steer the symbolic execution towards the
target. On reaching a loop it iteratively solves the appropriate constraint
system to find out which path through this loop to take, or, alternatively,
whether to continue below the loop. To construct the constraint systems
we express the values of variables modified in a loop as functions of the
number of times a given path through the loop was executed.

1 Introduction

Symbolic execution quickly reaches its limits when confronted with loops. As
loops are widely used this is a significant problem. A typical situation is that
reaching a particular location below a loop depends on the number of times this
loop was iterated. Even worse, reaching that location may depend not only on
the number of iterations, but also on what particular paths through the loop were
chosen, and the order in which they were taken. Since in symbolic execution any
iteration of a loop creates a new branch in the tree of symbolic executions, the
size of the tree can become very large with even a single loop. Without deriving
any information about the loop symbolic execution is forced to systematically
explore all branches of this tree, running out of time even on small programs.

We aim to solve the following problem: Given a start location above a piece of
code containing complicated loops, including loop sequences and loop nesting,
and a target location anywhere in the code below, the goal is to find some feasible
path between the start and target location, if such a path exists.

The idea behind our algorithm is relatively simple. On reaching a loop during
symbolic execution we enquire an oracle which paths through this loop, and in
which order, we should execute in order to reach the target location. Following
the oracle’s advice we get to our target, building path condition along the way.
Only in our approach the oracle is replaced by a constraint system, which is less
powerful. For each iteration it may suggest the next path to take, or to finish
iterating this loop.

T. Bultan and P.-A. Hsiung (Eds.): ATVA 2011, LNCS 6996, pp. 453–462, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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To build the constraint system we express the values of variables modified
in a loop as functions of the number of times a given path through the loop
was executed. This concept extends the simple one of counting loop iterations.
Moreover, multiple counters for each path through the loop may be needed
to correctly handle loop nesting. The expressed values are then ’merged’ over
all paths through a given loop. Constraint system is then created by taking
branching conditions and replacing all variables with the corresponding functions
of loop counters.

We suggest that our algorithm is most useful when integrated into existing
tools based on symbolic execution. It would work as a specific search strategy,
activated when a global search strategy needs to navigate to a specific program
location below some complicated loop structure.

To evaluate our approach, we have built an experimental implementation of
our technique – a tool called CBA. We tested CBA on nine benchmarks we
designed to capture those loop structures which often appear in practice. We
also compare the performance of CBA to successful symbolic execution tools
Pex [16] and KLEE [3] and show that, on our set of benchmarks, CBA is
several orders of magnitude faster than either of these tools.

Due to space restrictions many details have been left out. Interested reader is
encouraged to read the full version [13].

2 Overview

Let us consider a program in Figure 1 (a). The goal is to find a feasible path
to the assert statement on line 9 among the roughly 230 possible execution
paths. It took the symbolic execution tool Pex 99 seconds to find such a path.
The problem here is that the condition on line 8 refers to the values of a and b,
which depend on the input (the arrays A and B) only indirectly. Moreover when
we substituted the predicate a>12 on line 8 with a>17 (thus line 9 becomes
unreachable), Pex was not able to finish within 5 hours. Our technique works
in three distinct phases:

1 int a=0, b=0;
2 for ( int i =0; i <15; ++i )
3 i f (A[ i ]==1)
4 ++a ;
5 for ( int j =0; j <15; ++j )
6 i f (B[ j ]==2)
7 ++b ;
8 i f ( a>12 && a+b==23)
9 a s s e r t ( 0 ) ;

c0

a=0

b=0

i=0

i>=15 : {c1, c2}
j=0

j>=15 : {c3, c4}
a>12

a+b==23

c1

i<15

A[i]==1

++a

++i

c3

j<15

B[j]==2

++b

++j

c2

i<15

A[i]!=1

++i

c4

j<15

B[j]!=2

++j

(a) (b)

Fig. 1. Example used throughout Section 2. (a) C program containing loops. (b) Its
chain program form.
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Phase 1: Conversion to chain normal form. To better facilitate reasoning about
loops we represent the program using linear code fragments called chains. The
decomposition of our program to chains (what we call chain program form later
in the text) is shown in Figure 1 (b). Chain c0 is the topmost chain (called
root chain later in the paper), corresponding to a path through the code where
we replace the outermost loops by constructs of the form ϕ : {c1, c2, . . .}
with the following meaning: at this point chains c1, c2, . . . may be executed any
number of times and in any order, but the condition ϕ must hold after we finish
executing them. Note that the condition on line 8 was replaced by a pair of
assertions.

As to the other chains, chain c1 represents the path through the loop on lines
2-4 which goes through the positive branch of the if statement and c2 the only
other path through this loop. The same holds for the chains c3 and c4 and the
loop at lines 5-7. One can easily see that there is a natural correspondence
between the program (Figure 1 (a)) and its linear representation (Figure 1 (b)).

The task of finding some feasible path to the assert statement now depends
on finding a proper interleaving of chains c1 and c2 for the first loop, and c3 and
c4 for the second one.

c1 c2

i(κ1) = κ1 + αi i(κ2) = κ2 + αi

a(κ1) = κ1 + αa a(κ2) = αa

{c1, c2}
i(κ1, κ2) = κ1 + κ2 + αi

a(κ1) = κ1 + αa

c3 c4

j(κ3) = κ3 + αj j(κ4) = κ4 + αj

b(κ3) = κ3 + αb b(κ4) = αb

{c3, c4}
j(κ3, κ4) = κ3 + κ4 + αj

b(κ3) = κ3 + αb

(1) κ1 + κ2 ≥ 15
(2) κ1 + κ2 − 1 < 15 if κ1 + κ2 > 0
(3) κ3 + κ4 ≥ 15

(4) κ3 + κ4 − 1 < 15 if κ3 + κ4 > 0
(5) κ1 > 12
(6) κ1 + κ3 = 23 κ1, κ2, κ3, κ4 ∈ N

Fig. 2. Top: Recurrent variables expressed as functions of counters, including the
functions after merging. Bottom: Constraint system S(c0) of the root chain c0.

Phase 2: Building a constraint system. We start by expressing the values of
variables in each chain (except root chains) as functions of the number of times
this chain was executed – κi. Each chain ci is linked to chain counter κi, which
takes values from N0. The link is given by the bottom index of the counter. We
show how to compute the values of variables on chain c1, using counter κ1. Let
αi and αa be the initial symbolic values of variables i and a, which are not
known to this chain. Then i(κ1) = κ1 +αi and a(κ1) = κ1 +αa are the values of
these variables expressed as functions of κ1. The functions for the other chains
are shown in Figure 2 (top). In terms of the original program we have introduced
a counter for each unique path through each loop.

Now for any given variable i and each path through a given loop there may be
different function expressing the value of i in terms of the relevant counter. In
the second step we try to express the value of i by a single function of multiple
counters. This abstracts from any concrete interleaving of the subchains, but the
value of the variable is expressed precisely. So in the case of chains c1 and c2
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the value of i can be expressed as i(κ1, κ2) = κ1 + κ2 + αi. The results for our
example are presented in Figure 2 under the headings {c1, c2} and {c3, c4}.

We can now build a constraint system for the topmost chain c0. The con-
straints are obtained by processing all its assertions. There are four assertions
in the chain c0: i>=15, j>=15, a>12, and a+b==23. We replace the variables by
their previously computed values (i.e. functions of counters), arriving the con-
straint system S(c0) depicted at Figure 2 (bottom). The constraints (1), and
(2) came from the assertion i>=15, (3), and (4) from the assertion j>=15, (5)
from a>12, and finally (6) from a+b==23. The constraint (1) was computed as
follows. First we substitute variables in the assertion by their values, obtaining
i(κ1, κ2) = κ1 +κ2 +αi ≥ 15. αi represents the value of i on reaching the i>=15
: {c1,c2} instruction. Here αi = 0, giving us the constraint (1), which speaks
about the values of κ1 and κ2 just after the associated loop was executed for
the last time. However, this also means that for all previous executions, where
the values are κ′1 ≤ κ1 and κ′2 ≤ κ2 such that κ′1 + κ′2 < κ1 + κ2, the negated
condition i(κ′1, κ′2) < 15 must hold – i.e. there is an additional constraint for
each such choice of κ′1 and κ′2. This can be rephrased as κ1 + κ2 − a < 15 for
a ∈ {1, 2, . . . , κ1 + κ2 − 1}. Our experimentation shows that it is sufficient to
take only a single constraint for a = 1, giving us the constraint (2). Constraints
(3), (5) and (6) are derived similarly to (1) and constraint (4) in the same way
as (2). Note that we do not construct constraint systems for chains c1, c2, c3, c4
since they do not contain any subchains.

The point of the constructed constraint system S(c0) is that only those execu-
tions which reach the assert statement satisfy S(c0). Which in turn means that
solving our constraint system will limit the space of paths we need to consider.

Phase 3: Navigating the symbolic execution. With the chains, counters and con-
straint systems in place we may proceed with the final stage of the algorithm –
finding some feasible path to line 9. We do this by employing slightly modified
symbolic execution. We initialize all counters to 0 and proceed down the chain
c0 in a standard way until we reach the line 4: i>=15: {c1,c2} (i.e. the entry
point of the first loop). There are two subchains c1 and c2 for this loop, linked
to counters κ1 and κ2. Now we iteratively do the following:

– Check whether we can improve current solution of the system by increment-
ing κ1 or κ2. If we cannot, we stop iterating and continue down the chain
c0.

– Otherwise we call a decision procedure to tell us which counter to increment.
This procedure will be described in more detail in Section 3.

– Lets assume κ1 was chosen. In that case we symbolically execute the chain
linked to κ1, i.e. c1. We also increment the counter κ1.

Having solved the loop related to chains c1 and c2 we proceed with the execution,
handling the loop related to chains c3 and c4 in the same way. Once we arrive
at the end of c0 we return the current path condition, which identifies a feasible
path.
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3 The Algorithm

Phase 1: Programs as Chains. We describe how to convert a program to
chain program form. It may be helpful for the reader to follow the example in
Fig. 1. We understand a program P to be expressed as a control flow graph. We
write u → v (u →∗ v) if there is an edge (path) from u to v. We assume that
there is a single start and a single terminal vertex (s0 and t0), and that P is in
the static single assignment (SSA) form.

We define the chain program form C(P) of P to be the set of all chains in P . A
chain in P is a path in P which is of one of the two specific types: Root chain is a
simple path (no vertex appear twice) s0 →∗ t0. Subchain is a simple path v′ →∗ v
such that it is a suffix of some path π : s0 →∗ v → v′ →∗ v in P where v is the only
vertex which appears twice in π. (If there are two different paths s0 →∗ v, then the
same path v′ →∗ v is treated as two different subchains.) In the rest of the paper
we treat chains as linear sequences of vertices, and call their vertices nodes. In our
example c0 is the root chain, and c1 . . . c4 are the subchains.

In chains there are three types of nodes – assume nodes, transform nodes and
loop nodes. Assume nodes, e.g. a>12 in c0, correspond to branching conditions.
Transform nodes, e.g. j=0 in c0, correspond to assignment statements which
change the programs state. Finally loop nodes, e.g. i>=15 : {c1, c2} in c0, are
those nodes, from which there is at least one edge in P to the first vertex of
some subchain. We call such a subchain a chain associated to this node (c1 and
c2 in this case). Note that each subchain corresponds to a unique path through
a loop. In the following two phases of the algorithm we assume that there is
only one root chain. If there are multiple root chains, we run the remaining two
phases of the algorithm separately for each root chain. and the results are then
combined in an obvious way.

Let C(P ) be the chain program form associated to a program P . Then an
execution path in C(P ) is a sequence of nodes, which is created as follows: we
take some root chain and take the nodes one by one. On reaching a loop node,
we may either continue with the next node in the chain, or choose one of the
subchains associated with this loop node. In that case we take this subchain and
proceed recursively. On reaching the end in the subchain we go “one level up”
to the associated loop node in the parent chain and repeat our choice to either
take the next node of the parent chain or choose another associated subchain.
We finish once we reach the terminal node for the root chain.

Theorem 1. The algorithm described above converts each program P to chain
normal form C(P ) such that for each path in P there is a corresponding execution
path in C(P ) and vice versa. (By correspondence we mean that the sequences of
instructions along these two paths are the same). Moreover if P is in SSA form,
then so is each chain of C(P ).

Phase 2: Building the Constraint Systems. Here we show how to build the
constraint system S(c) for each chain c. An important idea behind the construc-
tion is to express the values of variables used in loops as functions of counters
for the subchains.
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We proceed using modified symbolic execution. The modification is twofold:
First, it works on chains, not programs. Second, the domain of symbolic values
is extended to contain counters (and expressions using counters) and a special
value � with the intended meaning “do not know”. (Any expression containing
� evaluates to �.)

At the beginning each variable i has a symbolic value αi and the constraint
system S(c) is empty. Next we symbolically execute the chain: Handling of the
transform nodes is clear. Assume nodes are treated as sources of constraints for
S(c). Each assertion is first instantiated with the current values of variables,
and then inserted to the constraint system only if it references some counter.
On reaching a loop node n we first recursively build the constraint systems
for all subchains associated to this node, obtaining symbolic values of variables
(which can now depend on counters of some (possibly nested) subchains). For
each variable we then merge the symbolic values obtained in the subchains (see
the section Merging values ... below). The current symbolic state of c is then
updated with the merged values. At this point we also detect the variables for
which this chain is the reset chain (see the section Expressing values ... below).
Since each loop node has an associated branching condition, we finish processing
this condition as we would for the assume node. Finally, when we reach the end
of the chain, we express the values of variables as functions of loop counters (and
return these values). S(c) now contains the complete constraint system for the
chain c.

Expressing values using counters. The goal is for each variable to compute a
function expressing its value in terms of counters. We focus on so called recurrent
variables, which are the variables whose value 1) changes on the execution path
corresponding to c and 2) their value is function of their initial value before
executing c. An example of a recurrent variable is the variable i in the chain c1,
for which we get i = αi + 1. To detect recurrent variables for a given chain c we
simply analyze symbolic state resulting from symbolic execution of this chain.

For each recurrent variable we express its value in terms of how many times
the chain c was executed – using the counter κc associated with the chain c. In
our example, i(κ1) = αi + κ1. We use a custom difference equation solver and
only handle those recurrences which correspond to arithmetic (e.g. i = αi + 7)
and geometric (e.g. i = 3 · αi) progressions. In case we are not able to solve a
recurrence, we use the “do not know” value �.

An important point to make is that the initial value for i, αi, can be set by
some chain r, of which the current chain c is a subchain. Therefore the value
of i does not depend only on the number of times c was executed, but, more
specifically, on the number of times c was executed since last execution of r.
Therefore the value of i in fact depends on a counter κr

c parametrized by two
chains: the update chain c and the reset chain r – i.e. i(κr

c) = αi + 2 · κr
c . This

counter is incremented each time the chain c is executed, and set to zero each
time the chain r executed. If there is no reset chain for a given variable, we use
the plain counter κc, where c is the update chain and the root chain is used as
the reset chain. Note that all counters used in our example in Figure 1 are of
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this type. The following statement is true for chain program forms, and follows
from the fact all chains are in the SSA form:

Lemma 1. Let v be a recurrent variable whose update chain is c. Then v is not
reset in any subchain of c and there exists at most one superchain of c where v

is reset.

Merging values from subchains. We explain the merging process on the case of
two subchains. The extension to multiple subchains is straightforward. Let us
assume that a chain c has two subchains e, d with the associated counters being
κe and κd (as the reset chains are not important here, we omit the upper indices)
and there is a variable i value of which is expressed as i = i1(κe) in the first chain
and i = i2(κd) in the second. We would like to “merge” the values of i – i.e. to
find a function i(·, ·) such that i = i(κe, κd). Let αi be the symbolic value of i on
entering the subchains. There are some simple cases: e.g. if i1(κe) = i2(κd) = v
for some constant v, then obviously also i(κe, κd) = v. Similarly if i1(κe) =
i2(κd) = αi. On the other hand if i1(κe) = v1 	= v2 = i2(κd) then there is no
such function i(κe, κd). In that case we put i(κe, κd) = �. The most interesting
case is when both i1(κe) and i2(κd) depend on αi – e.g. i1(κe) = v1 · κe + αi

and i2(κd) = v2 · κd + αi. This means that the value of i is updated in both
subchains. In this case we can easily derive that i(κe, κd) = v1 ·κe + v2 ·κd +αi.
In all other cases we put i(κe, κd) = �.

Phase 3: Constraints-Driven Symbolic Execution. The last stage of our
algorithm is to navigate (modified) symbolic execution in order to find a feasible
path from s0 to t0. We modify the standard symbolic execution in order to run
on the chain program form. To do so, we first extend the symbolic state by extra
variables representing the values of counters. Second, on entering a chain, we
instantiate all symbols αv in the constraint system associated with the chain by
their actual symbolic values.

The symbolic execution starts by setting all counters for which the current chain
is the reset chain to zero and then proceeds on the root chain as normal until it
reaches a loop node i. Let c be the currently executed chain, A its (instantiated)
constraint system, i the processed loop node, andD be the subset of the set of sub-
chains associated to i (containing those subchainswhichhave not beenyet explored
during backtracking). If A has no solution, we immediately stop symbolic execu-
tion. Otherwise, if the current values of counters already form a solution of A, we
continue executing c, as there is no reason to execute any of the subchains is D.
Otherwise we need to choose a chain d ∈ D which, hopefully, brings us closer to
a solution of A. If there is such d, we continue with the symbolic execution of d.
Finally if there is no such d, then we also continue executing c, hoping that we can
closer to a solution of A at some loop node below.

Now we describe what we mean by “getting closer to a solution of A”. Let
w be a vector of current values of all the counters such that w is not a solu-
tion to A. We now ask whether there is a vector v on natural numbers such
that 1) v + w is a solution to A, and 2) there is a counter κ such that d ∈ D
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(or some of its subchains) is the update chain for κ (reset chain for κ) and there
is a positive (negative) number in the corresponding position in v. If yes, then
executing the chain d gets us “closer to a solution of A”.

Finally we have to say what happens when the symbolic execution reaches the
terminal node of a chain c. We first increment all the associated counters κd

c (for all
d). If c is a subchain we continue by (again) executing the associated loop node in
the parent chain, otherwise c is a root chain and we reached the target node.

Theorem 2 (Soundness). If the symbolic execution of C(P ) (as described in
Section 3) terminates with success, then the returned path condition represents a
feasible path from start to target instruction in the original program P . Moreover
if the symbolic execution fails, then there is no feasible path in P to the target
instruction.

Theorem 3 (Incompleteness). There exists a program P with reachable tar-
get instruction for which the symbolic execution of C(P ) never terminates.

4 Experimental Results

To evaluate the effectiveness of our technique we implemented it in our tool
CBA, and tested it on a set of nine benchmarks. We also compared the perfor-
mance of CBA to that of two very successful tools Pex [16] and KLEE [3]. All
the nine benchmarks share some common properties: 1. the code contains loops
(so the benchmarks produce a huge symbolic execution tree), and 2. there is a
unique location to be reached. In the first six benchmarks the goal is to find a
feasible path to the target location, whereas in the last three there is no feasible
path to the target location and the goal is to show that no feasible path exists.

The first three benchmarks Hello/HW/HWM are adapted from [1] (there
is only verbal description, no code). The HWM benchmark accepts a C string as
an input and scans the string for the presence of substrings "Hello","World",
"At" and "Microsoft!". HW and Hello are simplified versions of the HWM
benchmark, looking for the first two words (one word) only. In DOIF we model
a typical piece of code which scans an input and, for each member of the in-
put array, performs an action which depends on its value. This benchmark is
supposed to exercise primarily the third stage of the algorithm. Branching in-
side the loops enormously expands the number of paths in the model. DOIFex
is an extension of this benchmark, and tests behaviour on sequences of loops
with internal branching. The EQCNT benchmark contains nested loops with
branching, where a variable defined in the outermost scope is modified in the
innermost loop. EQCNTex is a modified benchmark (in a sense two instances
of EQCNT in sequence). The OneLoop benchmark consists of simple loop in
which the variable i, with initial value 0, is increased by 4 in every iteration.
Once the loop is finished we check whether i==15, which is false for any value
of the input variable n. TwoLoops is a an extension of the previous benchmark
by adding a second loop, whose loop condition depends on the value computed
in the first loop.
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We ran our benchmarks on an Intel i7/920 2.67GHz Windows machine with
6GB of RAM. The results are presented in Table 1. We measured the time re-
quired to reach the target location. Each benchmark has an associated timeout
(column t/o), which was set according to the perceived difficulty of that par-
ticular benchmark. The success was defined as reaching the target location (or
demonstrating it is not possible to reach this location) within the specified time
limit. As we can see, CBA significantly outperforms both Pex and KLEE.

Table 1. Running times of Pex, KLEE and CBA

Test t/o Pex KLEE CBA

Hello 30m 3.234s 0.093s 0.026s
HW 1h 14.890s 37m 0s 0.175s

HWM 1h fail t/o 1.997s
DOIF 30m t/o t/o 0.388s

DOIFex 1h t/o t/o 1.745s
EQCNT 30m 1m 43s t/o 0.191s

Test t/o Pex KLEE CBA

EQCNTex 1h 46m 12s t/o 2.458s
OneLoop 30m 2m 14s t/o 0.002s
TwoLoops 30m 1m 4s t/o 0.003s

5 Related Work

Modern effective techniques based on symbolic execution are mostly hybrid, com-
bining symbolic execution with other approaches. Firstly, there are the techniques
based of combining (alternating) concrete and symbolic execution [6,15,16,7]. This
approach primarily avoids the problems caused by limitations of SMT solvers. Al-
though the practical usability is greatly improved, these techniques have no effect
on the ability to handle loops. The second group of techniques combines symbolic
execution with some validation method [8,12,9]. This approach is much more suc-
cessful from the point of handling loops.Thanks to employing complementary tech-
niques, many symbolic paths can be effectively pruned away when exploring the
symbolic state space. This can often lead to effective navigation of symbolic execu-
tion in programs with loops. Finally there are also techniques which aim to make
symbolic execution effective in the general case, not specifically focused on just pro-
grams with loops [2,5,1,3].

The idea of using constraint system for analyzing loops was considered before
in different contexts. First approach, dating back to 70’s, infers relations between
program variables [11,4], while the more recent techniques are primarily focused
on formal verification, and inductive invariant computation [10].

The technique of Loop-Extended Symbolic Execution [14] (LESE) is probably
the one most closely related to our approach. The LESE approach introduces
symbolic variables for the number of times each loop was executed, and links
these with features of a known input grammar such as variable-length or repeat-
ing fields. This allows the symbolic constraints to cover a class of paths that
includes different number of loop iterations, expressing loop-dependent program
values in terms of properties of the input.
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Abstract. In inference of untimed regular languages, given an unknown
language to be inferred, an automaton is constructed to accept the un-
known language from answers to a set of membership queries each of
which asks whether a string is contained in the unknown language. One
of the most well-known regular inference algorithms is the L∗ algorithm,
proposed by Angluin in 1987, which can learn a minimal deterministic
finite automaton (DFA) to accept the unknown language. In this work,
we propose an efficient polynomial time learning algorithm, TL∗, for
timed regular language accepted by event-recording automata. Given an
unknown timed regular language, TL∗ first learns a DFA accepting the
untimed version of the timed language, and then passively refines the
DFA by adding time constraints. We prove the correctness, termination,
and minimality of the proposed TL∗ algorithm.

1 Introduction

In formal verification such as model checking [4,13], system models and proper-
ties are assumed to be a priori during the verification process. However, modeling
a system appropriately is not an easy task because if the model is too abstract, it
may not describe the exact behavior of the system; if the model is too detailed,
it suffers from the state space explosion problem. Thus an automatic inference
or construction of abstract model is very helpful for system development.

In 1987, Angluin [3] proposed the L∗ learning algorithm for inference of regular
languages. Given an unknown language U to be inferred, L∗ learns a minimal
deterministic finite automaton (DFA) to accept U from answers to a set of
membership queries each of which asks whether a string is contained in U .

After the L∗ algorithm was proposed, it is widely used in several research
fields. The most impressive one is that Cobleigh et al. [5] used the L∗ algorithm
to automatically generate the assumptions needed in assume-guarantee reasoning
(AGR), which can alleviate the state explosion problem of model checking. An-
other interesting work is that Lin and Hsiung proposed a compositional synthesis
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framework, CAGS [10], based on the L∗ algorithm to automatically eliminate all
behavior violating the user-given properties.

However, there were almost no extensions of the learning algorithm to in-
ference timed regular languages until 2004, Grinchtein et al. [7,8] proposed a
learning algorithm for event-recording automata [2] based on L∗. Grinchtein’s
learning algorithm, TL∗

sg, uses region construction to actively guess all possi-
ble time constraints for each untimed word. That is, each original membership
query of an untimed word in L∗ gives rise to several membership queries of timed
words with possible time constraints, which increases the number of membership
queries exponentially with the largest constant appearing in the time constraints.

In this work, we propose an efficient polynomial time learning algorithm
TL∗ for timed regular languages accepted by event-recording automata. Event-
recording automata (ERA) [2] are a determinizable subclass of timed automata
[1] such that a timed language accepted by an ERA can be classified into finite
number of classes. Given a timed regular language UT accepted by ERA, TL∗

first learns a DFA M accepting U (the untimed version of UT ) and then pas-
sively refines M by adding time constraints. Thus the number of membership
queries required by TL∗ is much smaller than that of Grinchtein’s algorithm.
We prove that the TL∗ algorithm will correctly learn an ERA accepting the
unknown language UT after a finite number of iterations. Further, we also prove
the minimality of our TL∗ algorithm, i.e., the number of locations of the ERA
learned by TL∗ is minimal.

This paper is organized as follows: Section 2 gives preliminary knowledge and
introduces the L∗ algorithm. The proposed efficient learning algorithm, TL∗, is
described in Section 3. The conclusion and future work are given in Section 4.

2 Preliminaries

We give some background knowledge about timed languages and event-recording
automata in Section 2.1 and introduce the L∗ algorithm in Section 2.2.

2.1 Timed Languages and Event-Recording Automata

Let Σ be a finite alphabet. A timed word over Σ is a finite sequence wt =
(a1, t1)(a2, t2) . . . (an, tn) of symbols ai ∈ Σ for i ∈ {1, 2, . . . , n} that are paired
with nonnegative real numbers ti ∈ R+ such that the sequence t = t1t2 . . . tn of
time-stamps is nondecreasing. For every symbol a ∈ Σ, we use xa to denote the
event-recording clock of a [2]. Intuitively, xa records the time elapsed since the
last occurrence of the symbol a. We use CΣ to denote the set of event-recording
clocks over Σ, i.e., CΣ = {xa | a ∈ Σ}. A clock valuation γ : CΣ �→ R+ assigns
a nonnegative real number to an event-recording clock.

A clocked word over Σ is a finite sequence wc = (a1, γ1)(a2, γ2) . . . (an, γn) of
symbols ai ∈ Σ for i ∈ {1, 2, . . . , n} that are paired with clock valuations γi such
that γ1(xa) = γ1(xb) for all a, b ∈ Σ and γi(xa) = γi−1(xa) + γi(xai−1) when
1 < i ≤ n and a 	= ai−1. Each timed word wt = (a1, t1)(a2, t2) . . . (an, tn) can be
naturally transformed into a clocked word cw(wt) = (a1, γ1)(a2, γ2) . . . (an, γn)
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where γi(xa) = ti if aj 	= a for 1 ≤ j < i; γi(xa) = ti − tj if there exists aj such
that aj = a for 1 ≤ j < i and ak 	= a for j < k < i.

A clock guard g is a conjunction of constraints of the form xa ∼ n for xa ∈ CΣ ,
n ∈ N, and ∼∈ {<,≤, >,≥}. A clock guard g identifies a hypercube zone �g� ⊆
(R+)|Σ|. We use GΣ to denote the set of clock guards over CΣ . A guarded word is
a sequence wg = (a1, g1)(a2, g2) . . . (an, gn) where ai ∈ Σ for i ∈ {1, 2, . . . , n} and
gi ∈ GΣ is a clock guard. For a clocked word wc = (a1, γ1)(a2, γ2) . . . (an, γn),
we use wc |= wg to denote γi |= gi for all i ∈ {1, 2, . . . , n}.

Definition 1. (Event-Recording Automata) [2]. An event-recording
automaton (ERA) D = (Σ,L, l0, δ, Lf) consists of a finite input alphabet Σ,
a finite set L of locations, an initial location l0 ∈ L, a set Lf of accepting
locations, and a transition function δ :⊆ L ×Σ ×GΣ �→ 2L. An ERA is deter-
ministic if δ(l, a, g) is a singleton set when it is defined, and when both δ(l, a, g1)
and δ(l, a, g2) are both defined then �g1� ∩ �g2� = ∅, where l ∈ L, a ∈ Σ, and
g1, g2 ∈ GΣ. A deterministic ERA is complete if for all l ∈ L and for all a ∈ Σ,
δ(l, a, gi) is defined for all i ∈ {1, 2, . . . , n} such that �g1� ∪ �g2� ∪ . . . ∪ �gn� =
�true�. A guarded word wg = (a1, g1)(a2, g2) . . . (an, gn) is accepted by an ERA
D = (Σ,L, l0, δ, Lf) if li = δ(li−1, ai, gi) is defined for all i ∈ {1, 2, . . . , n} and
ln ∈ Lf . The language accepted by D, denoted by L(D), is the set of guarded
words accepted by D.

Note that in an ERA, each event-recording clock xa ∈ CΣ is implicitly and
automatically reset when a transition with event a is taken, which gives a good
characteristic that each non-deterministic ERA can be determinized by subset
construction [2]. Fig. 1 (a) p. 467 gives a deterministic ERA A1 accepting the
timed word (a, t1)(a, t2)(a, t3) . . ., where t2i = t2i−1 + 3 and t2i+1 = t2i + 1 for
i ∈ N. We can also use a clocked word (a, γ1)(a, γ2)(a, γ3) . . . to represent the
timed word such that γ2i−1(xa) = 1 and γ2i(xa) = 3 for i ∈ N. Or we can use
a guarded word (a, g1)(a, g2)(a, g3) . . . to represent the timed word such that
g2i−1 = (xa = 1) and g2i = (xa = 3) for i ∈ N. Thus A1 accepts the timed
language L(A1) = ((a, xa = 1)(a, xa = 3))∗.

2.2 The L∗ Algorithm

The L∗ algorithm [3] is a formal method to learn a minimal DFA (with the mini-
mal number of locations) that accepts an unknown language U over an alphabet
Σ. During the learning process, L∗ interacts with a Minimal Adequate Teacher
(Teacher for short) to ask membership and candidate queries. A membership
query for a string σ is a function Qm such that if σ ∈ U , then Qm(σ) = 1;
otherwise, Qm(σ) = 0. A candidate query for a DFA M is a function Qc such
that if L(M) = U , then Qc(M) = 1; otherwise, Qc(M) = 0. The results of
membership queries are stored in an observation table (S,E, T ) where S ⊆ Σ∗

is a set of prefixes, E ⊆ Σ∗ is a set of suffixes, and T : (S ∪ S ·Σ)× E �→ {0, 1}
is a mapping function such that if s · e ∈ U , then T (s, e) = 1; otherwise, i.e.,
s · e /∈ U , then T (s, e) = 0, where s ∈ (S ∪ S · Σ) and e ∈ E. The L∗ algorithm
categorizes strings based on Myhill-Nerode Congruence [9].
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Algorithm 1. L∗ Algorithm

input : Σ: alphabet
output: a DFA accepting the unknown language U

Let S = E = {λ} ;1

Update T by Qm(λ) and Qm(λ · α), for all α ∈ Σ ;2

while true do3

while there exists (s · α) such that (s · α) �≡ s′ for all s′ ∈ S do4

S ←− S ∪ {s · α} ;5

Update T by Qm((s · α) · β), for all β ∈ Σ ;6

Construct candidate DFA M from (S, E, T ) ;7

if Qc(M) = 1 then return M ;8

else9

σce ←− the counterexample given by Teacher ;10

E ←− E ∪ {v} where v = WS(σce) ;11

Update T by Qm(s · v) and Qm(s · α · v), for all s ∈ S and α ∈ Σ ;12

Definition 2. Myhill-Nerode Congruence. For any two strings σ, σ′ ∈ Σ∗,
we say they are equivalent, denoted by σ ≡ σ′, if σ · ρ ∈ U ⇔ σ′ · ρ ∈ U , for all
ρ ∈ Σ∗. Under the equivalence relation, we can say σ and σ′ are the representing
strings of each other, denoted by σ = [σ′]r and σ′ = [σ]r.

L∗ will always keep the observation table closed and consistent. An observation
table is closed if for all s ∈ S and α ∈ Σ, there always exists s′ ∈ S such
that s · α ≡ s′. An observation table is consistent if for every two elements
s, s′ ∈ S such that s ≡ s′, then (s · α) ≡ (s′ · α) for all α ∈ Σ. Once the table
(S,E, T ) is closed and consistent, the L∗ algorithm will construct a corresponding
candidate DFA C = (ΣC , LC , l

0
C , δC , L

f
C) such that ΣC = Σ, LC = S, l0C = {λ},

δC(s, α) = [s · α]r for s ∈ S and α ∈ Σ, and Lf
C = {s ∈ S | T (s, λ) = 1}.

Subsequently, L∗ makes a candidate query for C. If L(C) 	= U , Teacher gives
a counterexample σce such that σce is positive if σce ∈ L(U) \ L(C); negative if
σce ∈ L(C)\L(U). L∗ analyzes the counterexample σce to find the witness suffix.
A witness suffix is a string that when appended to two strings provides enough
evidence for the two strings to be classified into two different equivalence classes
under the Myhill-Nerode Congruence. Given an observation table (S,E, T ) and
a counterexample σce, we define an i-decomposition query of σce, denoted by
Qi

m(σce), as follows: Qi
m(σce) = Qm([ui]r · vi) where σce = ui · vi with |ui| = i,

and [ui]r is the representing string of ui in S. The witness suffix of σce, denoted
by WS(σce), is the suffix vi of σce such that Qi

m(σce) 	= Q0
m(σce). Once the

witness suffix WS(σce) is obtained, L∗ uses it to refine the candidate C until
L(C) = L(U). The pseudo-code of the L∗ algorithm is given in Algorithm 1.

Assume Σ is the alphabet of the unknown regular language U and the number
of locations of the minimal DFA is n. The L∗ algorithm needs n− 1 candidate
queries and O(|Σ|n2 + n logm) membership queries to learn the minimal DFA,
where m is the length of the longest counterexample returned by Teacher.
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3 An Efficient Algorithm for Learning ERA

The intuition behind the L∗ algorithm is to classify untimed words into the min-
imal finite number of classes by performing membership queries, and each class
can be represented by a location of a DFA. Because event-recording automata
(ERA) are determinizable, a timed language (guarded words) accepted by an
ERA can also be classified into a finite number of classes. The TL∗ algorithm
tries to find the finite and minimal number of classes (locations).

3.1 The TL∗ Algorithm

Given a timed language UT , the proposed TL∗ algorithm interacts with a timed
Teacher to make two types of queries: the timed membership and timed candidate
queries. A timed membership query for a guarded word wg is a function QmT

such that QmT (wg) = 1 if wg ∈ UT ; otherwise QmT (wg) = 0. A timed candidate
query for an ERA M is a function QcT such that QcT (M) = 1 if L(M) = UT ;
otherwise, QcT (M) = 0. TL∗ assumes Teacher can answer membership queries
for guarded words (instead of timed words) and give counterexamples in guarded
words for candidate queries. This is not a strong assumption since there are data
structures such as DBM [6] to represent time symbolically.

Algorithm 2 gives the pseudo-code of the TL∗ algorithm. The idea behind
TL∗ is to first learn a DFA M accepting Untime(UT ), the untimed language
with respect to UT , and then to refine the untimed language by adding time
constraints. Therefore, TL∗ consists of two phases, namely the untimed learning
phase (Lines 1-3) and the timed refinement phase (Lines 7-22). Note that the
splitting of zones in Line 10 can be done by DBM subtraction [11].

We use an example to illustrate the TL∗ algorithm. Suppose the timed lan-
guage UT to be learned is accepted by the ERA A1 as shown in Fig. 1 (a). In the
untimed learning phase, L∗ is used to learn the DFA M1, as shown in Fig. 1 (c),
accepting the untimed language a∗, and the observation table (S,E, T ) obtained
by L∗ is shown in Fig. 1 (b). At this time, Σ = {a}, S = {λ}, and E = {λ}.

l1 l2
a[xa = 1]

a[xa = 3]

(a) ERA A1

λ
λ 1 (s0)
a 1

(b) T1

1

a

(c) M1

λ
λ 1 (s0)

(a, true) 1

(d) T2

Fig. 1. Untimed Learning Phase

In the timed refinement phase, TL∗ first modifies the alphabet and the ob-
servation table into timed version, i.e., Σ = {(a, true)}, S = {(λ, true)}, and
E = {(λ, true)}. The current timed observation table T2 is shown in Fig. 1 (d).
Then, TL∗ performs the timed candidate query for the first candidate ERA M1.
However, the answer to the candidate query is “no” with a negative counterexam-
ple (a, xa < 1) ∈ L(M1)\L(UT ). Because there is a prefix (a, true) in the observa-
tion such that �xa < 1� ⊂ �true�, the prefix (a, true) is split into (a, xa < 1) and
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Algorithm 2. TL∗ Algorithm

input : Σ: alphabet, CΣ : the set of event-recording clocks
output: a deterministic ERA accepting the unknown timed language UT

Use L∗ to learn a DFA M accepting Untime(UT ) ;1

Let (S, E, T ) be the observation table during the L∗ learning process ;2

Replace α by (α, true), s by (s, true), and e by (e, true) for each α ∈ Σ, s ∈ S3

and e ∈ E;
while true do4

if QT
c (M) = 1 then return M ;5

else6

Let (a1, g1)(a2, g2) · · · (an, gn) be the counterexample given by Teacher ;7

foreach (ai, gi), i ∈ {1, 2, . . . , n} do8

if (ai, g) is a substring of p or e for some p ∈ S ∪ (S · Σ) and e ∈ E9

such that �gi� ⊂ �g� then
Let G = {ĝ1, ĝ2, . . . , ĝm} obtained by �g� − �gi� ;10

Σ ←− Σ \ {(ai, g)} ∪ {(ai, gi), (ai, ĝ1), (ai, ĝ2), . . . , (ai, ĝm)} ;11

Split p into {p̂0, p̂1, p̂2, . . . , p̂m} where (ai, gi) is a substring of p̂012

and (ai, ĝj) is a substring of p̂j for all j ∈ {1, 2, . . . , m} ;
Split e into {ê0, ê1, ê2, . . . , êm} where (ai, gi) is a substring of ê013

and (ai, ĝj) is a substring of êj for all j ∈ {1, 2, . . . , m} ;
Update T by QmT (p̂j · êj) for all j ∈ {0, 1, 2, . . . , m} ;14

while there exists (s · α) such that s · α �≡ s′ for all s′ ∈ S do15

S ←− S ∪ {s · α} ;16

Update T by QmT ((s · α) · β) for all β ∈ Σ ;17

v ←− WS((a1, g1)(a2, g2) · · · (an, gn)) ;18

if |v| > 0 then19

E ←− E ∪ {v} ;20

Update T by QmT (s · v) and QmT (s · α · v) for all s ∈ S and α ∈ Σ ;21

Construct candidate M from (S, E, T ) ;22

(a, xa ≥ 1), and the timed membership queries for (a, xa < 1) and (a, xa ≥ 1) are
performed, respectively. The current observation table T3 is shown in Fig. 2 (a).
However, T3 is not closed because there is (a, xa < 1) with no s ∈ S such that
s ≡ (a, xa < 1), so (a, xa < 1) is added into S and the membership queries for
(a, xa < 1)(a, xa < 1) and (a, xa < 1)(a, xa ≥ 1) are performed, respectively.
The closed observation table T4 and its the corresponding ERA M2 are shown
in Fig. 2 (b) and (c), respectively. At this time, Σ = {(a, xa < 1), (a, xa ≥ 1)},
S = {(λ, true), (a, xa < 1)}, and E = {(λ, true)}.

In the second iteration of the timed refinement phase, TL∗ performs the
timed candidate query for M2. However, the answer is still “no” with a positive
counterexample (a, xa = 1) ∈ L(UT ) \ L(M2). Because there are two prefixes
(a, xa ≥ 1) and (a, xa < 1)(xa ≥ 1) in the observation table (S,E, T ) such
that �xa = 1� ⊂ �xa ≥ 1�, the prefix (a, xa ≥ 1) is split into (a, xa = 1) and
(a, xa > 1), and the prefix (a, xa < 1)(xa ≥ 1) is split into (a, xa < 1)(xa = 1)
and (a, xa < 1)(xa > 1), respectively. The timed membership queries for the
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λ
λ 1 (s0)

(a, xa < 1) 0
(a, xa ≥ 1) 0

(a) T3

λ
λ 1 (s0)

(a, xa < 1) 0 (s1)
(a, xa ≥ 1) 0

(a, xa < 1)(a, xa < 1) 0
(a, xa < 1)(a, xa ≥ 1) 0

(b) T4

1 0
a

a

(c) M2

Fig. 2. Timed Refinement 1

new prefixes are performed. The current closed observation table T5 and its cor-
responding ERA M3 are shown in Fig. 3 (a) and (b), respectively. At this time,
Σ = {(a, xa < 1), (a, xa = 1), (a, xa > 1)}, S = {(λ, true), (a, xa < 1)}, and
E = {(λ, true)}.

λ
λ 1 (s0)

(a, xa < 1) 0 (s1)
(a, xa = 1) 1
(a, xa > 1) 0

(a, xa < 1)(a, xa < 1) 0
(a, xa < 1)(a, xa = 1) 0
(a, xa < 1)(a, xa > 1) 0

(a) T5

1 0

a[xa = 1]

a[xa �= 1]

a

(b) M3

Fig. 3. Timed Refinement 2

In the third iteration of the timed refinement phase, TL∗ performs the timed
candidate query for the ERA M3. However, the answers is still “no” with a
negative counterexample π = (a, xa = 1)(a, xa = 1) ∈ L(M3) \ L(UT ). This
time, no prefix or suffix in the observation table has to be split. TL∗ analyzes
the counterexample as follows. Q0

mT (π) = QmT ((a, xa = 1)(a, xa = 1)) = 0.
Q1

mT (π) = Q1
mT ([(a, xa = 1)]r(a, xa = 1)) = QmT ((a, xa = 1)) = 1 	= Q0

mT (π).
Thus, we have a witness suffix v = (a, xa = 1), and v is added into the set E.
Then the membership queries for s · (a, xa = 1) for all s ∈ S are performed. The
closed observation table T7 and its corresponding ERAM4 are shown in Fig. 4 (a)
and (b), respectively. At this time, Σ = {(a, xa < 1), (a, xa = 1), (a, xa > 1)},
S = {(λ, true), (a, xa < 1), (a, xa = 1)}, and E = {(λ, true), (a, xa = 1)}.

λ (a, xa = 1)
λ 1 1 (s0)

(a, xa < 1) 0 0 (s1)
(a, xa = 1) 1 0 (s2)
(a, xa > 1) 0 0

(a, xa < 1)(a, xa < 1) 0 0
(a, xa < 1)(a, xa = 1) 0 0
(a, xa < 1)(a, xa > 1) 0 0
(a, xa = 1)(a, xa < 1) 0 0
(a, xa = 1)(a, xa = 1) 0 0
(a, xa = 1)(a, xa > 1) 0 0

(b) T7

11 10 00
a[xa = 1] a

a[xa �= 1] a

(c) M4

Fig. 4. Timed Refinement 3
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In the fourth iteration of the timed refinement phase, TL∗ performs the timed
candidate query for the ERA M4 again. However, the answer is still “no” with
a positive counterexample π = (a, xa = 1)(a, xa = 3) ∈ L(UT ) \ L(M4). Three
prefixes (a, xa > 1), (a, xa < 1)(a, xa > 1), and (a, xa = 1)(a, xa > 1) in the
observation table T7 have to be split, and the new split prefixes are shown in
Fig. 5 (a). The timed membership queries for the new split prefixes concate-
nated with e for all e ∈ E are performed. Then the TL∗ algorithm analyzes
the counterexample. Since Q0

mT (π) = Q1
mT (π) = Q2

mT (π), therefore there is
no witness suffix for π. The closed observation table T8 is shown in Fig. 5 (a),
and it corresponding ERA M5 is constructed as shown in Fig. 5 (b). At this
time, Σ = {(a, xa < 1), (a, xa = 1), (a, 1 < xa < 3), (a, xa = 3), (a, xa > 3)},
E = {(λ, true), (a, xa < 1), (a, xa = 1)}, and E = {(λ, true), (a, xa = 1)}.

λ (a, xa = 1)
λ 1 1 (s0)

(a, xa < 1) 0 0 (s1)
(a, xa = 1) 1 0 (s2)

(a, 1 < xa < 3) 0 0
(a, xa = 3) 0 0
(a, xa > 3) 0 0

(a, xa < 1)(a, xa < 1) 0 0
(a, xa < 1)(a, xa = 1) 0 0

(a, xa < 1)(a, 1 < xa < 3) 0 0
(a, xa < 1)(a, xa = 3) 0 0
(a, xa < 1)(a, xa > 3) 0 0
(a, xa = 1)(a, xa < 1) 0 0
(a, xa = 1)(a, xa = 1) 0 0

(a, xa = 1)(a, 1 < xa < 3) 0 0
(a, xa = 1)(a, xa = 3) 1 1
(a, xa = 1)(a, xa > 3) 0 0

(a) T8

11 10 00
a[xa = 1] a[xa �= 3]

a[xa = 3]

a[xa �= 1]

a

(b) M5

Fig. 5. Timed Refinement 4

In the fifth iteration of the timed refinement, TL∗ performs the timed candi-
date query for M5. This time, Teacher says that L(M5) = UT , and the learning
process of TL∗ is finished.

3.2 Analysis of the TL∗ Algorithm

Given a timed languageUT accepted by a deterministic ERA A = (Σ,L, l0, δ, Lf),
TL∗ learns Com(A) to accept UT . In the learning process of TL∗, each untimed
word (α, true) for α ∈ Σ might be split into |GA| timed words, where GA is the
set of clock zones partitioned by the clock guards appearing in A. For example,
the clock guards appearing in A1, as shown in Fig. 1 (a) p. 467, are xa = 1 and
xa = 3, so GA = {xa < 1, xa = 1, 1 < xa < 3, xa = 3, xa > 3}. Thus, each mem-
bership query of untimed word (a, true) gives rise to |GA| timed membership
queries. Totally, TL∗ needs to perform O(|Σ|·|GA|·|L|2+|L| log |π|) membership
queries to learn Com(A), where π is the counterexample given by Teacher. By
Theorem 1, TL∗ needs to perform O(|L| + |Σ| · |GA|) candidate queries.

Lemma 1. Given a closed and consistent observation table (S,E, T ), any de-
terministic ERA consistent with T must have at least |S| locations.
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Proof. We first define a row in the observation table. If p ∈ S∪ (S ·Σ) is a prefix
(row) of the table, we use row(p) to denote the function f : E �→ {0, 1} defined
by f(e) = T (p ·e) for e ∈ E. Let M = (Σ,L, l0, δ, Lf) be an ERA consistent with
T . We then define f ′(s) = δ(l0, s) for every s ∈ S. For any two s1, s2 ∈ S, we have
row(s1) 	= row(s2) implying that there exists e ∈ E such that T (s1 ·e) 	= T (s2 ·e).
Since M is consistent with T , exactly one of δ(l0, s1 · e) and δ(l0, s2 · e) is in Lf

implying that δ(l0, s1) and δ(l0, s2) are distinct locations. Thus, f ′(s) takes on
at least |S| values implying that M has at lease |S| locations.

Theorem 1. TL∗ is correct and terminates in a finite number of iterations.

Proof. The correctness is based on the fact that TL∗ returns an ERA only if it
accepts the unknown timed language UT . Let A = (Σ,L, l0, δ, Lf) be an ERA
accepting UT . In each iteration, TL∗ either adds a row into S in the observation
table (S,E, T ) or splits a clock guard of an event α ∈ Σ into at least two disjoint
clock guards. Since the observation table should be consistent with A (otherwise,
Teacher must have given wrong answers to membership queries), TL∗ adds at
most |L| rows into S. At last, each split clock guard will belong to GA. Thus,
TL∗ terminates after O(|L| + |Σ| · |GA|) iterations.

Theorem 2. The ERA learned by TL∗ has the minimal number of locations.

Proof. Given a closed and consistent observation table (S,E, T ), TL∗ constructs
an ERA M exactly with |S| locations. By Lemma 1, we can conclude that M
has the minimal number of locations.

Comparison. Grinchtein et al.’s TL∗
sg uses region construction to actively guess

all possible time constraints for an untimed word, so an original untimed mem-
bership query in L∗ gives rise to several membership queries of time words.
The number of timed membership queries required by the TL∗

sg algorithm is
O(|Σ×GΣ | ·n2|π| · |w|

(|Σ|+K
|Σ|

)
) where n is the number of locations of the learned

ERA, π is the counterexample given by Teacher, w is the longest guarded word
queried, and K is the largest constant appearing in the clock guards. We can ob-
serve that the number of timed membership queries required by TL∗

sg increases
exponentially with the largest constant K and the size of the alphabet |Σ|. To
learn the timed language accepted by A1, as shown in Fig. 1 (a) p. 467, TL∗

sg

needs 34 timed membership queries, while our TL∗ only needs 16 timed member-
ship queries. Note that our TL∗ algorithm is not affected by the largest constant
K. If we change the guarded word a[xa = 3] in A1, as shown in Fig. 1 (a), into
a[xa = 100], the number of membership queries required by our TL∗ algorithm
is still 16, while that required by TL∗

sg increases exponentially.

4 Conclusion and Future Work

We proposed an efficient polynomial time algorithm, TL∗, for learning ERAs.
TL∗ can also be applied to other subclasses of timed automata, such as event-
predicting automata [2], as they are determinizable. Our future work will imple-
ment TL∗ into the PAT model checker [12,14] such that PAT can automatically
generate the assumptions for assume-guarantee reasoning for timed systems.



472 S.-W. Lin et al.

Acknowledgment. This work benefited from the discussions via e-mails with
Olga Grinchtein, one of the authors of [7,8].

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: A determinizable class
of timed automata. Theoretical Computer Science 211(1-2), 253–273 (1999)

3. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

4. Clarke, E.M., Emerson, E.A.: Design and sythesis of synchronization skeletons
using branching time temporal logic. In: Proceedings of the Logics of Programs
Workshop, vol. 131, pp. 52–71 (1981)

5. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
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Discretizing Affine Hybrid Automata with
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Abstract. Over-approximating the set of all reachable states of a given system
is an important task for the verification of safety properties. Such an unbounded
time verification is in particular challenging for hybrid systems. We recently de-
veloped an algorithm that over-approximates the set of all reachable states of a
given affine hybrid automata by performing linear template-based abstract inter-
pretation [4]. In this article we extend the previous results by adding uncertainty
to the model of affine hybrid automata. Uncertainty can be used for abstracting
the behavior of non-linear hybrid systems. We adapt our techniques to this model
and show that, w.r.t. given linear templates, the abstract reachability problem is
still in coNP by reducing abstract reachability for affine hybrid automata with
uncertainty to abstract reachability for affine programs (affine hybrid automata
where only discrete transitions are allowed). We thus provide a new connection
between a continuous time model and a purely discrete model.

1 Introduction

Hybrid systems have been widely recognized as a mathematical model appropriate for
describing and reasoning about the interactions of software, modeled by discrete sys-
tems such as automata, with the physical world, described by continuous systems such
as differential equations. Cyber-physical systems are recent applications involving such
interactions. In addition, many applications of cyber-physical systems must be reli-
able and safe, not only for economic reasons but also for human safety. Automated
verification technologies are thus indispensable for the efficiency of their design. Un-
certainty is an important feature of cyber-physical systems. Indeed, accurate models
of some of their components may not be available or reliability of interoperation of
their heterogeneous subsystems may not be guantanteed. Moreover, modelling com-
plex cyber-physical systems with reasonable accuracy is a very challenging task; there-
fore uncertainty in their models is often unavoidable. While uncertainty can result from
imprecision in modelling, it can also result from the abstraction and approximation pro-
cedures frequenty used in systems design. Indeed, the dynamics of real-life systems are
often non-linear, for which most common analysis techniques involve some “lineariza-
tion” step, since the resulting linear approximation can be treated using well-developed
numerical and symbolic methods.
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In this article, we study affine hybrid automata with uncertainty and propose a method
for computing invariants of such systems. Such an invariant, being a conservative ap-
proximation of the reachable set, can be used to verify safety proterties.

Hybrid automata with linear continuous dynamics have been a focus in hybrid sys-
tems verification, and a number of tools for verifying such systems have been developed
[1, 2, 5, 8, 9]. The state-of-the-art reachability computation techniques can efficiently
handle continuous systems described by linear differential equations with uncertain in-
puts of up to a few hundreds of variables [7]. However, their extension to handle hybrid
systems is still limited. Unbounded time reachability analysis of hybrid systems with
linear continuous dynamics remains a challenge.

The novelty of our approach lies in its ability to efficiently handle unbounded time
verification. Indeed, by exporting abstract interpretation techniques in hybrid systems
verification, we avoid the complexity of the step-by-step approximations of reachable
sets in the continuous phase. Our work is close in spirit to the works on barrier cer-
tificates [10], polynomial invariants [14] and, in particular polyhedral invariants [12].
Computationally, an important advantage of our approach is the application of efficient
techniques for computing invariants and abstract semantics, initially developed for pro-
gram analysis, to verify hybrid systems.

2 Affine Hybrid Automata with Uncertainty

The set of real numbers is denoted by R. The complete linearly ordered set R∪{−∞,∞}
is denoted by R. The transpose of a matrix A is denoted by A. We denote the i-th row
(resp. the j-th column) of a matrix A by Ai· (resp. A·j). Accordingly, Ai·j denotes the
component in the i-th row and the j-th column. We also use this notation for vectors
and functions f : X → Y k, i.e., fi·(x) = (f(x))i· for all x ∈ X and all i ∈ {1, . . . , k}.
For x, y ∈ R

n
, we write x ≤ y iff xi· ≤ yi· for all i ∈ {1, . . . , n}. The complete lattice

R
n

is partially ordered by ≤. We write x < y iff x ≤ y and x 	= y. The elements x
and y are called comparable iff x ≤ y or y ≤ x. Let D be a partially ordered set. We
denote the least upper bound and the greatest lower bound of a set X ⊆ D by

∨
X and∧

X , respectively, provided that they exist. Their existence is in particular guaranteed
if D is a complete lattice. The least element

∨
∅ (resp. the greatest element

∧
∅) is de-

noted by ⊥ (resp. -), provided that it exists. We define the binary operators ∨ and ∧ by
x∨ y :=

∨
{x, y} and x∧ y :=

∧
{x, y} for all x, y ∈ D, respectively. If D is a linearly

ordered set (for instance R or R), then ∨ is the maximum operator and ∧ the minimum
operator. A function f : D1 → D2, where D1 and D2 are partially ordered sets, is called
monotone iff x ≤ y implies f(x) ≤ f(y) for all x, y ∈ D1. The fixpoint theorem of
Knaster/Tarski [13] states that any monotone self-map f : D → D on a complete lattice
D has a least fixpoint μf =

∧
{x ∈ D | x ≥ f(x)}.

A mappingV : Rn → 2R
n

is called a vector field with uncertainty over Rn. It assigns
a set V (x) ⊆ Rn of vectors to each state x ∈ Rn. We denote the set {x ∈ Rn | V (x) 	=
∅} by dom(V ). A vector field with uncertainty over Rn is called affine iff there exists
some convex polyhedron P ⊆ R2n such that V (x) = {x′ ∈ Rn | (x, x′) ∈ P } for all
x ∈ Rn. The set dom(V ) is a convex polyhedron, whenever V is affine. In the remain-
der of this article we assume w.l.o.g. that all affine vector fields with uncertainty are
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specified by existentially quantified conjunctions of non-strict inequalities and equal-
ities with free variables x and x′ that take values from Rn. We say that a continuous
differentiable time trajectory τ : [0, δ] → Rn (δ ∈ R≥0) evolves from τ(0) to τ(δ)
according to the vector field with uncertainty V iff τ̇ (t) ∈ V (τ(t)) for all t ∈ [0, δ).

An affine hybrid automaton with uncertainty differs from an affine hybrid automaton
on the description of the continuous dynamics. They are now described by affine vector
fields with uncertainty instead of ordinary affine vector fields: A hybrid automaton with
uncertainty Ψ = (n,L, T , Θ,D, l0) consists of the following components: n is the
number of continuous variables. L is a finite set of locations. l0 ∈ L is the initial
location. T is a finite set of discrete transitions. Each transition (l1, Ξ, l2) ∈ T consists
of a move from the location l1 ∈ L to the location l2 ∈ L, and an assertion Ξ ⊆ (Rn)2.
Θ ⊆ Rn is the set of possible initial values of the continuous variables at l0. D is a
mapping that maps each l ∈ L to a vector field with uncertainty D(l).

At each location l ∈ L, the values of the continuous variables evolve according to
D(l). A hybrid automaton with uncertainty Ψ = (n,L, T , Θ,D, l0) is called affine
iff the following statements are fulfilled: (1) The initial condition Θ and all transition
relationsΞ are convex polyhedra (we identify (Rn)2 with R2n). (2) The dynamics D(l)
at each location l ∈ L is an affine vector field with uncertainty. In the following we will
assume that all convex polyhedra are specified by existentially quantified conjunctions
of linear equalities and non-strict linear inequalities.

A computation is a possibly infinite sequence (l0, x0), (l1, x1), . . ., where x0 ∈ Θ
and, for all i ∈ N, one of the following statements hold: (Discrete Consecution) There
exists a discrete transition (li, Ξ, li+1) ∈ T such that (xi, xi+1) ∈ Ξ . (Continuous
Consecution) li = li+1 and there exists a δ ∈ R>0 and a continuous differentiable time
trajectory τ : [0, δ] that evolves from xi to xi+1 according to D(li).

As an abstract domain [3] we use template polyhedra as introduced by Sankara-
narayanan et al. [11]. For that we fix a template constraint matrix T ∈ Rm×n, where
we w.l.o.g. assume that Ti· 	= (0, . . . , 0) for every i ∈ {1, . . . ,m}. Each row of T
represents a linear template (a linear function). Each template relates n variables. The
concretization γT : R

m → 2R
n

and the abstraction αT : 2R
n → R

m
are defined by

γT (d) := {x ∈ Rn | Tx ≤ d} for all d ∈ R
m

, and αT (X) := min{d ∈ R
m | γT (d) ⊇

X} for allX ⊆ Rn. We omit the subscripts T , whenever they are clear from the context.
As shown by Sankaranarayanan et al. [11], α and γ form a Galois connection.Hence,
α ◦ γ is a downward closure operator, and γ ◦ α is an upward closure operator. This in
particular implies that α ◦ γ and γ ◦ α are monotone. In order to simplify notations, we
denote α ◦ γ by cl. The abstract elements from α(2R

n

) = cl(R
m

) are called closed.
The convex polyhedra from the set γ(R

m
) = γ(α(2R

n

)) are called template polyhedra.
For allX ⊆ Rn, we moreover define the operator clX on R

m
by clX(d) := α(γ(d)∩

X) for all d ∈ R
m

. The operator clX is a downward closure operator. Moreover, note
that clR

n

= cl. Similar to Sankaranarayanan et al. [11] we get

clXi· (d) = sup{Ti·x | x ∈ X and Tx ≤ d} ∀X ⊆ Rn, i ∈ {1, . . . ,m}, d ∈ R
m
. (1)

Let V be a vector field with uncertainty over Rn. A set X ⊆ Rn is called an invari-
ant of V iff every trajectory that starts in X and evolves according to V stays in X .
Before going further, we introduce the following notation: For all d ∈ R

m
and all
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R ⊆ {1, . . . ,m}, we define d|R ∈ R
m

by (d|R)i· = di·, if i ∈ R, and (d|R)i· = ∞, if
i /∈ R (for all i ∈ {1, . . . ,m}).

Assume now that the vector field with uncertainty V is affine. A template polyhedron
P ∈ γ(R

m
) is called a positive invariant of V iff there exists some R ⊆ {1, . . . ,m}

such that the following properties are fulfilled: (1) Ti·v ≤ 0 for all v ∈ V (x) and all
x ∈ P with Ti·x = αi·(P ) and all i ∈ R. (2) P ⊇ γ(α(P )|R) ∩ dom(V ).

Each i ∈ {1, . . . ,m} stands for a face of the template polyhedron P . Condition 1
ensures that there is no point x on the face i such that some vector from V (x) points to
the outside. Condition 2 ensures that all faces i that are not from R are implied by the
faces from R and the staying condition dom(V ).

We emphasize that our definition of positive invariants differs from the ones we used
in [4]. In [4], we assumed that the staying condition is a template polyhedron that is
represented by a vector from R

m
. Our new definition does not require this precondition

to be fulfilled. We do so, because the staying condition dom(V ) is obtained from V
by projecting out variables. However, we want to avoid this, since it might be costly
to compute the templates that are necessary to fulfill that precondition (polynomial-
time algorithms for projecting out a set of variables are not known). Hence, we cannot
w.l.o.g. assume that dom(V ) is a template polyhedron. The advantage of our new defi-
nition is that it does not require such technical preconditions.

We emphasize that every template polyhedron that is positive invariant according
to the definition in [4] is also a positive invariant according to the definition in this
article, i.e., the above definition gives us additional precision. The two notions coincide,
whenever dom(V ) is a template polyhedron.

Our goal is to compute the abstract semantics for affine hybrid automata with un-
certainty w.r.t. given linear templates. The abstract semantics for the affine hybrid au-
tomaton with uncertainty Ψ = (n,L, T , Θ,D, l0) (w.r.t. given linear templates that
are specified by T ) is the point-wise minimal mapping V �

� that maps every location

l ∈ L to a template polyhedron V �
�[l] ∈ γ(R

m
) and fulfills the following constraints:

(1) V �
�[l0] ⊇ Θ. (2) V �

�[l] is a positive invariant of D(l) for every location l ∈ L. (3)

x′ ∈ V �
�[l′] for all (l, Ξ, l′) ∈ T and all (x, x′) ∈ Ξ with x ∈ V �

�[l]. The existence of
such a point-wise minimal mapping will be ensured by our findings.

In order to verify safety properties, a problem one is interested in is abstract reach-
ability, which is the following decision problem: Decide whether or not, for a given
template constraint matrix T ∈ Rm×n, a given affine hybrid automaton with uncer-
tainty Ψ = (n,L, T , Θ,D, l0), and a given location l ∈ L, the statement V �

�[l] 	= ∅
holds. The location l may represent an unsafe state. The decision problem then answers
the question, whether or not the unsafe state can be reached within the abstraction. The
system is safe, whenever this is not the case. If the unsafe state can be reached within
the abstraction, then either the system is unsafe or the abstraction is too coarse.

It is important to note that most existing hybrid systems verification techniques were
developed first for purely continuous systems (defined by ordinary differential equa-
tions) and were then adapted with some loss of precision to handle staying conditions in
hybrid automata. Our approach, in contrast, can handle in a unified manner differential
equations and differential algebraic inequalities (i.e. inequalities involving differential
and algebraic variables).
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3 From Affine Hybrid Automata to Affine Programs

The Time Elapse Operation We will firstly prepare our main result by studying the
time elapse operation. We will basically extend the results of Dang and Gawlitza [4] by
allowing uncertainty. Let V be an affine vector field with uncertainty. Firstly, we define
the operator ΔV on R

m
by ΔV

k·(d) := sup {Tk·v | x ∈ Rn, Tx ≤ d, Tk·x ≥ dk·, v ∈
V (x)} for all k ∈ {1, . . . ,m} and all d ∈ R

m
with dk· < ∞. Note that ΔV

k·(d) = −∞,
whenever {v ∈ Rn | x ∈ Rn, Tx ≤ d, Tk·x ≥ dk·, v ∈ V (x)} = ∅. This is in
particular fulfilled, if there exists some i ∈ {1, . . . ,m} with di· = −∞. Moreover,
we set ΔV

k·(d) := 0 for all k ∈ {1, . . . ,m} and d ∈ R
m

with dk· = ∞. Intuitively,
ΔV

k·(d) > 0 iff there exists some point x on the face F := {x ∈ Rn | Tx ≤ d, Tk·x ≥
dk·} such that some vector v ∈ V (x) points to the outside. For all ε ∈ Rm

>0, we define
the operator fV,ε on R

m
by fV,ε(d) := d + εΔV (d) for all d ∈ R

m
. An application

of the operator fV,ε corrects the bounds to the templates according to the vector field
with uncertainty V . Note that the staying condition (a.k.a. location invariant) dom(V ) is
not completely taken into account so far. More precisely, we have not taken care of the
second requirement of the definition of positive invariants. This will be done through
the operator cldom(V ). Similarly to Dang and Gawlitza [4], we get:

Lemma 1. Let ε ∈ Rm
>0 and d ∈ R

m
. The template polyhedron γ(d) is a positive

invariant of V iff d ≥ cldom(V )(cl(d) ∨ fV,ε(cl(d))). !"

In order to use the above lemma within a monotone framework, we have to ensure that
fV,ε ◦ cl is monotone. Then fV,ε ◦ cldom(V ) and F := cldom(V ) ◦ (cl ∨ fV,ε ◦ cl) are
monotone, too, and the fixpoint theorem of Knaster/Tarski [13] can be applied.1 The
operator fV,ε ◦ cl is monotone on R

m
, whenever the operator fV,ε is monotone on

cl(R
m

) (It is not always possible to choose an ε such that fV,ε is monotone on R
m

).
Analogously to Dang and Gawlitza [4], we get:

Lemma 2 (Monotonicity of fV,ε). In polynomial time we can compute an ε(0) ∈ Rm
>0

such that fV,ε is monotone on cl(R
m

), whenever ε ≤ ε(0). !"

Because of Lemma 2, we from now on assume that we have chosen an ε ∈ Rm
>0 such

that fV,ε ◦ cl and thus finally cldom(V ) ◦ (cl ∨ fV,ε ◦ cl) = cldom(V ) ◦ (id ∨ fV,ε) ◦ cl
is monotone. Therefore, for all sets Θ ⊆ Rn of values, there exists a least positive
invariant P of V which is a superset of Θ. It is given by γ(μ(α(Θ) ∨ cldom(V ) ◦ (cl ∨
fV,ε◦cl))). However, we want to have a simpler formulation that allows to perform time
elapse operations in polynomial time. In order to obtain such a simpler formulation, we
observe that μ(θ ∨ cldom(V ) ◦ (cl ∨ fV,ε ◦ cl)) = cldom(V )(μ(θ ∨ fV,ε ◦ cldom(V ))) for
all θ ∈ cldom(V )(R

m
). Here, θ denotes the function that returns θ for every argument.

Putting everything together, we obtain our main result for the time elapse operation:

Theorem 1 (The Time Elapse Operation). Let V be an affine vector field with un-
certainty over Rn, and Θ ⊆ Rn. Assume that ε ∈ Rm

>0 is chosen such that fV,ε ◦ cl is
monotone. The template polyhedron γ(α(Θ∪γ(μ(α(Θ∩dom(V ))∨fV,ε◦cldom(V )))))
is the least positive invariant of V which is a superset of Θ. !"

1 For mappings f, g : X → D, f ∨ g is defined by (f ∨ g)(x) := f(x) ∨ g(x) for all x ∈ X.
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The Abstract Semantic Inequalities We will now set up a system of inequalities over
R

m
whose least solution corresponds to the abstract semantics of the affine hybrid au-

tomaton with uncertainty Ψ . In the next subsection, we will construct an affine program
whose abstract semantics gives us the solution of this system of inequalities.

So far, we have ignored the discrete transitions. In order to take them into account,
we define an abstract semantics for discrete transitions (l, Ξ, l′) ∈ T . Recall that the
assertion Ξ ⊆ R2n is a convex polyhedron (represented by an existentially quantified
conjunction of inequalities with free variables x and x′ that take values from Rn). The
collecting semantics �Ξ� of Ξ is defined by �Ξ�(X) := {y ∈ Rn | ∃x ∈ X .

(
x, y

)
∈

Ξ} for allX ⊆ Rn. The abstract semantics �Ξ�� ofΞ is defined by �Ξ�� := α◦�Ξ�◦γ.
The abstract semantics �Ξ�� safely over-approximates the collecting semantics �Ξ� and
the concrete semantics.

We are now going to define an abstract semantics V � for an affine hybrid automaton
Ψ = (n,L, T , Θ,D, l0) with uncertainty that corresponds to the abstract semantics V �

�
of Ψ . The abstract semantics V � of Ψ is the least solution to the following constraints:

A�[l0] ≥ α(Θ) A�[l′] ≥ �Ξ��(V�[l]) ∀(l, Ξ, l′) ∈ T
B�[l] ≥ cldom(D(l))(A�[l])) B�[l] ≥ fD(l),ε(l)(cldom(D(l))(B�[l])) ∀l ∈ L
V�[l] ≥ A�[l] V�[l] ≥ cldom(D(l))(B�[l])) ∀l ∈ L

The variables A�[l], B�[l], and V�[l] (for l ∈ L) take values from R
m

. A�[l] and B�[l]
are just auxiliary variables. The existence of the least solution is ensured by the fixpoint
theorem of Knaster/Tarski, since we assume that, for all locations l ∈ L, ε(l) ∈ Rm

>0

is chosen such that fD(l),ε(l) ◦ cl and thus fD(l),ε(l) ◦ cldom(D(l)) are monotone. The
existence of such an ε(l) is again ensured by Lemma 2.

The first constraint takes all possible initial values of the continuous variables at the
initial location l0 into account. The second constraint ensures that the template polyhe-
dron γ(V �[l′]) contains at least all values that can come through the discrete transition
(l, Ξ, l′). The remaining constraint ensure that the template polyhedron γ(V �[l]) is a
positive invariant of D(l) (cf. Theorem 1). By construction, we get V �

�[l] = γ(V �[l])
for all locations l ∈ L.

The Reduction. We are now going to reduce the problem of computing abstract seman-
tics of affine hybrid automata w.r.t. template polyhedra to the problem of computing
abstract semantics of affine programs w.r.t. template polyhedra. An affine program is an
affine hybrid automaton with uncertainty Ψ = (n,L, T , Θ,D, l0), where D(l) = ∅ for
every location l ∈ L. That is, only discrete transitions are allowed.

Abstract reachability for affine programs is in coNP (see e.g. Dang and Gawlitza
[4]). Moreover, it is known to be at least as hard as computing the winning regions of
mean-payoff games (cf. Gawlitza [6]). The latter problem is known to be in UP∩coUP,
but not known to be in P. It is an open question whether or not abstract reachability for
affine programs is coNP−hard. Hence, it makes sense to ask the question, whether or
not abstract reachability for affine hybrid automata with uncertainty is more difficult
than abstract reachability for affine programs. In this section, we show that this is not
the case by providing a polynomial-time reduction from abstract reachability for affine
hybrid automata with uncertainty to abstract reachability for affine programs. Hence,
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any efficient algorithm for affine programs gives us an efficient algorithm for affine
hybrid automata with uncertainty.

Let Ψ = (n,L, T , Θ,D, st) be an affine hybrid automaton with uncertainty and
T ∈ Rm×n be a template constraint matrix. We construct an affine program Ψ ′ =
(m,L′, T ′, Θ′,D′, st′) such that we can read off the abstract semantics of Ψ from the
abstract semantics of Ψ ′. Here, we consider the abstract semantics of Ψ ′ w.r.t. the tem-
plate constraint matrix T ′ that is simply the identity matrix of size m, i.e., we restrict
our considerations to upper bounds. We set L′ := {l, lA, lB | l ∈ L}, i.e., we replace
each location of Ψ by three locations. We will use the location l for the variable V�[l],
the location lA for the variable A�[l], and the location lB for the variable B�[l].

The initial location st′ is the location stA. The set Θ′ of initial states of the affine
program Ψ ′ is given by Θ′ := {x ∈ Rm | x ≤ αT (Θ)}. Hence, αT ′(Θ′) = αT (Θ).
These definitions correspond to the first inequality.

Moreover, we set D′(l) := ∅ for all locations l ∈ L, i.e., we are actually constructing
an affine program. The set T ′ of discrete transitions is the smallest set that fulfills the
following constraints:

1. If (l, Ξ, l′) ∈ T , then (l, Ξ ′, l′A) ∈ T ′, where

Ξ ′ :=
{(
d, d′

)
∈ (Rm)2

∣∣ ∃x, x′ ∈ Rn . Tx ≤ d,
(
x, x′

)
∈ Ξ, d′ ≤ Tx′

}
Recall that Ξ is a convex polyhedron. Therefore, Ξ ′ is a convex polyhedron. By
the construction, we get αT (�Ξ�(γT (d))) = αT ′(�Ξ ′�(γT ′(d))) for all d ∈ R

m
.

This discrete transition corresponds to the second inequality.

2. For every location l ∈ L, we have to add additional discrete transitions in order to
deal with the time elapse operation. For simplicity, let V := D(l). Assume further
that ε ∈ Rm

≥0 is chosen such that fV,ε ◦ cl is monotone. In order to apply cldom(V ),
we define the polyhedron Ξcl := {

(
d, d′

)
∈ (Rm)2 | ∃x ∈ dom(V ) . d′ ≤

Tx, Tx ≤ d}. By construction, we have αT ′(�Ξcl�(γT ′ (d))) = cldom(V )(d)
for all d ∈ R

m
(see (1)). Hence, we add the discrete transitions (lA, Ξcl, lB) and

(lB, Ξcl, l) for the 3rd and the 6th inequality, respectively. For the 5th inequality, we
add the discrete transition (lA, Ξid, l), where Ξid :=

{(
d, d′

)
∈ (Rm)2 | d′ = d

}
.

For the 4th inequality, we finally add the discrete transition (lB, Ξ, lB), where

Ξ :=
{(
d, d′

)
∈ (Rm)2

∣∣ d′ ≤ fV,ε(cldom(V )(d))
}

=
{(
d, d′

)
∈ (Rm)2

∣∣ ∀k ∈ {1, . . . ,m} .
∃x ∈ Rn, v ∈ V (x) . d′k· ≤ dk· + εk·Tk·v, Tx ≤ d, Tk·x ≥ dk·}

=
{(
d, d′

)
∈ (Rm)2

∣∣ ∃x(1), . . . , x(m) ∈ Rn, v(1) ∈ V (x(1)), . . . , v(m) ∈ V (x(m)) .

∀k ∈ {1, . . . ,m} . d′k· ≤ dk· + εk·Tk·v
(k), Tx(k) ≤ d, Tk·x

(k) ≥ dk·}

Ξ is a convex polyhedron, and αT ′(�Ξ�(γT ′ (d))) = fV,ε(cldom(V )(d)) ∀d ∈ R
m

.

We finally get: Let V �
� denote the abstract semantics of Ψ w.r.t. the template constraint

matrix T , and V �
�
′

denote the abstract semantics of Ψ ′ w.r.t. the template constraint

matrix T ′. Then αT (V �
�[l]) = αT ′(V �

�
′
[l]) for all locations l ∈ L.
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The construction contains existential quantifications. This does not cause any prob-
lems, since the existential quantifications can be eliminated by introducing at most poly-
nomially many auxiliary program variables (We cannot simply project out the existen-
tially quantified variables, since this could not be carried out in polynomial time). Since
the above construction can be carried out in polynomial time, we obtain:

Theorem 2. Abstract reachability w.r.t. template polyhedra for affine hybrid automata
with uncertainty is polynomial-time equivalent to abstract reachability w.r.t. template
polyhedra for affine programs. !"

4 Conclusion

In this article, we studied the problem of template-based unbounded time verification
of safety properties for affine hybrid automata with uncertainty. This model is used
to safely over-approximate non-linear behavior. We showed that, w.r.t. template poly-
hedra, abstract reachability for affine hybrid automata with uncertainty is polynomial-
time reducible to abstract reachability for affine programs. That is, these problems are
polynomial-time equivalent. The reduction replaces every time elapse operation by a
bunch of discrete transitions forming a loop.
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Abstract. Weighted automata map input words to numerical values.
Applications of weighted automata include formal verification of quanti-
tative properties, as well as text, speech, and image processing.

In the 90’s, Krob studied the decidability of problems on rational
series, which strongly relate to weighted automata. In particular, it fol-
lows from Krob’s results that the universality problem (that is, deciding
whether the values of all words are below some threshold) is decidable
for weighted automata with weights in � ∪ {∞}, and that the equality
problem is undecidable when the weights are in � ∪ {∞}.

In this paper we continue the study of the borders of decidability in
weighted automata, describe alternative and direct proofs of the above
results, and tighten them further. Unlike the proofs of Krob, which are
algebraic in their nature, our proofs stay in the terrain of state machines,
and the reduction is from the halting problem of a two-counter machine.
This enables us to significantly simplify Krob’s reasoning and strengthen
the results to apply already to a very simple class of automata: all the
states are accepting, there are no initial nor final weights, and all the
weights are from the set {−1, 0, 1}. The fact we work directly with au-
tomata enables us to tighten also the decidability results and to show
that the universality problem for weighted automata with weights in
� ∪ {∞}, and in fact even with weights in �≥0 ∪ {∞}, is PSPACE-
complete. Our results thus draw a sharper picture about the decidability
of decision problems for weighted automata, in both the front of equality
vs. universality and the front of the � ∪ {∞} vs. the � ∪ {∞} domains.

1 Introduction

Traditional automata accept or reject their input, and are therefore Boolean. A
weighted finite automaton (WFA, for short) has numeric weights on its transi-
tions and maps each word to a numeric value. Applications of weighted automata
include formal verification, where they are used for the verification of quanti-
tative properties, for reasoning about probabilistic systems, and for reasoning
about the competitive ratio of on-line algorithms, as well as text, speech, and im-
age processing, where the weights of the automaton are used in order to account
for the variability of the data and to rank alternative hypotheses [5].

The rich structure of weighted automata makes them intriguing mathematical
objects. Fundamental problems that have been solved decades ago for Boolean
automata are still open or known to be undecidable in the weighted setting. Two
problems of great interest in the context of automata are the universality and

T. Bultan and P.-A. Hsiung (Eds.): ATVA 2011, LNCS 6996, pp. 482–491, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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containment problems. In the Boolean setting, the universality problem asks,
given a nondeterministic automaton (NFA) A, whether all the words in Σ∗ are
accepted by A. In the weighted setting, the “goal” of words is not just to get
accepted, but also to do it with a minimal value. Accordingly, the universality
problem for WFAs asks, given a WFA A and a threshold v, whether A assigns
a value that is smaller than v to all words in Σ∗. Similarly, the containment
problem in the weighted setting naturally extends the Boolean one by asking,
given two WFAs A and B, whether for all words w ∈ Σ∗, the value of w in B is
less than or equal to its value in A. In the Boolean setting, the complexity for
the two problems coincide, and is PSPACE-complete [8]. As we shall see in this
paper, in the weighted setting the picture is more involved.

Recall that weighted automata map words to numerical values. Technically,
each weighted automaton is defined with respect to an algebraic semiring. For
example, 〈�∪{∞},min,+,∞, 0〉 is a semiring whose sum operator is min (with
∞ being the identity element) and whose product operator is + (with 0 being
the identity element). Such a min-sum semiring is called a tropical semiring.
The value of a run is the semiring-product of the weights along the transitions
traversed (and the initial and final weights). The value of a word is the semiring-
sum of the values of the accepting runs on it. A formalism that is analogous to
the one of weighted automata is the one of rational series [10]. There too, the
series is defined with respect to a semiring, and maps words to values from the
domain of the semiring.

In [6], Krob proved that the universality problem for rational series is unde-
cidable for the tropical semiring with domain � ∪ {∞}, and that this implies
undecidability of the containment problem for the tropical semiring with domain
� ∪ {∞}. Moreover, in [7], Krob proved that universality for rational series de-
fined with respect to the tropical semiring with domain � ∪ {∞} is decidable.
The analogy between rational series and weighted automata implies the same
results for the universality and containment problems for weighted automata.

In this paper we describe alternative and direct proofs of the above results.
Our clean reduction enables us to strengthen the result to a weaker model of
automata, and to make the proof generalizable to automata over infinite words.

Our proofs offer the following advantages. First, unlike the undecidability
proofs of Krob, which refer to rational series and are therefore algebraic in their
nature, our proofs stay in the terrain of state machines: while Krob’s reduction
is from Hilbert’s 10th problem (solving a Diophantine equation), ours is from
the halting problem of a two-counter machine. This enables us to significantly
simplify Krob’s reasoning and make the undecidability result accessible to the
automata-theoretic community.

Second, the clean reduction enables us to strengthen the result and show that
undecidability applies already to a very simple class of automata: the weights
of the automaton are in {−1, 0, 1}, it has no initial nor final weights, and all
its states are accepting. We note that Krob’s reduction does not capture this
weaker class of automata.
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Third, the pure algebraic view of rational series has the drawback that it
cannot be generalized to some natural extensions of the weighted setting. For
example, rational series cannot capture weighted automata on infinite words
(where one cannot speak about final states or final weights), nor can it capture
discounted-sum automata over finite and infinite words [2,1]. For these cases,
the non-algebraic, automata-theoretic definition, is useful [2,4,3].

Our proof uses ideas similar to those presented in [4]. Given a two counter
machine M, we define a weighted automaton A whose alphabet is the set of M’s
operations. We show that A assigns a positive value to a word w if and only if
w describes the actual run of M and this run is halting with both counters
having value 0. Hence, we have that M halts iff A is not universal with respect
to the threshold 1. A direct corollary is that the containment problem is also
undecidable.

Recall that when rational series are defined with respect to the tropical semir-
ing with domain � ∪ {∞}, universality becomes decidable [7]. The fact that we
work directly with the automata enables us to tighten this result too. By bound-
ing the length of the shortest witness to non-universality we are able to show
that the universality problem for weighted automata defined with respect to
the tropical semiring with domain � ∪ {∞} is PSPACE-complete. We extend
this good news also to weighted automata defined with respect to the tropical
semiring with domain �≥0 ∪ {∞}. On the other hand, we show that restricting
to the domain � ∪ {∞} is not helpful for the containment problem, which is
undecidable. We conclude that, unlike the Boolean case, the universality and
containment problems do not have the same complexity in the weighted setting,
and are in fact on different sides of the border of decidability. Moreover, this
border crucially depends on whether the weights of the weighted automaton are
all of the same polarity (all in � ∪ {∞} or all in −�∪ {−∞}) or are mixed (as
in � ∪ {∞}).

Due to the lack of space, full proofs and examples are omitted from this
version. A full version can be found in the authors’ home pages.

2 Preliminaries

A weighted finite automaton (WFA, for short) is A = 〈Σ,Q,Δ, c,Q0, F, i, f〉,
where Σ is a finite input alphabet, Q is a finite set of states, Δ ⊆ Q×Σ×Q is a
transition relation, c : Δ → � is a cost function, Q0 ⊆ Q is a set of initial states,
F ⊆ Q is a set of final states, i : Q0 → �∪{∞} is an initial-weight function, and
f : F → � ∪ {∞} is a final-weight function. A transition d = 〈q, a, p〉 ∈ Δ (also
written as Δ(q, a, p)) can be taken by A when reading the input letter a in the
state q, and it causes A to move to the state p with cost c(d). Note that a WFA
A may be nondeterministic in the sense that it may have many initial states,
and that for some q ∈ Q and a ∈ Σ, it may have Δ(q, a, p1) and Δ(q, a, p2), with
p1 	= p2. We say that A is complete if Δ is total; that is, for every state q ∈ Q
and letter a ∈ Σ, there is at least one state p ∈ Q such that Δ(q, a, p).

For a word w = w1 . . . wn ∈ Σ∗, and states q, q′ ∈ Q, a run of A on w is a
sequence r = r0r1 . . . rn ∈ Q+, where r0 ∈ Q0, rn ∈ F , and for all 1 ≤ i ≤ n, we
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have di = 〈ri−1, wi, ri〉 ∈ Δ. The cost of the run r is c(r) = i(r0) +
∑n

i=1 c(di) +
f(rn). Note that if A is nondeterministic, it may have several runs on w. The
cost of w in A is LA(w) = min {c(r) : r is a run of A on w }. If the minimum
is taken over an empty set, then w is not in the range of LA. 1 Recall that
in the binary setting, the universality problem asks, given a nondeterministic
automaton (NFA) A, whether L(A) = Σ∗. Thus, all the words in Σ∗ have to
be accepted by the automaton. In the weighted setting, the “goal” of words is
not just to get accepted, but also to do it with a minimal value. Accordingly,
the universality problem for WFAs asks, given a WFA A and a threshold v ∈ �
given in binary, whether LA(w) < v for all w ∈ Σ∗. We denote the latter
fact by LA < v. The containment and equality problems for NFAs are lifted
to the weighted setting in a similar manner: Given two WFAs A and B, the
containment problem is to decide whether LA(w) ≥ LB(w) for all w ∈ Σ∗. We
refer to ⊥ as being greater than ∞, thus if LB(w) = ⊥ then LA(w) = ⊥ too.
Thus, the domain of A has to be contained in the domain of B. 2 Similarly,
the equality problem is to decide whether LA(w) = LB(w) for all w ∈ Σ∗. In
particular, the domains of LA and LB coincide. It is easy to see that an upper
bound on the containment problem implies upper bounds on the equality and the
universality problems. Also, a lower bound on the universality problem implies
a lower bound on the containment and the equality problems. In the Boolean
setting, the complexity for the three problems coincide, and is PSPACE-complete
[8]. As we shall see in this paper, in the weighted setting the picture is more
involved, and depends on the domain of the weights in the WFA. Studying
the universality problem, it is more convenient to consider its dual, namely the
non-universality problem. There, given A and v, we ask whether there is a word
w ∈ Σ∗ such that LA(w) ≥ v. Thus, the non-universality problem asks whether
there exists a word for which all the runs of A have value of at least v.

3 Weighted Automata with Integer Weights

In this section we show that the universality problem, and therefore also the
containment problem, are undecidable for WFAs with weights in �. In fact,
even when only considering complete automata where all states are final, and

1 In general, a WFA may be defined with respect to a semiring 〈K,⊕,⊗, 00,�〉. The
cost of a run is then the semiring product of the initial weight of the first state,
the weights along the run, and the final weight of the last state. The cost of an
accepted word is the semiring sum over the costs of all accepting runs on it. In this
work, we focus on weighted automata defined with respect to the min-sum semiring,
〈� ∪ {∞}, min, +,∞, 0〉, sometimes called the tropical semiring, as defined above.

2 For our confused readers, the ≥ in the LA(w) ≥ LB(w) condition is not a typo:
recall that the goal of words is to get accepted, and with a minimal value. When A
is contained in B, it is more challenging for words to satisfy their goal in A rather
than in B. In the Boolean setting, this amounts to L(A) being a subset of L(B).
In the weighted setting, this amounts to the values that words are mapped to in A
being greater than the values to which they are mapped in B.
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without initial or final weights, in which the weights are only in {−1, 0, 1}, the
problems remain undecidable.

We show this by a reduction from the halting problem for two-counter
(Minsky) machines. Our proof uses ideas similar to those presented in [4]. A
two-counter machine M is a sequence (l1, . . . , ln) of commands involving two
counters x and y. We refer to {1, . . . , n} as the locations of the machine. There
are five possible forms of commands:

inc(c), dec(c), goto li, if c=0 goto li else goto lj , halt,

where c ∈ {x, y} is a counter and 1 ≤ i, j ≤ n are locations. Since we can always
check whether c = 0 before a dec(c) command, we assume that the machine
never reaches dec(c) with c = 0. That is, the counters never have negative
values. Given a counter machine M, deciding whether M halts is known to be
undecidable [9]. Given M, deciding whether M halts with both counters having
value 0 is also undecidable. Indeed, given a counter machine M, we can replace
every halt command with code that clears the counters before halting. Thus,
the halting problem can be reduced to the latter problem, termed the 0-halting
problem.

We are going to reduce the 0-halting problem to the non-universality problem
for complete WFAs with weights in {-1,0,1}, without initial weights or final
weights, in which all the states are final.

Theorem 1. The universality problem for complete WFAs over the semiring
〈�∪ {∞},min,+,∞, 0〉 with weights in {-1,0,1}, without initial weights or final
weights, in which all the states are final, is undecidable.

Proof. We show a reduction from the 0-halting problem for two-counter ma-
chines to the non-universality problem. Let M be a two-counter machine with
commands (l1, . . . , ln). A halting run of a two-counter machine with commands
from the set L = {l1, . . . , ln} is a sequence ρ = ρ1, . . . , ρm ∈ (L×�×�)∗ such
that the following hold.

1. ρ1 = 〈l1, 0, 0〉.
2. For all 1 < i ≤ m, let ρi−1 = (lk, α, β) and ρi = (l′, α′, β′). Then, the

following hold.
– If lk is a inc(x) command (resp. inc(y)), then α′ = α+ 1, β′ = β (resp.
β = β + 1, α′ = α), and l′ = lk+1.

– If lk is a dec(x) command (resp. dec(y)), then α′ = α−1, β′ = β (resp.
β = β − 1, α′ = α), and l′ = lk+1.

– If lk is a goto ls command, then α′ = α, β′ = β, and l′ = ls.
– If lk is an if x=0 goto ls else goto lt command, then α′ = α, β′ = β,

and l′ = ls if α = 0, and l′ = lt otherwise.
– If lk is a if y=0 goto ls else goto lt command, then α′ = α, β′ = β,

and l′ = ls if β = 0, and l′ = lt otherwise.
– If l′ is a halt command, then i = m. That is, a run does not continue

after halt.
3. ρm = 〈lk, α, β〉 such that lk is a halt command.
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Observe that the machine M is deterministic. We say that a machine M
0-halts if its run ends in 〈l, 0, 0〉.

We say that a sequence of commands τ ∈ L∗ fits a run ρ, if τ is the projection
of ρ on its first component.

The command trace π = π1, . . . , πm of a run ρ = ρ1, . . . , ρm is defined as
follows. For every 1 ≤ i ≤ m, if the command taken in ρi is not of the form
if c=0 goto lk else goto lk′ , then πi = li. Otherwise, πi = goto ls, where
s is the location of the command in ρi+1.

We start by explaining the intuition behind the reduction. We construct a
WFA A such that M 0-halts iff there exists w ∈ Σ∗ such that LA(w) ≥ 1. The
alphabet of A consists of the following n+ 5 letters:

Σ = {inc(x),dec(x), inc(y),dec(y),halt} ∪ {goto li : i ∈ {1, . . . , n}}.

When A reads a sequence of commands w, it tries to simulate the run of M that
induces the command trace w. If the sequence of commands fits the actual run,
and this run 0-halts, then all the runs of A cost at least 1. Thus, the word w is
such that LA(w) ≥ 1. If, however, the sequence of commands does not fit the
actual run, then the violation is detected and A has a run on w with non-positive
cost.

We now construct the WFA A = 〈Σ,Q,Δ, c,Q0〉. Observe that we omit F, i
and f , as all the states are accepting, and there are no initial nor final weights.
A detailed example can be found in the full version.

We designate a state qfreeze such that for all σ ∈ Σ, the WFA A has the
transition Δ(qfreeze, σ, qfreeze) with c((qfreeze, σ, qfreeze)) = 0. There is also a
state qhalt with the transition Δ(qhalt, σ, qfreeze) and c((qhalt, σ, qfreeze)) = −1
for all σ ∈ Σ (see Figure 1).

qfreeze qhalt
Σ,−1

Σ, 0

Fig. 1. qfreeze and qhalt

In order to define A, we first define a “skeleton” ComCheck, which is an
underspecified WFA. We then compose A from variants of ComCheck.

The skeleton ComCheck consists of states q1, . . . , qn that correspond to the com-
mands l1, . . . , ln. For two locations i and j, there is a transition from qi to qj iff lj
can locally follow li in a run of M. That is, either j = i + 1 and li is an inc or
dec command, li is a goto lj command, or li is an if c=0 goto lk else goto l′k
command, with j ∈ {k, k′}. The letters labeling the transition from qi to qj cor-
responds to the command trace. That is, the letter is li, except the case li is an
if c=0 goto lk else goto l′k command with j ∈ {k, k′}, in which case the letter
is goto lj . The weights on the transitions, as well as additional transitions, are
specified below in every variant of ComCheck.

The WFA A is composed of 5 gadgets, each responsible for checking a certain
type of violation in the description of a 0-halting run of M. The gadgets are
obtained from ComCheck as described below.
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Command Checker. The first gadget we construct is the command checker.
This gadget checks for local violations of succesive commands. That is, it makes
sure that the letter wi represents a command that can follow the command
represented by wi−1 in M. The test is local, as this gadget does not check for
violations involving illegal jumps due to the value of the counters. The command
checker consists of a ComCheck in which all the weights are 0. In addition, we
add transitions labeled by halt from every state qi such that li = halt to
qhalt. These transitions cost 1. Every other transition that is not specified in
ComCheck leads to qfreeze with weight 0. For example, reading a command that
does not correspond to li in qi leads to qfreeze with weight 0. Note that indeed,
if a word represents the command trace of a halting run, it ends with a halt

letter from a state qi such that li = halt. Thus, the last transition has weight 1.
Otherwise, the run of the command checker on w ends with a 0 weight transition.

Positive Jump Checker. The second gadget we need is the positive jump
checker, which is defined for each counter c ∈ {x, y}. This gadget checks for vio-
lations in conditional jumps. In every if c=0 goto lj else goto lk command,
it makes sure that if the jump goto lk is taken, then the value of c is indeed
greater than 0.

This gadget is a variant of ComCheck in which the weights are defined as
follows. Every transition that is taken upon reading inc(c) has weight 1, and
every transition that is taken upon reading dec(c) has weight −1. In every
state qi such that li = if c=0 goto lj else goto lk, we add a transition
〈qi,goto lk, qfreeze〉 with weight −1. We add an initial state q0 that, intu-
itively, has an ε transition with weight 1 to q1 in ComCheck. Since we do not
allow ε transitions, we remove the transition by connecting q0 to the appropriate
descendants of q1. All the other transitions induced by ComCheck have weight 0.
In addition, for every state q in ComCheck we add a transition 〈q,halt, qfreeze〉
with weight 0 (See Figure 2).

The intuition behind this gadget is as follows. Along the run, the cost of the
run reflects the value of the counter c plus 1. Whenever a conditional jump is
taken, A nondeterministically moves to qfreeze, accumulating a weight of −1. If
the jump is legal, then the value of the counter is at least 1, so the cost of the
run so far is at least 1 + 1 = 2. Thus, the nondeterministic run that follows this
route has weight at least 1 when it reaches qfreeze. Otherwise, the value of the
counter is 0, so the cost of the run is 1, and the nondeterministic move to qfreeze

induces a run with cost 0, thus “detecting” the violation.

inc(x), 1

dec(x),−1
qi

qfreeze

qkqj
goto lj , 0 goto lk, 0

goto lk,−1

Fig. 2. Positive Jump Checker for x, where li : if x=0 goto lj else goto lk
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Zero Jump Checker. Dually to the positive jump checker, we define the gadget
zero jump checker for each counter c ∈ {x, y}.

This gadget checks for the dual violations in conditional jumps. Thus, in every
command of the form if c=0 goto lj else goto lk, it makes sure that if the
jump goto lj is taken, then the value of c is indeed 0.

This gadget is a variant of ComCheck in which the weights are as follows. Ev-
ery transition that is taken upon reading inc(c) has weight −1, and every transi-
tion that is taken upon reading dec(c) has weight 1. In every state qi such that
li = if c=0 goto lj else goto lk, we add a transition 〈qi,goto lj, qfreeze〉
with weight 0. We add an initial state q0 exactly as in the positive jump checker.
All the other transitions in ComCheck have weight 0. In addition, for every
state q in ComCheck we have a transition 〈q,halt, qfreeze〉 with weight 0 (See
Figure 3).

inc(x),−1

dec(x), 1
qi

qfreeze

qkqj
goto lj , 0 goto lk, 0

goto lj , 0

Fig. 3. Zero Jump Checker for x, where li : if x=0 goto lj else goto lk

To complete the definition of the automaton, we define Q0 to include the
states corresponding to l1 in the command checker gadget and the q0 states
defined for the jump checkers for each counter c ∈ {x, y}.

We claim that M 0-halts iff there exists w ∈ Σ∗ such that LA(w) ≥ 1. Observe
that the runs of A consist of all the runs in the underlying gadgets. Thus, it is
enough to prove that M 0-halts iff there exists w ∈ Σ∗ such that all the runs of
all the gadgets of A on w have cost of at least 1. A formal correctness proof can
be found in the full version. !"

4 Weighted Automata with Positive Weights

In many models, the complexity of the universality problem and of the contain-
ment problem coincide. This is the case with Boolean automata, in which they
are both PSPACE-complete [8], as well as with weighted automata over integer
weights, for which the previous section shows undecidability. In this section we
show that the model of weighted automata over positive integers is different:
while the universality problem is PSPACE-complete, the containment problem
is undecidable.

4.1 Universality Is PSPACE-Complete

In this section we prove that the universality problem for WFAs defined over
the tropical semiring with domain � ∪ {∞}, and in fact even �≥0 ∪ {∞}, is
decidable, and is PSPACE-complete.
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Theorem 2. The universality problem for WFAs defined with respect to the
semiring 〈� ∪ {∞},min,+,∞, 0〉 is PSPACE-complete.

The idea behind the proof is as follows. Consider a WFA A and a threshold
v ∈ �. The fact the weights are all positive enables us to bound the length of a
shortest witness to non-universality by (v+2)|Q|. Intuitively, it follows from the
fact that the relevant information about the runs of A after reading a prefix u can
be summarized by a function from each state q to ⊥, in case q is not reachable
by reading u, or the minimum between v and the cost of reaching q by reading u;
that is, a total of v + 2 values. Moreover, in a witness of a shortest length, such
an information need not repeat. Consequently, it is possible to reason about a
bounded unwinding (one of depth (v + 2)|Q|) of A into a deterministic WFA,
which can be done on-the-fly in PSPACE.

A careful anlysis of the proof of Theorem 2 shows that the result can be
extended to the semiring 〈�≥0 ∪{∞},min,+,∞, 0〉, by multiplying the weights
by a common denominator. We can thus conclude with the following.

Theorem 3. The universality problem for WFAs defined with respect to the
semiring 〈�≥0 ∪ {∞},min,+,∞, 0〉 is PSPACE-complete.

4.2 Containment Is Undecidable

We now show that the containment problem is undecidable for WFAs with
weights in �. In fact, the problem is undecidable already for complete WFAs
with weights in {0,1,2}, without initial or final weights, in which all the states
are final.

The decidability result for the universality problem used the monotonicity of
weights accumulated in weighted automata with weights in �. One may wonder
why a similar approach cannot work for the containment problem. The reason
is that the containment problem relates to the difference between two WFAs.
Consequently, the underlying function, which is the difference in the weight
accumulated in the two WFAs, is not monotonic even when the automata have
only positive weights.

The undecidability proof is by a reduction from the containment problem for
WFAs defined with respect to the domain �. It follows an analogous lemma in
[6], according to which, two WFAs with domain � are equal iff so are WFAs
that they induce, and that are with domain �. Intuitively, the induced WFAs
are obtained by increasing all the weights in the original WFAs. Formally, we
have the following.

Theorem 4. The containment and equality problems for complete WFAs over
the semiring 〈� ∪ {∞},min,+,∞, 0〉 with weights in {0,1,2}, without initial or
final weights, in which all the states are final, is undecidable.

Proof. We start by defining a “weight-increase” operation on WFAs. Consider
a number k ∈ � and a WFA A over � with a cost function c. We define the
k-increase of A, denoted A+k, to be a WFA with a cost function c+k that is
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equivalent to A, except for having all weights increased by k; that is, for every
transition d of A, we have that c+k(d) = c(d) + k.

We claim that for every word w, we have that LA+k(w) = LA(w) + k|w|.
Indeed, consider a run r of A on w, such that c(r) = LA(w). Since A+k has
the same transitions as A, there is a run r′ of A+k on w that follows the same
transitions as r. Thus, c(r′) = c(r)+k|w|, and therefore LA+k(w) ≤ LA(w)+k|w|.
Analogously, we have that LA(w) ≤ LA+k(w)− k|w|, choosing the same run for
A as the one used for A+k. Hence, LA+k(w) = LA(w) + k|w|.

Now, consider two automata, A and B, over �. Let k be the maximal absolute
value of a weight in the transitions of A and B. It is easy to see that all the
weights in A+k and B+k are positive, thus they are defined with respect to
the domain �. We claim that LA ≤ LB iff LA+k ≤ LB+k . Indeed, for every
word w, LA+k(w) ≤ LB+k(w) iff LA+k(w) + k|w| ≤ LB+k(w) + k|w|. Hence,
the containment problem of WFAs over � can be reduced to the containment
problem of WFAs over �, which is undecidable by Theorem 1. Furthermore, as
the automata in Theorem 1 can be restricted to have weights in {−1, 0, 1}, their
corresponding automata over � can be restricted to have weights in {0, 1, 2}.

We now reduce the containment problem to the equality problem, showing
that the latter is undecidable as well. For WFAs A and B, observe that LA ≤ LB
iff LA = min{LA, LB}. Since we can easily construct a WFA for min{LA, LB},
then we can indeed reduce the containment problem to the equality problem.

!"
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Widening with Thresholds for Programs with
Complex Control Graphs�

Lies Lakhdar-Chaouch, Bertrand Jeannet, and Alain Girault
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Abstract. The precision of an analysis based on abstract interpretation
does not only depend on the abstract domain, but also on the solving
method. The traditional solution is to solve iteratively abstract fixpoint
equations, using extrapolation with a widening operator to make the it-
erations converge. Unfortunately, this extrapolation often loses crucial
information for the analysis goal. A classical technique for improving the
precision is “widening with thresholds”, which bounds the extrapolation.
Its benefit strongly depends on the choice of relevant thresholds. In this
paper we propose a semantic-based technique for automatically inferring
such thresholds, which applies to any control graph, be it intraprocedu-
ral, interprocedural or concurrent, without specific assumptions on the
abstract domain. Despite its technical simplicity, our technique is able
to infer the relevant thresholds in many practical cases.

1 Introduction and Related Work

Many static analysis problems boil down to the computation of the least solution
of a fixpoint equation X = F (X), X ∈ C where C is a domain of concrete
properties, and F a function derived from the semantics of the analyzed program.
Abstract Interpretation provides a framework for reducing this problem to the
solving of a simpler equation in a domain A of abstract properties:

Y = G(Y ), Y ∈ A (1)

Having performed this static approximation, one is left with the problem of solv-
ing (1). The paper focuses on this problem. It considers the traditional iterative
solving technique with widening and narrowing, and focuses more specifically
on the widening with thresholds technique. We first review existing techniques
before presenting our approach.

Exact equation solving. Some techniques solves directly (1) in the case where
concrete properties are invariants on numerical variables. In [1,2] classes of equa-
tions on intervals are identified, for which the least solution can be computed
exactly. Policy iteration methods solve (1) by solving a succession of simpler
equations Y = Gπ(Y ) indexed by a policy π [3,4]. However, such approaches
are currently restricted to domains that infer bounds on a fixed set of numerical
expressions, which excludes for instance the convex polyhedra abstract domain
[5] and they do not make obsolete the classical iterative method described next.
� This work was supported by the OpenTLM project (pôle de compétitivité
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G(Y ) � Y

G(Y ) � Y

G(Y ) = Y

�

gfp(G)

lfp(G)

⊥
Y0

Y1

Y2

Y∞ Z0

Z1

Z2

Fig. 1. Kleene iteration with
widening and narrowing

Approximate equation solving by widen-
ing/narrowing. Under the classical hypothesis
the sequence Y0 = ⊥, Yn+1 = G(Yn) converges to
lfp(G). However, if A contains infinite ascending
sequences, which is the case of the abstract lat-
tices mentioned above, the limit is extrapolated
by using a widening operator ∇ : A × A → A.
One computes the ascending sequence

Y0 = ⊥, Yn+1 = Yn∇G(Yn) (2)

which converges after a bounded number of iter-
ations to a post-fixpoint Y∞ 6 lfp(G), see Fig. 1.
The approximations induced by widening can be
partially recovered by performing a few descend-
ing iterations defined by the sequence

Z0 = Y∞, Zn+1 = G(Zn) (3)

This is the most common instance of the concept of narrowing (see [6]). For
many numerical abstract domains (like octagons [7] or convex polyhedra [5]) the
“standard” widening consists in keeping in the result R = P∇Q the numerical
constraints of P that are still satisfied by Q.

The use of widening adds dynamic approximations to the static approxima-
tions induced by the choice of the abstract domain. Although it is shown in [6]
that abstract domains with infinitely ascending sequences can discover proper-
ties that simpler abstract domains cannot infer, these dynamic approximations
often raise accuracy issues. In particular no widening operator is monotonic.
Moreover, as we show in §2, narrowing often fails to recover important informa-
tion lost by widening, even on simple examples. In particular, if the function G
is extensive (i.e., ∀Y ∈ A, Y � G(Y )), narrowing has no effect at all.

Techniques for controlling dynamic approximations. One approach is
to improve the standard widening operators [8,9]. Other approaches are more
global. For instance, abstract acceleration computes precisely with a single for-
mula the effect of “accelerable” cycles in the CFG [10], and relies on widening for
more complex cycles. Guided static analysis technique alternates ascending and
descending sequences on an increasingly larger part of the system of equations
[11]. This improves the accuracy of the analysis in many cases, but still it relies
ultimately on the effectiveness of narrowing (see §2).

Widening with thresholds. Among local techniques, widening up-to or widen-
ing with thresholds attempts to bound the extrapolation performed by the stan-
dard widening ∇ operator [5,12]. The idea is to parameterize ∇ with a finite
set C of threshold constraints, and to keep in the result R = P∇CQ those con-
straints c ∈ C that are still satisfied by Q: P∇CQ = (P∇Q) ! {c ∈ C | Q |= c}. .
Similarly to abstract acceleration techniques, widening with thresholds prevents
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from going too high in the lattice of properties (see Fig. 1) and from propagating
inaccurate invariants in the CFG of the program, which cannot be strengthened
later by narrowing. However, the benefit provided by widening with thresholds
fully depends on the choice of the thresholds.

Our contribution: thresholds inference. This paper develops a semantic-
based technique to infer automatically relevant thresholds, by propagating con-
straints in the CFG of the program in an adequate way. §2 illustrates on small
examples the strengths and weaknesses of widening and narrowing, and gives
the rationale for our technique for inferring relevant thresholds, which is formal-
ized in §3. §4 evaluates it on a number of example programs and compares it to
guided static analysis [11] and policy iteration [3]. A longer version of this paper
is available as a research report [13].

2 The Widening/Narrowing Approach in Practice

We assume a static analysis problem formalized as an equation system

X(k) = F (k)(X) X = (X(1), . . . , X(K)) ∈ CK (4)

where X(k) ∈ C is the concrete property associated with a node of the CFG
of the program and (C,⊆) is ordered by logical implication. Given an abstract
domain (A,�) connected to C with a concretization function γ : A → C, and a a
widening operator ∇ : A×A→ A [6] we derive from (4) the system of equations

Y (k) = G(k)(Y ) Y = (Y (1), . . . , Y (K)) ∈ AK (5)

In order to solve (5), we use chaotic iterations with widening [14]: we follow the
iteration order 1 . . .K and we apply widening as follows:

Y
(k)
0 = ⊥ Y

(k)
n+1 =

{
Y

(k)
n ∇Y ′ if k ∈ W

Y ′ otherwise
where Y ′ = G(k)(Y (0)

n+1 . . . Y
(k−1)
n+1 , Y

(k)
n . . . Y

(K)
n )

(6)

W is the subset of widening nodes: any dependency cycle in (5) contains a node
in W . Narrowing by descending iteration is performed as in ((3)).

In all the examples of this paper, the static analysis problem is the computa-
tion of reachable values of the numerical variables of a program. A is the convex
polyhedra domain, equipped with its standard widening operator [5].

Analysis of a simple loop program. Fig. 2 shows our first example. The
double-line around a CFG node indicates a widening node in W . The table on
the right details the Kleene iteration with widening and descending sequence,
starting from ⊥ at nodes 2 and 3 . In the steps 1 and 2, the widening operator
has no effect. The row indexed by 3’ corresponds to the computation of Y ′ in
(6). In step 3, we have Y (2)

3 = Y
(2)
2 ∇Y (2)

3′ and the effect of widening is to lose the
upper bound on i. One descending step discovers the constraint i≤26/3, which
comes from the postcondition of Y (2)

3 by the loop:
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var i,j:int;
begin
i=0; j=10;
while i<=j do

i = i+2;
j = j-1;

done;
end

1

2

3

i = 0
j = 10

i≤j?
i = i+2
j = j−1

i≥j+1?

Ascending sequence
n Y

(2)
n Y

(3)
n

1 i=0 ∧ j =10

2 i+2j =20 ∧ 0≤ i≤2

3′ i+2j =20 ∧ 0≤ i≤4
3 i+2j =20 ∧ 0≤ i i+2j =20 ∧ 22≤3i

Descending sequence
n Z

(2)
n Z

(3)
n

1 i+2j =20 ∧ 0≤3i≤26 i+2j =20 ∧ 22≤3i≤26

Fig. 2. Example: single loop

1

2

3

i=j =0

(a)
i≤9?

i= i+1

i≥10 ∧ j≥10?

(b)
j≤9?
j =j+1

Fig. 3. Example: two non-
deterministic loops

var i:int;
begin

i=0;
while true do
if ? then

i=i+1;
if i>=100 then
i=0;

done;
end

1

2

3

i=0

i= i+1

i≤99? i≥100?
i=0

Fig. 4. Example: a single loop with break

∃i, j :
(implied by Y

(2)
3︷ ︸︸ ︷

i+2j=20∧
loop transition︷ ︸︸ ︷

i≤j ∧ i′= i+2∧ j′=j−1
)

= (i′=20−2j′ ∧ i′≤j′+3 )
⇒ i′≤20−2(i′−3)︸ ︷︷ ︸

= 3i′ ≤ 26

(7)

We first observe that the invariant Z(3) at point 3 can be rewritten into i+2j=
20 ∧ 8− 2

3 ≤ i≤ 8+ 2
3 , so i≤ 26/3 is the right bound for i at node 2 Second, if

one wants to use widening with thresholds, the guard of the loop i≤ j is not a
useful threshold constraint. The effect of using this threshold constraint allows
us to keep the constraint i≤ j at step 3, but this bound is violated at step 4′

by the postcondition of the loop transition, hence this does not change the final
result. We conclude that
(1) The important threshold constraint in a simple while loop is the postcondi-

tion of the guard of the loop by the loop body, here i≤j+3, see Eqn. (7).

Two non-deterministic loops. The CFG of Fig. 3 is typically the result of
the asynchronous parallel product of two threads with a simple loop. It shows
the limitation of descending sequences. The ascending sequence converges to
Y (2) = 0≤ i ∧ 0≤j. The descending sequence fails to improve it:

Z
(2)
1 = G1�2(Y (1)) " G2�2(a)(Y (2)) " G2�2(b)(Y (2))

= {i=j=0} " {1≤ i≤10 ∧ 0≤j} " {0≤ i ∧ 0≤j≤10}
= {0≤ i ∧ 0≤j}
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var i,j:int;
begin
i=0; j=0;
while i<=9 do

j=0;
while j<=9 do
j=j+1;

done;
i=i+1;

done;
end

1

2 3

4

i=j=0

i≤9?
j =0

j≥10?
i= i+1

j≤9?
j =j+1

i≥10?

Ascending sequence
n Y

(2)
n Y

(3)
n

1 i=j=0 i=j =0

2′ i=j=0 i=0 ∧ 0≤j≤1
2 i=j=0 i=0 ∧ 0≤j

3′ 0≤ i≤1 ∧ 10i≤j 0≤ i≤9 ∧ 0≤j
3 0≤ i ∧ 10i≤j 0≤ i ∧ 0≤j

4′ 0≤ i ∧ 0≤j 0≤ i ∧ 0≤j
4 0≤ i 0≤ i ∧ 0≤j

Descending sequence
n Z

(2)
n Z

(3)
n

1 0≤ i ∧ 0≤j 0≤ i ∧ 0≤j≤10

2 j≤10i ∧ 0≤j≤10 0≤ i ∧ 0≤j≤10

Fig. 5. Example: nested loop

The problem is that, for both variables i and j, there is always one incoming
edge in node 2 that propagates an invariant without an upper bound on it. As
a result, no variable gets an upper bound in the result.

A single loop with break. Another example, inspired by a real controller, is
depicted on Fig. 4. The dashed self-loop comes from the non-deterministic test
“?” modeling an input from the environment. When the “then” branch is not
taken, nothing happens in the loop body. It makes the transfer function on node
2 extensive: G(2)(Y ) 6 Y (2). Hence, the descending sequence will never improve
the invariant Y (2) = i≥0 found by the ascending sequence.

Nested loop. The nested loop program of Fig. 5 contains two widening nodes
2 and 3 and raises some additional issues. The ascending sequence loses the
two constraints j≤10 (step 2) and i≤10 (step 3) as expected (it even loses 0≤j
at step 4). The descending sequence first recovers j ≤ 10 at point 3 , but then
fails to recover i≤ 10 at point 2 . The problem is similar to the problem with
the non-deterministic loops of Fig. 3:
– at point 2 , the incoming edge 3 � 2 is not guarded by i≤9, and
– at point 3 the self-loop 3 � 3 is also not guarded by i≤9.

Hence, i≤10 is neither recovered at node 2 nor 3 . On this example, the guided
static analysis of [11] also fails to discover this bound. We observe that
(3) Applying the heuristics sketched at the end of single loop example for gen-

erating the threshold constraint, i.e., considering the postcondition of the
guard i≤ 9 by the body of the outer loop on i, already implies a fixpoint
computation because of the inner loop on j.

(4) Once an important fact is lost and the induced approximation is propagated,
it is not always possible to recover it with narrowing.

A loop with conditional and guided analysis. The example of Fig. 6 is
taken from [11]. The loop proceeds in two phases: in the first one, i and j are
incremented together until i = 51; in the second one, i is incremented and j is
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decremented, and the loop exits with i=102 and j=−1. The standard approach
finds, at node 4 , Y (4) = j≤−1 ∧ j≤ i+1 and Z

(4)
1 = 51≤ i ∧ j=−1; it does not

discover i≤102.
The intuition behind guided static analysis [11] is that widening implicitly

assumes that the behavior of the program is “regular”, which is not the case
when a new behavior is activated in the program (in Fig. 6, such a new behavior
is the activation of the “else” branch in the loop body). Hence its principle is
(i) to discover the currently active part of the CFG (by a simple propagation);
(ii) to perform a complete analysis with widening and narrowing on this part,
starting from the invariants discovered so far; (iii) and to go back to step (i)
to check whether new parts of the CFG may now be activated. The process is
iterated up to convergence, which is guaranteed because the CFG is finite.

var i,j:int;
begin 1

i=0; j=0; 2
while true do
if i<=50 then j=j+1;

else j=j-1;
if j<0 then goto 4
i=i+1;

done; 4
end
Fig. 6. Example: loop with
conditional

In this example, guided static analysis detects
that only the “then” branch is initially activated.
The ascending sequence on the active part of the
CFG discovers 0 ≤ i = j at node 2 followed by
a descending sequence that adds the bound i ≤
51. Only at this point does it take into account
the activation of the “else” branch. The technique
restarts a new analysis from the invariants inferred
so far, and eventually obtains Z

(4)
1 = 51 ≤ i ≤

102 ∧ j=−1.
In this example, widening with thresholds

would behave like guided static analysis, provided
that the threshold constraint i ≤ 51 is inferred.
Therefore,
(4) Thresholds are useful not only to bound lfp(G), but also to temporarily

bound the ascending iteration up to the activation of a new behavior.

Rationale for inferring thresholds. We made the following observations in
the previous sections:

(1) For a while loop, the relevant threshold constraints are found in the post-
condition of the guard of the loop by its body.

(2) Computing this postcondition may imply a fixpoint computation when the
loop body itself contains loops; but then it implies widening.

(3) Threshold constraints inferred at a widening node should be propagated to
the other widening nodes of the CFG.

(4) Thresholds are useful not only to bound the extrapolation, but also to detect
the activation of new behaviors and to emulate guided analysis.

Because of observation (2), our solution propagates constraints without trying
to converge to a fixpoint. Instead of the idea of propagating backward to the
loop head the negation of the tests attached to transitions exiting a loop [15],
our technique propagates forward the conditions for staying or exiting the loop
body, which has a similar effect. In addition, it also emulates guided analysis by
propagating tests attached to conditionals inside the loops.
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3 Inferring Thresholds by Propagating Disjunctions

We assume the hypothesis of §2: we have to solve (4), which is abstracted in the
abstract domain A into (5).

Definition 1 (Widening with thresholds). Given twoabstract valuesa1, a2 ∈
A, and a finite set T ⊆ A of threshold values, we define

a1∇T a2 = (a1∇a2) !
�

{a ∈ T | a1 � a ∧ a2 � a}

Extracting thresholds from an abstract property. We assume that we
have an extraction function π : A → ℘(Elt(A)) that extracts, from any value
a ∈ A, a set of “threshold” abstract values {a1, . . . , at} that satisfies ∀i : a � ai.
The definition of π depends on the domain A and possibly on the widening
operator ∇. For numerical domains, π typically extracts the set of numerical
constraints on which abstract values are built by conjunction. For the logico-
numerical domain BddApron [16], π also returns all the numerical constraints
involved in the abstract property. π is extended to the disjunctive domain ℘(A)
with π(X) =

⋃
a∈X π(a).

Propagating thresholds in the system of equations. We now assume that
(4) is abstracted into ℘(A) rather than A. This can be done by replacing " by ∪
inside the functions G(k) in (5). We thus have an equation system T (k) = G

(k)
d (T )

with T = (T (1), . . . , T (K)) ∈ (℘(A))K . We also assume that, in the disjunctive
domain ℘(A), disjuncts are not simplified using the order � in A. We infer
thresholds by considering the first steps of the following sequence:

T
(k)
0 = -℘(A) = {-A}

T
(k)
n+1 = π ◦G(k)

d (T (0)
n+1 . . . T

(k−1)
n+1 , T

(k)
n . . . T

(K)
n )

(8)

Given a number N of iterations, we define the set T (k) of threshold values
attached to the node k ∈ T as T (k) = T

(k)
N . In practice, we take N = 2. This

allows us to propagate conditions from loop heads to each node of their body
(first iteration) but also to propagate conditions of possible inner loops back to
the head of the outer loops (second iteration).

Applying widening with thresholds. Finally we solve (5) by computing the
sequence (6) in which ∇T (k) replaces the standard widening operator ∇.

Application to the running examples. Figs 7 shows the application of our
method to the examples described in §2. In each subfigure, the upper table shows
the thresholds computed at each step while the lower table gives the result of
the ascending sequence using thresholds. In all cases, the ascending sequence
discovers the expected invariant. We do not break equality constraints e= 0 in
e ≥ 0 ∧ e ≤ during the inference of thresholds, but we do it at the end of the
inference (in Fig. 7(d) the threshold j ≤ 10 at node 2 is extracted from the
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n T
(2)
n \ T

(2)
n−1

1 {i≤j+3, i=0, j =10}
2 {i≤12, i=2, j≥−1, j =9}

k 2 3

Y (k) i+2j =20 ∧
3i≤26 ∧ i≥0

i+2j =20 ∧
22≤3i≤26

(a) Single loop example of Fig. 2

n T
(2)
n \ T

(2)
n−1

1 {i≤10, j≤10, i=0, j =10}
2 {i=1, j =1}

k 2 3

Y (k) 0≤ i≤10 ∧ 0≤j≤10 i=10 ∧ j =10

(b) Two non-deterministic loops example of
Fig. 3

n T
(2)
n \ T

(2)
n−1

1 {i≤99, i=0,�}
2 {i=1}

k 2 3

Y (k) 0≤ i≤99 1≤ i≤100

(c) Single loop with break ex-
ample of Fig. 4

n T
(2)
n \ T

(2)
n−1 T

(3)
n \ T

(3)
n−1

1 {j≥10, i=0, j =0} {i≤9, j≤10, i=0, j =0}
2 {i≤10, j =10, i=1} {i=1, j =1}
k 2 3 4

Y (k) j≤10i ∧ i≤10 ∧
0≤j≤10

0≤ i≤9 ∧
0≤j≤10

i=10 ∧ j =10

(d) Nested loops example of Fig. 5

Fig. 7. Inferring thresholds and widening with thresholds on running examples

Table 1. Comparison between standard, guided, policy iteration, and thresholds tech-
niques using the box domain, on the examples of [3]

Program guided vs standard policy vs guided thresholds vs policy
test5 = 4/0 =
test6 0/4 6/ − 4 0/4
test7 = 9/0 −4/0
test8 = 4/0 =
test9 2/0 4/0 =

test1, test2, test3, test4: same results (simple examples)

N1/N2 in column A vs B: number N1 of additional finite interval bounds and
number N2 of improved finite interval bounds found by technique A compared to
technique B, in all the program CFG; “=” indicates identical results.

value j = 10). Although our method infers many useless threshold constraints,
it does infer all the required ones (which are underlined). It can be noticed that
the second iteration step adds useful threshold constraints only in the nested
loop example: this confirms observation (3) in §2.

4 Experiments and Conclusion

We implemented our inference technique for the BddApron logico-numerical
abstract domain used by the ConcurInterproc tool [16,17].1 We first con-
sider the box abstract domain, and three alternative methods: (1) the standard

1 These experiments can be run with the online version of the analyzer, see [17].
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Table 2. Comparison between standard, guided and our technique
(inference+analysis), using the convex polyhedra domain

Program CFG Size Standard Guided Inf. of Thres. Thresholds
#K/#F Time Prec. Time Prec. Time Av.nb. Time Prec.

Sequential, intraprocedural programs
loop1 3/3 0.02 = 0.03 = 0.02 14 0.02 =

loop_nondet 3/4 0.03 B 0.03 B 0.02 12 0.04 A
loop_reset 4/6 0.01 B 0.01 B 0.01 6 0.02 A

loop2 4/5 0.06 B 0.09 B 0.02 12 0.08 A
gopanreps 4/6 0.06 B 0.09 A 0.04 16 0.08 A
loop2Bis 5/7 0.14 B 0.24 B 0.07 18 0.20 A

gopanrepsBis 5/8 0.29 B 0.49 B 0.28 39 0.85 A
nestedLoop 5/8 0.61 B 0.68 B 0.58 39 0.72 A

sipma91 7/11 0.35 B 0.42 B 0.57 33 0.37 A
car 3/4 0.06 = 0.07 = 0.01 14 0.06 =

Concurrent programs
concurrent_loop 9/16 0.04 B 0.04 B 0.07 8 0.05 A

loop2_TLM 24/26 0.24 B 0.25 B 1.63 19 0.33 A+

barrier_counter_2 61/108 1.71 B 1.91 B 2.09 18 4.90 A+

barrier_counter_3 405/847 158.00 B 190.00 B 1553.00 78 1096.00 A+

Programs with non-inlined procedure calls
loop2_rec 15/18 0.25 B 0.42 B 1.88 28 0.47 A

gopanreps_rec 9/11 0.22 B 0.38 A 2.17 46 0.46 A
loop2Bis_rec 16/20 1.07 B 1.74 B 23.75 43 1.25 A

gopanrepsBis_rec 17/21 3.29 B’ 9.23 A 651.00 82 9.86 B”
loop2_TLM_rec 34/38 0.86 B 0.86 B 17.76 20 1.97 A+

#K/#F: size of the CFG, with #K the number of control nodes and #F the number
of basic blocks; Time: running times in seconds, on a MacBook Air (Intel Core 2 Duo,
2.13 GHz); Prec.: relative precision: A is best, C is worse; A+ indicates the proof of
a specific property; Av.nb.: average number of inferred threshold constraints at each
CFG node.

Kleene iteration with widening and descending sequence; (2) the guided static
analysis technique of [11]; (3) and the policy iteration technique of [3] mentioned
in the introduction, which is able to converge to the least fixpoint under some
assumptions. Tab. 2 compares the results of the 4 methods on the examples
of [3], which are purely numerical, by counting the total number of better bounds
inferred by one technique over the other. On these tricky examples:

– guided is always better than standard;
– policy is better than guided, with the exception of test6, where it infers

6 additional finite bounds, but where 4 of the other inferred bounds are less
accurate. Thresholds does strictly better than the other techniques here.

– test7 is the only example for which widening with thresholds is less accurate
than policy iteration, but still more accurate that guided analysis.
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These experiments showed us the usefulness of considering also the constraint
x≥0 when x≤0 is inferred. Typically, if we have a inner loop while (x>=1) do
x–, the exit constraint x≤0 will be propagated to the outer loop head, whereas
it is the constraint x≥0 which is relevant as a threshold at this point.

We then considered the convex polyhedra abstract domain combined in Bd-
dApron with finite-state variables, Tab. 1. Policy iteration could not be exper-
imented, because it is not defined on convex polyhedra. For all but 5 of these
examples, widening with thresholds is strictly more precise than the standard
or guided analyses, and it is less precise than guided analysis for a single ex-
ample. W.r.t. efficiency, for the sequential, simple examples, the additional
cost can be considered moderate, even when the number of inferred thresholds
is not so small; for concurrent programs, the additional complexity is higher
and may be dramatic in some cases, typically barrier_counter_3 for which
the number of thresholds have an impact of the analysis time (factor 6.0 w.r.t.
standard analysis, besides the inference time). The performance problem here
can be fixed by performing a thread-modular inference, which would infer the
required thresholds on these examples (checked by manual inspection); for rela-
tional interprocedural analysis, we also have a performance problem, which
results from the procedure return operation that implies a relation composition
between abstract values. This problem desserves further investigations. Observe
however that the technique infers the right thresholds, when for instance nested
loops are implemented as tail recursive calls (X_rec versions of X examples).

To conclude, our technique is very successful w.r.t. precision, but needs effi-
ciency improvements for concurrent and recursive programs. Abstract accelera-
tion [10] might be better than our technique because it computes α◦F ∗◦γ instead
of the less precise (α ◦ F ◦ γ)∗, but it does not solve the nestedLoop example
with 3 nested loops, and is hardly applicable if loops are transformed in tail-
recursive calls. It should combine efficiently with our technique. [18] describes
the inference of thresholds in the Astrée analyzer; it infers thresholds for single
variables, and considers intraprocedural programs (procedures are inlined).
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Abstract. In this paper, we address the problem of local search for the
falsification of hybrid automata with affine dynamics. Namely, given a
sequence of locations and a maximum simulation time, we return the
trajectory that comes closest to the unsafe set. This problem is formu-
lated as a differentiable optimization problem and solved. The purpose
of developing such a local search method is to combine it with high level
stochastic optimization algorithms in order to falsify hybrid systems with
complex discrete dynamics and high dimensional continuous spaces. Ex-
perimental results indicate that the local search procedure improves upon
the results of pure stochastic optimization algorithms.

Keywords: Model Validation and Analysis; Robustness; Simulation;
Hybrid systems.

1 Introduction

Despite the recent advances in the computation of reachable sets in medium to
large-sized linear systems (about 500 continuous variables) [1], the verification
of hybrid systems through the computation of the reachable state space remains
a challenging problem [2]. To overcome this difficult problem, many researchers
have looked into testing methodologies as an alternative. Testing methodolo-
gies can be coarsely divided into two categories: robust testing (e.g. [3, 4] and
systematic/randomized testing [5, 6].

Along the lines of randomized testing, we investigated the application of
Monte Carlo techniques [7] to the temporal logic falsification problem of hybrid
systems. In detail, utilizing the robustness of temporal logic specifications [8] as
a cost function, we managed to convert a decision problem, i.e., does there exist
a trajectory that falsifies the system, into an optimization problem, i.e., what
is the trajectory with the minimum robustness value? The resulting optimiza-
tion problem is highly nonlinear and, in general, without any obvious structure.
Therefore, we treated the model of the hybrid system as a black box, and the
cost function was minimized using Simulated Annealing (SA).
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A stochastic optimization algorithm for the falsification problem picks a point
in the set of initial conditions, simulates the system for a bounded duration,
computes the distance to the unsafe set and, then, decides on the next point in
the set of initial conditions to try. Our goal in this paper is to provide assistance
at exactly this last step. Namely, how do we pick the next point in the set of
initial conditions? Note that we are essentially looking for a descent direction
for the cost function in the set of initial conditions.

Our main contribution, in this paper, is an algorithm that can propose such
descent directions. Given a test trajectory sx0 : R+ �→ Rn starting from a point
x0, the algorithm tries to find some vector d such that sx0+d gets closer to the
unsafe set than sx0 . We prove that it converges to a local minimum of the ro-
bustness function in the set of initial conditions, and demonstrate its advantages
within a stochastic falsification algorithm. These results will enable local descent
search for the satisfaction of arbitrary linear temporal logic specifications, not
only safety specifications. The extended version of the paper appears in [9].

2 Problem Formulation

The results in this paper will focus on the model of hybrid automata with affine
dynamics. A hybrid automaton is a mathematical model that captures systems
that exhibit both discrete and continuous dynamics. In brief, a hybrid automaton
is a tuple H = (X,L,E, Inv, F low,Guard,Re) where X ⊆ Rn is the state
space of the system, L is the set of control locations, E ⊆ L × L is the set
of control switches, Inv : L → 2X assigns an invariant set to each location,
Flow : L × X → Rn defines the time derivative of the continuous part of the
state, Guard : E → 2X is the guard condition that enables a control switch e
and, Re : X×E → X×L is a reset map. Finally, we let H = L×X to denote the
state space of the hybrid automaton H. For the purposes of this paper, we define
a trajectory ηh0 starting from a point h0 ∈ H to be a function ηh0 : R+ → H
defined by: ηh0(t) = (l(t), sx0(t)), where l(t) is the location at time t, and sx0(t)
is the continuous state at time t. We will denote by loc(ηh0) the sequence of
control locations that the trajectory ηh0 visits (no repetitions).

The hybrid systems dealt with in this paper are deterministic and non-Zeno.
In each location, the dynamics are affine, the guards are non-overlapping and
the transitions are taken as soon as possible. This will permit us to use directly
results from [4]. To avoid a digression into unnecessary technicalities, we will
assume that the set of initial conditions X0 ⊂ Rn and the unsafe set U ⊂ H are
included in single control locations, l0 and lU , respectively.

Let DU : H �→ R+ be the distance function to U , defined by DU(v, x) =
infu∈U ||x − u|| if v = lU , and DU(v, x) = +∞ otherwise. Given a compact
time interval [0, T ], we define the robustness of a system trajectory ηh to be
f(h) � min0≤t≤T DU(ηh(t)). When l is clear from the context, we’ll write f(x).
Trajectories of minimal robustness indicate potentially unsafe operation of the
system. Finding such a trajectory can be seen as a 2-stage problem: first, de-
cide on a sequence of locations to be followed by the trajectory. Second, out of
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all trajectories following this sequence of locations, find the trajectory of mini-
mal robustness. This paper addresses the second stage. The central step is the
solution the following problem:

Problem 1 Given a hybrid automaton H, a compact time interval [0, T ], a set
of initial conditions H0 ⊆ H and a point h0 = (l0, x0) ∈ H0 such that 0 <
f(h0) < +∞, find a vector dx such that h′0 = (l0, x0 + dx), loc(ηh0) = loc(ηh′

0
)

and f(h′0) ≤ f(h0).

An efficient solution to Problem 1 may substantially increase the performance
of the stochastic falsification algorithms by proposing search directions in which
the robustness decreases. In summary, our contributions are: a) We formulate
Problem 1 as a nonlinear optimization problem, which we prove to be differen-
tiable w.r.t. the initial conditions. Thus it is solvable with standard optimizers.
b) We developed an algorithm, Algorithm 1, to find local minima of the ro-
bustness function. c) We demonstrate the use of Algorithm 1 in a higher-level
stochastic falsification algorithm, and present experimental results to analyze its
competitiveness against existing methods. We now make some assumptions:

a. The continuous dynamics in each location are stable.1

b. The resets Re(·, e) are differentiable in their first argument.
c. Conditions 4 and 5 of Theorem III.2 in [12] are satisfied, namely: for all

i, there exists a differentiable function σi : Rn �→ R such that Inv(li) =
{x ∈ Rn|σi(x) ≥ 0}; and, for all i, x such that σi(x) = 0, the Lie derivative
LFσi(x) 	= 0. This allows us to have differentiable transition times tx of the
trajectory starting at the initial point x ∈ X0.

d. lU ∈ loc(ηh0). This is required for our problem to be well-defined (specifically,
for the objective function to have finite values). The task of finding such an
h0 is delegated to the higher-level stochastic search algorithm, within which
our method is integrated. Due to space restrictions, all proofs are relegated
to the technical report [9].

3 Descent in the Robustness Ellipsoid

Consider a trajectory ηh0 with positive robustness, with loc(ηh0) = l0l1 . . . lN .
This is provided by the simulation. We search for an initial point h′0 ∈ H0

(actually x′0 ∈ X0), whose trajectory gets closer to the unsafe set than the
current trajectory ηh0 . In order to satisfy the constraints of Problem 1, we need
to make sure that the new point h′0 generates a trajectory that follows the same
sequence of locations as ηh0 . This constraint can be satisfied using the notion
of robust neighborhoods introduced in [4]. In [4], it is shown that for stable
systems and for a given safe initial point h0 = (l0, x0), there exists an ‘ellipsoid
of robustness’ E(x0) centered on x0, such that any trajectory starting in the
ellipsoid follows the same sequence of locations as ηh0 . Therefore, we restrict the
1 This is not a restrictive assumption since we can also consider incrementally stable

systems [10], and even unstable linear systems [11].
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choice of initial point to X0

⋂
E(x0), where E(y) = {x|(x− y)TP−1

y (x− y) ≤ 1}
is the ellipsoid of robustness centered on y, with shape matrix Py.

We now proceed to pose our search problem as a feasibility problem. Let t0
be the time at which sx0 is closest to U , and W be the set of all points which
are closer to U than sx0(t0). W is represented as W = {x ∈ Rn : pi(x) ≤ 0, i =
1 . . . k}, where the pi are suitably defined predicates, and X0 = {x|C0x−g0 ≤ 0}.
If there exists x∗ ∈ X0

⋂
E(x0) and t∗ ≥ 0 such that sx∗(t∗) ∈ W , it follows

that f(x∗) ≤ f(x0). Our search problem then consists in finding such x∗ and
t∗. Therefore define the decision variable z = (x, t, ν) ∈ Rn × R+ × R, the
objective function F (z) = ν, and the constraint functions: G0(z) = C0x − g0,
GE(z) = (x − x0)TP−1

x0
(x − x0) − 1, and GW(z) = (p1(sx(t)), . . . , pk(sx(t)))T .

The search problem can now be cast as a feasibility problem over z:

min
z=(x,t,ν)

F (z) s.t. G0(z) ≤ 0, GE(z) ≤ ν,GW(z) ≤ ν (1)

(In our implementation of Problem (1), the first constraint is specified as bounds
to the optimization and so is always satisfied).

The objective function F (z) measures the slack in satisfying the constraints:
a negative ν means all constraints are satisfied, and in particular, GW . Thus, we
have a trajectory that enters W and, hence, gets closer to U . Formally:

Proposition 1. Let z∗ = (x∗, t∗, ν∗) be a minimum of F (z) in program (1).
Then f(l0, x∗) ≤ f(l0, x0).

Functions F , G0 and GE are differentiable in z. The next proposition asserts
differentiability of GW . Thus, standard gradient-based optimizers can be used
to solve Problem (1). Let E0 � int(E(X0)

⋂
X0).

Proposition 2. Fix t ∈ (tN−1, T ], and consider the hybrid trajectory over N ≥
1 locations. Then sx(t) is differentiable at x0 for all x0 ∈ E0. Moreover, for a
fixed x ∈ E0, sx(t) is differentiable in t over (tN−1, T ). If pi is differentiable for
all i = 1, . . . , k, then GW is differentiable in z.

We choose Sequential Quadratic Programming (SQP), as a good general-purpose
optimizer to solve Problem 1. SQP is a Q-quadratically convergent iterative
algorithm. At each iterate, GW(xi, ti, νi) is computed by simulating the system
at xi. This is the main computational bottleneck of this method, and will be
discussed in more detail in the Experiments section.

Solving Problem (1), for a given W , produces a descent direction for the ro-
bustness function, but not necessarily a minimum. Algorithm 1 (RED) describes
how to setup a sequence of optimization problems that leads to a local minimum
of f (see [9] for proof): for i = 0, 1, 2, . . . , let xi ∈ X0

⋂
E(xi−1), and let ti be

the time when sxi is closest to U . Let Wi be the set of points closer to U than
sxi(ti). For each Wi, one can setup the optimization Problem (1) with W = Wi,
and initial point (xi, ti, 0); this problem is denoted by Prob1[Wi].

Ellipsoid Descent with Stochastic Falsification: As outlined in the intro-
duction, RED can be used as a sub-routine in a higher-level stochastic search
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Algorithm 1. Robustness Ellipsoid Descent (RED)
Input: An initial point x0 ∈ X0, and corresponding t0.
Output: zQ.

1: Initialization: i = 0
2: Compute z∗

i = (x∗
i , t

∗
i , ν∗

i ) = minimum of Prob1[Wi].
3: while ν∗

i < 0 do
4: xi+1 ← x∗

i

5: ti+1 = arg mint dU (sxi+1(t))
6: Wi+1 = P (xi+1)
7: Compute z∗

i = (x∗
i , t

∗
i , ν∗

i ) = min of Prob1[Wi+1].
8: i = i + 1
9: end while

10:
11: Return zQ � z∗

i

Algorithm 2. Simulated Annealing with RED (SA+RED)
Input: An initial point x ∈ X0.
Output: Samples Θ ⊂ X0.
Initialization: BestSoFar = x, fb = f(BestSoFar)

1: while f(x) > 0 do
2: x′ = ProposalScheme(x)
3: α = exp (−β(f(x′) − fb))
4: if UniformRandom(0, 1) ≤ α then
5: x = RED(x′)
6: else// Use the usual acceptance criterion
7: α = exp (−β(f(x′) − f(x)))
8: if UniformRandom(0, 1) ≤ α then x = x′

9: end if
10: end if
11: (BestSoFar,fb) = BetterOf(x, BestSoFar)
12: end while

falsification algorithm. A stochastic search will have a ProposalScheme routine
which, given a point x in the search space, will propose a new point x′ as a
falsification candidate. RED may then be used to further descend from some
judiciously chosen proposals. Algorithm 2 illustrates the use of RED within the
Simulated Annealing (SA) stochastic falsification algorithm of [7]. Given two
samples x and y, BetterOf(x, y) returns the sample with smaller robustness, and
its robustness.

For each proposed sample x′, it is attempted with certainty if its robustness
is less than the smallest robustness fb found so far. Else, it is attempted with
probability e−β(f(x′)−fb) (lines 3-4). If x′ is attempted, RED is run with x′ as
starting point, and the found local minimum is used as final accepted sample
(line 5). If the proposed sample is not attempted, then the usual acceptance-
rejection criterion is used: accept x′ with probability min{1, e−β(f(x′)−f(x))}. As
in the original SA method, ProposalScheme is implemented as a Hit-and-Run
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sampler (other choices can be made). The next section presents experimental
results on three benchmarks.

3.1 Experiments

This section describes the experiments used to test the proposed algorithm
SA+RED. The technical report [9] contains details of the benchmarks, meth-
ods, experiments and more results. We chose 3 navigation benchmarks from
the literature: Nav0 (4-dimensional with 16 locations, unknown whether it is
falsifiable or not), and Nav1 and Nav2 (4-dimensional with 3 locations, both
falsifiable); and a filtered osciallator Fosc (32-dimensional with 4 locations). The
methods compared are: SA+RED, pure Simulated Annealing (SA) [7], and the
reachability analysis tool SpaceEx [13]. In a falsification framework, SpaceEx is
used as follows: for a given bound j on the number of discrete jumps, SpaceEx
computes an over -approximation R(j) of the set R(j) reachable in j jumps:
R(j) ⊂ R(j). If R(j)∩U is empty, then a fortiori R(j)∩U is empty, and the sys-
tem is safe if trajectories are restricted to j jumps. When, however, R(j)∩U 	= ∅,
no conclusion can be drawn. Because SA and SA+RED are stochastic methods,
their behavior will be studied by analyzing a number of runs. A regression will
mean a set of 20 runs, all executed with the same set of parameters, on the same
benchmark. SpaceEx was run in deterministic mode on Nav0.

Parameter setting: We set the test duration T = 12sec for all benchmarks. For
SA+RED, we chose to generate 10 samples (|Θ| = 10). Even this small number
is enough for the algorithm to be competitive. The SpaceEx parameters were
varied in such a way that the approximation R of the reachable set R became
increasingly precise. See [9].

The performance and cost metrics: Each run produces a minimum robust-
ness. For a given regression, we measure: the smallest, the average, and the
largest minimum robustness found by the regression (min, avg, max in Table
1). The standard deviation of minimum robustness is also reported (σf ). For
SpaceEx, we had to simply assess whether R(j) intersected U or not. SA and
SA+RED each simulates trajectories of a fixed length T in the course of its
operation, so their costs are compared by looking at the average Number of
Trajectories (NT ) each simulates. The operations that SpaceEx does are radi-
cally different from those of the other methods compared here. The only way to
compare performance is through the runtime.

Experiments: We impose an upper limit NTMAX on NT : SA+RED is aborted
when its NT reaches this maximum, and SA is made to generate NTMAX sam-
ples. (Of course, SA+RED might converge before simulating all NTMAX trajec-
tories). 3 values were chosen for NTMAX : 1000, 3000 and 5000. For each value,
a regression is run and the results reported.

Table 1 compares SA+RED to SA: we start by noting that SA+RED falsified
Nav2, whereas SA failed to so. On most regressions, SA+RED achieves better
performance metrics than SA, for the same (or lower) computational cost. This is
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Table 1. Comparison of SA and SA+RED. Robustness values are reported to the first
differing decimal at least. σf is standard deviation of robustness for SA+RED.

System NTMAX NT σf SA+RED Rob. SA Rob.
(σNT ) min, avg, max min, avg, max

Nav0 1000 1004 (1.4) 0.022 0.2852, 0.30,0.35 0.2853,0.33,0.33
3000 2716 (651) 0.019 0.2852,0.29,0.32 0.2858,0.31,0.36
5000 4220 (802) 0.009 0.285,0.28,0.32 0.286,0.32,0.35

Nav1 1000 662 (399) 0.21 0,0.43,0.65 0,0.96,1.88
3000 1129 (1033) 0.23 0,0.39,0.65 0,0.99,1.80
5000 1723 (1770) 0.23 0,0.38,0.68 0,0,0

Nav2 1000 902 (246) 0.32 0,0.54,0.78 0.3089,1.11,1.90
3000 1720 (1032) 0.3 0,0.53,0.83 0.3305,1.29,1.95
5000 1726 (1482) 0.27 0,0.62,0.79 0,0.002,0.01

Fosc 1000 1000 (9.3) 0.024 0.162,0.206,0.251 0.1666,0.216,0.271
3000 3000 (8.7) 0.024 0.163,0.203,0.270 0.173,0.212,0.254
5000 5000 (11) 0.028 0.167,0.193,0.258 0.185, 0.218, 0.245

consistent whether considering best case (min), average case (avg) or worst case
(max). There are 2 exceptions: on Nav1 and Nav2, NTMAX = 5000 produces
better average and max results for SA than for SA+RED. When running realistic
system models, trajectory simulation is the biggest time consumer, so effectively
NT is the limiting factor. So we argue that these 2 exceptions don’t invalidate
the superiority of SA+RED as they occur for high values of NT that might not
be practical with real-world models.

For SpaceEx running on Nav0, we observed that our initial parameter set
produces an R(j) that intersects U . Since this is inconclusive, we modified the
parameters to get a better approximation, but SpaceEx runtimes far exceeded
those of SA+RED (more than 1.5 hours). Moreover, SpaceEx did not reach a
fixed point of its iterations. Thus, we can not be sure that all of the reachable
space was covered. While this may be seen as an analogous problem to the choice
of T in SA+RED, the computational cost of increasing j is much more prohibitive
than that of increasing T . Thus we may conclude that stochastic falsification and
reachability analysis can play complementary roles in good design practice: first,
stochastic falsification computes the robustness of the system with respect to
some unsafe set. Guided by this, the designer may make the system more robust,
which effectively increases the distance between the (unknown) reachable set and
the unsafe set. Then the designer can run a reachability analysis algorithm where
coarse over-approximations can yield conclusive results.

4 Conclusions

The minimum robustness of a hybrid system is an important indicator of how safe
it is. In this paper, we presented an algorithm for computing a local minimum
of the robustness for a certain class of linear hybrid systems. When integrated
with a higher-level stochastic search algorithm, the proposed algorithm has been
shown to perform better than existing methods on literature benchmarks, and
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to complement reachability analysis in falsification. We will next deploy this
capability to perform local descent search for the satisfaction of arbitrary linear
temporal logic specifications, not only safety specifications. It will be important
to reduce the required number of tests NT , and to determine an appropriate test
duration T , rather than a fixed arbitrary value. Finally, it is important to get a
theoretical understanding of the behavior of the two Markov chains iterated by
SA+RED to further improve it.
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13. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)



Learning-Based Compositional Verification
for Synchronous Probabilistic Systems

Lu Feng, Tingting Han, Marta Kwiatkowska, and David Parker

Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK

Abstract. We present novel techniques for automated compositional verification
of synchronous probabilistic systems. First, we give an assume-guarantee frame-
work for verifying probabilistic safety properties of systems modelled as discrete-
time Markov chains. Assumptions about system components are represented as
probabilistic finite automata (PFAs) and the relationship between components and
assumptions is captured by weak language inclusion. In order to implement this
framework, we develop a semi-algorithm to check language inclusion for PFAs
and a new active learning method for PFAs. The latter is then used to automati-
cally generate assumptions for compositional verification.

1 Introduction

Probabilistic model checking is a formal verification technique for analysing quantita-
tive properties of systems that exhibit stochastic behaviour. A key challenge in this area
is scalability, motivating the development of compositional verification methods that
decompose the analysis of a large system model into smaller sub-tasks. We focus on
the assume-guarantee paradigm, in which each system component is analysed under an
assumption about the other component(s) it is composed with. After checking that the
assumption is satisfied, proof rules are used to deduce properties of the overall system.

Several assume-guarantee frameworks for verifying probabilistic systems have been
proposed, mainly for models with both probabilistic and nondeterministic behaviour
[1,13,10]. The main difficulty when developing such a framework is formulating an
appropriate notion of assumptions that can support compositional reasoning. Our goal
is to develop assume-guarantee techniques for probabilistic model checking that are
practical, efficient and fully-automated. This means that assumptions should ideally:
(i) be expressive enough for practical applications; (ii) allow efficient, fully-automated
verification; and (iii) be amenable to automatic generation.

One promising direction is the framework of [13] (and its extensions in [10,9]). In
[13], assumptions are probabilistic safety properties (e.g. “event A always occurs before
event B with probability at least 0.98”) and [10] generalises this to boolean combina-
tions of ω-regular and reward properties. In both cases, this yields efficiently checkable
assumptions and the approaches were successfully implemented and applied to some
large case studies. Furthermore, [9] shows how to automatically generate probabilistic
safety property assumptions [13] using learning techniques based on L*.

In this work, we continue to develop probabilistic assume-guarantee techniques in
which assumptions can be automatically generated via learning. In particular, our fo-
cus is on using a more expressive class of assumptions. Probabilistic safety property
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assumptions [13] can only capture a limited amount of information about a component,
restricting the cases where assume-guarantee reasoning can be applied. The framework
of [13] is incomplete in the sense that, if the property being verified is true, there does
not necessarily exists an assumption that can be used to verify it compositionally.

This paper proposes novel techniques for compositional probabilistic verification in
which assumptions are probabilistic finite automata (PFAs) [15]. Unlike [13,10], our
approach is complete. Furthermore, as in [10], we use learning to automatically gener-
ate assumptions. PFAs represent weighted languages, mapping finite words to proba-
bilities. In our framework, an assumption about a system component M is represented
by a PFA that gives upper bounds on the probabilities of traces being observed in M .
This is an inherently linear-time relation, which is well-known to be difficult to adapt to
compositional techniques for systems that exhibit both probabilistic and nondeterminis-
tic behaviour [16]. So, in the present work, we restrict our attention to fully probabilistic
systems. To do so, we model components as probabilistic I/O systems (PIOSs), which,
when combined through synchronous parallel composition, result in a (fully probabilis-
tic) discrete-time Markov chain (DTMC). The relation between a PIOS M and a PFA
A representing an assumption about M is captured by weak language inclusion. Based
on this, we give an asymmetric proof rule for verifying probabilistic safety properties
on a DTMC composed of two PIOSs.

In order to implement our framework, we give an algorithm to check weak language
inclusion, reducing it to the existing notion of (strong) language inclusion for PFAs.
Although checking PFA language equivalence (that each word maps to the same prob-
ability) is decidable in polynomial time [18,7], checking language inclusion is undecid-
able [5]. We propose a semi-algorithm, inspired by [18], to check language inclusion;
in the case where the check fails, a minimal counterexample is produced.

We also develop a novel technique for learning PFAs, which we use to automatically
generate assumptions for our framework. Our algorithm, like L*, is based on active
learning, posing queries in an interactive fashion about the PFA to be generated. Several
active PFA learning algorithms exist [12,17,4] but are not suitable for our needs: [12]
applies to a restricted class of PFAs, [17] needs to know the size of the PFA in advance,
and [4] actually learns multiplicity automata, which may contain negative values.

Full version: For an extended version of this paper, including additional details, expla-
nations and running examples, experimental results and proofs, see [8].

2 Preliminaries

We first briefly describe probabilistic finite automata and discrete-time Markov chains.
We use SDist(S) to denote the set of probability sub-distributions over set S, ηs for the
point distribution on s∈S, and μ1×μ2 for the product distribution of μ1 and μ2.

Definition 1 (PFA). A probabilistic finite automaton (PFA) is a tuple A = (S, s, α,P),
where S is a finite set of states, s ∈ S is an initial state, α is an alphabet and P : α →
(S × S → [0, 1]) is a function mapping actions to transition probability matrices. For
each a ∈ α and s ∈ S,

∑
s′∈S P(a)[s, s′] ∈ [0, 1].

A PFA A defines a mapping PrA :α∗→[0, 1] giving the probability of accepting each
finite word w ∈ α∗. Intuitively, the probability PrA(w) for a word w = a1 · · · an is
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determined by tracing paths throughA that correspond to w, with P(a)[s, s′] giving the
probability to move from s to s′ on reading a. More precisely, we let ι be an S-indexed
0-1 row vector with ι[s] = 1 if and only if s = s, κ be an S-indexed column vector of
1s and P(w) = P(a1)· · ·P(an). Then, we define PrA(w) = ιP(w)κ.

Definition 2 (Language inclusion/equivalence). Given two PFAs A1 and A2 with the
same alphabet α, we say A1 and A2 are related by (strong) language inclusion (resp.
language equivalence), denoted A1 � A2 (resp. A1 ≡ A2), if for every word w ∈ α∗,
PrA1(w) � PrA2(w) (resp. PrA1(w) = PrA2(w)).

Definition 3 (DTMC). A discrete-time Markov chain (DTMC) is a tupleD=(S, s, α, δ),
where S is a finite set of states, s ∈ S is an initial state, α is an alphabet of action labels
and δ : S × (α ∪ {τ}) → SDist(S) is a (partial) probabilistic transition function, such
that, for any s, δ(s, a) is defined for at most one a ∈ α ∪ {τ}.

If δ(s, a) = μ, the DTMC can make a transition, labelled with action a, and move to
state s′ with probability μ(s′). We denote such transitions by s

a−→ μ (or s
a−→ s′). The

DTMC deadlocks when δ(s, a) is not defined for any a, which we denote by s 	→. We
use action label τ to denote a “silent’ (or “internal”) transition. A (finite or infinite) path
through D is a sequence of transitions θ = s0

a0→ s1
a1→ · · · with s0 = s.

In this paper, we consider probabilistic safety properties 〈G〉�p, whereG is a regular
safety property [3], defining a set of “good” executions, and p ∈ [0, 1] is a probability
bound. Model checking 〈G〉�p reduces to solving a linear equation system [3].

3 Assume-Guarantee for Synchronous Probabilistic Systems

We now define a compositional verification framework for fully probabilistic systems.
Components are modelled by probabilistic I/O systems (PIOSs). These exhibit (input)
nondeterminism but, when composed synchronously in parallel, result in a DTMC.

Definition 4 (PIOS). A probabilistic I/O system (PIOS) is a tuple M = (S, s, α, δ),
where S and s are as for DTMCs, and the alphabet α and transition function δ : S ×
(α ∪ {τ}) → SDist(S) satisfy the following two conditions: (i) α is partitioned into
three disjoint sets of input, output and hidden actions, which we denote αI , αO and
αH , respectively; input actions αI are further partitioned into m disjoint bundles αI,i

(1 � i � m) for some m; (ii) the set enab(s) ⊆ α ∪ {τ} of enabled actions for each
state s (i.e. the actions a for which δ(s, a) is defined) satisfies either |enab(s)| = 1 if
enab(s) ∈ αO ∪ αH ∪ {τ} or enab(s) = αI,i for some input action bundle αI,i.

From any state s of a PIOS M , there is either a single transition with an output,
hidden or τ action, or k transitions, each with one action from a particular bundle
αI,i comprising k input actions. Transitions and paths in PIOSs are defined as for
DTMCs. The probability of a finite path θ = s0

a0−−→ s1 · · · an−1−−−−→ sn in M is given
by PrM (θ) =

∏n−1
i=0 δ(si, ai)(si+1). Since PIOSs only have nondeterminism on input

actions, the probability for a word w ∈ (α∪{τ})∗ is well defined: letting wd(θ) denote
the word a0 . . . an−1 of actions from path θ, we have PrM (w) =

∑
wd(θ)=w PrM (θ).

Then, letting st : (α ∪ {τ})∗α → α∗ be the function that removes all τs, we define the
probability PrM

τ (w′) for a τ -free word w′ ∈ α∗ as PrM
τ (w) =

∑
w=st(w′) PrM (w′).



514 L. Feng et al.

Fig. 1. Running example: two PIOSs M1 and M2

Example 1. Fig. 1 depicts two PIOSs M1 and M2. M1 is a data communicator which
chooses (probabilistically) to either send or receive data. This simple example only
models receiving; choosing to send results in a failure. M1 tells M2, a data generator,
that it is ready to receive using action ready .M2 should then send a sequence of packets,
modelled by the alternating actions d0 and d1 . If M1 has failed, it sends a message fail .
M2 also has an initialisation step (init ), which can fail. With probability 0.8, it is ready
to receive signals from M1; otherwise, it just tries to send packets anyway. Input/output
actions for M1,M2 are labelled with ?/! in the figure; all other actions are hidden. Each
PIOS has a single input action bundle: αI,1

1 = {d0 , d1 }, αI,1
2 = {ready, fail}.

Given PIOSs M1, M2 with alphabets α1, α2, we say M1 and M2 are composable if
αI

1=α
O
2 , αO

1 =αI
2 and αH

1 ∩ αH
2 =∅ and define their parallel composition as follows.

Definition 5 (Parallel composition). The parallel composition of composable PIOSs
Mi = (Si, si, αi, δi) for i=1, 2 is given by the PIOSM1||M2 = (S1×S2, (s1, s2), α, δ),
where α = αH = αI

1 ∪ αO
1 ∪

(
(αH

1 ∪ {⊥}) ∗ (αH
2 ∪ {⊥})

)
and, for bi ∈ αH

i ∪ τ and

a ∈ αI
1 ∪ αO

1 , δ is defined such that (s1, s2)
γ→ μ1 × μ2 iff one of the following holds:

(i) s1
a→ μ1, s2

a→ μ2, γ = a; (ii) s1
b1→ μ1, s2

b2→ μ2, γ = b1 ∗ b2; (iii) s1
b1→ μ1, s2

a→
(or s2 	→), μ2 = ηs2 , γ = b1 ∗⊥; (iv) s1

a→ (or s1 	→), s2
b2→ μ2, μ1 = ηs1 , γ = ⊥∗ b2.

Notice PIOSM1‖M2 has only τ or hidden actions and can thus be considered a DTMC.
We next introduce our notion of assumptions about PIOSs, for which we use a spe-

cific class of PFAs and weak language inclusion, which relaxes the definition of lan-
guage inclusion for PFAs introduced earlier by ignoring τ actions.

Definition 6 (Assumption). Let M be a PIOS with alphabet α = αI � αO � αH

and input action bundles αI =
⊎m

i=1 α
I,i. An assumption A about M is a PFA A =

(S, s, α,P) satisfying, for each state s ∈ S: (i) either all or none of the actions in a
bundle αI,i (1 � i � m) are enabled in s; (ii) pmax(s) ∈ [0, 1], where:

pmax(s) def=
∑

a∈αO∪αH

∑
s′∈S

P(a)[s, s′]+
m∑

i=1

pmax
i (s) and pmax

i (s) def= max
a∈αI,i

∑
s′∈S

P(a)[s, s′]

Definition 7 (Weak language inclusion/equivalence). For PIOS M with alphabet α
and an assumption A about M , we say that M and A are related by weak language
inclusion (resp. equivalence), denoted M �w A (resp. M ≡w A), if for every word
w ∈ α∗, PrM

τ (w) � PrA(w) (resp. PrM
τ (w) = PrA(w)).

A valid assumption A for M is one that satisfies M �w A. We can reduce the problem
of checking whether this is true to the problem of checking (strong) language inclusion
between two PFAs (see Section 4) by the following proposition.
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Fig. 2. Assumption A and its PIOS conversion pios(A)

Proposition 1. Let M = (S, s, α, δ) be a PIOS and A be an assumption about M .
pfa(M) = (S, s, α ∪ {τ},P) is the translation of M to a PFA, where P(a)[s, s′] =
δ(s, a)(s′) for a ∈ α ∪ {τ}. Letting Aτ be the PFA derived from A by adding τ to its
alphabet and a probability 1 τ -loop to every state, then: M �w A ⇔ pfa(M) � Aτ .

We will also need to perform a conversion in the opposite direction, translating an as-
sumption PFA A into a (weak language) equivalent PIOS, which we denote pios(A).

Definition 8 (Assumption-to-PIOS conversion). Given assumption A = (S, s, α,P),
and action partition α = (

⊎m
i=1 α

I,i) � αO � αH , its conversion to a PIOS is defined
as pios(A) = (S′, s, α, δ), where S′ = S � {sa|s ∈ S, a ∈ αH ∪ αO} � {si|s ∈
S, 1≤i≤m} and δ is constructed as follows. For any transition s a−→ s′, let p denote
P(a)[s, s′] and pmax(s) and pmax

i (s) be as defined in Definition 6. Then:

– if a ∈ αO ∪ αH , then δ(s, τ)(sa) = p
pmax(s) and δ(sa, a)(s′) = pmax(s);

– if a ∈ αI,i (for 1�i�m), then δ(s, τ)(si) = pmax
i (s)

pmax(s) and δ(si, a)(s′) = p·p
max(s)

pmax
i (s) .

Example 2. Consider PIOS M1 from Example 1. Fig. 2 shows a valid assumptionA for
M1 (i.e. M1 �w A) and the corresponding PIOS pios(A). In A, state q0 has two output
actions leading to respective sub-distributions. Thus A is not a PIOS. In pios(A), a τ
transition and the states qready

0 and qfail0 (abbreviated to qr
0 and qf

0 ) are added.

Now, we describe how to perform compositional verification using our framework. We
focus on verifying 〈G〉�p on a DTMC M1‖M2 where Mi are PIOSs. For simplicity,
we will assume that the property refers only to input/output actions of M1 and M2 and
assume that all hidden actions of M1 and M2 have been renamed as τ actions, which
affects neither the parallel composition M1‖M2 nor the probability of satisfying G.

An assume-guarantee triple 〈A〉M 〈G〉�p means “whenever component M is part
of a system satisfying the assumption A, the system is guaranteed to satisfy 〈G〉�p”.

Definition 9 (Assume-guarantee triple). If M is a PIOS with alphabet α, A is an
assumption about M and 〈G〉�p is a probabilistic safety property, then 〈A〉M 〈G〉�p

is an assume-guarantee triple, with the following meaning:

〈A〉M 〈G〉�p ⇔ ∀M ′. (M ′ �w A =⇒ M ′‖M |= 〈G〉�p).

Using the translation pios(A) from PFA to PIOS described above, checking whether a
triple is true reduces to standard probabilistic model checking (see Section 2).

Proposition 2. For A, M and 〈G〉�p as given in Definition 9, the assume-guarantee
triple 〈A〉M 〈G〉�p holds if and only if pios(A)‖M |= 〈G〉�p.
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Finally, we give an asymmetric assume-guarantee proof rule (in the style of those from
[14,13]) for verifying a system M1‖M2 compositionally.

Theorem 1. LetM1, M2 be PIOSs,A an assumption forM1 and 〈G〉�p a probabilistic
safety property for M1‖M2. Then the following proof rule holds:

M1 �w A and 〈A〉M2 〈G〉�p

M1‖M2 |= 〈G〉�p

(ASYM-PIOS)

Thus, given an appropriate assumption A aboutM1, we can decompose the verification
of M1‖M2 into two sub-problems: checking weak language inclusion between M1 and
A; and checking that 〈A〉M2 〈G〉�p. The former, as shown in Proposition 1, reduces to
(strong) language inclusion on PFAs, which we discuss in the next section. The latter,
as shown in Proposition 2, requires construction of the DTMC pios(A)‖M2 and then
application of standard probabilistic model checking techniques.

Example 3. Consider probabilistic safety property 〈G〉�0.9, whereG means “fail never
occurs”. We can check this on running example M1‖M2 using assumption A from
Example 2. Since M1 �w A, we just need to check that pios(A)||M2 |= 〈G〉�0.9. As

pios(A)||M2 has a single path (q0t0)
τ∗init,0.08−−−−−−−−→ (q2t1)

fail ,1−−−−→ (q4t1) · · · containing
fail with probability 0.08, 〈G〉�0.9 is satisfied (since 1 − 0.08 � 0.9) and we are done.

Completeness. Our framework is complete in the sense that, if M1‖M2 |= 〈G〉�p, we
can always find an assumption A to apply Theorem 1 by converting M1 to a PFA.

4 Deciding Language Inclusion for PFAs

As discussed above, verifying whether a component satisfies an assumption in our
framework reduces to checking language inclusion between PFAs, i.e. deciding whether
two PFAs A1 and A2 over the same alphabet α satisfy A1 � A2. In this section, we
propose a semi-algorithm for performing this check. IfA1 � A2 does not hold, then the
algorithm is guaranteed to terminate and return a lexicographically minimal word as a
counterexample; but if A1 � A2 does hold, then the algorithm may not terminate. The
latter case is unavoidable since the problem is undecidable (see [8]).

Input: PFAs A1 and A2 over the same alphabet α.
Output: true if A1 � A2; or false and a cex w′ ∈ α∗.
1: queue := {(ι1, ι2, ε)}, V := {(ι1, ι2, ε)}
2: while queue �= ∅ do
3: remove (υ1, υ2, w) from the head of queue
4: for all a ∈ α do
5: υ′

1 := υ1P1(a); υ′
2 := υ2P2(a); w′ := wa

6: if υ′
1κ1 > υ′

2κ2 then return false and cex w′

7: else if (υ′
1, υ

′
2, w

′) does not satisfy (C1), (C2) then
8: add (υ′

1, υ
′
2, w

′) to the tail of queue
9: V := V ∪ {(υ′

1, υ
′
2, w

′)}
10: return true

Fig. 3. Semi-algorithm for deciding PFA language inclusion

Fig. 3 shows the semi-
algorithm to decide if A1 �
A2, whereAi=(Si, si, α,Pi)
for i = 1, 2. We also de-
fine ιi and κi as in Section 2.
Inspired by the language
equivalence decision algo-
rithm in [18], our method
proceeds by expanding a
tree. Each node of the tree
is of the form (υ1,υ2, w),
where w is a word and υi =
ιiPi(w) (for i = 1, 2) is
the vector of probabilities of
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reaching each state via word w in Ai. Note that υiκi is the probability of PFA Ai ac-
cepting the word w. The root of the tree is (ι1, ι2, ε), where ε is the empty word. As
shown in Fig. 3, we use a queue of tree nodes, which expands the tree in breadth-first or-
der. In addition, we maintain a set V of non-leaf nodes, which initially only contains the
root. The main difference between our method and [18] is that we adopt different crite-
ria to decide when to add a node to the non-leaf set V . In [18], the set V is maintained
by calculating the span of vector space. However, for the language inclusion check, we
cannot simply use the same criteria.

In each iteration, we remove a node (υ1,υ2, w) from the head of queue. We then ex-
pand the tree by appending a set of its child nodes (υ′

1,υ
′
2, w

′), where υ′
1 := υ1P1(a),

υ′
2 := υ2P2(a) and w′ := wa for all actions a ∈ α. If there is a node (υ′

1,υ
′
2, w

′) such
that Pr1(w′) = υ′

1κ1 > υ′
2κ2 = Pr2(w′), then the algorithm terminates and returns

w′ as a counterexample for A1 � A2. Otherwise, we check if we can prune each child
node (υ′

1,υ
′
2, w

′) (i.e. make it a leaf node) by seeing if it satisfies either of the follow-
ing two criteria: (C1) υ′

1κ1 = 0; (C2) There exist |V | non-negative rational numbers ρi

such that, for all (υi
1,υ

i
2, w

i) ∈ V , υ′
1 ≤

∑
0≤i<|V | ρ

iυi
1 and υ′

2 ≥
∑

0≤i<|V | ρ
iυi

2,
where ≤ and ≥ denote pointwise comparisons between vectors.

Criterion (C1) is included because it is never possible to find a counterexample word
with accepting probability less than υ′

1κ1 = 0. Criterion (C2) is included because any
node satisfying it would guarantee υ′

1κ1 ≤ υ′
2κ2; moreover, if the algorithm terminates

and a node satisfies (C2), all of its descendants also satisfy (C2). We can thus make it
a leaf node. In practice, (C2) can easily be checked using an SMT solver. If a node
cannot be pruned, we add it to the tail of queue and to the non-leaf set V. The algorithm
terminates if queue becomes empty, concluding that A1 � A2.

Correctness and termination. The correctness of the semi-algorithm in Fig. 3 is shown
formally in [8]. A guarantee of termination, on the other hand, cannot be expected due
to the undecidability of the underlying problem.

5 L*-Style Learning for PFAs

In this section, we propose a novel method to learn a PFA for a target weighted lan-
guage generated by an unknown PFA. It works in a similar style to the well-known L*
algorithm [2] for learning regular languages: it constructs an observation table (of ac-
ceptance probabilities for each word) based on two types of queries posed to a teacher.
Membership queries ask the probability of accepting a particular word in the target PFA;
equivalence queries ask whether a hypothesised PFA yields exactly the target language.

Fig. 4 shows the learning algorithm. It builds an observation table (P,E, T ), where
P is a finite, non-empty, prefix-closed set of words, E is a finite, non-empty, suffix-
closed set of words and T : ((P ∪ P ·α) · E) → [0, 1] maps each word to its accepting
probability in the target language ( · denotes concatenation over sets). The rows of table
(P,E, T ) are labelled by elements in the prefix set P∪P ·α and the columns are labelled
by elements in the suffix set E. The value T (u·e) of the entry at row u and column e
is the acceptance probability of the word u·e. We use row(u) to represent the |E|-
dimensional row vector in the table labelled by the prefix u ∈ (P ∪ P ·α).
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Input: The alphabet α of a target weighted language generated by an unknown PFA.
Output: A PFA accepting the target language.
1: initialise the observation table (P, E,T ), letting P = E = {ε}, where ε is the empty word
2: fill T by asking membership queries for ε and each action a ∈ α
3: while (P, E, T ) is not closed or not consistent do
4: if (P, E, T ) is not closed then find u ∈ P, a ∈ α that make (P, E, T ) not closed
5: add u · a to P , and extend T to (P ∪ P · α) · E using membership queries
6: if (P, E, T ) is not consistent then find a ∈ α, e ∈ E that make (P, E, T ) not consistent
7: add a · e to E, and extend T to (P ∪ P · α) · E using membership queries
8: construct a hypothesised PFA A and ask an equivalence query
9: if answer = no, with a counterexample c then add c and all its prefixes to P

10: extend T to (P ∪ P · α) · E using membership queries, goto Line 4
11: else return PFA A

Fig. 4. L*-style learning algorithm for PFAs

Inspired by [4], which gives an L*-style algorithm for learning multiplicity au-
tomata, we define the notions of closed and consistent observation tables by estab-
lishing linear dependencies between row vectors. Observation table (P,E, T ) is closed
if, for all u∈P and a∈α, there exist non-negative rational coefficients φi such that
row(u · a) =

∑
ui∈P φirow(ui) and consistent if, for any rational coefficients ψi,

∀e ∈ E.
∑

ui∈P ψiT (ui·e) = 0 implies ∀a ∈ α, e ∈ E.
∑

ui∈P ψiT (ui·a·e) = 0. The
need for coefficients to be non-negative (for closed) is a stronger condition than in [4].

As shown in Fig. 4, the observation table is filled with the results of membership
queries until it is both closed and consistent. At each step, if (P,E, T ) is not closed
(resp. consistent), then the algorithm finds u ∈ P, a ∈ α (resp. a ∈ α, e ∈ E) that make
it not closed (resp. consistent), according to the definitions above, and adds u.a (resp.
a.e) to the table. When (P,E, T ) is closed and consistent, the learning algorithm builds
a hypothesis PFA A (see below) and poses an equivalence query. If the teacher answers
“no” (that A does not yield the target language), a counterexample c ∈ α∗ is given,
for which PrA(c) is incorrect. The algorithm adds c and all its prefixes to P , updates
the observation table and continues to check if the table is closed and consistent. If the
teacher answers “yes”, the algorithm terminates and returns A.

Construction of a hypothesis PFA A = (S, s, α,P), from a closed and consistent
table (P,E, T ), proceeds as follows. First, we find a subset of P , denoted con(P ), such
that every element of {row(u)|u ∈ P} can be represented as a conical combination
of elements in {row(v)|v ∈ con(P )}, i.e. there are non-negative rational coefficients
λi such that, for all u ∈ P , row(u) =

∑
vi∈con(P ) λirow(vi). The set of states in the

PFA is then S = {s0, . . . , sn−1}, where each state si corresponds to a row vector in
{row(v)|v ∈ con(P )} and the initial state s corresponds to row(ε). To obtain P(a) for
each a ∈ α, we compute, for si ∈ S, rational coefficients γj such that row(si · a) =∑

sj∈S γjrow(sj) and then define P(a)[si, sj ] := γj · (T (sj · ε)/T (si · ε)).

Correctness and termination. When the learning algorithm terminates, it returns a
correct PFA, as guaranteed by the equivalence query check. Unfortunately, we cannot
prove the termination of our method. For L*, the corresponding proof uses the existence
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PrM1
τ (w) ?

word w

Learner Teacher

cex.c

conj.A

prob.pw

Membership query

(analyse conjecture A)

M1 ‖M2 	|= 〈G〉≥p(i) M1 �w A
(+ counterexample)

no
yes

done? M1 ‖M2 |= 〈G〉≥p

(+ assump.A)

(ii) 〈A〉M2 〈G〉≥p

Compute:

Check if A satisfies:

Property true:
〈G〉≥p

M1,M2

Update
table

Membership
query

Update
table

Generate
conjecture

Inputs: Outputs:

Property false:

(analyse word w)

Equivalence query

Fig. 5. L*-style PFA learning loop for probabilistic assumption generation

of a unique minimal DFA for a regular language. However, an analogous property does
not exist for weighted languages and PFAs. According to [4], the smallest multiplicity
automaton can be learnt given a weighted language. However, as shown in [6], con-
verting a multiplicity automaton to a PFA (even for the subclass that define stochastic
languages) is not always possible.

6 Learning Assumptions for Compositional Verification

Finally, we build upon the techniques introduced in Sections 4 and 5 to produce a
fully-automated implementation of the assume-guarantee framework proposed in Sec-
tion 3. In particular, we use PFA learning to automatically generate assumptions to
perform compositional verification. Fig. 5 summarises the overall structure of our ap-
proach, which aims to verify (or refute) M1 ‖M2 |= 〈G〉�p for two PIOSs M1,M2 and
a probabilistic safety property 〈G〉�p. This is done using proof rule (ASYM-PIOS) from
Section 3, with the required assumption PFA A about component M1 being generated
through learning. The left-hand side of the figure shows the learning algorithm of Sec-
tion 5, which drives the whole process; the right-hand side shows the teacher.

The teacher answers membership queries (about wordw) by computing the probabil-
ity PrM1

τ (w) of word w in M1. It answers equivalence queries (about conjectured PFA
A) by checking if A satisfies both premises of rule (ASYM-PIOS): (i) M1 �w A, and
(ii) 〈A〉M2 〈G〉�p. The first is done using Proposition 1 and the algorithm in Section 4.
The second is done using Proposition 2, which reduces to probabilistic model checking
of the DTMC pios(A) ‖M2.

If both premises are true, we can conclude that M1 ‖M2 |= 〈G〉�p holds. Otherwise,
the teacher needs to provide a counterexample c for the learning algorithm to update
the observation table and proceed. If premise (i) failed, then c is taken as the word
showing the violation of (weak) language inclusion. If premise (ii) failed, we try to
extract c from the results of model checking. We extract a probabilistic counterexam-
ple [11] C: a set of paths showing pios(A)||M2 	|= 〈G〉�p. Following the same approach
as [9], we transformC into a (small) fragment of M1 (denotedMC

1 ) and check whether
MC

1 ||M2 	|= 〈G〉�p. If so, we stop the learning loop, concluding that M1||M2 	|= 〈G〉�p.
If, on the other hand, C is a spurious counterexample, we can always extract, from C
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a counterexample (word) c such that the learning algorithm can update its observation
table. Full details can be found in the extended version of this paper [8].

From the arguments above, we can show that, when the learning loop terminates, it
always yields a correct result. It should be pointed out, though, that since the loop is
driven by the learning algorithm of Section 5, whose termination we cannot prove, we
are also unable to guarantee that the loop finishes. Furthermore, weak language inclu-
sion checks use the semi-algorithm of Section 4, which is not guaranteed to terminate.

7 Implementation and Results

We have implemented the PFA language inclusion check from Section 4, the PFA learn-
ing algorithm from Section 5 and the assumption-generation loop described in Sec-
tion 6. Based on these, we have built a prototype tool that performs fully-automated
assume-guarantee verification, as described in Section 3. Due to space limitations, we
refer the reader to [8] for further details of this implementation, as well as experimental
results from its application to several benchmark case studies.
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Abstract. We present a framework that takes unsynchronized sequen-
tial processes along with a temporal specification of their global concur-
rent behaviour, and automatically generates a concurrent program with
synchronization code ensuring correct global behaviour. The synthesized
synchronization code is based on monitors with wait and notify oper-
ations on condition variables, and mutual-exclusion locks. Novel aspects
of our framework include realistic low-level synchronization implementa-
tions, synthesis of both simple coarse-grained synchronization and more
complex fine-grained synchronization, and accommodation of both safety
and liveness in global correctness properties. The method is fully auto-
matic as well as sound and complete.

1 Introduction

We postulate design and employment of automated synthesis engines for the
most precarious component of a concurrent program - the synchronization code.
Given unsynchronized skeletons of sequential processes P1, . . . , Pn, and a tem-
poral specification φ of their global concurrent behaviour, our framework auto-
matically generates synchronized skeletons, P 1, . . . , Pn, such that the resulting
concurrent program P 1 � . . .�Pn is guaranteed to exhibit the desired behaviour.
This is effected in two steps. The first step involves computer-aided construction
of a model M for the specified behaviour of the concurrent program based on
P1, . . . , Pn, and extraction of synchronization skeletons P s

1 , . . . , P
s
n , with high-

level synchronization actions (guarded commands), such that P s
1 � . . .�P s

n |= φ.
The second step comprises a correctness-preserving mechanical compilation of
the high-level synchronization actions into synchronization code based on lower-
level primitives such as monitors and mutual-exclusion (mutex) locks.

The first step in our framework could be completed by manually constructing
a high-level solution, and then verifying its correctness using a model checker (cf.
[15]). However, the lack of automation in constructing the high-level solution is a
potentially serious drawback as it may necessitate multiple iterations of manual
(re-)design, verification, and manual debugging and correction. We propose a
substantial improvement to this approach that results in a fully algorithmic
framework. By specifying the system temporally, we can apply the method of
[7,6] to algorithmically synthesize the high-level solution guaranteed to meet the
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temporal specification. We alleviate the user’s burden of specification-writing by
automatically inferring local temporal constraints, describing process behaviour,
from a state-machine based representation of the unsynchronized processes.

We provide the ability to synthesize coarse-grained synchronization code with
a single monitor (and no mutex locks), or fine-grained synchronization code with
multiple monitors and mutex locks. It is up to the user to choose an appropriate
granularity of atomicity that suitably balances the trade-off between concurrency
and overhead for a particular application/system architecture. This is an impor-
tant feature of our framework as programmers often restrict themselves to using
coarse-grained synchronization for its inherent simplicity. In fact, manual imple-
mentations of synchronization code using wait/notify operations on condition
variables are particularly hard to get right in the presence of multiple locks. We
establish the correctness of both translations - guarded commands to coarse-
grained synchronization and guarded commands to fine-grained synchronization
- with respect to typical concurrency properties that include both safety prop-
erties (e.g., mutual exclusion) and liveness properties (e.g., starvation-freedom).

We further establish soundness and completeness of the overall proposed
methodology. Thus, our generated concurrent programs are correct-by-
construction, with no further verification effort required. Moreover, if the speci-
fication as a whole is consistent, a correct concurrent program will be generated.
We have developed a tool for the compilation of synchronization skeletons into
concurrent Java programs with both coarse-grained and fine-grained synchro-
nization. We used the tool successfully to synthesize synchronization code for an
airport ground traffic simulator program, and some well-known synchronization
problems such as readers-writers and dining philosophers. We emphasize that
the synchronization code generated by our framework can be translated into
programs written using PThreads or in C# as well.

The most important contribution of our work is the combination of an algo-
rithmic front end for synthesizing a high-level synchronization solution, with an
algorithmic back end that yields a readily-implementable low-level synchroniza-
tion solution. We use the CTL-based decision procedure from [7,6] because it is
handy and available. But an algorithmic front end could be supplied in many al-
ternative ways; for instance, any linear temporal logic (LTL) decision procedure
could be used. Other novel ingredients of our fully algorithmic framework include
provably correct translations of high-level to low-level synchronization, synthesis
of both coarse-grained and fine-grained solutions, and accommodation of both
safety and liveness in global correctness properties. Moreover, our method is
sound and complete.

The paper is structured as follows. We explain our algorithmic framework
using an example concurrent program in Sec. 2. We discuss extensions and ex-
perimental results in Sec. 3 and conclude with a review of related work in Sec. 4.

2 Algorithmic Framework

In this section, we present an overview of our approach for concurrent programs
based on two processes, using a single-reader-single-writer (RW) example. We
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P1() {
while(true) {

Execute code region ncs1;
Execute code region try1;
Execute code region cs1;

}}
P2() {

while(true) {
Execute code region ncs2;
Execute code region try2;
Execute code region cs2;

}}

(a)

ncs1 try1 cs1

ncs2 try2 cs2

(b)

Fig. 1. Synchronization-free skeletons of two processes: reader P1 and writer P2

Table 1. Specification of synchronization for single-reader-single-writer problem

Mutual exclusion: AG(¬(cs1 ∧ cs2)).
Absence of starvation for reader P1, provided writer P2 remains in its non-critical region:
AG(try1 ⇒ AF(cs1 ∨ ¬ncs2)).
Absence of starvation for writer: AG(try2 ⇒ AF cs2).
Priority of writer over reader for outstanding requests to enter the critical region:
AG((try1 ∧ try2) ⇒ A[try1 U cs2]).

refer the reader to [8] for a more detailed treatment of our formal framework
and algorithms.

We assume that we are given the synchronization-free skeletons of sequen-
tial processes P1 and P2 and a temporal specification φ of their desired global
behaviour. The synchronization-free skeletons of the reader process P1 and the
writer process P2 are as shown in Fig. 1a. Both processes have three code regions
- ‘non-critical’ (ncs), ‘trying’ (try) and ‘critical’ (cs); the control-flow between
these code regions can be encoded as state-machines, as shown in Fig. 1b. Each
code region may represent a terminating sequential block of code, which is irrel-
evant for the synthesis of synchronization, and hence suppressed within a single
state. The set of properties that the concurrent program composed of P1 and
P2 must guarantee are shown in Table 1. It is easy to see that in the absence of
synchronization P1 � P2 	|= φ, where φ represents the conjunction of the prop-
erties in Table 1. Our goal is to modify P1 and P2 by inserting synchronization
code, to obtain P 1 and P 2, such that P 1 � P 2 |= φ.

We propose an automated framework to do this in two steps. The first step
entails computer-aided construction of a high-level solution with synchronization
actions based on guarded commands. The second step comprises a correctness-
preserving, mechanical translation into a low-level solution based on monitors
(along with wait and notify operations on condition variables) and mutex locks.

For the first step, we mechanically translate the state-machine representations
of P1 and P2 into equivalent CTL formulae. We then use the methodology pre-
sented in [7] to: (1) synthesize a global model M for the specified behaviour of
the concurrent program based on P1 and P2, such that M |= φ, and (2) derive



An Algorithmic Framework for Synthesis of Concurrent Programs 525

ncs1 try1 cs1

ncs2 try2 cs2

ncs2?

ncs1 ∨ try1?

Fig. 2. Synchronization skeletons P s
1 and P s

2 for reader P1 and writer P2

the synchronization skeletons, P s
1 and P s

2 (see Fig. 2) from M. We refer the
interested reader to [8,7] for details about the synthesis of M and P s

1 , P s
2 . For

our current purpose, it suffices to note that each transition between two sequen-
tial code regions in the synchronization skeleton of a process is labeled with
a guarded command of the form G? → A, consisting of an enabling condition
G, evaluated atomically, and a corresponding set of actions A to be performed
atomically if G evaluates to true. A guard is a predicate on the current state
(code region) of all processes and the values of shared synchronization variables,
x1, . . . , xm (this tuple is often denoted as x̄), which may be introduced during
the synthesis of M. An action is a parallel assignment statement that updates
the values of the x̄ variables. All guards with the same action are merged into
one transition label. An omitted guard is interpreted as true in general. In the
RW example (Fig. 2), there are no actions as no x̄ variables were introduced
during the synthesis of M.

In the second step of our approach, we mechanically compile the guarded com-
mands of P s

1 and P s
2 into either coarse-grained or fine-grained synchronization

code for P1 and P2, as desired. The resulting processes are denoted as P c
1 , P c

2

(coarse-grained) or P f
1 , P f

2 (fine-grained). In both cases, we introduce Boolean
shared variables, ncs1, try2 etc., to represent the code regions ncs1, try2 etc., of
each sequential process. We also introduce mutex locks and monitors along with
conditions variables for synchronization. For the program P c

1 � P c
2 , which has a

coarser level of lock granularity, we declare a single lock l for controlling access
to shared variables and condition variables. For the program P f

1 � P f
2 with a

finer level of lock granularity, we allow more concurrency by declaring separate
mutex locks lncs1 , ltry2 etc., for controlling access to each Boolean shared vari-
able ncs1, try2 etc. (and each shared synchronization variable, when necessary).
We further define separate monitor locks lcvcs1

, lcvcs2
for the condition variables

cvcs1 , cvcs2 to allow simultaneous processing of different condition variables.
The modifications to each process are restricted to insertion of synchronization

regions between the sequential code regions of the process. We refer the reader
to Fig. 3a for an example coarse-grained synchronization region (between code
regions try1 and cs1 in P1). Note that we find it convenient to express locks, as
lock(l){. . .} (in a manner similar to Java’s synchronized keyword), wherein



526 E.A. Emerson and R. Samanta

Execute try1;

/* Synch. region */

lock(l) {
while (!ncs2)

wait(cvcs1,l);
try1, cs1 := 0,1;

}
Execute cs1;

(a) Coarse-grained

Execute try1;

/* Synch. region */

lock(lcvcs1) {
while (!Guardcs1())

wait(cvcs1,lcvcs1);

}
Execute cs1;

boolean Guardcs1() {
lock((ltry1 , lcs1 , lncs2) {
if (ncs2) {
try1, cs1 := 0,1;
return(true);

}
else return(false);

}}
(b) Fine-grained

Fig. 3. Coarse and fine-grained synchronization regions between code regions try1 and
cs1 of reader process P1

l is a lock variable, ‘{’ denotes lock acquisition and ‘}’ denotes lock release. The
implementation of a coarse-grained synchronization region for the RW example
involves acquiring the monitor lock l and checking, within the monitor, if the
guard G (ncs2 in Fig. 3a) for entering the next code region is enabled. While
the guard is false, P c

1 waits for P c
2 to be in an enabling code region. This is

implemented by associating a condition variable cv (cvcs1 in Fig. 3a) with the
guard for the next code region. Thus while G is false, P c

1 waits till P c
2 notifies

it that G could be true. If the guard G is true, P c
1 updates the values of (the x̄

variables, when present, and) the shared Boolean variables in parallel to indicate
that it is effectively in the next code region and releases the monitor lock. Before
the lock release, P c

1 , in general, sends a notification signal corresponding to every
guard (i.e. condition variable) of P c

2 which may be changed to true by P c
1 ’s shared

variables update - there is no such notification in Fig. 3a as the update does not
change any guard of P c

2 to true. If the guard for a code region is always true,
e.g., code region try1, then we do not need to check its guard, and hence, do
not need a condition variable corresponding to the guard of the code region.

While fine-grained locking can typically be achieved by careful definition and
nesting of multiple locks, one needs to be especially cautious in the presence of
monitor locks for various reasons. For instance, upon execution of wait(cv,l)
in a nested locking scheme, a process only releases the lock l before going to
sleep, while still holding all outer locks. This can potentially lead to a deadlock.
A fine-grained synchronization region synthesized in our approach (see Fig. 3b
for an example fine-grained synchronization region preceding code region cs1

in P1), circumvents these issues by utilizing a separate subroutine to evaluate
the guard G. In this subroutine, P f

1 first acquires all necessary mutex locks,
corresponding to all shared variables accessed in the subroutine. These locks
are acquired in a strictly nested fashion in a predecided fixed order to prevent
deadlocks. We use lock(l1, l2, . . .){. . .} to denote the nested locks lock(l1){
lock(l2){ . . .}}, with l1 being the outermost lock variable. The subroutine then
evaluates G and returns its value to the main body of P f

1 . If found true, the
subroutine also performs an appropriate parallel update to the shared variables
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similar to the coarse-grained case. The synchronization region in the main body
of P f

1 acquires the relevant monitor lock (lcvcs1
in Fig. 3b) and calls its guard-

computing subroutine within a while loop till it returns true, after which it
releases the monitor lock. If the subroutine returns false, the process waits on
the associated condition variable (cvcs1 in Fig. 3b). Each notification signal for
a condition variable, on which the other process may be waiting, is sent out by
acquiring the corresponding monitor lock.

2.1 Correctness of Synthesis

Let Mc and Mf , be the global models corresponding to P c
1 � P c

2 and P f
1 � P f

2 ,
respectively. We have the following Correspondence Lemmas:

Lemma 1. [Coarse-grained Correspondence] Given an ACTL \ X formula φ,
M |= φ ⇒ Mc |= φ.

Lemma 2. [Fine-grained Correspondence] Given an ACTL\X formula φ, M |=
φ ⇒ Mf |= φ.

The proofs are based on establishing stuttering simulations between the models
(cf. [8]1). Note that the models are not stuttering bisimilar, and hence our com-
pilations do not preserve arbitrary CTL \X properties. This is not a problem,
as most global concurrency properties of interest (see Table 1) are expressible in
ACTL \X .

Theorem 1. [Soundness]: Given unsynchronized skeletons P1, P2, and an
ACTL \ X formula φ, if our method generates P c

1 , P c
2 (resp., P f

1 , P f
2 ), then

P c
1 � P c

2 |= φ (resp., P f
1 � P f

2 |= φ).

Theorem 2. [Completeness]: Given unsynchronized skeletons P1, P2, and an
ACTL \X formula φ, if the temporal specifications describing P1, P2 and their
global behaviour φ are consistent as a whole, then our method constructs P c

1 , P c
2

(resp., P f
1 , P f

2 ) such that P c
1 � P c

2 |= φ(resp., P f
1 � P f

2 |= φ).

The soundness follows directly from the soundness of the synthesis of synchroniza-
tion skeletons [7,6], and from the above Correspondence Lemmas. The complete-
ness follows from the completeness of the synthesis of synchronization skeletons
for overall consistent specifications and from the completeness of the compilation
of guarded commands to coarse-grained and fine-grained synchronization.

3 Extensions and Experiments

The synthesis of synchronization skeletons in the first step in our framework can
be extended directly to handle an arbitrary number n of sequential processes.
1 While we choose to restrict our attention to the preservation of ACTL \X formulas

here, we can show that the translations from M to Mc and Mf actually preserve
all ACTL∗ \X properties, as well as CTL∗ properties of the form Ah or Eh, where
h is an LTL \ X formula.



528 E.A. Emerson and R. Samanta

While the direct extension based on [7] can be exponential in the length of φ
and in n, the decision procedure in [6], corresponding to the subset of CTL used
in this paper, is polynomial in the length of φ. Moreover, we can use the ap-
proaches of [2,1] which avoid building the entire global model (exponential in n),
and instead compose interacting process pairs to synthesize the synchronization
skeletons. The compilation of guarded commands into coarse-grained and fine-
grained synchronization code can be extended in a straight-forward manner to
n > 2 processes. We emphasize that this compilation acts on individual skeletons
directly, without construction or manipulation of the global model, and hence
circumvents the state-explosion problem for arbitrary n.

We have implemented a prototype synthesis tool [8] in Perl, which automati-
cally compiles synchronization skeletons into concurrent Java programs based on
both coarse-grained and fine-grained synchronization. We used the tool success-
fully to synthesize synchronization code for an example airport ground traffic
simulator (AGTS) program (cf. [8]), and for several configurations of n-process
mutual exclusion, readers-writers, dining philosophers, etc..

Table 2. Experimental Results

Program Granularity Norm. Run. Time

2-plane AGTS
Coarse 1
Fine 0.92

1-Reader, 1-Writer
Coarse 1
Fine 0.79

2-process Mutex
Coarse 1
Fine 1.08

2-Readers, 3-Writers
Coarse 1
Fine 1.14

Our experiments were run
on a quad-core 3.4GHz machine
with 4GB of RAM. The time
taken by the tool to gener-
ate these small examples was
a few milliseconds. We present
the normalized running times
of some of the generated exam-
ples in Table 2. As expected,
the fine-grained synchronization

version does not always outperform the coarse-grained synchronization version.
In particular, it suffers in the 2-Readers, 3-Writers example due to excessive
locking overhead.

4 Concluding Remarks

Our framework for concurrent program synthesis: (a) caters for both safety and
liveness, (b) is fully algorithmic, (c) constructs a high-level synchronization so-
lution, (c) yields a low level solution based on widely used synchronization prim-
itives, (d) can generate both coarse-grained and fine-grained low-level solutions,
and (e) is provably sound and complete.

Early work on synthesis of high-level concurrent programs from temporal
specifications [7] utilized decision procedures but had little practical impact
due to unrealistic synchronization primitives. Other work inferring high level
synchronization using guarded commands [13] or atomic sections [14], is limited
to safety specifications. Moreover, it can be shown that such synthesis methods
that rely on pruning a global product graph [10,13,14] cannot work in general
for liveness.

On the other end of the spectrum, the important papers [5,15] describe a
needed mapping of a high-level system into a low-level, coarse-grained system,
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akin to ours. But these frameworks are less flexible. They do not yield low-
level fine-grained solutions; they do not treat liveness properties; and, because
they are not fully algorithmic, they fail to ensure correctness-by-design. Instead,
these papers are verification-driven, and involve verifying either the synthesized
implementation [5] or the manually-written high-level implementation [15]. In
contrast, our approach is the first to provably translate a high-level system into
correct low-level systems for both coarse- and fine-grained solutions, thereby
eliminating the need for verification. The low-level global models are guaranteed
correct by our Correspondence Lemmas.

Among papers that do address refinement of locking granularity, are [3], which
translates guarded commands, into synchronization based on atomic reads and
atomic writes, and papers on compiler-based lock inference for atomic sections
([9], [4] etc.). Unlike in [3], our framework does not manipulate or generate the
global model corresponding to either the coarse-grained or fine-grained solutions.
The lock-inference papers [9], [4] rely on the availability of high-level synchro-
nization in the form of atomic sections, and do not, in general, support mon-
itors and condition variables. Sketching [12], a search-based program synthesis
technique, is also a verification-driven approach, which can be used to synthe-
size optimized implementations of synchronization primitives, e.g. barriers, from
partial program sketches.

We remark that these approaches and ours are oriented towards closed sys-
tems2, which include classical synchronization problems and have been used to
capture many real-world software systems.
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