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Preface

This volume collects papers presented at the 8th International Symposium on
Frontiers of Combining Systems (FroCoS 2011), held October 5–7, 2011 in
Saarbrücken, Germany. Previous FroCoS meetings were organized in Munich
(1996), Amsterdam (1998), Nancy (2000), Santa Margherita Ligure (2002),
Vienna (2005), Liverpool (2007) and Trento (2009). In 2004, 2006, 2008 and
2010 FroCoS joined IJCAR, the International Joint Conference on Automated
Reasoning. Like its predecessors, FroCoS 2011 offered a common forum for the
presentation and discussion of research in the general area of combination, mod-
ularization and integration of systems, with emphasis on logic-based systems and
their applications. This research touches on many areas of computer science such
as computational logic, program development and verification, artificial intelli-
gence, automated reasoning, constraint solving, declarative programming, and
symbolic computation.

The Program Committee accepted 15 papers out of a total of 22 submissions.
Each submission was reviewed by at least three Program Committee members or
external reviewers. We thank all the reviewers for their work and all the members
of the Program Committee for their careful and thoughtful deliberations.

In addition to the contributed papers, the program included three invited
lectures, by Alessandro Artale (Free University of Bozen-Bolzano), Martin Lange
(University of Kassel) and Tobias Nipkow (Technical University Munich), and an
invited tutorial by André Platzer (Carnegie-Mellon University). We are grateful
to the invited speakers not only for their interesting presentations, but also for
contributing extended abstracts or full papers to the proceedings.

Many people and institutions contributed to the success of FroCoS 2011. We
are indebted to the members of the Program Committee and to the additional
referees for the thorough reviewing work, to the members of the FroCoS Steer-
ing Committee for their support, and to Andrei Voronkov for his indispensable
EasyChair conference management system. We would also like to thank the Max
Planck Institute for financial support and for providing the infrastructure. We are
very grateful to Uwe Brahm, Manuel Lamotte, Jennifer Müller, Roxane Wetzel
and Anja Zimmer for their help with the organization of the conference, and to
Christoph Weidenbach for his support. Last, but not least, we thank all authors
who submitted papers to FroCoS 2011 and all the symposium participants.

July 2011
Viorica Sofronie-Stokkermans

Cesare Tinelli
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Tailoring Temporal Description Logics for Reasoning
over Temporal Conceptual Models

Alessandro Artale1, Roman Kontchakov2, Vladislav Ryzhikov1,
and Michael Zakharyaschev2

1 KRDB Research Centre
Free University of Bozen-Bolzano, Italy

{lastname}@inf.unibz.it
2 Dept. of Comp. Science and Inf. Sys.

Birkbeck College, London, UK
{roman,michael}@dcs.bbk.ac.uk

Abstract. Temporal data models have been used to describe how data can evolve
in the context of temporal databases. Both the Extended Entity-Relationship (EER)
model and the Unified Modelling Language (UML) have been temporally ex-
tended to design temporal databases. To automatically check quality properties
of conceptual schemas various encoding to Description Logics (DLs) have been
proposed in the literature. On the other hand, reasoning on temporally extended
DLs turn out to be too complex for effective reasoning ranging from 2EXPTIME

up to undecidable languages. We propose here to temporalize the ‘light-weight’
DL-Lite logics obtaining nice computational results while still being able to rep-
resent various constraints of temporal conceptual models. In particular, we con-
sider temporal extensions of DL-LiteNbool, which was shown to be adequate for
capturing non-temporal conceptual models without relationship inclusion, and its
fragment DL-LiteNcore with most primitive concept inclusions, which are never-
theless enough to represent almost all types of atemporal constraints (apart from
covering).

1 Introduction

Conceptual data modelling formalisms such as the Unified Modelling Language (UML)
and the Extended Entity-Relationship (EER) model have become a de facto standard in
database design and software engineering by providing visual means to describe ap-
plication domains in a declarative and reusable way. Both UML and EER turn out to
be closely connected to description logics (DLs), which can encode constraints ex-
pressible in these conceptual modelling formalisms (see, e.g., [11,12,1]). This encod-
ing provides us with a rigorous definition of various quality properties of conceptual
schemas. For instance, given a conceptual schema, we can check its consistency (i.e.,
whether its constraints contain no contradictions), entity and relationship satisfiabil-
ity (i.e., whether given entities and relationships in the schema can be instantiated),
instance checking (i.e., whether a given individual belongs to a given entity in every
instance of the schema), and logical entailment (i.e., whether a given constraint is log-
ically implied by the schema). The encoding of conceptual models as DL knowledge

C. Tinelli and V. Sofronie-Stokkermans (Eds.): FroCoS 2011, LNAI 6989, pp. 1–11, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 A. Artale et al.

bases (KBs) opens a way for utilizing existing DL reasoning services (reasoners) for
automated checking of these quality properties, and so for providing an effective rea-
soning support for the construction phase of a conceptual model schema.

Temporal conceptual data models [31,20,21,4,26,6,15,7,10] extend standard con-
ceptual schemas with means to visually represent temporal constraints imposed on
temporal database instances. Temporal constraints can be grouped in three categories:
timestamping, evolution and temporal cardinality constraints. Timestamping constraints
discriminate between those entities, r relationships and attributes that change over time
and those that are time-invariant [31,21,16,7,26]. Evolution constraints control how the
domain elements evolve over time by ‘migrating’ from one entity to another
[22,25,29,26,6]. We distinguish between quantitative evolution constraints that specify
the exact time of migration and qualitative evolution constraints that describe eventual
temporal behaviour (i.e., whether all instances will eventually migrate or will always be-
long to the same entity). Temporal cardinality constraints restrict the number of times
an instance participates in a relationship; snapshot cardinality constraints do it at each
moment of time, while lifespan cardinality constraints impose restrictions over the en-
tire existence of the instance [30,24].

Temporal conceptual models can be encoded in various temporal description logics
(TDLs), which have been designed and investigated since the seminal paper [28] with
the aim of understanding the computational price of introducing a temporal dimension
in DLs (see [23] for a survey). A general conclusion one can draw from the obtained
results is that—as far as there is a nontrivial interaction between the temporal and DL
components—TDLs based on full-fledged DLs like ALC turn out to be too complex for
effective reasoning ranging from 2EXPTIME up to undecidable languages.

The aim of this paper is to show how temporalizing the ‘light-weight’ DL-Lite log-
ics [13,14,27,2,3] we can represent various constraints of temporal conceptual models.
In particular, we consider DL-LiteNbool, which was shown to be adequate for capturing
non-temporal conceptual models without relationship inclusion [1], and its fragment
DL-LiteNcore with most primitive concept inclusions, which are nevertheless enough to
represent almost all types of atemporal constraints (apart from covering). To capture
temporal constraints, we interpret the TDLs over the flow of time (Z, <), in which (1)
the future and past temporal operators can be applied to concepts (entities); (2) roles
can be declared flexible or rigid; (3) the ‘undirected’ temporal operators ‘always’ and
‘some time’ can be applied to roles; (4) the concept inclusions (TBox) hold at all mo-
ments of time (i.e., global) and the database assertions (ABox) are specified to hold at
particular moments of time.

Complexity results for reasoning in TDLs based on DL-Lite have been presented
in [5,8,9]. The most expressive TDL based on DL-LiteNbool and featuring all of (1)–(4)
turns out to be undecidable. This ‘negative’ result has motivated our study of various
fragments of the full language by restricting not only the DL but also the temporal com-
ponent. Concerning TDLs with temporalized roles, in addition to the undecidability re-
sult, we have also shown that using the undirected temporal operators always/sometime
together with temporalized roles over DL-LiteNbool results in an NP-complete language.
TDLs with rigid (and flexible but not temporalized) roles turned out to be reducible
to propositional linear temporal logic LT L (and its natural fragments). The absence
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of temporalized roles makes reasoning in these logics easier with complexity results
ranging from NLOGSPACE to PSPACE.

2 DL-Lite Logics

We briefly introduce DL-Lite and its relatives (see [14,3] for more details). The lan-
guage of DL-LiteNbool contains object names a0, a1, . . . , concept namesA0, A1, . . . , and
role names P0, P1, . . . . Roles R, basic concepts B and concepts C of this language are
defined by the rules:

R ::= Pk | P−
k ,

B ::= ⊥ | Ak | ≥ q R,

C ::= B | ¬C | C1 � C2,

where q is a positive integer. A DL-LiteNbool TBox, T , is a finite set of concept inclusion
axioms of the form

C1 � C2.

An ABox, A, is a finite set of assertions of the form

Ak(ai), ¬Ak(ai), Pk(ai, aj), ¬Pk(ai, aj).

Taken together, T and A constitute the DL-LiteNbool knowledge base (KB, for short)
K = (T ,A).

An interpretation I = (ΔI , ·I) of this and other DL-Lite languages consists of a
domain ΔI �= ∅ and an interpretation function ·I that assigns to each object name ai

an element aIi ∈ ΔI , to each concept name Ak a subset AI
k ⊆ ΔI , and to each role

name Pk a binary relation P I
k ⊆ ΔI ×ΔI . As in databases, we adopt the unique name

assumption (UNA) according to which aIi �= aIj for all i �= j. The role and concept
constructs are interpreted in I as follows:

(P−
k )I = {(y, x) ∈ ΔI ×ΔI | (x, y) ∈ P I

k },
⊥I = ∅,

(≥q R)I =
{
x ∈ ΔI | �{y ∈ ΔI | (x, y) ∈ RI} ≥ q

}
,

(¬C)I = ΔI \ CI ,

(C1 � C2)I = CI
1 ∩ CI

2 ,

where �X denotes the cardinality of X . The satisfaction relation |= is defined as usual:

I |= C1 � C2 iff CI
1 ⊆ CI

2 ,

I |= Ak(ai) iff aIi ∈ AI
k , I |= ¬Ak(ai) iff aIi /∈ AI

k ,

I |= Pk(ai, aj) iff (aIi , a
I
j ) ∈ P I

k , I |= ¬Pk(ai, aj) iff (aIi , a
I
j ) /∈ P I

k .

A knowledge base K = (T ,A) is said to be satisfiable (or consistent) if there is an
interpretation, I, satisfying all the members of T and A. In this case we write I |= K
(as well as I |= T and I |= A) and say that I is a model of K (and of T and A).
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The two sub-languages of DL-LiteNbool we deal with in this article are obtained by
restricting the Boolean operators on concepts. In DL-LiteNkrom TBoxes,1 concept inclu-
sions are of the form

B1 � B2, B1 � ¬B2 or ¬B1 � B2. (krom)

(Here and below the Bi are basic concepts.) In DL-LiteNcore, we can only use concept
inclusions of the form

B1 � B2 or B1 �B2 � ⊥. (core)

As B1 � ¬B2 is equivalent to B1 � B2 � ⊥, DL-LiteNcore is a sub-language of
DL-LiteNkrom.

The extra expressive power, gained from covering constraints, comes at a price: the
satisfiability problem is NLOGSPACE-complete for DL-LiteNcore and DL-LiteNkrom KBs
and NP-complete for DL-LiteNbool KBs [2].

3 Temporal Conceptual Modelling

Temporal conceptual data models extend standard conceptual schemas with means to
visually represent temporal constraints imposed on temporal database instances
[31,20,21,4,26]. When introducing a temporal dimension into conceptual data mod-
els, time is usually modelled by a linearly ordered set of time instants, so that at each
moment we can refer to its past and its future. We assume that the flow of time is iso-
morphic to the strictly linearly ordered set (Z, <) of integer numbers. (For a survey of
other options, including various interval-based and branching models of time, consult,
e.g. [18,19,17].)

A basic assumption made in temporal conceptual models is that entities, relationships
and attributes may freely change over time—as long as they satisfy the schema con-
straints at each time instant. Temporal constructs are then used to impose constraints on
the temporal behaviour of various components of conceptual schemas. We group these
constructs into three categories—timestamping, evolution constraints and temporal car-
dinality constraints—and illustrate them using the temporal data model in Figure 1.

Timestamping constraints [31,21,26] distinguish between entities, relationships and
attributes that are temporary, i.e., cannot keep a single element over the whole time-
line; snapshot, or time-invariant; and unconstrained (all others). In temporal entity-
relationship (TER) diagrams, temporary entities, relationships and attributes are marked
with T and snapshot ones with S. In Figure 1, ‘Employee’ and ‘Department’ are snap-
shot entities, ‘Name,’ ‘PaySlipNumber’ and ‘ProjectCode’ are snapshot attributes and
‘Member’ a snapshot relationship. On the other hand, ‘Manager’ is a temporary entity,
‘Salary’ a temporary attribute and ‘WorksOn’ a temporary relationship.

To represent timestamping constraints in temporal description logics we employ the
temporal operator �∗ , which is read as ‘always’ or ‘at all—past, present and future—
time instants.’ Intuitively, for a conceptC, �∗ C contains those elements that belong toC

1 The Krom fragment of first-order logic consists of all formulas in prenex normal form whose
quantifier-free part is a conjunction of binary clauses.



Tailoring Temporal Description Logics 5

Department S InterestGroup

OrganizationalUnit

d

Member S

(1,∞)

org

mbr
Employee S
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S Salary(Integer)

T

Manager T

TopManagerAreaManager
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−

dev

pex
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(3,∞)

act

emp

Project

ProjectCode(String)

S

Ex-Project tex

Manages
man

(1,1)

[0,5]

prj

(1,1)

Fig. 1. A temporal conceptual model of a company information system

at all time instants. Using this operator, the constraints ‘Employee is a snapshot entity’
and ‘Manager is a temporary entity’ can be represented as follows:

Employee � �∗ Employee, (1)

�∗ Manager � ⊥. (2)

The first inclusion says that, at any moment of time, every element of ‘Employee’ has
always been and will always be an element of ‘Employee.’ The second one states that
no element can belong to ‘Manager’ at all time instants. Note that we consider concept
inclusions to hold globally, that is, at all moments of time.

The same temporal operator �∗ together with rigid roles (i.e., roles that do not change
over time) can be used to capture timestamping of (reified) relationships. Rigid roles
can also represent snapshot attributes, while temporary attributes can be captured by
using temporalized roles: ∃�∗ salary � ⊥, where �∗ salary denotes the intersection of
the relations salary at all time instants, model salary as a temporary attribute.

Evolution constraints control how the domain elements evolve over time by ‘mi-
grating’ from one entity to another [22,25,29,26,6]. We distinguish between qualitative
evolution constraints that describe eventual temporal behaviour and do not specify the
moment of migration, and quantitative evolution (or transition) constraints that spec-
ify the exact moment of migration. The dashed arrow marked with TEX in Figure 1 is
an example of a quantitative evolution constraint meaning that each ‘Project’ expires
in exactly one year and becomes an ‘Ex-Project.’ The dashed arrow marked with DEV

is a qualitative evolution constraint meaning that every ‘AreaManager’ will eventually
(at some moment in the future) become a ‘TopManager.’ The DEX− dashed arrow says
that every ‘Manager’ was once an ‘Employee,’ while the PEX dashed arrow means that
a ‘Manager’ will always be a ‘Manager’ and cannot be demoted. In temporal descrip-
tion logic, these evolution constraints are represented using temporal operators such as
‘at the next moment of time’ ©F , ‘some time in the future’ �F , ‘some time in the past’
�P and ‘always in the future’ �F :
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Project � ©F Ex-Project, (3)

AreaManager � �F TopManager, (4)

Manager � �P Employee, (5)

Manager � �F Manager. (6)

We note again that these concept inclusions hold at every moment of time.
Temporal cardinality constraints [30,24,20] restrict the number of times an instance

participates in a relationship. Snapshot cardinality constraints do it at each moment
of time, while lifespan cardinality constraints impose restrictions over the entire exis-
tence of the instance. In Figure 1, we use (k, l) to specify the snapshot cardinalities and
[k, l] the lifespan cardinalities: for example, every ‘TopManager’ manages exactly one
project at each moment of time (snapshot cardinality), but not more than five different
projects over the whole career (lifespan cardinality). If the relationship ‘manages’ is
represented by a role in temporal description logic then these two constraints can be
expressed by the following concept inclusions:

TopManager � ≤ 1 manages,

TopManager � ≤ 5�∗ manages,

where �∗ means ‘sometime’ (in the past, present or future), and so �∗ manages is the
union of the relations manages over all time instants.

Finally, to represent temporal database instances associated to a temporal conceptual
model, we use assertions like ©P Manager(bob) for ‘Bob was a manager last year’ and
©F manages(bob, cronos) for ‘Bob will manage project Cronos next year.’

3.1 Temporal DL-Lite Logics

It is known from temporal logic [18] that all the temporal operators used in the previous
section can be expressed in terms of the binary operators ‘since’ S and ‘until’ U . So
we formulate our ‘base’ temporal extension TUSDL-LiteNbool of the description logic
DL-LiteNbool using only these two operators. The language of TUSDL-LiteNbool contains
object names a0, a1, . . . , concept names A0, A1, . . . , flexible role names P0, P1, . . .
and rigid role names G0, G1, . . . . Role names S, roles R, basic concepts B, concepts
C and temporal concepts D are defined by the following rules:

S ::= Pi | Gi,

R ::= S | S−,

B ::= ⊥ | Ai | ≥ q R,

C ::= B | D | ¬C | C1 � C2,

D ::= C | C1 U C2 | C1 S C2,

where, as before, q is a positive integer. A TUSDL-LiteNbool TBox, T , is a finite set of
concept inclusions of the formC1 � C2. An ABox,A, consists of assertions of the form

©nAk(ai), ©n¬Ak(ai), ©nS(ai, aj) and ©n¬S(ai, aj),
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where Ak is a concept name, S a (flexible or rigid) role name, ai, aj object names and,
for n ∈ Z,

©n = ©F · · ·©F︸ ︷︷ ︸
n times

, if n ≥ 0 and ©n = ©P · · ·©P︸ ︷︷ ︸
−n times

, if n < 0.

Taken together, the TBox T and ABox A form the knowledge base (KB) K = (T ,A).
A temporal interpretation, I, gives a standard DL interpretation, I(n), for each time

instant n ∈ Z:

I(n) =
(
ΔI , aI0 , . . . , A

I(n)
0 , . . . , P

I(n)
0 , . . . , GI

0 , . . .
)
.

We assume, however, that the domain ΔI and the interpretations aIi ∈ ΔI of the object
names and GI

0 ⊆ ΔI ×ΔI of rigid role names are fixed for all time. (Recall also that

we adopt the UNA.) The interpretations AI(n)
i ⊆ ΔI of concept names and P

I(n)
i ⊆

ΔI × ΔI of flexible role names can vary. The atemporal constructs are interpreted in
I(n) as before; we write CI(n) for the extension of concept C in the interpretation
I(n). The interpretation of the temporal operators is as in temporal logic:

(C1 U C2)I(n) =
⋃
k>n

(
C

I(k)
2 ∩

⋂
n<m<k

C
I(m)
1

)
,

(C1 S C2)I(n) =
⋃
k<n

(
C

I(k)
2 ∩

⋂
n>m>k

C
I(m)
1

)
.

Concept inclusions are interpreted in I globally:

I |= C1 � C2 iff C
I(n)
1 ⊆ C

I(n)
2 for all n ∈ Z.

And for the ABox assertions, we set:

I |= ©nAk(ai) iff aIi ∈ A
I(n)
k , I |= ©n¬Ak(ai) iff aIi /∈ A

I(n)
k ,

I |= ©nS(ai, aj) iff (aIi , a
I
j ) ∈ SI(n), I |= ©n¬S(ai, aj) iff (aIi , a

I
j ) /∈ SI(n).

We call I a model of a KB K and write I |= K if I satisfies all elements of K. If K
has a model then it is said to be satisfiable. A concept C (role R) is satisfiable w.r.t. K
if there are a model I of K and n ∈ Z such that CI(n) �= ∅ (respectively, RI(n) �= ∅).
It is readily seen that the concept and role satisfiability problems are equivalent to KB
satisfiability.

We now define a few fragments and extensions of the base language TUSDL-LiteNbool.
Recall that to say that C is a snapshot concept, we need the ‘always’ operator �∗ with
the following meaning:

(�∗ C)I(n) =
⋂
k∈Z

CI(k).

In terms of S and U , this operator can be represented as �∗ C = ¬(� S ¬C) � C �
¬(� U ¬C). Define TU DL-LiteNbool to be the sublanguage of TUSDL-LiteNbool the tem-
poral concepts D in which are of the form:

D ::= C | �∗ C. (U)
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Thus, in TU DL-LiteNbool, we can express timestamping constraints (see Section 3).
The temporal operators �F (‘some time in the future’) and �P (‘some time in the

past’) that are required for qualitative evolution constraints with the standard temporal
logic semantics

(�FC)I(n) =
⋃
k>n

CI(k) and (�PC)I(n) =
⋃
k<n

CI(k)

can be expressed via U and S as �FC = � U C and �PC = � S C; the operators
�F (‘always in the future’) and �P (‘always in the past’) are defined as dual to �F and
�P : �FC = ¬�F¬C and �PC = ¬�P¬C. We define the fragment TFP DL-LiteNbool
of TUSDL-LiteNbool by restricting the temporal concepts D to the form:

D ::= C | �FC | �PC. (FP)

Clearly, we have the following equivalences:

�∗ C = �F �PC and �∗ C = �F �PC.

In what follows they will be regarded as definitions for �∗ and �∗ in the languages,
where they are not explicitly present. Thus, TFP DL-LiteNbool is capable of expressing
both timestamping and qualitative (but not quantitative) evolution constraints.

The temporal operators ©F (‘next time’) and ©P (‘previous time’), used in quantita-
tive evolution constraints, can be defined as ©FC = ⊥U C and ©PC = ⊥S C, so that
we have:

(©FC)I(n) = CI(n+1) and (©PC)I(n) = CI(n−1).

The fragment of TUSDL-LiteNbool with temporal concepts of the form

D ::= C | �FC | �PC | ©FC | ©PC (FPX)

will be denoted by TFPXDL-LiteNbool. In this fragment, we can express timestamping,
qualitative and quantitative evolution constraints.

We have the following inclusions between the languages:

TUDL-LiteNbool ⊆ TFP DL-LiteNbool ⊆ TFPXDL-LiteNbool ⊆ TUSDL-LiteNbool.

Similarly to the non-temporal case, we can also identify sub-Boolean fragments of the
above languages. A temporal TBox T will be called a Krom (core) TBox if it contains
only concept inclusions of the form:

D1 � D2, D1 � ¬D2, ¬D1 � D2, (Krom)

D1 � D2, D1 �D2 � ⊥, (core)

respectively, where the Di are temporal concepts defined by (FPX), (FP) or (U) with
C ::= B | D (so, no Boolean operators are allowed in the Di). This gives us 6 different
fragments TFPXDL-LiteNα , TFP DL-LiteNα and TU DL-LiteNα , for α ∈ {core, krom}.
We do not consider the core and Krom fragments of the full language with U /S be-
cause these operators allow one to go beyond the language of binary clauses of the
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core and Krom fragments; the resulting languages would have the same complexity as
TUSDL-LiteNbool and yet be less expressive (see [9] for more details).

We note here that both Krom and Bool TBoxes have the full negation, and so one can
freely use �-shaped counterparts of the � temporal operators allowed in the language.
This is not the case for the core fragments where timestamping can still be expressed
(cf. (1) and (2)) but evolution constraints involving � (e.g., a Manager was once an
Employee; cf. (5)) are not expressible.

Table 1. The temporal extended DL-Lite family and complexity of its members

temporal constructsconcept
inclusions U/S ,©F /©P , �F /�P

a �F /�P �∗

Bool

TUSDL-LiteNbool
TFPX DL-LiteNbool

PSPACE

TFP DL-LiteNbool

NP

TU DL-LiteNbool

NP

Krom
TFPXDL-LiteNkrom

NP

TFP DL-LiteNkrom

NP

TU DL-LiteNkrom

NLOGSPACE

core
TFPX DL-LiteNcore

in PTIME

TFP DL-LiteNcore

in PTIME

TU DL-LiteNcore

NLOGSPACE

temporalized
roles

TR
XDL-LiteNbool

undec.
?

TR
U DL-LiteNbool

NP

a Sub-boolean fragments of the language with U/S are not defined.

As we have seen in our running example, in order to express lifespan cardinality
constraints, temporal operators on roles are required: for a role R of the form

R ::= S | S− | �∗ R | �∗ R,

the extensions of �∗ R and �∗ R in an interpretation I are defined as

(�∗ R)I(n) =
⋃
k∈Z

RI(k) and (�∗ R)I(n) =
⋂
k∈Z

RI(k).

We denote by TR
β DL-LiteNbool, for β ∈ {FPX,FP,U}, the extensions of the respective

Bool fragments with temporalized roles.
To summarize, the temporal extensions of the DL-Lite logics we consider in this

paper are collected in Table 1. The tight (unless specified otherwise) complexity bounds
of Table 1 have been established in [9].

4 Conclusions

From the complexity-theoretic point of view, the best candidates for reasoning about
TCMs appear to be the TDLs TFPXDL-LiteNcore and TFPXDL-LiteNbool, the former of
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which is NP-complete and the latter PSPACE-compete. Moreover, as showed in [9],
the reduction of TFPXDL-LiteNcore to LT L can be done deterministically, thus standard
LT L provers can be used for TCM reasoning. We also believe that TFPXDL-LiteNcore
extended with temporalized roles can be decidable, which remains one of the most chal-
lenging open problems. But it seems to be next to impossible to reason in an effective
way about all TCM constrains without any restrictions.
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Abstract. Isabelle/HOL is a popular interactive theorem prover based on higher-
order logic. It owes its success to its ease of use and powerful automation. Much
of the automation is performed by external tools: The metaprover Sledgehammer
relies on resolution provers and SMT solvers for its proof search, the counter-
example generator Quickcheck uses the ML compiler as a fast evaluator for
ground formulas, and its rival Nitpick is based on the model finder Kodkod, which
performs a reduction to SAT. Together with the Isar structured proof format and a
new asynchronous user interface, these tools have radically transformed the Isa-
belle user experience. This paper provides an overview of the main automatic
proof and disproof tools.

1 Introduction

In the tradition of LCF-style interactive theorem provers [21], Isabelle [35] has long
emphasized tactics: functions written in ML that operate on the proof state via a trusted
inference kernel. Tactics discharge a proof goal directly or, more often, break it down
into one or more subgoals that must then be tackled by other tactics. In the last decade,
the structured Isar language [34,57] has displaced ML as the language of choice for Isa-
belle proofs, but the most important ML tactics are still available as Isar proof methods.

Much effort has been devoted to developing general-purpose proof methods (or
tactics) that work equally well on all object logics supported by Isabelle, notably higher-
order logic (HOL) [20] and Zermelo–Fraenkel set theory (ZF) [37, 38]. The most im-
portant methods are the simplifier, which rewrites the goal using equations as oriented
rewrite rules, and the tableau prover (Section 2). These are complemented by special-
ized decision procedures, especially for arithmetic. For the users of an interactive the-
orem prover, one of the main challenges is to find out which proof methods to use and
which arguments to specify.

Although proof methods are still the mainstay of Isabelle proofs, the last few years
have seen the focus move toward advisory tools that work outside the LCF-style in-
ference kernel. Some of these tools are very simple and yet surprisingly effective; for
example, one searches Isabelle’s libraries for a lemma that can prove the current goal
directly, and another tries the most common proof methods.

The most important proof tool besides the simplifier and the tableau prover is proba-
bly Sledgehammer, which connects Isabelle with external resolution provers and SMT
solvers (Section 3). It boasts a fairly high success rate on goals that cannot be dis-
charged directly by standard proof methods: In a recent study involving older Isabelle
proof scripts, Sledgehammer could prove 43% of the more difficult goals contained

C. Tinelli and V. Sofronie-Stokkermans (Eds.): FroCoS 2011, LNAI 6989, pp. 12–27, 2011.
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in those proofs [6]. The addition of SMT solvers is recent and helps solve both arith-
metic and nonarithmetic problems [6]. Sledgehammer works well in combination with
structured Isar proofs: The new way of teaching Isabelle is to let students think up in-
termediate properties and rely on automatic tools to fill in the gaps, rather than teach
them low-level tactics and have them memorize lemma libraries [41, §4].

As useful as they might be, most automatic proof tools are helpless in the face of an
invalid conjecture. Novices and experts alike can enter invalid formulas and find them-
selves wasting hours (or days) on an impossible proof; once they identify and correct
the error, the proof is often easy. To make proving more enjoyable and productive, Isa-
belle includes counterexample generators that complement the proof tools. The main
ones are Quickcheck (Section 4) and Nitpick (Section 5).

Quickcheck [3] combines Isabelle’s code generation infrastructure with random test-
ing, in the style of the QuickCheck tool for Haskell [14]. It analyses the definitions of
inductively defined predicates to generate values that satisfies them by construction [11]
and has recently been extended with exhaustive testing and narrowing.

A radically different approach is based on systematic model enumeration using a
SAT solver. This approach was pioneered by the tool Refute [54] and is now embodied
by Nitpick [8]. Nitpick looks for finite fragments (substructures) of infinite counter-
models, soundly approximating problematic constructs. Common Isabelle idioms, such
as inductive and coinductive predicates and datatypes as well as recursive and corecur-
sive functions, are treated specially to ensure efficient SAT solving. The actual reduction
to SAT is performed by the Kodkod library [53] (the Alloy Analyzer’s [25] backend).

With so many tools at their disposal, users run the risk of forgetting to invoke them
at the right point; this is especially true for the counterexample generators, given that
humans have a natural tendency to trust their own conjectures. For this reason, the proof
and disproof tools can be set up to run automatically in parallel for a few seconds on all
newly entered conjectures. They can of course also be launched at any point in a proof
with a more liberal time limit. Either mode of operation exploits multiple processor
cores if they are available, and Sledgehammer also sends its problems to remote servers
to further distribute the load.

2 Standard Proof Methods

Isabelle provides the user with an array of general-purpose proof methods that perform
proof search. We discuss the most important ones.

2.1 Simplification

Just as in ACL2 [26], simplification is the main workhorse in Isabelle. It performs con-
ditional, contextual rewriting with a number of hooks for customizations:

– Pattern-driven simplification procedures that derive and apply rewrite rules dy-
namically. Many such procedures are preinstalled, notably arithmetic simplification
procedures for numerals and symbolic terms.

– Special solvers for conditional rewrite rules. Typical examples are fragments of
linear arithmetic and a transitive closure prover for arbitrary transitive relations.
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– Special “loopers” that massage the goal after each round of simplification. Case
splitting methods are provided this way.

The power of the simplifier is due to these extensions to rewriting together with the vast
and growing library of registered rewrite rules.

2.2 Auto and Co.

On the user level, the simplifier is eclipsed by auto, a proof method that interleaves
simplification with a small amount of proof search. It is impossible to describe suc-
cinctly what auto does due to its heuristic, ad hoc nature. Its great strength is its ability
to discharge the easy parts of a goal and leave the user with the more difficult ones. This
helps the user to quickly focus on the core of a problem.

Strengthened versions of auto perform more sophisticated proof search, while still
interleaving it with simplification. The search is based on tableau methods [39]. These
methods are often useful, but since search is involved, not only are they slower than the
simplifier and auto, they are endgame provers that do not provide any hints when they
fail to prove the goal.

2.3 Blast and Metis

The tableau implementation mentioned above can be very slow because every infer-
ence step is performed directly on the proof state, via the Isabelle kernel. For more
performance, users can choose blast [40], a tableau prover written directly in ML that
bypasses the kernel; once a proof has been found, it is replayed in the kernel to check
it. The blast method outperforms the kernel-based tableau implementation by a wide
margin but is no match for the best automatic provers. Nor does it know about simplifi-
cation, which is a great loss.

Taking this one step further, Metis is a resolution theorem prover written in ML by
Hurd [24]. Metis is sufficiently capable that it is a respectable competitor at CASC [51].
It has been ported to Isabelle and follows the same philosophy as blast: The proof search
is performed directly in ML, and any proof found is checked by the Isabelle kernel.

The blast method relies on an extensible lemma database that drives the search and
that is preconfigured to reason about sets, functions and relations, which makes it quite
user-friendly. In contrast, Isabelle’s version of Metis knows only about pure logic and
derives its knowledge about other operators from explicitly supplied lemmas. Although
Metis can be invoked directly, in practice Metis calls are almost always generated by
Sledgehammer for reconstructing external resolution proofs (Section 3.4).

3 Sledgehammer: Proof Discovery Using External Provers

Sledgehammer [31, 42] is Isabelle’s subsystem for harnessing the power of first-order
automatic theorem provers. Given a conjecture, it heuristically selects a few hundred
relevant facts (lemmas, definitions, or axioms) from Isabelle’s libraries, translates them
to first-order logic along with the conjecture, and delegates the proof search to external
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resolution provers (E [48], SPASS [56], and Vampire [44]) and SMT solvers (CVC3 [2],
Yices [16], and Z3 [33]). Sledgehammer is very effective [9] and has achieved great
popularity with users, novices and experts alike.

3.1 Relevance Filtering

Most automatic provers perform poorly in the presence of thousands of axioms. Sledge-
hammer employs a simple relevance filter [32] to extract a few hundred facts from Isa-
belle’s libraries that seem relevant to the problem at hand. Despite its simplicity, this
filter greatly improves Sledgehammer’s success rate.

The filter works iteratively. The first iteration selects facts that share all or nearly all
of their constants (symbols) with the conjecture. Further iterations also include facts
that share constants with previously selected facts, until the desired number of facts is
reached. Observing that some provers cope better with large axiom bases than others,
that number was optimized independently for each prover.

3.2 Translation to First-Order Logic

Isabelle’s formalism, polymorphic higher-order logic with type classes [59], is much
richer than the first-order logics supported by the automatic provers. Sledgehammer
relies on different translations depending on the class of prover [6, 31].

For resolution provers, standard techniques are employed to translate HOL formulas
to classical first-order logic: λ-abstractions are rewritten to combinators, and curried
functions are passed varying numbers of arguments by means of an explicit apply op-
erator. Until recently, the translation of types was unsound: It provided enough type
information to enforce correct type class reasoning but not to specify the type of every
term. (Because the proofs are rechecked by Isabelle’s inference kernel, soundness is not
crucial.) The current implementation safely erases most type information by inferring
type monotonicity [7, 15], resulting in a sound and efficient encoding.

For SMT solvers, the translation maps equality and arithmetic operators to the cor-
responding SMT-LIB [43] concepts. The SMT-LIB logic is many-sorted, which would
seem to make it more appropriate to encode HOL typing information than classical first-
order logic, but it does not support polymorphism. The solution is to monomorphize the
formulas: Polymorphic formulas are iteratively instantiated with relevant ground in-
stances of their polymorphic constants. This process is iterated to obtain the monomor-
phized problem. Partial applications are translated using an apply operator, but in
contrast with the combinator approach used when communicating with resolution
provers, λ-abstractions are lifted into new rules, thereby introducing fresh constants.

3.3 Invocation of External Provers

Sledgehammer lets the external provers run in parallel, either locally or remotely. On a
typical Isabelle installation, E, SPASS, and Z3 are run on the user’s machine, whereas
Vampire and the SInE metaprover [23] are provided via the remote SystemOnTPTP
service [50]. Users can also enable CVC3 and Yices.



16 J.C. Blanchette, L. Bulwahn, and T. Nipkow

Relevance filter

E SPASS SInE Z3 CVC3 Yices

Relevance filter

TPTP translation SMT tr. SMT translation

Metis
proof

Metis 
or SMT
proof

Metis 
or SMT
proof

Metis 
or SMT
proof

Metis
proof

Metis
proof

Metis
proof

Vampire

Sledgehammer 

Fig. 1. Sledgehammer’s architecture

Figure 1 depicts the architecture, omitting proof reconstruction and minimization.
Two instances of the relevance filter are run, to account for different sets of built-in
constants. The relevant facts and the conjecture are translated to the TPTP [52] or SMT
version of first-order logic, and the resulting problems are passed to the provers. The
translation for Z3 is done slightly differently than for CVC3 and Yices to profit from
Z3’s support for nonlinear arithmetic.

Third-party provers should ideally be bundled with Isabelle and ready to be used
without requiring configuration. Isabelle includes CVC3, E, SPASS, and Z3 executa-
bles for the major hardware platforms; users can download Yices and Vampire, whose
licenses forbid redistribution, but most simply run Vampire remotely on SystemOn-
TPTP. In addition, we set up a server in Munich in the style of SystemOnTPTP for
running CVC3 and Z3 remotely.

Remote servers are satisfactory for proof search, at least when they are up and run-
ning and the user has Internet access. They also help distribute the load: Unless the
user’s machine has eight processor cores, it would be reckless to launch four resolution
provers and three SMT solvers and expect the Isabelle user interface to remain respon-
sive. The parallel invocation of provers is invaluable: Running E, SPASS, and Vampire
together for five seconds solves as many problems as running a single prover for two
minutes [9, §8].

3.4 Proof Reconstruction

In keeping with the LCF philosophy [21], Isabelle theorems can only be generated
within a small inference kernel. It is possible to bypass this safety mechanism, if some
external tool is to be trusted as an oracle, but all oracle inferences are tracked.

For resolution provers, Sledgehammer performs true proof reconstruction by run-
ning Isabelle’s built-in resolution prover, Metis, supplying it with the short list of facts
used in the proof found by the prover. Given only a handful of facts, Metis usually
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succeeds within milliseconds. Since Metis has to re-find the proof, the external provers
are essentially used as very precise relevance filters.

As an example, consider the conjecture “length (tl xs)≤ length xs”, which states that
the length of a list’s tail (its “cdr”) is less than or equal to the length of the entire list.
Thanks to Vampire, Sledgehammer finds the following proof:

by (metis append Nil2 append eq conv conj drop eq Nil drop tl tl.simps(1))

Proof reconstruction using Metis loses about 4% of resolution proofs because Metis
times out, typically because the proof found by the external prover is too long. Sledge-
hammer then falls back on a detailed Isabelle proof, expressed in the structured Isar lan-
guage. While the detailed output is primarily designed for replaying resolution proofs,
it also has a pedagogical value. Unlike Isabelle’s automatic tactics, which are black
boxes, the proofs delivered by Sledgehammer can be inspected and understood, as in
the example below:

proof –
have “tl [] = []” by (metis tl.simps(1))
hence “∃u. xs @ u = xs ∧ tl u = []” by (metis append Nil2)
hence “tl (drop (length xs) xs) = []” by (metis append eq conv conj)
hence “drop (length xs) (tl xs) = []” by (metis drop tl)
thus “length (tl xs)≤ length xs” by (metis drop eq Nil)

qed

The generated proofs often require some postediting to make them syntactically correct.
Efforts are underway to make the generated output both more robust and more concise.

On the SMT side of things, proofs that involve no arithmetic reasoning steps can usu-
ally be replayed by Metis; otherwise, step-by-step proof replay is supported for Z3 [10],
whereas CVC3 and Yices can be invoked as oracles. Z3 proof replay relies extensively
on Isabelle’s simplifier, tableau prover, and arithmetic decision procedures. Certificates
make it possible to store Z3 proofs alongside Isabelle formalizations, allowing proof re-
play without Z3; only if the formalizations change must the certificates be regenerated.
Using SMT solvers as oracles requires trusting both the solvers and the translation to
first-order logic, so it is generally frowned upon.

3.5 Proof Minimization

The external provers frequently use many more facts than are necessary. Sledgeham-
mer’s minimization tool takes the set of used facts returned by a prover and repeatedly
invokes the prover with subsets of the facts to find a minimal set. Depending on the
number of initial facts, it relies either on a naive linear algorithm that attempts to re-
move one fact at a time or on a binary algorithm that recursively bisects the facts [9, §7].

Minimization often improves Metis’s performance and success rate, while removing
clutter from the Isabelle formalizations. For some provers, it is difficult or impossible
to extract the list of used facts from the proof; minimization is then the only option. For
example, the detailed proofs returned by CVC3 always refer to all facts, whether they
are actually needed or not, and there is no easy criterion to isolate the needed facts.
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4 Quickcheck: Counterexample Generation by Testing

Isabelle’s proof methods and Sledgehammer are effective for proving valid conjectures,
but given an invalid conjecture they normally fail to detect the invalidity, let alone pro-
duce an informative counterexample. This is where Quickcheck comes into play.

Quickcheck was originally modeled after the QuickCheck tool for Haskell [14],
which tests user-supplied properties of a Haskell program for randomly generated val-
ues. We recently extended Quickcheck with exhaustive and narrowing-based testing as
complements to random testing. Exhaustive testing checks the formula for every possi-
ble set of values up to a given bound, as in SmallCheck [46], and hence finds counter-
examples that random testing might miss. Narrowing can be more precise and more
efficient than the other two approaches because it considers the formula symbolically,
instead of testing a finite set of ground values.

Thanks to a static data-flow analysis inspired by logic programming [11], Quick-
check derives test data generators that take premises into account to help avoid the
vacuous test cases that plague most specification testing tools.

4.1 Random and Exhaustive Testing

Quickcheck’s random testing strategy repeatedly evaluates the conjecture with pseudo-
random values for its free variables. The procedure is parameterized by a size bound
on the generated values and the number of tests to perform. The distribution is biased
toward smaller values [3, §4].

In principle, Quickcheck could use the Isabelle simplifier to evaluate the conjecture
for specific values of its free variables, but it is much more efficient to translate the
conjecture and related definitions to an ML (or Haskell) program, exploiting Isabelle’s
code generation infrastructure [22]: The ML runtime environment can check millions
of test cases within seconds, which is thousands of times faster than the simplifier.

Random testing tends to be fast and sometimes finds large counterexamples. Indeed,
the QuickCheck tool for Haskell includes a minimizer to reduce overly large counter-
examples, a refinement that our Quickcheck implementation currently lacks. But ran-
dom testing can easily miss counterexamples, even seemingly obvious ones. It also
struggles with conjectures that have hard-to-satisfy premises.

An alternative strategy is exhaustive testing, which systematically enumerates val-
ues up to a size bound (e.g., all lists of length up to 5). This ensures that all possible
variable assignments up to a given size are tested. Hence, if there is a small enough
counterexample, it will be found. The main drawback of this strategy is that the number
of test cases quickly explodes with increasing size bounds.

Through empirical testing we found the two strategies to be roughly comparable on
most types of formula, but exhaustive testing tends to be more successful on conjectures
with hard-to-satisfy premises, simply because it will encounter the few small values that
fulfill the conditions if such values exist, whereas random testing might miss them. The
following conjecture about lists illustrates this point:

nth (xs @ ys) (length xs+ n) = nth xs n
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The nth function returns the element at a given index in a list, and @ is the append
operator. The conjecture attempts to relate the elements of xs @ ys with those of ys, but
a typo slipped in: The right-hand side should read nth ys n. Exhaustive testing immedi-
ately finds a counterexample with xs = [a1] and ys = [a2] (for a1 �= a2). Random testing
typically fails to find the counterexample, even with hundreds of iterations, because
randomly chosen values for n are almost always out of bounds. Since such examples
occur frequently in practice, we have now made exhaustive testing the default strategy.

4.2 Test Data Generation

Random and exhaustive testing generate values without analyzing the conjecture. This
can lead to many vacuous test cases, as in this simple example:

length xs = length ys ∧ zip xs ys = zs =⇒ map fst zs = xs ∧ map snd zs = ys

The random and exhaustive strategies first generate values for xs, ys, and zs in an uncon-
strained fashion and then check the premises, namely that xs and ys are of equal length
and that zs is the list obtained by zipping xs and ys together. For the vast majority of
variable assignments, the premises are not fulfilled, and the conclusion is left untested.
Clearly, it is desirable to take the premises into account when generating values.

We recently extended Quickcheck with test data generators that construct values in
a bottom-up fashion, simultaneously testing the conjecture and generating appropri-
ate values [11]. Briefly, we synthesize the test data generator associated with a given
premise by reformulating the premise as Horn clauses and computing their data-flow
dependencies; from this data-flow analysis, we synthesize generators that directly com-
pute appropriate value.

When transforming the premises to Horn clauses, we replace n-ary functions with
(n+1)-ary predicates; this gives more freedom to the data-flow analysis, which can then
invert functions. The data-flow analysis is an extension of a classic analysis from logic
programming. To execute a predicate, its arguments are classified as input or output,
made explicit by means of modes. A mode is a data-flow assignment that annotates all
arguments of a predicate as input (i) or output (o). For example, the binary predicate of
type α list → nat → bool corresponding to the function length supports several modes:

– From the first argument xs, we can compute the second argument by evaluating
length xs. This corresponds to the mode i → o → bool.

– Inversely, we can enumerate lists of a given length: o → i → bool.
– Given a list and a natural number, we can check whether the list’s length equals that

number: i → i → bool.
– Or we can simply enumerate all pairs (xs, n) such that length xs = n. This is the

mode o → o → bool.

In the classic analysis, a mode is only possible if the Horn clauses allow a complete data-
flow from input to output values. For Quickcheck, if the mode analysis fails to produce
a complete mode assignment because the values of some variables are not constrained
by the premises, we fall back on the random or exhaustive strategy to fill in the gaps
in the data flow. For example, given the Horn clause P x =⇒ Q x y, where P supports
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the modes i → bool and o → bool, the classic analysis fails to find a consistent mode
assignment for Q with mode o → o → bool because y is unconstrained. To generate
values for x and y that fulfill Q, we can generate x values using P with o→ bool and set
y to an arbitrary value, then check Q x y.

If the conjecture is polymorphic, we can instantiate the type variables with any con-
crete type for refuting it. Older versions of Quickcheck instantiated type variables with
the type of integers, but it is usually preferable to use a small finite type instead, so that
existential conjectures ∃x ::α. P x can be refuted by a finite number of P tests.

4.3 Narrowing

The random and exhaustive strategies suffer from two important limitations: They can-
not refute propositions that existentially quantify over infinite types, and they often
repeatedly test formulas with values that check essentially the same execution (e.g.,
because of symmetries).

Both issues arise from the use of ground values and can be addressed by evaluat-
ing the formula symbolically. The technique is called narrowing and is well known
from term rewriting. The main idea is to evaluate the conjecture with partially instan-
tiated terms and to progressively refine these terms as needed. Technically, this can be
achieved in at least three different ways:

1. Target a language that natively supports narrowing, such as the functional-logical
language Curry [1], instead of ML.

2. Simulate narrowing by generating a functional program that includes its own re-
finement algorithm [46].

3. Simulate narrowing by embedding the narrowing-based execution with a library of
combinators [18, 30] in a functional language.

We tried out the first two approaches and found that the second approach is faster. The
third approach looks promising but would require a more involved translation.

The main benefit of narrowing is its generality: Unlike the random and exhaustive
strategies, it can refute existential quantifications over infinite types. Consider the fol-
lowing conjecture:

∀n. ∃m ::nat. n = Suc m

To disprove it, we must exhibit a natural number n such that ∀m ::nat. n �= Suc m. Taking
a symbolic view, if we choose n = 0, it is easy to see that n �= Suc m is true for every
natural number m without having to instantiate m.

The above example is perhaps too simple to be convincing. A more realistic example
is based on the observation that the palindrome [a,b,b,a] can be split into the list [a,b]
and its reverse [b,a]. Generalizing this to arbitrary lists, we boldly conjecture that

rev xs = xs =⇒ ∃ys. xs = ys @ rev ys

The narrowing approach immediately finds the counterexample xs = [a1], inferring that
there is no witness for ys in the infinite domain of lists: If ys is empty, ys @ rev ys
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= [] �= [a1], and if ys is not empty, ys @ rev ys consists of at least two elements and
hence cannot be equal to [a1].

Narrowing tends to scale better than the random and exhaustive strategies. Consider
red–black trees, a binary search data structure with two kinds of node, red and black,
that must satisfy a sophisticated invariant involving node coloring. The invariant is cap-
tured by a predicate is rbt. If the delete operation is properly implemented, the follow-
ing property should hold:

is rbt t =⇒ is rbt (delete k t)

The premise is rbt t ensures that the tree t has a black root node, and in fact, after a few
refinements, narrowing will only test symbolic values satisfying this property, already
pruning away about half of the overall test cases. As expected, narrowing finds many
more counterexamples than random and exhaustive testing on this kind of example.
Interestingly, it even performs slightly better than a custom generator that constructs
well-formed trees using a sequence of insert operations.

5 Nitpick: Countermodel Generation Using SAT Solvers

Irrespective of which strategy is used, Quickcheck recasts the conjecture to disprove
into a functional program. An alternative is to let a SAT solver enumerate models of the
negated conjecture and relevant definitions and axioms. This approach is implemented
in a separate tool called Nitpick [8], which relies on the highly optimized Kodkod li-
brary [53] for the actual reduction to SAT.

Given a conjecture, Nitpick (via Kodkod and the SAT solver) searches for a standard
set-theoretic model that falsifies it while satisfying any relevant axioms and definitions.
Unlike Quickcheck, which performs its sophisticated code transformations using the
Isabelle inference kernel, Nitpick does not certify any of its results and must be trusted.

Nitpick’s design was inspired by its predecessor Refute [54], which performed a
direct reduction to SAT. Nitpick works by systematically enumerating the domain car-
dinalities for the atomic types (type variables and other uninterpreted types) occurring
in the conjecture and generates one Kodkod problem (and ultimately one SAT problem)
per cardinality specification [5]. To exhaust all models up to a given cardinality bound k
for a formula involving n atomic types, it must in principle iterate through kn combina-
tions of cardinalities, but a sophisticated monotonicity inference helps prune the search
space [7]. If the conjecture has a finite countermodel, the tool eventually finds it, unless
it runs out of resources.

5.1 Basic Translation to Relational Logic

Kodkod’s input is expressed in first-order relational logic (FORL), an idiosyncratic for-
malism that combines elements from first-order logic and relational calculus, extended
with a transitive closure operator. SAT solvers are particularly sensitive to the encod-
ing of problems, so special care is needed when translating HOL formulas to FORL.
Whenever practicable, HOL constants are mapped to their FORL equivalents, rather
than expanded to their definitions.
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As a rule, HOL scalars are mapped to FORL singletons and functions are mapped
to FORL relations accompanied by a constraint. An n-ary first-order function can be
coded as an (n + 1)-ary relation accompanied by a constraint. However, if the return
type is bool, the function is more efficiently coded as an unconstrained n-ary relation.
This allows formulas such as A+ ∪ B+ = (A ∪ B)+ to be translated without taking a
detour through ternary relations.

Higher-order quantification and functions bring complications of their own. For ex-
ample, assuming the cardinality constraints |α|= 2 and |β|= 3, we would like to trans-
late ∀g :: β→α. g x �= y into something like

∀g ⊆ {a3,a4,a5}×{a1,a2}. (∀a∈{a3,a4,a5}. |g(a)|= 1)−→ g(x) �= y

but since Kodkod is first-order, the ⊆ symbol is not allowed at the binding site; only
∈ is. Skolemization solves half the problem, but for the remaining quantifiers we are
forced to adopt an unwieldy n-tuple singleton representation of functions, where n is
the cardinality of the domain. The n-tuple simply encodes g’s function table. For the
formula above, this gives

∀G∈{a1,a2}3.
( g︷ ︸︸ ︷
{a3}×π1(G) ∪ {a4}×π2(G) ∪ {a5}×π3(G)

)
(x) �= y

where G is the triple corresponding to g and πi(G) is its i th component (i.e., the ith
entry in the function table). In the body, we convert the singleton G to the relational
representation, then we apply x on it. The singleton encoding is also used for passing
functions to other functions; fortunately, two optimizations, function specialization and
boxing [8, §5], make this rarely necessary.

5.2 Approximation of Infinite Types and Partiality

Because of the axiom of infinity, the type nat of natural numbers does not admit any
finite models. To work around this, Nitpick considers finite subsets {0,1, . . . , K − 1}
of nat and maps numbers ≥ K to the undefined value, denoted by � and coded as the
empty set. Formulas of the form ∀n ::nat. P n are treated as (∀n < K. P n) ∧ P �, which
usually evaluates to either False (if P i gives False for some i < K) or �, but not to True,
since we generally cannot determine statically whether P K, P (K +1), . . . , collectively
represented by P �, are true. Partiality leads to a Kleene three-valued logic, which is
soundly encoded in Kodkod’s two-valued logic.

5.3 Encoding of (Co)inductive Predicates

Isabelle lets users specify (co)inductive predicates p by their introduction rules and
synthesizes a fixed point definition p = lfp F or p = gfp F behind the scenes. For per-
formance reasons, Nitpick handles (co)inductive predicates specially rather than simply
expanding lfp and gfp to their definitions.

An inductive predicate p is a fixed point, so Nitpick can use the equation p = F p as
the axiomatic specification of p. In general, this is unsound since it underspecifies p,
but there are two important cases for which this method is sound:
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– If the recursion in F is well-founded [12], the fixed point equation p = F p admits
exactly one solution that can safely be taken as p’s specification.

– If p occurs negatively in the formula, these occurrences can be soundly replaced by
a fresh constant q satisfying the axiom q = F q.

For the remaining positive occurrences of p, Nitpick unrolls the predicate a given num-
ber of times, as in bounded model checking [4]. The situation is mirrored for coin-
ductive predicates: Positive occurrences are coded using the fixed-point equation, and
negative occurrences are unrolled.

5.4 Encoding of (Co)inductive Datatypes

In contrast to Isabelle’s constructor-oriented treatment of inductive datatypes, Nitpick’s
FORL axiomatization revolves around selectors and discriminators, following a stan-
dard Alloy idiom [28]. The selector/discriminator view is usually more efficient than
the constructor view because it breaks high-arity constructors into several low-arity se-
lectors, with correspondingly smaller function tables in the SAT encoding. For example,
the type α list generated from Nil ::α list and Cons::α→α list→α list is axiomatized in
terms of the discriminators nilp and consp and the selectors hd and tl, which give access
to a nonempty list’s head and tail.

The FORL axiomatization specifies a subterm-closed finite substructure of lists. Ex-
amples of subterm-closed list substructures using traditional notation are {[], [0], [1]}
and {[], [1], [2,1], [0,2,1]}. On the other hand, the set L = {[], [1,1]} is not subterm-
closed, because tl [1,1] = [1] /∈ L. Given cardinalities for the list type and the item type,
the SAT solver enumerates all corresponding subterm-closed list substructures.

Nitpick supports coinductive datatypes, even though Isabelle does not provide a high-
level mechanism for defining them. Users can define custom coinductive datatypes from
first principles and tell Nitpick to substitute its efficient FORL axiomatization for their
definitions.

6 Related Work

Isabelle is not the only interactive theorem prover that provides a palette of automatic
proof and disproof tools. We briefly review what the other popular provers have to offer.

– HOL4 [20, 49] includes the original version of Metis [24] and an integration of
SMT solvers [55] with proof reconstruction for Z3 [10].

– PVS includes a Quickcheck-like random testing tool [36] and integrates the SMT
solver Yices as an oracle [47].

– For Mizar, the MizAR web service [45] is a recent addition that exploits external
resolution provers in the style of Sledgehammer.

– The Sedan version of ACL2 includes a counterexample generator based on ran-
dom testing [13]. The tool analyses the goal to compute dependencies between free
variables, similar to Quickcheck’s data-flow analysis.
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– Although Coq has a considerable user base, advisory tools are conspicuously
missing. An SMT integration with proof certification is in the works [27].

– Earlier versions of the Agda proof assistant included a version of QuickCheck [17],
but like the original QuickCheck for Haskell it required users to write dedicated
data generators for custom datatypes. The Agsy tool [29, 30] implements narrow-
ing for both counterexample generation and proof search. An integration of the
equational prover Waldmeister is under development [19].

7 Conclusion

Isabelle offers a wide range of automatic tools for proving and disproving conjectures.
Some of them are built into the theorem prover, but increasingly these activities are del-
egated to highly optimized external tools, such as resolution provers, SAT solvers, and
SMT solvers. While there have been several attempts at integrating external provers and
disprovers in various interactive theorem provers, Isabelle is probably the only interac-
tive prover where external tools play such a prominent role, to the extent that they are
now seen as indispensable by many if not most users.

In terms of usefulness, Sledgehammer is second only to the simplifier and tableau
prover. But the counterexample generators also provide invaluable help and encour-
age a lightweight explorative style to formal proof development, as championed by Al-
loy [25]. Because it is so fast, Quickcheck is enabled by default to run on all conjectures.
Users are so accustomed to its feedback that they rarely realize to what extent they ben-
efit from it. Every now and then, Nitpick finds a counterexample beyond Quickcheck’s
reach. As developers of both tools, we frequently receive emails from users grateful to
have been spared “several hours of hard work.”

An explanation for Sledgehammer, Quickcheck, and Nitpick’s success is that they
are included with Isabelle and require no additional installation steps. External tools
necessary to their operation are either included in the official Isabelle packages or ac-
cessible as online services. Multi-core architectures and remote servers help to bear the
burden of (dis)proof, so that users can continue working on a manual proof while the
tools run in the background.

Another important design goal for all three tools was one-click invocation. Users
should not need to preprocess the goals, specify options, or implement custom data gen-
erators. Even better than one-click invocation is zero-click invocation, whereby the tools
spontaneously run on newly entered conjectures. A more flexible user interface, such
as the experimental jEdit-based PIDE [58], could help further here, by asynchronously
dispatching the tools to tackle any unfinished proofs in the current proof document,
irrespective of the text cursor’s location.

Interactive theorem proving is still challenging, but thanks to a new generation of
automatic proof and disproof tools and the wide availability of multi-core processors
with spare CPU cycles, it is much easier and more enjoyable now than it was only a few
years ago.
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Abstract. In the automata-theoretic framework, finite-state automata
are used as a machine model to capture the operational content of tempo-
ral logics. Decision problems like satisfiability, subsumption, equivalence,
etc. then translate into questions on automata like emptiness, inclusion,
language equivalence, etc. Linear-time temporal logics like LTL, PSL
and the linear-time μ-calculus have relatively simple translations into
alternating parity automata, and this automaton model is closed under
all Boolean operations with very simple constructions. Thus, the typical
decision problems for such linear-time temporal logics reduce relatively
simply to the emptiness problem for alternating parity automata. In this
paper we present a method for decision this emptiness problem with-
out going through intermediate automaton models like nondeterministic
ones. The method is a direct adaptation of the size-change termination
principle which was orgininally used to decide termination of abstract
functional programs.

1 Introduction

Temporal logics are some of the most well-known and established tools for the
specification of systems evolving in time. In computer science, they are mainly
interesting as formal languages used to describe, reason about, analyse and verify
program behaviour [7].

Temporal logics come in two different kinds depending on the nature of
time underlying the models that they get interpreted about: linear-time and
branching-time [20,21,25]. The viewpoint of linear time is that every moment in
time has a unique successor, i.e. the future is determined. In branching time, a
moment may have several successors. Here we only deal with linear time, namely
we consider the well-known simple linear-time temporal logic LTL [16], as well
as two of its extensions: a core of the industry standard property specification
language PSL [2] which extends LTL with semi-regular expressions in order to
remedy LTL’s weakness of not being able to define all ω-regular properties; as
well as the linear-time μ-calculus [22,3] which uses second-order quantification
in the form of least and greatest fixpoints in order to obtain higher expressivity.

A prominent methodology for obtaining decision procedures is the automata-
theoretic framework. It is particularly suitable for linear-time logics since their
models can be seen as infinite words which immediately links logics and automata
as two different specification formalisms for languages of such words. Logics are
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often more natural to use as specification languages but automata are often
closer to a decision procedure. Hence, translations from formulas to automata
preserving their set of models are desirable, and they exist for the aforementioned
logics.

It is known that every LTL formula can be translated into a nondeterministic
Büchi automaton [26] with an expontial blow-up. The same holds for PSL [4]
although the blow-up is in general doubly exponential. LTμ can also be translated
into such automata at a singly exponential blow-up only [26].

Translations into nondeterministic automata are particularly useful in order
to decide satisfiability problems because satisfiability on the logical side corre-
sponds to non-emptiness on the automata side, and non-emptiness problems for
nondeterministic automata are usually solved via simple reachability problems
on graphs. Other problems, however, in particular the universality and inclu-
sion problem are as difficult for nondeterministic automata as the satisfiability
problem for the corresponding temporal logics is. Note that on the logical side,
problems like validity, subsumption and equivalence easily reduce to the satisfia-
bility problem. This has led to the use of a richer automaton model: alternating
automata. They typically enable a simple translation from formulas and on top
of that a more difficult decision procedure as opposed to nondeterministic ones
which usually come with a difficult translation and then simpler decision proce-
dures. If “simple” means “polynomial” and “difficult” means “exponential” then
the route via alternating automata may even be better in terms of complexity.

Translations from the linear-time temporal logics mentioned above into alter-
nating automata are known [23,24,14,10]. In order to obtain decision procedures
for these logics, one then only needs decision procedures for the corresponding
problems on alternating automata. In fact, it suffices to be able to solve the
emptiness problem for alternating automata just like it suffices to solve the sat-
isfiability problem for temporal logics in order to solve all sorts of other problems
through simple reductions.

The standard way to solve the emptiness problem for alternating automata
has been using translations into nondeterministic automata. It may be the sur-
prising simplicity of the Miyano-Hayashi construction [15] translating alternating
Büchi into nondeterministic Büchi automata in comparison to the problem of
turning a nondeterministic one into a deterministic one, that has put a brake
onto research on different and possibly direct methods for the emptiness problem
for alternating automata. This construction can be generalised to richer accep-
tance conditions like Streett automata [6], yet it still aims at translating into a
nondeterministic model first.

Here we propose a different and direct method for the analysis of the emptiness
problem for alternating parity automata. It originates from termination analysis
for abstract functional programs and is called size-change termination (SCT)
[13]. It is noted that the problem underlying this particular termination analysis
can be solved by a reduction to the inclusion problem for nondeterministic Büchi
automata but, since this requires complementation, SCT is proposed.
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SCT has not passed unnoticed in the world of temporal logics and automata
on infinite words: it has first been used to decide validity for the linear-time μ-
calculus [5] and then prosed as a method to decide universality and inclusion for
nondeterministic Büchi automata [8,9,1]. In fact, the first real work in this area
is Büchi’s original complementation proof for nondeterministic Büchi automata
since the decision problems based on SCT use the same techniques. They are
often called Ramsey-based because their correctness proof usually relies on the
famous combinatorial Ramsey Theorem [17].

This paper is organised as follows. In Sect. 2 we recall the three important
temporal logics mentioned above: LTL, PSL and the linear-time μ-calculus. In
Sect. 3 we recall alternating parity automata and various subclasses thereof, and
sketch how their emptiness problems characterise typical problems like satisfia-
bility, subsumption, etc. for the temporal logics at hand. In Sect.4 we describe
an SCT based method to decide emptiness of alternating parity automata.

2 Linear-Time Temporal Logics

2.1 Infinite Words

Let P = {p, q, . . .} be a countably infinite set of atomic propositions. Linear-time
temporal logics are interpreted over ω-sequences of sets of such propositions: an
infinite word w is an element of (2P)ω. A finite word is a v ∈ (2P)∗. We write
ε for the empty word of length 0, and |v| in general for the length of the finite
word v.

If w is a word A0A1 . . . for Ai ⊆ P then w(i) is used to denote Ai. We write
w(i, j) to denote the finite subsequence Ai . . . Aj . Note that w(i, j) = ε if j < i.

2.2 LTL

One of the simplest and most well-known linear-time temporal logics is LTL.
Its formulas are built from atomic propositions using Boolean operators and
two temporal operators: the next state operator ©, and the until operator U.
Formulas of LTL are given by the following grammar.

ϕ ::= q | ϕ ∧ ϕ | ¬ϕ | ©ϕ | ϕ U ϕ

Formulas of LTL are interpreted in positions i of an infinite word as follows.

w, i |= q iff q ∈ w(i)
w, i |= ϕ ∧ ψ iff w, i |= ϕ and w, i |= ψ

w, i |= ¬ϕ iff w, i �|= ϕ

w, i |= ©ϕ iff w, i+ 1 |= ϕ

w, i |= ϕ U ψ iff there is j ≥ i s.t. w, j |= ψ and for all h with i ≤ h < j

we have w, h |= ϕ
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Further Boolean operators like disjunction ϕ∨ψ, implication ϕ→ ψ, are defined
as abbreviations in the usual way. Other temporal operators can also be derived,
for instance Fϕ := true U ϕ (“finally”) where true := q ∨ ¬q for some q ∈ P ;
Gϕ := ¬ F¬ϕ (“generally”), etc.

We write |ϕ| for the size of the formula ϕ, measured in terms of its DAG
representation or, equivalently, the number of different subformulas.

Example 1. LTL can easily express properties concerning infinite occurrences of
some atomic proposition in a word. For example, G F q ∧ F G¬p expresses that q
holds in infinitely many positions and p holds almost everywhere, i.e. in all but
finitely many positions.

A model for ϕ is a w ∈ (2P)ω s.t. w, 0 |= ϕ. We write L(ϕ) for the set of all
models of ϕ. The satisfiability problem is: given a formula ϕ, decide whether or
not there is a model for it, i.e. whether or not L(ϕ) �= ∅.

Proposition 1 ([19]). The satisfiability problem for LTL is PSPACE-complete.

We also describe two extensions of LTL in the following. They differ in their
syntax and their semantics need more technicalities, but central concepts like
formula size as well as set of models are defined as they are for LTL. Hence, we
will not repeat them explicitly anymore.

2.3 PSL – An Extension of LTL

It is known that LTL cannot express counting properties like “q holds in ev-
ery second position of a word” [27]. Note that this is an ω-regular property.
There are several ways to overcome this weakness, for instance by introducing
quantification over positions, i.e. by extending LTL with stronger logical connec-
tives. PSL extends LTL with tools from the domain of formal languages, namely
semi-extended regular expressions.

The language of all Boolean expressions over atomic propositions as above is
given by the following grammar.

ζ ::= q | ζ ∧ ζ | ¬ζ

Other Boolean operators can be defined as abbreviations. The satisfaction re-
lation between a set A ⊆ P and a Boolean expression ζ is defined straight-
forwardly, i.e. A |= ζ iff ζ evaluates to 1 under the usual rules for Boolean
connectives when all atomic propositions in A are set to 1 and all in P \ A are
set to 0.

Semi-extended regular expressions (SERE) over Boolean expressions are built
according to the following grammar.

α ::= ζ | α ∪ α | α ∩ α | α;α | α∗

where ζ is a Boolean expression as above. We write α+ to abbreviate α;α∗.
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A SERE is interpreted in a finite subword of an infinite w ∈ (2P)ω as follows.
Note that such a subword is uniquely identified by two positions i, j ∈ N with
i ≤ j.

w, i, j |= ζ iff i = j and w(i) |= ζ

w, i, j |= α ∪ β iff w, i, j |= α or w, i, j |= β

w, i, j |= α ∩ β iff w, i, j |= α and w, i, j |= β

w, i, j |= α;β iff there is h s.t. i ≤ h ≤ j and w, i, h |= α and w, h, j |= β

w, i, j |= α∗ iff there are n ≥ 0 and h0, . . . , hn s.t. h0 = i, hn = j and
w, hk, hk+1 |= α for all k = 0, . . . , n− 1

Note that in the first clause, satisfaction of a SERE in a finite word is reduced
to satisfaction of a Boolean expression in a symbol of that word.

Formulas of PSL are then built by extending the syntax of LTL with operators
that make use of SERE. Note that the standard of PSL [2] describes many
operators for the logic; here we concentrate on two of them only – the “and
then” and the “closure” operator. The constructions to follow can easily be
extended to cover other PSL operators as well though.

ϕ ::= q | ϕ ∧ ϕ | ¬ϕ | ϕ U ϕ | α �→ ϕ | Clα

The interpretation in positions of a word w ∈ (2P)ω extends the one for LTL
given above by two clauses.

w, i |= α �→ ϕ iff there is j ≥ i s.t. w, i, j |= α and w, j |= ϕ

w, i |= Clα iff for all j ≥ i exists v ∈ (2P)∗ s.t. w(i, j)v |= α

Example 2. The aforementioned language L = {w ∈ (2P)ω | ∀i ∈ N : q ∈ w(2i)}
of all words in which q holds in every even position can be defined in PSL by the
formula Cl(q; true)∗. Equally, it is defined by q ∧ ¬

(
(true; true)+ �→©¬q

)
.

Proposition 2 ([4,12]). The satisfiability problem for PSL is EXPSPACE-
complete.

The exponential increase in complexity compared to LTL is owed to the use of
the intersection operator in semi-extended regular expressions. Note that these
can be translated into nondeterministic finite automata (NFA) at a blow-up that
is polynomial in the size of such an SERE but exponential in the nesting depth
of the intersection operator. The logic obtained by replacing SERE with NFA
is closely related to LTL with automata connective which also has a PSPACE-
complete satisfiability problem [11].

2.4 The Linear-Time μ-Calculus

The Linear-Time μ-Calculus LTμ is not directly an extension of LTL. It obtains
ω-regular expressive power by adding least (finite iteration) and greatest (infinite
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iteration) fixpoint operators to the fragment of LTL without the until operator.
Let V = {X,Y, . . .} be a countably infinite set of variable. Formulas of LTμ are
constructed as follows.

ϕ ::= q | X | ϕ ∧ ϕ | ¬ϕ | ©ϕ | μX.ϕ

where q ∈ P and X ∈ V . We require that each formula is well-formed in the sense
that every variable is bound by a binder mu at most once, and in every subfor-
mula μX.ψ every occurrence of X is in the scope of an even number of negation
symbols. For instance, μX.¬μY.(¬p∨©¬Y )∧©¬X is well-formed because both
variable occurrences are under two (different) nested negation operators.

Alongside the least fixpoint quantifier μ we introduce the greatest fixpoint
quantifier ν via νX.ϕ := μX.¬ϕ[¬X/X ] where ϕ[ψ/X ] denotes the formula that
is obtained from ϕ by replacing every free occurrence of X with ψ. Then the
formula above can be written entirely without negation symbols as μX.νY.(p ∧
©Y ) ∨©X .

In order to interpret an LTμ formula with free variables in a position of a word
w ∈ (2P)ω we need the help of environments ρ : V → 2N. We write ρ[X �→ P ] for
the environment that maps X to P and behaves like ρ on all other arguments.

w, i, ρ |= q iff q ∈ w(i)
w, i, ρ |= ϕ ∧ ψ iff w, i, ρ |= ϕ and w, i, ρ |= ψ

w, i, ρ |= ¬ϕ iff w, i, ρ �|= ϕ

w, i, ρ |= μX.ϕ iff i ∈
⋂{

P ⊆ N | P ⊇ {j | w, j, ρ[X �→ P ] |= ϕ}
}

Example 3. The language of all words containing q in every even position can
easily be defined in LTμ: νX.q ∧©©X .

The formula μX.νY.(p ∧©Y )∨©X mentioned above states that p holds in
almost all positions. I.e. it is equivalent to the LTL formula F G p.

Proposition 3 ([22]). The satisfiability problem for LTμ is PSPACE-complete.

The reason for introducing LTμ is the fact that it subsumes the two important
temporal logics LTL and PSL. While this is also trivially true for PSL, LTμ

provides a clean (albeit not necessarily intuitive) syntax which is advantageous
for the further treatment of these logics.

Proposition 4. There are equivalence-preserving translations from . . .

– LTL into LTμ that incur a linear blow-up,
– PSL into LTμ that incur a blow-up which is polynomial in the size of the

formula and exponential in the nesting depth of the intersection operators
[12].

The translation from LTL into LTμ is realised by the fact that ϕ U ψ can be
expressed as μX.ψ ∨ (ϕ ∧©X). The translation from PSL is more complicated
and uses the fact that SERE can be translated into NFA, as well as a close
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resemblance between LTμ formulas and automata. This close resemblance will
be used in the following where we introduce alternating parity automata, a model
of finite automata operating on infinite words that easily captures LTμ and allows
several problems on other automata to be regarded as emptiness problems.

3 Automata on Infinite Words

3.1 Alternating Parity Automata

We introduce a very powerful automaton model which captures many well-known
models of automata on infinite words, including (non)deterministic Büchi and
co-Büchi automata.

For a set M let B+(M) denote that set of all positive Boolean formulas over
M , i.e. the least set that contains M and satisfies: if {ϕ, ψ} ⊆ B+(M) then
{ϕ ∧ ψ, ϕ ∨ ψ} ⊆ B+(M).

A alternating parity automaton (APA) is a tuple A = (Q,AP, q0, δ, Ω) where
Q is a finite set of states, AP is a finite subset of P as used in the previous
section, q0 ∈ Q is a designated starting state, δ : Q → B+(Q ∪ AP ∪ ¬AP)
with ¬AP := {¬q | q ∈ AP} is the transition function, and Ω : Q → N assigns
priorities to the states.

Here we measure the size of an automaton, |A|, as the number of its states.
A run of the APA A on a word w ∈ (2P)ω is a leveled DAG t whose nodes are

labeled with states from Q, that has a single root on level 0, and the succesors
of a node on level n are all on level n + 1. Furthermore, it obeys the following
rules. We write t(v) for the label of node v.

1. We have t(v0) = q0 for the root v0.
2. Take any node v on some level n and let u1, . . . , uk be the set of its successors.

Then we have {t(u1), . . . , t(uk)} |= δ(t(v), w(n)).

Such a run t is accepting if on every path through t the greatest priority of states
that occur infinitely often is even. The language of A is L(A) = {w | there is an
accepting run of A on w}.

Example 4. Take the language L = {w ∈ (2{p,q})ω | if q holds infinitely often,
then q∧p holds infinitely often in w}. It is accepted by the APA ({0, 1, 2}, {p, q}, 0,
δ, Ω) where Ω is the identity function, and the transition function is defined for
all three states i as

δ(i) = (p ∧ q ∧ 2) ∨ 1 ∨ (¬q ∧ 0)

It is also accepted by the APA ({0, 1, 2}, {p, q}, 0, δ, Ω) where Ω(0) = Ω(2) = 0
and Ω(1) = 1, and

δ(0) = (¬q ∨ p ∨ 1) ∧ 0
δ(1) = (q ∧ p ∧ 2) ∨ 1
δ(2) = 2
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3.2 Subclasses of Alternating Parity Automata

Let A = (Q,AP, q0, δ, Ω) be an APA. Then A is an alternating Büchi automaton
(ABA) if Ω : Q → {1, 2}. It is an alternating co-Büchi automaton (AcoBA) if
Ω : Q → {0, 1}. I.e. Büchi acceptance is concerned with the infinite occurrence
of some states whereas co-Büchi acceptance demands that certain states occur
almost everywhere in a path of a run.

The literature contains different definitions of a weak automaton, sometimes
constraining the graph structure of the automaton, sometimes weakening the
acceptance condition by changing “occurs infinitely often” into “occurs” simply.
These notions are equivalent though [14]. Here we consider the former. A is
called weak (WAPA) if for all q, q′ ∈ Q s.t. q′ occurs in δ(q) we have Ω(q′) ≤
Ω(q). Hence, the priorities on every path in a run of a weak automaton are
monotonically decreasing, and the largest priority that occurs infinitely often
is automatically the one that occurs almost everywhere. Consequently, weak
alternating automata can easily be defined as ABA or AcoBA.
A is nondeterministic if for all q ∈ Q we have that δ(q) is a disjunction

of minterms containing exactly one state, i.e. all other conjuncts are atomic
propositions or negations thereof.

3.3 Constructions on Alternating Parity Automata

Alternating automata are closed under all Boolean operations.

Proposition 5. Let A and B be two APA. There are APA

1. A s.t. L(A) = (2P)ω \ L(A) and |A| = |A|;
2. A1 s.t. L(A1) = L(A) ∪ L(B) and |A1| = O(|A|+ |B|);
3. A2 s.t. L(A2) = L(A) ∩ L(B) and |A2| = O(|A|+ |B|);

Proof. (1) Let A = (Q,AP, q0, δ, Ω). We define A = (Q,AP, q0, δ, Ω) where
Ω(q) := Ω(q) + 1, and δ(q) := δ(q) where p = ¬p, ¬p = p, ζ ∨ η = ζ ∧ η and
ζ ∧ η = ζ ∨ η. Clearly, the dual APA is not any bigger than its counterpart. A
careful inspection reveals that it recognises the complement language.

(2+3) The APA A1 and A2 are obtained by taking the union of A and B
and adding a new state q0 with arbitrary priority and transitions obtained as
the disjunction, resp. conjunction of the transitions of the two original starting
states. ��

This makes APA a rich model for various decision problems.

3.4 Decision Problems for Alternating Parity Automata

Important decision problems for automata are the following.

– Non-Emptiness: given an APA A, is L(A) �= ∅?
– Universality: given an APA A, is L(A) = (2P)ω?
– Subsumption: given APA A and B, is L(A) ⊆ L(B)?
– Equivalence: given APA A and B, is L(A) = L(B)?
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Thanks to Prop. 5 these problems are all interreducible in linear time. For in-
stance, equivalence reduces to non-emptiness because L(A) �= L(B) iff L(C) �= ∅
where C recognises

(
L(A)∩L(B)

)
∪
(
L(A)∩L(B)

)
. Equally, non-emptiness and

universality are interreducible because L(A) �= ∅ iff L(A) �= (2P)ω.
Note that these reductions need the full power of alternation as well as the

full power of the parity acceptance condition unless they are weak. The dual
of a Büchi automaton for instance is not a Büchi automaton but a co-Büchi
automaton and vice-versa. Weakness is preserved by dualisation though. Also,
the dual of a nondeterministic automaton is in general not a nondeterministic
automaton anymore. However, regarding it as an alternating automaton enables
easy dualisation.

3.5 Alternating Parity Automata and Temporal Logics

Many decision problems for linear-time temporal logics can be phrased as an
emptiness problem for (a subclass) of alternating parity automata. The crucial
ingredient for this is of course an equivalence-preserving translation from for-
mulas to automata. With Prop. 4 above it suffices to check that LTμ can be
translated into alternating parity automata that way. However, translating log-
ics like LTL and PSL separately can be benefitial because they may not need
the full power of the parity acceptance condition.

Proposition 6 ([23,14,10,4]). For every . . .

– LTL formula ϕ there is a weak APA Aϕ s.t. L(Aϕ) = L(ϕ) and |Aϕ| =
O(|ϕ|);

– PSL formula ϕ there is a weak APA Aϕ s.t. L(Aϕ) = L(ϕ) and |Aϕ| =
2O(|ϕ|);

– LTμ formula ϕ there is an APA Aϕ s.t. L(Aϕ) = L(ϕ) and |Aϕ| = O(|ϕ|).

4 The Size-Change Termination Principle for Alternating
Parity Automata

4.1 Boxes and Their Composition

We use < to denote the usual total ordering on N or Z, and introduce a second
(non-well-founded) total ordering called reward ordering: i ≺ j iff (−1)i · i <
(−1)j · j. I.e. we have . . . ≺ 3 ≺ 1 ≺ 0 ≺ 2 ≺ . . .

For the remainder of this section we fix an APA A = (Q,AP, q0, δ, Ω). Let
P = {Ω(q) | q ∈ Q} be the set of all priorities occurring in A. We write P⊥ for
P ∪ {⊥} which will be used to model partial functions into P .

A box is an element of type Q × Q → P⊥. The name suggest a particular
visual representation of such a function. We regard the elements of Q as ports
of a circuit, and a box has in- and out-ports which can be connected by an edge
labeled with a number. For instance, if Q = {0, 1, 2} and P = {3, 4, 5} then the
following is a box over Q.
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We define a composition operation ◦ on two boxes f, g by

(f ◦ g)(q, p) = max
≺

{max
<

{f(q, q′), g(q′, p)} | q′ ∈ Q}

Here we use the important convention that ⊥ is the maximal element w.r.t. <,
but the minimal element w.r.t. ≺. Then box composition works as one would
expect it from the graphical representation.
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Box composition is lifted to sets of boxes in the natural way: F ◦G := {f ◦ g |
f ∈ F, g ∈ G}.

With every finite word v ∈ (2AP)ω we associate a set of boxes [v] as follows:
[ε] contains only a single box f which is defined by f(q, q′) = Ω(q) if q′ = q and
f(q, q′) = ⊥ otherwise. Furthermore, for every one-letter word a ⊆ AP we have
that f ∈ [a] if for all q, q′ ∈ Q:

1. f(q, q′) ∈ {Ω(q),⊥}, and
2. {p | f(q, p) �= ⊥} ∪ a |= δ(q)

Intuitively, a box belongs to [a] if it connects every in-port to all the out-ports in
some model that agrees with a on the atomic propositions and their negations.
The labels on the connections simply reflect the priority of the in-port.

Using composition it is easy to define [v] for longer words v: [av] := [a] ◦ [v].
We write [A∗] for {[v] | v ∈ (2AP)∗ and [A+] for {[v] | v ∈ (2AP)+. Note that
these are finite sets.

A box f is called idempotent if f ◦ f = f . It is called good w.r.t. some Q′ ⊆ Q
if for all q ∈ Q′ we have that f(q, q) is even.

4.2 Characterising the Emptiness Problem for Alternating Parity
Automata

Theorem 1. L(A) �= ∅ iff there are f ∈ [A∗] and g ∈ [A+] s.t. g is idempotent
and good w.r.t. {q | f(q0, q) �= ⊥}.

Proof. “⇐” Suppose such f, g ∈ [A] exist. Then there must be words vf =
a1 . . . an and vg = b1 . . . bm with n ≥ 0, m ≥ 1 s.t. f ∈ [vf ] and g ∈ [vg].
I.e. there must be f1 ∈ [a1], . . . , fn ∈ [an], g1 ∈ [b1], . . . , gm ∈ [bm] s.t. f =
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f1 ◦ . . . ◦ fn and g = g1 ◦ . . . ◦ gm. A run on vf (vg)ω can easily be extracted from
the sequence f1, . . . , fn, g1, . . . , gm, g1, . . . by following all connections starting
from q0. Suppose this run was not accepting. Then it would contain a path on
which the highest priority seen infinitely often is odd. Note that idempotency
of g means that this path is compressed into a connection from some q′ to itself
in this box. Furthermore, q′ must be reachable from q0 in f . But then g(q′, q′)
must be odd which contradicts the assumption that g is good.

“⇒” Suppose that L(A) �= ∅, i.e. there is a w ∈ (2AP)ω s.t. w ∈ L(A). Then
there is an accepting run t of A on w. Let w = a0a1 . . . The run t can easily
be transformed into a sequence of boxes f0, f1, . . . by possibly adding nodes
to each level s.t. every state is present on every level, and adding corresponding
connections. Now consider a colouring of all ordered pairs of levels i, j with i ≤ j,
assigning to this pair the box fi,j := fi ◦ . . . ◦ fj . Since there are only finitely
many boxes, Ramsey’s Theorem [18] gives us an infinite sequence j0 < j1 < . . .
of indices s.t. all pairs of indices from this sequence get assigned to the same
box. In particular we have fj0,j1 = fj1,j2 = fj0,j2 = fj0,j1 ◦ fj1,j2 which shows
that it is idempotent. Define the required boxes as f := f0,j0 and g := fj0,j1 .
What remains to be seen is that g is good w.r.t. the set of all states that q0
is connected to in f . As above, suppose it was not. Then the run would have
contained an infinite path on which the highest priority occurring infinitely often
was odd which would contradict the assumption that it was accepting. ��
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Abstract. Combination of decision procedures is at the heart of Sat-
isfiability Modulo Theories (SMT) solvers. It provides ways to compose
decision procedures for expressive languages which mix symbols from var-
ious decidable theories. Typical combinations include (linear) arithmetic,
uninterpreted symbols, arrays operators, etc. In [7] we showed that any
first-order theory from the Bernays-Schönfinkel-Ramsey fragment, the
two variable fragment, or the monadic fragment can be combined with
virtually any other decidable theory. Here, we complete the picture by
considering the Ackermann fragment, and several guarded fragments. All
theories in these fragments can be combined with other decidable (com-
binations of) theories, with only minor restrictions. In particular, it is
not required for these other theories to be stably-infinite.

1 Introduction

Devising satisfiability decision procedures for the combination of logical theories
has been a very active research subject during the last fifteen years. It is the
theoretical background on which Satisfiability Modulo Theories (SMT) solvers
are built. For instance, the set of literals

L = {a ≤ b, b ≤ a + f(a), P (h(a)− h(b)),¬P (0), f(a) = 0}

can be shown to be unsatisfiable by an SMT solver, implementing the Nelson-
Oppen framework [16] combining a decision procedure for the theory of unin-
terpreted symbols and a decision procedure for linear arithmetic. SMT solvers
(see [2] for a thorough presentation of the techniques behind SMT solvers) are
now widely used, notably for model-checking and formal verification.

Initial combination results (e.g., [16,17]) imposed strong conditions to ensure
decidability of the satisfiability problem for the combined theories, such as re-
quiring the theories to be stably infinite, i.e., requiring any satisfiable set of
literals within the theories to have an infinite model. Many theories, and spe-
cially, many theories interesting for formal verification of hardware and software,
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are expressive enough to restrict the size of a model to be finite and, hence, are
not stably infinite. In other words, stable infiniteness is a sufficient condition for
theory combination, but it is too restrictive.

In recent years, much of the research in the area has focused on finding more
relaxed conditions for combination that would ensure decidability of the com-
bined theories. Tinelli and Zarba introduced in [19] the notion of shiny theories
(see Definition 4) and proved that the disjoint combination of one shiny theory
with an arbitrary (that is, not necessarily stably infinite) decidable theory is
decidable. In [7] we considered the Bernays-Schönfinkel-Ramsey fragment, the
two variables fragment, and the monadic fragment. These fragments include non
stably infinite theories. We introduced the notion of gentleness (see Definition 5)
and proved that the disjoint combination of one gentle theory with an arbitrary
decidable theory (modulo a minor restriction1) is also decidable. All theories in
the considered fragments are gentle.

In this article we first investigate the combination of guarded fragments of first-
order logic with other decidable fragments. Guarded fragments, originally intro-
duced in [1] as first-order counterparts of modal languages, are very expressive. In
contrast to other well-known decidable classes, the guarded fragments impose no
restriction on the number of variables, alternations of quantifiers, or symbol ar-
ity. Instead, quantification is restricted to occur only in guarded form. Relational
properties such as symmetry of a relation (written as ∀xy .R(x, y) → R(y, x))
can readily be expressed with these fragments, as well as various graph proper-
ties such as ∀xy .R(x, y) → ∃z .R(y, z) stating that every node with an incoming
edge has an outgoing edge, or constraints such as ∀yz .R(y, y, z) → ⊥ which for-
bids certain kinds of tuples to appear in a relation.

In this article we will show that the guarded fragment [1], the loosely guarded
fragment [20] and the packed guarded fragment [15] are shiny, and hence, they
can be combined in a decidable way, with an arbitrary decidable theory. This
can be seen as further explanation of the good computational behavior of many
modal logics [21,9].

To complete the picture of combination of theories from decidable first-order
fragments, we also consider the well-known Ackermann fragment, i.e. formulas
of the form ∃∗∀x∃∗ϕ, where ϕ is a function- and quantifier-free first-order for-
mula. In this paper we will show that this fragment is gentle and, thus, easily
combinable with arbitrary theories (with a minor restriction).

After introducing notations and definitions in Section 2, we discuss combina-
tion of decision procedures in the disjoint case in Section 3. Section 4 introduces
the guarded fragments we will consider. The status of constants and equality in
these fragments is sometimes unclear in the literature; since these are of foremost
importance in our context, they will be handled with special care. Section 5 con-
siders the Ackermann fragment. The proofs we present are straightforward but,
to our knowledge, this is the first time that these fragments have been explored
in the framework of combined theories.

1 This theory should fall in one of the three cases of Theorem 3. These cases are such
that unsuitable theories would be very particular.
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2 Notations and Basic Definitions

A first-order language is a tuple L = 〈V ,F ,P〉 such that V is an enumerable set
of variables, while F and P are sets of function and predicate symbols. Every
function and predicate symbol has an arity. Nullary predicates symbols are called
proposition symbols, and nullary function symbols are called constant symbols.
A first-order language is called relational if it only contains function symbols of
arity zero. A relational formula is a formula in a relational language.

Terms and formulas over the language L are defined in the usual way. An
atomic formula is either an equality statement (t = t′) where t and t′ are terms,
or a predicate symbol applied to the right number of terms. Formulas are built
from atomic formulas, Boolean connectives (¬, ∧, ∨, →, ↔), and quantifiers (∀,
∃). A literal is an atomic formula or the negation of an atomic formula. The set
of free variables Free(ϕ) in a formula ϕ is defined as usual. A formula with no
free variables is closed. A theory is a set of closed formulas. Two theories are
disjoint if no predicate or function symbol appears in both theories; the theories
can however share constants.

An interpretation I for a first-order language L provides a non empty domain
D, a total function I[f ] : Dr → D of appropriate arity for every function symbol
f , a predicate I[p] : Dr → {�,⊥} of appropriate arity for every predicate symbol
p, and an element I[x] ∈ D for every variable x. By extension, an interpretation
defines a value in D for every term, and a truth value for every formula. The
cardinality of an interpretation is the cardinality of its domain. The notation
Ix1/d1,...,xn/dn

for x1, . . . , xn different variables stands for the interpretation that
agrees with I, except that it associates di ∈ D to the variable xi, 1 ≤ i ≤ n.
Given an interpretation I on domain D, an extension I′ of I is an interpretation
on a domain including D such that I′ restricted to the domain D is exactly I.

A model of a formula (or a theory) is an interpretation in which the formula
(resp., every formula in the theory) evaluates to true. A formula or theory is
satisfiable if it has a model, and it is unsatisfiable otherwise. A formula G is
T -satisfiable if it is satisfiable in the theory T , that is, if T ∪ {G} is satisfiable.
A T -model of G is a model of T ∪ {G}. A formula G is T -unsatisfiable if it
has no T -models. A decidable theory T is a theory such that the T -satisfiability
problem for sets of literals in the language of T is decidable.

The bold notation x denotes a tuple, and stands for a sequence of variables or
constants (or both) depending on the context. For instance, in ∀xϕ, formula ϕ
is quantified universally over all variables in x. Expressions such as p(x), p(y, c),
p(z,d) and Ix/d, where p is a predicate and I an interpretation, may be used,
with straightforward meaning. When used with set operators, tuples behave like
the set of the elements in the tuple, whereas |x| gives the length of the tuple.

3 Combination of Theories

To study the satisfiability of a set of literals like

L = {a ≤ b, b ≤ a + f(a), P (h(a)− h(b)),¬P (0), f(a) = 0}
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that mixes symbols from the integer linear arithmetic theory T1 and the theory of
uninterpreted symbols T2, one uses a combination framework to design a decision
procedure for the joint language from the simple component decision procedures
for one theory only. To divide the above satisfiability problem into problems
for the component decision procedures, a separation is first built by introducing
fresh uninterpreted constants2, to produce an equisatisfiable problem:

L1 =
{
a ≤ b, b ≤ a + v1, v1 = 0, v2 = v3 − v4, v5 = 0

}
L2 =

{
P (v2), ¬P (v5), v1 = f(a), v3 = h(a), v4 = h(b)

}
.

The set L1 only contains arithmetic symbols and uninterpreted constants. The
symbols in L2 are all uninterpreted. The decision procedure for linear arithmetic
and the one for uninterpreted symbols can thus handle the sets L1 and L2

respectively. However, although L is unsatisfiable in T1 ∪T2, L1 is T1-satisfiable,
and L2 is T2-satisfiable; it is not sufficient for the decision procedures for T1 and
T2 to only examine the satisfiability of their part of the separation. Indeed, the
decision procedures also have to “agree” on the symbols that are shared, namely
the uninterpreted constants in the set S = {a, b, v1, v2, v3, v4, v5}. In order to
make sure that both decision procedures will interpret those shared symbols
coherently, the notion of arrangement is useful:

Definition 1. An arrangement A for a set of constant symbols S is a maximal
satisfiable set of equalities and inequalities a = b or a �= b, with a, b ∈ S.

That is, an arrangement A for S cannot be extended with any equality or in-
equality over S and remain consistent.

The following theorem (other formulations can be found in [18,19,8]) then
states the completeness of the combination of decision procedures:

Theorem 1. Assume T1 and T2 are theories over the disjoint languages L1 and
L2, and Li (i = 1, 2) is a set of literals in Li augmented by a finite set of
fresh constant symbols S. Then L1 ∪L2 is T1 ∪ T2-satisfiable if and only if there
exists an arrangement A of S, a cardinality k, and two models M1 and M2 of
cardinality k, such that M1 is a T1-model of A ∪ L1 and M2 is a T2-model of
A ∪ L2.

Intuitively, if a set of literals is satisfiable in the combination of theories, a model
of this set defines in a straightforward way an arrangement and two models
with the same cardinality for the two parts of the separation. The converse is
also true: from models of the two parts of the separation (augmented with the
arrangement), it is possible to build a unique model for both parts, since both
models agree on the cardinality, and on the interpretation of the shared constants
in S (thanks to the arrangement). The cardinality condition is essential to be
able to map elements in both domains together into a unique domain.
2 Traditionally, combination schemes use variables for this role. Since variables will

be used in quantifiers in the following sections, for consistency and clarity we will
rather use uninterpreted constants here.
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Relying on the above theorem, an algorithm implementing a satisfiability
decision procedure for the combination of two disjoint decidable theories T1 and
T2 could be as follows:

1. Build a separation (L1, L2) for the set of literals L which mix symbols from
T1 and T2. L1 contains symbols from T1 only and symbols from a finite set
of fresh constant symbols S, and likewise for L2;

2. Guess an arrangement A for the set of constants shared between L1 and L2;
3. If A∪Li is Ti-satisfiable for i = 1, 2, then, if there exists a (finite or infinite)

cardinality k such that A∪Li has a model of cardinality k for i = 1, 2, then
L is T1 ∪ T2-satisfiable. Otherwise, A ∪ L is T1 ∪ T2-unsatisfiable.

If we want to ensure that the above algorithm is indeed a decision procedure,
two issues needs to be solved. First, as we presented it above the algorithm is
non-deterministic but this is not fundamental. Since the number of arrangements
for a fixed finite set of constants is finite (although large), the non-deterministic
choice can be turned into a loop over this set. The second issue is, however,
essential. It involves being able to compare the cardinalities of the models for
both parts of the arrangement. To handle this problem, combination of decision
procedures and SMT solvers usually consider only stably infinite theories:

Definition 2. A theory T is said to be stably infinite when every T -satisfiable
set of literals has a model with cardinality ℵ0.

By definition, when dealing with stably infinite theories, if both parts of the
separation are satisfiable in their corresponding theory, then both have an infinite
model of cardinality ℵ0.

Consider again the above example. As both the theory for uninterpreted sym-
bols and the theory of integer linear arithmetic are stably infinite, the set of
literals L in our example is T1 ∪ T2-satisfiable if and only if there exists an ar-
rangement A of the seven variables in S such that A∪Li is Ti-satisfiable for i = 1
and i = 2. No such arrangements exist. Indeed, consider an arrangement A such
that A ∪ L1 is T1-satisfiable and A ∪ L2 is T2-satisfiable. Such an arrangement
contains a = b, otherwise A ∪ L1 would not be T1-satisfiable. It also contains
v3 = v4 since A∪L2 is T2-satisfiable, and as a consequence, v2 = v5 should also
be in A. But if A contains v2 = v5, A∪ L2 is not T2-satisfiable.

Considering stably infinite theories only is one way to fulfill the cardinality
requirement for disjoint combination. It is, however, very restrictive. While some
very useful theories are stably infinite, many are not. For instance, there exist
theories that only have finite models. Many first-order decidable classes allow
to write formulas that constrain the cardinality of the models. Consider, for
example, the Ackermann theory ϕ = {∀x . p(c) → (x = a∨ x = b)} that requires
the cardinality of the model to be at most two whenever p(c) is true. While
ϕ ∪ {¬p(c)} does have infinite models, ϕ ∪ {p(c)} only has finite models.

Of course, there are other ways to ensure that the cardinality requirement is
fulfilled. They allow to build decision procedures for union of theories that are
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not all stably infinite. To examine the cardinality requirements in Theorem 1,
the notion of spectrum3 is convenient.

Definition 3. The spectrum of a theory T is the set of cardinalities k such that
T is satisfiable in a model of cardinality k.

Theorem 1 now becomes: L1∪L2 is T1∪T2-satisfiable if and only if there exists an
arrangement A of S, such that the spectra of T1 ∪A∪L1 and T2 ∪A∪L2 have
a non-empty intersection. The intersection of spectra is the crucial difficulty
for combination frameworks. Fortunately, the spectrum for many theories (as
we will see for guarded fragments and the Ackermann class) is such that the
computation of the intersection with another spectrum is easy.

Some theories (e.g., the empty theory, the theory of partial orders, the theory
of total orders) have spectral properties that allow combination with any other
decidable disjoint theory; these are called shiny theories [19].

Definition 4. A decidable theory T is shiny if, for every T -satisfiable set of
literals L, there is a finite computable number k such that the spectrum of T ∪L
is the set of cardinalities greater than or equal to k.

In the following sections, we show that the guarded, the loosely guarded, and
the packed guarded fragments are all shiny. They can thus be combined with
any disjoint theory:

Theorem 2. Let T1 and T2 be two disjoint decidable theories sharing only con-
stants. If T1 is shiny then T1 ∪ T2 is decidable.

In [7], we show that theories in the Bernays-Schönfinkel-Ramsey class, the two
variables fragment, and the monadic fragment have interesting spectral prop-
erties, though weaker than shininess. Every theory T in these classes is gentle:

Definition 5. A theory T is gentle if, for every T -satisfiable set of literals L,
the spectrum of T ∪ L can be computed and is either

– a finite set of finite cardinalities
– the union of a finite set of finite cardinalities and all the (finite and infinite)

cardinalities greater than a computable finite cardinality; it is thus co-finite.

The definition of shininess and gentleness are quite similar; considering only
sufficiently large cardinalities, both notions express the same property. Notice
that a shiny theory is also gentle. Furthermore, the union of disjoint gentle
theories is also a gentle theory [7]. Some widely used theories are not gentle, but
in practical cases they can be combined with gentle theories [7]:

Theorem 3. Given a gentle theory T and another disjoint theory T ′, the T ∪T ′-
satisfiability problem for sets of literals written in the union of their language is
decidable if one of the following cases holds:
3 The spectrum of a theory is usually defined as the set of the finite cardinalities of

its models. We here slightly extend the definition for convenience.
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– T ′ is gentle;
– T ′ is a decidable finitely axiomatized first-order theory;
– T ′ is a decidable theory that only admits a fixed finite (possibly empty) known

set of finite cardinalities for its models, and possibly infinite models.

In the next sections we will prove that guarded fragments are shiny, and that
the Ackermann theories are gentle.

4 The Guarded Fragments

The guarded fragment (gf) was originally introduced in [1] as a suitable coun-
terpart and generalization of modal logics. To make this article self contained, let
us start with a brief recapitulation of modal logics (see [3,4] for further details).
Consider the language defined as

BML := pi | ¬ϕ | ϕ ∨ ψ | ♦ϕ,

where pi is a propositional symbol and ϕ, ψ ∈ BML. Syntactically, the language
BML (the basic modal language) is a slight extension of propositional logic
(we have only added the unary operator ♦). Semantically, on the other hand,
the change is radical. We interpret formulas of BML on first-order relational
models M = 〈D, I〉 over a signature with only one binary relational symbol R
and uncountably many propositional symbols {p1, p2, . . .}. Given such a model
M and an element a in the domain, semantics is defined as follows:

M [p](a) = � iff I[p](a)
M [¬ϕ](a) = � iff M [ϕ](a) = ⊥

M [ϕ ∨ ψ](a) = � iff M [ϕ](a) = � or M [ψ](a) = �
M [♦ϕ](a) = � iff for some b ∈ D, I[R](a, b) and M [ϕ](b) = �.

These semantic conditions should tip us off on the close connections between
modal and first-order languages. Indeed, it is simple to define an equivalence
preserving translation from the former to the latter. Define recursively the trans-
lation Trx for x a first-order variable as:

Trx(p) = P (x)
Trx(¬ϕ) = ¬Trx(ϕ)

Trx(ϕ ∨ ψ) = Trx(ϕ) ∨ Trx(ψ)
Trx(♦ϕ) = ∃y.R(x, y) ∧ Try(ϕ),

where y is a new variable, not yet used in the translation. A simple induction
shows that for any formula ϕ ∈ BML, any model M (in the proper signature)
and any element a in the domain of M , M [ϕ](a) = � iff M [Trx(ϕ)](a) = �. In
other words, BML can be seen as nothing else than a fragment of first-order
logic in disguise. But BML is only one among many modal logics. Other modal
operators such as the inverse modality, the universal modality, the difference
modality, etc. can be defined (see [4] for details). Most of them can be translated
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into first-order logic preserving equivalence. A natural question is then, whether
it is possible to define a fragment of first-order logic that can be the range of
these translations, and that will preserve the common modal aspects of all these
logical languages. The answer to this question was the guarded fragment gf.

Definition 6. A formula γ guards another formula ϕ if every free variable of
ϕ also occurs free in γ (i.e., Free(ϕ) ⊆ Free(γ)).

Definition 7. A formula in the guarded fragment gf of first-order logic is a
relational formula such that all quantified sub-formulas are of the form ∀x . γ →
ψ or ∃x . γ ∧ ψ where

– γ is an atom, but not an equality,
– ψ is guarded by γ,
– x is a tuple of variables in Free(γ),

The atom γ is called the guard.

Formulas in the fragment might contain an arbitrary number of variables (i.e.,
gf is not contained in any finite variable fragment of first-order logic). Similarly,
formulas in gf might contain an arbitrary number of quantifier alternations,
and hence they cannot be defined in terms of prenex normal form prefixes.
Also, the arity of relational symbols is not bounded. Moreover, many natural
properties expressible in first-order logic fall in gf. Some examples, besides those
we mentioned in Section 1, are:

∀x .R(x, x) reflexivity
∀x .¬R(x, x) irreflexivity
∃v1 . (R(a, v1) ∧ ∃v2 . (R(v1, v2) ∧R(v2, b))) there is a path of length 3

between a and b

On the other hand, some simple formulas, such as transitivity ∀xyz . (R(x, y) ∧
R(y, z)) → R(x, z), are neither in gf nor equivalent to any formula of gf (i.e.,
transitivity is not expressible in gf).

Guarded fragments have been defined and redefined repeatedly, looking for the
largest fragment of first-order logic with a nice ‘modal’ behavior. The original
definition of [1] contained the restriction on equality atoms not appearing in
guards we introduced above. This restriction was later removed (even though
the exact status of equality in the different definitions of guarded fragments is
sometimes unclear), but it is crucial for the results we will present.

Suppose we eliminate this restriction. Then equality atoms could occur as a
guard in one of the following shapes (let’s consider only universal quantification):

1. ∀x . x = x→ ψ(x)
2. ∀x . x = y → ψ(x, y)
3. ∀xy . x = y → ψ(x, y)
4. ∀x . x = c→ ψ(x)
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Cases 2 and 4 can be rewritten as ψ(y, y) and ψ(c), respectively, eliminating the
quantifier and resulting in a formula in gf. Cases 1 and 3 rewrite to ∀x . ψ(x) and
∀x . ψ(x, x), respectively. The resulting formulas in the scope of the quantifier
contain at most one free variable, but this variable is not guarded. Without
the restriction on the use of equality in guards gf would include formulas such
as ∀x . x = a1 ∨ . . . x = an that restricts the domain to a finite cardinality
smaller or equal to n. These improper guarded formulas would invalidate the
good properties necessary for combining gf theories (see Corollary 1 below).

Many good properties of gf are shown in [1]. In particular, the authors prove
that its satisfiability problem is decidable (it is actually 2ExpTime-complete,
and only ExpTime-complete if the number of variables is bounded by any finite
number k, see [12]), and that the fragment has the finite-model property (i.e.,
every satisfiable formula is satisfied in a finite model).

Different variations of gf were introduced, gradually relaxing the conditions
imposed on the guard to obtain larger fragments. We present the loosely guarded
fragment introduced in [20], and the packed guarded fragment introduced in [15].

Definition 8. A formula in the loosely guarded fragment lgf of first-order
logic is a relational formula such that all quantified sub-formulas are of the form
∀x . γ → ψ or ∃x . γ ∧ ψ where

– γ = α1 ∧ · · · ∧ αm is an equality-free conjunction of atoms,
– ψ is guarded by γ,
– for every variable y in x and every variable z ∈ Free(γ) with y �= z, there is

at least one atom αj that contains both y and z

The conjunction of atoms γ is called the guard.

Notice that gf is a proper subset of lgf. The loosely guarded fragment is de-
cidable [20] and has the finite model property [14]. Its satisfiability problem is
2ExpTime-complete [12].

Definition 9. A formula in the packed guarded fragment pgf of first-order
logic is a relational formula such that all quantified sub-formulas are of the form
∀x . γ → ψ or ∃x . γ ∧ ψ where

– γ = α1 ∧ · · · ∧ αm is an equality-free conjunction of atoms and existentially-
quantified atomic formulas,

– ψ is guarded by γ,
– for every variables y, z ∈ Free(γ) there is at least one conjunct αj such that
{y, z} ⊆ Free(αj)

The conjunction γ is called the guard.

Although lgf is not a subset of pgf, pgf is (strictly) more expressive than
lgf: any lgf formula can be rewritten to a logically equivalent pgf formula
(see [10]). The packed guarded fragment is also known as the clique-guarded
fragment. Both definitions are equivalent [10]. The packed guarded fragment is
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decidable and has the finite model property [14]. The satisfiability problem for
pgf is 2ExpTime-complete [13].

The status of constants in guarded fragments has sometimes been vague. Con-
stants are crucial for our goal, as they will be used to link the combined theories.
Notice that in our definitions, all guarded fragments allow constants. The fol-
lowing theorem, adapted from [12], shows that constants can always be added to
guarded fragments without interfering with decidability, the finite model prop-
erty or complexity.

Theorem 4. Adding constants to the languages for gf, lgf and pgf, preserves
decidability, the finite model property, and complexity.

Proof. Assume ϕ is a formula in gf, lgf or pgf with constants from a finite
set C. Let c be a sequence containing all constants in C. Let G be the set of all
predicates occurring in guards (remember that guards are equality free, so G does
not include equality). For every n-ary predicate p ∈ G, let p′ be a fresh (n+ |c|)-
ary predicate. The formula ϕ′ is built from ϕ by replacing every occurrence p(x),
for every p ∈ G and every sequence of variables and constants x by p′(x, c). Let
Z be a fresh |c|-ary predicate. The formula ψ = ∃c (Z(c) ∧ ϕ′) — where the
constants c in ϕ are variables in ψ — is equisatisfiable to ϕ. From a model of
ϕ it is possible to build a model on the same domain for ψ, and conversely,
thus the finite model property (and consequently, decidability) is preserved. ψ is
constant-free, and it is properly guarded (in the same fragment gf, lgf or pgf

than ϕ). Replacing constants by variables may involve a polynomial growth of
the formula. This does not affect the 2ExpTime-complete complexity. ��

4.1 The Spectra of Guarded Fragments

The following theorem states that an interpretation of a formula in the guarded
fragments gf, lgf or pgf, can always be extended by new elements without
changing the truth value of the considered formula. Intuitively, it suffices for
those new elements to be “disconnected” from the other elements, that is, those
new elements make every guard false. This, together with the finite model prop-
erty, will directly imply that these fragments are shiny.

Theorem 5. Given any interpretation M on domain D for a formula ϕ in gf,
lgf or pgf, then for every D′ ⊃ D there is an extension M ′ of M on domain
D′ such that M ′[ϕ] = M [ϕ].

Proof. Given an interpretation M on domain D for a formula ϕ in gf, lgf or
pgf, the interpretation M ′ on D′ is defined as follows:

– for every constant a, M ′[a] = M [a];
– for every variable x ∈ Free(ϕ), M ′[x] = M [x];
– for every n-ary predicate p, and for ai ∈ D′ (1 ≤ i ≤ n)

• M ′[p](a1, . . . an) = M [p](a1, . . . an) if ai ∈ D for all i (1 ≤ i ≤ n);
• M ′[p](a1, . . . an) = ⊥ otherwise.
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To be able to handle pgf as the two other fragments in the following, first
consider an existentially-quantified atomic formula γ = ∃x . p(y). Notice that
(1) for any interpretation M ′′ defined as M ′ is above, but assigning at least one
free variable of γ to an element in D′ \D, M ′′[γ] = ⊥ (2) for any interpretation
M ′ defined as above,M ′[γ] = M [γ]. The first point is direct. To prove the second,
notice that if M [γ] = �, then Mx/d[p(y)] = � for some tuple d of elements in
D. Then M ′

x/d[p(y)] is also true and as a consequence, M ′[γ] = �. If M [γ] = ⊥,
notice that, for any tuple d of elements in D′, M ′

x/d[p(y)] = Mx/d[p(y)] = ⊥
if all arguments of p are assigned to elements in D, and M ′

x/d[p(y)] = ⊥ if one
argument of p is in D′ \D. As a consequence M ′[γ] = ⊥.

Theorem 5 is proved by showing by structural induction that M ′[ϕ] = M [ϕ],
for M ′ defined from M as above. It is trivial if ϕ is atomic, a negation, or
a Boolean combination of several formulas. The only remaining cases are the
quantified constructions.

Let ϕ = ∀x1 . . . xn . γ → ψ (where γ is the guard) belong to gf, lgf or pgf.
For simplicity and without loss of generality, assume that xi ∈ Free(γ → ψ) for
every i ∈ {1, . . . n}. Consider an interpretation M on domain D for ϕ, D′ ⊃ D,
and M ′ as defined above. For d1, . . . dn ∈ D′ one of the two cases hold:

– if di ∈ D′ \D for some i ∈ {1, . . . n}, then M ′
x1/d1,...xn/dn

[γ] = ⊥, and hence
M ′

x1/d1,...xn/dn
[γ → ψ] = �. Indeed, since γ is a guard, xi appears free

in γ. Since the guard is either (gf) an atom, (lgf) a conjunction of atoms,
(pgf) or a conjunction of atoms and existentially quantified atoms, the atom
having xi as an argument is interpreted as false, and so is the whole guard.

– if di ∈ D for all i ∈ {1, . . . n}, then M ′
x1/d1,...xn/dn

and Mx1/d1,...xn/dn
agree

on (γ → ψ), i.e., M ′
x1/d1,...xn/dn

[γ → ψ] = Mx1/d1,...xn/dn
[γ → ψ]. Indeed,

by the inductive hypothesis, M ′
x1/d1,...xn/dn

[ψ] = Mx1/d1,...xn/dn
[ψ], for all

d1, . . . dn ∈ D. Furthermore, for all d1, . . . dn ∈ D then M ′
x1/d1,...xn/dn

[γ] =
Mx1/d1,...xn/dn

[γ]. This is trivial for gf and lgf thanks to the inductive
hypothesis, since guards are Boolean combinations of atoms. This is also
true for pgf, given the previous remarks on existentially-quantified atomic
formulas. Hence, M ′

x1/d1,...xn/dn
[γ → ψ] = Mx1/d1,...xn/dn

[γ → ψ].

It follows that M ′[ϕ] = M [ϕ]. The existential case is handled similarly. ��
Corollary 1. Any theory in gf, lgf, or pgf is shiny.

Proof. Assume T is a theory in gf, lgf, or pgf. For any set of literals L in the
language of T , T ∪ L is also a theory in gf, lgf, or pgf. Thanks to the finite
model property of gf, lgf, and pgf, if T ∪L is satisfiable, it has a finite model.
It is thus possible to compute the minimum cardinality of T ∪ L. Furthermore,
thanks to the previous theorem, its spectrum is an unbounded interval. ��

5 The Ackermann Class

The Ackermann class (with equality) is the set of formulas of the form

∃ . z1 · · · ∃zn . ∀x . ∃y1 . · · · ∃ym . ϕ(x, y1, . . . , ym, z1, . . . , zn),
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where ϕ(x, y1, . . . , ym, z1, . . . , zn) is quantifier-free and function-free. Checking
the satisfiability of formulas of the above form can be reduced (using Skolemiza-
tion) to checking the satisfiability of formulas without existental quantifiers of
the form ψ = ∀x . ϕ(x, f1(x), . . . , fm(x)), where ϕ(x, y1, . . . , ym) is quantifier-free
and function-free.

Theorem 6. The class of formulas of the form ψ = ∀x . ϕ(x, f1(x), . . . , fm(x)),
where ϕ(x, y1, . . . , ym) is quantifier and function-free (constants are allowed) has
the finite model property.

The proof may be found for instance in [5]. The following theorem will allow to
determine that the Ackermann theories are gentle. An equivalent property for
the Ackermann fragment is discussed in [6].

Theorem 7. Consider a formula ψ = ∀x . ϕ(x, f1(x), . . . , fm(x)), where for-
mula ϕ(x, y1, . . . , ym) is quantifier and function-free (constants are allowed). If
ψ has a model of cardinality κ strictly greater than the number of constants in
ψ, then it has models with any cardinality greater than κ.

Proof. Consider a model M of ψ on domain D such that |D| is greater than the
number of constants in ψ. Then there exists an extension M′ on any domain D′

with D ⊂ D′ that is also a model of ψ.
Let Φ(x) = ϕ(x, f1(x), . . . , fm(x)) and d ∈ D be an element of the domain, not

assigned by M to a constant in the formula. Obviously Mx/d is a model of Φ(x).
Consider d′ ∈ D′ \D. For every n-ary predicate p, and n-uple d′ of elements in
(D \ {d})∪{d′}, let d be a n-uple of elements in D obtained from d′ by changing
d′ by d whenever d′ is an element of the tuple d′, and set M′[p](d′) = M[p](d).
For every function fi (1 ≤ i ≤ m) let M′[fi](d′) = M[f ](d) if M[f ](d) �= d, and
let M′[fi](d′) = d′ otherwise. Functions and predicates are only partially defined
above, but they can be completed arbitrarily without any influence on the result.
One can show by structural induction that M′

x/d′ [Φ(x)] = M′
x/d[Φ(x)].

Indeed, according to our definition of M′,

– M′
x/d′ [x] = d′ whereas Mx/d[x] = d,

– M′
x/d′ [c] = Mx/d[c] for every constant c in Φ(x),

– M′
x/d′ [f(x)] = Mx/d[f(x)] if Mx/d[f(x)] �= d,

– M′
x/d′ [f(x)] = d′ if Mx/d[f(x)] = d.

Thus, for every atom p(t1, . . . , tn) (respectively, t1 = t2) in Φ(x), M′
x/d′ and

M′
x/d assign the same values to every ti except that M′

x/d′ assigns d′ instead of
d for M′

x/d. Finally, thanks to the way M′ extends the assignment of pred-
icates, M′

x′/d′ [p(t1, . . . , tn)] = Mx/d[p(t1, . . . , tn)] (respectively, M′
x′/d′ [t1 =

t2] = Mx/d[t1 = t2]). ��

Corollary 2. The spectrum of an Ackermann theory can be computed and ex-
pressed either as a finite set of natural numbers, or as the union of a finite set
of natural numbers with the set of all the (finite or infinite) cardinalities greater
than a natural. The Ackermann theories are gentle.
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Proof. Given ψ = ∀x . ϕ(x, f1(x), . . . , fm(x)), where formula ϕ(x, y1, . . . , ym) is
quantifier and function-free, it is possible to establish if ψ has a model of car-
dinality greater than the number n of constants in ψ. Indeed, formula ψ′ =
ψ∧
∧

0≤i<j≤n ai �= aj (where the ai’s are fresh constants) is also in the decidable
Ackermann class, and is satisfiable if and only if ψ has a model of cardinality
greater than or equal to n+1. If ψ′ is unsatisfiable, ψ has no model of cardinality
greater than or equal to n + 1. If ψ′ is satisfiable, a decision procedure to get
the smallest cardinality m > n of the models of ψ can just be a simple test of
the (finite) interpretations of increasing cardinality size starting from n+1; this
procedure will indeed terminate, and ψ will accept models for every cardinality
greater than or equal to m. It then only remains to check if ψ accepts models for
the cardinalities between 1 and n, which can be done by considering the finitely
many interpretations. ��

6 Conclusions

The first frameworks to combine disjoint decidable theories were very restrictive:
the combined theories were required to be stably infinite. Later results led to
more liberal frameworks. In particular, it was proved in [19] that shiny theories
are combinable with any other disjoint decidable theory. We have showed that
any theory in the guarded fragment, in the loosely guarded fragment, or in the
packed guarded fragment, is shiny.

Another well known decidable class with equality (the only relevant classes in
our context) that was not yet proved to have good combining properties is the
Ackermann class. We showed here that, although not shiny, Ackermann theories
are gentle, and, as such, are combinable with non-stably infinite theories with
minor requirements. Together with [7], this work then covers the major first-
order decidable classes. Interestingly, all of them are at least gentle.

The Rabin and the Shelah classes are, respectively, extensions of the Löwen-
heim class (studied in [7]) and the Ackermann class (studied here), with one
unary function. Both are decidable [5]. However, both have infinity axioms [5],
and they also contain formulas restricting the cardinality of their models to a
finite number. Hence, they are neither shiny nor gentle, and not even stably in-
finite. It is still an open problem whether these classes have spectral properties
that allow liberal combinations. A solution to this problem would probably in-
volve more complex combination frameworks than those discussed in this paper.

Guarded fragments have been extended beyond pgf, even to include frag-
ments of second order logic. The fixed point guarded fragment μgf, for exam-
ple, was introduced in [11] extending gf with fixed point operators. But unlike
gf, lgf, and pgf, μgf even though decidable, does not have the finite model
property, and hence it is not shiny. We conjecture, though, that Theorem 5 can
be extended to μgf proving it stably infinite.

Our motivation here was mainly to study the decidability of combinations of
disjoint theories, without having a practical applications in mind. However, the
guarded fragments are highly promising from the point of view of applications.
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Indeed, since they can easily express graph properties, we beleive implementa-
tions will trigger concrete applications. As a toy example of what can be handled
by a combination with the guarded fragments, consider the conjunction of the
following formulas4:

∀x y .R(x, y) → ∀z .
(
R(y, z) ∧R(z, x)

)
→ (x = y ∨ y = z ∨ z = x)

R(a, b) ∧R(b, c) ∧R(a, c)
f(b) = f(a) + 1 ∧ f(c) = f(b) + 1

This set of formulas is unsatisfiable: the first formula enforces 3-edges loop to
have at least one reflexive edge, the second states the existence of a 3-edge loop
through a, b and c, and the last formula (using uninterpreted function f and some
arithmetic) enforces a, b and c to be distinct, which leads to a contradiction. This
formula can be dealt with a classical Nelson-Oppen combination framework since
all theories are stably-infinite.

In [22], the authors show that it is possible to combine non-disjoint theories
from various decidable classes, those theories sharing monadic predicates. This
results in a very expressive language. A future direction for research will be to
study if the guarded fragments can also be included in such a framework for
combining non-disjoint theories.
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1. Andréka, H., Németi, I., van Benthem, J.: Modal logics and bounded fragments of
predicate logic. Journal of Philosophical Logic 27(3), 217–274 (1998)

2. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, vol. 185, ch. 26, pp.
825–885. IOS Press, Amsterdam (2009)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

4. Blackburn, P., Wolter, F., van Benthem, J. (eds.): Handbook of Modal Logics.
Elsevier, Amsterdam (2006)
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Abstract. The combination of Fuzzy Logics and Description Logics
(DLs) has been investigated for at least two decades because such fuzzy
DLs can be used to formalize imprecise concepts. In particular, tableau
algorithms for crisp Description Logics have been extended to reason
also with their fuzzy counterparts. Recently, it has been shown that, in
the presence of general concept inclusion axioms (GCIs), some of these
fuzzy DLs actually do not have the finite model property, thus throwing
doubt on the correctness of tableau algorithm for which it was claimed
that they can handle fuzzy DLs with GCIs.

In a previous paper, we have shown that these doubts are indeed
justified, by proving that a certain fuzzy DL with product t-norm and
involutive negation is undecidable. In the present paper, we show that
undecidability also holds if we consider a t-norm-based fuzzy DL where
disjunction and involutive negation are replaced by the constructor im-
plication, which is interpreted as the residuum. The only condition on
the t-norm is that it is a continuous t-norm “starting” with the product
t-norm, which covers an uncountable family of t-norms.

1 Introduction

Description logics (DLs) [1] are a family of logic-based knowledge representation
formalisms, which can be used to represent the conceptual knowledge of an
application domain in a structured and formally well-understood way. They were
employed in various application domains, such as natural language processing,
configuration, and databases, but their main breakthrough arguably came with
the adoption of the DL-based language OWL [17] as standard ontology language
for the semantic web. Another successful application area for DLs is the definition
of medical ontologies, such as SnomedCT1 and Galen.2

In Description Logics, concepts are formally described by concept descriptions ,
i.e., expressions that are built from concept names (unary predicates) and role
names (binary predicates) using concept constructors. The expressivity of a par-
ticular DL is determined by which concept constructors are available in it. From
a semantic point of view, concept names and concept descriptions represent sets

1 http://www.ihtsdo.org/snomed-ct/
2 http://www.opengalen.org/
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of individuals, whereas roles represent binary relations between individuals. For
example, using the concept names Patient and Running-nose, and the role name
has-symptom, the concept of all patients with running noses can be represented
by the concept description

Patient � ∃has-symptom.Running-nose.

In addition to the description language (i.e., the formalism for constructing con-
cept descriptions), DLs provide their users with a terminological and an asser-
tional formalism. In its simplest form, a DL terminology (usually called TBox )
can be used to introduce abbreviations for complex concept descriptions. For
example, the concept definition

Private-patient ≡ Patient � ∃has-insurance.Private-health

says that private patients are patients that have a private health insurance.
So-called general concept inclusions (GCIs) can be used to state additional con-
straints on the interpretation of concepts and roles. In our medical example, one
could express that patients with running noses have a cold or hay fever using
the GCI

Patient � ∃has-symptom.Running-nose � ∃has-disease.(Cold � Hay-fever).

Note that the concept definition A ≡ C can be expressed using the two GCIs
A � C and C � A.

In the assertional part (ABox) of a DL-based ontology, facts about a spe-
cific application situation can be stated, by introducing named individuals and
relating them to concepts and roles. For example, the assertions

LINDA : Patient, (LINDA,AXA-PPP) : has-insurance, AXA-PPP : Private-health

state that Linda is a patient that has the private health insurance AXA-PPP. An
ontology is a TBox together with an ABox, i.e., finite set of GCIs and assertions.

Knowledge representation systems based on DLs provide their users with vari-
ous inference services that allow them to deduce implicit knowledge from the ex-
plicitly represented knowledge. For example, given the concept definition and the
assertions of our example, one can deduce the assertion LINDA : Private-patient,
i.e., that Linda is a private patient. An important inference service for DL-based
ontologies is testing their consistency, i.e., checking whether a given ontology
is non-contradictory by testing whether it has a model. In fact, all the other
standard inference problems can be reduced to consistency.

Fuzzy variants of Description Logics (DLs) were introduced in order to deal
with applications where membership to concepts cannot always be determined
in a precise way. For example, assume that we want to express that a patient
that has a high temperature and a running nose has a cold using the GCI

Patient�∃has-symptom.Running-nose�∃has-temperature.High � ∃has-disease.Cold.
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Here it makes sense to view High as a fuzzy concept, to which 36◦C belongs
with a low membership degree (say 0.2), 38◦C with a higher membership degree
(say 0.7), and 40◦C with an even higher membership degree (say 0.9). In the
presence of such fuzzy concepts, ABox assertions must then be equipped with
a membership degree. For example, the assertion 〈T1 : High ≥ 0.8〉 says that
temperature T1 is high with membership degree at least 0.8. If we are not so
sure about the measurement (e.g., if it was taken under the armpit), we could
also equip the role assertion (LINDA,T1) : has-temperature with a membership
degree smaller than 1. The use of fuzzy concepts in medical applications is, for
instance, described in more detail in [19].

A great variety of fuzzy DLs have been investigated in the literature [18,14].
In fact, compared to crisp DLs, fuzzy DLs offer an additional degree of free-
dom when defining their expressiveness: in addition to deciding which concept
constructors (like conjunction �, disjunction �, existential restriction ∃r.C) and
which terminological formalism (like no TBox, acyclic concept definitions, gen-
eral concept inclusions) to use, one must also decide how to interpret the concept
constructors by appropriate functions on the domain of fuzzy values [0, 1]. For
example, conjunction can be interpreted by different t-norms (such as Gödel,
Łukasiewicz, and product) and there are also different options for how to inter-
pret negation (such as involutive negation and residual negation). In addition,
one can either consider all models or only so-called witnessed models [16] when
defining the semantics of fuzzy DLs.

Decidability of fuzzy DLs is often shown by adapting the tableau-based algo-
rithms [3] for the corresponding crisp DL to the fuzzy case. This was first done
for the case of DLs without general concept inclusion axioms (GCIs) [26,24,22,9],
but then also extended to GCIs [23,25,7,8]. Usually, these tableau algorithm rea-
son w.r.t. witnessed models.3 It should be noted, however, that in the presence
of GCIs there are different ways of extending the notion of witnessed models
from [16], depending on whether the witnessed property is required to apply
also to GCIs (in which case we talk about strongly witnessed models) or not (in
which case we talk about witnessed models).

The paper [7] considers the case of reasoning w.r.t. fuzzy GCIs in the setting of
a logic with product t-norm and involutive negation. More precisely, the tableau
algorithm introduced in that paper is supposed to check whether an ontology
consisting of fuzzy GCIs and fuzzy ABox assertions expressed in this DL has
a strongly witnessed model or not.4 Actually, the proof of correctness of this
algorithm given in [7] implies that, whenever such an ontology has a strongly
witnessed model, then it has a finite model. However, it was recently shown in [4]
that this is not the case in the presence of general concept inclusion axioms, i.e.,
there is an ontology written in this logic that has a strongly witnessed model,
but does not have a finite model. Of course, this does not automatically imply

3 In fact, witnessed models were introduced in [16] to correct the proof of correctness
for the tableau algorithm presented in [26].

4 Note that the authors of [7] actually use the term “witnessed models” for what we
call “strongly witnessed models.”
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that the algorithm itself is wrong. In fact, if one applies the algorithm from [7] to
the ontology used in [4] to demonstrate the failure of the finite model property,
then one obtains the correct answer, and in [4] the authors actually conjecture
that the algorithm is still correct. However, incorrectness of the algorithm has
now independently been shown in [5] and in [2]. Thus, one can ask whether the
fuzzy DL considered in [7] is actually decidable. Though this question is not
answered in [2], the paper gives strong indications that the answer might in fact
be “no.” More precisely, [2] contains a proof of undecidability for a variant of
the fuzzy DL considered in [7], which (i) additionally allows for strict GCIs, i.e.,
GCIs whose fuzzy value is required to be strictly greater than a given rational
number; and (ii) where the notion of strongly witnessed models used in [7] is
replaced by the weaker notion of witnessed models.

In the present paper, we show that, in the presence of GCIs, undecidability
also holds if we consider a t-norm-based fuzzy DL where disjunction and invo-
lutive negation are replaced by the constructor implication, which is interpreted
as the residuum.5 The only condition on the t-norm is that it is a continu-
ous t-norm “starting” with the product t-norm. In particular, this includes the
fuzzy DL with product t-norm introduced in [16], where decidability of reason-
ing w.r.t. witnessed models was shown for the case without GCIs. In [13], an
analogous decidability result was shown for the case of reasoning w.r.t. so-called
quasi-witnessed models. Following [13], we call this logic ∗-ALE . Note that our
undecidability result holds for several variants of the notion of witnessed models
(including witnessed, quasi-witnessed, and strongly witnessed models).

In the next section, we introduce basic notions from fuzzy logics, and in Sec-
tion 3 we introduce the fuzzy DLs considered in this paper. In Section 4 we then
show undecidability of these DLs w.r.t. witnessed and quasi-witnessed models,
and in Section 5 w.r.t. strongly witnessed and finite models.

2 T-norms and Fuzzy Logic

Fuzzy logics are formalisms introduced to express imprecise or vague informa-
tion [15]. They extend classical logic by interpreting predicates as fuzzy sets over
an interpretation domain. Given a non-empty domain Δ, a fuzzy set is a function
F : Δ→ [0, 1] from Δ into the real unit interval [0, 1], with the intuition that an
element δ ∈ Δ belongs to F with degree F (δ). The interpretation of the logical
constructors is based on appropriate truth functions that generalize the proper-
ties of the connectives of classical logic to the interval [0, 1]. The most prominent
truth functions used in the fuzzy logic literature are based on t-norms.

A t-norm is a binary operator ⊗ : [0, 1]× [0, 1] → [0, 1] that is associative and
commutative, has 1 as its unit element, and is monotonic, i.e., for every x, y, z ∈
[0, 1], if x ≤ y, then x⊗ z ≤ y⊗ z. The t-norm ⊗ is continuous if it is continuous
as a function, i.e., we have for all convergent sequences {xn}n≥0, {yn}n≥0 that

( lim
n→∞

xn)⊗ ( lim
n→∞

yn) = lim
n→∞

(xn ⊗ yn).

5 This change of the constructors used is not irrelevant: in general, disjunction and
involutive negation cannot be expressed using only conjunction and residua.
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Table 1. Gödel, product and Łukasiewicz t-norms and their residua

Name t-norm (x ⊗ y) Residuum (x ⇒ y)

Gödel min(x, y)

{
1 if x ≤ y

y otherwise

product x · y
{

1 if x ≤ y

y/x otherwise

Łukasiewicz max(x + y − 1, 0) min(1 − x + y, 1)

If ⊗ is a continuous t-norm, then there exists a unique binary operator ⇒, called
the residuum, that satisfies z ≤ x⇒ y iff x⊗z ≤ y for every x, y, z ∈ [0, 1]. Three
important continuous t-norms are the Gödel, product and Łukasiewicz t-norms.
These t-norms and their corresponding residua are shown in Table 1.

The following are simple consequences of the definition of t-norms and their
residua (see [15], Lemma 2.1.6).

Lemma 1. For every t-norm ⊗ and x, y ∈ [0, 1] the following hold:

– x⇒ y = 1 iff x ≤ y,
– 1 ⇒ y = y, 0 ⇒ y = 1, and
– if x > 0, then x⇒ 0 = 0.

The t-norms described in Table 1 are fundamental in the sense that all other
continuous t-norms can be constructed from them: every continuous t-norm can
be expressed as the ordered sum of copies of Łukasiewicz, Gödel and product
t-norms [20]. More formally, if ⊗ is a continuous t-norm, then there exists a (pos-
sibly infinite) family S = {〈(ai, bi),⊗i〉 | i ∈ J }, where (ai, bi) are non-empty,
pairwise disjoint open subintervals of [0, 1] and ⊗i is either the Łukasiewicz or
the product t-norm, such that

x⊗ y =

{
ai + (bi − ai) · ( x−ai

bi−ai
⊗i

y−ai

bi−ai
) if x, y ∈ [ai, bi] for some i ∈ J

min(x, y) otherwise

holds for all x, y ∈ [0, 1]. The residuum of this t-norm is given, for every x, y ∈
[0, 1], by

x⇒ y =

⎧⎪⎨⎪⎩
1 if x ≤ y

ai + (bi − ai) · ( x−ai

bi−ai
⇒i

y−ai

bi−ai
) if ai ≤ y < x ≤ bi for some i ∈ J

y otherwise,

where ⇒i represents the residuum of the t-norm ⊗i, i ∈ J .
In this paper we will focus on t-norms whose expression as an ordered sum

use the product t-norm as “first element.”

Definition 2. Given a t-norm ⊗ obtained as ordered sum from the family S =
{〈(ai, bi),⊗i〉 | i ∈ J } and a number q ∈ (0, 1], we say that ⊗ q-starts with the
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product t-norm (q-starts with Π for short) if there is an index i ∈ J such that
(ai, bi) = (0, q) and ⊗i is the product t-norm. It starts with Π if it q-starts with
Π for some q ∈ (0, 1].

Notice that, for every q ∈ (0, 1), there exist uncountably many t-norms that
q-start with Π . In fact, for every real number r ∈ (q, 1], we can take the fam-
ily {〈(0, q),⊗1〉, 〈(q, r),⊗2〉} where ⊗1 is the product t-norm and ⊗2 is the
Łukasiewicz t-norm. As a simple consequence of this, there are uncountably
many continuous t-norms that q-start with Π for a rational number q. Our un-
decidability proofs will only deal with such t-norms. The following lemma is a
simple consequence of the properties described before.

Lemma 3. For a given t-norm ⊗ and q ∈ (0, 1], if ⊗ q-starts with Π, then for
every x, y ∈ [0, q] the following holds:

– x⊗ y = (x · y)/q, and
– if x > y, then x⇒ y = q · (y/x).

3 Fuzzy Description Logics

In this section, we introduce the fuzzy description logic ∗-ALE and some of its
properties, which will be useful throughout the paper.

The syntax of this logic is slightly different from standard description logics,
as it has an implication constructor, but no negation or disjunction constructors.
∗-ALE concepts are built through the syntactic rule

C ::= A | ⊥ | � | C1 � C2 | C1 → C2 | ∃r.C | ∀r.C

where A is a concept name and r is a role name.
A ∗-ALE ABox is a finite set of assertion axioms of the form 〈a : C � q〉 or

〈(a, b) : r � q〉, where C is a ∗-ALE concept, r ∈ NR, q is a rational number in
the interval [0, 1], a, b are individual names and � is either ≥ or =. A ∗-ALE
TBox is a finite set of concept inclusion axioms of the form 〈C � D ≥ q〉, where
C,D are ∗-ALE concepts and q is a rational number in [0, 1]. A ∗-ALE ontology
is a tuple (A, T ), where A is a ∗-ALE ABox and T a ∗-ALE TBox. For the
rest of the paper we will often drop the prefix ∗-ALE , and speak simply of e.g.
TBoxes and ontologies.

The semantics of this logic extend the classical DL semantics by interpreting
concepts and roles as fuzzy sets over an interpretation domain. The precise se-
mantics depends on the t-norm chosen; thus, in the following, we assume that we
have an arbitrary, but fixed, continuous t-norm ⊗ and that ⇒ is the associated
residuum. The semantics of ∗-ALE is based on interpretations. An interpreta-
tion is a tuple I = (ΔI , ·I) where ΔI is a non-empty set, called the domain,
and the function ·I maps each individual name a to an element of ΔI , each
concept name A to a function AI : ΔI → [0, 1] and each role name r to a func-
tion rI : ΔI ×ΔI → [0, 1]. The interpretation function is extended to arbitrary
∗-ALE concepts as follows. For every δ ∈ ΔI ,
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�I(δ) = 1,
⊥I(δ) = 0,

(C1 � C2)I(δ) = CI
1 (δ)⊗ CI

2 (δ)
(C1 → C2)I(δ) = CI

1 (δ) ⇒ CI
2 (δ)

(∃r.C)I(δ) = sup
γ∈ΔI

rI(δ, γ)⊗ CI(γ)

(∀r.C)I(δ) = inf
γ∈ΔI

rI(δ, γ) ⇒ CI(γ).

The interpretation I = (ΔI , ·I) satisfies the assertional axiom 〈a : C � q〉 iff
CI(aI)�q, it satisfies 〈(a, b) : r � q〉 iff rI(aI , bI)�q and it satisfies the concept
inclusion 〈C � D ≥ q〉 iff infδ∈ΔI (CI(δ) ⇒ DI(δ)) ≥ q. This interpretation is
called a model of the ontology O if it satisfies all the axioms in O.

In fuzzy DLs, reasoning is often restricted to witnessed models [16]. An inter-
pretation I is called witnessed if it satisfies the following two conditions:

(wit1) for every δ ∈ ΔI , role r and concept C there exists γ ∈ ΔI such that
(∃r.C)I(δ) = rI(δ, γ) · CI(γ), and

(wit2) for every δ ∈ ΔI , role r and concept C there exists γ ∈ ΔI such that
(∀r.C)I(δ) = rI(δ, γ) ⇒ CI(γ).

This model is called weakly witnessed if it satisfies (wit1) and quasi-witnessed
if it satisfies (wit1) and the condition

(wit2’) for every δ ∈ ΔI , role r and concept C, either (∀r.C)I = 0 or there
exists γ ∈ ΔI such that (∀r.C)I(δ) = rI(δ, γ) ⇒ CI(γ).

In the presence of GCIs, witnessed interpretations are sometimes further re-
stricted [9,4,14] to satisfy

(wit3) for every two concepts C,D, there is a γ such that

inf
η∈ΔI

(CI(η) ⇒ DI(η)) = CI(γ) ⇒ DI(γ).

Witnessed interpretations that satisfy this third restriction (wit3) are called
strongly witnessed interpretations.

We say that an ontology O is consistent (resp. weakly witnessed consistent,
quasi-witnessed consistent, witnessed consistent, strongly witnessed consistent)
if it has a model (resp. a weakly witnessed model, a quasi-witnessed model,
a witnessed model, a strongly witnessed model). Obviously, strongly witnessed
consistency implies witnessed consistency, which implies quasi-witnessed consis-
tency, which itself implies weakly witnessed consistency. The converse implica-
tions, however, need not hold; for instance, a quasi-witnessed consistent ∗-ALE
ontology that has no witnessed models can be derived from the example in [13].

Witnessed models were introduced to simplify the construction of tableau-
based reasoning procedures for fuzzy DLs [16]. Intuitively, with the general se-
mantics for existential restrictions, interpreted as a supremum, it is possible that
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an existential restriction is interpreted with a value that is never reached; that
is, (∃r.C)I(δ) > rI(δ, η)⊗CI(η) for all η ∈ ΔI . Given an existential restriction,
a tableau-based procedure tries to introduce one successor individual that yields
this value. Condition (wit1) ensures that this approach is sound. Without it,
the procedure would also need to address the case where there are infinitely
many successors yielding values whose supremum is the value of the existential
restriction. It is not clear how to do this with a terminating procedure.

We now derive some properties of the ∗-ALE axioms and introduce useful
abbreviations. First, recall that, for all x, y ∈ [0, 1], it holds that x ⇒ y = 1
iff x ≤ y (Lemma 1). Thus, given two concepts C,D, the axiom 〈C � D ≥ 1〉
expresses that CI(δ) ≤ DI(δ) for all δ ∈ ΔI .

In the following, we will use the expression 〈C r� D〉 to abbreviate the axioms
〈C � ∀r.D ≥ 1〉 , 〈∃r.D � C ≥ 1〉. To understand this abbreviation, consider an
interpretation I satisfying 〈C r� D〉 and let δ, γ ∈ ΔI with rI(δ, γ) = 1. From
the first axiom it follows that

CI(δ) ≤ (∀r.D)I(δ) = inf
η∈ΔI

rI(δ, η) ⇒ DI(η)

≤ rI(δ, γ) ⇒ DI(γ) = 1 ⇒ DI(γ) = DI(γ).

From the second axiom it follows that

CI(δ) ≥ (∃r.D)I(δ) = sup
η∈ΔI

rI(δ, η)⊗DI(η)

≥ rI(δ, γ)⊗DI(γ) = 1⊗DI(γ) = DI(γ),

and hence, both axioms together imply that CI(δ) = DI(γ). In other words,
〈C r� D〉 expresses that the value of CI(δ) is propagated to the valuation
of the concept D on all r successors with degree 1 of δ. Conversely, given an
interpretation I such that rI(δ, γ) ∈ {0, 1} for all δ, γ ∈ ΔI , if rI(δ, γ) = 1
implies CI(δ) = DI(γ), then I is a model of 〈C r� D〉.

For a concept C and a natural number n ≥ 1, the expression Cn denotes the
concatenation of C with itself n times, i.e., C1 := C and Cn+1 := C � Cn. If ⊗
q-starts with Π , then the semantics of � yields (Cn)I(δ) = (CI(δ))n/qn−1, for
every interpretation I and every δ ∈ ΔI with CI(δ) ∈ [0, q] (see Lemma 3).

For the rest of the paper we assume that ⊗ q-starts with Π for some arbitrary
but fixed rational number q ∈ [0, 1]. We will show that, under such a t-norm,
consistency of ∗-ALE ontologies w.r.t. the different variants of witnessed models
introduced above is undecidable.

4 Undecidability w.r.t. Witnessed Models

We will show undecidability using a reduction from the Post correspondence
problem, which is well-known to be undecidable [21].

Definition 4 (PCP). Let ((v1, w1), . . . , (vm, wm)) be a finite list of pairs of
words over an alphabet Σ = {1, . . . , s}, s > 1. The Post correspondence problem
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(PCP) asks whether there is a non-empty sequence i1, i2, . . . , ik, 1 ≤ ij ≤ m,
such that vi1vi2 · · · vik

= wi1wi2 · · ·wik
. If such a sequence exists, then the word

i1i2 · · · ik is called a solution of the problem.

We assume w.l.o.g. that there is no pair vi, wi where both words are empty. For
a word μ = i1i2 · · · ik ∈ {1, . . . ,m}∗, we will denote as vμ and wμ the words
vi1vi2 · · · vik

and wi1wi2 · · ·wik
, respectively.

The alphabet Σ consists of the first s positive integers. We can thus view
every word in Σ∗ as a natural number represented in base s+1 in which 0 never
occurs. Using this intuition, we will express the empty word as the number 0.

In the following reductions, we will encode the word w in Σ∗ using the number
q · 2−w ∈ [0, q]. We will construct an ontology whose models encode the search
for a solution. The interpretation of two designated concept names A and B at
a node will respectively correspond to the words vμ and wμ for μ ∈ {1, . . . ,m}∗.

It should be noted that, in the following constructions, the only relevant values
used for interpreting the different concepts will be [0, q] ∪ {1}. For this reason,
it is only important that ⊗ q-starts with Π , while the precise definition of the
t-norm over the rest of the unit interval is irrelevant.

To be more precise, we will show undecidability of consistency w.r.t. witnessed
models by constructing, for a given instance P = ((v1, w1), . . . , (vm, wm)) of the
PCP, an ontology OP such that, for every witnessed model I of OP and every
μ ∈ {1, . . . ,m}∗, there is an element δμ ∈ ΔI with AI(δμ) = q · 2−vμ and
BI(δμ) = q ·2−wμ . Additionally, we will show that this ontology has a witnessed
model whose domain has only these elements. Then, P has a solution iff for every
witnessed model I of OP there exist a δ ∈ ΔI such that AI(δ) = BI(δ).

Let δ ∈ ΔI encode the words v, w ∈ Σ∗; that is, AI(δ) = q · 2−v and BI(δ) =
q · 2−w, and let i, 1 ≤ i ≤ m. Assume additionally that we have concept names
Vi,Wi with V I

i (δ) = q · 2−vi and W I
i (δ) = q · 2−wi . We want to ensure the

existence of a node γ that encodes the concatenation of the words v, w with the
i-th pair from P ; i.e. vvi and wwi. This is done through the TBox

T i
P := {〈� � ∃ri.� ≥ 1〉 , 〈(Vi �A(s+1)|vi|) ri� A〉, 〈(Wi �B(s+1)|wi|) ri� B〉}.

Recall that we are viewing words in Σ∗ as natural numbers in base s+ 1. Thus,
the concatenation of two words u, u′ corresponds to the operation u·(s+1)|u

′|+u′.
Additionally, AI(δ) ≤ q and hence

(A(s+1)|vi|)I(δ) =
q(s+1)|vi| · 2−v·(s+1)|vi|

q(s+1)|vi|−1
= q · 2−v·(s+1)|vi|

.

Since V I
i (δ) ≤ q, we then have

(Vi �A(s+1)|vi|)I(δ) =
(q · 2−vi) · (q · 2−v·(s+1)|vi|)

q
= q · 2−vvi .

Analogously, we get that (Wi �B(s+1)|wi|)I(δ) = q · 2−wwi.
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If I is a witnessed model of T i
P , then from the first axiom in T i

P it follows
that (∃ri.�)I(δ) = 1, and according to (wit1), there must exist a γ ∈ ΔI

with rI(δ, γ) = 1. The last two axioms then ensure that AI(γ) = q · 2−vvi and
BI(γ) = q · 2−wwi; thus, the concept names A and B encode, at node γ, the
words vvi and wwi, as desired. If we want to use this construction to recursively
construct all the pairs of concatenated words defined by P , we need to ensure
also that V I

j (γ) = q · 2−vj , W I
j (γ) = q · 2−wj hold for every j, 1 ≤ j ≤ m. This

can be done through the axioms

T 0
P := {〈Vj

ri� Vj〉, 〈Wj
ri� Wj〉 | 1 ≤ i, j ≤ m}.

It only remains to ensure that there is a node δε where

AI(δε) = BI(δε) = q = q · 20,

that is, where A and B encode the empty word, and for every j, 1 ≤ i ≤ m,
V I

j (δε) = q · 2−vj and W I
j (δε) = q · 2−wj hold. This condition is easily enforced

through the ABox

A0
P := {〈a : A = q〉 , 〈a : B = q〉} ∪

{
〈
a : Vi = q · 2−vi

〉
,
〈
a : Wi = q · 2−wi

〉
| 1 ≤ i ≤ m}.

Finally, we include a concept name H that must be interpreted as q/2 in every
domain element reachable from a. This is enforced by the following axioms:

A0 := {〈a : H = q/2〉},
T0 := {〈H ri� H〉 | 1 ≤ i ≤ m}.

The concept name H will later be used to detect whether P has a solution (see
the proof of Theorem 6).

Let now OP := (AP , TP) where AP = A0
P ∪ A0 and TP := T0 ∪

⋃m
i=0 T i

P . We
define the interpretation IP := (ΔIP , ·IP ) as follows:

– ΔIP = {1, . . . ,m}∗,
– aIP = ε,

for every μ ∈ ΔIP ,

– AIP (μ) = q · 2−vμ , BIP (μ) = q · 2−wμ , HIP (μ) = q/2,

and for all j, 1 ≤ j ≤ m,

– V IP
j (μ) = q · 2−vj , W IP

j (μ) = q · 2−wj , and
– rIP

j (μ, μj) = 1 and rIP
j (μ, μ′) = 0 if μ′ �= μj.

It is easy to see that IP is in fact a model of OP . This model is trivially witnessed
since, for every i, 1 ≤ i ≤ m, every node has only one ri successor with degree
greater than 0. More interesting, however, is that every witnessed model I of
OP “contains” IP in the sense stated in the following lemma.
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Lemma 5. Let I be a witnessed model of OP . Then there exists a function
f : ΔIP → ΔI such that, for every μ ∈ ΔIP , CIP (μ) = CI(f(μ)) holds for
every concept name C and rIi (f(μ), f(μi)) = 1 holds for every i, 1 ≤ i ≤ m.

Proof. The function f is built inductively on the length of μ. First, as I is a
model of AP , there must be a δ ∈ ΔI such that aI = δ. Notice that AP fixes
the interpretation of all concept names on δ and hence f(ε) = δ satisfies the
condition of the lemma.

Let now μ be such that f(μ) has already been defined. By induction, we can
assume that AI(f(μ)) = q · 2−vμ , BI(f(μ)) = q · 2−wμ , HI(f(μ)) = q/2, and
for every j, 1 ≤ j ≤ m, V I

j (f(μ)) = q · 2−vj ,W I
j (f(μ)) = q · 2−wj . Since I is a

witnessed model of 〈� � ∃ri.� ≥ 1〉, for all i, 1 ≤ i ≤ m, there exists a γ ∈ ΔI

with rIi (f(μ), γ) = 1, and as I satisfies all the axioms of the form 〈C r� D〉 in
TP , it follows that

AI(γ) = q · 2−vμvi = q · 2−vμi , BI(γ) = q · 2−wμwi = q · 2−wμi , HI(γ) = q/2,

and for all j, 1 ≤ j ≤ m, V I
j (γ) = q · 2−vj ,W I

j (γ) = q · 2−wj . Setting f(μi) = γ
thus satisfies the required property. ��

From this lemma it then follows that, if the PCP P has a solution μ for some
μ ∈ {1, . . . ,m}+, then every witnessed model I of OP contains a node δ = f(μ)
such that AI(δ) = BI(δ); i.e., where A and B encode the same word. Conversely,
if every witnessed model contains such a node, then in particular IP does, and
thus P has a solution. The question is now how to detect whether a node with
this characteristics exists in every model. We will extend OP with axioms that
further restrict IP to satisfy AIP (μ) �= BIP (μ) for every μ ∈ {1, . . . ,m}+. This
ensures that the extended ontology has a model iff P has no solution.

In order to come up with the right axioms for achieving this, suppose for now
that, for some μ ∈ {1, . . . ,m}∗, it holds that

q · 2−vμ = AIP (μ) > BIP (μ) = q · 2−wμ .

We then have that vμ < wμ and hence wμ − vμ ≥ 1. It thus follows that

(A→ B)IP (μ) = q · (q · 2−wμ)/(q · 2−vμ) = q · 2−(wμ−vμ) ≤ q · 2−1 = q/2

and thus ((A → B) � (B → A))IP (μ) ≤ q/2. Likewise, if AIP (μ) < BIP (μ), we
also get ((A → B) � (B → A))IP (μ) ≤ q/2. Additionally, if AIP (μ) = BIP (μ),
then it is easy to verify (see Lemma 1) that ((A → B) � (B → A))IP (μ) = 1.
From all this it follows that, for every μ ∈ {1, . . . ,m}∗,

AIP (μ) �= BIP (μ) iff ((A→ B) � (B → A))IP (μ) ≤ q/2. (1)

Thus, the instance P has no solution iff for every μ ∈ {1, . . . ,m}+ it holds that
((A→ B) � (B → A))IP (μ) ≤ q/2.

We define now the ontology O′
P := (AP , T ′

P) where

T ′
P := TP ∪ {〈� � ∀ri.(((A→ B) � (B → A)) → H) ≥ 1〉 | 1 ≤ i ≤ m}.
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Theorem 6. The instance P of the PCP has a solution iff the ontology O′
P is

not witnessed consistent.

Proof. Assume first that P has a solution μ = i1 · · · ik and let u = vμ = wμ and
μ′ = i1i2 · · · ik−1 ∈ {1, . . . ,m}∗. Suppose there is a witnessed model I of O′

P .
Since OP ⊆ O′

P , I must also be a model of OP . From Lemma 5 it then follows
that there are nodes δ, δ′ ∈ ΔI such that AI(δ) = AIP (μ) = BIP (μ) = BI(δ),
HI(δ) = HIP (μ) = q/2, and rIik

(δ′, δ) = 1. Then we have ((A → B) � (B →
A))I(δ) = 1, and hence

(((A→ B) � (B → A)) → H)I(δ) = 1 ⇒ q/2 = q/2.

This then means that (∀rik
.(((A→ B)� (B → A)) → H))I(δ′) ≤ q/2, violating

one of the axioms in T ′
P \ TP . Hence, I is cannot be a model of O′

P .
Conversely, assume that O′

P is not witnessed consistent. Then IP is not a
model of O′

P . Since it is a model of OP , there must exist an i, 1 ≤ i ≤ m such
that IP violates the axiom 〈� � ∀ri.(((A → B) � (B → A)) → H) ≥ 1〉. This
means that there is some μ ∈ {1, . . . ,m}∗ such that

(∀ri.(((A → B) � (B → A)) → H))IP (μ) < 1.

Since rIP
i (μ, μ′) = 0 for all μ′ �= μi and rIP

i (μ, μi) = 1, this implies that

(((A→ B) � (B → A)) → H)IP (μi) < 1;

i.e. ((A → B) � (B → A))IP (μi) > q/2. From the equivalence (1) above, it
follows that AIP (μi) = BIP (μi), and hence μi is a solution of P . ��

Corollary 7. Witnessed consistency of ∗-ALE ontologies is undecidable if con-
junction is interpreted using a t-norm that q-starts with Π for a rational number
q ∈ (0, 1].

Notice that in the proofs of Lemma 5 and Theorem 6, the second condition
of the definition of witnessed models was never used. Moreover, the witnessed
interpretation IP is also weakly witnessed. We thus have the following corollary.

Corollary 8. Weakly witnessed consistency and quasi-witnessed consistency of
∗-ALE ontologies are undecidable if conjunction is interpreted using a t-norm
that q-starts with Π for a rational number q ∈ (0, 1].

5 Undecidability w.r.t. Strongly Witnessed Models

Unfortunately, the model IP constructed in the previous section is not a strongly
witnessed model of OP since, for instance, infη∈ΔIP (�IP (η) ⇒ AIP (η)) = 0,
but there is no δ ∈ ΔIP with AIP (δ) = 0. Thus, the construction of O′

P does
not yield an undecidability result for strongly witnessed consistency in ∗-ALE .

This means that we need a different reduction to prove undecidability of
strongly witnessed consistency. This reduction will follow a similar idea to the
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one from the previous section, in which models describe a search for a solution
of the PCP P . However, rather than building the whole search tree, models
will describe only individual branches of this tree. The condition (wit3) will
help ensure that at some point in this branch a solution is found. Conversely,
the models constructed from solutions will be finite, and thus trivially strongly
witnessed.

Before describing the reduction in detail, we recall a useful property of t-
norms. Using a t-norm ⊗ and its associated residuum ⇒, one can express the
minimum and maximum operators as follows [15]:

– min(x, y) = x⊗ (x⇒ y),
– max(x, y) = min(((x⇒ y) ⇒ y), ((y ⇒ x) ⇒ x)).

We can thus introduce w.l.o.g. the ∗-ALE concept constructor max with the
obvious semantics. We will use this constructor to simulate the non-deterministic
choices in the search tree as described next.

Given an instance P = ((v1, w1), . . . , (vm, wm)) of the PCP, we define the
ABox A0

P and the TBox T 0
P as in the previous section, and for every i, 1 ≤ i ≤ m,

we construct the TBox

T si
P := {〈Ci � ∃ri.� ≥ 1〉 , 〈Vi �A(s+1)|vi| ri� A〉, 〈Wi �B(s+1)|wi| ri� B〉}.

The only difference between the TBoxes T i
P and T si

P is in the first axiom. In-
tuitively, the concept names Ci encode the choice of the branch in the tree to
be expanded. Only if CI

i (δ) = 1, there will be an ri successor with degree 1,
and the i-th branch of the tree will be explored. For this intuition to work, we
need to ensure that at least one of the Cis is interpreted as 1 in every node. On
the other hand, we can stop expanding the tree once a solution has been found.
Using this intuition, we define the ontology Os

P := (As
P , T s

P ) where

As
P := A0

P ∪ {a : max(C1, . . . , Cm) = 1},

T s
P := T 0

P ∪
m⋃

i=1

T si
P ∪ {〈(A �B) → ⊥ � ⊥ ≥ 1〉} ∪

{〈� � ∀ri.max((A→ B) � (B → A), C1, . . . , Cm) ≥ 1〉 | 1 ≤ i ≤ m}.

Theorem 9. The instance P of the PCP has a solution iff the ontology Os
P is

strongly witnessed consistent.

Proof. Let ν = i1i2 · · · ik be a solution of P and let pre(ν) denote the set of all
prefixes of ν. We build the finite interpretation Is

P as follows:

– ΔIs
P := pre(ν),

– aI
s
P = ε,

for all μ ∈ ΔIs
P ,

– AIs
P (μ) = q · 2−vμ , BIs

P (μ) = q · 2−wμ ,

and for all j, 1 ≤ j ≤ m
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– V
Is
P

j (μ) = q · 2−vj , W
Is
P

j (μ) = q · 2−wj ,
– C

Is
P

j (μ) = 1 if μj ∈ pre(ν) and C
Is
P

j (μ) = 0 otherwise, and
– r

Is
P

j (μ, μj) = 1 if μj ∈ pre(ν) and r
Is
P

j (μ, μ′) = 0 if μ′ ∈ pre(ν) and μ′ �= μj.

We show now that Is
P is a model of Os

P . Since Is
P is finite, it follows immedi-

ately that it is also strongly witnessed. Clearly Is
P satisfies all axioms in A0

P ;
additionally, we have that C

Is
P

i1
(ε) = 1 and thus, Is

P satisfies As
P . The axiom

〈(A �B) → ⊥ � ⊥ ≥ 1〉 expresses that (A � B)I
s
P (μ) ⇒ 0 = 0, and hence

(A � B)I
s
P (μ) > 0 for all μ ∈ pre(ν), which clearly holds. We now show that

the other axioms are also satisfied for every μ ∈ pre(ν).
Let μ ∈ pre(ν) \ {ν}. Then we know that there exists i, 1 ≤ i ≤ m, such that

C
Is
P

i (μ) = 1 and r
Is
P

i (μ, μi) = 1; thus μ satisfies the axioms in T si
P . Moreover,

C
Is
P

j (μ) = 0 = r
Is
P

j (μ, μ′) for all j �= i and all μ′ ∈ pre(ν), which means that
μ trivially satisfies all axioms in T sj

P . If μi = ν, then ((A → B) � (B →
A))I

s
P (μi) = 1 since ν is a solution. Otherwise, there is a j, 1 ≤ j ≤ m with

μij ∈ pre(ν), and thus CIs
P

j (μi) = 1. Thus, we have in both cases that μ also
satisfies the last axioms in T s

P .
Finally, if μ = ν, then r

Is
P

i (μ, μ′) = 0 and Ci(μ) = 0, for all μ′ ∈ pre(ν) and
all i, 1 ≤ i ≤ m, and thus the axioms are all trivially satisfied.

Conversely, let I be a strongly witnessed model of Os
P . Then, there must be

an element δ0 ∈ ΔI with aI = δ0. Since I must satisfy all axioms in As
P , there

is an i1, 1 ≤ i1 ≤ m such that CI
i1 (δ0) = 1. Since δ0 must satisfy the axioms in

T si1
P , there must exist a δ1 ∈ ΔI with rIi1(δ0, δ1) = 1, AI(δ1) = q · 2−vi1 , and

BI(δ1) = q·2−wi1 . If AI(δ1) = BI(δ1), then i1 is a solution of P . Otherwise, from
the last set of axioms in T s

P , there must exist an i2, 1 ≤ i2 ≤ m with CI
i2

(δ1) = 1.
We can then iterate this construction to generate a sequence i3, i4, . . . of indices
and δ2, δ3, . . . ∈ ΔI where AI(δk) = q · 2−vi1 ···vik , and BI(δk) = q · 2−wi1 ···wik .

If there is some k such that AI(δk) = BI(δk), then i1 · · · ik is a solution of
P . Assume now that no such k exists. We then have an infinite sequence of
indices i1, i2, . . . and since, for every i, 1 ≤ i ≤ m, either vi �= 0 or wi �= 0,
then at least one of the sequences vi1 · · · vik

, wi1 · · ·wik
increases as k gets larger.

Thus, for every natural number n there is a k such that either vi1 · · · vik
> n or

wi1 · · ·wik
> n; consequently (A �B)I(δk) < q · 2−n. This implies that

inf
η∈ΔI

(�I(η) ⇒ (A �B)I(η)) = 0,

and since I is strongly witnessed, there must exist a γ ∈ ΔI with

0 = �I(γ) ⇒ (A �B)I(γ) = (A �B)I(γ).

But from this it follows that ((A � B) → ⊥)I(γ) ⇒ 0 = 0, contradicting the
axiom 〈(A �B) → ⊥ � ⊥ ≥ 1〉 of T s

P . Thus, P has a solution. ��

Notice that, if P has no solution, then Os
P still has witnessed models, but no

strongly witnessed models. It is also relevant to point out that Os
P has a strongly
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witnessed model iff it has a finite model. In fact, the condition of strongly wit-
nessed was only used for ensuring finiteness of the model, and hence, that a
solution is indeed found.

Corollary 10. For ∗-ALE ontologies, strongly witnessed consistency and con-
sistency w.r.t. finite models are undecidable if conjunction is interpreted using a
t-norm that q-starts with Π for a rational number q ∈ (0, 1].

6 Conclusions

We have shown that consistency of ∗-ALE ontologies w.r.t. several notions of
models, ranging from finite models to weakly witnessed models, is undecidable
if the t-norm used to interpret conjunction is a t-norm that q-starts with Π for
a rational number q ∈ (0, 1]. Since, for every q ∈ (0, 1], there exist uncountably
many t-norms that q-start with Π , our results yield an uncountable family of t-
norms for which reasoning in ∗-ALE becomes undecidable. Whether consistency
in general (i.e., without restricting the class of interpretations) is also undecidable
under these t-norms is still an open problem. The same is true if a t-norm that
does not q-start with Π for a rational number q ∈ (0, 1] is used. For the case
of fuzzy DLs where disjunction and involutive negation is used in place of the
residuum, we have an undecidability results for the product t-norm, but only for
the case of witnessed models and with an extension of the TBox formalism to
allow for the use of > in fuzzy GCIs [2].

Since the results in [5,2] have shown that the tableau-based algorithms for
fuzzy DLs with GCIs are actually incorrect, the only decidability results for
fuzzy DLs with GCIs that are currently available are those that use a finite set
of fuzzy membership degrees [11,12,10], or consider a rather simple t-norm (e.g.
the Gödel t-norm) over the interval [0, 1], where only finitely many membership
degrees are relevant for reasoning [6]. In these cases, a black-box approach that
calls a crisp DL reasoner can be used.
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Abstract. We study model-checking problems on counter systems when
guards are quantifier-free Presburger formulae, the specification languages
are LTL-like dialects with arithmetical constraints and the runs are
restricted to reversal-bounded ones. We introduce a generalization of
reversal-boundedness and we show the NExpTime-completeness of the
reversal-bounded model-checking problem as well as for related reversal-
bounded reachability problems. As a by-product, we show the effective
Presburger definability for sets of configurations for which there is a
reversal-bounded run verifying a given temporal formula. Our results
generalize existing results about reversal-bounded counter automata and
provides a uniform and more general framework.

1 Introduction

Reversal-Bounded Model-Checking. Given a counter system S and a linear-
time property φ expressed in a logical formalism, a standard question in formal
verification is to determine whether there is an infinite run ρ for S satisfying
φ (written ρ |= φ), or dually whether all runs satisfy φ. In full generality, ex-
istential model-checking problem is undecidable (as an immediate consequence
of the undecidability of the halting problem for Minsky machines). A way to
overcome this difficulty is to consider a subclass of runs for S for which decid-
ability is regained; in that case, we answer a different question but in case of
positive answer, starting from a subclass of runs does not harm. In the paper,
we restrict the runs so that along an infinite run, for each counter the number of
reversals is bounded by a given value r; a reversal is witnessed when a counter
behaviour changes from increasing mode to decreasing mode, or vice-versa. We
follow an approach similar to bounded model-checking (BMC), see e.g. [6], in
which runs are built until positions of a bounded distance from the initial con-
figuration. Analogously, in context-bounded model-checking, the number of seg-
ments of the computation during which only one thread is active is bounded in
multithreaded programs, see e.g. [29]. As for bounded model-checking, in case
of negative answer to the question, the value r can be incrementally augmented.
Reversal-bounded counter systems have been first studied in [20] and several
extensions have been considered in the literature, see e.g. [13]. A major property
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of such systems is that the sets of configurations reachable from a given initial
configuration, are effectively Presburger-definable. However this does not entail
that problems involving infinite runs are decidable, since infinite runs are not
necessarily effectively representable in Presburger arithmetic, see e.g. [10]. In
this paper, we study problems of the form: given a counter system S, a bound
r ≥ 0 and a formula φ, is there an infinite r-reversal-bounded run ρ such that
ρ |= φ. To complete our analogy, it is fair to observe that BMC for finite systems
benefits from nice properties on runs that allow the existence of an upper bound
on the length of runs to be checked (a.k.a. completeness threshold). That is why,
a finite amount of BMC instances needs to be checked in order to provide an
answer to any instance of the model-checking problem. By contrast, since the
reversal-boundedness detection problem on counter systems is undecidable [20],
there is no guarantee that given an initialized counter system, there exists a
r-reversal-bounded run, for some r ≥ 0, satisfying a given temporal property.

Our Motivations. In order to test whether there is an infinite run satis-
fying a temporal property, we restrict ourselves to r-reversal-bounded runs for
some r ≥ 0 so that for a fixed r, the problem is decidable. In case of positive
answer, we stop the process, otherwise we increment r and perform again a test.
This incremental approximation approach is applied to counter systems that are
more general than Minsky machines (counter automata with increments, decre-
ments and zero-tests), typically by considering guards definable in quantifier-free
fragment of Presburger arithmetic and update vectors in Zn. Moreover, we aim
at expressing the temporal property in a rich LTL-like dialect, including arith-
metical constraints and past-time operators (i.e., not only restricted to Boolean
combinations of GF-formulae). Finally, not only we characterize the computa-
tional complexity of the existence of r-reversal-bounded runs but also our goal is
to effectively express the set of configurations admitting such runs in Presburger
arithmetic, which will allow us to use SMT solvers to perform verification tasks
on counter systems (see e.g. [2,26]) or to take advantage of verification tech-
niques developed in [5]. It is worth noting that the use of Presburger arithmetic
for formal verification has been already advocated since the work [31].

Our Contributions. As far as the methodology is concerned, we reduce
model-checking problems to reachability problems (first, by synchronization of
the counter system and the automaton representing the temporal formula and,
then, we reduce the model-checking problems to reachability problems). Let
us quote the major results of the paper. (i) We introduce a new concept for
reversal-boundedness that makes explicit the role of arithmetical terms and it
captures previous notions on reversal-boundedness (see Section 2). (ii) We show
that the reversal-bounded model-checking problem for counter systems with
guards in QFP (quantifier-free fragment of Presburger arithmetic) and temporal
formulae with atomic formulae in QFP is decidable and NExpTime-complete
(see Theo. 4). The same complexity applies to reversal-bounded control state
repeated reachability problem and reversal-bounded reachability problem (see
Corollary 6). (iii) We show that the existence of reversal-bounded runs satisfy-
ing a temporal property implies the existence of reversal-bounded runs that are
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ultimately periodic, i.e. the sequences of transitions are of the form π1 · (π2)ω

where π1 and π2 are finite sequences. This type of properties has been already
shown useful to implement verification methods following the BMC paradigm
(see Corollary 3). (iv) Besides, our complexity results provide as by-products
that reachability sets for reversal-bounded counter systems are effectively Pres-
burger definable (see Corollary 4) and sets of configurations for which there is a
reversal-bounded run verifying a temporal formula are also effectively Presburger
definable (Theorem 5).

Related Works. Effective Presburger definability for reversal-bounded Min-
sky machines and more generally for reversal-bounded counter systems can
be found in [20,19,13] whereas the NExpTime-completeness of the reversal-
bounded reachability problem for Minsky machines has been shown in [17] (lower
bound) and [14,17] (upper bound). The NExpTime upper bounds established
in this paper for several extensions with richer classes of counter systems or
with richer concepts of reversal-boundedness build on [14] and on [30] with
adaptations to handle more complicated technical features. Decidability results
for reversal-bounded counter systems augmented with familiar data structures
such as stacks or queues (also with restricted behaviours) can be found in [18].
Our temporal language is very expressive and includes control states as well as
arithmetical constraints in QFP. Moreover, in the paper we deal with model-
checking involving linear-time temporal logics with past-time and future tempo-
ral operators and with arithmetical constraints on counter values. In [10], it is
shown that ∃-Presburger-infinitely often problem for reversal-bounded counter
automata (with guards made of Boolean combinations of the form xi ∼ k) is
decidable. Moreover, ∃-Presburger-always problem for reversal-bounded counter
automata is undecidable [10]. Our decidability results on model-checking re-
fine these results in order to obtain new decidability results, by allowing a full
LTL specification language with arithmetical constraints and by proposing new
concepts for reversal-boundedness. Finally, in [21, Theorem 22], ExpTime up-
per bound for LTL model-checking over reversal-bounded counter automata is
shown but the logical language has no arithmetical constraint and the number
of reversals r is encoded in unary (see also [32]). In our setting, our complexity
results deal with instances in which all the integers are encoded in binary.

The recent work [16] is also closely related to our paper. We are grateful to
an anonymous referee for pointing it to us. Our work and [16] have been done
independently but most of our results can be reproved by extending [16]. In [16],
operational models extending pushdown systems with counters and clocks are
considered; a version of reversal-bounded LTL model-checking is shown to be co-
NExpTime [16, Theorem 2]. A prototypical implementation and experimental
results are also presented in [16]. LTL dialect contains only control states and
guards are Boolean combinations of constraints of the form x ∼ k. By contrast,
models are more general than ours. Theorem 2 in [16] is based on [16, Theorem
1] that also implies that reversal-bounded reachability problem considered in our
paper is in NExpTime (assuming atomic guards of the form x ∼ k). Unlike [16],
our LTL dialect contains control states, past-time operators but also arithmetical
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constraints in QFP allowing non-trivial arithmetical properties like GF(Xx =
x + y) (which may lead to undecidability in the general case). Similarly, even
though our paper deals only with counter systems (no stack, no clocks), we
allow general guards from QFP; we also introduce a new concept for reversal-
boundedness. The proof of [16, Theorem 1] share common features with our proof
of Theorem 2, at least in the use of counter modes. In both cases Presburger
formulae are built: our proof is based on a run analysis whereas the proof in [16,
Theorem 1] builds directly the formula. We believe our treatment is more uniform
and it generalizes notions presented in [19,10]. Moreover, our run analysis for
proving Theorem 2 is interesting for its own sake, see [4].

In general, omitted proofs can be found in [4] (submitted version).

2 Preliminaries

In this section, we introduce a language for arithmetical constraints, namely the
quantifier-free fragment of Presburger arithmetic (over the set of natural num-
bers). This language serves two main purposes. Firstly, we define classes of op-
erational models, namely counter systems, for which transitions are guarded by
arithmetical constraints. Secondly, we introduce a version of linear-time tempo-
ral logic with past-time operators for which atomic formulae can state properties
about counter values, i.e. arithmetical constraints.

Arithmetical Constraints. We write N (resp. Z) for the set of natural (resp.
integers) numbers and [m,m′] with m,m′ ∈ Z to denote the set {j ∈ Z : m ≤
j ≤ m′}. For x,y ∈ Zn, we write x(1), . . . , x(n) for the entries of x, x & y

def⇔
for all i ∈ [1, n], x(i) ≤ y(i) and x ≺ y when x & y and x �= y.

Let VAR = {x0, x1, . . .} be a countably infinite set of variables. We define
below formulae from the quantifier-free theory of natural numbers with addition,
also known as quantifier-free fragment of Presburger arithmetic. Terms t are
defined from the grammar t := ax | t + t, where x ∈ VAR, a ∈ Z (encoded
with a binary representation). A valuation val is a map val : VAR → N and
it can be extended to the set of all terms as follows: val(ax) = a × val(x),
val(t + t′) = val(t) + val(t′). It is worth noting that variables take values
over N but terms take values over Z. Formulae ξ of QFP are defined from the
grammar ξ ::= � | t ≤ k | t ≥ k | t ≡c k

′ | ξ ∧ ξ | ¬ξ, where � is the
truth constant, c ∈ N \ {0, 1}, k ∈ Z and k′ ∈ N. The satisfaction relation |=PA

for QFP formulae is briefly recalled below:

– val |=PA t ≡c k
′ def⇔ there is n ∈ Z such that nc + val(t) = k′,

– val |=PA t ≤ k
def⇔ val(t) ≤ k (and similarly with ≥),

– val |=PA ¬φ def⇔ val �|=PA φ; val |=PA φ∧φ′ def⇔ val |=PA φ and val |=PA φ′.

A valuation val restricted to variables in V = {x1, . . . , xn} ⊆ VAR can be also
represented by a vector x ∈ Nn, where val(xj) = x(j) for j ∈ [1, n]. Hence,
assuming that φ has n distinct variables, the satisfaction relation can be equiva-
lently written with respect to a vector of values: x |=PA φ (in place of val |=PA φ
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with val(xi) = x(i)). Full Presburger arithmetic (i.e., with first-order quan-
tification over natural numbers) has been shown decidable in [28] by means of
quantifier elimination. Moreover, the satisfiability problem for QFP is known to
be NP-complete, see e.g. [27].

We present below a few notations used in the sequel: QFP is also denoted by
QFP(<,≡) whereas its restriction without periodicity constraints is denoted by
QFP(<). Similarly, we write QFP(<1,≡) to denote the restriction of QFP(<
,≡) with atomic formulae involving at most one variable; QFP(<1,≡) without
periodicity constraints is denoted by QFP(<1). Wlog., we can assume that the
atomic formulae of QFP(<1,≡) are of one of the forms below: x ∼ k with k ∈ N
and ∼∈ {<,≤, >,≥} or t ≡c k

′ with c > 1 and k′ ∈ [0, c− 1].
Counter Systems. In this paper, we consider counter systems to be finite-

state automata equipped with a finite set of counters {1, . . . , n} with values over
N; a counter system is a tuple S = (Q,n, δ) where Q is a finite set of control
states, n ≥ 1 is the number of counters and δ is a finite subset of Q × (QFP ×
Zn) × Q such that whenever (q, (φ,v), q′) ∈ δ (also written q

(φ,v)−−→ q′), φ is a
formula in QFP with variables among x1, . . . , xn (a guard on the n counters)
and v ∈ Zn is the update vector. Elements of δ are called transitions, i.e. rules
acting on counters. A configuration of S is defined as a pair (q,x) ∈ Q × Nn,
where x is the vector of values for counters. The one-step transition relation
−→⊆ Q × Nn × Q × Nn is defined between a pair of configurations such that

((q,x), (q′,x′)) ∈−→ def⇔ there is a transition t = q
(φ,v)−−→ q′ in δ, x |=PA φ and

x′ = x + v (in that case, we write (q,x) t−→ (q′,x′)). A run ρ is a (possibly
infinite) sequence of configurations (q0,x0), (q1,x1) . . . such that two successive
configurations agree with δ, i.e. for i ≥ 0, we have (qi,xi)

t−→ (qi+1,xi+1), for
some t ∈ δ. An initialized counter system is a pair (S, (q,x)) such that S is a
counter system and (q,x) is an initial configuration (with x ≥ 0).

Given a subset L of QFP, we write CS(L) to denote the class of counter sys-
tems for which transitions are restricted to guards in L. Clearly, Minsky machines
(and also vector addition systems with states) are included in CS(QFP(<1)).
Then, most of all the reachability problems are already undecidable as soon as
CS(L) contains CS(QFP(<1)). For this reason, in order to get decidability for
reachability and model-checking problems, some restrictions have to be imposed
on the nature of the systems. The notion of reversal-boundedness introduced in
[20] is based on a semantical restriction that entails the decidability of several
reachability problems. Informally, a reversal for a counter occurs in a run when
there is an alternation from nonincreasing to nondecreasing mode.

Below, we propose a slight generalization that captures the notion of reversal-
boundedness from [20] and the notion of strong reversal-boundedness introduced
in [19, Section 4.2.2]. In a few words, in our new definition below, reversal-
boundedness applies to counters but also to terms occurring in guards. Let S =
(Q,n, δ) be a counter system and T be a finite set of terms including {x1, . . . , xn}.
Let us linearly order the terms in T with x1, . . . , xn, t1, . . . , tn′ . So, card(T) =
n + n′ (n′ can possibly be equal to 0). From a run ρ = (q0,x0), (q1,x1), . . . of
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S, in order to describe the behavior of counters and terms varying along ρ, we
define a sequence of mode vectors m0,m1, . . . (of the same length as ρ) such that
each mi belongs to {↗,↘}n+n′

. Intuitively, each value in a mode vector records
whether a term is currently in an increasing phasis or in an decreasing phasis (this
includes the counters themselves as in standard reversal-boundedness). Given a
term t =

∑
k akxk and a counter vector x, we write x(t) to denote the integer∑

akx(k). We are now ready to define the sequence m0,m1, . . .

– By convention, m0 is the unique vector in {↗}n+n′
.

– For j ≥ 0 and i ∈ [1, n + n′] with the ith term in T equal to t, we have
mj+1(i)

def= mj(i) when xj(t) = xj+1(t), mj+1(i)
def=↗ when xj+1(t) −

xj(t) > 0 and mj+1(i)
def=↘ when xj+1(t)− xj(t) < 0.

It is worth noting that if (qj ,xj)
t−→ (qj+1,xj+1) with t = qj

(φ,v)−−→ qj+1, then
xj+1(t) − xj(t) =

∑
k akv(k). Now, let Revi = {j ∈ N : mj(i) �= mj+1(i)};

we say that ρ is r-T-reversal-bounded for some r ≥ 0 def⇔ for all i ∈ [1, n + n′],
card(Revi) ≤ r. Given a counter system S, we write TS to denote the finite
set of terms t occurring in atomic guards of the form t ∼ k with ∼∈ {≤,≥}
and k ∈ Z, plus the distinguished terms (counters) from {x1, . . . , xn}. Note that
terms occurring only in periodicity constraints are not taken into account; we
shall deal with them separately (see Section 3). An initialized counter system
(S, (q,x)) is reversal-bounded def⇔ there is r ≥ 0 such that every run from (q,x)
is r-TS -reversal-bounded.

When T is reduced to {x1, . . . , xn}, T-reversal-boundedness is equivalent to
reversal-boundedness from [20]. Hence, for S ∈ CS(QFP(<1)) and initial con-
figuration (q,x), (S, (q,x)) is reversal-bounded in the sense herein iff (S, (q,x))
is reversal-bounded in the sense from [20]. In strong reversal-boundedness [19,
Sect. 4.2.2], a phasis can be either strictly increasing, or strictly decreasing or
constant (mode vectors belong to mi ∈ {↗,↘,→}n+n′

). This provides more
constraints on runs: the guards are more general (typically in QFP(<)) and the
update vectors are in {−1, 0,+1}n. Again, our notion of T-reversal-boundedness
allows us to provide a uniform and more general treatment. Indeed, when a
sequence of transitions has a unique update vector, the mode vector remains
constant. When an initialized counter system from CS(QFP), involving guards
with terms in T′, is strongly reversal-bounded in the sense of [19, Sect. 4.2.2],
then it is (T′ ∪ {x1, . . . , xn})-reversal-bounded, too.

Given a class C of counter systems, the reversal-bounded reachability problem
for C, written RB-REACH(C), is defined as follows (all integers are encoded in bi-
nary): given a counter system S ∈ C, configurations (q0,x0) and (qf ,xf ), r ≥ 0,
is there an r-TS-reversal-bounded run from (q0,x0) to (qf ,xf )? Clearly, when
(S, (q0,x0)) is reversal-bounded, reversal-bounded reachability corresponds ex-
actly to reachability. Similarly, the reversal-bounded control state repeated reach-
ability problem for C, written RB-REP-REACH(C), is defined as follows: given
a counter system S ∈ C, a configuration (q0,x0), a control state qf and r ≥ 0,
is there an infinite r-TS-reversal-bounded run from (q0,x0) such that qf is re-
peated infinitely often? Both problems RB-REACH(C) and RB-REP-REACH(C)
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restrict the set of runs witnessing a simple property (reaching (qf ,xf ) or re-
peating infinitely often qf ). This makes sense in our incremental approximation
approach, since removing the restriction leads to undecidability. However, it is
worth noting that our new notion of T-reversal-boundedness is rich enough so
that witness runs include standard reversal-bounded runs.

In the sequel, we show that RB-REACH(CS(QFP)) is NExpTime-complete.
It is worth explaining why this is consistent with the fact that the reachabil-
ity problem for (standard) reversal-bounded counter automata augmented with
guards of the form xi = xi′ or xi �= xi′ is undecidable [19]. Indeed, the presence
of such guards entails the presence of terms of the form xi − xi′ , that have to
be reversal-bounded by definition of RB-REACH(CS(QFP)). However, it is not
difficult to show that the undecidability proof in [19] produces enriched counter
automata for which some terms of the form xi − xi′ are not reversal-bounded.

Reversal-Bounded Model-Checking Problems. We define below a linear-
time temporal logic with future-time and past-time operators. Atomic formulae
are either control states or arithmetical constraints about counter values at the
current position and next position. Counter variables in VAR = {x1, x2, . . .} are
free variables, only interpreted by the counter values on configurations. As for
defining QFP, arithmetical terms are defined by the grammar t ::= ax | aXx |
t + t with x ∈ VAR and a ∈ Z. Intuitively, x refers to the current value for
counter x, Xx refers to the counter value for x at the next position from the
current one. Formulae of CLTL(QFP) are defined as follows:

φ ::= � | q | t ∼ k | t ≡c k
′ | ¬φ | φ ∧ φ | Xφ | φUφ | Yφ | φSφ

with q ∈ Q, ∼∈ {<,≤, >,≥,=}, k ∈ Z, c ∈ N \ {0, 1} and k′ ∈ N. As usual, we
pose Fφ def= �Uφ and Gφ

def= ¬F¬φ. The formula GF(x1 − x2 = 3) states that
infinitely often the value for counter 1 is equal to the value for counter 2 plus
3. Given a fragment L ⊆ QFP, we write CLTL(L) to denote the restriction of
CLTL(QFP) with arithmetical constraints built from L.

Models of CLTL(QFP) are intended to be infinite runs of counter systems;
hence they are of the form ρ = (q0,x0), (q1,x1), (q2,x2), . . . with ρ ∈ (Q ×
Nn)ω. In order to deal with arithmetical constraints, we need to introduce a few
notations. Given a term t from CLTL(QFP), we write t̃ to denote the term in
QFP obtained from t by replacing Xxi by a fresh variable x′i. Then, satisfaction
relation |= is defined as follows (we omit obvious Boolean clauses):

– ρ, i |= q
def⇔ q = qi.

– ρ, i |= t ∼ k
def⇔ val |=PA t̃ ∼ k where for j ∈ [1, n], val(xj) = xi(j) and

val(x′j) = xi+1(j). Similarly, ρ, i |= t ≡c k
′ def⇔ val |=PA t̃ ≡c k

′.
– ρ, i |= Xφ

def⇔ ρ, i+ 1 |= φ; ρ, i |= Yφ
def⇔ ρ, i− 1 |= φ and i ≥ 1.

– ρ, i |= φUφ′ def⇔ there is j ≥ i s.t. ρ, j |= φ′ and for all h ∈ [i, j−1], ρ, h |= φ.
– ρ, i |= φSφ′ def⇔ there is j ≤ i s.t. ρ, j |= φ′ and for all h ∈ [j−1, i], ρ, h |= φ.

Observe that X is a temporal operator whereas X is used to refer to next counter
values and it does not admit nesting. Moreover, the syntax of CLTL(QFP) does
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not allow terms that refer to counter values at the previous position; again, this
can be easily simulated. For instance, current value for counter 1 is equal to
the value of counter 2 at the previous position can be encoded by the formula
Y(x2 = Xx1).

The basic idea behind the design of CLTL(QFP) is to allow comparisons be-
tween counter values at successive positions of the runs. Similar motivations can
be found in the introduction of concrete domains in description logics, that are
logic-based formalisms for knowledge representation [25]. Temporal logics with
Presburger constraints have been developed, for instance, in [9,8,22]. Some of
them have quite expressive decidable fragments. Undecidability of the existential
model-checking problem for CLTL(QFP) can be shown using the undecidabil-
ity of the halting problem for Minsky machines. SMT solvers can be used for
checking bounded reachability problems, see e.g., [5].

Given an CLTL(QFP) formula φ, we write Tφ to denote the finite set of
terms of the form

∑
k(ak + bk)xk when t = (

∑
k akXxk) + (

∑
k bkxk) is a term

occurring in φ (modulo AC for the operator +) in an atomic formula of the form
t ∼ k with ∼∈ {≤,≥, <,>,=} and k ∈ Z. Since the next value of counter k
(denoted by Xxk) is equal to the current value of the counter plus some b ∈ Z
(depending on the update vectors of the transitions), the value of the term
(
∑

k akXxk)+(
∑

k bkxk) is equal to the current value of
∑

k(ak+bk)xk plus some
constant depending on the next transition. This explains the current definition
of Tφ and more justifications can be found in Section 3.
Reversal-bounded model-checking problem. RBMC is defined as follows: given a
counter system S ∈ CS(QFP), a configuration (q,x), a formula φ ∈ CLTL(QFP)
and bound r ∈ N, is there an infinite run ρ from (q,x) such that ρ, 0 |= φ
and ρ is r-T-reversal-bounded with T = TS ∪ Tφ? The restriction of RBMC to
counter systems in the class CS(L1) and to formulae in CLTL(L2) is denoted
by RBMC(CS(L1),CLTL(L2)) with L1,L2 ⊆ QFP. If L1 = L2 = QFP(<1), the
witness run ρ should simply be reversal-bounded in the sense of [20] (Tφ = TS =
{x1, . . . , xn}). Similarly, if L1 = L2 = QFP, then the set of witness runs include
the set of strongly reversal-bounded runs from (q,x) in the sense of [19, Section
4.2.2]. We can impose that witness runs are exactly strongly reversal-bounded by
adding the subformula

∨
q
(ξ,v)−−→q′∈δ

FG(
∧

i∈[1,n]((Xxi−xi) = v(i))). Do note that

a richer class of witness runs is allowed by our definition. The main result of the
paper is the NExpTime-completeness of RBMC (with all integers admitting
a binary representation). Observe also that both RB-REACH(CS(QFP)) and
RB-REP-REACH(CS(QFP)) can be easily reduced to RBMC.

3 From Reversal-Bounded Model-Checking to
Reachability

Herein, we show how to reduce RMBC into RB-REP-REACH(QFP), RB-REP-
REACH(QFP) into RB-REP-REACH(QFP(<)) and RB-REP-REACH(QFP(<
)) into RB-REACH(QFP(<)). In Section 4, we deal with RB-REACH(QFP(<))
complexity as well as with RMBC and RB-REP-REACH(QFP) complexity. The
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two first reductions presented below use quite standard proof techniques but we
have to perform them carefully since we shall reuse their complexity functions to
establish the final complexity upper bound for RMBC, see e.g. [12] for the first
reduction (see also [33]). It is worth nothing that each reduction below produces
an exponential blow-up.

Towards Control State Repeated Reachability. In this section, we show
how to reduce RBMC to RB-REP-REACH(QFP) by synchronizing counter sys-
tems with Büchi automata for temporal formulae, as done for LTL model-
checking [34], see also developments for Petri nets in [12]. The definition of a
synchronized product is motivated by the design of a unique counter system
that captures the Büchi acceptance condition and the update of counters follow-
ing the transitions of S.

Let S = (Q,n, δ) ∈ CS(QFP), (q,x), φ ∈ CLTL(QFP) and r ∈ N be an
instance of RBMC. The formula φ can be viewed as a standard LTL formula
in which the atomic formulae of the form q, t ∼ k and t ≡c k′ are viewed as
propositional variables. From [34], we know that we can represent the symbolic
models of φ by a Büchi automaton Aφ whose size is exponential in the size
of φ. At the symbolic level, the counter values are disgarded. The instance we
shall build for RB-REP-REACH(QFP) is obtained by synchronizing Aφ with S,
providing the counter system S′ such that TS′ = TS ∪ Tφ.

Let us be a bit more precise in the construction of Aφ. We write A to denote
the set of atomic formulae of the form either q, or t ∼ k or t ≡c k

′ occurring
in φ, as well as their negations. Similarly, we write cl(φ) to denote the closure
of φ, defined as the smallest set of formulae closed under subformulae, closed
under negations (double negations are eliminated) and containing φ. The set of
atoms for φ, written Atoms(φ), contains the subsets of cl(φ) that are maximally
consistent and such that for every formula ξ ∈ A then either ξ or ¬ξ belongs to
the set (but not both). States of Aφ are in Atoms(φ) × [0,m] where φ has m
U-formulae and its alphabet is a subset of Q×P(A) (details can be found in [4]
with the standard construction for the synchronized product S′). An instance
of RBMC can be reduced to several instances of RB-REP-REACH(QFP) with
the synchronized product S′. In particular, RMBC can be solved by checking
a finite number of instances of RB-REP-REACH(QFP) depending which initial
states and accepting states are considered.

Lemma 1. Let S = (Q,n, δ) ∈ CS(QFP), (q,x), φ ∈ CLTL(QFP) and r ∈ N
be an instance of RBMC and S′ be the counter system in CS(QFP) obtained by
synchronizing S with Aφ. The propositions below are equivalent: (I) there is an
infinite r-(TS ∪ Tφ)-reversal-bounded run ρ of S from (q,x) such that ρ, 0 |= φ;
(II) there is an infinite r-TS′-reversal-bounded run from ((q,X0, 0),x) such that
(qf , Xf , 0) is repeated infinitely often for some initial atom X0 ∈ Atoms(φ) and
for some (qf , Xf ) ∈ Q×Atoms(φ).

Actually, thanks to the previous lemma, the following corollary holds:

Corollary 1. There is a polynomial-space reduction from RMBC into RB-REP-
REACH(CS(QFP)).
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The next section is devoted to show how to reduce RB-REP-REACH(QFP(<
,≡)) to RB-REP-REACH(QFP(<)).

Removing Periodicity Constraints. In this section, we show that given
L ⊆ QFP using periodicity constraints of the form t ≡c k, the reversal-bounded
reachability problem for counter systems in CS(L) can be reduced to the cor-
responding problem restricted to counter systems in CS(L′), where L′ is the
restriction of L without periodicity constraints.

Reduction. Let us consider the class of counter systems CS(L). The underlying
idea to remove periodicity constraints consists in defining a new counter system
S′ ∈ CS(L′) from a given S ∈ CS(L), whose control states store counter values
modulo C, where C is the lcm of all the constants c appearing in atomic formulae
of the form t ≡c k in guards of S (see [4] for standard justifications about the
value C). The number of control states in S′ is equal to number of control
states in S multiplied by C, which is in O(2N2

) (N is the size of S with some
reasonably succinct encoding). This construction entails an exponential blow-up
of the number of control states of the new counter system S′. The transitions
of S′ are defined accordingly to the update operations on them in order to
correctly represent the classes of modulo for each counter. Let S′ = (Q′, n, δ′)
be the counter system where Q′ = Q× [0, C − 1]n. Given x ∈ Nn, we write x̃ to
denote the unique tuple in [0, C − 1]n such that for i ∈ [1, n], we have x(i) ≡C

x̃(i). Let configok be the set of configurations for S′ of the form ((q, x̃),y) such
that ỹ = x̃. Let f : (Q × Nn) → configok be the one-to-one map such that
f((q,x)) = ((q, x̃),x). f and f−1 extend naturally to sequences (either finite or

infinite ones). The transition relation δ′ is defined as follows: if q
(φ,b)−−→ q′ ∈ δ

then (q, x̃)
(φ′,b)−−−→ (q′, ỹ) ∈ δ′ for all tuples x̃, ỹ, where φ′ is defined from φ by

substituting � in place of each t ≡c k, with t =
∑

j ajxj, if
∑

j ajx̃(j) ≡c k;
otherwise ⊥. Moreover, we require that for i ∈ [1, n], we have ỹ(i) ≡C x̃(i)+b(i).
Lemma 2. Let S = (Q,n, δ) be in CS(QFP) and S′ = (Q′, n, δ′) be the counter
system in CS(QFP(<)) defined as above. (I) For every run ρ of S, f(ρ) is also
a run of S′. (II) For every run ρ of S′ such that the first configuration belongs
to configok, then all configurations in ρ belong to configok and f−1(ρ) is also a
run of S.

From the previous result, the following corollary can be drawn.

Corollary 2. Let L = QFP [resp. L = QFP(<1,≡)] and L′ = QFP(<) [resp.
L′ = QFP(<1)].

(I) There is a polynomial-space reduction from RB-REACH(CS(L)) to RB-
REACH(CS(L′)). (II) There is a polynomial-space reduction from RB-REP-
REACH(CS(L)) to RB-REP-REACH(CS(L′)).

Elimination of Büchi Acceptance Conditions. Let S be in CS(QFP(<)),
(q0,x0) be an initial configuration, qf be a control state and r ≥ 0. We write
Kmin ∈ Z [resp. Kmax ∈ Z] to denote the minimal [resp. maximal] k occurring
in atomic formulae of the form t ∼ k in guards from S. We show below how
the existence of an infinite run can be characterized by the existence of a finite
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run satisfying additional properties. The properties (�) and (��) below witness
such an equivalence. This is comparable, but certainly a bit more technically
involved, to the existence of infinite accepting runs in Büchi automata that is
equivalent to conditions on finite runs. However, such a reduction is not pos-
sible with nondeterministic Minsky machines without the reversal-boundedness
assumption. Indeed, the recurrence problem for nondeterministic Minsky ma-
chines is Σ1

1-hard [1] whereas the halting problem for nondeterministic Minksy
machines is in Σ0

1 . We show that the conditions below are equivalent.

(�) There is an infinite r-TS-reversal-bounded run from (q0,x0) such that qf is
repeated infinitely often.

(��) There exist a finite run (q0,x0), . . . , (ql,xl), l′ < l, Z→ ⊆ [1, n] and
T→, T↘, T↗ ⊆ (TS \ {x1, . . . , xn}) such that
1. ql′ = ql = qf and (q0,x0), . . . , (ql,xl) is r-TS-reversal-bounded.
2. For j ∈ [l′ + 1, l] and i ∈ Z→, xj(i)− xj−1(i) = 0.
3. For j ∈ [l′ + 1, l] and i ∈ [1, n] \ Z→, xj(i)− xj−1(i) ≥ 0.
4. For i ∈ [1, n] \ Z→, xl′(i) ≥ Kmax.
5. T→, T↘, T↗ is a partition of (TS \ {x1, . . . , xn}).
6. For j ∈ [l′ + 1, l] and t ∈ T→, we have xj(t)− xj−1(t) = 0.
7. For j ∈ [l′ + 1, l] and t ∈ T↘, we have xj(t)− xj−1(t) ≤ 0.
8. For j ∈ [l′ + 1, l] and t ∈ T↗, xj(t)− xj−1(t) ≥ 0.
9. For t ∈ T↘, xl′(t) ≤ Kmin; 10. For t ∈ T↗, xl′(t) ≥ Kmax.

Lemma 3. (�) is equivalent to (��)

Proof. (�) implies (��). Let (q0,x0), (q1,x1), . . . be an infinite r-TS-reversal-
bounded run from (q0,x0) such that qf is repeated infinitely often (with TS =
{x1, . . . , xn} ∪ {t1, . . . , tn′}). All the atomic guards in S are of the form t ∼ k
with t ∈ TS and k ∈ [Kmin,Kmax]. Let us make the following observations.

– Let i ∈ [1, n]. Because counter i has a bounded number of reversals, from
some position, the value of counter i either remains constant or it is diverging
to +∞ and the update values (on counter i) are always greater than 0.
Let Z→ be the subset of [1, n] containing the counters whose values remain
constant after some position. In the second case, there is a position j1 such
that for j ≥ j1, xj(i) ≥ Kmax, for all i ∈ [1, n] \ Z→.

– Let i ∈ [1, n′]. Because the term ti has a bounded number of reversals, one
of the conditions below hold true (leading to the definition of T→, T↘, T↗).
1. From some position, the value of the term ti remains constant, i.e. there

is j0 ∈ N, such that for j ≥ j0, xj+1(ti)− xj(ti) = 0.
2. The value of the term ti diverges to −∞ and there is j0 ∈ N, such

that for j ≥ j0, xj+1(ti)− xj(ti) ≤ 0. In particular, there is a position
j1 ≥ j0 such that xj1(ti) ≤ Kmin.

3. The value of the term ti diverges to +∞ and there is j0 ∈ N, such
that for j ≥ j0, xj+1(ti)− xj(ti) ≥ 0. In particular, there is a position
j1 ≥ j0 such that xj1(ti) ≥ Kmax.

– Since qf is repeated infinitely often, there are two positions l′ < l satisfying
the conditions (1)–(10).
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(��) implies (�). It remains to show that the existence of a finite run (q0,x0),
(q1,x1), . . ., (ql,xl), l′ < l, Z→ ⊆ [1, n] and T→, T↘, T↗ ⊆ (TS \ {x1, . . . , xn})
such that (1)-(10) hold true implies that there is an infinite r-TS-reversal-bounded
run from (q0,x0) such that qf is repeated infinitely often. Let ρ be the run

(q0,x0) t1−→ (q1,x1) · · · tl′−→ (ql′ ,xl′) · · · tl−→ (ql,xl). For each transition ti, we
assume that the guard is φi and the update vector is bi. Let us consider the
infinite sequence of configurations below

ρ′ = (q0,x0) t1−→ (q1,x1) · · · tl′−→ (ql′ ,xl′) · · · tl−→ (ql,xl) = (ql,yl)
tl′+1−−→ · · ·

· · · (ql′+1,yl′+(l−l′)+1) tl−→ (ql,yl+(l−l′)) · · ·
such that for k ≥ 0 and k′ ∈ [0, l − l′ − 1], we have yl+k(l−l′)+k′ = xl+k′ +
k(xl − xl′) and the sequence of transitions is t1 · · · tl′(tl′+1 · · · tl)ω.

1. Obviously qf is repeated infinitely often in ρ′.
2. ρ′ is indeed a run as for k ≥ 0 and k′ ∈ [0, l−l′−1], yl+k(l−l′)+k′ |= φl′+1+k′

since xl+k′ |= φl′+1+k′ and after position l′, atomic guards of the form t ∼ k
have a constant truth status. Indeed, (xl − xl′) is constant.

3. ρ′ is r-TS -reversal-bounded since after position l′, no new reversal happens.
��

Theorem 1. There is a polynomial-space many-one reduction from RB-REP-
REACH(CS(QFP(<))) into RB-REACH(CS(QFP(<))).

Proof. Let S be in CS(QFP(<)), (q0,x0) be an initial configuration, qf be a
control state and r ≥ 0. We write Kmin [resp. Kmax] to denote the minimal
[resp. maximal] k occurring in atomic formulae of the form t ∼ k in guards from
S. Let us build an instance of RB-REACH(CS(QFP(<))) which captures the
condition (��). We construct a counter automaton S′ = (Q′, n, δ′) such that (��)
iff there is an (r + 1)-TS′-reversal-bounded run from (q0,x0) to (qnew ,0). S′ is
made of the original version of S (called below the original copy) augmented with
copies of S; each copy corresponds to a possible tuple C = (Z→, T→, T↘, T↗).
By the C-copy, we mean the copy of S in which we keep only the transitions
with update vector b such that for i ∈ Z→, b(i) = 0; for i �∈ Z→, b(i) ≥ 0. for
t ∈ T→, b(t) = 0; for t ∈ T↘, b(t) ≤ 0; for t ∈ T↗, b(t) ≥ 0.

In order to simulate the subrun (ql′ ,xl′) · · · (ql,xl), from the original copy,
nondeterministically we move from the original copy to some C-copy in S′ (and
therefore we choose the sets for C) and we test whether the counters in [1, n]\Z→
have a value greater than Kmax (with guards x ≥ Kmax), the terms t in T↘ have
a value smaller than Kmin (with guards t ≤ Kmin), the terms t in T↗ have a
value greater than Kmax (with guards t ≥ Kmax). Finally, in the C-copy, when
qf is reached again, nondeterministically we may jump to the new accepting
control state qnew . Self-loops on qnew allows to decrement any counter. It is also
worth noting that TS′ = TS ; S and S′ have the same set of constants k occuring
in atomic formulae of the form t ∼ k; the numbers of states of S′ is bounded by
card(Q)× (1 + 2n × (2n′ × 2n′

)) + 1 (with card(TS) = n+ n′). ��
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Given a counter system S = (Q,n, δ) and an infinite run ρ, there exists at least
one sequence of transitions π ∈ δω such that ρ is built from the successive firing
of transitions from π. A sequence π is ultimately periodic if π = π1(π2)ω for some
finite sequences π1 and π2. The different reductions established in this section
(see also their proofs) allow us to show the result below.

Corollary 3. Let S be in CS(QFP), (q,x) be a configuration, φ be in CLTL(QFP)
and r ∈ N. (I) and (II) are equivalent: (I) there is an infinite run ρ from (q,x)
such that ρ, 0 |= φ and ρ is r-T-reversal-bounded with T = TS ∪ Tφ; (II) there
exists an ultimately periodic run ρ satisfying the same properties as in (I).

4 Complexity and Effective Presburger-Definability

In this section, we present the following results: RB-REACH(QFP), RB-REP-
REACH(QFP) and RMBC are NExpTime-complete and the sets of initial con-
figurations satisfying the properties related to these problems (witness run prop-
erties) are effectively definable in Presburger arithmetic, a key result for perform-
ing verification practically.

Theorem 2. RB-REACH(CS(QFP(<))) is NExpTime-complete.

The proof of Theorem 2 is the most involved part of the paper; it is presented
in [4]. It generalizes the proof provided for [17, Theorem 3] and uses arguments
that can be found also in [30] but in some other context (complexity upper
bound for decision problems about Petri nets), see also [11]. It is essential to
use the existence of small solutions for integer (inequality) systems [7]. Thanks
to Theorem 2, we can improve [19, Theorem 4.4] by establishing that strong
reversal-bounded reachability problem is in NExpTime (no complexity bound
is provided in the proof of [19, Theorem 4.4]).

As a by-product of the previous result, we can show the following result.

Corollary 4. Given S in CS(QFP), r ≥ 0 and control states q, q′, one can
effectively compute a Presburger formula φq,q′(x1, . . . , xn, y1, . . . , yn) such that
for all valuations val, val |=PA φ iff there is an r-TS-reversal-bounded run from
(q, (val(x1), . . . ,val(xn))) to (q′, (val(y1), . . . ,val(yn))).

Consequently, when an initialized counter system is r-reversal-bounded for some
r ≥ 0, then the reachability set is effectively Presburger-definable. This captures
the standard case when the counter system belongs to CS(QFP(<1)) [20,24] but
Corollary 4 goes much beyond.

Theorem 3. RB-REP-REACH(CS(QFP(<))) is NExpTime-complete.

Corollary 5. Given S in CS(QFP), r ≥ 0 and control states q, qf , one can
effectively compute a Presburger formula φq,qf

(x1, . . . , xn) such that for all val-
uations val, val |=PA φ iff there is an infinite r-TS-reversal-bounded run from
(q, (val(x1), . . . ,val(xn))) such that qf is repeated infinitely often.
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We are now ready to state our main results (Theorem 4 and Theorem 5).

Theorem 4. RBMC is NExpTime-complete.

As a consequence, we obtain the following results since RB-REACH(QFP) and
RB-REP-REACH(QFP) can be reduced in logarithmic space to RBMC.

Corollary 6. RB-REACH(QFP) and RB-REP-REACH(QFP) are NExpTime-
complete.

Interestingly, vector addition systems with states (VASS) are elements of
CS(QFP(<1)) and therefore RBMC(VASS,CLTLQFP(<1,≡))) is in NExpTime,
which contrasts with the ExpSpace-completeness of the model-checking problem
with LTL (the only atomic formulae are control states) restricted to VASS [15].
Unlike LTL, CLTL(QFP(<1,≡)) admits arithmetical constraints.

Theorem 5. Let S be in CS(QFP), φ be in CLTL(QFP) r ≥ 0 and q be a control
state. One can effectively build a Presburger formula φq(x1, . . . , xn) such that for
all val, val |=PA φq iff there is an infinite run ρ from (q, (val(x1), . . . ,val(xn)))
such that ρ, 0 |= φ and ρ is r-T-reversal-bounded with T = TS ∪ Tφ.

We are also able to improve Corollary 7 since we also have bounds on the lenght
of reversal-bounded runs (see the proof of Theorem 4).

Corollary 7. Let S be in CS(QFP), (q,x) be an initial configuration, φ be in
CLTL(QFP) and r ∈ N. Condition (I) in Corollary 3 is equivalent to (II) in
Corollary 3 with the following additional condition: the sequence of transitions
π1(π2)ω verifies that the length of π1π2 is bounded by 22p0(N)

, for some polynom
p0(·) and N is the size of the instance of RBMC.

Let us explain the benefits of these results from a practical point of view. From
Theorem 5, given the formula φq(x1, . . . , xn), we can check if an initial configu-
ration verifies the existence of an infinite run satisfying a temporal formula. This
can be done with a solver for Presburger arithmetic (tools handling first-order
logics with linear arithmetic are for instance LIRA [3], TAPAS [23], CVC3 [2] and
Z3 [26]). Hence, Theorem 5 is the final step in our investigations since verification
problems are then reduced effectively to satisfiability in Presburger arithmetic.
Moreover, our results on the computational complexity guarantee that we are
optimal. Another approach arises from Corollary 7 which takes advantage of the
method for checking bounded reachability problems as developed in [5]. Since
an instance of RBMC can be transformed into an instance of RB-REACH(QFP)
and by Theorem 2, one could solve the reversal-bounded model checking problem
by looking for finite runs of length at most doubly exponential.

5 Conclusion

We have studied the model-checking problem RBMC over counter systems when
runs are reversal-bounded and the specification language is an LTL-like dialect
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with arithmetical constraints, past-time and future-time operators. A major re-
sult is the NExpTime-completeness of the problem RBMC. Even more impor-
tantly, in order to implement decision procedures, we have shown that given
a counter system, a temporal formula φ and r ≥ 0, one can build effectively a
Presburger formula encoding the set of configurations (q,x) such that there is an
r-(Tφ∪TS)-reversal-bounded infinite run ρ from (q,x) such that φ is satisfied by
ρ. Finally, we have also characterized the complexity of several reversal-bounded
reachability problems and control state repeated reachability problem (obtaining
NExpTime-completeness). It is worth noting that our proofs for NExpTime-
easiness are obtained by an explicit run analysis that shortens the runs, as in [16]
but in a different way.

Acknowledgment. We would like to thank the anonymous referees for their
suggestions and constructive remarks; a special thank is due to the referee that
pointed us to [16].
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Abstract. In this paper, we study translation from a first-order logic
with polymorphic types à la ML (of which we give a formal description) to
a many-sorted or one-sorted logic as accepted by mainstream automated
theorem provers. We consider a three-stage scheme where the last stage
eliminates polymorphic types while adding the necessary “annotations”
to preserve soundness, and the first two stages serve to protect certain
terms so that they can keep their original unannotated form. This pro-
tection allows us to make use of provers’ built-in theories and operations.
We present two existing translation procedures as sound and complete
instances of this generic scheme. Our formulation generalizes over the
previous ones by allowing us to protect terms of arbitrary monomorphic
types. In particular, we can benefit from the built-in theory of arrays
in SMT solvers such as Z3, CVC3, and Yices. The proposed methods
are implemented in the Why3 tool and we compare their performance in
combination with several automated provers.

1 Introduction

Polymorphic types are a means of abstraction over families of different types;
a polymorphic definition or proposition stands for a potentially infinite number
of its type-specific instances. Type systems employing polymorphism arise natu-
rally in programming languages and they are a prominent feature of interactive
proof assistants such as Coq [17] or Isabelle/HOL [16].

However, a proof task written in a language with polymorphic types is today
a difficult subject for automation. This is not because polymorphism handling
in a prover is complicated or inefficient per se. As was demonstrated by the Alt-
Ergo project [3], this only requires a straightforward extension of the unification
procedure and does not impose any significant overhead. The fact is, advanced
type systems have not yet become mainstream in automated deduction: SMT
solvers use many-sorted languages such as SMT-LIB [1], and TPTP provers are
content with one-sorted first-order language. Thus, to apply a mainstream prover
to a problem expressed in a polymorphic language, we have to translate it into
an equivalent monomorphic or even one-sorted problem.

The challenge is not new and a number of solutions is known, ranging from
adding per-variable “type guards” (also known as “relativisation of quantifiers”,
see [12] and [11, Sect. 3.0]), to throughout decoration of terms with their types
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[9,6], to various flavours of type erasure [10,14,11]. The latter method is logically
unsound, though adding type annotations can prevent certain unsound inference
steps (see [14, Sect. 2.5,2.6] and [11, Sect. 3.1]).

An important feature of a polymorphism encoding method is special treatment
of types and operations that are directly handled by provers’ built-in decision
procedures, e.g., for linear arithmetic or bit-vectors. The idea is to prevent the
terms that can be interpreted by a prover from being modified by translation, to
preserve their original form [6,11]. In what follows, we call this “type protection”
to emphasize that we are interested in terms of particular types.

In this work, we aim to lift (or at least work around) several limitations we
perceive in the previous approaches. Firstly, the existing type protection tech-
niques only handle “simple” types, like integers or booleans, but not instances of
polymorphic types, like lists of integers or arrays of reals. Yet decision procedures
for such “complex” types are implemented in some SMT solvers; for example,
Z3 [15], CVC3 [2], and Yices [7] have a built-in support for arrays. Secondly,
type protection, as defined in [6], cannot be used to protect finite types such as
booleans: given an axiom “every boolean is equal either to ‘true’ or to ‘false’”, one
can derive that there are only two values in any encoded type, which can easily
lead to a contradiction. Thirdly, while translation by type erasure with addition
of type arguments to polymorphic symbols [11, Sect. 3.1] is less intrusive and
more efficient than full term decoration [6], the former method is unsound and,
according to [11], is only applicable in combination with provers that use trigger-
based rather than unification-based instantiation. Such a requirement excludes
the superposition-based provers and may be difficult to test when a third-party
prover is used.

We begin with a formal presentation of first-order logic with polymorphic
types (Section 2). In particular, we show that complete monomorphisation is
undecidable, that is, we cannot effectively compute a finite set of monomorphic
instances of a polymorphic formula F that is equisatisfiable to F . Then we
introduce a generic three-stage scheme of polymorphism encoding (Section 3).
In this scheme, we start by replacing interpreted polymorphic symbols (such as
operations of access and update in arrays) with selected monomorphic instances.
The translation proceeds then to type protection, which we consider as a separate
transformation, and concludes with polymorphism elimination proper.

We present a sound and complete method of type instantiation with symbol
discrimination for the first stage (Section 3.1). Furthermore, we give a general-
ized formulation of the type protection method from [6], free from the aforesaid
restrictions (Section 3.2). As third-stage transformations, we consider full term
decoration from [9,6] (Section 3.3) and type erasure with added type annota-
tions from [11, Sect. 3.1] (Section 3.4). We show the latter method to be sound
on problems that admit models with infinite domains for every non-protected
type and we discuss how this condition can be handled in practice.

We conclude by comparing the described techniques in combination with the
SMT solvers Z3, CVC3, and Yices [7] on a set of about 4100 proof obligations
in the Why3 tool [4] (Section 4).
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2 First-Order Logic with Polymorphic Types

The logic FOLT, presented below, is an extension of classical first-order many-
sorted logic. In FOLT, types are built from type constants (such as “integer”),
type functions (such as “list of”), and type variables that stand for arbitrary
monomorphic types. We do not admit quantifiers over type variables, neither
in types, nor in formulas: a polymorphic formula is rather seen as a scheme,
a potentially infinite conjunction of its monomorphic type instances. In other
words, every type variable that occurs in a formula is bound by an implicit prenex
universal quantifier. Basically, we use type polymorphism as a convenient way
to write a set of polymorphic axioms — say, for lists or arrays — once, instead
of copying them for every particular instance of these types.

The principal purpose of FOLT is to help specify and prove programs and
its type system can be seen as the first-order fragment of the ML type system.
The Why3 verification tool [4] is based upon FOLT with some extensions such
as algebraic types. The papers [6] and [11] work in a similar setting, though the
latter employs explicit quantifiers over type variables in logic formulas.

Syntax. We define types as syntactical expressions built from type constructors
of fixed arity (denoted with capital sans-serif letters) and type variables (denoted
α, β, γ). For example, β, I, F(I, γ) are well-formed types. Type constructors of
arity 0 are called type constants. A type that contains no type variables is called
monomorphic type or sort. A vector of types 〈T1, . . . , Tn〉 is called type signature.

A type substitution is a mapping from type variables to types. A monomorphic
type substitution maps every type variable either to itself or to a sort. A type
T is said to match another type T ′ whenever there is a type substitution that
instantiates T to T ′. This notion is trivially extended to type signatures.

We use letters S and T for types, boldface letters S, T for type signatures, and
Greek letters τ , θ, and π for type substitutions. We denote the set of available
type variables with VT, the set of type constructors with FT, the set of all types
built from VT and FT with T (FT,VT), and the set of all sorts with T (FT). We
presume that VT is infinite and FT contains at least one type constant.

We use traditional first-order terms and formulas, built from variable sym-
bols (denoted u, v, w), function symbols (denoted f, g, h), and predicate symbols
(denoted p, q), with the following additions:

– Every term carries an explicit type, e.g.: w : C(I), f(u :α, v : L(α)) : L(α). We
denote terms with letters s and t, and, by abuse of notation, we sometimes
write the type of a term to the right of the letter: s :T1, t :T2, and so on.

– A variable is a variable symbol with a type, and we treat w : C(I) and w : C(α)
as two distinct variables even though they share the same variable symbol.

– To each function symbol of arity n we assign a type signature of length n+1.
A term of the form f(t1 :T1, . . . , tn :Tn) :T is well-formed if and only if the
type signature of f matches 〈T1, . . . , Tn, T 〉.

– To each predicate symbol of arity n we give a type signature of length n. An
atomic formula of the form p(t1 :T1, . . . , tn :Tn) is well-formed if and only if
the type signature of p matches 〈T1, . . . , Tn〉.
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– An atomic equality formula of the form t1 ≈ t2 is well-formed if and only if
the terms t1, t2 have the same type.

– Quantifiers bind variables, i.e., typed variable symbols: ∀(u :α) p(u :α, u : C).
Here, the first argument of p is bound, but the second one is free.

We treat equality (≈), negation (¬), conjunction (∧), and the universal quantifier
(∀) as logical symbols and we treat disjunction (∨), implication (⊃), equivalence
(≡), disequality (
≈), and the existential quantifier (∃) as abbreviations.

We use letters x, y, z for variables, letters F,G,H for formulas, and Greek
letters Γ,Δ for sets of formulas. We denote the (infinite) set of variable symbols
with V, the set of function symbols with F, and the set of predicate symbols
with P. Given a term or a formula e, the set of type variables occurring in e is
denoted FVT(e) and the set of free variables of e is denoted FV(e). If FVT(e) is
empty, we call e monomorphic. If FV(e) is empty, we call e closed or ground.

Substitutions, denoted with letters σ and δ, apply to a term or a formula e,
replacing free variables with terms of the same type (denoted eσ). The symbol
◦ denotes the composition of two (type) substitutions: x(σ ◦ δ) � xσδ.

Type substitutions apply only to closed formulas and ground terms; also, we
require type instantiation to rename every bound variable symbol to some fresh
variable symbol. In this way, we avoid variable collisions: for example, the type
substitution [I/α] would not instantiate the formula ∀(u :α)∀(u : I) p(u :α, u : I) to
∀(u : I)∀(u : I) p(u : I, u : I), but to ∀(u′ : I)∀(u′′ : I) p(u′ : I, u′′ : I). In our subsequent
examples, we will not use a variable symbol in two different variables in the same
formula to avoid confusion.

In what follows, we illustrate our transformations on the following simple
polymorphic formula (for the sake of readability, we omit the most obvious type
annotations): ∀(m : M(α, I))∀(c :α) get(set(m, c, 6) : M(α, I), c) : I ∗ 7 ≈ 42. Here,
the type I represents integers and the type M(α, β) is that of polymorphic α-to-β
maps. The function symbol get is of type signature 〈M(α, β), α, β〉 and set is
of type signature 〈M(α, β), α, β,M(α, β)〉.

Satisfiability. Given sets FT, F, P, an interpretation I is defined by three maps:

– to each sort S ∈ T (FT), we assign a non-empty domain DI
S ;

– to each symbol f ∈ F and each vector of sorts S = 〈S1, . . . , Sn, S〉 matched
by the type signature of f , we assign a function fI

S :DI
S1
× · · · ×DI

Sn
→ DI

S ;
– to each symbol p ∈ P and each vector of sorts S = 〈S1, . . . , Sn〉 matched by

the type signature of p, we assign a function pIS :DI
S1
× · · · ×DI

Sn
→ {�,⊥},

where � and ⊥ stand for Boolean constants “true” and “false”, respectively.

We call type valuation a type substitution that instantiates every type variable
in VT to a sort. Given a type valuation π, we call variable valuation under π a
function that maps every variable u :T to some element of DI

Tπ . We simply say
variable valuation when the implied type valuation is known from the context
or in a purely monomorphic setting, where every type is already closed.

Let π be a type valuation and ξ be a variable valuation under π. We evaluate
terms and formulas according to the following equalities, where t : T stands for
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a vector of terms t1 :T1, . . . , tn :Tn and ξ[u :T �→ a] is a valuation that coincides
with ξ everywhere except u :T , which is mapped to a.

Iπ,ξ(u :T ) � ξ(u :T ) Iπ,ξ(t1 ≈ t2) � (Iπ,ξ(t1) = Iπ,ξ(t2))
Iπ,ξ(f(t : T)) :T ) � fI

〈T,T 〉π(Iπ,ξ(t)) Iπ,ξ(¬F ) � ¬Iπ,ξ(F )

Iπ,ξ(p(t : T)) � pITπ(Iπ,ξ(t)) Iπ,ξ(F ∧G) � Iπ,ξ(F ) ∧ Iπ,ξ(G)

Iπ,ξ(∀(u :T )F ) �
∧

a∈DI
Tπ

Iπ,ξ[u : T �→ a](F )

It is easy to see that evaluation of a term or a formula e under Iπ,ξ does not
depend on the values of π and ξ on (type) variables that do not occur in e. In
what follows, when we evaluate closed or monomorphic expressions, we often
omit the variable valuation or the type valuation, respectively.

Lemma 1. For any closed formula F and type valuation π, Iπ(F ) = I(Fπ).

As we said above, we treat type variables as implicitly universally quantified
at the top of a polymorphic formula. Thus, a closed formula F is satisfied by
I if and only if Iπ(F ) is true for every type valuation π. A closed formula is
satisfiable if and only if it is satisfied by some interpretation, called a model of
this formula. These definitions are trivially extended to sets of closed formulas.
To prove a polymorphic formula G in a polymorphic context Γ , we take a type
substitution τ that replaces all type variables in G with fresh type constants
and show that the set Γ,¬Gτ is unsatisfiable. Generally speaking, the semantics
of polymorphic formulas in FOLT is quite similar to that of first-order clauses,
where the free variables are also implicitly universally quantified.

On monomorphic terms and formulas, our definitions correspond to the tra-
ditional many-sorted logic with disjoint sorts. Moreover, a trivial corollary of
Lemma 1 is that F is satisfiable if and only if the set of all monomorphic type
instances of F is satisfiable.

Computing monomorphic instances? A polymorphic formula can have infinitely
many monomorphic type instances. But can’t we find out, in finite time, all sorts
that are potentially relevant to the problem and deal with a finite subset of in-
stances, produced just with these sorts? On one hand, this resembles an attempt
to pre-compute the relevant ground instances in a set of first-order formulas —
a problem well known to be undecidable. On the other hand, type handling does
not need to be as hard as proof search in general, and complete monomorphisa-
tion is often possible in programming languages (e.g., C++ templates).

Theorem 1. There is no computable function that maps an arbitrary closed
formula F to an equisatisfiable finite set of monomorphic type instances of F
(notice that such a set always exists by compactness).

Proof. It turns out that our type system is expressive enough to encode an
undecidable theory, namely, combinatory logic. Consider the following signature:
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FT = { A(·, ·), S, K } F = { A : 〈α, β,A(α, β)〉, S : 〈S〉, K : 〈K〉 } P = { R : 〈α, β〉 }
along with five axioms (for brevity, we omit some type annotations):

∀(u :α)∀(v :β)∀(w : γ) ((R(u, v) ∧ R(v, w)) ⊃ R(u,w))

∀(u :α)∀(v :β)∀(w : γ) (R(u, v) ⊃ R(A(u,w) : A(α, γ), A(v, w) : A(β, γ)))

∀(u :α)∀(v :β)∀(w : γ) (R(u, v) ⊃ R(A(w, u) : A(γ, α), A(w, v) : A(γ, β)))

∀(u :α)∀(v :β) R(A(A(K, u), v) : A(A(K, α), β), u :α)

∀(u :α)∀(v :β)∀(w : γ) R(A(A(A(S, u), v), w) : A(A(A(S, α), β), γ),

A(A(u,w), A(v, w)) : A(A(α, γ),A(β, γ)))

Here the binary function symbol A stands for term application, and the binary
predicate symbol R for CL-reducibility. Notice that every ground combinatory
term is reflected in its type.

Now, if we were able to compute a finite set of potentially relevant closed
types for an arbitrary reducibility problem in this theory, this would readily
let us decide the problem itself, as we would thus obtain the set of potentially
relevant ground terms. Since ground reducibility in CL is undecidable, complete
monomorphisation in FOLT is undecidable, too. ��

3 Eliminating Polymorphic Types

Being unable to select just a relevant monomorphic subset of a polymorphic
problem, we have to resort to some form of encoding, converting the polymor-
phic problem to an equisatisfiable monomorphic one. Such conversion inevitably
implies merging many types into few sorts or just a single sort. This is undesirable
if we target an automated prover equipped with special techniques (decision pro-
cedures, unification modulo, etc.) for particular types, such as integers, booleans
or arrays. These types ought to be separated from the rest, protected against
this “type fusion”, expelled from polymorphism in the problem.

To this purpose, we slightly extend our language in order to be able to select
the terms that will keep their (monomorphic) type through polymorphism elimi-
nation. To every sort S in T (FT) we associate a new protected sort S̄. The use of
protected sorts is restricted: a protected sort can appear in the type signature of
a symbol or as a type of a term, but it cannot occur under a type constructor or
in the range of a type substitution. In other words, the only type that matches
a protected sort S̄ is S̄ itself.

For example, get(v : M(I, I), c : I) : I is a malformed term, since the type signa-
ture of get is 〈M(α, β), α, β〉 and M(α, β) does not match M(I, I). Similarly, the
term get(v : M(I, Ī), c : I) : Ī is malformed, because β does not match Ī and also
because M(I, Ī) is a malformed type expression. However, if we consider a “pro-
tected specialization” of get, denoted get, with the type signature 〈M(I, I), Ī, Ī〉,
the application get(v : M(I, I), c : Ī) : Ī is a well-formed term.
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Concerning interpretation, every protected sort S̄ has its proper non-empty
domain DI

S
. As with any type substitution, we restrict type valuations to non-

protected sorts. Thus, a set {∀(u :α)∀(v :α)u ≈ v, ∃(a : Ī)∃(b : Ī) a 
≈ b} is satis-
fiable. Indeed, the first formula requires the domain of every non-protected sort
to be a singleton, but does not constrain the domains of protected sorts.

Using protected sorts, we can define a general three-stage scheme of encoding
of polymorphic formulas, explained below from the end to the beginning.

The final, “type-fusing” stage takes a set of polymorphic formulas with pro-
tected sorts and converts it into an equisatisfiable set of monomorphic formulas.
A common requirement to the methods on this stage is preservation of terms
with protected types: monomorphic protected fragments of the problem, e.g.,
arithmetic expressions, must be sent to a prover as is. We present two “type-
fusing” transformations, Dec and Exp, in Sections 3.3 and 3.4. Both methods
have been previously described in the literature [9,10,14,6,11]. Our presentation
is more general in that it permits to protect arbitrarily complex monomorphic
types, such as “list of integers” or “integer-to-real map”. The ability to preserve
such sorts is of more than purely theoretical interest: as we have already men-
tioned, Z3, CVC3, and Yices provide built-in support for access and update
operations on integer-indexed arrays.

The intermediate, “type-protecting” stage takes a set of polymorphic formulas
without protected sorts and converts it into an equisatisfiable set of formulas with
protection. The methods on this stage take as a parameter the set of sorts that we
wish to protect; we expect them to put protection over every occurrence of every
sort from this set in the problem. We present a type-protecting transformation
called Tw in Section 3.2. This method was introduced in [6]; we generalize it to
complex sorts.

The first stage can be figuratively called “type-revealing”. Even if our type-
protecting and type-fusing transformations are not limited to sort constants and
can protect arbitrarily complex sorts, say, arrays of integers, we cannot readily
benefit from this capacity. In an initial FOLT-problem, arrays are most probably
formalized as a polymorphic type, with premises that apply to arrays of any
type and with polymorphic function symbols for access and update. In order to
produce interpreted monomorphic operations for Z3, CVC3, or Yices in the end,
we must start by replacing, wherever possible, these function symbols with their
monomorphic specializations. This is the purpose of the Dis transformation,
presented in Section 3.1. We show in Section 4 that this “type revealing” brings
a considerable improvement to provers’ results.

To fit the page limit, we omit the proofs of our theorems. The reader is referred
to the extended technical report [5].

3.1 Symbol Discrimination

The Dis transformation involves producing a sufficient number of type instances
of formulas in an initial problem Γ with subsequent discrimination of function
and predicate symbols.
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Let f be a function symbol of type signature S in the initial problem Γ . Let τ
be a type substitution in the type variables of S. A fresh function symbol fτ with
the type signature Sτ is called a specialization of f . We call fτ a monomorphic
specialization if Sτ is monomorphic. Specializations of predicate symbols are
defined in the same way.

Let W be a set of monomorphic specializations of function and predicate
symbols in Γ . These are the instances that we want to “reveal” in the problem.
The setW is fixed for the rest of this section; the Dis transformation is implicitly
parametrized by it.

First of all, the Dis transformation modifies the signature of Γ :

1. For every variable symbol u and type T , we add a new variable symbol uT .
2. We add every function and predicate symbol from W .

Given an arbitrary type substitution θ, the discriminating transformation Disθ
instantiates and converts terms and formulas into the new signature:

1. Given a variable u :T , Disθ(u :T ) � uT :Tθ.
2. Consider a term t = f(t1 :T1, . . . , tn :Tn) :T . Let τ be the type substitution

that instantiates the type signature of the symbol f to 〈T1θ, . . . , Tnθ, T θ〉. If
fτ belongs to W , then Disθ(t) � fτ (Disθ(t1) :T1θ, . . . ,Disθ(tn) :Tnθ) :Tθ.
Otherwise, Disθ(t) � f(Disθ(t1) :T1θ, . . . ,Disθ(tn) :Tnθ) :Tθ.

3. Consider an atomic formula F = p(t1 :T1, . . . , tn :Tn). Let τ be the type
substitution that instantiates the type signature of p to 〈T1θ, . . . , Tnθ〉. If pτ
is in W , then Disθ(F ) � pτ (Disθ(t1) :T1θ, . . . ,Disθ(tn) :Tnθ). Otherwise,
Disθ(F ) � p(Disθ(t1) :T1θ, . . . ,Disθ(tn) :Tnθ).

Equalities and complex formulas are converted in a natural way:

Disθ(t1 ≈ t2) � Disθ(t1) ≈ Disθ(t2) Disθ(F ∧G) � Disθ(F ) ∧Disθ(G)
Disθ(¬F ) � ¬Disθ(F ) Disθ(∀xF ) � ∀(Disθ(x)) Disθ(F )

Now, let F be a closed formula. The set of monomorphic type substitutions Θ(F )
is defined as follows:

Θ(F ) � { θ | F contains a term f(t1 :T1, . . . , tn :Tn) :T such that
θ only instantiates the variables of T = 〈T1, . . . , Tn, T 〉 and
W contains a specialization of f with the type signature Tθ }

∪ { θ | F contains an atomic formula p(t1 :T1, . . . , tn :Tn) such that
θ only instantiates the variables of T = 〈T1, . . . , Tn〉 and
W contains a specialization of p with the type signature Tθ }

We call two monomorphic type substitutions compatible if they do not substitute
two different sorts for the same type variable. The union of two compatible
monomorphic type substitutions is their composition (the order is irrelevant). We
define Θ�(F ) as the closure of Θ(F ) with respect to finite unions of compatible
type substitutions. The empty union, i.e., the identity type substitution, also
belongs to Θ�(F ).
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Finally, Dis translates a closed formula F into a set of formulas:

Dis(F ) � {Disθ(F ) | θ ∈ Θ�(F ) }

On our running example, assumingW = {get[I/α,I/β], set[I/α,I/β]}, Dis produces
the following two formulas:

∀(mM(α,I) : M(α, I))∀(cα :α) get(set(mM(α,I), cα, 6), cα) ∗ 7 ≈ 42
∀(mM(α,I) : M(I, I))∀(cα : I) get[I/α,I/β](set[I/α,I/β](mM(α,I), cα, 6), cα) ∗ 7 ≈ 42

The new symbol get[I/α,I/β] has the monomorphic type signature 〈M(I, I), I, I〉.

Lemma 2. Let θ be a type substitution, t a term of type T , and F a formula.
Then Disθ(t) is a well-formed term of type Tθ and Disθ(F ) is a well-formed
formula such that FV(Disθ(F )) = {Disθ(x) |x ∈ FV(F )} and FVT(Disθ(F )) =
FVT(F )\dom(θ).

Theorem 2. A set of closed formulas Γ is equisatisfiable to Dis(Γ ).

The definition of Dis can be generalized to a case where W admits polymorphic
specializations. This requires W to be closed with respect to unification of type
signatures, so that we can always choose the most refined specialization symbol
during discrimination. The substitutions in the set Θ(F ) must be considered
modulo renaming of type variables in the signatures of specialization symbols.
Finally, the union of two substitutions would be their most general common
refinement. However, since our transformations target monomorphic theorem
provers, we find this generalization of lesser practical interest and do not pursue
it in this paper.

3.2 Twin Sorts

The Tw transformation converts a set of formulas into an equisatisfiable set
with protected sorts. It applies a pair of conversion functions to pass, wherever
necessary, from a protected sort to a non-protected one and vice versa.

Let U be a set of sorts that we want to preserve across our type-eliminating
transformations. The set U is fixed for the rest of the section and the Tw trans-
formation is parametrized by it. Given a type T , the transformed type [T ] is T
if T ∈ U , and T otherwise. Then Tw modifies the signature of a transformed
theory as follows:

1. We replace every function symbol f of type signature 〈S1, . . . , Sn, S〉 with a
symbol f̄ of type signature 〈[S1], . . . , [Sn], [S]〉.

2. We replace every predicate symbol p of type signature 〈S1, . . . , Sn〉 with a
symbol p̄ of type signature 〈[S1], . . . , [Sn]〉.

3. For every sort T ∈ U , we add a pair of “bridge” function symbols toT : 〈T , T 〉
and fromT : 〈T, T 〉.



96 F. Bobot and A. Paskevich

Then we convert terms and atomic formulas into the new signature. Our aim
is to forbid a polymorphic type in a symbol’s type signature being instantiated
into a type from U . Whenever such instantiation takes place, a bridge function
is applied. In more precise terms:

1. Given a variable u :T , Tw(u :T ) � u :[T ].
2. Consider a term t = f(t1 :T1, . . . , tn :Tn) :T and let 〈S1, . . . , Sn, S〉 be the

type signature of f .

For every ti, t′i �
{

toTi(Tw(ti)) : Ti if Ti ∈ U and Si /∈ U,
Tw(ti) if Ti /∈ U or Si ∈ U.

Then Tw(t) �
{
f̄(t′1, . . . , t′n) :[T ] if T /∈ U or S ∈ U,
fromT (f̄(t′1, . . . , t′n) :T ) :T if T ∈ U and S /∈ U.

3. Consider a formula p(t1 :T1, . . . , tn :Tn) and let 〈S1, . . . , Sn〉 be the type
signature of p. For every argument ti, we define t′i as in the previous case.
Then, Tw(p(t1 :T1, . . . , tn :Tn)) � p̄(t′1, . . . , t′n).

Equalities and complex formulas are converted in a natural way:

Tw(t1 ≈ t2) � Tw(t1) ≈ Tw(t2) Tw(F ∧G) � Tw(F ) ∧Tw(G)
Tw(¬F ) � ¬Tw(F ) Tw(∀xF ) � ∀(Tw(x)) Tw(F )

Finally, we convert the formulas in Γ and add axioms for the bridge functions:

Tw(Γ ) � {Tw(F ) |F ∈ Γ }
∪ { ∀(v :T ) fromT (toT (v :T )) ≈ v :T | T ∈ U }
∪ { ∀(u :T ) toT (fromT (u :T )) ≈ u :T | T ∈ U }

Assuming U = {I}, the running example is transformed as follows. Notice that
6, 7, and 42 have the type Ī and the type signature of ∗ is 〈̄I, Ī, Ī〉.

∀(m : M(α, I))∀(c :α) fromI(get(set(m, c, toI(6) : I), c) : I) ∗ 7 ≈ 42

Lemma 3. For every term t of type T , Tw(t) is a well-formed term of type [T ],
and for every formula F , Tw(F ) is a well-formed formula with the same free
variables (modulo conversion of their types) and type variables.

Theorem 3. A set of closed formulas Γ is equisatisfiable to Tw(Γ ).

3.3 Decorated Terms

The Dec transformation converts a polymorphic problem with protected sorts
into an equisatisfiable monomorphic problem. Roughly speaking, in order to
preserve type information, it decorates every term with its type, which itself is
transformed to a term of a special sort.
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First of all, we introduce three fresh sort constants U, D, and T. The first one
is assigned to undecorated terms, the second one to decorated terms, and the
third one to the terms representing types. To transform the type signatures of
function and predicate symbols, we use the following operations on types:

[T ]− �
{
T if T is protected,
D otherwise

[T ]+ �
{
T if T is protected,
U otherwise

Now, the signature of the resulting theory is defined as follows:
1. The set of type constructors is extended with U, D, T.
2. We replace every function symbol f of type signature 〈S1, . . . , Sn, S〉 with a

symbol f̂ with the monomorphic type signature 〈[S1]−, . . . , [Sn]−, [S]+〉.
3. We replace every predicate symbol p of type signature 〈S1, . . . , Sn〉 with a

symbol p̂ with the monomorphic type signature 〈[S1]−, . . . , [Sn]−〉.
4. For every variable symbol u and type T , we add a new variable symbol uT .
5. For every type variable α ∈ VT, we add a new variable symbol vα.
6. For every type constructor F ∈ FT, we add a new function symbol F of the

same arity and with type signature 〈T, . . . ,T,T〉.
7. We add a new “decoration” function symbol deco :〈T,U,D〉.

The Dec transformation applies to non-protected types, translating them to
terms of type T:

Dec(α) � vα : T Dec(F(T1, . . . , Tn)) � F(Dec(T1), . . . ,Dec(Tn)) : T

In the next definition, t stands for a vector of terms, S̄ for a protected sort, and
T for a non-protected type. The Dec transformation applies to terms:

Dec(u : S̄) � uS : S̄
Dec(u :T ) � deco(Dec(T ), uT : U) : D

Dec(f(t) : S̄) � f̂(Dec(t)) : S̄

Dec(f(t) :T ) � deco(Dec(T ), f̂(Dec(t)) : U) : D

and formulas (here, {α1, . . . , αm} = FVT(H)):

Dec(p(t)) � p̂(Dec(t)) Dec(¬F ) � ¬Dec(F )
Dec(t1 ≈ t2) � Dec(t1) ≈ Dec(t2) Dec(∀(u : S̄)F ) � ∀(uS : S̄) Dec(F )
Dec(F ∧G) � Dec(F ) ∧Dec(G) Dec(∀(u :T )F ) � ∀(uT : U) Dec(F )

Dec◦(H) � ∀(vα1 : T) . . . ∀(vαm : T) Dec(H)
On the running example, assuming U = {I}, the transformations Tw and Dec◦
produce the following monomorphic formula:

∀(vα : T)∀(mM(α,I) : U)∀(cα : U) fromI
(
deco
(
I, get(deco(M(vα, I),

set(deco(M(vα, I),mM(α,I)), deco(vα, cα), deco(I, toI(6)))),
deco(vα, cα))

))
∗ 7 ≈ 42
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The second axiom of bridge functions toI and fromI becomes

∀(uI : U) deco(I, toI(fromI(deco(I, uI)))) ≈ deco(I, uI)

Due to the outer application of deco on the both sides of equality, our translation
is sound even when we protect finite types, such as booleans. Without this
additional decoration (as in [6, Eq. (8)]), the finiteness of a protected sort implies
the finiteness of the whole sort U.

Lemma 4. For every term t of type T , Dec(t) is a well-formed monomorphic
term of type [T ]−. For every formula F , Dec(F ) is a well-formed monomorphic
formula. Also, FV(Dec(t)) = {uT :[T ]+ |u :T ∈ FV(t)} ∪ {vα : T |α ∈ FVT(t)}
and FV(Dec(F )) = {uT :[T ]+ |u :T ∈ FV(F )} ∪ {vα : T |α ∈ FVT(F )}. For
every closed formula F , Dec◦(F ) is a well-formed closed monomorphic formula.

Theorem 4. A set of closed formulas with protected sorts Γ is satisfiable if and
only if Dec◦(Γ ) is satisfiable.

3.4 Explicit Polymorphism

The Exp transformation is similar to Dec except that instead of attaching an
explicit type annotation to every term, we add type-representing arguments to
polymorphic symbols. This allows for much lighter modifications in the original
problem. However, the method is only sound on problems that admit a model
where every non-protected sort has an infinite domain.

We introduce fresh sort constants U and T. The first one replaces non-protected
types and the second one, as in Dec, is the sort of type-representing terms. For
any type T , we define [T ] to be T if T is protected, and U otherwise. Then Exp
modifies the signature of a transformed theory in the following way:

1. The set of type constructors is extended with U and T.
2. Let f be a function symbol of signature S = 〈S1, . . . , Sn, S〉 and α1, . . . , αr

be the free type variables of S. We replace f with a function symbol f̂ of
arity r + n with monomorphic type signature 〈T, . . . ,T, [S1], . . . , [Sn], [S]〉.

3. Let p be a predicate symbol of signature S = 〈S1, . . . , Sn〉 and α1, . . . , αr be
the free type variables of S. We replace p with a predicate symbol p̂ of arity
r + n with monomorphic type signature 〈T, . . . ,T, [S1], . . . , [Sn]〉.

4. For every variable symbol u and type T , we add a new variable symbol uT .
5. For every type variable α ∈ VT, we add a new variable symbol vα.
6. For every type constructor F ∈ FT, we add a new function symbol F of the

same arity and with type signature 〈T, . . . ,T,T〉.

The Exp transformation applies to non-protected types, translating them to
terms of type T, exactly as Dec:

Exp(α) � vα : T Exp(F(T1, . . . , Tn)) � F(Exp(T1), . . . ,Exp(Tn)) : T

The Exp transformation applies to terms and formulas. In the definition below,
t stands for a list of terms; α1, . . . , αr are the type variables of the type signature
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of f and p; the type signature of f and p is instantiated with a type substitution
τ ; and β1, . . . , βm are the type variables of H :

Exp(u :T ) � uT : [T ]

Exp(f(t) :T ) � f̂(Exp(α1τ), . . . ,Exp(αrτ),Exp(t)) :[T ]
Exp(p(t)) � p̂(Exp(α1τ), . . . ,Exp(αrτ),Exp(t))

Exp(t1 ≈ t2) � Exp(t1) ≈ Exp(t2)
Exp(¬F ) � ¬Exp(F )

Exp(F ∧G) � Exp(F ) ∧ Exp(G)
Exp(∀xF ) � ∀(Exp(x)) Exp(F )

Exp◦(H) � ∀(vβ1 : T) . . .∀(vβm : T) Exp(H)

On the running example, assuming U = {I}, the transformations Tw and Exp◦
produce the following formula:

∀(vα : T)∀(mM(α,I) : U)∀(cα : U) fromI(get(vα, I,
set(vα, I,mM(α,I), cα, toI(6)), cα)) ∗ 7 ≈ 42

Lemma 5. For every term t of type T , Exp(t) is a well-formed monomorphic
term of type [T ]. For every formula F , Exp(F ) is a well-formed monomorphic
formula. Also, FV(Exp(t)) = {uT :[T ] |u :T ∈ FV(t)}∪{vα : T |α ∈ FVT(t)} and
FV(Exp(F )) = {uT :[T ] |u :T ∈ FV(F )} ∪ {vα : T |α ∈ FVT(F )}. Finally, for
every closed formula F , Exp◦(F ) is a well-formed closed monomorphic formula.

Theorem 5. Let Γ be a set of closed formulas with protected sorts. If Γ is satis-
fiable so that every non-protected sort has an infinite domain in the model, then
Exp◦(Γ ) is satisfiable. Conversely, if Exp◦(Γ ) is satisfiable then Γ is satisfiable.

From a practical point of view, the soundness part of Theorem 5 is not comfort-
ing. Given a FOLT-problem Γ , we cannot effectively decide which sorts admit
infinite models and which do not (one can postulate a bijection between a given
sort and the domain of a partial-recursive function). A practical way out could
consist in a small language extension: for every type/sort, we specify explicitly
whether it is finite or infinite. We proceed from the assumption that the author
of any given problem knows the intended model of every type.

In Why3 [4], every type is declared either as abstract or algebraic (i.e., a sum
of products). We postulate that abstract types are all infinite and we analyse the
definitions of algebraic types to find out which of their monomorphic instances
admit infinite models. For example, given the standard algebraic definitions of
booleans (B), lists (L(α)), and pairs (P(α, β)), we can conclude that the sorts B
and P(B,B) are finite and I, L(B), and P(I,B) are infinite.

Once we know the finite sorts, can we transform a problem to eliminate them,
so that Exp (or a similar method) can be applied? Meng and Paulson propose
to filter out the premises implying the finiteness of sorts [14, Sect. 2.8]; however,
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we need an infallible filter to ensure the soundness of type erasure. We have
implemented an alternative solution which consists in putting a special “projec-
tion” function projT over every variable and function symbol of a finite type T .
Thus, the premise ∀(x : B)(x ≈ True∨ x ≈ False) becomes ∀(x : B)(projB(x) ≈
projB(True)∨projB(x) ≈ projB(False)) and the domain of B does not need to
be finite anymore, as we confine ourselves to the range of projB. This method
is still potentially unsound, as one can state the finiteness of a sort with a poly-
morphic axiom, where no projection would apply. Precisely, let isUnit :〈α〉 be
a unary predicate. Then the formulas ∀(x :α)(isUnit(x) ⊃ ∀(y :α)(y ≈ x)) and
∀(x : A) isUnit(x) imply that the sort A has a single inhabitant. Today, we know
of no way to use Exp soundly on polymorphic problems with finite sorts.

The last remark to make is that Exp provides a path towards one-sorted
languages. Indeed, in a monomorphic setting, Theorem 5 comes to: “if every sort
admits an infinite domain, then we can safely erase the sort annotations”. Thus, if
we want to use a TPTP prover such as Vampire or SPASS, we start by translating
a proof task to the many-sorted language, using any of the methods described
above. Then we eliminate the protected finite sorts (if any) using projections;
in absence of polymorphism, this is a sound and complete transformation. And
finally, we apply Exp assuming that all types are non-protected, which amounts
to simply erasing all sorts.

4 Experiments and Conclusion

In our experiments, we wanted to compare the impact of different “paths”
of polymorphism encoding on the performance of three well-established SMT
solvers. We add the classical type encoding technique with per-variable “type
guards” [12]. Our implementation of this method (denoted Grd below) closely
follows the description given in [11, Sect. 3.0].

We run our tests on 4123 verification conditions generated by the Why plat-
form from 166 programs, which originate from Caduceus [8], Jessie [13], or di-
rectly from Why. Translated tasks were sent to Z3, CVC3, and Yices with a
time limit of 60 seconds. On the whole, 3993 proof obligations were proved
by at least one prover. The initial Why3 files and our results are available at
http://why3.lri.fr/download/polyfol_encoding.tar.gz.

We have tested the encodings Tw+Dec, Tw+Exp, and Tw+Grd, both
with and without Dis. In the latter case, these methods correspond to what is
described in [6] and [11]; the set U of sorts to protect in Tw is set to contain
only integers and reals, which are natively supported by the three provers. In
presence of Dis, we put in the set W every monomorphic specialization that
occurs in the goal formula along with the specializations of access and update
operations on every monomorphic array type in the goal; we also protect every
sort in the goal (as well as integers and reals). This configuration of Dis and Tw
gives better results comparing to other configurations that we tried, e.g., collect
the specializations and the sorts to protect from the whole proof task.

http://why3.lri.fr/download/polyfol_encoding.tar.gz
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Z3 (3809) Tw+Grd Tw+Exp Tw+Dec Dis+Tw+Grd Dis+Tw+Exp
Dis+Tw+Dec +203 −36 +20 −49 +66 −37 +18 −5 +26 −30
Dis+Tw+Exp +191 −20 +13 −38 +63 −30 +35 −18
Dis+Tw+Grd +195 −41 +11 −53 +59 −43

Tw+Dec +157 −19 +15 −73
Tw+Exp +211 −15

CVC3 (3756) Tw+Grd Tw+Exp Tw+Dec Dis+Tw+Grd Dis+Tw+Exp
Dis+Tw+Dec +269 −20 +0 −26 +84 −19 +66 −4 +0 −6
Dis+Tw+Exp +272 −17 +0 −20 +88 −17 +69 −1
Dis+Tw+Grd +204 −17 +1 −89 +46 −43

Tw+Dec +188 −4 +0 −91
Tw+Exp +275 −0

Yices (3717) Tw+Grd Tw+Exp Tw+Dec Dis+Tw+Grd Dis+Tw+Exp
Dis+Tw+Dec +882 −6 +13 −276 +379 −79 +204 −2 +3 −272
Dis+Tw+Exp +1149 −4 +39 −33 +574 −5 +472 −1
Dis+Tw+Grd +684 −10 +6 −471 +241 −143

Tw+Dec +577 −1 +5 −568
Tw+Exp +1140 −1
Our results are given in the table above. To the right of the prover’s name, we

put the number of goals proved by at least one encoding method. In every cell
we specify the number of goals proved by one encoding but not by the other one.
For example, with CVC3, the encoding by Dis+Tw+Dec allows us to prove 84
goals that were not proved by Tw+Dec. On the other hand, with Tw+Dec,
CVC3 proves 19 goals that were not proved with Dis+Tw+Dec.

On the average, symbol discrimination increases the number of premises by a
factor of 1.8 (ranging from 1 to 10 on some examples). Nevertheless, adding the
Dis phase allows us to prove more goals in every case except for Z3 and CVC3
with Exp. In particular, the Grd transformation is remarkably helped by Dis.
Apart from the possibility to use the built-in support for arrays, the effectiveness
of Dis is also explained by the fact that we protect the sorts that occur in
the selected monomorphic specializations. Thus, the new premises generated by
Dis are not only instantiated to the relevant sorts, they are also liberated from
decorations imposed by the third, type-fusing, stage. This effect is less important
in the case of Exp, because this transformation, unlike Dec and Grd, adds very
little clutter to the encoded formulas in the first place.

Also notice that type protection, Tw, is crucially important: if we protect no
types at all, we prevent provers from using their built-in theories, and the total
number of goals proved (using only Exp, Dec, or Grd) drops to 1861.

The comparison between Exp, Dec, and Grd shows that Exp is generally
more efficient than Dec which in its turn is more efficient than Grd. This is quite
different from the results given in [11], where Exp and Grd have roughly the
same performance. We have not yet identified whether this discrepancy comes
from the difference in our test cases or in our implementations.
Conclusion. In the present paper, we described first-order logic with polymor-
phic types and introduced generic notions to define and reason about practical
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methods of polymorphism elimination. Using these notions, we generalized and
proved two translation techniques known from literature. We also proposed to
combine type protection with symbol discrimination. As our experiments show,
this improves the performance of automated proof search and allows us to use
built-in theories of complex types, such as arrays, in SMT solvers. One interest-
ing problem we would like to resolve in the future is protection of polymorphic
types, allowing to merge all monomorphic instances of a given complex type in
a single protected sort. We also believe that better heuristics to choose the sets
W and U can be devised, and further experiments are in order.
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Abstract. The use of interpolants in model checking is progressively
gaining importance. The application of encodings based on the theory
of arrays, however, is limited by the impossibility of deriving quantifier-
free interpolants in general. To overcome this problem, we have recently
proposed a quantifier-free interpolation solver for a natural variant of
the theory of arrays. However, arrays are usually combined with frag-
ments of arithmetic over indexes in applications, especially those related
to software verification. In this paper, we propose a quantifier-free in-
terpolation solver for the variant of arrays considered in previous work
when combined with integer difference logic over indexes.

1 Introduction

Arrays are essential data-structures in computer science. The problem of verify-
ing functional correctness of software and hardware components using symbolic
model-checking techniques often boils down to the problem of checking prop-
erties over arrays and arithmetic, expressed as quantifier-free first order logic
formulæ. Consider for example the following pseudo-code fragment

for ( int i = 0 ; i ≤ n− 1 ; i = i + 1 )
if ( a[i] > a[i+ 1] )

swap( a[i], a[i+ 1] );

This loop is used, e.g., in bubble-sort to move the maximum element in the range
[0, n] of the array a to position n. It thus satisfies the postcondition

∀i. 0 ≤ i ≤ n− 1 =⇒ a[i] ≤ a[n].

A possible approach to model-check such property can be established by taking
its negation (∃i. 0 ≤ i ≤ n− 1 ∧ a[i] > a[n]), which is an “unsafety condition”,
and by running a symbolic reachability procedure. State-of-the-art methods for
reachability are based on an abstraction-refinement loop, where the refinement
phase is handled by means of the computation of interpolants [10].

In order to apply this method it is necessary to provide procedure that com-
putes quantifier-free interpolants for unsatisfiable quantifier-free formulæ in the
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theories under consideration. For instance a symbolic encoding of our example
above would be naturally defined in the combination of the theory of arrays
(AX ) and integer difference logic (IDL). However it is known that, already in
AX , quantifier-free interpolants cannot be produced in general.

In a recent work [5], we have shown an extension of AX with a further func-
tional symbol diff, called AX diff, in which quantifier-free interpolants can be
computed. In this paper, we extend that result by augmenting AX diff to a the-
ory AX diff ∪ IDL for which quantifier-free interpolants can also be computed.
In particular, we achieve this result via an ad-hoc combination of the procedure
for AX diff outlined in [5] (based on rewriting) and standard methods for solving
IDL constraints (based on a reduction to finding negative cycles in a graph).
To the best of our knowledge this is the first successful attempt of combining ar-
rays and (a subset of) arithmetic for obtaining interpolants without quantifiers.
The resulting interpolating procedure for AX diff ∪ IDL may be applied for the
verification of programs over arrays, such as sorting algorithms.

The paper is structured as follows. In Section 2, we recall some basic notions
of rewriting and first order logic. In Section 3, we introduce the important notion
of “modularized constraint”. In Section 4, we outline a satisfiability solver for
the combination of IDL and a subtheory BAX diff of AX diff, and we extend
it first to produce interpolants (in Section 5), and then to support full AX diff

(in Section 6). We conclude in Section 7. Omitted proofs can be found in the
extended version, available at http://homes.dsi.unimi.it/˜ghilardi.

Related Work. The research on algorithms for computing quantifier-free inter-
polants for a number of first-order theories has been an active area in the lat-
est years. McMillan proposed in [12] a set of interpolating inference rules to
compute interpolants for linear rational arithmetic (LRA), uninterpreted func-
tions (EUF), and their combinations. Alternative approaches, targeted towards
efficiency w.r.t. established decision procedures, are based on the lazy frame-
work of [15], and can be found in [9] (for EUF), and in [14, 7] (for LRA and
LRA ∪ EUF). The latter also presents algorithms specific for difference logics
(IDL) and unit-two-variables-per-inequality (UT VPI) constraints.

As far as the (classical) theory of arrays (AX ) is concerned, it is known [11]
that quantifier-free interpolants cannot be computed in general. The same pa-
per suggests a reduction approach to compute interpolants (with quantifiers)
for arrays via reduction to uninterpreted functions and linear integer arithmetic
(LIA). Unlike [11], our approach is not based on a reduction to other theories.
Following the same reduction approach, [3, 4] present an interpolating calculus
for computing (in general quantified) interpolants in linear integer arithmetic
and some extensions, such as the combination of LIA with EUF or LIA with
AX . In contrast, our approach computes quantifier-free interpolants, as we rely
on AX diff instead of AX as the background theory for modelling arrays. Un-
like [4], our approach uses a combination of rewriting and constraint solving as
opposed to a sequent calculus, and interpolants are retrieved by means of the
application of a set of metarules that record basic transformation steps on the
set of constraints. Also, our combination method is ad hoc, and it is not based on

http://homes.dsi.unimi.it/~ghilardi
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a Nelson-Oppen framework as in [15], as the theory of IDL is non-convex and it
thus requires specific treatment. AX diff was shown in [5] to have the quantifier-
free interpolation property. Here we show that the latter property still holds
when combining AX diff with IDL.

2 Background and Preliminaries

We assume the usual syntactic (e.g., signature, variable, term, atom, literal,
formula, and sentence) and semantic (e.g., structure, truth, satisfiability, and
validity) notions of first-order logic. The equality symbol “=” is included in all
signatures considered below. For clarity, we shall use “≡” in the meta-theory to
express the syntactic identity between two symbols or two strings of symbols.

Rewriting. We recall some notions and results about term rewriting (see,
e.g., [2]) used in the paper. A total ordering + on a signature Σ is called a
‘precedence’ relation. The Lexicographic Path Ordering (LPO) orients equali-
ties by using a given precedence relation; usually, abusing notation, the same
symbol is used for the precedence and the associated LPO. Given an equality
s = t, we write s → t (called an oriented equality or rewriting rule) when s + t
for a given precedence +. Given a set E of oriented equalities, the reduction
relation t →∗ u holds when u is obtained by repeatedly rewriting subterms of
t by using instances of the rules in E. We say that u is in normal form (w.r.t.
a set E of rules) when no rule in E can be applied to u. A set E of rules is
ground irreducible iff for every ground rule l → r from E, it is not possible to
rewrite neither l nor r by using rules different from l→ r itself. A set E of rules
is convergent iff every term t has a unique normal form, denoted with t̂, i.e.,
t →∗ t̂ by using using the rules from E. If the rules in E are all ground and E
is ground irreducible, then E is also convergent (because it has no critical pairs,
see [2]).

Theories and Constraints. A theory T is a pair (Σ,AxT ), where Σ is a
signature and AxT is a set of Σ-sentences, called the axioms of T (we shall
sometimes write directly T for AxT ). The Σ-structures in which all sentences
from AxT are true are the models of T . A Σ-formula φ is T -satisfiable if there
exists a model M of T such that φ is true in M under a suitable assignment a to
the free variables of φ (in symbols, (M, a) |= φ); it is T -valid (in symbols, T , ϕ)
if its negation is T -unsatisfiable or, equivalently, iff ϕ is provable from the axioms
of T in a complete calculus for first-order logic. A formula ϕ1 T -entails a formula
ϕ2 if ϕ1 → ϕ2 is T -valid ; the notation used for such T -entailment is ϕ1 ,T ϕ2

or simply ϕ1 , ϕ2, if T is clear from the context. The satisfiability modulo
the theory T (SMT (T )) problem amounts to establishing the T -satisfiability of
quantifier-free Σ-formulae.

Let T be a theory in a signature Σ; a T -constraint (or, simply, a constraint)
A is a set of ground literals in a signature Σ′ obtained from Σ by adding a set of
free constants. A finite constraint A can be equivalently seen as a single formula,
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represented by the conjunction of its elements; thus, when we say that a con-
straint A is T -satisfiable (or just “satisfiable” if T is clear from the context), we
mean that the associated formula (also called A) is satisfiable in a Σ′-structure
which is a model of T .

Two finite constraints A and B are logically equivalent (modulo T ) iff T ,
A ↔ B. The notion of logical equivalence is often too strong when checking T -
satisfiability of constraints, as we do in this paper. To overcome this problem, we
introduce the notion of ∃-equivalence which is weaker than logical equivalence
and still implies equisatisfiability of constraints. Let A be a first-order sentence,
A∃ is the formula obtained from A by replacing free constants with variables
and then existentially quantifying them out.

Definition 1. Two finite constraints A and B (or, more generally, first order
sentences) are ∃-equivalent (modulo T ) iff T , A∃ ↔ B∃.

Obviously, the preservation of ∃-equivalence is an important requirement for
T -satisfiability procedures based on constraint transformations. As an example
of such equisatisfiability-preserving transformations based on ∃-equivalence, we
consider the renaming of terms by constants which will be used in our procedures
below. This transformation takes a constraint A and replaces all the occurrences
of one of its terms, say t, with a fresh constant a (i.e., a does not occur in A) so
to obtain a new constraint A′ such that A′ ∪{a = t} is ∃-equivalent to A, where
the equality a = t is called the explicit definition of t.

Theories of Arrays. Let AX denote the McCarthy theory of arrays with
extensionality whose signature contains three sort symbols ARRAY, ELEM, INDEX
and two function symbols rd of type ARRAY × INDEX −→ ELEM and wr of type
ARRAY× INDEX× ELEM −→ ARRAY. The set AX of axioms contains the following
three sentences:

∀y, i, e. rd(wr(y, i, e), i) = e (1)
∀y, i, j, e. i �= j ⇒ rd(wr(y, i, e), j) = rd(y, j) (2)

∀x, y. x �= y ⇒ (∃i. rd(x, i) �= rd(y, i)). (3)

It is known [11] that quantifier-free interpolants may not exist for two unsatis-
fiable quantifier-free formulae in AX . To overcome this problem, in [5], we have
introduced the following variant of AX—called the theory of arrays with diff
and denoted with AX diff—whose signature is that of AX extended with the
function symbol diff of type ARRAY × ARRAY −→ INDEX. The set AX diff of
axioms contains (1), (2), and the following Skolemization of (3):

∀x, y. x �= y ⇒ rd(x, diff(x, y)) �= rd(y, diff(x, y)), (4)

which constrains the interpretation of diff to be a (binary) function return-
ing an index at which the input arrays store different values, if such an index
exists; otherwise (i.e., when the arrays are identical) diff returns an arbitrary
value. Quantifier-free interpolants can be computed for mutually unsatisfiable
quantifier-free formulae of AX diff [5].
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In this paper, we first consider a sub-theory BAX diff of AX diff whose signa-
ture is that of AX diff except for the function symbol wr, which is omitted. The
set of axioms of BAX diff is the singleton containing just the Skolemization of
extensionality, i.e., (4).

Integer Difference Logic. Following [8], we define IDL as the mono-sorted
theory whose signature contains just one sort symbol, that we call INDEX (in
preparation to “combine” this theory with BAX diff or AX diff), the constant
0, the binary predicate ≤, and two unary function symbols succ and pred . The
axioms of IDL are all the sentences which are true in the usual structure Z
of the integers when interpreting the constant 0 as the number zero, ≤ as the
natural ordering, succ as the successor (λx.(x+1)), and pred as the predecessor
(λx.(x − 1)) functions. Ground atoms of IDL are equivalent to formulæ of the
form i �� Sn(j) (where ��∈ {=,≤}, S ∈ {succ, pred}, and i, j are either free
constants or 0) and are written as i− j �� n or as i �� j + n, for n ∈ Z. We use
also obvious abbreviations like i �� j (for i − 0 �� j), i < j (for i ≤ j − 1), or
i ≥ j + n (for j − i ≤ −n), etc. Using these abbreviations, it is easy to see that
the theory just defined is usually referred to as “integer difference logic” in the
literature.

3 Modularized Constraints for the Theory BAX diff∪IDL

In this paper, we consider the composed theories BAX diff ∪IDL and AX diff ∪
IDL (where ∪ denotes the union of the signatures and the axioms of the com-
ponent theories) and design algorithms for the computation of (quantifier-free)
interpolants. We do this in two steps. First, we describe an ad hoc combination
of rewriting (for BAX diff)—along the lines of [2]—and constraint solving (for
IDL) to build a satisfiability procedure and (on top of this) an interpolating
algorithm for BAX diff∪IDL. Then, we show how this can be lifted to compute
quantifier-free interpolants also for AX diff ∪ IDL.

Methodologically, this may appear surprising, but the following observations
should clarify our choice. On the one hand, the component theories satisfy the
hypotheses of the Nelson-Oppen combination method [13] for satisfiability check-
ing. Furthermore, the Nelson-Oppen method has been extended to combine
interpolating procedures in [15] for component theories which are “equality in-
terpolating” in order to restrict the formulae to be propagated between interpo-
lating procedures. On the other hand, for simplicity, the definition of equality
interpolating theory in [15] applies only to convex theories; unfortunately, IDL
is not convex and we were not able to extend the notion of equality interpolating
to the non-convex case in a form that applies to our case. Our experience sug-
gests that finding the right generalization of this notion is far from being trivial
and explains why we preferred to design the ad hoc method in this paper. More
precisely, after a pre-processing phase, we separate constraints in two parts: one
pertaining to BAX diff and one to IDL. Literals in BAX diff are transformed
by ground rewriting (along the lines of [5]) while for those in IDL, we adapt
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available constraint solving techniques for integer difference logic. The goal of
these transformations is to derive a (so-called) modularized constraint whose
satisfiability is trivial to establish.

Let a, b, . . . denote free constants of sort ARRAY, i, j, . . . free constants of sort
INDEX, d, e, . . . free constants of sort ELEM, and α, β, . . . free constants of any sort.
A (ground) flat literal is a literal of the form i �� j +n, rd(a, i) = e, diff(a, b) =
i, α = β, α �= β. By replacing literals of the form i �≤ j with j ≤ i − 1 and
renaming terms with constants as explained in Section 2, given a constraint A
it is always possible to produce an ∃-equivalent (flat) constraint A′ such that A′

contains only flat literals. We first analyze in detail flat constraints; we introduce
some notions, aiming at defining, so called, “modularized” constraints for which
satisfiability can be easily assessed both in isolation and combination.

Separation. We split a flat constraintA in two: the index part AI and the main
part AM , where AI contains the literals of the form i = j + n, i ≤ j + n, i �=
j, diff(a, b) = i and AM contains the remaining literals, i.e., those of the forms
a = b, a �= b, rd(a, i) = e, e = d, e �= d.

Rewriting for BAX diff. We fix the precedence + to be such that ≤+ a +
rd + diff + i + succ + pred + 0 + e, for every a, i, e of the corresponding
sorts. The LPO extension of + allows us to orient all the equalities in the main
part AM of a constraint (in particular, we have that rd(a, i) = e is oriented as
rd(a, i) → e, and α = β is oriented as α→ β when α + β).

Constraint Solving for IDL. Equalities in the index part AI are classified as
follows: a diff-explicit definition is an equality having the form diff(a, b) = i
and an IDL-explicit definition is an equality of the form i = j + n (with i �≡
j, i �≡ 0). Each equality in AI can be rewritten as an IDL-explicit definition,
unless it is a diff-explicit definition, or a tautology (such as i = i + 0), or it is
unsatisfiable (as i = i+ 4). In an IDL-explicit definition i = j + n, we say that
“i is explicitly defined by j + n” (notice that j can be 0). As it is customary in
solvers for difference logic (see, e.g. [1]), we associate the integer difference logic
literals of the form j ≤ i + n with a weighted directed graph. More precisely,
let G(V,E) be a (finite, integer-weighted, directed) graph: the notation i

n−→ j
means that there is an edge from i to j with weight n. We can associate the
tuple 〈GA(VA, EA),DA, dA, nA〉 to the index part AI , where DA is a set of diff-
explicit definitions, dA is a set of IDL-explicit definitions, nA is a set of negated
equalities, and GA(VA, EA) has an edge i n−→ j ∈ EA, for each j − i ≤ n ∈ AI .

Constraints in BAX diff ∪ IDL. We write a constraint A as follows:

A = 〈GA,DA, dA, nA, AM 〉 . (5)

By abusing notation, we confuse the graph GA with the corresponding set of
inequalities and leave implicit both the set VA of vertices and EA of edges.

Definition 2 (Modularized Constraint). A modularized constraint is a flat
constraint of the form (5) such that the following conditions are satisfied:
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(i) dA is appropriate in the sense that: (a) each free constant has at most one
definition; (b) different constants have different definitions; (c) no constant
is defined as another constant (i.e., as j+0); (d) 0 is not defined; (e) defined
constants do not occur as vertices in GA;

(ii) the graph GA is acyclic;
(iii) the rewrite system formed by the equalities in AM is convergent and ground

irreducible (below, the normal form of a term t w.r.t. AM is denoted by t̂);
AM does not contain array inequalities a �= b;

(iv) {diff(a, b) = i, diff(a′, b′) = i′} ⊆ DA, â ≡ â′, and b̂ ≡ b̂′ imply i ≡ i′;
(v) diff(a, b) = i ∈ DA and ̂rd(a, i) ≡ r̂d(b, i) imply â ≡ b̂.

Notice that no index equality i = j may occur in a modularized constraint be-
cause of condition (i)(c) above. Also notice that condition (iii) is much stronger
than what is usually required for satisfiability. The reason is that we want the
satisfiability of modularized constraints to be invariant under addition of (im-
plicit) inequalities.

Proposition 1. Suppose that A is modularized and that there is no element
inequality e �= d in AM such that ê ≡ d̂. Then A ∪ {α �= β}α,β (varying α, β
among the different pairs of constants in normal form of the same sort occurring
in A) is (BAX diff ∪ IDL)-satisfiable.

Finally, conditions (iv) and (v) of Definition 2 deal with diff-explicit definitions:
the former requires diff to be “well-defined” and the latter is a “conditional”
reformulation of the contrapositive of axiom (4).

Combining Modularized Constraints. Let A,B be two constraints in the
signatures ΣA, ΣB obtained from the signature Σ by adding some free constants
and let ΣC := ΣA ∩ΣB. Given a term, a literal, or a formula ϕ we call it:

– AB-common iff it is defined over ΣC ;
– A-local (resp. B-local) if it is defined over ΣA (resp. ΣB);
– A-strict (resp. B-strict) iff it is A-local (resp. B-local) but not AB-common;
– AB-mixed if it contains symbols in both (ΣA \ΣC) and (ΣB \ΣC);
– AB-pure if it does not contain symbols in both (ΣA \ΣC) and (ΣB \ΣC).

(Sometimes in the literature about interpolation, “A-local” and “B-local” are
used to denote what we call here “A-strict” and “B-strict”). As we will see below,
the following modularity result is crucial for interpolation.

Proposition 2. Let Σ be the signature of BAX diff∪IDL, A = 〈GA,DA, dA, nA,
AM 〉, and B = 〈GB ,DB, dB, nB, BM 〉 be modularized constraints in the expanded
signatures ΣA, ΣB. We have that A∪B is modularized in case the four conditions
below are all satisfied:

(O) the restriction of A and B to the common subsignature ΣC := ΣA ∩ ΣB

coincide;
(I) for each IDL-explicit definition i = j+n ∈ dA∪dB , if i ∈ ΣC then j ∈ ΣC;
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(II) given c, c′ ∈ ΣC, there is a path in GA leading from c to c′ iff there is a
path in GB leading from c to c′;

(III) for each equation (or rule) of the form α = t in A ∪ B, if the term t is
AB-common, then so is the constant α.

4 A Satisfiability Solver for BAX diff ∪ IDL

Given a (finite) constraint A in BAX diff∪IDL, we present a sequence of trans-
formations for deriving a set {Ai | 1 ≤ i ≤ n} of modularized constraints such
that

∨
1≤i≤n Ai is ∃-equivalent to A. Since the satisfiability of each Ai is easy to

check, we can thus establish the satisfiability of the original constraint A. The
transformations are closely related to those in [5] for the theory AX diff. This
approach has two advantages. First, it allows us to use the same method of [5]
to lift the satisfiability solver to an interpolating solver. Second, as we will see
in Section 6, it is easy to lift the interpolating solver for BAX diff ∪ IDL to the
theory AX diff ∪ IDL.

The satisfiability solver for BAX diff ∪ IDL consists of the three groups of
transformations below applied to the input constraint A.

4.1 Preprocessing

This group consists of the following steps to be executed sequentially.

Step 1 Flatten A, by replacing sub-terms with fresh constants and adding
the related defining equalities; replace also literals of the form i �≤ j with
j ≤ i− 1.

Step 2 Replace array inequalities a �= b by the following literals

diff(a, b) = i, rd(b, i) = e, rd(a, i) = d, d �= e,

where i, e, d are fresh constants.
Step 3 Guess a total ordering on the index constants occurring in the con-

straint obtained from the application of the previous two steps. That is, for
each pair (i, j) of indexes, add either i = j, i ≤ j − 1, or j ≤ i− 1. Remove
the positive literals i = j by replacing all occurrences of i with j if i + j (ac-
cording to the symbol precedence); otherwise, replace each occurrence of j
with i. Now, if an unsatisfiable literal i �= i is derived, then try another guess.
If all guesses produce an unsatisfiable literal, then return unsatisfiability;
otherwise, each negative literal i �= j (for each i �≡ j) is now redundant and
can be removed.

Step 4 For each pair (a, i) of constants such that rd(a, i) = e does not occur
in the current constraint, add the literal rd(a, i) = e with e fresh constant.

It is easy to see that these four steps terminate and that we obtain a finite set
{Ai | 1 ≤ i ≤ n} of flat constraints, whose disjunction is ∃-equivalent to the
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original constraint A. If there exists i ∈ {1, ..., n} such that the exhaustive appli-
cations of the transformations in the next group (Completion) does not exit with
a failure, then return satisfiable; otherwise (i.e., for each i ∈ {1, ..., n}, the
transformations in the next group halt with a failure), report unsatisfiable.

4.2 Completion

Let 〈GA,DA, dA, nA, AM 〉 be one of the n flat constraints obtained from Pre-
processing. We exhaustively apply to this constraint the following group of rules,
which are organized in three sub-groups to clarify their purposes. All the trans-
formations below can be interleaved arbitrarily; they are all deterministic with
the exception of (G2) which might introduce further case-splits.

(I) Graph Completion. The transformations in this sub-group aim at sat-
isfying conditions (i) and (ii) of Definition 2. We view GA in a constraint as
both a graph and a set of inequalities (recall that an arc i n−→ j represents the
inequality j − i ≤ n): when some inequalities in the constraint are modified, the
graph is updated accordingly.

(G1) Suppose we have an IDL-explicit definition i = j + n. If i ≡ j, then the
literal is either trivially true and can be removed, or false and failure
can be reported. Otherwise, i.e., if i + j (when j + i, we can rewrite it to
j = i − n), keep the equality i = j + n and also the equalities of the kind
diff(a, b) = i, but replace every other occurrence of i in the index part of
the current constraint by j + n (it is easy to see that the constraint remains
flat, after normalization of ground atoms, if needed).

(G2) Suppose we have a cycle i1
n1−→ i2

n2−→ i3 · · · ik
nk−→ i1 in GA. If n1 + · · ·+

nk < 0, then report failure. If k = 1, then since n1 ≥ 0, the arc represents
a tautology and can be removed. In case k > 1, we can assume that i1 is
the +-biggest node in the cycle (if this is not the case, a permutation of
the cycle is sufficient to satisfy this assumption) and that i1 does not have
an IDL-explicit definition (otherwise instruction (G2) is not applied, (G1)
should be applied instead). Let m := n2 + · · ·+ nk; the cycle entails that i1
lies in the integer interval [i2 − n1, i2 +m] (i.e., it entails i1 = i2 − n1 ∨ i1 =
i2 − n1 + 1 ∨ · · · ∨ i1 = i2 +m) and we can add to the current constraint an
IDL-explicit definition for i1 via a disjunctive guessing.

(II) Knuth-Bendix Completion. The transformations in this sub-group aim
at satisfying condition (iii) of Definition 2 by using a Knuth-Bendix completion
process (see, e.g., [2]). In particular, (K1)-(K3) remove critical pairs.

(K1) d ∗← rd(b, i) ← rd(a, i) → e′ →∗ e

Remove the parent rule rd(a, i) → e′ and keep the other parent rule a→ b.
If d > e (resp. e > d), then add the rule d→ e (resp. e→ d); otherwise (i.e.,
when d ≡ e), do nothing. (Notice that terms of the form rd(b, i) are always
reducible to an element constant because of Step 4 in the pre-processing
phase.)



112 R. Bruttomesso, S. Ghilardi, and S. Ranise

(K2) e ∗← e′ ← rd(a, i) → d′ →∗ d

If e �≡ d, then orient the critical pair, add it as a new rule, and remove one
of the parent rules.

(K3) α ∗← α′ ← β → β′
1 →∗ β1

If β �≡ β1, then orient the critical pair, add it as a new rule, and remove one
of the parent rules; here α, α′, β, β1, β

′
1 are all either of sort ARRAY or of sort

ELEM.
(K4) If the right-hand side of a current ground rewrite rule can be reduced, then

reduce it as much as possible, remove the old rule, and replace it with the
newly obtained reduced rule.

(K5) If there exists a negative literal e �= d ∈ AM such that e→∗ e
′
∗← d, then

report failure.

(III) Handling diff. The transformations in this group take care of condition
(iv)-(v) of Definition 2 (we write t ↓ t′ to mean that t→∗ u ∗← t′ for some u).

(S) If diff(a, b) = i ∈ AI , rd(a, i) ↓ rd(b, i) and a + b, then add the rule a→ b
and replace diff(a, b) = i by diff(b, b) = i (this is needed for termination,
it prevents the rule from being indefinitely applied).

(U) If {diff(a, b) = i, diff(a′, b′) = i′} ⊆ AI , a ↓ a′ and b ↓ b′ for i �≡ i′, then
report failure and backtrack to Step 3 of the pre-processing phase.

It can be proved that the algorithm using the groups of transformations described
above terminates and computes modularized constraints. We are now in the
position to derive the main result of this section:

Theorem 1. Every constraint in BAX diff ∪ IDL is ∃-equivalent to a disjunc-
tion of modularized constraints. The algorithm described above decides (BAX diff∪
IDL)-satisfiability.

5 An Interpolating Solver for BAX diff ∪ IDL

Our design of the interpolating solver (as in [5]) is based on an abstract frame-
work, in which we focus on the basic operations necessary to derive an interpo-
lating refutation, independently of the underlying satisfiability procedure.

5.1 Interpolating Metarules

Let A,B be constraints in signatures ΣA, ΣB expanded with free constants and
ΣC := ΣA∩ΣB. Recall the definitions ofAB-common, A-local, B-local, A-strict,
B-strict,AB-mixed, AB-pure terms, literals and formulae given in Section 3. The
goal is to compute a ground AB-common sentence φ such that A ,BAX diff∪IDL φ
and φ∧B is (BAX diff∪IDL)-unsatisfiable, whenever A∧B is (BAX diff∪IDL)-
unsatisfiable.

The basic operations needed to re-design the solver of Section 4 in order to
add the capability of computing interpolants are called metarules and are shown
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in Table 1 (in this section, we use φ , ψ for φ ,BAX diff∪IDL ψ). The metarules
are the same as those introduced in [5] to which the reader is pointed for more
details. The correctness of the procedure explained in Subsection 5.2 relies on

Table 1. Interpolating Metarules: each rule has a proviso Prov. and an instruc-
tion Instr. for recursively computing the new interpolant φ′ from the old one(s)
φ, φ1, . . . , φk. Metarules are applied bottom-up and interpolants are computed top-
down.

Close1 Close2 Propagate1 Propagate2

A | B

Prov.: A is unsat.
Instr.: φ′ ≡ ⊥.

A | B

Prov.: B is unsat.
Instr.: φ′ ≡ �.

A | B ∪ {ψ}
A | B

Prov.: A � ψ and
ψ is AB-common.

Instr.: φ′ ≡ φ ∧ ψ.

A ∪ {ψ} | B

A | B

Prov.: B � ψ and
ψ is AB-common.

Instr.: φ′ ≡ ψ → φ.

Define0 Define1 Define2

A ∪ {a = t} | B ∪ {a = t}
A | B

Prov.: t is AB-common, a fresh.
Instr.: φ′ ≡ φ(t/a).

A ∪ {a = t} | B

A | B

Prov.: t is A-local and a is fresh.
Instr.: φ′ ≡ φ.

A | B ∪ {a = t}
A | B

Prov.: t is B-local and a is fresh.
Instr.: φ′ ≡ φ.

Disjunction1 Disjunction2

· · · A ∪ {ψk} | B · · ·
A | B

Prov.:
∨n

k=1 ψk is A-local and A �
∨n

k=1 ψk.
Instr.: φ′ ≡

∨n
k=1 φk.

· · · A | B ∪ {ψk} · · ·
A | B

Prov.:
∨n

k=1 ψk is B-local and B �
∨n

k=1 ψk.
Instr.: φ′ ≡

∧n
k=1 φk.

Redplus1 Redplus2 Redminus1 Redminus2

A ∪ {ψ} | B

A | B

Prov.: A � ψ and
ψ is A-local.

Instr.: φ′ ≡ φ.

A | B ∪ {ψ}
A | B

Prov.: B � ψ and
ψ is B-local.

Instr.: φ′ ≡ φ.

A | B

A ∪ {ψ} | B

Prov.: A � ψ and
ψ is A-local.

Instr.: φ′ ≡ φ.

A | B

A | B ∪ {ψ}

Prov.: B � ψ and
ψ is B-local.

Instr.: φ′ ≡ φ.

ConstElim1 ConstElim2 ConstElim0

A | B

A ∪ {a = t} | B

Prov.: a is A-strict and
does not occur in A, t.

Instr.: φ′ ≡ φ.

A | B

A | B ∪ {b = t}

Prov.: b is B-strict and
does not occur in B, t.

Instr.: φ′ ≡ φ.

A | B

A ∪ {c = t} | B ∪ {c = t}

Prov.: c, t are AB-common,
c does not occur in A, B, t.

Instr.: φ′ ≡ φ.
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Proposition 3 below. Before stating the proposition, we need to introduce the
following formal notion. An interpolating metarules refutation for A,B is a la-
beled tree having the following properties: (i) nodes are labeled by pairs of finite
sets of constraints; (ii) the root is labeled by A,B; (iii) the leaves are labeled by
a pair Ã, B̃ such that ⊥ ∈ Ã ∪ B̃; (iv) each non-leaf node is the conclusion of a
rule from Table 1 and its successors are the premises of that rule.

Proposition 3 ([5]). If there exists an interpolating metarules refutation for
A,B then there is a quantifier-free interpolant for A,B (i.e., there exists a
quantifier-free AB-common sentence φ such that A , φ and B ∧ φ , ⊥). The
interpolant φ is recursively computed by applying the relevant interpolating in-
structions from Table 1.

Metarules are useful to design an algorithm manipulating pairs of constraints based
on transformation instructions. Each of the transformation instructions is derived
from the satisfiability solver of Section 4 and is justified by a metarule (or by a se-
quence of metarules): in this way, if our instructions form a complete and terminat-
ing algorithm, we can use Proposition 3 to get the desired interpolants. The main
advantage of this approach is that we just need to take care of the completeness
and termination of the algorithm, while ignoring interpolants. Here “complete-
ness” means that our transformations should be able to bring a pair (A,B) of con-
straints into an ∃-equivalent set of pairs of constraints (Ai, Bi) that either match
the requirements of Proposition 2 or are trivially unsatisfiable (i.e., ⊥ ∈ Ai∪Bi).
By Theorem 1, the latter happens iff the original pair (A,B) is (BAX diff∪IDL)-
unsatisfiable or, equivalently, we get an interpolating metarules refutation.

5.2 The Interpolating Solver

The key idea for lifting the satisfiability solver of Section 4 to an interpolating
solver is that of invoking it separately on A and B, and propagating equalities
involving AB-common terms. We shall use a precedence in which AB-common
constants are smaller than A-strict or B-strict constants of the same sort. Unfor-
tunately, this is not sufficient to prevent the instances of the satisfiability solver
from generating literals and rules violating one or more of the hypotheses of
Proposition 2. This is the reason for introducing further correcting instructions
(γ)-(δ) below. The interpolating solver consists of two groups of instructions,
detailed below and called pre-processing and completion, derived from those in
Sections 4.1 and 4.2. In the following, the A-component and the B-component
of the constraints under consideration will be called A and B.

Pre-processing. This group of transformations contains those in Section 4.1.
They are performed on both A and B. To justify these transformations, we need
metarules (Define0,1,2), (Redplus1,2), (Redminus1,2), (Disjunction1,2), (Con-
stElim0,1,2), and (Propagate1,2) in Table 1. The last two are required because
when i and j are AB-common, the case-splitting on i = j, i < j, or j < i of
Step 3 can be done—say—in A and then propagated to B. After the applications
of these transformations, the following invariants (to be maintained also by the
next group of transformations) hold:
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(i1) A (resp. B) entails (modulo BAX diff ∪ IDL) either i < j or j < i, for
each A-local (resp. B-local) constants i, j of sort INDEX in A (resp. B);
(i2) if the constants a, i occur in A (resp. in B), then rd(a, i) reduces to an
A-local (resp. B-local) constant of sort ELEM.

Completion. This group of transformations are executed non-deterministically
until no more rules can be applied.

(α) Apply any instruction of Section 4.2 to A or B.
(β) If there is an AB-common literal that belongs to A but not to B (or
vice versa), copy it to B (resp. A).
(γ) “Repair” (see below for a precise description) those literals violating
conditions (I) or (III) of Proposition 2, called undesired literals below.
(δ) If GA (or GB) contains a path i1

n1−→ i2
n2−→ i3 · · · ik

nk−→ ik+1 between
AB-common constants i1 and ik+1 and there is no path from i1 to ik+1 in
GA ∩GB, then add the inequality ik+1 − i1 ≤ n1 + · · ·+ nk to both A and
B (so that an arc from i1 to ik+1 will be created in GA ∩GB).

Instructions in (α) deleting an AB-common literal should be performed simulta-
neously in A and B. It can be easily checked (the check is done within the proof
of Theorem 2) that this is always possible by inspecting the transformations in
Section 4.2. An easy way to guarantee this is to give higher priority to the rules
in (β) and (γ).

Preliminary to describing how to “repair” literals—i.e., the instructions in
(γ)—we need to introduce a technique that we call Term Sharing. Suppose that
A contains a literal α = t where the term t is AB-common but the free constant α
is onlyA-local. It is possible to “make α AB-common” as follows. First, introduce
a fresh AB-common constant α′ with the explicit definition α′ = t (to be inserted
both in A and in B, as justified by metarule (Define0)). Then, replace the literal
α = t with α = α′ and α with α′ everywhere else in A. Finally, delete α = α′.
The result is a pair (A,B) of constraints which is almost identical to the original
pair except for the fact that α has been renamed to an AB-common constant
α′. These transformations can be justified by metarules (Define0), (Redplus1),
(Redminus1), (ConstElim1). This concludes the description of Term Sharing.

We are now in the position to explain the instructions in (γ): notice that
literals violating conditions (I) or (III) of Proposition 2 are all of the form α = t,
where t is AB-common and α is, say, just A-local (this applies also to the literals
i = j+n violating (I), because they can be rewritten as j = i−n). Clearly, Term
Sharing can replace them by literals of the form α′ = t, where α′ is AB-common
too. There is however a subtlety to take care of in case α is of sort INDEX: since
α′ is AB-common whereas α is only A-local, we might need to perform some
guessing to maintain invariant (i1). In other words, we need to repeat Step 3
from Section 4.1 until invariant (i1) is restored (α′ must be compared with the
other B-local constants of sort INDEX).

By exhaustively applying the transformations in the two groups above (na-
mely, Pre-processing and Completion) on a pair (A,B) of constraints, we can
produce a tree whose nodes are labelled by pairs of constraints and such that
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the successor nodes are labelled by pairs of constraints that are obtained by
applying an instruction. We call such a tree an interpolating tree for (A,B). The
key observation is that interpolating trees are interpolating metarules refutation
trees when input pairs of constraints are mutually unsatisfiable.

Theorem 2. Any interpolating tree for (A,B) is finite and it is an interpolating
metarules refutation iff A ∧B is (BAX diff ∪ IDL)-unsatisfiable.

By using this theorem and recalling Proposition 3, a (quantifier-free) interpolant
can be recursively computed by using the metarules of Table 1. In other words,
we have designed a quantifier-free interpolating solver for BAX diff ∪ IDL.

Theorem 3. BAX diff∪IDL admits quantifier-free interpolants (i.e., for every
quantifier free formulae φ, ψ such that ψ ∧ φ is (BAX diff ∪ IDL)-unsatisfiable,
there exists a quantifier free formula θ such that: (i) ψ ,BAX diff∪IDL θ; (ii) θ∧φ
is not (BAX diff ∪ IDL)-satisfiable; and (iii) only the variables occurring both
in ψ and φ occur also in θ).

6 An Interpolating Solver for AX diff ∪ IDL

We now sketch how to lift the interpolating solver for BAX diff ∪ IDL to one
for AX diff ∪ IDL by combining the results from Section 5 with those of [5].
Since BAX diff is a sub-theory of AX diff, it is straightforward to reuse the
rewriting approach of [5] to extend the solver outlined in the previous section.
Because of lack of space, we only describe the key ideas and we point the reader
to [5] for details about the solver for AX diff. The difference between BAX diff

and AX diff is in the presence of the function symbol wr and the axioms (1)
and (2). We explain how the rewriting techniques of [5], used to cope with
terms consisting of nested wr’s, can be seen as an extension of those used in
this paper. We recall the following notation from [5]: wr(a, I, E) abbreviates
the term wr(wr(· · ·wr(a, i1, e1) · · · ), in, en), i.e., a nested write on the array
variable a where indexes and elements are represented by the free constants lists
I ≡ i1, . . . , in and E ≡ e1, . . . , en, respectively.

We extend our precedence in such a way that a + wr + rd + diff + i holds,
for all constants a, i. This condition (satisfied by the precedence adopted in [5])
implies that an equality a = wr(b, I, E) can be turned to a rewrite rule of the
form a → wr(b, I, E) when a + b. As explained in [5], this is crucial to design
an extended version of the Knuth-Bendix completion (see Section 4.2 of this pa-
per), which allows for computing modularized constraints in AX diff. Intuitively,
the Knuth-Bendix completion is added transformations for eliminating “badly
orientable” equalities (i.e., equalities of the form b = wr(a, I, E) with a + b)
that may arise. Such transformations solve the equality b = wr(a, I, E) for a,
thereby deriving a rewriting rule a→ wr(b, I, E′) for suitable E′.

Recall from [5] that an AX diff flat constraint contains only literals of the
forms α = β, α �= β, rd(a, i) = e, diff(a, b) = i, and b = wr(a, I, E). An
AX diff∪IDL constraint is flat iff its restrictions to the signatures of BAX diff∪
IDL and AX diff are flat.
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Definition 3. An AX diff ∪ IDL flat constraint is modularized iff (a) its re-
striction to the signature of BAX diff∪IDL is modularized (according to Defini-
tion 2) and (b) its restriction to the signature of AX diff is modularized according
to Definition 3.1 of [5].

The most important additional requirements of Definition 3.1 in [5] induce irre-
dundant normal forms for terms built out of rd’s and wr’s by means of a set of
non-ground rewrite rules corresponding to the axioms (1) and (2).

By “merging” the proof of Proposition 1 and that of the corresponding result
in [5], we can show that the satisfiability of modularized constraint is invariant
under addition of (implicit) inequalities, i.e., that Proposition 1 holds also for
AX diff ∪ IDL. By “merging” the proofs of Proposition 2 and Proposition 3.3
in [5], we can “combine” modularized AX diff ∪ IDL constraints.

Proposition 4. Let A and B be AX diff ∪ IDL modularized constraints in ex-
panded signatures ΣA, ΣB (here Σ is the signature of AX diff ∪IDL). We have
that A ∪B is modularized in case the conditions (O)-(III) of Proposition 2 and
the conditions (O)-(III) of Proposition 3.3 from [5] are both satisfied.

At this point, we have all the ingredients to design first a satisfiability solver
for AX diff ∪ IDL and then to extend it to an interpolating solver. The first
step consists of the merging of the transformations in the groups pre-processing
and completion of Section 4 with those in Section 4 of [5]. It is then possible to
prove that the resulting algorithm checks for (AX diff ∪ IDL)-satisfiability by
“merging” the proofs of Theorem 1 and Theorem 4.1 of [5].

The second step amounts to integrate the instructions of the interpolating
solver from Section 5.2 with those of the interpolating solver from Section 5.2
in [5] (notice that the interpolating metarules used in this paper are identical to
those in [5]). The most important addition is the repairing of undesired literals of
the form c→ wr(c′, I, E) whose left-hand side is AB-common but whose right-
hand side is, say, only A-local: repairing requires a careful splitting of I and
E into sub-lists, additional guessings, and manipulations of nested wr’s similar
to those for eliminating badly orientable equations (see Section 5.2 in [5] for
details). It is then possible to build interpolating trees (defined in a similar way
as those in Section 5.2).

Theorem 4. The theory AX diff ∪ IDL admits quantifier-free interpolants (in
the sense of Theorem 3 where BAX diff ∪ IDL is replaced with AX diff ∪ IDL).

The proof of the above theorem is obtained by a straightforward merging of
the proofs of the corresponding results for BAX diff ∪ IDL and AX diff (the
complexity measures from the termination arguments are essentially the same).

7 Conclusions and Future Work

In this work we have shown how to derive an interpolating (satisfiability) solver
for the theory of AX diff ∪ IDL. Most importantly, the produced interpolants
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are quantifier-free: we are not aware of any other approach that can derive in-
terpolants for arrays and arithmetic without introducing quantifiers. Thus our
work can find suitable applications in existing verification techniques based on
abstraction-refinement loops with the help of interpolants.

In order to achieve our result, we have combined rewriting techniques for
two variants of the theory of arrays, BAX diff and AX diff, with a constraint
solver for IDL based on a reduction to graph algorithms. Interpolants may be
computed with the help of interpolating metarules to be applied in reverse order
w.r.t. the algorithmic transformations steps.

We plan to implement our approach in the SMT solver OpenSMT [6] in order
to carry out an extensive experimental evaluation.
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Abstract. The first-order theory over non-linear arithmetic including
transcendental functions (NLA) is undecidable. Nevertheless, in this pa-
per we show that a particular combination with superposition leads to
a sound and complete calculus that is useful in practice. We follow ba-
sically the ideas of the SUP(LA) combination, but have to take care
of undecidability, resulting in “unknown” answers by the NLA reasoning
procedure. A pipeline of NLA constraint simplification techniques related
to the SUP(NLA) framework significantly decreases the number of “un-
known” answers. The resulting approach is implemented as SUP(NLA)
by a system combination of Spass and iSAT. Applied to various scenar-
ios of traffic collision avoidance protocols, we show by experiments that
Spass(iSAT) can fully automatically proof and disproof safety properties
of such protocols using the very same formalization.

1 Introduction

In this paper we investigate the hierarchic combination of reasoning in non-
linear arithmetic over the reals including transcendental functions (NLA) with
superposition-based first-order logic (FOL) reasoning (SUP). The result is a very
expressive language, where already validity in its parts (non-linear arithmetic,
first-order logic) is undecidable, in general. Completeness for the resulting calcu-
lus SUP(NLA) or compactness of the resulting logic FOL(NLA) does not hold,
in general.

Nevertheless, we show that for a particular class of FOL(NLA) formulae, the
logic is compact and the SUP(NLA) calculus is sound and complete. This class,
omitting function symbols on the first-order side, is very well-suited to formalize
safety properties of non-linear systems, such as collision avoidance protocols. In
order to provide automatic reasoning on such properties, including automatic
proofs and disproofs, we develop a pipeline of simplification mechanisms for
NLA constraints that eventually enables a completely automatic behavior of
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Spass(iSAT) on various scenarios of collision avoidance protocols. The clauses
of the language have the form

Λ ‖Γ → Δ
where Λ is a sequence of NLA literals, and Γ and Δ are sequences of first-
order atoms without NLA signature symbols. Both parts share variables that
are assumed to be universally quantified. The semantics of a clause is given by
the implication (

∧
Λ ∧

∧
Γ ) → (

∨
Δ). A typical example is a clause like√

(x1 − x2)2 + (y1 − y2)2 ≤ 5, t′ = 0 ‖L(x1, y1, x2, y2, t) →M(x1, y1, x2, y2, t
′)

where if (xi, yi) represent coordinates in the plane for two respective objects,
the clause says that if the predicate L holds for the objects and they get closer
than 5 then the predicate M shall hold for the objects. So the clause expresses
a switch from a free movement to a maneuver movement if the two objects get
too close, provided L and M are axiomatized accordingly.

The SUP(NLA) calculus reasons primarily on the first-order part via super-
position (ordered resolution) and an additional constraint refutation rule. The
NLA reasoning is invoked for redundancy elimination and a final check whether
a contradiction has been found. Redundancy checks result in two different rea-
soning problems. A (newly generated) clause Λ ‖Γ → Δ is a tautology if Λ is not
satisfiable, i.e., the closed NLA formula ∃x [

∧
Λ] is unsatisfiable. Checking redun-

dancy among several clauses means testing implication between those clauses.
In the context of this paper we mainly consider subsumption. If the FOL parts
of two clauses Λ1 ‖Γ1 → Δ1, Λ2 ‖Γ2 → Δ2 subsume, i.e., Γ1σ ⊆ Γ2, Δ1σ ⊆ Δ2

for some matcher σ, the condition of the constraints to be checked is validity of
the closed formula ∀x∃y [Λ2 → Λ1σ], where yi ∈ (vars(Λ1σ) \ vars(Λ2)) and x
are all other variables. The third reasoning task is to check for the constraint
refutation rule whether a single constraint is satisfiable. So it collapses with the
tautology check.

In order to establish a first-order part empty clause Λ ‖ → to be a con-
tradiction, NLA reasoning on Λ must not return the inconclusive answer Un-

known. This is indispensable for proving a conjecture. For disproving, i.e., hav-
ing SUP(NLA) terminate on a set of clauses without finding an empty clause,
the same holds for the above mentioned subsumption implication checks. For
our case study the first-order part of the clauses is inherently recursive, e.g.,
the continuous linear movement clause is of the form Λ ‖L(x1, y1, x2, y2, t) →
L(x′1, y′1, x′2, y′2, t′) where the positive and negative occurrence of the L literal
have a first-order unifier. It turns out that SUP(NLA) termination can only
be achieved by successful subsumption applications that require a pipelining of
NLA simplification techniques related to the form of constraints generated by
the superposition calculus.

For the experiments, we have actually implemented the calculus by a com-
bination of Spass [23] for the first-order reasoning with iSAT [13] for the NLA
reasoning. Analogous to the behavior of SMT solvers, iSAT tries to solve the
problem whether a formula of the form ∃xφ, where φ is a quantifier free boolean
combination of non-linear atoms, is satisfiable. Although non-linear validity is
undecidable, iSAT is a terminating procedure that provides the answers Yes,
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No, and Unknown. It is based on interval analysis, where an initial interval is
assumed for each variable. Intervals are split in order to perform case analysis.
If for each branch of the resulting tree the induced subproblem can be decided
as unsatisfiable then the formula itself is unsatisfiable (iSAT answers No). If
there is a branch which induced subproblem is proved to be satisfiable then the
overall problem is as well (iSAT answers Yes). However, interval analysis is an
incomplete calculus potentially causing that some of the subproblems cannot
be decided. To avoid infinite interval splitting and to achieve termination, iSAT
stops the proof search whenever the interval widths for all variables are small
enough, e.g. less than 10−5 (iSAT answers Unknown).

Mapping iSAT to the above reasoning tasks in the context of SUP(NLA), there
are two problems to be solved: the formula with quantifier alternation needed for
the redundancy check which is not an SMT formula and the case iSAT answers
Unknown. The former is solved by first reducing the number of existentially
quantified variables through equational propagation. Then we test whether a
linear relaxation of the result where the non-linear functions are considered as
uninterpreted functions can already be proven (here we use Z3 [10]). If this does
fail and there are no existentially quantified variables left, we pass the result to
iSAT. All simplification is implemented on the Spass side. The latter problem
is solved by an extension of iSAT called strong satisfaction check (Section 5).
A disadvantage of the interval based reasoning approach of iSAT is the loss of
precision when intervals are propagated through equations. Equations frequently
induce point solutions. Here, without the strong satisfaction check, iSAT would
terminate with an Unknown answer, providing narrow intervals. The strong
satisfaction extension then takes those narrow intervals and tries to compute a
certificate for a (point) solution. It turns out that this extension turned most of
iSAT’s Unknown answers in the SUP(NLA) context into definite Yes answers.

The application scenario (Section 6) is a collision avoidance protocol for mov-
ing objects (e.g., robots, aircrafts). The idea of the protocol is to prevent a
collision, more precisely, a situation where the objects get too close. In order
to achieve this goal, the movement of the objects is put into a maneuver mode,
once their distance falls below a given limit. The maneuver mode then takes
care by performing appropriate movement in form of sine curves to get the ob-
jects across each other and release them afterwards to their initial behavior.
We studied the following three scenarios: (i) two objects in 2D space starting
with linear movement, (ii) two objects in 3D space starting with linear move-
ment, and (iii) two objects in 3D space starting with arbitrary movement. For
all scenarios we can fully automatically prove and disprove (given different pa-
rameters) the collision freeness of the protocol. The protocol and the collision
freeness property are modelled by a set of FOL(NLA) Horn clauses such that
this set is satisfiable iff the protocol is collision free. If not, an unsatisfiability
SUP(NLA) proof yields a counterexample. Our contributions are: (i) the first
sound and complete combination of FOL(NLA) including an implementation,
(ii) dedicated NLA simplification techniques providing (iii) nice experimental
results by fully automatic verification of the above scenarios of a non-trivial
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collision avoidance protocol. The paper ends with a summary including discus-
sion of related work (Section 7). Missing proofs and the all formalizations can
be found in an AVACS technical report [12].

2 Preliminaries

For non-linear arithmetic over the reals R we use the signature {+, −, ·, abs,
min, max, sin, cos, exp, nrt, pow, ≤, <, =, �=, >, ≥} ⊂ Ω, where Ω includes
furthermore the reals. In our examples, we stick to rational coefficients for this
paper. The semantics of the operators is the standard model MR of non-linear
arithmetic over the reals. Terms, substitutions and first-order formulae over Ω
and a set of variables X of sort R are defined as usual. A quantifier free formula φ
over Ω is called an SMT -formula. Note that we only consider terms and formulae
with total operators. An SMT -formula φ is satisfiable, if there exists a ground
substitution τ such that MR |= φτ , also written τ |= φ. Note that this language
is very expressive as total division z = x/y can be coded as multiplication
x = y · z ∧ y �= 0, the constant π can be coded as the solution to the variable x
in the formula φ ≡ x > 3.1 ∧ x < 3.2 ∧ sin(x) = 0 and the integers as solutions
to the variable y in φ ∧ sin(x · y) = 0.

For the hierarchic FOL(NLA) setting [2, 1], where the first-order language
includes equality ≈, the NLA operators Ω are extended by free operators to Ω′,
Ω ⊆ Ω′. In the resulting hierarchic specification R is the base sort, MR the base
theory and the ground terms built over Ω the base terms.

Although we do not explicitly introduce a sort concept, in addition to the base
sort we assume a free sort containing all other terms, in particular built over
Ω′ \ Ω. We say that a term is pure, if it does not contain both a base operator
and a non-base operator. A substitution is called simple, if it maps every variable
of the base sort to a base term. In general, there are non-base terms in the base
sort provided a function symbol in Ω′ \ Ω ranging into the base sort. If σ is a
simple substitution, tσ is called a simple instance of t (analogously for equations
and clauses). The set of simple ground instances of a clause C is denoted by
sgi(C), analogously sgi(N) is the set of all simple ground instances of a clause
set N .

For the purpose of this paper, all operators in Ω′ \ Ω are actually predi-
cates implemented by functions mapping to the ordering minimal constant tt
of the free sort. An equation of the form p(t1, . . . , tn) ≈ tt is abbreviated by
P (t1, . . . , tn), as usual. In addition, we only consider sets of clauses where the
free part is Horn. A clause Λ ‖Γ → Δ is called a Horn clause if Δ contains at
most one atom. � denotes the empty clause.

3 SMT for Non-linear Arithmetic

While most of the common satisfiability modulo theories (SMT) [3] approaches
consider decidable theories, some authors have directed their attention to the
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theory of non-linear arithmetic involving transcendental functions like exponen-
tial and trigonometric functions [13, 4, 14] which is undecidable in general. With
regard to superposition modulo non-linear arithmetic considered in Section 4,
this section is devoted to the logical framework of non-linear arithmetic SMT
with a particular focus on an SMT solving algorithm.

While an SMT formula wrt. the theory of non-linear arithmetic can be an ar-
bitrary quantifier-free Boolean combination of non-linear arithmetic constraints,
like ψ ≡

(
(sin(y2) ≤ 0.1) → (x ≤ 0 ∨ z >

√
x2 + y2)

)
, it is common to

deal with formulae of syntactically restricted shape for the sake of simplicity
wrt. the development of SMT solving tools. Similar to propositional formulae
in conjunctive normal form, we rewrite an arbitrary SMT formula as above
into a conjunction of clauses where clauses are disjunctions of primitive con-
straints. A primitive constraint is an arithmetic predicate that contains one
relational operator, at most one arithmetic operation which needs to be total1,
and up to three variables, e.g. x ≥ sin(y), x = y + z, and z < 3.7. Resem-
bling three-address code, each arithmetic constraint can be rewritten into a set
of primitive constraints. SMT formulae of the above shape are called to be in
conjunctive form or CF for short. In [16, Chapter 5], Herde presented a linear-
time procedure to convert an arbitrary non-linear arithmetic SMT formula into
an equi-satisfiable formula in CF. For the above formula ψ, an equi-satisfiable
SMT formula in CF is (hsin(y2) > 0.1 ∨ x ≤ 0 ∨ z >

√
hx2+y2) ∧ (hsin(y2) =

sin(hy2)) ∧ (hy2 = y2) ∧ (hx2+y2 = hx2 + hy2) ∧ (hx2 = x2) with fresh auxiliary
variables hsin(y2), hy2 , hx2+y2 , hx2 of sort R. From the general semantics it follows
that an SMT formula ϕ in CF is satisfied under an assignment τ iff at least one
constraint in each clause of ϕ is satisfied under τ .

The iSAT algorithm [13] has been designed to address the satisfiability prob-
lem of non-linear arithmetic SMT formulae. The frontend of the iSAT tool auto-
matically rewrites a given SMT formula into CF. In order to achieve termination
of the interval-based approach, the domains of all variables of the given formula
must be specified by bounded intervals.2 The iSAT algorithm is a generalization
of the Davis-Putnam-Logemann-Loveland (DPLL) procedure [8, 7] (with clause
learning) using interval constraint propagation (ICP) [6]. Instead of real-valued
assignments, iSAT manipulates interval valuations of the variables by alternat-
ing deduction and splitting phases, interspersed with backtracking whenever an
empty interval valuation was detected.

During the deduction phase, the solver searches for clauses in which all but
one atom are inconsistent under the current interval valuation. Such a remaining

1 This is due to obviate the issue with undefined values of partial operations. Practi-
cally, this need not be a huge restriction as most common partial arithmetic operators
can be expressed by their inverse operation. For example, the constraint y = 1/x in
which 1/x is undefined for x = 0 can be rephrased as y · x = 1 ∧ x �= 0.

2 From a practical perspective, this prerequisite seems not to be too restrictive as vari-
ables encoding physical quantities like temperature, velocity, or volume are naturally
bounded in their values. In cases where such an estimation should not be feasible
for any reason, the lower and upper interval borders can be chosen arbitrarily small
and arbitrarily large, respectively.
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consistent atom is called unit. In order to retain a chance for satisfiability of the
formula, unit atoms have to be satisfied. This is similar to unit propagation in
SAT solving. The unit atoms are therefore used for ICP during the deduction
phase. New interval bounds can thus be deduced until a fixed point is reached.
Note that ICP can cause infinite deduction chains, e.g. for the (trivial) con-
straint x = 1

2x and x ∈ [0, 1], ICP yields infinitely many interval contraction
steps, namely [0, 1] � [0, 1

2 ] � [0, 1
4 ] � [0, 1

8 ] � . . .. There are, of course, more
complicated situations that cannot be easily detected leading to this effect. In
order to achieve termination, ICP is stopped if the progress of newly deduced
bounds becomes negligible. If a conflict occurs, i.e. the interval of a variable
becomes empty, then a conflict resolution procedure is called which analyzes the
reason for the conflict. If the conflict cannot be resolved the given formula is
unsatisfiable and iSAT stops with result No. Otherwise, a conflict clause is built
(learnt) from the reason of the conflict and added to the formula in order to
prevent the solver from revisiting the same conflict again. In order to retrieve
a consistent solver state from which the proof search will be continued, conflict
resolution involves backtracking that is undoing some of the decisions and their
accompanying deductions that have been performed so far. It is worth mention-
ing that our current implementation of the iSAT algorithm is able to certify the
unsatisfiability of a result. Such a certificate is produced during the conflict res-
olution and is very similar to a resolution proof. It consists of Boolean resolution
and arithmetic deduction steps. A produced certificate can be easily verified us-
ing an external program. For a more detailed account please refer to [19]. If the
solver finds a solution, i.e. at least one atom in each clause is satisfied by every
point in the interval valuation, the algorithm stops with result Yes. In general,
equations like x = y ·z can only be satisfied by point intervals. However, reaching
such point intervals by ICP cannot be guaranteed for continuous domains. One
option to mitigate this problem is to stop the search when all intervals have a
width smaller than a certain threshold, the so-called minimum splitting width.
The resulting interval valuation can be considered as an approximate solution.
Since the given problem could nevertheless not be decided, iSAT answers Un-

known. Having completed the deduction phase and neither found a conflict nor
an (approximate) solution, iSAT performs a decision by splitting an interval. A
decision heuristics is used to select one of the intervals whose width is still greater
than or equal to the minimum splitting width. The search is then resumed using
this new interval bound which potentially triggers new deductions as described
above.

As mentioned above, the core algorithm of iSAT is only able to detect satisfi-
ability of a given formula ϕ if all points in the returned interval valuation satisfy
ϕ. This strong condition cannot be expected as soon as formula ϕ includes some
equations, as they are used for our experiments to encode the movement of ob-
jects. Consider the simple constraint x = y + z and the interval valuation σ
with σ(x) = [0, 0.02], σ(y) = [0, 0.01], and σ(z) = [0, 0.01]. Although σ actually
contains a solution, e.g. x = 0.01, y = 0.01, z = 0, iSAT cannot conclude sat-
isfiability since σ also contains some points that do not satisfy the constraint,
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e.g. x = 0.01, y = 0.01, z = 0.01. To mitigate this dis-satisfactory issue, we
implemented a technique, called strong satisfaction check [13], to certify satisfi-
ability of non-linear arithmetic SMT formulae. Section 5 will report on the first
successful implementation of this method.

4 Superposition Modulo Non-linear Arithmetic

We build on the framework of hierarchic superposition [2, 1] and shortly repeat
the relevant notions for the SUP(NLA) combination considered here. Any given
disjunction of literals can be transformed into a clause of the form Λ ‖Γ → Δ,
where Λ only contains terms of the base sort and all base terms in Γ , Δ are
variables by introducing fresh variables for the respective subterms. We need
to “purify” clauses only once – just before saturating the clauses, since if the
premises of an inference are purified clauses, then the conclusion is also purified.
For example, the clause M(x1, y1, x2, y2, t) → δ < 0 ∨M(x1 + t, y1 + cos(t) −
cos(t + δ), x2 − t, y2 − (cos(t)− cos(t + δ))) is purified to the clause δ ≥ 0, t′ ≈
t+ δ, x′1 ≈ x1 + t, x′2 ≈ x2 − t, y′1 ≈ y1 + cos(t)− cos(t+ δ), y′2 ≈ y2 − (cos(t)−
cos(t + δ)) ‖M(x1, y1, x2, y2, t) → M(x′1, y

′
1, x

′
2, y

′
2, t

′). For the overall approach
we consider the function-free Horn clause fragment. As usual we consider a
reduction ordering ≺ for the free first-order symbols that is total on ground
terms (atoms) and lifted to clauses. Ordering restrictions are solely calculated
with respect to the free part.

Definition 1 (SUP(NLA)). The superposition calculus consists of the infer-
ence rules superposition left and constraint refutation

I Λ1 ‖Γ1 → E1 Λ2 ‖E2, Γ2 → Δ2

(Λ1, Λ2 ‖Γ1, Γ2 → Δ2)σ
I Λ ‖ →

�
where for the superposition left rule σ is a simple and most general unifier of
E1 and E2, E1σ is strictly maximal in (Γ1 → E1)σ, and E2σ is maximal in
(E2, Γ2 → Δ2)σ; for the constraint refutation rule we require MR |= ∃x [

∧
Λ].

Note that we restrict our attention to purely predicative Horn clauses. There-
fore, the other inference rules superposition right and the factoring rules are
not applicable. For simplicity, we don’t consider selection nor sort constraints.
Nevertheless, we still call this calculus superposition (and not resolution) be-
cause it comes with the important ingredients of superposition: an abstract
redundancy criterion and an explicit model assumption. Both are substantial
for our approach. The redundancy concept is indispensable for termination
(see below). The explicit model assumption is indispensable for formalizing
reachability (see Section 6). A clause C ∈ N is called redundant if for all
C′ ∈ sgi(C) there are clauses C′

1, . . . , C
′
n ∈ sgi(N) such that C′

1 ∧ . . .∧C′
n |= C′

and C′
i ≺ C′ for all i. The concrete redundancy criteria considered here are

tautology and subsumption deletion. A clause Λ ‖Γ → Δ is called a tautol-
ogy iff |= ∀x [

∧
Γ →

∨
Δ] or MR �|= ∃x [

∧
Λ]. A clause Λ1 ‖Γ1 → Δ1 sub-

sumes a clause Λ1 ‖Γ1 → Δ1 if for a simple matcher σ we have Γ1σ ⊆ Γ2,
Δ1σ ⊆ Δ2, and MR |= ∀v∃u [

∧
Λ2 ⇒

∧
Λ1σ], where v = vars(Λ2) and
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u = vars(Λ1σ) \ vars(Λ2). Note that the quantifier alternation is a direct conse-
quence of the above defined abstract redundancy criterion for superposition. The
hierarchic superposition calculus is complete [2] in the usual sense if the base
theory is compact and all free function symbols ranging into the base sort are
sufficiently defined. Both assumptions obviously hold, since compactness follows
from the fact that the base theory is given by a standard model MR, and we do
not consider any free function symbols ranging into the NLA sort. However, in
practice it happens that validity/satisfiability of NLA constraints cannot be de-
cided and we obtain Unknown from the NLA reasoning procedure. Therefore,
we use the following more practical formulation of the completeness theorem,
which adopts the results of [2].

Theorem 2 (SUP(NLA) Practical Completeness). Let N be a set of Horn
clauses from FOL(NLA) without free function symbols. Then N is unsatisfiable
if SUP(NLA) derives �; N is satisfiable, if the SUP(NLA) calculus terminates
and the saturated set N∗ does not contain � nor a clause Λ ‖ →.

The above version of the completeness theorem takes care of the fact that in
practice an NLA procedure will not be able to decide the satisfiability of a
constraint, in general. Then it may happen that clauses of the form Λ ‖ → can
neither be refuted nor deleted and have to be kept. Thus being able to practically
decide constraint satisfiability is crucial for precision. For termination the same
applies to constraint implication, needed for subsumption. For the success of
our experiments (Section 6), the following simplification pipeline turns out to be
indispensable to this end.

Every time a new clause Λ ‖Γ → Δ is derived, the following simplifications
are performed on the constraint Λ of the clause.
Constant propagation: if Λ contains a literal of the form ax ≈ b, (a, b ∈ R) then
the substitution σ = [x �→ b/a] is applied onto the constraint except the literal
itself. Moreover, if the variable x does not occur in the free part of the clause,
the literal is deleted after propagation.
Deletion of duplicates : if the constraint contains syntactically equivalent literals,
say Λ = L1, . . . , Lk, Lk+1, . . . , Ln, where Li = Lj, for all 1 ≤ i, j ≤ k, then only
one of them is kept: Λ′ = L1, Lk+1, . . . , Ln.
Product distribution over sum: every product t ·

∑n
i=1 ti occurring in Λ is trans-

formed to the sum
∑n

i=1 t · ti.
Reduction of homogeneous summands: every sum

∑n
i=1 ait+S occurring in Λ is

reduced to at+ S where a1, . . . , an, a are reals and a =
∑n

i=1 ai, t – a term, S –
the rest of the sum.
Reduction of homogeneous multipliers: every product

∏k′

i=1 bi ·
∏k

i=1 t
ai · P oc-

curring in Λ is reduced to bta ·P , where a1, . . . , ak, a are naturals, b1, . . . , b′k, b –
reals, and a =

∑k
i=1 ai, b =

∏k′

i=1 bi, t are terms, P – the rest of the product.
Before an implication test between Λ2 and Λ1σ takes place, the constraints

are simplified in the above manner. Then variable-to-constant assignments oc-
curring in the antecedent are propagated onto the succedent, whereupon the
succedent is again simplified. Moreover every literal, occurring in the succedent
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Λ1σ of the implication and having a syntactical equivalent in the antecedent
Λ2, is deleted from the succedent. Note that this simplification technology has
potential for the SUP(NLA) calculus because constraints of newly generated
clauses are always copies of the constraints from the parent clauses subject to
a unifier mapping variables to variables. Then we replace every occurrence of
the transcendental function symbols sin, cos, exp, nrt, pow with fresh uninter-
preted function symbols sin′, cos′, exp′, nrt′, pow′, respectively, and recursively
rewrite every occurrence of terms with the top symbol being one of abs, min,
or max in the following way: abs(t) ≡ ite(t ≥ 0, t, −t); min(s1, . . . , sn) ≡
ite(s1 ≤ min(s2, . . . , sn), s1, min(s2, . . . , sn)); max(s1, . . . , sn) ≡ ite(s1 ≥
max(s2, . . . , sn), s1,max(s2, . . . , sn)), where “ite” stands for the operator “if then
else” available in most SMT systems. Then we check if the formula ¬(∀v ∃u
[Λ2 → Λ1σ]) is unsatisfiable in the model of linear arithmetic plus uninterpreted
functions by passing it to the SMT solver Z3 [10].

5 Strong Satisfaction

In the previous section (see Theorem 2), we have shown that the ability of
SPASS(iSAT) to prove or disprove properties depends on iSAT’s ability to con-
clusively decide whether a given formula is satisfiable or not. However, in Sec-
tion 3, we have argued that iSAT alone may often terminate with result Un-

known. We will now try to bridge the gap by presenting an a-posteriori check
that utilizes iSAT’s inconclusive answer and an analysis of the formula in order
to turn an Unknown result into a definite Yes. This check is referred to as
strong satisfaction check that, if successful, actually gives a certificate of the
existence of a solution.

For a motivating example, we assume that iSAT terminates with result Un-

known on SMT formula ϕ = (x = sin(y)) ∧ (x = y + z) over real vari-
ables x, y, z ∈ [−100, 100], and returns the approximate solution σ with σ(x) =
[0.75, 0.85], σ(y) = [2.2, 2.3], σ(z) = [−1.5,−1.4]. Though σ contains a solution,
e.g. y = 2.25, x = sin(2.25), z = sin(2.25)− 2.25, iSAT is not able to detect this
since some points in σ violate ϕ, e.g. y = 2.3, x = sin(2.25), z = sin(2.25)−2.25.
The core idea of the strong satisfaction check is to interpret above equations
as assignments by giving them a direction with the condition that each vari-
able is defined at most once. We then safely propagate small intervals through
this equation system starting with intervals for non-defined variables. The latter
intervals may be arbitrary but we use the approximate solution σ which heuris-
tically is a good choice. This results in an interval valuation σ′. The first step is
thus to (re)direct the equations s.t. each variable is defined at most once. In the
example, we re-orient x = y + z to z = x − y. Variable y is not defined by any
assignment, so we set σ′(y) = σ(y). Using equation x = sin(y), we determine the
safe interval σ′(x) = [0.74, 0.81], i.e. for each vy ∈ σ′(y) there is some vx ∈ σ′(x)
s.t. vx = sin(vy). Finally, we compute σ′(z) = [−1.56,−1.39] using z = x − y.
Due to construction, σ′ indeed contains a solution τ of ϕ, e.g. τ(y) = 2.25,
τ(x) = sin(τ(y)), τ(z) = τ(x) − τ(y).
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In general, let ϕ be a non-linear SMT formula in CF where the set of all
variables occurring in ϕ is denoted by vars(ϕ). For technical reasons and w.l.o.g.,
we assume that the initial interval ranges of all variables in vars(ϕ) are encoded
within ϕ, e.g. x ∈ [−2.1, 5] is encoded by two clauses (x ≥ −2.1) and (x ≤ 5).3

For a set PC of primitive constraints, we define the partition PC = E(PC) ∪
I(PC) into the set E(PC) of equations of form x = y ◦ z, x = ◦y, or x = c,
and into a set I(PC) of inequalities of form x ∼ y ◦ z, x ∼ ◦y, or x ∼ c, where
x, y, z are variables, c is a constant, ∼∈ {<,≤,≥, >}, and ◦ ∈ {+, −, ·, abs,
min, max, sin, cos, exp, nrt, pow}. Given an equation e of form x = y ◦ z, or
x = ◦y, or x = c we call each of the equations x = y ◦ z, y = x◦z z, z = x◦y y, or
x = ◦y, y = ◦−1x, or x = c, resp., reshuffling of e where ◦z, ◦y, and ◦−1 are the
corresponding inverse operations4 of ◦. Recall that ◦ is a total operation. Thus,
whenever a reshuffling (involving a potentially partial operation) is satisfied by
an assignment τ then the original equation is also satisfied by τ . For a set
E = {e1, . . . , ek} of equations, the set R(E) = {r1, . . . , rk} is called reshuffling
of E iff each ri is a reshuffling of ei. We call an interval valuation σ strongly
satisfying for ϕ, denoted σ |=s ϕ, iff there is a set PC of primitive constraints
and a reshuffling R(E(PC)) = {r1, . . . , rk} s.t. the following conditions hold:

1. Each clause C in ϕ contains at least one constraint in PC, i.e. C ∩PC �= ∅.
2. Each inequality constraint in I(PC) is satisfied by each point in σ.
3. For each reshuffling ri ∈ R(E(PC)) of the form x = y ◦ z, x = ◦y, or x = c

the following two conditions hold:
(a) The left-hand side variable x is defined unambiguously in the sense that

– σ(x) is a point interval, i.e. |σ(x)| = 1, (this ensures that whenever
x is defined by several reshufflings the value of x is unique) or

– x does neither occur in any rj with j > i nor on the right-hand side
of ri (i.e., x �= y and x �= z) (this ensures that x is defined by at most
one reshuffling and no direct or indirect assignment cycles occur).

(b) For all possible inputs of the right-hand side of ri taken from σ there is
a value in σ for the left-hand side s.t. reshuffling ri is satisfied, i.e.
– ∀vy ∈ σ(y) ∀vz ∈ σ(z) ∃vx ∈ σ(x) : vx = vy ◦ vz ,
– ∀vy ∈ σ(y) ∃vx ∈ σ(x) : vx = ◦vy , or
– ∃vx ∈ σ(x) : vx = c , resp.

Strong satisfaction is a sufficient condition for satisfiability as stated next.

Lemma 3. If σ |=s ϕ then there exists an assignment τ such that τ |= ϕ.

In what follows, we briefly describe the essential algorithmic details of the strong
satisfaction check. Condition 1 from above formal definition can in principle be
satisfied by an arbitrary combination of constraints from all clauses. The first
3 For integer variables like y ∈ [−31, 89], we further assume here a clause (y = −31 ∨

. . . ∨ y = 89) that ensures an integer value for y. For efficiency reasons, such latter
constraints are implicitly represented within the iSAT tool.

4 It is important to remark that the inverse operator symbols must be only locally
known in the strong satisfaction check and need not be part of the signature Ω.
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heuristic choice is thus to find a combination for which the remaining conditions
are likely to hold, especially condition 3b. Since we will make use of the ap-
proximate solution σ, taking constraints that are consistent under σ is a natural
choice and can be easily realized. The core challenge that arises in a practical
implementation of the strong satisfaction check emerges from the combination
of condition 2 and condition 3: a sequence of assignments must be found such
that no variable is assigned more than once and such that the deduced intervals
do not violate any inequality constraint. For this purpose, we mark all variables
for which the inequality constraints impose a very tight range of valid values as
a-priori feeders and consider them to have already been assigned their specific
small intervals or point-values. Such a-priori feeders potentially cause that other
variables need to be defined by some equation, e.g. if x, y are feeders in equation
x = y+ z then z becomes defined. The search for a strong satisfaction proof can
fail in this step if a cycle or double definition of a variable is detected. Such a
failure is not necessarily a sign that it is impossible to prove strong satisfaction
just that the combination of chosen a-priori feeders and heuristically selected
constraints cannot be used. While the strong satisfaction check is stopped in the
current implementation, we will investigate different heuristics to continue with
other a-priori feeders and constraints in future work.

If successful, however, there may still be several equations whose assignment
direction needs to be determined. To solve this problem, we take essentially the
algorithm from [18] which was an earlier attempt to tackle this problem. The core
idea is to always select a variable that occurs in at most one constraint and to
take it as the target for an assignment. By subsequently propagating backwards
this direction through the remaining equation system, this will either lead to
the empty system, i.e. a successful sequentialization which satisfies condition 3a,
or the detection of a cycle in which case the algorithm fails to prove strong
satisfaction. If successful, we thus have a sequence of assignments and a set of
variables that have been reached by backwards traversal through the equation
system and have thus become feeder variables.

For each feeder variable, we take the interval (or rather some value from
it) specified by the approximate solution returned by iSAT. As shown in the
example, we now perform interval propagation in the found assignment direction
(using the MPFI library [21]) until an interval valuation σ for all variables is
determined.5 This step ensures that condition 3b is satisfied. If all remaining
inequality constraints are satisfied by each point in σ then condition 2 is also
satisfied, and it is therefore guaranteed by Lemma 3 that σ also contains a
real-valued solution τ ∈ σ, thus proving satisfaction of the given SMT formula.

We finally address the earlier implementation of the strong satisfaction check
from [18]. This approach frequently fails on non-trivial formulae as it does not
take into account the above mentioned issue of a-priori feeders. It turns out

5 Note that we do not have to enclose all solutions, e.g. for x := arcsin(y) we only
have to ensure that for every value of y a corresponding value for x is included in
σ(x) (cf. condition 3b). We use the approximate solution as a hint for which of the
possibly infinitely many intervals is best and compute this one conservatively.
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that this heuristics is of utmost importance in practice since it is pointless to
use variables for which very tight ranges of valid values are imposed as non-
feeder variables. For example, taking x as the defined variable in x = y + z
where inequalities x ≥ 3 and x ≤ 3 must be satisfied is very likely to fail as the
intervals for y and z are non-point intervals in general.

6 Experiments

We have modelled a collision avoidance protocol, for which we want Spass(iSAT)
to fully automatically prove and disprove collision freeness. The idea behind the
protocol for the basic 2D scenario is the following: initially there are two objects
moving on straight lines in 2D-space (see Fig. 1); when the distance between the
objects gets less or equal to some fixed value, they start maneuvering by sin-like
trajectories such that at the beginning of the maneuver one of them goes up, the
other goes down. The maneuver lasts for one period of sin, after that the objects
continue straight line moving. Depending on the three involved parameters initial
distance, distance to start the maneuver, and distance required for safety, the
protocol yields or does not yield a collision.

More precisely, the behavior of the objects is modelled by a set of FOL(NLA)
Horn clauses such that the minimal model of those clauses describes exactly
the set of reachable states by the protocol. The minimal Horn clause model is
identical to the SUP(NLA) model assumption for a set of Horn clauses. First-
order predicates are used to model the reachable states. For example the clause
y1 ≥ y2, δ ≥ 0, p ≥ 3.1, p ≤ 3.2, cos(p

2 ) ≈ 0, t′m ≈ tm + δ, t′m ≤ 2 · p,
Δy = cos(tm)− cos(t′m), x′1 ≈ δ, y′1 ≈ y1 + Δy, x′2 ≈ δ, y′2 ≈ y2 − Δy ‖
M(x1, y1, x2, y2, tm, p, x

0
1, y

0
1 , x

0
2, y

0
2 , t) →M(x′1, y

′
1, x

′
2, y

′
2, t

′
m, p, x

0
1, y

0
1, x

0
2, y

0
2 , t)

encodes part of the behavior of the two objects during the maneuver. Now
the protocol is safe if there is no reachable state in the minimal model that
causes a collision. This is obviously not a first-order property but can be at-
tacked by superposition based reasoning as long as the safety condition has
the closed form ∃x φ where all first-order predicates in φ occur solely pos-
itively. In this case the negation of the safety condition results in a set of
purely negative clauses. Then adding such a set to a set of Horn clauses the
following holds [17]: (i) if � is derived, then the safety condition does not hold
and a counter example can be extracted from the superposition proof; (ii) if
SUP(NLA) terminates and neither � nor a clause Λ ‖ → is derived, then the
safety condition holds (see also Theorem 2). This is exactly the way we proved
(disproved) non-collision, by adding clauses of the form

√
(x1 − x2)2 + (y1 − y2)2

< 4 ‖M(x1, y1, x2, y2, tm, p, x
0
1, y

0
1 , x

0
2, y

0
2 , t) → to the axiomatization.

The 3D instance basic protocol extends the movement to 3D, where initially
the objects are moving in parallel horizontal planes, and during the maneuver
they are changing their heights following a sine-wave trajectory, see Fig. 2. The
advanced 3D scenario adds to the basic scenario arbitrary initial 3D movement,
see Fig. 3. Where in particular for this drawing we assume that the ends and
starts of the arrows are time synchronization points between the objects.
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Fig. 1. Trajectories 2D

Fig. 2. Trajectories 3D Fig. 3. Two objects with arbitrary
movement

For all three scenarios we have proved and disproved safety by modifying
the above mentioned parameters accordingly. Table 1 shows the timing for
Spass(iSAT) runs on all scenarios in seconds. The input as well as the output files
are available from the Spass homepage (www.spass-prover.org/prototypes).
For each scenario we have ran one parameter setting where the protocol is col-
lision free and Spass(iSAT) finds a model and one setting where the objects
collide, leading to a proof found by Spass(iSAT). All runs were have been per-
formed on computers equipped with Intel X5460 CPUs, 8 GB of main memory
running Linux. Concerning all experiments we have done, more than 95% of the
time has been spent by iSAT for solving NLA constraint proof obligations.

Table 1. Time Statistics

2D 3D

linear linear arbitrary

Proof 10 9 41

Model 6 6 58

Table 2 shows the impact of our simplification pipeline for finding a proof in an
unsafe parameter setting for the 3D arbitrary movement scenario. The first row
shows which NLA simplification techniques developed in this paper have been
omitted. So “None” means we have applied all, “SSC” means we have disabled
the strongsat extension, “IA” means we have disabled the linear abstraction
for implication testing, “IS” means we have disabled constraint simplification
on the generated implication problems, and “CS” means we have disabled the
basic constraint simplification techniques. Then the rest of the table shows the
results of these settings on the testing of NLA problems during the run. If the
basic constraint techniques have been disabled, Spass(iSAT) does not terminate

www.spass-prover.org/prototypes
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on the problem. Note that disabling an NLA simplification technique typically
results in extra clauses that cannot be subsumed nor detected as a tautology.
Therefore, the set of generated and kept clauses for the different cases is different.

Table 2. NLA Simplification Impact for Proof Finding

None SSC IA IS CS

Result Proof Unknown Proof Proof -

Time (sec.) 45 520 38 290 out

Constr.
sat

unsat
unknown

356
11
0

20
16

440

364
19
0

355
11
1

-
-
-

Impl.
holds

not holds
unknown

281
3040

0

296
3071

3

256
4218

0

280
6047

29

-
-
-

Table 3 shows the respective impact of our simplification pipeline for finitely
saturating the clause set in a safe parameter setting for the same scenario. Here
both disabling CS or IA leads to non-termination. Disabling SSC leads to termi-
nation where the saturated clause set contains a clause Λ ‖ → for which iSAT
without the strongsat extension cannot decide satisfiability of the constraint and
returns Unknown.

Table 3. NLA Simplification Impact for Model Finding

None SSC IA IS CS

Result Model Unknown - Model -

Time (sec.) 35 36 out 188 out

Constr.
sat

unsat
unknown

367
31
0

20
28

350

-
-
-

368
29
3

-
-
-

Impl.
holds

not holds
unknown

296
3073

1

296
3071

3

-
-
-

297
6160

44

-
-
-

7 Conclusion

To the best of our knowledge, the SUP(NLA) calculus presented here is the first
(implemented) combination of first-order and non-linear arithmetic reasoning.
Such combinations have been studied for linear arithmetic and first-order logic
(e.g. [9, 5]). Also many of those approaches can in principle be extended to the
NLA case and we believe that our simplification pipeline would be useful there
as well.
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Concerning the generated NLA constraint problems, we have tried to attack
them by applying state-of-the-art computer algebra systems. To this end we have
replaced iSAT by Maple6. But this approach has not been as successful as the
iSAT combination as in many cases Maple has not been able to find a solution
and therefore the overall solving process for the considered experiments here has
failed. Redlog [11] shows a similar behavior. By appropriate approximations of
the transcendental functions a reasonable portion of the constraints can be de-
cided, however, in particular the crucial constraints (empty clauses, subsumption
check) turn out to be specifically hard.

Collision avoidance protocols have been studied as benchmarks for various
hybrid system analysis and verification tools (e.g. [15, 20, 22]). They are related
to our collision avoidance protocol. However, these results are hard to compare
as the models differ. For example, we have also considered an explicit 3D model
where the above approaches all have developed 2D models.

We have developed the first sound and complete combination of FOL(NLA)
including an implementation, where in particular, we can cope with Unknown

results by an NLA procedure (Theorem 2, Tables 2, 3). In order to decrease the
number of Unknown answers when executing the SUP(NLA) calculus we have
suggested dedicated simplification techniques. All together with an implemen-
tation via Spass(iSAT) the approach supports fully automatic verification of
various scenarios of a non-trivial collision avoidance protocol. We are confident
that by continuing the development of the suggested simplification techniques
the performance of the overall procedure can be further significantly increased.
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Abstract. Here-and-there models and equilibrium models were investigated as a
semantical framework for answer set programming by Pearce, Cabalar, Lifschitz,
Ferraris and others. The semantics of equilibrium logic is indirect in that the
notion of satisfiability is defined in terms of satisfiability in the logic of here-and-
there. We here give a direct semantics of equilibrium logic, stated in terms of a
modal language into which the language of equilibrium logic can be embedded.

Keywords: equilibrium logic, here-and-there models, bimodal logic, answer-set
programming.

1 Introduction

A here-and-there model (HT model) is made up of two sets of propositional variables
H (‘here’) and T (‘there’) such that H ⊆ T . The logical language to talk about such
models has connectives ⊥, ∧, ∨, and⇒. The latter is interpreted in a non-classical way
and is therefore different from the material implication→:

H, T |= ϕ⇒ ψ iff H, T |= ϕ→ ψ and T, T |= ϕ→ ψ

where→ is interpreted just as in classical propositional logic. Such models were stud-
ied since Gödel in order to give semantics to an implication with strength between intu-
itionistic and material implication [7]. They were later investigated by Pearce, Cabalar,
Lifschitz, Ferraris and others as the basis of equilibrium logic, which is a semantical
framework for answer set programming [10,9,11,2,3,6,8]; we refer to the equilibrium
logic website1 for an overview.

Equilibrium models of a formula ϕ are defined in an indirect way that is based on
HT models: an equilibrium model of ϕ is a set of propositional variables T such that

1. T, T |= ϕ, and
2. there is no HT model (H, T ) such that H is weaker than T and H, T |= ϕ,

where ‘weaker’ means that H is strictly included in T . For example, T = ∅ is an equi-
librium model of p ⇒ ⊥ because (1) for the HT model (∅, ∅) we have ∅, ∅ |= p ⇒ ⊥
and because (2) there is no set H that is strictly included in the empty set.

We here give a direct semantics of equilibrium logic in terms of a modal language
having two unary modal operators [T] and [S]. Roughly speaking, [T] allows to talk

1 http://www.equilibriumlogic.net

C. Tinelli and V. Sofronie-Stokkermans (Eds.): FroCoS 2011, LNAI 6989, pp. 135–146, 2011.
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about the there-world: a valuation that is at least as strong as the actual valuation; and
[S] allows to talk about all here-worlds that are possible if we take the actual world as
a there-world: it quantifies over all valuations that are weaker than the actual world.
This language is again interpreted on HT models. We also give a semantics in terms of
Kripke models. We call our logic MEM: the Modal logic of Equilibrium Models.

We relate the language of equilibrium logic to our bimodal language by means of a
translation tr. The main clause of the translation is:

tr(ϕ⇒ ψ) = (tr(ϕ)→ tr(ψ)) ∧ [T](tr(ϕ)→ tr(ψ))

We prove that ϕ has a HT model if and only if its translation tr(ϕ) is satisfiable in MEM.
This paves the way to the proof that ϕ is a consequence of χ in equilibrium logic if and
only if the modal formula

[T] (tr(χ) ∧ [S]¬tr(χ))→ [T]tr(ϕ)

is valid in MEM.
A first attempt to relate modal logic to equilibrium logic in the style of the present

approach was presented in [5].
The paper is organised as follows. In Section 2 we introduce our modal logic of

equilibrium models MEM both semantically and axiomatically. In Section 3 we recall
the logic of here-and-there and equilibrium logic. In Section 4 we define the translation
tr from the language of the logic of here-and-there to modal logic; we prove that a
formula ϕ of the former language has a HT model if and only if tr(ϕ) has a HT model,
and that ϕ has an equilibrium model if and only if [T](tr(ϕ)∧[S]¬tr(ϕ)) has a HT model.
Section 5 concludes.

2 The Modal Logic of Equilibrium Models MEM

We now introduce the modal logic of equilibrium models MEM in the classical way:
we start by defining its bimodal language and its semantics and then axiomatise its
validities.

2.1 Language

Throughout the paper we suppose given a countably infinite set of propositional vari-
ables P. The elements of P are noted p, q, etc. Our language L[T],[S] is bimodal: it has
two modal operators [T] and [S]. PreciselyL[T],[S] is defined by the following grammar:

ϕ� p | ⊥ | ϕ→ ϕ | [T]ϕ | [S]ϕ

where p ranges over P. [T]ϕ may be read “ϕ holds at the there world” and [S]ϕ may be
read “ϕ holds at every (strictly) weaker world”.

The set of propositional variables occurring in formula ϕ is noted Pϕ.
L[T] is the sublanguage of L[T],[S] formulas without [S], i.e. L[T] formulas are built

from [T] and the Boolean connectives only.

We employ the standard abbreviations of the Boolean connectives: 
 def
= ⊥ → ⊥,

¬ϕ def
= ϕ → ⊥, ϕ ∨ ψ def

= ¬ϕ → ψ, and ϕ ∧ ψ def
= ¬(ϕ → ¬ψ). Moreover, 〈T〉ϕ and

〈S〉ϕ respectively abbreviate ¬[T]¬ϕ and ¬[S]¬ϕ.
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2.2 Kripke Models

We interprete the formulas of our language L[T],[S] in a class of Kripke models that has
to satisfy particular constraints. We then give an axiomatisation of the validities of that
class of models and prove its completeness.

Consider the class of Kripke models M = 〈W,T ,S,V〉 such that

– W is a set of possible worlds;
– V is a valuation on W mapping possible worlds w ∈ W to sets of propositional

variables Vw ⊆ P;
– T ,S ⊆ W ×W are relations on W such that:

(d) for every w there is a v ∈ W such that wT v;
(alt) for every w, if wT v and wT v′ then v = v′;

(heredity) for every w, u, if wSu then Vu ⊆ Vw;
(fullpast) for every w, for every finite P,Q ⊆ Vw such that P is nonempty,

there is u such that: wSu,Vu ∩ P = ∅ and Q ⊆ Vu;

(mtrans) for every w, u, v, if wSu and uT v then wT v;
(wconv) for every w, v, if wT v then w = v or vSw;

The first two constraints are about the relation T , the next two are about the relation S,
and the last two are about both. Constraints (d) and (alt) say that at any world w there
is exactly one possible world that is accessible via T . The (heredity) constraint is just
as the heredity constraint of intuitionistic logic, except that the intuitionistic relation is
the inverse of S. In the finite case the (fullpast) constraint basically says that for every
w, the set of worlds accessible from w contains all those worlds u whose valuations Vu

are included in Vw. The mixed transitivity constraint (mtrans) together with (d) and (alt)
entails that in S connected parts of the graph M there is a unique there-world. The weak
conversion constraint (wconv) says that T is contained in S−1 ∪ idW , where idW is the
diagonal of W.

Let us denote byT (w) the unique world that is accessible from w via T . The function
T is well-defined because of constraints (d) and (alt).

Proposition 1. Every Kripke model satisfies the following properties.

1. For every w, T (T (w)) = T (w).
2. For every w, u, if wSu then T (w) = T (u).
3. For every w such that Vw is finite, the set {Vu : wSu} equals either {V : V ⊆ Vw},

or {V : V ⊂ Vw}.

The last property is due to the (fullpast) constraint and says that for finite Vw, the set of
valuations associated to the worlds that are accessible from w via S is either the set of
subsets of Vw or the set of strict subsets of Vw: it equals either 2Vw or 2Vw \ {Vw}. This
will be used in the proof of Proposition 8.
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2.3 Truth Conditions

The truth conditions for our bimodal logic are standard. The relation T interprets [T]
and S interprets [S]:

M,w |= p iff p ∈ Vw;
M,w �|= ⊥;
M,w |= ϕ→ ψ iff M,w �|= ϕ or M,w |= ψ
M,w |= [T]ϕ iff M,T (w) |= ϕ;
M,w |= [S]ϕ iff M, u |= ϕ for every u such that wSu.

When M,w |= ϕ then we say that ϕ has a Kripke model. Moreover, ϕ is valid in Kripke
models if and only if M,w |= ϕ for every model M and possible world w of M. Finally,
ϕ is satisfiable in Kripke models if and only if ¬ϕ is invalid in Kripke models, i.e. if and
only if M,w |= ϕ for some model M and possible world w of M.

The next proposition says that when checking satisfaction it is enough to only con-
sider models with finite valuations.

Proposition 2. Let ϕ be a L[T],[S] formula. Let M = 〈W,T ,S,V〉 be a Kripke model
satisfying (d), (alt), (heredity), (fullpast), (mtrans), and (wconv). Let the valuation Vϕ

be defined as follows:
Vϕw = Vw ∩ Pϕ, for every w ∈ W

Then Mϕ = 〈W,T ,S,Vϕ〉 is a Kripke model satisfying (d), (alt), (heredity), (fullpast),
(mtrans), and (wconv), and M,w |= ϕ if and only if Mϕ,w |= ϕ.

Proof. That M,w |= ϕ if and only if Mϕ,w |= ϕ can be shown by straightforward
induction on the form of ϕ.

As to the constraints, those that are only about the accessibility relations are clearly
preserved because we just modify the valuation. The model Mϕ satisfies constraint
(heredity): suppose wSu; as M satisfies (heredity) we have Vu ⊆ Vw; hence Vϕu ⊆ Vϕw.
Finally, the model Mϕ satisfies (fullpast): suppose P,Q ⊆ Vϕw = Vw ∩ Pϕ are finite sets
such that P � ∅; as M satisfies (fullpast) there is u such that wSu and Vu ∩ P = ∅ and
Q ⊆ Vu. Clearly, for that u we also have Vϕu ∩ P = ∅; and for that very u we also have
Q ⊆ Vϕu = Vu ∩ Pϕ. q.e.d.

We note that this property is different from the standard finite model property of modal
logics which requires a finite set of possible worlds.

2.4 Axiomatics, Decidability, and Complexity

We now give an axiomatisation of the MEM validities.
First we define the fragment of positive Boolean formulas ofL[T],[S] by the following

grammar:
ϕ+ � p | ϕ+ ∧ ϕ+ | ϕ+ ∨ ϕ+

Observe that every positive formula is falsifiable. (Note that 
 is not a positive Boolean
formula.)
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Table 1. Axiomatisation of MEM

K([T]) the axioms and inference rules of modal logic K for [T]
K([S]) the axioms and inference rules of modal logic K for [S]

D([T]) [T]ϕ→ 〈T〉ϕ
Alt([T]) 〈T〉ϕ→ [T]ϕ

Heredity([S]) 〈S〉ϕ+ → ϕ+ for ϕ+ a positive Boolean formula
Negatable([S]) (ϕ+ ∧ ψ+)→ 〈S〉(¬ϕ+ ∧ ψ+)

for ϕ+, ψ+ positive Boolean formulas
s.th. Pϕ+ ∩ Pψ+ = ∅

MTrans([S], [T]) [T]ϕ→ [S][T]ϕ
WConv([T], [S]) ϕ→ [T](ϕ ∨ 〈S〉ϕ)

Our axiom schemas and inference rules are listed in Table 1. The axiom schemas
D([T]) and Alt([T]) are familiar from standard textbooks on modal logic. The schema
Heredity([S]) captures the heredity constraint of intuitionistic logic. Note that it could
be replaced by the axiom schema 〈S〉p→ p, where p is a propositional variable. It could
also be replaced by ¬ϕ+ → [S]¬ϕ+, for ϕ+ a positive Boolean formula. The schema
Negatable([S]) ensures that the modal operator [S] quantifies over all strict subsets of
the actual valuation. The schema MTrans([S], [T]) is an axiom of mutual transitivity.
The schema WConv([T], [S]) is a weak conversion axiom familiar from tense logics.

The notions of a proof and of provability of a formula are defined as usual in modal
logic. For example [S]⊥ → ¬p can be proved from Negatable([S]) by K([S]), i.e. by
standard modal principles. The proof of the transitivity axiom [T]ϕ → [T][T]ϕ and its
converse are provable is a bit longer.

Proposition 3. The schema [T]ϕ↔ [T][T]ϕ is provable.

Proof.

1. [T]ϕ→ [T]([T]ϕ ∨ 〈S〉[T]ϕ) (axiom WConv([T], [S]))
2. 〈S〉[T]ϕ→ 〈S〉〈T〉ϕ (axiom D([T]) and K([S]))
3. 〈S〉〈T〉ϕ→ 〈T〉ϕ (axiom MTrans([S], [T]))
4. 〈T〉ϕ→ [T]ϕ (axiom Alt([T]))
5. 〈S〉[T]ϕ→ [T]ϕ (from 2, 3, 4)
6. [T]ϕ→ [T]([T]ϕ ∨ [T]ϕ) (from 1 and 5)
7. [T]ϕ→ [T][T]ϕ (from 6)
8. [T][T]ϕ→ 〈T〉〈T〉ϕ (axiom D([T]) twice, and K([S]))
9. 〈T〉ϕ→ 〈T〉〈T〉ϕ (from 4, 7, 8)

10. [T]ϕ↔ [T][T]ϕ (from 7, 9)

q.e.d.

The next schema is also going to be useful.
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Proposition 4. The following formula schema is provable:

Negatable′([S])
(
(
∧

p∈P p) ∧ (
∧

q∈Q q)
)
→ 〈S〉

(
(
∧

p∈P ¬p) ∧ (
∧

q∈Q q)
)

for P,Q ⊆ P finite, P nonempty, and P ∩ Q = ∅

Proof. Negatable′([S]) can be proved from Negatable([S]) as follows. Suppose P,Q ⊆ P
finite, P nonempty, and P ∩ Q = ∅. The implication

((
∧

p∈P
p) ∧ (

∧

q∈Q
q))→ ((

∨

p∈P
p) ∧ (

∧

q∈Q
q))

is valid in classical propositional logic. Then Negatable′([S]) follows with the axiom
schema Negatable([S]). q.e.d.

Our axiomatisation is sound and complete w.r.t. the set of formulas that are MEM
valid.

Theorem 1. Let ϕ be a L[T],[S] formula. ϕ is valid in Kripke models of MEM if and
only if ϕ is provable from the axioms and inference rules of MEM.

Proof.
Soundness is proved as usual. We just consider the case of axiom Negatable([S]). Let ϕ+

and ψ+ be positive Boolean formulas such that Pϕ+ ∩Pψ+ = ∅. Suppose M,w |= ϕ+∧ψ+.
Put ϕ+ in conjunctive normal form, and let κ = (

∨
P) be some clause of that CNF,

for some P ⊆ Pϕ+ � ∅. (Observe that P � ∅ by the definition of positive formulas.)
Let Pw = P ∩ Vw. We have Pw � ∅ because M,w |= κ. Let Q = Pϕ \ Pw. As M
satisfies (fullpast) there is a u ∈ W such that uTw, Vu ∩ Pw = ∅ and Q ⊆ Vw. Hence
M, u �|= κ, and therefore M, u �|= ϕ+. As Pϕ+ ∩ Pψ+ = ∅ and as Vu differs from Vw only
by variables from Pϕ+ we also have M, u |= ψ+. Hence M, u |= ¬ϕ+ ∧ ψ+, and therefore
M,w |= 〈S〉(¬ϕ+ ∧ ψ+).

To prove completeness w.r.t. Kripke models of MEM we use canonical models
[1,4]. Consider the set W of maximal consistent sets of MEM. Define the accessibility
relations T and S on W by:

uTw iff {ϕ : [T]ϕ ∈ u} ⊆ w
uSw iff {ϕ : [S]ϕ ∈ u} ⊆ w

and define a valuation V such that Vw = w ∩ P for every w ∈ W. Let us prove that the
canonical model is a legal Kripke model of MEM.

– Axioms D([T]) and Alt([T]) ensure that T is a total function, i.e. the canonical
model satisfies constraints (d) and (alt).

– Axiom Heredity([S]) ensures that the canonical model satisfies the heredity con-
straint, viz. that wSu implies Vu ⊆ Vw. Indeed, suppose wSu and p ∈ u. As u
contains 〈S〉p→ p and as w is maximal consistent we have p ∈ w.
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– Axiom Negatable([S]) guarantees the (fullpast) constraint. To see this take some
w ∈ W and two finite sets of propositional variables P,Q ⊆ w ∩ Vw such that P
is nonempty. As w is a maximal consistent set it contains (

∧
p∈P p) ∧ (

∧
q∈Q q). As

by Proposition 4 w contains every instance of Negatable′([S]), it must also contain
〈S〉((
∧

p∈P ¬p)∧ (
∧

q∈Q q)). Hence by definition of S there is some u ∈ W such that
uSw and u contains (

∧
p∈P ¬p) ∧ (

∧
q∈Q q). Therefore P ∩ u = ∅ and Q ⊆ u.

– The weak conversion axiom WConv([T], [S]) ensures constraint (wconv).
– The mixed transitivity axiom MTrans([S], [T]) ensures constraint (mtrans).

Hence the canonical model satisfies all constraints, and is therefore a legal Kripke model
of MEM.

The proof of the truth lemma is as usual. q.e.d.

3 HT Logic and Equilibrium Logic

In this section we are going to formally define HT logic and equilibrium logic.

3.1 The LanguageL⇒
The language L⇒ is common to HT logic and equilibrium logic. It is defined by the
following grammar:

ϕ� p | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ

where p ranges over P. The other Boolean connectives are defined as abbreviations in
the same way as for our bimodal language: negation ¬ϕ is defined as ϕ ⇒ ⊥, and 
 is
defined as ⊥ ⇒ ⊥.

3.2 Here-and-There Logic

A HT model is a couple (H, T ) such that H ⊆ T ⊆ P. The set T is called ‘there’ and H
is called ‘here’.

Let (H, T ) be a HT model. The truth conditions for L⇒ formulas are as follows:2

H, T |= p iff p ∈ H
H, T �|= ⊥
H, T |= ϕ ∧ ψ iff H, T |= ϕ and H, T |= ψ
H, T |= ϕ ∨ ψ iff H, T |= ϕ or H, T |= ψ
H, T |= ϕ⇒ ψ iff H, T |= ϕ→ ψ and T, T |= ϕ→ ψ

When H, T |= ϕ then we say that (H, T ) is a HT model of ϕ. A formula ϕ is HT valid if
and only if every HT model is also a HT model of ϕ.

2 In the last clause we use material implication as a shorthand in order to give a concise for-
mulation. To spell this out, the truth condition for → is the standard condition for material
implication: H,T |= ϕ→ ψ iff H,T �|= ϕ or H, T |= ψ.
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3.3 Equilibrium Logic

An equilibrium model of a L⇒ formula ϕ is a set of propositional variables T ⊆ P such
that

1. (T, T ) is a HT model of ϕ;
2. no (H, T ) with H ⊂ T is a HT model of ϕ.

Here are two examples. First, the empty set is the only equilibrium model of both
 and
¬p: for example {q} has the strict subset ∅ such that ∅, {q} |= 
 and ∅, {q} |= p. Second,
the set {p} is not an equilibrium model of ¬p⇒ q because ∅, {p} �|= ¬p⇒ q.

Let ϕ and χ be L⇒ formulas. ϕ is a consequence of χ in equilibrium models, written
χ |=HT ∗ ϕ, if and only if for every equilibrium model T of χ, (T, T ) is an HT model of
ϕ. For example we have 
 |=HT ∗ ¬p and ¬p⇒ q |=HT ∗ q.

4 From HT Logic and Equilibrium Logic to Modal Logic

In this section we are going to translate HT logic and equilibrium logic into our logic
MEM.

4.1 TranslatingL⇒ to L[T]

To start we translate the language L⇒ of both HT logic and equilibrium logic into the
languageL[T] of MEM. We recursively define the mapping tr as follows:

tr(p) = p for p ∈ P
tr(⊥) = ⊥
tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ)
tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ)
tr(ϕ⇒ ψ) = (tr(ϕ)→ tr(ψ)) ∧ [T](tr(ϕ)→ tr(ψ))

This translation combines the Gödel translation from intuitionistic logic to modal logic
S4 with Boolos’s splitting translation from modal logic S4 to modal logic K4. The
main clause of the former is tr(ϕ ⇒ ψ) = �(tr(ϕ) → tr(ψ)), for some S4 operator �.
The main clause of the latter is tr(�ϕ) = tr(ϕ) ∧ [T]tr(ϕ), where [T] is a K4 operator
(the operator of our bimodal logic).

Here are some examples.
tr(
) = tr(⊥ ⇒ ⊥) = (⊥ → ⊥) ∧ [T](⊥ → ⊥).

The latter is equivalent to 
 in any normal modal logic.
tr(¬p) = tr(p⇒ ⊥) = (p→ ⊥) ∧ [T](p→ ⊥).

This is equivalent to ¬p ∧ [T]¬p in any normal modal logic.
tr(p ∨ ¬p) = tr(p) ∨ tr(p⇒ ⊥) = p ∨ ((p→ ⊥) ∧ [T](p→ ⊥)).

This is equivalent to p ∨ [T]¬p in any normal modal logic.
Observe that translated formulas may be exponentially longer than the original

formulas.
Our translation will be used to relate both HT logic and equilibrium logic to MEM.
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4.2 From HT Logic to MEM

The fragmentL[T] of the languageL[T],[S] is at least as expressive on HT models as L⇒,
modulo the translation tr.

Proposition 5. Let T be a set of propositional variables and let MT = 〈W,T ,S,V〉 be
a quadruple such that:

W = 2T ;
Vh = h, for every h ∈ W;
T = W × {T };
S = ⊃.

Then M is a MEM model, and (H, T ) |= ϕ if and only if MT ,H |= tr(ϕ), for every
H ⊆ T and for every L⇒ formula ϕ.

So in the last line S is defined to be the strict superset relation on 2T . For example for
the HT model (∅, ∅) we obtain M∅ = 〈W,T ,S,V〉 with W = {∅}, T = {〈∅, ∅〉}, and
S = ∅; and for the HT model (∅, {p}) we obtain M{p} = 〈W,T ,S,V〉 with W = {∅, {p}},
T = {〈∅, {p}〉, 〈{p}, {p}〉}, and S = {{p}, ∅}}.

Proof. First, M is a legal MEM model: M satisfies constraints (d), (alt), (heredity),
(fullpast), (mtrans), and (wconv). Second, one can prove by a straightforward induction
on the form of ϕ that H, T |= ϕ iff M, T |= ϕ, for every H ⊆ T . q.e.d.

Proposition 6. Let M = 〈W,T ,S,V〉 be a MEM model. Then M,w |= tr(ϕ) if and only
if Vw,VT (w) |= ϕ, for every w ∈ W and for every L⇒ formula ϕ.

Proof. As expected the proof is by induction on the form of ϕ. The only non trivial case
is that of the intuitionistic implication ψ1 ⇒ ψ2. We have:

M,w |= tr(ψ1 ⇒ ψ2) iff M,w |= tr(ψ1)→ tr(ψ2) and M,T (w) |= tr(ψ1)→ tr(ψ2)
iff Vw,VT (w) |= ψ1 → ψ2 and VT (w),VT (w) |= ψ1 → ψ2 (by I.H.)
iff Vw,VT (w) |= ψ1 ⇒ ψ2

q.e.d.

Theorem 2. Let ϕ be a L⇒ formula. Then ϕ is HT valid if and only if tr(ϕ) is MEM
valid.

Proof. This follows from Proposition 5 and Proposition 6. q.e.d.

4.3 From Equilibrium Logic to MEM

The same construction as for HT logic allows us to turn equilibrium models into MEM
models.
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Proposition 7. Let T ⊆ P and let MT = 〈W,T ,S,V〉 be a quadruple such that:

W = 2T ;
Vh = h, for every h ∈ W;
T = W × {T };
S = ⊃.

Then MT is a MEM model, and T is an equilibrium model of ϕ if and only if MT ,T (H) |=
tr(ϕ) ∧ [S]¬tr(ϕ), for every H ⊆ T and for every L⇒ formula ϕ.

Proof. First of all, MT is a legal MEM model as in Proposition 5. By definition T is an
equilibrium model of ϕ if and only if T, T |= tr(ϕ) and H, T �|= tr(ϕ) for every H ⊂ T . So
Proposition 5 tells us that T is an equilibrium model of ϕ if and only if MT , T |= tr(ϕ)
and MT ,H �|= tr(ϕ) for every H ⊂ T . As TSH iff H ⊂ T , it follows that the latter is the
case if and only if MT , T |= tr(ϕ) and MT ,H �|= tr(ϕ) for every H such that TSH, i.e.
if and only if MT , T |= tr(ϕ) ∧ [S]¬tr(ϕ). Therefore MT ,T (H) |= [T](tr(ϕ) ∧ [S]¬tr(ϕ))
for every H ∈ W (because T is the only element of W such that HTT ). q.e.d.

Proposition 8. Let M = 〈W,T ,S,V〉 be a MEM model, let q ∈ P \ Pϕ be a proposi-
tional variable not occurring in ϕ, and let T be defined as:

T =

⎧⎪⎪⎨⎪⎪⎩
VT (w) if Vu ⊂ Vw for every u such that wSu

VT (w) ∪ {q} if Vu = Vw for some u such that wSu

Then M,T (w) |= tr(ϕ) ∧ [S]¬tr(ϕ) if and only if T is an equilibrium model of ϕ, for
every w ∈ W.

Proof. By Proposition 2 we may suppose w.l.o.g. that Vw is finite for every w ∈ W. We
consider two cases.

The first case is when Vu ⊂ Vw for every u such that wSu. By item 3 of Proposition
1 the set of S accessible worlds equals the set of strict subsets of Vw. Therefore:

M,T (w) |= tr(ϕ) ∧ [S]¬tr(ϕ)
iff M,T (w) |= tr(ϕ) and M, u �|= tr(ϕ) for every u such that T (w)Su
iff VT (w),VT (w) |= ϕ and Vu,VT (w) �|= ϕ for every u such that T (w)Su (by Prop. 6)
iff VT (w),VT (w) |= ϕ and H,VT (w) �|= ϕ for every H ⊂ VT (w) (v.s.)
iff T, T |= ϕ and H, T �|= ϕ for every H ⊂ T

Second, if Vu = Vw for some u such that wSu then we have T = VT (w) ∪ {q}. Therefore:

M,T (w) |= tr(ϕ) ∧ [S]¬tr(ϕ)
iff M,T (w) |= tr(ϕ) and M, u �|= tr(ϕ) for every u such that T (w)Su
iff VT (w),VT (w) |= ϕ and Vu,VT (w) �|= ϕ for every u such that T (w)Su (by Prop. 6)
iff VT (w),VT (w) |= ϕ and H,VT (w) �|= ϕ for every H ⊆ VT (w) (v.s.)
iff VT (w) ∪ {q},VT (w) ∪ {q} |= ϕ and H,VT (w) ∪ {q} �|= ϕ for every H ⊆ VT (w) ∪ {q}
iff T, T |= ϕ and H, T �|= ϕ for every H ⊂ T

q.e.d.
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For example consider the set T = ∅ and the formula ϕ = 
. We have seen above
that ∅ is the only equilibrium model of 
. Likewise, (∅, ∅) is the only HT model of
[T] (tr(
) ∧ [S]¬tr(
)). This can be seen by simplifying the latter:

[T] (tr(
) ∧ [S]¬tr(
))↔ [T] (
 ∧ [S]¬
)
↔ [T][S]⊥

As we have seen, the only HT model of [T][S]⊥ is (∅, ∅).
We are now ready for the grand finale where we capture equilibrium logic in our

bimodal logic.

Theorem 3. Let ϕ and χ be L⇒ formulas. Then χ |=HT ∗ ϕ if and only if

[T] (tr(χ) ∧ [S]¬tr(χ))→ [T]tr(ϕ)

is MEM valid.

Proof. This follows from Proposition 7 and Proposition 8. q.e.d.

Let us consider an example. We have seen that 
 |=HT ∗ ¬p, i.e. that ¬p is a conse-
quence of 
 in equilibrium models. We have seen in Section 4.1 that tr(
) is equivalent
to 
 and that tr(¬p) is equivalent to ¬p ∧ [T]¬p. Theorem 3 tells us that the formula
ϕ = [T](tr(
)∧ [S]¬tr(
))→ [T](tr(¬p)) must be provable from the axioms and infer-
ence rules of MEM. This can be established by the following sequence of equivalent
formulas:

1. [T](tr(
) ∧ [S]¬tr(
))→ [T](tr(¬p))
2. [T](
∧ [S]¬
)→ [T](¬p ∧ [T]¬p) (v.s.)
3. [T][S]⊥ → ([T]¬p ∧ [T][T]¬p) (by K([T]))
4. [T][S]⊥ → ([T]¬p ∧ [T]¬p) (by Prop. 3)
5. [T][S]⊥ → [T]¬p

The last line is provable in our logic: indeed, we have seen that [S]⊥ → ¬p can be
proved from Negatable([S]) by standard modal principles. From this we can prove the
last formula in our list by standard modal principles. Therefore the original formula ϕ
is provable in our logic.

5 Conclusion

In this paper we have investigated the modal logic MEM that is behind equilibrium
logic. We have shown that a logic with two modal operators [T] and [S] allows to
capture the minimisation that is only expressed in the metalanguage in the standard
definition of equilibrium models. We have shown that MEM satisfiability is decidable
and that can be checked in polynomial space. We have also given a sound and complete
axiomatisation.

It remains to give a lower bound for the complexity of MEM. It also remains to
design a translation from the language of equilibrium logic to that of our bimodal logic
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that avoids exponential growth of the formula length. This can however be done in a
quite straightforward way by integrating a modal operator [T]∗ whose truth condition
in HT models is:

H, T |= [T]∗ϕ iff H, T |= ϕ and T, T |= ϕ

In terms of Kripke models [T]∗ is interpreted by the reflexive closure of the accessibil-
ity relation T interpreting [T]. However, a drawback of the addition of a third modal
operator is that the formalism gets more cumbersome.
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(eds.) ICLP 2007. LNCS, vol. 4670, pp. 104–118. Springer, Heidelberg (2007)

4. Carnielli, W.A., Pizzi, C., Bueno-Soler, J.: Modalities and Multimodalities. In: Logic, Epis-
temology, and the Unity of Science. Springer, Heidelberg (2009)
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Abstract. Many functional programs and higher order term rewrite
systems contain, besides higher order rules, also a significant first order
part. We discuss how an automatic termination prover can split a rewrite
system into a first order and a higher order part. The results are appli-
cable to all common styles of higher order rewriting with simple types,
although some dependency pair approach is needed to use them.

Keywords: Higher order rewriting, termination, dependency pairs,
modularity.

1 Introduction

Termination of term rewrite systems has been an area of active research for
several decades. In recent years the field of automatically proving termination
has flourished, and several strong provers have been developed to participate
in the annual International Termination Competition; there is a wide range
of automated methods available for (and used in) these tools: the dependency
pair framework [3,17,14], polynomial and matrix orderings [9,8], recursive path
orderings [7], semantic labelling [36], and many more techniques.

In higher order termination, however, fewer results have been obtained so
far. Recursive and monotonic semantic path orderings have been generalised to
a higher order setting [21,5,6], but other automatable term orderings have not
(yet?) been extended to this setting.

In the last three years there has been a lot of work on higher order dependency
pair approaches and several strong results have been obtained, such as the ability
to use argument filterings and to restrict to non-collapsing dependency pairs
[28,32,26]. But after simplifying the ordering requirements on terms with this
approach, we still have little but a higher order RPO to compare them.

However, in many (realistic) term rewrite systems, only a small number of
the rules use functional variables or λ-abstraction. The majority of the rules
usually consists entirely of first order symbols. It would therefore be convenient
to analyse termination of at least those rules directly with first order techniques.
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The progress in dependency pair approaches opens possibilities: we can split
the dependency pairs into those which could be considered first order and the
higher order remainder, and analyse termination of these parts separately. While
the first order dependency pairs classically still need to be regarded together with
all rules from the underlying system (some of which are higher order), it may be
possible to remove these higher order rules, or replace them by first order ones.

In this paper we discuss how to reduce the termination of an orthogonal or
finitely branching higher order term rewrite system to the termination of a first
order (sub-)system and a (smaller) dependency pair problem. The technique is
comparable to a usable rules [14,18] approach, but focusses on first order rules.
We aim to be as general as possible by not choosing a definition of dependency
pairs and assuming as little as possible about the formalism. Consequently, the
results presented in this paper can be used for all the common styles of higher
order rewriting, and with both dynamic and static dependency pairs [31,32].

We have implemented the method in the higher order termination prover
WANDA [24], using the tool AProVE [12] to analyse termination of the first order
part of a higher order rewrite system. As far as we know, this is the first time a tool
for termination of higher order rewriting is combined with a first order termina-
tion tool. Experimental results (see Section 5) demonstrate that this combination
significantly improves the strength of the prover.

Higher Order Rewriting. “Higher order rewriting”, rewriting with some form
of functional variables, comes in several forms: typed and untyped, with and
without λ-abstraction. To understand the relevance of this work, it should be
noted that these styles are fundamentally different.

Without giving complete definitions, consider the system with two function
symbols: app : o⇒o⇒o (which takes two arguments of type o and returns an
object of type o) and lam : (o⇒o)⇒o (which takes a functional argument of type
o⇒o and returns an object of type o), and a single rule app (lam F ) x→ F x.
In simply-typed applicative systems, terms are built from typed constants and
a binary application operator. The given system terminates, because the size
of a term decreases with every reduction step. In higher order systems with λ-
abstraction, β-reduction may increase the size of a term. Here, defining ω =
lam (λx.app x x), there is a loop app ω ω → (λx.app x x) ω →β app ω ω.

Since terms in a formalism with λ-abstraction may include anonymous func-
tions (such as λx.app x x) whose presence may give rise to non-termination,
these formalisms cannot easily be simulated with applicative systems. In addi-
tion, in an applicative system it is impossible to express rules like this derivation
rule:

D (λx.sin(Z(x))) → λx.(D (λy.Z(y)) x)× cos(Z(x))

As we will see below, applicative systems can be transformed into standard first
order TRSs via some kind of uncurrying; thus, this work is primarily relevant
for formalisms which do have λ-abstraction.

Related Work. Other work on using first order techniques in higher order
rewriting is often focussed on applicative systems, where only terms without
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binders like λ are considered. By [22], currying untyped TRSs does not affect
termination and certain other properties. In [19] an uncurrying transformation
from untyped applicative systems to standard first order TRSs is used, which
preserves and reflects termination. The result of [13] is similar, but works on
a more restricted set of problems, and presents termination techniques that
operate directly on applicative systems. In [1,2] simply typed applicative systems
are discussed; here, leading variables are eliminated by instantiating them with
“template” terms of the right type. Having this, they can be transformed into
many-sorted TRSs.

However, these results do not apply to systems with binders and β-reduction,
nor does it seem likely that they can easily be extended to such a formalism.

In [11] termination is studied for Haskell programs, a (higher order) polymor-
phic functional language, via a translation to first order term rewriting. The
approach relies on symbolic partial evaluation of a start term, which is made
feasible essentially by Haskell’s deterministic evaluation strategy. In a general
term rewrite setting, however, there is no fixed strategy, which renders the con-
struction from [11] infeasible. Moreover, we are interested in termination of all
terms, while the construction in [11] considers only terms of a given form.

In this paper, we consider typed higher order rewriting which may have
binders; we show how part of a higher order termination problem can be dealt
with as a first order problem (leaving the truly higher order part to higher or-
der techniques). An early work in this context, [33], considers termination of
the combination of typed λ-calculus with first order TRSs. A first modularity
result with higher order rules is given in [20], where the authors show that a
terminating first order system combined with a number of higher order rules is
terminating if the higher order rules satisfy certain restrictions, and the first or-
der part is non-duplicating. The restriction on the first order rules is not present
in the current work, nor do we pose limitations on the higher order part.

Another relevant work is [32], which studies static dependency pairs for a
subset of the HRS formalism and defines a usable rules approach. The usable
rules for a set of first order dependency pairs are all first order. However, this
approach does not give an equivalence result like our Theorem 9. In addition,
we do not choose a definition of dependency pairs or a formalism.

2 Preliminaries

As stated in the introduction, we aim for generality. Rather than focussing on a
formalism, we will discuss the basic definitions used in common styles of higher
order rewriting with simple types. Consequently, these definitions are incomplete,
but our results can be used for instance with AFSs [21], HRSs [29] and CRSs [23].

Types. Given a set of base types B, types are built according to the grammar:

T = B | T ⇒T

The ⇒ associates to the right; a type of the form σ ⇒ τ is called functional.
Every type can be written in the form σ1⇒ . . .⇒σn⇒ ι with n ≥ 0 and ι ∈ B.



150 C. Fuhs and C. Kop

Terms. A term is an expression s over a set F of typed function symbols and a
set V of typed variables, for which we can derive s : σ for some type σ using the
following recursive rules (which also define the set FV (s) of free variables of s):

(var) x : τ if x : τ ∈ V FV (x) = {x}
(fun) f : τ if f : τ ∈ F FV (f) = ∅
(abs) λx.s : σ⇒τ if x : σ ∈ V and s : τ FV (λx.s) = FV (s) \ {x}
(app) s · t : τ if s : σ⇒τ and t : σ FV (s · t) = FV (s) ∪ FV (t)

The · operator associates to the left and is usually omitted; a term s t r is short
for (s · t) · r. We consider term equality modulo renaming of bound variables
(α-conversion), so λx.s = λy.s[x := y] if y does not occur in s.
Note that this is a general definition of terms; there are several higher order
formalisms which do not allow, for instance, a term (λx.s) · t, or f s : σ⇒τ .

Define head(s), the head symbol of s, as the first part of an application:
head(s) = s if s is a variable, constant or abstraction, and head(u v) = head(u).

Meta-Terms. Some formalisms, like Klop’s CRSs [23] or Blanqui’s definition
of IDTSs [4], use special meta-terms to construct rules. A meta-term is a typed
expression generated with clauses (var), (fun), (abs), (app) and additionally:

(meta) Z(s1, . . . , sn) : τ if s1 : σ1, . . . , sn : σn and Z : [σ1, . . . , σn]⇒τ ∈MV

where MV is a fresh set of meta-variables, each equipped with a vector of input
types (σ1, . . . , σn, where n may be 0) and an output type (τ); the si are meta-
terms. Evidently, all terms are also meta-terms. Meta-terms can be used to match
a term which may contain some bound variables, for instance in a rule like:

map (λx.F (x)) (cons h t) → cons F (h) (map (λx.F (x)) t)

Note that not all higher order formalisms use meta-variables; for instance Jouan-
naud’s and Okada’s AFSs [21] use variables for matching instead, at the price of
some (easy) expressivity. Nipkow’s HRSs [29] also use variables, but here terms
are equivalence classes modulo β/η, which is not always a practical modelling.
In the examples in this paper, we will use meta-variables to define rules.

Contexts and Subterms. A context is a term containing one occurrence of
a special symbol �σ : σ. Contexts are usually denoted as C[], and C[] with �σ

replaced by some t of type σ is denoted C[t]. If s = C[t], then t is a subterm of
s, denoted s� t. If C is non-empty, then t is a strict subterm of s, denoted s� t.

Substitutions. A substitution is a type-preserving function mapping variables
and meta-variables to terms; substitutions on a finite domain are usually denoted
[x1 := s1, . . . , xn := sn]. A substitution γ may be applied on (meta-)terms by
placewise replacing variables and meta-variables by their image in γ; depending
on the rewriting formalism the result might be β-normalised. Formally:

xγ = x if x ∈ V , x /∈ dom(γ)
xγ = γ(x) if x ∈ V , x ∈ dom(γ)

(f s1 · · · sn)γ = f (s1γ) · · · (snγ) (f ∈ F , n ≥ 0)
((λx.q) s1 · · · sn)γ = (λx.qγ) (s1γ) · · · (snγ) (n ≥ 0, ∗∗)

Z(s1, . . . , sn)γ = q[x1 := s1γ, . . . , xn := snγ] if γ(Z) = λx1 . . . xn.q
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(**): When substituting an abstraction λx.q, the variable x may not occur in
either domain or range of γ. Using α-conversion, this is always defined. We
assume that γ(Z) has the form λx1 . . . xn.q whenever Z : [σ1, . . . , σn]⇒τ ∈MV .

This definition is incomplete. The cases where formalisms differ, in particular
(x s1 · · · sn)γ with n ≥ 1, are omitted. However, the given cases are the only
ones we will need.

Rules. A rewrite rule is a pair l→ r of (meta-)terms such that l and r have the
same type and head(l) is a function symbol or abstraction. Let R be a (possibly
infinite) set of rewrite rules. The rewrite relation →R generated by R is given
by: s →R t if s = C[lγ], t = C[rγ] for some l → r ∈ R, substitution γ and
context C; write s→R,top t if C is empty and s→R,in t otherwise.
Depending on the formalism, this rewrite relation may only be defined on terms
of a given form, for instance β/η-normal form; however, base-type variables and
terms f s1 · · · sn of base type always have such a form if the si do.

A set of rules R is finitely branching if, for any term s, there are only finitely
many different t with s→R t. This is commonly the case when R is finite. A set
of rules is terminating if there is no infinite reduction s0 →R s1 →R . . .

Example 1. An example system we will use throughout this paper is the system
Rlist, a module for list manipulation, with the following function symbols:

nil : list append : list⇒list⇒list reverse : list⇒list
cons : nat⇒list map : (nat⇒nat)⇒list⇒list shuffle : list⇒list

mirror : list⇒list
And moreover ten rules:

append nil l → l
append (cons h t) l → cons h (append t l)

reverse nil→ nil
reverse (cons h t) → append (reverse t) (cons h nil)

shuffle nil→ nil
shuffle (cons h t) → cons h (shuffle (reverse t))

mirror nil→ nil
mirror (cons h t) → append (cons h (mirror t)) (cons h nil)
map (λx.F (x)) nil→ nil

map (λx.F (x)) (cons h t) → cons F (h) (map (λx.F (x)) t)

There is only one really higher order function symbol (map), as its rules use an
abstraction. Intuitively, the first eight rules are first order. Note that mirror has
a duplicating rule, so the result from [20] cannot be used to prove termination.

Remarks. Despite our aim for generality, we do make a number of assumptions:
– the requirement that head(l) /∈ V for left-hand sides l of a rule is not present

in Yamada’s STTRSs [35] or (certain variations of) Jouannaud’s AFSs [21];
– we use applicative rather than functional notation (f s1 · · · sn rather than
f(s1, . . . , sn)), where the latter is used in AFSs and Blanqui’s IDTSs [4];

– unlike in AFSs, we do not assume the presence of a β-rule;
– unlike in CRSs or ERSs, typing is enforced;
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– we assume monomorphic, simple types, while more advanced type classes
are regularly used in several of the formalisms.

Only the first of these is essential: all the proofs in this paper pass almost unmod-
ified even if we use functional notation and admit polymorphic types or include
a β-rule. We chose this definition because, through simple transformations, we
can usually obtain a system as described above without affecting termination:
for the removal of head-variables and currying see for instance [25], to ignore
typing embed abstractions into some new symbol T : (term⇒term)⇒term, to
add β-reduction create, for every two types σ, τ , a rule (λx.Z(x)) y → Z(y) with
Z : [σ]⇒ τ ∈ MV , and for dealing with (ML-style) polymorphism, instantiate
all type variables in all closed ways and consider types of the form list(nat) as
base types. These last two transformations lead to an infinite system, but only
in so far as infinity was already implicit in the formalism. If the original system
was finitely branching or orthogonal, the same holds for the result.

Variables orMeta-Variables. Due to our aim of giving formalism-independent
definitions, matching may be done either with variables or meta-variables. To
ease definitions, we will identify meta-variables without arguments with variables.
Thus, a meta-variable Z : []⇒σ is considered as a variable of type σ. In the Rlist

example, l, h and t can be seen as variables, while F is a meta-variable.

3 Splitting the System

To give some formal backing to the intuitive notion of a first order rule, we
partition the signature F into two groups: symbols which have some higher
order potential (i.e., they have a non-base type, there is a rule where they are
not given all arguments allowed by their type, or they match on or rewrite to
such symbols) and symbols which do not. The first group, potentially higher
order symbols, is denoted PHO and the second one, consisting of truly first order
symbols, is denoted TFO. Using this partitioning, we obtain the first order rules
by uncurrying the rules which only contain symbols in TFO.

Splitting the Symbols. Let A be the set consisting of those function symbols
f : σ1⇒ . . .⇒σn⇒ ι (with ι ∈ B) such that one of the σi is functional, or there is
a rule f s1 · · · sm → r where m < n or the rule contains any abstraction, meta-
variable with arguments or functional (meta-)variable. We define PHO recursively:
PHO contains all symbols in A and, if there is a rule f l → r where some li or r
contains a symbol in PHO, then also f ∈ PHO. Let TFO = F \ PHO. A term is truly
first order if it consists only of function symbols in TFO and base-type variables.

Example 2. In Rlist we haveA = {map}. Since the symbol map only occurs in the
map-rules, we have PHO = {map} and hence TFO = {nil, cons, append, reverse,
shuffle, mirror}. Should we add a symbol up : list⇒list and a rule up l →
map (λx.s x) l, then A would still be {map}, but PHO would also include {up}.

Splitting the Rules. We say that a rule f l1 · · · ln → r is truly first order if
f ∈ TFO and potentially higher order otherwise; write RTFO for the set of rules
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of the first kind and RPHO for the second. Note that if a rule is truly first order
then both sides are truly first order terms.

Example 3. The truly first order rules RTFO of Rlist are those whose left-hand
side has a head symbol from {append, reverse, shuffle, mirror}. The poten-
tially higher order rules RPHO are those with map as the head symbol.

We can safely assume that in the truly first order rules l → r, all variables in r
also occur in l: if this is not the case, the system is obviously non-terminating.

Splitting Infinite Chains. A term rewrite system (first or higher order) is
non-terminating iff there exists a (minimal) infinite chain s1, t1, s2, t2, . . . where:

– each si →R,top ·� ti
– each ti →∗

R,in si+1

– the strict subterms of each of the ti are terminating

This observation is at the heart of any dependency pair approach. Now note that
if ever head(ti) ∈ TFO then for all j > i also head(sj), head(tj) ∈ TFO:

Lemma 4. If head(ti) ∈ TFO then also head(si+1), head(ti+1) ∈ TFO.

Proof. Write ti = f u1 · · ·un with f ∈ TFO. As all rules of the form f l1 · · · lm → r
have n = m, a →R,in-step on ti reduces one of the uj . Thus si+1 has the same
head symbol and its immediate subterms are terminating (as they are reducts
from the immediate subterms of ti). Let si+1 = lγ with l → r ∈ RTFO and rγ �

ti+1. Let p be the smallest subterm of r such that pγ�ti+1; since r is a truly first
order term p is either a variable (which, as assumed, also occurs in l), or has the
form g p1 · · · pk with g ∈ TFO. In the former case, si+1�γ(p)�ti+1 is terminating
because the strict subterms of si+1 are, contradiction. Thus g p1 · · · pkγ � ti+1

but (by the choice of p) no pjγ � ti+1; we conclude: head(ti+1) = g ∈ TFO. ��

Corollary 5. If there is an infinite chain, there is one using either only TFO-
rules, or only PHO-rules, for the topmost steps. In the first case, all ti have base
type as well (since f s1 · · · sm : σ⇒τ does not top-reduce if f ∈ TFO).

4 Simplifying the First Order Part

Using some dependency pair approach, we could now investigate the two possible
forms of chains separately. But does this help us significantly? A priori we cannot
use first order results to prove non-existence of (minimal infinite) TFO-chains,
since even in TFO-chains a step involving higher order symbols might be done in
the →∗

R,in-reduction. However, note that the rules in RTFO do not match on the
PHO-symbols and that, by minimality, any higher order subterm can be assumed
to be terminating. Therefore, as we will see, such subterms are mostly harmless.

Splitting with Orthogonal Rules. Orthogonality is a common property in
term rewriting with many nice consequences, including confluence. In first order
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orthogonal systems, termination using an innermost rewriting strategy (which
is often easier to prove) implies general termination [16].

Orthogonality is not defined for all higher order formalisms; however, where
defined it implies confluence, and coincides with the first order definition on first
order rules (for an overview of such results, see [34, Section 11.6.2]).

We actually use slightly less than orthogonality: we will show that, if R has
unique normal forms and RTFO is overlay, then the potentially higher order rules
can be omitted when studying TFO-chains. It is not in general decidable whether
a system has unique normal forms, but orthogonality of R, which implies both
unique normal forms and RTFO being overlay, is easy to check automatically.

Roughly, the idea is as follows: by unicity of normal forms and the overlay
property, the subterms of all si in a minimal infinite TFO-chain can be assumed
to be normalised. As topmost TFO-steps cannot create PHO-redexes, higher order
subterms anywhere in the chain are normalised, and can be replaced by variables.

We say RTFO is overlay if for all l → r, u → v ∈ RTFO, substitutions γ, δ and
non-empty contexts C: if l = C[l′] with l′γ = uδ, then l′ is a variable.

In Lemmas 6–8 we will assume that all terminating terms s have a unique
normal form, and that RTFO is overlay. Let ν(s) denote the normal form s↓R of
s and, if s = f s1 · · · sn, then ν′(s) = f ν(s1) · · · ν(sn).
Lemma 6 (TFO-steps cannot create PHO-redexes). If all higher order sub-
terms of s are R-normalised – that is, if, when s� q either q = f q1 · · · qn with
f ∈ TFO, or q is in R-normal form – then the same holds for the reducts of s.

Proof. Suppose s has this property and s →R t; we use induction on the size
of s. Since s is not in normal form, s = f s1 · · · sn with f ∈ TFO. If s →R,top t,
therefore, s = lγ, t = rγ with l → r ∈ RTFO; since r contains no higher order
symbols, and higher order subterms of any γ(x) are normalised, the property
holds for rγ. Otherwise t = f s1 · · · s′i · · · sn with si →R s′i; by the induction
hypothesis all higher order subterms of s′i are R-normalised, and by assumption
the same holds for the other sj . ��
Lemma 7 (Normalising Chains). If there exists a minimal infinite chain
s1 →RTFO,top ·� t1 →∗

R,in s2 →RTFO,top ·� t2 →∗
R,in . . . there exists also a minimal

infinite chain ν′(s1) →RTFO,top ·� q1 →∗
RTFO,in

ν′(s2) →RTFO,top ·� q2 →∗
RTFO,in

. . .

Proof. For given i, let l → r ∈ RTFO, a subterm p of r and a substitution γ be
such that si = lγ and ti = pγ; let γ↓ be the substitution mapping x to γ(x)↓R
for x in the domain of γ and write l = f l1 · · · ln. Since RTFO is overlay, l′γ↓

cannot be an instance of the left-hand side of a rule for any strict subterm l′ of
l, so each ljγ ↓R is exactly ljγ

↓. Let qi = pγ↓; then ν′(si) = lγ↓ →RTFO,top ·� qi.
We can write p = g p1 · · · pm, si+1 = g v1 · · · vm and qi = g u1 · · ·um, where

each uj = pjγ
↓; since pjγ →∗

R vj , we have uj ↓R= vj ↓R. Noting that all higher
order subterms of qi are R-normalised, Lemma 6 gives us that uj ↓RTFO

= uj ↓R.
Thus, qi →∗

RTFO,in
g ν(u1) · · · ν(um) = ν′(ti) = ν′(si+1) as required. ��

Finally, to get rid of (normalised!) higher order subterms, introduce a variable⊥ι

for all base types ι. For base-type term s, define rep(s) = f rep(s1) · · · rep(sn)
if s = f s1 · · · sn with f ∈ TFO; otherwise rep(s) = ⊥ι. It follows easily that:
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Lemma 8 (Replacing higher order terms by variables). If all higher order
subterms of s are R-normalised, and s→RTFO

t, then rep(s) →RTFO
rep(t).

Proof. With induction on p it is evident that, for base-type terms p, always
rep(pγ) = pγrep, where γrep(x) = rep(γ(x)). Using induction on the position of
the redex in s, this provides the base case (s →RTFO,top t); the induction case,
s = f s1 · · · sn →RTFO,in f s1 · · · s′i · · · sn = t, holds by induction hypothesis. ��

We now have all the preparations to see that if there is an infinite chain with all
head symbols in TFO, there is one on first order terms and with first order rules.

Theorem 9. Let (F ,R) be a higher order rewrite system with unique normal
forms and let RTFO be overlay. Then →R is terminating if and only if:

– there is no minimal infinite chain using only PHO-rules in the →R,top-steps,
and

– RTFO is terminating on truly first order terms

Proof. Suppose (F ,R) is terminating. Then RTFO is also terminating (since
RTFO ⊆ R), and there is no minimal infinite chain at all (since termination
of →R implies termination of →R ∪�), let alone using only PHO-rules.

Suppose both properties hold; by Corollary 5, →R is terminating if in addi-
tion there is no minimal infinite chain using only TFO-rules in the →top-steps.
Towards a contradiction, suppose that such a chain exists. By Lemma 7 there is a
chain which uses only TFO-rules, ν′(s1) →RTFO,top ·� q1 →∗

RTFO,in
ν′(s2) →RTFO,top

· � . . .; by Lemma 6 (strict subterms of ν′(s1) are normalised) higher order
subterms are normalised in all terms in the chain. Therefore, by Lemma 8,
rep(ν′(s1)) →RTFO,top ·� rep(q1) →∗

RTFO,in
rep(ν′(s2)) →RTFO,top ·� . . . is an infi-

nite RTFO-chain on truly first order terms, contradicting termination of RTFO. ��

Thus, given an orthogonal system (or at least, a system where RTFO is overlay,
and some property guarantees unicity of normal forms), we can split the ter-
mination proof into two parts: first, some dependency pair approach, where the
dependency pairs for the first order rules can be omitted, and second, proving
RTFO terminating on truly first order terms.

For the latter part, note that only base-type terms top-reduce, and a base-
type, truly first order term corresponds exactly to a purely functional term: we
define uncurry(f s1 · · · sn) = f(uncurry(s1), . . . , uncurry(sn)). The system is
terminating if and only if its uncurried version (a many-sorted TRS) is termi-
nating (using [25, Theorem 5], or with a straightforward induction to show that
uncurry(s) →Runcurry

TFO
uncurry(t) if and only if s→RTFO

t).
Since RTFO is a first order overlay TRS with unique normal forms, it is ter-

minating if it is innermost terminating: by [16] this holds for a locally confluent
overlay TRS, and by e.g. [34] an innermost terminating (so weakly normalising)
TRS with unique normal forms is confluent. Since [10] shows that innermost
termination is persistent (a many-sorted TRS is innermost terminating if and
only if it is innermost terminating without regarding types), we can send the
resulting TRS to any first order termination prover without losing generality,
whether or not this prover is type-conscious.
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Example 10. Rlist is terminating iff the following TRS is terminating:

append(nil, l) → l
append(cons(h, t), l) → cons(h, append(t, l))

reverse(nil) → nil
reverse(cons(h, t)) → append(reverse(t), cons(h, nil))

shuffle(nil) → nil
shuffle(cons(h, t)) → cons(h, shuffle(reverse(t)))

mirror(nil) → nil
mirror(cons(h, t)) → append(cons(h, mirror(t)), cons(h, nil))

and there are no infinite chains using for top-steps only the two map-rules.
Termination of RTFO cannot be demonstrated with HORPO, even combined

with dependency pairs and argument filterings (since the first order recursive
path orderings with these techniques cannot handle it). However, a first order
approach using e.g. dependency pairs and a polynomial interpretation to the
natural numbers has no trouble with the resulting first order rules.

As for the higher order part, using the static dependency pair approach from
[32] there is one dependency pair map� (λx.F (x)) (cons x y) → map� (λx.F (x)) y
with an empty set of usable rules; HORPO easily solves this.

Splitting the Rules in a Finitely Branching System. The requirements
for Theorem 9 are essential; consider for example the following system, where
the higher order part lacks the “unique normal forms” property:

f x b→ g x x h (λx.F (x)) → F (a)
g x a→ f x x h (λx.F (x)) → F (b)

Although RTFO (which consists of the two rules on the left) is terminating and
orthogonal, there is an infinite chain with all top-steps in RTFO:

f (h (λx.x)) b→ g (h (λx.x)) (h (λx.x)) → g (h (λx.x)) a
→ f (h (λx.x)) (h (λx.x)) → f (h (λx.x)) b

This happens because the first order part is duplicating, and h (λx.x) a reduces
both to a and to b (the F in the corresponding rules is a meta-variable, so a
β-step is implied). Note that the role of the higher order part could be taken over
by a pair of first order rules, c(x, y) → x, c(x, y) → y: RTFO is not Cε-terminating.
Following a technique originally due to Gramlich [15], and occurring in definitions
for usable rules for full termination [14,18,32], we will see that absence of minimal
infinite chains for RTFO holds if RTFO (seen as a first order TRS) is Cε-terminating.

Roughly, the idea is thus: in a finitely branching system, any term s which is not
headed by a symbol in TFO can be replaced by the list s′ := c t1 (c t2 . . . (c tn⊥))
of its immediate reducts; by the two c-rules, s′ still reduces to all reducts of s.
Doing this replacement everywhere in a term does not affect the applicability
of first order rules. Thus, in a term f s1 · · · sn where all si are terminating, the
transformation can be repeated until only first order symbols, c and ⊥ remain.
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In the following definitions and Lemma 11, let R be finitely branching.
For all base types ι, let ⊥ι be a variable of type ι and let cι : ι⇒ ι⇒ ι be

a new function symbol. Let RC
TFO := RTFO ∪ {cι x y → x, cι x y → y | ι ∈ B}.

Now, for terminating base-type terms s we define ψ(s) and A(s) with a shared
induction on →R ∪�, as follows:

– ψ(f s1 · · · sn) = f ψ(s1) · · ·ψ(sn) if f ∈ TFO; ψ(s) = A(s) for other s
– A(s) = Dι({t | s →R t}) (if s : ι), where Dι is a function on finite sets of

terminating terms, defined by: Dι(X) = ⊥ι if X = ∅, and cι ψ(t) Dι(X \{t})
if X is nonempty and t is its smallest element (ordered lexicographically).

Note that {t | s→R t} is finite by the assumption that R is finitely branching.

Lemma 11. If s→R t with s a terminating base-type term, then ψ(s)→∗
RC

TFO
ψ(t).

Proof. First note that:

1. for truly first order terms q and substitutions γ whose domain includes
FV (q), if qγ is terminating then ψ(qγ) = qγψ, where γψ(x) = ψ(γ(x))
for x in the domain of γ. This follows immediately with induction on q.

2. Dι(X) →∗
RC

TFO
ψ(q) for any q ∈ X , by a straightforward induction on the size

of X . Therefore A(s) →∗
RC

TFO

ψ(t) if s→R t.

We prove Lemma 11 by induction on the size of s. If head(s) /∈ TFO, then by
(2), ψ(s) = A(s) →∗

RC
TFO

ψ(t). Otherwise, let s = f s1 · · · sn with f ∈ TFO; all si

have base type, so if a step is done in one of the si, we can apply the induction
hypothesis. If s →R,top t then s = lγ, t = rγ for some l → r ∈ RTFO and
substitution γ. Using (1): ψ(s) = ψ(lγ) = lγψ →RC

TFO
rγψ = ψ(rγ) = ψ(t). ��

Theorem 12. A finitely branching higher order term rewrite system (F ,R) is
terminating if:

– there is no infinite chain using only PHO-rules in the →R,top-steps, and
– RC

TFO is terminating on truly first order terms

Proof. By Corollary 5, it suffices if termination of RC
TFO implies that there is

no minimal infinite chain using only TFO-rules in the →R,top-steps. So suppose
there is such a chain s1 →RTFO,top · � t1 →∗

R,in s2 . . . We must see that RC
TFO is

non-terminating or, equivalently, that there is an infinite →RC
TFO
·�-reduction, on

truly first order terms. For a term u = f u1 · · ·un with all uj terminating, let
ψ′(u) = f ψ(u1) · · ·ψ(un). Then each ψ′(ti) →∗

RC
TFO

ψ′(si+1) by Lemma 11, and

ψ′(si) = ψ′(liγi) = liγ
ψ
i →RTFO,top ·� piγ

ψ
i = ψ′(ti) by Observation (1) from its

proof. Thus, ψ′(s1) →RTFO,top · � ψ′(t1) →∗
RC

TFO,in
. . . gives the required infinite

reduction. ��
Note that, unlike Theorem 9, Theorem 12 is not an equivalence. Even if R is
terminating, RC

TFO may not be. Consequently, if proving termination of RTFO fails,
a (sufficiently advanced) higher order approach might still succeed.

As before, we can uncurry the resulting system to obtain a many-sorted TRS.
This time, however, dropping types may result in losing termination.
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Example 13. Consider the system with six function symbols,

0 : nat avg : nat⇒nat⇒nat fun : (nat⇒nat)⇒nat
s : nat⇒nat check : nat⇒nat apply : nat⇒nat⇒nat

and the following rules:

avg 0 0 → 0 avg x (s (s (s y))) → s (avg (s x) y)
avg 0 (s 0) → 0
avg 0 (s 0) → s 0 apply (fun (λx.F (x))) y → F (check y)

avg 0 (s (s 0)) → s 0 check 0 → 0
avg (s x) y → avg x (s y) check (s x) → s (check x)

The symbol fun signifies an encoding of a function in the natural numbers, and
apply decodes it. To avoid losing termination, the apply function employs a
check that the function is applied only on a constructor ground term.

This system does not satisfy the requirements from [20], nor can the static
framework from [32] be applied. However, we can use the dynamic approach
from [26]. Thus, by Theorem 12 (not Theorem 9, because the first order part
does not have unique normal forms), it suffices to show termination of the TRS:

avg(0, 0) → 0 avg(s(x), y) → avg(x, s(y)) c(x, y) → x
avg(0, s(0)) → 0 avg(x, s(s(s(y)))) → s(avg(s(x), y)) c(x, y) → y
avg(0, s(0)) → s(0) check(0) → 0

avg(0, s(s(0))) → s(0) check(s(x)) → s(check(x))

And additionally find a higher order reduction pair which satisfies l ≥ r for all
rules, and moreover apply� (fun (λx.F (x))) y > F (check(y)).

For the first part, all rules are strictly oriented with a polynomial interpreta-
tion of f0 = 1, fs(x) = x + 1, favg(x, y) = 3x + 2y, fcheck(x) = 2x, fc(x, y) =
x+y+1. For the latter part, consider an argument filtering π(check x) = checkπ,
π(s x) = x, π(avg x y) = avgπ. It suffices to find a reduction pair such that:

apply� (fun (λx.F (x))) y > F (checkπ) checkπ ≥ 0 avgπ ≥ avgπ

apply (fun (λx.F (x))) y ≥ F (checkπ) checkπ ≥ checkπ avgπ ≥ 0

Which is satisfied with HORPO, using a precedence fun >F checkπ, avgπ >F 0.

Discussion. The restriction to finitely branching systems cannot be dropped,
as might be demonstrated with a higher order adaptation of [30, Example 4.6].
However, in practice it is no great problem: a system given by a finite set of rules,
even polymorphic rules, is finitely branching in common higher order formalisms.

5 Experiments

We have implemented the contributions of this paper in the higher order termi-
nation tool WANDA [24], using a combination of dynamic and static dependency
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pairs. WANDA is a participant in the higher order category of the annual Interna-
tional Termination Competition.1 Here, termination tools compete for power on
benchmarks from several categories, with examples from theTermination Prob-
lem Database (TPDB). This database is a collection of termination problems
from research papers and applications that has been accumulated over the years.2

In the competition of 2010, WANDA could prove termination of 7 out of the
12 randomly chosen examples from the TPDB in the category Higher-Order
Rewriting - Union Beta, coming a close second to THOR, which could handle the
same examples plus Mixed_HO_10/prefixsum.xml (in the mean time WANDA
can also deal with this example). This shows that WANDA is among the state-
of-the-art higher order termination provers.

We have coupled WANDA with the first order termination tool AProVE [12] as
a black-box to analyse termination of the first order TRSs generated by WANDA.
To assess our contributions empirically, we have conducted experiments on an
Intel Xeon CPU 5140 with four cores clocked at 2.33 GHz, investigating full
termination of in total 152 higher order rewrite systems. As in the termination
competition, the proof attempt is aborted after a timeout of 60 seconds.

The Higher Order category in the current TPDB (v8.0) is not very rich in
examples (there are only 40 benchmarks). Therefore, we additionally consider
higher order termination (union beta) for the 110 (originally untyped) applicative
TRSs of the TPDB which could automatically be assigned a simple type.3 We
assume λ-abstraction is allowed in term formation, even though the rules do not
use it. Of course, this solves a different problem than the one originally intended;
thus these results should not be compared to first order tools analysing the same
examples as untyped applicative systems. Additionally, we tested the systems
from Examples 1 and 13. We did not include examples from the Haskell category,
because WANDA’s type system cannot yet deal with the polymorphism present.

WANDAProVE WANDA without first order back-end

YES 110 100
NO 10 10

MAYBE 25 38
TIMEOUTS 7 4
Avg. runtime 5.17 s 2.90 s

Fig. 1. Experimental results of WANDA with and without AProVE as first order prover

Our experiments, which are summarised in Figure 1, show that WANDA com-
bined with AProVE can deal with all examples where plain WANDA succeeds,
and 10 more. Out of these 10 additional examples, 8 stem from the applicative
benchmarks from the TPDB; the other 2 are the examples used in this paper.

On the benchmarks available in the higher order category of TPDB v8.0, the
number of termination proofs is unchanged. This is not surprising since each of
1 See also http://termination-portal.org/wiki/Termination_Competition
2 For further information we refer to http://termination-portal.org/wiki/TPDB
3 A variation of these examples has by now been accepted for the next TPDB version.

http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/TPDB
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these benchmarks focusses on the higher order aspect, so improvements on the
side of the first order aspect can be expected to have only little impact. Runtime
increases moderately from an average of 2.90 seconds to 5.17 seconds, which
is still far from the timeout of 60 seconds per example, whereas termination
proving power increases by 10%.

For details on our experiments and for access to our example suites, we refer
to http://aprove.informatik.rwth-aachen.de/eval/WANDAProVE/.

6 Discussion

Overview of the Technique. Using Theorems 9 and 12 we can use a first
order termination prover as a “black box” for a higher order tool, as follows:

1. determine TFO and PHO as described in Section 3, as well as RTFO;
2. if RTFO is overlay and R has unique normal forms, let R′ be the uncurried

form of RTFO; if the system does not satisfy these properties (or we cannot
determine whether it does) let R′ be the uncurried form of RC

TFO;
3. feed R′ into a first order termination prover (ignoring the types, unless a

prover for many-sorted TRSs is used);
4. if this returns NO and no cι-rules were added to R′, return NO;

if it returns YES, continue with a dependency pair approach which omits
the dependency pairs headed by symbols in TFO;
otherwise continue with a direct approach for the complete system.

Note that, if the first order prover fails, this algorithm does not abort, but
attempts to prove termination of the first order rules along with the rest. It is
arguably not very likely that this will be more successful, but a higher order tool
may be able to take steps which a type-oblivious first order tool cannot.

Dependency Pairs. While we have not explicitly used dependency pairs except
in the examples, the notion of a minimal infinite chain naturally suggests the use
of dependency pairs. Several approaches have been suggested for various forms of
higher order rewriting [2,31,32,27]. Theorems 9 and 12 provide a way to remove
some (perhaps most!) of the dependency graph components of realistic higher
order systems, by delegating these to a first order termination prover.

Contribution. The approach outlined in this paper allows (automatic) termi-
nation provers to use first order techniques to deal with first order dependency
pairs. If we work on finitely branching HRSs with static dependency pairs, The-
orem 12 is a direct result of the usable rules approach in [32], but our result
holds on all common formalisms for higher order rewriting and any kind of
dependency pair framework. Moreover, for orthogonal systems the result from
Theorem 9 is strictly stronger than the theory obtained from this usable rules ap-
proach. Our experiments reveal a notable increase of termination proving power
by this successful combination of a higher order termination prover with a first
order termination prover as a back-end. Therefore, we expect that it will become
essential for successful higher order termination provers to either use first order
techniques immediately or enlist an external first order termination prover.

http://aprove.informatik.rwth-aachen.de/eval/WANDAProVE/


Harnessing First Order Termination Provers 161

Future Work. It might be possible to extend the use of first order provers
further by identifying groups of dependency pairs where the higher order aspect
is not actively used (such as a dependency pair map�(λx.F (x), cons(h, t)) →
map�(λx.F (x), t)); dropping types, and transforming an abstraction into a single
variable, such pairs might also be handled with first order techniques.

Acknowledgement. We are very grateful for the constructive remarks of the
anonymous referees and Femke van Raamsdonk, which helped improve the paper.
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Abstract. A dominant approach to Satisfiability Modulo Theories (SMT) relies
on the integration of a Conflict-Driven-Clause-Learning (CDCL) SAT solver and
of a decision procedure able to handle sets of atomic constraints in the underly-
ing theory T (T -solver). In pure SAT, however, Stochastic Local-Search (SLS)
procedures sometimes are competitive with CDCL SAT solvers on satisfiable in-
stances. Thus, it is a natural research question to wonder whether SLS can be
exploited successfully also inside SMT tools.

In this paper we investigate this issue. We first introduce a general procedure
for integrating a SLS solver of the WalkSAT family with a T -solver. Then we
present a group of techniques aimed at improving the synergy between these
two components. Finally we implement all these techniques into a novel SLS-
based SMT solver for the theory of linear arithmetic over the rationals, combining
UBCSAT/UBCSAT++ and MathSAT, and perform an empirical evaluation on
satisfiable instances. The results confirm the potential of the approach.

1 Introduction

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of
a (typically quantifier-free) first-order formula with respect to some decidable theory
T . A dominant approach to SMT, called lazy approach, relies on the integration of a
Conflict-Driven Clause-Learning (CDCL) SAT solver and of a decision procedure able
to handle sets of atomic constraints in the underlying theory T (T -solver) (see, e.g.,
[13,5]). In pure SAT, however, Stochastic Local-Search (SLS) procedures (see [11])
sometimes are competitive with or even outperform CDCL SAT solvers on satisfiable
instances, in particular when dealing with unstructured problems. Therefore, it is a nat-
ural research question to wonder whether SLS can be exploited successfully also inside
SMT tools. In this paper we start investigating this issue.

Remarkably, CDCL and SLS SAT solvers are very different in the way they perform
search. CDCL SAT solvers reason on partial truth assignments, which are updated in a
stack-based manner. Moreover, they intensively use techniques like boolean constraint-
propagation (BCP), conflict-directed backtracking (backjumping) and learning, which

� A. Griggio is supported by Provincia Autonoma di Trento and the European Community’s
FP7/2007-2013 under grant agreement Marie Curie FP7 - PCOFUND-GA-2008-226070 “pro-
getto Trentino”, project ADAPTATION. R. Sebastiani is supported in part by SRC/GRC under
Custom Research Project 2009-TJ-1880 WOLFLING. We wish to thank H. Hoos, D. Tomp-
kins, A. Belov and Z. Stachniak for their help with their tools and for useful insights.

C. Tinelli and V. Sofronie-Stokkermans (Eds.): FroCoS 2011, LNAI 6989, pp. 163–178, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



164 A. Griggio et al.

are heavily exploited in the lazy-SMT paradigm and allow for very-efficient SMT opti-
mization techniques like early pruning, theory-propagation, theory-driven backjumping
and learning (see [13,5]). SLS SAT solvers, instead, reason on total truth assignments,
which are updated by swapping the phase of single literals according to some mixed
greedy/stochastic strategy. Moreover, they typically do not use BCP, backjumping and
learning. Therefore, the problem of an effective integration of a T -solver with a SLS
SAT solver is not a straightforward variant of the standard integration with a CDCL
solver in lazy SMT. Moreover, the standard SMT optimization techniques mentioned
above cannot be applied in a straightforward way.

In order to cope with these problems, we perform the following steps. First, inspired
by the idea of “partially-invisible” SAT formulas, we present a novel and general ar-
chitecture for integrating a T -solver with a Boolean SLS solver based on the widely-
used WalkSAT algorithm, resulting in a basic SLS-based SMT solver, which we call
WALKSMT. Second, we analyze the differences between the interaction of a T -solver
with a CDCL-based and a SLS-based SAT solver, and we introduce and discuss a group
of optimization techniques aimed at improving the synergy between an SLS solver and
the T -solver. Third, we present an implementation of WALKSMT with the optimiza-
tion techniques above, which is based on the integration of the UBCSAT [17] and UBC-
SAT++ [6] SLS solvers with the LA(Q)-solver of MATHSAT [7]. Finally, we perform
an extensive experimental evaluation of our implementation. We consider satisfiable in-
dustrial problems coming from the SMT-LIB, and we evaluate the effects of the various
optimization techniques, also comparing them against MATHSAT. We observe that (i)
the basic “naive” version of WALKSMT was not able to solve any problem within a
600s timeout; (ii) the optimization techniques drastically improve the performances of
the basic version, allowing the optimized WALKSMT to solve 149/225 problems; (iii)
as a comparison, MATHSAT solved 208/225 problems. We also compare the optimized
WALKSMT and MATHSAT on randomly-generated unstructured problems, obtaining
small differences in performances.

The rest of the paper is organized as follows. In §2 we introduce the necessary back-
ground on SLS and SMT. In §3 and §4 we describe respectively our basic algorithm and
the optimization techniques we have conceived for improving its performance. In §5 we
experimentally evaluate our approach. In §6 we conclude and highlight directions for
future work.

2 Background

2.1 Stochastic Local Search for SAT

Local search (LS) algorithms [11,10] are widely used for solving hard combinatorial
search problems. The idea behind LS is to inspect the search space of a given problem
instance starting at some position and then iteratively moving from the current position
to a neighboring one where each move is determined by a decision based on information
about the local neighborhood. LS algorithms making use of randomized choices during
the search process are called Stochastic Local search (SLS) algorithms. SLS algorithms
have been successfully applied to the solution of many NP-complete decision problems,
including SAT. Notice, however, that SLS algorithms typically do not guarantee that
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Algorithm 1. WalkSAT (ϕ)
Require: CNF formula ϕ, MAX TRIES, MAX FLIPS

1: for i = 1 to MAX TRIES do
2: μ ← INITIALTRUTHASSIGNMENT(ϕ)
3: for j = 1 to MAX FLIPS do
4: if (μ |= ϕ) then
5: return SAT

6: else
7: c ← CHOOSEUNSATISFIEDCLAUSE(ϕ)
8: μ ← NEXTTRUTHASSIGNMENT(ϕ, c)
9: end if

10: end for
11: end for
12: return UNKNOWN

eventually an existing solution is found, so that they cannot verify the unsatisfiability of
a problem.

SLS algorithms for SAT typically work with a CNF input formula (namely ϕ) and
share a common high-level schema: (i) they initialize the search by generating an ini-
tial truth assignment (typically at random); (ii) they iteratively select one variable and
flip it within the current truth assignment. The search terminates when the current truth
assignment satisfies the formula ϕ or after MAX TRIES sequences of MAX FLIPS vari-
able flips without finding a model for ϕ. The main difference in SLS SAT algorithms is
typically given by the different strategies applied to select the variable to be flipped.

WalkSAT Algorithms. WalkSAT is a popular family of SLS-based SAT algorithms
[11,10]. The schema of such algorithms is shown in Algorithm 1. Initially, a complete
truth assignment μ for the variables of the input problem ϕ is selected by INITIAL-
TRUTHASSIGNMENT according to some heuristic criterion (e.g., uniformly at random).
If this assignment satisfies the formula, then the algorithm terminates. Otherwise, a
variable is selected and flipped in μ using a two-stage process. In the first stage, a
currently-unsatisfied clause c is selected by CHOOSEUNSATISFIEDCLAUSE according
to some heuristic criterion (e.g., uniformly at random). In the second stage, one of the
variables occurring in the selected clause c is flipped by NEXTTRUTHASSIGNMENT

according to some mixed greedy/random heuristic criterion, so that to generate another
truth assignment. The procedure is repeated until either a solution is found, or the limit
for the number of tries is reached.

Over the last ten years, several variants of the basic WalkSAT algorithm have been
proposed [14,12,16], which differ mainly for the different heuristics used for the func-
tions described above —in particular on the degree of greediness and randomness and
in the criteria used for selecting the variable to flip in c within NEXTTRUTHASSIGN-
MENT. From our own empirical experience [15], the best performing WalkSAT-based
algorithm for SAT seems to be Adaptive Novelty+ [16]. It adopts the Novelty+’s vari-
able selection heuristic, and it adjusts its degree of greediness according to the search
progress. Novelty+ chooses the variable to be flipped from c depending on the score
(i.e. the difference in the total number of satisfied clauses a flip would cause) and the
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variable’s age (i.e. the number of search steps performed since a variable was last
flipped). If the variable with the highest score does not have minimal age among the
variables in c, then it is selected. Otherwise, it is selected with a probability 1−p, where
p is a parameter (called noise setting). While in the remaining cases p, the variable is
picked uniformly at random (random walk). Adaptive Novelty+ changes the probabil-
ity of making greedy choices by increasing the noise setting p only when it needs to
escape from situations in which there is no further progress in finding a solution (once
the stagnation situation is overcome, the noise setting is gradually decreased). We refer
the reader to [11] for a more detailed explanation.

Trimming Variable Selection and Literal Commitment Strategy. A few attempts
have been made in order to enhance SLS algorithms with techniques borrowed from
CDCL solvers (e.g. [6,4]). In particular, Belov and Stachniak [6] propose two tech-
niques that exploit the search history to improve the variable selection process of the
classic SLS procedures for SAT. They modify the WalkSAT schema by adding a database
(DB) that represents a set of constraints that help to guide the search process. It consists
in (1) a set of clauses ψ obtained by storing selected unsatisfied-clauses (see line 7 of
Algorithm 1) and (2) a partial truth assignment η that records assignments made by the
local search heuristic. The goal of the trimming variable selection technique is to prune
the search by preventing the selection of variables whose flip will cause a conflict in
the database. In particular, for every variable v belonging to the selected clause c, the
procedure checks the satisfiability of ψ ∧ η′ by unit propagation, where η′ is obtained
from η by adding the (flipped) truth assignment of v. If it is unsatisfiable, the variable v
cannot be flipped. When all variables cause a conflict, the database is reset (i.e. η is set
to ∅) so that any variable can be chosen by the local search heuristic. Notice that, once
the truth value of a variable has been flipped, η is updated accordingly and the clause c
is added to the database.

The literal commitment strategy aims at exploiting the power of unit propagation in-
side SLS procedures that naturally work with total truth assignments rather than partial
ones. It iteratively deduces literals l in ψ deriving from η (i.e. ψ ∧ η |= l) and updates
the current total truth assignment μ accordingly during a single search step. We refer
the reader to [6] for a more detailed explanation.

2.2 Satisfiability Modulo Theory

Let T be a first-order theory. We call T -literal a ground atomic formula in T or its nega-
tion. We call a theory solver for T , T -solver, a tool able to decide the T -satisfiability
of a conjunction/set μ of T -literals. If μ is T -unsatisfiable, then T -solver returns UN-
SAT and the subset η of T -literals in μ which was found T -unsatisfiable; (η is here-
after called a T -conflict set, and ¬η a T -conflict clause.) if μ is T -satisfiable, then
T -solver returns SAT; it may also be able to return some unassigned T -literal l �∈ μ1

s.t. {l1, ..., ln} |=T l, where {l1, ..., ln} ⊆ μ. We call this process T -deduction and
(
∨n

i=1 ¬li ∨ l) a T -deduction clause. Notice that T -conflict and T -deduction clauses

1 Taken from a set of all the available T -literals; when combined with a SAT solver, such set
would be the set of all the T -literals occurring in the input formula to solve.
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are valid in T . We call them T -lemmas. Given a T -formula ϕ, the formula ϕp obtained
by rewriting each T -atom in ϕ into a fresh atomic proposition is the Boolean abstraction
of ϕ, and ϕ is the refinement of ϕp. Notationally, we indicate by ϕp and μp the Boolean
abstraction of ϕ and μ, and by ϕ and μ the refinements of ϕp and μp respectively. With
a little abuse of notation, we say that μp is T -(un)satisfiable iff μ is T -(un)satisfiable.

In a lazy SMT(T ) solver, the Boolean abstraction ϕp of the input formula ϕ is given
as input to a CDCL SAT solver, and whenever a satisfying assignment μp is found s.t.
μp |= ϕp, the corresponding set of T -literals μ is fed to the T -solver; if μ is found
T -consistent, then ϕ is T -consistent; otherwise, T -solver returns the T -conflict set η
causing the inconsistency, so that the clause ¬ηp (the Boolean abstraction of ¬η) is
used to drive the backjumping and learning mechanism of the SAT solver. Important
optimizations are early pruning and T -propagation: the T -solver is invoked also on an
intermediate assignment μ: if it is T -unsatisfiable, then the procedure can backtrack; if
not, and if the T -solver is able to perform a T -deduction {l1, ..., ln} |=T l, then l can be
unit-propagated, and the T -deduction clause (

∨n
i=1 ¬li∨l) can be used in backjumping

and learning. The above schema is a coarse abstraction of the procedures underlying all
the state-of-the-art lazy SMT tools. The interested reader is pointed to, e.g., [13,5] for
details and further references.

3 Stochastic Local Search for SMT

We start from a simple observation: in principle, from the perspective of a SAT solver,
an SMT problem instance ϕ can be seen as the problem of solving a partially-invisible
CNF SAT formula ϕp ∧ τp, s.t. the “visible” part ϕp is the Boolean abstraction of
ϕ and the “invisible” part τp is (the Boolean abstraction of) the set τ of all the T -
lemmas providing the obligations induced by the theory T on the T -atoms of ϕ. (See
the example in Fig 1.) Thus, every assignment μp s.t. μp |= ϕp is T -unsatisfiable iff μp

falsifies some non-empty set of clauses {cp
1, ..., c

p
n} ⊆ τp. To this extent, a traditional

“lazy” SMT solver can be seen as a CDCL SAT solver which knows ϕp but not τp:
whenever a model μp for ϕp is found, it is passed to a T -solver which (behaves as if
it) knows τp, and hence checks if μp falsifies some clause cp

i ∈ τp: if this is the case,
it returns one (or more) such clause(s) cp

i , which is then used to drive the future search
and which is optionally added to ϕp.

3.1 A Basic WalkSMT Procedure

The above observation inspired to us a procedure integrating a T -solver into a SLS
algorithm of the WalkSAT family (WALKSMT hereafter). A high-level description of
the pseudo-code of WALKSMT is shown in Algorithm 2. (We present first a basic ver-
sion of WALKSMT, in which we temporarily ignore steps 1-3 and 12-13, which we
will describe in §4, together with other enhancements.) WALKSMT receives in input a
SMT(T ) CNF formula and applies a WalkSAT scheme to its Boolean abstraction ϕp.
INITIALTRUTHASSIGNMENT, CHOOSEUNSATISFIEDCLAUSE and NEXTTRUTHAS-
SIGNMENT are the functions described in §2.1. (Notice that their underlying heuristics
vary with the different variants of WalkSAT adopted.)
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φ :
c1 : {A1}
c2 : {¬A1 ∨ (x − z > 4)}
c3 : {¬A3 ∨ A1 ∨ (y ≥ 1)}
c4 : {¬A2 ∨ ¬(x − z > 4) ∨ ¬A1}
c5 : {(x − y ≤ 3) ∨ ¬A4 ∨ A5}
c6 : {¬(y − z ≤ 1) ∨ (x + y = 1) ∨ ¬A5}
c7 : {A3 ∨ ¬(x + y = 0) ∨ A2}
c8 : {¬A3 ∨ (z + y = 2)}

τ : (all possible T -lemmas on the T -atoms of φ)
c9 : {¬(x + y = 0) ∨ ¬(x + y = 1)}
c10 : {¬(x − z > 4) ∨ ¬(x − y ≤ 3) ∨ ¬(y − z ≤ 1)}
c11 : {(x − z > 4) ∨ (x − y ≤ 3) ∨ (y − z ≤ 1)}
c12 : {¬(x − z > 4) ∨ ¬(x + y = 1) ∨ ¬(z + y = 2)}
c13 : {¬(x − z > 4) ∨ ¬(x + y = 0) ∨ ¬(z + y = 2)}
... ...

φp :
c1 : {A1}
c2 : {¬A1 ∨ B1}
c3 : {¬A3 ∨ A1 ∨ B2}
c4 : {¬A2 ∨ ¬B1 ∨ ¬A1}
c5 : {B3 ∨ ¬A4 ∨ A5}
c6 : {¬B4 ∨ B5 ∨ ¬A5}
c7 : {A3 ∨ ¬B6 ∨ A2}
c8 : {¬A3 ∨ B7}

τp :
c9 : {¬B6 ∨ ¬B5}
c10 : {¬B1 ∨ ¬B3 ∨ ¬B4}
c11 : {B1 ∨ B3 ∨ B4}
c12 : {¬B1 ∨ ¬B5 ∨ ¬B7}
c13 : {¬B1 ∨ ¬B6 ∨ ¬B7}
... ...

B1
def
= (x − z > 4), B2

def
= (y ≥ 1), B3

def
= (x − y ≤ 3), B4

def
= (y − z ≤ 1),

B5
def
= (x + y = 1), B6

def
= (x + y = 0), B7

def
= (z + y = 2).

ϕ :
c2 : {(x − z > 4)}
c5 : {(x − y ≤ 3) ∨ ¬A4 ∨ A5}
c6 : {¬(y − z ≤ 1) ∨ (x + y = 1) ∨ ¬A5}
c7 : {A3 ∨ ¬(x + y = 0)}
c8 : {¬A3 ∨ (z + y = 2)}
c9 : {¬(x + y = 0) ∨ ¬(x + y = 1)}

ϕp :
c2 : {B1}
c5 : {B3 ∨ ¬A4 ∨ A5}
c6 : {¬B4 ∨ B5 ∨ ¬A5}
c7 : {A3 ∨ ¬B6}
c8 : {¬A3 ∨ B7}
c9 : {¬B6 ∨ ¬B5}

μp
1 = {B1, A3,¬A4,¬A5,¬B6, B5, B3, B4, B7}

μ1 = {(x − z > 4),¬(x + y = 0), (x + y = 1), (x − y ≤ 3), (y − z ≤ 1), (z + y = 2)}

Fig. 1. Top: example of an SMT(LA(Q)) formula φ as a “partially-invisible” formula φp ∧ τp.
Middle: the formula ϕ [resp ϕp ] obtained from φ [resp φp ] after preprocessing (see §4).
Bottom: a truth assignment μp satisfying ϕp and violating c10, c12 in τp, and its refinement μ1.

Since we are temporarily ignoring steps 1-3 and 12-13, the only significant difference
wrt. Algorithm 1 is in steps 7-14. Whenever a total model μp is found s.t. μp |= ϕp, it
is passed to T -solver. If (the set of T -literals corresponding to) μp is T -satisfiable (i.e.,
μp |= ϕp ∧ τp) the procedures ends returning SAT. Otherwise, T -solver returns CON-
FLICT and a T -lemma cp. Notice that this corresponds to say that μp �|= ϕp ∧ τp, and
that cp is one of the (possibly-many) clauses in ϕp ∧ τp which are falsified by μp. Thus,
cp is used by NEXTTRUTHASSIGNMENT as “selected” unsatisfied clause to drive the
flipping of the variable. To this extent, T -solver plays also the role of CHOOSEUNSAT-
ISFIEDCLAUSE on ϕp ∧ τp when no unsatisfied clause is found in ϕp (to this extent,
see also “Multiple Learning” in §4).



Stochastic Local Search for SMT 169

Algorithm 2. WALKSMT (ϕ)
Require: SMT(T ) CNF formula ϕ, MAX TRIES, MAX FLIPS

1: if (T -PREPROCESS (ϕ) == CONFLICT) then
2: return UNSAT

3: end if
4: for i = 1 to MAX TRIES do
5: μp ← INITIALTRUTHASSIGNMENT (ϕp)
6: for j = 1 to MAX FLIPS do
7: if (μp |= ϕp) then
8: 〈status, cp〉 ← T -solver(ϕp, μp)
9: if (status == SAT) then

10: return SAT

11: end if
12: cp ← UNIT-SIMPLIFICATION(ϕp, cp)
13: ϕp ← ϕp ∧ cp

14: μp ← NEXTTRUTHASSIGNMENT (ϕp, cp)
15: else
16: cp ← CHOOSEUNSATISFIEDCLAUSE (ϕp)
17: μp ← NEXTTRUTHASSIGNMENT (ϕp, cp)
18: end if
19: end for
20: end for
21: return UNKNOWN

Example 1. Suppose WALKSMT is invoked on the formula ϕp in Fig. 1, generating
the total truth assignment μp

1 that satisfies ϕp. Then T -solver is invoked on μ1, which
is T -inconsistent due to the the literals {(x − z > 4), (x + y = 1), (z + y = 2)},
returning UNSAT and the conflict clause cp

1 = {¬B1 ∨ ¬B5 ∨ ¬B7} (i.e. c12 in τp).
Then NEXTTRUTHASSIGNMENT will flip one of the literals B1, B5 or B7.

Remark: Efficient T -Solvers for Local Search. In CDCL-Based SMT solvers, the
interaction with T -solvers is stack-based: the truth assignment μ is incrementally ex-
tended when performing unit propagation, T -propagation, and when picking an unas-
signed literal for branching, and it is partly undone upon backtracking, when the most-
recently-assigned literals are removed from it. Consequently, T -solvers designed for
interaction with a CDCL SAT solver are typically optimized for such stack-based in-
vocation. In particular, they are typically incremental —when they have to check the
consistency of a truth assignment μ′ that is an extension of a previously-checked μ,
they don’t need to restart the computation from scratch— and backtrackable —when
backtracking occurs, the most-recently-assigned literals that need to be unassigned can
be efficiently removed, and the internal state can be efficiently restored to a previous
configuration (see [13,5]).

In local search, instead, a new assignment μ′ is obtained from the previous one μ
by flipping an arbitrary literal (according to some heuristics). In this setting, the con-
ventional backtrackability feature of T -solvers is of little use, since there is no notion
of most-recently-assigned literals to remove. Instead, it is very desirable to be able to
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remove arbitrary literals from a T -solver without the need of resetting its internal state.
Such requirement might seem unrealistic, or at least difficult to fulfill. However, at least
two state-of-the-art T -solvers have this capability: the T -solver for DL of [8] and the
T -solver for LA(Q) of [9], which are therefore natural candidates for integration with
a SLS-based SAT solver. The MATHSAT solver implements both.

4 Enhancements to the Basic WalkSMT Procedure

The WALKSMT algorithm described above is very naive. Here we analyze the inter-
action of a T -solver with a SLS SAT solver, and we present a group of optimization
techniques aimed at improving the synergy of their interaction.

4.1 Preprocessing

Before entering the main WALKSMT routine, we apply a preprocessing step to the
input formula ϕ in order to make it simpler to solve (steps 1-3 in algorithm 19). This
preprocessing consists mainly of two techniques: Initial BCP and Static Learning.

Initial BCP. Often SMT formulas contain lots of “structural” atomic propositions whose
truth value is assigned deterministically (e.g., when the formula derives from a CNF-
ization step). Unlike a CDCL solver, an SLS one cannot handle them efficiently. Thus,
during preprocessing we first perform a run of BCP to the input formula, simplifying
the formula accordingly. In order to preserve correctness, we keep as unit clauses the T -
literals l1, .., ln which have been assigned to true by BCP. If during this process one of
the clauses of φp is falsified, or if the set of T -literals l1, .., ln above is T -inconsistent,
the algorithm can exit returning UNSAT. Otherwise, l1, .., ln are tagged “unflippable”,
so that the SLS engine initially assigns them to true and never flips their value.

Static Learning. During preprocessing we also conjoin to the formula ϕ/ϕp short and
“obvious” T -lemmas on the atoms occurring in ϕ, which can be generated without
explicitly invoking the T -solver. (Examples of such T -lemmas are mutual-exclusion
lemmas like c9 in Fig. 1. See also [13].) Thus the T -solver is invoked on an assignment
μ only if μp verifies also these T -lemmas (row 7 in Alg. 2). This prevents WALKSMT
from invoking T -solver on obviously-T -inconsistent assignments.

Example 2. Consider as input the formula φ of Fig. 1 (top). The preprocessing step
generates the formula ϕ of Fig. 1 (bottom). In fact, BCP unit-propagates the literals
A1, B1,¬A2, simplifying clause c7 and eliminating clauses c1, c3 and c4. Clause c2
survives as an unit clause because B1 is (the label of) a T -literal. Notice that the T -
atom B2

def= (y ≥ 0) disappears from the formula because c3 is satisfied by the unit-
propagation of A1. The T -lemma c9 is then added to the simplified formula by static
learning.

4.2 Single and Multiple Learning

Learning. SLS SAT solvers typically do not implement learning. This is potentially a
major problem with SLS-based SMT, because the SLS solver may generate many total
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assignments μp
1, ..., μ

p
k each containing the same T -inconsistent subset ηp, causing thus

k − 1 useless calls to T -solver. Thus, like in standard CDCL-based SMT solvers, we
conjoin to ϕp the T -lemma cp returned by the T -solver (step 13). Henceforth T -solver
is no more invoked on assignments violating cp.

Unit Resolution. Before learning a T -lemma c, we remove from it all the T -literals
whose negation occurs as unit clauses in the input problem (step 12). (Notice that after
this step cmay be no longer a T -lemma.) We do this in both static and dynamic learning.

Example 3. Consider the scenario of Example 1, assuming learning is implemented.
Because of the unit clause c2 of ϕp, we remove from the conflict clause cp

1 the literal
¬B1, obtaining cp

1
′ def= {¬B5 ∨ ¬B7} (i.e., a unit-resolved version of c12 in τp.), which

we add to ϕp. Then NEXTTRUTHASSIGNMENT will flip one of the literals B5 or B7.
T -solver will never be invoked again on assignments containing both B5 and B7.

Multiple Learning. Unlike with CDCL-based SMT solvers, which typically use some
form of early pruning to check partial truth assignments for T -consistency, in an SLS-
based approach T -solvers operate always on complete truth assignments μ. In this set-
ting, it is likely that μ contains many different T -inconsistent subsets, often indepen-
dent from each another. This is the idea at the basis of our multiple learning technique,
which allows for learning more than one T -lemma for every T -inconsistent assignment.
When a conflict set η is found (and simplified via unit-resolution), a given percentage
p of its literals are randomly removed from μ, and T -solver is invoked again on the
resulting set. This process is repeated until no more conflict is found. We then learn all
the T -lemmas cp1, ..., c

p
k generated during the process. Also, if k > 1, then one clause

cp among cp
1, ..., c

p
k is chosen by CHOOSEUNSATISFIEDCLAUSE to be fed to NEXT-

TRUTHASSIGNMENT.

Example 4. Consider the scenario of Example 1 and 3, assuming multiple learning is
implemented, with p = 100%. After learning the clause cp

1
′, we drop B5, B7 from μp

1

and re-invoke T -solver on the set of T -literals μ2
def= μ1 \ {(x+ y = 1), (z + y = 2)},

returning UNSAT and the conflict clause cp
2

def= {¬B1 ∨ ¬B3 ∨ ¬B4}, from which ¬B1

is removed by unit-resolution, so that also the clause cp
2
′ def= {¬B3 ∨ ¬B4} is learned

(a unit-resolved version of clause c10). After further removing B3 and B4 from μ2 the
set of T -literals is found T -consistent by T -solver, so that no further clause is learned.
Then cp

1
′
, cp

2
′ are fed to CHOOSEUNSATISFIEDCLAUSE which selects one and feed it to

NEXTTRUTHASSIGNMENT, which flips one literal among B5, B7, B3 and B4.

4.3 Literal Filterings

Pure-literal Filtering. If some T -atoms occur only positively [resp. negatively] in the
original formula (learned clauses and statically-learned clauses are not considered), then
we can safely drop every negative [resp. positive] occurrence of them from the assign-
ment μ to be checked by the T -solver [13]. (Intuitively, since such occurrences play no
role in satisfying the formula, the resulting partial assignment μp′ still satisfies ϕp.) The
benefits of this action is twofold:
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(i) reduces the workload for the T -solver by feeding it smaller sets;

(ii) increases the chance of finding a T -consistent satisfying assignment by removing
“useless” T -literals which may cause the T -inconsistency of μ.

Example 5. Consider the formula ϕp in Fig. 1 and the total truth assignment

μp
4 = {B1,¬A3,¬A4,¬A5,¬B6,¬B5, B3, B4,¬B7}

that satisfies ϕp, but is T -inconsistent because of its subset {B1, B3, B4} (clause c10
in τp). Without pure-literal filtering, T -solver detects the inconsistency, WALKSMT
learns the clause and looks for another assignment. If pure-literal filtering is imple-
mented, instead, since the T -literals ¬B5, B4 and ¬B7 occur only negatively in the
original formula φ, they are filtered out from μp

4, resulting in the partial assignment

ηp
4 = {B1,¬A3,¬A4,¬A5,¬B6, B3},

which still satisfies ϕp. T -solver is invoked on the corresponding set of T -literals:

η4 = {(x− z > 4),¬(x+ y = 0), (x− y ≤ 3)}.

which is T -consistent, from which we can conclude that ϕ (and φ) is T -consistent.

Ghost-literal Filtering. We further enforce the benefits of pure-literal filtering as fol-
lows. When a truth assignment μ is found s.t. μp |= ϕp, before invoking T -solver on μ,
we check whether any T -atom occurring only positively [resp. negatively] in the origi-
nal formula and being assigned true [resp. false] in μ can be flipped without falsifying
any clause. (This test can be performed very efficiently inside an SLS solver.) If this
is the case, then the atom is flipped. This step is repeated until no more such atoms
are found, after which the resulting set μ is passed to T -solver. This allows for further
removing useless T -literals from μ by pure-literal filtering. (Since such literals are a
particular case of “ghost literals” [13], we call this enhancement ghost-literal filtering.)

Example 6. Consider the formula ϕp in Fig. 1 and the total truth assignment

μp
5 = {B1, A3,¬A4,¬A5,¬B6,¬B5, B3,¬B4, B7}

that satisfies ϕp. If we apply pure-literal filtering on μp
5, then we can filter out only the

literal ¬B5 before invoking T -solver. By ghost-literal filtering, the literalsB3, ¬B4 and
¬B6 are flipped without falsifying ϕp, resulting in the total truth assignment:

μp
5
′ = {B1, A3,¬A4,¬A5, B6,¬B5,¬B3, B4, B7}.

Now, by pure-literal filtering, we remove from μp
5
′ the literals B3, ¬B4, ¬B5 and ¬B6.

5 Experimental Evaluation

We have implemented two versions of the WALKSMT procedure described above to
work for the LA(Q) theory. The implementation is done on top of MATHSAT4 [7],
using part of its preprocessor its LA(Q)-solver [9] and lots of its features. We have
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implemented two versions, each using one between two SLS-based SAT solvers: UBC-
SAT 2 [17] and UBCSAT++ 3 [6]. UBCSAT is a SLS platform providing a very-wide
range of SLS algorithms for SAT (including the WalkSAT family), with a very flexible
architecding the WalkSAT family), with a very flexible architecture. Among the various
SLS procedures provided by UBCSAT, we have chosen to use the Adaptive Novelty+

variant of the WalkSAT family because it was the best-performing in a previous exten-
sive empirical evaluation [15]. UBCSAT++ is built on top of UBCSAT and extends its
implementation of Adaptive Novelty+ with the Trimming Variable Selection and Lit-
eral Commitment Strategy techniques described in §2.1. We partition the enhancements
of WALKSMT of §4 into three groups:

– Preprocessing and Learning (PL), including preprocessing (Initial BCP and Static
Learning), Learning and Unit Resolution;

– Multiple Learning (ML);
– Filtering (FI), including both Pure-Literal and Ghost-Literal filterings.

Notationally, we use a “+” [resp. “–”] symbol to denote that an option is enabled
[resp. disabled]: e.g., “UBCSAT++ BASIC+PL-ML+FI” denotes WALKSMT based
on UBCSAT++ with PL and FI enabled and ML disabled. (Notice that ML requires PL,
so that we cannot have “...-PL+ML...” configurations.)

In this section, we evaluate the performance of WALKSMT by comparing its two
versions (those based on UBCSAT and UBCSAT++ respectively) against the CDCL-
based SMT solver MATHSAT4. We ran MATHSAT4 with all the optimizations enabled
(the most important ones are early pruning and T -propagation). 4 We performed our
comparison over two distinct sets of instances, which are described in the next two sec-
tions: the first consists of the set of all satisfiable LA(Q) formulas in the SMT-LIB 1.2
(www.smtlib.org), whereas the second is composed of randomly-generated prob-
lems. All tests were executed on 2.66 GHz Xeon machines running Linux, using a
timeout of 600 seconds. The correctness of the models found by WALKSMT have been
cross-checked by MATHSAT4. In order to make the experiments reproducible, the full-
size plots, the tools, the problems, and the results are available at [1].

5.1 WALKSMT on SMT-LIB Instances

In the first part of our experiments, we compare WALKSMT against MATHSAT on all
the satisfiable LA(Q)-formulas (QF LRA) in the SMT-LIB 1.2. These instances are all
classified as “industrial”, because they come from the encoding of different real-world
problems in formal verification, planning and optimization, and they are divided into
six categories: sc, uart, sal, TM, tta startup (“tta” hereafter), and miplib. 5

2 UBCSAT is publicly available at http://www.satlib.org/ubcsat/.
3 UBCSAT++ was kindly provided to us by the developers, Belov and Stachniak.
4 Although more efficient SMT (LA(Q)) solvers exist, including the recent MATHSAT5, here

the choice of MATHSAT4 is aimed at minimizing the differences in performance due to the
implementation, because WALKSMT is implemented on top of MATHSAT4 (in particular
it uses its preprocessor and T -solver for LA(Q)), so that to better highlight the differences
between SLS- and CDCL-based approaches.

5 Notice that other SMT-LIB categories like spider benchmarks and clock synchro
do not contain satisfiable instances and are thus not reported here.

www.smtlib.org
http://www.satlib.org/ubcsat/
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Table 1. Comparison of the number of instances solved within the 600s timeout by the various
configurations of WALKSMT and MATHSAT4. Notice that instances solved by the different
solvers might not be the same.

Solver
SMT-LIB Instances

Total
sc uart sal TM tta miplib

Total # of Instances 108 36 11 24 24 22 225

WalkSMT UBCSAT Basic–PL–ML–FI 0 0 0 0 0 0 0
WalkSMT UBCSAT++ Basic–PL–ML–FI 0 0 0 0 0 1 1
WalkSMT UBCSAT Basic+PL–ML–FI 59 10 6 13 5 3 96
WalkSMT UBCSAT++ Basic+PL–ML–FI 46 6 7 17 10 1 87
WalkSMT UBCSAT Basic+PL+ML–FI 103 15 6 12 6 3 145
WalkSMT UBCSAT++ Basic+PL+ML–FI 61 6 7 15 9 1 99
WalkSMT UBCSAT Basic+PL–ML+FI 59 32 10 14 9 3 127
WalkSMT UBCSAT++ Basic+PL–ML+FI 62 12 8 18 10 1 111
WalkSMT UBCSAT Basic+PL+ML+FI 78 35 10 14 9 3 149
WalkSMT UBCSAT++ Basic+PL+ML+FI 63 14 8 19 10 2 116

MATHSAT4 108 36 11 21 24 8 208
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Fig. 2. Cumulative plots of WALKSMT and MATHSAT4 on all SMT-LIB instances

The results of the experiments are reported in Figures 2, 3, 4, 5 and in Table 1. Figure 2
shows the cumulative plots of the execution time for the different configurations of
WALKSMT and MATHSAT4 on SMT-LIB instances. (The plots for BASIC-PL-ML-
FI are not reported since no formula was solved within the timeout.) Figure 3 compares
the best configurations of WALKSMT (BASIC+PL+ML+FI) with UBCSAT (left) and
with UBCSAT++ (right) against MATHSAT4 on all instances. Figure 4 shows the
relative effects of the different optimizations for WALKSMT with UBCSAT.
Figure 5 compares WALKSMT UBCSAT against WALKSMT UBCSAT++ on BA-
SIC+PL+ML+FI versions. The results suggest a list of considerations.



Stochastic Local Search for SMT 175

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

E
xe

cu
tio

n 
tim

e 
(in

 s
ec

) 
of

 U
B

C
S

A
T

 B
as

ic
+

P
L+

M
L+

F
I

Execution time (in sec) of MathSAT

sc
uart
TM
sal

miplib
tta

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

E
xe

cu
tio

n 
tim

e 
(in

 s
ec

) 
of

 U
B

C
S

A
T

+
+

 B
as

ic
+

P
L+

M
L+

F
I

Execution time (in sec) of MathSAT

sc
uart
TM
sal

miplib
tta

Fig. 3. Comparison of the best configurations of WALKSMT (BASIC+PL+ML+FI) against
MATHSAT4 on SMT-LIB instances. Left: with UBCSAT; Center: with UBCSAT++; Right: with
UBCSAT++, considering only miplib and TM benchmarks.
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Center: BASIC+PL-ML-FI vs. BASIC+PL+ML-FI (benefits of further adding ML);
Right: BASIC+PL+ML-FI vs. BASIC+PL+ML+FI (benefits of further adding FI).

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

E
xe

cu
tio

n 
tim

e 
(in

 s
ec

) 
of

 U
B

C
S

A
T

+
+

 B
as

ic
+

P
L+

M
L+

F
I

Execution time (in sec) of UBCSAT Basic+PL+ML+FI

sc
uart
TM
sal

miplib
tta

101

102

103

104

105

106

107

108

109

101 102 103 104 105 106 107 108 109

N
um

be
r 

of
 s

te
ps

 o
f U

B
C

S
A

T
+

+
 B

as
ic

+
P

L+
M

L+
F

I

Number of steps of UBCSAT Basic+PL+ML+FI

sc
uart
TM
sal

miplib
tta

103

104

105

106

107

108

109

103 104 105 106 107 108 109

S
te

p/
se

c 
of

 U
B

C
S

A
T

+
+

 B
as

ic
+

P
L+

M
L+

F
I

Step/sec of UBCSAT Basic+PL+ML+FI

sc
uart
TM
sal

miplib
tta

Fig. 5. Comparison between WALKSMT UBCSAT and WALKSMT UBCSAT++ on BA-
SIC+PL+ML+FI versions. Left: CPU time. Center: flip# (on commonly solved instances). Right:
average ratio flips#/sec (on commonly solved instances).



176 A. Griggio et al.

First, the optimizations described in §4 lead to dramatic improvements in perfor-
mance, sometimes by orders of magnitude. Without them, WALKSMT times out on all
instances. (See Table 1 and Figures 2 and 4.):

– PL is crucial for performance, since with PL disabled almost no problem is solved
within the timeout. In particular, from our data we see that a key role is played by
learning. (Which perhaps is not surprising from an SMT perspective, but we believe
may be of interest from an SLS perspective.)

– ML produces significant improvements overall, except for a few cases where it may
worsen performances (e.g., with miplib).

– FI produces strong improvements in performance in all problem categories, (appar-
ently with the exception of the sc benchmarks).

Second, globally WALKSMT seems to perform better with UBCSAT than with UBC-
SAT++, with some exceptions (TM, tta). From Figure 5, considering the problems
solved by both configurations, we see that the total number of flips performed by UBC-
SAT++ is dramatically smaller than that performed by UBCSAT, but the average cost
of each flip is dramatically higher.

Third, globally MATHSAT4 performs much better than WALKSMT, often by orders
of magnitude. This mirrors the typical performance gap between CDCL and SLS SAT
solvers on industrial benchmarks.

5.2 WALKSMT on Random Instances

Unlike with SAT, in SMT there is very-limited tradition in testing on random problems
(e.g., [2,3]). However, for a matter of scientific curiosity and/or to leverage to SMT a pop-
ular test for SLS SAT procedures, here we present also a brief comparison of WALKSMT
vs. MATHSAT4 on randomly-generated, unstructured 3-CNF LA(Q)-formulas. Each
3-CNF formula is randomly generated according to three integer parameters 〈m,n, a〉
as follows. First, a distinct T -atoms ψ1, ..., ψa are created, s.t. each atom ψj is in the
form (

∑4
i=1 cjixji ≤ cj), it is generated by randomly picking four distinct variables

xji out of n variables {x1, ..., xn}, and five integer values cj1, ..., cj4, cj in the interval
[−100, 100]. Then,m 3-CNF clauses are randomly generated, each by randomly picking
3 distinct T -atoms in {ψ1, ..., ψa}, negating each with probability 0.5.

Figure 6 shows the run times of several versions of WALKSMT and MATHSAT4
on the generated formulas, for n = 20. Each graph shows curves for WALKSMT (in
particular, UBCSAT and UBCSAT++ with the best configuration BASIC+PL+ML+FI)
and MATHSAT4 on a group of instances with a fixed number a of T -atoms, for a =
30, 40, 50, 60. The plots represent the execution time versus the ratio r = m/a of
clauses/T -atoms. Each point in the graphs corresponds to the median run-time of each
algorithm on 100 different instances of the same size. (For WALKSMT, each value is
itself a median value of 3 runs with different seeds.) The plots show also the satisfia-
bility percentage of each group of instances, defined as the ratio between the satisfiable
instances generated and the total number of instances generated, for each value of r.
E.g., in the plot in the first column of the first row of Figure 6 the percentage 0.01% for
r = 6 means that we had to generate and test 10514 formulas (using MATHSAT4 with
a timeout of 600 seconds) in order to obtain 100 satisfiable instances.
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Fig. 6. Comparison of different configurations of WALKSMT and MATHSAT4 on randomly-
generated instances with 20 theory variables and atoms a = 30, 40, 50, 60

The results show that, unlike with SMT-LIB formulas, on randomly-generated in-
stances there is a very small difference between the performance of UBCSAT BA-
SIC+PL+ML+FI, UBCSAT++ BASIC+PL+ML+FI and MATHSAT4.

6 Conclusions and Future Work

In this paper we have investigated the possibility of using an SLS SAT solver instead
of a conventional CDCL-based one as propositional engine for a lazy SMT solver. We
have presented and discussed several optimizations to the basic architecture proposed,
which allowed WALKSMT to solve a significant amount of industrial SMT problems,
although it is still much less efficient that the corresponding CDCL-based SMT solver.
We believe that the latter fact is not surprising, since optimization techniques for CDCL-
based SMT solvers have been investigated and optimized for the last ten years, whilst
to the best of our knowledge this is the first attempt of building a SLS-based one.

This research opens the possibility for several interesting future directions. The first
obvious option is to port the implementation to the more-efficient MATHSAT5 and to
extend the present work to cover other theories typically used in SMT. We would like to
concentrate in particular on “hard” theories such as LA(Z). Second, we plan to investi-
gate the use of SLS techniques for solving/approximating optimization problems, such
as Max-SMT. Third, we will explore the possibility of tightening the synergy between
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the SLS SAT solver and T -solvers, for instance by better exploiting information that
can be provided by T -solvers when deciding which variables to flip, or by considering
architectures in which the search is more driven by the theory part of the formula rather
than by the SAT engine. Finally, we plan to work on the integration/combination be-
tween SLS-based and CDCL-based SMT solvers, both using a portfolio-like approach
and investigating more tightly-coupled solutions.
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Abstract. Motivated by the problem of verification of imperative tree
transformation programs, we study the combination, called controlled
term rewriting systems (CntTRS), of term rewriting rules with con-
straints selecting the possible rewrite positions. These constraints are
specified, for each rewrite rule, by a selection automaton which defines
a set of positions in a term based on tree automata computations.

We show that reachability is PSPACE-complete for so-called mono-
tonic CntTRS, such that the size of every left-hand-side of every rewrite
rule is larger or equal to the size of the corresponding right-hand-side, and
also for the class of context-free non-collapsing CntTRS, which transform
Context-Free (CF) tree language into CF tree languages.

When allowing size-reducing rules, reachability becomes undecidable,
even for flat CntTRS (both sides of rewrite rules are of depth at most
one) when restricting to words (i.e. function symbols have arity at most
one), and for ground CntTRS (rewrite rules have no variables).

We also consider a restricted version of the control such that a position
is selected if the sequence of symbols on the path from that position to
the root of the tree belongs to a given regular language. This restriction
enables decision results in the above cases.

Introduction

Term rewriting is a rule-based formalism for describing computations in ranked
terms. In the context of formal verification, term rewriting systems (TRS) can
be used to provide a finite abstraction of the dynamics of a system whose con-
figurations are represented by ranked terms. In this case, the rewrite relation
represents the transitions between configurations. For instance, functional pro-
grams manipulating (tree) structured data values with pattern matching can be
described by rewrite rules [18] such that the rewriting relation represents the
program evaluation. This approach can also be applied to systems [1] or imper-
ative programs [4,17] modifying some parts of tree shaped data structures in
place, while leaving the rest unchanged. These update operations can be mod-
eled by rewrite rules or similarly, tree transducers. A crucial problem for the
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automatic reachability and flow analysis of programs is to find finite and de-
cidable representations of the closure the above TRS representations of sets of
terms representing configurations. This approach is related to static type check-
ing of XML transformations (see e.g. [22]), which is the problem to verify that a
program always converts valid source trees (documents) into valid output trees
(where types are defined by TA). It has also been shown useful for the analysis
of consistency of XML read and write access control policies [17].

A rewrite rule is an oriented equation, whose left-hand-side (lhs) describe a
pattern to be replaced in a term, and whose right-hand-side (rhs) is the new
term for replacement. It can be applied at any position in a term, providing
that the lhs matches the subterm at this position. For instance, a rule with lhs
a(x1, x2) can be applied at any position labelled by a. This simple approach is
in general relevant in domains like theorem proving or algebraic computation.
For some applications however, like the analysis of programs for XML document
transformations or of access-control policies, it is important to be able to ex-
press explicitly some context conditions to be checked before applying a rewrite
rule. For instance, one may want to rename the label at some position with a
rewrite rule a(x) → b(x) providing that there is no occurrence of b above the
position to be rewritten (position labeled with a). Some standard XML trans-
formation languages like XSLT or XQuery update [6], use the path specification
language XPath or a XQuery expressions in order to define the position where
the transformation can be applied.

In this paper, we study the so called controlled term rewriting systems (Cnt-
TRS) in the context of regular tree model checking. They are defined by the
combination of term rewriting rules with some constraints (called control) spec-
ifying the possible rewrite positions. In order to define the constraints, we have
chosen a model similar to the selection tree automata (SA) of [13], which, intu-
itively, select positions in a term based on the computations of a tree automaton.
This gives a powerful selection mechanism, with the same expressiveness as the
monadic second order logic of the tree, or monadic Datalog [14]. We consider
also a restriction of the SA where a position p in a term t is selected if the se-
quence of symbols on the path from p to the root of t belongs to a given regular
language. The corresponding restricted rewriting model is called prefix CntTRS,
or pCntTRS. It turns out quickly (Examples at the end of Section 1) that even
the restricted pCntTRS are actually too powerful for preserving regularity, even
for very simple rewrite rules.

Therefore, we consider in Section 2 the classes of context-free (CF) and context-
sensitive (CS) tree languages, which are both strictly larger than the class of TA
languages (also called regular tree languages). We also define the so called CF
and monotonic classes of rewrite systems (without control). A rewrite rule is CF
if its lhs is of the form f(x1, . . . , xn) where x1, . . . , xn are distinct variables, and
monotonic if the size of its lhs is larger or equal to the size of its rhs. We show
that CF and monotonic TRS respectively preserve CF tree languages and CS
tree languages.
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The monotonic uncontrolled rewrite rules already have the full power of CS
tree grammars. Adding control with SA does not improve their expressiveness,
and it follows that reachability is PSPACE-complete and model checking unde-
cidable for monotonic CntTRS (Section 3.1). Similar results also hold for CF Cnt-
TRS without collapsing rules (projection rules of the form f(x1, . . . , xn) → xi),
even when restricting to prefix control (Section 3.2).

When allowing depth-reducing rules (Section 3.3), reachability becomes un-
decidable, even for flat CntTRS (lhs and rhs of rewrite rules are of depth at
most one) and in the case of words (i.e. function symbols of arity at most one).
Similarly, reachability is undecidable for ground CntTRS (rewrite rules have
no variables). When restricting to words, prefix control and flat rewrite rules,
reachability is decidable in PSPACE.

Finally, we consider in Section 4 a relaxed form of the prefix control of rewrite
rules, where the selection is done by considering the term in input modulo the
rewrite relation. We obtain a regularity preservation result for this recursive form
of prefix controlled rewriting, using alternating tree automata with ε-transitions.

Related Work. Controlled rewrite systems have been introduced in the case
of word rewriting, see [28] for a survey, and also [9] for the case of conditional
context-free (word) grammars, which are mentioned in Section 3.

Regarding term rewriting, there have been many studies for finding syntac-
tical restriction on term rewrite rules ensuring the preservation of regularity,
see e.g. [12]. This is the case for instance of linear and flat as well as ground
TRS without control, in contrast to the results of Section 3.3 for their controlled
counterpart.

Many strategies have been proposed for term rewriting, most often for effi-
ciency purposes (our goal here is rather to study the expressiveness and decid-
ability results for controlled rewriting). We cannot mention all of them, and will
just give some elements of comparison with controlled rewriting. The innermost
strategy, which is the analogous of call-by-value for functional languages (a sub-
term can be rewritten only when all its proper subterms are no more rewritable)
can be expressed in controlled rewriting for left-linear TRS, because the set of
non-rewritable terms (the normal forms) for such TRS are recognizable by tree
automata (see e.g. [8]). Some results of preservation of regularity for the inner-
most and the outermost and leftmost rewrite strategies can be found in [26] In
the context sensitive strategy [21] (which is not related to the context-sensitive
term languages presented in this paper), the rewriting positions are selected ac-
cording to a mapping μ associating to every symbol of the signature the subset of
the indexes of its argument that can be rewritten. More precisely, the positions
selected for rewriting in a term f(t1, . . . , tn) are the root position and all the po-
sitions selected in every ti such that i ∈ μ(f). This set of positions can be defined
by SA, i.e. context-sensitive rewriting is a particular case of controlled rewrit-
ing. It is a strict subcase because with the context-sensitive strategy, the root
position is always rewritable whereas this is not the case for controlled rewriting.
A result of preservation of regularity for this rewrite strategy was established
in [19]. Another related topic is the optimal call-by-need rewrite strategies for
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TRS. In [7] and [10], it is shown how to select the needed redexes (positions
at which rewriting must be performed in order to transform a term to its nor-
mal form) using monadic second order logic formulae, which is equivalent as
using SA.

Top-down tree transducers with regular look-ahead [11] are an extension of
top-down tree transducers, where a transition can be fired provided that the
current subtree belongs to some given regular tree language. This is similar to
our notion of control for rewrite systems. A notable difference however is that
the transducers transform terms in one (top-down) pass, whereas we consider
here the terms computed by an arbitrary iteration of controlled rewrite rules.

1 Preliminaries

Terms. We use the standard notations for terms and positions, see [2]. A sig-
nature Σ is a finite set of function symbols with arity. We denote the subset of
function symbols of Σ of arity n as Σn. Given an infinite set X of variables, the
set of terms built over Σ and X is denoted T (Σ,X ), and the subset of ground
terms (terms without variables) is denoted T (Σ). The set of variables occur-
ring in a term t ∈ T (Σ,X ) is denoted vars(t). A signature is called unary if
it contains only symbols of arity 1 and one symbol ⊥ of arity 0. We make no
distinction below between ground terms over a unary signature Σ and words of
Σ∗

1 . More precisely, a term a1(a2(. . . an(⊥))) will be represented by the string
a1 a2 . . . an (the constant symbol ⊥ is forgotten in this representation).

A term t ∈ T (Σ,X ) can be seen as a function from its set of positions Pos(t)
into Σ ∪ X . Positions in terms are denoted by sequences of natural numbers,
ε is the empty sequence (root position), and p.p′ denotes the concatenation of
positions p and p′. The set Pos(t) of positions of the term t is defined recursively
as Pos

(
f(t1, . . . , tm)

)
= {ε} ∪ {i.p | i ∈ {1, . . . ,m} ∧ p ∈ Pos(ti)}. The height of

a term t, denoted h(t), is the maximal length of a position of Pos(t). The size
‖t‖ of a term t is the cardinality of Pos(t).

The subterm of t at position p is denoted t|p defined by t|ε = t and f(t1, . . . ,
tm)|i.p = ti|p. The term obtained from t by replacing subterm of t at position p
by s, is denoted t[s]p. The notation t = t[s]p may also be used to emphasize that
t|p is s.

A substitution is a mapping X → T (Σ,X ). Substitutions can also be applied
to arbitrary terms by homomorphically extending its application to variables.
The application of a substitution σ to a term t, denoted as tσ, is defined as follows
for non-variable terms: f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ). A variable renaming is
a substitution from variables to variables.

A term is linear if no variable occurs more than once in it. A term is shallow
if each occurrence of variables is at most depth one, and flat if its height is at
most one.

A context of dimension n is a linear term C ∈ T (Σ, {x1, . . . , xn}). When
C = x1, it is called the empty context. Given a context C of dimension n and n
terms t1, . . . , tn ∈ T (Σ,X ), we write C[t1, . . . , tn] to denote Cσ where σ is the
substitution {x1 �→ t1, . . . , xn �→ tn}.
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Tree Automata. A tree automaton (TA) A over a signature Σ is a tuple
〈Q,F,Δ〉 where Q is a finite set of nullary state symbols, disjoint from Σ, F is
a set of states of Q called final states, Δ is a set of transition rules of the form:
f(q1, . . . , qn) → q, where f ∈ Σn, and q1, . . . , qn, q ∈ Q. Sometimes, we shall
refer to A as a subscript of its components, like in QA to indicate that Q is the
state set of A. The size of A is ‖A‖ =

∑
f(q1,...,qn)→q∈Δ(n+ 2). Transition from

s to t in one step by a TA A is denoted by s −→A t, and its reflexive and transitive
closure is denoted by s ∗−→A t.

A run of A on a term t ∈ T (Σ) is a mapping ρ from Pos(t) into QA such
that for all p ∈ Pos(t), t(p)

(
ρ(p.1), . . . , ρ(p.n)

)
→ ρ(p) is in ΔA, where n is the

arity of the symbol t(p) in Σ. The run ρ is called successful (or accepting) if
ρ(ε) is in FA. The set of successful runs of A on t is denoted sruns(A, t). For
the sake of conciseness, we shall sometimes apply term-like notations (subterm,
replacement...) to runs. The language L(A) of A is the set of terms t for which
sruns(A, t) is not empty.

Selection Automata. Besides being able to recognize terms, tree automata can
also be used to select positions in a term [13,24]. We propose here a definition
of position selection by TA very close to [13].

A selection automaton (SA) A over a signature Σ is a tuple 〈Q,F, S,Δ〉 where
〈Q,F,Δ〉 is a tree automaton denoted ta(A) and S is a set of states of Q called
selection states. Given a SA A and a term t ∈ T (Σ), the set of positions of t
selected by A is defined as

sel(A, t) = {p ∈ Pos(t) | ∃ρ ∈ sruns(ta(A), t), ρ(p) ∈ S}.

Note that it is required that t is recognized by A in order to select positions.
We shall consider below a restricted kind of selection by TA, where a position

p in a term t is selected only according to its strict prefix (i.e. the sequence of
symbols labeling the path from the root of t down to the immediate ancestor of
p), which is tested for membership to a regular (word) language. More precisely,
a selection automaton A = 〈Q,F, S,Δ〉 is called prefix if Q contains two special
states: q0 (universal state) and qs (selection state), F ⊆ Q\{q0}, S = {qs}, and Δ
contains f(q0, . . . , q0) → q0 and f(q0, . . . , q0) → qs for all f ∈ Σ, and Δ contains
some other transition rules of the form f(q1, . . . , qn) → q where q ∈ Q \ {q0, qs}
and there exists exactly one i ≤ n such that qi �= q0. Intuitively, assume that we
are given a finite automaton B defining the strict prefixes of selected positions.
Then qs is the initial state of B, F is the set of final states of B, and for all
a ∈ Σn, Δ contains n rules a(q0, . . . , q0, q′, q0, . . . , q0) → q for each transition
q′ −→a q of B. Note that with this definition, the root position is always selected
by a by a prefix selection automaton.

Controlled Term Rewriting Systems. We propose a formalism that strictly
extends standard term rewriting systems [2] by the restricting the possible
rewrite positions to positions selected by a given SA. Formally, a controlled term
rewriting system (CntTRS) R over Σ is a finite set of controlled rewrite rules
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of the form A : # → r, made of a SA A over Σ and a rewrite rule # → r such
that # ∈ T (Σ,X )\X (the left-hand side of the rule), and r ∈ T (Σ, vars(#)) (the
right-hand side). Ths size of R is the number of the rewrite rules inn R.

A term s rewrites to t in one step by an CntTRS R, denoted by s −−→R t, if
there exists a controlled rewrite rule A : # → r ∈ R, a position p ∈ sel(A, s),
and a substitution σ such that s|p = #σ and t = s[rσ]p. In this case, s is said
to be R-reducible, and otherwise s is called an R-normal form. The reflexive
and transitive closure, and reflexive, symmetric and transitive closure of −−→R are
denoted as ∗−→R and ←−−→∗R , and =−→R denotes the union of −→R and =.

Example 1. Let us consider the CntTRS R = {(1) A1 : a → c, (2) A2 : b →
c, (3)A3 : f(x, y) → g(x, y)} where each SA is as follows (Q = {q1, q2, qf}):

A1 = 〈Q, {qf}, {q1}, {a→ q1, b→ q2, f(q1, q2) → qf}〉
A2 = 〈Q, {qf}, {q2}, {c→ q1, b→ q2, g(q1, q2) → qf}〉
A3 = 〈Q, {qf}, {qf}, {c→ q1, b→ q2, f(q1, q2) → qf}〉

Then, possible rewriting from the term f(a, b) by R is f(a, b) −−→
(1)

f(c, b) since
sel(A1, f(a, b)) = {1} and the subterm at the position 1 is a. Similarly, we have
f(c, b) −−→

(3)
g(c, b) −−→

(2)
g(c, c) where sel(A3, f(c, b)) = {ε}, and sel(A2, g(c, b)) =

{2}. ��
We call prefix controlled term rewriting system (pCntTRS), resp. term rewriting
systems (TRS), the special cases of CntTRS such that every SA in a controlled
rewrite rule is a prefix SA, resp. is the universal SA A0 = 〈{q0}, {q0}, {q0},
{f(q0, . . . , q0) → q0 | f ∈ Σ}〉. In the latter case, A0 may be dropped when
defining the rewrite rules, i.e. we present a TRS as a finite set of uncontrolled
rewrite rules, as usual.

A controlled rewrite rule A : # → r is ground, flat, linear, shallow if # and r
are so. It is collapsing if r is a variable. A CntTRS is flat, linear, etc if all its
rules are so.

Decision Problems. The closure of a ground term set L by a CntTRS R is
{t | ∃s ∈ L, s −−→∗R t} (it is sometimes denoted R∗(L)).
Ground reachability is the problem to decide, given two ground terms s, t ∈
T (Σ) and a CntTRS R whether s −−→∗R t. Regular Model checking (RMC) is the
problem to decide, given two TA languages Lin and Lerr and a CntTRSR whether
R∗(Lin) ∩ Lerr = ∅. The name of the problem is coined after state exploration
techniques for checking safety properties. In this setting, Lin and Lerr represent
(possibly infinite) sets of initial, respectively error, states.

Example 2. Let us consider the following CntTRS R over the unary signature
Σ with Σ1 = {a, b, c, d} and Σ0 = {⊥}. Let R be the CntTRS containing the
following controlled rewrite rules. The SA of these rules select one position per
term, and they are represented by a regular expression where the selected letter
is underlined.

(1) c∗a∗d∗d b∗ : d(x) → b′(x)
(3) c∗a′a∗d∗b′ b∗ : b′(x) → b(x)

(2) c∗c a∗d∗b′b∗ : c(x) → a′(x)
(4) c∗a′ a∗d∗b∗ : a′(x) → a(x)
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More precisely, the SA for the above rules are respectively (Q is the state set
{qa, qb, qc, qd, q})

A1 =
〈
Q, {qc, qa, qd, q}, {q}, {⊥ → qb, b(qb) → qb, d(qb) → q, d(q|qd) → qd,
a(q|qd|qa) → qa, c(qa|qc|q) → qc}

〉
A2 =

〈
Q, {qc, q}, {q}, {⊥ → qb, b(qb) → qb, b

′(qb) → qd, d(qd) → qd,
a(qd|qa) → qa, c(qa) → q, c(q|qc) → qc}

〉
A3 =

〈
Q, {qc}, {q}, {⊥ → qb, b(qb) → qb, b

′(qb) → q, d(q|qd) → qd, a(q|qd) → qa,
a′(q|qd|qa) → qc, c(qc) → qc}

〉
A4 =

〈
Q, {qc, q}, {q}, {⊥ → qb, b(qb) → qb, d(qb|qd) → qd, a(qb|qd|qa) → qa,
a′(qb|qd|qa) → q, c(q|qc) → qc}

〉
Note that these SA are all deterministic. The SA A1 selects the last d (starting
from the top), A2 selects the last c when there is a b′, A3 selects the b′ when
there is a a′, and A4 selects the a′ when there is no b′. The closure of the regular
tree language L = c+(d+(⊥)) by the CntTRS is such that R∗(L) ∩ a∗(b∗(⊥)) =
{anbn ≤ n ≥ 0}. Therefore, R∗(L) is a non regular tree language (it is a context-
free tree language).

Example 3. Using the same signature as in Example 2, we can obtain a context-
free set of descendants with a flat pCntTRS. Indeed, intersection of a∗b∗ and the
closure of c∗d∗ by the following set of rewrite rules is {anbm | n ≥ m} which is
CF and not regular. In the rewrite rules, we use an informal description of the
languages of the prefix allowed, instead of giving explicitly the prefix SA.

no a′, no a : c(x) → a′(x), exactly one a′ : d(x) → b′(x),
no a′, no a : a′(x) → a(x), no a′, no b′, no b : b′(x) → b(x).

It is not difficult to generalize the construction of Example 3 in order to obtain
a context sensitive rewrite closure of the form {anbmcp | n ≥ m ≥ p}, starting
from a regular set of the form c∗d∗e∗ and using a flat pCntTRS.

2 CF and CS Tree Languages and TRS

In this section, we define the context-free and context-sensitive sets of terms,
and give properties of their closure under term rewriting.
A rewrite rule over Σ is called

context-free (CF) if it is of the form f(x1, . . . , xn) → r where r ∈ T
(
Σ, {x1, . . . ,

xn}
)
, x1, . . . , xn are distinct variables and f ∈ Σn. Recall that when r = xi

for some i ≤ n, then the rule is called collapsing.
monotonic if it is of the form C[x1, . . . , xn] → D[x1, . . . , xn] where C and D

are two contexts over Σ and such that ‖C‖ ≤ ‖D‖ and x1, . . . xn are distinct
variables (note that it implies that the rule is linear).

A tree grammar (TG, see e.g. [8]) is a tuple G = 〈N , S,Σ, P 〉 where N is a
finite set of non-terminal symbols, each with an arity, S ∈ N has arity 0, it is
called the axiom of G, Σ is a signature disjoint from N , (its elements are also
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called terminal symbols) and P is a set of (uncontrolled) rewrite rules, called
production rules, of the form # → r where #, r are terms of T (Σ ∪ N ,X ) such
that # contains at least one non-terminal. The tree grammar G is regular if all
non-terminal symbols of N have arity 0 and all production rules of P have the
form A → r, with A ∈ N and r ∈ T (Σ ∪ N ). It is context-free (CFTG), resp.
context-sensitive (CSTG) if all production rules are CF, resp. monotonic. In the
two later cases, we assume from now on wlog that every production rule either
has the form A(x1, . . . , xn) → a(x1, . . . , xn) where A ∈ N and a ∈ Σn, or it does
not contain terminal symbols of Σ, by introducing the non-terminal symbol 〈b〉,
the production rule 〈b〉 → b, and replace all b in the other production rules
by 〈b〉.

The language generated by G, denoted by L(G), is the set of terms of T (Σ)
which can be reached by successive applications of the production rules, starting
from the axiom, i.e. L(G) = {t ∈ T (Σ) | S −−→∗P t}. A tree language is called
regular (resp. CF, CS) if it is the language of a regular (resp. CF, CS) grammar.

Note that the classical cases of word languages are particular cases of the
above, if the symbols of N ∪Σ are unary symbols of a unary signature.

The regular tree grammars are equivalent in expressiveness to TA. There
exists a model of pushdown TA equivalent to the CF tree grammars [15].
The membership problem is, given a tree grammar G overΣ and a term t ∈ T (Σ),
to decide whether t ∈ L(G).
The emptiness problem is, given a tree grammar G, to decide whether L(G) = ∅.

Proposition 1. Membership and emptiness are decidable in PTIME for CFTG.

The following result (perhaps a folklore knowledge) is almost immediate from
the above definitions.

Proposition 2. Given a CFTG G and a CF TRS R, one can construct in
PTIME a CFTG generating the closure of L(G) by R, and whose size is polyno-
mial in the size of G and R.

Proof. Let G = 〈N , S,Σ, P 〉 be a CFTG and R a CF TRS over Σ. For all
a ∈ Σ, we create a new non-terminal Na with the same arity as a. Let N ′ =
N ∪{Na | a ∈ Σ}, and let P ′ be obtained from P by replacing every production
rule A(x1, . . . , xn) → a(x1, . . . , xn), with A ∈ N and a ∈ Σ, by A(x1, . . . , xn) →
Na(x1, . . . , xn). Moreover, we add to P ′ the rules obtained from the rules of R by
replacing every symbol a ∈ Σ by Na. The CFTG G′ = 〈N ′, S,Σ, P ′〉 generates
the closure of L(G) by R. ��

Corollary 1. Reachability and RMC are decidable in PTIME for CF TRS.

Proof. For the RMC, we use the fact that the intersection of the languages of a
CF tree grammar G and a TA A is the language of a CF tree grammar whose
size is the product of the respective sizes of G and A. ��

Note however that joinability, the problem to decide, given two ground terms
s, t ∈ T (Σ) and a TRS R, whether there exists u ∈ T (Σ) such that s −−→∗R
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u←−−∗R t, is undecidable for CF TRS [5], because the emptiness of intersection is
undecidable for CF tree languages.

We can also observe that the CF TRS are left linear, but in general not
right linear. They are the symmetric the so called right-linear, monadic and
non-collapsing TRS, whose rules have the form f(x1, . . . , xn) → r, where r ∈
T (Σ, {x1, . . . , xn})\X . It has been shown that these TRS preserve regularity [23]:
the closure of a regular tree language by such a TRS is a regular tree language.
The decidability of reachability for CF TRS is already a consequence of this
former result. It has been observed, see e.g. [16], that in several cases, one class
of word rewrite system preserves regularity and its symmetric class preserves CF
languages. We have here an example of such a situation in the case of terms.

To our knowledge, the case of CSTG and monotonic TRS was not studied
before but it is not very surprising.

Proposition 3. Membership is PSPACE-complete for CSTG.

Proof. The hardness is an immediate consequence of the same result for CS
(word) grammars [20], which are a particular case of CSTG. For the decision
algorithm, let G be a CSTG over Σ and let t ∈ T (Σ) be given. We can observe
that if two terms s and s′ over the non-terminal and terminal symbols of the
CSTG G are successive in a derivation starting from the axiom S of G, then the
size ‖s′‖ is larger or equal to ‖s‖. Hence, if there is a derivation from S to t by G,
then all the terms in this derivation have a size smaller or equal to ‖t‖. Hence,
it is possible to construct a linear bounded automata which, starting from t,
will search backward (non deterministically) a derivation from S. The detailed
construction is given in the long version of this paper. ��

Proposition 4. Emptiness is undecidable for CSTG.

Proof. It is a consequence of the same result for CS (word) grammars. ��

Proposition 5. Given a CSTG G and a monotonic TRS R, one can construct
in PTIME a CSTG generating the closure of L(G) by R, and whose size is
polynomial in the size of G and R.

Proof. The construction is similar as the one in the proof of Proposition 2. ��

3 Controlled Term Rewriting

3.1 Monotonic CntTRS

The result of Proposition 5 can be extended from uncontrolled to controlled
monotonic TRS. Intuitively, monotonic TRS are powerful enough to be able to
simulate a control with uncontrolled rewrite rules.

Theorem 1. Given a CSTG G and a monotonic CntTRS R, one can construct
in PTIME a CSTG generating the closure of L(G) by R, and whose size is linear
in the size of G and R.
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Proof. (sketch) In order to prove this theorem, we show how to construct a
CSTG G∗ that accepts the set of terms reachable by R from the terms in L(G).
The production rules P∗ of G∗ consists in two sets: the rules P of G and P1,
that simulate rewriting by R. The basic idea for the construction of G∗ is the
introduction of non-terminals of the form 〈f, q〉 where f is a symbol and q is a
state of some SA.

First, we produce the term 〈t〉 where t ∈ L(G) and 〈t〉 is the term obtained
by replacing each symbol f by the non-terminal 〈f〉. Next, we simulate the
rewriting of R by P1. We simulate a transition f(q1, . . . , qn) → q of a SA by
some production rules in P1 of the form 〈f〉(〈f1, q1〉(x1), . . . , 〈fn, qn〉(xn)) →
〈f, q〉(〈f1, q1〉(x1), . . . , 〈fn, qn〉(xn)). Finally, if a final state occurs at the root
position of a term and a rewrite rule matches the subterm where a selection
state appears, then we rewrite the term. ��

Example 4. Consider the CntTRS R in Example 1 and the CSG G such that
L(G) = {f(a, b)}. We construct the CSG G∗ such that L(G∗) = {f(a, b), f(c, b),
g(c, b), g(c, c)}. Let the set of production rules P of G be {S → 〈f〉(〈a〉, 〈b〉), 〈a〉 →
a, 〈b〉 → b, 〈f〉(x1, x2) → f(x1, x2)}, and mark i to each component of SA to dis-
tinguish each SA Ai. Let the axiom of G∗ be Sλ. We define the set of production
rules P∗ of G∗ as P∗ = P ∪ P ′ ∪ PA ∪ Pfin ∪ PR ∪ Pre where

P ′ = {Sλ → 〈f〉λ(〈a〉, 〈b〉), 〈f〉λ(x1, x2) → f(x1, x2)}
PA = {〈c1〉 → 〈c1, qi〉 | c1 → qi ∈ Δi for some i}∪{

〈f1〉λ(〈c1, qi
1〉, 〈c2, qi

2〉)
→ 〈f1, q

i〉λ(〈c1, qi
1〉, 〈c2, qi

2〉)
c1, c2 ∈ {a, b, c},
f1(qi

1, q
i
2) → qi ∈ Δi for some i

}
Pfin = {〈f1, q

i〉λ(x1, x2) → 〈f1, q
i〉λ

fin
(x1, x2) | f1 ∈ {f, g}, qi ∈ Fi for some i}∪⎧⎨⎩ 〈f1, q

i〉λ
fin

(〈c1, qi
1〉, 〈c2, qi

2〉)
→ 〈f1〉λ(〈c1, qi

1〉fin, 〈c2, qi
2〉fin)

f1 ∈ {f, g},
c1 ∈ {a, b, c},
f(qi

1, q
i
2) → q ∈ Δi for some i

⎫⎬⎭
PR = {〈a, q1

1〉fin → 〈c〉} ∪ {〈b, q2
2〉fin → 〈c〉} ∪ {〈f, q3

f 〉λfin
(x1, x2) → 〈g〉λ(x1, x2)}

Pre = {〈c1, qi〉 → 〈c1〉, 〈c1, qi〉fin → 〈c1〉 | c1 ∈ {a, b, c}, qi ∈ Qi for some i}∪{
〈f1, q

i〉λ(x1, x2) → 〈f1〉λ,
〈f1, q

i〉λ
fin

(x1, x2) → 〈f1〉λ(x1, x2)
f1 ∈ {f, g},
qi ∈ Qi for some i

}
The term f(c, b) is produced by G∗ with the production Sλ −→

P ′ 〈f〉λ(〈a〉, 〈b〉) ∗−−→
PA

〈f, qf 〉λ(〈a, q1〉, 〈b, q2〉) ∗−−→
Pfin

〈f〉λ(〈a, q1〉fin, 〈b, q2〉fin) −−→PR
〈f〉λ(〈c〉, 〈b, q2〉fin) −−→Pre

〈f〉λ(〈c〉, 〈b〉) ∗−−−−→
P∪P ′ f(c, b). ��

Corollary 2. Reachability is PSPACE-complete for monotonic CntTRS.

From Proposition 4, it immediately holds that regular model checking is unde-
cidable for monotonic CntTRS. Moreover, the following lower bounds already
hold in the very restricted case of controlled rewrite rules over words, and where
each side of every rule has depth exactly one.

Proposition 6. Reachability is NLINSPACE-complete and regular model check-
ing is undecidable for monotonic and flat CntTRS over unary signatures.
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Proof. We reduce the acceptance (for reachability) and emptiness (for regular
model checking) problems for a linear bounded automaton (LBA) M [20]. Let
us present below the general idea of the reduction. Every configuration of M
will be represented by a term of the form ‖: a1 . . . aj−1a

p
jaj+1 . . . an:‖, where ‖:,

:‖ are the symbols for left and right endmarkers, a1 . . . an is the content of the
tape of M, p is its current state and ap

j marks the current position (j) of the
head.

To every transition θ of M stating that in state p, reading a, M changes
state to p′, write b and moves left, we associate the four following monotonic
and flat controlled rules (Γ is the input alphabet of M, the selected position in
the regular expression is obvious, it is the lhs of the rule)

‖: Γ ∗c apΓ ∗:‖ : ap(x) → 〈ap, θ〉(x),
‖: Γ ∗c 〈ap, θ〉Γ ∗:‖ : c(x) → 〈c, θ〉(x),

‖: Γ ∗〈c, θ〉 〈ap, θ〉Γ ∗:‖ : 〈ap, θ〉(x) → b(x),

‖: Γ ∗〈c, θ〉 bΓ ∗:‖ : 〈c, θ〉(x) → cp′
(x).

The rules for a transition moving to the right are similar. ��

Some remarks about the above result. In the above construction, the selection
of the rewrite position by the SA is not necessary. Only the selection of the
rewritable terms by TA is needed (a weaker condition). Note also that linear
and flat TRS preserve regularity, with a PTIME construction of the TA recog-
nizing the closure (see e.g. [27]). Hence reachability is decidable in PTIME in
the uncontrolled case.

The conditional grammars of [9] can be redefined in our settings as (word)
grammars whose production rules are CF controlled rewrite rules (and deriva-
tions are defined using the controlled rewrite relation). It is shown in [9] that the
class of languages of conditional grammars without collapsing rules coincide with
CS (word) languages. Hence, it also holds that reachability is PSPACE-complete
and regular model checking is undecidable for CF non-collapsing CntTRS over
unary signatures.

3.2 Prefix Control

Some other former results in the case of words imply that the above lower bounds
still hold when control is limited to prefix SA. It is shown in [25] that every CS
word language can be generated by a CS grammar with production rules of the
form AB → AC, A → BC, A → a (where A, B, C are non-terminal and a is
a terminal). It follows that every CS word language is the closure of a constant
symbol under a CF non-collapsing pCntTRS (over a unary signature).

Proposition 7. For all CS tree language L over a unary signature Σ, there
exists a CF non-collapsing pCntTRS R over Σ′ ⊃ Σ such that L = R∗({c}) ∩
T (Σ) for some constant c ∈ Σ′

0 \Σ.

Proof. Since L is the language over unary symbols, L can be regarded as a
word language. Moreover, we can easily construct a pCntTRS that has the rule
c→ S(⊥) where S is the start symbol of the grammar for L and inverse of every
production rule. ��
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Corollary 3. Reachability is PSPACE-complete and regular model checking un-
decidable for CF non-collapsing pCntTRS over unary signatures.

Another consequence of Proposition 7 is that deterministic top-down SA (which
are incomparable with prefix SA in general but more general than prefix SA in
unary signatures) already capture CS languages, for unary signatures.

To add a final remark, we can observe that following Example 3, there is no
hope of regularity preservation even for very simple CF CntTRS containing only
flat and monotonic rules, and even restricting to prefix control.

3.3 Non-monotonic Rewrite Rules

It is also shown in [9] that the class of languages of conditional grammars with
collapsing rules coincide with recursively enumerable languages. As a conse-
quence, reachability is undecidable for CF CntTRS (with collapsing rules) al-
ready in the case of unary signatures. Actually, the following propositions shows
that flat (but not monotonic) controlled rewrite rules are sufficient for the sim-
ulation of Turing machines.

Proposition 8. Reachability is undecidable for flat CntTRS over unary signa-
tures.

Proof. Flat CntTRS is a super class of monotonic and flat CntTRS. We can
extend the flat CntTRS R that simulates the moves of LBA in the proof for
Proposition 6, by adding some flat rules of the form :‖ → $:‖ and $:‖ →:‖ to R
(:‖ denotes the right endmarker), in order to simulate all the moves of a TM. ��

Note that when the signature is unary, all the rewrite rules are necessary linear.
Again, this result is in contrast with the case of uncontrolled rewriting, because
linear and flat TRS preserve regularity, and hence have a decidable reachability
problem. Restricting the control to prefix permits to obtain a decidability result
for non-monotonic rewrite rules, as long as they are not collapsing.

Theorem 2. Reachability is decidable in PSPACE for flat non-collapsing pC-
ntTRS over unary signatures.

Proof. We show the following claim: u rewrites to v iff u = u0 −→R u1 −→R · · · −→R
uk = v with ‖u0‖, . . . , ‖uk‖ ≤ max (‖u‖, ‖v‖).

The ”if” direction is trivial. For the ”only if” direction, assume given a reduc-
tion u = w1

∗−→R wn = v, and let max (‖u‖, ‖v‖) = M . We make an induction on
the number of strings wi longer than M . Suppose that the reduction contains one
wi such that ||wi|| > M . Then there exists a sub-sequence wk

+−→R wm such that
‖wk‖ = ‖wm‖ = M , with k < m. It holds that wk = wk[⊥]M ∗−→R wm[⊥]M = wm

because we consider only prefix control. This reduces the number of string wi

longer than M . ��

Non-monotonicity is also a source of undecidability of reachability for CntTRS
even in the case of ground controlled rewrite rules.
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Proposition 9. Reachability is undecidable for ground CntTRS.

Proof. By representing the words a1, . . . , an as right combs f(a1, f(· · · f(an,⊥))),
we can construct a ground CntTRS that simulates the moves of Turing Machine.
Like in the proof of Propositions 8 and 6, one move of the of the TM is simu-
lated by several rewrite steps, controlling the context left or right of the current
position of the TM’s head. Here, the controlled rewrite rule will have the form
A : a → a′ were a and a′ are constant symbols, and A controls c and d in a
configuration f(. . . f(c, f(a, f(d(, . . .))))), where a is at the rewrite position. ��

This result is in contrast to uncontrolled ground TRS, for which reachability is
decidable in PTIME.

4 Recursive Prefix Control

We propose a relaxed form of control, where, in order to select the positions of
application of a controlled rewrite rule, the term to be rewritten is tested for
membership in the closure of a regular language L, instead of membership to L
directly. The idea is somehow similar to conditional rewriting (see e.g. [2]) where
the conditions are equations that have to be solved by the rewrite system.

The definition is restricted to control with prefix SA, and a recursive pCntTRS
R is defined as a pCntTRS. In order to define formally the rewrite relation, let
us recall first that in the computations of a prefix SA A, the states below a
selection state qs are universal (q0), i.e. that we can have any subterm at a
selected position (only the part of the term above the selected position matters).
Following this observation, we say that the variable position p in a context C[x1]
overΣ is selected by the prefix SA A if p is selected in C[c] where c is an arbitrary
symbol of Σ0. A term s rewrites to t in one step by a recursive pCntTRS R,
denoted by s −−→R t, if there exists a controlled rewrite rule A : # → r ∈ R,
where A is a prefix SA, a substitution σ, a position p ∈ Pos(s), and a context
C[x1] such that C[x1] −−→∗R s[x1]p and the position of x1 is selected in C[x1] by
A, such that s|p = #σ and t = s[rσ]p. This definition is well-founded because
of the restriction to prefix control (remember that the root position is always
selected by prefix SA).

Example 5. Let Σ = {a, b, c, d,⊥} be a unary signature, and let R be the flat
recursive pCntTRS containing the rules C1 : a(a(x)) → b(x), and C2 : c(x) →
d(x), where the SA C1 selects the position after a prefix aa, and C2 selects the
position after a prefix aaaa. Then we have with R (we omit the parentheses and
the tail ⊥, and underline the part of the term which is rewritten)

aaaac −−→R aabc −−→R aabd

Note that for the last step, we have use the fact that aaaa −−→R aab, i.e. there
exists C[x1] = aaaa(x1) with C[x1] −−→R aab(x1) and the position of x1 in C[x1]
is selected by C2. The last rewrite step would not be possible if R would not be
recursive, because aab is not a prefix admitted by C2.
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Theorem 3. Regular model-checking is decidable in EXPTIME for linear and
right-shallow recursive pCntTRS.

Proof. (sketch) We show that, given a right-shallow and linear recursive pCnt-
TRS R and given the language L ⊆ T (Σ) of a TA AL we can construct an
alternating tree automaton with epsilon-transitions (ε-ATA) A′ recognizing the
rewrite closure R∗(L). Intuitively, an alternating tree automata A is a top-down
tree automaton that can spawn in several copies during computation on a term
t. Formally, an ε-ATA over a signature Σ is a tuple A = 〈Q, q0, δ〉 where Q is a
finite set of states, q0 ∈ Q is the initial state and δ is a function which associates
to every state q ∈ Q a disjunction of conjunctions of propositional variables of
the following form a ∈ Σ, or 〈q′, ε〉, for q′ ∈ Q \ {q}, or 〈q′, i〉, for q′ ∈ Q and
1 ≤ i ≤ m where m is the maximal arity of a symbol in Σ.

A run of A on t ∈ T (Σ) is a function ρ from Pos(t) into 2Q such that for all
position p ∈ Pos(t), with t(p) = a ∈ Σn (n ≥ 0), and for all state q ∈ ρ(p), it
holds that a, 〈ρ(p.1), 1〉, . . . , 〈ρ(p.n), n〉, 〈ρ(p), ε〉 |= δ(q) where 〈S, p〉 is a notation
for all the variables 〈q, p〉 with q ∈ S, and |= denotes propositional satisfaction,
while assigning true to the propositional variables on the left of |=.

The language L(A) of A is the set of terms t ∈ T (Σ) on which there exists a
run ρ of A such that q0 ∈ ρ(ε) (terms recognized by A).

Roughly, the principle of the construction of A′ is to start with AL and the
SA of R, casted into ATA and merged, and to complete the transition functions
in order to reflect the effect of the possible rewrite steps. ��

Conclusion

We have proposed a definition of controlled term rewrite systems based on selec-
tion automata for the specification of authorized rewrite position, and a restric-
tion where the selection of a position depends only on the labels on its prefix path.
We have shown that reachability is PSPACE-complete for controlled monotonic
(non-size-reducing) rewrite rules, using context-sensitive tree languages, and for
prefix-controlled context-free non-collapsing rewrite rules. When allowing size
decreasing rules, reachability becomes undecidable, even for flat and linear or
ground rules. Finally, we have presented a relaxed form of prefix control called
recursive prefix control which permits to obtain preservation of regular tree lan-
guages, hence decidability of reachability and regular model checking (in EXP-
TIME). The proof involves the construction of alternating tree automata with
ε-transitions, and we believe that this technique could be useful for computing
the rewrite closure of other classes of automata with local constraints.

The proof of undecidability for ground CntTRS (Proposition 9) does not work
when restricting to prefix control. It could be interesting to know whether reach-
ability is decidable for ground pCntTRS. Also, we are interested in knowing how
the decidability result of Theorem 2 can be generalized to non-unary signatures.

In [9], the conditional grammars (i.e. controlled (in the above sense) context-
free word grammars) are related to grammars with a restriction on the possible
production sequences (the list of names of production rules used must belong
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to a regular language). It could be interesting to establish a similar comparison
for term rewriting. In particular, results on the restriction defined by authorized
sequences of rewrite rules could be useful for the analysis of languages for the
extensional specification of the set of possible rewrite derivations like in [3].

Rewriting of unranked ordered labeled tree has been much less studied that
its counterpart for ranked terms. We would like to study controlled rewriting in
this case, in particular in the context of update rules for XML [6,17].

Acknowledgements. The authors wish to thanks Olivier Ly for his suggestion
for the proof of Proposition 9, and Sylvain Schmitz, Géraud Senizergues and
Hubert Comon-Lundh for their useful remarks and recommendations.
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26. Réty, P., Vuotto, J.: Tree automata for rewrite strategies. J. Symb. Comput. 40,

749–794 (2005)
27. Salomaa, K.: Deterministic tree pushdown automata and monadic tree rewriting

systems. J. Comput. Syst. Sci. 37(3), 367–394 (1988)
28. Sénizergues, G.: Formal languages and word-rewriting. In: Comon, H., Jouannaud,

J.-P. (eds.) TCS School 1993. LNCS, vol. 909, pp. 75–94. Springer, Heidelberg
(1995)



Sharing Is Caring: Combination of Theories�
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Abstract. One of the main shortcomings of the traditional methods for
combining theories is the complexity of guessing the arrangement of the
variables shared by the individual theories. This paper presents a refor-
mulation of the Nelson-Oppen method that takes into account explicit
equality propagation and can ignore pairs of shared variables that the
theories do not care about. We show the correctness of the new approach
and present care functions for the theory of uninterpreted functions and
the theory of arrays. The effectiveness of the new method is illustrated
by experimental results demonstrating a dramatic performance improve-
ment on benchmarks combining arrays and bit-vectors.

1 Introduction

The seminal paper of Nelson and Oppen [15] introduced a general framework
for combining quantifier-free first-order theories in a modular fashion. Using the
Nelson-Oppen framework, decision procedures for two individual theories can be
used as black boxes to create a decision procedure for the combined theory. Al-
though the Nelson-Oppen combination method as originally formulated requires
stably-infinite theories, it can be extended to handle non-stably-infinite theories
using an approach based on polite theories [12,13,18].

The core idea driving the method (and ensuring its correctness) is the ex-
change of equalities and disequalities over the interface variables between the
theories involved in the combination. Interface variables are the problem vari-
ables that are shared by both theories (or an extended set of variables in the
polite combination framework), and both theories must agree on an arrangement
over these variables. Most modern satisfiability modulo theories (SMT) solvers
perform the search for such an arrangement by first using aggresive theory prop-
agation to determine as much of the arrangement as possible and then relying
on an efficient SAT solver to guess the rest of the arrangement, backtracking
and learning lemmas as necessary [1,3,6].

In some cases, if the theories that are being combined have additional proper-
ties, such as convexity and/or complete and efficient equality propagation, there
are more efficient ways of obtaining a suitable arrangement. But, in general,
since the number of shared variables can be substantial, guessing an arrange-
ment over the shared variables can have an exponential impact on the running
time [16]. Trying to minimize the burden of non-deterministic guessing is thus
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of the utmost importance for a practical and efficient combination mechanism.
For example, a recent model-based theory combination approach [7], in which
the solver keeps a model for each theory, takes the optimistic stance of eagerly
propagating all equalities that hold in the model (whether or not they are truly
implied), obtaining impressive performance improvements.

In this paper we tackle the problem of minimizing the amount of non-
deterministic guessing by equipping the theories with an equality propagator and
a care function. The role of the theory-specific equality propagator is, given a
context, to propagate entailed equalities and disequalities over the interface vari-
ables. The care function, on the other hand, provides information about which
variable pairs among the interface variables are important for maintaining the
satisfiability of a given formula. With the information provided by these two
functions we can, in many cases, drastically reduce the search space for find-
ing a suitable arrangement. We present a reformulation of the Nelson-Oppen
method that uses these two functions to decide a combination of two theories.
The method can easily be adapted to the combination method for polite the-
ories, where reducing the number of shared variables is even more important
(the polite theory combination method requires extending the set of interface
variables significantly).

2 Preliminaries

We start with a brief overview of the syntax and semantics of many-sorted first-
order logic. For a more detailed exposition, we refer the reader to [11,21].

A signature Σ is a triple (S, F, P ) where S is a set of sorts, F is a set of function
symbols, and P is a set of predicate symbols. For a signature Σ = (S, F, P ), we
write ΣS for the set S of sorts, ΣF for the set F of function symbols, and ΣP

for the set P of predicates. Each predicate and function symbol is associated
with an arity, a tuple constructed from the sorts in S. Functions whose arity is a
single sort are called constants. We write Σ1∪Σ2 = (S1∪S2, F1∪F2, P1∪P2) for
the union1 of signatures Σ1 = (S1, F1, P1) and Σ2 = (S2, F2, P2). Additionally,
we write Σ1 ⊆ Σ2 if S1 ⊆ S2, F1 ⊆ F2, P1 ⊆ P2, and the symbols of Σ1

have the same arity as those in Σ2. We assume the standard notions of a Σ-
term, Σ-literal, and Σ-formula. In the following, we assume that all formulas are
quantifier-free, if not explicitly stated otherwise. A literal is called flat if it is of
the form x = y, x �= y, x = f(y1, . . . , yn), p(y1, . . . , yn), or ¬p(y1, . . . , yn), where
x, y, y1, . . . , yn are variables, f is a function symbol, and p is a predicate symbol.
If φ is a term or a formula, we will denote by varsσ(φ) the set of variables of sort
σ that occur (free) in φ. We overload this function in the usual way, varsS(φ)
denoting variables in φ of the sorts in S, and vars(φ) denoting all variables in φ.
We also sometimes refer to a set Φ of formulas as if it were a single formula, in

1 In this paper, we always assume that function and predicate symbols from different
theories do not overlap, so that the union operation is well-defined. On the other
hand, two different theories are allowed to have non-disjoint sets of sorts.
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which case the intended meaning is the conjunction
∧
Φ of the formulas in the

set.
Let Σ be a signature, and let X be a set of variables whose sorts are in ΣS.

A Σ-interpretation A over X is a map that interprets each sort σ ∈ ΣS as a
non-empty domain Aσ, each variable x ∈ X of sort σ as an element xA ∈ Aσ,
each function symbol f ∈ ΣF of arity σ1 × · · · × σn × τ as a function fA :
Aσ1 × · · · ×Aσn → Aτ , and each predicate symbol p ∈ ΣP of arity σ1 × · · · × σn

as a subset pA of Aσ1 × · · · × Aσn . A Σ-structure is a Σ-interpretation over
an empty set of variables. As usual, the interpretations of terms and formulas
in an interpretation A are defined inductively over their structure. For a term
t, we denote with tA the evaluation of t under the interpretation A. Likewise,
for a formula φ, we denote with φA the truth-value (true or false) of φ under
interpretation A. A Σ-formula φ is satisfiable iff it evaluates to true in some Σ-
interpretation over (at least) vars(φ). Let A be an Ω-interpretation over some set
V of variables. For a signature Σ ⊆ Ω, and a set of variables U ⊆ V , we denote
with AΣ,U the interpretation obtained from A by restricting it to interpret only
the symbols in Σ and the variables in U .

We will use the definition of theories as classes of structures, rather than sets
of sentences. We define a theory formally as follows (see e.g. [20] and Definition
2 in [18]).

Definition 1 (Theory). Given a set of Σ-sentences Ax a Σ-theory TAx is a
pair (Σ,A) where Σ is a signature and A is the class of Σ-structures that satisfy
Ax.

Given a theory T = (Σ,A), a T -interpretation is a Σ-interpretation A such
that AΣ,∅ ∈ A. A Σ-formula φ is T -satisfiable iff it is satisfiable in some T -
interpretation A. This is denoted as A �T φ, or just A � φ if the theory is clear
from the context.

As theories in our formalism are represented by classes of structures, a combi-
nation of two theories is represented by those structures that can interpret both
theories (Definition 3 in [18]).

Definition 2 (Combination). Let T1 = (Σ1,A1) and T2 = (Σ2,A2) be two
theories. The combination of T1 and T2 is the theory T1 ⊕ T2 = (Σ,A) where
Σ = Σ1 ∪Σ2 and A = {Σ-structures A | AΣ1,∅ ∈ A1 and AΣ2,∅ ∈ A2}.
The set of Σ-structures resulting from the combination of two theories is indeed
a theory in the sense of Definition 1. If Ax1 is the set of sentences defining
theory T1, and Ax2 is the set of sentences defining theory T2, then A is the set
of Σ-structures that satisfy the set Ax = Ax1 ∪Ax2 (see Proposition 4 in [18]).

Given decision procedures for the satisfiability of formulas in theories T1 and
T2, we are interested in constructing a decision procedure for satisfiability in
T1 ⊕ T2 using these procedures as black boxes. The Nelson-Oppen combination
method [15,20,21] gives a general mechanism for doing this. Given a formula φ
over the combined signature Σ1∪Σ2, the first step is to purify φ by constructing
an equisatisfiable set of formulas φ1 ∪ φ2 such that each φi consists of only Σi-
formulas. This can easily be done by finding a pure (i.e. Σi- for some i) subterm t,
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replacing it with a new variable v, adding the equation v = t, and then repeating
this process until all formulas are pure. The next step is to force the decision
procedures for the individual theories to agree on whether variables appearing
in both φ1 and φ2 (called shared or interface variables) are equal. This is done
by introducing an arrangement over the shared variables [18,20].

Here we will use a more general definition of an arrangement that allows us to
restrict the pairs of variables that we are interested in. We do so by introducing
the notion of a care graph. Given a set of variables V , we will call any graph
G = 〈V,E〉 a care graph, where E ⊆ V × V is the set of care graph edges. If an
edge (x, y) ∈ E is present in the care graph, it means that we are interested in
the relationship between the variables x and y.

Definition 3 (Arrangement). Given a care graph G = 〈V,E〉 where sorts of
variables in V range over a set of sorts S, with Vσ = varsσ(V ), we call δG an
arrangement over G if there exists a family of equivalence relations

E = { Eσ ⊆ Vσ × Vσ | σ ∈ S } ,

such that the equivalence relations restricted to E induce δG, i.e. δG =
⋃

σ∈S δσ ,
where each δσ is an individual arrangement of Vσ (restricted to E):

δσ = { x = y | (x, y) ∈ Eσ ∩ E } ∪ { x �= y | (x, y) ∈ Eσ ∩ E } ,

where Eσ denotes the complement of Eσ (i.e. Vσ × Vσ \ Eσ). If the care graph
G is a complete graph over V , we will denote the arrangement simply as δV .

The Nelson-Oppen combination theorem states that φ is satisfiable in T1⊕T2 iff
there exists an arrangement δV of the shared variables V = vars(φ1) ∩ vars(φ2)
such that φi ∪ δV is satisfiable in Ti. However, as mentioned earlier, some re-
strictions on the theories are necessary in order for the method to be complete.
Sufficient conditions for completeness are: the two signatures have no function
or predicate symbols in common; and the two theories are stably-infinite over
(at least) the set of common sorts ΣS

1 ∩ ΣS
2 . Stable-infiniteness was originally

introduced in a single-sorted setting [16]. In the many-sorted setting stable-
infiniteness is defined with respect to a subset of the signature sorts (see Defini-
tion 6 from [21]).

3 New Combination Method

In this section we present a new method for combining two signature-disjoint
theories. The method is based on Nelson-Oppen, but it makes equality prop-
agation explicit and also includes a care function for each theory, enabling a
more efficient mechanism for determining equalities and dis-equalities among
the shared variables. Another notable difference from the original method is
that we depart from viewing the combination problem as symmetric. Instead,
as in the method for combining polite theories [12,13,18], one of the theories is
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designated to take the lead in selecting which variable pairs are going to be part
of the final arrangement.

We first define the equality propagator and the care function, and then proceed
to presenting and proving the combination method.

Definition 4 (Equality Propagator). For a Σ-theory T we call a function
P=

T �·� an equality propagator for T if, for every set V of variables, it maps
every set φ of flat Σ-literals into a set of equalities and dis-equalities between
variables:

P=
T �V �(φ) = {x1 = y1, . . . , xm = ym} ∪ {z1 �= w1, . . . , zn �= wn} ,

where vars(P=
T �V �(φ)) ⊆ V and

1. for each equality xi = yi ∈ P=
T �V �(φ) it holds that φ �T xi = yi;

2. for each dis-equality zi �= wi ∈ P=
T �V �(φ) it holds that φ �T zi �= wi;

3. P=
T �V � is monotone, i.e. φ ⊆ ψ =⇒ P=

T �V �(φ) ⊆ P=
T �V �(ψ); and

4. P=
T �V � contains at least those equalities and dis-equalities, over variables in

V , that appear in φ.

An equality propagator, given a set of theory literals, returns a set of entailed
equalities and dis-equalities between the variables in V . It does not need to be
complete (i.e. it does not need to return all entailed equalities and dis-equalities),
but the more complete it is, the more helpful it is in reducing the arrangement
search space.

When combining two theories, the combined theory can provide more equal-
ity propagation than just the union of the individual propagators. The following
construction defines an equality propagator that reuses the individual propaga-
tors in order to obtain a propagator for the combined theory. This is achieved
by allowing the propagators to incrementally exchange literals until a fix-point
is reached.

Definition 5 (Combined Propagator). Let T1 and T2 be two theories over
the signatures Σ1 and Σ2, equipped with equality propagators P=

T1
�·� and P=

T2
�·�,

respectively. Let T = T1 ⊕ T2 and Σ = Σ1 ∪Σ2. Let V be a set of variables and
φ a set of flat Σ-literals partitioned into a set φ1 of Σ1-literals and a set φ2 of
Σ2-literals. We define the combined propagator P=

T �·� for the theory T as

P=
T �V �(φ) = (P=

T1
⊕P=

T2
)�V �(φ) = ψ∗

1 ∪ ψ∗
2 ,

where 〈ψ∗
1 , ψ

∗
2〉 is the least fix-point of the following operator F

F〈ψ1, ψ2〉 =
〈
P=

T1
�V �(φ1 ∪ ψ2),P=

T2
�V �(φ2 ∪ ψ1)

〉
.

The fix-point exists as the propagators are monotone and the set V is finite.
Moreover, the value of the fix-point is easily computable by iteration from
〈∅, ∅〉. Also, it’s clear from the definition that the combined propagator is at
least as strong as the individual propagators, i.e. P=

T1
�V �(φ1) ⊆ P=

T �V �(φ1) ⊆
P=

T �V �(φ), P=
T2

�V �(φ2) ⊆ P=
T �V �(φ2) ⊆ P=

T �V �(φ).
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Definition 6 (Care Function). For a Σ-theory T we call a function C�·� a
care function for T with respect to a T -equality propagator P=

T �·� when for every
set V of variables and every set φ of flat Σ-literals

1. C�V � maps φ to a care graph G = 〈V,E〉;
2. if x = y or x �= y are in P=

T �V �(φ) then (x, y) �∈ E;
3. if G = 〈V, ∅〉 and φ is T -satisfiable then, for any arrangement δV such that

P=
T �V �(φ) ⊆ δV , it holds that φ ∪ δV is also T -satisfiable.

For any Σ-theory T and a set of variables V , the trivial care function C0�·� is the
one that maps a set of variables to a complete graph over the pairs of variables
that are not yet decided. i.e.

C0�V �(φ) = 〈V, {(x, y) ∈ V × V | x = y, x �= y �∈ P=
T �V �(φ)}〉 .

Notice that C0�·� trivially satisfies the conditions of Definition 6 with respect to
any equality propagator. To see this, the only case to consider is when the care
graph returned has no edges and φ is satisfiable. But in this case, if P=

T �V �(φ) ⊆
δV , then we must have P=

T �V �(φ) = δV , and so clearly φ ∪ δV is satisfiable.

3.1 Combination Method

Let Ti be a Σi-theory, for i = 1, 2 and let S = ΣS
1∩ΣS

2 . Further, assume that each
Ti is stably-infinite with respect to Si, decidable, and equipped with a theory
propagator P=

Ti
�·�. Additionally, let T2 be equipped with a care function CT2�·�

operating with respect to P=
T2

�·�. We are interested in deciding the combination
theory T = T1 ⊕ T2 over the signature Σ = Σ1 ∪ Σ2. We denote the combined
theory propagator with P=

T �·�.The combination method takes as input a set φ
of Σ-literals and consists of the following steps:

Purify: The output of the purification phase is two new sets of literals, φ1 and
φ2 such that φ1 ∪ φ2 is equisatisfiable (in T ) with φ and each literal in φi is
a flat Σi-literal, for i = 1, 2.

Arrange: Let V = vars(φ1) ∩ vars(φ2) be the set of all variables shared by φ1

and φ2. Let the care graph G2 be a fix-point of the following operator

G〈G〉 = G ∪ CT2�V �(φ2 ∪P=
T �V �(φ1 ∪ φ2 ∪ δG)) , (1)

where we choose the arrangement δG non-deterministically.
Check: Check the following formulas for satisfiability in T1 and T2 respectively

φ1 ∪P=
T �V �(φ1 ∪ φ2 ∪ δG2) , φ2 ∪P=

T �V �(φ1 ∪ φ2 ∪ δG2) .

If both are satisfiable, output satisfiable, otherwise output unsatisfiable.

Notice that above, since the graph is finite, and the the operator G is increasing,
the fix-point always exists. Moreover, it is in our interest to choose the minimal
such fix-point, which we can obtain by doing a fix-point iteration starting from
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G0 = 〈V, ∅〉. Another important fact is that for any fix-point G, with respect
to the δG we have chosen, of the operator G above, we must have that the
care function from (1) returns an empty graph. This follows from the fact that
the propagator must return all the equalities and dis-equalities from δG, by
definition, and the care function then must ignore them, also by definition.

Example 1. Consider the case of combining two theories T1 and T2 equipped with
trivial care functions and propagators P=

Ti
�V � that simply return those input

literals that are either equalities or dis-equalities over variables in V . Assume
that φ1 and φ2 are the output of the purification phase, and let V be the set
of variables shared by φ1 and φ2. Since CT2�·� is a trivial care function, we will
choose a arrangement δG2 over the set V of shared variables that completes
the set of equalities and dis-equalities over V . Since equality propagators simply
keep the input equalities and dis-equalities over V , and all other relationships
between variables in V are determined by δG2 , the combined propagator will
return a complete arrangement δV and we will then check φ1∪δV and φ2∪δV for
satisfiability. This shows that our method can effectively simulate the standard
Nelson-Oppen combination method. We now show the correctness of the method.

Theorem 1. Let Ti be a Σi-theory, stably-infinite with respect to the set of sorts
Si, and equipped with equality propagators P=

Ti
�·�, for i = 1, 2. Additionally,

let T2 be equipped with a care function CTi�·� operating with respect to P=
T2

�·�.
Let Σ = Σ1 ∪ Σ2, T = T1 ⊕ T2 and let φ be a set of flat Σ-literals, which
can be partitioned into a set φ1 of Σ1-literals and a set φ2 of Σ2-literals, with
V = vars(φ1) ∩ vars(φ2). If ΣS

1 ∩ΣS
2 = S1 ∩ S2, then following are equivalent

1. φ is T -satisfiable;
2. there exists some care-graph G2, and a corresponding arrangement δG2 , that

are fix-point solutions of (1), such that the following sets are T1- and T2-
satisfiable respectively

φ1 ∪P=
T �V �(φ1 ∪ φ2 ∪ δG2) , φ2 ∪P=

T �V �(φ1 ∪ φ2 ∪ δG2) .

Moreover, T is stably-infinite with respect to S1 ∪ S2.

Proof. (1) ⇒ (2) : Suppose φ = φ1 ∪ φ2 is T -satisfiable in a T -interpretation
A. Let δV be the full arrangement over V satisfied by A. Since δV trivially is
a fix-point of (1), A satsifies δV , and the propagator only adds formulas that
are entailed, it is clear that A satisfies both sets of formulas, which proves one
direction.

(2) ⇐ (1) : Assume that there is a T1-interpretationA1 and a T2-interpretation
A2 (and assume wlog that both interpret all the variables in V ) such that
A1 �T1 φ1 ∪ P=

T �V �(φ1 ∪ φ2 ∪ δG2) and A2 �T2 φ2 ∪ P=
T �V �(φ1 ∪ φ2 ∪ δG2).

Let δV be the arrangement over the complete graph on V satisfied by A1, so

δG2 ⊆ P=
T2

�V �(φ2 ∪ δG2) ⊆ P=
T �V �(φ1 ∪ φ2 ∪ δG2) ⊆ δV .

Because G2 is a fix-point, we know that CT2�V �(φ2 ∪ P=
T �V �(φ1 ∪ φ2 ∪ δG)) =

〈V, ∅〉. We then know, by property 3 of the care function, that there is a T2-
interpretation B2 such that B2 �T2 φ2 ∪ δV . Since δV is a complete arrangement
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over all the shared variables and we also have that A1 �T1 φ1 ∪ δV , we can now
appeal to the correctness of the standard Nelson-Oppen combination method
to obtain a T -interpretation C that satisfies φ1 ∪ φ2 = φ. The proof that the
combined theory is stably-infinite can be found in [12]. ��

3.2 Extension to Polite Combination

The method described in Section 3 relies on the correctness argument for the
standard Nelson-Oppen method, meaning that the theories involved should be
stably-infinite for completeness. A more general combination method based on
the notion of polite theories (and not requiring that both theories be stably-
infinite) was introduced in [18] and clarified in [12,13]. Here, we assume famil-
iarity with the concepts appearing in those papers, and show how they can be
integrated into the combination method of this paper.

Assume that the theory T2 is polite with respect to the set of sorts S2 such
that Σ1∩Σ2 ⊆ S2, and is equipped with a witness function witness2. We modify
the combination method of Section 3.1 as follows:

1. In the Arrange and Check phases, instead of using φ2, we use the formula
produced by the witness function, i.e. φ′

2 = witness2(φ2).
2. We define V = varsS(φ′

2) instead of V = vars(φ1) ∩ vars(φ2).

Theorem 2. Let Ti be a Σi-theory polite with respect to the set of sorts Si, and
equipped with equality propagators P=

Ti
�·�, for i = 1, 2. Additionally, let T2 be

equipped with a care function CT2�·� operating with respect to P=
T2

�·�. Let Σ =
Σ1∪Σ2, T = T1⊕T2 and let φ be a set of flat Σ-literals, which can be partitioned
into a set φ1 of Σ1-literals and a set φ2 of Σ2-literals. Let φ′

2 = witnessT2(φ2)
and V = varsS(φ′

2). If S ⊆ S1 ∩ S2, then following are equivalent

1. φ is T -satisfiable;
2. there exists a care-graph G2 and arrangement δG2 , fix-point solutions of (1),

such that the following sets are T1- and T2-satisfiable respectively

φ1 ∪P=
T �V �(φ1 ∪ φ′

2 ∪ δG2) , φ′
2 ∪P=

T �V �(φ1 ∪ φ′
2 ∪ δG2) .

Moreover, T is polite with respect to S1 ∪ (S2 \Σ1).2

4 Theory of Uninterpreted Functions

The theory of uninterpreted functions over a signature Σeuf is the theory Teuf =
(Σeuf,A), where A is simply the class of all Σeuf-structures. Conjunctions of
literals in this theory can be decided in polynomial time by congruence closure
algorithms (e.g. [19]). We make use of insights from these algorithms in defining
both the equality propagator and the care function. For simplicity, we assume
Σeuf contains no predicate symbols, but the extension to the case with predicate
symbols is straightforward.
2 The remaining proofs are relegated to the technical report [14] due to space con-

straints.



Sharing Is Caring: Combination of Theories 203

Equality Propagator. Let φ be a set of flat literals, let V be a set of variables,
and let ∼c be the smallest congruence relation3 over terms in φ containing
{(x, t) | x = t ∈ φ}. We define a dis-equality relation �=c as the smallest re-
lation satisfying

x ∼c x
′ ∧ y ∼c y

′ ∧ x′ �= y′ ∈ φ =⇒ x �=c y .

Now, we define the equality propagator as

P=
euf�V �(φ) = {x = y | x, y ∈ V, x ∼c y} ∪ {x �= y | x, y ∈ V, x �=c y}.

It is easy to see that P=
euf�·� is indeed an equality propagator. Moreover, it

can easily be implemented as part of a decision procedure based on congruence
closure.

Example 2. Given the set φ = { x = z, y = f(a), z �= f(a) }, the equality
propagator would return P=

euf�{ x, y }�(φ) = { x = x, y = y, x �= y, y �= x }.

Care Function. The definition of the care function is based on the fact that
during congruence closure, we only care about equalities between pairs of vari-
ables that occur as arguments in the same position of the same function symbol.
Again, let V be a set of variables and let φ be a set of flat literals, such that φ
only contains function symbols from F = {f1, f2, . . . , fn}.

For a set of formulas φ, let E (φ) denote the smallest equivalence relation over
the terms occurring in φ containing {(x, t) | x = t ∈ φ}. For an equivalence rela-
tion E, let E∗ denote the congruence closure of E (i.e. the smallest congruence
relation containing E). In order to make our care-function more precise, we will
first approximate the implications that possible equalities over variables in V
could trigger. We do so by taking all possible equalities over V , i.e. let δ=

V be the
full arrangement over the shared variables where all variables of the same sort are
equal. Now, to see what these equalities could imply, we let E=

φ = E (φ ∪ δ=
V )∗.

For each function symbol f ∈ F of arity σ1 × σ2 × · · · × σk �→ σ, let Ef be a
set containing pairs of variables that could trigger an application of congruence
because of two terms that are applications of f . More precisely, let Ef ⊆ V × V
be a maximal set of pairs (x, y) ∈ V × V , that are not already decided by the
propagator (x �c y and ¬x �=c y), such that for each (x, y) ∈ Ef we have:

1. there are xi and yi such that x ∼c xi and y ∼c yi;
2. there are terms f(x1, . . . , xi, . . . , xk) �c f(y1, . . . , yi, . . . , yk) in φ;
3. for 1 ≤ j ≤ k, variables xj and yj could become equal, (xj , yj) ∈ E=

φ ;
4. for 1 ≤ j ≤ k, variables xj and yj are not known to be disequal, ¬(xj �=c yj).

Now, we let E =
⋃

f∈F Ef , and define the care function mapping φ to the care
graph G as Ceuf�V �(φ) = G = 〈V,E〉.
3 In this context, a congruence relation is an equivalence relation that also satisfies

the congruence property: if f(x1, . . . , xn) and f(y1, . . . , yn) are terms in φ, and if for
each 1 ≤ i ≤ n, xi ∼c yi, then f(x1, . . . , xn) ∼c f(y1, . . . , yn).
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Example 3. Consider the following sets of literals

φ1 = {f(x1) �= f(y1), y1 = x2} ,

φ2 = {z1 = f(x1), z2 = f(y1), g(z1, x2) �= g(z2, y2)} ,

φ3 = {y1 = f(x1), y2 = f(x2), z1 = g(x1), z2 = g(x2), h(y1) �= h(z1)} .

and corresponding sets of shared variables V1 = {x1, x2}, V2 = {x1, x2, y1, y2},
V3 = {x1, x2, y2, z2}. The care function above would return the care graphs
G1 = 〈V, {(x1, x2)}〉, G2 = 〈V, {(x1, y1), (x2, y2)}〉, and G2 = 〈V, {(x1, x2)}〉.

Note that the the care function for φ3 does not return the pair (y2, z2), which
is important in case x1 and x2 become equal. This is remedied in the procedure
itself, by computing the fix-point, which, in case we choose x1 = x2, will add the
pair (y2, z2) to the care graph in the second step.

Theorem 3. Let Teuf be the theory of uninterpreted functions with equality over
the signature Σeuf. Ceuf�·� is a care function for Teuf with respect to the equality
propagator P=

euf�·�.

5 Theory of Arrays

The extensional theory of arrays Tarr operates over the signature Σarr that
contains the sorts {array, index, elem} and function symbols

read : array × index �→ elem , write : array × index× elem �→ array ,

where read represents reading from an array at a given index, and write represents
writing a given value to an array at an index. The semantics of the theory are
given by the three axioms:

1. ∀ a:array. ∀ i:index. ∀ v:elem. read(write(a, i, v), i) = v,
2. ∀ a:array. ∀ i, j:index. ∀ v:elem. i �= j → read(write(a, i, v), j) = read(a, j),
3. ∀ a, b:array. (∀ i:index. read(a, i) = read(b, i)) → a = b.

The flat literals of the theory are of the form x = read(a, i), a = write(b, i, x),
i = j, i �= j, x = y, x �= y, a = b, a �= b, where here and below we use the
convention that x, y, v are variables of sort elem, i, j are variables of sort index,
a, b, and c are variables of sort array, and w, z are variables of any sort. For a
set φ of flat Tarr-literals, we also define α(φ) to be the subset of φ that does not
contain literals of the form a = write(b, i, v).

Decision Procedure. Before presenting the equality propagator and care function,
it will be helpful to present a simple rule-based decision procedure for Tarr based
on [9].4 Given a set Γ of flat Tarr-literals, we define ≈Γ

a as E (α(Γ ))∗ and the
corresponding disequality relation �=Γ

a as the smallest relation satisfying:
4 The main difference is that in our procedure, we exclude literals containing write

from the Teuf-satisfiability check as they are not needed and this allows us to have a
simpler care function.
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w ≈Γ
a w′ ∧ z ≈Γ

a z′ ∧w �= z ∈ Γ =⇒ w′ �=Γ
a z′ .

Additionally, let Γ [l1, . . . , ln] denote that literals li, 1 ≤ i ≤ n appear in Γ , and
for every pair (a, b) of variables in varsarray(Γ ), let ka,b be a distinguished fresh
variable of sort index. Let Darr be the following set of inference rules.

RIntro1
Γ [a = write(b, i, v)]
Γ, v = read(a, i) if v �≈Γ

a read(a, i)

RIntro2
Γ [a = write(b, i, v), x = read(c, j)]

Γ, i = j Γ, read(a, j) = read(b, j) if
a ≈Γ

a c or b ≈Γ
a c,

i �≈Γ
a j,

read(a, j) �≈Γ
a read(b, j)

ArrDiseq
Γ [a �= b]

Γ, read(a, ka,b) �= read(b, ka,b)
if ¬(read(a, ka,b) �=Γ

a read(b, ka,b))

Note that non-flat literals appear in the conclusions of rules RIntro2 and ArrDiseq.
We use this as a shorthand for the flattened version of these literals. For example,
read(a, j) = read(b, j) is shorthand for x = read(a, j) ∧ y = read(b, j) ∧ x = y,
where x and y are fresh variables (there are other possible flattenings, especially
if one or more of the terms appears already in Γ , but any of them will do). We
say that a set Γ of literals is Darr-saturated if no rules from Darr can be applied.

Theorem 4. The inference rules of Darr are sound and terminating.

Theorem 5. Let Γ be a Darr-saturated set of flat Tarr-literals. Then Γ is Tarr-
satisfiable iff α(Γ ) is Teuf-satisfiable.

Equality Propagator. Let φ be a set of flat literals and V a set of variables.
Consider the following modified versions of RIntro2 that are enabled only if one
of the branches can be ruled out as unsatisfiable:

RIntro2a
Γ [a = write(b, i, v), x = read(c, j)]

Γ, i = j
if

a ≈Γ
a c or b ≈Γ

a c,
i �≈Γ

a j,
read(a, j) �=Γ

a read(b, j)

RIntro2b
Γ [a = write(b, i, v), x = read(c, j)]

Γ, read(a, j) = read(b, j)
if

a ≈Γ
a c or b ≈Γ

a c,
i �=Γ

a j,
read(a, j) �≈Γ

a read(b, j)

Let D′
arr be obtained from Darr by replacing RIntro2 with the above rules. Since

these rules mimic RIntro2 when they are enabled, but are enabled less often, it is
clear that D′

arr remains sound and terminating. Let Γ ′ be the result of applying
D′

arr until no more apply (we say that Γ ′ is D′
arr-saturated). We define the

equality propagator as:

P=
arr�V �(φ) = {w = z | w, z ∈ V,w ≈Γ ′

a z} ∪ {w �= z | w, z ∈ V,w �=Γ ′
a z}.

It is easy to see that P=
arr�·� satisfies the requirements for a propagator. Though

not necessary for the care function we present here, a more powerful propagator
can be obtained by additionally performing congruence closure over write terms.



206 D. Jovanović and C. Barrett

Care Function. Let φ be a set of flat literals and V a set of variables. First, since
a simple propagator cannot compute all equalities between array variables, we
will ensure that the relationships between all pairs of array variables in V have
been determined. To do so we define the set Eφ

a of pairs of array variables in V
that are not yet known equal or dis-equal

Eφ
a = {(a, b) ∈ V × V | a �≈φ

a b ∧ ¬(a ��=φ
a b)} .

Next, since the inference rules can introduce new read terms, we compute the
smallest set Rφ with possible such terms, i.e

– if x = read(a, i) ∈ φ or a = write(b, i, v) ∈ φ, then read(a, i) ∈ Rφ,
– if a = write(b, i, v) ∈ φ, read(c, j) ∈ Rφ, i �≈φ

a j, and a ≈φ
a c ∨ b ≈φ

a c, then
both read(a, j) ∈ Rφ and read(b, j) ∈ Rφ,

– if a �= b ∈ φ, then both read(a, ka,b) ∈ Rφ and read(b, ka,b) ∈ Rφ .

Crucial in the introduction of the above read terms, is the set of index variables
whose equality could affect the application of the RIntro2 rule. We capture these
variables by defining the set Eφ

i as the set of all pairs (i, j) such that:

– i �≈φ
a j and ¬(i �=φ

a j)
– ∃ a, b, c, v. a = write(b, i, v) ∈ φ, read(c, j) ∈ Rφ, and a ≈φ

a c ∨ b ≈φ
a c.

Finally, we claim that with the variables in Eφ
a and Eφ

i decided, we can essen-
tially use the same care function as for Teuf, treating read as uninterpreted. We
therefore define the third set Eφ

r to be the set of all pairs (i, j) ∈ V × V of un-
decided indices, i �≈φ

a j and ¬(i �=φ
a j), such that there are a, b, i′, j′ with a ≈φ

a b,
i ≈φ

a i′, j ≈φ
a j′, read(a, i′) ∈ Rφ, read(b, j′) ∈ Rφ, read(a, i′) �≈φ

a read(b, j′).
With the definitions above, we can define the care graph as Carr�V �(φ) =

G = 〈V,E〉, where the set of edges is defined as

E =

⎧⎪⎨⎪⎩
Eφ

a if Eφ
a �= ∅,

Eφ
i if Eφ

i �= ∅, and
Eφ

r otherwise.

Note that as defined, Eφ
i may include pairs of index variables, one or more of

which are not in V . Unfortunately, the care function fails if Eφ
i is not a subset of

V × V . We can ensure that it is either by expanding the set V until it includes
all variables in Eφ

i or doing additional case-splitting up front on pairs in Eφ
i ,

adding formulas to φ, until Eφ
i ⊆ V × V .

Theorem 6. Let Tarr be the theory of arrays. Carr�·� is a care function for Tarr
with respect to the equality propagator P=

arr�·� for all sets φ of literals and V of
variables such that Eφ

i ⊆ V × V .

Example 4. Consider the following constraints involving arrays and bit-vectors
of size m, where ×m denotes unsigned bit-vector multiplication:

n∧
k=1

(read(ak, ik) = read(ak+1, ik+1) ∧ ik = xk ×m xk+1) . (2)
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Assume that only the index variables are shared, i.e. V = {i1, . . . , in+1}. In this
case, both Eφ

a and Eφ
i will be empty and the only read terms in Rφ will be those

appearing in the formula. Since none of these are reading from equivalent arrays,
the empty care graph is a fix-point for our care function, and we do not need to
guess an arrangement.

Note that in the case when V contains array variables, the care graph requires us
to split on all pairs of these variables (i.e. the care function is trivial over these
variables). Fortunately, in practice it appears that index and element variables
are typically shared, and only rarely are array variables shared.

6 Experimental Evaluation

We implemented the new method in the Cvc3 solver [2], and in the discussion be-
low, we denote the new implementation as Cvc3+C. We focused our attention on
the combination of the theory of arrays and the theory of fixed-size bit-vectors
(QF AUFBV). This seemed like a good place to start because there are many
benchmarks which generate a non-trivial number of shared variables, and addi-
tional splits on shared bit-vector variables can be quite expensive. This allowed
us to truly examine the merits of the new combination method. In order to eval-
uate our method against the current state-of-the-art, we compared to Boolector
[4], Yices [10], Cvc3, and MathSAT [5], the top solvers in the QF AUFBV category
from the 2009 SMT-COMP competition (in order). Additionally, we included the
Z3 solver [8] so as to compare to the model-based theory combination method [7].
All tests were conducted on a dedicated Intel Pentium E2220 2.4 GHz processor
with 4GB of memory. Individual runs were limited to 15 minutes.

We crafted a set of new benchmarks based on Example 4 from Section 5, taking
n = 10, . . . , 100, with increments of 10, and m = 32, . . . , 128, with increments
of 32. We also included a selection of problems from the QF AUFBV division of
the SMT-LIB library. Since most of the benchmarks in the library come from
model-checking of software and use a flat memory model, they mostly operate
over a single array representing the heap. Our method is essentially equivalent to
the standard Nelson-Oppen approach for such benchmarks, so we selected only
the benchmarks that involved constraints over at least two arrays. We anticipate
that such problems will become increasingly important as static-analysis tools
become more precise and are able to infer separation of the heap (in the style
of Burstall, e.g. [17]). All the benchmarks and the Cvc3 binaries used in the
experiments are available from the authors’ website.5

The combined results of our experiments are presented in Table 1, with
columns reporting the total time (in seconds) that a solver used on the problem
instances it solved (not including time spent on problem instances it was un-
able to solve), and the number of solved instances. Compared to Cvc3, the new
implementation Cvc3+C performs uniformly better. On the first four classes of

5 http://cs.nyu.edu/~dejan/sharing-is-caring/

http://cs.nyu.edu/~dejan/sharing-is-caring/
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Table 1. Experimental results

Boolector Yices MathSAT Z3 Cvc3 Cvc3+C

crafted (40) 2100.13 40 6253.32 34 468.73 30 112.88 40 388.29 9 14.22 40
matrix (11) 1208.16 10 683.84 6 474.89 4 927.12 11 831.29 11 45.08 11
unconstr (10) 3.00 10 0 706.02 3 54.60 2 185.00 5 340.27 8
copy (19) 11.76 19 1.39 19 1103.13 19 4.79 19 432.72 17 44.75 19
sort (6) 691.06 6 557.23 4 82.21 4 248.94 3 44.89 6 44.87 6
delete (29) 3407.68 18 1170.93 10 2626.20 14 1504.46 10 1766.91 17 1302.32 17
member (24) 2807.78 24 185.54 24 217.35 24 112.23 24 355.41 24 320.80 24

10229.57 127 8852.25 97 5678.53 98 2965.02 109 4004.51 89 2112.31 125

problems, Cvc3+C greatly outperforms Cvc3. On the last three classes of prob-
lems, the difference is less significant. After examining the benchmarks, we con-
cluded that the multitude of arrays in these examples is artificial – the many
array variables are just used for temporary storage of sequential updates on the
same starting array – so there is not a great capacity for improvement using the
care function that we described. A scatter-plot comparison of Cvc3 vs Cvc3+C
is shown in Figure 1(a). Because the only difference between the two implemen-
tations is the inclusion of the method described in this paper, this graph best
illustrates the performance impact this optimization can have.

When compared to the other solvers, we find that whereas Cvc3 is not par-
ticularly competitive, Cvc3+C is very competitive and in fact, for several sets
of benchmarks, performs better than all of the others. This again emphasizes
the strength of our results and suggests that combination methods can be of
great importance for performance and scalability of modern solvers. Overall, on
this set of benchmarks, Boolector solves the most (solving 2 more than Cvc3+C).
However, Cvc3+C is significantly faster on the benchmarks it solves. Figure 1(b)
shows a scatter-plot comparison of Cvc3+C against Boolector.

7 Conclusion

We presented a reformulation of the classic Nelson-Oppen method for combin-
ing theories. The most notable novel feature of the new method is the ability
to leverage the structure of the individual problems in order to reduce the com-
plexity of finding a common arrangement over the interface variables. We do
this by defining theory-specific care functions that determine the variable pairs
that are relevant in a specific problem. We proved the method correct, and pre-
sented care functions for the theories of uninterpreted functions and arrays. We
draw intuition for the care functions and correctness proofs directly from the
decision procedures for specific theories, leaving room for new care functions
backed by better decision algorithms. Another benefit of the presented method
is that it is orthogonal to the previous research on combinations of theories. For
example, it would be easy to combine our method with a model-based combi-
nation approach–instead of propagating all equalities between shared variables
implied by the model, one could restrict propagation to only the equalities that
correspond to edges in the care graph, gaining advantages from both methods.
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(a) (b)

Fig. 1. Comparison of Cvc3, Cvc3+C and Boolector. Both axes use a logarithmic scale
and each point represents the time needed to solve an individual problem.

We also presented an experimental evaluation of the method, comparing the
new method to a standard Nelson-Oppen implementation and several state-of-
the art solvers. Compared to the other solvers on a selected set of benchmarks,
the new method performs competitively, and shows a robust performance in-
crease over the standard Nelson-Oppen implementation.
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Abstract. Modularity is a highly desirable property in the develop-
ment of satisfiability procedures. In this paper we are interested in using
a dedicated superposition calculus to develop satisfiability procedures for
(unions of) theories sharing counter arithmetic. In the first place, we are
concerned with the termination of this calculus for theories representing
data structures and their extensions. To this purpose, we prove a mod-
ularity result for termination which allows us to use our superposition
calculus as a satisfiability procedure for combinations of data structures.
In addition, we present a general combinability result that permits us to
use our satisfiability procedures into a non-disjoint combination method
à la Nelson-Oppen without loss of completeness. This latter result is
useful whenever data structures are combined with theories for which
superposition is not applicable, like theories of arithmetic.

1 Introduction

Software verification tasks require the availability of solvers that are able to
discharge proof obligations involving data-structures together with arithmetic
constraints and other mathematical abstractions, such as size abstractions. Be-
sides, the use of Satisfiability Modulo Theories (SMT) solvers allows us to focus
on the development of satisfiability procedures for such mixed theories. In this
setting, the problem of designing the satisfiability procedures is often addressed
with success by using approaches based on combination [15].

Problems arise when we consider combinations involving theories whose sig-
natures are non-disjoint. This is especially the case when we consider theories
sharing some algebraic constraints [14,16,17,18,20,21]. In order to combine sat-
isfiability procedures for the single theories to handle constraints in their non-
disjoint union one needs to rely on powerful methods such as the combination
framework of [9,10]. These methods are based on semantic properties of the con-
sidered theories, such as compatibility and computability of bases of the shared
entailed equalities, which often require complex proofs.

A further issue concerns the development of correct and efficient satisfiabil-
ity procedures for the single theories, possibly using a systematic approach.
In this regard, the use of superposition calculus has proved to be effective
� The author acknowledges support from ERCIM during his stay at LORIA-INRIA.
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to deal with classical data structures, which do not involve arithmetic con-
straints [1,2,4,5,6,13].

In this paper we address both aspects by: (1) considering a superposition
calculus with a built-in theory of counter arithmetic [17,18] and (2) providing
modularity results for termination and combinability, based on conditions on the
saturations of the component theories that can be checked automatically.

Our contributions are twofold. First, we prove a modular termination result
for extending the applicability of the superposition calculus to theories that
share a theory of counter arithmetic. This generalizes, to the non-disjoint case,
the results in [1], where the authors consider the standard superposition calculus
and signature-disjoint theories. This result allows us to drop some of the complex
conditions required by the combination framework when we deal with theories
that can be treated uniformly through superposition.

Second, we prove a general compatibility result that allows us to use our
superposition-based satisfiability procedures into the combination framework
of [10]. We prove that any satisfiability procedure obtained by using our modular
termination result is able to compute a finite basis of the shared entailed equali-
ties. In addition, we provide a sufficient condition on the form of the saturations
of the theories that allows us to conclude compatibility of the component theories
with respect to the shared theory and, thus, completeness of their combination.

As an outcome, we have less and simpler restrictions on combinability and
we are able to obtain satisfiability procedures both by a uniform approach for
theories that can be treated well by superposition (e.g., data structures) and by
combination with other solvers for theories which are not ‘superposition-friendly’
(such as theories of arithmetic).

To show the application of our results in practice, we introduce a class of new
theories modeling data structures and equipped with a counting operator that
allows us to keep track of the number of the modifications (writes, constructors,
etc.) performed on a data structure. In these theories we are able to distinguish
between versions of the same data structure obtained by some update.

The paper is organized as follows. In Section 2 we briefly introduce an ex-
ample in which we use data structures equipped with a mechanism to count
the update operations. In Section 3 we introduce some basic notions and recall
the superposition calculus for counter arithmetic. In Section 4 we present our
modular termination result. In Section 5 we present our general compatibility
result. In Section 6 we discuss in details how these results can be applied to our
motivating example. Section 7 concludes with some perspectives.

2 A Motivating Example

Let us now consider an example where we show the application of our technique
to the analysis of a function minmax, defined as follows:

function minmax (l : list) : record {
while (l != nil) {

e := car(l);
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if e < rselect1(r) then r := rstore1(r, e);
if rselect2(r) < e then r := rstore2(r, e);
l := cdr(l)

};
return r

}

The function minmax stores into a binary record the maximum and minimum
elements of a given list of rational numbers. We consider a theory of lists TLV (in-
cluding the classic car and cons operators) and a theory of records TRV (including
the the classic rselecti and rstorei operators), both equipped with a counting oper-
ator: countR(r), which denotes the number of updates performed on the record r,
and countL(l), which denotes the number of elements inserted into the list l and
coincides with the size of the list. In order to verify the correctness of the minmax
function, we will prove that ψ : ∀ l, r (r = minmax(l) ⇒ countR(r) ≤ countL(l))
holds. The meaning of ψ is that the record r will not be updated more than ‘size
of l’ times.

We will prove the desired property by relying on an SMT solver modulo (TLV ∪
TRV ∪TS)∪TQ, where TS is a (shared) theory of counter arithmetic and TQ is a
theory extension of TS corresponding to the (convex) theory of linear arithmetic
over the rationals. We know from [17] that TQ fulfills the requirements for using
the non-disjoint combination framework of [10] when TS is shared. We develop
a satisfiability procedure for (TLV ∪ TRV ∪ TS) ∪ TQ in two steps. In the first
step we use our result on modular termination to obtain a superposition-based
satisfiability procedure for TLV ∪TRV ∪TS . Then, in the second step, we use our
general compatibility result to show that the requirements needed to combine
TLV ∪TRV ∪TS with TQ by using the non-disjoint combination framework of [10]
are fulfilled. In Section 6 we discuss these aspects in detail and we also show that,
in order to prove ψ we need to add some extra assumptions, namely that r is a
‘fresh’ record (no update operations have been performed on it) and r has been
initialized so that rselect1(r) ≤ rselect2(r).

3 Preliminaries

Let us consider a many-sorted language. A signature Σ is a set of sorts, function
and predicate symbols (each endowed with the corresponding arity and sort).
We assume that, for each sort s, the equality ‘2s’ is a logical constant that
does not occur in Σ and that is always interpreted as the identity relation over
(the interpretation of) s; moreover, as a notational convention, we will often
omit the subscript for sorts and we will use the symbol �� to denote either 2
or �2. The signature obtained from Σ by adding a set a of new constants (i.e.,
0-ary function symbols, each of them equipped with its sort) is denoted by Σa

and named a constant expansion of Σ. Σ-terms, Σ-substitutions, Σ-atoms, Σ-
literals, Σ-clauses, and Σ-formulae are defined in the usual way (see, e.g., [8]).
The empty clause is denoted by ⊥. A set of Σ-literals is called a Σ-constraint.
Terms, literals, clauses and formulae are said to be ground whenever no variable
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appears in them; sentences are formulae in which free variables do not occur.
Given a function symbol f , a f -rooted term is a term whose top-symbol is f . A
compound term is a f -rooted term for a function symbol f of arity different from
0. Given a term t and a position p, t|p denotes the subterm of t at position p,
and t[l]p denotes the term t in which l appears as the subterm at position p. The
depth of a term t is defined as follows: depth(t) = 0, if t is a constant or a variable,
and depth(f(t1, . . . , tn)) = 1+max{depth(ti) | 1 ≤ i ≤ n}. The depth of a literal
l �� r is depth(l �� r) = depth(l) + depth(r). We write substitution applications
in postfix notation. Substitutions are well-sorted: for any substitution σ and any
variable x, xσ is a term of the same sort as x.

In order to define models, we rely on the standard notion of a Σ-structure
M, which consists of: (1) a typed domain D, that is a domain partitioned into a
(finite) set of (sub)domains, one for each sort, and (2) a sort- and arity-matching
interpretation I of the function and predicate symbols from Σ. The truth of a
Σ-formula in the structure M is defined in any of the standard ways.

A Σ-theory T is a collection of Σ-sentences, called the axioms of T . If every
axiom is a sentence of the form ∀xA, where A is a quantifier free formula, then
we say that the theory is universal. An equational theory is a universal theory
whose axioms are universally quantified equalities.

In this paper, we are concerned with the (constraint) satisfiability problem for
a given theory T , also called the T -satisfiability problem, which is the problem of
deciding whether a Σ-constraint is satisfiable in a model of T (and, if so, we say
that the constraint is T -satisfiable). Note that a constraint may contain variables:
since these can be replaced by fresh new constants (preserving satisfiability), we
can reformulate the constraint satisfiability problem as the problem of deciding
whether a finite conjunction of ground literals in a constant expansion Σa is true
in a Σa -structure whose Σ-reduct is a model of T .

We consider inference systems using well-founded orderings on terms/literals
that are total on ground terms/literals. An ordering+ on terms is a simplification
ordering [7] if it is stable (l ≺ r implies lσ ≺ rσ for every substitution σ),
monotonic (l ≺ r implies t[l]p ≺ t[r]p for every term t and position p), and
has the subterm property (i.e., it contains the subterm ordering: if l is a strict
subterm of r, then l ≺ r). Simplification orderings are well-founded. A term t
is maximal in a multiset S of terms if t �& u, for every u ∈ S different from t.
An ordering on terms is extended to literals by using its multiset extension on
literals viewed as multisets of terms. Any positive literal l 2 r (resp. negative
literal l �2 r) is viewed as the multiset {l, r} (resp. {l, l, r, r}). Also maximality
is extended to literals, by defining a term l maximal in a literal whenever l is
maximal in the corresponding multiset.

3.1 Superposition Calculus for Counter Arithmetic

Recent literature has focused on the use of superposition calculus to decide the
satisfiability of ground formulae in theories extending the theory of Integer Off-
sets [1,4]. These techniques are based on a problem-specific reduction of the input
set of clauses to a new (equisatisfiable) one that admits a finite axiomatization of
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the successor function. Then, the standard superposition calculus [3] can be used
as a decision procedure for the satisfiability of the obtained set of clauses. More-
over, these approaches allow the combination with other superposition-based
decision procedures and ensure termination whenever the involved theories sat-
isfy the so-called ‘variable inactivity’ property and are signature-disjoint.

In contrast, we are interested in a superposition-based calculus that is able to
cope with non-disjoint extensions of a theory of Counter Arithmetic.

Theories of Counter Arithmetic. TS is the theory of Increment, which de-
fines the behavior of the successor function s and the constant 0. TS has the
monosorted signature ΣS := {0 : num, s : num → num}, and it is axiomatized
as follows1: {s(x) 2 s(y) → x 2 y}∪{x �2 sn(x) | n ∈ N, n > 0}. TI is the theory
of Integer Offsets defined as TS ∪{s(x) �2 0}. In the following we will generically
denote as TC any theory in the set {TS , TI}.

In order to deal with theories that are extensions of a theory of Counter
Arithmetic we consider the superposition calculus of [18], presented in Figure 1,
which extends the standard superposition calculus of [3] to take into account the
axioms of the theories TS or TI . The difference between the classical calculus
and the one we consider in this paper is twofold: (1) this calculus is specialized
for reasoning over sets of literals, and (2) this calculus is augmented with four
rules over ground terms, called Ground Reduction Rules, that encode directly
into the calculus the axioms of the theory of Counter Arithmetic.

We will use this calculus to check the satisfiability of any set of ground ‘flat’
literals modulo a set of axioms. In the context of this paper, a literal is said to be
flat if it is a ΣS-literal or a positive literal of depth 1 which is not a ΣS-literal.

Definition 1. Let SP�
I be the calculus presented in Figure 1. Let SP�

S be the
calculus obtained from SP�

I by removing the rule C1. Let TC be the generic name
for a theory chosen between TI and TS and, analogously, let SP�

C be the generic
name for a calculus chosen between SP�

I and SP�
S .

The simplification ordering + used in the conditions of the rules is total on
ground terms.

We now introduce two crucial notions: goodness and safety. The first restricts
the choice of a reduction ordering + when using the SP�

C calculus. The second
is a property of the saturations obtained using SP�

C . In [18] it is shown that
goodness and safety are sufficient to guarantee that SP�

C is a decision procedure
for the satisfiability problem of equational theories extending Counter Arith-
metic. In this paper we show that these properties are also sufficient to ensure
the modular termination of SP�

C and combinability, when applied to unions of
theories.

A simplification ordering + that is total on ground terms on a signature
containing ΣS is s-good if (1) t + c for every ground compound term t which
is not s-rooted and every constant c, (2) 0 is minimal, and (3) whenever two
terms t1 and t2 are not s-rooted we have sm(t1) + sn(t2) iff either t1 + t2 or
(t1 = t2 and m > n).
1 All the axioms are (implicitly) closed under universal quantification.



216 C. Ringeissen and V. Senni

A derivation is a sequence S0, . . . , Si, . . . such that each Si is a set of literals
obtained from Si−1 by applying an inference rule to literals in Si−1. We denote
Sω the set of persistent literals

⋃
i

⋂
j>i Sj . When the derivation is finite, the set

of persistent literals coincides with the last set of the derivation. A derivation is
fair if whenever an inference is applicable it will be eventually applied unless one
of the literals that would be involved in this inference is simplified, subsumed,
or deleted (see, e.g. [18] for a formal definition). The set of persistent literals Sω

obtained by a fair derivation is called the saturation of the derivation. In the
following, we will only consider fair derivations.

Definition 2. The saturation Sω of a fair derivation δ w.r.t. SP�
C is safe if,

whenever Sω does not contain ⊥, we have that, for every literal L∈Sω and any
maximal term t in L: (1) if L is an equality and t is a variable then t is not of
sort num, and (2) if L is an equality and t is s-rooted then L is ground. Sω is
proper if in addition, we have that: (3) if t has an s-rooted subterm u then the
direct subterm of u is a non-variable.

Note that condition (1) in Definition 2 is related to variable inactivity [1].

Definition 3. Consider an equational Σ-theory T such that Σ ⊇ ΣS, and as-
sume SP�

C is used with a s-good ordering +. The theory T is terminating (resp.
safely terminating/properly terminating) w.r.t. SP�

C if, for any set G of ground
flat literals (built out of symbols from Σ and possibly further free constants), we
have that:

1. there exists a saturation Sω of T ∪G w.r.t. SP�
C which is finite (resp. finite

and safe/finite and proper),
2. for any set G′ of ground ΣS-literals (built out of symbols from ΣS and possi-

bly further free constants) such that G′ ∩G = ∅, there exists a saturation of
Sω ∪G′ w.r.t. SP�

C which is finite (resp. finite and safe/finite and proper).

In this paper, we consider two different ways to find theories satisfying Defini-
tion 3. In Section 6, we introduce theories for which all the ground saturations
modulo T are of the expected forms. In Section 4, we consider unions of theories
for which the saturations described in Definition 3 have the expected forms.

Theorem 1 ([18]). if T is safely terminating w.r.t. SP�
C , then SP�

C induces a
decision procedure for the constraint satisfiability problem w.r.t. T ∪ TC.

Note that Definition 3 is slightly stronger than the one of [18]. This is motivated
by the assumptions we need to prove modular termination in Section 4.

3.2 Background on Non-disjoint Combination

Combination techniques are widely studied to build decision procedures for com-
plex theories by using decision procedures for simpler component theories. The
Nelson-Oppen method [15] applies to disjoint unions of theories that satisfy sta-
bly infiniteness. The combination framework we consider here is an extension of
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Expansion Rules:

Superposition
l[u′]�r u�v

(l[v]�r)σ
if (i) and (ii)

Paramodulation
l[u′] ��r u�v

(l[v] ��r)σ
if (i) and (ii)

Reflection
u ��u′

⊥

Where the substitution σ is the most general unifier of u and u′, and u′ is not a vari-
able in Superposition and Paramodulation. Moreover, we have the following conditions:
(i) uσ � vσ, and (ii) l[u′]σ � rσ.

Contraction Rules:

Subsumption
S ∪ {L, L′}

S ∪ {L} if Lϑ=L′ for some substitution ϑ

Simplification
S ∪ {L[l′], l�r}

S ∪ {L[ϑ(r)], l�r}
if l′ = lϑ, lϑ � rϑ, and
L[lϑ] � (lϑ�rϑ)

Deletion
S ∪ {t� t}

S

Ground Reduction Rules:

R1
S ∪ {s(u)� s(v)}

S ∪ {u�v} if u and v are ground

R2
S ∪ {s(u)� t, s(v)� t}
S ∪ {u�v, s(v)� t}

if u, v, and t are ground, and
s(u) � t, s(v) � t, and u � v

C1
S ∪ {s(t)�0}

S ∪ {s(t)�0} ∪ {⊥} if t is ground

C2
S ∪ {sn(t)� t}

S ∪ {sn(t)� t} ∪ {⊥} if t is ground and n>0

Fig. 1. The superposition calculus SP�
C with built-in counter arithmetic

Nelson-Oppen to the non-disjoint case [9] and combines satisfiability procedures
having the capability of deducing logical consequences over the shared signature
Σ0. In order to ensure the termination when deducing logical consequences over
the shared signature, we assume that the shared Σ0-theory is Noetherian [10].
Intuitively, a theory T0 is Noetherian if there exists only a finite number of atoms
that are not redundant when reasoning modulo T0.
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Proposition 1 ([18]). TC is Noetherian.

Consider a theory T ⊇ T0 with signatures Σ ⊇ Σ0. Given an arbitrary set of
ground clauses Θ over Σ, the notion of T0-basis allows us to define a ‘complete
set’ of positive logical consequences of Θ over Σ0.

Definition 4 (T0-basis). Given a finite set Θ of ground clauses (built out of
symbols from Σ and possibly further free constants) and a finite set of free con-
stants a, a T0-basis modulo T for Θ w.r.t. a is a set Δ of positive ground
Σ

a
0 -clauses, denoted by T0-basisT (Θ), such that

(i) T ∪Θ |= C, for all C ∈ Δ and
(ii) if T ∪Θ |= C then T0 ∪Δ |= C, for every positive ground Σ

a
0 -clause C.

Note that in the definition of a basis we are interested only in positive ground
clauses: the exchange of positive information is sufficient to ensure the complete-
ness of the resulting procedure. The interest in Noetherian theories lies in the
fact that, for every set of Σ-clauses Θ and for every set a of constants, a finite
T0-basis for Θ w.r.t. a always exists [10]. Note that if Θ is T -unsatisfiable then
w.l.o.g. Δ = {⊥}. Unfortunately, a basis for a Noetherian theory does not need
to be computable; this motivates the following definition.

Definition 5. A theory T is an effectively Noetherian extension of T0 if and
only if T0 is Noetherian and a T0-basis modulo T w.r.t. a is computable for every
set of literals and every finite set a of free constants.

Theorem 2 ([18]). Let a be a finite set of free constants. Assume SP�
C is

used with a s-good ordering + such that any Σ
a
S-term is smaller than any term

containing a function symbol not in Σ
a
S. If T is safely terminating w.r.t. SP�

C ,
then SP�

C is able to compute a TC-basis modulo T ∪ TC w.r.t. a.

The combination method works by exchanging the shared clauses obtained from
procedures computing T0-bases. To ensure completeness, we rely on the notion
of T0-compatibility [9] that extends the notion of stably infiniteness used in the
disjoint case. We do not give here a general definition of T0-compatibility, but
we recall how it instantiates in the particular cases of TI and TS.

Proposition 2 ([18]). A theory T such that T ⊇ TI is TI-compatible iff every
T -satisfiable constraint is satisfiable in a model of T in which ∀x(x �2 0 ⇒ ∃y x2
s(y)) holds. A theory T such that T ⊇ TS is TS-compatible iff every T -satisfiable
constraint is satisfiable in a model of T in which ∀x ∃y x 2 s(y) holds.

The union of a Σ1-theory T1 and a Σ2-theory T2 shares the Σ0-theory T0 if T0 ⊆
T1, T0 ⊆ T2, and Σ1 ∩ Σ2 = Σ0. The following theorem states the modularity
result we obtain by applying the Nelson-Oppen combination method extended
to unions of theories sharing T0.

Theorem 3 (Non-disjoint Nelson-Oppen [10]). Let T0 be a Noetherian Σ0-
theory. The class of theories which are T0-compatible and effective Noetherian
extensions of T0 is closed under union sharing T0.
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In [18], we studied how to apply Theorem 3 when the shared theory is TC , by
considering effectively Noetherian extensions for which SP�

C terminates and is
able to compute TC -bases. This paper is the continuation of [18] with two new
contributions. First, we show a modularity result for termination w.r.t. SP�

C .
Second, we show a general TC -compatibility result. For these results, we rely on
the notions of safe and proper termination w.r.t. SP�

C (see Definition 3).

4 Modular Termination

We are interested in designing a satisfiability procedure for the union of safely
terminating theories sharing TC . Since TC is Noetherian, an obvious solution
could be to use the combination method provided by Theorem 3. In general,
this is not an easy task since it requires to prove TC-compatibility and effective
Noetherianity of the component theories. By Theorem 2, we know that whenever
the saturation is safe we can infer effective Noetherianity.

As an alternative, we propose a modular termination result that applies to the
union of the considered theories and is based on the analysis of the saturations
(similarly to [1,4]). This result is interesting in that it does not require us to prove
the more complex property of TC-compatibility for the component theories.

Besides, the application of the combination framework is very useful whenever
we consider theories that cannot be easily handled through superposition, such
as the theories of arithmetic. By Theorem 2, we know that modular termina-
tion entails effective Noetherianity for the union of (non-disjoint) theories. This
result satisfies the first requirement of the combination framework. To satisfy
the second, we show in Section 5 that the strengthening of safe termination into
proper termination is enough to prove compatibility.

In the following, an s-equality is a ground equality of the form a 2 sm(b), for
some constants a and b of sort num.

Lemma 1. For any theory T ⊇ TC and any finite set of ground flat literals G, if
(1) a saturation Sω of T ∪G by SP�

C using a s-good ordering does not contain ⊥
and (2) every s-equality in Sω is either of the form (i) a 2 sm(b), for m ≥ 0 and
a + b, or of the form (ii) sm(a) 2 b, for m ≥ 1 and a + b, then Sω contains at
most one such equality for each pair of distinct constants a, b.

Proof : By contradiction, assume there are two s-equalities a 2 sm1(b) and a 2
sm2(b) in Sω with m1 �= m2 of the form (i). By superposition in Sω there is also
the literal sm1(b) 2 sm2(b), where m1 + m2 > 0, and ⊥, generated from that
literal by a finite number of applications of rule R1 and an application of rule
C2. Let us now assume there are two s-equalities a 2 sm1(b) and sm2(a) 2 b
in Sω of the form (i) and (ii), respectively. Again, by superposition, we would
have also sm1+m2(b) 2 b, where m1 +m2 > 0, and ⊥, generated from such literal
by an application of rule C2. Finally, let us assume there are two s-equalities
sm1(a) 2 b and sm2(a) 2 b in Sω with m1 �= m2 and m1,m2 ≥ 1 of the form (ii).
This is impossible by fairness, since R2 could have been applied and one of the
two would have been deleted. Therefore, we have at most one equality either of
the form (i) or of the form (ii) for each pair of constants. �
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Theorem 4. Assume SP�
C is used with a s-good ordering +. The class of the-

ories which are safely terminating (resp. properly terminating) w.r.t. SP�
C is

closed under union sharing TC.

Proof : Let Ti be a safely terminating Σi-theory, and Gi be a Σi-constraint,
for i = 1, 2, such that T1 ∪ T2 shares TC . We first consider the preservation of
termination for T1 ∪ T2, and then we consider the preservation of safety (resp.
properness) for T1 ∪ T2.
Termination. Let us consider a fair derivation δ = S0, . . . , Sk, Sk+1, . . . starting
from S0 = T1 ∪ T2 ∪ G1 ∪ G2. We will show (by induction on the length of the
derivation) that, for each Sk ∈ δ: (1) Sk is of the form S1

k∪S2
k where Si

k is the set
of Σi-literals in Sk, for i = 1, 2, and (2) any saturation of Si

k is finite for i = 1, 2.
By assumption, these two properties hold for k = 0. To prove the inductive case,
it is sufficient to show that “across-theories” inferences generate only (finitely
many) ground shared literals. To do so, we assume that we use a fair strategy
that consists in computing the saturations modulo T1 and T2 before applying
the “across-theories” inferences. Let S1

k and S2
k be saturated. By assumption, we

know that S1
k and S2

k are safe. Let us analyze superposition and paramodulation
inferences (uniformly called paramodulation in the following) from the set Si

k

into the set Sj
k, for i �= j. We have three cases:

(a) Paramodulation from variables. Let x 2 t be a literal in Si
k. In order to

paramodulate into a literal of Sj
k the variable x must be of sort num. By condi-

tion (1) of safety, x cannot be maximal in x 2 t and, therefore, no paramodula-
tion from variables is possible.
(b) Paramodulation from constants. Let a 2 t be a literal L in Si

k, where a is
a constant. In order to paramodulate from a into a literal in Sj

k, such literal
must be of the form l[a]p �� r and the corresponding m.g.u. is empty. Again,
a is of sort num. By condition (1) of safety, t can be either a compound term
or a constant and, in order to trigger a paramodulation, it must be a � t. As-
sume t is compound and of the form sm(u) for some m ≥ 0 and term u which
is compound and not s-rooted. Then, by condition (1) of s-goodness, u + a and,
by the subterm property of +, t 3 u + a, which is a contradiction with the
assumption that a is maximal. Thus, we conclude that t is of the form sm(v),
where v is either a constant or a variable. Now let v be a variable, then also
sm(v) is maximal and since L is not ground this is not allowed by condition (2)
of safety. As a consequence, we have that L is of the form a 2 sm(b), for some
constant b, m ≥ 0, and a + b.
(c) Paramodulation from compound terms. Let t 2 u be a literal L in Si

k and
l �� r a literal in Sj

k, where t is a compound term. Since T1 and T2 share sym-
bols in a constant expansion of ΣS , the term t must be s-rooted. Let σ be
the m.g.u. of t and l|p , for some position p, then paramodulation requires that
tσ � uσ. By stability of + we have t � u as well and t is maximal in t 2 u. By the
safety assumption, the literal t 2 u is ground, σ is the empty substitution, and
t + u. Now, since Si

k is saturated, u is not s-rooted, otherwise that literal would
have been deleted by an application of rule R1. By the safety assumption, L is a
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ground literal of the form sm(a) 2 b, for m ≥ 1 and a + b (the case where a = b
is ruled out by the applicability of rule C2).

The literals needed to perform the paramodulation steps of cases (b) and (c)
above are s-equalities that satisfy the assumptions of Lemma 1. Hence, by
Lemma 1, the set of literals in the saturation of δ that allow a paramodulation in
one of the above cases is finite, because it is bounded by n2, where n is the finite
number of constants occurring in S0. To formally prove the termination of SP�

C ,
let us consider the following complexity measures for any Sk ∈ δ: mse(Sk) is n2

minus the number of s-equalities in Sk, and mnsi(Sk) is the number of remain-
ing steps to reach the saturation of Si

k, for i = 1, 2. We can verify that for any
k: (0) mse(Sk) > mse(Sk+1), or (1) mse(Sk) ≥ mse(Sk+1) and mns1(Sk) >
mns1(Sk+1), or (2) mse(Sk) ≥ mse(Sk+1) and mns1(Sk) ≥ mns1(Sk+1) and
mns2(Sk) > mns2(Sk+1). Therefore, the complexity measure defined as the lex-
icographic combination of mse,mns1 and mns2 is strictly decreased by (each
step of) δ, and so δ is finite.

Safe and proper termination. The saturation Sω of any fair derivation δ is of the
form S1

ω ∪ S2
ω such that, for i = 1, 2, Si

ω is a saturation of Ti ∪ Gi ∪ E, where
E is the finite set of ground s-equalities generated by δ. By assumption, S1

ω and
S2

ω are safe (resp. proper), and so Sω = S1
ω ∪ S2

ω is safe (resp. proper) too.
The superposition strategy defined for T1 ∪ T2 can be used in an incremen-

tal way: given a set G′ of new shared literals disjoint from G1 ∪ G2, one can
easily check that the saturation of Sω ∪ G′ is still finite since T1 and T2 follow
Definition 3. �

5 A General Compatibility Result

In this section we show that, by analyzing the saturations, we can infer TC-
compatibility of equational theories extending TC .

Theorem 5 (TC-compatibility). Assume SP�
C is used with a s-good order-

ing +. If T is properly terminating w.r.t. SP�
C , then T ∪ TC is TC-compatible.

Proof. By Proposition 2, to show that T ∪ TC is TC -compatible we have the
two cases: (a) for TI we need to prove that every T -satisfiable constraint S
is satisfiable in a model of T where Pred I : ∀x(x �2 0 ⇒ ∃y x 2 s(y)) holds,
and (b) for TS we need to prove that every T -satisfiable constraint S is satisfiable
in a model of T where PredS : ∀x∃y x 2 s(y) holds. We will show that a model M
of T ∪G can be extended to obtain a new model Me that satisfies also the above
axioms PredI and PredS , respectively (we will refer generically to PredC).

The construction of the model Me from M is the same for the two theories
TI and TS , and consists of two steps: (1) we build a sequence M0,M1, . . . of
models of T ∪G, and (2) we define the model Me as the direct limit [11] of this
sequence. Then Me, by construction, satisfies T ∪G and also the axiom PredC .

Step 1. We define the sequence M0,M1, . . . of models of T ∪G (some of which
may be identical) as follows. Each model is constructed starting from a saturated



222 C. Ringeissen and V. Senni

set Si
ω of unit clauses over a signature Σi obtained by extending Σ with a finite

set of new constants. Then, we consider the corresponding set ground(Si
ω) of

all the ground instances of clauses in Si
ω w.r.t. Σi. From ground(Si

ω), by using
the so-called model generation technique [3], we construct a convergent rewriting
system Ri such that, for any pair of ground terms l and r, Si

ω |= l = r iff l↓Ri=
r ↓Ri . Finally, the model Mi is defined as the pair (Di, Fi), where the domain
(or carrier) Di is the set T (Σi)|Ri of Ri-normal forms, and, for every function
symbol f ∈ Σi, fFi(t1, . . . , tn) = f(t1, . . . , tn) ↓Ri for every t1, . . . , tn ∈ Di.
Obviously Mi is, by construction, a model of Si

ω.
We can construct the models M0, . . . ,Mi,Mi+1, . . . as follows. The set S0

ω is
the set Sω which is a saturation of T ∪G using SP�

C and Σ0 is the signature Σ.
For i ≥ 0, if there is a constant c in Σi of sort num such that c↓Ri �= s(t)↓Ri for
any ground term t and (TC = TS or c↓Ri �= 0), then we define Σi+1 = Σi ∪ {c′}
and Si+1

ω = Si
ω ∪ {s(c′) = c}, where c′ is a constant of sort num that does not

belong to Σi, and c′ + c. Otherwise, we define Σi+1 = Σi and Si+1
ω = Si

ω.
Now, by assumption of proper termination, there is no occurrence of the term
s(x) in Si

ω and, since no inference is applicable using the new literal s(c′) = c,
Si+1

ω is saturated. As a consequence, let ϕ be a literal in G or a clause in T , for
every i ≥ 0, if Si

ω |= ϕ then Si+1
ω |= ϕ. We have also that, for all 0 ≤ i < j,

Mi ⊆Mj , that is Di ⊆ Dj and the inclusion map Di → Dj is an embedding.
Step 2. We define the limit model Me as the pair (De, Fe) where the domain

is De =
⋃

i≥0 Di and, for every n-ary function symbol f ∈ Σ, and elements
a1, . . . , an of De, (by a little abuse of notation) fFe(a1, . . . , an) = fFi(a1, . . . , an)
where i ≥ 0 is the smallest integer such that a1, . . . , an are in the domain Di.
By construction, there is an embedding between Mi and Mj for i < j (i.e. an
injective homomorphism). By (a many-sorted version of) Theorem 2.4.6 in [11]
we have that the truth value of a clause ϕ in G ∪ T is preserved in Me, that
is, if M0 |= ϕ then Me |= ϕ, and Me is a model of T ∪ G. Furthermore, by
construction, there is no constant whose interpretation inMe has no predecessor,
which entails that also the axiom PredC holds.

By these observations we have that the theory T is TC-compatible. �

The following example shows why we need to strengthen the notion of safe
termination into that of proper termination in order to prove TC -compatibility.

Example 1. Consider the theory T = {f(s(x)) �2 f(c)}, which is safely termi-
nating. Let Sω be a saturation and c be a constant that has no predecessors.
If introduce the equality c 2 s(c′) in Sω, for some fresh new constant c′ not
occurring in T ∪S. Then, by Paramodulation, we get f(c) �2 f(c) and, thus, the
empty clause ⊥.

6 Applying Modular Termination and Combination

We now consider in more details the function minmax introduced in the example
of Section 2. We show that the verification task involves theories that are suitable
for the application of our modular termination and combination results.
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We start by defining the theories of lists TLV and of records TRV . These are
enriched with an operator countD that counts the number of modifications that
have been performed on a ‘fresh’ data structure. Any constant c in the sort of
a given data structure D can be declared fresh, i.e. unmodified, by adding the
ground literal countD(c) 2 0. Due to the countD operator, these theories are
said to allow ‘versioning’. We focus on the constraint satisfiability problem for
these theories and their combinations. Through the analysis of their saturations
we show that our modularity results enable us to combine these theories to-
gether and with the theory of Linear Rational Arithmetic TQ, so to obtain the
satisfiability procedure which is necessary to solve our verification problem.

Lists with Versioning. TLV is a theory of lists with extensionality endowed
with the counting operator. The many-sorted signature of TLV is given by ΣS

plus the set of function symbols {nil : list, car : list → elem, cdr : list →
list, cons : elem × list → list, countL : list → num} and the predicate
symbol atom : list. The axioms of TLV are:

car(cons(x, y)) 2 x ¬atom(x) → cons(car(x), cdr(x)) 2 x
cdr(cons(x, y)) 2 y ¬atom(cons(x, y))

atom(nil)
countL(cons(x, y)) 2 s(countL(y)) countL(nil) 2 0

Proposition 3. TLV is properly terminating w.r.t. SP�
C .

Proof. We can drop the non-equational axioms by using the reduction described
in [2]. Termination is proved in [18]. In the case of lists, the axioms for the
countL operator are identical up to a renaming to those of the list length opera-
tor. Therefore, we can use the analysis of the saturation done in [18]. Any infer-
ence generates only ground literals (which do not influence safety/properness).
Thus, we can conclude that any saturation Sω is proper and TLV is properly
terminating. �

Records with Versioning. TRV is theory of records with extensionality en-
dowed with the counting operator. The many-sorted signature of TRV is given
by ΣS and the function symbols defined as follows. Let record be the sort of
records; for every attribute identifier we have two functions rselecti : record →
elemi and rstorei : record × elemi → record, where 1 ≤ i ≤ n. Moreover,
there is the function countR : record → num that counts the number of rstorei

operations performed on a record. The axioms of TRV are (for every i, j such
that 1 ≤ i, j ≤ n and i �= j):

rselecti(rstorei(x, y)) 2 y

rselectj(rstorei(x, y)) 2 rselectj(x)
∧n

i=1(rselecti(x) 2 rselecti(y)) → x 2 y (extensionality)
countR(rstorei(x, y)) 2 s(countR(x))

By using the reduction described in [1], which is valid also with the additional
axioms for the function countR, it is possible to drop the extensionality axiom,



224 C. Ringeissen and V. Senni

so that the theory of records is equational. As a consequence, we restrict our
attention to (equisatisfiable) sets of literals in which no disequation between
records appears and we focus on the saturation of sets of literals of the forms:

i. equational axioms for records:
a. rselecti(rstorei(x, y)) 2 y, b. rselectj(rstorei(x, y)) 2 rselectj(x),
c. countR(rstorei(x, y)) 2 s(countR(x));

ii. ground literals over the sorts record and elemi, for i ∈ {1, . . . , n}:
a. r 2 r′, b. e 2 e′, c. e �2 e′, d. rselecti(r) 2 e, e. rstorei(r, e) 2 r′;

iii. ground literals over the sort num:
a. countR(r) 2 sn(k), b. sn(k) 2 k′, c. sm(k) �2 sn(k′);

where e, e′ are constants of sort elemi, r, r′ are constants of sort record, and
k, k′ are constants of sort num. Note that 0 is one of the constants of sort num

and, thus, in case (iii.a) is included also the literal countR(r) 2 0.
We consider an LPO ordering + over terms such that the underlying prece-

dence over the symbols in the signature satisfies the following requirements:
for all i, j in {1, . . . , n}, rstorei > rselectj, rstorei > countR, rselecti > c, and
countR > c > 0 > s, for every constant c.

Proposition 4. TRV is properly terminating w.r.t. SP�
C .

Proof. Let us consider a set S0 of literals of the form (i)–(iii). We prove that
any saturation Sω of S0 constructed using SP�

C is finite and proper. Any literal
introduced by an inference rule is ground and smaller that the biggest literal
in the input set. By well-foundedness of the multiset extension of the (well-
founded) ordering + we get termination. Since the saturation generates only
ground literals (which do not affect safety/properness), the analysis of (i)–(iii)
is sufficient to conclude that Sω is proper and TRV is properly terminating. �

Corollary 1. TLV ∪ TRV is properly terminating w.r.t. SP�
C , SP�

C computes a
TC-basis modulo TLV ∪ TRV ∪ TC , and TLV ∪ TRV ∪ TC is TC-compatible.

Proof. By Propositions 3 and 4, Theorem 4, and Theorem 5. �

Theory of Linear Rational Arithmetic. TQ is the theory of Linear Ratio-
nal Arithmetic discussed in [18], whose signature over the sort num is ΣQ :=
{0, 1,+,−, s, <}, where 0, 1 are constants, − and s are unary function symbols,
+ is a binary function symbol and < is a binary predicate symbol. The symbols
0, 1,+,−, s, < are interpreted in their intended meaning. In particular, s is the
function that associates to each rational q the rational q + 1. Clearly, TS ⊆ TQ.
In [18], it is shown that all the assumptions of the Combination Theorem (The-
orem 3) are fulfilled for TQ when T0 = TS .

As a consequence of our modular termination result we have that SP�
S is a

satisfiability procedure for TLV ∪TRV ∪TS and it can be used to compute a TS-
basis modulo TLV ∪ TRV ∪ TS. Since TLV ∪ TRV ∪ TS is also TS-compatible, all
the assumptions of the Combination Theorem (Theorem 3) are satisfied. Hence,
we can construct a combined satisfiability procedure for (TLV ∪ TRV ∪ TS)∪ TQ

by combining the SP�
S calculus, used as a satisfiability procedure for (TLV ∪

TRV ∪ TS), and a satisfiability procedure for TQ.
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Example 2. Let us consider the function minmax given in Section 1. Assume we
want to prove that the record r is not modified more than ‘size of l’ times. This
amounts to prove that the formula ψ : ∀ l, r (r = minmax(l) ⇒ countR(r) ≤
countL(l)) holds. In order to prove ψ we need to prove, for the loop invariant, the
formula β : ∀(γ ⇒ (countR(r) ≤ n− countL(l) ⇒ countR(r′′) ≤ n− countL(l′)))
where γ is the conjunction of:

rselect1(r) ≤ rselect2(r) rselect2(r′) < e⇒ r′′ 2 rstore2(r′, e)
e < rselect1(r) ⇒ r′ 2 rstore1(r, e) e ≤ rselect2(r′) ⇒ r′′ 2 r′

rselect1(r) ≤ e⇒ r′ 2 r l′ 2 cdr(l)

Note that, without constraints on the initial values of r the record can be up-
dated more than ‘size of l’ times. This motivates the assumption rselect1(r) ≤
rselect2(r). The formula β is over the signature ΣLV ∪ΣRV ∪ΣQ and its validity
can be proved by using a SMT solver modulo TLV ∪ TRV ∪ TS ∪ TQ. Applying
our results about the superposition calculus SP�

S together with a combination
procedure for the shared theory TS, we can obtain the necessary satisfiability
procedure for TLV ∪ TRV ∪ TS ∪ TQ.

7 Conclusions

In this paper, we have identified the key notion of safe termination that allows
us to prove modular termination and completeness (modulo TC) of the super-
position calculus and the combination framework, respectively. In particular, we
have shown that safe termination implies modular termination and proper ter-
mination implies compatibility. In the signature-disjoint case, variable-inactivity
has been initially introduced to obtain modular termination [1] but it is useful for
combinability as well [12] to ensure: (1) that the bases are computable (deduction
completeness) and (2) stably infiniteness. In the non-disjoint case, compatibility
replaces stably infiniteness. Through these results we show an analogy between
variable inactivity and safety. Roughly speaking, safety replaces variable inac-
tivity when considering (unions of) theories sharing TC .

The property of safe termination of saturation has to be verified for any given
set of ground flat literals. Meta-superposition [13] has proved to be useful, in
the disjoint case, for checking termination and variable inactivity on a single
schematic form of saturation. We plan to develop a meta-superposition calculus
modulo counter arithmetics to perform an automatic check of termination and
safety.

A further research direction is the extension of our superposition calculus to
non-convex theories (that is, non-Horn theories). In that case, the calculus would
require significant changes in order to obtain completeness and an effective way
to compute the bases, containing entailed disjunctions of s-equalities.

More generally, we are interested in extending to other shared theories our
proof techniques, and also to investigate complexity issues. A possible candidate
could be a different axiomatization of Integer Offsets like the one studied in [4].
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Abstract. The word-problem for a finite set of equational axioms be-
tween ground terms is the question whether for terms s, t the equa-
tion s = t is a consequence. We consider this problem under grammar
based compression of terms, in particular compression with singleton tree
grammars (STGs) and with directed acyclic graphs (DAGs) as a special
case. We show that given a DAG-compressed ground and reduced term
rewriting system T , the T -normal form of an STG-compressed term s
can be computed in polynomial time, and hence the T -word problem
can be solved in polynomial time. This implies that the word problem of
STG-compressed terms w.r.t. a set of DAG-compressed ground equations
can be decided in polynomial time. If the ground term rewriting system
(gTRS) T is STG-compressed, we show NP-hardness of T -normal-form
computation. For compressed, reduced gTRSs we show a PSPACE up-
per bound on the complexity of the normal form computation of STG-
compressed terms. Also special cases are considered and a prototypical
implementation is presented.

Keywords: Term rewriting, grammar based compression, singleton tree
grammars, congruence closure.

1 Introduction

This paper is dedicated to combining equational reasoning with grammar com-
pression for terms. Automated deduction systems, formalizations of logical sys-
tems, systems for checking propositional logic and term rewriting systems [3,6]
either are based on equational reasoning or may employ equational reasoning.
The general form of equational reasoning using unrestricted sets of equational
axioms is known to be very expressive, but to the price of undecidability of sim-
ple questions about derivability. A special case that leads to a decidable word
problem occurs when all equational axioms are ground and thus quantifiers do
not play any role. Congruence closure algorithms can solve this special kind of
word problem in time O(n log n) ([20,26,13]). Extending SAT-solvers by theories
leads to so-called SMT (SAT modulo theories) [21], which among other theories
can also deal with equational theories defined by a set of ground equations.

Since terms in automated deduction systems may grow large during reason-
ing and search for a proof, compact or compressed representations of large terms

C. Tinelli and V. Sofronie-Stokkermans (Eds.): FroCoS 2011, LNAI 6989, pp. 227–242, 2011.
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can be exploited to optimize the space usage, which must go hand-in-hand with
specific algorithms that access the compact representations and process the com-
pressed representation without too much decompression.

Instead of using specialized compression formats (e.g. Lempel-Ziv [29]), there
are also investigations into a general mechanism: straight-line programs (SLP)
for strings [23] and corresponding algorithms. An SLP here means an acyclic con-
text free grammar, where every nonterminal has one rule, and thus can generate
exactly one string. The generalization to terms is for example in [4,5] to com-
press XML-trees. The grammars for compressing terms were called singleton tree
grammars (STG) [14]. STGs generalize directed acyclic graphs, since they are not
limited to sharing subterms but they can also share contexts – terms with a sin-
gle hole – and thus they allow to share parts of terms. For instance the grammar
A ::= C3[B], B ::= b, C0 ::= f([·]), C1 ::= C0[C0], C2 ::= C1[C1], C3 ::= C2[C2] is
an STG where the nonterminal A generates the term f(f(f(f(f(f(f(f(b)))))))).

Grammar-compression was also used for analyzing the complexity of unifica-
tion algorithms: SLPs in [14,15] and STGs in [16,10,11]. A more general form of
compression, employing terms with several holes, was shown to be polynomially
equivalent to STGs [19].

A key algorithm is the equality check of two compressed strings (trees), which
can be done in cubic time [17,22]. Almost all efficient algorithms on STGs use
variants of the equality check of compressed words/terms. Implementations of
related algorithms are described in [12].

Complexity results w.r.t. the compressed word and membership problem of
confluent semi-Thue systems can be found in [18]. Note that ground TRSs on
strings are like restricted semi-Thue systems, where the reduction relation is
only applicable to the suffix of words.

The main result of this paper is an efficient normalization and thus an efficient
solution of the word problem of STG-compressed terms w.r.t. DAG-compressed
ground equations (Theorem 14). If the axioms are STG-compressed, then only
partial results are obtained: For a non-confluent compressed gTRS, the question
whether a term s reduces to a constant a is NP-hard (Proposition 17), and for
reduced, confluent and STG-compressed gTRSs the normal form computation
of STG-compressed terms is in PSPACE (Proposition 15). Also several special
cases like one-rule gTRSs and monadic gTRSs are considered in the remainder
of Section 4. Finally, in Section 5 a prototypical implementation, some examples,
and experimental results are presented.

2 Preliminaries

In this section we briefly recall required notions and results on term rewriting
systems and singleton tree grammars.

2.1 Term Rewriting Systems

A signature Σ is a set of function symbols, where every f ∈ Σ has a fixed arity
ar(f) ∈ N0. Let V be a countably infinite set of variables. The set of terms
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T (Σ,V) over the signature Σ and variables V is inductively defined as follows:
for all x ∈ V : x ∈ T (Σ,V); if f ∈ Σ and ar(f) = 0 then f ∈ T (Σ,V); and if
ti ∈ T (Σ,V), for i = 1, . . . , n, f ∈ Σ, and ar(f) = n ≥ 1, then f(t1, . . . , tn) ∈
T (Σ,V). With Var(t) we denote the set of variables occurring in term t. A term
t ∈ T (Σ,V) is called ground if Var(t) = ∅. A substitution σ is a mapping of
variables to terms. Let dom(σ) = {x ∈ V | σ(x) �= x}. The extension σE of σ
to terms is inductively defined as σE(x) = x if x �∈ dom(σ), σE(x) = σ(x) if
x ∈ dom(σ), σE(f(t1, . . . , tn)) = f(σE(t1), . . . , σE(tn)). In the following we do
not distinguish between a substitution and its extension to terms. A context C
is a term where the special constant [·] (the “hole”) occurs exactly once (as a
subterm). The term C[t] is constructed by replacing the hole in C by term t.
A context C1 is a prefix of context C2 if there exists a context C3 such that
C1[C3] = C2.

A term rewriting system (TRS) T is a finite set of pairs of terms {(li, ri) | i =
1, . . . ,m}, usually written li → ri, where we assume that for all i: li is not a
variable and Var(ri) ⊆ Var(li) (see e.g. [3]). The term rewriting relation T−→ is
defined as: t T−→ t′, if t = C[σ(li)] and t′ = C[σ(ri)] for some i, some substitution
σ, and some C. The transitive and reflexive-transitive closures of T−→ are written
as

T,+−−→ and
T,∗−−→, respectively. A term t is T -irreducible or a T -normal form, iff

it cannot be further reduced using the rules of T . If the TRS is interpreted as
a set of equations E := {li = ri | li → ri ∈ T }, then the equality =E is the
equational theory on the terms w.r.t. a signature Σ. Operationally one can define
s =E t iff s

E,∗−−→ t by permitting the equational axioms as rewrite rules in both
directions. Alternatively, =E can be defined as the smallest congruence relation
with σ(li) =E σ(ri) for all substitutions σ and all i = 1, . . . , n. The word problem
is to decide for given terms s, t, whether s =E t. A TRS is called terminating,
if there are no infinite reduction sequences of T−→, and it is called confluent iff
whenever t1

T,∗←−− t
T,∗−−→ t2, there exists a term t3 with t1

T,∗−−→ t3
T,∗←−− t2. A TRS

that is confluent and terminating is also called canonical. Canonical TRSs permit
to compute unique normal forms of terms by rewriting them exhaustively. For
a canonical TRS T the word problem is decidable by rewriting the terms s, t to
their normal form and then comparing the normal forms for syntactic equality.

In this paper we are interested in ground equations and ground term rewriting
systems (gTRS), i.e. when the equations in E (the rules in T , respectively)
consist of ground terms. A term rewriting system T is reduced if every right
hand side ri is a T -normal form, and every left hand side li is irreducible for the
system T \ {li → ri}. It is well-known that every reduced gTRS is canonical. It
is also well-known that the word problem for ground equations E is decidable
[20,26,13]. The algorithms are usually variants of the so-called congruence closure
computation on term graphs. This can be computed in time O(n log n), where
it is essential that DAGs are used.

In [27,28,8] it is shown that the computation of a DAG-representation of a
canonical gTRS can be done in time O(n log n). The computed canonical gTRS
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T = {li → ri | i = 1, . . . , n} has the additional property that it is reduced and
thus T is canonical.

2.2 Grammar Compressed Terms and Term Rewriting Systems

For compression of (ground) terms we use singleton tree grammars:

Definition 1 ([14]). A singleton tree grammar (STG) is a 4-tuple G =
(T N , CN , Σ,R), where T N are tree/term nonterminals, or nonterminals of ar-
ity 0, CN are context nonterminals, or nonterminals of arity 1, and Σ is a
signature of function symbols (the terminals), such that the sets T N , CN , and
Σ are pairwise disjoint. The set of nonterminals N is defined as N = T N ∪CN .
The rules in R may be of the form:

– A ::= f(A1, . . . , Am), where A,Ai ∈ T N for i = 1, . . . ,m, and f ∈ Σ with
ar(f) = m.

– A ::= C1[A2] where A,A2 ∈ T N , and C1 ∈ CN .
– C ::= [·] where C ∈ CN .
– C ::= C1[C2], where C,C1, C2 ∈ CN .
– C ::= f(A1, . . . , Ai−1, [·], Ai+1, . . . , Am), where C ∈ CN , Aj ∈ T N for

j = 1, . . . , i− 1, i+ 1, . . .m, and f ∈ Σ with ar(f) = m.
– A ::= A′, where A and A′ are term nonterminals

Each nonterminal X appears as a left-hand side of exactly one rule of R. The
transitive closure +−→G of the relation →G over N is terminating, where X →G

Y , iff X ::= r is a rule in G, and Y ∈ N occurs in r. The term (or context)
generated by a nonterminal N of G, denoted by valG(N) or val(N) when G
is clear from the context, is the term (or context) over Σ reached from N by
successive and exhaustive applications of the rules of G. More rigorously:

valG(A) = f(valG(A1), . . . , valG(Am)), if A ::= f(A1, . . . , Am)
valG(A) = valG(C1)[valG(A2)] if A ::= C1[A2]
valG(A) = valG(A′) if A ::= A′

valG(C) = [·] if C ::= [·]
valG(C) = valG(C1)[valG(C2)] if C ::= C1[C2]
valG(C) = f(t1, . . . , ti−1, [·], ti+1, . . . , tm)

if C ::= f(A1, . . . , Ai−1, [·], Ai+1, . . . , Am) and
tj = valG(Aj) for j = 1, . . . , i− 1, i+ 1, . . . ,m

The cdepth of a context nonterminal D is the maximal n of all sequences D →G

D1 →G D2 . . .→G Dn, where only rules of the form C ::= C1[C2] are taken into
account, and the cdepth of the STG G is defined as the maximum of all cdepths
of nonterminals. The size |G| of a grammar G is the sum of the sizes of all right
hand sides, where the hole [·] counts as 1. If the arity of function symbols is
O(1), then we could have also used the number of the rules of G. ��

Note that for every nonterminal N of G, the term or context valG(N) is defined.
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Example 2. For n ∈ N let Gn be the STG ({A,B}, {C0, . . . , Cn}, {a, f}, R)
where R is the following set of productions:
A ::= a; B ::= Cn[A]; C0 ::= f([·]); Ci+1 ::= Ci[Ci] for i = 0, . . . , n− 1.
Then valGn(B) = f (2n)(a) and |Gn| = 2n+ 5. The cdepth of Ci is i.

Proposition 3 ([4,24,5,17,22]). For an STG G and two term nonterminals
A1, A2 it can be decided in O(|G|3) whether valG(A1) = valG(A2) holds.

Directed acyclic graphs (DAGs) can be represented by STGs. Since DAGs only
share subterms, context nonterminals must not be used to represent DAGs.

Definition 4. A DAG G is an STG where CN = ∅. A DAG is called optimally
compressed, if for nonterminals A,B : A �= B =⇒ val(A) �= val(B).

Note that for every non-optimal DAG there exists either a production A1 ::= A2

or at least two productions A1 := r and A2 ::= r. For the following complexity
analyses and lemma we assume that the signature is fixed, and that the arity of
function symbols is O(1).

Lemma 5 ([20,26,13]). A DAG G can be transformed into an optimally com-
pressed DAG in time O(|G|·log(|G|)). The size is not increased by this operation.

Proof. Though this appears to be well-known, we give a sketch: First we use
topological sorting to produce in time O(|G|) a list L of nonterminals of G
where A > A′, if A +−→G A′. We operate on the list in reverse order. Assume
that we construct the optimally compressed grammar from G by scanning the
list. During the reconstruction, two data structures are used: (i) a data base
with keys f(A1, . . . , An), nonterminals as entries, and O(logm) access time if
the data base has m entries; (ii) a function on mapping nonterminals to their
optimal node. Let A be the current nonterminal, G′ be the constructed new
DAG and G′′ be the remaining rules of the grammar G. For the current given
nonterminal A with rule A ::= f(A1, . . . , Ak), there are two cases: (i) If there
is an entry A′ under key f(on(A1), . . . , on(Ak)), then define on(A) := A′, and
remove the rule for A. (ii) If there is no entry under key f(on(A1), . . . , on(Ak)),
then define on(A) := A, and let the new rule be A ::= f(on(A1), . . . , on(Ak))
and insert A in the data base with key f(on(A1), . . . , on(Ak)).

Finally, the start symbol can be replaced using function on. Since the sum of
the number of nonterminals ofG′ and G′′ is at most |G|, the time per nonterminal
is O(log(|G|)), and the list is also of length O(|G|), hence this can be done in
time O(|G| · log(|G|)). The size of the DAG is not increased. ��

We say a term t is STG-compressed (or DAG-compressed, respectively), if there
is an STG (or a DAG, respectively) G and a term-nonterminal A of G such
that valG(A) = t. A TRS T is called STG-compressed (or DAG-compressed,
respectively), if all terms li, ri of the rewriting relation are represented by term-
nonterminals Li, Ri of an STG (or a DAG, respectively) G such that valG(Li) =
li and valG(Ri) = ri. We use the analogous notions also for sets of equations.
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3 The Word-Problem for STG-Compressed Terms with
DAG-Compressed Ground Equations

In this section we show that the word problem for ground equations and STG-
compressed terms s, t can be solved in polynomial time w.r.t. the size of the
compressed representation.

3.1 A Normalizing Algorithm for Compressed Terms

First we describe an algorithm for T -normalizing all terms represented by term
nonterminals in an STG, where T is a given reduced, canonical gTRS. The idea
is to modify the STG such that there is no reducible subterm of any represented
term in the STG, for any nonterminal.

We assume that a reduced, canonical TRS T is given and that T is optimally
DAG-compressed, i.e. the terms li and ri for i = 1, . . . ,m are represented in
the (optimally compressed) DAG GT = (T N T , ∅, ΣT , RT ), such that there are
nonterminals Li, Ri ∈ T N T with valGT (Li) = li and valGT (Ri) = ri for i =
1, . . . , n. For convenience we sometimes write T = {L1 → R1, . . . , Lm → Rm}
for the TRS. Note that the nonterminals R1, . . . , Rm are not necessarily distinct.
We assume that the to-be-normalized terms are STG-compressed, i.e. there is an
input STG Ginp = (T N inp, CN inp, Σinp, Rinp), such that T N inp ∩ T N T = ∅.
Let G be the union of GT and Ginp.

For the TRS T and its corresponding DAG GT we define the sets
subtermsNT(T ) and subterms(T ) as follows, where � is an extra symbol:

subtermsNT(T ) := {A | Li
+−→GT A, i = 1, . . . ,m} ∪ {Ri | i = 1, . . . ,m} ∪ {�}

subterms(T ) := {val(A) | A ∈ subtermsNT(T ) \ {�}}

The set subtermsNT(T ) comprises all nonterminals that are referenced by left
hand sides Li of T , the nonterminals Ri, and a distinguished constant �. Ev-
ery proper subterm of a left-hand side li is represented by one nonterminal in
subtermsNT(T ), a nonterminal for every right-hand side ri is in subtermsNT(T ),
and � represents the other terms.

Note that {Li | i = 1, . . . ,m} ∩ subtermsNT(T ) = ∅, and that for every
A ∈ subtermsNT(T ) \ {�} the term val(A) is T -irreducible, since T is reduced.

The algorithm below will modify the grammar G bottom-up, where only the
rules of Ginp as a sub-STG of G are modified by replacing the right hand sides
of the grammar rules, and also some rules for constructing context-nonterminals
will be added. For the term nonterminals of Ginp the resulting STG G′ will only
represent normalized terms, i.e. for every nonterminal A of Ginp: valG′(A) is the
T -normal form of valG(A). The following algorithms are designed to avoid the
Plandowski-equality check (Proposition 3) and perform all checks for equality
either on the name of the symbols or checking in the DAG, which requires that
the DAG for T is optimally compressed.

First we define an algorithm that computes two functions φ0, φ1 such that:
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– For every A ∈ T N inp, we have φ0(A) ∈ subtermsNT(T ) ⊆ T N inp. If
val(A) ∈ subterms(T ) then φ0(A) ∈ subtermsNT(T ) \ {�}, and the term
val(φ0(A)) will be the normal form of val(A). Otherwise, φ0(A) will be �.

– For every C ∈ CN inp, we have φ1(C) : subtermsNT(T ) → subtermsNT(T ).
This function computes the mapping behavior of the context val(C) on
subterms(T ) after normalization: For every nonterminalA in subtermsNT(T ),
if the T -normal form of val(C)[val(A)] is in subterms(T ), then φ1(C)(A) ∈
subtermsNT(T ) \ {�} and val(φ1(C)(A)) is the T -normal form
of val(C)[val(A)], otherwise φ1(C)(A) will be �.

The following subalgorithm dagNode is required, which computes for nonter-
minals Ai from GT the node in GT for f(A1, . . . , An) if it exists. Formally,
for Ai ∈ T N T ∪ {�} and a function symbol f ∈ ΣT ∪ Σinp of arity n let
dagNode(f,A1, . . . , An) be defined as follows:

dagNode(f,A1, . . . , An) :=
{
N, if N ::= f(A1, . . . , An) ∈ RT

⊥, otherwise

Algorithm 6 (The φ-Computation Algorithm). The algorithm incremen-
tally computes φ0 and φ1 by inspecting the production rules ofGinp in bottom-up
order, i.e. in the order reverse to →Ginp .

The treatment of production rules is defined by a case analysis:

1. A ::= f(A1, . . . , An), with n ≥ 0. If dagNode(f, φ0(A1), . . . , φ0(An)) = ⊥
then define φ0(A) := �.
Otherwise, let dagNode(f, φ0(A1), . . . , φ0(An)) = N and define

φ0(A) :=

⎧⎨⎩
Ri, if N = Li for some left hand side of a rule Li → Ri

N, if N �= Li and N ∈ subtermsNT(T )
�, otherwise

2. C ::= f(A1, . . . , Ai−1, [·], Ai+1, . . . , An). We compute the function φ1(C)
for all arguments B ∈ subtermsNT(T ):

The first case is φ0(Aj) = � for some j �= i. Then φ1(C)(B) :=
�for all B ∈ subtermsNT(T ).

The other case is φ0(Aj) �= � for all j �= i. Let φ1(C)(B) := �, if B = �
or dagNode(f, φ0(A1), . . . , φ0(Ai−1), B, φ0(Ai+1), . . . , φ0(An)) = ⊥. Other-
wise, let N := dagNode(f, φ0(A1), . . . , φ0(Ai−1), B, φ0(Ai+1), . . . , φ0(An))
and define:

φ1(C)(B) :=

⎧⎨⎩
Ri, if N = Li for some left hand side of a rule Li → Ri

N, if N �= Li and N ∈ subtermsNT(T )
�, otherwise

3. A1 ::= A2. Then define φ0(A1) := φ0(A2).
4. C ::= [·]. Then φ1(C) is the identity function on subtermsNT(T ).
5. C ::= C1[C2]. Since the algorithm proceeds bottom-up, we already have

computed the functions φ1(C1), φ1(C2), and so we can compute the function
φ1(C) as the composition φ1(C1) ◦ φ2(C2).

6. A ::= C[B]. Then φ0(A) := φ1(C)(φ0(B)).
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Lemma 7. Let G be an STG and T be a reduced and confluent gTRS. Then for
every A ∈ T N inp the following holds: If φ0(A) = �, then val(A) is not a subterm
of any left hand side of T . Consequently, there are no superterms of val(A) that
are redexes. This also holds during the whole reduction process, hence also the
T -normal form s of val(A) is not a subterm of any left hand side of T .

Example 8. We consider the TRS T with one rule f(f(a)) → a represented
by {L1 → R1} where the corresponding DAG GT has the production rules
L1 ::= f(F ), F ::= f(R1), R1 ::= a. Then subtermsNT(T ) = {F,R1,�}. We
consider the STG of Example 2 and compute φ0, φ1 as follows:

φ0(A) = R1 φ1(C0)(�) = � φ1(C1)(�) = �
φ1(C0)(F ) = R1 φ1(C1)(F ) = φ1(C0)(φ1(C0)(F )) = F
φ1(C0)(R1) = F φ1(C1)(R1) = φ1(C0)(φ1(C0)(R1)) = R1

For i = 1, . . . , n − 1 we have φ1(Ci+1) = φ1(Ci) ◦ φ1(Ci) and thus φ1(Ci) is
the identity on subtermsNT(T ) for i ≥ 1. Finally, we can compute φ0(B) =
φ1(Cn)(φ0(A)) = φ1(Cn)(R1) = R1.

The normalization algorithm uses the functions φ0 and φ1 to compute an STG
that represents all T -normal forms of terms represented by Ginp. Usually, it only
changes productions for term nonterminals of the input grammar. The difficult
case is a production of the form A ::= C[B] where a subterm of val(C)[val(B)]
which is a proper superterm of val(B), is indicated by φ0 as having a normal
form representable by some nonterminal A′ in subtermsNT(T ), and which is
maximal. Then a new context nonterminal C′ used to generate the normal form
of val(C)[val(B)] as val(C′)[val(A′)] must be found and added to the grammar.

Algorithm 9 (Normalization Algorithm). The algorithm has G = Ginp ∪
GT as input and uses the (algorithmically defined) functions φ0, φ1. It iterates
over all productions of Ginp and modifies them according to the following cases.

1. The rules for context nonterminals are unchanged.
2. If the rule is A1 ::= A2, then the rule is unchanged.
3. If the rule is A ::= f(A1, . . . , An), and φ0(A) �= �, then replace this rule by

A ::= φ0(A). If φ0(A) = �, do not change the rule.
4. Let the rule be A ::= C[B]. Then

(a) If φ0(B) = �, then do not change the rule.
(b) If φ0(A) �= �, then replace the rule for A by A ::= φ0(A).
(c) If φ0(B) �= �, but φ0(A) = �, then the normalization stops some-

where between val(C[B]) and val(B). The compressed normal form of
valG(C[B]) is constructed as follows: we construct a context nonterminal
C′ such that valG(C′) is a prefix of valG(C), and have to find a term
nonterminal B′ ∈ subtermsNT(T ) \ {�} such that C′[B′] represents the
normal form of val(C[B]) and val(C′[B′]) is irreducible. This is done
top-down starting from C by the algorithm Prefix defined below. We
perform Prefix(C, φ0(B)) (that may add rules for context nonterminals
as a side-effect) and obtain a result (C′, D), which we use to replace the
rule for A by the rule A ::= C′[D].
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Now we describe Prefix(C,D), where we assume that D ∈ subtermsNT(T )\{�}.
The cases are:

1. C ::= [·] is the rule for C, then return (C,D).
2. C ::= f(A1, . . . , Ai−1, [·], Ai+1, . . . , An) is the rule for C. If φ1(C)(D) �= �,

then return ([·], φ1(C)(D)). Otherwise, return (C,D).
3. C ::= C1[C2] is the rule for C. Then there are two cases.

(i) If φ1(C2)(D) = �, then let (C′
2, D

′
2) be the result of Prefix(C2, D). Con-

struct C′ ::= C1[C′
2] in the grammar and return (C′, D′

2).
(ii) If φ1(C2)(D) = D′ �= � then return the result of Prefix(C1, D

′).

Example 10. We again consider Example 2 and the gTRS of Example 8. The
normalization algorithm produces the grammar Gout with the productions:

L1 ::= f(F ) F ::= f(R1) R1 ::= a Ci+1 ::= Ci[Ci]
A ::= R1 B ::= R1 C0 ::= f([·]) for i = 0, . . . , n− 1

As expected we have valGout (B) = a.

Lemma 11. Algorithm 9 is correct: It computes a new STG G′ := G′
inp ∪ GT ,

where for every term nonterminal A of Ginp : valG(A) =T valG′(A), and valG′(A)
is T -irreducible.

Proof. (sketch) It is easy to verify that every modification in the grammar re-
tains equality w.r.t. the equational theory =T . It is also straightforward to check
that the only irreducible expressions are represented by the STG after the nor-
malization process has finished. ��

Now we estimate the complexity of the normalization algorithm where we use
|G|, |Ginp|, and |GT | as parameters and where we assume that |Σ|, as well as
the arity of function symbols is O(1).

Lemma 12. The normalization increases the grammar G by at most O(|G|2)
and requires time O(|G|2 + |G| · |GT | · log(|GT |)).

Proof. The cardinality of subtermsNT(T ) is at most |GT | since every subterm
of left hand sides and every right hand side is represented by a node in the
DAG. The grammar is increased during the construction as follows. There is
no cdepth-increase of context nonterminals during constructing the prefix of
context nonterminals. Prefix returns a context and a term nonterminal. The
only possibility for the returned term nonterminal for Prefix is the input term
nonterminal, or a term nonterminal from subtermsNT(T )\{�}. The size increase
by one normalization step is at most cdepth(Ginp), since the size increase by
Prefix depends only on the cdepth of context nonterminals. Thus the size increase
is |Ginp| · cdepth(Ginp), which is O(|G|2).

Concerning the running time, note that all equality comparisons only require
to compare nonterminals from subtermsNT(T ), since other comparisons are pre-
vented by �. Hence a single comparison can be done in constant time.
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Assuming that φ0, φ1 are stored in an efficient data structure, the computation
of the function φ1 corresponding to the context nonterminals requires time |GT | ·
log(|GT |), which has to be done for every context nonterminal of the initial
grammar, thus it requires time O(|Ginp| · |GT | · log(|GT |)). ��

3.2 Deciding the Word Problem

Using the construction in the last subsection, we show how to decide the equality
of two STG-compressed terms s1, s2 given a set of DAG-compressed ground
equations, which is more general than considering plain equations. The following
steps provide such a decision algorithm:

The input is a DAG GE and equations L1 = R1, . . . , Ln = Rn, where val(Li),
val(Ri) are ground (and all the symbols Li, Ri are different) and an STG G that
represents the terms s1, s2 by the nonterminals S1, S2.

1. Compute a DAG GT that represents a reduced gTRS T which is equivalent
to GE using Snyder’s algorithm ([27,28,8]). Note that Snyder’s algorithm
can also be used for DAG-compressed ground equations.

2. Optimally compress the DAG GT using Lemma 5.
3. Use the algorithm in the previous subsection to construct an STG G′ that

represents the STG-compressed normal forms of all term nonterminals, in
particular the normal forms of s1, s2 by the nonterminals S1, S2.

4. Use the Plandowski-Lifshits algorithm (Proposition 3) to decide whether
S1, S2 represent the same terms.

Lemma 13. [27,28] For a set of ground equations E represented by a DAG GE

(with different symbols for the terms in the equations) one can compute a reduced
gTRS T , with =T = =E, represented by a DAG GT in time O(|GE | · log2 |GE |)
where |GT | = O(|GE |).

Proof. We analyze the steps of the algorithm in [28]: The first step is to generate
a DAG for a given set of ground equations E. This step is not necessary for our
claim, since E is already represented by GE . All other steps in the algorithm
of [28] are performed on the DAG, and the dominating cost is computing the
congruence closure, which can either be done in time and space O(|GE |·log |GE |)
or in time O(|GE | · log2 |GE |) and O(|GE |) space [7]. ��

Using this result and the previous results on normalization we obtain:

Theorem 14. Given a set of ground equations E, represented by a DAG GE

(with different symbols for the terms in the equations), and two terms s1, s2
represented by nonterminals S1, S2, respectively, of an STG Ginp, a reduced,
canonical gTRS T , equivalent to E, and the STG G′ representing the T -normal
forms of S1, S2 can be computed in time O(|G|2 + |G| · |GE | · log |GE | + |GE | ·
log2 |GE |), and val(S1) =E val(S2) can be decided in time O(|G|6 · log3 |G|),
where G = Ginp ∪GE.
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Proof. The construction of the gTRS can be done in time O(|GE |·log2 |GE |) and
spaceO(|GE |). The STG G′ can be computed in time O(|G|2+|G|·|GE |·log |GE |),
which results in time O(|G|2 + |G| · |GE | · log |GE |+ |GE | · log2 |GE |).

Since GE ⊂ G, the estimation is O(|G|2 · log |G|) for the time of the construc-
tion, and O(|G|6 ·log3 |G|) to perform the equality decision using the Plandowski-
Lifshits-algorithm (Proposition 3). ��

4 STG-Compressed Ground Term Rewriting Systems

If the ground TRS is STG-compressed, then the normalization algorithms be-
come more involved if we want efficient ones. It is obvious that there is an
exponential upper bound on the running time for normalization and the word
problem, since after decompression, which increases the size at most exponen-
tially to 2|G|, we can use the well-known algorithms with O(n· log(n)) running
time. In the following we look for improved bounds in special cases.

4.1 Complexity Bounds

Proposition 15. Given a reduced, confluent gTRS T , represented as T = {L1 →
R1, . . . , Ln → Rn} where Li, Ri are from an STG GT . Let s be a term with
val(S) = s where S is a term nonterminal from the STG G. Then the T -normal
form of s is computable in polynomial space depending on |G|+ |GT |.

Proof. We show that there is a reduction sequence s → s1 → . . . → sk
∗−→

sn where sn is the T -normal form of s, and where for every k the STG Gk

representing sk requires polynomial space. The claim is that for every k: Gk can
be directly derived from G as follows:

– Gk contains the rules of GT as well as (perhaps modified) rules of G, plus
perhaps some additional rules.

– Some term nonterminals in right hand sides of the G-rules may be replaced
by Ri for some i.

– Some right hand sides of G-rules of the form C[A] are replaced by C′[Ri],
for some i, where val(C′) is a prefix of val(C). G is extended by the rules
generating C′.

Since prefixes of contexts can be generated by an at most polynomial enlargement
of the grammar, and the prefixes can be added independently, the size of the
STG Gk is at most polynomial in the size of G.

Note that this construction cannot be turned into an efficient algorithm, since
the justifications where to replace would require the whole rewrite sequence
s→ s1 → . . .→ sk.

It remains to show that Gk+1 can be derived from Gk by a parallel rewriting
step: If the rewriting replaces a term nonterminal in Gk, then the replacement
constructs a grammar that can be immediately derived from G.

If the rewriting replaces a subterm of some right hand side C′[R], then the
only possibility is that a context nonterminal C′′ has to be constructed such
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that val(C′′) is a prefix of val(C′) and the right hand side C′[R] is replaced by
C′′[R′], where R′ is a right hand side of a rule in T . Hence the algorithm runs
in polynomial space. ��

Corollary 16. Given a reduced, confluent gTRSs T , STG-compressed by GT

and two terms s, t also STG-compressed by G, and let =T be the equality relation
derived from T . Then the word problem, i.e. whether s =T t, is in PSPACE.

We do not know more efficient algorithms for simplifying a compressed term by
a reduced gTRS, or for making a compressed gTRS reduced. Determining the
exact complexity of the word problem of STG-compressed terms w.r.t. a set of
STG-compressed ground equational axioms is left for future research.

Proposition 17. Let Σ = {f, b1, . . . , bn, bn+1} be a signature (n a positive inte-
ger) where f is unary and bi are constants. Given a gTRSs T over Σ, compressed
by an STG GT , such that the right hand sides of rewriting rules are constants
from Σ, and a term s also compressed by an STG G, then the problem whether
s has bn+1 as a normal form under T is NP-hard.

Proof. We adapt the proofs in [23] for our specific problem. We use positive
SUBSETSUM as an NP-hard problem ([9]). Given n (positive) integers S :=
{a1, . . . , an}, and another integer m. Then the question is whether there there
is a subset S′ ⊆ S, such that

∑
a∈S′ a = m.

The uncompressed TRS T is constructed as follows: It has rules of the forms
fai(bi) → bi+1 and bi → bi+1 for i = 1, . . . , n, and the term s is of the form
fm(b1). These terms can easily be compressed in polynomial space. The ques-
tion is whether s can be reduced to bn using the rules of T . Such a reduction
corresponds to a sum as in SUBSETSUM. Hence the problem is NP-hard. ��

Remark 18. Proposition 17 does not show that the compressed word-problem
w.r.t. a ground equational theory is NP-hard. For example, the equational theory
of the encoding in Proposition 17 can be decided in polynomial time: It can be
reduced to the axiom fk(bn+1) =T bn+1, where k is the greatest common divisor
of all the numbers ai, and the axioms bi = bn+1. Then the word problem can be
decided in polynomial time by a computation modulo k.

4.2 STG-Compressed gTRS with One Rule

We consider the problem of normalizing an STG-compressed term t using a single
STG-compressed ground rule L → R, where L does not occur in R, and hence
for deciding the word problem w.r.t. L→ R.

A naive method is to perform step-by-step normalization. One step is to find
all positions of val(L) in val(t), constructing the corresponding nonterminals and
replacing them by a reference to R. Such a single step can be done in polynomial
time. In general, this will lead to an exponential number of normalization steps:
Let the term be fn(a), and the rewrite rule be fm+1(a) → fm(a), where n > m
are large numbers. Since fn(a) can be represented in an STG of size log(n), and
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since every rewrite step only reduces the exponent by 1, there will be n − m
rewrite steps during normalization, which may be exponentially large in |G|. For
the following special cases normalization can be performed in polynomial time:

– If val(L) has no occurrences of val(R), then replacing all occurrences of L by
R is sufficient. These may be explicit occurrences, when val(L) = val(A) for a
term nonterminal, or implicit occurrences, when val(L) occurs in val(C[A]) as
a subterm between A and C[A]. In this case there is only one such possibility,
which can easily be constructed.

– For the (nontrivial) case that val(R) occurs exactly once in val(L) the oc-
currence can be found by ground submatching, also the representation L′[R]
for L such that val(L′[R]) = val(L) with a context nonterminal L′ can be
easily constructed. The computation of a representation of all occurrences
of the context L′ in some C is in [25]. More exactly, the occurrences of the
form L′n[R] with a maximal n have to be determined. Using the context-in-
context table of [25], and using binary search for the maximal n, a polynomial
algorithm can be constructed for this task. If the occurrences are found, (at
most one per term nonterminal), then we can replace these occurrences by
R, and obtain a normalized term t′ for t.

4.3 Monadic Ground Term Rewriting Systems

We investigate the special case of monadic signatures Σ := {f1, . . . , fm, a}
consisting only of unary function symbols fi and a single constant. Assume
a compressed and reduced (i.e., a confluent and terminating) gTRS {Li →
a | i = 1, . . . , n} over monadic Σ. We compute the nonterminals Ai,j , and
the corresponding rules, such that whenever val(Ri) occurs in val(Lj), then
val(Ai,j(Ri)) = val(Lj). Given a term s, the rewriting process identifies a left
hand side val(Li) occurring in s, and rewrites this to val(Ri). Since the signature
is monadic, this can be interpreted as rewriting a string where every rewrite must
replace a suffix. Since the gTRS is reduced, the rewriting process can also be seen
as a computation that acts like a deterministic finite automaton: For instance,
let s = val(A2,5(A3,2(A1,3(R1)))). Then val(A1,3(R1)) = val(L3), hence it pro-
ceeds as val(A2,5(A3,2(R3))). The next reduction steps are val(A2,5(A3,2(R3))) =
val(A2,5(L2)) → val(A2,5(R2) = val(L5) → val(R5). Since the TRS is confluent
and reduced, the computation is deterministic. Translating this into a DFA-
computation: the starting state is i, where Li is the left hand side occurring in
s, and the next state depends on the symbol Ai,j . We can also add an initial
step ε → Ri, where we can omit ambiguous steps. i.e. if an val(Ri) is a proper
suffix of val(Rj), then we can omit this step in the automata. Every state of the
DFA is accepting.

On the other hand, every DFA where all states are accepting can be inter-
preted as such a TRS: Let all val(Ri) be trivial, and let the left hand sides be
1, 10, 100, 1000, . . . . Then the TRS is reduced, and the question whether a
compressed string can be reduced to ε can be solved looking at the DFA.

This implies:
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Table 1. Test series 1

n time (sec)

50 000 2.15
100 000 5.77
250 000 20.79
500 000 61.91

1 000 000 221.66

Table 2. Test series 2

n m time (sec)

5 000 1 000 6.03
5 000 2 000 11.89
5 000 5 000 38.75
5 000 10 000 93.85

100 000 1 000 649.13

Table 3. Test series 3

n k time (sec)

5 000 1 000 6.06
5 000 2 000 13.20
5 000 5 000 36.65
5 000 10 000 81.19

100 000 1 000 666.34

Lemma 19. The question whether a term over a monadic signature can be re-
duced to a is polynomially equivalent to the question: given a DFA and a com-
pressed word s, is there is a word w over context nonterminals accepted by the
DFA such that val(w) = val(s).

However, note that for small val(Ai,j), i.e. if val(Ai,j) can be viewed as part
of the input, there is a polynomial algorithm to solve this problem by using
dynamic programming over the compressions of s. Thus the open question is the
complexity of these problems for arbitrary val(Ai,j).

5 Implementation and Tests

We implemented the normalization algorithm and the Plandowski-Lifshits equal-
ity check in the lazy functional programming language Haskell [1]. STGs are im-
plemented as maps (available by the Haskell library Data.Map) where the right
hand side of a production is mapped to its left hand side. Haskell’s maps are
based on size balanced binary trees [2] and provide selection and construction
operations, like lookup, insertion, or deletion, in logarithmic time which makes
our prototypical implementation reasonably fast. Including some example gram-
mars and term rewriting systems our prototypical implementation consists of
about 2000 lines of Haskell source code. A cabal1 package is available under
http://www.ki.informatik.uni-frankfurt.de/research/gbc/.

We performed several tests2 on the grammar of Example 2 as Ginp.
For the first series of tests we used the gTRS of Example 8. Table 1 shows

the runtime of the normalization algorithm for different values of n. We observe
that the runtime grows by increasing n. Nevertheless our algorithm performs
fast, since the gTRS has only one rule and the corresponding DAG is small.

The second series of tests uses TRSs with a single rule of the form fm(a) → a.
The corresponding DAG is GT = {{L1, A1, . . . , Am−1, R1}, ∅, {f, a}, R} where
R = {L1 ::= f(A1), A1 ::= f(A2), . . . , Am−1 ::= f(R1), R1 ::= a}. Table 2 shows
runtimes for different m,n. Note that |subtermsNT(T )| is much larger than in
the first series of tests.

The third series of tests concerns a growing number of rules of the TRS. We
used TRSs with k rules f(a) → b1, f(b1) → b2, . . . f(bk−1) → a (represented by
1 http://www.haskell.org/cabal/
2 All tests have been compiled with the Glasgow Haskell compiler with optimization

turned on, on a Linux machine with an Intel(R) Core(TM) i5 CPU 680 @ 3.60GHz
with 4 MB cache processor and 8 GB main memory.

http://www.ki.informatik.uni-frankfurt.de/research/gbc/
http://www.haskell.org/cabal/
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a DAG of size 3k). The runtimes for normalization are given in table 3. This
tables validates the expectation that the size of the DAGs is important, since
the DAG-sizes in the first and second series are similar.

6 Conclusion and Further Work

We showed that STG-compression can advantageously be applied to the word
problem for STG-compressed large terms w.r.t. DAG-compressed ground equa-
tional theories, which may have a potential use in deduction systems.

Further work is to attack some of the open questions: look for an efficient
algorithm for solving the word problem for a set of ground equations or gTRSs
under STG-compression or prove hardness results.

Acknowledgement. We thank Markus Lohrey for hints on the complexity
of related problems. We also thank the anonymous referees for their helpful
comments.
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Abstract. Uncurrying is a termination technique for applicative term
rewrite systems. During our formalization of uncurrying in the theorem
prover Isabelle, we detected a gap in the original pen-and-paper proof
which cannot directly be filled without further preconditions. Our final
formalization does not demand additional preconditions, and generalizes
the existing techniques since it allows to uncurry non-applicative term
rewrite systems. Furthermore, we provide new results on uncurrying for
relative termination and for dependency pairs.

Keywords: uncurrying, termination, formalization, interactive theorem
proving, dependency pairs, term rewriting.

1 Introduction

In recent years, the way to prove termination of term rewrite systems (TRSs)
has changed. Current termination tools no longer search for a single reduction
order containing the rewrite relation. Instead, they combine various termination
techniques in a modular way, resulting in large and tree-like termination proofs,
where at each node a specific technique is applied.

On the one hand, this combination makes termination tools more powerful.
On the other hand, it makes them more complex and error-prone. It is regularly
demonstrated that we cannot blindly trust the output of termination provers.
Every now and then, some prover delivers a faulty proof. Often, this is only
detected if there is another prover giving a contradictory answer for the same
input, as a manual inspection of proofs is infeasible due to their size.

The problem is solved by combining two systems. For a given TRS, we first
use a termination tool to automatically detect a termination proof (which may
contain errors). Then, we use a highly trusted certifier which checks whether the
detected proof is indeed correct. In total, the combination yields a powerful and
trustable workflow to prove termination.

To obtain a highly trustable certifier, a common approach is to first formalize
the desired termination techniques once and for all (thereby ensuring their sound-
ness) and then, for a given proof, check that the used techniques are applied cor-
rectly [2,3,14]. We formalized the dependency pair framework (DP framework)
[5] and many termination techniques in our Isabelle/HOL [11] library IsaFoR [14]
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(in the remainder we just write Isabelle, instead of Isabelle/HOL). From IsaFoR,
we code-extract CeTA, an automatic certifier for termination proofs.

In this paper, we present one of the latest additions to IsaFoR: the formalization
of uncurrying, as described in [8]. However, we did not only formalize uncurrying,
but also generalized it. Furthermore, we found a gap in one of the original proofs,
which we could fortunately close.

Note that all the proofs that are presented (or omitted) in the following, have
been formalized as part of IsaFoR. Hence, in this paper, we merely give sketches
of our “real” proofs. Our goal is to show the general proof outlines and help
to understand the full proofs. The library IsaFoR with all formalized proofs, the
executable certifier CeTA, and all details about our experiments are available at
CeTA’s website: http://cl-informatik.uibk.ac.at/software/ceta.

The paper is structured as follows. In Sect. 2, we shortly recapitulate some re-
quired notions of term rewriting. Afterwards, in Sect. 3, we describe applicative
rewriting, give an overview of approaches using uncurrying for proving termina-
tion, and present our generalization of uncurrying for TRSs. Then, in Sect. 4,
we show how to lift uncurrying to the DP framework. We present heuristics and
our experiments in Sect. 5, before we conclude in Sect. 6.

2 Preliminaries

We assume familiarity with term rewriting [1]. Still, we recall the most important
notions that are used later on. A (first-order) term t over a set of variables V
and a set of (function) symbols F is either a variable x ∈ V or a function
symbol f ∈ F applied to argument terms f(t1, . . . , tn) where the arity of f is
ar(f) = n. A context C is a term containing exactly one hole �. Replacing � in
a context C by a term t is denoted by C[t].

A rewrite rule is a pair of terms #→ r and a TRS R is a set of rewrite rules.
The set of defined symbols (of R) is DR = {f | f(. . .) → r ∈ R}. The rewrite
relation (induced by R) →R is the closure under substitutions and contexts of R,
i.e., s→R t iff there is a context C, a rewrite rule #→ r ∈ R, and a substitution
σ such that s = C[#σ] and t = C[rσ]. A term t is root-stable w.r.t. R iff there is
no derivation t→∗

R #σ for some #→ r ∈ R and substitution σ.
We say that a term t is terminating w.r.t. R (SNR(t)) if it cannot start an

infinite derivation t = t1 →R t2 →R t3 →R · · · . A TRS is terminating (SN(R))
iff all terms are terminating w.r.t. R. A TRS R is terminating relative to a
TRS S iff there is no infinite R∪ S-derivation with infinitely many R-steps.

3 Applicative Rewriting and Uncurrying

An applicative term rewrite system (ATRS) is a TRS over an applicative signa-
ture F = {◦}∪C, where ◦ is a unique binary symbol (the application symbol) and
all symbols in C are constants. ATRSs can be used to encode many higher-order
functions without explicit abstraction as first-order TRSs. In the remainder we
use ◦ as an infix-symbol which associates to the left (s ◦ t ◦ u = (s ◦ t) ◦ u). In
examples we omit ◦ whenever this increases readability.

http://cl-informatik.uibk.ac.at/software/ceta
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Example 1. The following ATRS R (a variant of [8, Example 7], replacing addi-
tion by subtraction) contains the map function (which applies a function to all
arguments of a list) and subtraction on Peano numbers in applicative form.

1: sub 0 → K 0
2: sub x 0 → x
3: sub x x → 0
4: sub (s x) (s y) → sub x y

5: K x y → x
6: map z nil → nil
7: map z (cons x xs) → cons (z x) (map z xs)

Proving termination of ATRSs is challenging without dedicated termination
techniques (e.g., for reduction orders, we cannot interpret sub ◦ x ◦ y as x, since
sub is a constant and not binary).

Until now, there have at least been three approaches to tackle this problem.
All of them try to uncurry a TRS such that, for example, Rule 4 from above
becomes sub(s(x), s(y)) → sub(x, y).

To distinguish the three approaches, we need the following definitions:

Definition 2. A term t is head variable free iff t does not contain a subterm
of the form x ◦ s where x is a variable. The applicative arity of a constant f in
an ATRS R (aaR(f)) is the maximal number n, such that f ◦ t1 ◦ · · · ◦ tn occurs
as a subterm in R. Uncurrying an application f ◦ t1 ◦ · · · ◦ tn with aaR(f) = n
yields the term f(t1, . . . , tn). A term t is proper w.r.t. aaR iff t is a variable or
t = f ◦ t1 ◦ · · · ◦ tn where aaR(f) = n and each ti is proper.

The oldest of the three approaches is from [9]. It requires that all terms in a
TRS are proper w.r.t. aaR, and shows that then termination of R is equiva-
lent to termination of the TRS obtained by uncurrying all terms of R. Since
proper terms do not contain any partial applications, the application symbol is
completely eliminated by uncurrying. However, requiring proper terms is rather
restrictive: Essentially, it is demanded that the TRS under consideration is a
standard first-order TRS which is just written in applicative form. For example,
the approach is not applicable to Example 1, since there is a head variable in
the right-hand side of Rule 7 (z ◦ x) and sub as well as K are applied to a single
argument in Rule 1, even though aaR(sub) = 2 and aaR(K) = 2.

The second approach was given in [6,13]. Here, the same preconditions as in
[9] apply, but the results are extended to innermost rewriting and to the DP
framework. The latter has the advantage, that only the current subproblem has
to satisfy the preconditions. For example, when treating the dependency pair

map ◦ z ◦� (cons ◦ x ◦ xs) → map ◦ z ◦� xs (1)

for the recursive call of map, we can perform uncurrying (since there are no
usable rules and (1) satisfies the preconditions). Moreover, in [13] uncurrying is
combined with the reduction pair processor to further relax the preconditions.

The third approach is given in [8]. Here, the preconditions for uncurrying
have been reduced drastically as only the left-hand sides of the TRS R must
be head variable free. In return, we have to η-saturate R and add uncurrying
rules. Moreover, for each constant f with aaR(f) = n we obtain n new function
symbols f1, . . . , fn of arities 1, 2, . . . , n which handle partial applications.
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Example 3. When η-saturating the TRS R of Example 1, we have to add the
rule sub ◦ 0 ◦ y → K ◦ 0 ◦ y. The uncurried TRS consists of the following rules:

8: sub1(0) → K1(0)
9: sub2(0, y) → K2(0, y)

10: sub2(x, 0) → x
11: sub2(x, x) → 0

12: sub2(s1(x), s1(y)) → sub2(x, y)
13: K2(x, y) → x
14: map2(z, nil) → nil
15: map2(z, cons2(x, xs)) → cons2(z ◦ x,map2(z, xs))

Moreover, we have to add the following uncurrying rules:

16: s ◦ x → s1(x)
17: K ◦ x → K1(x)
18: K1(x) ◦ y → K2(x, y)
19: sub ◦ x → sub1(x)
20: sub1(x) ◦ y → sub2(x, y)

21: cons ◦ x → cons1(x)
22: cons1(x) ◦ y → cons2(x, y)
23: map ◦ x → map1(x)
24: map1(x) ◦ y → map2(x, y)

Also [8] gives an extension to the DP framework.
To summarize, the traditional technique of uncurrying of [9] is completely

subsumed by [6,13], but [6,13] and [8] are incomparable. The advantage of [6,13]
is that the generated TRSs and DP problems are smaller, and that uncurrying
is also available in a combination with the reduction pair processor, whereas [8]
supports head variables (see [13, Chap. 6] for a more detailed comparison).

Since [8] is used in more termination tools (it is used in at least Jambox [4] and
TTT2 [10] whereas we only know of AProVE [7] that implements all uncurrying
techniques of [6,13]), we incorporated the techniques of [8] in our certifier CeTA.

During our formalization we have

– detected a gap in a proof of [8] which could not directly be closed without
adding further preconditions to one of the main results,

– generalized the technique of uncurrying which now entails the result of [8]
even without adding any additional precondition, and

– generalized the technique of freezing from [8].

The structure in [8] is as follows. First, uncurrying is developed for TRSs over
applicative signatures {◦}∪C. Then, it is extended to DP problems, introducing
a second application symbol ◦� that may only occur at root-positions of P and
is not uncurried at all. Finally, freezing is applied to uncurry applications of ◦�.

Following this structure, we first fully formalized uncurrying on TRSs. How-
ever, in the extension to DP problems there is a missing step which is illustrated
in more detail in Example 14 on page 251. The main problem is that signature
restrictions on DP problems are in general unsound.

To fill the gap, one option is to use the results of [12] about signature restric-
tions, which can however only be applied if R is left-linear. This clearly weakens
the applicability of uncurrying, e.g., Example 1 is not left-linear.

Alternatively, one can try to perform uncurrying without restricting to ap-
plicative signatures. This is what we did. All uncurrying techniques that we
formalized work on terms and TRSs over arbitrary signatures.

The major complication is the increase of complexity in the cases that have
to be considered. For example, using an applicative signature, we can assume
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that every term is of the form x◦ t1 ◦ · · · ◦ tn or f ◦ t1 ◦ · · ·◦ tn where n ∈ N, x is a
variable, and f is a constant. Generalizing this to arbitrary signatures we have
to consider the two cases x ◦ t1 ◦ · · · ◦ tn and f(s1, . . . , sm) ◦ t1 ◦ · · · ◦ tn instead,
where f is an m-ary symbol. Hence, when considering a possible rewrite step,
we also have to consider the new case that the step is performed in some si.

We not only generalized uncurrying to work for arbitrary signatures and rel-
ative rewriting, but also to a free choice of the applicative arity aa(f). This is
in contrast to [8], where the applicative arity is fixed by Definition 2. We will
elaborate on this difference after presenting our main theorem.

Definition 4 (Symbol maps and applicative arity). Let F be a signature.
A symbol map is a mapping π : F → [F ] from symbols to non-empty lists of
symbols. It is injective if for all f and g, π(f) contains no duplicates, π(f) does
not contain ◦, and whenever f �= g then π(f) and π(g) do not share symbols. If
π(f) = [f0, . . . , fn], then the applicative arity of f w.r.t. π is aaπ(f) = n. The
applicative arity of a term is defined by aaπ(t) = aaπ(f) .− n, where x .− y =
max(x − y, 0), for t = f(s1, . . . , sm) ◦ t1 ◦ · · · ◦ tn and is undefined otherwise.

Intuitively, if π(f) = [f0, . . . , fn] then every application of f on i � n arguments
t1, . . . , ti will be fully uncurried to fi(t1, . . . , ti). If more than n arguments are
applied, then we obtain fn(t1, . . . , tn) ◦ tn+1 ◦ . . . ◦ ti. A symbol map containing
an entry for f , uniquely determines the applicative arity n as well as the names
of the (partial) applications f0, . . . , fn of f .

In the following we assume a fixed symbol map π and just write aa(f) and
aa(t) instead of aaπ(f) and aaπ(t), respectively. Additionally, we assume that
π(f) = [f0, . . . , faa(f)] where in examples we write f instead of f0. Now we can
define the uncurrying TRS w.r.t. π.

Definition 5. The uncurrying TRS U contains the rule

fk(x1, . . . , xm, y1, . . . , yk) ◦ yk+1 → fk+1(x1, . . . , xm, y1, . . . , yk+1)

for every f ∈ F with ar(f) = m and aa(f) = n, and every k < n. The variables
x1, . . . , xm, y1, . . . , yk+1 are pairwise distinct.

In [8], terms are uncurried by computing the unique normal form w.r.t. U . For
our formalization we instead used the upcoming uncurrying function for the
following two reasons: First, we do not have any results about confluence of TRSs.
Hence, to even define the normal form w.r.t. U would require to formalize several
additional lemmas which show that every term has exactly one normal form.
This would be quite some effort which we prefer to avoid. The second reason
is efficiency. When certifying the application of uncurrying in large termination
proofs, we have to compute the uncurried version of a term. It is just more
efficient to use a function which performs uncurrying directly, than to compute
a normal form w.r.t. a TRS where possible redexes have to be searched, etc.

Definition 6. The uncurrying function 	·
 on terms is defined as

– 	x ◦ t1 ◦ · · · ◦ tn
 = x ◦ 	t1
 ◦ · · · ◦ 	tn
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– 	f(s1, . . . , sm) ◦ t1 ◦ · · · ◦ tn
 = fk(	s1
, . . . , 	sm
, 	t1
, . . . , 	tk
) ◦ 	tk+1
 ◦
· · · ◦ 	tn
 where k = min(n, aa(f))

It is homomorphically extended to operate on rules, TRSs, and substitutions.

We establish the link between U and 	·
 in the following lemma which generalizes
the corresponding results in [8].

Lemma 7

– if k < aa(f) and ar(f) = m then fk(s1, . . . , sm+k)◦t→U fk+1(s1, . . . , sm+k, t)
– if k + n � aa(f) and ar(f) = m then fk(s1, . . . , sm+k) ◦ t1 ◦ . . . ◦ tn →∗

U
fk+n(s1, . . . , sm+k, t1, . . . , tn)

– 	s
 ◦ 	t1
 ◦ · · · ◦ 	tn
 →∗
U 	s ◦ t1 ◦ · · · ◦ tn


– if aa(s) = 0 or aa(s) is undefined then 	s ◦ t1 ◦ · · · ◦ tn
 = 	s
◦	t1
◦· · ·◦	tn

– 	s
 · 	σ
 →∗

U 	s · σ

– if t is head variable free then 	s · σ
 = 	s
 · 	σ


The last two results show how uncurrying can be exchanged with applying sub-
stitutions. As we will often need the equality 	# · σ
 = 	#
 · 	σ
 for left-hand
sides #, it is naturally to demand that left-hand sides are head variable free.

Definition 8. A TRS is left head variable free if all left-hand sides are head
variable free.

Termination of 	R
 ∪ U does not suffice to conclude termination of R, cf. [8,
Example 13]. The reason is that first we have to η-saturate R.

Definition 9. A TRS R is η-closed iff for every rule #→ r with aa(#) > 0 there
is a rule # ◦ x → r ◦ x ∈ R where x is fresh w.r.t. # → r. The η-saturation Rη

of R is obtained by adding new rules # ◦ x→ r ◦ x until the result is η-closed.

The upcoming theorem is the key to use uncurrying for termination proofs. It
allows to simulate one R-step by many steps in the uncurried system.

Theorem 10. Let R be η-closed and left head variable free. Let there be no
left-hand side of R which is a variable. If s→R t then 	s
 →+

�R�∪U 	t
.

Proof. Let s = C[#σ] →R C[rσ] = t where #→ r ∈ R. We show 	s
 →+
�R�∪U 	t


by induction on the size of C.

– If C = f(s1, . . . , D, . . . , sm)◦t1◦· · ·◦tn for some f �= ◦ then by the induction
hypothesis we know that 	D[#σ]
 →+

�R�∪U 	D[rσ]
. Moreover,

	s
 = 	f(s1, . . . , D[#σ], . . . , sm) ◦ t1 ◦ · · · ◦ tn

= fk(	s1
, . . . , 	D[#σ]
, . . . , 	sm
, 	t1
, . . . , 	tk
) ◦ 	tk+1
 ◦ · · · ◦ 	tn

→+

�R�∪U fk(. . . , 	D[rσ]
, . . . , 	sm
, 	t1
, . . . , 	tk
) ◦ 	tk+1
 ◦ · · · ◦ 	tn

= 	f(s1, . . . , D[rσ], . . . , sm) ◦ t1 ◦ · · · ◦ tn

= 	t


where k = min(n, aa(f)).
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– If C = t0 ◦D ◦ t1 ◦ · · · ◦ tn then by the induction hypothesis we know that
	D[#σ]
 →+

�R�∪U 	D[rσ]
. If aa(t0) = 0 or aa(t0) is undefined then

	s
 = 	t0 ◦D[#σ] ◦ t1 ◦ · · · ◦ tn

= 	t0
 ◦ 	D[#σ]
 ◦ 	t1
 ◦ · · · ◦ 	tn

→+

�R�∪U 	t0
 ◦ 	D[rσ]
 ◦ 	t1
 ◦ · · · ◦ 	tn

= 	t0 ◦D[rσ] ◦ t1 ◦ · · · ◦ tn

= 	t


Otherwise, aa(t0) > 0 and hence, t0 = f(s1, . . . , sm)◦sm+1◦· · ·◦sm+k where
k < aa(f). It follows that

	s
 = 	f(s1, . . . , sm) ◦ sm+1 ◦ · · · ◦ sm+k ◦D[#σ] ◦ t1 ◦ · · · ◦ tn

= fk+1+n′(. . . , 	sm+k
, 	D[#σ]
, 	t1
, . . . , 	tn′
) ◦ 	tn′+1
 ◦ · · · ◦ 	tn

→+

�R�∪U fk+1+n′(. . . , 	sm+k
, 	D[rσ]
, 	t1
, . . . , 	tn′
) ◦ 	tn′+1
 ◦ · · ·
= 	f(s1, . . . , sm) ◦ sm+1 ◦ · · · ◦ sm+k ◦D[rσ] ◦ t1 ◦ · · · ◦ tn

= 	t


where n′ = min(aa(f)− k − 1, n).
– If C = � ◦ t1 ◦ · · · ◦ tn and n = 0 ∨ aa(#) = 0 then

	s
 = 	# · σ ◦ t1 ◦ · · · ◦ tn

= 	# · σ
 ◦ 	t1
 ◦ · · · ◦ 	tn

= 	#
 · 	σ
 ◦ 	t1
 ◦ · · · ◦ 	tn

→�R� 	r
 · 	σ
 ◦ 	t1
 ◦ · · · ◦ 	tn

→∗

U 	r · σ
 ◦ 	t1
 ◦ · · · ◦ 	tn

→∗

U 	r · σ ◦ t1 ◦ · · · ◦ tn

= 	t


since # is head variable free and if n �= 0 then aa(#σ) = aa(#) = 0.
– If C = �◦t1◦· · ·◦tn with n > 0 and aa(#) > 0 then #′ → r′ = #◦x→ r◦x ∈ R

since R is η-closed. Moreover, by changing σ to δ = σ 4 {x/t1} we achieve
s = # ·σ ◦ t1 ◦ · · · ◦ tn = #′δ ◦ t2 ◦ · · · ◦ tn = D[#′δ] and r = r ·σ ◦ t1 ◦ · · · ◦ tn =
r′δ ◦ t2 ◦ · · · ◦ tn = D[r′δ] for the context D = � ◦ t2 ◦ · · · tn which is strictly
smaller than C. Hence, the result follows by the induction hypothesis.

– If C = �◦t1◦· · ·◦tn with n > 0 and aa(#) is undefined then # = x◦#1◦· · ·◦#k
with k ≥ 0. But if k > 0 then # is not head variable free and if k = 0 then
R contains a variable as left-hand side. In both cases we get a contradiction
to the preconditions in the theorem. ��

Note that the condition that the left-hand sides of R are not variables is new
in comparison to [8]. Nevertheless, in the following corollary we can drop this
condition, since otherwise 	R
 is not terminating anyway.
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Corollary 11. If Rη is left head variable free then termination of 	Rη
 ∪ U
implies termination of R.

When using uncurrying for relative termination of R/S, it turns out that the
new condition on the left-hand sides can only be ignored for R – since otherwise
relative termination of 	R
/	S
 ∪ U does not hold – but not for S.

Corollary 12. If Rη ∪ Sη is left head variable free and the left-hand sides of S
are not variables, then relative termination of 	Rη
/	Sη
 ∪ U implies relative
termination of R/S.

Example 13. Let R = {f ◦ f ◦ x→ f ◦ x} and S = {x→ f ◦ x}. Then R/S is not
relative terminating since f ◦ f ◦ x →R f ◦ x →S f ◦ f ◦ x →R . . . is an infinite
R∪ S-derivation with infinitely many R-steps.

For π(f) = [f, f1, f2] we have Rη = R, Sη = S, 	Rη
 = {f2(f, x) → f1(x)},
	Sη
 = {x → f1(x)}, and U = {f ◦ x → f1(x), f1(x) ◦ y → f2(x, y)}. It is easy
to see that 	Rη
/	Sη
 ∪ U is relative terminating by counting the number of
f-symbols. Since both Rη and Sη are head variable free, we have shown that
Corollary 12 does not hold if one would drop the new variable condition on S.

As already mentioned, Corollary 11 generalizes the similar result of [8, Theo-
rem 16] in two ways: first, there is no restriction to applicative signatures, and
second, one can freely choose the applicative arities. Since in principle the choice
of π does not matter (uncurrying preserves termination for every choice of π),
we can only heuristically determine whether the additional freedom increases
termination proving power and therefore refer to our experiments in Sect. 5.

4 Uncurrying in the Dependency Pair Framework

The DP framework [5] facilitates modular termination proofs. Instead of sin-
gle TRSs, we consider DP problems (P ,R), consisting of two TRSs P and R
where elements of P are often called pairs to distinguish them from the rules
of R. The initial DP problem for a TRS R is (DP(R),R), where DP(R) =
{f �(s1, . . . , sn) → g�(t1, . . . , tm) | f(s1, . . . , sn) → C[g(t1, . . . , tm)] ∈ R, g ∈
DR} is the set of dependency pairs of R, incorporating a fresh tuple symbol f �

for each defined symbol f . The initial DP problem is also a standard DP prob-
lem, i.e., root symbols of pairs do not occur elsewhere in P or R.1 A (P ,R)-chain
is a possibly infinite derivation of the form:

s1σ1 →P t1σ1 →∗
R s2σ2 →P t2σ2 →∗

R s3σ3 →P · · · (�)

where si → ti ∈ P for all i > 0. If additionally every tiσi is terminating w.r.t. R,
then the chain is minimal. A DP problem (P ,R) is called finite [5], if there is
no minimal infinite (P ,R)-chain. Proving finiteness of a DP problem is done
by simplifying (P ,R) using so called processors recursively. A processor trans-
forms a DP problem into a new DP problem. The aim is to reach a DP problem
with empty P-component (such DP problems are trivially finite). To conclude

1 Several termination provers only work on standard DP problems.
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finiteness of the initial DP problem, the applied processors need to be sound.
A processor Proc is sound whenever for all DP problems (P ,R) we have that
finiteness of Proc(P ,R) implies finiteness of (P ,R).

In the following we explain how uncurrying is used as processor in the DP
framework. In Sect. 3 it was already mentioned that in [8] the notion of ap-
plicative TRS was lifted to applicative DP problem by allowing a new binary
application symbol ◦� (where we sometimes just write � in examples). The symbol
◦� naturally occurs as tuple symbol of ◦.

To prove soundness of the uncurrying processor, in [8] it is assumed that there
is a minimal (P ,R)-chain s1σ1 →P t1σ1 →∗

R s2σ2 →P · · · , which is converted
into a minimal (	P
, 	Rη
∪U)-chain by reusing the results for TRSs. However,
there is a gap in this reasoning. Right in the beginning it is silently assumed that
all terms siσi and tiσi have tuple symbols as roots and that their arguments are
applicative terms, i.e., terms over an applicative signature {◦}∪C. Without this
assumption it is not possible to apply the results of uncurrying for TRSs, since
those are only available for applicative terms in [8].

The following variant of [12, Example 14] shows that in general restricting
substitutions in chains to an applicative signature {◦} ∪ C is unsound.

Example 14. Consider the applicative and standard DP problem (P ,R) where
P = {g � (f x y z z u v) → g � (f x y x y x (h y u))} and R contains the rules:

a → b
a → c

h x x → h x x

f a x2 x3 x4 x5 → f a x2 x3 x4 x5

f x1 a x3 x4 x5 → f x1 a x3 x4 x5

f (y z) x2 x3 x4 x5 → f (y z) x2 x3 x4 x5

f x1 (y z) x3 x4 x5 → f x1 (y z) x3 x4 x5

There is a minimal (P ,R)-chain taking si = g � (f x y z z u v), ti = g �

(f x y x y x (h y u)), and σi = {x/k(a), y/k(b), z/k(b), u/k(c), v/h (k(b)) (k(c))}
where k is a unary symbol. However, there is no minimal (P ,R)-chain using
substitutions over the signature {◦} ∪ C, regardless of the choice of constants C.

Since our generalizations in Sect. 3 do not have any restrictions on the signature,
we were able to correct the corresponding proofs in [8] such that the major
theorems are still valid.2 It follows the generalization of [8, Theorem 33].

Theorem 15. The uncurrying processor U ′
1 is sound where U ′

1(P ,R) ={
(	P
, 	Rη
 ∪ U) if P ∪Rη is left head variable free and π is injective,
(P ,R) otherwise.

Proof. The proof mainly uses the results from the previous section. We assume
an infinite minimal (P ,R)-chain s1σ1 →P t1σ1 →∗

R s2σ2 →P t2σ2 →∗
R · · · and

construct an infinite minimal (	P
, 	Rη
 ∪ U)-chain as follows.

2 After the authors of [8] where informed of the gap, they independently developed an
alternative fix, which is part of an extended, but not yet published version of [8].
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We achieve 	siσi
 = 	si
 · 	σi
 and 	ti
 · 	σi
 →∗
U 	tiσi
 since P is left head

variable free. Moreover, using tiσi →∗
R si+1σi+1 and Theorem 10 we conclude

	tiσi
 →∗
�Rη�∪U 	si+1σi+1
. Here, the condition that Rη must not contain vari-

ables as left-hand sides is ensured by the minimality of the chain: if x→ r ∈ Rη

then SNR(tiσ) does not hold. Hence, we constructed a (	P
, 	Rη
∪U)-chain as

	siσi
 = 	si
 · 	σi
 →�P� 	ti
 · 	σi
 →∗
U 	tiσi
 →∗

�Rη�∪U 	si+1σi+1


for all i. To ensure that the chain is minimal it is demanded that π is injective.
Otherwise, two different symbols can be mapped to the same new symbol which
clearly can introduce nontermination. The structure of the proof that minimality
is preserved is similar to the one in [8] and we just refer to IsaFoR for details.

The uncurrying processor of Theorem 15 generalizes [8, Theorem 33] in three
ways: the signature does not have to be applicative, we can freely choose the
applicative arity via π, and we can freely choose the application symbol. The
last generalization lets Theorem 15 almost subsume the technique of freezing [8,
Corollary 40] which is used to uncurry ◦�.

Definition 16 (Freezing [8]). A simple freeze ❆ is a subset of F .3 Freezing
is applied on non-variable terms as follows

❆(f(t1, . . . , tn)) =

{
f(t1, . . . , tn) if n = 0 or f /∈ ❆

fg(s1, . . . , sm, t2, . . . , tm) if t1 = g(s1, . . . , sm) and f ∈ ❆

where each fg is a new symbol. It is homomorphically extended to rules and
TRSs. The freezing DP processor is defined as ❆(P ,R) =⎧⎪⎨⎪⎩

(❆(P),R) if (P ,R) is a standard DP problem where for all s→ f(t1, . . . , tn)
∈ P with f ∈ ❆, both t1 /∈ V and all instances of t1 are root-stable,

(P ,R) otherwise.

In [8, Theorem 39], it is shown that freezing is sound.

Example 17. In the following we use numbers to refer to rules from previous ex-
amples. We consider the DP problem (P ,R) where P = {sub (s x)�(s y) → sub x�

y} and R = {2–4}. Uncurrying ◦ with π(s) = [s, s1], π(sub) = [sub, sub1, sub2],
π(0) = [0], and π(�) = [�] yields the DP problem (	P
, 	Rη
 ∪ U) where 	P
 =
{sub1(s1(x)) � s1(y) → sub1(x) � y} and 	Rη
∪U consists of {10–12, 16, 19, 20}.

Afterwards we uncurry the resulting DP problem using ◦� as application
symbol and π where π(sub1) = [sub1,−�] and π(f) = [f ] for all other sym-
bols. We obtain (P ′,R′) where P ′ = {s1(x) −� s1(x)) → x −� y} and R′ =
	Rη
∪U ∪ {sub1(x) � y → −�(x, y)}. Note that freezing returns nearly the same
DP problem. The only difference is that uncurrying produces the additional rule
sub1(x) � y → x −� y which we do not obtain via freezing. However, since this
rule is not usable it also does not harm that much.
3 In [8] one can also specify an argument position for each symbol. This can be simu-

lated by permuting the arguments accordingly.
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Moreover, uncurrying sometimes is applicable where freezing is not. If we
would have started with the DP problem (P ,R′′) where R′′ = {1–5} then un-
currying would result in (	P
, 	R′′

η
 ∪ U ′) where 	R′′
η
 ∪ U ′ = {8–13, 16–20}.

On this DP problem freezing is not applicable (the instances of sub1(x) in the
right-hand side of the only pair in 	P
 are not root-stable due to Rule 8).
Nevertheless, one can uncurry ◦�, resulting in (P ′, 	R′′

η
 ∪ U ′ ∪ Rnew) where
Rnew = {sub1(x) � y → x −� y, 0 −� y → K1(0) � y}. Note that the uncurrying of
◦� transformed a standard DP problem into a non-standard one, as −� occurs
as root of a term in P ′, but also within Rnew.

Whenever freezing with ❆ = {◦�} is applicable, then also uncurrying of ◦� is
possible: the condition t1 /∈ V in Definition 16 implies that P ∪ Rη is left head
variable free. The only difference is that uncurrying produces more rules than
freezing, namely the uncurrying rules and the uncurried rules of those rules
which have to be added for the η-saturation. However, if freezing is applicable
then none of these additional rules are usable.4 Hence, all techniques which only
consider the usable rules (like the reduction pair processor) perform equally well,
no matter whether one has applied freezing or uncurrying. Still, one wants to get
rid of the additional rules, especially since they are also the reason why standard
DP problems are transformed into non-standard ones.

In Example 17 we have seen that sometimes uncurrying of tuple symbols is
applicable where freezing is not. Thus, to have the best of both techniques we
devised a special uncurrying technique for tuple symbols which fully subsumes
freezing without the disadvantage of U ′

1: if freezing is applicable then standard
DP problems are transformed into standard DP problems by the new technique.

Before we describe the new uncurrying processor formally, we shortly list the
differences to the uncurrying processor of Theorem 15:

– Since the task is to uncurry tuple symbols, we restrict the applicative arities
to be at most one. Moreover, uncurrying is performed only on the top-level.
Finally, the application symbol may be of arbitrary non-zero arity.

– Rules that have to be added for the η-saturation and the uncurrying rules are
added as pairs (to the P-component), and not as rules (to the R-component).

– If freezing is applicable, we do neither add the uncurrying rules nor do we
apply η-saturation.

Example 18. We continue with the DP problems of Example 17.
If one applies the special uncurrying processor on (	P
, 	Rη
 ∪ U) then one

obtains (P ′, 	Rη
 ∪ U) which is the same as ❆(	P
, 	Rη
 ∪ U) for ❆ = {◦�}.
And if one applies the special uncurrying processor on (	P
, 	R′′

η
∪U ′) then
one obtains the standard DP problem (P ′ ∪Rnew, 	R′′

η
 ∪ U ′).

Definition 19. Let ◦� be an n-ary application symbol where n > 0. Let π be an
injective symbol map where π(f) ∈ {[f ], [f, f �]} for all f . The top-uncurrying
function �·� maps terms to terms. It is defined as �t� =
4 In detail: a technique that can detect that instances of a subterm of a right-hand

side of P are root-stable can also detect that the additional rules are not usable.
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{
f �(s1, . . . , sm, t2, . . . , tn) if t = ◦�(f(s1, . . . , sm), t2, . . . , tn) and π(f) = [f, f �]
t otherwise

and is homomorphically extended to pairs, rules, and substitutions. The top-
uncurrying rules are defined as

U t = {◦�(f(x1, . . . , xm), y2, . . . , yn) → f �(x1, . . . , xm, y2, . . . , yn) | π(f) = [f, f �]}

Then the top-uncurrying processor is defined as top(P ,R) =⎧⎪⎨⎪⎩
(�Pη� ∪ U t

?,R) if ◦� is not defined w.r.t. R and for all s→ t ∈ Pη : s, t /∈ V,
s �= ◦�(x, s2, . . . , sn), and the root of t is not defined w.r.t. R

(P ,R) otherwise

where U t
? = ∅ and Pη = P if for all s → ◦�(t1, . . . , tn) ∈ P and σ the term t1σ

is root-stable, and U t
? = U t and Pη = P ∪ {◦�(#, x2, . . . , xn) → ◦�(r, x2, . . . , xn) |

# → r ∈ R, root(#) = g, π(g) = [g, g�]}, otherwise. Here, x2, . . . , xn are distinct
fresh variables that do not occur in #→ r.

Theorem 20. The top-uncurrying processor top is sound.

Proof. The crucial part is to prove that whenever t = f(t1, . . . , tm) →∗
R s, f /∈

DR, t is an instance of a right-hand side of P , and SNR(t), then �t� →∗
�Pη�∪Ut

?∪R
�s� where �Pη� ∪ U t

?-steps are root steps and all terms in this derivation are
terminating w.r.t. R.

Using this result, the main result is established as follows. Assume there is an
infinite minimal (P ,R)-chain. Then every step sσ →P tσ →∗

R s′σ′ in the chain is
transformed as follows. Since s→ t ∈ P , we conclude that tσ = f(t1σ, . . . , tmσ)
where f /∈ DR and SNR(tσ). Hence, using the crucial step we know that
�tσ� →∗

�Pη�∪Ut
?∪R �s′σ′�. Moreover, by case analysis on t one can show that

�t�σ →∗
Ut

?
�tσ� via root reductions, and similarly, by additionally using the

restrictions on s one derives �sσ� = �s�σ. Hence,

�sσ� = �s�σ →�P� �t�σ →∗
Ut

?
�tσ� →∗

�Pη�∪Ut
?
∪R �s′σ′�

where all terms in this derivation right of →�P� are terminating w.r.t. R and
where all �Pη�∪U t

?-steps are root reductions. Thus, we can turn the root reduc-
tions into pairs, resulting in an infinite minimal (�Pη� ∪ U t

?,R)-chain.
To prove the crucial part we perform induction on the number of steps where

the base case – no reductions – is trivial. Otherwise, t = f(t1, . . . , tm) →∗
R

u →R s. Using SNR(t) we also know SNR(u) and since f /∈ DR we know that
u = f(u1, . . . , um) and ti →∗

R ui for all 1 � i � m. Moreover, s = f(s1, . . . , sm)
and s is obtained from u by a reduction ui →R si for some 1 � i � m. Hence,
we may apply the induction hypothesis and conclude �t� →∗

�Pη�∪Ut
?∪R �u�.

It remains to simulate the reduction u→R s. The simulation is easy if f �= ◦�,
since then �u� = u →R s = �s�. Otherwise, f = ◦� and m = n. We again first
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consider the easy case where ui →R si for some i > 1. Then an easy case
analysis on u1 yields �u� →R �s� since u and s are uncurried in the same
way (since u1 = s1). Otherwise, u = ◦�(u1, . . . , um), s = ◦�(s1, u2, . . . , um)
and u1 →R s1. If u1 →R s1 is a reduction below the root then both s and
t are uncurried in the same way and again �u� →R �s� is easily established.
If however u1 = #σ → rσ = s1 for some rule # → r ∈ R then we know that
u1 is not root-stable and hence also t1 is not root-stable. As t = ◦�(t1, . . . , tn)
is an instance of a right-hand side of P we further know that there is a pair
s′ → ◦�(t′1, . . . , t

′
n) ∈ P where t1 = t′1σ. Since t′1σ is not root-stable U t

? = U t

and Pη ⊇ {◦�(#, x2, . . . , xn) → ◦�(r, x2, . . . , xn) | # → r ∈ R, root(#) = g, π(g) =
[g, g�]}. Let # = g(#1, . . . , #k). If π(g) = [g] then

�u� = �◦�(g(#1, . . . , #k)σ, u2, . . . , un)�
= ◦�(g(#1, . . . , #k)σ, u2, . . . , un)

→R ◦�(rσ, u2, . . . , un)

→∗
Ut

?
�◦�(rσ, u2, . . . , un)�

= �s�.

And otherwise, π(g) = [g, g�]. Hence, ◦�(#, x2, . . . , xn) → ◦�(r, x2, . . . , xn) ∈ Pη.
We define δ = σ 4 {x2/u2, . . . , xn/un} and achieve

�u� = �◦�(g(#1, . . . , #k)σ, u2, . . . , un)�
= g�(#1σ, . . . , #kσ, u2, . . . , un)

= g�(#1, . . . , #k, x2, . . . , xn)δ

= �◦�(g(#1, . . . , #k), x2, . . . , xn)�δ
= �◦�(#, x2, . . . , xn)�δ
→�Pη� �◦�(r, x2, . . . , xn)�δ
→∗

Ut
?

�◦�(r, x2, . . . , xn)δ�
= �◦�(rσ, u2, . . . , un)�
= �s�.

Using that π is injective one can also show that termination of all terms in the
derivation is guaranteed where we refer to our library IsaFoR for details.

Note that the top-uncurrying processor fully subsumes freezing since the step
from (P ,R) to (❆(P),R) using ❆ = {f1, . . . , fn} can be simulated by n
applications of top where in each iteration one chooses fi as application symbol
and defines π(g) = [g, fg

i ] for all g �= fi. The following example shows that top
is also useful where freezing is not applicable.

Example 21. Consider the TRS R where x÷ y computes 5 x
2y 6.
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s(x)− s(y) → x− y
0− y → 0
x− 0 → x
0 + y → y

s(x) + y → s(x+ y)

double(x) → x+ x
double(0) → 0

double(s(x)) → s(s(double(x)))
0÷ s(y) → 0

s(x)÷ s(y) → s((s(x)− double(s(y))) ÷ s(y))

Proving termination is hard for current termination provers. Let us consider the
interesting DP problem (P ,R) where P = {s(x)÷�s(y) → (s(x)−double(s(y)))÷�

s(y)}. The problem is that one cannot use standard reduction pairs with argu-
ment filters since one has to keep the first argument of −, and then the filtered
term of s(x) is embedded in the filtered term of s(x)−double(s(y)). Consequently,
powerful termination provers such as AProVE and TTT2 fail on this TRS.

However, one can uncurry the tuple symbol ÷� where π(−) = [−,−�], π(s) =
[s, s�], and π(f) = [f ], otherwise. Then the new DP problem (P ′,R) is created
where P ′ consists of the following pairs

(x − y)÷� z → −�(x, y, z)
s(x) ÷� y → s�(x, y)

s�(x, s(y)) → −�(s(x), double(s(y)), s(y))

−�(s(x), s(y), z) → −�(x, y, z)
−�(0, y, z) → 0÷� z
−�(x, 0, z) → x÷� z

where the subtraction is computed via the new pairs, and not via the rules
anymore. The right column consists of the uncurried and η-saturated −-rules,
and the left column contains the two uncurrying rules followed by the uncurried
pair of P . Proving finiteness of this DP problem is possible using standard tech-
niques: linear 0/1-polynomial interpretations and the dependency graph suffice.
Therefore, termination of the whole example can be proven fully automatically
by using a new version of TTT2 where top-uncurrying is integrated.

5 Heuristics and Experiments

The generalizations for uncurrying described in this paper are implemented in
TTT2 [10]. To fix the symbol map we used the following three heuristics:

– π+ corresponds to the definition of applicative arity of [8]. More formally,
π+(f) = [f0, . . . , fn] where n is maximal w.r.t. all f(. . .)◦t1◦· · ·◦tn occurring
in R. The advantage of π+ is that all uncurryings are performed.

– π± is like π+, except that the applicative arity is reduced whenever we would
have to add a rule during η-saturation. Formally, π±(f) = [f0, . . . , fn] where
n = min(aaπ+(f),min{k | f(. . .) ◦ t1 ◦ · · · ◦ tk → r ∈ R}).

– π− is almost dual to π+. Formally, π−(f) = [f0, . . . , fn] where n is minimal
w.r.t. all maximal subterms of the shape f(. . .) ◦ t1 ◦ · · · ◦ tn occurring in R.
The idea is to reduce the number of uncurrying rules.

We conducted two sets of experiments to evaluate our work. Note that all proofs
generated during our experiments are certified by CeTA (version 1.18). Our ex-
periments were performed on a server with eight dual-core AMD Opteron R©

processors 885, running at a clock rate of 2.6GHz and on 64GB of main mem-
ory. The time limit for the first set of experiments was 10 s (as in [8]), whereas
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Table 1. Experiments as in [8]

direct processor
none trs U ′

1 U ′
2

subterm criterion 41 53 41 66
matrix (dimension 1) 66 98 95 114
matrix (dimension 2) 108 137 133 138

Table 2. Newly certified proofs

direct processor total
trs U ′

1 U ′
2

π+ 26 16 22 35
π± 28 15 17 29
π− 24 14 14 24

total 28 16 24 36

the time limit for the second set was 5 s (TTT2’s time limit in the termination
competition).

The first set of experiments was run with a setup similar to [8]. Accordingly,
as input we took the same 195 ATRSs from the termination problem database
(TPDB). For proving termination, we switch from the input TRS to the initial
DP problem and then repeat the following as often as possible: compute the
estimated dependency graph, split it into its strongly connected components
and apply the “main processor.” Here, as “main processor” we incorporated
the subterm criterion and matrix interpretations (of dimensions one and two).
Concerning uncurrying, the following approaches were tested: no uncurrying
(none), uncurry the given TRS before computing the initial DP problem (trs),
apply U ′

1/U ′
2 as soon as all other processors fail (where U ′

2 is the composition of U ′
1

and top). The results can be found in Table 1. Since on ATRSs, our generalization
of uncurrying corresponds to standard uncurrying, it is not surprising that the
numbers of the first three columns coincide with those of [8] (modulo mirroring
and a slight difference in the used strategy for trs). They are merely included to
see the relative gain when using uncurrying on ATRSs.

With the second set of experiments, we tried to evaluate the total gain in
certified termination proofs. Therefore, we took a restricted version of TTT2’s
competition strategy that was used in the July 2010 issue of the international
termination competition5 (called base strategy in the following). The restriction
was to use only those termination techniques that where certifiable by CeTA be-
fore our formalization of uncurrying. Then, we used this base strategy to filter
the TRSs (we did ignore all SRSs) of the TPDB (version 8.0). The result were
511 TRSs for which TTT2 did neither generate a termination proof nor a non-
termination proof using the base strategy. For our experiments we extended the
base strategy by the generalized uncurrying techniques using different heuristics
for the applicative arity. The results can be found in Table 2. It turned out, that
the π− heuristic is rather weak. Concerning π±, there is at least one TRS that
could not be proven using π+, but with π±. The total of 35 in the first row of
Table 2 is already reached without taking U ′

1 into account. This indicates that
in practice a combination of uncurrying as initial step (trs) and the processor
U ′

2, gives the best results. Finally, note that in comparison to the July 2010

5 http://termcomp.uibk.ac.at

http://termcomp.uibk.ac.at
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termination competition (where TTT2 could generate 262 certifiable proofs), the
number of certifiable proofs of TTT2 is increased by over 10% using the new tech-
niques. In these experiments, termination has been proven for 10 non-applicative
TRSs where our generalizations of uncurrying have been the key to success.

6 Conclusions

This paper describes the first formalization of uncurrying, an important tech-
nique to prove termination of higher-order functions which are encoded as first-
order TRSs. The formalization revealed a gap in the original proof which is now
fixed. Adding the newly developed generalization of uncurrying to our certifier
CeTA, increased the number of certifiable proofs on the TPDB by 10%.
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3. Contejean, É., Paskevich, A., Urbain, X., Courtieu, P., Pons, O., Forest, J.:
A3PAT, an approach for certified automated termination proofs. In: Gallagher,
J.P., Voigtländer, J. (eds.) PEPM 2010, pp. 63–72. ACM Press, New York (2010)

4. Endrullis, J.: Jambox, http://joerg.endrullis.de
5. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving

dependency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)
6. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termina-

tion of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI),
vol. 3717, pp. 216–231. Springer, Heidelberg (2005)

7. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termina-
tion proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

8. Hirokawa, N., Middeldorp, A., Zankl, H.: Uncurrying for termination. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330,
pp. 667–681. Springer, Heidelberg (2008)

9. Kennaway, R., Klop, J.W., Sleep, R., de Vries, F.J.: Comparing curried and un-
curried rewriting. Journal of Symbolic Computation 21(1), 15–39 (1996)

10. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2.
In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009)

11. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

12. Sternagel, C., Thiemann, R.: Signature extensions preserve termination. In: Dawar,
A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 514–528. Springer, Heidelberg
(2010)

13. Thiemann, R.: The DP Framework for Proving Termination of Term Rewriting.
Ph.D. thesis, RWTH Aachen University, Technical Report AIB-2007-17 (2007)

14. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 452–468. Springer, Heidelberg (2009)

http://joerg.endrullis.de
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Abstract. Motivated by the need to combine systems and logics, we develop a
modular approach to the model expansion (MX) problem, a task which is com-
mon in applications such as planning, scheduling, computational biology, formal
verification. We develop a modular framework where parts of a modular system
can be written in different languages. We start our development from a previ-
ous work, [14], but modify and extend that framework significantly. In particular,
we use a model-theoretic setting and introduce a feedback (loop) operator on
modules. We study the expressive power of our framework and demonstrate that
adding the feedback operator increases the expressive power considerably. We
prove that, even with individual modules being polytime solvable, the framework
is expressive enough to capture all of NP, a property which does not hold without
loop. Moreover, we demonstrate that, using monotonicity and anti-monotonicity
of modules, one can significantly reduce the search space of a solution to a
modular system.

1 Introduction

Formulating AI tasks as model finding has recently become very promising due to the
overwhelming success of SAT solvers and related technology such as SMT. In our re-
search direction we focus on a particular kind of model finding which we call model
expansion. The task of model expansion underlies all search problems where for an
instance of a problem, which we represent as a logical structure, one needs to find a
certificate (solution) satisfying certain specification. For example, given a graph, we are
looking for its 3-colouring in a classic NP-search problem. Such search problems occur
broadly in applications; they include planning, scheduling, problems in formal verifi-
cation (where we are looking for a path to a bug), computational biology, and so on.
In addition to being quite common, the task of model expansion is generally simpler
than satisfiability from the computational point of view. Indeed, for a given logic L, we
have, in terms of computational complexity,

MC(L) ≤ MX(L) ≤ Satisfiability(L),

where MC(L) stands for model checking (structure for the entire vocabulary of the for-
mula in logic L is given), MX(L) stands for model expansion (structure interpreting a
part of the vocabulary is given) and Satisfiability(L) stands for satisfiability task (where
we are looking for a structure satisfying the formula). A comparison of the complexity

C. Tinelli and V. Sofronie-Stokkermans (Eds.): FroCoS 2011, LNAI 6989, pp. 259–274, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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of the three tasks for several logics of practical interest is given in [15]. Satisfiability
problem has been studied for many logics of practical interest, however model expan-
sion problem has not been studied. In particular, issues related to combining specialized
formalisms have been investigated, to a large degree, for satisfiability problem but not
at all for model expansion. As we develop our framework, we aim at understanding the
expressive power of the operations we add. Knowing the expressiveness of a framework
is essential in particular to understanding the complexity of solution finding.

Our contributions are as follows:

– We develop a semantics-based formalism which abstractly represents combinations
of modules. Our model-theoretic view allows us to study modular systems indepen-
dently from the logical languages in which each module is axiomatized.

– In [14], the authors define a modular constraint-based framework where different
modelling languages such as ASP, CP and SAT can be combined. We considerably
extend their work mostly due to to the introduction of loops and results that follow.

– Unlike [14], we represent modules as sets of structures, each such set corresponding
to a model expansion task solved by a module. This model-theoretic view is essen-
tial (1) to study the expressiveness of the framework itself, and its expressiveness
as a function of the expressiveness of the languages of individual modules; (2) to
connect to descriptive complexity (capturing complexity classes). In both cases, the
constraint-based approach [14] is not suitable – one needs to talk about formulas
being true in a structure, thus the model-theoretic view.

– We formulate an algebra on our modules (module expansion tasks). Several alge-
braic operations have already been used in [14], although in a constraint setting. An
essential contribution here is the addition of a loop (or feedback) operator. Loops
are present in all non-trivial computer programs and systems, including those con-
sisting of multiple modules. In all the results in this paper, the loop operator is
essential.

– We then investigate the expressive power of modular systems. We set apart and
study the expressive power which is added purely by the algebraic operations.
Among the operations, the loop operator is the most interesting. Adding loops gives
a jump from P to NP: we prove that NP is captured even with all modules being
polytime, due to the loop operator. In fact, adding it gives a jump in the polynomial
time hierarchy. The operators introduced in [14] do not add additional expressive
power, while the loop operator does.

– A crucial question is how to compute solution to the modular system under the
assumption that we can compute solutions of individual modules. We begin our
investigation of this question. We study some cases where solution to a modular
system can be approximated in polynomial time by relying on the construction
used in the well-founded semantics of logic programs.

– In many cases, we can view modules as operators. We consider monotonicity and
antimonotonocity properties of modules viewed as operators. These are important
properties because they allow us to derive some knowledge about solutions to the
entire modular system.
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2 Background: Model Expansion Task

In [17], the authors formalize combinatorial search problems as the task of model ex-
pansion (MX), the logical task of expanding a given (mathematical) structure with new
relations. Formally, the user axiomatizes their problem in some logic L. This axiomati-
zation relates an instance of the problem (a finite structure, i.e., a universe together with
some relations and functions), and its solutions (certain expansions of that structure
with new relations or functions). Logic L corresponds to a specification/modelling lan-
guage. It could be an extension of first-order logic such as FO(ID), or an ASP language,
or a modelling language from the CP community such as ESSENCE [12]. MX task un-
derlies many practical approaches to declarative problem solving, which motivates us
to investigate modularity in the context of the MX task.

Recall that a vocabulary is a set of non-logical (predicate and function) symbols. An
interpretation for a vocabulary is provided by a structure, which consists of a set, called
the domain or universe and denoted by dom(.), together with a collection of relations
and (total) functions over the universe. A structure can be viewed as an assignment to
the elements of the vocabulary. An expansion of a structure A is a structure B with the
same universe, and which has all the relations and functions of A, plus some additional
relations or functions. The task of model expansion for an arbitrary logicL (abbreviated
L-MX), is:

Model Expansion for logic L
Given: (1) An L-formula φ with vocabulary σ ∪ ε and (2) A structure A for σ
Find: an expansion of A, to σ ∪ ε, that satisfies φ.

We call σ, the vocabulary of A, the instance vocabulary, and ε := vocab(φ) \ σ the
expansion vocabulary1.

Example 1. The following formulaφ of first order logic constitutes an MX specification
for Graph 3-colouring:

∀x [(R(x) ∨ B(x) ∨ G(x))
∧¬((R(x) ∧ B(x)) ∨ (R(x) ∧ G(x)) ∨ (B(x) ∧ G(x)))]

∧ ∀x∀y [E(x, y) ⊃ (¬(R(x)∧ R(y))
∧¬(B(x) ∧ B(y)) ∧ ¬(G(x) ∧ G(y)))].

An instance is a structure for vocabulary σ = {E}, i.e., a graph A = G = (V ;E).
The task is to find an interpretation for the symbols of the expansion vocabulary ε =
{R,B,G} such that the expansion of A with these is a model of φ:

A︷ ︸︸ ︷
(V ; EA, RB, BB, GB)︸ ︷︷ ︸

B

|= φ.

The interpretations of ε, for structures B that satisfy φ, are exactly the proper 3-
colourings of G.

Given a specification, we can talk about a set (class) of σ ∪ ε-structures which satisfy
the specification. Alternatively, we can simply talk about a set (class) of σ∪ε-structures
as an MX-task, without mentioning a particular specification the structures satisfy.

1 By “:=” we mean “is by definition” or “denotes”.
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3 Modular Systems

Definition 1 (Module). A moduleM is an MX task, i.e., a set (class) of σ∪ε-structures.

Characterizing a module using a set of structures does not assume anything about how
it is specified, which makes our study language-independent. A modular system is for-
mally described as a set of primitive modules (individual MX tasks) combined using
the operations of: (1) Projection(πτ(M)) which restricts the vocabulary of a mod-
ule, (2) Composition(M1 � M2) which connects outputs of M1 to inputs of M2, (3)
Union(M1∪M2) and (4) Feedback(M [R = S]). Operations (1)-(3) were introduced in
[14], in a constraint setting. Here, we use a model-theoretic setting. The feedback oper-
ation is new here, and it is essential since all non-trivial systems use loops. Moreover,
adding this operation increases the expressive power of modular systems.

Definition 2 (Composable, Independent [14]). Modules M1 and M2 are composable
if εM1 ∩ εM2 = ∅ (no output interference). Module M1 is independent from M2 if
σM1 ∩ εM2 = ∅ (no cyclic module dependencies).

Definition 3 (Modular Systems). Modular systems are built inductively from con-
straint modules using projection, composition, union and feedback operators:

1. A module is a modular system.
2. For modular system M and τ ⊆ σM ∪ εM , modular system πτ (M) is defined such
that (a) σπτ (M) = σM ∩ τ , (b) επτ (M) = εM ∩ τ , and (c) B ∈ πτ (M) iff there is a
structure B′ ∈M with B′|τ = B.
3. For composable modular systems M and M ′ (no output interference) with M inde-
pendent from M ′ (no cyclic module dependencies), M � M ′ is a modular system such
that (a) σM�M ′ = σM ∪ (σM ′ \ εM ), (b) εM�M ′ = εM ∪ εM ′ , and (c) B ∈ (M �M ′)
iff B|vocab(M) ∈M and B|vocab(M ′) ∈M ′.
4. For modular systems M1 and M2 with σM1 ∩σM2 = σM1 ∩ εM2 = εM1 ∩σM2 = ∅,
the expression M1 ∪M2 defines a modular system such that (a) σM1∪M2 = σM1 ∪
σM2 , (b) εM1∪M2 = εM1 ∪ εM2 , and (c) B ∈ (M1 ∪M2) iff B|vocab(M1) ∈ M1 or
B|vocab(M2) ∈M2.
5. For modular system M and R ∈ σM and S ∈ εM being two symbols of similar type
(i.e., either both function symbols or both predicate symbols) and of the same arities;
expression M [R = S] is a modular system such that (a) σM [R=S] = σM \ {R}, (b)
εM [R=S] = εM ∪ {R}, and (c) B ∈M [R = S] iff B ∈M and RB = SB.

Further operators for combining modules can be defined as combinations of basic oper-
ators above. For instance, [14] introduced M1  M2 (composition with projection op-
erator) as πσM1∪εM2

(M1�M2). Also, M1∩M2 is defined to be equivalent to M1�M2

(or M2 �M1) when σM1 ∩ εM2 = σM2 ∩ εM1 = εM1 ∩ εM2 = ∅. Here is an example
of a modular system M combined from modules M1, M2, M3, M4 and M5:

M := πE,H1 [([M1 � (M2 ∩M3)] �M4) [H1 = H5] �M5] .

One can look at M as an algebraic formula where, for example, sub-formulas M1 �
(M2 ∩M3) and M2 both represent modules that appear in M . We call modules M1,
M2, M3, M4 and M5 primitive in M because they do not contain any operations.
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Proposition 1. A modular system constructed using composition, projection, feedback
and union is a module.

Proposition 2 (Law of Substitution). Let M1 be a modular system, M ′ an arbitrary
(not necessarily primitive) module that appears in M1, and letM ′′ be a modular system
such that M ′ = M ′′ (equality of two sets (classes) of structures). If we replace M ′ in
M1 by M ′′, then for the resulting compound system M2, we have M1 = M2.

Definition 4 (Models, Solutions). For a modular system M , a σM -structure A and a
(σM ∪εM )-structure B, we say B is a model of M if B ∈M . We also say B is a solution
to A in M if B ∈M and B expands A.

Comparison with [14]. The framework [14] is based on a set of variables X each
x ∈ X having a domain D(x). An assignment over a subset of variables X ⊆ X is a
function B : X → ∪x∈XD(x), which maps variables in X to values in their domains.
A constraint C over a set of variablesX is characterized by a set C of assignments over
X , called the satisfying assignments. The variables of [14] are represented here by the
elements of the combined σ ∪ ε vocabulary. Assignments are structures here, and we
use symbols of various vocabularies instead of variables. It is essential to reformulate
this notion using structures since we want to go back and forth between modules and
logics in which modules are represented. In addition, we streamline most definitions.
We eliminated input and output vocabularies, which can be defined, if needed, as subsets
of instance and expansion vocabularies using projections. The main difference is the
addition of loops, which are essential in all the results here.

SAT

ILP

E

S

F

M

S’

RA

Fig. 1. Modular System Representing an SMT Solver for the Theory of Integer Linear Arithmetic

Example 2 (SMT Solvers). Consider Figure 3: It shows two boxes with solid lines
which correspond to primitive MX modules and a box with dotted borders which de-
picts our module of interest. The vocabulary here consists of all symbols A, R, L, L′,
M and F where symbols A, R and L′ are internal to the module, while others form the
module’s interface. Also, there is a line connecting L to L′ which depicts a feedback.

Overall, this modular system describes a simple SMT solver for the theory of Integer
Linear Arithmetic (TILA). Our two MX modules are SAT and ILP. They work on dif-
ferent parts of a specification. The ILP module takes a set L′ of literals and a mapping
M from atoms to linear arithmetic formulas. It returns two sets R and A. Semantically,
R represents a set of subsets of L′ so that TILA ∪M |r is unsatisfiable for all subsets
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r ∈ R. Set A represents a set of propagated literals together with their justifications,
i.e., a set of pairs (l, Q) where l is an unassigned literal (i.e., neither l ∈ L′ nor ¬l ∈ L′)
andQ is a set of assigned literals asserting l ∈ L′, i.e.,Q ⊆ L′ and TILA∪M |Q |= M |l
(the ILA formula M |l is a logical consequence of ILA formulas M |Q). The SAT mod-
ule takes R and A and a propositional formula F and returns set L of literals such that:
(1) L makes F true, (2) L is not a superset of any r ∈ R and, (3) L respects all propa-
gations (l, Q) in A, i.e., if Q ⊆ L then l ∈ L. Using these modules and our operators,
module SMT is defined as below to represent our simple SMT solver:

SMT := π{F,M,L}((ILP � SAT )[L = L′]). (1)

The combined module SMT is correct because, semantically,L satisfies F and all mod-
els in it should haveR = ∅, i.e., TILA∪M |L is satisfiable. This is because ILP contains
structures for which if r ∈ R, then r ⊆ L′ = L. Also, for structures in SAT, if r ∈ R
then r �⊆ L. Thus, to satisfy both these conditions, R has to be empty. Also, one can
easily see that all sets L which satisfy F and make TILA ∪M |L satisfiable are solu-
tions to this modular system (set A = R = ∅ and L′ = L). So, there is a one-to-one
correspondence between models of the modular system above and SMT’s solutions to
the propositional part.

Example 3 (Hamiltonian Path). In this example, we describe the Hamiltonian path
problem through a combination of basic modules M1, M2, M3, M4 and M5. We start
by an informal description of each of these modules.

Module M1 takes binary relationsE and H1 and outputs their intersectionH2. Mod-
ulesM2 and M3 take H2 as their input and, respectively, output binary relationsH3 and
H4 so that (1) they both are subsets of H2, (2) all tuples in H3 are unique with respect
to the element in their first positions, and (3) all tuples in H4 are unique with respect to
the element in their second positions. Next, relations H3 and H4 are passed to module
M4 which outputs their intersection as the binary relation H5. Now, H5 is fed back into
module M1 to create a loop. Finally, M5 takes H5 and accepts it iff undirected transi-
tive closure of H5 is V 2 (V being the domain). More formally, modular system M for
Hamiltonian path problem is defined as:

M := πE,H1 [([M1 � (M2 ∩M3)] �M4) [H1 = H5] �M5] .

Using our definitions for operations on modules, we have that σM = {E} and εM =
{H1}. We claim that model expansion task for M finds a Hamiltonian path in a graph:
letA = (V ;EA) be a graph and B = (V ;EA, HB

1 ) be any expansion ofA to σM ∪εM .
We know that B ∈ M iff there is expansion B′ of B to {E,H1, H2, H3, H4, H5} such
that B′|{E,H1,H2} ∈ M1, B′|{H2,H3} ∈ M2, B′|{H2,H4} ∈ M3, B′|{H3,H4,H5} ∈ M4,

B′|{H5} ∈M5 and HB′
1 = HB′

5 .
Module M describes the Hamiltonian path problem because, first, any model B′ as

above has to give common interpretations to all relations H1 to H5. This is because
H5 ⊆ H3 ∩H4 ⊆ H2 ⊆ H1 ⊆ H5. So, the common interpretation R to these symbols
should be (1) the graph of a partial function (by definition of M2), (2) one-to-one (by
definition of M3), and, (3) a subset of the edges (by definition of M1). So, R is a
collection of vertex disjoint paths and cycles in the input graph A. Thus, as M5 asserts
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that all vertices should be reachable to each other via R, then R is either a cycle or a
simple path passing all vertices, i.e., either a Hamiltonian cycle or a Hamiltonian path.

4 Expressive Power

The authors of [17] emphasized the importance of capturing NP and other complexity
classes. The capturing property, say for NP, is of fundamental importance as it shows
that, for a given language:
(a) we can express all of NP – which gives the user an assurance of universality of the
language for the given complexity class,
(b) no more than NP can be expressed – thus solving can be achieved by means of con-
structing a universal polytime reduction (called grounding) to an NP-complete prob-
lem such as SAT or CSP.

In the context of modular systems, we also want to investigate the expressive power
of the defined language. This section defines model-theoretic properties that a module
may satisfy such as totality, determinacy, polytime chability/solvability, monotonicity,
anti-monotonicity. We then capture NP in a modular setting with modules satisfying
some of those properties. While the focus of this result is on NP, by no means is the
expressive power of the modular framework limited to NP.

Definition 5 (Extension). For τ -structures A and A′, we say A′ extends A, and write
A � A′, if we have: (a) dom(A) = dom(A′), (b) for predicate symbol R ∈ τ we have
RA ⊆ RA′

.

We sometimes abuse the notation and, for interpretations S1 and S2 of symbol S in two
structures with the same domain, write (1) S1 � S2 to say S2 extends S1, (2) S1 � S2

(resp. S1 � S2) to denote S1 ∩ S2 (resp. S1 ∪ S2) for predicate symbol S. We also use
� and � to denote proper extension, i.e., similar to � and 7 but without equality.

Modular Systems as Operators

Definition 6 (Total Modular Systems). For modular system M and vocabulary τ , we
say M is τ -total w.r.t. C (C being a class of structures) if all τ -structures in C are
τ -restrictions of some structure in M .

Our definition of totality is conceptually similar to [14] but more general because, here,
τ is not neccessarily a subset of σ (instance vocabulary). We might omit writing C
in Definition 6 either if it is obvious from the context or if it is not important, i.e.,
discussion holds for all classes of structures.

Definition 7 (Deterministic Modular Systems). For modular system M and sets of
symbols τ and τ ′, we say M is τ -τ ′-deterministic if for all structures B and B′ in M ,
we have if B|τ = B′|τ then B|τ ′ = B′|τ ′ .

A module M that is both τ -τ ′-deterministic and τ -total can be viewed as a mapping
from τ -structures to τ ′-structures, i.e., for all τ -structures A, there is a unique τ ′-
structure A′ so that for all structures B ∈ M if B|τ = A then B|τ ′ = A′. Note
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that existence and uniqueness of A′ are guaranteed by τ -totality and τ -τ ′-determinacy
of M . For such M , we write Mτ,τ ′(A) to denote the unique structure A′ that M as-
sociates to A. We might omit τ and τ ′ and just write M(A) if they are clear from the
context.

Proposition 3. For τ -τ ′-deterministic modular system M :
1. If τ ′′ ⊇ τ , then M is also τ ′′-τ ′-deterministic.
2. If τ ′′ ⊆ τ ′, then M is also τ -τ ′′-deterministic.

Proposition 4. If M is both τ1-τ2-deterministic and τ ′1-τ ′2-deterministic, M is also
(τ1 ∪ τ ′1)-(τ2 ∪ τ ′2)-deterministic.

Definition 8 (Monotonicity and Anti-Monotonicity). For modular system M and
sets of symbols τ1, τ2 and τ3, we say M is τ1-τ2-τ3-monotone (resp. τ1-τ2-τ3-anti-
monotone) if for all structures B and B′ in M , we have:

if B|τ1 � B′|τ1 and B|τ2 = B′|τ2 then
B|τ3 � B′|τ3(resp. B′|τ3 � B|τ3).

Proposition 5. Let M be a τ1-τ2-τ3-monotone or a τ1-τ2-τ3-anti-monotone module.
Then M is (τ1 ∪ τ2)-τ3-deterministic.

Proof. We prove this for the monotone case. The other case is similar. Let B,B′ ∈ M
be such that B|τ1∪τ2 = B′|τ1∪τ2 . Then, (1) B|τ2 = B′|τ2 , (2) B′|τ1 � B|τ1 , and, (3)
B|τ!

� B′|τ1 . Thus, by (1) and (2), we know B′|τ3 � B|τ3 and, by (1) and (3), we have
B|τ3 � B′|τ3 . Thus, B|τ3 = B′|τ3 .

Expressive Power. We introduced several properties that a modular system may have,
i.e., totality, determinacy, monotonicity and anti-monotonicity. We also proved that de-
terminacy is a consequence of monotonicity or anti-monotonicity. Hence, it may look
like the systems composed of only total (anti-)monotone modules are of very restricted
computational power. However, as Theorem 1 shows, due to the presence of loops (feed-
backs), the modular framework expresses all of NP although all individual modules are
polytime solvable. One can extend Theorem 1 to prove that the feedback operator causes
a jump from one level of the polynomial hierarchy to the next, i.e., with modules from
ΔP

k (level k of the polynomial hiearchy), and in the presence of feedbacks, modular
framework expresses all of ΣP

k+1.

Definition 9 (Polytime Checkability, Polytime Solvability). Let M be a module with
instance vocabulary σ and expansion vocabulary ε. M is polytime checkable if there
is a polytime program V which, given a (σ ∪ ε)-structure B, accepts B if and only
if B ∈ M . Also, M is polytime solvable if there is a partial function F computable
in polytime such that for all structures A: (1) F (A) is defined if and only if there is
structure B ∈ M expanding A, and (2) if F (A) is defined then F (A) ∈ M and F (A)
is the only structure in M which expands A.

Note that polytime solvability implies determinism. In theoretical computing science,
a problem is a subset of {0, 1}∗. However, in descriptive complexity, the equivalent
definition of a problem being a set of structures is adopted. The following theorem
gives a capturing result for NP:
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Theorem 1 (Capturing NP over Finite Structures). Let K be a problem over the
class of finite structures closed under isomorphism. Then, the following are equivalent:
1. K is in NP,
2. K is the models of a modular system where all primitive modules M are σM -εM -

deterministic, σM -total, σM -vocab(K)-εM -anti-monotone, and polytime solvable,
3. K is the models of a modular system with polytime checkable primitive modules.

Proof. (1)⇒ (2): To prove this direction, we give a modular system M ′ which contains
only one primitive module M . Primitive module M given in the proof satisfies all con-
ditions of totality, determinacy, anti-monotonicity and polytime solvability as required
by the theorem statement. Module M ′ feeds M ’s output to part of its input and projects
out some auxiliary vocabulary required by M .

The proof in this direction follows the fact that, when allowing auxiliary vocabu-
lary, ASP programs can express first order sentences (via Lloyd-Topor transformation).
Thus, as FO MX captures NP over the class of finite structures, so do ASP programs
(modulo the auxiliary vocabulary).

Now, consider a problemK in NP with vocabulary σ, i.e., an isomorphism-closed set
of finite σ-structures. By the above argument, there is an ASP program P with instance
vocabulary σ and expansion vocabulary εP which (when restricted to σ) accepts exactly
those structures inK. We now introduce a moduleM with σM := σ∪εP and εM := ε′P
(where ε′P consists of new predicate symbols R′ for each predicate symbol R ∈ εP ).
Given an instance structureA, moduleM works by first computing the ground program
P ′ of P w.r.t. dom(A). Then, M computes the reduct of P ′ under A, denoted as P ′A.
Finally, M takes the deductive closure of P ′A and gives it as output.

Obviously, M is σM -εM -deterministic, σM -total and polytime computable. Also,
M is σM -σ-εM -anti-monotone because, for a fixed interpretation to σP , an increment
in εP makes P ′A, and thus the deductive closure, smaller. Now, we define module
M ′ := πσ(M [εP = ε′P ]). Observe that models of M ′ are exactly those accepted by P .

(2) ⇒ (3): This direction is trivial because if a modular system uses only polytime
solvable primitive modules then it also uses only polytime checkable primitive modules.

(3) ⇒ (1): Let M be a modular system whose models coincide with K and whose
primitive modules are polytime checkable. Then, K is in NP because one can nondeter-
ministically guess all the interpretations of expansion symbols of M (the set of these
symbols is equal to the union of the expansion vocabularies of all M ’s primitive mod-
ules) and then use polytime checkability of M ’s primitive modules to check if this is a
good guess (according to the modules, and thus according to the system itself).

Theorem 1 demonstrates the additional power that the feedback operator has brought
to us. Its proof assumes that modules are described in languages with the ability to
manipulate input programs and sets of atoms, and to compute fixpoints. Examples of
such languages are those that capture P in the presence of ordering relation over domain
elements, or the like. However, note that, in our model-theoretic view, the language that
modules are described in is not important at all.

Note that Theorem 1 shows that when basic modules are restricted to polytime check-
able modules, the modular system’s expressive power is limited to NP. Without this
restriction, the modular framework can represent Turing-complete problems. As an
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example, one can encode Turing machines as finite structures and have modules that
accept a finite structure if and only if it corresponds to a halting Turing machine.

Theorem 1 shows that the feedback operator causes a jump in expressive power from
P to NP (or, more generally, from ΔP

k to ΣP
k+1). The proof uses a translation from ASP

programs to deterministic, total, anti-monotone and polytime modules. The following
running example elaborates more in this direction.

Example 4 (Stable Model Semantics). Let P be a normal logic program. We know S is
a stable model for P iff S = Dcl(PS) where PS is the reduct of P under set S of atoms
(a positive program) and Dcl computes the deductive closure of a positive program, i.e.,
the smallest set of atoms satisfying it. Now, let M1(S, P,Q) be the module that given a
set of atoms S and ASP program P computes the reduct Q of P under S. Observe that
M1 is {S}-total and {S}-{P}-{Q}-anti-monotone, and polytime solvable. Also, let
M2(Q,S′) be a module that, given a positive logic program Q, returns the smallest set
of atoms S′ satisfying Q. Again, M2 is {Q}-total, {Q}-{}-{S′}-monotone and poly-
time solvable. However, M := π{P,S}((M1 �M2)[S = S′]) is a module which, given
ground ASP program P , returns all and only the stable models of P . Therefore, the
NP-complete problem of finding a stable model for a normal logic program is defined
by combining total, deterministic, polytime solvable, and monotone or anti-monotone
modules.

Example 4 shows that the computational power of stable models is included in the
modular framework. As we will see later, this phenomenon is not accidental but is
a consequence of anti-monotone loops (feedbacks). Moreover, we already know that
the modular framework does not impose minimality constraint on the solution to its
modules (while stable model semantics does). Thus, this framework can define sets of
structures that cannot be defined in ASP.

5 Approximating Solutions

Until now, we introduced modular systems and talked about their expressive power.
However, an important question associated with every modeling language is how one
can find a solution to a specification in such a language. While we will address this
question in a future work, here, we give some results on how to intelligently reduce the
space we have to search in order to find a solution. We call this space the candidate
solution space. To do so, we start with simple properties about extending monotonicity
and anti-monotonicity to complex modules. We prove that, in the presence of loops
and monotone or anti-monotone primitive modules, the combined systems satisfy many
interesting properties such as existence of smallest solutions or minimality of solutions.
We then develop methods for intelligently reducing the candidate solution space.

Proposition 6. Let M be a τ1-τ2-τ3-monotone (resp. anti-monotone) module. Then:
1. If τ ′ ⊆ τ1 then M is also a τ ′-(τ2 ∪ (τ1\τ ′))-τ3-monotone (resp. anti-monotone)

module.
2. For a set ν of symbols such that τ3 ∩ ν = ∅, we have M is also (τ1 ∪ ν)-τ2-τ3-

monotone (resp. anti-monotone).
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3. For a set ν of symbols, we have that M is also τ1-(τ2 ∪ ν)-τ3-monotone (resp.
anti-monotone).

4. If τ ′ ⊆ τ3 then M is also a τ1-τ2-τ ′-monotone (resp. anti-monotone) module.

Proposition 7. Let M be a module that is both τ1-τ2-τ3-monotone and
τ ′1-τ ′2-τ ′3-monotone (resp. τ1-τ2-τ3-anti-monotone and τ ′1-τ ′2-τ ′3-anti-monotone ) such
that (τ1 ∪ τ ′1)∩ (τ3 ∪ τ ′3) = ∅. Then, M is also (τ1 ∪ τ ′1)-(τ2 ∪ τ ′2)-(τ3 ∪ τ ′3)-monotone
(resp. (τ1 ∩ τ ′1)-(τ2 ∪ τ ′2)-(τ3 ∪ τ ′3)-anti-monotone).

Proposition 8 ((Anti-)Monotonicity Preservation). For τ1-τ2-τ3-monotone (resp.
anti-monotone) modular system M and general modular system M ′, we have:
1. M �M ′ is τ1-τ2-τ3-monotone (resp. anti-monotone).
2. M ′ �M is τ1-τ2-τ3-monotone (resp. anti-monotone).
3. If M ′ is ν-τ2-deterministic for some ν, then M ′ � M is τ1-ν-τ3-monotone (resp.

anti-monotone).
4. If τ1 ∪ τ2 ⊆ ν then ΠνM is τ1-τ2-(ν ∩ τ3)-monotone (resp. anti-monotone).
5. M [S1 = S2] is τ1-τ2-τ3-monotone (resp. anti-monotone)

Proposition 9 (Monotonicity under Composition). For modular systems M and M ′

and vocabularies τ1, τ ′1, τ2, τ ′2, τ3 and τ ′3 such that τ ′1 ⊆ τ3:
1. If M is τ1-τ2-τ3-monotone and M ′ is τ ′1-τ ′2-τ ′3-monotone, M �M ′ is τ1-(τ2 ∪ τ ′2)-

τ ′3-monotone.
2. If M is τ1-τ2-τ3-anti-monotone and M ′ is τ ′1-τ ′2-τ ′3-monotone,M �M ′ is τ1-(τ2 ∪

τ ′2)-τ
′
3-anti-monotone.

3. If M is τ1-τ2-τ3-monotone and M ′ is τ ′1-τ ′2-τ ′3-anti-monotone,M �M ′ is τ1-(τ2 ∪
τ ′2)-τ

′
3-anti-monotone.

4. If M is τ1-τ2-τ3-anti-monotone and M ′ is τ ′1-τ ′2-τ ′3-anti-monotone, M � M ′ is
τ1-(τ2 ∪ τ ′2)-τ ′3-monotone.

Proof. We prove the first case. The rest is similar. For P := M � M ′, let B,B′ ∈ P
be such that B|τ2∪τ ′

2
= B′|τ2∪τ ′

2
and B|τ1 � B′|τ1 . By monotonicity of M , we have

B|τ3 � B′|τ3 . So, as τ ′1 ⊆ τ3, we also have B|τ ′
1
� B′|τ ′

1
. Hence, by monotonicity of

M ′, we have B|τ ′
3
� B′|τ ′

3
.

These properties give us ways of deriving that a complex modular system is mono-
tone or anti-monotone by looking at similar properties of basic constraint modules. For
instance, for our two previous examples, we have:

Example 5 (Composition in Hamiltonian Path). Modules M1, M2, M3 and M4 in
Example 3 are respectively {H1, E}-{}-{H2}-monotone, {H2}-{}-{H3}-monotone,
{H2}-{}-{H4}-monotone and {H3, H4}-{}-{H5}-monotone. So, by Proposition 9,
M ′ := M1 � (M2∩M3) is both {H1, E}-{}-{H3}-monotone and {H1, E}-{}-{H4}-
monotone. Thus, Proposition 7 asserts M ′ is also {H1, E}-{}-{H3, H4}-monotone.
Thus, M ′′ := M ′ �M4 has to be {H1, E}-{}-{H5}-monotone (by Proposition 9).

Example 6 (Composition in ASP Programs). Modules M1 and M2 in Example 4 are
respectively {S}-{P}-{Q}-anti-monotone and {Q}-{}-{S′}-monotone. So, by Propo-
sition 9, M ′ := M1 �M2 is {S}-{P}-{S′}-anti-monotone.
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The rest of this section considers the important case of monotone or anti-monotone
loops, i.e., monotone or anti-monotone modules under the feedback operator. Note that,
although our theorems concern modules feeding their outputs back to their inputs, these
modules are usually not primitive modules, but composite modules whose monotonicity
or anti-monotonicity is derived by our previous propositions.

Theorem 2 (Smallest Solution). LetM be a (τ∪{S})-total and {S}-τ -{R}-monotone
modular system and M ′ := M [S = R]. Then, for a fixed interpretation to τ , M ′ has
exactly one smallest solution with respect to predicate symbol R.

Proof. Standard Tarski proof.

Theorem 2 relates smallest solutions of monotone loops in modular systems to least
fixpoints of monotone operators. Therefore, many natural problems such as transitivity
or connectivity are smallest solutions of some monotone modules under feedbacks.
However, Theorem 2 only states that a smallest solution exists and is unique but it does
not limit the models to it. The smallest solution is used to prune the candidate solution
space by discarding all candidate solutions that do not extend the smallest solution.

Proposition 10 (Anti-Monotonicity and Minimality). For {S}-τ -{R}-anti-monotone
modular systemM and for modular system M ′ := M [S = R], we have that when inter-
pretation to τ is fixed, all models of M ′ are minimal with respect to the interpretations
of R.

Proof. Let B1,B2 ∈ M ′ be such that B1|τ = B2|τ and RB1 � RB2 . So, because, in
M ′, R is fed back to S, we have SB1 � SB2 . Hence, by {S}-τ -{R}-anti-monotonicity
of M , we have that RB1 7 RB2 . Thus, RB1 = RB2 and B1|τ∪{R} = B2|τ∪{R}, i.e.,
there does not exist any two structures in M ′ which agree on the interpretation to τ but,
in one of them, interpretation of R properly extends R’s interpretation in the other one.

The minimality of solutions to anti-monotone loops means that these loops may not
have a smallest solution. Nevertheless, we are still able to prune the candidate solution
space by finding lower and upper bounds for all the solutions to such a loop. Consider
the following process for a (τ ∪ {S})-total and {S}-τ -{R}-anti-monotone modular
system M where S and R are relational symbols of arity n:

L0 = ∅, U0 = [dom(A)]n,
Li+1 = RM(A || Ui), Ui+1 = RM(A || Li),

where dom(Li) = dom(Ui) = dom(A), SLi = Li, SUi = Ui and, for two structures
A1 and A2 over the same domain but distinct vocabularies, A1||A2 is defined to be the
structure over the same domain as A1 and A2 and with the same interpretation as them.

Theorem 3 (Bounds on Solutions to Anti-Monotone Loops). For (τ ∪ {S})-total
and {S}-τ -{R}-anti-monotone modular system M (where S ∈ σM and R ∈ εM are
symbols of arity n), and for modular system M ′ := M [S = R] and τ -structure A, the
approximation process above has a fixpoint (L∗

A, U
∗
A) such that for all B ∈ M ′ with

B|τ = A, we have L∗
A � RB and RB � U∗

A.
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Proof. We prove this for relational symbols. Extending it to function symbols is straight-
forward. Given τ -structure A, consider the set S = {B ∈ M ′ | B|τ = A}. We
first prove (by induction on i) that, for all i, we have: Li � Li+1, Ui 7 Ui+1,
Li �

�
B∈S R

B, and Ui 7
⊔

B∈S R
B.

The base case is easy because L0 is the empty set and U0 contains all possible tuples.
For the inductive case:
1. By induction hypothesis, Ui 7 Ui+1. So, by anti-monotonicity of M , we have:

Li+1 = LM(A || Ui) � LM(A || Ui+1) = Li+2. Similarly, Ui+1 7 Ui+2.
2. Again, by induction hypothesis, Ui 7

⊔
B∈S R

B . So, for all structures B ∈ S, we
have: Ui 7 RB. Therefore, Li+1 = LM(A || Ui) � RB. Thus, Li+1 �

�
B∈S R

B.
Similarly, we also have Ui+1 7

⊔
B∈S R

B.
So, as

�
B∈S R

B �
⊔

B∈S R
B, we have that, for all i, Li � Ui. Thus, there exists

ordinal α where (Lα, Uα) is the fixpoint of the sequence of pairs (Li, Ui). Denote this
pair by (L∗

A, U
∗
A). Observe that, by above properties, L∗

A � RB and RB � U∗
A for all

B ∈ S (as required).

Similar to Theorem 2, Theorem 3 also prunes the search space by limiting the candi-
date solutions to only those that are both supersets of the lower bound obtained by the
process and subsets of the upper bound obtained by it.

Example 7 (Well-Founded Models). As discussed in Example 6, the module M ′ :=
M1 � M2 is {S}-{P}-{S′}-anti-monotone. Thus, by Proposition 10, the module M
defined in Example 4 can only have minimal solutions with respect to symbol S for a
fixed input P . Moreover, by Proposition 3, we can find lower and upper bounds to all
the solutions of module M for a fixed P . Unsurprisingly, these bounds coincide with
the well-founded model of the logic program P .

6 Related Work

The work that has motivated our current paper is [14]. There, the authors define a
framework in which different modelling languages such as ASP, CP and SAT can be
combined on equal terms. We considerably extend their work mostly due to to the in-
troduction of loops and results that follow. Detailed comparison is in Section 3.

An early work on adding modularity to logic programs is [7]. The authors derive a se-
mantics for modular logic programs by viewing a logic program as a generalized quan-
tifier. One generalization considers the concept of modules in declarative programming
[18]. The authors introduce the concept of modular equivalence in normal logic pro-
grams under the stable model semantics. Their work is motivated by the fact that weak
equivalence in logic programs fails to give a congruence relation and strong equivalence
is not fully appropriate either. They define a weaker form of equivalence which gives
rise to a congruence relation which they call modular equivalence. This work, in turn, is
extended to define modularity in disjunctive programs in [13]. These two works focus
on bringing the concept of modular programming into the context of logic programs
and dealing with difficulties that arise there. On the other hand, our work focuses on
the abstract notion of a module and what can be inferred about a modular system based
on what is known about modules and how they are combined. There are several other
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approaches to adding modularity to ASP languages and ID-Logic as those described in
[3,1,6]. These works also put an emphasis on extending a specific language with the
modularity concept. However, in our work, we are mostly concerned with mixing sev-
eral knowledge representation languages. In addition, modular programming enables
ASP languages to be extended by constraints or other external relations. This view is
explored in [8,9,20,4,16]. While this view is advantageous in its own right, our work
is different because we use a completely model-theoretic approach. Some practical
modelling languages incorporate other modelling languages. For example, X-ASP [19]
and ASP-PROLOG [10] extend prolog with ASP. Also ESRA [11], ESSENCE [12] and
Zinc [2] are CP languages extended with features from other languages. However, these
approaches give priority to the host language while our approach gives equal weight to
all modelling languages that are involved. Yet another direction is the multi-context
systems. In [5], the authors introduced non-monotonic bridge rules to the contextual
reasoning and originated an interesting and active line of research followed by many
others for solving or inconsistency explanation in non-monotonic multi-context sys-
tems. In this field, motivation comes from distributed knowledge (such as interacting
agents) or partial knowledge (where trust or privacy issues are important).

7 Conclusion and Future Work

In this paper, we presented our first steps towards developing a modular approach to
solving model expansion task, a task which is very common in applications, and is gen-
erally easier than satisfiability for the same logic. We described an algebra of modular
systems, which includes a new operation of feedback (loop). We have shown that the
loop operation adds a significant expressive power – even when all compound modules
are polytime, one can can express all (and only) problems in NP. This property does not
hold without the loop operation. We have also shown that the solution space of modular
systems can be reduced under a natural condition on the individual modules.

In this paper, we talked about structures in general. However, in computing science,
on one hand, we are interested in only the finitely representable structures and, on the
other hand, most practical problems have numeric parts without any explicit bound on
how big the numbers are. Therefore, for us, another interesting direction is to focus on
finitely representable structures, and on structures embedded into a background struc-
ture with an infinite domain, and to understand how the framework should be modified
in this setting.

Our semantics-based formalism is the first step towards developing a logic of mod-
ular systems. The logic will have a counterpart of our algebraic operations on the syn-
tactic level. The main goal of the logic would be to address the issue of how a modular
system can be “solved” – a formula would describe the system, and its models would
be abstract representations of solutions to the entire system, as a function of solutions
to individual modules.

Another direction is to model the task of searching for a solution to a modular system
such as SMT and similar systems, while focusing on model expansion task. We plan to
develop an algorithm that finds a solution through accumulating a set of constraints
that a model has to satisfy. One of the interesting consequences of this work would be
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to equip that algorithm with the results obtained here so that it can search the solution
space more effectively. We believe that this direction may contribute to practical solvers
design for declarative modelling languages.
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their useful comments.
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