
Robust Model-Checking of Timed Automata via

Pumping in Channel Machines

Patricia Bouyer, Nicolas Markey, and Ocan Sankur

LSV, CNRS & ENS Cachan, France

Abstract. Timed automata are governed by a mathematical semantics
which assumes perfectly continuous and precise clocks. This requirement
is not satisfied by digital hardware on which the models are implemented.
In fact, it was shown that the presence of imprecisions, however small
they may be, may yield extra behaviours. Therefore correctness proven
on the formal model does not imply correctness of the real system.

The problem of robust model-checking was then defined to circumvent
this inconsistency. It consists in computing a bound on the imprecision
under which the system will be correct.

In this work, we show that robust model-checking against ω-regular
properties for timed automata can be reduced to standard model-checking
of timed automata, by computing an adequate bound on the imprecision.
This yields a new algorithm for robust model-checking of ω-regular prop-
erties, which is both optimal and valid for general timed automata.

1 Introduction

Timed automata [1] are a well-established model in real-time system design.
These are finite automata augmented with clocks, which are used to measure
the time elapsed between events, and to constrain the runs of the automaton.
Timed automata provide a powerful way of modelling and verifying real-time
systems. However, timed automata make idealistic assumptions on the system,
such as the perfect continuity of clocks and instantaneous reaction time, which
are known not to be preserved in implementation even in digital hardware with
arbitrarily small imprecisions. It was shown that even the smallest imprecisions
on the clocks yield a different semantics than the exact one [14,8] (see Fig. 2
for an example). This suggests that even if the exact semantics is proven cor-
rect, the implementation on a physical machine is not guaranteed to respect the
specification. In order to prove the correctness of implementations, a framework
was proposed in [9], where a detailed model of the implementation of timed au-
tomata is given, as programs executed on a simple micro-processor. A simpler
over-approximation, the so-called enlarged semantics was also studied, which
models the imprecisions by relaxing all clock constraints of the automaton of
the form x ∈ [a, b] to x ∈ [a− δ, b + δ] for some δ > 0. The problem of robust
model-checking, that is determining whether for some δ > 0, the enlarged se-
mantics satisfies a given property, was first solved for safety properties [14,8],
then for linear temporal logic (LTL) [4] (both in PSPACE, which is the complexity
of the problem in the exact semantics), and for a timed extension of LTL [5].

U. Fahrenberg and S. Tripakis (Eds.): FORMATS 2011, LNCS 6919, pp. 97–112, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

98 P. Bouyer, N. Markey, and O. Sankur

bool timeout := false;
clock x;
...
x := 0;
while (x <= 1){

...
if (signal() == A)

break;
}
if (x >= 1)

timeout := true;

Fig. 1. A program that waits for
a signal A and issues a time-out if
it is not received in one time unit.
A timed automaton model of this
program naturally contains a non-
progress cycle.

These robust model-checking algorithms
are all valid for a particular class of timed au-
tomata, namely, those in which all cycles are
progress cycles. Roughly, a progress cycle is a
cycle of the timed automaton which resets all
clocks that are below the maximal constant at
least once. We argue that this can be restric-
tive for modeling. In fact, a timed automaton
model of a system under this assumption can-
not measure the time spent in a cycle. As an
example, consider a simple system which waits
for a special signal, while ignoring any other
signal, and triggers a time-out action if the
expected signal is not received after one sec-
ond (Fig. 1). In order to ignore any number
of signals during this time, we need a cycle in
the automaton. But if all clocks are reset on
this cycle, then we cannot measure the time
spent in it in order to issue the time-out. One
could model such a system using progress cy-
cles by explicitly defining an upper bound m on the number of events that can be
treated by the system in one time unit, and unfolding the cycle for m iterations.
This would remove the cycle. However this requires the prior knowledge of m
which may not be obvious in the design phase, and moreover, this may increase
the size of the model and render model-checking infeasible.

Our contribution. We propose a new algorithm for robust model-checking timed
automata against ω-regular properties, with optimal complexity (PSPACE). Our
algorithm consists in reducing the problem to classical model-checking of timed
automata and is valid for general timed automata: we do not assume progress
cycles, nor any upper bound on the clocks (Assuming bounded clocks is not
restrictive in terms of expressivenes but has a negative effect on the size of
the models [2]). We prove that any timed automaton satisfies a given ω-regular
property under enlargement by some value δ > 0 if, and only if, it satisfies the
formula under enlargement by δ0, where δ0 only depends on the size of the timed
automaton. Then the algorithm simply consists in model-checking the automa-
ton enlarged by δ0, which can be done using well-known algorithms and tools
for timed automata. An algorithm was given in [4] for this problem but only for
timed automata with progress cycles and bounded clocks, and because it is based
on a modification of the region automaton construction, one cannot use directly
the existing model-checking tools. For safety properties, an algorithm similar to
ours can be derived from [8], but the complexity would be exponentially higher
due to the bound given for δ0. For automata without nested cycles, [12] gives an
algorithm to compute the greatest δ under which a safety property holds, but
does not provide a bound on δ.

Robust Model-Checking of Timed Automata via Pumping 99

Although the worst-case complexity of our algorithm is not higher than clas-
sical model-checking, in practice, the timed automaton enlarged by δ0 can yield
a model with a state space that is much larger than that of the initial automa-
ton (see Section 3 for the precise value). However, we observed that this does
not always increase the time and space necessary for verification. In fact, we
used Uppaal [13] to test our algorithm on some benchmarks given with safety
specifications.1 We were able to show the non-robustness of the Fischer pro-
tocol upto three agents, and Uppaal returned almost immediately. With more
than three agents, the problem is not due to time or space resources but to the
fact that Uppaal only allows 32-bit integers as constants in timed automata;
when δ0 requires more precision, the model does not compile. However, Uppaal
found counter-examples in less than one minute, for the protocol upto thirty
agents, when enlarged by 10−8. We believe that extending Uppaal with arbi-
trary precision integers, one should be able to use our algorithm for larger mod-
els. We could assess the robustness of the CSMA/CD protocol described in [15],
the Bang & Olufsen Collision Detection Protocol [11], and the Token Ring Pro-
tocol upto thirty agents in less than one minute. Note that the correctness of a
model under an enlargement δ implies the correctness for all 0 ≤ δ′ < δ, so we
only verified the above robust models under enlargement that we chose arbitrar-
ily as δ = 10−6 (see [9]). All verification queries returned almost as fast as for
the non-enlarged models.

In order to establish our results, we develop proof techniques based on the
encoding of the states of timed automata with channel machines, introduced
in [3], and used in [5] in the context of robustness. In this encoding, a word
represents the content of a FIFO channel, which roughly contains all clock sym-
bols ordered by their fractional parts. Time delays are simulated by sequences
of read and writes on this channel, whereas action transitions also use a spe-
cial renaming operation. It turns out that the finitary representation by these
words capture well the behaviour of timed automata under enlargement. This
was used in [5] to design a robust model-checking algorithm for a timed exten-
sion of LTL. We further develop these techniques and prove a pumping lemma
for those channel machines, which preserves ω-regular properties. This enables
us to prove new properties on the runs of enlarged timed automata, to refine
some previously known results and obtain our algorithm. The proof follows the
ideas of [14,8] but the techniques are different, and moreover, our analysis is finer
since it yields an exponentially better bound for δ0, as we also noted above.

By lack of space, technical proofs are not included. They can be found in [6].

2 Preliminaries

2.1 Timed Automata

A labelled timed transition system (LTTS) is a tuple (S, s0, Σ,→), where S is
the set of states, s0 ∈ S the initial state, Σ a finite alphabet, and→ ⊆ S× (Σ ∪
R≥0)× S the transitions.
1 See http://www.uppaal.org/benchmarks/

http://www.uppaal.org/benchmarks/

100 P. Bouyer, N. Markey, and O. Sankur

Given a finite set of clocks C, we call valuations the elements of R
C
≥0. For a

subset R ⊆ C, a real α ∈ R≥0 and a valuation v, we write v[R← α] for the
valuation defined by v[R← α](x) = v(x) for x ∈ C \R and v[R← α](x) = α for
x ∈ R. Given d ∈ R≥0, the valuation v +d is defined by (v +d)(x) = v(x)+d for
all x ∈ C. We extend these operations to sets of valuations in the obvious way.
We write 0 for the valuation which assigns 0 to every clock.

Let Q∞ = Q ∪ {−∞,∞}. An atomic clock formula is a formula of the form
k ≤ x ≤ l where x ∈ C and k, l ∈ Q∞. A guard is a conjunction of atomic clock
formulas. We denote by ΦC the set of guards on the clock set C. We define the
enlargement of atomic clock constraints by δ ∈ Q as follows: for x, y ∈ C and
k, l ∈ Q>0, we let

〈k ≤ x ≤ l〉δ = k − δ ≤ x ≤ l + δ.

The enlargement of a guard g, denoted by 〈g〉δ, is obtained by enlarging all its
atomic clock constraints. A valuation v satisfies a guard g, denoted v |= g, if all
constraints are satisfied when each x ∈ C is replaced by v(x). We denote by �g�
the set of valuations that satisfy g.

Definition 1. A timed automaton A is a tuple (L, C, Σ, l0, E), consisting of
finite sets L of locations, C of clocks, Σ of labels, E ⊆ L×ΦC ×Σ× 2C ×L of
edges, and where l0 ∈ L is the initial location. An edge e = (l, g, σ, R, l′) is also

written as l
g,σ,R−−−→ l′. Guard g is called the guard of e.

A timed automaton is integral if all constants that appear in its guards are
integers. For any δ ∈ Q, Aδ denotes the timed automaton where all guards are
enlarged by δ. In the sequel, we only consider integral timed automata as input,
and only their enlarged counterparts might not be integral.

Definition 2. The semantics of a timed automaton A = (L, l0, C, Σ, E) is an
LTTS over alphabet Σ, denoted �A�, whose state space is L × R

C
≥0. The initial

state is (l0,0). Delay transitions are defined as (l, v) τ−→ (l, v + τ) for any state
(l, v) and τ ≥ 0. Action transitions are defined as (l, v) σ−→ (l′, v′), for any edge

l
g,σ,R−−−→ l′ in A such that v |= g and v′ = v[R← 0].

Consider any timed automaton A = (L, C, Σ, l0, E) and let �A� = (S, s0, Σ,→).
A run of �A� is a finite or infinite sequence ρ = (si, σi, τi)i≥0, where si = (li, vi) ∈
S, σi ∈ Σ, τi ∈ R≥0 and si

τi,σi−−−→ si+1 for all i ≥ 0. The word l0l1 . . . is the trace
of the run ρ, denoted trace(ρ). The i-th state si of a run ρ is denoted by (ρ)i.

We define the usual notion of regions [1]. Pick a timed automaton A with
clock set C, and let M be the largest constant that appears in its guards. For
any (l, u), (l′, v) ∈ L×R

C
≥0, we let (l, u) � (l′, v) if, and only if, l = l′ and for all

x, y ∈ C, the following conditions are satisfied:

– either u(x)� = v(x)� or u(x), v(x) > M ;
– if u(x) ≤M , frac(u(x)) = 0 iff frac(v(x)) = 0;
– if u(x), u(y) ≤M , frac(u(x)) < frac(u(y)) iff frac(v(x)) < frac(v(y)),

Robust Model-Checking of Timed Automata via Pumping 101

where frac(·) denotes the fractional part. The equivalence class of a state (l, v)
for the relation � is denoted by reg((l, v)), and called a region of A. The region
automaton ofA is a finite automatonR(A) defined as follows. The states ofR(A)
are regions r of A. There is a transition from r to r′ labelled by σ ∈ Σ if there
is an edge (l, g, σ, R, l′) such that for some (l, u) ∈ r and d ≥ 0, u + d |= g,
and (l′, u[R ← 0]) ∈ r′. This automaton is known to be time-abstract bisimilar
to �A� [1]. The number W of regions is bounded by |L| · (2M + 2)|C| · |C|! · 2|C|.
A progress cycle in A is a cycle in R(A) along which each clock x ∈ C is either
reset or remains larger than M .

2.2 Robust Model-Checking of Timed Automata

It has been remarked long ago that the semantics of timed automata is not
realistic: while this was first exemplified by the so-called Zeno runs, the prob-
lem goes far beyond, and includes other convergence phenomena [7], or isolated
traces [10].

Among the possible approaches to circumvent this problem, robust model
checking was introduced in [14]: it consists in checking a given property on the
extended version of the timed automaton under study; here, extended includes
clock drifts (clocks may evolve at different rates between 1− ε and 1 + ε) and
guard enlargement. Robust model checking consists in deciding the existence of
positive values for ε and/or δ for which the property holds in the extended timed
automaton. In this paper, we only focus on guard enlargement (i.e., we assume
ε = 0, so that clocks won’t drift); in that setting, robust model checking amounts
to deciding the existence of a positive δ for which Aδ satisfies a given property.

�1 �2 �3

x≤2, x:=0

y≥2, y:=0

x=0∧y≥2

x=1
y=0

Fig. 2. A (non-robust) timed automaton

Take the timed automaton depicted
on Fig. 2, and the property that the
rightmost location �3 is never reached.
While this property can be checked to
hold under the classical semantics, any
positive enlargement of the clock con-
straints will make location �3 reachable
(see [8]); this timed automaton does not
robustly fulfill the safety property.

Robust model checking has been revisited recently in the setting of imple-
mentability [9]. Implementability also involves a new semantics for timed au-
tomata, the so-called program semantics, which simulates the execution of timed
automata on a simplified hardware (with digital clock and finite-frequency CPU).
This semantics can be over-approximated by the enlarged semantics, so that ro-
bust model checking provides an approximate technique to check implementabil-
ity of timed automata [8].

Robust model checking was proved decidable for safety properties in [14], for
timed automata in which all cycles are progress cycles. This was then extended
to ω-regular properties [4], and then to timed properties [5].

102 P. Bouyer, N. Markey, and O. Sankur

3 Results

The following theorem is our main result.

Theorem 3. Let A be a timed automaton and W be the number of regions
of A. Consider any 0 < δ0 <

(
8|C|2 · (W + 1)

)−1 if A has only progress cycles,
and 0 < δ0 <

(
5(W + 1) · |C|3 · (2 · |L| · |C|! · 4|C| + 4)2

)−1 otherwise. For any
ω-regular property2 φ, if Aδ |= φ for some positive δ, then Aδ0 |= φ.

Thus, one can decide robust satisfaction of any ω-regular property by checking
whether the property holds for some fixed δ0, which only depends on the size of
the automaton. Now, using the usual model-checking algorithms, one can analyze
Aδ0 in polynomial space. In fact, the greatest constant in A is now multiplied by
1
δ0

and the regions of Aδ0 can still be encoded in polynomial space. The problem
is PSPACE-hard since it is already for timed automata with progress cycles [5].

Corollary 4. Robust model-checking of general timed automata against ω-regular
properties is PSPACE-complete.

The proof of Theorem 3 uses the encoding by channel machines proposed in [5].
The complex mechanism of the channel machine is not required for our purpose.
We therefore hide it as much as possible and focus on the underlying transition
system. The transition system and its relation to timed automata is presented in
section 4. In section 5, we state our main technical results (namely, the pumping
lemma and the cycling lemma), which we use to prove Theorem 3. The rest of
the paper is then devoted to the proof of these lemmas.

Remark 1. The results of [8] can be lifted to the region-automaton construction,
by adding extra transitions representing (progress) cycles [4]. Using our results,
this can be further adapted by adding transitions corresponding to weak cycles,
which can be detected on the transition system of the channel automaton.

4 Encoding by Channel Machines

In this section, we show how we encode the behaviour of Aδ (where A is a timed
automaton and δ > 0) as the transition system of a channel machine. Channel
machines are finite-state automata equipped with a FIFO channel. Intuitively, a
state of Aδ is encoded as follows: the location and the integer parts of the clocks
are stored in a discrete location, while the channel contains the clock symbols,
ordered according to their fractional parts. When a clock is popped out from the
tail of the channel, it is (almost) immediately pushed back to the head of the
2 With ω-regular property, we mean state-based properties whose truth value only

depends on the set of locations that are visited infinitely often. By an adequate
product, we could handle properties expressed by, say, deterministic Muller automata
(hence including LTL properties); we omit these details to keep focus on the main
objectives of this paper. For an ω-regular property φ, we write A |= φ when all the
runs of automaton A satisfy φ.

Robust Model-Checking of Timed Automata via Pumping 103

channel (hence it is assumed to have small fractional part). This corresponds
to a delay transition along which that clock has changed integer value. Some
additional symbols (Δ’s) will appear on the channel, which serve for refining
the region equivalence, and for approximating the values of the clocks. Our
encoding is a slightly simplified version of [5], ignoring technicalities such as non-
deterministic renaming and occurence testing operations. This is sufficient since
the transition system will have access to the whole content of the channel, not
only to the head and the queue (as this is the case for the standard mechanism
of the channel machines).

We fix for the rest of this section a timed automaton A = (L, C, Σ, l0, E), and
a symbol Δ �∈ C.

4.1 Channel Machine Associated to a Timed Automaton

For any word w over alphabet 2C \ {∅} ∪ {Δ}, |w|Δ denotes the number of
occurences of symbol Δ in w, and for any x ∈ C, |w|x denotes the number of
times x appears inside the symbols of 2C in w. For any integer N > 0, let ΓN

be the set of words w over alphabet 2C \ {∅} ∪ {Δ} such that |w|Δ = N and
|w|x ≤ 1 for all x ∈ C. For any w ∈ ΓN , we define rightwΔ(x) as 0 if |w|x = 0, and
as the number of symbols Δ that appears on the right of the (unique) symbol
containing x in w. We define leftwΔ(x) symmetrically.

Let M denote the largest constant that appears in A. We assume that clocks
are indexed by {1, . . . , n} for some n > 0, and we write C = {x1, . . . , xn}. We
define the channel machine associated with A as the transition system CA(ΔN),
parameterized by an integer N ≥ 0, as follows. The states of CA(ΔN) are ele-
ments of (L × 2C × {0, . . . , M,∞}C) × ΓN . The first component of a state q is
the discrete state, made of a location, denoted by loc(q), the set of clocks that
have integer values, and a mapping from clocks to their integer parts which is
denoted by int(q) (we write ∞ if it is larger than M); the second component
is the channel content where clocks are ordered according to their fractional
parts. For a state q = (d, w), we extend rightΔ(·) as rightqΔ(x) = rightwΔ(x), and
similarly for leftqΔ(x). The initial state of CA(ΔN) is ((l0, C,0), ΔN), where l0
is the initial location of A. Forgetting Δ’s, each state q of CA(ΔN) naturally
encodes a region of A, which we denote by reg(q): if C = {x, y, z}, the state
((l, {y}, (�x	=�y	=2

�z	=1

)
), Δ2{x}Δ{z}Δ4) encodes the region where y = 2, x� = 2,

z� = 1 and 0 < frac(x) < frac(z). We will explain the role of the Δ’s later.
Transitions of CA(ΔN) are labelled by Σ ∪ {τ}, where τ �∈ Σ. Elementary

delay transitions are defined as follows, for any state ((l, Z, ι), w):

(i) ((l, Z, ι), w) τ−→ ((l, ∅, ι), Z · w) (ii) ((l, ∅, ι), w ·Δ) τ−→ ((l, ∅, ι), Δ · w)
(iii) ((l, ∅, ι), w ·X) τ−→ ((l, X ′, ι′), w), where ι′(x) = ι(x) + 1 for x ∈ X,

and ι′(y) = ι(y) for y �∈ X, and X ′ = X ∩ ι′−1([0, M]),

where we write M + 1 = ∞ (all clocks whose integral part reaches M + 1 are
abstracted to∞ and they do not appear anymore in the word of ΓN—this is the
role of ι′−1([0, M])). Delay transitions are defined as the reflexive and transitive

104 P. Bouyer, N. Markey, and O. Sankur

closure of τ−→, and we also write τ−→ whenever τ−→∗
. Viewing w as the content of

a channel (the head being the first letter and the tail being the last letter), the
delay transitions correspond to sequences of reads and writes at the channel,
while the discrete state is changed to keep track of the integer parts, whenever
a clock subset symbol is read. We say that a clock y disappears during a delay
transition whenever the rule (iii) is applied, with y ∈ X and y �∈ X ′. Obviously,
delay transitions in CA(ΔN) correspond to time elapsing in A.

We now define when a state of CA(ΔN) satisfies a guard. A clock formula x ≤ k
is exactly satisfied by a state q = ((l, Z, ι), w) if either ι(x) ≤ k − 1, or ι(x) = k
and x ∈ Z (this is equivalent to say that reg(q) satisfies x ≤ k). The formula is
satisfied if either it is exactly satisfied or ι(x) = k and leftwΔ(x) ≤ 1. Intuitively,
the value of x is then a bit larger than k (this will be made clearer when ex-
plaining the role of the Δ’s). A formula x ≥ k is exactly satisfied if ι(x) ≥ k,
and satisfied if it is exactly satisfied or if ι(x) = k − 1 and rightwΔ(x) ≤ 1. Ac-

tion transitions are defined as follows. For any edge l
g,σ,R−−−→ l′ of A, we let

((l, Z, ι), w) σ−→ ((l, Z ∪R, ι′), w′) if ((l, Z, ι), w) satisfies g, ι′(x) = 0 if x ∈ R and
ι′(x) = ι(x) if x �∈ R, and w′ is obtained from w by removing the occurences
of all clocks in R. This rule is not a valid operation in a channel machine, since
some symbols may be removed from w, and checking guards requires reading the
tail of w. However this can be simulated using rewriting and occurrence testing,
see [5]. Action transitions in CA(ΔN) where guards are exactly satisfied cor-
respond to action transitions in A. Non-exact satisfaction of guards represents
enlarged timing constraints. We will see the precise correspondence later.

A path of CA(ΔN) is a sequence π = (qi, σi)i≥1 where qi’s are states of CA(ΔN),
and σi ∈ Σ∪{τ}, and there is a transition labelled by σi from qi to qi+1. We only
consider w.l.o.g paths that are alternations of delay and action transitions. The
length of π, denoted |π|, is the length of the sequence π. We denote by trace(π)
the sequence of locations loc(q0)loc(q2) . . . visited by π, and by πi...j the path de-
fined by the subsequence between indices i and j. A path is exact if all guards in
its transitions are satisfied exactly. The i-th state of a path π is denoted by (π)i.
Representation of the states of CA(ΔN). In the sequel, to help manipulate the
transition system of CA(ΔN), we use a flat representation of the states. We say
that ((l, Z, ι), w̃) is a flat representation of state (d, w) = ((l, Z, ι), w) whenever
w̃ ∈ (C ∪Δ ∪Δ−1

)∗ can be written as

w̃ = Δn0xi1Δ
n1 . . . ximΔnm , (1)

where {xij | 1 ≤ j ≤ m} = {x ∈ C | ι(x) ≤ M} is the set of clocks whose
integral part is no more than M in (d, w) (some appear in w, some, whose values
is integral, do not appear in w), n0, . . . , nm ≥ −1, and:

– if we remove the maximal prefix of the form Δ−1y1Δ
−1 . . .Δ−1yp,

– if we remove the maximal suffix of the form ypΔ
−1 . . .Δ−1y1Δ

−1, and
– if we replace all maximal factors of the form y1Δ

−1 . . . Δ−1yp by {y1, . . . , yp},
then we obtain w. Such a flat representation (d, w̃) contains exactly the same in-
formation as w (though with some redundancy) but will be easier to manipulate.

Robust Model-Checking of Timed Automata via Pumping 105

Note that there can be several flat representations for a given state (since both
xΔ−1y and yΔ−1x can be used to represent {x, y}). Two clocks xij and xij+1

which are separated by Δ−1 in w̃ will belong to the same set in w, hence the cor-
responding clocks will have the same fractional part in reg((d, w)). If n0 = −1,
then xi1 has an integer value in (d, c), and similarly for xim if nm = −1. No-
tice that all clocks whose values are (strictly) less than M + 1 are present in
this word, even those having an integral value. When clock indices i1, . . . , im are
clear from the context, or implicit, we also represent the channel content (1) by
its block sizes (n0, n1, . . . , nm). The channel content in (1) defines m + 1 blocks,
which are words of Δ∗ ∪ {Δ−1} separated by the clock symbols. We enumerate
these from 0 to m, and say, for example, that block i has size ni. In the rest, we
only use flat representations, for which we easily infer the transition relation.

Example 1. The following is a path in CA(Δ14), for the timed automaton A
depicted on Fig. 2. This path simulates the run of the automaton that enters
location �1 with x = 1 and y = 0; delays in �1 for 1 + δ time units, and then
moves to �2, resetting x along that transition. It then waits for 1−2δ time units,
until y = 2− δ, and goes back to �1, and so on.

(
(�1, {x, y}, (�x	=1

�y	=0

)
), Δ−1xΔ−1yΔ14

) τ−→ (
(�1, ∅,

(�x	=2
�y	=1

)
), ΔxΔ−1yΔ13

) x≤2−−−→
x:=0

(
(�2, {x},

(�x	=0
�y	=1

)
), Δ−1xΔyΔ13

) τ−→ (
(�2, ∅,

(�x	=0
�y	=1

)
), Δ12xΔyΔ

) y≥2−−−→
y:=0

(
(�1, {y},

(�x	=0
�y	=0

)
), Δ−1yΔ12xΔ2

) τ−→ (
(�1, ∅,

(�x	=1
�y	=2

)
), ΔxΔ2yΔ11

) · · ·

4.2 Relation with Timed Automata

We now define the relation between CA(ΔN) and A, through a relation on their
associated time-abstract transition systems. Next, we write s

σ==⇒ s′ if s
τ−→ s′′ σ−→

s′ for some state s′′ (where τ−→ is a delay transition).

Definition 5. Let S = (S, s0, Σ,→) be an LTTS. A relation R ⊆ S × S is a
two-way simulation if for all (s1, s2) ∈ R, if s1

σ==⇒ s′1 for some σ ∈ Σ then
s2

σ==⇒ s′2 for some s′2 with (s′1, s′2) ∈ R, and if s′1
σ==⇒ s1 for some σ ∈ Σ, then

s′2
σ==⇒ s2 for some s′2 with (s′1, s

′
2) ∈ R. A state s2 simulates a state s1 whenever

there exists a two-way simulation R such that (s1, s2) ∈ R. In that case we write
s1 � s2.

For any state (d, w) of CA(ΔN) with w ∈ ΓN , we define concrete
(
(d, w)

)
as a subset

of reg((d, w)) as follows. It contains a state (l, v) ∈ reg((d, w)), if, and only if,
l = loc((d, w)) and there exists δ ∈ R

N
≥0 that satisfies 0 < δ(1) < δ(2) < . . . <

δ(N) < 1, δ(i + 1) − δ(i) = 1
N for all 1 ≤ i ≤ N − 1, and δ(i) �= frac(v(x)) for

all i and x ∈ C that appears in w, and, assuming that δ(i) is the value of the i-th
Δ-symbol in w, the extended valuation v∪{δ(i)}1≤i≤N is ordered according to w.

For example, consider the state (d, w) =
(
(l, {x}, ((�x	=�y	=0

�z	=1

)
)), Δ3zΔ3yΔ4

)
,

and valuation v defined by v(x) = 0, v(y) = 0.6 and v(z) = 1.3. We have

106 P. Bouyer, N. Markey, and O. Sankur

v ∈ concrete
(
(d, c)

)
since for δ ∈ R

10
≥0 with δ(i) = 0.05+ i−1

10 , the ordering of the
fractional parts of v(x), v(y), v(z), δ(1), . . . , δ(10) agree with that given in (d, w).

Lemma 6. For any timed automaton A and N ≥ 1, �A 1
N

� � CA(ΔN) � �A 2
N

�.

A weaker version of this lemma was proven in [5]. The two-way simulations
in the above lemma are given by relations R defined between states of �Aδ�
and CA(ΔN) by (l, v)R(d, w) iff v ∈ concrete

(
(d, w)

)
and l = loc(d).

4.3 Δ-Distance in CA(ΔN)

If q is a state of CA(ΔN), we will denote by [q] the topological closure of the
region encoded by q. The following lemma characterizes the inclusion of region
closures using flat representations and follows from definitions.

Lemma 7. Let q and q′ be two states of CA(ΔN), and let (d, w) be a flat repre-
sentation of q, with w = Δn0xi1Δ

n1 . . . ximΔnm . Then [q] ⊆ [q′] iff w′ has a flat
representation of the form (d′, w′) where w′ = Δn′

0xi1Δ
n′

1 . . . ximΔn′
m , s.t.

– loc(d) = loc(d′),
– for every 0 ≤ i ≤ m, n′

i = −1 implies ni = −1, and
– there exists 1 ≤ r ≤ m s.t. nr+1 = nr+2 = · · · = nm = −1, and:
• for every 1 ≤ j ≤ r, int(d)(xij) = int(d′)(xij),
• for every r < j ≤ m, int(d)(xij) = int(d′)(xij) + 1.

We now define an edit-distance between the states of CA(ΔN), called the Δ-
distance. We define the Δ-distance between any pair of states q and q′ as infinite
unless [q] ⊆ [q′] or [q′] ⊆ [q]. Fix two flat representations (d, w) and (d′, w′)
that satisfy the conditions in Lemma 7 with block sizes n and n′. We define
dΔ

(
q, q′

)
=

∑
i(max(n′

i
+ − ni

+, 0)), and notice that this is independent of the
choice of the flat representations. This function can be seen to be symmetric
(by the fact that both words have the same total number of Δ symbols), and
to satisfy the triangular inequality. However, when the function equals 0, this
does not imply the equality between states due to the −1-sized blocks. This
pseudo-distance has the following important property.

Lemma 8. For any timed automaton A and N ≥ |C| + 2, for any states q, q′

of CA(ΔN), dΔ(q, q′) ≤ N
|C| − 2 implies that [q] ∩ [q′] �= ∅.

5 Proof

5.1 Proof of the Main Theorem

The main theorem is a consequence of the following lemma, using Lemma 6.

Lemma 9. Let A be any timed automaton and let W denote its number of
regions. Let K0 = 2|C|! · |L| · 4|C| + 4, and N1 ≥ 8|C|2 · (W + 1) if A has only
progress cycles, and N1 ≥ 5|C|3 · K2

0 · (W + 1) otherwise. For any ω-regular
property φ, if there exists N > 0 such that CA(ΔN) |= φ, then CA(ΔN1) |= φ.

Robust Model-Checking of Timed Automata via Pumping 107

We show that if CA(ΔN1) �|= φ, then CA(ΔN) �|= φ for all N > 0. The case where
N < N1 is easy, and is implied in the following lemma.

Lemma 10. For any timed automaton A and any N > 0, CA(ΔN) � CA(ΔN−1).

The idea is that any path of the channel machine can be carried out when
a Δ symbol is removed from the channel. In fact, all guards satisfied in the
former system are also satisfied when a Δ symbol is removed. This implies that
CA(ΔN1) � CA(ΔN), hence if the property is violated by a path of CA(ΔN1),
then CA(ΔN) also has a path violating the property.

In the case where N1 < N , we do not have a simulation between CA(ΔN)
and CA(ΔN1), but assuming that CA(ΔN1) has a path violating the desired
property, we transform it into a path of CA(ΔN) also violating the property.
This transformation may modify the trace but it does not affect the satisfaction
of φ (locations that appear infinitely often remain the same). This is stated in
the following pumping lemma.

Lemma 11 (Pumping Lemma). Consider a timed automaton A, and let W
denote its number of regions. Let K0 = 2|C|!·|L|·4|C|+4, and N1 ≥ 8|C|2 · (W + 1)
if A has only progress cycles, and N1 ≥ 5|C|3 · K2

0 · (W + 1) otherwise. Then,
for any path π of CA(ΔN1), for any L ≥ 0, there exists a path π′ of CA(ΔN1+L),
such that the same set of locations appear infinitely often in π and π′.

The rest of the paper is devoted to the proof of the pumping lemma. The path
of CA(ΔN1+L) is obtained by repeating some factors of the path of CA(ΔN1),
then repeating some factors of the resulting word, and repeating this a finite
number of times. This operation preserves ω-regular properties.

Overview of the proof. We start by studying, in Subsection 5.2, how the sizes
of the blocks evolve along a path. We characterize the blocks whose sizes do
not become small along a path; these are called the blocks that stay united.
We prove a pumping lemma for these blocks (Lemma 12). Then, we study, in
Subsection 5.3, exact paths of CA(ΔN1) and show that for any path of bounded
length, there is an exact path that follows the same trace and that is close in
terms of Δ-distance (Lemma 14). In Subsection 5.4, we apply the above results
to bounded paths to prove the pumping lemma for unbounded paths.

5.2 Pumping Lemma: Bounded Case

We fix a timed automaton A = (L, C, Σ, l0, E) and N > 0. Let W denote the
number of regions of A. For any channel content w ∈ ΓN with clocks xi1 , . . . , xim

and block sizes (n0, . . . , nm), and L ≥ 0, we define w[xij ← xij Δ
L] as the

word of ΓN+L obtained from w by replacing the j-th block Δnj with Δn+
j +L.

We assume that i0 is an index fixed to 0. We extend the above definition to the
0-th block, by writing w[xi0 ← xi0Δ

L] = w[xi1 ← ΔLxi1], obtained by inserting
L new Δ symbols in the 0-th block.

We fix the constant N0 = 2W + 2. A block is small if it has size {−1, 0, 1},
medium if it has size {2, . . . , N0 − 1}, and large otherwise. An important obser-
vation about CA(ΔN) is that, if a guard is satisfied at some state (d, w), then,

108 P. Bouyer, N. Markey, and O. Sankur

when an arbitrary number of Δ symbols are inserted in medium/large blocks,
the same guard is still satisfied. However, if we insert additional Δ symbols in-
side small blocks, then formulas which are satisfied but not exactly satisfied may
not be satisfied anymore. We define a notion of staying united along a path for
blocks. Intuitively, such blocks are those that are either always at least medium,
or are cut into at least one medium/large block along the path. We then show
that one can insert any number of Δ symbols inside a block that stays united,
and adapt the original path of CA(ΔN) to a path in CA(ΔN+L).

We define a relation on pairs of states and clock indices as follows. Let q =
(d, w) and q′ = (d′, w′) denote two flat representations of states of CA(ΔN) such
that q

τ−→ q′ is an elementary delay transition. We let (q, i) ≺ (q′, j) whenever for
every integer L > 0, there is a delay transition q[xi ← xiΔ

L] τ−→ q′[xj ← xjΔ
L].

This relation can be characterized rather easily by analysing all possible cases
for elementary delays q

τ−→ q′. This relation is extended to the transitive closure
of delay transitions. Similarly, assuming q

σ−→ q′ is an action transition, we write
(q, i) ≺ (q′, j) whenever for every integer L, there is an action transition q[xi ←
xiΔ

L] σ−→ q′[xj ← xjΔ
L]. This can be characterized easily as well.

For any finite path π in CA(ΔN), and any block i1 in (π)1, we say that block i1
stays united in π, if block i1 is large in (π)1, and if there exists clock indices
i2, . . . , im such that ((π)1, i1) ≺ ((π)2, i2) ≺ . . . ≺ ((π)n, in), with n = |π|.

By definition, the paths along which a block stays united are not sensitive to
the precise size of those blocks. This is formalized in the following lemma, which
is a pumping lemma for particular finite paths.

Lemma 12. Let π be a path of CA(ΔN) such that ((π)1, i1) ≺ ((π)2, i2) ≺ . . . ≺
((π)n, in), for some n > 0. Then for any L > 0, CA(ΔN+L) has a path π′ with
(π′)j = (π)j [xij ← xij Δ

L] for any 1 ≤ j ≤ n and trace(π) = trace(π′).

We now state a lower bound on the length of a path along which a block does
not stay united. The idea is that if a block does not stay united, then whenever
it is cut in two parts during a transition, either one of the resulting blocks is
small, or none of them stays united in the rest of the path.

Lemma 13. Let π be a path of CA(ΔN) with |π| = p. Then all blocks in (π)1
that have size at least p + 1 stay united along π.

5.3 Making Exact Paths

In this section, we show how to transform an arbitrary path of bounded length
of CA(ΔN) into an exact one. By definition, if a path is not exact, then there are
states with small blocks. The idea of our transformation is to replace all small
blocks and the blocks that do not stay united by−1-sized blocks, while preserving
the ordering of the clocks. Notice that by Lemma 7, the states obtained by this
operation define closed subregions of those defined by the original states. Clearly,
if all small blocks have size −1, then any guard that is satisfied by a state is
satisfied exactly, so the new path is exact.

Robust Model-Checking of Timed Automata via Pumping 109

Take N ≥ (|C| + 1) · N0, and fix a path π of CA(ΔN) of length n ≤ N0 − 1.
For each 1 ≤ i < i′ ≤ n, we associate with (π)i a state H(π, i, i′) where any
small or medium block that does not stay united along πi...i′ is replaced by
blocks of size −1. Formally, let j1, . . . , jk denote the indices of the blocks of (π)i

that do not stay united along the path πi...i′ . Let us write (π)i = (d, n). We
define H(π, i, i′) = (d′, n′) as follows. We let n′

j1 = . . . = n′
jk

= −1, and n′
j0 =

nj0 + n+
j1

. . . + n+
jk

, for the large block with the minimal index j0, which exists
by the choice of N . (Notice that the closed region [H(π, i, i′)] is independent
of j0). We have, by Lemma 7, [H(π, i, i′)] ⊆ [(π)i]. The same lemma implies that
any state q with [q] ⊆ [H(π, i, i′)], has only blocks that stay united along πi...i′ .
Observe that because (π)i has at least one large block, by Lemma 13, H(π, i, i′)
is well-defined. Last, we have dΔ((π)i, H(π, i, i′)) ≤ |C| ·N0 by construction.

We construct exact paths that are “close” to the original ones, as follows.

Lemma 14. Let A be any timed automaton having only progress cycles, and
N ≥ (|C|+ 1) ·N0. Let π a path of CA(ΔN) of length at most N0. Then, there ex-
ists an exact path π′ of CA(ΔN) over trace trace(π1...N0), with (π′)1 = H(π, 1, N0)
and [(π′)i] ⊆ [H(π, i, N0)] and dΔ(π, π′) ≤ (|C|+ 1)N0 for all 1 ≤ i ≤ N0.

A result similar to Lemma 14 was given in [8, Th. 44] for runs of timed automata
and distance d∞ over valuations. The proof there involved approximation of
the width of parametric DBMs. Our approach is in some sense closer to the
input timed automaton, which may explain why we get an exponentially better
distance to the original run.

As one might expect, exact paths satisfy the following property. The idea is
that exact paths of CA(ΔN) are not sensitive to the sizes of the blocks.

Lemma 15. Let A be any timed automaton, N ≥ 1 and π an exact path
of CA(ΔN). Then, for any N ′ ≥ N , and any state q of CA(ΔN ′

) with [q] ⊆
[first(π)], there exists an exact path π′ over the same trace as π, with first(π′) = q
and [(π′)i] ⊆ [(π)i] for all 1 ≤ i ≤ |π|. The same property holds backwards: for
any q ∈ [last(π)], there exists an exact path π′ over the trace of π in CA(ΔN ′

)
with last(π′) = q and [(π′)i] ⊆ [(π)i] for 1 ≤ i ≤ |π|.

5.4 Pumping Lemma with Progress Cycles: Unbounded case

The previous sections dealt with the properties of the bounded paths of CA(ΔN).
We now use these to prove the pumping lemma for infinite paths. Let us first
define a transformation on the traces of the runs. For any finite trace w ∈ L∗,
we let w̃ = {u+

1 u+
2 . . . u+

n | u1u2 . . . un = w}.
We first need the following lemma, which is an adaptation of Lemma 29 of [8]

to channel machines.

Lemma 16 (Cycling Lemma). Let A be any timed automaton, N ≥ 1 and π
an exact progress cycle in CA(ΔN). Then, for all states q with [q] ⊆ [last(π)],
there exists a path π′ in CA(ΔN) with first(π′) = first(π) and [last(π′)] ⊆ [q], and

trace(π′) ∈ ˜trace(π).

110 P. Bouyer, N. Markey, and O. Sankur

We are now ready to prove the pumping lemma, for timed automata with
progress cycles. Figure 3 illustrates a step of the proof.

Proof (of Lemma 11). We prove the result for 1 ≤ L ≤ |C|N0 − 2. For larger L,
one can repeat this construction. Let N ≥ 4|C|2N0, and consider an infinite
path π of CA(ΔN) where first(π) is the initial state of CA(ΔN).

Let n = N0 − 1. Let GL(π, i, i + n) denote the state of CA(ΔN+L) obtained
from (π)i by inserting ΔL in the block with minimal index that stays united
along πi...i+n (such a block exists by Lemma 13). We also define HL(π, i, i + n)
by inserting ΔL to the same block in H(π, i, i + n) (H(·) is defined right before
Lemma 14). Then, by construction, dΔ

(
HL(π, i, i + n), GL(π, i, i + n)

) ≤ |C|N0.

We now define a path π′ of CA(ΔN+L) over trace ˜trace(π). At each step i ≥ 1,
we construct π′

βi...βi+1
, where (βi)i≥1 is an increasing sequence. Our construc-

tion satisfies trace(π′
βi...βi+1

) ∈ ˜trace(παi...αi+1), and [(π′)βi] ⊆ [(π)αi], for some
possibly different increasing sequence (αi)i≥1.

We define (π′)1 as the initial state of CA(ΔN+L), which satisfies [(π′)1] ⊆ [(π)1].
Suppose now that π′

1...βi
has been constructed for some βi ≥ 1. By Lemma 12,

there is a path g of CA(ΔN+L) from G(π, αi, αi + n) over trace(παi...αi+n), such
that (g)j = (π)αi+j [zj ← zjΔ

L] for some clocks zj . We then apply Lemma 14
to g to get an exact path h with (h)1 = HL(π, αi, αi + n) over the trace of g,
with dΔ

(
(h)j , (g)j

) ≤ (|C| + 1)N0, and [(h)j] ⊆ [HL(π, αi + j, αi + n)] for
all 1 ≤ j ≤ n. Now, h contains at least n/2 ≥W action transitions, so there exist
1 ≤ l0 < l1 ≤ n such that reg((h)l0), reg((h)l0+1), . . . , reg((h)l1) is a progress cy-
cle of the region automaton of A. We have dΔ

(
(h)l1 , H

L(π, αi+l1, αi+l1+n)
) ≤

(3|C|+ 1)N0 − 2 by combining the following inequalities:

dΔ((h)l1 , (g)l1) ≤ (|C|+ 1)N0,

dΔ

(
(g)l1 , G

L(π, αi + l1, αi + l1 + n)
) ≤ L ≤ |C|N0 − 2,

dΔ

(
GL(π, αi + l1, αi + l1 + n), HL(π, αi + l1, αi + l1 + n)

) ≤ |C|N0.

By Lemma 15, CA(ΔN+L) has a path over trace(h) from (π′)βi to some state q
with [q] ⊆ [(h)l1]. By Lemma 8, we get [(h)l1]∩ [HL(π, αi + l1, αi + l1 + n)] �= ∅.

παi

GL(π, αi, αi + n)

π′
βi

HL(π, αi, αi + n)

παi+l1 (g)l1

q

GL(π, αi + l1, αi + l1 + n)

(h)l1

HL(π, αi + l1, αi + l1 + n)

q′ = π′
βi+1

π

Lemma 12
g

Lemma 15

Lemma 14h ≤
(|C|

+
1)N

0

≤
L

≤
|C

|N
0

Lemma 16

Fig. 3. An induction step of the proof of Lemma 11. Two triangles represent two
closed regions. Their sides, interiors and corners are subregions. The proof constructs
the dashed paths bottom-up.

Robust Model-Checking of Timed Automata via Pumping 111

Lemma 16 provides a path of CA(ΔN+L) from q to some state q′ with [q′] ⊆
[(h)l1]∩ [HL(π, αi + l1, αi + l1 + n)], over a trace in trace(hl0...l1)+. The concate-
nation of these two paths define π′

βi..βi+1
. This concludes a step of the induction.

��
5.5 Pumping Lemma with Non-progress Cycles

In this subsection, we explain the generalization of the proof of the pumping
lemma to the case of timed automata with non-progress cycles. Let us call weak
cycle, a path π of CA(ΔN) with [last(π)] ⊆ [first(π)] that is not a progress
cycle. Thus, π is a cycle along which at least one clock that is present on the
channel is not reset. We show that all weak cycles can be transformed into weak
quasi-exact cycles (defined below). We then define quasi-exact paths of CA(ΔN),
which are paths that are exact except along weak quasi-exact cycles. Quasi-exact
paths behave very much like exact paths: We adapt each of the previous lemmas
involving exact paths for quasi-exact paths, and the proof in the presence of
weak cycles is very similar to the proof which assumes progress cycles.

Example 2. The following path of CA(Δ10) is an example of weak cycle, in which
clock z is not reset.

(�1, {x}, ·), Δ3yΔ4zΔ3 τ−→ (�1, ∅, ·), Δ2xΔ3yΔ4zΔ
σ−→

(�2, {y}, ·), Δ2xΔ7zΔ
τ−→ (�2, ∅, ·), yΔ2xΔ7zΔ

σ′−→ (�1, {x}, ·), yΔ9zΔ

It can be seen on this example how clock z prevents from accessing the Δ’s that
accumulate immediately on its left.

Given a weak cycle, clocks that are reset along the cycle are called active, and
others inactive. Consider a weak cycle π. Suppose that A = {i1, . . . , ir} are the
indices of the active clocks in π, given in the order of their appearance in last(π).
Then, π can be factorized as,

π = πirπir−1 . . . πi1π
′, (2)

where πij ends with the last reset of the clock xij in π, and no clock is reset in π′.
An important observation that we use is that the size of the block ij in last(πij)
is determined by the number of Δ’s read inside πij , for any 1 ≤ j ≤ r − 1. The
block ir is particular, since its size at the last state is the sum of all the blocks
i1, . . . , ir in first(π), plus the Δ’s read during πir . Among the blocks A of last(π),
some will be called pumpable. Formally, for K0 = |L| · |C|! · 4|C|+1 + 4, we let

Pumpable(π) = {ij ∈ A | ∃τ ∈ πij , timeΔ(τ) ≥ 2 or timeΔ(πij) ≥ K0},

where timeΔ(τ) denotes the number of Δ’s read from the channel in the delays
of a given path τ , and with the abusive notation ∃τ ∈ πij meaning “for some
delay transition in πij ”. We prove a pumping lemma for pumpable blocks inside
weak cycles. In fact, if πij has a delay transition which reads at least two Δ
symbols, then block i0 becomes medium or large during this delay, so it can be

112 P. Bouyer, N. Markey, and O. Sankur

extended to read more Δ symbols. But if all delay transitions are too short then
this trick cannot be used; in that case when a large number of transitions occur
inside πij , we show that some factor can be repeated, while additional delays
that read Δ’s are inserted (this is why we need a large constant K0).

We then define quasi-exact paths, which are paths that are made of delays,
exact transitions and weak cycles in which any block that is active is either
pumpable, or it ends with size −1. We show that these paths behave very much
like exact paths, and we follow step-by-step the same lemmas to construct the
proof of the pumping lemma in the general case.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer
Science 126(2), 183–235 (1994)

2. Bouyer, P., Chevalier, F.: On conciseness of extensions of timed automata. Journal
of Automata, Languages and Combinatorics 10(4), 393–405 (2005)

3. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: LICS
2007, Wroc�law, Poland, pp. 109–118. IEEE Computer Society Press, Los Alamitos
(2007)

4. Bouyer, P., Markey, N., Reynier, P.-A.: Robust model-checking of linear-time prop-
erties in timed automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006.
LNCS, vol. 3887, pp. 238–249. Springer, Heidelberg (2006)

5. Bouyer, P., Markey, N., Reynier, P.-A.: Robust analysis of timed automata via
channel machines. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp.
157–171. Springer, Heidelberg (2008)

6. Bouyer, P., Markey, N., Sankur, O.: Robust model-checking of timed automata
via pumping in channel machines. Research Report LSV-11-19, Laboratoire
Spécification et Vérification, ENS Cachan, France (2011)

7. Cassez, F., Henzinger, T.A., Raskin, J.-F.: A comparison of control problems for
timed and hybrid systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002.
LNCS, vol. 2289, pp. 134–148. Springer, Heidelberg (2002)

8. De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed au-
tomata. Formal Methods in System Design 33(1-3), 45–84 (2008)

9. De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: From timed models
to timed implementations. Formal Aspects of Comput. 17(3), 319–341 (2005)

10. Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler,
O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)

11. Havelund, K., Skou, A., Larsen, K.G., Lund, K.: Formal modeling and analysis of
an audio/video protocol: an industrial case study using uppaal. In: RTSS 1997.
IEEE Computer Society, Los Alamitos (1997)

12. Jaubert, R., Reynier, P.-A.: Quantitative robustness analysis of flat timed au-
tomata. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 229–244.
Springer, Heidelberg (2011)

13. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. Journal on Software
Tools for Technology Transfer 1, 134–152 (1997)

14. Puri, A.: Dynamical properties of timed systems. Discrete Event Dynamic
Systems 10(1-2), 87–113 (2000)

15. Yovine, S.: Kronos: A verification tool for real-time systems. International Journal
on Software Tools for Technology Transfer 1, 123–133 (1997)

	Robust Model-Checking of Timed Automata via Pumping in Channel Machines
	Introduction
	Preliminaries
	Timed Automata
	Robust Model-Checking of Timed Automata

	Results
	Encoding by Channel Machines
	Channel Machine Associated to a Timed Automaton
	Relation with Timed Automata
	-Distance in CA(N)

	Proof
	Proof of the Main Theorem
	Pumping Lemma: Bounded Case
	Making Exact Paths
	Pumping Lemma with Progress Cycles: Unbounded case
	Pumping Lemma with Non-progress Cycles

	References

