
Probabilistic Real-Time Rewrite Theories

and Their Expressive Power

Lucian Bentea and Peter Csaba Ölveczky

Department of Informatics, University of Oslo

Abstract. Unbounded data structures, advanced data types, and/or
different forms of communication are often needed to model large and
complex probabilistic real-time systems such as wireless sensor networks.
Furthermore, it is often natural to model such systems in an object-
oriented style, using subclass inheritance and dynamic object and mes-
sage creation and deletion. To support the above features, we introduce
probabilistic real-time rewrite theories (PRTRTs), that extend both real-
time rewrite theories and probabilistic rewrite theories, as a rewriting-
logic-based formalism for probabilistic real-time systems. We then show
that PRTRTs can be seen as a unifying model in which a range of other
models for probabilistic real-time systems—including probabilistic timed
automata, stochastic automata, deterministic and stochastic Petri nets,
as well as two probabilistic timed transition system models with under-
specified probability distributions—can naturally be represented.

1 Introduction

In this paper we introduce probabilistic real-time rewrite theories (PRTRTs)
to support the formal specification of probabilistic real-time systems in rewrit-
ing logic [18]. Rewriting logic is a logic for concurrent systems that emphasizes
expressiveness and ease of specification over algorithmic decidability of key prop-
erties. In rewriting logic, the state space and data types of a system are defined
by an algebraic equational specification, and the system’s transitions are defined
by labeled conditional rewrite rules l : t −→ t′ if cond , where t and t′ are terms
that may contain universally quantified mathematical variables. Rewriting logic
supports the specification of any computable data type, and distributed systems
can be naturally modeled in an object-oriented style, with class inheritance and
dynamic creation and deletion of objects and messages. Simulation, reachability
analysis, and LTL model checking for rewriting logic is provided by the high-
performance Maude tool [8]. (Since properties are in general undecidable, such
analyses may not always terminate.)

The Real-Time Maude tool [23] and its real-time rewrite theory formalism [22]
extend rewriting logic and Maude to the formal modeling and analysis of real-
time systems. Its expressiveness has made it possible to apply the tool to several
large applications (see [21]) that are beyond the scope of most model checkers
for real-time systems. However, some of those applications, including the LMST

U. Fahrenberg and S. Tripakis (Eds.): FORMATS 2011, LNCS 6919, pp. 60–79, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Probabilistic Real-Time Rewrite Theories 61

and OGDC wireless sensor network algorithms [13,25] and the AER/NCA and
NORM multicast protocols [24,17], include probabilistic features—e.g., nodes
may exhibit random behavior by design to break symmetries in a network, or
the environment may interact with the system in a probabilistic manner—that
can only be treated in an ad hoc way in Real-Time Maude.

Rewriting logic has also been extended to probabilistic rewrite theories to
specify probabilistic behaviors [14]. Such theories combine nondeterministic and
probabilistic behaviors, and the main idea is that the variables in the righthand
side t′ of a rewrite rule that do not occur in the lefthand side t are instantiated
probabilistically. The VeStA tool [26] can be used for both statistical model
checking and estimating numerical values in such theories, and has been used to
analyze a DoS resistant TCP/IP protocol [1] and a model of the above mentioned
LMST algorithm [13] in which its real-time behavior is treated in an ad hoc way.

PRTRTs can be seen as an extension of both real-time rewrite theories and
probabilistic rewrite theories. However, PRTRTs are a proper extension of prob-
abilistic rewrite theories even when time is ignored. In our case, the new variables
in the righthand side of a rule are divided into nondeterministic and probabilistic
variables. Each rewrite rule is equipped with a family of probability distributions
used to instantiate the probabilistic variables; namely, there is one probability
distribution for each substitution of the variables in the lefthand side of the rule
and each choice of values for the nondeterministic variables. Regarding time,
although the duration of/between events may be given probabilistically, time
itself does not advance in a probabilistic way in our formalism.

After giving some background into rewriting logic and its probabilistic and
real-time extensions (Section 2), we define our formalism and its semantics (Sec-
tion 3) and the probability of reaching a certain state in a certain time (Sec-
tion 5). We then demonstrate the expressiveness of PRTRTs—as well as their
suitability as a unifying semantic framework for probabilistic real-time systems
in which different models for such systems can naturally be represented and
understood—by showing how a range of well known formal models for proba-
bilistic real-time systems can be seen as PRTRTS (Section 6). Due to lack of
space, we refer to the longer technical report [6] for formal proofs of correctness
for the representations. To illustrate our formalism, we describe how a simple
probabilistic round trip time protocol can be modeled as a PRTRT (Section 4).
This system cannot be modeled as an automaton, since the number of messages
in the state can grow beyond any bound.

We also explain in the accompanying report [6] how the state-of-the-art OGDC
algorithm [30] for wireless sensor networks can be defined as a PRTRT. A main
feature of the algorithm is that a sensor node becomes active depending on how
close it is to an “ideal” position w.r.t. the already active nodes, and that it turns
itself off when its sensing area is covered by the sensing areas of other active
nodes. The OGDC algorithm therefore requires computing with data types for
sensing areas and sophisticated functions including distances, angles, computing
overlaps of areas, etc., which seem to be beyond the capability of formalisms
that do not support the definition of new data types and advanced functions.

62 L. Bentea, and P.C. Ölveczky

2 Preliminaries

In rewriting logic [18], the static parts of a system (functions, data types, etc.) are
defined as an algebraic equational specification, and the transitions of a system
are specified by labeled rewrite rules of the form l : t −→ t′ if cond , where t
and t′ are terms constructed by typed variables and function symbols in a type-
consistent way, l is a rule label, and cond is a (possibly empty) conjunction of
equalities, sort memberships, and rewrites. Such a rule specifies a local transition
from an instance of the term t to the corresponding instance of the term t′,
provided that the condition cond is satisfied by the substitution instance.

Formally, given a set K of kinds, a many-kinded signature σ contains a set
of function declarations of the form f : k1 . . . kn → k, where n ≥ 0 and
k1, . . . , kn, k ∈ K. In membership equational logic (MEL) [19], each kind k
has an associated set of sorts Sk. A MEL theory consists of a MEL signa-
ture Σ = (K, σ, {Sk | k ∈ K}) and a set E of (possibly) conditional equations
(∀�x) t = t′ if cond and membership axioms (∀�x) t : s if cond , where
t and t′ are Σ-terms of the same kind k, s is a sort of kind k, cond is a con-
junction of equalities and sort memberships, and �x denotes the set of variables
in these axioms. We write vars(t) for the set of variables occurring in a term t;
if vars(t) = ∅, then t is called a ground term. If (Σ, E ∪ A) is a MEL theory,
where A is a collection of structural axioms specifying properties of function
symbols, like commutativity, associativity, etc., and E is terminating, confluent
and sort-decreasing modulo A, then CanΣ,E/A denotes the algebra of fully sim-
plified ground terms, or “normal forms,” with respect to the set of axioms E,
modulo A. We denote by [t]A the A-equivalence class of a fully simplified term
t. An E/A-canonical ground substitution for a set of variables �x is a function
[θ]A : �x→ CanΣ,E/A that assigns a fully simplified ground term to each variable
in �x. We denote by CanGSubstE/A(�x) the set of all such functions. We use the
same notation [θ]A for the homomorphic extension of [θ]A to Σ-terms.

Definition 1. A generalized rewrite theory [7] is a tuple R = (Σ, ϕ, E, L, R),
where Σ is a MEL signature, ϕ is a function that maps each function symbol
f : k1 . . . kn → k in Σ its frozen argument positions ϕ(f) ⊆ {1, . . . , n}, (Σ, E)
is a MEL theory, and R is a set of labeled conditional rewrite rules

(∀�x) l : t −→ t′ if cond , (1)

where l ∈ L is a label, t and t′ are terms of the same kind, cond is a conjunction
of equalities, memberships and rewrites, and �x = vars(t)∪ vars(t′)∪ vars(cond).

Intuitively, if i is a frozen position of a function symbol f , i.e., if i ∈ ϕ(f), then
f(. . . , ti, . . .) does not rewrite to f(. . . , t′i, . . .) when ti rewrites to t′i. A context
is a Σ-term C with a single occurrence of a single variable, denoted 	 and called
the hole. Two contexts C and C′ are A-equivalent if A
 (∀) C() = C′().
A context f(t1, . . . , tn) has a hole in a frozen position if the hole occurs in some
argument ti, and either i ∈ ϕ(f) or ti has a hole in a frozen position.

Let Ω be a nonempty set. If Ω is countable, a probability mass function, or
probability distribution over Ω is any mapping p : Ω → [0, 1] with the property

Probabilistic Real-Time Rewrite Theories 63

that
∑

ω∈Ω p(ω) = 1; we denote by Dist(Ω) the set of all probability distributions
over the set Ω. A cumulative distribution function (CDF) is a function ϕ : R→
[0, 1] defining the probability ϕ(x) that a real-valued random variable is less than
x ∈ R; we write Dist(R) for the set of all CDFs.

In [14] rewrite theories are extended to probabilistic rewrite theories. Intu-
itively, in such theories the righthand side t′ of a rewrite rule l : t −→ t′ if cond
may contain variables �p that do not occur in t. These new variables are assigned
values according to a probability distribution taken from a family of probabil-
ity distributions—one for each instance of the variables in t—associated with
the rule. Formally, a probabilistic rewrite theory is a pair (R, π), where R is a
rewrite theory1 and π is a function which assigns to each rule r ∈ R of the form
(1), with vars(t) = �x and vars(t′) \ vars(t) = �p, a mapping2

πr : �cond(�x)�→ Dist
(
CanGSubstE/A(�p)

)
,

where �cond(�x)� is the set of all E/A-canonical ground substitutions for �x that
satisfy the condition cond . That is, for each substitution θ of the variables
in t which satisfies cond , we get a probability distribution πr ([θ]A) that de-
fines how the new variables �p are instantiated. A rewrite rule r ∈ R of the
form (1) with vars(t′) \ vars(t) �= ∅, together with its associated probabil-
ity distribution function πr is called a probabilistic rewrite rule and is written
l : t −→ t′ if cond with probability πr.

In [22], rewrite theories are extended to real-time systems by (i) considering
ordinary rewrite rules to be instantaneous transitions, and (ii) by adding tick
rewrite rules that model time elapse in a system. Formally, a real-time rewrite
theory [22] is a pair (R, τ) where R is a generalized rewrite theory and τ is
an assignment of a duration term τl of sort Time to rewrite rules of the form
l : {t} −→ {t′} if cond , where {_} encloses the entire state. The term τl specifies
the amount of time that elapses with the application of the rewrite rule. If τl �= 0,
the rule is called a tick rewrite rule and is written l : {t}

τl−→ {t′} if cond .
We also use the Maude [8] syntax to specify rewrite rules, so that a conditional

tick rule with duration y is written crl [l]: {t} => {t′} in time y if cond ,
where the label l may be omitted. In object-oriented Maude specifications [8],
the state of the system is a term of sort Configuration denoting a multiset of
objects and messages, where multiset union is denoted by juxtaposition. Each
object is represented as a term < o : c | att1 : val1, . . . , attn : valn >, where o is
the object’s identifier of sort Oid, c is the object’s class, and where val1, . . . , valn
are the values of the object’s attributes att1, . . . , attn. For example, the rule

rl [l]: m(O, w) < O : C | a1 : x, a2 : O’, a3 : z > =>

< O : C | a1 : x + w, a2 : O’, a3 : z > dly(m’(O’), x) .

1 A (standard) rewrite theory is a generalized rewrite theory with ϕ(f) = ∅ for all its
function symbols f , i.e., a rewrite theory with no frozen operators.

2 In [14] the definition of probabilistic rewrite theories is based on the more general
case of probability measures on a σ-algebra over CanGSubstE/A(�p). However, to
simplify the exposition, we only consider probability mass functions. Extending our
definitions to probability measures is straightforward, as shown in our report [6].

64 L. Bentea, and P.C. Ölveczky

defines a family of transitions in which a message m, with parameters O and w, is
read and consumed by an object O of class C. The transitions change the attribute
a1 of O and send a new message m’(O’) with delay x. “Irrelevant” attributes
(such as a3 and the righthand side occurrence of a2) need not be mentioned.

3 Probabilistic Real-Time Rewrite Theories

This section defines probabilistic real-time rewrite theories (PRTRTs) and their
semantics. PRTRTs extend both probabilistic rewrite theories and real-time
rewrite theories to support the formal specification of real-time systems with
probabilistic features. The definitions in this section are mostly extensions of
similar definitions in [14] for (untimed) probabilistic rewrite theories.

Definition 2. A probabilistic real-time rewrite theory (PRTRT) Rπ,τ is a tuple
(R, π, τ), where R = (Σ, ϕ, E ∪A, L, R) is a generalized rewrite theory in which
the rules in R have no rewrites in their conditions, (R, τ) is a real-time rewrite
theory, and π is a function that takes each rewrite rule r ∈ R of the form (1),
with vars(t) = �x, vars(t′) \ vars(t) = �y � �p, and assigns to it a mapping

πr : �cond(�x ∪ �y)�→ Dist
(
CanGSubstE/A(�p)

)

such that, for each substitution [θ]A ∈ CanGSubstE/A(�x∪�y) that satisfies the con-
dition cond, πr([θ]A) is a probability mass function over the set of ground substi-
tutions CanGSubstE/A(�p). If r is a tick rule, then �p ∩ vars(τl) = ∅. Probabilistic
tick rewrite rules are written l : {t}

τl−→ {t′} if cond with probability πr.

Although the duration of/between events may be given probabilistically, time
itself does not advance in a probabilistic way. The duration term τl therefore does
not contain variables that are substituted probabilistically, hence �p ∩ vars(τl) =
∅. Apart from adding timed behaviors, PRTRTs also extend probabilistic rewrite
theories in two ways necessitated by the way tick rules are usually defined:

i) PRTRTs allow new variables that are not assigned a probability distribution
in the righthand side of a rewrite rule. The reason is that tick rules—in
particular for dense time domains—allow time to advance by any amount
less than a certain bound; they therefore have a new (non-probabilistic)
variable in their righthand sides that defines the duration of the rewrite.

ii) The tick rules involve functions on the state, such as a function defining the
effect of time elapse on a state, that are frozen operators; we therefore have
used generalized rewrite theories as the underlying formalism.

Consider the following probabilistic tick rule r (written in an intuitive way):

{f(x)}
y−→ {g(x, y, z1, z2)} if y ≤ 10

with probability z1 :=
(

h(x, y) f(y)
2/3 1/3

)

and z2 :=
(

0 1
1/2 1/2

)

.

Probabilistic Real-Time Rewrite Theories 65

The righthand side term {g(x, y, z1, z2)} contains variables y, z1 and z2 that
do not occur in the rule’s lefthand side {f(x)}. Let {f(t)} be the state of the
system when the rule is applied. The variable y is then instantiated nondeter-
ministically with any value t′ less than or equal to 10. The variables z1 and z2

are then instantiated probabilistically, where z1 is assigned the value [h(t, t′)]A
with probability 2/3 and the value [f(t′)]A with probability 1/3. Formally, the
mapping πr : CanGSubstE/A({x, y}) → CanGSubstE/A({z1, z2}) associated to
the above rule r is given by πr([θ]A)({z1 �→ [h(θ(x), θ(y))]A, z2 �→ i}) = 1/3 and
πr([θ]A)({z1 �→ [f(θ(y))]A, z2 �→ i}) = 1/6, for i ∈ {[0]A, [1]A}.

Let Rπ,τ = (Σ, ϕ, E ∪A, L, R, π, τ) be a PRTRT. Intuitively, an R/A-match
contains the complete information on how and in which context the current
system state is matched against a particular rewrite rule in the specification of
that system. We extend the definition of R/A-matches in [14] as follows:

Definition 3. Given a fully simplified term [u]A ∈ CanΣ,E/A, its generalized
R/A-matches are triples ([C]A, r, [θ]A) where C is a context whose hole is not
in a frozen position, r ∈ R is a rewrite rule, [θ]A ∈ CanGSubstE/A(�x ∪ �y) is
a substitution such that E ∪ A
 θ(cond), and [u]A = [C(← θ(t))]A is the
A-equivalence class of the term obtained by applying the substitution θ to t and
placing the result into C.

The definition of a single (instantaneous and tick) transition of a PRTRT de-
scribes how the system state evolves when applying a rewrite rule to it:

Definition 4. Given terms [u]A, [v]A ∈ CanΣ,E/A, an E/A-canonical one-step

rewrite from [u]A to [v]A is a labelled transition [u]A
([C]A, r, [θ]A, [ρ]A)−−−−−−−−−−−−→

τ
[v]A, where

([C]A, r, [θ]A) is a generalized R/A-match for [u]A selected nondeterministically,
[ρ]A ∈ CanGSubstE/A(�p) is a substitution selected with probability πr([θ]A)([ρ]A),
the duration τ is 0 if r is not a tick rule and is θ(τl) otherwise, and [v]A =
[C(← t′(θ(�x, �y), ρ(�p)))]A is the result of the one-step rewrite.

4 Example: A Simple Round Trip Time Protocol

To illustrate our formalism, we specify in an object-oriented way a simple round
trip time (RTT) protocol that computes the time it takes for a message to go from
one node to another, and back, and where the message transmission time follows
a probability distribution that depends on the distance between the nodes.

The initiator object O starts the protocol by sending an rttReq message to
its neighbor O’, with a time stamp T which is the current value of O’s local clock
(rule start). When O’ receives this message, it immediately sends back a reply
to O with the original time stamp with probability 3/4 and ignores the request
with probability 1/4 (rule rttResp). When the initiator O receives the reply,
it computes its RTT value w.r.t. O’ by subtracting the original time stamp T
from its current clock value T’ (rule treatResp). However, if the message takes
so long that T’ − T ≥ MAX_RTT, then it is just ignored (rule ignoreOld). The

66 L. Bentea, and P.C. Ölveczky

initiator uses a retransmission timer to start a new round of the protocol every
MAX_RTT time units until it has computed a good RTT value. When the timer
expires, O sends another RTT request to O’ (rule tryAgain) with probability
1/(N+ 1), which decreases with the number N of unresolved RTT requests of O.
We represent each node by an object

< o : Node | nbr : o′, rtt : r, clock : t, timer : ti, tries :n >

where o is the node’s identifier, o′ is the neighbor to which o wants to compute
its round trip time, r is the value of the round trip time, if computed, or INF
otherwise, t is the current value of the node’s clock, ti is its current timer value,
which has the value INF if the timer is switched off, and n is the number of
unsuccessful attempts that o has made to compute the RTT. Messages have
the form findRtt(o), which triggers a run of the RTT protocol for node o,
rttReq(o′, o, t), which sends a request from node o to node o′ with t the time
stamp, and rttResp(o, o′, t), which sends a reply message from node o′ to node
o with the original time stamp t . We assume that a function dist that com-
putes the distance dist(o, o′) between two nodes is defined. In the rules start,
rttResp and tryAgain we specify the transmission delay of the rttReq and
rttResp messages as a variable D which is probabilistically substituted according
to a probability distribution F(x) that mimics a truncated normal distribution
N (μ, σ2) [12] with minimum value MIN_DELAY, and depends on the distance x
between o and o′, where μ and σ are positive constants representing the average
and the standard deviation of the transmission delay, respectively.

The following instantaneous rewrite rules describe our simple RTT protocol.

vars O O’: Oid. vars T T’ D: Time. var N: Nat. var B: Bool. var CF: Configuration.

rl [start] :

findRtt(O) < O : Node | clock : T, nbr : O’ >

=> < O : Node | timer : MAX_RTT > dly(rttReq(O’, O, T), D)

with probability D := F(dist(O, O’)) .

rl [rttResp] :

rttReq(O, O’, T) < O : Node | >

=> if B then < O : Node | > dly(rttResp(O’, O, T), D) else < O : Node | > fi

with probability B :=

(
true false

3/4 1/4

)

and D := F(dist(O, O’)) .

crl [treatResp] :

rttResp(O, O’, T) < O : Node | clock : T’ >

=> < O : Node | rtt : T’ - T, timer : INF > if T’ - T < MAX_RTT .

crl [ignoreOld] :

rttResp(O, O’, T) < O : Node | clock : T’ > => < O : Node | > if T’ - T >= MAX_RTT.

rl [tryAgain] :

< O : Node | timer : 0, clock : T, nbr : O’, tries : N >

=> if B then < O : Node | timer : MAX_RTT, tries : N + 1 > dly(rttReq(O, O’, T), D)

else < O : Node | timer : MAX_RTT > fi

with probability B :=

(
true false

1/(N+1) N/(N+1)

)

and D := F(dist(O, O’)) .

Probabilistic Real-Time Rewrite Theories 67

Time elapse is modeled by the tick rule
crl [tick] : {CF} => {delta(CF, T)} in time T if T <= mte(CF) .

where delta is a frozen function that specifies the effect of time elapse on the
system by decreasing the timers and increasing the clock values of each node.
The frozen function mte gives the maximum amount of time that can elapse
before a node must perform an instantaneous transition. More precisely, time
cannot advance past the expiration of a timer or the moment when a message
arrives. See [6] for their formal definition.

It is worth noticing that the number of messages in the state can grow beyond
any bound, since: i) the message delays could be arbitrarily large (with non-zero
probability), and ii) the initiator node will periodically send requests until it
receives a good RTT value. Therefore, even this simple protocol seems to be
beyond the scope of automaton-based formalisms.

5 Reachability Probabilities in PRTRTs

In this section we define the probability of reaching a given state in a certain time
in a PRTRT. PRTRTs combine probabilistic and nondeterministic behaviors,
and we must therefore assign “probabilities” also to the nondeterministic choices
to define the probability of reaching a state t2 from a state t1 in time τ . This is
done by “adversaries,” so that the probability of reaching t2 in time τ is defined
relative to a given adversary.

A computation of a PRTRT Rπ,τ is an infinite sequence of E/A-canonical
rewrite steps, with zero-time self-loops from deadlock states. Formally, a com-
putation of Rπ,τ is an infinite sequence Π = [u1]A

α1−→
τ1

[u2]A
α2−→
τ2
· · · where

[ui]A
αi−→
τi

[ui+1]A is either a E/A-canonical one-step rewrite, or [ui]A cannot be

rewritten using the rules in Rπ,τ , in which case [ui]A = [ui+1]A, αi = !, and
τi = 0, where ‘ ! ’ is a new label. To each computation Π we associate the infinite
timed computation path obtained by removing the labels above the transition ar-
rows. A finite timed computation path is a prefix of an infinite timed computation
path. We denote by Πn = [u1]A −→

τ1
. . . −→

τn−1
[un]A a finite timed computation

path. The nondeterministic choices of the generalized R/A-matches ([C]A, r, [θ]A)
for a state [uk]A prohibit us from defining the probability of reaching [un]A in a
certain time. Therefore, all nondeterministic choices must be resolved by means
of an adversary, which extends the notion of adversary in [14] as follows:

Definition 5. An R/A-match adversary of a PRTRT Rπ,τ is a function A that
maps each finite timed computation path Πn of Rπ,τ , ending with a term [un]A,
to a probability distribution on the set of generalized R/A-matches for [un]A.

Given an R/A-match adversary A, the following formula gives the probability
of performing a rewrite from a “non-deadlock” term [un]A to a term [u′]A in one
step in time τ , provided that [un]A is obtained via Πn,

PA
(
[un]A −→

τ
[u′]A | Πn

)
=

∑ [

A(Πn) ([C]A, r, [θ]A) · πr([θ]A) ([ρ]A)

]

,

68 L. Bentea, and P.C. Ölveczky

where the sum ranges over all [un]A
([C]A, r, [θ]A, [ρ]A)−−−−−−−−−−−−→

τ
[u′]A. If [un]A is a deadlock

state then PA
(
[un]A−→

τ
[u′]A | Πn

)
= 1 if and only if [u′]A = [un]A and τ = 0,

and is 0 otherwise. Also, the probability of the finite timed computation path
Πn to occur in a PRTRT is given by:

PA (Πn) =
n−1∏

i=1

PA

(

[ui]A −→
τi

[ui+1]A

∣
∣
∣
∣ [u1]A −→

τ1
. . . −→

τi−1
[ui]A

)

.

The probability of reaching state [u′]A from state [u]A in time τ is given by∑
Π PA (Π), where Π ranges over all finite timed computation paths Πn with

[un]A = [u′]A and
∑n−1

i=1 τi = τ , and such that there is no j < n with [uj]A =
[u′]A and

∑j−1
i=1 τi = τ .

6 The Expressive Power of PRTRTs

In this section we show the expressiveness of PRTRTs—and its suitability as
a unifying semantic framework for probabilistic real-time systems in which dif-
ferent models of such systems can be represented—by explaining how a range
of models of probabilistic real-time systems can naturally be seen as PRTRTs.
More details about the mappings and their correctness proofs are given in [6].

Since probabilistic rewrite theories are a proper subclass of PRTRTs, any
probabilistic rewrite theory can also be represented as a PRTRT. In [14] map-
pings are provided from probabilistic nondeterministic systems, generalized semi-
Markov processes, and continuous-time Markov chains into probabilistic rewrite
theories. That paper also claims that the same method can be used for represent-
ing the PEPA [11] language and various Petri net formalisms, such as stochastic
reward nets, generalized stochastic Petri nets [3], and stochastic Petri nets with
generally distributed firing times, as probabilistic rewrite theories.

6.1 Probabilistic Timed Automata

The probabilistic timed automaton (PTA) model [27] combines nondeterminis-
tic and probabilistic behaviors, and extends timed automata [5] by allowing a
probabilistic choice of both the next state and the set of clocks to be reset in a
“transition.” PTA are supported by the probabilistic model checker PRISM [15].

A clock is a variable ranging over the real numbers that increases its value
according to the elapsed time. A zone of a set of clocks X is a convex subset
of R|X | defined by a conjunction of constraints over X . Let ZX be the set of
all zones of X . A PTA is then a tuple (S, s0,X , inv, prob, {τs}s∈S), where: S
is a finite set of states with s0 ∈ S the start state; X is a finite set of clocks ;
inv : S → ZX is a function that assigns an invariant to each state; prob : S →
P(Dist (S × P(X))) is a function that assigns a set of probability distributions
on S ×P(X) to each state; and {τs}s∈S is a family of functions where, for each
s ∈ S, τs : prob(s)→ ZX assigns an enabling condition to each p ∈ prob(s).

Probabilistic Real-Time Rewrite Theories 69

A PTA in state s may nondeterministically select any enabled probability
distribution p in prob(s). The probability that the automaton then makes a
transition to state s′ and resets all the clocks X ⊆ X to 0 is p(s′, X). Following
[16,27], we assume that the enabling condition τs(p) implies the invariant of all
possible successor states s′ with p(s′, X) > 0, after the clocks in X are reset.

Figure 1 (a) shows a PTA that starts in state s0 with its clock x initialized to
0. When x ∈ [5, 7] in state s0 the automaton can nondeterministically choose be-

tween the two probability distributions π1 =

(
(s1, ∅) (s2, ∅)

0.3 0.7

)

and π2 =

(
(s2, ∅)

1

)

,

and when x ∈ [3, 8]\ [5, 7] it can only take π2. A probabilistic choice is then made
according to the selected probability distribution, and the corresponding transi-
tion is performed. Likewise, the probabilistic choice from s1 is made by sampling

from the probability distribution π3 =

(
(s1, ∅) (s2, {x})

0.5 0.5

)

; if the automaton makes

a transition to state s2, which happens with probability 0.5, then x is reset to 0.

s0

x ≤ 8

s1

x ≤ 7
s2

x ≤ 8

x = 0

0.3 0.7
1 x ∈ [3, 8]

0.5

{x := 0}
0.5

x ∈ [5, 7]

x < 7

(a)

s0, {x, y}

s1, {x} s2, {y}

s3, {y}

push, {x}

pop, {y}

push, {y} pop, {x, y}

push, {x}

(b)

Fig. 1. (a) A probabilistic timed automaton (b) A stochastic automaton

A PTA A = (S, s0,X , inv, prob, 〈τs〉s∈S) with X = {x1, . . . , xn} is represented
as a PRTRT ΨPTA(A) as follows (see [6] for more details). A “timed state” of A
is represented as a term {s, r1, r2, . . . , rn}, with ri denoting the current value of
clock xi. To each state s ∈ S and each probability distribution π : S × P(X)→
[0, 1] in prob(s), we associate a probabilistic rewrite rule

crl [π]: {s, y1, . . . , yn} => σ if (y1, . . . , yn) ∈ τs(π) with probability σ :=Γs(π)

where σ and the yi are variables, and Γs(π) : CanGSubstE/A(σ) → [0, 1] is a
probability distribution over the set of E/A-canonical ground substitutions for
σ defined by Γs(π)(σ �→ {s′, t1, . . . , tn}) = π(s′, X) for all s′ ∈ S and all X ⊆ X ,
where tj is 0 if xj ∈ X and yj otherwise. A tick rule

crl [tick s]:

{s, y1, . . . , yn} => {s, y1 + y, . . . , yn + y} in time y if (y1 + y, . . . , yn + y) ∈ inv(s)

70 L. Bentea, and P.C. Ölveczky

models time elapse for each state s ∈ S. Since τs(π) and inv(s) are zones defined
by conjunctions of inequality constraints over the clock values, the set member-
ships (y1, y2, . . . , yn) ∈ τs(π) and (y1 +y, y2 +y, . . . , yn +y) ∈ inv(s) are actually
translated into standard inequalities in ΨPTA(G), as shown below.

The probabilistic timed automaton in Fig. 1 (a) is therefore represented by a
PRTRT containing the following set of conditional tick rules

crl [tick s0]: {s0, x} => {s0, x + y} in time y if x + y <= 8 .

crl [tick s1]: {s1, x} => {s1, x + y} in time y if x + y <= 7 .

crl [tick s2]: {s2, x} => {s2, x + y} in time y if x + y <= 8 .

as well as the following instantaneous probabilistic rewrite rules

crl [π1]: {s0, x} => σ if x >= 5 and x <= 7 with probability σ :=

(
{s1, x} {s2, x}

0.3 0.7

)

.

crl [π2]: {s0,x} => σ if x >= 3 and x <= 8 with probability σ :=

(
{s2, x}

1.0

)

.

crl [π3]: {s1,x} => σ if x < 7 with probability σ :=

(
{s1, x} {s2, 0}

0.5 0.5

)

.

where σ, x and y are variables and the initial state is given by the term {s0, 0}.

6.2 Stochastic Automata

A stochastic automaton (SA) [9] is an automaton where the transitions have the

form s
a,X−→ s′, with a an action and X a set of timers. A transition is enabled

when all the timers in X have expired, and time cannot advance when there is
an enabled transition. An SA may also have nondeterministic behaviors, since
multiple transitions may become enabled at the same time. As the result of
taking the transition s

a,X−→ s′, each timer x which should be reset when arriving
at s′ is assigned a value sampled from its cumulative distribution function F (x).

Figure 1 (b) shows an SA. Each state has a set of timers that have to be set
when arriving at that state. The SA starts in state s0 and uses the CDFs F (x)
and F (y) to assign initial values to the timers x and y. The automaton makes a
(push) transition to state s1 as soon as the timer x expires. In the new state s1,
the timer x is assigned a new value sampled from the CDF F (x). At this point,
the SA makes a nondeterministic choice between the two possible transitions
when the timer y expires, to s2 with a pop action, or to s3 with a push action.

Let Pfin(X) denote the set of finite subsets of a set X . A stochastic automaton
is a tuple (S, s0,X , Act,−→, κ, F) where: S is a set of states and s0 ∈ S is the
initial state; X is a set of timers ; Act is a set of actions ; −→ ⊆ S × (Act ×
Pfin(X))×S is the set of transitions, where we write s

a,X−→ s′ iff (s, a, X, s′) ∈ −→;
the function κ : S → Pfin(X) is the clock setting function; and F : X → Dist(R)
assigns a CDF F (x) to each timer x ∈ X , with F (x)(t) = 0 if t < 0.

We outline the PRTRT representation ΨSA(A) of a finitary SA A = (S, s0,X ,
Act,−→, κ, F), where X is a finite set {x1, . . . , xn}. The “timed state” of A
is represented by a term {s, r1, r2, . . . , rn}, where s is a constant denoting the

Probabilistic Real-Time Rewrite Theories 71

current state of the SA, and ri is the current value of the timer xi. The following
probabilistic rewrite rule randomly selects the initial timer values:

rl [init]: init => {s0, y1, . . . , yn} with probability y1 :=F1 and ... and yn :=Fn .

where init is a constant and Fi mimics the CDF F (xi) of clock xi. Each tran-

sition s
a,X−−→ s′ of the SA is translated to a labeled probabilistic rewrite rule

rl [a]: {s, r1, . . . , rn} => {s′, r′1, . . . , r′n} with probability r′j1 :=Fj1 and ... and r′jl
:=Fjl

.

where ri is 0 if xi ∈ X and is a variable yi otherwise, κ(s′) = {xj1 , xj2 , . . . , xjl
},

and r′i = ri if xi �∈ κ(s′). Time elapse is modeled by the following tick rule which
can advance time until the next timer expires if no transition is enabled:

crl [tick]: {σ, y1, . . . , yn} => {σ, max(y1 − y, 0), . . . , max(yn − y, 0)} in time y
if y <= nextTimerExpires(y1 , . . . , yn) and not transEnabled(σ, y1, . . . , yn) .

where σ, yi, and y are all variables, nextTimerExpires(y1, . . . , yn) returns the
smallest non-zero value of the yi, and transEnabled(σ, y1, . . . , yn) holds iff some
transition is enabled in the given state. The latter is defined by an equation

eq transEnabled(s, r1, . . . , rn) = true .

where ri is 0 if xi ∈ X and is a variable yi otherwise, for each transition s
a,X−−→ s′,

and by having an equation that states that otherwise (i.e., if none of the above
equations apply), transEnabled(σ, y1, . . . , yn) is false:

eq transEnabled(σ, y1, . . . , yn) = false [owise] .

The SA in Fig. 1 (b) is therefore represented as a PRTRT as follows

rl [init]: init => {s0, y1, y2} with probability y1 :=F1 and y2 :=F2 .

rl [push]: {s0, 0, y2} => {s1, y′
1, y2} with probability y′

1 :=F1 .

rl [pop] : {s1, y1, 0} => {s2, y1, y′
2} with probability y′

2 :=F2 .

rl [push]: {s1, y1, 0} => {s3, y1, y′
2} with probability y′

2 :=F2 .

rl [push]: {s2, 0, y2} => {s0, y′
1, y′

2} with probability y′
1 :=F1 and y′

2 :=F2 .

rl [pop] : {s3, 0, 0} => {s2, 0, y′
2} with probability y′

2 :=F2 .

crl [tick]: {σ, y1, y2} => {σ, max(y1 - y, 0), max(y2 - y, 0)} in time y
if y <= nextTimerExpires(y1, y2) and not transEnabled(σ, y1, y2) .

where transEnabled and nextTimerExpires are defined by:

eq transEnabled(s0, 0, y2) = true . eq transEnabled(s1, y1, 0) = true .

eq transEnabled(s2, 0, y2) = true . eq transEnabled(s3, 0, 0) = true .

eq transEnabled(s, y1, y2) = false [owise] .

eq nextTimerExpires(y1, y2) = if y1 == 0 then (if y2 == 0 then INF else y2 fi)

else (if y2 == 0 then y1 else min(y1, y2) fi) .

72 L. Bentea, and P.C. Ölveczky

6.3 Deterministic and Stochastic Petri Nets

Deterministic and stochastic Petri nets (DSPNs) [2] are a fairly general class
of timed Petri nets, where a transition can fire after having been continuously
enabled for either a fixed (deterministic) or a random (exponentially distributed)
amount of time. DSPNs are strictly more expressive than generalized stochastic
Petri nets [3] (and, hence, stochastic Petri nets), which can be seen as DSPNs
in which all deterministic transitions are instantaneous.

There are many variations of the basic model, including having inhibitor arcs,
arc multiplicities that are functions of the marking, transition precedences, etc.
To focus on the real-time and probabilistic aspects of the model, we assume
a “standard” Petri net model extended with the above firing delays, and refer
to [28] for the treatment of advanced Petri net features in rewriting logic. That
is, a DSPN is a tuple (P, T, F, τ, R) where: P is a finite set of places ; T = T D�T S

is a finite set of transitions, partitioned into sets T D and T S of deterministic
and stochastic transitions, respectively, and satisfying T ∩ P = ∅; F ⊆ (P ×
T) ∪ (T × P) is the flow relation; τ : T D → R≥0 is a function that maps
each deterministic transition t to its firing delay τ(t); if τ(t) = 0 we call t an
instantaneous transition; R : T S → R is a function that associates to each
stochastic transition t the rate R(t) of the exponential distribution of its firing
delay. A transition must fire when it has been enabled continuously for the
duration of its firing delay. We assume that the “enabled-time” of a transition
is reset to zero when the transition is fired.

Figure 2 shows a DSPN specification, including its initial marking, of a client-
server architecture. Stochastic (t1), deterministic (t3) and instantaneous (t2)
transitions are shown as empty rectangles, filled rectangles and thick lines, re-
spectively. For the stochastic transitions we show the rate of the exponential
distribution of their waiting times, while for the deterministic transitions we
display the fixed amount of time associated with them.

p1 p2 p3

p4

t1

5

t2 t3

11.3

Fig. 2. A DSPN specifying a queueing model of a client-server architecture

Our representation follows the approach of [20], which sees a marking as a
multiset of places and a transition as a multiset rewrite rule. In addition, for
each transition t ∈ T , we associate a timer that denotes the remaining time
during which the transition must be continuously enabled to fire. Such a timer

Probabilistic Real-Time Rewrite Theories 73

can be represented by a term < t ; r >, where t is the transition and r is its
timer value. The global state of the system is therefore represented as a term
{m}, where m is a multiset of places and transition timers, with multiset union
denoted by juxtaposition. As a result of firing a transition, previously enabled
transitions may be disabled, and vice versa. Therefore, we must recompute the
transition timer values when a transition fires. For each transition t in the DSPN
with pre-set p1 p2 . . . pm and post-set q1 q2 . . . qn, we therefore have a rewrite
rule

rl [apply-t] :
{< t ; 0 > p1 p2 ... pm REST} => {recomputeTimers(< t ; INF > q1 q2 ... qn REST)}.

which fires the transition t when its timer is 0. As a result, the pre-set is removed
from the state, the post-set is added to it, t’s timer is turned off (although it may
be reset by recomputeTimers if the transition is still enabled, or re-enabled),
and the function recomputeTimers is applied to the entire resulting state to
recompute all transition timer values.

The function recomputeTimers is defined as follows: (i) if a transition is
enabled and the corresponding timer is turned off (i.e., has the value INF), then
the timer is reinitialized to the firing delay of the transition, otherwise the timer
is left unchanged; and (ii) if a transition is not enabled, its timer is turned
off. Case (i) can easily be defined by an equation defining recomputeTimers
for deterministic transitions. However, an equation defining recomputeTimers
cannot reset the timer of a stochastic transition, since the new timer value should
be assigned probabilistically. Therefore, the timer of the stochastic transition is
initialized to a new value reset, which will be replaced by a probabilistically
chosen value in a rewrite rule. That is, for any deterministic transition t, case
(i) above is defined by the following equation:

eq recomputeTimers(< t ; TI > p1 p2 ... pm REST)

= < t ; if TI == INF then τ(t) else TI fi > recomputeTimers(p1 p2 ... pm REST) .

and for any stochastic transition t, case (i) is defined by the following equation:

eq recomputeTimers(< t ; TI > p1 p2 ... pm REST)

= < t ; if TI == INF then reset else TI fi > recomputeTimers(p1 p2 ... pm REST) .

For each stochastic transition t with rate R(t) we therefore have a rewrite rule

rl [set-stoc-timer]: < t ; reset > => < t ; X > with probability X := ExpRate(R(t)) .

where the function ExpRate(λ) mimics the CDF of the exponential distribution
with rate parameter λ ∈ R. For case (ii), if the transition is not enabled, the
following owise equation sets the corresponding timer to INF:

eq recomputeTimers(< T ; TI > REST) = < T ; INF > recomputeTimers(REST) [owise] .

where T is a variable. Finally, we add the tick rule

crl [tick]: {SYSTEM} => {decreaseTimers(SYSTEM, Y)} in time Y if Y <= mte(SYSTEM).

74 L. Bentea, and P.C. Ölveczky

where decreaseTimers decreases the value of each timer by the elapsed time
Y, and mte gives the smallest timer value (or 0 if a timer has the value reset).
Therefore, this tick rule may advance time until the next timer expires. Appendix
A gives a detailed specification of the PRTRT representation of a DSPN.

The representation of the DSPN in Fig. 2 contains the instantaneous rules

rl [apply-t1] : {< t1 ; 0 > p1 REST} => {recomputeTimers(< t1 ; INF > p2 REST)} .

rl [apply-t2] : {< t2 ; 0 > p2 p4 REST} => {recomputeTimers(< t2 ; INF > p3 REST)} .

rl [apply-t3] : {< t3 ; 0 > p3 REST} => {recomputeTimers(< t3 ; INF > p1 p4 REST)} .

together with the equations defining the recomputeTimers function

eq recomputeTimers(< t1 ; TI > p1 REST)

= < t1 ; if TI == INF then reset else TI fi > recomputeTimers(p1 REST) .

eq recomputeTimers(< t2 ; TI > p2 p4 REST)

= < t2 ; if TI == INF then 0 else TI fi > recomputeTimers(p2 p4 REST) .

eq recomputeTimers(< t3 ; TI > p3 REST)

= < t3 ; if TI == INF then 11.3 else TI fi > recomputeTimers(p3 REST) .

eq recomputeTimers(< t ; TI > REST) = < t ; INF > recomputeTimers(REST) [owise] .

ceq recomputeTimers(REST) = REST if noTimers(REST) .

as well as the tick rule and the rule for setting the timer of the stochastic tran-
sition t1 to a value sampled from the exponential distribution with rate 5:

rl [set-stoc-timer] : < t1 ; reset > => < t1 ; X > with probability X := ExpRate(5).

6.4 Handling Uncertainty in Probabilistic Transitions

We have identified two models for probabilistic real-time systems where the
probability distribution associated with a transition is nondeterministically cho-
sen from a set of probability distributions. We can represent these models as
PRTRTs, which implies that PRTRTs are more expressive than (untimed) prob-
abilistic rewrite theories in which the probability distribution is deterministically
chosen. See [6] for details about the PRTRT representation of these models.

In timed probabilistic transition systems (TPTS) [29] the probability of mak-
ing a transition belongs to an interval. This can be modeled in our formalism by
exploiting the fact that, for a given rewrite rule r, πr is a family of probability
distributions, indexed both by the substitutions for the variables in the left-
hand side of r and by the substitutions for the nondeterministically instantiated
variables in the righthand side of r. In our PRTRT encoding we add the non-
deterministically selected probability values to the state. Therefore, we specify
the probabilistic transition from s0 of the TPTS in Fig. 3 (a) by the following
probabilistic tick rewrite rule, where σ, p and q are variables:

crl [tick] : {s0; q} => {σ; p} in time 1 if p ∈ [0.9, 1]

with probability σ :=

(
s1 s2

p 1 − p

)

.

In timed probabilistic systems (TPS) [10], the time that a node waits in a
location—after selecting an outgoing action, but before performing the action—
is a random value, whose average is given, but whose probability distribution is

Probabilistic Real-Time Rewrite Theories 75

s0

s1 s2

p ∈ [0.9, 1] 1 − p

1 loop

(a)

s0 s1

s2 s3 s4

a

4

1

b
5

c
7

1/3 2/3 1/5 4/5

(b)

Fig. 3. (a) A timed probabilistic transition system (b) A timed probabilistic system

not specified. Figure 3 (b) shows an example of a TPS, where the actions are
depicted as diamond-tipped arrows, the average time for performing an action
is shown in red, and the probabilistic transitions are the arrows with probability
values attached to them. We assume that the set of possible waiting times of
action b is a finite3 set {ϕ1, ϕ2, . . . , ϕm}, where ϕi is selected with an unknown
probability pi ∈ [0, 1]. A state in the PRTRT representation of a TPS has the
form {s, a, s′, r, p1; . . . ; pn}, where s is the current state, a is the next action
to perform, s′ is the next state, r is the remaining time until the automaton
performs the action a, and p1, . . . , pm are the nondeterministically chosen prob-
ability values as for TPTSs. The rule that performs action a when the timer
expires and selects b as the next action is then

crl [ab]: {s0, a, s1, 0, q1; ...; qn} => {s1, b,σ, r, p1; ...; pm}

if p1 + . . . + pm = 1 and p1ϕ1 + . . . + pmϕm = 5

with probability σ :=

(
s2 s3

1/3 2/3

)

and r :=

(
ϕ1 . . . ϕm

p1 . . . pm

)

.

7 Concluding Remarks

We have defined the probabilistic real-time rewrite theory (PRTRT) formalism
for modeling probabilistic real-time systems in rewriting logic, and have shown
how PRTRTs can be seen as a unifying semantic framework in which a range of
models for probabilistic real-time systems can be naturally represented, includ-
ing systems with underspecified probability distributions. We have also given a
PRTRT specification of a simple round trip time protocol that seems to be out-
side the class of systems that can be modeled using automaton-based formalisms,
since the number of messages in a state can grow beyond any bound.

This work has provided the theoretical foundations for an analysis tool for
probabilistic real-time systems in rewriting logic. In the future we must de-
fine property specification formalisms and implement suitable model checkers
for PRTRTs. For this purpose, the statistical model checking approach seems
very promising, since instead of performing exact probabilistic model checking—
which often becomes unfeasible for large distributed systems—statistical model
3 See [6] for the continuous case.

76 L. Bentea, and P.C. Ölveczky

checking is typically much more efficient, although it only guarantees a property
with a desired level of confidence. In particular, statistical model checking is
based on evaluating a number of behaviors and is therefore easily parallelizable.
Indeed, the PVeStA tool [4] provides a parallel statistical model checker for a
subset of (untimed) probabilistic rewrite theories and could be a useful starting
point for a future tool for PRTRTs.

References

1. Agha, G., Greenwald, M., Gunter, C.A., Khanna, S., Meseguer, J., Sen, K., Thati,
P.: Formal modeling and analysis of DoS using probabilistic rewrite theories. In:
Proc. FCS 2005 (2005)

2. Ajmone Marsan, M., Chiola, G.: On Petri nets with deterministic and exponen-
tially distributed firing times. In: Rozenberg, G. (ed.) APN 1987. LNCS, vol. 266,
Springer, Heidelberg (1987)

3. Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri
nets for the performance evaluation of multiprocessor systems. ACM Trans. Com-
put. Syst. 2 (1984)

4. AlTurki, M., Meseguer, J.: PVeStA: A parallel statistical model checking and quan-
titative analysis tool. To appear in Proc. CALCO 2011 (2011)

5. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126 (1994)
6. Bentea, L., Ölveczky, P.C.: Probabilistic real-time rewrite theories and their ex-

pressive power (2011),
http://www.ifi.uio.no/~lucianb/publications/2011/prt-exp.pdf

7. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoretical Computer Science 360(1-3) (2006)

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

9. D’Argenio, P.R., Katoen, J.P., Brinksma, E.: An algebraic approach to the specifi-
cation of stochastic systems. In: PROCOMET 1998. Chapman & Hall, Ltd., Boca
Raton (1998)

10. De Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford
University, USA (1998)

11. Gilmore, S., Hillston, J.: The PEPA workbench: A tool to support a process
algebra-based approach to performance modelling. In: Computer Performance
Evaluation (1994)

12. Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions,
2nd edn. Wiley Series in Probability and Statistics, vol. 1. Wiley-Interscience,
Hoboken (1994)

13. Katelman, M., Meseguer, J., Hou, J.: Redesign of the LMST wireless sensor pro-
tocol through formal modeling and statistical model checking. In: Barthe, G., de
Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 150–169. Springer, Heidel-
berg (2008)

14. Kumar, N., Sen, K., Meseguer, J., Agha, G.: Probabilistic rewrite theories: Unifying
models, logics and tools. Technical report UIUCDCS-R-2003-2347, Department of
Computer Science, University of Illinois at Urbana-Champaign (2003)

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic model checking
for performance and reliability analysis. ACM SIGMETRICS Performance Evalu-
ation Review 36(4) (2009)

http://www.ifi.uio.no/~lucianb/publications/2011/prt-exp.pdf

Probabilistic Real-Time Rewrite Theories 77

16. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of
real-time systems with discrete probability distributions. Theor. Comput. Sci. 282
(2002)

17. Lien, E., Ölveczky, P.C.: Formal modeling and analysis of an IETF multicast pro-
tocol. In: SEFM 2009. IEEE Computer Society, Los Alamitos (2009)

18. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96(1) (1992)

19. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, Springer, Heidel-
berg (1998)

20. Meseguer, J., Montanari, U.: Petri nets are monoids. Information and Computation
88(2) (1990)

21. Ölveczky, P.C., Meseguer, J.: The Real-Time Maude tool. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 332–336. Springer, Heidelberg
(2008)

22. Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in
rewriting logic. Theoretical Computer Science 285(2), 359–405 (2002)

23. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20 (2007)

24. Ölveczky, P.C., Meseguer, J., Talcott, C.: Specification and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. Formal Methods in
System Design 29, 253–293 (2006)

25. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in Real-Time Maude. Theo-
retical Computer Science 410(2-3), 254–280 (2009)

26. Sen, K., Viswanathan, M., Agha, G.A.: VESTA: A statistical model-checker and
analyzer for probabilistic systems. In: QEST 2005. IEEE Computer Society, Los
Alamitos (2005)

27. Sproston, J.: Model Checking for Probabilistic Timed and Hybrid Systems. Ph.D.
thesis, School of Computer Science, University of Birmingham (2001)

28. Stehr, M.O., Meseguer, J., Ölveczky, P.C.: Rewriting logic as a unifying framework
for petri nets. In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G. (eds.) APN 2001.
LNCS, vol. 2128, pp. 250–303. Springer, Heidelberg (2001)

29. Yi, W.: Algebraic reasoning for real-time probabilistic processes with uncertain
information. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT
1994 and ProCoS 1994. LNCS, vol. 863, pp. 680–693. Springer, Heidelberg (1994)

30. Zhang, H., Hou, J.: Maintaining Sensing Coverage and Connectivity in Large Sen-
sor Networks. Ad Hoc & Sensor Wireless Networks 1(1-2) (2005)

A PRTRT Representation of DSPNs

We give below a more detailed specification, using Maude syntax, of the PRTRT
representation of a DSPN.

sort Place .

ops p1 p2 p3 p4 ... : -> Place [ctor] . --- one constant for each place

sort Transition .

ops t1 t2 t3 ... : -> Transition [ctor] . --- one constant for each transition

78 L. Bentea, and P.C. Ölveczky

op reset : -> TimeInf [ctor] . --- new ’timer’ value

sort TransitionTimer . --- transition timers

op <_;_> : Transition TimeInf -> TransitionTimer [ctor] .

--- An extended marking is a multiset of places and transition timers:

sort ExtendedMarking . subsort TransitionTimer Place < ExtendedMarking .

op none : -> ExtendedMarking [ctor] . --- empty marking

--- assoc-comm multiset union operator:

op __ : ExtendedMarking ExtendedMarking -> ExtendedMarking

[ctor assoc comm id: none] .

--- For EACH transition t we have a firing rule of the following form. Assume

--- that the preset of t is q1 ... qm and the postset of t is q1’ ... qn’, where

--- each qi and qk’ is some place pj:

vars REST SYSTEM : ExtendedMarking . var TI : TimeInf . var T : Transition .

var X : Time .

rl [fire-t] :

{< t ; 0 > q1 ... qm REST}

=>

{recomputeTimers(< t ; INF > q1’ ... qn’ REST)} .

op recomputeTimers : ExtendedMarking -> ExtendedMarking [frozen (1)] .

--- For EACH deterministic transition t, with the above pre- and postsets,

--- there is one equation as follows:

eq recomputeTimers(< t ; TI > q1 ... qm REST) --- t is enabled!

=

if TI == INF --- t was previously disabled

< t ; tau(t) > --- initialize with value of firing delay

else

< t ; TI > --- t was already enabled, do not change timer value

fi

recomputeTimers(q1 ... qm REST) . --- recursively compute the other timers

--- For EACH stochastic transition t, with the above pre- and postsets,

--- there is one equation as follows, which is very similar to the

--- equation above, but resets the timer to ’reset’:

eq recomputeTimers(< t ; TI > q1 ... qm REST) --- t is enabled

=

if TI == INF --- t was previously disabled

< t ; reset > --- initialize with value ’reset’

else

< t ; TI > --- t was already enabled, do not change timer value

fi

recomputeTimers(q1 ... qm REST) . --- recursively compute the other timers

--- An owise equation matches when the transition T is not enabled.

--- Then we set the timer to ’INF’, no mater its earlier value:

Probabilistic Real-Time Rewrite Theories 79

eq recomputeTimers(< T ; TI > REST) = < T ; INF > recomputeTimers(REST) .

--- Finally, when there are no transitions timers left to apply

--- recomputeTimers to, we are finished:

ceq recomputeTimers(REST) = REST if noTimers(REST) .

--- This noTimers could also have been done with sorts, etc.

op noTimers : ExtendedMarking -> Bool .

eq noTimers(< T ; TI > REST) = false .

eq notimers(REST) = true [owise] .

--- Next, we instantiate the probabilistic variable; details

--- about the probability distribution omitted:

rl [instantiate-probabilistic-delay] :

< T ; reset > => < T ; X > with probability X := distr(...R(T)...) .

--- Finally, the tick rule:

crl [tick] :

{SYSTEM} => {decreaseTimers(SYSTEM, X)} in time X if X <= mte(SYSTEM) .

op decreaseTimers : ExtendedMarking Time -> ExtendedMarking [frozen (1)] .

eq decreaseTimers(< T ; TI > REST, X)

= < T ; TI - X > decreaseTimers(REST, X) .

eq decreaseTimers(REST) = REST [owise] . --- no more timers

--- The function mte gives the smallest timer value in the system:

op mte : ExtendedMarking -> TimeInf [frozen (1)] .

eq mte(< T ; TI > REST) = min(if TI == reset then 0 else TI fi, mte(REST)) .

eq mte(REST) = INF [owise] .

	Probabilistic Real-Time Rewrite Theories and Their Expressive Power
	Introduction
	Preliminaries
	Probabilistic Real-Time Rewrite Theories
	Example: A Simple Round Trip Time Protocol
	Reachability Probabilities in PRTRTs
	The Expressive Power of PRTRTs
	Probabilistic Timed Automata
	Stochastic Automata
	Deterministic and Stochastic Petri Nets
	Handling Uncertainty in Probabilistic Transitions

	Concluding Remarks
	References

