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Abstract. A controller for a discrete game with ω-regular objectives requires
attention if, intuitively, it requires measuring the state and switching from the
current control action. Minimum attention controllers are preferable in modern
shared implementations of cyber-physical systems because they produce the least
burden on system resources such as processor time or communication band-
width. We give algorithms to compute minimum attention controllers for ω-
regular objectives in imperfect information discrete two-player games. We show a
polynomial-time reduction from minimum attention controller synthesis to syn-
thesis of controllers for mean-payoff parity objectives in games of incomplete
information. This gives an optimal EXPTIME-complete synthesis algorithm. We
show that the minimum attention controller problem is decidable for infinite state
systems with finite bisimulation quotients. In particular, the problem is decidable
for timed and rectangular automata.

1 Introduction

Automata-theoretic reactive synthesis techniques [10,5,31,15,32,29,37,21,23] hold the
promise to correct-by-construction design of complex reactive systems, and over the
years, have seen impressive technical advances that have brought them within strik-
ing distance of practice in the design of cyber-physical systems [17,19,20,26]. Despite
the many advances, there is still a gap between the abstract two-person game models
considered by the theory of synthesis and implementation issues associated with con-
troller implementations. Classically, automata-theoretic synthesis considers the size of
the memory as the notion of optimality; and any memoryless strategy is considered op-
timal (a strategy is memoryless if it depends only on the current state and not on the
history of the play). While roughly adequate for applications of synthesis in hardware
circuit design, for more recent applications of synthesis techniques in cyber-physical
systems, there are additional implementation costs whose effects can significantly in-
fluence the practical applicability of synthesized controllers.

Classical controller synthesis assumes that measurement of the current state and
computation of the control action is computed instantaneously. In practice, state mea-
surement and control computations take time and consume other system resources such
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as network bandwidth. In a modern control system application, where a controller
shares the platform with other tasks, the controller task must compete for resources
with other tasks. In this context, it is important to find a controller that can be imple-
mented without diverting attention from other, possibly more pressing, system tasks, or
to enable other tasks which might not be schedulable if the controller hogs resources.

Consider, for example, the simple game in Figure 1 where the objective is to visit the
state s. For states in {1, . . . , n}, any function ξ : {1, . . . , n} → {0, 1} is a memoryless
winning strategy ensuring a visit to s, and equally good in the view of classical synthe-
sis. However, consider a real-time implementation of the controller where the control
task must be scheduled to compute the next control action. The strategy which always
plays 0 (or 1) has an advantage over the strategy playing the action i mod 2. For the
former strategy, the controller task is scheduled once to set the control action, and never
again. For the latter, the control task runs every cycle, looking at the state and changing
the control action accordingly, using up communication resources to measure state and
processor resources to compute the new control, which could be used for other tasks.

Intuitively, the “simplest” strategy is to play a constant action throughout. Anything
else requires attention [3]: to measure the state and to switch to a different action if nec-
essary. Measuring the state can involve running code on the platform activating sensors
and processing sensed values, and using network bandwidth or bus slots to transmit the
sensed values to a central processor. Switching to a different action may require dy-
namic computation of lower-level control laws implementing these actions, switching
modes and tasks, as well as re-scheduling bus or network slots. The more frequently
these tasks must be performed, the more attention is required.

Of course, there may not be a winning strategy that plays a constant action through-
out. Consider in Figure 1 the objective of visiting t infinitely often. Again, any action
is possible from states { 1, . . . , n }, as long as 0 is played at s and 1 at t. A possible
strategy can, starting from 1, play 1 for n steps, then 0 for a step, then 1 for n + 1 steps,
etc., or dually, play 0 for n+1 steps, 1 for n+1 steps, a single 0, etc. Both strategies can
be implemented with lower processor requirements than one that alternates between 0
and 1. The precise strategy chosen will depend on the actual costs involved in switching
between 0 and 1. In general, the lowest-cost controller must optimize the usage, over the
long run, of system resources while ensuring the winning condition. Formally, the con-
troller must optimize costs associated with measuring state and switching controllers
while ensuring the winning condition is satisfied.

In this paper, we consider the problem of minimum attention controllers for ω-regular
objectives. We introduce a cost for measuring the state, as well as a cost for changing
the control action, in the model of two-player games. We then ask for a strategy which
ensures the ω-regular objective while minimizing the long-run costs incurred due to
measurement and switching actions. Technically, playing a game without measuring
the state or changing the control action is similar to playing a game of incomplete
information [33,22,7]. We formulate the minimum attention control problem as a game
of incomplete information, and we show a polynomial-time reduction from the problem
of minimum attention control for ω-regular objectives to solving a mean-payoff parity
condition [8] on a game of incomplete information. Together with results on incomplete
information games [7], this gives an EXPTIME-complete procedure when the winning
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Fig. 1. Simple example

objective is given as a parity condition on states, and a triply exponential procedure
when the objective is given in linear-temporal logic.

We develop the theory both for finite-state, discrete control problems, as well as for
infinite state systems for which there is a finite bisimulation quotient. Using known
results about stable partitions of timed games [1,24] and rectangular automata [16], it
follows that the minimum attention controller synthesis problem is decidable for timed
games and discrete-time control for rectangular automata.

Attention, and minimum attention controllers, were introduced in a seminal paper
by Brockett [3]. There, the problem of minimum attention synthesis is formulated for
controlled dynamical systems, and set up as the minimization problem for an attention
index, a functional involving the partial derivatives ∂u

∂t and ∂u
∂x of the control function

u w.r.t. time and state, respectively, subject to constraints on u to guarantee a minimum
level of system performance. The resulting problem involves minimization of non-linear
functions subject to systems of partial differential equations, even in the case of linear
control systems. Minimum attention control was applied to solve control problems for
vehicular control [4] and for control under network bandwidth constraints [27], but the
algorithmic complexity of the methods are not immediate. More recently, [2] studies
approximations of the problem using event-driven control.

Solving the minimum attention control problem for discrete systems suggests a com-
putational approach to approximately solve the minimum attention synthesis problem
for controlled dynamical system. The link between continuous dynamical systems and
discrete systems is provided by approximate abstractions of continuous models [30,14].
Approximate abstractions generalize the classical language-theoretic notions of lan-
guage containment and simulation to the quantitative case; an ε-approximate abstrac-
tion of a continuous system is a discrete system such that for any trace of the original
system, there is a trace of the abstract system which is at a distance of at most ε, for
a design parameter ε. With approximate abstraction relations, the minimum attention
control problem for dynamical systems can be approximately solved in two steps: first
compute the abstraction, then solve the problem on the discrete abstraction.

Related Works. In this work we consider the minimum attention controller synthe-
sis problem and show that the problem can be solved by solving a special class of
incomplete-information mean-payoff parity games and is EXPTIME-complete. The
general problem of incomplete-information mean-payoff games was studied in [11] and
the problem was shown to be undecidable, whereas we show that the minimum atten-
tion synthesis problem belongs to a decidable subclass. The problem of mean-payoff
parity games was studied in [8] but in the setting of perfect-information games, and we
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show that for the special class of incomplete-information games we obtain, the prob-
lem is decidable using solutions of [8]. Incomplete-information games with Boolean
objectives (such as parity objectives) were considered in [7], whereas in this paper the
problem we consider reduces to incomplete-information games with mixed quantitative
and Boolean objective (combination of mean-payoff and parity objectives). The prob-
lem of fault diagnosis with static and dynamic observers has been considered in [6], and
it was shown that the static observer problem is NP-complete and the dynamic observer
problem can be solved in 2EXPTIME using solution of mean-payoff games. In contrast
our problem requires solution of mean-payoff parity games and is EXPTIME-complete.
The fault diagnosis problem was also considered in [36] where a dynamic programming
approach was used to solve the problem. No complexity bounds are known. In contrast
our approach is game theoretic and we establish optimal complexity bounds.

2 Preliminaries

In this section we present the required preliminaries. We first present the mathematical
framework of imperfect information games, and then present a reduction of imperfect
information games to perfect information games. In the following section we will use
the definitions and the results of this section to develop the theory of minimum attention
control.

2.1 Imperfect Information Games

A game structure (of imperfect information) is a tuple G = 〈L, l0, Σ, Δ,O, γ〉, where L
is a finite set of states, l0 ∈ L is the initial state, Σ is a finite alphabet (of input letters or
actions), Δ ⊆ L×Σ×L is a set of labeled transitions, O is a finite set of observations,
and γ : O → 2L\∅ maps each observation to the set of states that it represents. We
require the following two properties on G: (i) for all � ∈ L and all σ ∈ Σ, there exists
�′ ∈ L such that (�, σ, �′) ∈ Δ; and (ii) the set {γ(o) | o ∈ O} partitions L. We say that
G is a game structure of perfect information if O = L and γ(�) = {�} for all � ∈ L. We
omit (O, γ) in the description of games of perfect information. For σ ∈ Σ and s ⊆ L,
let PostGσ (s) = {�′ ∈ L | ∃� ∈ s : (�, σ, �′) ∈ Δ}.

In a game structure, in each turn, Player 1 (controller) chooses a letter in Σ,
and Player 2 (system or plant) resolves nondeterminism by choosing the successor
state. A play in G is an infinite sequence π = �0σ0�1 . . . σn−1�nσn . . . such that (i)
�0 = l0, and (ii) for all i ≥ 0, we have (�i, σi, �i+1) ∈ Δ. The prefix up to �n

of the play π is denoted by π(n); its length is |π(n)| = n + 1; and its last element
is Last(π(n)) = �n. The observation sequence of π is the unique infinite sequence
γ−1(π) = o0σ0o1 . . . σn−1onσn . . . such that for all i ≥ 0, we have �i ∈ γ(oi). Sim-
ilarly, the observation sequence of π(n) is the prefix up to on of γ−1(π). The set of
infinite plays in G is denoted Plays(G), and the set of corresponding finite prefixes is
denoted Prefs(G). A state � ∈ L is reachable in G if there exists a prefix ρ ∈ Prefs(G)
such that Last(ρ) = �. The knowledge associated with a finite observation sequence
τ = o0σ0o1σ1 . . . σn−1on is the set K(τ) of states in which a play can be after this
sequence of observations, that is, K(τ) = {Last(ρ) | ρ ∈ Prefs(G) and γ−1(ρ) = τ}.
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The following lemma presents a inductive construction of the knowledge. The proof of
the lemma is standard.

Lemma 1. Let G = 〈L, l0, Σ, Δ,O, γ〉 be a game structure. For σ ∈ Σ, � ∈ L, and
ρ, ρ′ ∈ Prefs(G) with ρ′ = ρ · σ · �, let o� ∈ O be the unique observation such that
� ∈ γ(o�). Then K(γ−1(ρ′)) = PostGσ (K(γ−1(ρ))) ∩ γ(o�).

Strategies. A strategy in G for Player 1 is a function α : Prefs(G) → Σ that given
a finite prefix or history of a play specifies the next input letter or action. A strategy
α for Player 1 is observation-based if for all prefixes ρ, ρ′ ∈ Prefs(G), if γ−1(ρ) =
γ−1(ρ′), then α(ρ) = α(ρ′). In games of imperfect information we are interested in the
existence of observation-based strategies for Player 1. A strategy in G for Player 2 is
a function β : Prefs(G) × Σ → L such that for all ρ ∈ Prefs(G) and all σ ∈ Σ, we
have (Last(ρ), σ, β(ρ, σ)) ∈ Δ. We denote by AG, AO

G, and BG the set of all Player-1
strategies, the set of all observation-based Player-1 strategies, and the set of all Player-2
strategies in G, respectively.

The outcome of two strategies α (for Player 1) and β (for Player 2) in G is the play
π = �0σ0�1 . . . σn−1�nσn . . . ∈ Plays(G) such that for all i ≥ 0, we have σi = α(π(i))
and �i+1 = β(π(i), σi). This play is denoted outcome(G, α, β). The outcome of a
strategy α for Player 1 in G is the set Outcome1(G, α) of plays π such that there exists
a strategy β for Player 2 with π = outcome(G, α, β). The outcome sets for Player 2
are defined symmetrically.

Qualitative objectives. A qualitative objective for G is a set φ of infinite sequences of
states and input letters, that is, φ ⊆ (L × Σ)ω. A play π = �0σ0�1 . . . σn−1�nσn . . . ∈
Plays(G) satisfies the objective φ, denoted π |= φ, if π ∈ φ. We assume objectives are
Borel measurable, that is, a qualitative objective is a Borel set in the Cantor topology
on (L × Σ)ω [18].

We specifically consider parity objectives [12,35]. Parity objectives are a canonical
form to express all ω-regular objectives [35] and lie in the intersection Σ3 ∩ Π3 of
the third levels of the Borel hierarchy. For a play π = �0σ0�1 . . . , we write Inf(π)
for the set of states that appear infinitely often in π, that is, Inf(π) = {� ∈ L |
�i = � for infinitely many i’s}. For d ∈ N, let p : L → { 0, 1, . . . , d } be a priority
function, which maps each state to a nonnegative integer priority. The parity objective
Parity(p) requires that the minimum priority that appears infinitely often be even. For-
mally, Parity(p) = { π | min{ p(�) | � ∈ Inf(π) } is even }. Observe that the objectives
are defined on sequence of state and input letters, and not on observation and input
letters.

Quantitative objectives. In addition to parity (ω-regular) objectives, our algorithms will
require solving games with quantitative objectives. A quantitative objective for G is a
Borel measurable function f on infinite sequences of observations and input letters to
reals, that is, f : (L × Σ)ω → R ∪ {∞,−∞ }. We specifically consider mean-payoff
and mean-payoff parity objectives. Let r : Σ → R be a reward-function that maps every
input letter σ to a real-valued reward r(σ), and let p : L → { 0, 1, . . . , d } be a priority
function. We define the mean-payoff and mean-payoff parity objectives as follows.
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1. Mean-payoff objectives. For a play π = �0σ0�1 . . . σn−1�nσn . . . the mean-payoff
objective is the long-run average of the rewards of the input letters [38]. Formally,
for a reward function r : Σ → R, the mean-payoff objective is a function M(r)
from plays to reals that maps the play π = �0σ0�1 . . . σn−1�nσn . . . to M(r)(π) =
lim supn→∞

1
n

∑n−1
i=0 r(σi).

2. Mean-payoff parity objectives. For a play π = �0σ0�1 . . . σn−1�nσn . . . the mean-
payoff parity objective is the long-run average of the rewards of the input letters if
the parity objective is satisfied and −∞ otherwise. Formally, for a reward function
r : Σ → R and a priority function p, the mean-payoff parity objective is a function
MP(p, r) defined on plays as follows: for a play π = �0σ0�1 . . . σn−1�nσn . . . we
have MP(p, r)(π) = M(π) if π ∈ Parity(p), and MP(p, r)(π) = −∞ otherwise.

Observe that the reward function are on input letters, rather than transition of the game
graph. If we consider reward function on transitions, then mean-payoff games with
imperfect information is undecidable [11], whereas if the rewards are on input letters,
then the problem is EXPTIME-complete (Corollary 1).

Sure winning and optimal winning. A strategy λi for Player i in G is sure winning for
a qualitative objective φ if for all π ∈ Outcomei(G, λi), we have π |= φ. A strategy
λi for Player i in G is optimal for a quantitative objective f if for all strategies λ for
Player i we have infπ∈Outcomei(G,λi) f(π) ≥ infπ∈Outcomei(G,λ) f(π). The following
theorem from Martin [25] states that perfect-information games with (qualitative or
quantitative) Borel objectives are determined: from each state, either Player 1 or Player
2 wins (for qualitative objectives), or a value can be defined (for quantitative objectives).

Theorem 1 (Determinacy). [25] (1) For all perfect-information game structures G
and all qualitative Borel objectives φ, either there exists a sure-winning strategy for
Player 1 for the objective φ, or there exists a sure-winning strategy for Player 2 for the
complementary objective Plays(G) \φ. (2) For all perfect-information game structures
G and all quantitative Borel objectives f , we have supα∈A infπ∈Outcome(G,α) f(π) =
infβ∈B supπ∈Outcome(G,β) f(π).

2.2 From Imperfect-Information to Perfect-Information

In this subsection we present results related to reduction of imperfect information games
to perfect information games by subset construction. First, we use the results of [7] to
show that a game structure G of imperfect information can be encoded by a game
structure GK of perfect information such that for every qualitative Borel objective φ,
there is an observation-based sure-winning strategy for Player 1 in G for φ if and only
if there is a sure-winning strategy for Player 1 in GK for φ. The same construction works
for quantitative Borel objectives. We obtain GK using a subset construction. Each state
in GK is a set of states of G representing the knowledge of Player 1. In the worst case,
the size of GK is exponentially larger than the size of G.

Subset construction. Given a game structure of imperfect information G =
〈L, l0, Σ, Δ,O, γ〉, we define the knowledge-based subset construction of G as the
following game structure of perfect information: GK = 〈L, {l0}, Σ, ΔK〉, where
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L = 2L\{∅}, and (s1, σ, s2) ∈ ΔK iff there exists an observation o ∈ O such that
s2 = PostGσ (s1)∩γ(o) and s2 = ∅. Notice that for all s ∈ L and all σ ∈ Σ, there exists
a set s′ ∈ L such that (s, σ, s′) ∈ ΔK. Given a game structure of imperfect information
G we refer to the game structure GK as Pft(G).

Lemma 2 ([7]). For all sets s ∈ L that are reachable in GK, and all observations
o ∈ O, either s ⊆ γ(o) or s ∩ γ(o) = ∅.

By an abuse of notation, we define the observation sequence of a play π =
s0σ0s1 . . . σn−1snσn . . . ∈ Plays(GK) as the infinite sequence γ−1(π) =
o0σ0o1 . . . σn−1onσn . . . of observations such that for all i ≥ 0, we have si ⊆ γ(oi).
Since the observations partition the states, and by Lemma 2, this sequence is unique.
The play π satisfies an objective φ ⊆ (O × Σ)ω if γ−1(π) ∈ φ. As above, we say
that a play π = s0σ0s1 . . . σn−1snσn · · · ∈ Plays(GK) satisfies an objective φ iff the
sequence of observations o0o1 . . . on . . . such that for all i ≥ 0, �i ∈ γ(oi) belongs to
φ. The following lemma follows from the results of [7].

Lemma 3 ([7]). If Player 1 has a sure-winning strategy in GK for an objective φ, then
Player 1 has an observation-based sure-winning strategy in G for φ. If Player 1 does not
have a deterministic sure-winning strategy in GK for a Borel objective φ, then Player 1
does not have an observation-based sure-winning strategy in G for φ.

Together with Theorem 1, Lemma 3 implies the first part of the following theorem, also
used in [7]. The second part of the theorem generalizes the result to quantitative Borel
objectives. The proofs can be found in [7,9].

Theorem 2. Let G be a game structure, and GK = Pft(G). The following assertions
hold. (1) Player 1 has an observation-based sure-winning strategy in G for a qualitative
Borel objective φ if and only if Player 1 has a sure-winning strategy in GK for φ. (2)
supα∈AO

G
infπ∈Outcome(G,α) f(π) = supα∈A

GK
infπ∈Outcome(G,α) f(π).

Theorem 2 and the results of [8] on perfect information mean-payoff parity games show
that imperfect information mean-payoff parity games can be solved in EXPTIME, and
an EXPTIME lower bound follows from the lower bound for imperfect information
parity games [7]. We have the following corollary.

Corollary 1. Given an imperfect information game structure G, a priority function
p : L → { 0, 1, . . . , d } and a reward function r : Σ · R, the decision problem of
whether supα∈AO

G
infπ∈Outcome(G,α) MP(p, r)(π) ≥ ν, for a rational threshold ν, is

EXPTIME-complete.

3 Minimum Attention Control

We now consider minimum attention control of imperfect information games. We will
present a polynomial reduction of the minimum attention control problem for imper-
fect information games to the classical imperfect information games presented in the
previous section. We will also show that the minimum attention control problem is
EXPTIME-complete.
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Switching and Monitoring Costs. We associate two kinds of costs for control: switch-
ing costs and monitoring costs. The switching cost is incurred when the control switches
between two input letters, and the monitoring cost is incurred when the controller moni-
tors the state of the plant (i.e., the current observation). Formally, let cost : Σ×Σ → R

denote the cost of switching between two input letters (or actions), i.e., cost(σ, σ′) de-
note the cost of switching from input letter σ to input letter σ′. Let mon denote the cost
of monitoring, i.e., monitoring the current observation of the plant. Given a ω-regular
specification specified as a parity objective, the goal of the controller is to ensure the
parity objective minimizing the long-run average cost of switching and monitoring. We
now formally present monitor-action strategies, the notion of cost of a play, then the
notion of minimum attention control, and finally the reduction of minimum attention
control problem to imperfect information games with mean-payoff parity objective.

Monitor-Action Strategies. Let G = 〈L, l0, Σ, Δ,O, γ〉 be a game structure of im-
perfect information. Let Σ̂ = { 0, 1 } × Σ, be the action for controller where the first
component denotes monitoring or not (0 denotes no monitoring and 1 denotes mon-
itoring). Let ô be a new observation not in O, and let γ̂ be a new observation map-
ping such that γ̂(o) = γ(o) for o ∈ O, and γ̂(ô) = L. If player 1 chooses not to
monitor, then player 1 does not see the current observation (this is equivalent to say
that player 1 gets to observe ô). A monitor-action strategy for player 1 is a function
α̂ : (L × Σ̂)∗ × L → Σ̂. Given a play π = l0σ̂0l1σ̂1l2σ̂2 . . ., the observation se-
quence γ̂−1π = o0σ̂0o1σ̂1o2σ̂2 . . ., where oi = γ−1(li) if σi ∈ { 1 } × Σ, and ô
otherwise. A monitor-action strategy α̂ is observation-based, if for all finite prefixes
ρ̂, ρ̂′ ∈ (L × Σ̂)∗ × L such that γ̂−1(ρ̂) = γ̂−1(ρ̂′) we have α̂−1(ρ̂) = α̂−1(ρ̂′).

Cost of a Play. Given a play π = l0σ̂0l1σ̂1l2σ̂2 . . ., the monitor-switching cost of π is
as follows. For i > 1 and z ∈ { 0, 1 }, let ĉ(σ̂i) = cost(σi−1, σi) if σ̂i = (0, σi−1) and
σ̂i−1 = (z, σi−1), and ĉ(σ̂i) = cost(σi−1, σi) + mon if σ̂i = (1, σi−1) and σ̂i−1 =
(z, σi−1). denote the cost of monitoring and switching in the i-th step. Then the cost of
the play is defined as the long-run average of the monitoring and switching cost, i.e.,
ĉ(π) = lim supn→∞

1
n

∑n
i=1 ĉ(σ̂i−1, σ̂i).

Minimum Attention Control. Given an imperfect information game structure G, and
a parity objective φ, a monitor-action strategy α̂ is ν-frugal iff the following conditions
hold: (a) α̂ is obervation-based; (b) for all π in Outcome(G, α̂) we have π ∈ φ, i.e.,
the parity objective is ensured; and (c) ĉ(π) ≤ ν, i.e., the monitor-switching cost is at
most ν. In other words, the strategy α̂ ensures the parity objective without incurring
monitor-switching cost more than ν.

Reduction of Games with Move Assignment. We will present a reduction of the mini-
mum attention control problem to imperfect information games with mean-payoff parity
objectives. We first consider an extension of imperfect information games where there
is an input assignment function Γ1 : L → 2Σ \ ∅, that assigns to every state � the
set of available input letters Γ1(�), i.e., every input letter may not be available at every
state. Imperfect information games with input assignment function can be reduced to
imperfect information games with no input assignment function as follows: (1) add an
additional absorbing state �̃ that is loosing for player 1; (2) for a state � and an input
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letter σ ∈ Σ \Γ1(�) not available at � by the input assignment, we add σ as available in-
put, and add a transition from � to the loosing state �̃ for σ. Thus it is ensured if player 1
chooses an input that is not available, then player 1 loses immediately.

Reduction of Minimum Attention Control. Let G = 〈L, l0, Σ, Δ,O, γ〉 be a game
structure of imperfect information with a priority function p : L → { 0, 1, . . . , d }. For
minimum attention control we construct a game structure of imperfect information with
move assignment as follows: the game structure is G̃ = 〈L̃, l̃0, Σ̃, Δ̃, Õ, γ̃, Γ̃1〉 along
with cost function c̃ : Σ̃ → R. We describe the components below.

1. State space. We have L̃ = (L × { 0, 1, 2 } × Σ) ∪ ({ l0 } × { 0, 1, 2 }). The
first component is the state of G, the second component is 0 or 1 depending on
whether player 1 decides to monitor or not, and 2 if it is player 1’s turn to decide
whether to monitor or not. The third component is an input letter (to remember the
choice of last letter of player 1). Additionally, there are states of the form (l0, j) for
j ∈ { 0, 1, 2 }. The starting state l̃0 is (l0, 2).

2. Input letters. We have Σ̃ = (Σ × Σ) ∪ { 0, 1 }, i.e., the set of input letters is a
pair of input letters of the original game (switching between input letters) with the
{ 0, 1 } to denote the choice of monitoring.

3. Observation. We have Õ = O ∪ { õ }, where õ is a new observation.
4. Move assignment. We have Γ̃1((�, 2, σ)) = { 0, 1 } for � ∈ L and σ ∈ Σ; and

Γ̃1((�, j, σ)) = { (σ, σ′) | σ′ ∈ Σ } for � ∈ L, j ∈ { 0, 1 } and σ ∈ Σ. At states
where the second component is 2, player 1 can choose between two input letters: 0
to denote no monitoring, and 1 to denote monitoring. At states where the second
component is 0 or 1, player 1 can choose input letters matching with the input letter
of the state (player 1 specifies the switching from the last letter to a new letter).
Similarly, we have Γ1((l0, 2)) = { 0, 1 } and Γ1((l0, j)) = Σ, for j ∈ { 0, 1 }.

5. Transition function. We have the following cases: (a) for states (�, 2, σ) we have
((�, 2, σ), j, (�, j, σ)) ∈ Δ̃, for j ∈ { 0, 1 }, i.e., given the choice of input letter
only the second component of state changes according to the input letter; (b) for
states (�, j, σ) with j ∈ { 0, 1 } we have ((�, j, σ), (σ, σ′)(�′, 2, σ′)) ∈ Δ̃ iff
(�, σ′, �′) ∈ Δ, i.e., the transition of the game structure is mimicked accord-
ing to the first component, the second component changes to 2, and the last in-
put letter is remembered in the third component; (c) for state (l0, 2) we have
((l0, 2), j, (l0, j)) ∈ Δ̃ for j ∈ { 0, 1 }; and (d) for states (l0, j), with j ∈ { 0, 1 }
we have ((l0, j), σ′(�′, 2, σ′)) ∈ Δ̃ iff (l0, σ′, �′) ∈ Δ.

6. Observation mapping. We have (a) γ̃−1((�, j, σ)) = γ̃−1((l0, j)) = õ, for j ∈
{ 0, 2 }; and (b) γ̃−1((�, 1, σ)) = γ(�) and γ̃−1((l0, 1)) = γ(l0); i.e., when the
second component is 0 or 2, then player 1 is not monitoring and hence observes
nothing, and otherwise if the second component is 1, then player 1 is monitoring
and hence observes the observation of the original game.

7. Cost function. We have c̃(0) = 0 (no cost); c̃(1) = −mon (cost of monitoring); and
c̃((σ, σ′)) = −cost(σ, σ′) (cost of switching).

8. Parity function. The priority function p̃ : L̃ → {0, 1, . . . , d} is obtained as follows:
for a state �̃ ∈ L̃ the priority p̃(�̃) is p(�), where � is the first component of �̃.
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There is a one-to-one correspondence between monitor-action strategies that are
observation-based in G, and observation-based strategies in the game G̃. The cost in-
curred in G in every step is incurred in two steps in G̃ as in G̃ we mimic the choice of
monitoring and choice of action switch of G in two steps. Hence we have the following
lemma.

Lemma 4. Let G be a game structure of imperfect information, and let p : L →
{ 0, 1, . . . , d } be a priority function. There is a monitor-action strategy α̂ in G that is
ν-frugal for the objective Parity(p) iff supα∈AO

G̃

infπ∈Outcome(G̃,α) MP(c̃, p̃)(π) ≥ − ν
2 .

We have the following result for minimum attention control: (a) the EXPTIME upper
bound follows from Corollary 1 and Lemma 4 and the fact that our reduction from G
to G̃ is polynomial; (b) the lower bound follows from EXPTIME-hardness of imperfect
information parity games: with monitoring and switching costs both set to 0, the mini-
mum attention control problem is the same as winning an imperfect information parity
game.

Theorem 3. The minimum attention control problem for imperfect information game
structures with parity objectives is EXPTIME-complete.

We have assumed that the winning objective is given as a parity condition on the state
space of the game. If instead, we are given a two-player game structure, and separately,
a specification in linear-temporal logic (LTL) [28], then standard automata-theoretic
constructions [34] can be used to reduce the problem to our case. That is, from the LTL
specification ϕ, one constructs a deterministic parity automaton whose size is at most
doubly exponential in the size of ϕ and whose number of parities is exponential in the
size of ϕ. A synchronous product of the game structure with this automaton gives an
imperfect information game whose size is the product of the size of the original game
and the size of the automaton. The solution to the imperfect information game involves a
subset construction, adding an extra exponential, and then solving a mean-payoff parity
game which is polynomial in the size of the game and exponential in the number of
parities. But a triple exponential raised to a single exponential is still triple exponential,
so we conclude the following.

Corollary 2. The minimum attention control problem for imperfect information game
structures and linear-temporal logic specifications is in 3EXPTIME.

We note that the high complexity of our procedure is disappointing, and unlikely to
yield an efficient tool. It will be interesting to see if more efficient algorithms can be
designed for fragments of LTL.

4 Infinite State Systems

We now apply the theory of minimum attention controller synthesis to the discrete time
control problem for rectangular automata [16]. We obtain our results using a general
decidability result about imperfect-information games on infinite state spaces that have
a stable partition with a finite quotient.
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R-stable games. In this section we drop the assumption of finite state space of games.
Let G = 〈L, l0, Σ, Δ,O, γ〉 be a game structure of imperfect-information such that L is
infinite. Let R = { r1, r2, . . . , rl } be a finite partition of L. A set Q ⊆ L is R-definable
if Q =

⋃
r∈Z r, for some Z ⊆ R. The game G is R-stable if the following conditions

hold for all σ ∈ Σ: (a) the set { l ∈ L | ∃l′ ∈ L.(l, σ, l′) ∈ Δ } is R-definable; (b) for
all r ∈ R, the set PostGσ (r) is R-definable; (c) for all r, r′ ∈ R, if for some x ∈ r we
have PostGσ ({ x }) ∩ r′ = ∅, then for all x′ ∈ r we have PostGσ ({ x′ }) ∩ r′ = ∅; and
(d) for all o ∈ O, the set γ(o) is R-definable.

Lemma 5. The following assertions hold. (1) Let G be a game structure of imperfect
information, and let R be a finite partition of the state space of G such that the game
G is R-stable. Then the perfect-information game Pft(G) is 2R-stable. (2) Let G be a
perfect-information game structure with a parity objective with d-priorities and a mean-
payoff objective with rewards on Σ such that the maximal absolute value of the rewards
is W . If G is R-stable, for a given finite partition R, then value for the mean-payoff
parity objective in G can be computed in time O((|R| · W )d+5).

We present the definition of rectangular automata with imperfect information and then
reduce the minimum attention control problem to the problem of game with imperfect
information. Using a result of [16] we establish the game of imperfect information is
R-stable for a finite set R.

Rectangular constraints. Let Y = { y1, y2, . . . , yk } be a set of real-valued variables.
A rectangular inequality over Y is of the form xi ∼ d, where d is an integer constant,
and ∼∈ {≤, <,≥, > }. A rectangular predicate over Y is a conjunction of rectangular
inequalities. We denote the set of rectangular predicates over Y as Rect(Y ). The rect-
angular predicate φ defines the set of vectors [[φ]] = { y ∈ R

k | φ[Y := y] is true }. For
1 ≤ i ≤ k, let [[φ]]i be the projection on variable yi of the set [[φ]]. A set of the form [[φ]],
where φ is a rectangular predicate, is called a rectangle. Given a non-negative integer
m ∈ N, the rectangular predicate φ is m-bounded if |d| ≤ m, for every conjunct yi ∼ d
of φ. Let us denote by Rectm(Y ) the set of m-bounded rectangular predicates on Y .

Rectangular automata. A rectangular automaton of imperfect information H is a tuple
〈Q,Lab,Edg , Y, Init , Inv ,Flow , Jump,O, γ〉 where (a) Q is a finite set of locations;
(b) Lab is a finite set of labels; (b) Edg ⊆ Q×Lab×Q is a finite set of edges; (d) Y =
{ y1, y2, . . . , yk } is a finite set of variables; (e) Init : Q → Rect(Y ) gives the initial
condition Init(q) of a location q; (f) Inv : Q → Rect(Y ) gives the invariant condition
Inv(q) of location q (i.e., the automaton can stay in q as long as the values of variables
lie in [[Inv(v)]]); (g) Flow : Q → Rect(Ẏ ) governs the evolution of the variables in
each location; (h) Jump maps each edge e to a predicate Jump(e) of the form φ ∧
φ′ ∧ ∧

i�∈Update(e)(y
′
i = yi), where φ ∈ Rect(Y ), φ′ ∈ Rect(Y ′), and Update(e) ⊆

{1, 2, . . . , k }; (i) O is a finite set of observations and γ : O → 2Q \∅ is the observation
mapping such that { γ(o) | o ∈ O } is a partition of Q. The variables in Y ′ refer to the
updated values of the variables after the edge has been traversed. Each variable yi with
i ∈ Update(e) is updated nondeterministically to a new value in [[φ′]]i. A rectangular
automaton is m-bounded if all rectangular constraints are m-bounded. A rectangular
automaton is called a timed automaton if for each variable y ∈ Y and each state q ∈ Q,
we have 1 ≤ Flow (q)(ẏ) ≤ 1.
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Nondecreasing and bounded variables. Let H be a rectangular automaton, and let i ∈
{ 1, 2, . . . , k }. The variable yi of H is nondecreasing if for all q ∈ Q, the invariant
interval [[Inv (q)]]i and the flow interval [[Flow (q)]]i are subsets of the nonnegative reals.
The variable yi of H is bounded if for all q ∈ Q, the invariant interval [[Inv(q)]]i is
a bounded set. The automaton H is bounded (resp. nondecreasing) if all the variables
are bounded (resp. nondecreasing). In sequel we consider automata that are bounded or
nondecreasing.

Game semantics. The rectangular automaton game with imperfect information is played
as follows: the game starts at a location q and values for the continuous variables y ∈
[[Init(q)]]. At each round the controller can choose to observe (monitor) the observation
(paying the monitoring cost) or not; and then the controller decides to take one of the
enabled edges (if one exists). Then the environment nondeterministically updates the
continuous variables according to the flow predicates by letting time pass for 1 time
unit. Then the new round of the game starts. We now present a reduction to imperfect-
information game, and then show that the game is stable with respect to a finite partition.

Reduction. A rectangular automaton H with imperfect information
〈Q,Lab,Edg , Y, Init , Inv ,Flow , Jump,O, γ〉 reduces to an infinite state imperfect-
information game H = 〈L, l0, Σ, Δ,O, γ〉 as follows:

1. States. The set of states is L = Q × R
k; that is the set of states consists of a tuple

of location and values of variables.
2. Input letters. The set of input letters is Σ = Lab ∪ { 1 }. The set of input letters is

the set of labels Lab of H , and unit time 1.
3. Observation map. The observation map is as follows: γ(o) = { (q, y) ∈ L | γ(q) =

o }.
4. Transition function. The transition function is as follows: (a) ((q, y), σ, (q′, y′)) ∈

Δ, such that there exists e = (q, σ, q′) ∈ Edg with (y, y′) ∈ [[Jump(e)]]; and (c)
((q, y), 1, (q, y′)) ∈ Δ such that there exists a continuously differentiable function
f : [0, 1] → Inv(q) such that f(0) = y, f(1) = y′ and for all t ∈ (0, 1) we have
ḟ(t) ∈ [[Flow (q)]].

The set of observation-based strategies of H represents the observation-based strategies
for the rectangular automaton game defined by H .

Equivalence relation. Let H be a m-bounded rectangular automaton with imperfect
information, and let H be the game of imperfect information obtained by the reduction.
We define the equivalence relation ≡m on the state space as follows: (q, y) ≡m (q′, y′)
iff (a) q = q′; and (b) for all 1 ≤ i ≤ k, either �yi� = �y′

i� and �yi� = �y′
i�, or both yi

and y′
i are greater than m. We denote by R≡m the set of equivalence classes of ≡m. It

is easy to observe that R≡m is finite (in fact exponential in the size of H). An extension
of the result of [16] gives us the following result.

Lemma 6. Let H be a m-bounded rectangular automaton game with imperfect infor-
mation. The imperfect-information game H is R≡m-stable.
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Theorem 4. Let H be a rectangular automaton with imperfect information and let p :
Q → { 0, 1, . . . , d } be a priority function. Let p : Q ·Rk → { 0, 1, . . . , d } be such that
p(q, y) = p(q), for q ∈ Q and y ∈ R

k. The answer to the ν-frugal problem for H for
Parity(p) is true iff the answer to the ν-frugal problem is true in H for Parity(p).

From Lemma 5, Lemma 6, Theorem 4, and Theorem 3 we obtain the following
corollary.

Corollary 3. Let H be a rectangular automaton with imperfect information and let
p : Q → { 0, 1, . . . , d } be a priority function. Whether there is a ν-frugal strategy for
the controller in H to satisfy the objective Parity(p) can be decided in 2EXPTIME.

The result for timed automata follows similarly, using the finite bisimilarity relation for
timed automata [1].

5 Discussions

We have presented algorithms for minimum attention controller synthesis for ω-regular
objectives purely in the discrete setting, or in a setting (rectangular automata) which
can be reduced to the discrete setting. A natural next step is to extend the results in the
presence of more general continuous dynamics. One potential direction is to combine
the optimization problems in [3] with mean-payoff parity games as described here.
This seems hard algorithmically, because the optimization problem in [3] is already
quite difficult (and even in the case of linear dynamics, it is not obvious if closed form
solutions can be obtained).

A different direction is motivated by work in approximate abstraction of continuous
control models [30,14,13]. The results in these papers provide techniques to abstract
the continuous state space and dynamics of systems to discrete systems such that, any
controller for the discrete system is guaranteed to ensure the property in the continuous
system up to an error of ε, where ε is a parameter of the abstraction. Therefore, the
study of minimum attention control for hybrid dynamics can be broken into two parts:
first, construct a discrete abstraction of the continuous system, and second, apply the
techniques described in this paper to solve the problem of minimum attention control.
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