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Preface

It is our pleasure and honor to present the proceedings of the 9th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS
2011), held during September 21–23, 2011 in Aalborg, Denmark.

Timing aspects of systems have been traditionally treated by researchers
interested in a variety of topics, such as semantics, verification, performance
analysis, digital circuit design, and embedded systems. Timing-related questions
studied in these communities do have their particularities. However, there is a
growing awareness that there are basic problems that are common to all of them.
In particular, all these sub-disciplines treat systems whose behavior depends on
combinations of logical and temporal constraints; namely, constraints on the
temporal distances between occurrences of events. The aim of FORMATS is to
promote the study of fundamental and practical aspects of timed systems, and
to bring together researchers from different disciplines that share interests in
modeling and analysis of timed systems.

This year FORMATS received 43 submissions, each of which was reviewed
by at least three Program Committee members. Based on the reviews and dis-
cussions that ensued, we selected 20 papers for publication and presentation at
the conference. The program also included three invited talks:

– Rajeev Alur, University of Pennsylvania, Philadelphia: Interfaces for Control
Components

– Boudewijn Haverkort, University of Twente, Enschede, and Embedded Sys-
tems Institute, Eindhoven: Formal Modeling and Analysis of Timed Systems:
Technology Push or Market Pull?

– Oded Maler, CNRS, VERIMAG Laboratory, Grenoble: Performance Evalu-
ation of Schedulers in a Probabilistic Setting

We would like to thank all authors for submitting to FORMATS. We also
wish to thank the invited speakers for accepting our invitation and providing
abstracts or full papers for the conference proceedings. We are especially grateful
to the members of the Program Committee and other reviewers for their hard
work which made this conference possible. Their competent and timely handling
of the submissions is greatly appreciated.

We would also like to thank the local organizers, Alexandre David, Kim
Larsen, Claus Thrane, and Rikke Uhrenholt, for arranging an excellent confer-
ence. We thank the providers of the EasyChair conference management system,
which has been of great value, and the Springer LNCS team for their excellent
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support. Finally, we gratefully acknowledge the financial support we received
from the Danish VKR Centre of Excellence MT-LAB, from the European Net-
work of Excellence ArtistDesign, and from the Centre for Embedded Software
Systems CISS.

July 2011 Uli Fahrenberg
Stavros Tripakis
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Raj Mohan M.
Abhishek Murthy
Mikael H. Møller
Dejan Ničković
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Table of Contents

Invited Talks

Performance Evaluation of Schedulers in a Probabilistic Setting . . . . . . . . 1
Jean-Francois Kempf, Marius Bozga, and Oded Maler

Formal Modeling and Analysis of Timed Systems: Technology Push or
Market Pull? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Boudewijn R. Haverkort

Interfaces for Control Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Rajeev Alur

Session 1: Probabilistic Models

Time-Bounded Verification of CTMCs against Real-Time
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Taolue Chen, Marco Diciolla, Marta Kwiatkowska, and
Alexandru Mereacre

Performance Model Checking Scenario-Aware Dataflow . . . . . . . . . . . . . . . 43
Bart Theelen, Marc Geilen, and Jeroen Voeten

Probabilistic Real-Time Rewrite Theories and Their Expressive
Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Lucian Bentea and Peter Csaba Ölveczky
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Performance Evaluation of Schedulers
in a Probabilistic Setting

Jean-Francois Kempf, Marius Bozga, and Oded Maler

CNRS-VERIMAG
University of Grenoble

France
Jean-francois.Kempf@imag.fr

Abstract. We show how to evaluate the performance of solutions to finite-horizon
scheduling problems where task durations are specified by bounded uniform dis-
tributions. Our computational technique, based on computing the volumes of
zones, constitutes a contribution to the computational study of scheduling under
uncertainty and stochastic systems in general.

1 Introduction

Scheduling, the allocation of limited reusable resources over time to competing tasks,
is a universal activity. It is performed routinely in domains of very different scales in
terms of time, space and energy. These include the allocation of airways and runways to
flights, allocating machines to different product lines in a factory, and the efficient allo-
cation of computation and communication resources to information-processing tasks.
This latter activity is becoming of prime importance in many scales, ranging from
world-wide cloud computing, via the realization of multiple distributed control loops,
down to mapping and scheduling tasks on multi-core computers. In all such situations
one wants to synthesize schedulers which are optimal or good in some sense, or at least
to be able to compare the performance of proposed schedulers and choose the better
ones. Performance and optimality of such schedulers are typically based on the quan-
tity of work performed over time, which in the case of a finite amount of work can be
expressed as termination time. Good schedules are typically associated with intensive,
almost idle-free, utilization of critical bottleneck resources.

In a deterministic setting one assumes that everything is known in advance about
the demand for work, including the tasks to be executed, their arrival times and the
durations for which they occupy resources. In other words, once the scheduling policy
itself is determined, the system admits a unique execution scenario (run, realization).
Evaluating a scheduler based on this unique run is straightforward – just simulate it –
while finding an optimal scheduler for any non-trivial scheduling problem (such as job-
shop) is NP-hard or worse. However, determinism is rarely the case in real life and exact
duration of tasks, their arrival times and many other features may vary to large extents.
Each instance in this uncontrollable space yields a different schedule and the overall
evaluation of a scheduler or a scheduling policy, which can be viewed as a strategy in
a two-person timed game [7] with uncertainty viewed as an adversary, should be based
on some quantification over all possible behaviors it induces [28].

U. Fahrenberg and S. Tripakis (Eds.): FORMATS 2011, LNCS 6919, pp. 1–17, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 J.-F. Kempf, M. Bozga, and O. Maler

This adversarial time-optimality problem has been tackled in [6,1] using a worst-case
approach on models of different types of uncertainty. In [6], using, the general model
of timed game automaton [7] where the adversary is discrete, the following problem
was proved to be decidable: synthesize a controller which is worst-case time-optimal
in the sense that the maximal (over all possible runs induced by the adversary) time to
reach a goal state is minimal. In [1] the case of job-shop scheduling with uncertain task
durations each ranging over a bounded interval was treated. For this problem, worst-
case optimality is defined trivially by the optimal solution to a deterministic scheduling
problem associated with the worst case where all tasks take their respective maximal
duration. One has to define a new notion of optimality (d-future optimal strategies)
to make the optimal synthesis problem meaningful, resulting in a synthesis algorithm
based on value iteration over sets of clock valuations (zones) which can be seen as an
offline version of some kind of model-predictive control.

The use of worst-case reasoning is to some extent a residue of the safety-critical
banner under which formal verification has been argued for, but in many (if not most)
real-life situations, temporal uncertainty is modeled probabilistically as a distribution
over the durations of each task and scheduler quality is measured accordingly, for ex-
ample by the expected completion time or by its maximum over all but a small fraction
of the runs. In this paper we develop and implement a computational framework in or-
der to compute the performance of such schedulers, modeled by automata similar in
structure to those used in [1] but whose durations are probabilistic. Such automata are
sufficiently rich to express stochastic variants of well-known scheduling problems such
as job-shop or task-graph. Formal definitions of these duration probabilistic automata
and their semantics can be found in [29].

The study of continuous-time stochastic processes has been going on for many years
in other branches of mathematics where simple computational questions like those we
pose are not typically asked, as well as in closer domains such as probabilistic verifi-
cation and performance evaluation [13,11]. A well-studied class of such processes are
continuous-time Markov chains (CTMC) where durations are distributed exponentially.
Such distributions are memoryless in the sense that time spent waiting for a task to ter-
minate does not influence the distribution on the remaining time. As a result they are
easy to compute with and problems such as model-checking against qualitative [3] and
quantitative [8] temporal properties or optimal controller synthesis for finite-horizon
problems [1] are well understood. This forgetfulness assumption may be realistic and
useful for modeling request arrivals in queuing models, but seems inappropriate for
modeling the durations of several instances of the same computational task.1

In this paper we assume task durations to be uniform over a bounded interval, which
is a natural “stochastization” of the set-theoretic temporal uncertainty of timed au-
tomata. Handling such systems we find ourselves in the realm of the so-called gen-
eralized semi-Markov processes (GSMP), a class of continuous-time stochastic pro-
cesses [21,22,15,25]. Similar computational studies of GSMPs include [2,10], [14,30]
and [29]. The former are concerned with verifying temporal properties for some classes
of GSMPs and develop techniques to determine whether the probability of a

1 The academic paper industry is perhaps the prime example of an application domain where
this hypothesis is useful.
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property-violating behavior is zero. The work of [14,30] is concerned with stochastic
Petri nets for which a computational framework is developed for propagating densities
in the marking graph. This work, as well as [29] on duration probabilistic automata,
use densities on clocks which are auxiliary state variables. At each reachable state and
zone in the clock space, the distribution over clock values is maintained and used to
compute the distribution after the next transition. In contrast, the approach presented in
this paper works directly on the space of the duration random variables and does not
use clocks explicitly. Similar ideas were developed in [24] to compute the probability
of test cases in timed systems.

The rest of the paper is organized as follows. Section 2 defines single and paral-
lel processes, their behaviors (timed and qualitative) and presents a useful coordinate
transformation between durations and time stamps. Section 3 shows how to derive the
timing constraints associated with a qualitative behavior when processes execute inde-
pendently without resource conflicts, and how to compute the volumes of the polytopes
they define. Section 4 extends the framework to the more interesting case of resource
conflicts that have to be resolved by dynamic scheduling strategies and presents very
preliminary experimental results. A discussion of future directions concludes the paper.

2 Preliminaries

We consider a compositionS = P 1|| · · · ||Pn of n sequential stochastic processes, each
consisting of a sequence of steps. Each step has a probabilistic duration and cannot start
before its predecessor terminates. We consider two execution frameworks:

1. Independent execution: all processes start simultaneously and each process starts
a step as soon as its preceding step has terminated, regardless of the state of other
processes;

2. Coordinated execution: the initiation of a step is controlled by a scheduler which
may hold a step of one process in a waiting state until the termination of a step of
another process that uses the same resource.

The second framework will allow us to compare schedulers but we start with the first
because it is simpler, does not require knowledge of timed automata and hence is ac-
cessible to a wider audience. On this simpler model we will develop the basic computa-
tional machinery that will allow us to compute the probabilities of different qualitative
behaviors, each corresponding to an equivalence class of timed behaviors associated
with a particular order in which steps of different processes terminate.

Definition 1 (Uniform Distribution). A uniform distribution inside an interval I =
[a, b] is characterized by a density ψ defined as

ψ(y) =
{

1/(b− a) if a ≤ y < b
0 otherwise

and in terms of distribution as

F (y) =
∫ y

0

ψ(τ)dτ =

⎧⎨⎩
0 if y < a
(y − a)/(b− a) if a ≤ y ≤ b
1 if b ≤ y
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Definition 2 (Process). A sequential stochastic process is a pair P = (I, Ψ) where
I = {Ij}j∈K is a sequence of duration intervals and Ψ = {ψj}j∈K is a matching
sequence of densities with ψj being the uniform density over Ij = [aj , bj], indicating
the duration of step j.

We consider finite processes with K = {1, . . . , k}. Probabilistically speaking, step
durations can be viewed as a finite sequence of independent uniform random variables
{yj}j∈K that we denote as vectors y = (y1, . . . , yk) ranging over a duration space

D = I1 × · · · × Ik ⊆ Rk

with density ψ(y1, . . . , yk) = ψ1(y1) · · ·ψk(yk). Each point y in the duration space
induces a unique behavior of the system written as a time-event sequence of the form

ξy = y1 e1 y2 e2 · · · yk ek. (1)

Time event sequences are alternations between time elapses represented by real num-
bers and discrete events that take no time. In the case of a single process yj ∈ Ij is
the duration of step j and ej is the event of terminating that step. The timed language2

associated with the process consists of all the timed behaviors it may generate, namely
L = {ξy : y ∈ D}. The untimed language associated with the process is L, obtained by
projecting away durations and retaining events and their order. In the case of a single
process L is simply the singleton language {w} where w = e1 e2 · · · ek.

Mechanically speaking the process behaviors can be viewed as generated by the
automaton of Fig. 1 in which being at state qj corresponds to executing step j. Each run
of the automaton is associated with a point y in the duration space. Upon entering qj an
auxiliary clock variable x is reset to zero and the termination transition labeled by ej is
taken exactly when x = yj .

q1 q2
ek

qk

e1 e2 · · ·

Fig. 1. An automaton view of a process

Suppose we want to characterize the probability of a certain subset of L. For example
those behaviors in which for every j the actual duration of step j is in some sub-interval
I ′j = [a′j , b

′
j] ⊆ Ij . The total probability of these behaviors is simply the volume of the

rectangle I ′1 × · · · × I ′k divided by the volume of the whole rectangle D. Probabilities
of other subsets of the language can be more interesting but harder to compute. For
example, the probability that the whole process terminates before some deadline r is
simply the volume of the subset of D satisfying y1 + · · · + yk < r divided by the
volume of D. Our technique is based on computing such volumes for a system of several
parallel processes as described in the sequel.

2 In the computer science tradition the term language is often used to denote a set of sequences
or other objects that define dynamic behaviors.
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It turns out to be easier to compute volumes after a coordinate transformation from
the space of durations to the space of time stamps consisting of vectors t = (t1, . . . , tk)
where tj is the absolute occurrence time of event ej , defined as tj = y1 + y2 + · · ·+ yj .
A behavior ξy can thus be written also as a sequence of time-stamped events3

ξt = (e1, t1), (e2, t2), . . . , (ek, tk).

Assuming that all durations admit a positive lower bound aj > 0, all time stamps satisfy
precedence constraints of the form tj < tj+1.

Converting y to t and vice versa is done by the linear transformations t = Ty and
y = T ′t where T and T ′ are matrices of the form

T =

⎛⎜⎜⎝
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

⎞⎟⎟⎠ T ′ =

⎛⎜⎜⎝
1 0 0 0
−1 1 0 0

0 −1 1 0
0 0 −1 1

⎞⎟⎟⎠
These matrices are lower triangular (the value of tj cannot depend on a duration yj′ with
j′ > j) and their diagonal entries are equal to 1. The determinant of a triangular matrix
is equal to the product of the diagonal entries which is 1 and hence the transformations
are volume preserving. This means that the volume of the duration space D is equal to
the volume of the time-stamp space C defined by the constraints

ϕC :
∧

j∈K

aj ≤ tj − tj−1 ≤ bj

and computing the volume of any subset C′ ⊆ C amounts to computing the volume
of its T ′ image D′ ⊆ D. Let us remark that the density of tj is the convolution of the
densities ψ1, . . . , ψj and its support is the Minkowski sum of I1, . . . , Ij .

The time-stamp space C and its subsets that we will encounter are defined as con-
junctions of inequalities of the form x ≺ c or x − x′ ≺ c where ≺∈ {<,≤,=,≥, >}
and c is an integer constant. They define polytopes which are called zones (or timed
polyhedra). Zones are used extensively in the analysis of timed automata [23,17,26].
They admit an efficient representation by difference-bound matrices (DBM) [19] and
efficient algorithms based on shortest-path to remove redundant constraints [16].

Definition 3 (Process System). A process system consists of n processes

S = P 1|| · · · ||Pn = {(Ii, Ψ i)}n
i=1

We use notations P i
j to refer to step j of process i and I i

j = [ai
j, b

i
j ] and ψi

j for the
respective intervals and densities. To ease notation we assume all processes to have the
same number k of steps. The event alphabet of the system is

Σ = {e11 , e12 , . . . , enk−1, e
n
k}

consisting of all the termination events of the steps of the various processes.

3 These are the timed traces used originally in [4] to give semantics to timed automata. More
about the relation between semantic models of timed behaviors can be found in [5].
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A behavior of the system is induced by a point in the global duration space

y = (y1
1 , y

1
2 , . . . , y

n
k−1, y

n
k ) ∈ D =

n∏
i=1

k∏
j=1

I i
j ⊂ Rnk,

which can be transformed into a point t in the time-stamp space

t = (t11 , t
1
2 , . . . , t

n
k−1, t

n
k ) ∈ C = TD

where T is the appropriate block diagonal matrix.
When all processes start simultaneously, the time stamps are taken from the same

global time reference and one can view a global run as merging local runs and sorting
the events according to their time stamps, as illustrated in Fig. 2. The set of all such
global behaviors is denoted by

L = L1|| · · · ||Ln.

All timed behaviors that admit the same order of events are said to exhibit the same
qualitative behavior. This can be formalized as an operation among the untimed local
languages. Let Li = {ei1 ei2 · · · eik} be the untimed language associated with process P i:
it consists of the unique qualitative behavior which satisfies the precedence constraints
of P i. The potential qualitative behaviors of S constitute the language

L = L1|| · · · ||Ln

which is the shuffle of these languages, that is, the set of sequences consisting of one
occurrence of each event in Σ and respecting the local precedence constraints for each
process. Mathematically speaking, a qualitative behavior corresponds to a linear order4

which is consistent with the partial order defined by the union of the precedence re-
lations of all the tasks. Such an order is also known as interleaving in the theory of
concurrency (motivated readers might want to consult [18] or [20]).

We use the term qualitative behavior also for any prefix of a sequence in L. Such a
prefix corresponds naturally to an incomplete run where not all processes have finished
all their steps. From the standpoint of automata, qualitative behaviors correspond to
paths in the transition graph of the global automaton associated with the system which
is the (Cartesian) product A = A1|| · · · ||An of the automata associated with the indi-
vidual processes as illustrated in Fig. 3. Unfortunately, these extremely important ob-
jects are not easy to draw for non-trivial dimensions. Incomplete behaviors correspond
to paths not reaching the final state.

In a global state of the form (q1j1 , . . . , q
n
jn

) each process i is busy executing its step
ji and there is a race between the termination transitions. The transition eiji

that will
win will be the first to satisfy the condition xi = yi

ji
. Since xi has been reset to zero

at tiji−1 this condition will be fulfilled at time tiji−1 + yi
ji

= tiji
. The outcomes of

all these races are completely determined by the value of y, and this determines the
qualitative behavior which is exhibited. Had there been no timing constraints on task

4 Since we are dealing with volumes, our neglect of the possibility of events occurring at exactly
the same time and not paying too much attention to the distinction between strict and non strict
inequalities is justified.
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durations, that is, I i
j = [0,∞), the system would be completely asynchronous and

all interleavings would, in principle, be possible. When durations are bounded, some
qualitative behaviors may become strictly impossible due to the arithmetics of timing
constraints while others will occur at low probability. In the sequel we develop methods
for computing these probabilities.

P
e11 e21 e22 e31 e32 e12 e13 e23 e33

e12 e13

e23e22e21

e33e32e31

P 1

P 2

P 3

e11

Fig. 2. A global behavior w = e11 e
2
1 e

2
2 e

3
1 e

2
3 e

1
2 e

1
3 e

3
2 e

3
3 obtained by merging local behaviors.

The dashed line indicate the minimal set of additional inter-process constraints that characterize
w.

e11

e21

e12

e23

e13

e22

q21 q22
q23

e21 e22 e23

q11

q12

q13

e11

e12

e13

Fig. 3. The product automaton for a process system with n = 2, k = 3. The thick arrows indicate
the path corresponding to the qualitative behavior w = e11 e

2
1 e

2
2 e

3
1 e

2
3 e

1
2 e

1
3 e

3
2 e

3
3 . The race

between e13 and e22 in state (q13 , q
2
2 ) is indicated by the dashed arrows.

3 Computing Volumes

The computation of the probability of a qualitative behavior w is performed in two
steps. First we associate with it a zone Zw ⊆ C consisting of all instances of t that yield
this behavior. Then we integrate over this zone to find its volume.
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Let ϕC be the constraint describing the whole time-stamp space:

ϕC :
∧
i∈N

∧
j∈K

ai
j ≤ tij − tij−1 ≤ bij

with ti0 = 0 for every i. The zone Zw for the qualitative behavior of Fig. 2 can be
characterized by adding constraints that specify the particular order of events in w:

ϕw : ϕC ∧ t11 < t21 < t22 < t31 < t23 < t12 < t13 < t32 < t33 .

Some of these constraints appear already in ϕC and some are implied via transitivity by
other constraints. After eliminating these redundant constraints one obtains the follow-
ing description:

ϕw : ϕC ∧ (t11 < t21) ∧ (t22 < t31) ∧ (t32 < t12) ∧ (t13 < t23) ∧ (t23 < t33).

As illustrated in Fig. 2, the constraints that remain in ϕw are the inter-process con-
straints that are sufficient to characterize w. These constraints can be computed incre-
mentally as we move along the prefix of a qualitative behavior. Let us follow the first
two steps. Initially we have the empty word whose associated zone is C and hence its
probability is 1. After the occurrence of the first event e11 we know that P 1

1 terminated
before P 2

1 and P 3
1 . This leads to the constraints:

ϕe11
: ϕC ∧ (t11 < t21) ∧ (t11 < t31) (2)

After this first event we have a competition between e21 , e31 and e12 . The winner of the
race is the next event of w, e21 and hence we add the constrains t21 < t31 and t21 < t12
and remove the constraint t11 < t31 which becomes redundant, yielding:

ϕe11e21
: ϕC ∧ (t11 < t21) ∧ (t21 < t31) ∧ (t21 < t12).

In general whenever event eij occurs, we add a constraint stating that tij is smaller than
the time stamps associated with all the pending events in the other processes. The in-
cremental process is illustrated in Fig. 4.

This procedure is probabilistically correct in the following sense. For every w ∈ L
the probability of all behaviors having w as a prefix is the relative volume of the cor-
responding zone Zw, namely, p(w) = |Zw|/|C|. This holds trivially for the empty be-
havior when there are no constraints. For the inductive step observe that any qualitative
behavior of the form w e which extends w has to satisfy ϕw due to causality as well
as additional constraints that guarantee that e is indeed the next event to win the race.
The constraints associated with all the extension of w form a partition of Zw and all the
probabilistic mass p(w) is split among them, satisfying∑

e

p(w e) = p(w).

In [29] a similar incremental approach that goes from a path/prefix to its successors
has been developed using the clock auxiliary variables. The use of clocks required the



Performance Evaluation of Schedulers in a Probabilistic Setting 9

e11 e12 e13

e23e22e21

e33e32e31

P 1

P 2

P 3

e11 e12 e13

e23e22e21

e33e32e31

P 1

P 2

P 3

Fig. 4. Incremental constraint construction: constraints for e11 and then for e11 e
2
1 . The constraint

t11 < t31 becomes redundant after the second event.

concept of density transformers to account for the distribution of clock values before
and after transitions (see also [2,10,14,30]). These are not needed in the clock-free ap-
proach presented here. Those acquainted with the verification of timed automata using
a forward computation of the simulation/reachability graph [17,26] may notice that for
every w the zone Zw in the time-stamp space is empty exactly when its associated clock
space zone in the reachability graph becomes empty. This suggests an alternative clock-
free analysis algorithm for timed automata which is immediately applicable to acyclic
systems but will require more work to be adapted to the cyclic case.

Having labeled qualitative behaviors by constraints we need to compute the volume
of the zones. We illustrate this procedure on a concrete example with n = 3 and k = 1,
henceD = C = I1

1 × I2
1 × I3

1 , with concrete values

[a1
1 , b

1
1 ] = [2, 5], [a2

1 , b
2
1 ] = [3, 4], and [a3

1 , b
3
1 ] = [4, 7].

The constraints associated with all qualitative behaviors where process P 1 wins the first
race are

ϕe11
: (2 ≤ t11 ≤ 5) ∧ (3 ≤ t21 ≤ 4) ∧ (4 ≤ t31 ≤ 7) ∧ (t11 < t21) ∧ (t11 < t31).

We pick an integration order t31 ≺ t21 ≺ t11 , that is, the inside-out order of variable
elimination, and rewrite ϕe11

as

ϕe11
: (2 ≤ t11 ≤ 5) ∧ (max(3, t11) ≤ t21 ≤ 4) ∧ (max(4, t11) ≤ t31 ≤ 7)

Then we split I1
1 into maximal segments where both max(3, t11) and max(4, t11) are

uniform. In our example [2, 5] splits into [2, 3], [3, 4] and [4, 5] and the volume of the
set can be written as[∫ 3

2

∫ 4

3

∫ 7

4

+
∫ 4

3

∫ 4

t11

∫ 7

4

+
∫ 5

4

∫ 4

t11

∫ 7

t11

]
dt31dt

2
1dt

1
1 = 3 +

3
2

+ 0 =
9
2
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which after dividing by |C| = 9 gives a probability of 1/2 for e11 winning the first
race. Figure 5 illustrates two possible splits of a 2-dimensional zone into integration
domains. The number of case splits and the forms of the integration domains may vary
a lot depending on the chosen order.

x2

x1

b2

b1

a2

a1

A

C

x2

x1

b2

b1

a2

a1

D

B

E

1 ≺ 2 2 ≺ 1

Fig. 5. Zone volume computation by splitting into integration domains in two different integration
orders which yield 3 and 2 domains, respectively

Theorem 1 (Probability of Qualitative Behaviors). Given a system of stochastic se-
quential processes as in Def. 3 the probability of any of its qualitative behaviors is
computable.

The global termination time (makespan in the job-shop jargon) of a behavior is Θ =
max{t1k, . . . , tnk}. For all behaviors that are qualitatively equivalent the maximum is
attained by the same variable, namely tik for any behavior whose last event is eik. To
compute the expected termination time we integrate tik over Zw and sum up over all w:

E(Θ) =
1
|C|

n∑
i=1

∑
w=w′eik

∫
Zw

tik.

Before moving to the coordinated execution framework let us mention some useful ob-
servations. So far we have treated qualitative behaviors in their finest granularity, taking
note of the ordering between any pair of events. In many situations we are interested
in sets of qualitative behaviors and their probability can often be computed more effi-
ciently than summing up the probabilities of individual qualitative behaviors.

Suppose we want to characterize the set of all qualitative behaviors that pass through
a global state q = (q1j1 , . . . , q

n
jn

). Let Li
j = {ei1 · · · eij−1} be the qualitative behavior

of P i that leads to qij . Then the set of qualitative behaviors that lead to q is

L(q) = L1
j1 || · · · ||L

n
jn
.

The constraints that characterize L(q) may forget the specific interleaving, that is, the
specific order in which past events have occurred. The only constraints that are relevant
are those that guarantee that the entrance of each process into its respective local state
preceded the exit of all other processes from their respective states, that is,

ϕq : ϕC ∧
n∧

i=1

∧
i′ �=i

tiji−1 < ti
′

ji′ .
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Thus, to compute the expected termination time it suffices to partition the set of quali-
tative behaviors into n classes according to the identity of the last transition, letting Zi

be the zone defined by
ϕi : ϕC ∧

∧
i′ �=i

ti
′

k < tik.

Then the expected termination time is

E(Θ) =
1
|C|

n∑
i=1

∫
Zi

tik. (3)

A similar observation, made in the context of zone-based verification of timed automata,
underlies the fact that the union of zones reached by interleavings of the same set of
events is convex [31,27,9].

4 Conflicts and Schedulers

Now we adapt the framework to the case where steps of different processes may be
at conflict due to requiring the same resource and hence cannot be executed simulta-
neously. Naturally, this situation is more intuitively expressed using automata, states
and runs. In order not to discourage semantically challenged audiences we explain the
automaton-based modeling very informally. Interested readers may consult [1] for a
general framework for modeling and solving scheduling problems with timed automata
as well as [29] for the formal definitions of duration-probabilistic automata (DPA)
which is the model underlying this paper.

As a running example consider a system of two processes with three steps each, ad-
mitting a resource conflict between their respective second steps P 1

2 and P 2
2 . Conflicts

are modeled in automata using forbidden states in the global automaton, state (q12 , q
2
2 )

in our example. To be able to prevent the automaton from entering this state5 we refine
the process model so that the initiation of step P i

j does not occur automatically upon
the termination of step P i

j−1. We thus modify the process automaton shown in Fig. 3
by inserting a waiting state q̄ij between qij−1 and qij . The automaton can leave this state
only when it receives a start command sij from a scheduler as illustrated in Fig. 6-(a).

As long as the scheduler is not completely specified the system is open or using an-
other terminology, admits both probabilistic and set-theoretic non-determinism. For ex-
ample in state (q̄12 , q

2
1 ) process P 1 may either start its second step (q̄12 , q

2
1 ) → (q12 , q

2
1 )

or wait until step P 2
1 terminates and let P 2 take the resource first (q̄12 , q

2
1 ) → (q̄12 , q̄

2
2 ) →

(q̄12 , q
2
2 ). A scheduler resolves this type of non-determinism by telling each process in a

waiting state whether to take the resource and proceed to execution or wait until the re-
source is taken and released by another process.6 Once such a scheduler is defined, the

5 We consider schedulers that by construction cannot make the system enter a forbidden state.
6 Note that we restrict ourselves to non-lazy schedulers: if they do not issue an sij command at

some point, they will not issue it later unless another process has utilized the resource. This
class has been shown [1] to contain the optimal schedulers for the problems we are dealing
with.
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e11

s12

e12

e13

s22
q21

q11

q̄12

q12

q13

q1f

q̄22 q22 q23 q2f

q12q
2
2

x1
1 := 0

e22 e21e21x2
1 := 0

s22

s22

s12 s12

(a)

e11

s12

e12

e13

q21

q11

q̄12

q12

q13

q1f

q̄22 q22 q23 q2f

q12 q
2
2

Z12

Z12′

Z21

Z21′

e22s22 e21e21

x1
1 := 0

(b)

Fig. 6. (a) Two parallel processes admitting a resource conflict and their product automaton. The
dashed arrows indicate start transitions which should be under the control of a scheduler while
the dotted arrows indicate post-conflict start transitions; (b) The automaton resulting from com-
position with a FIFO scheduler and the 4 potential conflict resolution and resource utilization
scenarios.
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set-theoretic non-determinism is eliminated and the only non-determinism that remains
is the one associated with task durations and thus it becomes possible to compute prob-
abilities. To be more precise, probabilities can be computed also for non-deterministic
schedulers that make a probabilistic choice, but we do not consider them here.

A scheduler is thus a mechanism which may observe the state of the system and
decide whether to grant a resource to a process, possibly based on the level of progress
of other processes. The most passive scheduler grants the resource to the first process
whose corresponding step becomes enabled. Under such a FIFO scheduling policy it
is the result of the race between e11 and e21 which determines the resource granting
decision. The automaton obtained by composing the system with such a scheduler is
shown in Figure 6-(b) where we have chosen to ignore the zero-measure situation when
both processes terminate exactly at the same time (alternatively this situation can be
handled by assigning an arbitrary priority when this is the case).

e11

s12

e12

e13

e21e21 s22
q21

q11

q̄12

q12

q13

q1f

q̄22 q22 q23 q2f

q12q
2
2

e22

A1 > q12

Fig. 7. (a) A scheduler that gives strict priority to P 1. This is realized by the condition A1 > q12
which allows P 2

2 to start only after P 1
2 terminates.

More active schedulers interfere with the execution order by imposing additional
conditions upon the start transitions. Suppose that the duration of step P 1

3 is much
longer than that of P 2

3 hence it would be reasonable to give P 1
2 a priority over P 2

2 even
if the latter becomes enabled earlier. This priority can have different degrees of rigidity.
A strict priority scheduler allows s22 only in global states where P 1

2 has terminated, a
condition that we write asA1 > q12 . The automaton obtained by composing the system
with such a scheduler is shown in Fig. 7. Note that strict priority schedulers make the
automaton always “bypass” a conflict state from the same side.
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Strict priority schedulers can be unnecessarily rigid for tasks with durations variabil-
ity as they do not adapt to the actual evolution of the schedule. As an example for such
adaptability consider the case where P 2

1 terminates very early so that we can start P 2
2

so that it will surely terminate before P 1
2 becomes enabled and hence will not block

it. Even if this is not guaranteed with certainty, a scheduler might want to start P 2
2 if

the expected delay incurred to P 1 is small. Technically, the knowledge of the relative
timing of e21 at decision time is encoded by the value of clock x1 reset upon starting
P 1

1 . The larger is the value of x1, the more we are likely to block P 1 and for a longer
period. Hence the condition for issuing s22 by such a state-dependent scheduler will be
of the form (A1 > q12 ) ∨ (A1 < q̄12 ∧ x1 < d) for some constant d.

The labeling of states and qualitative behaviors with constraints in order to compute
volumes, probabilities and expected termination times can be extended to handle all
these types of schedulers. As an illustration consider the FIFO scheduler of Fig. 6-
(b) which admits 4 classes of qualitative behaviors (scenarios) that correspond to the
outcomes of the conflict betweenP 1 and P 2 on the shared resource. These scenarios are
characterized by the identity of the winner (for this scheduler it depends on the relation
between t11 and t21 ) and by whether the loser termination time is delayed (depending
on whether the winner releases the resource before the loser becomes enabled). These
cases are summarized in Table 1 and depicted in Fig. 6-(b).

Table 1. The zones corresponding to the four possible outcomes of the resource conflict of Fig. 7-
(b). Constraints on t13 and t23 are omitted.

winner loser delayed loser not delayed

P 1

Z12′

a11 < t11 < b11
a21 < t21 < b21
t11 < t21

t11 + a12 < t12 < t11 + b12
t21 < t12

t12 + a22 < t22 < t12 + b22

Z12

a11 < t11 < b11
a21 < t21 < b21
t11 < t21

t11 + a12 < t12 < t11 + b12
t12 < t21

t21 + a22 < t22 < t21 + b22

P 2

Z21′

a11 < t11 < b11
a21 < t21 < b21

t21 < t12
t21 + a22 < t22 < t21 + b22

t22 < t11
t21 + a22 < t22 < t21 + b22

Z21

a11 < t11 < b11
a21 < t21 < b21

t21 < t12
t21 + a22 < t22 < t21 + b22

t11 < t22
t21 + a22 < t22 < t21 + b22

As the alert reader might have noticed, the transformation T from the duration space
to the time-stamp space is different from the independent execution framework. It can
nevertheless be shown to be volume preserving along the following lines. First, one
can show that after adding inter-process precedence constraints causality is preserved
and there is always a rearrangement of the indices such that the transformation matrix
remains lower triangular. Secondly the notion of volume preservation can be easily
generalized from linear to piecewise-linear transformations.
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The above analysis can be generalized to m distinct resources and to multi-party
conflicts on each of them. For each resource l one can compute the set Ul of all the
utilization scenarios for this resource and their respective zones. A scenario corresponds
to a particular order of resource utilization by conflicting steps and to the waiting delays
incurred to these steps. Then the classes of potential qualitative behaviors of interest
are the combinations of those, that is, U = U1 × · · · × Um with zones defined by
intersection. While this sounds like a recipe for a severe combinatorial explosion, note
that many scenarios will lead to empty zones, either for logical reasons (inter-process
ordering of conflicting steps is incompatible with local precedence constraints) or due
to the arithmetics of timing constraints (two conflicting tasks, one at the beginning and
one at the end of their respective processes, are likely to be executed in one order).
Naturally, for priority schedulers there will be fewer scenarios to analyze.

We have implemented a prototype tool which computes expected termination times
as described in this paper. As input it takes a system description consisting of processes,
steps, duration intervals and conflicts as well as a definition of a scheduling policy.
Then for every utilization scenario it derives the corresponding zone, using the DBM
library of IF [12] to normalize constraints and detect empty zones. Then it performs
integration over the non-empty zones to compute probability and expected termination
time. The integration uses the GNU Multiple Precision Arithmetic Library (GMP) to
avoid rounding errors.

Let us describe our preliminary experiments. For each value of n from 1 to 5 and
for each value of k from 1 to 40, we choose a number of conflicts (between 0 and 3)
and a number of participants in each conflict (2 or 3). Each choice in this space defines
a problem type for which we draw 10 concrete problems by randomly choosing the
identity of the conflicting steps as well as step duration intervals of the form [c−d, c+d]
with c drawn uniformly in [40, 50] and d in [0, c/20]. Then we try to compute expected
termination times for a FIFO scheduler with a timeout of 3 minutes per problem on an
old laptop.

The experiments with n = 1 compute the volume of one zone, the time-stamp space.
Applying the reverse order integration we can compute up to dimension 63 in 0.4 sec-
onds (currently this is a limitation of our DBM library). In general integration takes
place in Rnk and its complexity depends on the following factors. First, the number of
scenarios (orders of resource utilizations and their combinations) determines the num-
ber of zones whose volume we might need to compute, in case they are not detected
beforehand to be empty. For each zone and each variable t we compute It, the projec-
tion of the zone on t. Then we define a partial order relation between these intervals
such that It < It′ if the upper bound of It is smaller than the lower bound of It′ .
Then we construct a compatible linear order and integrate backwards. The chosen or-
der determines the number of case splits but also the form of the integration domains
and the polynomials obtained during integration. We experienced orders of integration
that generate more splits but take less overall computation time. Since there is a lot of
exploration and fine tuning ahead it is premature to report performance systematically.
To give an idea, we mention some problem types for which we managed to compute for
all the test cases.These include (n, k) = (2, 12) with 2 conflicts, (3, 6) and (4, 6) with
3 binary conflicts or 2 ternary conflicts and (5, 4) with 2 binary conflicts.
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5 Concluding Remarks

We have presented a computational technique to evaluate schedulers in a non-Markovian
setting based on splitting the space of valuations of the random variables and comput-
ing volumes. To the best of our knowledge no similar computational results have been
reported. We mention some future work.

1. Integration over zones is the major computational activity in our procedure and its
optimization is an interesting algorithmic problem.

2. To handle larger systems one needs to develop algorithms that do not explore all
classes of qualitative behaviors but restrict the exploration to a high-volume small
subset of those, whenever such exists.

3. While this work solves the analysis problem it would be more challenging to syn-
thesize optimal schedulers automatically using value iteration. It is an open ques-
tion whether such a backward iteration can be defined using the clock-free methods
developed in this paper.

4. Another major challenge is to extend this framework to cyclic systems, define the
appropriate performance measures and study their steady-state behavior.

5. Finally, it would be interesting to compare the analytic method developed here with
statistical approaches based on random simulation. It is intriguing to see how many
simulation runs are needed to approximate our results with a good confidence.

Acknowledgment. This work grew out of numerous discussions with Kim Larsen and
Bruce Krogh and benefitted from the constructive criticism of Eugene Asarin.
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Abstract. In this short paper I will address the question whether the
methods and techniques we develop are applied well in industrial prac-
tice. To address this question, I will make a few observations from the
academic field, as well as from industrial practice. This will be followed
by a concise analysis of the cause of the perceived gap between the aca-
demic state-of-the-art and industrial practice. I will conclude with some
opportunities for improvement.

1 Background

Twenty-five years ago, in september 1986, I received an engineering degree in
Computer Science from the University of Twente. Since then, I have been work-
ing in the field of performance and dependability evaluation of computer and
communication systems, either developing theory, methods and tools, or work-
ing on applications. My work on theory includes Markovian models of all sorts,
queueing network analysis techniques, rare event simulation techniques, quasi-
birth-death processes (QBDs), and, over the last 10 years, much work on stochas-
tic model checking [2].

Although I have published by far the most on theory and tools, cf. [10], I
did address quite some application fields as well, including computer network-
ing (e.g., ATM and B-ISDN networks, WLAN and token ring access networks,
TCP/IP flow and congestion control), fault-tolerant distributed systems (e.g.,
fault-tolerant multiprocessor systems, system survivability with application to
the Google file system), and embedded systems (e.g., embedded control systems,
or wearable power-constrained communication devices). Lately, I have become
more involved in SCADA systems, as well as with intrusion detection in network
systems as part of my activities at the University of Twente, and with a wide
variety of embedded computer-control systems as part of my activities at the
Embedded Systems Institute (ESI), the latter in close cooperation with leading
high-tech industries such as ASML, NXP, Océ, Philips and Thales.
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2 Key Question Addressed

Being able to look back at 25 years of scientific work in this field, it is a good
time to ask what has been achieved in the generic field of modeling and analysis
of timed systems, and how valuable that has been, and for whom?

In the past three years, I already had the opportunity to reflect on the achieve-
ments of the field of performance evaluation at large, through invited presenta-
tions at three European conferences [5,8,9]. In this short paper, I would like to
go a step further, and take my experience with industry while being employed
at the ESI since 2009, much more into account. The key question that I ad-
dress then is: Are the methods and techniques we develop being used in
industrial practice? With we in this question, I do mean the academic com-
munity, that is, the typical participants of conferences like FORMATS, QEST,
CAV, E-PEW, MASCOTS, etc.

To address this question, I will start with a few observations from the academic
field, as well as from industrial practice, followed by a concise analysis, and some
directions towards the future.

3 Observations from the Academic Field

Let me first address five observations that I think I can honestly make about
the academic field that addresses models and techniques for the evaluation of
quantitative system properties, such as timeliness, performance and reliability. I
restrict to five only, for conciseness, the list of course is longer and more detailed.
The list is not intended to blame anyone or any sub-community; I am just
critically assessing the work being done by the community I have been working
in happily myself for 25 years!

A1. The key theoretical results in most operations research related fields, such
as queueing networks, stochastic Petri nets, optimization and discrete-event
simulation, have been obtained 25 years or longer ago. The number of
truly new results in this field in the last 25 years is rather small; one can
think about models for self-similar traffic, improved EM-fitting of phase-
type distributions, or the logarithmic reduction algorithm for QBDs.

A2. Important new results have been achieved in the field of explicit state-space-
based methods, including storage structures like BDD’s and MTBDD’s, as
well as efficient model checking and numerical algorithms, in the last 25
years.

A3. Key results have been attained regarding the structured (sometimes com-
positional) description of systems and system behavior, using model- or
analysis-specific languages, having a formal basis, thus forming a good
starting point for further analysis and synthesis. Think of timed-automata
of various sorts, advances in process algebra, etc.

A4. Much more developer-friendly (this is not necessarily user-friendly) and
powerful software tools have become available, that allow for larger case
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studies to be addressed with the techniques referred to in A1–3. Note that
this trend is largely a result the availability of commodity computing power
since the mid 1980’s, hence, of Moore’s law, and far less so of academic
improvements.

A5. A large share of the recent work in academia is addressing (minor) exten-
sions of methods and techniques (cf. A1–2), of description techniques (cf.
A3) as well of as supporting tools (cf. A4), simply because theory allows
us to do so (“technology push”), rather than that there is well-pronounced
need for this from industry (“market pull”).1

4 Observations and Trends in Industry

Similar as done for academia, let me also address five key observations from
industry. Again, the list is longer, and there will be nuances to all of the items.
I compiled this list as by-product of the process towards a new research agenda
for ESI [4]. As such, it primarily addresses the embedded systems field, however,
I do think that these observation apply more generally.

I1. There is an ever-increasing growth of complexity of systems and system
software, for a variety of reasons, including the inclusion of legacy code or
third-party components, increased openness, higher user expectations, the
use of multicore hardware, mixed criticality of the software, and the advent
of systems-of-systems.

I2. Given this increasing complexity, both system design and system test and
integration, in terms of the classical V-model for system development, are
severely challenged, technically, but also regarding time and cost constraints.

I3. There is an increased interest in model-driven design, however, in most in-
dustries with a focus on modeling as a kind of high-level programming, and
code generation taking over part of the intensive coding work, thus saving
time and costs.

I4. A sense of urgency regarding modeling and quantitative system evaluation
is felt, but it is undirected as of yet. Modeling and analysis, as we advocate
it, is not a natural component in the design process of software-intensive
systems. This is very much unlike the practice in many other system design
areas, like hardware, mechanical or optical system design.

I5. When modeling is used to guide the design process, that is, to explore the de-
sign space and to make trade-offs, this is either done on the basis of back-of-
the-envelope models (or spread-sheets at best), or on the basis of extremely
detailed simulation models that are, in fact, system prototypes implemented
in a simulator environment. In most cases, the modeling techniques we have
been developing, are not being used.

1 A colleague of mine, from a different field in computer science, referred to this as
“Harley Davidson extension work”, liked by Harley Davidson hobbyists, irrelevant for
anyone else, but annually displayed at length at nic(h)e workshops and conferences
around the world.
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5 Analysis

As should be clear from the two sets of observations, there is a world to gain here.
Industry is in need, and academia wants to deliver. However, what is delivered,
does not appear to be the right answer. Hence, the answer to the initially posed
question, in my opinion, clearly is not positive. The academic community is
doing great things, however, the uptake is slow. In other words, we have been
doing things right, that is, correct, but the question more is, did we do the right
things? It is too easy to say that industry is to blame, because they are not
accepting what we deliver and say is good for them.

Why is it that “our methods” are not being used? Why do industrial develop-
ers not use what we deliver? Again, there is no definitive answer to this, however,
I again would like to make a few observations, that might help in bringing these
worlds closer together. As before, the list can be made longer, the current items
might not be all orthogonal, still they do provide some insight.

1. The “modeling and analysis” community, that is, we, have become discon-
nected from the computer systems community. In the 1960’s and 1970’s, the
researchers working on multi-programmed time-sharing computer systems
and computer networks, respectively, also did make the models needed to
dimension them, see, e.g., [6]. Also the early work on what are now called
formal methods, was done by researchers developing protocol systems, in
the 1980’s, see, e.g., [1,7]. The models and techniques being developed, were
clearly developed with a “market pull”. By now, it appears we have moved
much more towards a “technology push” model, with almost completely dis-
junct communities and conferences, pushing methods and techniques to the
market that are not being bought, for various reasons, be it complexity of
use, or simply because they do not have the right functionality. Should we
be surprised that our methods are not used?

2. Academic key performance indicators (KPI’s), especially those from the sci-
ences, do force researchers to publish many papers, at highly ranked confer-
ences and in top-quality journals. Being part of a community in which one
fits well and in which the work is well received, is part of academic survival.
It is unfair to solely blame researchers for this. However, there is a side effect
that cannot be ignored either.

3. A large part of computer science research has developed itself strongly along
the science-axis. The analysis of (existing) systems is prevalent. However,
the engineering and constructive side is crucial to industry, as this is the
line along which value is created. In the end, ICT systems are man-made
systems that need to be built, preferably using solid engineering principles.
A revitalization of computer engineering, or probably the science of computer
engineering, is needed.

4. The study of quantitative properties of computer systems and to develop
appropriate modeling and analysis techniques for that, does require an ac-
tive attitude towards measurements and experimentation, for at least three
reasons: (i) to calibrate the system models (parametrization), (ii) to validate
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the models themselves, and (iii) to validate modeling approaches. We see too
little of this [12]; if we do not validate our models and modeling techniques
ourselves, can we expect others to simply believe us and buy them?

5. Going out there, that is, working on real industrial cases is very challenging.
Many researchers do feel safer at home, working on the models and tech-
niques they have been working on for a long time, thus avoiding to enter un-
known territory. Of course, for an individual Ph.D.-student—the work horse
of modern research—it is very risky to embark on a project that is largely
industry-driven. At the same time, industry is not always as open as needed
to embark on such joint projects. Both professors and senior researchers and
developers in industry should take their responsibility in progressing the
field.

6. Industrial practice asks for extreme scalability of methods and techniques.
The community made great improvements here, especially in the field of
symbolic functional verification. We have to go a long way for scalable quan-
titative analysis, let alone for synthesis while preserving quantitative con-
straints. Let these needs be leading! This might mean, that paradigm shifts
are needed, e.g., moving to mean-field analysis, instead of exact explicit
state-space analysis.

7. True industrial use, that is, in system development and not just in research
departments, of the techniques and tools we like so much, does require the
embedding in daily work routines. For many industries, this means that a
nice such-and-such tool, will not be used if it is not part of, e.g., the Matlab
Simulink toolset, or cannot be connected to IBM’s Rational Rhapsody family
of products. Your tool is not their tool! At best, our tools are seen as “engine”
in some larger process chain. We cannot deny this. How many academic
researchers know which tools are being used in industrial practice? How
different is this from other engineering disciplines?

6 Opportunities!

Having made two sets of observations, as well as an analysis, helps us in deter-
mining how to improve things. In the end, we all want to have impact with our
work, to have the story that our work is being used extensively in the design of
new series of products by major industries.

Here, even more than before, I am very careful. I do not have the final recipe,
however, I do have some thoughts, which I like to share with you, before I address
a way-of-working we execute and advocate at ESI: the industry-as-lab approach.

Please note that my thoughts below do not exclude at all good fundamental
research. However, I do say that the balance between fundamental and applied
research should probably be shifted, in the engineering discipline we should like
to be. Probably the difference between applied and fundamental research is over-
emphasized here; maybe there is just good and not-so-good research.

1. Wouldn’t it be great to see our tools and techniques have true impact? In my
opinion this will much more easily happen if we do incorporate industry in
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our research projects more firmly, right from the start. This does go beyond
doing some realistic industrial case study at the end of a 4-year project.
What is needed is industrial involvement in the problem definition and a
continuous dialogue between the problem owner (industry) and the solution
provider. This does require serious investments from either side.

2. If I would be a medical doctor working in an academic medical centre, I
would teach, I would do research, and I would really treat people, even
operate them. A similar mix of activities is often seen in Architecture or in
Engineering faculties. How rare is this in computer science! It might be an
idea to have sabbaticals more often across borders, that is, an academic really
working in a development lab in industry, and a computer system of software
engineer spending a semester in academia. National funding agencies could
accommodate this. In the Netherlands, the Ministry of Economic Affairs
supported the latter scheme during the crisis year 2010. This could even
taken further, in that such exchanges form part of the human capital agenda
of industries and academia alike.

3. The Dutch Technology Foundation STW does foster programs for joint re-
search, which are being defined by committees with members from industry
and academia. Moreover, industry does invest in these programs in that they
cater for 50% of the costs. In doing so, the problem owner is actively involved.
This leads to challenging projects, in which both industry and academia have
to deliver.

Finally, at ESI we have successfully followed a scheme which we have called
industry-as-lab after a model proposed by Potts for the software engineer-
ing field [11]. At ESI we tailored it to the high-tech embedded systems field,
encouraged by new insights in open innovation [3].

Potts observed that most research projects in software engineering follow the
traditional research-then-transfer paradigm. In a way, this is a different word-
ing for “technology push”. However, the effective result of such projects is often
questionable; Potts even classifies some of the typical project goals simply as
naive. According to Potts, the industry-as-lab approach sacrifices revolution,
but strongly fosters evolution. Industry does not like revolution most of the
time, it does like evolution. The key idea is that industry is involved in problem
identification at the outset, and jointly with academic partners forms a project
description and consortium; this is a true market pull. Interaction between in-
dustry and academic partners is intensive, with Ph.D.-students spending time
in industry every week, meeting system and software engineers, joining meet-
ings to better understand what the true problems are, and to show what can be
learned or gained from more academic approaches. Note that this does go well
beyond the industry-academic interaction in many European projects, where
project partners meet a couple of times per year, and only interact superficially.
Industry-as-lab allows for a continuous large-scale (experimental) validation of
research work. It changes the sequential research-then-transfer paradigm into a
continuous research-and-transfer paradigm, allowing very short feedback cycles.
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The industry-as-lab way of working is very challenging, but very rewarding as
well, leading to good research results achieved under realistic constraints, hence,
leading to more direct applicability. Being able to state that one’s newly created
technique is really used in industry for developing their new so-and-so product,
also helps in gaining academic credits; at ESI, we have seen many examples of
that.

7 Epilogue

In this short paper I have addressed the question how well the formal modeling
and analysis techniques for quantitative system properties, as we know and like
time, are taken up in industry. By carefully observing what happens in academia
and industry, I have to conclude that despite great developments in academia, the
industrial uptake is disappointing. And understandably so, I am afraid. But this
is not to say that this cannot improve. Instead, I proposed a number of ways
to improve the required interaction in order to shift from a technology push
situation, to a market pull situation. The industry-as-lab paradigm, as practiced
by ESI, implements such a shift, thereby truly bridging between academia and
industry in an open innovation setting.
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Interfaces for Control Components
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Modern software engineering heavily relies on clearly specified interfaces for sep-
aration of concerns among designers implementing components and program-
mers using those components. The need for interfaces is evident for assembling
complex systems from components, but more so in control applications where
the components are designed by control engineers using mathematical modeling
tools and used by software executing on digital computers. However, the notion
of an interface for a control component must incorporate some information about
timing, and standard programming languages do not provide a way of capturing
such resource requirements.

This talk will describe how finite automata over infinite words can be used
to define interfaces for control components. When the resource is allocated in a
time-triggered manner, the allocation from the perspective of an individual com-
ponent can be described by an infinite word over a suitably chosen alphabet. The
control engineer can express the interface of the component as an omega-regular
language that contains all schedules that meet performance requirements. The
software must ensure, then, that the runtime allocation is in this language. The
main benefit of this approach is composability: conjoining specifications of two
components corresponds to a simple language-theoretic operation on interfaces.
We have demonstrated how to automatically compute automata for performance
requirements such as exponential stability and settling time for the LQG con-
trol designs. The framework is supported by a toolkit, RTComposer, that is
implemented on top of Real Time Java. The benefits of the approach will be
demonstrated using applications to wireless sensor/actuator networks based on
the WirelessHART protocol and to distributed control systems based on the
Control Area Network (CAN) bus.

This talk is based on research reported in [3,2,1,4]. This research is partially
supported by NSF awards CNS 0931239 and CCF 0915777.

References

1. Alur, R., D’Innocenzo, A., Johansson, K., Pappas, G., Weiss, G.: Modeling and
analysis of multi-hop control networks. In: Proc. 15th IEEE RTAS (2009)

2. Alur, R., Weiss, G.: RTComposer: a framework for real-time components with
scheduling interfaces. In: Proc. 8th EMSOFT, pp. 159–168 (2008)

3. Weiss, G., Alur, R.: Automata based interfaces for control and scheduling. In: Bem-
porad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 601–613.
Springer, Heidelberg (2007)

4. Weiss, G., Fischmeister, S., Anand, M., Alur, R.: Specification and analysis of net-
work resource requirements of control systems. In: Majumdar, R., Tabuada, P. (eds.)
HSCC 2009. LNCS, vol. 5469, pp. 381–395. Springer, Heidelberg (2009)

U. Fahrenberg and S. Tripakis (Eds.): FORMATS 2011, LNCS 6919, p. 25, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Time-Bounded Verification of CTMCs against
Real-Time Specifications�

Taolue Chen, Marco Diciolla, Marta Kwiatkowska, and Alexandru Mereacre

Department of Computer Science, Oxford University,
Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom

Abstract. In this paper we study time-bounded verification of a finite
continuous-time Markov chain (CTMC) C against a real-time specification, pro-
vided either as a metric temporal logic (MTL) property ϕ, or as a timed automa-
ton (TA) A. The key question is: what is the probability of the set of timed paths
of C that satisfy ϕ (or are accepted by A) over a time interval of fixed, bounded
length? We provide approximation algorithms to solve these problems. We first
derive a bound N such that timed paths of C with at most N discrete jumps are
sufficient to approximate the desired probability up to ε. Then, for each discrete
(untimed) path σ of length at most N , we generate timed constraints over vari-
ables determining the residence time of each state along σ, depending on the real-
time specification under consideration. The probability of the set of timed paths,
determined by the discrete path and the associated timed constraints, can thus
be formulated as a multidimensional integral. Summing up all such probabilities
yields the result. For MTL, we consider both the continuous and the pointwise
semantics. The approximation algorithms differ mainly in constraints generation
for the two types of specifications.

1 Introduction

Verification of continuous-time Markov chains (CTMCs) has received much attention
in recent years [8]. Thanks to considerable improvements of algorithms, (symbolic)
data structures and abstraction techniques, CTMC model checking has emerged as a
valuable analysis technique. Aided by powerful software tools, it has been adopted by
researchers from, e.g., systems biology, queuing networks and dependability.

The focus of CTMC model checking has primarily been on checking stochastic ver-
sions of the branching-time temporal logic CTL, such as CSL [7]. The verification
of LTL properties reduces to applying well-known algorithms [33,18] to embedded
discrete-time Markov chains (DTMCs). Linear-time properties equipped with timing
constraints have only recently been considered. In particular, [16,17] treat linear real-
time specifications that are given as deterministic timed automata (DTA). These include
properties of the form, “what is the probability to reach a given target state within the
deadline, while avoiding unsafe states and not staying too long in any of the danger-
ous states on the way?”. Such properties cannot be expressed in CSL nor in its dialects
[6,19]. Model checking DTA properties can be done by a reduction to computing the

� This work is supported by the ERC Advanced Grant VERIWARE.
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reachability probability in a piecewise deterministic Markov process, based on the prod-
uct construction between the CTMC and DTA [17,11]. It remains a challenge to tackle
more general real-time specifications like Metric Temporal Logics ([4,24], MTL), or
nondeterministic Timed Automata (TA, [1]). The main difficulty lies in the fact that one
cannot easily define a stochastic process out of the CTMC and the MTL formula (or
TA), due to the inherent nondeterminism arising from these specifications. The obstacle
is somehow fundamental, as it is known that deterministic TA are lacking expressive-
ness compared to their nondeterministic variants or MTL.

Recently, we have seen increasing emphasis on timed-bounded verification [27].
Here, “time-bounded” means restricting the modeling and verification efforts to some
bounded interval of time, which itself can be taken as a parameter. In verification,
queries are phrased over time intervals of fixed, bounded duration. Note that, differently
from bounded model checking, which restricts the total number of allowable events
(called discrete jumps in this paper), time-bounded verification restricts the total dura-
tion under consideration, but not the number of events, which can still be unboundedly
large owing to the density of time.1 Instances of time-bounded verification have been
considered in the context of stochastic and/or real-time systems [30,9,23,20] and re-
cently studied systematically [27,22]; see [29] for an introduction, where it is argued
that the restriction on total duration is very natural for real-time systems.

Inspired by this recent progress, we study the time-bounded verification problem of
a CTMC C, against a real-time specification provided as either an MTL formula ϕ, or
as a TAA. The key question is: what is the probability of the set of timed paths of C that
satisfy ϕ (or are accepted by A) over a fixed time interval [0, T ] where T ∈ R>0? We
provide approximation algorithms to solve these problems. Given any ε > 0 a priori,
we first derive a bound N such that it is sufficient only to consider timed paths of C
with at most N discrete jumps to approximate the desired probability up to ε. Then,
for each discrete (untimed) path σ of C of length at most N , we generate a family of
linear constraints, S, over variables determining the residence time of each state in σ.
The discrete path σ, together with the associated timing constraints S, determines a
set of timed paths of C, each of which satisfies ϕ (or is accepted by A). The probabil-
ity of this set of timed paths can be formulated as a multidimensional integral, which
can be calculated by Laplace transforms, together with an application of the inclusion-
exclusion principle. Summing up all such probabilities yields the desired result. Notice
that, in the current paper, we consider both the continuous and the pointwise seman-
tics of MTL (see, e.g. [14]). The approximation algorithms differ mainly in constraints
generation for different types of specifications. The family of linear constraints are de-
sirable, since we can apply the efficient algorithm for computing the volumes of convex
polyhedra [25]. For MTL under the pointwise semantics and TA specifications, con-
straint generation is relatively easy, while for MTL under the continuous semantics it is
more involved. To this end, we first derive constraints in terms of first-order theory of
(R,+,−, 0, 1,≤), then the Fourier-Motzkin elimination procedure [31, pp.155-156] is

1 Readers should note that we later bound the number of discrete jumps as an approximation
technique. This owes to the definition of CTMCs and is irrelevant to the original definition of
time-bounded verification.
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applied to obtain desired linear constraints. We believe these results are of independent
interest, as they have potential usage in domains such as runtime verification.

The approach we take in this paper is quite different from existing results in the lit-
erature. Known results can only deal with simpler real-time properties, or are based on
deterministic property specifications (e.g. DTA). Our technique is based on path ex-
ploration of CTMCs, together with a novel analytic methodology to reduce computing
the probabilities to a multi-dimensional integral over convex polyhedra. To the best of
our knowledge, this is the first work addressing verification of CTMCs against MTL
formulas or non-deterministic timed automata.

Related work. Model checking CTMCs against linear real-time specifications has re-
ceived scant attention so far. To our knowledge, this issue has only been (partially)
addressed in [16,6,19]. Baier et al. [6] define the logic asCSL where path properties are
characterized by (time-bounded) regular expressions over actions and state formulas.
The truth value of path formulas depends not only on the available actions in a given
time interval, but also on the validity of certain state formulas in intermediate states.
asCSL is strictly more expressive than CSL [6]. Model checking asCSL is performed
by representing the regular expressions as finite-state automata, followed by computing
time-bounded reachability probabilities in the product of CTMC C and this automa-
ton. In CSLTA [19], time constraints of until modalities are specified by a single-clock
DTA; the resulting logic is at least as expressive as asCSL [19]. The combined be-
havior of C and the DTA A is interpreted as a Markov renewal process, and model
checking CSLTA is reduced to computing the reachability probabilities in a DTMC
whose transition probabilities are given by subordinate CTMCs.

Due to space restriction, all the proofs are omitted in the current paper. We refer the
readers to [15] for the full proofs, more explanation, and examples.

2 Preliminaries

2.1 Continuous-Time Markov Chains

Given a set H, let Pr: F(H) → [0, 1] be a probability measure on the measurable
space (H,F(H)), where F(H) is a σ-algebra over H. Let Distr(H) denote the set of
probability measures on this measurable space.

Definition 1 (CTMC). A (labeled) continuous-time Markov chain (CTMC) is a tuple
C = (S, AP, L, α,P, E) where S is a finite set of states; AP is a finite set of atomic
propositions; L : S → 2AP is the labeling function; α ∈ Distr(S) is the initial distri-
bution; P : S × S → [0, 1] is a stochastic matrix; and E : S → R≥0 is the exit rate
function.

In a CTMC C, state residence times are exponentially distributed. More precisely, the
residence time X of a state s ∈ S is a random variable governed by a nonnegative
exponential distribution with parameter E(s) (written as X ∼ Exp(E(s))). Hence, the
probability to exit state s in t time units (t.u. for short) is given by

∫ t

0 E(s) · e−E(s)τdτ .
Furthermore, the probability to take the transition from s to s′ in t t.u. equals P(s, s′) ·∫ t

0 E(s) · e−E(s)τdτ .
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Definition 2. Given a CTMC C = (S, AP, L, α,P, E), we define the following no-
tions.

– A (finite) discrete path σ = s0 → s1 → s2 → . . . is a (finite) sequence of states;
we define σi to be the state si, and σi to be the prefix of length i of σ.

– A (finite) timed path ρ = s0
x0−→ s1

x1−→ s2
x2−→ . . ., where xi ∈ R>0 for each

i ≥ 0, is a sequence starting in state s0; we define |ρ| to be the length of a finite
timed path ρ; ρ[n] := sn is the n-th state of ρ and ρ〈n〉 := xn is the time spent
in state sn; let ρ@t be the state occupied in ρ at time t ∈ R≥0, i.e. ρ@t := ρ[n],

where n is the smallest index such that
n∑

i=0

ρ〈i〉 ≥ t.

– Given a finite discrete path σ = s0 → s1 → · · · → sn−1 of length n and
x0, . . . , xn−1 ∈ R>0, define σ[x0, . . . , xn−1] to be the finite timed path ρ such
that ρ[i] := si and ρ〈i〉 := xi for each 0 ≤ i < n.

– Let Γ be the set of n-tuples (x0, . . . , xn−1) ∈ Rn
>0, then σ[Γ ] = {σ[x0, . . . , xn−1]

| (x0, . . . , xn−1) ∈ Γ}.
– Given a finite (resp. infinite) discrete path σ and a finite (resp. infinite) timed path

ρ, we say σ is the skeleton of ρ if for each i ≥ 0, σi = ρ[i]. We write S(ρ) for the
skeleton of ρ, and for a set of (finite or infinite) timed paths Ξ , we write S(Ξ) =
{S(ρ) | ρ ∈ Ξ}.

– Given a finite discrete path σ, we define Cd(σ) = {σσ′ | σ′ is an infinite
discrete path} to be the set of all infinite discrete paths with the same common
prefix σ.

Intuitively, a timed path ρ suggests that the CTMC C starts in state s0 and stays in this
state for x0 t.u., and then jumps to state s1, staying there for x1 t.u., and then jumps to

s2 and so on. An example timed path is ρ = s0
3−→ s1

2−→ s0
1.5−→ s1

3.4−→ s2 . . . with
ρ[2] = s0 and ρ@4 = ρ[1] = s1.

Let PathsC denote the set of infinite timed paths in the CTMC C, and PathsC(s)
the set of infinite timed paths in C that start in s. Given a time bound T ∈ R≥0 and
N ∈ N ∪ {∞}, we define PathsCT,<N (s) =

{
ρ ∈ PathsC(s) | ∃k.0 ≤ k ≤ N − 1

and
∑k

i=0 ρ〈i〉 ≥ T
}

, to be the set of all timed paths with at most N−1 discrete jumps
in time interval [0, T ]; and PathsCT,≥N (s) =

{
ρ ∈ PathsC(s) | ∃k.0 ≤ k ≤ N − 1,

and
∑k

i=0 ρ〈i〉 ≤ T
}

, to be the set of all timed paths with at least N jumps in [0, T ].
For notational simplicity we will omit the superscript C when appropriate and also

we write PathsCT instead of PathsCT,≤∞ for the set of all timed paths with an arbi-
trary number of jumps in [0, T ]. The definition of a Borel space on timed paths through
CTMCs follows [7]. A CTMC C yields a probability measure PrC on PathsC as fol-
lows. Let s0, . . . , sk ∈ S with P(si, si+1) > 0 for 0 ≤ i < k and I0, . . . , Ik−1 be
nonempty intervals in R≥0. Let C(s0, I0, . . . , Ik−1, sk) denote the cylinder set con-
sisting of all ρ ∈ Paths(s0) such that ρ[i] = si (i ≤ k), and ρ〈i〉 ∈ Ii (i < k).
F(Paths(s0)) is the smallest σ-algebra on Paths(s0) which contains all sets C(s0, I0,
. . . , Ik−1, sk) for all state sequences (s0, . . . , sk) ∈ Sk+1 with P(si, si+1) > 0 for
(0 ≤ i < k) where I0, . . . , Ik−1 range over all sequences of nonempty intervals in R≥0.
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The probability measure PrC onF(Paths(s0)) is the unique measure defined by induc-
tion on k by PrC(C(s0)) = α(s0) and for k > 0:

PrC(C(s0, I0, . . . , Ik−1, sk)) = PrC(C(s0, I0, . . . , Ik−2, sk−1))

×
∫

Ik−1

P(sk−1, sk)E(sk−1) · e−E(sk−1)τdτ.

In general, computing the probability of a cylinder set with k intervals I0 . . . Ik−1 (i.e.
k discrete jumps) reduces to calculating k integrals over I0 . . . Ik−1.

2.2 Metric Temporal Logic

Definition 3 (Syntax of MTL). Let AP be an arbitrary nonempty, finite set of atomic
propositions. Let I = [a, b] be an interval such that a, b ∈ N ∪ {∞}. The Metric
Temporal Logic is inductively defined as: ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2 , where
p ∈ AP and ϕ1, ϕ2 are MTL formulas.

We introduce two time-bounded semantics for MTL, as follows.

Definition 4 (Continuous Semantics). Given an MTL formula ϕ, a time bound T , a
timed path ρ and a variable t ∈ R≥0, the satisfaction relation (ρ, t) |=c

T ϕ is inductively
defined as follows:

(ρ, t) |=c
T p ⇔ p ∈ L(ρ@t) ∧ t ≤ T

(ρ, t) |=c
T ¬ϕ1 ⇔ (ρ, t) �|=c

T ϕ1

(ρ, t) |=c
T ϕ1 ∧ ϕ2 ⇔ (ρ, t) |=c

T ϕ1 ∧ (ρ, t) |=c
T ϕ2

(ρ, t) |=c
T ϕ1UIϕ2 ⇔ ∃t′. t ≤ t′ ≤ T s.t. t′ − t ∈ I ∧ (ρ, t′) |=c

T ϕ2 ∧
∀t′′. t ≤ t′′< t′ ⇒ (ρ, t′′) |=c

T ϕ1

where p ∈ AP and ϕ1, ϕ2 are MTL formulas.

Definition 5 (Pointwise Semantics). Given an MTL formula ϕ, a time bound T , a
timed path ρ and i ∈ N, the satisfaction relation (ρ, i) |=p

T ϕ is inductively defined as
follows:

(ρ, i) |=p
T p ⇔ p ∈ L(ρ[i]) ∧

∑i
k=0 ρ〈k〉 ≤ T

(ρ, i) |=p
T ¬ϕ1 ⇔ (ρ, i) �|=p

T ϕ1

(ρ, i) |=p
T ϕ1 ∧ ϕ2 ⇔ (ρ, i) |=p

T ϕ1 ∧ (ρ, i) |=p
T ϕ2

(ρ, i) |=p
T ϕ1UIϕ2 ⇔ ∃i′. i ≤ i′ s.t.

∑i′

k=i ρ〈k〉 ∈ I ∧ (ρ, i′) |=p
T ϕ2 ∧

∀i′′. i ≤ i′′ < i′ ⇒ (ρ, i′′) |=p
T ϕ1

where p ∈ AP, ϕ1, ϕ2 are MTL formulas and i′, i′′ ∈ N.

2.3 Timed Automata

Let X = {x1, . . . , xp} be a set of nonnegative real-valued variables called clocks. An
X -valuation is a function η : X → R≥0 assigning to each variable x ∈ X a nonnegative
real value η(x). Let V(X ) denote the set of all valuations over X . A clock constraint
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on X , denoted by g, is a conjunction of expressions of the form x �� c for x ∈ X ,
�� ∈ {<,≤, >,≥} and c ∈ N. Let B(X ) denote the set of clock constraints over X . An
X -valuation η satisfies constraint x �� c, denoted η |= x �� c, if and only if η(x) �� c;
it satisfies a conjunction of such expressions if and only if η satisfies all of them. Let
0 denote the valuation that assigns 0 to all clocks. For a subset X ⊆ X , the reset of
X , denoted η[X := 0], is the valuation η′ such that ∀x ∈ X. η′(x) := 0 and ∀x /∈ X.
η′(x) := η(x). For δ ∈ R≥0 and X -valuation η, η + δ is the X -valuation η′′ such that
∀x ∈ X . η′′(x) := η(x) + δ, which implies that all clocks proceed at the same speed.

Definition 6 (TA). A timed automaton is a tuple A = (Σ,X , Q, q0, QF,→) where Σ
is a finite alphabet; X is a finite set of clocks; Q is a non empty finite set of locations
with initial location q0 ∈ Q; QF is a set of final locations; the relation →⊆ Q×Σ ×
B(X )× 2X ×Q is an edge relation.

We refer to q
a,g,X−→ q′ as an edge, where a ∈ Σ is an input symbol, the guard g is

a clock constraint on the clocks of A, X is the set of clocks that must be reset and

q′ is the successor location. Intuitively, the edge q
a,g,X−→ q′ asserts that the TA A can

move from location q to location q′ when the input symbol is a and the guard g holds,
while the clocks in X should be reset when entering q′. In case no guard is satisfied in
a location for a given clock valuation, time can progress. For the sake of simplicity we
omit invariants from the definition of TAs. However, the results presented here can be
easily extended to TAs enhanced with invariants.

Definition 7. Given a timed automatonA, we define the following notions.

– A discrete path of A is a sequence of states w = q0 → q1 . . .→ qn · · · where each
qi ∈ Q.

– A timed path of A is of the form θ = q0
a0,t0−→ q1

a1,t1−→ . . . qn−1
an−1,tn−1−→ qn · · ·

such that η0 = 0, and for all i ≥ 0, ai ∈ Σ and it holds ti > 0, ηi + ti |= gi where
gi is the guard on the i-th transition, ηi+1 = (ηi + ti)[Xi := 0], where ηi is the
clock evaluation when entering qi. We say that θ is accepting if there exists some
n ≥ 0 s.t. qn ∈ QF.

Definition 8 (Time-bounded Acceptance). Assume a CTMC C = (S, AP, L, s0,P, E)
and a TA A = (2AP ,X , Q, q0, QF,→). A CTMC timed path ρ = s0

t0−→ s1
t1−→ . . .,

is accepted by A if there exists n ∈ N>0 and a corresponding TA finite path: θ =

q0
L(s0),t0−→ q1

L(s1),t1−→ . . . qn−1
L(sn−1),tn−1−→ qn, such that qn ∈ QF and

∑n−1
i=0 ti ≤ T .

We write ρ |=T A to denote that the CTMC timed path ρ is accepted by A.

Remark 1. It is possible that a single CTMC timed path corresponds to multiple TA
accepting paths due to the nondeterminism of TA.

3 A Bound on the Number of Discrete Jumps

In this section, we give a bound on discrete jumps of paths of CTMCs such that, when
verifying an MTL formula or TA, one only needs to consider those paths whose discrete
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jumps number at most N . The intuition is that, for a given time interval [0, T ], the
probability of the set of timed paths which “jump” very frequently is actually very
small. Throughout this section we assume a CTMC C = (S, AP, L, α,P, E).

For any n ∈ N, we define V n(s, x) : S × R≥0 → [0, 1] as follows: V 0(s, x)=1 and

V n+1(s, x) =
∫ x

0

E(s)e−E(s)τ ·
∑
s′∈S

P(s, s′) · V n(s′, x− τ)dτ .

Lemma 1. For all N ∈ N, PrC(PathsCT,≥N (s)) = V N (s, T ).

We then show how to bound V N (s, T ) analytically. Given a CTMC C, let Λ =

maxs∈S E(s) and ε(T,N) = e−ΛT ·
( ∞∑

i=N

(ΛT )i

i!

)
.

Lemma 2. ε(T,N + 1) =
∫ T

0
Λe−Λτ · ε(T − τ,N)dτ .

Combining Lem. 1 and Lem. 2, we obtain the following.

Theorem 1. Given a CTMC C, a time bound T and N ∈ N, PrC(PathsCT,≥N ) ≤
ε(T,N).

Proposition 1. Let ε ∈ R>0 and T ∈ R≥0. For any N ≥ ΛTe2 + ln(1
ε ) we have that

ε(T,N) < ε.

For instance, given a CTMC C with 10 states, greatest rate Λ = 100, error bound
ε = 10−2 and T = 1000, we get that N ≥ 738911. The maximum number of paths to
consider would be 10N .

Remark 2. Readers who are familiar with Poisson distributions will immediately notice
that the bound we obtained is actually the probability that there are at least N Poisson
arrivals in an interval of time [0, T ], with rate Λ. If the CTMC C is uniform (i.e., each
state of C has the same exit rate), then one could obtain the bound in a straightforward
way. However, for the general case, this cannot be achieved directly. Moreover, we
point out here that, in order to verify an MTL formula ϕ or a TA A, one cannot apply
the unformization technique, which is used only for transient probability computation.

4 MTL Specifications

In this section we study the problem of model checking CTMCs against MTL prop-
erties. Let PrCT (ϕ) := PrC({ρ ∈ PathsCT | (ρ, 0) |=c

T ϕ}) denote the probability that
the CTMC C satisfies the MTL formula ϕ, for a given time bound T . Notice that, here
the definition of PrCT (ϕ) is for the continuous semantics of MTL. However, we present
algorithms to deal with both continuous and pointwise semantics. Instead of comput-
ing PrCT (ϕ), we give a procedure to compute PrCT,<N (ϕ) := PrC(PathsCT,<N (ϕ)) for

sufficiently large N which ensures that PrCT (ϕ)− PrCT,<N (ϕ) < ε for arbitrarily small
ε ∈ R>0. This yields an approximation algorithm. The measurability of the set of
PathsCT,<N (ϕ) := {ρ ∈ PathsCT,<N | (ρ, 0) |=c

T ϕ} can be shown as in [32]. Below

we present an algorithm to compute PrCT,<N (ϕ). We first give a sketch, and provide the
crucial sub-procedures in Sec. 4.1 and Sec. 4.2.
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Choose N to get the desired error bound ε. The first step of the algorithm is to choose
the smallest N from Prop. 1 such that we get the desired error bound ε.

Compute the product C ⊗ Aϕ̃. The basic idea of this step is to exclude those CTMC
timed paths which definitely fail ϕ in order to reduce the number of paths to be analyzed.
To this end, we define an LTL formula ϕ̃ such that, if a discrete path of C fails ϕ̃, then
any timed path with the discrete path as the skeleton (see Def. 2) must fail ϕ. This is
formally stated in Lem. 3. Notice that since we consider the time-bounded semantics
of MTL, we need a variant of acceptance for an infinite discrete word and an LTL
formula ϕ̃, which is given in Def. 9. We then construct an NFA out of ϕ̃ such that only
those finite discrete CTMC paths which are accepted by the NFA are the prefixes of
the potential skeletons of timed paths satisfying ϕ. Then we apply the standard product
construction, which suffices to identify those CTMC finite discrete paths analyzed in
the next step.

Any MTL formulaϕ can be transformed into a positive normal form containing only
two temporal operators: U[a,b] and �[a,b], where (ρ, t) |=c

T �[a,b]ϕ iff ∀t′ ∈ [a, b] ⇒
(ρ, t + t′) |=c

T ϕ.

Definition 9 (Bounded Semantics of LTL). Given an LTL formula ϕ, a finite discrete
path σ and i ∈ N, the satisfaction relation (σ, i) |= ϕ is inductively defined as follows:

(σ, i) |= p ⇔ p ∈ L(σi) and i ≤ |σ|
(σ, i) |= ¬ϕ1 ⇔ (σ, i) �|= ϕ1

(σ, i) |= ϕ1 ∧ ϕ2 ⇔ (σ, i) |= ϕ1 ∧ (σ, i) |= ϕ2

(σ, i) |= ϕ1Uϕ2 ⇔ ∃i′. i ≤ i′ ≤ |σ| s.t. (σ, i′) |= ϕ2 ∧
∀i′′. i ≤ i′′ < i′ ⇒ (σ, i′′) |= ϕ1

where p ∈ AP, ϕ1, ϕ2 are LTL formulas and i′, i′′ ∈ N. For an infinite discrete
path σ, we define σ |= ϕ if there exists some k ≥ 0 such that the finite discrete path
(σk, 0) |= ϕ.

Given any MTL ϕ in positive normal form, we define an (untimed) LTL formula ϕ̃ as
follows:

ϕ = p ⇒ ϕ̃ = p
ϕ = ¬p ⇒ ϕ̃ = ¬p
ϕ = ϕ1 ∨ ϕ2 ⇒ ϕ̃ = ϕ̃1 ∨ ϕ̃2

ϕ = ϕ1 ∧ ϕ2 ⇒ ϕ̃ = ϕ̃1 ∧ ϕ̃2

ϕ = ϕ1UIϕ2 ⇒ ϕ̃ = ϕ̃1Uϕ̃2

ϕ = �Iϕ1 ⇒ ϕ̃ = TRUE Uϕ̃1

where ϕ1 and ϕ2 are MTL formulas and ϕ̃1 and ϕ̃2 are LTL formulas.

Remark 3. In the transformation from the MTL formula ϕ to LTL formula ϕ̃ we only
define the ¬ operator for atomic propositions because ϕ is already in positive normal
form. Notice that we transform �[a,b]ϕ into TRUE Uϕ̃ instead of a seemingly more
natural �ϕ, because otherwise in the next step we would not consider timed paths ρ
such that (ρ, 0) |= ϕ while S(ρ) �|= ϕ̃. Such paths do exist. For instance, consider
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the MTL formula �[0,2]p and the path ρ = s0
2.5−→ s1 · · · with L(s0) = {p} and

L(s1) = {¬p}. Then (ρ, 0) |=c
T �[0,2]p and S(ρ) �|= �p (but S(ρ) |= TRUE Up as

we defined). To conclude, one cannot transform �[a,b] by simply removing the time
constraints [a, b].

Lemma 3. Let ϕ be an MTL formula and ρ be a timed path in C. We have that

(ρ, 0) |=c
T ϕ⇒ (S(ρ), 0) |= ϕ̃.

As the next step, we construct an NFA Aϕ̃ which accepts all the prefixes of infinite
paths satisfying the formula ϕ̃ according to Def. 9. The NFA can be obtained by a minor
adaptation of the well-known Vardi-Wolper construction [34]. (See [15] for details.) We
then build the product of C and Aϕ̃.

Definition 10 (Product C ⊗ Aϕ̃). Given a CTMC C = (S, AP, L, s0,P, E) and an
NFA Aϕ̃ = (Q, 2AP, δ, q0, F ) we define the product C ⊗ Aϕ̃ to be the tuple C ⊗ Aϕ̃ =
(Loc, l0, LocF ,�) where: Loc = S×Q; l0 = 〈s0, q0〉; LocF = S×F ; �⊆ Loc×Loc
such that

P(s, s′) > 0 ∧ q
L(s)−→ q′

〈s, q〉� 〈s′, q′〉 .

The set of accepted timed paths in C ⊗ Aϕ̃ is defined by ♦LocF . Notice that we are
only interested in the discrete paths of C⊗Aϕ̃. Therefore, we do not assign probabilities
to the transition relation � when computing the product. The product is used to check
which discrete paths in the CTMC verify the formula ϕ̃.

Proposition 2. For any CTMC C and NFA Aϕ̃, S(PathsCT (ϕ)) ⊆ {Cd(σ) | σ ∈
♦LocF �1}, where LocF �1 is the first component of LocF .

Compute all the discrete paths of C ⊗ Aϕ̃ of length at most N and calculate the
probabilities.

1. Search the graph C ⊗ Aϕ̃ to get all the discrete accepting paths σ of C of length at
most N ;

2. Run Alg. 1 on each discrete path σ of length n ≤ N to obtain the system of linear
inequalities S;

3. Compute the probability of σ[S] (cf. Sec. 4.2);
4. Sum up all the probabilities for each discrete path to obtain PrCT,<N (ϕ).

4.1 Constraints Generation

We describe the Alg. 1 that takes as input a discrete path σ of length n and an MTL
formula ϕ. 2 The algorithm returns a family of linear constraints S =

∨
i∈I

∧
j∈Ji

cij

where cij is a linear inequality over the set of variables t0, . . . , tn−1. Given a sys-
tem of linear constraints S we define the set of feasible solutions to be the tuples
(x0, . . . , xn−1) ∈ Rn such that (x0, . . . , xn−1) ∈ S.

2 The algorithm Alg. 1 evaluates the formula ϕ for the continuous semantics.
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Algorithm 1. Constraints generation for continuous semantics
Require: A finite discrete path σ of length n > 0, an MTL formula ϕ and a time bound T
Ensure: Family of linear inequalities S over t0, . . . , tn−1

S ′ :=Constr Gen(σ,0,ϕ)
S :=Fourier Motzkin(S ′,t0,. . .,tn−1)
return S
Function Constr Gen(σ,t,ϕ)
case(ϕ) :

ϕ = p : return
(∨n

k=0 p ∈ L(σk) ∧∑k
i=0 ti ≥ t ∧∑k−1

i=0 ti < t
) ∧ t < T

ϕ = ¬ϕ1 : S ′ := ¬Constr Gen(σ,t,ϕ1)
ϕ = ϕ1 ∧ ϕ2 : S ′ :=Constr Gen(σ,t,ϕ1) ∧ Constr Gen(σ,t,ϕ2)
ϕ = ϕ1U[a,b]ϕ2 : S ′ := ∃t′.(t ≤ t′ < T ∧ t′−t≥a ∧ t′−t<b ∧ Constr Gen(σ,t′,ϕ2)

∧ ∀t′′. t ≤ t′′ < t′ ⇒ Constr Gen(σ,t′′,ϕ1)
)

return S ′

The negation of the family of linear constraints is defined in the standard way. First,
the algorithm executes the function Constr Gen(σ,0,ϕ). The result is a set of con-
straints S′ in first-order theory of (R,+,−, 0, 1,≤). Second, the algorithm executes the
Fourier-Motzkin procedure in order to eliminate all existential and universal quantifiers.
This results in a family of linear constraints containing only the variables t0, . . . , tn−1.

Theorem 2. Given a discrete path σ of length n, an MTL formula ϕ and a time bound
T , we have that (σ[x0, . . . , xn−1], 0) |=T ϕ iff (x0, . . . , xn−1) ∈ S, where S is re-
turned by Alg. 1.

Example 1. Let C be a CTMC and let σ be the following finite discrete path on C:
σ = s0 → s1 → s2 → s3. Let a, b ∈ AP, let L(s0) = {a}, L(s1) = {a}, L(s2) =
{a, b}, L(s3) = {∅} and let ϕ = a U[1,2]b. The first step of Alg. 1 consists of comput-
ing Constr Gen(σ,0,ϕ)which returns the following family of linear constraints S′

(the parenthesis “{” denotes the ∧ between the formulas):

∃t′. 0 ≤ t′ < T ∧ t′ ≥ 1 ∧ t′ < 2 ∧
{
t0 + t1 + t2 ≥ t′

t0 + t1 < t′
∧ (1)

∀t′′. 0 ≤ t′′ < t′ ⇒
(
t0 ≥ t′′ ∨

{
t0 + t1 ≥ t′′

t0 < t′′
∨
{
t0 + t1 + t2 ≥ t′′

t0 + t1 < t′′

)
. (2)

The constraints in Eq. (2) can always be verified given the constraints in Eq. (1). More-
over, after the Fourier Motzkin elimination for t′, t′′ in S′ we obtain the family of
constraints S:

S =
{
t0 + t1 < 2
t0 + t1 + t2 ≥ 1 .

The system S can be represented using the matrix notation:S := {t ∈ Rn
>0 | A · t�b},

for a given matrix A ∈ Rm×n, vector b ∈ Rm and � ∈ {<,≤}. The notation R>0

stands for the semi-closed interval (0,∞) ⊂ R. The matrices A, t and b in S are:
A ∈ R2×3, t ∈ R3

>0 and b ∈ R2. More specifically:
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A =
[

1 1 0
−1 −1 −1

]
; t =

⎡⎣ t0
t1
t2

⎤⎦ ; b =
[

2
−1

]
.

In Alg. 2 we present a procedure which generates a family of linear constraints from a
given MTL formula ϕ under the pointwise semantics. Notice that we do not need to use
the Fourier Motzkin elimination procedure, as the family of constraints obtained
from Constr Gen(σ,0,ϕ) contains no quantifiers.

Algorithm 2. Constraints generation for pointwise semantics
Require: A finite discrete path σ of length n > 0, an MTL formula ϕ and a time bound T
Ensure: Family of linear inequalities S over t0, . . . , tn−1

return Constr Gen(σ,0,ϕ)

Function Constr Gen(σ,i,ϕ)
case(ϕ) :

ϕ = p : if p ∈ L(σi) return
∑i

k=0 tk ≤ T else return false
ϕ = ¬ϕ1 : S := ¬Constr Gen(σ,i,ϕ1)
ϕ = ϕ1 ∧ ϕ2 : S :=Constr Gen(σ,i,ϕ1) ∧ Constr Gen(σ,i,ϕ2)

ϕ = ϕ1U[a,b]ϕ2 : S :=
(∨n

i′=i Constr Gen(σ,i′,ϕ2) ∧ a ≤ ∑i′
k=i tk ≤ b ∧

(
∧i′−1

i′′=iConstr Gen(σ,i′′,ϕ1))
)

return S

Let S be the family of linear constraints obtained from Alg. 1 and 2. S is always
defined as a union of convex polyhedra in Rn, i.e., S =

∨
i∈I

∧
j∈Ji

cij where, for each
i ∈ I ,

∧
j∈Ji

cij is a convex polyhedron.

4.2 Computing Probabilities

Given a CTMC C, a discrete path σ of length N and the family of linear constraints
S(t0, . . . , tN−1) obtained from Alg. 1, the main task of this section is to compute the
probability of σ[S], i.e., PrC(σ[S]). To this end, we first add more constraints to S,
namely, for S =

∨
i∈I

∧
j∈Ji

cij we obtain

S=
∨
i∈I

⎛⎝ ∧
j∈Ji

cij ∧ (t0 + . . . + tN−1> T ∧ t0 + . . . + tN−2< T ) ∧
∧

0≤k<N

tk > 0

⎞⎠ .

These new constraints are used to ensure that there are exactly N discrete jumps during
the time interval [0, T ], and that each residence time is positive.

Now we have N random variables t0, · · · , tN−1, corresponding to the residence time
of each state σi for i ≤ N . The probability PrC(σ[S]) is thus formulated as the joint
probability PrC(S(t0, · · · , tN−1)), where ti ∼ Exp(E(σi)) for each 0 ≤ i < N , and
t0, · · · , tN−1 are bounded by the family of linear constraints S . The value of the joint
probability can be computed through the following multidimensional integration:
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PrC(σ[S]) =
∫
· · ·

∫
︸ ︷︷ ︸

N

S(τ0 ,...,τN−1)

N−1∏
i=0

E(si) · P (si, si+1)× e−E(si)τidτi. (3)

Proposition 3 ([21]). Consider any family of linear inequalities S =
∨

i∈I

∧
j∈Ji

cij .
For each i ∈ I , we can write

∧
j∈Ji

cij in matrix form Ai · t � bi where � ∈ {<,≤},
and

∧
j∈Ji

cij is a polyhedron.

From Prop. 3, we have that S =
∨k

�=0 C� where each C� = {t ∈ Rn
>0|A� · t � b�}

defines a convex set. In case that the union
∨k

�=0 C� is not convex, we use the inclusion-
exclusion principle to compute PrC(σ[S]) as follows:

PrC(σ[S]) =
k∑

�=0

PrC(σ[C�])−
∑

i,j:0≤i<j≤k

PrC(σ[Ci ∧ Cj ]) +

∑
i,j,h:0≤i<j<h≤k

PrC(σ[Ci ∧ Cj ∧Ch])− · · ·+ (−1)k−1PrC(σ[C0 ∧ · · · ∧ Ck])

Remark 4. In our case, the difference between < and ≤ in the constraints is marginal,
as they would yield the same probability, which can be seen from Eq. (3).

For an index set L ⊆ {0, . . . , k} we write D =
∧

�∈L C�, where C� defines a polyhe-
dron. By Prop.3, D defines a polyhedron as well. We rewrite PrC(σ[D]) as:

PrC(σ[D]) =
N−1∏
i=0

E(si) · P (si, si+1) ·
∫
· · ·

∫
︸ ︷︷ ︸

N

D

N−1∏
i=0

e−E(si)τidτi

=
N−1∏
i=0

E(si) · P (si, si+1) ·
∫
· · ·

∫
︸ ︷︷ ︸

N

D

e−E·τdτ ,

where E = [E(s0), . . . , E(sN−1)], τ = [τ0, . . . , τN−1] and E · τ =
∑N−1

i=0 E(si) · τi.
We use the algorithm of [25] (Sec. 5) to compute efficiently the multidimensional inte-
gral

∫
· · ·

∫
D
e−E·τdτ based on the Laplace transform. An example of how to compute

the integral
∫
· · ·

∫
D e−E·τdτ for a convex set D is given in [15]. The time complexity

of solving the multidimensional integral isO(nm), where n is the number of constraints
and m is the number of variables in D.

Remark 5. Admittedly, it is costly to apply the inclusion-exclusion principle to compute
the probabilities. In the worst case, any union of two components is not convex. Notice
that efficient algorithms to decide whether the union of two polyhedra is convex there
exist; see e.g. [12].
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4.3 Main Algorithm and Correctness

We summarize the time-bounded verification algorithm for a CTMC C against an MTL
formula ϕ in Alg. 3. Recall that Λ is the maximal exit rate appearing in C.

Algorithm 3. Time-bounded verification of a CTMC C against an MTL formula ϕ
Require: C, ϕ, T and ε
Ensure: PrCT,<N (ϕ)

Choose an integer N ≥ ΛTe2 + ln( 1
ε
)

Transform ϕ into ϕ̃ and generate NFA Aϕ̃ out of ϕ̃
Compute the product C ⊗ Aϕ̃

for each discrete path σ of (C ⊗Aϕ̃) �1 of length n < N do
Generate the family of linear constraints S(t0, . . . , tn−1) using Alg. 1 (or Alg. 2)
Calculate the probability p of σ[S ]
PrCT,<N (ϕ) := PrCT,<N(ϕ) + p

end for
return PrCT,<N (ϕ)

For the correctness, we first note that the error is bounded by PrCT,≥N (ϕ), which is in
turn bounded by the probability of the set of timed paths with at least N discrete jumps
in [0, T ]. Then Lem. 4 yields the bound, as follows.

Lemma 4. Given a CTMC C, an MTL formula ϕ, a time bound T and N ∈ N

PrCT (ϕ)− PrCT,<N (ϕ) ≤ ε(T,N).

Theorem 3. Alg. 3 computes PrCT,<N (ϕ).

5 TA Specifications

In this section, we show how the procedure outlined in the previous section can be
adapted to verify TA specifications on CTMCs. Formally, we intend to compute PrCT (A)
:= PrC({ρ ∈ PathsCT | ρ |=T A}). As in the case of MTL specifications, we bound
PrCT (A) by PrCT,<N (A) := PrC(PathsCT,<N (A)), such that PrCT (A)−PrCT,<N (A) < ε

for ε > 0. The measurability of the set of paths PathsCT,<N (A) := {ρ ∈ PathsCT,<N |
ρ |=T A} can be shown as in [17].

5.1 Constraints Generation

Alur et. al. in [5] show how to, given a discrete path π of TA A, construct a graph G
such thatA has a run over π if and only if G has no negative cost cycle. The graph G has
exactly n nodes and the number of edges of G depends on the numbers of guards and
invariants in A (see [5] for details). Each edge e = (i, j) (connecting node i to node j)
is labeled with a value c such that c ∈ H where

H = {. . .− 2,−1, 0, 1, 2, . . .} ∪ {. . .− 2−,−1−, 0−, 1−, 2−, . . .} ∪ {−∞,∞}

The setH is used to characterize strict and non-strict constraints in A.
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For each discrete path σ of the CTMC C we define Πσ = {π | πi
L(σi)−→ πi+1 for all

0 ≤ i ≤ n− 1}.
Theorem 4. Given a discrete path σ of length n, a TA A and a time bound T , we have
that σ[t0, . . . , tn−1] is accepted by A iff (t0, . . . , tn−1) ∈ S, where S is returned by
Alg. 4.

Algorithm 4. Constraints generation for a TA
Require: A finite discrete path σ of length n > 0 and a TA A
Ensure: Family of linear constraints S
1: For the discrete path σ compute the set Πσ

2: for each π ∈ Πσ do
3: Generate the graph G
4: Sπ := ∅
5: for each edge e(i, j) ∈ G labeled with c do
6: Sπ := Sπ ∧ ti − tj < c
7: end for
8: S := S ∨

(
Sπ ∧ (t0 + . . .+ tn−1 > T ∧ t0 + . . .+ tn−2 < T ) ∧∧

0≤k<n tk > 0
)

9: end for
10: return S

5.2 Algorithm for TA

Given a timed automaton A we write Ā to denote the NFA obtained by removing all
the guards, clocks and invariants fromA. The product C ⊗Ā follows Def. 10. Similarly
to Prop. 2, we have that

Proposition 4. For any CTMC C and NFA Ā, S(PathsCT (A)) ⊆ {Cd(σ) | σ ∈
♦LocF �1}, where LocF is the set of final locations in C ⊗ Ā.

The approximation algorithm for time-bounded verification of a TA specification A is
given in Alg. 5.

Lemma 5. Given a CTMC C, a TA specificationA, a time bound T and N ∈ N

PrCT (A)− PrCT,<N (A) ≤ ε(T,N).

Theorem 5. Alg. 5 computes PrCT,<N (A).

Algorithm 5. Time-bounded verification of a TA specification A against a CTMC C
Require: C, A, T and ε
Ensure: PrCT,<N (A)
1: Choose an integer N ≥ ΛTe2 + ln( 1

ε
)

2: for each discrete path σ of (C ⊗ Ā) �1 of length n < N do
3: Calculate the family of linear constraints S(t0, . . . , tn−1) with Algorithm 4
4: Calculate the probability p of σ[S ]
5: PrCT,<N (A) := PrCT,<N (A) + p
6: end for
7: return PrCT,<N(A)
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6 Conclusion

In this paper we have studied time-bounded verification of CTMCs against real-time
specifications. In particular, we presented effective procedures to approximate the prob-
ability of the set of timed paths of CTMCs that satisfy real-time specifications over a
time interval of fixed bounded length, arbitrarily closely. For the real-time specifica-
tions, we focused on MTL under both the continuous and pointwise semantics, and
general timed-automata.

The aim of the current paper is to provide effective approximation algorithms. We
leave the precise complexity as future work. Notice that, for MTL, the satisfiability
problem over CTMCs is undecidable for continuous semantics [2] while it has non-
primitive recursive complexity for pointwise semantics [28]. These results do not carry
over directly to CTMCs, as they do not involve nondeterminism. Moreover, we mention
that since our algorithms involve computation over reals, it might make more sense to
consider different computation models (e.g. the BSS model [13]) and the complexity
theory therein, rather than the standard Turing model. Notice that one could also apply
discretization to solve the problem. However, it is not clear how the probabilities are
preserved in the discretized model.

Recently [26] showed that, under the bounded-variability assumption (BVA), an
MTL formula can be transformed into a deterministic timed automaton. Roughly, a
timed path satisfies the BVA if there exist Δ and k such that, for every interval of the
form [t, t + Δ], the number of discrete jumps is at most k. Clearly, this is related to
the bound on discrete jumps in [0, T ]. However, the BVA is a “global” assumption over
[0,∞), so it does not apply to time-bounded verification. Also, it is not clear for us how
to bound the error under this assumption. It would be interesting to investigate whether
one could obtain a DTA out of MTL under our assumption of finitely many jumps over
[0, T ], which could yield an alternative way to solve the problem, based on previous
work of two authors [17]. A natural question is how to tackle the traditional (time-
unbounded) verification. The scheme introduced in this paper still works. However, one
cannot guarantee an approximation to stay within the given error bound ε, which means
that the resulting procedure is not an approximation algorithm any more. It is also inter-
esting to tackle real-time specifications given as alternating timed automata [22] or as
TPTL formulas [3,10], as they subsume MTL. We claim that the scheme can be applied
in a straightforward way. However, one needs new constraints generation procedures.
We leave them as future work.

Acknowledgement. We are grateful to Klaus Dräger, Joost-Pieter Katoen, and anony-
mous referees for fruitful discussions and constructive comments.
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Abstract. Dataflow formalisms are useful for specifying signal processing and
streaming applications. To adequately capture the dynamic aspects of modern ap-
plications, the formalism of Scenario-Aware Dataflow (SADF) was recently in-
troduced, which allows analysis of worst/best-case and average-case performance
across different modes of operation (scenarios). The semantic model of SADF in-
tegrates non-deterministic and discrete probabilistic behaviour with generic dis-
crete time distributions. This combination is different from the semantic models
underlying contemporary quantitative model checking approaches, which often
assume exponentially distributed or continuous time or they lack support for ex-
pressing discrete probabilistic behaviour. This paper discusses a model-checking
approach for computing quantitative properties of SADF models such as through-
put, time-weighted average buffer occupancy and maximum response time. A
compositional state-space reduction technique is introduced as well as an efficient
implementation of this method that combines model construction with on-the-fly
state-space reductions. Strong reductions are possible because of special seman-
tic properties of SADF, which are common to dataflow models. We illustrate this
efficiency with several case studies from the multi-media domain.

1 Introduction

Signal processing and streaming applications are often described as a set of tasks, actors
or processes with data and control dependencies to exploit the parallel and pipelined
execution capabilities of hardware platforms. Modern streaming applications are in-
creasingly dynamic, with large variations in the required resources. Neglecting these
variations when evaluating key properties like throughput and buffer occupancy can re-
sult in overly pessimistic performance bounds [10], while the average-case behaviour
can often not be studied adequately based on the same model. The recently introduced
formalism of Scenario-Aware Dataflow (SADF) [33] adequately captures dynamism in
modern streaming applications using scenarios. Such scenarios denote distinct modes
of operation (like processing I, P or B frames in MPEG-4 video processing), in which
resource requirements can differ substantially [11,25].

This paper presents the techniques underlying the computation of exact worst/best-
case and average-case performance numbers for SADF models as implemented in the
SDF3 toolkit [32,29]. Although these techniques are strongly inspired by existing model
checking techniques, they are not based on existing model checkers that support quanti-
tative analysis. This is because of semantic differences between the model of SADF and
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Fig. 1. Transitions in Probabilistic Automata

the models underlying common quantitative model checkers combined with the diver-
sity of metrics that we want to analyse. The semantics of SADF [34] uses the formalism
of Timed Probabilistic (Labelled Transition) Systems (TPS) [1]. Like other automata,
a TPS describes behaviour in terms of states and transitions. TPS is a variant of prob-
abilistic timed automata in [26] (called Simple Segala Model in [28]), which extend
Markov decision processes (MDPs) [5,24] by distinguishing time-less action transi-
tions from transitions for advancing time. Figure 1 shows how MDP alternates non-
determinism between actions a1, . . . , am with probabilistic choices. Actions in TPS
are time-less. Time is modelled explicitly using separate transitions, where the labels
tm+1 . . . tx in Figure 1 refer to an exact (positive) amount of time (e.g., they do not
refer to parameters of exponential distributions). Modelling discrete time distributions
can be accomplished by using the two-step approach depicted in Figure 2. It consists
of some (internal) action capturing the probabilistic choice of alternative time durations
(think of drawing a sample from a discrete distribution), followed by a time transition
for each of the possible time durations. In Figure 2, time advances ti time units with
probability pi for i = 1, . . . , n. This approach is suitable for capturing any discrete
time distribution and matches well with the way discrete-event models are commonly
implemented. The semantics of SADF in [34] adopts this approach to ease calibration
of SADF models with profiling data obtained through static and statistic code analysis.

Several quantitative model checkers exist but using them for SADF is problematic.
CADP [12] is a model checking toolbox that supports (amongst others) Interactive
Markov Chains (IMC) [13] for quantitative analysis. Although it supports
non-deterministic choice between alternative behaviours, IMC itself does not support
probabilistic choices and it relies on exponentially distributed time. The probabilistic
model checker MRMC [14], which operates on more elementary automata, supports
both probabilistic and non-deterministic choices but only in combination with exponen-
tially distributed time. UPPAAL [17] is well-known for its ability to verify qualitative
properties of timed systems and the recent extension UPPAAL-PRO adds support for
probabilistic choices. Its continuous-time model is again different from the time model
of TPS. Nevertheless, TPS can be captured reasonably straightforwardly in UPPAAL-
PRO. However, only analysis of maximum probabilistic reachability properties is sup-
ported, which is insufficient to compute metrics like throughput and time-weighted
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average buffer occupancy. PRISM [15] can verify a wider range of quantitative proper-
ties for various probabilistic models including (Priced) Probabilistic Timed Automata.
Analysis of reward-based metrics like throughput and buffer occupancy is however not
supported for such automata. Furthermore, PRISM lacks features like the concept of
urgency in UPPAAL to ease controlling resolution of non-determinism, which is very
useful in the context of dataflow formalisms [8,9]. We discuss this aspect in Section 3.

Given the mismatch with existing model checkers, we propose a novel, two-phase
approach. In the first phase we construct a reduced, but adequate Markov reward model
on which elementary techniques for computing performance numbers can be applied
in the second phase, possibly using existing tools. From the basic analysis results, we
construct results for more complex performance metrics in a compositional way. This
paper focuses on the first phase where we apply several model checking techniques opti-
mized for SADF. These techniques restrain state-space size by exploiting key semantic
properties of SADF as well as neglecting events that do not affect a performance re-
sult directly. We present how this approach allows for an on-the-fly construction of the
Markov reward model, which is the key contribution of this paper. A number of case
studies from the multi-media domain illustrate the achievable state-space reductions by
taking semantic properties and the relevance of events into account.

The remainder of this paper is organised as follows. The next section discusses rel-
evant properties of TPSs defined by SADF semantics. Section 3 presents our perfor-
mance model checking approach and how it can be implemented efficiently. In Section
4, we present algorithms for computing throughput of SADF models. Section 5 illus-
trates the efficiency of our approach based on several case studies from the multi-media
domain. Conclusions and directions for future research are summarised in Section 6.

2 Scenario-Aware Dataflow

Scenario-Aware Dataflow is an extension of Synchronous Dataflow (SDF) [19] (also
known as weighted marked graphs in Petri Net theory), which allows analysis of many
correctness and performance properties like absence of deadlock and throughput [27,8].
SADF combines the traditional data-driven behaviour of SDF with state-machine based
control behaviour to capture dynamism. Figure 3 shows an illustrative SADF model
in the top-left corner. The vertices denote processes while the edges are channels re-
flecting (potential) dependencies between those processes. Two types of processes are
distinguished. Kernels (solid vertices) reflect the data processing part of an applica-
tion (such as variable length decoding for MPEG-4), whereas detectors (dashed ver-
tices) model the control part, responsible for dynamically determining the scenario in
which processes operate. The possible orders in which scenarios (ς1 and ς2 in Figure
3) occur is captured by state machines. In reality, these state machines coordinate the
operation mode based on data-dependent conditions like the type of frame to decode
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Fig. 3. Example SADF Model

in MPEG-4. SADF abstracts from the actual conditions, taking either a probabilistic or
non-deterministic abstraction approach. In case probabilistic information is available on
the scenario occurrences, the state machines are (discrete) Markov chains in which case
both worst/best-case and average-case analysis becomes possible. Otherwise, the state
machines reduce to non-deterministic state machines, which still allows for analysing
worst/best-case performance as discussed in [6] for a restricted form of SADF. In this
paper, the state machines are considered to be Markov chains in line with [33,34].

A token is a unit of information communicated between processes. Such a token
can for instance model a frame, line or pixel. The availability of tokens in the (con-
ceptually unbounded) FIFO buffer corresponding to each channel is shown with a dot,
labelled with the number of available tokens. Detectors inform other processes about
the scenario to operate in by sending them scenario-valued tokens via control channels.
Control channels are shown as dashed arrows, while solid arrows denote data channels
(in which data values of tokens have been abstracted). A production/consumption rate
refers to the number of tokens produced/consumed by a process via a channel each time
it fires. Rates of 0 are supported to specify absence of data dependencies. The left-hand
table in Figure 3 shows that parameterised rates a and b are 0 for scenario ς2.

The firing of a kernel k starts when one token has become available on (each of) its
control input(s). These token(s) determine the scenario, which in turn fixes the param-
eterised rates. Subsequently, k waits until a number of tokens equal to the consumption
rate becomes available on each data input. Then k starts its data processing behaviour,
which takes an amount of time given by a sample drawn from the execution time dis-
tribution for the active scenario. The right-hand table in Figure 3 shows the possible
execution times E and their occurrence probabilities�(E) for all processes. The firing
of k ends by removing a number of tokens, equal to the consumption rate, from each
input and producing a number (equal to the production rate) of tokens to each output.

In case a detector d has no control inputs1, its firing starts with determining its
subscenario by making a transition in the associated Markov chain. For detector D,
this Markov chain is depicted in the bottom-left corner of Figure 3, where the state
names indicate the subscenario to detect. After establishing the subscenario, firing of d

1 We simplify our explanation in line with [33]. The complete explanation can be found in [34].
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continues similarly as a kernel by fixing the parameterised rates. After sufficient to-
kens have become available on all data inputs, d performs its behaviour which takes
an amount of time drawn from the appropriate execution time distribution. Firing of
d ends with removing a number, equal to the consumption rate, of tokens from each
input and producing a number (equal to the production rate) of tokens to each output,
where the tokens written to control channels are valued with the subscenario. Notice
that these valued tokens coherently affect the behaviour of kernels A and B in Figure
3. Succinctly capturing such correlations that often exist between dynamic changes in
resource requirements for different processes is a key feature of SADF.

2.1 TPS Semantics

Before we discuss the semantics of SADF, we introduce some notation for TPS. Con-
sider a finite set S of states and let D(S) denote the set of probability distributions over
S, D(S) = {π : S → [0, 1] |

∑
S∈S

π(S) = 1}. A Timed Probabilistic Systems (TPS)
with initial state S∗ ∈ S is a transition system (S, S∗,A,A, T ,T) where A is a finite
set of actions, T denotes the time domain (e.g., the positive reals or integers), while A
and T are two sets of labelled transition relations. Set A is a subset of S×A×D(S) and
defines the action transitions. Relation S

a−→ π with π ∈ D(S) holds if action a can
be performed from state S, after which the system transits to state T with probability
π(T ). The set T is a finite subset of S × T × D(S) and denotes the time transitions.

Relation S
t−→ π with π ∈ D(S) holds if from state S the time can advance for a

(positive) amount t, after which the system transits to state T with probability π(T ).
If several action and/or time transition relations hold, the choice of which transition
is performed is made non-deterministically. Subsequently, a probabilistic choice deter-
mines the target state. The visualisation of TPSs in Figures 1 and 2 shows states in S
as black dots. Action transitions are drawn as solid arrows labelled with an action in A,
immediately followed (through a grey dot) by a fan-out of dashed arrows representing a
distribution inD(S). Time transitions are depicted as dotted arrows labelled with a time
duration in T and are similarly followed by a probabilistic fan-out.

TPS can be used for defining the semantics of systems in a compositional way.
That is, one defines the semantics of each component as TPS, possibly together with
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ities on all of the paths from S1 to each
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both actions a1 and a2 are performed
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Fig. 4. Some Properties of Timed Probabilistic Systems
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conditions on actions or advancing time that depend on other components. Parallel com-
position of the component TPSs resolves such conditions and yields a TPS for the com-
plete system. Figure 4 illustrates a few useful properties [18,22,36] that a TPS may
satisfy in general. Action determinacy (in a non-probabilistic setting also known as the
diamond property) is shown in Figure 4(a). It defines that the net behavioural effect of
alternative paths of successive action transitions to a common target state is invariant
to how non-deterministic choices between those alternative paths are resolved. Hence,
only one (arbitrary) path needs to be explored. Given the discrete time model of TPS,
one can consider a similar property for time transitions. Time determinacy defines that
the net effect in advancing time is invariant to non-deterministic choices, see Figure
4(b). A slightly stronger property is time additivity or time continuity [36], which spec-
ifies that time transitions can be arbitrarily split into smaller transitions or combined
into larger ones. Compared to time determinacy, this requires also the existence of a
direct time transition to the target state, see Figure 4(c). Another relevant property that
a TPS may satisfy in general is action persistency, which indicates that advancing time
does not disable any actions that could have been performed.

The semantics of SADF in [34] defines six types of action transitions and one type of
time transition. We briefly discuss all these transition types. As described above, each
process behaves repetitively according to a fixed pattern. Kernels perform control, start
and end actions, whereas detectors follow a pattern of detect, start and end actions. The
control and detect actions determine the (sub)scenario in which a kernel respectively de-
tector is going to operate. They fix the corresponding parameterised rates and execution
time distribution when sufficient control tokens are available. The start actions happen
when sufficient data tokens are available, and end actions finalise the firing with con-
suming and producing the appropriate amounts of tokens from inputs respectively onto
outputs. Only detect and start actions may have a probabilistic fan-out with multiple
target states – all other transition types, including time transitions, have a single target
state. Together, the probabilistic fan-out of start transitions and time transitions follow
the pattern of Figure 2 to model discrete time distributions like those exemplified in
Figure 3. The probabilistic fan-out of detect transitions follow the probabilistic choices
of the detector’s Markov chain(s). Notice that part of the control, detect and start tran-
sitions are conditions on the availability of tokens in the FIFO buffers connected to the
inputs of processes. Turning our attention to time transitions, we first remark that there
is one global notion of time. Time can advance whenever some process has performed
its start action, with the additional condition that no end actions are enabled. Such end
action becomes enabled when the remaining execution time for a process has reduced
to 0 as a result of advancing time. Time advances (at most) with the amount to enable
new end actions, unless no actions can become enabled anymore (deadlock).

2.2 Semantic Properties of SADF

We can now deduce several important properties of a TPS defined by an SADF model.
Our performance model checking approach exploits these to restrain state-space size.
To simplify our explanation, we ignore the possibility of deadlocks.

We first discuss time transitions in more detail. For an individual process p, time
transitions can only exist after a start action and before the end action. The amountE of
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advanced time is drawn from an execution time distribution. Observe that the definition
of time transitions allows to globally synchronise the advance of time with other pro-
cesses in a compositional way by being prepared to advance time for p with an arbitrary
amount less than E. This requires time additivity, which basically allows splitting time
transitions in arbitrarily many smaller time transitions. The composed TPS semantics
only explicitly represents the maximum amount of time to pass before an end action is
enabled. As a result, at most one time transition can exist from a state and time tran-
sitions are always preceded and succeeded by actions. Since time transitions can only
be enabled when no process is about to finalise its firing (with an end action), they are
succeeded by end actions. Observe that non-determinism between advancing time and
performing actions other than end actions is still possible. Consider a state S that is en-
tered after p has performed a start action. A time transition is now enabled for p from all
states reachable from S up to states in which some end action is enabled. Although the
TPS semantics covers all possible scheduling policies, it is often convenient to assume a
specific class of policies that prescribes when actions are to be scheduled for execution.
An important class are those policies where actions occur without delays (i.e., all ac-
tions are performed before time advances, after which new actions may become enabled
again). Such action urgency [22] matches with what is known as self-timed execution
for SDF models [27]. Self-timed execution of SDF models ensures that throughput is
maximised [7]. Assuming action urgency may however be disadvantageous for opti-
mising other metrics like latency [9]. Following [33,34,6], we adopt the concept of
self-timed execution for SADF. Consistently prioritising actions over advancing time is
equivalent to extending the original condition of time transitions in Section 2.1 to one
where no action transitions are enabled (i.e., instead of just end actions). This excludes
the possibility that both action and time transitions can be enabled from a state.

We now turn our attention to the action transitions. As described above, individual
processes exhibit only deterministic behaviour2 as patterns of control/detect, start, time
and end transitions. The actions a process p performs only depend on its own state and
the buffer status of channels connected directly to p. Advancing time does not disable
any enabled action of p. In fact, actions performed by any process other than p do not
disable any enabled action of p, which is stronger than action persistency. This further
implies the impossibility of having cycles in the TPS part between any two time tran-
sitions in case the system is finite. Deterministic choices may exist between control
and detect actions due to mutual exclusive conditions on the values of control tokens,
while probabilistic choices may arise from execution time distributions and the Markov
chains associated with detectors. This is illustrated in Figure 5 for kernel A and detector
D from Figure 3. A can perform two control actions from its initial state S1 depending
on the value of the received control token (ς1 or ς2). D determines the subscenario (ς1 or
ς2) based on the Markov chain in Figure 3 which causes the probabilistic fan-out for the
detect actions in Figure 5(b). The parallel composition may yield non-determinism in
the composed TPS due to different processes interleaving their independent actions. In
other words, any non-determinism in the composed TPS originates from concurrency,
and hence it is action determinate [33]. This means that non-determinism between ac-
tions can be arbitrarily resolved without affecting the net behaviour of the system.

2 This is not true if the Markov chains reduce to non-deterministic state-machines as in [6].
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Fig. 5. Semantic Model of Individual Processes (Conditions on Transitions are Omitted)

3 Performance Model Checking

Model checking often exploits properties like action determinacy (diamond property)
by means of bisimulation reductions to restrain state-space size. The crux is that redun-
dantly captured behavioural details are removed from the state space. However, such
details may be relevant for certain performance metrics [16]. The instantaneous max-
imum buffer occupancy of SADF channels, for instance, does depend on the order of
writing and reading tokens to/from channels. On the other hand, assuming action ur-
gency refers to a class of scheduling policies that (partially) resolves non-determinism.
A model checking approach that supports prioritising specific non-deterministic options
may avoid constructing the (much larger) state space in which all non-determinism is
still available. UPPAAL is an example model checker providing some support for such
approach. Finally, certain behaviour may not directly affect a metric, which therefore
suggests to consider state spaces that only capture the relevant behaviour. This section
presents how our approach exploits these properties to restrain state-space size.

3.1 Strategy for Computing Performance

The proposed strategy, which relies on generic techniques from [35,31], is visualised in
Figure 6(a). The idea is to derive a small, but adequate Markov reward model on which
elementary techniques for computing concrete performance numbers can be applied.
The first step towards a Markov reward model is to construct a TPS of the complete
SADF model by parallel composition of the TPSs of individual processes (such as those
in Figure 5). This step takes the guards on transitions of the component TPSs into ac-
count and uses the property of time additivity and the assumption of action urgency. The
resulting composed TPS may include non-deterministic choices between (concurrent)
actions and probabilistic choices (from detect and start actions).
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Fig. 6. Performance Model Checking Strategy

The second step is to resolve any remaining non-determinism. Action persistency
and action determinacy ensure that time-dependent performance metrics are not af-
fected by the policy for resolving non-determinism (any of the enabled actions may
be selected). In [33], this is demonstrated for time-dependent long-run averages like
throughput. To compute the instantaneous maximum buffer occupancy, the reservation
of buffer space at the start of the producer must be prioritised over the consumption of
tokens at the completion of the consumer [34] (i.e., prioritise all start actions over end
actions). The resulting TPS can only have probabilistic choices. We denote this TPS by
(S′, S∗,A,A′, T ,T′), where S′ ⊆ S is the remaining state space and A′ ⊆ A, T′ ⊆ T
are the remaining action and time transitions after resolving non-determinism.

The third step is to construct a discrete3 Markov chain, which is now possible be-
cause at most one action or time transition leaves from any state in S′. Performance met-
rics can be expressed as some combination of reward functions [30] that are evaluated
on the obtained Markov chain. We follow the approach of [35] to move the action/time
labels of transitions into their (destination) states similarly as in [21,23,3]. The idea is
that information on the occurrence of actions and passage of time can be retrieved by
reward functions on the states only (i.e., not also on transitions). The state space S of
the Markov chain obtained after the transformation is a subset of S′ × (A∪ T ∪ {−}).
The size of S equals 1 plus the number of transitions with different label/target-state
combinations (if S′ is finite) [35]. The interpretation of a state (S, a) in S is that S ∈ S′

is entered after having performed action a ∈ A. State (S, t) ∈ S denotes that S is
entered after time has advanced with t ∈ T time units, while (S,−) ∈ S denotes
the entrance of S without performing any transition. Observe that only initial state S∗

is entered without performing a transition. The one-step transition probabilities of the
obtained Markov chain follow straightforwardly from the transitions in A′ and T′.

3 We deliberately avoid the term discrete-time since there is no relation between the concept of
time in TPS and the concept of time in the traditional meaning of discrete-time Markov chains.
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The final two steps take the metric of interest into account to compute an exact per-
formance number. We adopt the formalism of temporal rewards from [35] to specify
metrics. The crux of temporal rewards is that they may not only depend on the current
state, like traditional rewards, but also on states visited in the past. We use this ability to
express the total amount of time elapsed for a sequence of states, which is an essential
component of many time-dependent properties. However, not all states may (directly)
contribute to the performance result. We use the state-space reduction technique from
[31] to construct a Markov reward model that only includes states in which actions
have occurred that changed relevant rewards. The actual performance result is then
computed from this reduced Markov reward model, after calculating its steady-state or
equilibrium distribution in case of long-run average metrics. The next two subsections
illustrate how performance metrics can be expressed with temporal rewards and how the
reduced Markov reward model is obtained. Section 4 brings the strategy from Figure
6(a) into practice by presenting algorithms performing all steps including constructing
the reduced Markov reward model at once, i.e., in an efficient on-the-fly manner.

3.2 Example Performance Metrics

Performance metrics often express properties related to specific actions and/or the ad-
vance of time. We illustrate our approach with the more difficult case of long-run av-
erages, since they need to take the equilibrium distribution into account. We aim to
exemplify that many long-run averages can be expressed as algebraic combinations of
the elementary long-run average [31], which can be evaluated using basic techniques.

Consider the throughput of a process p in an SADF model, which is defined as the
long-run average number of firing completions of p per time unit. We use a reward
c : S → {0, 1} to indicate states in which an action has occurred that directly affects
the metric of interest. For the throughput example, c(U) = 1 in case p has performed
an end action in state U ∈ S, and c(U) = 0 otherwise. States for which c evaluates to
1 are called relevant, the others are irrelevant. We further define a temporal reward Δ
that gives the sum of time transition labels t ∈ T encountered for a realised sequence
of states, which restarts the addition each time a relevant state is visited. In other words,
Δ denotes the total amount of time elapsed up to visiting the next relevant state.

We now let {Xi} denote the stochastic process corresponding to the Markov chain
with state space S, where i identifies the ith state visited. The throughput of p can now
be expressed as an event-rate. For completeness, we give the exact specification in Fig-
ure 7, where the limit notation refers to almost sure convergence [2]. It basically divides
the number of events (i.e., firing completions of process p) by the average amount of
time elapsed between such events. More important is to observe that an event rate re-
sembles the reciprocal of the elementary long-run sample average of some reward r, see
Figure 7. Many other long-run averages can be expressed as algebraic combinations of
sample averages for appropriate definitions of rewards r and c [31]. Examples include
the variance in time elapsed between two firing completions of p (a substraction of two
sample averages) and the time-weighted average buffer occupancy (a quotient of two
sample averages). Hence, given an approach to compute sample averages, many other
long-run averages can be computed in a component-wise manner. The next section gives
an exact approach to compute sample averages without considering irrelevant states.
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lim
n→∞
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i=1 c(Xi)
lim

n→∞

∑n
i=2 c(Xi)∑n

i=2 Δ(Xi−1) · c(Xi)

sample-average event rate

lim
n→∞

∑n
i=2 r(Xi−1) ·Δ(Xi−1) · c(Xi)∑n

i=2 Δ(Xi−1) · c(Xi)
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Fig. 7. Example Generic Forms of Long-Run Averages Comprising Similar Terms

3.3 Metric Dependent State-Space Reduction

The relevance of states indicated by c can be exploited to reduce the state space con-
siderably. Consider an ergodic [4,30] Markov chain {Xi} with state space S for which
we need to compute the sample average in Figure 7. By the Ergodic theorem [4,30], it
is not difficult to prove [31] that if {Xi} has a relevant positive recurrent state, then

lim
n→∞

∑n
i=1 r(Xi) · c(Xi)∑n

i=1 c(Xi)
=

∑
U∈S πU · r(U) · c(U)∑

U∈S πU · c(U)

where πU is the equilibrium probability of U . Observe that this equation merely de-
pends on rewards earned in relevant states. Hence, it makes sense to investigate whether
metrics can be evaluated without considering the irrelevant states at all. Let Sc = {U ∈
S | c(U) = 1} denote the set of relevant states and define random variable Xc

i as the
ith relevant state that is visited (which, for simplicity, we conveniently assume to exist).
Now, we can derive some useful theorems, for all of which proofs can be found in [31].

Theorem 1 (Reduction Theorem). If an ergodic Markov chain {Xi} has a relevant
positive recurrent state, then {Xc

i } is also an ergodic Markov chain.

Theorem 2 (Preservation of Long-Run Averages). If an ergodic Markov chain {Xi}
has a relevant positive recurrent state, then∑

U∈S πU · r(U) · c(U)∑
U∈S πU · c(U)

=
∑

U∈Sc

πc
U · r(U)

where πc is the equilibrium distribution of {Xc
i }.

Hence, the sample average in Figure 7 indeed depends only on rewards r earned in rel-
evant states. Computing it, however, requires equilibrium distribution πc which relates
to the equilibrium distribution π of {Xi} as follows.

Theorem 3. Equilibrium distribution πc is given by πc
U = πU∑

V ∈Sc πV
for all U ∈ Sc.

To avoid storing the complete state space S, we seek a method to determine πc without
first computing π. To present our approach, we consider the matrices of one-step tran-
sition probabilities P and Pc for the Markov chains {Xi} and {Xc

i } respectively. To
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relate Pc with P , we introduce matrix M . For any U ∈ S and V ∈ Sc, define MU,V as
the probability that {Xi} makes a sequence of transitions leading to V when departing
from U such that any intermediately visited state is irrelevant. Observe that for U ∈ Sc,
MU,V equals the probability Pc

U,V that {Xc
i } transfers from U to V .

Theorem 4. For all U ∈ S and V ∈ Sc, the elements MU,V of matrix M satisfy the
system of linear equations given by MU,V = PU,V +

∑
Q∈S\Sc PU,Q ·MQ,V which

has a unique solution in case the conditions of the reduction theorem are satisfied.

Consider the computation of Pc
U,V from a given U ∈ Sc to a state V in the setR ⊆ Sc

of all relevant states reachable from U by intermediately visiting irrelevant states only.
By constructing the subgraph of {Xi} that departs from U and ends in all states of
R, the transition probabilities Pc

U,V for each V ∈ R can be computed by solving that
part of the equations defining M related to this subgraph. Solving the equations is easy,
because, as observed in Section 2.2, there are no cycles between states of an SADF
model where time has advanced. Computing Pc

U,V for each V therefore boils down to
adding the probabilities on the finite number of paths between U and V . The subgraph
can now be replaced with transitions for {Xc

i } between U and each V ∈ R with their
corresponding probabilities Pc

U,V . In this way, only a part of {Xi} is constructed at any
moment in time while only temporarily storing irrelevant states.

4 Practical Implementation

With the results of Section 3, we propose to construct the reduced Markov reward model
in an on-the-fly way. This is visualised as the first phase of our implemented strategy in
Figure 6(b), where the second phase computesπc and the final performance number. We
illustrate our approach with the throughput example of Section 3.2, i.e., the event rate
in Figure 7. To this end, we introduce some additional notation. Let ΩU,V denote the set
of all paths between two states U and V of {Xi} without intermediate visits to relevant
states. Such a path refers to a realised sequence of states for {Xi} from U to V . We
use �ρ to denote the probability on a specific path ρ ∈ ΩU,V , which equals the product
of all one-step transition probabilities of {Xi} encountered on this path. Observe that
if path ρ ∈ ΩU,V consists of a single transition, i.e., V is a direct successor of U , then
�ρ = PU,V . Moreover, for V ∈ Sc, we have

∑
ρ∈ΩU,V

�ρ = MU,V . We also annotate
previously defined temporal reward Δ as Δρ to denote the total amount of time elapsed
for a specific path ρ ∈ ΩU,V . We can now express the expected total amount of time
ΔU

4 that elapses until visiting the next relevant state when departing from U as follows

ΔU =
∑

V ∈Sc

∑
ρ∈ΩU,V

�ρ ·Δρ

Following from Theorem 2 on preservation of long-run averages, we can now derive
for the throughput metric in Section 3.2, i.e., the event rate in Figure 7, that

lim
n→∞

∑n
i=2 c(Xi)∑n

i=2 Δ(Xi−1) · c(Xi)
=

1∑
U∈Sc πc

U ·ΔU

4 As a bonus, we like to mention that ΔU equals the expected response time of a process p in
case U is initial state (S∗,−) and c identifies states in which p has performed an end action.
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The first phase of our practical implementation in Figure 6(b) constructs Sc and Pc

to enable computing πc in the second phase. The first phase also computes ΔU for all
U ∈ Sc, while the second phase combines the results of all these components into the
final performance number.

We present in detail the algorithms for the first phase. It starts from individual TPSs
for each process in the SADF model, for which the action/time labels of the transitions
have already been shifted into their (destination) states. The initial state (S∗,−) of
Markov chain {Xi} follows straightforwardly from the initial states of the component
TPSs. From (S∗,−), we construct the reduced Markov reward model based on the
algorithms in Figure 8. For convenience, we assume that each path ρ ∈ ΩU,V from U
to some V is stored as a pair (�ρ, Δρ) together with the source state U .

Algorithm PROGRESS in Figure 8 constructs all paths from some state U ∈ S to
relevant states V ∈ Sc without intermediate visits to relevant states with a depth-first
search. The probabilities �ρ and durations Δρ for each of the possible paths ρ are
computed while backtracking. After initialising I andR to store the newly discovered
irrelevant and relevant states respectively, lines 2 through 9 perform a single enabled
transition. Line 2 prioritises actions over advancing time conform to the assumption of
action urgency. In line 3, an enabled action a ∈ A for any process is selected conform
to the policy for resolving non-determinism. In case action a is relevant for the perfor-
mance metric of interest, then RSTEP in line 5 determines the immediate next relevant
states R, which are added to R. In case any such R is not yet in Sc, it is also added
to Sc. In addition, state U is updated to store the paths ΩU,R for all R ∈ R as pairs
(PU,R, 0). On the other hand, if a is irrelevant, then ISTEP determines in line 6 the next
irrelevant states I , which are added to I. Moreover, U is updated with paths ΩU,I for
all I ∈ I as pairs (PU,I , 0). If in line 3 no actions are enabled but time can advance
in line 7 with t units, then ISTEP in line 8 adds irrelevant next state I entered after
performing the time transition to I while adding the path to I as the pair (1, t) to U .
Line 9 identifies deadlock in case no actions are enabled nor time can advance. Lines 10
through 12 of PROGRESS construct the subgraph of {Xi} from U until reaching rel-
evant states (which are stored in R). In case a relevant action has been performed, the
depth-first search ends. The backtracking procedure in lines 13 through 18 computes
the probabilities �ρ and durations Δρ for all paths ρ ∈ ΩU,V from U to relevant states
V , where� in line 16 denotes a reward that returns the amount of time that has elapsed
in each state (which equals 0 if an action was performed). Moreover, the paths of U are
properly updated to include only direct paths to the relevant end states V (and thereby
discarding all intermediately visited irrelevant states).

Algorithm CONSTRUCT in Figure 8 relies on PROGRESS to construct the reduced
Markov chain {Xc

i }. After determining the relevant states reachable from a state U ,
the expected time ΔU is computed in line 2. For U ∈ Sc, the probabilities Pc

U,V for
all V ∈ R are computed in line 5. The recursive construction in line 6 and 7 com-
pletes construction of {Xc

i } from all relevant states, while the initial call of CON-
STRUCT((S∗,−),∅) implements the first phase depicted in Figure 6(b).

The algorithms in Figure 8 can easily be adapted to compute performance met-
rics expressible as a worst/best-case or as (expected) reachability property. The cur-
rent implementation in SDF3 [32] for computing various metrics of SADF models uses
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Algorithm PROGRESS(U,Sc)
Input: A source state U ∈ S and the current Sc

Output: Set R ⊆ Sc of newly discovered relevant states reachable
from U , which are also added to Sc

1. I ← ∅ and R ← ∅

2. if actions are enabled
3. then select an enabled action a ∈ A
4. if action a is relevant
5. then (R, U, Sc) ← RSTEP(U, a,Sc)
6. else (I, U) ← ISTEP(U, a)
7. else if time can advance for t ∈ T units
8. then (I, U) ← ISTEP(U, t)
9. else deadlock detected
10. for each irrelevant state I ∈ I
11. do (R′, I,Sc) ← PROGRESS(I,Sc)
12. R ← R ∪ R′

13. for each irrelevant state I ∈ I
14. for each path ρ ∈ ΩU,I

15. do for each direct successor state V of I
16. do add path (�ρ · PI,V , Δρ + �(I)) to U
17. for each irrelevant state I ∈ I
18. do remove all paths ρ ∈ ΩU,I from U
19. return (R, U,Sc)

Algorithm CONSTRUCT(U,Sc)
Input: A source state U ∈ S and the current Sc

Output: Updated Sc, Pc and Δ
1. (R, U,Sc) ← PROGRESS(U,Sc)

2. ΔU ←
∑

V ∈R

∑
ρ∈ΩU,V

�ρ · Δρ

3. if U ∈ Sc

4. then for each V ∈ R
5. do Pc

U,V ←
∑

ρ∈ΩU,V

�ρ

6. for each V ∈ R
7. do (Sc,Pc, Δ) ← CONSTRUCT(V,Sc)

8. return (Sc,Pc, Δ)

Fig. 8. On-the-fly Construction of the Reduced Markov Reward Model

partially dedicated variants of the algorithms in Figure 8 for doing so, but it also relies
on reusing large parts for common terms in different metric types like those in Figure 7.
The on-the-fly construction of the reduced Markov reward model has enabled comput-
ing the performance of much larger SADF models compared to directly implementing
the strategy of Figure 6(a) as we illustrate for several experiments in the next section.

5 Experimental Results

We demonstrate the applicability of our performance model checking approach by com-
puting the throughput for the dynamic applications in the literature listed in Table 1. The
examples are ordered in size of their state spaces. The MPEG-4 SP and MP3 examples
show increased state spaces when the amount of concurrency by pipelining degree pa-
rameter PD increases. All results in Table 1 are obtained using an Intel Centrino 2 based
machine at 2.5Ghz running SDF3 in a virtual machine with 1.5GB of memory. The en-
tries marked – and † in Table 1 denote that it was infeasible to determine the considered
aspect either within the available memory or 6 hours of run-time respectively. The |S′′|
column presents the size of the composed TPS (S, S∗,A,A, T ,T), where the transi-
tion labels have already been shifted into their destination states. In other words, action
urgency and time additivity have been applied for parallel composition of the individ-
ual TPSs for each process, but non-determinism as a consequence of concurrency has
not yet been resolved. Hence, |S′′| is the size of the primary transition system of our ap-
proach without taking specific semantic properties of SADF into account. It is clear that
concurrency and dynamism easily make construction of this transition system infeasi-
ble. The results show that without the possibility of applying any reductions on-the-fly,
computing performance of the MPEG-4 SP and MP3 examples would be infeasible.

The |S| column indicates the size of the Markov chain {Xi} obtained after reso-
lution of non-determinism. Resolving non-determinism clearly reduces the state space
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Table 1. State-Space Reductions for Throughput Analyses

Reference Remark |S′′| |S| Process |Sc| Reduction [%] Run-Time [s] Memory [MB]
MPEG-4 AVC [25] 185 183 v4 18 90.2 ≤ 0.001 0.272
Running Example Figure 3 661 375 B 11 97.1 0.012 0.384
Channel Equalizer [20] 2185 296 cf 8 97.3 0.012 0.672
MPEG-4 SP [33,32] PD = 1 – 38440 RC 9 99.9 0.8 7.9
MPEG-4 SP [33,32] PD = 2 – 483400 RC 576 99.9 40.7 16.3
MPEG-4 SP [33,32] PD = 3 – – RC 8253 – 906.9 94
MP3 [34] PD = 1 – – Write 5 – 26.8 64.6
MP3 [34] PD = 2 – – Write 15 – 624.6 165
MP3 [34] PD = 3 – – Write 15 – 20356 275.5
MP3 [34] 4 ≤ PD ≤ 9 – – Write † – > 21600 †

State-space sizes: |S′′| is the unreduced size, |S| is after resolving non-determinism and |Sc| is after complete reduction

and even allows storing {Xi} for some of the MPEG-4 SP examples. The next three
columns present the effect of taking the relevance of actions into account for comput-
ing the throughput of the listed processes, which are those processes that determine the
application’s final output. Column |Sc| gives the size of the reduced Markov reward
model {Xc

i }, which is the number of states that is finally stored at completing the first
phase in Figure 6(b). Observe the considerable relative reductions |S|−|Sc|

|S| · 100% in
the eight column that can still be achieved after resolving non-determinism. As we use
an on-the-fly implementation to obtain {Xc

i }, much bigger examples can be analysed
without the need to first completely store the primary transition system or {Xi}, which
is the essence of our approach. The one but last column lists the run-times for both
phases in Figure 6(b) together, while the last column shows the peak memory usage.
Computing the throughput for the full MP3 example (PD = 9) turns out to be infeasible
as the case of PD = 4 for this example already requires more than 6 hours of run-time.

6 Conclusions and Outlook

Using state-of-the-art quantitative model checkers for computing exact performance
numbers of SADF models is infeasible due to the underlying time model of generic
discrete execution time distributions combined with the diversity of the performance
metrics of interest. Inspired by generic model checking techniques, this paper proposes
a novel approach that exploits various semantic properties of dataflow models, in this
case SADF, to counter state-space explosion. The idea to take the relevance of actions
into account that directly affect the metric of interest shows the possibility of substantial
state-space reductions after resolving non-determinism originating from concurrency,
without affecting the final performance number. We proposed an efficient on-the-fly im-
plementation of our approach that does not require storing the complete state space be-
fore applying any of the considered reductions. Despite the effectiveness of the proposed
approach, several improvements may still be possible when considering state-of-the-art
techniques for other semantic models. Concepts like symbolic state space representa-
tions and a more component-wise construction of the relevant state space are just a
few aspects to investigate. Other directions for future research are to investigate how
the metric-dependent Markov chain based reduction technique can be lifted to a proper
bisimulation reduction at TPS level to develop a generic TPS-based performance model
checker where users can specify any metric of interest in a temporal reward formula.
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Probabilistic Real-Time Rewrite Theories

and Their Expressive Power
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Abstract. Unbounded data structures, advanced data types, and/or
different forms of communication are often needed to model large and
complex probabilistic real-time systems such as wireless sensor networks.
Furthermore, it is often natural to model such systems in an object-
oriented style, using subclass inheritance and dynamic object and mes-
sage creation and deletion. To support the above features, we introduce
probabilistic real-time rewrite theories (PRTRTs), that extend both real-
time rewrite theories and probabilistic rewrite theories, as a rewriting-
logic-based formalism for probabilistic real-time systems. We then show
that PRTRTs can be seen as a unifying model in which a range of other
models for probabilistic real-time systems—including probabilistic timed
automata, stochastic automata, deterministic and stochastic Petri nets,
as well as two probabilistic timed transition system models with under-
specified probability distributions—can naturally be represented.

1 Introduction

In this paper we introduce probabilistic real-time rewrite theories (PRTRTs)
to support the formal specification of probabilistic real-time systems in rewrit-
ing logic [18]. Rewriting logic is a logic for concurrent systems that emphasizes
expressiveness and ease of specification over algorithmic decidability of key prop-
erties. In rewriting logic, the state space and data types of a system are defined
by an algebraic equational specification, and the system’s transitions are defined
by labeled conditional rewrite rules l : t −→ t′ if cond , where t and t′ are terms
that may contain universally quantified mathematical variables. Rewriting logic
supports the specification of any computable data type, and distributed systems
can be naturally modeled in an object-oriented style, with class inheritance and
dynamic creation and deletion of objects and messages. Simulation, reachability
analysis, and LTL model checking for rewriting logic is provided by the high-
performance Maude tool [8]. (Since properties are in general undecidable, such
analyses may not always terminate.)

The Real-Time Maude tool [23] and its real-time rewrite theory formalism [22]
extend rewriting logic and Maude to the formal modeling and analysis of real-
time systems. Its expressiveness has made it possible to apply the tool to several
large applications (see [21]) that are beyond the scope of most model checkers
for real-time systems. However, some of those applications, including the LMST
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and OGDC wireless sensor network algorithms [13,25] and the AER/NCA and
NORM multicast protocols [24,17], include probabilistic features—e.g., nodes
may exhibit random behavior by design to break symmetries in a network, or
the environment may interact with the system in a probabilistic manner—that
can only be treated in an ad hoc way in Real-Time Maude.

Rewriting logic has also been extended to probabilistic rewrite theories to
specify probabilistic behaviors [14]. Such theories combine nondeterministic and
probabilistic behaviors, and the main idea is that the variables in the righthand
side t′ of a rewrite rule that do not occur in the lefthand side t are instantiated
probabilistically. The VeStA tool [26] can be used for both statistical model
checking and estimating numerical values in such theories, and has been used to
analyze a DoS resistant TCP/IP protocol [1] and a model of the above mentioned
LMST algorithm [13] in which its real-time behavior is treated in an ad hoc way.

PRTRTs can be seen as an extension of both real-time rewrite theories and
probabilistic rewrite theories. However, PRTRTs are a proper extension of prob-
abilistic rewrite theories even when time is ignored. In our case, the new variables
in the righthand side of a rule are divided into nondeterministic and probabilistic
variables. Each rewrite rule is equipped with a family of probability distributions
used to instantiate the probabilistic variables; namely, there is one probability
distribution for each substitution of the variables in the lefthand side of the rule
and each choice of values for the nondeterministic variables. Regarding time,
although the duration of/between events may be given probabilistically, time
itself does not advance in a probabilistic way in our formalism.

After giving some background into rewriting logic and its probabilistic and
real-time extensions (Section 2), we define our formalism and its semantics (Sec-
tion 3) and the probability of reaching a certain state in a certain time (Sec-
tion 5). We then demonstrate the expressiveness of PRTRTs—as well as their
suitability as a unifying semantic framework for probabilistic real-time systems
in which different models for such systems can naturally be represented and
understood—by showing how a range of well known formal models for proba-
bilistic real-time systems can be seen as PRTRTS (Section 6). Due to lack of
space, we refer to the longer technical report [6] for formal proofs of correctness
for the representations. To illustrate our formalism, we describe how a simple
probabilistic round trip time protocol can be modeled as a PRTRT (Section 4).
This system cannot be modeled as an automaton, since the number of messages
in the state can grow beyond any bound.

We also explain in the accompanying report [6] how the state-of-the-art OGDC
algorithm [30] for wireless sensor networks can be defined as a PRTRT. A main
feature of the algorithm is that a sensor node becomes active depending on how
close it is to an “ideal” position w.r.t. the already active nodes, and that it turns
itself off when its sensing area is covered by the sensing areas of other active
nodes. The OGDC algorithm therefore requires computing with data types for
sensing areas and sophisticated functions including distances, angles, computing
overlaps of areas, etc., which seem to be beyond the capability of formalisms
that do not support the definition of new data types and advanced functions.
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2 Preliminaries

In rewriting logic [18], the static parts of a system (functions, data types, etc.) are
defined as an algebraic equational specification, and the transitions of a system
are specified by labeled rewrite rules of the form l : t −→ t′ if cond , where t
and t′ are terms constructed by typed variables and function symbols in a type-
consistent way, l is a rule label, and cond is a (possibly empty) conjunction of
equalities, sort memberships, and rewrites. Such a rule specifies a local transition
from an instance of the term t to the corresponding instance of the term t′,
provided that the condition cond is satisfied by the substitution instance.

Formally, given a set K of kinds, a many-kinded signature σ contains a set
of function declarations of the form f : k1 . . . kn → k, where n ≥ 0 and
k1, . . . , kn, k ∈ K. In membership equational logic (MEL) [19], each kind k
has an associated set of sorts Sk. A MEL theory consists of a MEL signa-
ture Σ = (K,σ, {Sk | k ∈ K}) and a set E of (possibly) conditional equations
(∀�x) t = t′ if cond and membership axioms (∀�x) t : s if cond , where
t and t′ are Σ-terms of the same kind k, s is a sort of kind k, cond is a con-
junction of equalities and sort memberships, and �x denotes the set of variables
in these axioms. We write vars(t) for the set of variables occurring in a term t;
if vars(t) = ∅, then t is called a ground term. If (Σ,E ∪ A) is a MEL theory,
where A is a collection of structural axioms specifying properties of function
symbols, like commutativity, associativity, etc., and E is terminating, confluent
and sort-decreasing modulo A, then CanΣ,E/A denotes the algebra of fully sim-
plified ground terms, or “normal forms,” with respect to the set of axioms E,
modulo A. We denote by [t]A the A-equivalence class of a fully simplified term
t. An E/A-canonical ground substitution for a set of variables �x is a function
[θ]A : �x→ CanΣ,E/A that assigns a fully simplified ground term to each variable
in �x. We denote by CanGSubstE/A(�x) the set of all such functions. We use the
same notation [θ]A for the homomorphic extension of [θ]A to Σ-terms.

Definition 1. A generalized rewrite theory [7] is a tuple R = (Σ,ϕ,E, L,R),
where Σ is a MEL signature, ϕ is a function that maps each function symbol
f : k1 . . . kn → k in Σ its frozen argument positions ϕ(f) ⊆ {1, . . . , n}, (Σ,E)
is a MEL theory, and R is a set of labeled conditional rewrite rules

(∀�x) l : t −→ t′ if cond , (1)

where l ∈ L is a label, t and t′ are terms of the same kind, cond is a conjunction
of equalities, memberships and rewrites, and �x = vars(t)∪ vars(t′)∪ vars(cond).

Intuitively, if i is a frozen position of a function symbol f , i.e., if i ∈ ϕ(f), then
f(. . . , ti, . . .) does not rewrite to f(. . . , t′i, . . .) when ti rewrites to t′i. A context
is a Σ-term C with a single occurrence of a single variable, denoted � and called
the hole. Two contexts C and C′ are A-equivalent if A � (∀�) C(�) = C′(�).
A context f(t1, . . . , tn) has a hole in a frozen position if the hole occurs in some
argument ti, and either i ∈ ϕ(f) or ti has a hole in a frozen position.

Let Ω be a nonempty set. If Ω is countable, a probability mass function, or
probability distribution over Ω is any mapping p : Ω → [0, 1] with the property
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that
∑

ω∈Ω p(ω) = 1; we denote by Dist(Ω) the set of all probability distributions
over the set Ω. A cumulative distribution function (CDF) is a function ϕ : R →
[0, 1] defining the probability ϕ(x) that a real-valued random variable is less than
x ∈ R; we write Dist(R) for the set of all CDFs.

In [14] rewrite theories are extended to probabilistic rewrite theories. Intu-
itively, in such theories the righthand side t′ of a rewrite rule l : t −→ t′ if cond
may contain variables �p that do not occur in t. These new variables are assigned
values according to a probability distribution taken from a family of probabil-
ity distributions—one for each instance of the variables in t—associated with
the rule. Formally, a probabilistic rewrite theory is a pair (R, π), where R is a
rewrite theory1 and π is a function which assigns to each rule r ∈ R of the form
(1), with vars(t) = �x and vars(t′) \ vars(t) = �p, a mapping2

πr : �cond(�x)� → Dist
(
CanGSubstE/A(�p)

)
,

where �cond(�x)� is the set of all E/A-canonical ground substitutions for �x that
satisfy the condition cond . That is, for each substitution θ of the variables
in t which satisfies cond , we get a probability distribution πr ([θ]A) that de-
fines how the new variables �p are instantiated. A rewrite rule r ∈ R of the
form (1) with vars(t′) \ vars(t) �= ∅, together with its associated probabil-
ity distribution function πr is called a probabilistic rewrite rule and is written
l : t −→ t′ if cond with probability πr.

In [22], rewrite theories are extended to real-time systems by (i) considering
ordinary rewrite rules to be instantaneous transitions, and (ii) by adding tick
rewrite rules that model time elapse in a system. Formally, a real-time rewrite
theory [22] is a pair (R, τ) where R is a generalized rewrite theory and τ is
an assignment of a duration term τl of sort Time to rewrite rules of the form
l : {t} −→ {t′} if cond , where {_} encloses the entire state. The term τl specifies
the amount of time that elapses with the application of the rewrite rule. If τl �= 0,
the rule is called a tick rewrite rule and is written l : {t}

τl−→ {t′} if cond .
We also use the Maude [8] syntax to specify rewrite rules, so that a conditional

tick rule with duration y is written crl [l]: {t} => {t′} in time y if cond ,
where the label l may be omitted. In object-oriented Maude specifications [8],
the state of the system is a term of sort Configuration denoting a multiset of
objects and messages, where multiset union is denoted by juxtaposition. Each
object is represented as a term < o : c | att1 : val1, . . . , attn : valn >, where o is
the object’s identifier of sort Oid, c is the object’s class, and where val1, . . . , valn
are the values of the object’s attributes att1, . . . , attn. For example, the rule

rl [l]: m(O, w) < O : C | a1 : x, a2 : O’, a3 : z > =>

< O : C | a1 : x + w, a2 : O’, a3 : z > dly(m’(O’), x) .

1 A (standard) rewrite theory is a generalized rewrite theory with ϕ(f) = ∅ for all its
function symbols f , i.e., a rewrite theory with no frozen operators.

2 In [14] the definition of probabilistic rewrite theories is based on the more general
case of probability measures on a σ-algebra over CanGSubstE/A(
p). However, to
simplify the exposition, we only consider probability mass functions. Extending our
definitions to probability measures is straightforward, as shown in our report [6].
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defines a family of transitions in which a message m, with parameters O and w, is
read and consumed by an object O of class C. The transitions change the attribute
a1 of O and send a new message m’(O’) with delay x. “Irrelevant” attributes
(such as a3 and the righthand side occurrence of a2) need not be mentioned.

3 Probabilistic Real-Time Rewrite Theories

This section defines probabilistic real-time rewrite theories (PRTRTs) and their
semantics. PRTRTs extend both probabilistic rewrite theories and real-time
rewrite theories to support the formal specification of real-time systems with
probabilistic features. The definitions in this section are mostly extensions of
similar definitions in [14] for (untimed) probabilistic rewrite theories.

Definition 2. A probabilistic real-time rewrite theory (PRTRT) Rπ,τ is a tuple
(R, π, τ), where R = (Σ,ϕ,E ∪A,L,R) is a generalized rewrite theory in which
the rules in R have no rewrites in their conditions, (R, τ) is a real-time rewrite
theory, and π is a function that takes each rewrite rule r ∈ R of the form (1),
with vars(t) = �x, vars(t′) \ vars(t) = �y � �p, and assigns to it a mapping

πr : �cond(�x ∪ �y)�→ Dist
(
CanGSubstE/A(�p)

)
such that, for each substitution [θ]A ∈ CanGSubstE/A(�x∪�y) that satisfies the con-
dition cond, πr([θ]A) is a probability mass function over the set of ground substi-
tutions CanGSubstE/A(�p). If r is a tick rule, then �p ∩ vars(τl) = ∅. Probabilistic
tick rewrite rules are written l : {t}

τl−→ {t′} if cond with probability πr.

Although the duration of/between events may be given probabilistically, time
itself does not advance in a probabilistic way. The duration term τl therefore does
not contain variables that are substituted probabilistically, hence �p ∩ vars(τl) =
∅. Apart from adding timed behaviors, PRTRTs also extend probabilistic rewrite
theories in two ways necessitated by the way tick rules are usually defined:

i) PRTRTs allow new variables that are not assigned a probability distribution
in the righthand side of a rewrite rule. The reason is that tick rules—in
particular for dense time domains—allow time to advance by any amount
less than a certain bound; they therefore have a new (non-probabilistic)
variable in their righthand sides that defines the duration of the rewrite.

ii) The tick rules involve functions on the state, such as a function defining the
effect of time elapse on a state, that are frozen operators; we therefore have
used generalized rewrite theories as the underlying formalism.

Consider the following probabilistic tick rule r (written in an intuitive way):

{f(x)}
y−→ {g(x, y, z1, z2)} if y ≤ 10

with probability z1 :=
(
h(x, y) f(y)

2/3 1/3

)
and z2 :=

(
0 1

1/2 1/2

)
.
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The righthand side term {g(x, y, z1, z2)} contains variables y, z1 and z2 that
do not occur in the rule’s lefthand side {f(x)}. Let {f(t)} be the state of the
system when the rule is applied. The variable y is then instantiated nondeter-
ministically with any value t′ less than or equal to 10. The variables z1 and z2

are then instantiated probabilistically, where z1 is assigned the value [h(t, t′)]A
with probability 2/3 and the value [f(t′)]A with probability 1/3. Formally, the
mapping πr : CanGSubstE/A({x, y}) → CanGSubstE/A({z1, z2}) associated to
the above rule r is given by πr([θ]A)({z1 �→ [h(θ(x), θ(y))]A, z2 �→ i}) = 1/3 and
πr([θ]A)({z1 �→ [f(θ(y))]A, z2 �→ i}) = 1/6, for i ∈ {[0]A, [1]A}.

Let Rπ,τ = (Σ,ϕ,E ∪A,L,R, π, τ) be a PRTRT. Intuitively, an R/A-match
contains the complete information on how and in which context the current
system state is matched against a particular rewrite rule in the specification of
that system. We extend the definition of R/A-matches in [14] as follows:

Definition 3. Given a fully simplified term [u]A ∈ CanΣ,E/A, its generalized
R/A-matches are triples ([C]A, r, [θ]A) where C is a context whose hole is not
in a frozen position, r ∈ R is a rewrite rule, [θ]A ∈ CanGSubstE/A(�x ∪ �y) is
a substitution such that E ∪ A � θ(cond), and [u]A = [C(� ← θ(t))]A is the
A-equivalence class of the term obtained by applying the substitution θ to t and
placing the result into C.

The definition of a single (instantaneous and tick) transition of a PRTRT de-
scribes how the system state evolves when applying a rewrite rule to it:

Definition 4. Given terms [u]A, [v]A ∈ CanΣ,E/A, an E/A-canonical one-step

rewrite from [u]A to [v]A is a labelled transition [u]A
([C]A, r, [θ]A, [ρ]A)−−−−−−−−−−−−→

τ
[v]A, where

([C]A, r, [θ]A) is a generalized R/A-match for [u]A selected nondeterministically,
[ρ]A ∈ CanGSubstE/A(�p) is a substitution selected with probability πr([θ]A)([ρ]A),
the duration τ is 0 if r is not a tick rule and is θ(τl) otherwise, and [v]A =
[C(� ← t′(θ(�x, �y), ρ(�p)))]A is the result of the one-step rewrite.

4 Example: A Simple Round Trip Time Protocol

To illustrate our formalism, we specify in an object-oriented way a simple round
trip time (RTT) protocol that computes the time it takes for a message to go from
one node to another, and back, and where the message transmission time follows
a probability distribution that depends on the distance between the nodes.

The initiator object O starts the protocol by sending an rttReq message to
its neighbor O’, with a time stamp T which is the current value of O’s local clock
(rule start). When O’ receives this message, it immediately sends back a reply
to O with the original time stamp with probability 3/4 and ignores the request
with probability 1/4 (rule rttResp). When the initiator O receives the reply,
it computes its RTT value w.r.t. O’ by subtracting the original time stamp T
from its current clock value T’ (rule treatResp). However, if the message takes
so long that T’ − T ≥ MAX_RTT, then it is just ignored (rule ignoreOld). The
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initiator uses a retransmission timer to start a new round of the protocol every
MAX_RTT time units until it has computed a good RTT value. When the timer
expires, O sends another RTT request to O’ (rule tryAgain) with probability
1/(N+ 1), which decreases with the number N of unresolved RTT requests of O.
We represent each node by an object

< o : Node | nbr : o′, rtt : r, clock : t, timer : ti, tries :n >

where o is the node’s identifier, o′ is the neighbor to which o wants to compute
its round trip time, r is the value of the round trip time, if computed, or INF
otherwise, t is the current value of the node’s clock, ti is its current timer value,
which has the value INF if the timer is switched off, and n is the number of
unsuccessful attempts that o has made to compute the RTT. Messages have
the form findRtt(o), which triggers a run of the RTT protocol for node o,
rttReq(o′, o, t), which sends a request from node o to node o′ with t the time
stamp, and rttResp(o, o′, t), which sends a reply message from node o′ to node
o with the original time stamp t . We assume that a function dist that com-
putes the distance dist(o, o′) between two nodes is defined. In the rules start,
rttResp and tryAgain we specify the transmission delay of the rttReq and
rttResp messages as a variable D which is probabilistically substituted according
to a probability distribution F(x) that mimics a truncated normal distribution
N (μ, σ2) [12] with minimum value MIN_DELAY, and depends on the distance x
between o and o′, where μ and σ are positive constants representing the average
and the standard deviation of the transmission delay, respectively.

The following instantaneous rewrite rules describe our simple RTT protocol.

vars O O’: Oid. vars T T’ D: Time. var N: Nat. var B: Bool. var CF: Configuration.

rl [start] :

findRtt(O) < O : Node | clock : T, nbr : O’ >

=> < O : Node | timer : MAX_RTT > dly(rttReq(O’, O, T), D)

with probability D := F(dist(O, O’)) .

rl [rttResp] :

rttReq(O, O’, T) < O : Node | >

=> if B then < O : Node | > dly(rttResp(O’, O, T), D) else < O : Node | > fi

with probability B :=

(
true false

3/4 1/4

)
and D := F(dist(O, O’)) .

crl [treatResp] :

rttResp(O, O’, T) < O : Node | clock : T’ >

=> < O : Node | rtt : T’ - T, timer : INF > if T’ - T < MAX_RTT .

crl [ignoreOld] :

rttResp(O, O’, T) < O : Node | clock : T’ > => < O : Node | > if T’ - T >= MAX_RTT.

rl [tryAgain] :

< O : Node | timer : 0, clock : T, nbr : O’, tries : N >

=> if B then < O : Node | timer : MAX_RTT, tries : N + 1 > dly(rttReq(O, O’, T), D)

else < O : Node | timer : MAX_RTT > fi

with probability B :=

(
true false

1/(N+1) N/(N+1)

)
and D := F(dist(O, O’)) .
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Time elapse is modeled by the tick rule
crl [tick] : {CF} => {delta(CF, T)} in time T if T <= mte(CF) .

where delta is a frozen function that specifies the effect of time elapse on the
system by decreasing the timers and increasing the clock values of each node.
The frozen function mte gives the maximum amount of time that can elapse
before a node must perform an instantaneous transition. More precisely, time
cannot advance past the expiration of a timer or the moment when a message
arrives. See [6] for their formal definition.

It is worth noticing that the number of messages in the state can grow beyond
any bound, since: i) the message delays could be arbitrarily large (with non-zero
probability), and ii) the initiator node will periodically send requests until it
receives a good RTT value. Therefore, even this simple protocol seems to be
beyond the scope of automaton-based formalisms.

5 Reachability Probabilities in PRTRTs

In this section we define the probability of reaching a given state in a certain time
in a PRTRT. PRTRTs combine probabilistic and nondeterministic behaviors,
and we must therefore assign “probabilities” also to the nondeterministic choices
to define the probability of reaching a state t2 from a state t1 in time τ . This is
done by “adversaries,” so that the probability of reaching t2 in time τ is defined
relative to a given adversary.

A computation of a PRTRT Rπ,τ is an infinite sequence of E/A-canonical
rewrite steps, with zero-time self-loops from deadlock states. Formally, a com-
putation of Rπ,τ is an infinite sequence Π = [u1]A

α1−→
τ1

[u2]A
α2−→
τ2

· · · where

[ui]A
αi−→
τi

[ui+1]A is either a E/A-canonical one-step rewrite, or [ui]A cannot be

rewritten using the rules in Rπ,τ , in which case [ui]A = [ui+1]A, αi = !, and
τi = 0, where ‘ ! ’ is a new label. To each computation Π we associate the infinite
timed computation path obtained by removing the labels above the transition ar-
rows. A finite timed computation path is a prefix of an infinite timed computation
path. We denote by Πn = [u1]A −→

τ1
. . . −→

τn−1
[un]A a finite timed computation

path. The nondeterministic choices of the generalizedR/A-matches ([C]A, r, [θ]A)
for a state [uk]A prohibit us from defining the probability of reaching [un]A in a
certain time. Therefore, all nondeterministic choices must be resolved by means
of an adversary, which extends the notion of adversary in [14] as follows:

Definition 5. An R/A-match adversary of a PRTRT Rπ,τ is a function A that
maps each finite timed computation path Πn of Rπ,τ , ending with a term [un]A,
to a probability distribution on the set of generalized R/A-matches for [un]A.

Given an R/A-match adversary A, the following formula gives the probability
of performing a rewrite from a “non-deadlock” term [un]A to a term [u′]A in one
step in time τ , provided that [un]A is obtained via Πn,

PA
(

[un]A −→
τ

[u′]A | Πn

)
=

∑[
A(Πn) ([C]A, r, [θ]A) · πr([θ]A) ([ρ]A)

]
,
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where the sum ranges over all [un]A
([C]A, r, [θ]A, [ρ]A)−−−−−−−−−−−−→

τ
[u′]A. If [un]A is a deadlock

state then PA
(
[un]A−→

τ
[u′]A | Πn

)
= 1 if and only if [u′]A = [un]A and τ = 0,

and is 0 otherwise. Also, the probability of the finite timed computation path
Πn to occur in a PRTRT is given by:

PA (Πn) =
n−1∏
i=1

PA

(
[ui]A −→

τi

[ui+1]A

∣∣∣∣ [u1]A −→
τ1

. . . −→
τi−1

[ui]A

)
.

The probability of reaching state [u′]A from state [u]A in time τ is given by∑
Π PA (Π), where Π ranges over all finite timed computation paths Πn with

[un]A = [u′]A and
∑n−1

i=1 τi = τ , and such that there is no j < n with [uj]A =
[u′]A and

∑j−1
i=1 τi = τ .

6 The Expressive Power of PRTRTs

In this section we show the expressiveness of PRTRTs—and its suitability as
a unifying semantic framework for probabilistic real-time systems in which dif-
ferent models of such systems can be represented—by explaining how a range
of models of probabilistic real-time systems can naturally be seen as PRTRTs.
More details about the mappings and their correctness proofs are given in [6].

Since probabilistic rewrite theories are a proper subclass of PRTRTs, any
probabilistic rewrite theory can also be represented as a PRTRT. In [14] map-
pings are provided from probabilistic nondeterministic systems, generalized semi-
Markov processes, and continuous-time Markov chains into probabilistic rewrite
theories. That paper also claims that the same method can be used for represent-
ing the PEPA [11] language and various Petri net formalisms, such as stochastic
reward nets, generalized stochastic Petri nets [3], and stochastic Petri nets with
generally distributed firing times, as probabilistic rewrite theories.

6.1 Probabilistic Timed Automata

The probabilistic timed automaton (PTA) model [27] combines nondeterminis-
tic and probabilistic behaviors, and extends timed automata [5] by allowing a
probabilistic choice of both the next state and the set of clocks to be reset in a
“transition.” PTA are supported by the probabilistic model checker PRISM [15].

A clock is a variable ranging over the real numbers that increases its value
according to the elapsed time. A zone of a set of clocks X is a convex subset
of R|X | defined by a conjunction of constraints over X . Let ZX be the set of
all zones of X . A PTA is then a tuple (S, s0,X , inv, prob, {τs}s∈S), where: S
is a finite set of states with s0 ∈ S the start state; X is a finite set of clocks ;
inv : S → ZX is a function that assigns an invariant to each state; prob : S →
P(Dist (S × P(X ))) is a function that assigns a set of probability distributions
on S ×P(X ) to each state; and {τs}s∈S is a family of functions where, for each
s ∈ S, τs : prob(s)→ ZX assigns an enabling condition to each p ∈ prob(s).
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A PTA in state s may nondeterministically select any enabled probability
distribution p in prob(s). The probability that the automaton then makes a
transition to state s′ and resets all the clocks X ⊆ X to 0 is p(s′, X). Following
[16,27], we assume that the enabling condition τs(p) implies the invariant of all
possible successor states s′ with p(s′, X) > 0, after the clocks in X are reset.

Figure 1 (a) shows a PTA that starts in state s0 with its clock x initialized to
0. When x ∈ [5, 7] in state s0 the automaton can nondeterministically choose be-

tween the two probability distributions π1 =

(
(s1, ∅) (s2, ∅)

0.3 0.7

)
and π2 =

(
(s2, ∅)

1

)
,

and when x ∈ [3, 8]\ [5, 7] it can only take π2. A probabilistic choice is then made
according to the selected probability distribution, and the corresponding transi-
tion is performed. Likewise, the probabilistic choice from s1 is made by sampling

from the probability distribution π3 =

(
(s1, ∅) (s2, {x})

0.5 0.5

)
; if the automaton makes

a transition to state s2, which happens with probability 0.5, then x is reset to 0.

s0
x ≤ 8

s1
x ≤ 7

s2
x ≤ 8

x = 0

0.3 0.7
1 x ∈ [3, 8]

0.5

{x := 0}
0.5

x ∈ [5, 7]

x < 7

(a)

s0, {x, y}

s1, {x} s2, {y}

s3, {y}

push, {x}

pop, {y}

push, {y} pop, {x, y}

push, {x}

(b)

Fig. 1. (a) A probabilistic timed automaton (b) A stochastic automaton

A PTA A = (S, s0,X , inv, prob, 〈τs〉s∈S) with X = {x1, . . . , xn} is represented
as a PRTRT ΨPTA(A) as follows (see [6] for more details). A “timed state” of A
is represented as a term {s, r1, r2, . . . , rn}, with ri denoting the current value of
clock xi. To each state s ∈ S and each probability distribution π : S × P(X ) →
[0, 1] in prob(s), we associate a probabilistic rewrite rule

crl [π]: {s, y1, . . . , yn} => σ if (y1, . . . , yn) ∈ τs(π) with probability σ :=Γs(π)

where σ and the yi are variables, and Γs(π) : CanGSubstE/A(σ) → [0, 1] is a
probability distribution over the set of E/A-canonical ground substitutions for
σ defined by Γs(π)(σ �→ {s′, t1, . . . , tn}) = π(s′, X) for all s′ ∈ S and all X ⊆ X ,
where tj is 0 if xj ∈ X and yj otherwise. A tick rule

crl [tick s]:

{s, y1, . . . , yn} => {s, y1 + y, . . . , yn + y} in time y if (y1 + y, . . . , yn + y) ∈ inv(s)
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models time elapse for each state s ∈ S. Since τs(π) and inv(s) are zones defined
by conjunctions of inequality constraints over the clock values, the set member-
ships (y1, y2, . . . , yn) ∈ τs(π) and (y1 +y, y2 +y, . . . , yn +y) ∈ inv(s) are actually
translated into standard inequalities in ΨPTA(G), as shown below.

The probabilistic timed automaton in Fig. 1 (a) is therefore represented by a
PRTRT containing the following set of conditional tick rules

crl [tick s0]: {s0, x} => {s0, x + y} in time y if x + y <= 8 .

crl [tick s1]: {s1, x} => {s1, x + y} in time y if x + y <= 7 .

crl [tick s2]: {s2, x} => {s2, x + y} in time y if x + y <= 8 .

as well as the following instantaneous probabilistic rewrite rules

crl [π1]: {s0, x} => σ if x >= 5 and x <= 7 with probability σ :=

(
{s1, x} {s2, x}

0.3 0.7

)
.

crl [π2]: {s0,x} => σ if x >= 3 and x <= 8 with probability σ :=

(
{s2, x}

1.0

)
.

crl [π3]: {s1,x} => σ if x < 7 with probability σ :=

(
{s1, x} {s2, 0}

0.5 0.5

)
.

where σ, x and y are variables and the initial state is given by the term {s0, 0}.

6.2 Stochastic Automata

A stochastic automaton (SA) [9] is an automaton where the transitions have the

form s
a,X−→ s′, with a an action and X a set of timers. A transition is enabled

when all the timers in X have expired, and time cannot advance when there is
an enabled transition. An SA may also have nondeterministic behaviors, since
multiple transitions may become enabled at the same time. As the result of
taking the transition s

a,X−→ s′, each timer x which should be reset when arriving
at s′ is assigned a value sampled from its cumulative distribution function F (x).

Figure 1 (b) shows an SA. Each state has a set of timers that have to be set
when arriving at that state. The SA starts in state s0 and uses the CDFs F (x)
and F (y) to assign initial values to the timers x and y. The automaton makes a
(push) transition to state s1 as soon as the timer x expires. In the new state s1,
the timer x is assigned a new value sampled from the CDF F (x). At this point,
the SA makes a nondeterministic choice between the two possible transitions
when the timer y expires, to s2 with a pop action, or to s3 with a push action.

Let Pfin(X) denote the set of finite subsets of a set X . A stochastic automaton
is a tuple (S, s0,X ,Act,−→, κ, F ) where: S is a set of states and s0 ∈ S is the
initial state; X is a set of timers ; Act is a set of actions ; −→ ⊆ S × (Act ×
Pfin(X ))×S is the set of transitions, where we write s

a,X−→ s′ iff (s, a,X, s′) ∈ −→;
the function κ : S → Pfin(X ) is the clock setting function; and F : X → Dist(R)
assigns a CDF F (x) to each timer x ∈ X , with F (x)(t) = 0 if t < 0.

We outline the PRTRT representation ΨSA(A) of a finitary SA A = (S, s0,X ,
Act,−→, κ, F ), where X is a finite set {x1, . . . , xn}. The “timed state” of A
is represented by a term {s, r1, r2, . . . , rn}, where s is a constant denoting the
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current state of the SA, and ri is the current value of the timer xi. The following
probabilistic rewrite rule randomly selects the initial timer values:

rl [init]: init => {s0, y1, . . . , yn} with probability y1 :=F1 and ... and yn :=Fn .

where init is a constant and Fi mimics the CDF F (xi) of clock xi. Each tran-

sition s
a,X−−→ s′ of the SA is translated to a labeled probabilistic rewrite rule

rl [a]: {s, r1, . . . , rn} => {s′, r′1, . . . , r′n} with probability r′j1 :=Fj1 and ... and r′jl
:=Fjl

.

where ri is 0 if xi ∈ X and is a variable yi otherwise, κ(s′) = {xj1 , xj2 , . . . , xjl
},

and r′i = ri if xi �∈ κ(s′). Time elapse is modeled by the following tick rule which
can advance time until the next timer expires if no transition is enabled:

crl [tick]: {σ, y1, . . . , yn} => {σ, max(y1 − y, 0), . . . , max(yn − y, 0)} in time y
if y <= nextTimerExpires(y1 , . . . , yn) and not transEnabled(σ, y1, . . . , yn) .

where σ, yi, and y are all variables, nextTimerExpires(y1, . . . , yn) returns the
smallest non-zero value of the yi, and transEnabled(σ, y1, . . . , yn) holds iff some
transition is enabled in the given state. The latter is defined by an equation

eq transEnabled(s, r1, . . . , rn) = true .

where ri is 0 if xi ∈ X and is a variable yi otherwise, for each transition s
a,X−−→ s′,

and by having an equation that states that otherwise (i.e., if none of the above
equations apply), transEnabled(σ, y1, . . . , yn) is false:

eq transEnabled(σ, y1, . . . , yn) = false [owise] .

The SA in Fig. 1 (b) is therefore represented as a PRTRT as follows

rl [init]: init => {s0, y1, y2} with probability y1 :=F1 and y2 :=F2 .

rl [push]: {s0, 0, y2} => {s1, y′
1, y2} with probability y′

1 :=F1 .

rl [pop] : {s1, y1, 0} => {s2, y1, y′
2} with probability y′

2 :=F2 .

rl [push]: {s1, y1, 0} => {s3, y1, y′
2} with probability y′

2 :=F2 .

rl [push]: {s2, 0, y2} => {s0, y′
1, y′

2} with probability y′
1 :=F1 and y′

2 :=F2 .

rl [pop] : {s3, 0, 0} => {s2, 0, y′
2} with probability y′

2 :=F2 .

crl [tick]: {σ, y1, y2} => {σ, max(y1 - y, 0), max(y2 - y, 0)} in time y
if y <= nextTimerExpires(y1, y2) and not transEnabled(σ, y1, y2) .

where transEnabled and nextTimerExpires are defined by:

eq transEnabled(s0, 0, y2) = true . eq transEnabled(s1, y1, 0) = true .

eq transEnabled(s2, 0, y2) = true . eq transEnabled(s3, 0, 0) = true .

eq transEnabled(s, y1, y2) = false [owise] .

eq nextTimerExpires(y1, y2) = if y1 == 0 then (if y2 == 0 then INF else y2 fi)

else (if y2 == 0 then y1 else min(y1, y2) fi) .
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6.3 Deterministic and Stochastic Petri Nets

Deterministic and stochastic Petri nets (DSPNs) [2] are a fairly general class
of timed Petri nets, where a transition can fire after having been continuously
enabled for either a fixed (deterministic) or a random (exponentially distributed)
amount of time. DSPNs are strictly more expressive than generalized stochastic
Petri nets [3] (and, hence, stochastic Petri nets), which can be seen as DSPNs
in which all deterministic transitions are instantaneous.

There are many variations of the basic model, including having inhibitor arcs,
arc multiplicities that are functions of the marking, transition precedences, etc.
To focus on the real-time and probabilistic aspects of the model, we assume
a “standard” Petri net model extended with the above firing delays, and refer
to [28] for the treatment of advanced Petri net features in rewriting logic. That
is, a DSPN is a tuple (P, T, F, τ, R) where: P is a finite set of places ; T = TD�T S

is a finite set of transitions, partitioned into sets TD and T S of deterministic
and stochastic transitions, respectively, and satisfying T ∩ P = ∅; F ⊆ (P ×
T ) ∪ (T × P ) is the flow relation; τ : TD → R≥0 is a function that maps
each deterministic transition t to its firing delay τ(t); if τ(t) = 0 we call t an
instantaneous transition; R : T S → R is a function that associates to each
stochastic transition t the rate R(t) of the exponential distribution of its firing
delay. A transition must fire when it has been enabled continuously for the
duration of its firing delay. We assume that the “enabled-time” of a transition
is reset to zero when the transition is fired.

Figure 2 shows a DSPN specification, including its initial marking, of a client-
server architecture. Stochastic (t1), deterministic (t3) and instantaneous (t2)
transitions are shown as empty rectangles, filled rectangles and thick lines, re-
spectively. For the stochastic transitions we show the rate of the exponential
distribution of their waiting times, while for the deterministic transitions we
display the fixed amount of time associated with them.

p1 p2 p3

p4

t1

5

t2 t3

11.3

Fig. 2. A DSPN specifying a queueing model of a client-server architecture

Our representation follows the approach of [20], which sees a marking as a
multiset of places and a transition as a multiset rewrite rule. In addition, for
each transition t ∈ T , we associate a timer that denotes the remaining time
during which the transition must be continuously enabled to fire. Such a timer
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can be represented by a term < t ; r >, where t is the transition and r is its
timer value. The global state of the system is therefore represented as a term
{m}, where m is a multiset of places and transition timers, with multiset union
denoted by juxtaposition. As a result of firing a transition, previously enabled
transitions may be disabled, and vice versa. Therefore, we must recompute the
transition timer values when a transition fires. For each transition t in the DSPN
with pre-set p1 p2 . . . pm and post-set q1 q2 . . . qn, we therefore have a rewrite
rule

rl [apply-t] :
{< t ; 0 > p1 p2 ... pm REST} => {recomputeTimers(< t ; INF > q1 q2 ... qn REST)}.

which fires the transition t when its timer is 0. As a result, the pre-set is removed
from the state, the post-set is added to it, t’s timer is turned off (although it may
be reset by recomputeTimers if the transition is still enabled, or re-enabled),
and the function recomputeTimers is applied to the entire resulting state to
recompute all transition timer values.

The function recomputeTimers is defined as follows: (i) if a transition is
enabled and the corresponding timer is turned off (i.e., has the value INF), then
the timer is reinitialized to the firing delay of the transition, otherwise the timer
is left unchanged; and (ii) if a transition is not enabled, its timer is turned
off. Case (i) can easily be defined by an equation defining recomputeTimers
for deterministic transitions. However, an equation defining recomputeTimers
cannot reset the timer of a stochastic transition, since the new timer value should
be assigned probabilistically. Therefore, the timer of the stochastic transition is
initialized to a new value reset, which will be replaced by a probabilistically
chosen value in a rewrite rule. That is, for any deterministic transition t, case
(i) above is defined by the following equation:

eq recomputeTimers(< t ; TI > p1 p2 ... pm REST)

= < t ; if TI == INF then τ(t) else TI fi > recomputeTimers(p1 p2 ... pm REST) .

and for any stochastic transition t, case (i) is defined by the following equation:

eq recomputeTimers(< t ; TI > p1 p2 ... pm REST)

= < t ; if TI == INF then reset else TI fi > recomputeTimers(p1 p2 ... pm REST) .

For each stochastic transition t with rate R(t) we therefore have a rewrite rule

rl [set-stoc-timer]: < t ; reset > => < t ; X > with probability X := ExpRate(R(t)) .

where the function ExpRate(λ) mimics the CDF of the exponential distribution
with rate parameter λ ∈ R. For case (ii), if the transition is not enabled, the
following owise equation sets the corresponding timer to INF:

eq recomputeTimers(< T ; TI > REST) = < T ; INF > recomputeTimers(REST) [owise] .

where T is a variable. Finally, we add the tick rule

crl [tick]: {SYSTEM} => {decreaseTimers(SYSTEM, Y)} in time Y if Y <= mte(SYSTEM).
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where decreaseTimers decreases the value of each timer by the elapsed time
Y, and mte gives the smallest timer value (or 0 if a timer has the value reset).
Therefore, this tick rule may advance time until the next timer expires. Appendix
A gives a detailed specification of the PRTRT representation of a DSPN.

The representation of the DSPN in Fig. 2 contains the instantaneous rules

rl [apply-t1] : {< t1 ; 0 > p1 REST} => {recomputeTimers(< t1 ; INF > p2 REST)} .

rl [apply-t2] : {< t2 ; 0 > p2 p4 REST} => {recomputeTimers(< t2 ; INF > p3 REST)} .

rl [apply-t3] : {< t3 ; 0 > p3 REST} => {recomputeTimers(< t3 ; INF > p1 p4 REST)} .

together with the equations defining the recomputeTimers function

eq recomputeTimers(< t1 ; TI > p1 REST)

= < t1 ; if TI == INF then reset else TI fi > recomputeTimers(p1 REST) .

eq recomputeTimers(< t2 ; TI > p2 p4 REST)

= < t2 ; if TI == INF then 0 else TI fi > recomputeTimers(p2 p4 REST) .

eq recomputeTimers(< t3 ; TI > p3 REST)

= < t3 ; if TI == INF then 11.3 else TI fi > recomputeTimers(p3 REST) .

eq recomputeTimers(< t ; TI > REST) = < t ; INF > recomputeTimers(REST) [owise] .

ceq recomputeTimers(REST) = REST if noTimers(REST) .

as well as the tick rule and the rule for setting the timer of the stochastic tran-
sition t1 to a value sampled from the exponential distribution with rate 5:

rl [set-stoc-timer] : < t1 ; reset > => < t1 ; X > with probability X := ExpRate(5).

6.4 Handling Uncertainty in Probabilistic Transitions

We have identified two models for probabilistic real-time systems where the
probability distribution associated with a transition is nondeterministically cho-
sen from a set of probability distributions. We can represent these models as
PRTRTs, which implies that PRTRTs are more expressive than (untimed) prob-
abilistic rewrite theories in which the probability distribution is deterministically
chosen. See [6] for details about the PRTRT representation of these models.

In timed probabilistic transition systems (TPTS) [29] the probability of mak-
ing a transition belongs to an interval. This can be modeled in our formalism by
exploiting the fact that, for a given rewrite rule r, πr is a family of probability
distributions, indexed both by the substitutions for the variables in the left-
hand side of r and by the substitutions for the nondeterministically instantiated
variables in the righthand side of r. In our PRTRT encoding we add the non-
deterministically selected probability values to the state. Therefore, we specify
the probabilistic transition from s0 of the TPTS in Fig. 3 (a) by the following
probabilistic tick rewrite rule, where σ, p and q are variables:

crl [tick] : {s0; q} => {σ; p} in time 1 if p ∈ [0.9, 1]

with probability σ :=

(
s1 s2

p 1 − p

)
.

In timed probabilistic systems (TPS) [10], the time that a node waits in a
location—after selecting an outgoing action, but before performing the action—
is a random value, whose average is given, but whose probability distribution is
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s0

s1 s2

p ∈ [0.9, 1] 1 − p

1 loop

(a)

s0 s1

s2 s3 s4

a

4

1

b
5

c
7

1/3 2/3 1/5 4/5

(b)

Fig. 3. (a) A timed probabilistic transition system (b) A timed probabilistic system

not specified. Figure 3 (b) shows an example of a TPS, where the actions are
depicted as diamond-tipped arrows, the average time for performing an action
is shown in red, and the probabilistic transitions are the arrows with probability
values attached to them. We assume that the set of possible waiting times of
action b is a finite3 set {ϕ1, ϕ2, . . . , ϕm}, where ϕi is selected with an unknown
probability pi ∈ [0, 1]. A state in the PRTRT representation of a TPS has the
form {s, a, s′, r, p1; . . . ; pn}, where s is the current state, a is the next action
to perform, s′ is the next state, r is the remaining time until the automaton
performs the action a, and p1, . . . , pm are the nondeterministically chosen prob-
ability values as for TPTSs. The rule that performs action a when the timer
expires and selects b as the next action is then

crl [ab]: {s0, a, s1, 0, q1; ...; qn} => {s1, b,σ, r, p1; ...; pm}

if p1 + . . . + pm = 1 and p1ϕ1 + . . . + pmϕm = 5

with probability σ :=

(
s2 s3

1/3 2/3

)
and r :=

(
ϕ1 . . . ϕm

p1 . . . pm

)
.

7 Concluding Remarks

We have defined the probabilistic real-time rewrite theory (PRTRT) formalism
for modeling probabilistic real-time systems in rewriting logic, and have shown
how PRTRTs can be seen as a unifying semantic framework in which a range of
models for probabilistic real-time systems can be naturally represented, includ-
ing systems with underspecified probability distributions. We have also given a
PRTRT specification of a simple round trip time protocol that seems to be out-
side the class of systems that can be modeled using automaton-based formalisms,
since the number of messages in a state can grow beyond any bound.

This work has provided the theoretical foundations for an analysis tool for
probabilistic real-time systems in rewriting logic. In the future we must de-
fine property specification formalisms and implement suitable model checkers
for PRTRTs. For this purpose, the statistical model checking approach seems
very promising, since instead of performing exact probabilistic model checking—
which often becomes unfeasible for large distributed systems—statistical model
3 See [6] for the continuous case.
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checking is typically much more efficient, although it only guarantees a property
with a desired level of confidence. In particular, statistical model checking is
based on evaluating a number of behaviors and is therefore easily parallelizable.
Indeed, the PVeStA tool [4] provides a parallel statistical model checker for a
subset of (untimed) probabilistic rewrite theories and could be a useful starting
point for a future tool for PRTRTs.
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23. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20 (2007)
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A PRTRT Representation of DSPNs

We give below a more detailed specification, using Maude syntax, of the PRTRT
representation of a DSPN.

sort Place .

ops p1 p2 p3 p4 ... : -> Place [ctor] . --- one constant for each place

sort Transition .

ops t1 t2 t3 ... : -> Transition [ctor] . --- one constant for each transition
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op reset : -> TimeInf [ctor] . --- new ’timer’ value

sort TransitionTimer . --- transition timers

op <_;_> : Transition TimeInf -> TransitionTimer [ctor] .

--- An extended marking is a multiset of places and transition timers:

sort ExtendedMarking . subsort TransitionTimer Place < ExtendedMarking .

op none : -> ExtendedMarking [ctor] . --- empty marking

--- assoc-comm multiset union operator:

op __ : ExtendedMarking ExtendedMarking -> ExtendedMarking

[ctor assoc comm id: none] .

--- For EACH transition t we have a firing rule of the following form. Assume

--- that the preset of t is q1 ... qm and the postset of t is q1’ ... qn’, where

--- each qi and qk’ is some place pj:

vars REST SYSTEM : ExtendedMarking . var TI : TimeInf . var T : Transition .

var X : Time .

rl [fire-t] :

{< t ; 0 > q1 ... qm REST}

=>

{recomputeTimers(< t ; INF > q1’ ... qn’ REST)} .

op recomputeTimers : ExtendedMarking -> ExtendedMarking [frozen (1)] .

--- For EACH deterministic transition t, with the above pre- and postsets,

--- there is one equation as follows:

eq recomputeTimers(< t ; TI > q1 ... qm REST) --- t is enabled!

=

if TI == INF --- t was previously disabled

< t ; tau(t) > --- initialize with value of firing delay

else

< t ; TI > --- t was already enabled, do not change timer value

fi

recomputeTimers(q1 ... qm REST) . --- recursively compute the other timers

--- For EACH stochastic transition t, with the above pre- and postsets,

--- there is one equation as follows, which is very similar to the

--- equation above, but resets the timer to ’reset’:

eq recomputeTimers(< t ; TI > q1 ... qm REST) --- t is enabled

=

if TI == INF --- t was previously disabled

< t ; reset > --- initialize with value ’reset’

else

< t ; TI > --- t was already enabled, do not change timer value

fi

recomputeTimers(q1 ... qm REST) . --- recursively compute the other timers

--- An owise equation matches when the transition T is not enabled.

--- Then we set the timer to ’INF’, no mater its earlier value:
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eq recomputeTimers(< T ; TI > REST) = < T ; INF > recomputeTimers(REST) .

--- Finally, when there are no transitions timers left to apply

--- recomputeTimers to, we are finished:

ceq recomputeTimers(REST) = REST if noTimers(REST) .

--- This noTimers could also have been done with sorts, etc.

op noTimers : ExtendedMarking -> Bool .

eq noTimers(< T ; TI > REST) = false .

eq notimers(REST) = true [owise] .

--- Next, we instantiate the probabilistic variable; details

--- about the probability distribution omitted:

rl [instantiate-probabilistic-delay] :

< T ; reset > => < T ; X > with probability X := distr(...R(T)...) .

--- Finally, the tick rule:

crl [tick] :

{SYSTEM} => {decreaseTimers(SYSTEM, X)} in time X if X <= mte(SYSTEM) .

op decreaseTimers : ExtendedMarking Time -> ExtendedMarking [frozen (1)] .

eq decreaseTimers(< T ; TI > REST, X)

= < T ; TI - X > decreaseTimers(REST, X) .

eq decreaseTimers(REST) = REST [owise] . --- no more timers

--- The function mte gives the smallest timer value in the system:

op mte : ExtendedMarking -> TimeInf [frozen (1)] .

eq mte(< T ; TI > REST) = min(if TI == reset then 0 else TI fi, mte(REST)) .

eq mte(REST) = INF [owise] .
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Abstract. This paper offers a natural stochastic semantics of Networks
of Priced Timed Automata (NPTA) based on races between compo-
nents. The semantics provides the basis for satisfaction of Probabilistic
Weighted CTL properties (PWCTL), conservatively extending the clas-
sical satisfaction of timed automata with respect to TCTL. In particular
the extension allows for hard real-time properties of timed automata ex-
pressible in TCTL to be refined by performance properties, e.g. in terms
of probabilistic guarantees of time- and cost-bounded properties. A sec-
ond contribution of the paper is the application of Statistical Model
Checking (SMC) to efficiently estimate the correctness of non-nested
PWCTL model checking problems with a desired level of confidence,
based on a number of independent runs of the NPTA. In addition to ap-
plying classical SMC algorithms, we also offer an extension that allows
to efficiently compare performance properties of NPTAs in a parametric
setting. The third contribution is an efficient tool implementation of our
result and applications to several case studies.

1 Introduction

Model Checking (MC) [11] is a widely recognised approach to guarantee the cor-
rectness of a system by checking that any of its behaviors is a model for a given
property. There are several variants and extensions of MC aiming at handling
real-time and hybrid systems with quantitative constraints on time, energy or
more general continuous aspects [1, 2, 3, 6]. Within the field of embedded systems
these formalisms and their supporting tools [16, 29, 30, 32] are now successfully
applied to time- and energy-optimal scheduling, WCET analysis and schedula-
bility analysis.

Compared with traditional approaches, a strong point of real-time model
checking is that it (in principle) only requires a model to be applicable, thus
extensions to multi-processor setting is easy. A weak point of model checking
is the state-space explosion, i.e. the exponential growth in the analysis effort
measured in the number of model-components. Another limitation of real-time
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model checking is that it merely provides – admittedly most important – hard
quantitative guarantees, e.g. the worst case response time of a recurrent task
under a certain scheduling principle, the worst case execution time of a piece of
code running on a particular execution platform, or the worst case time before
consensus is reached by a real-time network protocol. In addition to these hard
guarantees, it would be desirable in several situations to obtain refined perfor-
mance information concerning likely or expected behaviors in terms of timing
and resource consumption. In particular, this would allow to distinguish and
select between systems that perform identically from a worst-case perspective.

As a first contribution we propose a stochastic semantics for Priced Timed
Automata (PTA), whose clocks can evolve with different rates, while1 being
used with no restrictions in guards and invariants. Networks of PTAs (NPTA)
are created by composing PTAs via input and output actions. More precisely, we
define a natural stochastic semantics for networks of NPTAs based on races be-
tween components being composed. We shall observe that such race can generate
arbitrarily complex stochastic behaviors from simple assumptions on individual
components. We shall see that our semantics cannot be emulated by applying
the existing stochastic semantic of [4, 8] to the product of components. Other
related work includes the very rich framework of stochastic timed systems of
MoDeST [10]. Here, however, general hybrid variables are not considered and
parallel composition does not yield fully stochastic models. For the notion of
probabilistic hybrid systems considered in [31] the choice of time is resolved non-
deterministically rather than stochastically as in our case. Moreover, based on
the stochastic semantics, we are able to express refined performance properties,
e.g. in terms of probabilistic guarantees of time- and cost-bounded properties2.

To allow for the efficient analysis of probabilistic performance properties we
propose to work with Statistical Model Checking (SMC) [28, 35], an approach
that has been proposed as an alternative to avoid an exhaustive exploration of the
state-space of the model. The core idea of SMC is to monitor some simulations
of the system, and then use results from the statistic area (including sequential
hypothesis testing or Monte Carlo simulation) in order to decide whether the
system satisfies the property with some degree of confidence.

Thus, as a second contribution, we provide an efficient implementation of sev-
eral existing SMC algorithms that we use for checking the correctness of NPTAs
with respect to a stochastic extension of cost-constrained temporal logic – this
extension being conservative with respect to the classical (non-stochastic) inter-
pretation of the logic. We shall observe that two timed bisimilar NPTAs may be
distinguisable by PWCTL. The series of algorithms we implemented includes the
sequential hypothesis test by Wald [34] as well as a quantitative approach [18].
Our implementation relies on a new efficient algorithm for generating runs of
NPTAs in a random manner. In addition, we also propose another SMC algo-
rithm to compare the probabilities of two properties without computing them
individually – which is useful to compare the performances of a program with

1 In contrast to the usual restriction of priced timed automata [3, 6].
2 Clocks with different rates can be used to model costs.
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one of its evolutions at cheap cost. This probability comparison problem, which
is far beyond the scope of existing time model checking approaches, can be ap-
proximated with an extension of the sequential hypothesis testing and has the
advantage of unifying the confidence in the comparison. In addition to be the
first to apply such extension in the context of formal verification, we also propose
a new variant that allows to reuse existing results in parallel when comparing
the properties on different timed bounds.

Finally, one of the most interesting contribution of our work takes the form
of a series of new case studies that are analyzed with a new stochastic extension
of Uppaal [13]. Particularly, we show how our approach can be used to resolve
scheduling problems. Such problems are defined using Duration Probabilistic
Automata (DPA) [24], a new and natural model for specifying list of tasks and
shared resources. We observe that our approach is not only more general, but
also an order of magnitude faster than the hypothesis testing engine recently
implemented in the Prism toolset. Our work thus presents significant advances
in both the modeling and the efficient verification of network of complex systems.

Related Work. Some works on probabilistic semantics of timed automata have
already been discussed above. Simulation-based approaches such as Monte Carlo
have been in use since decades, however the use of simulation and hypothesis
testing to reason on formal models is a more recent advance. First attempts to
apply hypothesis testing on stochastic extension of Hennessy-Milner logic can
be found in [23]. In [35, 37], Younes was the first to apply hypothesis testing to
stochastic systems whose properties are specified with (bounded) temporal logic.
His approach is implemented in the Ymer toolset [36] and can be applied on time-
homogeneous generalized semi-Markov processes, while our semantics addresses
the composition of stochastic systems allowing to compose a global system from
components and reason about communication between independent processes.
In addition to Younes work we explore continuous-time features, formalize and
implement Wald’s ideas where the probability comparison can be evaluated on
NPTA processes. In a recent work [38], Zuliani et al. extended the SMC approach
to hybrid systems. Their work is a combination of [20] and [12] based on Simulink
models (non-linear hybrid systems), whereas our method is specialised to net-
works of priced timed automata where model-checking techniques can be directly
applicable using the same tool suite. In addition we provide means of comparing
performances without considering individual probabilities. Finally, a very recent
work [9] proposes partial order reduction techniques to resolve non-determinism
between components rather than defining a unique stochastic distribution on
their product behaviors. While this work is of clear interest, we point out that
the application of partial order may considerably increase the computation time
and for some models partial orders cannot resolve non-determinism, especially
when considering continuous time [25]. Finally, we mention [22] that proposes
a stochastic semantics to Uppaal’s models through simulation. This work does
not consider race between components and offers no tool implementation.
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2 Network of Priced Timed Automata

We consider the notion of Networks of Priced Timed Automata (NPTA), gener-
alizing that of regular timed automata (TA) in that clocks may have different
rates in different locations. In fact, the expressive power (up to timed bisimilar-
ity) of NPTA equals that of general linear hybrid automata (LHA) [1], rendering
most problems – including that of reachability – undecidable.

Let X be a finite set of variables, called clocks3. A clock valuation over X is
a mapping ν : X → IR≥0, where IR≥0 is the set of nonnegative reals. We write
IRX

≥0 for the set of clock valuations over X . Let r : X → IN be a rate vector,
assigning to each clock of X a rate. Then, for ν ∈ IRX

≥0 and d ∈ IR≥0 a delay, we
write ν + r · d for the clock valuation defined by (ν + r · d)(x) = ν(x) + r(x) · d
for any clock x ∈ X . We denote by INX the set of all rate vectors. If Y ⊆ X , the
valuation ν[Y ] is the valuation assigning 0 when x ∈ Y and ν(x) when x �∈ Y . An
upper bounded (lower bound) guard over X is a finite conjunction of simple clock
bounds of the form x ∼ n where x ∈ X , n ∈ IN, and ∼∈ {<,≤} (∼∈ {>,≥}) We
denote by U(X) (L(X) the set of upper (lower) bound guards over X , and write
ν |= g whenever ν is a clock valuation satisfying the guard g. Let Σ = Σi � Σo

be a disjoint sets of input and output actions.

Definition 1. A Priced Timed Automaton (PTA) is a tuple A = (L, !0, X,Σ,
E,R, I) where: (i) L is a finite set of locations, (ii) !0 ∈ L is the initial location,
(iii) X is a finite set of clocks, (iv) Σ = Σi � Σo is a finite set of actions
partitioned into inputs (Σi) and outputs (Σo), (v) E ⊆ L×L(X)×Σ × 2X ×L
is a finite set of edges, (vi) R : L→ INX assigns a rate vector to each location,
and (viii) I : L→ U(X) assigns an invariant to each location.

The semantics of NPTAs is a timed labelled transition system whose states are
pairs (!, ν) ∈ L × IRX

≥0 with ν |= I(!), and whose transitions are either delay

(!, ν) d−→ (!, ν′) with d ∈ IR≥0 and ν′ = ν+R(!) ·d, or discrete (!, ν) a−→ (!′, ν′)
if there is an edge (!, g, a, Y, !′) such that ν |= g and ν′ = ν[Y ]. We write
(!, ν) � (!′, ν′) if there is a finite sequence of delay and discrete transitions from
(!, ν) to (!′, ν′).

Networks of Priced Timed Automata. Following the compositional spec-
ification theory for timed systems in [14], we shall assume that NPTAs are:
(1)[Input-enabled:] for all states (!, ν) and input actions ι ∈ Σi, for all TAs j,
there is an edge (!j , g, ι, Y, !j ′) such that ν |= g, (2) [Deterministic:] for all states
(!, ν) and actions a ∈ Σ, whenever (!, ν) a−→ (!′, ν′) and (!, ν) a−→ (!′′, ν′′)
then !′ = !′′ and ν′ = ν′′, and (3) [Non-zenos:] time always diverge. Moreover,
different automata synchronize on matching inputs and outputs as a standard
broadcast synchronization[17].

Whenever Aj = (Lj , Xj, Σj , Ej, Rj , Ij) (j = 1 . . . n) are NPTA, they are
composable into a closed network iff their clock sets are disjoint (Xj ∩Xk = ∅
3 We will (mis)use the term “clock” from timed automata, though in the setting of

NPTAs the variables in X are really general real-valued variables.
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when j �= k), they have the same action set (Σ = Σj = Σk for all j, k), and
their output action-sets provide a partition of Σ (Σj

o ∩ Σk
o = ∅ for j �= k, and

Σ = ∪jΣ
j
o). For a ∈ Σ we denote by c(a) the unique j with a ∈ Σj .

Definition 2. Let Aj = (Lj , Xj, Σ,Ej , Rj, Ij) (with j = 1 . . . n) be composable
NPTAs. Their composition (A1 | . . . | An) is the NPTA A = (L,X,Σ,E,R, L)
where (i) L = ×jL

j, (ii) X = ∪jX
j, (iii) R(�)(x) = Rj(!j)(x) when x ∈ Xj, (iv)

I(�) = ∩jI(!j), and (v) (�,∩jgj, a,∪jrj , �
′) ∈ E whenever (!j , gj , a, rj , !

′
j) ∈ Ej

for j = 1 . . . n.

A1

A0
x<=1

a!

B1

B0
y<=2

b!

B1

B0

b!

1:2 y<=2

ENDx<=1

x<=1 && 
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b!
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T1

T3

T0

C’==2

C’==4
a?

b?

A B Br AB T

Fig. 1. Three composable NPTAs:
A,B and T ; A,Br and T ; and
AB and T

Example 1. Let A, B, T and AB be the
priced timed automata depicted in Fig. 14

Then A,B and T are composable as well
as AB and T . In fact the composite sys-
tems (A|B|T ) and (AB|T ) are timed (and
priced) bisimilar, both having the transition
sequence:(
(A0, Bo, T0), [x = 0, y = 0, C = 0]

) 1−→ a!−→(
(A1, B0, T1), [x = 1, y = 1, C = 4]

) 1−→ b!−→(
(A1, B1, T2), [x = 2, y = 2, C = 6]

)
,

demonstrating that the final location T3 of T is reachable with cost 6.

3 Probabilistic Semantics of NPTA

Continuing Example 1 we may realise that location T3 of the component T is
reachable within cost 0 to 6 and within total time 0 and 2 in both (A|B|T )
and (AB|T ) depending on when (and in which order) A and B (AB) chooses to
perform the output actions a! and b!. Assuming that the choice of these time-
delays is governed by probability distributions, we will in this section define a
probability measure over sets of infinite runs of networks of NPTAs.

In contrast to the probabilistic semantics of timed automata in [4, 8] our
semantics deals with networks and thus with races between components. Let
Aj = (Lj , Xj, Σ,Ej, Rj , Ij) (j = 1 . . . n) be a collection of composable NPTAs.
Under the assumption of input-enabledness, disjointness of clock sets and output
actions, states of the the composite NPTA A = (A1 | . . . | An) may be seen as
tuples s = (s1, . . . , sn) where sj is a state of Aj , i.e. of the form (!, ν) where
! ∈ Lj and ν ∈ IRXj

≥0 . Our probabilistic semantics is based on the principle of
independency between components. Repeatedly each component decides on its
own – based on a given delay density function and output probability function
– how much to delay before outputting and what output to broadcast at that
moment. Obviously, in such a race between components the outcome will be
determined by the component that has chosen to output after the minimum de-
lay: the output is broadcast and all other components may consequently change
state.
4 The broadcast synchronization we use allows us to ignore missing input transitions

that may otherwise be added as looping transitions.
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Probabilistic Semantics of NPTA Components. Let us first consider a
component Aj and let Stj denote the corresponding set of states. For each state
s = (!, ν) of Aj we shall provide probability distributions for both delays and
outputs. In this presentation, we restrict to uniform and universal distributions,
but arbitrary distributions can be considered.

The delay density function μs over delays in IR≥0 will be either a uniform
or an exponential distribution depending on the invariant of !. Denote by E�

the disjunction of guards g such that (!, g, o,−,−) ∈ Ej for some output o.
Denote by d(!, ν) the infimum delay before enabling an output, i.e. d(!, ν) =
inf{d ∈ IR≥0 : ν + Rj · d |= E�}, and denote by D(!, ν) the supremum delay,
i.e. D(!, ν) = sup{d ∈ IR≥0 : ν + Rj · d |= Ij(!)}. If D(!, ν) <∞ then the delay
density function μs is a uniform distribution on [d(!, ν), D(!, ν)]. Otherwise –
that is Ij(!) does not put an upper bound on the possible delays out of s – the
delay density function μs is an exponential distribution with a rate P (!), where
P : Lj → IR≥0 is an additional distribution rate component added to the NPTA
Aj . For every state s = (!, ν), the output probability function γs over Σj

o is the
uniform distribution over the set {o : (!, g, o,−,−) ∈ Ej ∧ν |= g} whenever this
set is non-empty5. We denote by so the state after the output of o. Similarly,
for every state s and any input action ι, we denote by sι the state after having
received the input ι.

Probabilistic Semantics of Networks of NPTA. We shall now see that
while the stochastic semantics of each PTA is rather simple (but quite realistic),
arbitrarily complex stochastic behavior can be obtained by their composition.

Reconsider the closed network A = (A1 | . . . | An) with a state space St =
St1 × · · · × Stn. For s = (s1, . . . , sn) ∈ St and a1a2 . . . ak ∈ Σ∗ we denote by
π(s, a1a2 . . . ak) the set of all maximal runs from s with a prefix t1a1t2a2 . . . tkak

for some t1, . . . , tn ∈ IR≥0, that is runs where the i’th action ai has been out-
putted by the component Ac(ai). We now inductively define the following measure
for such sets of runs:

PA
(
π(s, a1 . . . an)

)
=

∫
t≥0

μsc (t)·(∏
j �=c

∫
τ>t

μsj (τ )dτ
)·γsc

t(a1)·PA
(
π(st)a1 , a2 . . . an)

)
dt

where c = c(a1), and as base case we take PA(π(s), ε) = 1.
This definition requires a few words of explanation: at the outermost level

we integrate over all possible initial delays t. For a given delay t, the outputting
component c = c(a1) will choose to make the broadcast at time t with the stated
density. Independently, the other components will choose to a delay amount,
which – in order for c to be the winner – must be larger than t; hence the
product of the probabilities that they each make such a choice. Having decided
for making the broadcast at time t, the probability of actually outputting a1

is included. Finally, in the global state resulting from all components having
delayed t time-units and changed state according to the broadcasted action a1

the probability of runs according to the remaining actions a2 . . . an is taken into
account.
5 Otherwise a specific weight distribution can be specified and used instead.
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Fig. 2. Cumulative probabilities for time and cost-bounded reachability of T3

Logical Properties. Following [26], the measure PA may be extended in a
standard and unique way to the σ-algebra generated by the sets of runs (so-
called cylinders) π(s, a1a2 . . . an). As we shall see this will allow us to give proper
semantics to a range of probabilistic time- and cost-constrained temporal prop-
erties. Let A be a NPTA. Then we consider the following non-nested PWCTL
properties:

ψ ::= P
(
�C≤cϕ

)
∼ p | P

(
�C≤cϕ

)
∼ p

where C is an observer clock (of A), ϕ a state-property (wrt. A) , ∼∈ {<,≤,=
,≥, >}, and p ∈ [0, 1]. This logic is a stochastic extension of the classical WCTL
logic for non-stochastic systems, where the existential quantifier is replaced by a
probability operator. For the semantics let A∗ be the modification of A, where
the guard C ≤ c has been conjoined to the invariant of all locations and an edge
(!, ϕ, oϕ, ∅, !) has been added to all locations !, where oϕ is a new output action.
Then:

A |= P
(
�C≤cϕ

)
∼ p iff PA∗

( ⋃
σ∈Σ∗

π(s0, σoϕ)
)
∼ p

which is well-defined since the σ-algebra on which PA∗ is defined is closed under
countable unions and finite intersections. To complete the semantics, we note
that P(�C≤cϕ) ∼ p is equivalent to (1− p) ∼ P(�C≤c¬ϕ).6

Compared with previous stochastic semantics of timed automata (see e.g.,
[4, 8]), we emphasize the novelty of the semantics of NPTA in terms of RACES
between components, truthfully reflecting their independencies. In particular our
stochastic semantics of a network (A1|..|An) is significantly different from that
obtained by applying the stochastic semantics of [4, 8] to a product construction
A1A2 . . . An, as information about independencies are lost. So though (A1|..|An)
and A1A2 . . . An are timed bisimilar they are in general not probabistic timed
bisimilar, and hence distinguishable by PWCTL. The situation is illustrated with
the following example.

Example 2. Reconsider the Example of Fig. 1. Then it can be shown that
(A|B|T ) |= P

(
�t≤2T3

)
= 0.75 and (A|B|T ) |= P

(
�C≤6T3

)
= 0.75, whereas

6 We also note that the above (stochastic) interpretation of PWCTL is a conservative
extension of the classical (non-stochastic) interpretation of WCTL, in the sense that
A |= P

(
�C≤cϕ

)
> 0 implies An |= E�C≤cϕ, where An refers to the standard non-

stochastic semantics of A.



Statistical Model Checking for Networks of Priced Timed Automata 87

(AB|T ) |= P
(
�t≤2T3

)
= 0.50 and (AB|T ) |= P

(
�C≤6T3

)
= 0.50. Fig. 2 gives a

time- and cost-bounded reachability probabilities for (A|B|T ) and (AB|T ) for a
range of bounds. Thus, though the two NPTAs satisfy the same WCTL proper-
ties, they are obviously quite different with respect to PWCTL. The NPTA Br

of Fig. 1 is a variant of B, with the uniform delay distribution enforced by the
invariant y ≤ 2 being replaced by an exponential distribution with rate 1

2 . Here
(A|Br|T ) satisfies P

(
�t≤2T3

)
≈ 0.41 and P

(
�C≤6T3

)
≈ 0.49.

4 Statistical Model Checking for NPTA

As we pointed out, most of model checking problems for NPTAs and PWCTL
(including reachability) are undecidable. Our solution is to use a technique that
approximates the answer. We rely on Statistical Model Checking (SMC)[28, 35],
that is a series of simulation-based techniques that generate runs of the systems,
monitor them, and then use algorithms from statistics to get an estimate of the
entire system. At the heart of any SMC approach, there is an algorithm used to
generate runs of the system following a stochastic semantics. We propose such
an algorithm for NPTAs corresponding to the stochastic semantics proposed in
Section 3. Then, we recap existing statistic algorithms, providing the basis for a
first SMC algorithm for NPTAs.

Generating Runs of NPTA. SMC is used for properties that can be moni-
tored on finite runs. Here, we propose an algorithm that given an NPTA gen-
erates a random run up to a cost bound c (with time bounds being a simple
case) of an observer clock C. A run of a NPTA is a sequence of alternations of
states s0

d0−→ s′
0

o0−→ s1
d1−→ . . . sn obtained by performing delays di and emitting

outputs oi. Here we consider a network of NPTAs with states being of the form
(�, ν). We construct random runs according to Algorithm 1. We start from an
initial state (�0, ν0) and repeatedly concatenate random successor states until
we reach the bound c for the given observer clock C. Recall that ν(C) is the
value of C in state (�, ν), and the rate of C in location � is R(C)(�). We use
the notation ⊕ to concatenate runs and tail(run) to access the last state of a
run and delay(μs) returns a random delay according to the delay density func-
tion μs as described in Section 3. The statement “pick” means choose uniformly
among the possible choices. Lines 5-6 stop the delay when the runs reach their
time bounds with the values of the clocks depending on their rates. The Algo-
rithm 1 may be seen to be correct with respect to the stochastic semantics of
NPTAs given in Section 3 in the sense that the probability of the (random) run
RRA

(
(�0, ν0), C, c

)
satisfying �C≤cϕ is PA

(
�C≤c ϕ

)
.

Statistical Model Checking Algorithms. We briefly recap statistical algo-
rithms permitting to answer the following two types of questions : (1) Qualitative
: Is the probability for a given NPTA A to satisfy a property �C≤cϕ greater or
equal to a certain threshold θ ? and (2) Quantitative : What is the probability
for A to satisfy �C≤cϕ. Each run of the system is encoded as a Bernoulli random
variable that is true if the run satisfies the property and false otherwise.
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Algorithm 1. Random run for a NPTA-network A
function RRA((�0, ν0), C, c)

1 run := (�, ν) := tail(run) := (�0, ν0)
2 while ν(C) < c do

3 for i = 1 to |�| do di := delay(μ(�i,νi))
4 d := min1≤i≤|�|(di)
5 if d = +∞∨ ν(C) + d ∗R(�)(C) ≥ c then

6 d := (ν(C)− c)/R(�)(C)

7 return run⊕
d
−→ (�, ν + d ∗R(�))

end

8 else

9 pick k such that dk = d; νd := ν + d ∗R(�)

10 pick �k
g,o,r
−−−→ �′k with g(νd)

11 run := run⊕
d
−→ (�, νd)

g,o,r
−−−→ (�[l′k/lk], [r �→ 0](νd))

end

12 (�, ν) := tail(run)

end

return run

Qualitative Question. This problem reduces to test the hypothesis H : p =
PA(�C≤cϕ) ≥ θ against K : p < θ. To bound the probability of making errors,
we use strength parameters α and β and we test the hypothesis H0 : p ≥ p0 and
H1 : p ≤ p1 with p0 = θ + δ0 and p1 = θ − δ1. The interval p0 − p1 defines an
indifference region, and p0 and p1 are used as thresholds in the algorithm. The
parameter α is the probability of accepting H0 when H1 holds (false positives)
and the parameter β is the probability of accepting H1 when H0 holds (false
negatives). The above test can be solved by using Wald’s sequential hypothesis
testing [34]. This testcomputes a proportion r among those runs that satisfy the
property. With probability 1, the value of the proportion will eventually cross
log(β/(1− α) or log((1− β)/α) and one of the two hypothesis will be selected.

Quantitative Question. This algorithm [19] computes the number N of runs
needed in order to produce an approximation interval [p− ε, p+ ε] for p = Pr(ψ)
with a confidence 1 − α. The values of ε and α are chosen by the user and N
relies on the Chernoff-Hoeffding bound.

5 Beyond “Classical” Statistical Model-Checking

Here, we want to compare p1 = PA(�C1≤c1ϕ1) and p2 = PA(�C2≤c2ϕ2) without
computing them. This comparison has clear practical applications e.g. it can be
used to compare the performances of an original program with one of its newly
designed extensions. This comparison cannot be performed with the algorithm
presented in the previous section. Moreover, using Monte Carlo to estimate the
probabilities (which is costly) would not help as both such probabilities would
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be estimated with different confidences that could hardly be related7. In [34],
Wald has shown that this problem can be reduced to a sequential hypothesis
testing one. Our contributions here are (1) to apply this algorithm in the formal
verification area, (2) to extend the original algorithm of [34] to handle cases
where we observe the same outcomes for both experiments, and (3) to implement
a parametric extension of the algorithm that allows to reuse results on several
timed bounds. More precisely, instead of comparing two probabilities with one
common cost bound C ≤ c, the new extension does it for all the N bounds
i ∗ c/N with i = 1 . . .N by reusing existing runs.

Comparison Algorithm. Let the efficiency of satisfying �C1≤c1ϕ1 over runs
be given by k1 = p1/(1− p1) and similarly for �C2≤c2ϕ2. The relative superior-
ity of “ϕ2 over ϕ1” is measured by the ratio u = k2

k1
= p2(1−p1)

p1(1−p2) . If u = 1 both
properties are equally good, if u > 1, ϕ2 is better, otherwise ϕ1 is better. Due to
indifference region, we have two parameters u0 and u1 such that u0 < u1 to make
the decision. If u ≤ u0 we favor ϕ1 and if u ≥ u1 we favor ϕ2. The parameter α
is the probability of rejecting ϕ1 when u ≤ u0 and the parameter β is the proba-
bility of rejecting ϕ2 when u ≥ u1. An outcome for the comparison algorithm is
a pair (x1, x2) = (r1 |= �C1≤c1ϕ1, r2 |= �C2≤c2ϕ2) for two independent runs r1
and r2. In Wald’s version (lines 10–14 of Algorithm 2), the outcomes (0, 0) and
(1, 1) are ignored. The algorithm works if it is guaranteed to eventually generate
different outcomes. We extend the algorithm with a qualitative test (lines 5–9
of Algorithm 2) to handle the case when the outcomes are always the same.
The hypothesis we test is PA((r1 |= �C1≤c1ϕ1) = (r2 |= �C2≤c2ϕ2)) ≥ θ for
two independent runs r1 and r2. We note that this does not affect the correct-
ness of the original algorithm for accepting or rejecting process 2. The modified
algorithm now returns indifferent in addition, which corresponds to our added
hypothesis to cut down the number of necessary runs8. Typically we want the
parameters p′0 = θ + δ0 (for the corresponding hypothesis H0) and p′1 = θ − δ1
(for H1) to be close to 1. Our version of the comparison algorithm is shown in
algorithm 2 with the following initializations:

a =
log( β

1−α )

log(u1)−log(u0) , r = log( 1−β
α )

log(u1)−log(uo) , c =
log(

1+u1
1+u0

)

log(u1)−log(uo)

Parametrised Comparisons. We now generalise the comparison algorithm
to give answers not only for one cost bound c but N cost bounds i ∗ c/N (with
i = 1 . . .N). This algorithm is of particular interest to generate distribution
over timed bounds value of the property. The idea is to reuse the runs of smaller
bounds. When �C≤cϕ1 or �C≤cϕ2 holds on some run we keep track of the
corresponding point in cost (otherwise the cost value is irrelevant). Every pair or
runs gives a pair of outcomes (x1, x2) at cost points (c1, c2). For every i = 1 . . .N

7 Interleaving intervals for the estimate (even with same confidence) may give non-
deterministic results, not to mention that computing estimates is more expensive
than hypothesis testing in terms of runs.

8 This also frees us from the assumption that the processes have some different outputs.



90 A. David et al.

Algorithm 2. Comparison of probabilities

function comprise(S:model , ψ1, ψ2: properties)
1 check := 1, q := 0, t := 0
2 while true do

3 Observe the random variable x1 corresponding to ψ1 for a run.
4 Observe the random variable x2 corresponding to ψ2 for a run.
5 if check = 1 then

6 x := (x1 == x2)
7 q := q + x ∗ log(p′1/p

′
0) + (1− x) ∗ log((1− p′1)/(1− p′0))

8 if q ≤ log(β/(1− α)) then return indifferent
9 if r ≥ log((1− β)/α) then check := 0

end

10 if x1 
= x2 then

11 a := a+ c, r := r + c
12 if x1 = 0 and x2 = 1 then t := t+ 1
13 if t ≤ a then accept process 2.
14 if t ≥ r then reject process 2.

end

end

we define the new pair of outcomes (yi1 , yi2) =
(
x1 ∧ (i · c/N ≥ t1 · rateC), x2 ∧

(i · c/N ≥ t2 · rateC)
)

for which we use our comparison algorithm. We terminate
the algorithm when a result for every ith bound is known.

6 Case Studies

We have extended Uppaal with the algorithms described in this paper. The
implementation provides access to all the powerful features of the tool, including
user defined functions and types, and use of expressions in guards, invariants,
clock-rates as well as delay-rates. Also the implementation supports branching
edges with discrete probabilities (using weights), thus supporting probabilistic
timed automata (a feature for which our stochastic semantics of NPTA may
be easily extended). Besides these additional features, the case-studies reported
below (as well as the plots in the previous part of the paper) illustrate the nice
features of the new plot composing GUI of the tool9. Our objective here is not to
study the evolutions of performances with the increase of condidence level, but
rather to give a sample of case studies on which our approach can be applied.

Train-Gate Example. We consider the train-gate example [5], where N trains
want to cross a one-track bridge. We extend the original model by specifying an
arrival rate for Train i ((i+1)/N). Trains are then approaching, but they can be
stopped before some time threshold. When a train is stopped, it can start again.
Eventually trains cross the bridge and go back to their safe state. The template
of these trains is given in Fig. 3(a). Our model captures the natural behavior

9 http://www.cs.aau.dk/˜adavid/smc/ for details.
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of arrivals with some exponential rate and random delays chosen with uniform
distributions in states labelled with invariants. The tool is used to estimate
the probability that Train 0 and Train 5 will cross the bridge in less than 100
units of time. Given a confidence level of 0.05 the confidence intervals returned
are [0.541, 0.641] and [0.944, 1]. The tool computes for each time bound T the
frequency count of runs of length T for which the property holds. Figure 3(b)
shows a superposition of both distributions obtained directly with our tool that
provides a plot composer for this purpose.
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Fig. 3. Template of a train (a) and probability density distributions for
�T≤tTrain(0).Cross and �T≤tTrain(5).Cross

The distribution for Train 5 is the one with higher probability at the begin-
ning, which confirms that this train is indeed the faster one. An interesting point
is to note the valleys in the probability densities that correspond to other trains
conflicting for crossing the bridge. They are particularly visible for Train 0. The
number of valleys corresponds to the number of trains. This is clearly not a
trivial distribution (not even uni-modal) that we could not have guessed manu-
ally even from such a simple model. In addition, we use the qualitative check to
cheaply refine the bounds to [0.541, 0.59] and [0.97, 1].

We then compare the probability for Train 0 to cross when all other trains
are stopped with the same probability for Train 5. In the first plot (Fig. 4 top),
we check the same property with 100 different time bounds from 10 to 1000 in
steps of 10 and we plot the number of runs for each check. These experiments
only check for the specified bound, they are not parametrised. In the second
plot, we use the parametric extension presented in Section 5 with a granularity
of 10 time units. We configured the thresholds u0 and u1 to differentiate the
comparisons at u0 = 1 − ε and u1 = 1 + ε with ε = 0.1, 0.05, 0.01 as shown on
the figure. In addition, we use a larger time bound to visualise the behaviors
after time 600 that are interesting for our checker. In the first plot of Fig. 4,
we show for each time bound the average of runs needed by the comparison
algorithm repeated 30 times for different values of ε. In the bottom plot, we
first superpose the cumulative probability for both trains (curves Train 0 and
Train 5) that we obtain by applying the quantitative algorithm of Section 4
for each time bound in the sampling. Interestingly, before that point, train 5 is
better and later train 0 is better. Second, we compare these probabilities by using
the comparison algorithm (curves 0.1 0.05 0.01). This algorithm can retrieve 3
values: 0 if Train 0 wins, 1 if Train 5 wins and 0.5 otherwise. We report for each
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Fig. 4. Comparing trains 0 and 5

time bound and each value of ε the average of these values for 30 executions of
the algorithm.

In addition, to evaluate the efficiency of computing all results at once to
obtain these curves, we measure the accumulated time to check all the 100
properties for the first plot (sequential check), which takes 92s, 182s, 924s for
ε = 0.1, 0.05, 0.01, and the time to obtain all the results at once (parallel check),
which takes 5s, 12s, 92s. The experiments are done on a Pentium D at 2.4GHz
and consume very little memory. The parallel check is about 10 times faster10. In
fact it is limited by the highest number of runs required as shown by the second
peak in Fig. 4. The expensive part is to generate the runs so reusing them is
important. Note that at the beginning and at the end, our algorithm aborts the
comparison of the curves, which is visible as the number of runs is sharply cut.

Lightweight Media Access Control Protocol (LMAC). This protocol is
used in sensor networks to schedule communication between nodes. It is tar-
geted for distributed self-configuration, collision avoidance and energy efficiency.
In this study we reproduce the improved Uppaal model from [15] without veri-
fication optimisations, parametrise with network topology (ring and chain), add
probabilistic weights (exponential and uniform) over discrete delay decisions and
examine statistical properties which were not possible to check before. Based
on [33], our node model consumes 21, 22, 2 and 1 power units when a node is
sending, receiving, listening for messages or being idle respectively.

Fig. 5a shows that collisions may happen in all cases and the probability
of collision is higher with exponential decision weights than uniform decision
weights, but seems independent of topology (ring or chain). The probability of
collision stays stable after 50 time units, despite longer simulations, meaning
10 The implementation checks simulations sequentially using a single thread.
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Fig. 5. Collision probabilities when using exponential and uniform weights in chain
and ring topologies, a) cumulative probability of collision over time and b) probability
of having various numbers of collisions

that the network may stay collision free if the first collisions are avoided. We
also applied the method for parametrised probability comparison for the collision
probability. The results show that up to 14 time units the probabilities are
the same and later exponential weights have higher collision probability than
uniform, but the results were inconclusive when comparing different topologies.

The probable collision counts in the chain topology are shown in Fig. 5b,
where the case with 0 collisions has a probability of 87.06% and 89.21% when
using exponential and uniform weights respectively. The maximum number of
probable collisions is 7 for both weight distributions despite very long runs,
meaning that the network eventually recovers from collisions.
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Fig. 6 shows energy consumption prob-
ability density: using uniform and expo-
nential weights in a chain and a ring
topologies. The probability Pr[energy
<= 50000](<> time>=1000) as estimated.
Ring topology uses more power (possibly
due to collisions), and uniform weights
use slightly less energy than exponential
weights in these particular topologies.

Duration Probabilistic Automata (DPA) [21]. Those automata are used
for modelling job-shop problems. A DPA consists of several Simple DPAs (SDPA).
An SDPA is a processing unit, a clock and a list of tasks to process sequentially.
Each task has an associated duration interval, from which its duration is chosen
(uniformly). Resources are used to model task races – we allow different resource
types and different quantities of each type. A fixed priority scheduler is used to

start [2,5] [1,2] End

wt21start [1,6] [2,3] End

[r1 = 4] [r2 = 2]

[r1 = 1, r2 = 2] [r1 = 2, r2 = 1]

Fig. 7. Rectangles are busy states and circles are for waiting when resources are not
available. There are r1 = 5 and r2 = 3 resources available.
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resolve conflicts. An example is shown in Fig. 7. DPA can be encoded in our tool
(continuous or discrete time semantics) or in Prism (discrete semantics), see the
technical report [27]. In Prism, integer and boolean variables are used to encode
the current tasks and resources. Prism only supports the discrete time model.
In Uppaal, a chain of waiting and task locations is created for each SDPA.
Guards and invariants encode the duration of the task, and an array of integers
contain the available resources. The scheduler is encoded as a separate template.

Table 1. Performance of SMC (sec)

Param. Estim. Hyp. Testing
n k m Prism Upp Upd Upc Prism Upp Upd Upc

4 4 3 2.7 0.3 0.2 0.2 2.0 0.1 0.1 0.1
6 6 3 7.7 0.6 0.5 0.4 3.9 0.2 0.2 0.3
8 8 3 26.5 1.2 0.9 0.7 16.4 0.5 0.4 0.3

20 40 20 >300 >300 35.5 26.2 20.7
30 40 20 >300 >300 61.2 41.8 33.2
40 40 20 >300 >300 92.2 56.9 59.5
40 20 20 >300 >300 41.1 31.2 26.5
40 30 20 >300 >300 68.8 46.7 46.1

40 55 40 >300 >300 219.5

For Uppaal, we have mod-
elled a discrete version as
close as possible to the Prism
model (Upp), an improved dis-
crete version that “jumps”
to interesting points in time
(Upd), and a continuous time
version that making full use of
our formalism (Upc).

The performance of the
translations is shown in Tab. 1,
based on DPAs with n SDPAs,
k tasks per SDPA and m re-
source types. The resource us-
age and duration interval are
randomised. In the hypothesis testing column, Uppaal uses the sequential hy-
pothesis testing introduced in Section 4, whereas Prism uses its own new imple-
mentation of the hypothesis testing algorithm. In the estimation column, both
Uppaal and Prism use the quantitative check of Section 4, but Uppaal is faster
thanks to its more suitable formalism. For both tools, the error bounds used are
α = β = 0.05. In the hypothesis test, the indifference region size is 0.01, while we
have ε = 0.05 for the quantitative approach. The query for the approximation
test is: “What is the probability of all SDPAs ending within t time units?”, and
for hypothesis testing it is: “Do all SDPAs end within t time units with probabil-
ity greater than 40%?”. The value of t varies for each model as it was computed
by simulating the system 369 times and represent the value for which at least
60% of the runs reached the final state. Each number in the table is the average
of 10 SMC analyses on the given model. The results show that Uppaal is an
order of magnitude faster than Prism even with the discrete encoding, which
puts Uppaal at a disadvantage given that it is designed for continuous time11.

Acknowledgments. We thank Holger Hermans who helped us to clarify the
relation between WCTL and the conservative stochastic extension considered in
this paper. We are also thankful to David Parker for fruitful discussions on SMC
and PRISM.

11 We note that the number of steps generated for the runs of the PRISM model and
the discrete Uppaal model uppp are comparable.
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18. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004)
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Robust Model-Checking of Timed Automata via

Pumping in Channel Machines

Patricia Bouyer, Nicolas Markey, and Ocan Sankur

LSV, CNRS & ENS Cachan, France

Abstract. Timed automata are governed by a mathematical semantics
which assumes perfectly continuous and precise clocks. This requirement
is not satisfied by digital hardware on which the models are implemented.
In fact, it was shown that the presence of imprecisions, however small
they may be, may yield extra behaviours. Therefore correctness proven
on the formal model does not imply correctness of the real system.

The problem of robust model-checking was then defined to circumvent
this inconsistency. It consists in computing a bound on the imprecision
under which the system will be correct.

In this work, we show that robust model-checking against ω-regular
properties for timed automata can be reduced to standard model-checking
of timed automata, by computing an adequate bound on the imprecision.
This yields a new algorithm for robust model-checking of ω-regular prop-
erties, which is both optimal and valid for general timed automata.

1 Introduction

Timed automata [1] are a well-established model in real-time system design.
These are finite automata augmented with clocks, which are used to measure
the time elapsed between events, and to constrain the runs of the automaton.
Timed automata provide a powerful way of modelling and verifying real-time
systems. However, timed automata make idealistic assumptions on the system,
such as the perfect continuity of clocks and instantaneous reaction time, which
are known not to be preserved in implementation even in digital hardware with
arbitrarily small imprecisions. It was shown that even the smallest imprecisions
on the clocks yield a different semantics than the exact one [14,8] (see Fig. 2
for an example). This suggests that even if the exact semantics is proven cor-
rect, the implementation on a physical machine is not guaranteed to respect the
specification. In order to prove the correctness of implementations, a framework
was proposed in [9], where a detailed model of the implementation of timed au-
tomata is given, as programs executed on a simple micro-processor. A simpler
over-approximation, the so-called enlarged semantics was also studied, which
models the imprecisions by relaxing all clock constraints of the automaton of
the form x ∈ [a, b] to x ∈ [a − δ, b + δ] for some δ > 0. The problem of robust
model-checking, that is determining whether for some δ > 0, the enlarged se-
mantics satisfies a given property, was first solved for safety properties [14,8],
then for linear temporal logic (LTL) [4] (both in PSPACE, which is the complexity
of the problem in the exact semantics), and for a timed extension of LTL [5].

U. Fahrenberg and S. Tripakis (Eds.): FORMATS 2011, LNCS 6919, pp. 97–112, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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bool timeout := false;
clock x;
...
x := 0;
while ( x <= 1 ){

...
if ( signal() == A )

break;
}
if ( x >= 1 )

timeout := true;

Fig. 1. A program that waits for
a signal A and issues a time-out if
it is not received in one time unit.
A timed automaton model of this
program naturally contains a non-
progress cycle.

These robust model-checking algorithms
are all valid for a particular class of timed au-
tomata, namely, those in which all cycles are
progress cycles. Roughly, a progress cycle is a
cycle of the timed automaton which resets all
clocks that are below the maximal constant at
least once. We argue that this can be restric-
tive for modeling. In fact, a timed automaton
model of a system under this assumption can-
not measure the time spent in a cycle. As an
example, consider a simple system which waits
for a special signal, while ignoring any other
signal, and triggers a time-out action if the
expected signal is not received after one sec-
ond (Fig. 1). In order to ignore any number
of signals during this time, we need a cycle in
the automaton. But if all clocks are reset on
this cycle, then we cannot measure the time
spent in it in order to issue the time-out. One
could model such a system using progress cy-
cles by explicitly defining an upper bound m on the number of events that can be
treated by the system in one time unit, and unfolding the cycle for m iterations.
This would remove the cycle. However this requires the prior knowledge of m
which may not be obvious in the design phase, and moreover, this may increase
the size of the model and render model-checking infeasible.

Our contribution. We propose a new algorithm for robust model-checking timed
automata against ω-regular properties, with optimal complexity (PSPACE). Our
algorithm consists in reducing the problem to classical model-checking of timed
automata and is valid for general timed automata: we do not assume progress
cycles, nor any upper bound on the clocks (Assuming bounded clocks is not
restrictive in terms of expressivenes but has a negative effect on the size of
the models [2]). We prove that any timed automaton satisfies a given ω-regular
property under enlargement by some value δ > 0 if, and only if, it satisfies the
formula under enlargement by δ0, where δ0 only depends on the size of the timed
automaton. Then the algorithm simply consists in model-checking the automa-
ton enlarged by δ0, which can be done using well-known algorithms and tools
for timed automata. An algorithm was given in [4] for this problem but only for
timed automata with progress cycles and bounded clocks, and because it is based
on a modification of the region automaton construction, one cannot use directly
the existing model-checking tools. For safety properties, an algorithm similar to
ours can be derived from [8], but the complexity would be exponentially higher
due to the bound given for δ0. For automata without nested cycles, [12] gives an
algorithm to compute the greatest δ under which a safety property holds, but
does not provide a bound on δ.
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Although the worst-case complexity of our algorithm is not higher than clas-
sical model-checking, in practice, the timed automaton enlarged by δ0 can yield
a model with a state space that is much larger than that of the initial automa-
ton (see Section 3 for the precise value). However, we observed that this does
not always increase the time and space necessary for verification. In fact, we
used Uppaal [13] to test our algorithm on some benchmarks given with safety
specifications.1 We were able to show the non-robustness of the Fischer pro-
tocol upto three agents, and Uppaal returned almost immediately. With more
than three agents, the problem is not due to time or space resources but to the
fact that Uppaal only allows 32-bit integers as constants in timed automata;
when δ0 requires more precision, the model does not compile. However, Uppaal
found counter-examples in less than one minute, for the protocol upto thirty
agents, when enlarged by 10−8. We believe that extending Uppaal with arbi-
trary precision integers, one should be able to use our algorithm for larger mod-
els. We could assess the robustness of the CSMA/CD protocol described in [15],
the Bang & Olufsen Collision Detection Protocol [11], and the Token Ring Pro-
tocol upto thirty agents in less than one minute. Note that the correctness of a
model under an enlargement δ implies the correctness for all 0 ≤ δ′ < δ, so we
only verified the above robust models under enlargement that we chose arbitrar-
ily as δ = 10−6 (see [9]). All verification queries returned almost as fast as for
the non-enlarged models.

In order to establish our results, we develop proof techniques based on the
encoding of the states of timed automata with channel machines, introduced
in [3], and used in [5] in the context of robustness. In this encoding, a word
represents the content of a FIFO channel, which roughly contains all clock sym-
bols ordered by their fractional parts. Time delays are simulated by sequences
of read and writes on this channel, whereas action transitions also use a spe-
cial renaming operation. It turns out that the finitary representation by these
words capture well the behaviour of timed automata under enlargement. This
was used in [5] to design a robust model-checking algorithm for a timed exten-
sion of LTL. We further develop these techniques and prove a pumping lemma
for those channel machines, which preserves ω-regular properties. This enables
us to prove new properties on the runs of enlarged timed automata, to refine
some previously known results and obtain our algorithm. The proof follows the
ideas of [14,8] but the techniques are different, and moreover, our analysis is finer
since it yields an exponentially better bound for δ0, as we also noted above.

By lack of space, technical proofs are not included. They can be found in [6].

2 Preliminaries

2.1 Timed Automata

A labelled timed transition system (LTTS) is a tuple (S, s0, Σ,→), where S is
the set of states, s0 ∈ S the initial state, Σ a finite alphabet, and → ⊆ S × (Σ ∪
R≥0) × S the transitions.
1 See http://www.uppaal.org/benchmarks/

http://www.uppaal.org/benchmarks/
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Given a finite set of clocks C, we call valuations the elements of RC
≥0. For a

subset R ⊆ C, a real α ∈ R≥0 and a valuation v, we write v[R ← α] for the
valuation defined by v[R ← α](x) = v(x) for x ∈ C \R and v[R ← α](x) = α for
x ∈ R. Given d ∈ R≥0, the valuation v +d is defined by (v +d)(x) = v(x)+d for
all x ∈ C. We extend these operations to sets of valuations in the obvious way.
We write 0 for the valuation which assigns 0 to every clock.

Let Q∞ = Q ∪ {−∞,∞}. An atomic clock formula is a formula of the form
k ≤ x ≤ l where x ∈ C and k, l ∈ Q∞. A guard is a conjunction of atomic clock
formulas. We denote by ΦC the set of guards on the clock set C. We define the
enlargement of atomic clock constraints by δ ∈ Q as follows: for x, y ∈ C and
k, l ∈ Q>0, we let

〈k ≤ x ≤ l〉δ = k − δ ≤ x ≤ l + δ.

The enlargement of a guard g, denoted by 〈g〉δ, is obtained by enlarging all its
atomic clock constraints. A valuation v satisfies a guard g, denoted v |= g, if all
constraints are satisfied when each x ∈ C is replaced by v(x). We denote by �g�
the set of valuations that satisfy g.

Definition 1. A timed automaton A is a tuple (L, C, Σ, l0, E), consisting of
finite sets L of locations, C of clocks, Σ of labels, E ⊆ L×ΦC ×Σ × 2C ×L of
edges, and where l0 ∈ L is the initial location. An edge e = (l, g, σ, R, l′) is also

written as l
g,σ,R−−−→ l′. Guard g is called the guard of e.

A timed automaton is integral if all constants that appear in its guards are
integers. For any δ ∈ Q, Aδ denotes the timed automaton where all guards are
enlarged by δ. In the sequel, we only consider integral timed automata as input,
and only their enlarged counterparts might not be integral.

Definition 2. The semantics of a timed automaton A = (L, l0, C, Σ, E) is an
LTTS over alphabet Σ, denoted �A�, whose state space is L × RC

≥0. The initial
state is (l0,0). Delay transitions are defined as (l, v) τ−→ (l, v + τ) for any state
(l, v) and τ ≥ 0. Action transitions are defined as (l, v) σ−→ (l′, v′), for any edge

l
g,σ,R−−−→ l′ in A such that v |= g and v′ = v[R ← 0].

Consider any timed automaton A = (L, C, Σ, l0, E) and let �A� = (S, s0, Σ,→).
A run of �A� is a finite or infinite sequence ρ = (si, σi, τi)i≥0, where si = (li, vi) ∈
S, σi ∈ Σ, τi ∈ R≥0 and si

τi,σi−−−→ si+1 for all i ≥ 0. The word l0l1 . . . is the trace
of the run ρ, denoted trace(ρ). The i-th state si of a run ρ is denoted by (ρ)i.

We define the usual notion of regions [1]. Pick a timed automaton A with
clock set C, and let M be the largest constant that appears in its guards. For
any (l, u), (l′, v) ∈ L×RC

≥0, we let (l, u) � (l′, v) if, and only if, l = l′ and for all
x, y ∈ C, the following conditions are satisfied:

– either u(x)� = v(x)� or u(x), v(x) > M ;
– if u(x) ≤ M , frac(u(x)) = 0 iff frac(v(x)) = 0;
– if u(x), u(y) ≤ M , frac(u(x)) < frac(u(y)) iff frac(v(x)) < frac(v(y)),



Robust Model-Checking of Timed Automata via Pumping 101

where frac(·) denotes the fractional part. The equivalence class of a state (l, v)
for the relation � is denoted by reg((l, v)), and called a region of A. The region
automaton of A is a finite automaton R(A) defined as follows. The states of R(A)
are regions r of A. There is a transition from r to r′ labelled by σ ∈ Σ if there
is an edge (l, g, σ, R, l′) such that for some (l, u) ∈ r and d ≥ 0, u + d |= g,
and (l′, u[R ← 0]) ∈ r′. This automaton is known to be time-abstract bisimilar
to �A� [1]. The number W of regions is bounded by |L| · (2M + 2)|C| · |C|! · 2|C|.
A progress cycle in A is a cycle in R(A) along which each clock x ∈ C is either
reset or remains larger than M .

2.2 Robust Model-Checking of Timed Automata

It has been remarked long ago that the semantics of timed automata is not
realistic: while this was first exemplified by the so-called Zeno runs, the prob-
lem goes far beyond, and includes other convergence phenomena [7], or isolated
traces [10].

Among the possible approaches to circumvent this problem, robust model
checking was introduced in [14]: it consists in checking a given property on the
extended version of the timed automaton under study; here, extended includes
clock drifts (clocks may evolve at different rates between 1 − ε and 1 + ε) and
guard enlargement. Robust model checking consists in deciding the existence of
positive values for ε and/or δ for which the property holds in the extended timed
automaton. In this paper, we only focus on guard enlargement (i.e., we assume
ε = 0, so that clocks won’t drift); in that setting, robust model checking amounts
to deciding the existence of a positive δ for which Aδ satisfies a given property.

�1 �2 �3

x≤2, x:=0

y≥2, y:=0

x=0∧y≥2

x=1
y=0

Fig. 2. A (non-robust) timed automaton

Take the timed automaton depicted
on Fig. 2, and the property that the
rightmost location �3 is never reached.
While this property can be checked to
hold under the classical semantics, any
positive enlargement of the clock con-
straints will make location �3 reachable
(see [8]); this timed automaton does not
robustly fulfill the safety property.

Robust model checking has been revisited recently in the setting of imple-
mentability [9]. Implementability also involves a new semantics for timed au-
tomata, the so-called program semantics, which simulates the execution of timed
automata on a simplified hardware (with digital clock and finite-frequency CPU).
This semantics can be over-approximated by the enlarged semantics, so that ro-
bust model checking provides an approximate technique to check implementabil-
ity of timed automata [8].

Robust model checking was proved decidable for safety properties in [14], for
timed automata in which all cycles are progress cycles. This was then extended
to ω-regular properties [4], and then to timed properties [5].
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3 Results

The following theorem is our main result.

Theorem 3. Let A be a timed automaton and W be the number of regions
of A. Consider any 0 < δ0 <

(
8|C|2 · (W + 1)

)−1 if A has only progress cycles,
and 0 < δ0 <

(
5(W + 1) · |C|3 · (2 · |L| · |C|! · 4|C| + 4)2

)−1 otherwise. For any
ω-regular property2 φ, if Aδ |= φ for some positive δ, then Aδ0 |= φ.

Thus, one can decide robust satisfaction of any ω-regular property by checking
whether the property holds for some fixed δ0, which only depends on the size of
the automaton. Now, using the usual model-checking algorithms, one can analyze
Aδ0 in polynomial space. In fact, the greatest constant in A is now multiplied by
1
δ0

and the regions of Aδ0 can still be encoded in polynomial space. The problem
is PSPACE-hard since it is already for timed automata with progress cycles [5].

Corollary 4. Robust model-checking of general timed automata against ω-regular
properties is PSPACE-complete.

The proof of Theorem 3 uses the encoding by channel machines proposed in [5].
The complex mechanism of the channel machine is not required for our purpose.
We therefore hide it as much as possible and focus on the underlying transition
system. The transition system and its relation to timed automata is presented in
section 4. In section 5, we state our main technical results (namely, the pumping
lemma and the cycling lemma), which we use to prove Theorem 3. The rest of
the paper is then devoted to the proof of these lemmas.

Remark 1. The results of [8] can be lifted to the region-automaton construction,
by adding extra transitions representing (progress) cycles [4]. Using our results,
this can be further adapted by adding transitions corresponding to weak cycles,
which can be detected on the transition system of the channel automaton.

4 Encoding by Channel Machines

In this section, we show how we encode the behaviour of Aδ (where A is a timed
automaton and δ > 0) as the transition system of a channel machine. Channel
machines are finite-state automata equipped with a FIFO channel. Intuitively, a
state of Aδ is encoded as follows: the location and the integer parts of the clocks
are stored in a discrete location, while the channel contains the clock symbols,
ordered according to their fractional parts. When a clock is popped out from the
tail of the channel, it is (almost) immediately pushed back to the head of the
2 With ω-regular property, we mean state-based properties whose truth value only

depends on the set of locations that are visited infinitely often. By an adequate
product, we could handle properties expressed by, say, deterministic Muller automata
(hence including LTL properties); we omit these details to keep focus on the main
objectives of this paper. For an ω-regular property φ, we write A |= φ when all the
runs of automaton A satisfy φ.
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channel (hence it is assumed to have small fractional part). This corresponds
to a delay transition along which that clock has changed integer value. Some
additional symbols (Δ’s) will appear on the channel, which serve for refining
the region equivalence, and for approximating the values of the clocks. Our
encoding is a slightly simplified version of [5], ignoring technicalities such as non-
deterministic renaming and occurence testing operations. This is sufficient since
the transition system will have access to the whole content of the channel, not
only to the head and the queue (as this is the case for the standard mechanism
of the channel machines).

We fix for the rest of this section a timed automaton A = (L, C, Σ, l0, E), and
a symbol Δ �∈ C.

4.1 Channel Machine Associated to a Timed Automaton

For any word w over alphabet 2C \ {∅} ∪ {Δ}, |w|Δ denotes the number of
occurences of symbol Δ in w, and for any x ∈ C, |w|x denotes the number of
times x appears inside the symbols of 2C in w. For any integer N > 0, let ΓN

be the set of words w over alphabet 2C \ {∅} ∪ {Δ} such that |w|Δ = N and
|w|x ≤ 1 for all x ∈ C. For any w ∈ ΓN , we define rightwΔ(x) as 0 if |w|x = 0, and
as the number of symbols Δ that appears on the right of the (unique) symbol
containing x in w. We define leftwΔ(x) symmetrically.

Let M denote the largest constant that appears in A. We assume that clocks
are indexed by {1, . . . , n} for some n > 0, and we write C = {x1, . . . , xn}. We
define the channel machine associated with A as the transition system CA(ΔN ),
parameterized by an integer N ≥ 0, as follows. The states of CA(ΔN ) are ele-
ments of (L × 2C × {0, . . . , M,∞}C) × ΓN . The first component of a state q is
the discrete state, made of a location, denoted by loc(q), the set of clocks that
have integer values, and a mapping from clocks to their integer parts which is
denoted by int(q) (we write ∞ if it is larger than M); the second component
is the channel content where clocks are ordered according to their fractional
parts. For a state q = (d, w), we extend rightΔ(·) as rightqΔ(x) = rightwΔ(x), and
similarly for leftqΔ(x). The initial state of CA(ΔN ) is ((l0, C,0), ΔN ), where l0
is the initial location of A. Forgetting Δ’s, each state q of CA(ΔN ) naturally
encodes a region of A, which we denote by reg(q): if C = {x, y, z}, the state
((l, {y},

(�x	=�y	=2
�z	=1

)
), Δ2{x}Δ{z}Δ4) encodes the region where y = 2, x� = 2,

z� = 1 and 0 < frac(x) < frac(z). We will explain the role of the Δ’s later.
Transitions of CA(ΔN ) are labelled by Σ ∪ {τ}, where τ �∈ Σ. Elementary

delay transitions are defined as follows, for any state ((l, Z, ι), w):

(i) ((l, Z, ι), w) τ−→ ((l, ∅, ι), Z · w) (ii) ((l, ∅, ι), w · Δ) τ−→ ((l, ∅, ι), Δ · w)
(iii) ((l, ∅, ι), w · X) τ−→ ((l, X ′, ι′), w), where ι′(x) = ι(x) + 1 for x ∈ X,

and ι′(y) = ι(y) for y �∈ X, and X ′ = X ∩ ι′
−1([0, M ]),

where we write M + 1 = ∞ (all clocks whose integral part reaches M + 1 are
abstracted to ∞ and they do not appear anymore in the word of ΓN—this is the
role of ι′

−1([0, M ])). Delay transitions are defined as the reflexive and transitive
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closure of τ−→, and we also write τ−→ whenever τ−→
∗
. Viewing w as the content of

a channel (the head being the first letter and the tail being the last letter), the
delay transitions correspond to sequences of reads and writes at the channel,
while the discrete state is changed to keep track of the integer parts, whenever
a clock subset symbol is read. We say that a clock y disappears during a delay
transition whenever the rule (iii) is applied, with y ∈ X and y �∈ X ′. Obviously,
delay transitions in CA(ΔN ) correspond to time elapsing in A.

We now define when a state of CA(ΔN ) satisfies a guard. A clock formula x ≤ k
is exactly satisfied by a state q = ((l, Z, ι), w) if either ι(x) ≤ k − 1, or ι(x) = k
and x ∈ Z (this is equivalent to say that reg(q) satisfies x ≤ k). The formula is
satisfied if either it is exactly satisfied or ι(x) = k and leftwΔ(x) ≤ 1. Intuitively,
the value of x is then a bit larger than k (this will be made clearer when ex-
plaining the role of the Δ’s). A formula x ≥ k is exactly satisfied if ι(x) ≥ k,
and satisfied if it is exactly satisfied or if ι(x) = k − 1 and rightwΔ(x) ≤ 1. Ac-

tion transitions are defined as follows. For any edge l
g,σ,R−−−→ l′ of A, we let

((l, Z, ι), w) σ−→ ((l, Z ∪R, ι′), w′) if ((l, Z, ι), w) satisfies g, ι′(x) = 0 if x ∈ R and
ι′(x) = ι(x) if x �∈ R, and w′ is obtained from w by removing the occurences
of all clocks in R. This rule is not a valid operation in a channel machine, since
some symbols may be removed from w, and checking guards requires reading the
tail of w. However this can be simulated using rewriting and occurrence testing,
see [5]. Action transitions in CA(ΔN ) where guards are exactly satisfied cor-
respond to action transitions in A. Non-exact satisfaction of guards represents
enlarged timing constraints. We will see the precise correspondence later.

A path of CA(ΔN ) is a sequence π = (qi, σi)i≥1 where qi’s are states of CA(ΔN ),
and σi ∈ Σ∪{τ}, and there is a transition labelled by σi from qi to qi+1. We only
consider w.l.o.g paths that are alternations of delay and action transitions. The
length of π, denoted |π|, is the length of the sequence π. We denote by trace(π)
the sequence of locations loc(q0)loc(q2) . . . visited by π, and by πi...j the path de-
fined by the subsequence between indices i and j. A path is exact if all guards in
its transitions are satisfied exactly. The i-th state of a path π is denoted by (π)i.
Representation of the states of CA(ΔN ). In the sequel, to help manipulate the
transition system of CA(ΔN ), we use a flat representation of the states. We say
that ((l, Z, ι), w̃) is a flat representation of state (d, w) = ((l, Z, ι), w) whenever
w̃ ∈

(
C ∪ Δ ∪ Δ−1

)∗ can be written as

w̃ = Δn0xi1Δ
n1 . . . ximΔnm , (1)

where {xij | 1 ≤ j ≤ m} = {x ∈ C | ι(x) ≤ M} is the set of clocks whose
integral part is no more than M in (d, w) (some appear in w, some, whose values
is integral, do not appear in w), n0, . . . , nm ≥ −1, and:

– if we remove the maximal prefix of the form Δ−1y1Δ
−1 . . .Δ−1yp,

– if we remove the maximal suffix of the form ypΔ
−1 . . .Δ−1y1Δ

−1, and
– if we replace all maximal factors of the form y1Δ

−1 . . . Δ−1yp by {y1, . . . , yp},

then we obtain w. Such a flat representation (d, w̃) contains exactly the same in-
formation as w (though with some redundancy) but will be easier to manipulate.
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Note that there can be several flat representations for a given state (since both
xΔ−1y and yΔ−1x can be used to represent {x, y}). Two clocks xij and xij+1

which are separated by Δ−1 in w̃ will belong to the same set in w, hence the cor-
responding clocks will have the same fractional part in reg((d, w)). If n0 = −1,
then xi1 has an integer value in (d, c), and similarly for xim if nm = −1. No-
tice that all clocks whose values are (strictly) less than M + 1 are present in
this word, even those having an integral value. When clock indices i1, . . . , im are
clear from the context, or implicit, we also represent the channel content (1) by
its block sizes (n0, n1, . . . , nm). The channel content in (1) defines m + 1 blocks,
which are words of Δ∗ ∪ {Δ−1} separated by the clock symbols. We enumerate
these from 0 to m, and say, for example, that block i has size ni. In the rest, we
only use flat representations, for which we easily infer the transition relation.

Example 1. The following is a path in CA(Δ14), for the timed automaton A
depicted on Fig. 2. This path simulates the run of the automaton that enters
location �1 with x = 1 and y = 0; delays in �1 for 1 + δ time units, and then
moves to �2, resetting x along that transition. It then waits for 1−2δ time units,
until y = 2 − δ, and goes back to �1, and so on.(

(�1, {x, y},
(�x	=1
�y	=0

)
), Δ−1xΔ−1yΔ14

) τ−→
(
(�1, ∅,

(�x	=2
�y	=1

)
), ΔxΔ−1yΔ13

) x≤2−−−→
x:=0(

(�2, {x},
(�x	=0
�y	=1

)
), Δ−1xΔyΔ13

) τ−→
(
(�2, ∅,

(�x	=0
�y	=1

)
), Δ12xΔyΔ

) y≥2−−−→
y:=0(

(�1, {y},
(�x	=0
�y	=0

)
), Δ−1yΔ12xΔ2

) τ−→
(
(�1, ∅,

(�x	=1
�y	=2

)
), ΔxΔ2yΔ11

)
· · ·

4.2 Relation with Timed Automata

We now define the relation between CA(ΔN ) and A, through a relation on their
associated time-abstract transition systems. Next, we write s

σ==⇒ s′ if s
τ−→ s′′

σ−→
s′ for some state s′′ (where τ−→ is a delay transition).

Definition 5. Let S = (S, s0, Σ,→) be an LTTS. A relation R ⊆ S × S is a
two-way simulation if for all (s1, s2) ∈ R, if s1

σ==⇒ s′1 for some σ ∈ Σ then
s2

σ==⇒ s′2 for some s′2 with (s′1, s′2) ∈ R, and if s′1
σ==⇒ s1 for some σ ∈ Σ, then

s′2
σ==⇒ s2 for some s′2 with (s′1, s

′
2) ∈ R. A state s2 simulates a state s1 whenever

there exists a two-way simulation R such that (s1, s2) ∈ R. In that case we write
s1 � s2.

For any state (d, w) of CA(ΔN ) with w ∈ ΓN , we define concrete
(
(d, w)

)
as a subset

of reg((d, w)) as follows. It contains a state (l, v) ∈ reg((d, w)), if, and only if,
l = loc((d, w)) and there exists δ ∈ RN

≥0 that satisfies 0 < δ(1) < δ(2) < . . . <

δ(N) < 1, δ(i + 1) − δ(i) = 1
N for all 1 ≤ i ≤ N − 1, and δ(i) �= frac(v(x)) for

all i and x ∈ C that appears in w, and, assuming that δ(i) is the value of the i-th
Δ-symbol in w, the extended valuation v∪{δ(i)}1≤i≤N is ordered according to w.

For example, consider the state (d, w) =
(
(l, {x}, (

(�x	=�y	=0
�z	=1

)
)), Δ3zΔ3yΔ4

)
,

and valuation v defined by v(x) = 0, v(y) = 0.6 and v(z) = 1.3. We have
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v ∈ concrete
(
(d, c)

)
since for δ ∈ R10

≥0 with δ(i) = 0.05+ i−1
10 , the ordering of the

fractional parts of v(x), v(y), v(z), δ(1), . . . , δ(10) agree with that given in (d, w).

Lemma 6. For any timed automaton A and N ≥ 1, �A 1
N

� � CA(ΔN ) � �A 2
N

�.

A weaker version of this lemma was proven in [5]. The two-way simulations
in the above lemma are given by relations R defined between states of �Aδ�
and CA(ΔN ) by (l, v)R(d, w) iff v ∈ concrete

(
(d, w)

)
and l = loc(d).

4.3 Δ-Distance in CA(ΔN)

If q is a state of CA(ΔN ), we will denote by [q] the topological closure of the
region encoded by q. The following lemma characterizes the inclusion of region
closures using flat representations and follows from definitions.

Lemma 7. Let q and q′ be two states of CA(ΔN ), and let (d, w) be a flat repre-
sentation of q, with w = Δn0xi1Δ

n1 . . . ximΔnm . Then [q] ⊆ [q′] iff w′ has a flat
representation of the form (d′, w′) where w′ = Δn′

0xi1Δ
n′

1 . . . ximΔn′
m , s.t.

– loc(d) = loc(d′),
– for every 0 ≤ i ≤ m, n′

i = −1 implies ni = −1, and
– there exists 1 ≤ r ≤ m s.t. nr+1 = nr+2 = · · · = nm = −1, and:

• for every 1 ≤ j ≤ r, int(d)(xij ) = int(d′)(xij ),
• for every r < j ≤ m, int(d)(xij ) = int(d′)(xij ) + 1.

We now define an edit-distance between the states of CA(ΔN ), called the Δ-
distance. We define the Δ-distance between any pair of states q and q′ as infinite
unless [q] ⊆ [q′] or [q′] ⊆ [q]. Fix two flat representations (d, w) and (d′, w′)
that satisfy the conditions in Lemma 7 with block sizes n and n′. We define
dΔ

(
q, q′

)
=

∑
i(max(n′

i
+ − ni

+, 0)), and notice that this is independent of the
choice of the flat representations. This function can be seen to be symmetric
(by the fact that both words have the same total number of Δ symbols), and
to satisfy the triangular inequality. However, when the function equals 0, this
does not imply the equality between states due to the −1-sized blocks. This
pseudo-distance has the following important property.

Lemma 8. For any timed automaton A and N ≥ |C| + 2, for any states q, q′

of CA(ΔN ), dΔ(q, q′) ≤ N
|C| − 2 implies that [q] ∩ [q′] �= ∅.

5 Proof

5.1 Proof of the Main Theorem

The main theorem is a consequence of the following lemma, using Lemma 6.

Lemma 9. Let A be any timed automaton and let W denote its number of
regions. Let K0 = 2|C|! · |L| · 4|C| + 4, and N1 ≥ 8|C|2 · (W + 1) if A has only
progress cycles, and N1 ≥ 5|C|3 · K2

0 · (W + 1) otherwise. For any ω-regular
property φ, if there exists N > 0 such that CA(ΔN ) |= φ, then CA(ΔN1) |= φ.
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We show that if CA(ΔN1) �|= φ, then CA(ΔN ) �|= φ for all N > 0. The case where
N < N1 is easy, and is implied in the following lemma.

Lemma 10. For any timed automaton A and any N > 0, CA(ΔN ) � CA(ΔN−1).

The idea is that any path of the channel machine can be carried out when
a Δ symbol is removed from the channel. In fact, all guards satisfied in the
former system are also satisfied when a Δ symbol is removed. This implies that
CA(ΔN1) � CA(ΔN ), hence if the property is violated by a path of CA(ΔN1),
then CA(ΔN ) also has a path violating the property.

In the case where N1 < N , we do not have a simulation between CA(ΔN )
and CA(ΔN1), but assuming that CA(ΔN1) has a path violating the desired
property, we transform it into a path of CA(ΔN ) also violating the property.
This transformation may modify the trace but it does not affect the satisfaction
of φ (locations that appear infinitely often remain the same). This is stated in
the following pumping lemma.

Lemma 11 (Pumping Lemma). Consider a timed automaton A, and let W
denote its number of regions. Let K0 = 2|C|!·|L|·4|C|+4, and N1 ≥ 8|C|2 · (W + 1)
if A has only progress cycles, and N1 ≥ 5|C|3 · K2

0 · (W + 1) otherwise. Then,
for any path π of CA(ΔN1), for any L ≥ 0, there exists a path π′ of CA(ΔN1+L),
such that the same set of locations appear infinitely often in π and π′.

The rest of the paper is devoted to the proof of the pumping lemma. The path
of CA(ΔN1+L) is obtained by repeating some factors of the path of CA(ΔN1),
then repeating some factors of the resulting word, and repeating this a finite
number of times. This operation preserves ω-regular properties.

Overview of the proof. We start by studying, in Subsection 5.2, how the sizes
of the blocks evolve along a path. We characterize the blocks whose sizes do
not become small along a path; these are called the blocks that stay united.
We prove a pumping lemma for these blocks (Lemma 12). Then, we study, in
Subsection 5.3, exact paths of CA(ΔN1) and show that for any path of bounded
length, there is an exact path that follows the same trace and that is close in
terms of Δ-distance (Lemma 14). In Subsection 5.4, we apply the above results
to bounded paths to prove the pumping lemma for unbounded paths.

5.2 Pumping Lemma: Bounded Case

We fix a timed automaton A = (L, C, Σ, l0, E) and N > 0. Let W denote the
number of regions of A. For any channel content w ∈ ΓN with clocks xi1 , . . . , xim

and block sizes (n0, . . . , nm), and L ≥ 0, we define w[xij ← xij Δ
L] as the

word of ΓN+L obtained from w by replacing the j-th block Δnj with Δn+
j +L.

We assume that i0 is an index fixed to 0. We extend the above definition to the
0-th block, by writing w[xi0 ← xi0Δ

L] = w[xi1 ← ΔLxi1 ], obtained by inserting
L new Δ symbols in the 0-th block.

We fix the constant N0 = 2W + 2. A block is small if it has size {−1, 0, 1},
medium if it has size {2, . . . , N0 − 1}, and large otherwise. An important obser-
vation about CA(ΔN ) is that, if a guard is satisfied at some state (d, w), then,
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when an arbitrary number of Δ symbols are inserted in medium/large blocks,
the same guard is still satisfied. However, if we insert additional Δ symbols in-
side small blocks, then formulas which are satisfied but not exactly satisfied may
not be satisfied anymore. We define a notion of staying united along a path for
blocks. Intuitively, such blocks are those that are either always at least medium,
or are cut into at least one medium/large block along the path. We then show
that one can insert any number of Δ symbols inside a block that stays united,
and adapt the original path of CA(ΔN ) to a path in CA(ΔN+L).

We define a relation on pairs of states and clock indices as follows. Let q =
(d, w) and q′ = (d′, w′) denote two flat representations of states of CA(ΔN ) such
that q

τ−→ q′ is an elementary delay transition. We let (q, i) ≺ (q′, j) whenever for
every integer L > 0, there is a delay transition q[xi ← xiΔ

L] τ−→ q′[xj ← xjΔ
L].

This relation can be characterized rather easily by analysing all possible cases
for elementary delays q

τ−→ q′. This relation is extended to the transitive closure
of delay transitions. Similarly, assuming q

σ−→ q′ is an action transition, we write
(q, i) ≺ (q′, j) whenever for every integer L, there is an action transition q[xi ←
xiΔ

L] σ−→ q′[xj ← xjΔ
L]. This can be characterized easily as well.

For any finite path π in CA(ΔN ), and any block i1 in (π)1, we say that block i1
stays united in π, if block i1 is large in (π)1, and if there exists clock indices
i2, . . . , im such that ((π)1, i1) ≺ ((π)2, i2) ≺ . . . ≺ ((π)n, in), with n = |π|.

By definition, the paths along which a block stays united are not sensitive to
the precise size of those blocks. This is formalized in the following lemma, which
is a pumping lemma for particular finite paths.

Lemma 12. Let π be a path of CA(ΔN ) such that ((π)1, i1) ≺ ((π)2, i2) ≺ . . . ≺
((π)n, in), for some n > 0. Then for any L > 0, CA(ΔN+L) has a path π′ with
(π′)j = (π)j [xij ← xij Δ

L] for any 1 ≤ j ≤ n and trace(π) = trace(π′).

We now state a lower bound on the length of a path along which a block does
not stay united. The idea is that if a block does not stay united, then whenever
it is cut in two parts during a transition, either one of the resulting blocks is
small, or none of them stays united in the rest of the path.

Lemma 13. Let π be a path of CA(ΔN ) with |π| = p. Then all blocks in (π)1
that have size at least p + 1 stay united along π.

5.3 Making Exact Paths

In this section, we show how to transform an arbitrary path of bounded length
of CA(ΔN ) into an exact one. By definition, if a path is not exact, then there are
states with small blocks. The idea of our transformation is to replace all small
blocks and the blocks that do not stay united by −1-sized blocks, while preserving
the ordering of the clocks. Notice that by Lemma 7, the states obtained by this
operation define closed subregions of those defined by the original states. Clearly,
if all small blocks have size −1, then any guard that is satisfied by a state is
satisfied exactly, so the new path is exact.
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Take N ≥ (|C| + 1) · N0, and fix a path π of CA(ΔN ) of length n ≤ N0 − 1.
For each 1 ≤ i < i′ ≤ n, we associate with (π)i a state H(π, i, i′) where any
small or medium block that does not stay united along πi...i′ is replaced by
blocks of size −1. Formally, let j1, . . . , jk denote the indices of the blocks of (π)i

that do not stay united along the path πi...i′ . Let us write (π)i = (d, n). We
define H(π, i, i′) = (d′, n′) as follows. We let n′

j1 = . . . = n′
jk

= −1, and n′
j0 =

nj0 + n+
j1

. . . + n+
jk

, for the large block with the minimal index j0, which exists
by the choice of N . (Notice that the closed region [H(π, i, i′)] is independent
of j0). We have, by Lemma 7, [H(π, i, i′)] ⊆ [(π)i]. The same lemma implies that
any state q with [q] ⊆ [H(π, i, i′)], has only blocks that stay united along πi...i′ .
Observe that because (π)i has at least one large block, by Lemma 13, H(π, i, i′)
is well-defined. Last, we have dΔ((π)i, H(π, i, i′)) ≤ |C| · N0 by construction.

We construct exact paths that are “close” to the original ones, as follows.

Lemma 14. Let A be any timed automaton having only progress cycles, and
N ≥ (|C| + 1) · N0. Let π a path of CA(ΔN ) of length at most N0. Then, there ex-
ists an exact path π′ of CA(ΔN ) over trace trace(π1...N0), with (π′)1 = H(π, 1, N0)
and [(π′)i] ⊆ [H(π, i, N0)] and dΔ(π, π′) ≤ (|C| + 1)N0 for all 1 ≤ i ≤ N0.

A result similar to Lemma 14 was given in [8, Th. 44] for runs of timed automata
and distance d∞ over valuations. The proof there involved approximation of
the width of parametric DBMs. Our approach is in some sense closer to the
input timed automaton, which may explain why we get an exponentially better
distance to the original run.

As one might expect, exact paths satisfy the following property. The idea is
that exact paths of CA(ΔN ) are not sensitive to the sizes of the blocks.

Lemma 15. Let A be any timed automaton, N ≥ 1 and π an exact path
of CA(ΔN ). Then, for any N ′ ≥ N , and any state q of CA(ΔN ′

) with [q] ⊆
[first(π)], there exists an exact path π′ over the same trace as π, with first(π′) = q
and [(π′)i] ⊆ [(π)i] for all 1 ≤ i ≤ |π|. The same property holds backwards: for
any q ∈ [last(π)], there exists an exact path π′ over the trace of π in CA(ΔN ′

)
with last(π′) = q and [(π′)i] ⊆ [(π)i] for 1 ≤ i ≤ |π|.

5.4 Pumping Lemma with Progress Cycles: Unbounded case

The previous sections dealt with the properties of the bounded paths of CA(ΔN ).
We now use these to prove the pumping lemma for infinite paths. Let us first
define a transformation on the traces of the runs. For any finite trace w ∈ L∗,
we let w̃ = {u+

1 u+
2 . . . u+

n | u1u2 . . . un = w}.
We first need the following lemma, which is an adaptation of Lemma 29 of [8]

to channel machines.

Lemma 16 (Cycling Lemma). Let A be any timed automaton, N ≥ 1 and π
an exact progress cycle in CA(ΔN ). Then, for all states q with [q] ⊆ [last(π)],
there exists a path π′ in CA(ΔN ) with first(π′) = first(π) and [last(π′)] ⊆ [q], and

trace(π′) ∈ ˜trace(π).
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We are now ready to prove the pumping lemma, for timed automata with
progress cycles. Figure 3 illustrates a step of the proof.

Proof (of Lemma 11). We prove the result for 1 ≤ L ≤ |C|N0 − 2. For larger L,
one can repeat this construction. Let N ≥ 4|C|2N0, and consider an infinite
path π of CA(ΔN ) where first(π) is the initial state of CA(ΔN ).

Let n = N0 − 1. Let GL(π, i, i + n) denote the state of CA(ΔN+L) obtained
from (π)i by inserting ΔL in the block with minimal index that stays united
along πi...i+n (such a block exists by Lemma 13). We also define HL(π, i, i + n)
by inserting ΔL to the same block in H(π, i, i + n) (H(·) is defined right before
Lemma 14). Then, by construction, dΔ

(
HL(π, i, i + n), GL(π, i, i + n)

)
≤ |C|N0.

We now define a path π′ of CA(ΔN+L) over trace ˜trace(π). At each step i ≥ 1,
we construct π′

βi...βi+1
, where (βi)i≥1 is an increasing sequence. Our construc-

tion satisfies trace(π′
βi...βi+1

) ∈ ˜trace(παi...αi+1), and [(π′)βi ] ⊆ [(π)αi ], for some
possibly different increasing sequence (αi)i≥1.

We define (π′)1 as the initial state of CA(ΔN+L), which satisfies [(π′)1] ⊆ [(π)1].
Suppose now that π′

1...βi
has been constructed for some βi ≥ 1. By Lemma 12,

there is a path g of CA(ΔN+L) from G(π, αi, αi + n) over trace(παi...αi+n), such
that (g)j = (π)αi+j [zj ← zjΔ

L] for some clocks zj . We then apply Lemma 14
to g to get an exact path h with (h)1 = HL(π, αi, αi + n) over the trace of g,
with dΔ

(
(h)j , (g)j

)
≤ (|C| + 1)N0, and [(h)j ] ⊆ [HL(π, αi + j, αi + n)] for

all 1 ≤ j ≤ n. Now, h contains at least n/2 ≥ W action transitions, so there exist
1 ≤ l0 < l1 ≤ n such that reg((h)l0), reg((h)l0+1), . . . , reg((h)l1) is a progress cy-
cle of the region automaton of A. We have dΔ

(
(h)l1 , H

L(π, αi+l1, αi+l1+n)
)
≤

(3|C| + 1)N0 − 2 by combining the following inequalities:

dΔ((h)l1 , (g)l1) ≤ (|C| + 1)N0,

dΔ

(
(g)l1 , G

L(π, αi + l1, αi + l1 + n)
)
≤ L ≤ |C|N0 − 2,

dΔ

(
GL(π, αi + l1, αi + l1 + n), HL(π, αi + l1, αi + l1 + n)

)
≤ |C|N0.

By Lemma 15, CA(ΔN+L) has a path over trace(h) from (π′)βi to some state q
with [q] ⊆ [(h)l1 ]. By Lemma 8, we get [(h)l1 ]∩ [HL(π, αi + l1, αi + l1 + n)] �= ∅.

παi

GL(π, αi, αi + n)

π′
βi

HL(π, αi, αi + n)

παi+l1 (g)l1

q

GL(π, αi + l1, αi + l1 + n)

(h)l1

HL(π, αi + l1, αi + l1 + n)

q′ = π′
βi+1

π

Lemma 12
g

Lemma 15

Lemma 14h ≤
(|C|

+
1)N

0

≤
L

≤
|C

|N
0

Lemma 16

Fig. 3. An induction step of the proof of Lemma 11. Two triangles represent two
closed regions. Their sides, interiors and corners are subregions. The proof constructs
the dashed paths bottom-up.
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Lemma 16 provides a path of CA(ΔN+L) from q to some state q′ with [q′] ⊆
[(h)l1 ]∩ [HL(π, αi + l1, αi + l1 + n)], over a trace in trace(hl0...l1)+. The concate-
nation of these two paths define π′

βi..βi+1
. This concludes a step of the induction.

��
5.5 Pumping Lemma with Non-progress Cycles

In this subsection, we explain the generalization of the proof of the pumping
lemma to the case of timed automata with non-progress cycles. Let us call weak
cycle, a path π of CA(ΔN ) with [last(π)] ⊆ [first(π)] that is not a progress
cycle. Thus, π is a cycle along which at least one clock that is present on the
channel is not reset. We show that all weak cycles can be transformed into weak
quasi-exact cycles (defined below). We then define quasi-exact paths of CA(ΔN ),
which are paths that are exact except along weak quasi-exact cycles. Quasi-exact
paths behave very much like exact paths: We adapt each of the previous lemmas
involving exact paths for quasi-exact paths, and the proof in the presence of
weak cycles is very similar to the proof which assumes progress cycles.

Example 2. The following path of CA(Δ10) is an example of weak cycle, in which
clock z is not reset.

(�1, {x}, ·), Δ3yΔ4zΔ3 τ−→ (�1, ∅, ·), Δ2xΔ3yΔ4zΔ
σ−→

(�2, {y}, ·), Δ2xΔ7zΔ
τ−→ (�2, ∅, ·), yΔ2xΔ7zΔ

σ′
−→ (�1, {x}, ·), yΔ9zΔ

It can be seen on this example how clock z prevents from accessing the Δ’s that
accumulate immediately on its left.

Given a weak cycle, clocks that are reset along the cycle are called active, and
others inactive. Consider a weak cycle π. Suppose that A = {i1, . . . , ir} are the
indices of the active clocks in π, given in the order of their appearance in last(π).
Then, π can be factorized as,

π = πirπir−1 . . . πi1π
′, (2)

where πij ends with the last reset of the clock xij in π, and no clock is reset in π′.
An important observation that we use is that the size of the block ij in last(πij )
is determined by the number of Δ’s read inside πij , for any 1 ≤ j ≤ r − 1. The
block ir is particular, since its size at the last state is the sum of all the blocks
i1, . . . , ir in first(π), plus the Δ’s read during πir . Among the blocks A of last(π),
some will be called pumpable. Formally, for K0 = |L| · |C|! · 4|C|+1 + 4, we let

Pumpable(π) = {ij ∈ A | ∃τ ∈ πij , timeΔ(τ) ≥ 2 or timeΔ(πij ) ≥ K0},

where timeΔ(τ) denotes the number of Δ’s read from the channel in the delays
of a given path τ , and with the abusive notation ∃τ ∈ πij meaning “for some
delay transition in πij ”. We prove a pumping lemma for pumpable blocks inside
weak cycles. In fact, if πij has a delay transition which reads at least two Δ
symbols, then block i0 becomes medium or large during this delay, so it can be
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extended to read more Δ symbols. But if all delay transitions are too short then
this trick cannot be used; in that case when a large number of transitions occur
inside πij , we show that some factor can be repeated, while additional delays
that read Δ’s are inserted (this is why we need a large constant K0).

We then define quasi-exact paths, which are paths that are made of delays,
exact transitions and weak cycles in which any block that is active is either
pumpable, or it ends with size −1. We show that these paths behave very much
like exact paths, and we follow step-by-step the same lemmas to construct the
proof of the pumping lemma in the general case.
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Abstract. In previous literature on timed automata, it was noticed that
they are in several aspects too precise, which leads sometimes to strange
artifacts, mathematical pathologies or unrealistic models. In particular,
some timed automata are non-implementable, non-robust, behave badly
under discretization, have many Zeno runs etc. In this paper, we propose
a unifying approach to most of these issues for deterministic timed au-
tomata. We classify these automata either as thin or as thick. In thin
automata, all the infinite trajectories are, in some weak sense, Zeno; the
discretization of long trajectories is difficult, since it requires very small
discretization step. In thick automata, most of trajectories are non-Zeno
and behave well under discretization; such automata satisfy a sort of
pumping lemma. Formally, the thin-thick alternative is based on the no-
tion of entropy of timed regular languages introduced by E. Asarin and
A. Degorre in [3,4]. Thin languages have the entropy = −∞ while thick
have a larger one. An important application of thin-thick alternative is
again the entropy theory of timed languages. We show that the entropy
can be computed with a desired precision using discretization and thus
it is computable, which closes a question left open in [3,4].

1 Introduction

Timed automata [2] using exact continuous clocks, exact guards and resets are a
beautiful mathematical object and a useful model of real-time systems. However,
from the very beginning of the timed automata research, it was clear that they
are in several aspects too precise, which leads sometimes to strange artifacts,
mathematical pathologies or unrealistic models. Several lines of research have
partially elucidated these issues.

Thus, the state space of a timed automaton being infinite, some long (or
infinite) runs never revisit the same state. For this reason, as stated in [7], usual
pumping lemmata do not hold, and should be replaced by rather involved
analogues. In a run, infinitely many events can happen during a finite amount of
time, or two events can happen again and again with the time interval between
them tending to 0. Such a run reminds of Zeno’s aporias and is often called a
Zeno run, see [12] and reference therein. Pathological runs do not support well
discretization of clocks, see [14,6].

In order to rule out bad behaviors, restricted classes of timed automata and al-
ternative semantics were considered by several authors. Thus, in [13,15], a tube

U. Fahrenberg and S. Tripakis (Eds.): FORMATS 2011, LNCS 6919, pp. 113–128, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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language semantics is introduced. In [19] a robust semantics, based on small
imprecisions is considered. It reappears in a different flavor as implementabil-
ity, see [22,21], and in another version in [1].

With the same objective to rule out bad behaviors, restrictions are often put
on all the cycles in the automaton, by requiring that each cycle takes at least
one time unit (strongly non-Zeno condition), or resets all the clocks (progress
cycle condition), or even resets all the clocks at one and the same transition
(regeneration or synchronization condition).

In this paper, we propose a unifying approach to most of these issues for
deterministic timed automata. We classify each automaton either as thin or as
thick (the classification is decidable).

In thin automata. all the infinite trajectories, are, in some weak sense Zeno;
the digitization of long trajectories is difficult, since it requires very small
discretization step.

In thick automata. most of trajectories are non-Zeno, behave well under dig-
itization and satisfy a sort of pumping lemma.

The main technical tool used to characterize thin and thick timed languages is
their (volumetric) entropy introduced in [3,4]. Let us briefly recall this notion: a
timed language L, for a given number of events n, can be seen as several polytopes
in IRn, their total volume is denoted by Vn. In most cases, for n → ∞ this
volume behaves exponentially: Vn ≈ 2nH. The growth rate (i.e. H) is referred to
as entropy, and characterizes the size and the information contents of the timed
language. With the notion of entropy, the definition of thin and thick languages
is simple: a language is thin if its entropy equals −∞ (that is the volume Vn

decays faster than any exponent), and thick otherwise.
We identify a novel notion of a forgetful cycle, that is a cyclic path allowing

forgetting the clock values. We state that any path in a timed automaton which
is thick and long (in some precise sense), necessarily contains a forgetful cycle
(Thm. 1), which can be seen as a weak version of pumping lemma. Based on
this pumping lemma, we obtain our first main result (Thm. 2): thickness of
a language is equivalent to many other nice properties briefly described above
(good discretization, existence of forgetful cycle etc.).

The proof of Thms. 1-2 is rather technical, and uses together with “timed”
techniques inspired by [19,1], the monoid version of Ramsey theory, namely
Simon factorization forests [20].

The thin-thick alternative leads to a more precise analysis of a timed automa-
ton when applied to its strongly connected components. In general, a timed au-
tomaton can be decomposed into several strongly connected components (some
of them are thin, others thick) and acyclic pathways between them. We show
that most of the long enough runs spend most of the time in thick components,
and only few pathological runs wander in thin components (Thm. 3).

Finally, we apply the thin-thick alternative to the analysis of entropy of timed
languages. In [4] it was shown that the entropy of a timed language can be
lower and upper bounded using entropies of two discrete languages L−

ε and L+
ε ,

corresponding to a shrunk and a bloated discretizations of L:
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h(L−
ε ) + log(ε) ≤ H ≤ h(L+

ε ) + log(ε).

Here (Thm. 4) we strengthen this result and establish that on a thick component
the entropy of a timed language can be approximated with a good precision using
the entropy h(Lε) of the discretized language:

H = h(Lε) + log(ε) + o(1).

As a corollary we obtain a converging algorithm allowing computation of H for
any timed regular language with any precision required. This answers the open
question from [4]: H is always a computable real number.

Paper organization. In Sect. 2, we recall some basic definitions, define thin and
thick languages and give some motivating examples. In Sect. 3 we describe three
more involved constructions: polytopes associated to paths in timed automata
as in [18], region split automaton as in [3] and monoid of orbit graphs inspired by
[19]. In the central Sect. 4 we state the thin-thick alternative for timed automata
and a sort of pumping lemma for thick automata (Thm. 1). In Sect. 5 we apply
these results to entropy of timed languages. We conclude with some perspectives
in Sect. 6.

2 Preliminaries

2.1 Timed Languages and Their Measures

A timed word α = (t1, a1) . . . (tn, an) is a word on the alphabet IR+ × Σ where
Σ is a finite alphabet of events. Times ti represent delays between events ai−1

and ai. Throughout this paper, delays will be bounded1 by an integer constant
M . We will sometimes write the same timed word α as (t, w) with t ∈ [0, M ]n

and w ∈ Σn. A timed language L is a set of timed words. We will denote by Ln

the language L restricted to words of length n.

Volume and volumetric entropy. Let L be a timed language. For each word of
events w ∈ Σn, let L(w) be the set {t ∈ [0, M ]n | (t, w) ∈ L}. This subset of IRn

has a volume2 (Lebesgue’s measure) denoted by Vol(L(w)). The volume of Ln

is Vol(Ln) =
∑

w∈Σn Vol(L(w)). Bounding the delays by M leads to a volume
bounded by (|Σ|M)n.

In this paper, we will work with factor closed languages3, i.e. such that if
(t1, a1) . . . (tn, an) ∈ L then for all 1 ≤ i ≤ j ≤ n (ti, ai) . . . (tj , aj) ∈ L. For each
couple of words w1, w2 ∈ Σ∗ the language inclusion L(w1 · w2) ⊆ L(w1)L(w2)

1 Our approach to timed languages is based on volumes, and does not apply, in its
present form, to unbounded delays which lead to infinite volumes.

2 Under the condition that the set is measurable; timed languages considered in this
paper are all measurable as unions of polytopes.

3 This roughly corresponds to automata where all states are both initial and final.
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holds, and then Vol(L(w1 · w2)) ≤ Vol(L(w1))Vol(L(w2)). The volumetric en-
tropy of a timed language is a number in [−∞, +∞) defined as

H(L) = lim
n→+∞

1
n

log2(Vol(Ln)).

The limit (finite or −∞) exists due to subadditivity of log2 Vol(Ln) wrt n and is
upper bounded by log2(|Σ|M). A timed language L is called thin if H(L) = −∞
ant thick otherwise.

To deal with finite objects, one can discretize all the previous continuous
languages. Given an ε = 1

N , (N ∈ IN) called discretization step, let us define
Lε,n = Ln ∩ (εIN×Σ)n, i.e. the set of words in Ln with all delays multiple of ε,
Lε =

⋃
n∈IN Lε,n, Lε(w) = L(w) ∩ (εIN)n. The ε-entropy hε is defined as

hε(L) = lim
n→∞

1
n

log2(|Lε,n|).

We will relate the discrete entropy hε to the continuous one H in Sect. 5.

Open, closed and punctual languages. A language is said to be open if for all n,
the set Ln is an open subset (for the product topology) of IRn × Σn. In other
words, Ln should be a finite union of O × {w} where w is a word of events and
O an open subset of IRn. Interior and closure of L, denoted int(L) and L are
defined in a natural way.

Taking closure or interior of a finite union of polytopes of IRn has no effect on
its volume. Nevertheless the number of discrete points can drastically change if
punctuality is allowed (see [5]). We call a language to be punctual if int(L) �= L.

2.2 Timed Automata and Their Languages

Clocks, zones and regions. Let X be a finite set of variables called clocks. Clocks
have non negative values bounded by a constant Mc. A rectangular constraint
is a formula of the form x ∼ c where x ∈ X, c ∈ IN, ∼∈ {≤, <, =, >,≥}.
A diagonal constraint is a formula of the form x − y ∼ c where x, y ∈ X . A
guard is a finite conjunction of rectangular constraints. We denote by G the set
of all guards. A zone is a set of clock vectors x ∈ [0, Mc]X satisfying a finite
conjunction of rectangular and diagonal constraints. A region is an inclusion-
minimal zone. A region (which is always a simplex) is uniquely defined by a
point with integer coordinates x� ∈ {0, . . . , Mc}X giving integer part of clocks
and an order on the fractional part of clocks 0 ∼0 {xi1} ∼1 {xi2} ∼2 · · · ∼|X| 1
where ∼0, . . . , ∼|X|∈ {<, =}. The closure of a region (abusively called closed
region) can be obtained by replacing < by ≤ and > by ≥ in its definition.

Timed automata. A timed automaton is a tuple (Q, X, Σ, E,L, I, F ) with Q a
finite set of locations ; X a set of bounded clocks; E ⊆ Q × G × 2X × Q a finite
set of edges; L : E → Σ a labeling function on edges; I ⊆ Q × [0, Mc]X the set
of initial states; F ⊆ Q × [0, Mc]X the set of final states.

By default all the states (elements of Q × [0, Mc]X) are initial and final,
otherwise they are given by union of zones.
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The clocks grow with the same (unit) speed and some of them are reset to 0

when passing through an edge. More formally, there is a transition (q, x)
(t,a)−−−→

(q′, x′) if there is an edge e = (q, g, R, q′) ∈ E with L(e) = a such that
x+(t, . . . , t) satisfies the guard g and for each clock x ∈ X , its new value x′ = 0
iff x ∈ R, or x′ = x+t otherwise. A run on the timed word α = (t1, a1) . . . (tn, an)

is a sequence of consecutive transitions (q0, x0)
(t1,a1)−−−−→ (q1, x1) · · · (tn,an)−−−−→

(qn, xn), where x0, . . . , xn ∈ [0, M ]X , q0, . . . , qn ∈ Q. A timed word is recog-
nized by the automaton if there exists a run on it from an initial state to a final
state. The timed language L(A) consists of all the recognized words. We will be
interested in its entropy H(L(A)), that will be abusively denoted H(A).

We call a TA right resolving if any two edges leaving the same location and
having the same label have disjoint guards. Adding the condition that there is
only one initial state gives the usual definition of determinism. In the rest of the
paper, we work with right resolving TA.

Paths and reachability relation. We call a path in an automaton any sequence of
edges. The “useful” paths are sequences of consecutive edges (such that the start-
ing location of the (i+1)th edge is the ending one of the ith), but we allow arbitrary
words of E∗ and all objects associated to a non-consecutive sequence will be empty.

Given two clock vectors x, x′, a path π ∈ En and a sequence of delays of the
same length t = (t1, . . . , tn), we write that x

t,π−−→ x′ whenever exists a run in

the automaton of the form (q0, x)
(t1,a1)−−−−→ (q1, x1) · · · (tn,an)−−−−→ (qn, x′) following

the sequence of edges π.
Several objects are naturally associated with a path. Given a path and two

clock vectors, a language (a polytope of all the timings of the path) can be
defined: L(π, x, x′) = {t | x

t,π−−→ x′}. If we are not interested in clock values,
we get a polytope depending only on the path: L(π) = {t | ∃x, x′, x

t,π−−→ x′}.
The other way around, if we do not care about timing, we get the reachability
predicate: Reach(π) = {(x, x′) | ∃t, x

t,π−−→ x′}.
A path π ∈ En is said to be punctual if L(π) is not empty but has dimension

less than n. The closure (resp. interior) of a path π denoted by π (resp. int(π)) is
the path obtained from π by taking closure (resp. interior) of all guards of edges
in π (i.e. changing strict inequalities in non-strict ones (resp. vice versa)). There is
a limit cycle (resp. strong limit cycle) along π if there exists a clock vector x and

time sequence t such that x
t,π−−→ x (resp. x

t,int(π)−−−−−→ x). Given ε > 0, in ε-discrete
limit cycles all the components of x and t should be multiple of ε.

2.3 Thinness, Simplices and Examples

Our analysis of thin languages will start with a simple observation that the
volume of k-dimensional simplices tends to 0 faster than any exponent:

Lemma 1. The volume of a simplex of “type 1” described by inequalities 0 ≤
t1 + · · · + tk ≤ 1, ti ≥ 0 or of a simplex of “type 2” described by inequalities
0 ≤ t1 ≤ · · · ≤ tk ≤ 1 is 1

k! .
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x ≤ 1

a, x ∈ [0; 1]

p
0 ≤ x ≤ 1
y = 0

q
0 ≤ y ≤ 1
x = 0

a, x ∈ [0; 1]/x := 0

b, y ∈ [1; 2]/y := 0

p
0 ≤ x ≤ 1
y = 0

q
0 ≤ y ≤ 1
x = 0

a, x ∈ [0; 1]/x := 0

b, y ∈ [0; 1]/y := 0

x, y ∈ [0, 1]

a, x ∈ [0; 1], y := 0

a, y ∈ [0; 1], x := 0

Fig. 1. First row: thin automata A1, A2. Second row: thick ones A3, A4. Initial states
are given by conditions in nodes.

By change of coordinates the lemma can be extended to more general polytopes:

Corollary 1. Let P be a subset of {t1, . . . , tn | 0 ≤ ti ≤ M}. If there exists a
subsequence of indices s(1), . . . , s(k) of 1, . . . , n and new coordinates us(i) func-

tions of ts(1), . . . , ts(i) with 0 ≤ us(1) ≤ us(2) ≤ · · · ≤ us(k) ≤ 1 and
∣∣∣∂us(i)

∂ts(i)

∣∣∣ ≥ 1

then Vol(P ) ≤ Mn−k

k! .

The automata on Fig. 1 illustrate the concepts of thin and thick. Ln(A1) =
{t1, . . . , tn |

∑
i≤n ti ≤ 1} is a simplex of type 1, and thus L(A1) is thin.

Ln(A2, q) = {t1, . . . , tn | ∀i, t2i + t2i+1 ≤ 1 ∧ t2i+1 + t2i+2 ≥ 1}, by inter-
changing even and odd indices we obtain Ln(A2, p). Posing u2i+1 = 1 − t2i+1

and u2i = t2i yields a simplex 0 ≤ u1 ≤ . . . un ≤ 1. This change of coordinates
preserves volume and so Vol(Ln(A2, q)) = 1

n! . This is an example of automaton
satisfying the progress cycle condition (i.e. resetting all clocks along each cycle)
and nevertheless thin.

Third and fourth examples are thick, their entropies can be computed sym-
bolically because they are 1 1

2 clock (see [3]), they are respectively log2
2
π and

log2 log2(e). Note that A4 does not satisfy the progress cycle condition.

3 More on Paths and Cycles

3.1 Region Graph and State Split Automata

Timed variants of the region graph [2] are extensively used in the literature. Here
we use so-called region-split automaton given in [3], add several new conditions
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0 ≤ x ≤ 1
y = 0

0 ≤ y ≤ 1
x = 0

a1, y ∈ [0; 1]/x := 0

b1, x ∈ [0; 1]/y := 0

b2, x ∈ [0; 1], y := 0 a2, y ∈ [0; 1], x := 0

Fig. 2. The closed region-split version of A4

and modify those concerning initial states. A timed automaton is in region-split
form if

B1. For every location q ∈ Q a unique region rq (called its entry region) exists,
such that the set of clock values with which q is entered is exactly rq.

B2. The guard g of every transition δ = (q, g, R, q′) ∈ E is just one region.
B3. All the states of entry regions (and only these states) are both initial and

final.
B4. For any location there exists a path leading to some cycle and a path coming

from some cycle.
B5. For every transition δ its guard g has no constraints of the form x = c in

its definition.
B6. The labeling function on edges is identity (and so every two distinct edges

have different labels).

Proposition 1. Given a right resolving TA A with bounded clocks and all states
initial and final, one can construct an automaton RS(A) called the region-split
automaton of A which satisfies B1 − B6 and such that H(RS(A)) = H(A).
In the following, we replace w.l.o.g. for the computing of H, A by RS(A) obtained
from RS(A) by taking non-strict inequalities instead of strict ones.

Proposition 2. For region split automata:

– words, paths, and region paths are in natural bijection;
– volume of any path is less or equal to 1;
– every path of consecutive edges has a non empty and non punctual language.

As for our running examples, A1,A2,A3 are already region split automata.
RS(A4) is depicted in Fig. 2.

3.2 Paths and Polytopes

Let us describe languages associated with paths as polytopes in IRn, following [18].

Contiguous polytopes. Let Tn = {t1, . . . , tn} be an ordered set of real variables
bounded by M. A sum Sj..k =

∑k
i=j ti is called a contiguous sum (of length

k − j + 1). A temporal inequality is a constraint of the form Sj..k ∈ [A, B] where
A, B ∈ IN, A ≥ 0 and B ≤ M . A contiguous polytope is a bounded subset of
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IRn which is composed by all the points satisfying a conjunction of temporal
inequalities. We say that the polytope is d-contiguous if the length of all sums
in the inequalities is bounded by d.

Proposition 3. For each path π ∈ E∗, L(π) is a contiguous polytope.

The inequality
∑k

i=j ti ∈ [A, B] comes from testing the guard x ∈ [A, B] during
the kth transition, provided that the last reset of x took place in the jth tran-
sition. The subclass of d-contiguous polytopes corresponds to automata with
progress cycle condition, where the number of transitions between two resets is
bounded by d.

Given a polytope P , we denote by NP its N -fold dilated copy, i.e. {Nt | t ∈
P} and by E(P) = P ∩ ZZn the set of points with integer coordinates in P . A
contiguous polytope is said to be N -fat if there exists an integer point in the
interior of NP (called an internal point): E(int(NP)) �= ∅.

3.3 Point to Point Reachability: Algebraic Characterization

In this section, we characterize the relation Reach(π̄) in terms of an algebraic ob-
ject: monoid of orbit graphs. Our analysis is less detailed than those in [10,11,16]
and follows the lines of [19].

For a closed region r, let us denote by V (r) = {S1, . . . , Sp} its vertices.
Any point x in the region is uniquely described by its barycentric coordinates
λ1, . . . , λp, i.e. nonnegative numbers such that

∑p
i=1 λi = 1; x =

∑p
i=1 λiSi.

Given two regions r and r′, we call orbit graph any graph G with vertices
V (r)

⊎
V (r′) if r and r′ are different and V (r) otherwise, and with edges going

from V (r) to V (r′). Informally, an edge from S to S′ means that the clock vector
at the vertex S can reach the clock vector at S′ along some transition or path.

Orbit graphs compose in the natural way: for G1 on regions r1 and r′1, and
G2 on regions r2 and r′2, their product G = G1 ·G2 is defined if r′1 = r2. In this
case, G is an orbit graph on r1 and r′2. There is an edge from S to S′′ in G if
and only if there exists S′ such that (S, S′) and (S′, S′′) are edges of G1 and G2.
Whenever r′1 �= r2, we put G1 · G2 equal to some special (absorbing) element
0. The set G of orbit graphs, augmented with 0 and a neutral element 1 has a
structure of finite monoid.

An orbit graph G can be represented by its adjacency matrix M of size |V (r)|×
|V (r′)|. Products in the monoid of orbit graphs are easy to compute using matri-
ces: M(G1G2) = M(G1) ⊗ M(G2) where the “product” ⊗ is defined by

(A ⊗ B)ij = max
k

min(Aik, Bkj).

There exists a natural morphism γ : E∗ → G from paths to orbit graphs defined
as follows. For a transition e between r and r′, we define the orbit graph γ(e)

on r and r′ with edges {(S, S′) ∈ V (r) × V (r′) | ∃t, S
(e,t)−−−→ S′}. For a path

π = e1 . . . en, we define γ(π) = γ(e1) . . . γ(en) (it will be called the orbit graph
of the path π). For the empty path we have γ(ε) = 1, and for any non-consecutive
path γ(π) = 0.
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For example, the orbit graphs of cycles ab and ba of A3 and A4 are complete,
the orbit graphs of the other running examples are given in Fig. 3.

The orbit graph is crucial for reachability analysis.

Proposition 4. The orbit graph of a path γ(π) determines its reachability re-
lation Reach(π̄). In particular, γ(π) is complete iff Reach(π̄) = r× r′, or equiv-
alently iff Reach(int(π)) = r × r′.

The proof of the first criterion is based on the following remarkable characteri-
zation of Reach(π̄) in terms of the orbit graph due to Puri [19].

Lemma 2. 4 Let x and x′ be two clock vectors with barycentric coordinates
λ and λ′. Then (x, x′) ∈ Reach(π̄) iff there exists a stochastic matrix P �
M(γ(π)), such that λP = λ′.

Here matrix “inequality” A � B means that Bij = 0 ⇒ Aij = 0 for all i, j.

Adding clock resets. For future use, we must enrich the monoid of orbit graphs
by adding information on clock resets. Elements of the monoid M are couples
(orbit graph, subset of clocks) (and also, as before, two special elements 0,1),
the product rule is:

(G1, X) · (G2, Y ) =
{

(G1 · G2, X ∩ Y ), if G1 · G2 �= 0
0, otherwise.

For each π ∈ E∗ we denote by ν(π) the set of clocks not reset along the path π.
We define a morphism μ : E∗ → M as follows: μ(π) = (γ(π), ν(π)).

Idempotents. An idempotent of a monoid is an element m such that m ·m = m.
Every finite monoid contains an idempotent. In our case, an idempotent orbit
graph is always associated to a cyclic path, it is a graph G equal to its transitive
closure G+ = ∪n∈IN+Gn.

4 The Thin-Thick Alternative and Its Consequences

In this central section, we characterize thin and thick paths and languages, based
on a new notion of a forgetful cycle.

4.1 Forgetful Cycles, and the Others

After reading a timed path π × t from a state s0, the reached state s depends
only on s0 and on the delays t. We will say that π is forgetful if s and s0 are
independent, i.e. all the following equivalent conditions hold: Reach(int(π)) =
r × r′, Reach(π̄) = r̄× r̄′, γ(π) is complete.

If a cycle is non-forgetful, and moreover its orbit graph is not strongly con-
nected, then it is possible to find a linear Lyapunov function:
4 An intuition behind this lemma could be as follows. A clock vector with barycentric

coordinates λ in a region can be seen as a probabilistic distribution over vertices
of this region (with probabilities λ). The lemma says that this distribution, at each
cycle, evolves exactly as in some Markov chain.
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λ1 λ2 λ1 λ3
0.6

10.3

λ2

0.2
0.8 0.1

I

I

Fig. 3. Two non strongly connected orbit graphs, the first one is the orbit graph of the
cycle of A1, of the cycle ab of A2 and of the cycles a and b of A4. States move from initial
SCC I to final one. By choosing the convex combination of paths given by the Markov
chain on the second orbit graph we pass from state (λ1 = 0.2, λ2 = 0.5, λ3 = 0.3) to
state (λ′

1 = 0.46, λ′
2 = 0.02, λ′

3 = 0.52). The sum λ1 + λ2 can only decrease.

Lemma 3. For a cycle π, if γ(π) is not strongly connected then there exists
a non empty I � {1, . . . , p} such that

∑
i∈I λ′

i ≤
∑

i∈I λi whenever (x, x′) ∈
Reach(π̄), where λ and λ′ stand for barycentric coordinates of x and x′.

In this lemma, as before, {1, . . . , p} are indices of the vertices of the region where
π starts (and ends).

In fact I corresponds to an initial strongly connected component (SCC) of the
orbit graph, i.e. an SCC without incoming edges from other SCC. According to
the lemma, the state moves from the facet spanned by I towards other vertices
of the region and cannot come back.

Comparing to other types of cycles. Two other kinds of cycles are often con-
sidered in the literature: in a progress cycle each clock should be reset at some
edge; in a synchronizing cycle all the clocks are reset along one and the same
edge of the cycle.

Proposition 5. progress cycles � forgetful cycles � synchronizing cycles.

A remark is in order, in most works using progress or synchronizing cycles, all
the cycles are required to be like that. In our work, existence of a forgetful
cycle appears naturally in “non degenerate” (i.e. thick) automaton.

The condition of progress cycle can be seen as a weaker kind of forgetting:
the state after such a cycle is exactly determined by the delays (see following
lemma). Nevertheless the orbit graph of a progress cycle can be not strongly
connected (e.g. cycle ab of A2 depicted in Fig. 3); in that case starting states
and ending states are still dependent.

Lemma 4. If all clocks have been reset during reading of π × (t1, . . . , tm) then
for all non empty I � {1, . . . , p}, there exists α1 . . . αm ∈ {−p, . . . , p} and an
integer constant C such that

∑
i∈I λi = C +

∑m
j=1 αjtj. Moreover one of the αj

is not zero.
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4.2 Pumping Lemma for Long Thick Paths

For a given real η > 0, we say that a path π is η-thick if Vol(L(π)) ≥ η|π|. The
following “pumping lemma” will play the key role in characterization of thick
languages below and can be interesting by itself.

Theorem 1. For every timed automaton A and every η > 0, there exists Nη

such that any η-thick path longer than Nη contains a forgetful cycle.

The rest of this section is devoted to the proof of this result.
Elements of the monoid M associated to forgetful cycles will be referred to

as forgetful, they are idempotent. We will first see how repeating a non forgetful
idempotent induces a subexponential volume (like the simplex example), then
we will use Simon’s theorem on factorization forests to factorize paths and find
some repeated idempotent. Absence of forgetful cycles in a path will then imply
thinness.

Proposition 6. Let π1, . . . , πk be k cycles of E∗ such that μ(π1), . . . , μ(πk) are
all equal to a same non forgetful idempotent of M, then Vol(L(π1 . . . πk)) ≤
Mn−k

k! where n = |π1| + · · · + |πk|.

Proof. If G is an idempotent orbit graph (thus equal to its transitive closure),
G is complete if and only if G is strongly connected. Thus we will distinguish
two disjoint kinds of non forgetful idempotents, those associated to non progress
cycles and those associated to progress cycles with non strongly connected orbit
graphs. In the former case a clock is not reset all along the path π1 . . . πk, thus
L(π1 . . . πk) is in a simplex of type 1 and the volume satisfies the inequality to
prove. In the latter case, we use Lem. 3,4, and Cor. 1. ��

A factorization forest of a word π is an unranked labeled tree with leaves labeled
by the letters of π, with root labeled by π and with two types of internal nodes:

– binary node labeled by a word π1 ·π2 with two children labeled by the words
π1 and π2;

– idempotent node labeled by a word π1 . . . πk with all μ(πi) equal to a same
idempotent and with children labeled by the words π1, . . . , πk.

Theorem (Simon [20]). If μ is a morphism from E∗ to a finite monoid M,
then every word admits a factorization forest of height at most h(M) = 9|M|.

We suppose that there are no forgetful cycles on a long path π and consider
its factorization forest of height at most h(M). When its length n grows up,
the number of leaves also grows and since the height is bounded, branching of
nodes must get larger and larger. These hugely branched nodes are idempotent
and satisfy hypotheses of Lem. 6, thus their volume is very small, which implies
that Vol(L(π)) is also small. The Prop. 7 below quantifies this “smallness” of
Vol(L(π)) as function of the length of π and height of its factorization forest,
and Thm. 1 follows immediately from this proposition.
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Let LVol be the function defined on paths by LVol(π) = log2 Vol(L(π)).
This function is subadditive and non-positive, i.e. LVol(π1 · π2) ≤ LVol(π1) +
LVol(π2) ≤ 0. Let L(n, h) be the maximum of LVol(π) over paths π of length
n that do not contain forgetful idempotents and admit a factorization forest of
height at most h.

Proposition 7. For any height h, for any C < 0, there exists Nh,C ∈ IN such
that for all n > Nh,C the inequality L(n, h) ≤ Cn holds.

Proof. We will define Nh,C by induction on the height h. Let a be a factorization
forest of height h with n leaves. We consider all the children of the root and their
subtrees (all these subtrees have heights ≤ h − 1), and distinguish two disjoint
cases:

1. There are more than k = n
2Nh−1,2C

subtrees having less than Nh−1,2C leaves.
2. There are less than k = n

2Nh−1,2C
subtrees with less than Nh−1,2C leaves. Here

the juicy part (sons with enough leaves to satisfy induction hypothesis) has
more than n

2 leaves.

In the first case: root is an idempotent node and we can apply Lem. 6:

LVol(π) ≤ (n − k) log2(M) − log2(k!) ≤ nC for n large enough.

In the second case: LVol(π) ≤
∑k

i=1 L(ni, hi) ≤
∑

ni≥Nh−1,2C
L(ni, hi). We apply

the induction hypothesis:

LVol(π) ≤ 2C
∑

ni≥Nh−1,2C

ni ≤ 2C
n

2
≤ nC (recall that C is negative). ��

To conclude the proof of Thm. 1, given η > 0, let C = log2 η and h = h(M) the
bound on height of factorization forest. Using Prop. 7, we obtain that a path
longer than Nh,C without forgetful idempotents cannot be η-thick. ��

4.3 Characterizing Thick Languages

We are ready to describe thick languages now.

Theorem 2. For a right resolving timed automaton in region split form the
following conditions are equivalent and define thick languages:

1. H > −∞;
2. there exists a forgetful cycle;
3. there exists a strong limit cycle;
4. there exists an ε-discrete strong limit cycle with ε > 0.

Equivalence between 3 and 4 can be found in [16]. 2 ⇒ 3 is straightforward.
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Proof of 4 ⇒ 1. There exist q0, . . . , qd−1, x0, . . . , xd−1, π ∈ Ed, u1, . . . , ud ∈
{ε, 2ε, . . . , M − ε} such that (q0, x0)

(u1,w1)−−−−−→ (q1, x1) . . .
(ud,wd)−−−−−→ (q0, x0) along

π and all the xi are not on the frontier of regions and have discrete coordinates.
First we can see that all clocks have been reset at least once because any non-
reset clock would augment during the run, which contradicts its cyclicity. Then
for each n ∈ IN∗ the language L(πn) is a d-contiguous polytope with equation of
the form A ≤

∑k
i=j ti ≤ B. Extending u periodically permits to have a word in

L(πn) such that A + ε ≤
∑k

i=j ui ≤ B − ε. Taking ti ∈ [ui − ε
d , ui + ε

d ] defines
a hypercube included in L(πn) whose volume is therefore greater than (2ε

d )nd.
Then H(A) ≥ log2

2ε
d > −∞. ��

Proof of 1 ⇒ 2. We notice first that a thick language contains long thick paths.

Lemma 5. If H > −∞, there exists η > 0 such that for all n big enough, there
exists an η-thick path of length n.

Proof. Let β = 2H−1. For n large enough Vol(Ln) ≥ βn. Let πn,max be the path
of En of maximal volume, then Vol(Ln) ≤ Vol(L(πn,max))|E|n and so if we pose
η = β

|E| we have Vol(L(πn,max)) ≥ ηn. ��

Combining Lem. 5 with Thm. 1 we find a required forgetful cycle. ��

4.4 Thin and Thick SCC

The theory developed above can be refined using a decomposition of A into
strongly connected components (SCC) A1,A2, . . . ,Ak.

Proposition 8. Volumetric entropy of A equals the maximal volumetric entropy
of its SCC. In particular, A is thin iff so are all the subautomata Ai.

It is easy to see that long and thick paths spend most of the time in thick SCC.

Theorem 3. For every timed automaton A and every η, α > 0, there exists
Nη,α such that for any η-thick path of length n > Nη,α at most nα states belong
to thin SCC.

5 Entropies of Thick Languages

In this section, we apply the results of the previous section to show that in thick
automata, volumes and entropies can be computed with a good precision using
discretization.

Theorem 4. For a thick strongly connected automaton A in region split form,
the discrete and the volumetric entropies are related as follows5:

hε = log2

1
ε

+ H + o(1).

5 It can be proved that o(1) is in fact O
(
ε1/3

(
log2

1
ε

)2/3
)

.
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Proof (≥ direction). To bound the volume of Ln by the number of discrete
points, we will use a beautiful theorem on counting points in polytopes:

Theorem (Ehrhart, see [8]). For integer N and an integer polytope P ⊂
IRn (i.e. whose vertices have integer coordinates), the number of integer points
|E(NP)| is a polynomial in N with non negative coefficients of degree n and
whose coefficient of the highest degree is the volume.

We deduce directly from this theorem that for each path π of length n and ε = 1
N

the following holds: Vol(L(π))Nn ≤ |E(NL(π))| = |Lε(π)|. Summing over all
words of length n and taking limn→∞

1
n log2, we obtain that H+log2

1
ε ≤ hε. ��

Proof (≤ direction of Thm. 4).
Upper bounding hε by H + log2

1
ε + o(1) is more involved, and we give only

a sketch of proof. We fix several integer parameters: a, b, c, d, e (they have to be
adjusted in order to obtain the required estimate). Let π be a path of a length
n > a. At every b transitions, we insert in π a forgetful cycle of length c (it exists
by virtue of Thm. 2, and can be made of the same fixed length everywhere for
an appropriate choice of c). Thus we obtain a slightly longer path π′ (its length
is n′ ≈ n(1 + c/b)), satisfying two additional conditions:

– every clock is reset at least every 2d transitions (and thus L(π′) is 2d-
contiguous polytope);

– the polytope L(π′) is e-fat.

We have three inequalities:

1. The first one:
|Lε(π)| ≤ |Lε(π′)|

can be proved by constructing an injection from the left-hand side discrete
language to the right-hand side one.

2. We choose ε′ slightly smaller than ε (another parameter to adjust) and con-
sider the polytope L− obtained from L(π′) by pushing all its facets inside
by the amount δ = ε′d 6. Using fatness of L(π′), it is possible to build an
injection from its ε-discrete points to ε′-discrete points of L− (the latter is
a bit smaller but its discrete points are slightly denser).

|Lε(π′)| ≤
∣∣L−

ε′
∣∣ .

3. Taking an ε′-cube at every ε′-discrete point of L−, we get a set included in
L(π′) (this requires 2d-contiguity of L(π′)). Passing to volumes we conclude
that

ε′
n′ ∣∣L−

ε′
∣∣ ≤ Vol(L(π′)).

6 i.e. by replacing each constraint Sj..k ∈ [A,B] in the definition of L(π′) as a contigu-
ous polytope by Sj..k ∈ [A+ δ,B − δ] (see [4]).
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Combining the three inequalities we get:

|Lε(π)| ≤
(
ε′−n′

Vol(L(π′))
)

,

and with an appropriate choice of parameters, ε′ and n′ can be made very close to
ε and n. Summing up over π and taking limn→∞

1
n log2 in the previous inequality,

we obtain the required result. ��

Corollary 2. For right resolving TA with bounded clocks, H(A) is computable
as function of A. Consequently, H(A) is a computable real (i.e. one can compute
its approximation with any wanted precision).

Proof. First compute RS(A). Then compute by fixpoint method the submonoid
of orbit graphs γ(E∗) ⊂ G and see whether there is a complete graph. If there
is none, the automaton is thin and H = −∞. Otherwise, the automaton is thick
and it just remains to compute the discrete entropy of Lε(RS(A)) for the wanted
precision (similarly to [4]). ��

6 Conclusion and Future Work

We have identified the class of thick timed automata (those with non-vanishing
language volume). Most runs in such automata are thick and exhibit a nice
behavior, they spend most of the time in thick strongly connected components
(Thm. 3) and visit from time to time forgetful cycles (Thm. 1). Thick runs are
captured (both qualitatively and quantitatively) by ε-discretized automata.

We believe that the notions of thick languages and forgetful cycles will be
useful in the operator approach to volume and entropy of [3] and will imply
some good properties of operators associated to these forgetful cycle. Similarly,
we believe that thickness hypothesis is exactly what is needed for the analysis of
probabilistic timed systems in the spirit of [9] but for an unbounded time horizon.
Another direction of future work is to extend the thin-thick dichotomy to the
case of punctual paths and to find when the two size measures of [5] are defined.
We hope also to relate thinness with the notion of mean topological dimension
[17]. In the verification context, we believe that when analyzing a thick timed
automaton, it suffices to check that the thick paths satisfy the specification,
while thin ones can violate it.

Acknowledgements. The authors are thankful to Thomas Colcombet for a key
advise: to use Simon factorization forests, and to Dominique Perrin and Aldric
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1 Aalborg University, Denmark
kgl@cs.aau.dk

2 INRIA Rennes, France
axel.legay@irisa.fr

3 IT University of Copenhagen, Denmark
{lmtr,wasowski}@itu.dk

Abstract. Specification theories for real-time systems allow to reason about in-
terfaces and their implementation models, using a set of operators that includes
satisfaction, refinement, logical and parallel composition. To make such theories
applicable throughout the entire design process from an abstract specification to
an implementation, we need to be able to reason about possibility to effectively
implement the theoretical specifications on physical systems. In the literature,
this implementation problem has already been linked to the robustness problem
for Timed Automata, where small perturbations in the timings of the models are
introduced. We address the problem of robust implementations in timed specifi-
cation theories. Our contributions include the analysis of robust timed games and
the study of robustness with respect to the operators of the theory.

1 Introduction

For long, software engineers have practiced component-oriented software construc-
tion, building systems from modules that only depend on each other in well specified
ways. Foundational research follows up by developing trustworthy rigorous methods
for component-oriented design. In concurrency theory this includes compositional de-
sign (specification theories, stepwise-refinement) and compositional model checking.
Akin to algebraic specifications, specification theories provide a language for specify-
ing component interfaces together with operators for combining them, such as parallel
(structural) composition and conjunction (logical composition).

Specification theories integrate prior results to provide a uniform design method. In
[10], we have proposed the first complete specification theory for timed systems. We
build on an input/output extension of the classical timed automata model—inputs are
used to represent behaviors of the environment and outputs represent the behavior of
the component. The theory is equipped with a game-based semantic, which is used to
define all the good operations for such specification theory, including satisfaction (can
a specification be implemented), refinement (how to compare specifications), logical
composition (computing the intersection of two sets of implementations), structural
composition (building large components from smaller ones), and quotient (synthesizing
a component in a large design).

The theory in [10] is equipped with a consistency check that allows to decide whether
a specification can indeed be implemented. Unfortunately, this check does not take
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imprecision of the physical world into account, that is consistency can be used to synthe-
size an implementation that may be not robust with respect to variations of the environ-
ment. In practice, one would want to guarantee that a perturbation of the implementation
still matches the requirements of the specification. Providing a solution to this problem
in the setting of timed I/O specifications is our objective in this paper.

Our contributions include:

– We propose a notion of implementation of a specification that is robust with respect
to a given perturbation in the delay before an action. Such perturbation is fixed in
advance, which is a reasonable assumption as sensitivity with respect to perturba-
tion of the environment is generally given in the description of the component that
is provided by the manufacturer. The concept of robust implementation is lifted
to a robust satisfaction operation that takes variations of timed behaviors into ac-
count when checking whether the implementation matches the requirement of the
specification.

– We propose a consistency check for robust satisfaction. This new check relies on
an extension of the classical timed I/O game to the robust setting. In [9], Chatterjee
et al. showed that problems on robust timed games can be reduced to classical
problems on an extended timed game. We modify the original construction of [9]
to take the duality of inputs and outputs into account. Then, we show how our new
game can be used to decide consistency in a robust setting as well as to synthesize
a robust implementation from a given specification.

– Finally, classical compositional design operators are lifted to the robust setting. One
of the nice features of our approach is that this does not require to modify the defini-
tions of the operators themselves and that all the good properties of a specification
theory (including independent implementability) are maintained.

To the best of our knowledge, this paper presents the first complete theory for robust
timed specification. While the presentation is restricted to the theory of [10], we believe
that the approach works for any timed specifications. Our experience with industrial
projects shows that such realistic design theories are of clear interest [15,16,4].

State of The Art. None of the existing specification theories for timed systems allows
for the treatment of robustness.

Various works have considered robustness for timed automata using logical formulas
as specifications (and neglecting compositional design operators). The robust semantics
for timed automata with clock drifts has been introduced by Puri [14]. The problem has
been linked to the implementation problem in [18], which introduced the first seman-
tics that modeled the hardware on which the automaton is executed. In this work, the
authors proposed a robust semantics of Timed Automata called AASAP semantics (for
“Almost As Soon As Possible”), that enlarges the guards of an automaton by a delay Δ.
This work has been extended in [17] that proposes another robust semantics with both
clock drifts and guard enlargement. Extending [14] they solve the robust safety prob-
lem, defined as the existence of a non-null value for the delays. They show that in terms
of robust safety the semantics with clock drifts is just as expressive as the semantics
with delay perturbation. We extend the work of [18,17] by considering compositional
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design operators, stepwise-refinement, and reasoning about open systems (only closed
system composition were considered so far).

We solve games for consistency and compatibility using a robust controller synthesis
approach largely inspired by Chatterjee et al. [9], who provide synthesis techniques for
robust strategies in games with parity objectives. Driven by the fact that consistency and
compatibility are safety games, we restrict ourselves to safety objectives, but we extend
[9] by allowing negative perturbation of delays.

We proceed by introducing the background on Timed Specifications (Section 2). In
Section 3 we introduce methods for solving robust time games that arise in our spec-
ification theory. These methods are used in Sections 4–5 to reason about consistency,
conjunction, parallel composition and synthesis of specifications and robust implemen-
tations of real time components.

2 Background on Timed I/O Specifications

We now recall the definition of Timed I/O specifications [10]. We use Z (respectively
N) for the set of all integer numbers (resp. non-negative integers), R for the set of all
real numbers, and R≥0 (resp. R>0) for the non-negative (resp. strictly positive) subset
of R. Rational numbers are denoted by Q, and their subsets are denoted analogously.
For x ∈ R≥0, let x� denote the integer part of x and 〈x〉 denote its fractional part.

In the framework of [10], specifications and their implementations are semantically
represented by Timed I/O Transition Systems (TIOTS) that are nothing more than timed
transition systems with input and output modalities on transitions. Later we shall see
that input represents the behaviors of the environment in which a specification is used,
while output represents behaviours of the component itself.

Definition 1. A Timed I/O Transition System is a tuple S = (StS, s0, Σ
S,→S), where

StS is an infinite set of states, s0∈StS is the initial state, ΣS =ΣS
i ⊕ ΣS

o is a finite set
of actions partitioned into inputs ΣS

i and outputs ΣS
o , and →S : StS×(ΣS ∪R≥0)×StS

is a transition relation. We write s
a−→Ss′ when (s, a, s′) ∈→S and use i?, o! and d to

range over inputs, outputs and R≥0, respectively.

In what follows, we assume that any TIOTS satisfies the following conditions:

– time determinism: whenever s
d−→Ss′ and s

d−→Ss′′ then s′ = s′′

– time reflexivity: s
0−→Ss for all s ∈ StS

– time additivity: for all s, s′′ ∈ StS and all d1, d2 ∈ R≥0 we have s
d1+d2−−−−→Ss′′ iff

s
d1−→Ss′ and s′

d2−→Ss′′ for an s′ ∈ StS

A run ρ of a TIOTS S from its state s1 is a sequence s1
a1−→Ss2

a2−→S . . .
an−−→Ssn+1 such

that for all 1 ≤ i ≤ n si
ai−→Ssi+1. We write Runs(s1, S) for the set of runs of S starting

in s1 and Runs(S) for Runs(s0, S). We write States(ρ) for the set of states reached in
ρ, and if ρ is finite last(ρ) is the last state occurring in ρ.

A TIOTS S is deterministic iff ∀a ∈ ΣS ∪ R≥0, whenever s
a−→Ss′ and s

a−→Ss′′,
then s′ = s′′. It is input-enabled iff each of its states s ∈ StS is input-enabled: ∀i? ∈
ΣS

i . ∃s′ ∈ StS . s
i?−→Ss′. We say that S is output urgent iff ∀s, s′, s′′ ∈ StS if s

o!−→Ss′
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and s
d−→Ss′′ then d = 0. Finally, S verifies the independent progress condition iff either

(∀d ≥ 0.s
d−→S) or (∃d ∈ R≥0.∃o! ∈ ΣS

o .s
d−→Ss′ and s′

o!−→S).
TIOTS are syntactically represented by Timed I/O Automata (TIOA). Let X be a

finite set of clocks. A clock valuation over X is a mapping X  → R≥0 (thus RX
≥0).

Given a valuation u and d ∈ R≥0, we write u+d for the valuation in which for each
clock x ∈ X we have (u+d)(x) = u(x)+d. For Y ⊆ X , we write u[Y  → 0] for a
valuation agreeing with u on clocks in X \ Y , and giving 0 for clocks in Y .

Let C(X) denote all clock constraints ϕ generated by the grammar ψ ::= x ≺
k | x−y ≺ k | ψ∧ψ, where k ∈ Q, x, y ∈ X and ≺∈ {<,≤, >,≥}. For ϕ ∈ C(X)
and u ∈ RX

≥0, we write u |= ϕ if u satisfies ϕ. Let �ϕ� denote the set of valuations
{u∈RX

≥0 | u |= ϕ}. A subset Z ⊆ RX
≥0 is a zone if Z = �ϕ� for some ϕ ∈ C(X).

Definition 2. A Timed I/O Automaton is a tuple A = (Loc, q0, Clk, E, Act, Inv), where
Loc is a finite set of locations, q0 ∈ Loc is the initial location, Clk is a finite set of clocks,
E ⊆ Loc×Act×C(Clk)× 2Clk ×Loc is a set of edges, Act = Acti ⊕Acto is a finite set
of actions, partitioned into inputs (Acti) and outputs (Acto), Inv : Loc  → C(Clk) is a set
of location invariants. Without loss of generality we assume that invariants of a location
are always included in the guards of the edges that are incident with the location. We
also assume that guards are satisfiable (for any guard ϕ the set �ϕ� is non-empty).

A universal location, denoted lu, in a TIOA accepts every input and can produce every
output at any time. Location lu models an unpredictable behavior of a component.

The semantics of a TIOAA=(Loc, q0, Clk, E, Act, Inv) is a TIOTS �A�sem = (Loc×
RClk

≥0, (q0,0), Act,→), where 0 is a constant function mapping all clocks to zero, and →
is the largest transition relation generated by the following rules:

– Each edge (q, a, ϕ, λ, q′) ∈ E gives rise to (q, u) a−→(q′, u′) for each clock valuation
u ∈ RClk

≥0 such that u |= ϕ and u′ = u[λ  → 0] and u′ |= Inv(q′).
– Each location q ∈ Loc with a valuation u ∈ RClk

≥0 gives rise to a transition (q, u) d−→(q,
u + d) for each delay d ∈ R≥0 such that u + d |= Inv(q).

Since TIOTSs are infinite size they cannot be directly manipulated by computations.
Usually symbolic representations, such as region graphs [3] or zone graphs, are used
as data structures that finitely represent semantics of TIOAs. Let M be the greatest (in
absolute value) integer constant that appears in the guards of a TIOA1. A clock region
is an equivalence class of the relation ∼ on clock valuations such that u ∼ v iff the
following conditions hold:

– ∀x∈Clk, either u(x)� = v(x)�, or u(x) > M and v(x) > M ,
– ∀x, y∈Clk, ∀c ∈ [−M, M ], u(x) − u(y)≤c iff v(x) − v(y) ≤ c,
– ∀x∈Clk if u(x) ≤ M then 〈u(x)〉 = 0 iff 〈v(x)〉 = 0,

We write r↗ for the direct time successor of the region r, if such exists. The region
graph of a TIOA A is G = (RA,−→G), whereRA = {(q, r) | ∃(q, u) ∈ St�A�sem . u ∈ r}
is the set of regions, and −→G ⊆ RA × (Act ∪ {τ}) ×RA, such that (q, r) τ−→G(q, r↗)
iff r↗|= Inv(q), and (q, r) a−→G(q′, r′) iff (q, u) a−→(q′, u′) for some u ∈ r and u′ ∈ r′.

1 The region graph of an automaton with rational constants can be built by multiplying all con-
stants of the automaton to work only with integers.
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Fig. 1. TIOAs of a specification and an implementation for a researcher

Basics of the Timed Specification Theory. In [10], timed specifications and implemen-
tations are both represented by TIOAs satisfying additional conditions:

Definition 3. A specification S is a TIOA whose semantics �S�sem is deterministic and
input-enabled. An implementation I is a specification whose semantics �I�sem addition-
ally verifies the output urgency and the independent progress conditions.

Example 1. Figure 1a presents a specification of a researcher. It accepts either coffee
(coff) or tea in order to produce publications (pub). If tea is served after a too long
period the researcher falls into an error state represented by a universal state lu. An indi-
vidual researcher is an implementation of this specification. One example is presented
in Figure 1b.

In specification theories, a refinement relation plays a central role. It allows to com-
pare specifications, and to relate implementations to specifications. In [10], as well as
in [1,2,7], refinement is defined in the style of alternating (timed) simulation:

Definition 4 (Refinement). An alternating timed simulation between TIOTS S =(StS, s0,
ΣS,→S) and T =(StT, t0, ΣT,→T ) is a relation R ⊆ StS × StT such that (s0, t0) ∈ R
and for every (s, t) ∈ R

– If t
i?−→T t′ for some t′ ∈ StT , then s

i?−→Ss′ and (s′, t′) ∈ R for some s′ ∈ StS

– If s
o!−→Ss′ for some s′ ∈ StS , then t

o!−→T t′ and (s′, t′) ∈ R for some t′ ∈ StT

– If s
d−→Ss′ for d ∈ R≥0, then t

d−→T t′ and (s′, t′) ∈ R for some t′ ∈ StT

We write S ≤ T if there exists an alternating simulation between S and T . For two
TIOAs S and T , we say that S refines T , written S≤T , iff �S�sem ≤ �T �sem.

Definition 5 (Satisfaction). An implementation I satisfies a specification S, denoted
I sat S, iff �I�sem ≤ �S�sem. We write �S�mod for the set of all implementations of S,
so �S�mod = {I | I sat S and I is an implementation}.

The reader might find it surprising that in a robust specification theory we refrain from
adjusting the refinement to account for imprecision of implementations when comparing
specifications. Our basic assumption is that specifications are precise mathematical ob-
jects that are not susceptible to imprecision of execution. In contrary, implementations
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can behave imprecisely when executed, so in Section 3 we will introduce an extension
of Def. 5 that takes this into account. It is a fortunate property of Def. 4 that we do not
need to modify it in order to reason about robust implementations (Property 3 in Sect. 3).

In [10], we have reduced refinement checking to finding winning strategies in timed
games. In the reminder of this section, we recall the definition of such games and show
how they can be used to check consistency. Timed games also underly other opera-
tions such as conjunction, composition, and quotient [10], which will be illustrated in
Sect. 4–5.

Timed Games for Timed I/O Specifications. TIOAs are interpreted as two-player real-
time games between the output player (the component) and the input player (the en-
vironment). The input plays with actions in Acti and the output plays with actions in
Acto. A strategy for a player is a function that defines her move at a certain time (either
delaying or playing a controllable action). A strategy is called memoryless if the next
move depends solely on the current state. We only consider memoryless strategies, as
these suffice for safety games. For simplicity, we only define winning strategies for the
output player (i.e. output is the verifier). Definitions for the input player are obtained
symmetrically.

Definition 6. A memoryless strategy f for the output player on the TIOA A is a function
St�A�sem  → Acto ∪ {delay}, such that whenever f(s) ∈ Acto then s

f(s)−−→s′ for some s′,
and whenever f(s) = delay then s

d−→s′′ for some d > 0 and state s′′.

The restricted behavior of the TIOA when one player applies a specific strategy is de-
fined as the outcome of the strategy.

Definition 7. Let A be a TIOA, f a strategy over A for the output player, and s a state
of �A�sem. The outcome Outcomeo(s, f) of f from s is the subset of Runs(s, �A�sem)
defined inductively by:

– s ∈ Outcomeo(s, f),
– if ρ ∈ Outcomeo(s, f) then ρ′ = ρ

a−→s′ ∈ Outcomeo(s, f) if ρ′ ∈ Runs(s, �A�sem)
and one the following conditions hold:
1. a ∈ Acti,
2. a ∈ Acto and f(last(ρ)) = a,
3. a ∈ R≥0 and ∀d ∈ [0, a[.∃s′′.last(ρ) d−→s′′ and f(s′′) = delay.

– ρ ∈ Outcomeo(s, f) if ρ infinite and all its finite prefixes are in Outcomeo(s, f).

A winning condition for a player in the TIOA A is a subset of Runs(�A�sem). In safety
games the winning condition is to avoid a set Bad of “bad” states (without lost of gener-
ality we assume these “bad” states correspond to a set of entirely “bad” locations). For-
mally, the winning condition is WSo(Bad) = {ρ ∈ Runs(�A�sem) | States(ρ) ∩ Bad =
∅}. A strategy f for output is winning from state s if Outcomeo(s, f) ⊆ WSo(Bad). A
state s is winning if there exists a winning strategy from s. The game (A, WSo(Bad)) is
winning if the initial state is winning. Solving this game is decidable [13,8,10].

Strategies can also be defined symbolically, using the region graph introduced in
the previous section. For a region (q, r), if f(q, r) = delay then (q, r) τ−→G(q, r↗),
and if f(q, r) ∈ Acto then ∃(q′, r′).(q, r) a−→G(q′, r′). An outcome of f is then a run
in the region graph, such that if ρ ∈ Outcomeo((q, r), f) then ρ′ = ρ

a−→(q′, r′) ∈
Outcomeo((q, r), f) if last(ρ) a−→G(q′, r′), and either a ∈ Acti, or a ∈ Acto and f(last(ρ))
= a, or a = τ and f(last(ρ)) = delay.
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Maximum Strategies in Timed Games as Operators on Timed Specifications. We sketch
how timed games can be used to establish consistency of a timed specifications.

An immediate error occurs in a state of a specification if the specification disallows
progress of time and output transitions in a given state—such a specification will break
if the environment does not send an input. For a specification S we define the set of
immediate error states errS ⊆ St�S�sem as:

errS =
{
s
∣∣ (∃d. s � d−→) and ∀d∀o! ∀s′. s

d−→s′ implies s′ � o!−→
}

It follows that no immediate error states can occur in implementations, since they ver-
ify independent progress. In [10] we show that S is consistent iff there exists a winning
strategy for output in the safety game (S, WSo(errS)). Moreover, the maximum consis-
tent part of S corresponds to the maximum wining strategy for output in this game.

Conjunction of two specifications is found as a maximal strategy for output in a
safety game on the product state space to avoid immediate errors. Similarly, optimistic
parallel composition of two specifications is computed as a maximum strategy for input
in a safety game over the product state space; and a quotient of two specifications is
found as a maximum strategy for output in another safety game. Optimistic composition
means that two specifications are compatible if there exists at least one environment, in
which they can avoid error states. Details can be found in [10].

3 Robust Timed I/O Specifications

We now define a robust extension of our specification theory. An essential requirement
for an implementation is to be realizable on a physical hardware, but this requires ad-
mitting small imprecisions characteristic for physical components (computer hardware,
sensors and actuators). The requirement of realizability has already been linked to the
robustness problem in [18] in the context of model checking. In specification theories
the small deficiencies of hardware can be reflected in a strengthened satisfaction re-
lation, which introduces small perturbations to the timing of implementation actions,
before they are checked against the requirements of a specification—ensuring that the
implementation satisfies the specification even if its behavior is perturbed.

We first formalize the concept of perturbation. Let ϕ ∈ C(X) be a guard over the set
of clocks X . The enlarged guard "ϕ#Δ is constructed according to the following rules:

– Any term xi ≺ ni of ϕ with ≺∈{<,≤} is replaced by xi ≺ ni+Δ
– Any term xi $ ni of ϕ with $∈{>,≥} is replaced by xi $ ni−Δ

Similarly, the restricted guard ϕ�Δ is using the two following rules:

– Any term xi ≺ ni of ϕ with ≺∈{<,≤} is replaced by xi ≺ ni−Δ
– Any term xi $ ni of ϕ with $∈{>,≥} is replaced by xi $ ni+Δ.

Notice that for a for a clock valuation u and a guard ϕ, we have that u |= ϕ implies
u |= "ϕ#Δ, and u |= ϕ�Δ implies u |= ϕ, and "ϕ#Δ�Δ = "ϕ�Δ#Δ = ϕ.
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Fig. 2. Δ-perturbation of the researcher implementation

Perturbed Implementation and Robust Timed I/O Specifications. We lift the perturba-
tion to implementation TIOAs. Given a jitter Δ, the perturbation means a Δ-enlargement
of invariants and of output edge guards. Guards on the input edges are restricted by Δ:

Definition 8. For an implementation I = (Loc, q0, Clk, E, Act, Inv) and Δ∈Q>0, the
Δ-perturbation of I is the TIOA IΔ = (Loc ∪ {lu}, q0, Clk, E′, Act, Inv′), such that:

– Every edge (q, o!, ϕ, λ, q′)∈E is replaced by (q, o!, "ϕ#Δ, λ, q′) ∈ E′,
– Every edge (q, i?, ϕ, λ, q′)∈E is replaced by (q, i?, ϕ�Δ, λ, q′) ∈ E′,
– Every invariant Inv(q) is replaced by Inv′(q) = "Inv(q)#Δ,
– ∀q∈Loc. ∀i?∈Acti. (q, i?, ϕu, ∅, lu)∈E′ with ϕu = ¬

∨
(q,i?,ϕ,λ,q′)∈Eϕ�Δ.

IΔ is not necessarily action deterministic, as output guards are enlarged. However it is
input-enabled, since by construction (the last case above), any input not accepted after
restricting input guards is redirected to the universal location lu. Also I0 equals I.

In essence, we weaken the constraints on output edges, and strengthen the constraints
on input edges. This is consistent with the game semantics of specifications: perturba-
tion makes the game harder to win for the verifier. Since the gaps created by strength-
ening input guards are closed by edges to the universal location, the implementation
becomes less predictable. If an input arrives close to the deadline, the environment can-
not be certain if it will be handled precisely as specified. Enlargement of output guards
has a similar effect. The environment of the specification has to be ready that outputs
will arrive slightly after the deadlines.

Such considerations are out of place in classical robustness theories for model check-
ing, but are crucial when moving to models, where input and output transitions are
distinguished. For example, in [18] the authors propose a robust semantics for timed
automata. Their maximal progress assumption is equivalent to the output urgency con-
dition of our implementations. However, in [18] both input and output guards are in-
creased, which is suitable for the one-player setting, but incompatible with the con-
travariant nature of two-player games. Such enlargement would not be monotonic with
respect to the alternating refinement (Def. 4), while the perturbation of Def. 8 is mono-
tonic.
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We are now ready to define our notion of robust satisfaction:

Definition 9. An implementation I robustly satisfies a specification S given a delay
Δ ∈ Q≥0, denoted I satΔ S, iff IΔ ≤ S. We write �S�Δ

mod for the set of all Δ-robust
implementations of S, such that �S�Δ

mod = {I | I satΔ S ∧ I is an implementation}.

Property 1. Let I be an implementation and 0 ≤ Δ1 < Δ2. Then I ≤ IΔ1 ≤ IΔ2 .

In addition, we obtain the following by transitivity of the refinement:

Property 2. Let S be a specification and Δ1 ≤ Δ2, then �S�Δ2
mod ⊆ �S�Δ1

mod ⊆ �S�mod.

Property 3. Let S and T be specifications and 0≤Δ, then S≤T =⇒ �S�Δ
mod ⊆�T �Δ

mod.

We now turn to the problem of deciding whether a specification is robustly consistent:

Definition 10. Let S be a specification and Δ ∈ Q>0, then S is Δ-robust consistent if
there exists an implementation I such that I satΔ S.

Like in the non-robust case, deciding consistency and performing operations on specifi-
cations are reducible to solving games. But now, we will need to make the games aware
of the robustness conditions. In the rest of this section, we propose a definition for such
games. Then, in Sections 4 and 5, we show how they can be used to perform classical
operations on specifications.

Example 2. Figure 2 presents the Δ-perturbation of the researcher implementation pre-
sented in Fig. 1b. One can check that this implementation robustly satisfies the specifi-
cation of Fig. 1a for any Δ ∈ ]0, 1].

Robust Timed Games for Timed I/O Specifications. We first define robust strategies that
guarantee winning even if subject to bounded timing perturbations. We then propose
a technique for finding such strategies. We start with the construction of syntactic out-
come that represents game outcomes as TIOAs. We rely on the region graph construc-
tion in the definition of syntactic outcome, but any stable partitioning of the state-space
could serve this purpose, and would be more efficient in practice.

Definition 11. Let A = (Loc, q0, Clk, E, Act, Inv) be a TIOA and f a strategy over
A for output. The TIOA Af = (RA, (q0, r0), Clk ∪ {z}, Ê, Act ∪ {τ}, Înv) is built by
decorating the region graph G = (RA,−→G) of A, using the original clocks of A and an
additional clock z to impose output urgency. For each region (q, r), the incident edges
and the invariant are defined as follows:

– Înv(q, r) = Inv(q) ∧ (r ∨ r↗);
– If (q, r) τ−→G(q, r↗) then ((q, r), τ, r↗, {z}, (q, r↗)) ∈ Ê;
– For each edge (q, i?, ϕ, λ, q′)∈E, if (q, r) i?−→G(q′, r′) then ((q, r), i?, ϕ, λ ∪ {z},

(q′, r′)) ∈ Ê;
– If f(q, r) = o!, then Înv(q, r) = r ∧ {z=0}, and for each edge (q, o!, ϕ, λ, q′)∈E,

if (q, r) o!−→G(q′, r′), then ((q, r), o!, ϕ, λ ∪ {z}, (q′, r′)) ∈ Ê.
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This construction captures the semantic outcome of the game in the following sense:

Proposition 1. Let (A, W ) be a timed safety game and f be a strategy for output. Then
a run ρ in the region graph G of A is in Outcomeo((q, r), f) iff ρ is an untimed run of
Af starting from region (q, r).

In a robust timed game we seek strategies that remain winning after perturbation by
a delay Δ. The perturbation is defined on the syntactic outcome of the strategy, by
enlarging the guards for the actions of the verifier. We write "A#oΔ (resp. "A#iΔ) for the
TIOA where the guards of the output (resp. input) player and the invariants have been
enlarged by Δ.

Definition 12. For a timed game (A, W ), a strategy f for output is Δ-robust winning
if it is winning when the moves of output are perturbed, i.e. Runs(�"Af #oΔ�sem) ⊆ W .2

As proposed in [9], robust timed games for a bounded delay can be reduced to classical
timed games by a syntactic transformation of the game automaton. Here, we propose
a modified version of the construction that respects the duality between inputs and out-
puts:

Definition 13. Let A = (Loc, q0, Clk, E, Act, Inv) be TIOA and a Δ ∈ Q>0, the robust
game automaton AΔ

rob = (L̃oc, q0, Clk∪{y}, Ẽ, Ãct, Ĩnv) uses an additional clock y and
is constructed according to the following rules:

– Loc ⊆ L̃oc, and for each location q ∈ Loc and each edge e = (q, o!, ϕ, λ, q′) ∈ E,
two locations qα

e and qβ
e are added in L̃oc. The invariant of q is unchanged; the

invariants of qα
e and qβ

e are y ≤ Δ.
– For each action o! ∈ Acto, an additional action o? is added in Ãcti.
– Each edge e′ = (q, i?, ϕ, λ, q′) ∈ E gives rise to the following edges in Ẽ:

(q, i?, ϕ, λ ∪ {y}, q′), (qα
e , i?, ϕ, λ ∪ {y}, q′) and (qβ

e , i?, ϕ, λ ∪ {y}, q′).
– Each edge e = (q, o!, ϕ, λ, q′) ∈ E gives rise to the following edges in Ẽ:

(q, o!, ϕ�2Δ, {y}, qα
e ), (qα

e , o!, {y = Δ}, {y}, qβ
e ), (qα

e , o?, {y ≤ Δ}, λ ∪ {y}, q′)
and (qβ

e , o?, {y ≤ Δ}, λ∪{y}, q′), where ϕ�2Δ is constructed from ϕ by restricting
upper bound constraints by 2Δ.

The construction is demonstrated in Fig 3. The output player can propose a move in
the time interval ϕ�Δ (which is done in two steps: first playing o! in the time interval
ϕ�2Δ and then a second firing after Δ time units), but the input player can perturb this
move by choosing a smaller or greater delay to perform the action.

The construction shall serve as a tool for deciding robust consistency, synthesizing a
robust implementation, and other operations of the specification theory with robustness.

Theorem 1. For a timed safety game (A, W ), if f is a winning strategy for output in the
robust game (AΔ

rob, W ), then the following strategy f ′ is a Δ-robust winning strategy
for output in the game (A, W ): ∀(q, r) ∈ RA, f ′(q, r) = o! if ∃e.f(qα

e , r̃) = o!, where
r̃ is a region of RAΔ

rob
, and r its projection on RA

3, otherwise f ′(q, r) = delay.

2 Technically, we assume that runs in Runs(��Af�oΔ�sem) abstract τ transitions
3 To this end the region graph of A must be computed with Δ as the lowest constant.
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Fig. 3. Construction of the robust game automation AΔ
rob from an original automaton A

Our method and our notion of robust strategy guarantees non-zenoness for the syn-
thesized strategies. Indeed by allowing the opponent to perturb the verifier by Δ or −Δ
we impose that the verifier only performs non-null delay actions. Later, in the context
of timed specifications, this ensures realizability of implementations. Also non-Zeno
environements are used as witnesses of compatibility in optimistic composition, which
could have happened in [10], which ignored Zeno-problems altogether.

4 Robust Consistency and Conjunction

We now provide a method to decide the Δ-robust consistency of a specification and
synthesize robust implementations by solving a robust timed safety game, in which the
output player must avoid a set of immediate error states. From there, the computation
of a robust strategy gives a method to synthesize a robust implementation of the specifi-
cation.

Intuitively a specification is Δ-robust with respect to input i?, if between enabling of
any two i? edges at least 2Δ time passes, during which the reaction to i? is unspecified.
So, if the two transitions triggers Δ-too-late and Δ-too-early (respectively), there is no
risk that the reaction is resolved non-deterministically in the specification.

In our input-enabled setup, lack of reaction is modeled using transitions to the uni-
versal (unpredictable) state. Formally, we say that Δ-robust specifications should admit
Δ-latency of inputs. A state (q, u) verifies the Δ-latency condition for inputs, iff for
each edge e = (q, i?, ϕ, c, q′), where q′ �= lu and e is enabled in (q, u) we have:

∀d ∈ [0, 2Δ]. ∀e′ = (q, i?, ϕ, c, q′′).
if e′ �= e and (q, u) d−→(q, u + d) and e′ is enabled in (q, u + d) then q′′ = lu

For a specification S, the safety objective for the robust consistency game is to avoid the
set of states of error states errSΔ such that (q, u) ∈ errSΔ iff (q, u) violates independent
progress or Δ-latency for inputs, so:

– Violates independent progress: (∃d ∈ R≥0.(q, u) d�) and (∀d∀o!.(q, u) d−→(q, u +

d) ⇒ (q, u + d) o!
�),
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– Violates Δ-latency of inputs: ∃e = (q, i?, ϕ, c, q′), q′ �= lu, enabled in (q, u), such
that ∃d ∈ [0, 2Δ].(q, u) d−→(q, u+d) and ∃e′ = (q, i?, ϕ, c, q′′) enabled in (q, u+d),
with e′ �= e and q′′ �= lu.

Observe that errS ⊆ errSΔ, because the error condition with robustness is weaker than
in the classical case (cf. page 135).

The robust safety game (S, WSo(errSΔ)) can be solved with the method presented in
the previous section, and a winning strategy f for the game can be synthesized. Let
Sf be the syntactic outcome of f in S. We build from a robust implementation If by
applying the following transformation to Sf :

– When we apply a Δ-perturbation on If , a state ((q, r), u) can be reached even if
u �∈ r∨r↗. However due to the region partitioning, the inputs available in Sf might
not be firable from r ∨ r↗. Then, in order to check the robust satisfaction relation
between (If )Δ and S, we add additional input edges to If : for each location (q, r)
in Sf , for each edge e = ((q, r), i?, ϕ, λ ∪ {z}, (q∗, r∗)) (with q∗ �= lu), and for
each location (q′, r′) linked to (q, r) by a sequence of τ transitions, we add an edge
e′ = ((q′, r′), i?, ϕ, λ ∪ {z}, (q∗, r∗)).

– To support restriction of input guards in (If )Δ, we replaced in If all guards ϕ
of edges e = ((q, r), i?, ϕ, λ ∪ {z}, (q′, r′)) with q′ �= lu by their elargement
"ϕ#Δ. Guards on edges to the lu location are adjusted in order to maintain action
determinism and input-enableness.

Note that this construction adds many input edges to the implementation, out of which
many are never enabled. This simplifies the construction and the proof of correctness.
In practice, to efficiently synthesize implementations, coarser abstractions like zones
should be used, that do not include τ transitions and thus avoid multiplying input edges.

Theorem 2. For a specification S and a robust winning strategy f in the Δ-robust
consistency game, we have that If is a Δ-robust implementation of S, i.e. If satΔ S.

Conjunction. A conjunction of two specifications captures the intersection of their im-
plementation sets. The following conjunction operator has been proposed in [10]:

Definition 14. Let S = (LocS, qS
0, ClkS, ES, Act, InvS) and T = (LocT, qT

0 , ClkT, ET, Act,
InvT) be specifications that share the same alphabet of actions Act. We define their con-
junction, denoted S∧T , as the TIOA (Loc, q0, Clk, E,Act, Inv) where Loc = LocS×LocT ,
q0 = (qS

0 , qT
0 ), Clk = ClkS&ClkT , Inv((qs, qt))= Inv(qs)∧Inv(qt), and the set of edges

is defined by the following rule: if (qs, a, ϕs, cs, q
′
s) ∈ES and (qt, a, ϕt, ct, q

′
t) ∈ET

then ((qs, qt), a, ϕs∧ϕt, cs ∪ ct, (q′s, q′t)) ∈E.

It turns out that this operator is robust, in the sense of precisely characterizing also
the intersection of the sets of robust implementations. So not only conjunction is the
greatest lower bound with respect to implementation semantics, but also with respect to
the robust implementation semantics. More precisely:

Theorem 3. For specifications S, T and Δ ∈ Q>0: �S∧T �Δ
mod = �S�Δ

mod ∩ �T �Δ
mod
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The theorem is a direct extension for robust implemenations of Theorem 6 in [10].
We remark that due to the monotonicity of the refinement (Property 1), we can use
two different delays Δ1 and Δ2, such that �S�Δ1

mod ∩ �T �Δ2
mod ⊇ �S∧T �

max(Δ1,Δ2)
mod . So

requirements with different precision can be conjoined, by considering the smaller jitter.
Robustness of the operator in Def. 14 is very fortunate. Thanks to this large parts of

implementation of theory of [10] can be reused. We have experimented on small ex-
amples asking simple robust consistency questions by applying constructions manually
and using non-robust version of ECDAR [11], obtaining promising results.

5 Robust Compatibility, Composition and Quotient

We lift the composition and quotient operators [10] to the robust setting. Composition
is used to build systems from smaller units, while quotient is used to synthesize specifi-
cations of missing components in a larger design, for example for controller synthesis.

Parallel Composition. Two specifications S, T can be composed only iff ActSo ∩ActTo =
∅. Parallel composition is obtained by a product, where the inputs of one specification
synchronize with the outputs of the other:

Definition 15 (Parallel Composition). Let S = (LocS , qS
0 , ClkS , ES , ActS , InvS) and

T = (LocT , qT
0 , ClkT , ET , ActT , InvT ) be two composable specifications. We define

their parallel product, denoted S ‖ T , as the TIOA (Loc, q0, Clk, E, Act, Inv) where
Loc = LocS ×LocT , q0 = (qS

0 , qT
0 ), Clk = ClkS &ClkT , Inv(qs, qt) = Inv(qs)∧Inv(qt),

and the set of edges is defined by the three following rules:

– if (qs, a, ϕs, cs, q
′
s) ∈ ES with a ∈ ActS\ActT then each qt ∈ LocT gives rise to

an edge ((qs, qt), a, ϕs, cs, (q′s, qt)) ∈ E;
– if (qt, a, ϕt, ct, q

′
t) ∈ ET with a ∈ ActT \ActS then each qs ∈ LocS gives rise to an

edge ((qs, qt), a, ϕt, ct, (qs, q
′
t)) ∈ E;

– if (qs, a, ϕs, cs, q
′
s) ∈ ES and (qt, a, ϕt, ct, q

′
t) ∈ ET with a ∈ ActS ∩ ActT then

this gives rise to an edge ((qs, qt), a, ϕs ∧ ϕt, cs ∪ ct, (q′′s , q′t)) ∈ E.

Robustness distributes over parallel composition in the following fashion:

Lemma 1. For any implementations I, J and a delay Δ ∈ Q>0: (I ‖J )Δ ≤ IΔ ‖JΔ

We model incompatibility by introducing a predicate describing undesirable states de-
noted by the set und. For example, a communication failure in the input-enabled setting
can be modeled, by redirecting an input edge to an undesirable location. In general any
reachability objective, for example given by a temporal logics property, can serve as
the set of undesirable behaviors und. It is important that such behaviors are avoided
during the composition. For doing so, we propose to follow the optimistic approach to
composition introduced in [1] that is two specifications can be composed if there exists
at least one environment in which they can work together. In the robustness setting we
consider imprecise environments by applying a Δ-perturbation to their outputs. Then,
in what follows, we say that a specification is Δ-robust useful if there exists an impre-
cise environment E that avoids the undesirable states, whatever the specification does.
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Definition 16. A specification S is Δ-robust useful if there exists an environment E
such that no undesirable states are reached in �"E#o

Δ ‖ S�sem.

To check robust usefulness we solve the robust game (S, WSi(und)), and determine
if the input player has a robust strategy f that avoids the undesirable states. Let Sf

be the syntactic outcome of f in S. We build from Sf a robust environment Ef by
permuting the input and output players, such that each input in Sf becomes an output,
and conversely.

Theorem 4. If there exists a robust winning strategy f in the Δ-robust usefulness game
for a specification S, then S is Δ-robust useful in the environment Ef .

Finally, two specifications are compatible if their composition is useful.

Definition 17. Two composable specifications S and T are Δ-robust compatible iff
S ‖ T is Δ-robust useful.

It is important that the robust theory does not modify the definition of the operations
themself. This means that all the important properties of composition introduced in
[10] remain valid. This is illustrated with the independent implementability property in
Theorem 5, which follows from Lemma 1 and Thm. 10 in [10].

Theorem 5. Let S and T be composable specifications and let I and J be Δ-robust
implementations of S and T (resp.), i.e. I satΔ S and J satΔ S, then I ‖ J satΔ S ‖
T . Moreover if S and T are Δ-compatible then I and J are also Δ-compatible.

Due to the monotonicity of perturbations with respect to the refinement, two differ-
ent delays can be used to implement specifications S and T . For two implementa-
tions I satΔ1 S and J satΔ2 T of the parallel components, their composition sat-
isfies the composition of specifications with the smaller of the two precisions: I ‖
J satmin(Δ1,Δ2) S ‖ T .

Quotient. Quotient is a dual operator to composition, such that for a large specification
T and a small one S, T � S is the specification of the components that composed with
S will refine T . In other words, T � S specifies the component that still needs to be
implemented after having an implementation of S, in order to build an implementation
of T . One possible application is when T is a system specification, and S is the plant,
then a robust controller for a safety objective can be achieved by finding a Δ-consistent
implementation of the quotient T � S.

To apply quotienting, we require that ActS ⊆ ActT and ActSo ⊆ ActTo . The construc-
tion of a quotient requires the use of a universal location lu, as well as an inconsistent
location l∅ that forbids any outputs and forbids elapsing of time.

Definition 18 (Quotient). Let T = (LocT , qT
0 , ClkT , ET , ActT , InvT ) and S = (LocS ,

qS
0 , ClkS , ES , ActS , InvS) with ActS ⊆ ActT and ActSo ⊆ ActTo . Their quotient, denoted
T � S, is the TIOA (Loc, q0, Clk, E, Act, Inv) where Loc = LocT × LocS ∪ {lu, l∅},
q0 = (qT

0 , qS
0 ), Clk = ClkT & ClkS & {xnew}, Act = Acti & Acto with Acti = ActTi ∪

ActSo ∪{inew} and ActTo \ActSo , Inv(qt, qs) = Inv(lu) = true and Inv(l∅) = {xnew ≤ 0},
and the set E of edges is defined by the following rules:
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– ∀qt ∈ LocT .∀qs ∈ LocS .∀a ∈ Act.∃((qt, qs), a,¬InvS(qs), {xnew}, lu) ∈ E,
– ∀qt ∈ LocT .∀qs ∈ LocS .∃((qt, qs), inew,¬Inv(qt) ∧ Inv(qs), {xnew}, l∅) ∈ E,
– if (qt, a, ϕt, ct, q

′
t) ∈ ET and (qs, a, ϕs, cs, q

′
s) ∈ ES , then ∃((qt, qs), a, ϕT ∧

ϕS , ct ∪ cs, (q′t, q
′
s)) ∈ E,

– ∀(qs, a, ϕs, cs, q
′
s) ∈ ES with a ∈ ActSo , ∃((qt, qs), a, ϕS ∧¬GT , {xnew}, l∅) ∈ E,

where GT =
∨
{ϕt | (qt, a, ϕt, ct, q

′
t)},

– ∀(qt, a, ϕt, ct, q
′
t) ∈ ET with a �∈ ActS , ∃((qt, qs), a, ϕT , ct, (q′t, q

′
s)) ∈ E,

– ∀(qt, a, ϕt, ct, q
′
t) ∈ ET with a ∈ ActSo , ∃((qt, qs), a,¬GT , {}, lu) ∈ E, where

GT =
∨
{ϕs | (qs, a, ϕs, cs, q

′
s)},

– ∀a ∈ Acti.∃(l∅, a, xnew = 0, ∅, l∅) ∈ E,
– ∀a ∈ Act.∃(lu, a, true, ∅, lu) ∈ E.

As stated in Thm. 12 of [10], the quotient gives a maximal (the weakest) specification
for a missing component. This theorem can be generalized to specifications that are
locally consistent (see [10]), and used to argue for completeness of the quotient con-
struction in the robust case. It turns out that this very operator is also maximal for the
specification of a robust missing component, in the following sense:

Theorem 6. Let S and T be two specifications such that the quotient T � S is defined
and let J be an implementation, then

S ‖ JΔ ≤ T iff J satΔ T � S

6 Concluding Remarks

We have presented a compositional framework for reasoning about robustness of timed
I/O specifications. Our theory builds on the results presented in [10] combined together
with a new robust timed game for robust specification theories. We extend the construc-
tion of [9] to the setting of specification theories, to solve robust games by reducing
them to problems on classical timed games. This construction can easily be imple-
mented in tools such as ECDAR. Our approach can be used to synthesize an implemen-
tation that is robust with respect to a given specification, and to combine or compare
specifications in a robust manner. Our approach can potentially be applied to lift any
game-based timed specification theory to a robust setting.

In the future, we will consider the parametric extension of our theory, that is to
synthesize the value of the perturbation for which consistency holds. The emptiness
problem that decides if there exists a robust delay has already been studied in the case
of 1-player games in different works [14,17,5,6]. A quantitative analysis of this problem
has only been studied in [12].
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Abstract. A controller for a discrete game with ω-regular objectives requires
attention if, intuitively, it requires measuring the state and switching from the
current control action. Minimum attention controllers are preferable in modern
shared implementations of cyber-physical systems because they produce the least
burden on system resources such as processor time or communication band-
width. We give algorithms to compute minimum attention controllers for ω-
regular objectives in imperfect information discrete two-player games. We show a
polynomial-time reduction from minimum attention controller synthesis to syn-
thesis of controllers for mean-payoff parity objectives in games of incomplete
information. This gives an optimal EXPTIME-complete synthesis algorithm. We
show that the minimum attention controller problem is decidable for infinite state
systems with finite bisimulation quotients. In particular, the problem is decidable
for timed and rectangular automata.

1 Introduction

Automata-theoretic reactive synthesis techniques [10,5,31,15,32,29,37,21,23] hold the
promise to correct-by-construction design of complex reactive systems, and over the
years, have seen impressive technical advances that have brought them within strik-
ing distance of practice in the design of cyber-physical systems [17,19,20,26]. Despite
the many advances, there is still a gap between the abstract two-person game models
considered by the theory of synthesis and implementation issues associated with con-
troller implementations. Classically, automata-theoretic synthesis considers the size of
the memory as the notion of optimality; and any memoryless strategy is considered op-
timal (a strategy is memoryless if it depends only on the current state and not on the
history of the play). While roughly adequate for applications of synthesis in hardware
circuit design, for more recent applications of synthesis techniques in cyber-physical
systems, there are additional implementation costs whose effects can significantly in-
fluence the practical applicability of synthesized controllers.

Classical controller synthesis assumes that measurement of the current state and
computation of the control action is computed instantaneously. In practice, state mea-
surement and control computations take time and consume other system resources such
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as network bandwidth. In a modern control system application, where a controller
shares the platform with other tasks, the controller task must compete for resources
with other tasks. In this context, it is important to find a controller that can be imple-
mented without diverting attention from other, possibly more pressing, system tasks, or
to enable other tasks which might not be schedulable if the controller hogs resources.

Consider, for example, the simple game in Figure 1 where the objective is to visit the
state s. For states in {1, . . . , n}, any function ξ : {1, . . . , n} → {0, 1} is a memoryless
winning strategy ensuring a visit to s, and equally good in the view of classical synthe-
sis. However, consider a real-time implementation of the controller where the control
task must be scheduled to compute the next control action. The strategy which always
plays 0 (or 1) has an advantage over the strategy playing the action i mod 2. For the
former strategy, the controller task is scheduled once to set the control action, and never
again. For the latter, the control task runs every cycle, looking at the state and changing
the control action accordingly, using up communication resources to measure state and
processor resources to compute the new control, which could be used for other tasks.

Intuitively, the “simplest” strategy is to play a constant action throughout. Anything
else requires attention [3]: to measure the state and to switch to a different action if nec-
essary. Measuring the state can involve running code on the platform activating sensors
and processing sensed values, and using network bandwidth or bus slots to transmit the
sensed values to a central processor. Switching to a different action may require dy-
namic computation of lower-level control laws implementing these actions, switching
modes and tasks, as well as re-scheduling bus or network slots. The more frequently
these tasks must be performed, the more attention is required.

Of course, there may not be a winning strategy that plays a constant action through-
out. Consider in Figure 1 the objective of visiting t infinitely often. Again, any action
is possible from states { 1, . . . , n }, as long as 0 is played at s and 1 at t. A possible
strategy can, starting from 1, play 1 for n steps, then 0 for a step, then 1 for n + 1 steps,
etc., or dually, play 0 for n+1 steps, 1 for n+1 steps, a single 0, etc. Both strategies can
be implemented with lower processor requirements than one that alternates between 0
and 1. The precise strategy chosen will depend on the actual costs involved in switching
between 0 and 1. In general, the lowest-cost controller must optimize the usage, over the
long run, of system resources while ensuring the winning condition. Formally, the con-
troller must optimize costs associated with measuring state and switching controllers
while ensuring the winning condition is satisfied.

In this paper, we consider the problem of minimum attention controllers for ω-regular
objectives. We introduce a cost for measuring the state, as well as a cost for changing
the control action, in the model of two-player games. We then ask for a strategy which
ensures the ω-regular objective while minimizing the long-run costs incurred due to
measurement and switching actions. Technically, playing a game without measuring
the state or changing the control action is similar to playing a game of incomplete
information [33,22,7]. We formulate the minimum attention control problem as a game
of incomplete information, and we show a polynomial-time reduction from the problem
of minimum attention control for ω-regular objectives to solving a mean-payoff parity
condition [8] on a game of incomplete information. Together with results on incomplete
information games [7], this gives an EXPTIME-complete procedure when the winning
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Fig. 1. Simple example

objective is given as a parity condition on states, and a triply exponential procedure
when the objective is given in linear-temporal logic.

We develop the theory both for finite-state, discrete control problems, as well as for
infinite state systems for which there is a finite bisimulation quotient. Using known
results about stable partitions of timed games [1,24] and rectangular automata [16], it
follows that the minimum attention controller synthesis problem is decidable for timed
games and discrete-time control for rectangular automata.

Attention, and minimum attention controllers, were introduced in a seminal paper
by Brockett [3]. There, the problem of minimum attention synthesis is formulated for
controlled dynamical systems, and set up as the minimization problem for an attention
index, a functional involving the partial derivatives ∂u

∂t and ∂u
∂x of the control function

u w.r.t. time and state, respectively, subject to constraints on u to guarantee a minimum
level of system performance. The resulting problem involves minimization of non-linear
functions subject to systems of partial differential equations, even in the case of linear
control systems. Minimum attention control was applied to solve control problems for
vehicular control [4] and for control under network bandwidth constraints [27], but the
algorithmic complexity of the methods are not immediate. More recently, [2] studies
approximations of the problem using event-driven control.

Solving the minimum attention control problem for discrete systems suggests a com-
putational approach to approximately solve the minimum attention synthesis problem
for controlled dynamical system. The link between continuous dynamical systems and
discrete systems is provided by approximate abstractions of continuous models [30,14].
Approximate abstractions generalize the classical language-theoretic notions of lan-
guage containment and simulation to the quantitative case; an ε-approximate abstrac-
tion of a continuous system is a discrete system such that for any trace of the original
system, there is a trace of the abstract system which is at a distance of at most ε, for
a design parameter ε. With approximate abstraction relations, the minimum attention
control problem for dynamical systems can be approximately solved in two steps: first
compute the abstraction, then solve the problem on the discrete abstraction.

Related Works. In this work we consider the minimum attention controller synthe-
sis problem and show that the problem can be solved by solving a special class of
incomplete-information mean-payoff parity games and is EXPTIME-complete. The
general problem of incomplete-information mean-payoff games was studied in [11] and
the problem was shown to be undecidable, whereas we show that the minimum atten-
tion synthesis problem belongs to a decidable subclass. The problem of mean-payoff
parity games was studied in [8] but in the setting of perfect-information games, and we
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show that for the special class of incomplete-information games we obtain, the prob-
lem is decidable using solutions of [8]. Incomplete-information games with Boolean
objectives (such as parity objectives) were considered in [7], whereas in this paper the
problem we consider reduces to incomplete-information games with mixed quantitative
and Boolean objective (combination of mean-payoff and parity objectives). The prob-
lem of fault diagnosis with static and dynamic observers has been considered in [6], and
it was shown that the static observer problem is NP-complete and the dynamic observer
problem can be solved in 2EXPTIME using solution of mean-payoff games. In contrast
our problem requires solution of mean-payoff parity games and is EXPTIME-complete.
The fault diagnosis problem was also considered in [36] where a dynamic programming
approach was used to solve the problem. No complexity bounds are known. In contrast
our approach is game theoretic and we establish optimal complexity bounds.

2 Preliminaries

In this section we present the required preliminaries. We first present the mathematical
framework of imperfect information games, and then present a reduction of imperfect
information games to perfect information games. In the following section we will use
the definitions and the results of this section to develop the theory of minimum attention
control.

2.1 Imperfect Information Games

A game structure (of imperfect information) is a tuple G = 〈L, l0, Σ, Δ,O, γ〉, where L
is a finite set of states, l0 ∈ L is the initial state, Σ is a finite alphabet (of input letters or
actions), Δ ⊆ L×Σ×L is a set of labeled transitions, O is a finite set of observations,
and γ : O → 2L\∅ maps each observation to the set of states that it represents. We
require the following two properties on G: (i) for all � ∈ L and all σ ∈ Σ, there exists
�′ ∈ L such that (�, σ, �′) ∈ Δ; and (ii) the set {γ(o) | o ∈ O} partitions L. We say that
G is a game structure of perfect information if O = L and γ(�) = {�} for all � ∈ L. We
omit (O, γ) in the description of games of perfect information. For σ ∈ Σ and s ⊆ L,
let PostGσ (s) = {�′ ∈ L | ∃� ∈ s : (�, σ, �′) ∈ Δ}.

In a game structure, in each turn, Player 1 (controller) chooses a letter in Σ,
and Player 2 (system or plant) resolves nondeterminism by choosing the successor
state. A play in G is an infinite sequence π = �0σ0�1 . . . σn−1�nσn . . . such that (i)
�0 = l0, and (ii) for all i ≥ 0, we have (�i, σi, �i+1) ∈ Δ. The prefix up to �n

of the play π is denoted by π(n); its length is |π(n)| = n + 1; and its last element
is Last(π(n)) = �n. The observation sequence of π is the unique infinite sequence
γ−1(π) = o0σ0o1 . . . σn−1onσn . . . such that for all i ≥ 0, we have �i ∈ γ(oi). Sim-
ilarly, the observation sequence of π(n) is the prefix up to on of γ−1(π). The set of
infinite plays in G is denoted Plays(G), and the set of corresponding finite prefixes is
denoted Prefs(G). A state � ∈ L is reachable in G if there exists a prefix ρ ∈ Prefs(G)
such that Last(ρ) = �. The knowledge associated with a finite observation sequence
τ = o0σ0o1σ1 . . . σn−1on is the set K(τ) of states in which a play can be after this
sequence of observations, that is, K(τ) = {Last(ρ) | ρ ∈ Prefs(G) and γ−1(ρ) = τ}.
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The following lemma presents a inductive construction of the knowledge. The proof of
the lemma is standard.

Lemma 1. Let G = 〈L, l0, Σ, Δ,O, γ〉 be a game structure. For σ ∈ Σ, � ∈ L, and
ρ, ρ′ ∈ Prefs(G) with ρ′ = ρ · σ · �, let o� ∈ O be the unique observation such that
� ∈ γ(o�). Then K(γ−1(ρ′)) = PostGσ (K(γ−1(ρ))) ∩ γ(o�).

Strategies. A strategy in G for Player 1 is a function α : Prefs(G) → Σ that given
a finite prefix or history of a play specifies the next input letter or action. A strategy
α for Player 1 is observation-based if for all prefixes ρ, ρ′ ∈ Prefs(G), if γ−1(ρ) =
γ−1(ρ′), then α(ρ) = α(ρ′). In games of imperfect information we are interested in the
existence of observation-based strategies for Player 1. A strategy in G for Player 2 is
a function β : Prefs(G) × Σ → L such that for all ρ ∈ Prefs(G) and all σ ∈ Σ, we
have (Last(ρ), σ, β(ρ, σ)) ∈ Δ. We denote by AG, AO

G, and BG the set of all Player-1
strategies, the set of all observation-based Player-1 strategies, and the set of all Player-2
strategies in G, respectively.

The outcome of two strategies α (for Player 1) and β (for Player 2) in G is the play
π = �0σ0�1 . . . σn−1�nσn . . . ∈ Plays(G) such that for all i ≥ 0, we have σi = α(π(i))
and �i+1 = β(π(i), σi). This play is denoted outcome(G, α, β). The outcome of a
strategy α for Player 1 in G is the set Outcome1(G, α) of plays π such that there exists
a strategy β for Player 2 with π = outcome(G, α, β). The outcome sets for Player 2
are defined symmetrically.

Qualitative objectives. A qualitative objective for G is a set φ of infinite sequences of
states and input letters, that is, φ ⊆ (L × Σ)ω. A play π = �0σ0�1 . . . σn−1�nσn . . . ∈
Plays(G) satisfies the objective φ, denoted π |= φ, if π ∈ φ. We assume objectives are
Borel measurable, that is, a qualitative objective is a Borel set in the Cantor topology
on (L × Σ)ω [18].

We specifically consider parity objectives [12,35]. Parity objectives are a canonical
form to express all ω-regular objectives [35] and lie in the intersection Σ3 ∩ Π3 of
the third levels of the Borel hierarchy. For a play π = �0σ0�1 . . . , we write Inf(π)
for the set of states that appear infinitely often in π, that is, Inf(π) = {� ∈ L |
�i = � for infinitely many i’s}. For d ∈ N, let p : L → { 0, 1, . . . , d } be a priority
function, which maps each state to a nonnegative integer priority. The parity objective
Parity(p) requires that the minimum priority that appears infinitely often be even. For-
mally, Parity(p) = { π | min{ p(�) | � ∈ Inf(π) } is even }. Observe that the objectives
are defined on sequence of state and input letters, and not on observation and input
letters.

Quantitative objectives. In addition to parity (ω-regular) objectives, our algorithms will
require solving games with quantitative objectives. A quantitative objective for G is a
Borel measurable function f on infinite sequences of observations and input letters to
reals, that is, f : (L × Σ)ω → R ∪ {∞,−∞ }. We specifically consider mean-payoff
and mean-payoff parity objectives. Let r : Σ → R be a reward-function that maps every
input letter σ to a real-valued reward r(σ), and let p : L → { 0, 1, . . . , d } be a priority
function. We define the mean-payoff and mean-payoff parity objectives as follows.
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1. Mean-payoff objectives. For a play π = �0σ0�1 . . . σn−1�nσn . . . the mean-payoff
objective is the long-run average of the rewards of the input letters [38]. Formally,
for a reward function r : Σ → R, the mean-payoff objective is a function M(r)
from plays to reals that maps the play π = �0σ0�1 . . . σn−1�nσn . . . to M(r)(π) =
lim supn→∞

1
n

∑n−1
i=0 r(σi).

2. Mean-payoff parity objectives. For a play π = �0σ0�1 . . . σn−1�nσn . . . the mean-
payoff parity objective is the long-run average of the rewards of the input letters if
the parity objective is satisfied and −∞ otherwise. Formally, for a reward function
r : Σ → R and a priority function p, the mean-payoff parity objective is a function
MP(p, r) defined on plays as follows: for a play π = �0σ0�1 . . . σn−1�nσn . . . we
have MP(p, r)(π) = M(π) if π ∈ Parity(p), and MP(p, r)(π) = −∞ otherwise.

Observe that the reward function are on input letters, rather than transition of the game
graph. If we consider reward function on transitions, then mean-payoff games with
imperfect information is undecidable [11], whereas if the rewards are on input letters,
then the problem is EXPTIME-complete (Corollary 1).

Sure winning and optimal winning. A strategy λi for Player i in G is sure winning for
a qualitative objective φ if for all π ∈ Outcomei(G, λi), we have π |= φ. A strategy
λi for Player i in G is optimal for a quantitative objective f if for all strategies λ for
Player i we have infπ∈Outcomei(G,λi) f(π) ≥ infπ∈Outcomei(G,λ) f(π). The following
theorem from Martin [25] states that perfect-information games with (qualitative or
quantitative) Borel objectives are determined: from each state, either Player 1 or Player
2 wins (for qualitative objectives), or a value can be defined (for quantitative objectives).

Theorem 1 (Determinacy). [25] (1) For all perfect-information game structures G
and all qualitative Borel objectives φ, either there exists a sure-winning strategy for
Player 1 for the objective φ, or there exists a sure-winning strategy for Player 2 for the
complementary objective Plays(G) \φ. (2) For all perfect-information game structures
G and all quantitative Borel objectives f , we have supα∈A infπ∈Outcome(G,α) f(π) =
infβ∈B supπ∈Outcome(G,β) f(π).

2.2 From Imperfect-Information to Perfect-Information

In this subsection we present results related to reduction of imperfect information games
to perfect information games by subset construction. First, we use the results of [7] to
show that a game structure G of imperfect information can be encoded by a game
structure GK of perfect information such that for every qualitative Borel objective φ,
there is an observation-based sure-winning strategy for Player 1 in G for φ if and only
if there is a sure-winning strategy for Player 1 in GK for φ. The same construction works
for quantitative Borel objectives. We obtain GK using a subset construction. Each state
in GK is a set of states of G representing the knowledge of Player 1. In the worst case,
the size of GK is exponentially larger than the size of G.

Subset construction. Given a game structure of imperfect information G =
〈L, l0, Σ, Δ,O, γ〉, we define the knowledge-based subset construction of G as the
following game structure of perfect information: GK = 〈L, {l0}, Σ, ΔK〉, where
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L = 2L\{∅}, and (s1, σ, s2) ∈ ΔK iff there exists an observation o ∈ O such that
s2 = PostGσ (s1)∩γ(o) and s2 �= ∅. Notice that for all s ∈ L and all σ ∈ Σ, there exists
a set s′ ∈ L such that (s, σ, s′) ∈ ΔK. Given a game structure of imperfect information
G we refer to the game structure GK as Pft(G).

Lemma 2 ([7]). For all sets s ∈ L that are reachable in GK, and all observations
o ∈ O, either s ⊆ γ(o) or s ∩ γ(o) = ∅.

By an abuse of notation, we define the observation sequence of a play π =
s0σ0s1 . . . σn−1snσn . . . ∈ Plays(GK) as the infinite sequence γ−1(π) =
o0σ0o1 . . . σn−1onσn . . . of observations such that for all i ≥ 0, we have si ⊆ γ(oi).
Since the observations partition the states, and by Lemma 2, this sequence is unique.
The play π satisfies an objective φ ⊆ (O × Σ)ω if γ−1(π) ∈ φ. As above, we say
that a play π = s0σ0s1 . . . σn−1snσn · · · ∈ Plays(GK) satisfies an objective φ iff the
sequence of observations o0o1 . . . on . . . such that for all i ≥ 0, �i ∈ γ(oi) belongs to
φ. The following lemma follows from the results of [7].

Lemma 3 ([7]). If Player 1 has a sure-winning strategy in GK for an objective φ, then
Player 1 has an observation-based sure-winning strategy in G for φ. If Player 1 does not
have a deterministic sure-winning strategy in GK for a Borel objective φ, then Player 1
does not have an observation-based sure-winning strategy in G for φ.

Together with Theorem 1, Lemma 3 implies the first part of the following theorem, also
used in [7]. The second part of the theorem generalizes the result to quantitative Borel
objectives. The proofs can be found in [7,9].

Theorem 2. Let G be a game structure, and GK = Pft(G). The following assertions
hold. (1) Player 1 has an observation-based sure-winning strategy in G for a qualitative
Borel objective φ if and only if Player 1 has a sure-winning strategy in GK for φ. (2)
supα∈AO

G
infπ∈Outcome(G,α) f(π) = supα∈A

GK
infπ∈Outcome(G,α) f(π).

Theorem 2 and the results of [8] on perfect information mean-payoff parity games show
that imperfect information mean-payoff parity games can be solved in EXPTIME, and
an EXPTIME lower bound follows from the lower bound for imperfect information
parity games [7]. We have the following corollary.

Corollary 1. Given an imperfect information game structure G, a priority function
p : L → { 0, 1, . . . , d } and a reward function r : Σ · R, the decision problem of
whether supα∈AO

G
infπ∈Outcome(G,α) MP(p, r)(π) ≥ ν, for a rational threshold ν, is

EXPTIME-complete.

3 Minimum Attention Control

We now consider minimum attention control of imperfect information games. We will
present a polynomial reduction of the minimum attention control problem for imper-
fect information games to the classical imperfect information games presented in the
previous section. We will also show that the minimum attention control problem is
EXPTIME-complete.
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Switching and Monitoring Costs. We associate two kinds of costs for control: switch-
ing costs and monitoring costs. The switching cost is incurred when the control switches
between two input letters, and the monitoring cost is incurred when the controller moni-
tors the state of the plant (i.e., the current observation). Formally, let cost : Σ×Σ → R
denote the cost of switching between two input letters (or actions), i.e., cost(σ, σ′) de-
note the cost of switching from input letter σ to input letter σ′. Let mon denote the cost
of monitoring, i.e., monitoring the current observation of the plant. Given a ω-regular
specification specified as a parity objective, the goal of the controller is to ensure the
parity objective minimizing the long-run average cost of switching and monitoring. We
now formally present monitor-action strategies, the notion of cost of a play, then the
notion of minimum attention control, and finally the reduction of minimum attention
control problem to imperfect information games with mean-payoff parity objective.

Monitor-Action Strategies. Let G = 〈L, l0, Σ, Δ,O, γ〉 be a game structure of im-
perfect information. Let Σ̂ = { 0, 1 } × Σ, be the action for controller where the first
component denotes monitoring or not (0 denotes no monitoring and 1 denotes mon-
itoring). Let ô be a new observation not in O, and let γ̂ be a new observation map-
ping such that γ̂(o) = γ(o) for o ∈ O, and γ̂(ô) = L. If player 1 chooses not to
monitor, then player 1 does not see the current observation (this is equivalent to say
that player 1 gets to observe ô). A monitor-action strategy for player 1 is a function
α̂ : (L × Σ̂)∗ × L → Σ̂. Given a play π = l0σ̂0l1σ̂1l2σ̂2 . . ., the observation se-
quence γ̂−1π = o0σ̂0o1σ̂1o2σ̂2 . . ., where oi = γ−1(li) if σi ∈ { 1 } × Σ, and ô
otherwise. A monitor-action strategy α̂ is observation-based, if for all finite prefixes
ρ̂, ρ̂′ ∈ (L × Σ̂)∗ × L such that γ̂−1(ρ̂) = γ̂−1(ρ̂′) we have α̂−1(ρ̂) = α̂−1(ρ̂′).

Cost of a Play. Given a play π = l0σ̂0l1σ̂1l2σ̂2 . . ., the monitor-switching cost of π is
as follows. For i > 1 and z ∈ { 0, 1 }, let ĉ(σ̂i) = cost(σi−1, σi) if σ̂i = (0, σi−1) and
σ̂i−1 = (z, σi−1), and ĉ(σ̂i) = cost(σi−1, σi) + mon if σ̂i = (1, σi−1) and σ̂i−1 =
(z, σi−1). denote the cost of monitoring and switching in the i-th step. Then the cost of
the play is defined as the long-run average of the monitoring and switching cost, i.e.,
ĉ(π) = lim supn→∞

1
n

∑n
i=1 ĉ(σ̂i−1, σ̂i).

Minimum Attention Control. Given an imperfect information game structure G, and
a parity objective φ, a monitor-action strategy α̂ is ν-frugal iff the following conditions
hold: (a) α̂ is obervation-based; (b) for all π in Outcome(G, α̂) we have π ∈ φ, i.e.,
the parity objective is ensured; and (c) ĉ(π) ≤ ν, i.e., the monitor-switching cost is at
most ν. In other words, the strategy α̂ ensures the parity objective without incurring
monitor-switching cost more than ν.

Reduction of Games with Move Assignment. We will present a reduction of the mini-
mum attention control problem to imperfect information games with mean-payoff parity
objectives. We first consider an extension of imperfect information games where there
is an input assignment function Γ1 : L → 2Σ \ ∅, that assigns to every state � the
set of available input letters Γ1(�), i.e., every input letter may not be available at every
state. Imperfect information games with input assignment function can be reduced to
imperfect information games with no input assignment function as follows: (1) add an
additional absorbing state �̃ that is loosing for player 1; (2) for a state � and an input
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letter σ ∈ Σ \Γ1(�) not available at � by the input assignment, we add σ as available in-
put, and add a transition from � to the loosing state �̃ for σ. Thus it is ensured if player 1
chooses an input that is not available, then player 1 loses immediately.

Reduction of Minimum Attention Control. Let G = 〈L, l0, Σ, Δ,O, γ〉 be a game
structure of imperfect information with a priority function p : L → { 0, 1, . . . , d }. For
minimum attention control we construct a game structure of imperfect information with
move assignment as follows: the game structure is G̃ = 〈L̃, l̃0, Σ̃, Δ̃, Õ, γ̃, Γ̃1〉 along
with cost function c̃ : Σ̃ → R. We describe the components below.

1. State space. We have L̃ = (L × { 0, 1, 2 } × Σ) ∪ ({ l0 } × { 0, 1, 2 }). The
first component is the state of G, the second component is 0 or 1 depending on
whether player 1 decides to monitor or not, and 2 if it is player 1’s turn to decide
whether to monitor or not. The third component is an input letter (to remember the
choice of last letter of player 1). Additionally, there are states of the form (l0, j) for
j ∈ { 0, 1, 2 }. The starting state l̃0 is (l0, 2).

2. Input letters. We have Σ̃ = (Σ × Σ) ∪ { 0, 1 }, i.e., the set of input letters is a
pair of input letters of the original game (switching between input letters) with the
{ 0, 1 } to denote the choice of monitoring.

3. Observation. We have Õ = O ∪ { õ }, where õ is a new observation.
4. Move assignment. We have Γ̃1((�, 2, σ)) = { 0, 1 } for � ∈ L and σ ∈ Σ; and

Γ̃1((�, j, σ)) = { (σ, σ′) | σ′ ∈ Σ } for � ∈ L, j ∈ { 0, 1 } and σ ∈ Σ. At states
where the second component is 2, player 1 can choose between two input letters: 0
to denote no monitoring, and 1 to denote monitoring. At states where the second
component is 0 or 1, player 1 can choose input letters matching with the input letter
of the state (player 1 specifies the switching from the last letter to a new letter).
Similarly, we have Γ1((l0, 2)) = { 0, 1 } and Γ1((l0, j)) = Σ, for j ∈ { 0, 1 }.

5. Transition function. We have the following cases: (a) for states (�, 2, σ) we have
((�, 2, σ), j, (�, j, σ)) ∈ Δ̃, for j ∈ { 0, 1 }, i.e., given the choice of input letter
only the second component of state changes according to the input letter; (b) for
states (�, j, σ) with j ∈ { 0, 1 } we have ((�, j, σ), (σ, σ′)(�′, 2, σ′)) ∈ Δ̃ iff
(�, σ′, �′) ∈ Δ, i.e., the transition of the game structure is mimicked accord-
ing to the first component, the second component changes to 2, and the last in-
put letter is remembered in the third component; (c) for state (l0, 2) we have
((l0, 2), j, (l0, j)) ∈ Δ̃ for j ∈ { 0, 1 }; and (d) for states (l0, j), with j ∈ { 0, 1 }
we have ((l0, j), σ′(�′, 2, σ′)) ∈ Δ̃ iff (l0, σ′, �′) ∈ Δ.

6. Observation mapping. We have (a) γ̃−1((�, j, σ)) = γ̃−1((l0, j)) = õ, for j ∈
{ 0, 2 }; and (b) γ̃−1((�, 1, σ)) = γ(�) and γ̃−1((l0, 1)) = γ(l0); i.e., when the
second component is 0 or 2, then player 1 is not monitoring and hence observes
nothing, and otherwise if the second component is 1, then player 1 is monitoring
and hence observes the observation of the original game.

7. Cost function. We have c̃(0) = 0 (no cost); c̃(1) = −mon (cost of monitoring); and
c̃((σ, σ′)) = −cost(σ, σ′) (cost of switching).

8. Parity function. The priority function p̃ : L̃ → {0, 1, . . . , d} is obtained as follows:
for a state �̃ ∈ L̃ the priority p̃(�̃) is p(�), where � is the first component of �̃.
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There is a one-to-one correspondence between monitor-action strategies that are
observation-based in G, and observation-based strategies in the game G̃. The cost in-
curred in G in every step is incurred in two steps in G̃ as in G̃ we mimic the choice of
monitoring and choice of action switch of G in two steps. Hence we have the following
lemma.

Lemma 4. Let G be a game structure of imperfect information, and let p : L →
{ 0, 1, . . . , d } be a priority function. There is a monitor-action strategy α̂ in G that is
ν-frugal for the objective Parity(p) iff supα∈AO

G̃

infπ∈Outcome(G̃,α) MP(c̃, p̃)(π) ≥ − ν
2 .

We have the following result for minimum attention control: (a) the EXPTIME upper
bound follows from Corollary 1 and Lemma 4 and the fact that our reduction from G
to G̃ is polynomial; (b) the lower bound follows from EXPTIME-hardness of imperfect
information parity games: with monitoring and switching costs both set to 0, the mini-
mum attention control problem is the same as winning an imperfect information parity
game.

Theorem 3. The minimum attention control problem for imperfect information game
structures with parity objectives is EXPTIME-complete.

We have assumed that the winning objective is given as a parity condition on the state
space of the game. If instead, we are given a two-player game structure, and separately,
a specification in linear-temporal logic (LTL) [28], then standard automata-theoretic
constructions [34] can be used to reduce the problem to our case. That is, from the LTL
specification ϕ, one constructs a deterministic parity automaton whose size is at most
doubly exponential in the size of ϕ and whose number of parities is exponential in the
size of ϕ. A synchronous product of the game structure with this automaton gives an
imperfect information game whose size is the product of the size of the original game
and the size of the automaton. The solution to the imperfect information game involves a
subset construction, adding an extra exponential, and then solving a mean-payoff parity
game which is polynomial in the size of the game and exponential in the number of
parities. But a triple exponential raised to a single exponential is still triple exponential,
so we conclude the following.

Corollary 2. The minimum attention control problem for imperfect information game
structures and linear-temporal logic specifications is in 3EXPTIME.

We note that the high complexity of our procedure is disappointing, and unlikely to
yield an efficient tool. It will be interesting to see if more efficient algorithms can be
designed for fragments of LTL.

4 Infinite State Systems

We now apply the theory of minimum attention controller synthesis to the discrete time
control problem for rectangular automata [16]. We obtain our results using a general
decidability result about imperfect-information games on infinite state spaces that have
a stable partition with a finite quotient.
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R-stable games. In this section we drop the assumption of finite state space of games.
Let G = 〈L, l0, Σ, Δ,O, γ〉 be a game structure of imperfect-information such that L is
infinite. Let R = { r1, r2, . . . , rl } be a finite partition of L. A set Q ⊆ L is R-definable
if Q =

⋃
r∈Z r, for some Z ⊆ R. The game G is R-stable if the following conditions

hold for all σ ∈ Σ: (a) the set { l ∈ L | ∃l′ ∈ L.(l, σ, l′) ∈ Δ } is R-definable; (b) for
all r ∈ R, the set PostGσ (r) is R-definable; (c) for all r, r′ ∈ R, if for some x ∈ r we
have PostGσ ({ x }) ∩ r′ �= ∅, then for all x′ ∈ r we have PostGσ ({ x′ }) ∩ r′ �= ∅; and
(d) for all o ∈ O, the set γ(o) is R-definable.

Lemma 5. The following assertions hold. (1) Let G be a game structure of imperfect
information, and let R be a finite partition of the state space of G such that the game
G is R-stable. Then the perfect-information game Pft(G) is 2R-stable. (2) Let G be a
perfect-information game structure with a parity objective with d-priorities and a mean-
payoff objective with rewards on Σ such that the maximal absolute value of the rewards
is W . If G is R-stable, for a given finite partition R, then value for the mean-payoff
parity objective in G can be computed in time O((|R| · W )d+5).

We present the definition of rectangular automata with imperfect information and then
reduce the minimum attention control problem to the problem of game with imperfect
information. Using a result of [16] we establish the game of imperfect information is
R-stable for a finite set R.

Rectangular constraints. Let Y = { y1, y2, . . . , yk } be a set of real-valued variables.
A rectangular inequality over Y is of the form xi ∼ d, where d is an integer constant,
and ∼∈ {≤, <,≥, > }. A rectangular predicate over Y is a conjunction of rectangular
inequalities. We denote the set of rectangular predicates over Y as Rect(Y ). The rect-
angular predicate φ defines the set of vectors [[φ]] = { y ∈ Rk | φ[Y := y] is true }. For
1 ≤ i ≤ k, let [[φ]]i be the projection on variable yi of the set [[φ]]. A set of the form [[φ]],
where φ is a rectangular predicate, is called a rectangle. Given a non-negative integer
m ∈ N, the rectangular predicate φ is m-bounded if |d| ≤ m, for every conjunct yi ∼ d
of φ. Let us denote by Rectm(Y ) the set of m-bounded rectangular predicates on Y .

Rectangular automata. A rectangular automaton of imperfect information H is a tuple
〈Q,Lab,Edg , Y, Init , Inv ,Flow , Jump,O, γ〉 where (a) Q is a finite set of locations;
(b) Lab is a finite set of labels; (b) Edg ⊆ Q×Lab×Q is a finite set of edges; (d) Y =
{ y1, y2, . . . , yk } is a finite set of variables; (e) Init : Q → Rect(Y ) gives the initial
condition Init(q) of a location q; (f) Inv : Q → Rect(Y ) gives the invariant condition
Inv(q) of location q (i.e., the automaton can stay in q as long as the values of variables
lie in [[Inv(v)]]); (g) Flow : Q → Rect(Ẏ ) governs the evolution of the variables in
each location; (h) Jump maps each edge e to a predicate Jump(e) of the form φ ∧
φ′ ∧

∧
i�∈Update(e)(y

′
i = yi), where φ ∈ Rect(Y ), φ′ ∈ Rect(Y ′), and Update(e) ⊆

{1, 2, . . . , k }; (i) O is a finite set of observations and γ : O → 2Q \∅ is the observation
mapping such that { γ(o) | o ∈ O } is a partition of Q. The variables in Y ′ refer to the
updated values of the variables after the edge has been traversed. Each variable yi with
i ∈ Update(e) is updated nondeterministically to a new value in [[φ′]]i. A rectangular
automaton is m-bounded if all rectangular constraints are m-bounded. A rectangular
automaton is called a timed automaton if for each variable y ∈ Y and each state q ∈ Q,
we have 1 ≤ Flow (q)(ẏ) ≤ 1.
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Nondecreasing and bounded variables. Let H be a rectangular automaton, and let i ∈
{ 1, 2, . . . , k }. The variable yi of H is nondecreasing if for all q ∈ Q, the invariant
interval [[Inv (q)]]i and the flow interval [[Flow (q)]]i are subsets of the nonnegative reals.
The variable yi of H is bounded if for all q ∈ Q, the invariant interval [[Inv(q)]]i is
a bounded set. The automaton H is bounded (resp. nondecreasing) if all the variables
are bounded (resp. nondecreasing). In sequel we consider automata that are bounded or
nondecreasing.

Game semantics. The rectangular automaton game with imperfect information is played
as follows: the game starts at a location q and values for the continuous variables y ∈
[[Init(q)]]. At each round the controller can choose to observe (monitor) the observation
(paying the monitoring cost) or not; and then the controller decides to take one of the
enabled edges (if one exists). Then the environment nondeterministically updates the
continuous variables according to the flow predicates by letting time pass for 1 time
unit. Then the new round of the game starts. We now present a reduction to imperfect-
information game, and then show that the game is stable with respect to a finite partition.

Reduction. A rectangular automaton H with imperfect information
〈Q,Lab,Edg , Y, Init , Inv ,Flow , Jump,O, γ〉 reduces to an infinite state imperfect-
information game H = 〈L, l0, Σ, Δ,O, γ〉 as follows:

1. States. The set of states is L = Q × Rk; that is the set of states consists of a tuple
of location and values of variables.

2. Input letters. The set of input letters is Σ = Lab ∪ { 1 }. The set of input letters is
the set of labels Lab of H , and unit time 1.

3. Observation map. The observation map is as follows: γ(o) = { (q, y) ∈ L | γ(q) =
o }.

4. Transition function. The transition function is as follows: (a) ((q, y), σ, (q′, y′)) ∈
Δ, such that there exists e = (q, σ, q′) ∈ Edg with (y, y′) ∈ [[Jump(e)]]; and (c)
((q, y), 1, (q, y′)) ∈ Δ such that there exists a continuously differentiable function
f : [0, 1] → Inv(q) such that f(0) = y, f(1) = y′ and for all t ∈ (0, 1) we have
ḟ(t) ∈ [[Flow (q)]].

The set of observation-based strategies of H represents the observation-based strategies
for the rectangular automaton game defined by H .

Equivalence relation. Let H be a m-bounded rectangular automaton with imperfect
information, and let H be the game of imperfect information obtained by the reduction.
We define the equivalence relation ≡m on the state space as follows: (q, y) ≡m (q′, y′)
iff (a) q = q′; and (b) for all 1 ≤ i ≤ k, either yi� = y′

i� and "yi# = "y′
i#, or both yi

and y′
i are greater than m. We denote by R≡m the set of equivalence classes of ≡m. It

is easy to observe that R≡m is finite (in fact exponential in the size of H). An extension
of the result of [16] gives us the following result.

Lemma 6. Let H be a m-bounded rectangular automaton game with imperfect infor-
mation. The imperfect-information game H is R≡m-stable.
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Theorem 4. Let H be a rectangular automaton with imperfect information and let p :
Q → { 0, 1, . . . , d } be a priority function. Let p : Q ·Rk → { 0, 1, . . . , d } be such that
p(q, y) = p(q), for q ∈ Q and y ∈ Rk. The answer to the ν-frugal problem for H for
Parity(p) is true iff the answer to the ν-frugal problem is true in H for Parity(p).

From Lemma 5, Lemma 6, Theorem 4, and Theorem 3 we obtain the following
corollary.

Corollary 3. Let H be a rectangular automaton with imperfect information and let
p : Q → { 0, 1, . . . , d } be a priority function. Whether there is a ν-frugal strategy for
the controller in H to satisfy the objective Parity(p) can be decided in 2EXPTIME.

The result for timed automata follows similarly, using the finite bisimilarity relation for
timed automata [1].

5 Discussions

We have presented algorithms for minimum attention controller synthesis for ω-regular
objectives purely in the discrete setting, or in a setting (rectangular automata) which
can be reduced to the discrete setting. A natural next step is to extend the results in the
presence of more general continuous dynamics. One potential direction is to combine
the optimization problems in [3] with mean-payoff parity games as described here.
This seems hard algorithmically, because the optimization problem in [3] is already
quite difficult (and even in the case of linear dynamics, it is not obvious if closed form
solutions can be obtained).

A different direction is motivated by work in approximate abstraction of continuous
control models [30,14,13]. The results in these papers provide techniques to abstract
the continuous state space and dynamics of systems to discrete systems such that, any
controller for the discrete system is guaranteed to ensure the property in the continuous
system up to an error of ε, where ε is a parameter of the abstraction. Therefore, the
study of minimum attention control for hybrid dynamics can be broken into two parts:
first, construct a discrete abstraction of the continuous system, and second, apply the
techniques described in this paper to solve the problem of minimum attention control.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2),
183–236 (1994)

2. Anta, A., Tabuada, P.: On the minimum attention and anytime attention problems for nonlin-
ear systems. In: CDC 2010. IEEE, Los Alamitos (2010)

3. Brockett, R.W.: Minimum attention control. In: CDC 1997. IEEE, Los Alamitos (1997)
4. Brockett, R.W.: Minimizing attention in a motion control context. In: CDC 2003. IEEE, Los

Alamitos (2003)
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Abstract. Specifications and implementations of complex physical sys-
tems tend to differ as low level effects such as sampling are often ignored
when high level models are created. Thus, the low level models are often
not exact refinements of the high level specification. However, they are
similar to those. To bridge the gap between those models, we study robust
simulation relations for hybrid systems. We identify a family of robust
simulation relations that allow for certain bounded deviations in the be-
havior of a system specification and its implementation in both values of
the system variables and timings. We show that for this relaxed version
of simulation a broad class of logical properties is preserved. The ques-
tion whether two systems are in simulation relation can be reduced to a
reach avoid problem for hybrid games. We provide a sufficient condition
under which a winning strategy for these games exists.

Keywords: formal verification of hybrid systems, robust simulation,
logics for hybrid systems, hybrid games.

1 Introduction

Hybrid systems provide a mathematical model for systems with interacting dis-
crete and continuous dynamics. Examples include controllers for trains, cars, and
airplanes. In many cases, these controllers are critical for the system operation
and safety. Thus, verification is a crucial task during the design of those systems.
Unfortunately, verification approaches do not scale well enough to directly tackle
the whole implementation of such controllers.

Different approaches have been taken to overcome this issue so far. Refinement
between a relaxed model and a synthesized discrete implementation is established
by Stauner [21]. His method relies on models that obey certain restrictions.
For example the invariants and guards must be overlapping in a single point.
Stauner then constructs a sampled implementation that is a refinement of a
relaxed version of the model where the guards and invariants overlap in a larger
region. The gap from timed systems to implementations was bridged by De Wulf
et.al. [25] in a similar way. They provide a relaxed semantics for timed automata
that ensures implementability and preservation of LTL properties. Girard et.
al. [12] presented an approach how to construct approximately bisimilar symbolic
models for switched dynamical systems.
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Thrane et. al. [22] studied different types of simulations that allow for some
deviations of the costs in weighted timed automaton. A notion of simulation
in the presence of spatial deviations that allows to related hybrid systems with
identical control graphs is presented by Girard et. al. [11].

As effects like sampling that often occur in implementations influence the
timing behavior similarity notions have been studied that allow for some devi-
ation in the timing behavior as well. Davoren [5] presented an approach gener-
alizing Skorokhod-metrics and provided conditions under which these initially
pseudo-metrics induce topologies which are Hausdorff and are thus indeed met-
rics. However, she does not present a constructive method for determining the
values assigned to two concrete system by the metric.

Inspired by the simulation notion presented by Girard et. al. [11] and the more
general similarity notion in Davoren’s work [5], (a) we study a simulation relation
that allows one system to simulate another in a robust way, where deviations in
continuous variable valuations, and in timing behavior are subject to constant
bounds, and (b) we then investigate properties preserved under such a simulation
relation. Additionally, we drop the requirement inherent to the work in [11] that
the discrete behavior must have the same control graph.

We model hybrid systems using a notion of hybrid automata [13]. However, the
formalism allows for some specifications that lack real-world realizability. As we
want to bridge the gap between specifications and implementations, we do nei-
ther consider runs of a system that are Zeno, i.e. an infinite number of transitions
is taken within a finite amount of time, nor behaviors that are time blocking.
Time blocking means that at a certain point in time, no future evolution of the
system is possible due to an invariant preventing any continuous evolution and
no transition guard being satisfied. Also, as valuations of transient intermediate
variables in internal calculations are not observable, we consider systems similar
as long as their outputs are similar, even if transient intermediate values differ.

To determine whether two systems are related by our simulation relation, we
build up a two player hybrid game where the existence of a winning strategy
for the second player coincides with the fact that the systems are in simula-
tion relation. Hybrid games are a natural extension of timed games [18] where
derivatives are no longer restricted to 1 and resets can exhibit a more complex
structure. Different types of hybrid games have been studied in the literature
so far. Restricted classes of hybrid games have been proven to be decidable (see
e.g. [14,2,24]). Unfortunately, the games expressive enough for our purpose do
not fall into such a class. Tomlin et. al. [23] study hybrid games for controller
synthesis. They give an algorithm how to compute controllable predecessors and
thus checking if there is a controller that drives the system into a safe state.

To express properties of real-time as well as hybrid systems a variety of differ-
ent logics have been proposed (see [1] for a survey). We choose to use a variant
of the future fragment of MTL [16] to specify properties of our systems. As ba-
sic propositions we use expressions that are evaluated on the system variables.
This gives us a nice partitioning between temporal and spatial propositions on a
syntactical level which we will exploit when proving that certain properties are
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preserved by our simulation relation. Henzinger et. al. [15] studied the relation
between a timed variant of CTL and a notion of simulation that allows for some
bounded deviation in the timing behavior of the timed automaton under consid-
eration. They prove that a certain modification function applied to the temporal
operators of their logic ensures that properties can be transfered using this simu-
lation relation. We will use a similar transformation but add some modifications
to the basic propositions as well to capture the deviations in space.

With Fainekos and Pappas [7] and Donzé and Maler [6] we share the goal
of defining robust satisfaction of linear-time metric temporal logic formulas in
a form permitting the generalization of findings obtained on one trajectory to
“close-by” trajectories, where “close-by” refers to both space—as already ad-
dressed by Fainekos and Pappas—and time—a combination also covered by
Donzé and Maler. Our work, however, is notably different from theirs in that
they deal with instance properties while we deal with ensemble properties: while
theirs robustly evaluates a given formula over a given (sampled) trajectory, we
are concerned with computing a simulation relating every trajectory of a given
concrete system to a robustly corresponding abstract counterpart such that the
robust semantics of every temporal-logic formula is preserved up to a given tol-
erance. The latter constitutes a natural notion of system refinement which can
help bridge the gap between the abstract models used in system verification
and their actual implementations, while the former is the adequate setting for
assessing observed trajectories against a given set of requirements.

Contributions. We study a similarity of hybrid systems. In contrast to many
other approaches, we do not restrict ourselves to classical refinement, but develop
a notion of similarity that relates systems based on behavioral distance so that
we can transfer properties even if the behavior is slightly different. We allow the
system behavior to differ in both valuations of the system variables as well as
timings. We give a sufficient criterion under which a system A is simulated by
another system B using our notion of simulation and prove that for all formulas
that are satisfied by B there is a “similar” formula that is satisfied by A.

Structure of this Paper. In Sect. 2 we give the formal basis for specifying hybrid
systems and properties of those. Section 3 provides a motivating example for
the study of system similarity which is examined further in Sect. 4. In Sect. 5 we
give sufficient conditions under which we can assert that systems are similar and
study what properties are preserved by this relation in Sect. 6.

2 Basics

To specify systems, we use a standard notion called hybrid automata. The syntax
is similar to the syntax for hybrid automata originally defined by Henzinger
in [13].

Definition 1. A hybrid automaton is a tuple H = (U,X,L,E, F, Inv, Init)
where
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– V := U ∪̇ X is a set of real-valued variables where U is the set of external
variables and X contains the internal ones.

– L is the set of locations.
• Invariants are provided by a mapping Inv of locations to predicates over
variables in V .

• Flows are given by F , which is a mapping of locations to predicates of
the form

∧
x∈Ẋ ẋ = ex where ex are expressions over V . Here, Ẋ denotes

the derivatives of the variables in X.
– E ⊆ L × G × L are discrete transitions, where G denotes predicates over

V ∪X ′. The variables in X ′ are valuated with the values of the variables in
the post-state.

– Init is a mapping of locations to predicates over V , which characterizes the
initial condition to start in the specific location.

We use a hybrid time model that is the cross product of the non-negative real
numbers (denoted by R for real numbers and R+ for the non-negative subset)
and the natural numbers (denoted by N). The natural number component allows
arbitrarily many discrete jumps at a single real-valued point in time. Further,
we use | · | to denote the cardinality of sets or the absolute value of numbers and
∪̇ to denote the disjoint union of sets.

The semantics of a hybrid automaton is given by a set of runs. A run maps
a state to each point in time, which is pair of a non-negative real number and
a natural number. A state consists of a discrete location and a valuation of the
system variables. Every run of the system starts in some location and has a
valuation of the variables that satisfies the initial condition. If there is a discrete
jump, meaning an increase of the second argument leads to a changed valuation,
then there was an edge leading from the previous to the current location, whose
guard was satisfied. This also means that the current valuation of variables are
subject to certain restrictions based on this guard. Continuous flows range over
real-valued time-points. They change the variables based on the solution of the
flow predicate. While time is passing, the variable values change continuously,
and each of the valuations has to satisfy the location invariant.

Let π denote the projection to specific components of our hybrid automaton.
For example πV (s) gives us the valuation of the variables in state s whereas
πL(s) returns the location.

Definition 2. The semantics of a hybrid automaton is given by a set of runs

generated by a function Ξ : ((R+ × N) → R|U|) → 2(R
+×N)→L×R

|X|
. Here, for

some input stream ι, which is a total function ι : (R+ × N) → R|U|, we say
the output stream ω is possible for ι, i.e. ω ∈ Ξ(ι), iff there is a run, i.e. total
function, ξ(x, y) := (ι(x, y), ω(x, y)) such that:

1. ξ(0, 0) |= Init
2. If ξ(t, n + 1) �= ξ(t, n) then there is an edge from l = πL(ξ(t, n)) to l′ =

πL(ξ(t, n+1)) and πV (ξ(t, n)) satisfies the invariant of l and πV (ξ(t, n+1))
satisfies the invariant of l′. Additionally, the guard on this edge is satisfied
by using the values of ξ(t, n) for V and πX(ξ(t, n+ 1)) for X ′.
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3. There is an upper bound on the number of discrete changes at each real-
valued point in time: ∀t : ∃n : ∀n′ > n : ξ(t, n) = ξ(t, n′). For each t, we call
the smallest n for which this condition holds nt.

4. During continuous evolutions from some real-valued time point t to some t′

the location stays constant and no discrete computations change any values.
They start after the discrete computations stabilized, i.e. at (t, nt), and all
intermediate states t′′ satisfy the invariant of the current location: ∀t : ∃t′ >
t : ∀t < t′′ ≤ t′ : πL(ξ(t

′′, 0)) = l ∧ (t′′ < t′ → ∀n′′ : ξ(t′′, 0) = ξ(t′′, n′′)) ∧
ξ(t′′, 0) |= Inv(l) ∧ πV (ξ(t

′′, 0)) = s(t′′ − t) where l = πL(ξ(t, nt)) and s is a
solution to the initial value problem s(0) = πV (ξ(t, nt)) of the flow predicate
F (πL(ξ(t, n))).

Note that this definition of the semantics explicitly excludes runs where there
is an infinite number of different states at a single real-valued point in time.
It, thus, ensures that every instantaneous discrete calculation comes to a result
after a finite number of steps. However, Zeno behavior can still occur, as the
delays between calculation steps might go to zero in the limit. As such systems
would not be implementable, we assume in the following that those effects do
not occur. For example the models could be altered in a way that between every
two discrete transitions there is some small constant delay.

To describe properties of hybrid systems we need a logic that is able to express
temporal relations of real-valued states. Therefore, we study the following real-
valued real-time linear time temporal logic that we call L� in this paper.

First, let us define what a Lipschitz continuous function is.

Definition 3 (Lipschitz continuity). We say that a function f : Rn → R is
Lipschitz continuous, iff there is some constant M such that for all x1, . . . , xn,
and all y1, . . . , yn holds:

|f(x1, . . . , xn)− f(y1, . . . , yn)| ≤ M · ||(x1, . . . , xn), (y1, . . . , yn)|| ,

where ||·, ·|| denotes the Euclidean distance. We call the smallest M that has this
property the Lipschitz constant of f .

Now, based on this definition to restrict the possible basic terms, the syntax of
our logic is defined as follows:

Definition 4 (Syntax). The basic formulas are defined by

φ ::= x ∈ I | f(x1, . . . , xn) ≤ 0 | ¬φ | φ1 ∧ φ2 | φ1 UJ φ2

where I ⊆ R, J ⊆ R+, f is a Lipschitz continuous function and the xi are
variables.

We interpret this metric variant of LTL on runs of hybrid systems. However, as
transient states of the automaton are not observable in the real world, we project
the runs on a continuous domain. This gives us a valuation function which maps
a value to each variable at each real-valued point in time.
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Definition 5 (Valuation). We define the valuation of a variable x at time t
on a run ξ as

ζξ(t, x) := lim
n→∞ ξ(t, n)|x ,

where y|x denotes the projection of the vector y to its component associated with
the variable name x.

If the run is obvious from the context we just write ζ(t, x).
Note that this definition is well defined as property 3 of our semantics of

hybrid automaton demands that the number of discrete changes to the vari-
ables is finite at each real-valued point in time. For the original semantics of
hybrid automaton by Henzinger [13] the limit might not exist, as a countably
infinite number of transitions might be taken at a real-valued time-point and
each might assign new values to the variables. However properties of these runs
cannot be observed in the real world, and we, thus, drop them from our focus.

t

x

Fig. 1. Example trajectory

In Fig. 1 an example trajectory of a hybrid sys-
tem is shown. Here, squares mark values that are
omitted by our valuation function.

We now turn our focus to the semantics of the
logical formulas. The semantics of the basic terms
imposes bounds on the valuations of the system
variables. This can either be done by restricting the
values of a variable to be within some real-valued set or by imposing a Lipschitz
continuous constraint on multiple variables. The variables are connected to the
system state using the valuation function just defined. Boolean connectives are
defined as usual, and the until operator provides us with the possibility to ex-
press both the temporal order of states as well as postulate time bounds on these
orders. The set annotation forces the postcondition to hold at some point in time
that lies within this set.

Definition 6 (Semantics). We define for a run ξ and some t ∈ R+ the se-
mantics of a formula φ by:

ξ, t |= x ∈ I iff ζ(t, x) ∈ I (1)

ξ, t |= f(x1, . . . , xn) ≤ 0 iff f(ζ(t, x1), . . . , ζ(t, xn)) ≤ 0 (2)

ξ, t |= ¬φ iff not ξ, t |= φ (3)

ξ, t |= φ ∧ ψ iff ξ, t |= φ and ξ, t |= ψ (4)

ξ, t |= φUJ ψ iff ∃t′ ∈ J : ξ, t′ + t |= ψ and ∀t ≤ t′′ < t′ + t : ξ, t′′ |= φ (5)

Additionally we define for a set of runs Ξ:

Ξ, t |= φ iff for all runs ξ ∈ Ξ holds ξ, t |= φ (6)

A hybrid system Sys satisfies a formula denoted by Sys |= φ iff ΞSys, 0 |= φ.

Obviously, true and false can be expressed in various ways using this logic.
Additionally, we define the eventually modality by �Jφ ≡ trueUJ φ and the
always modality as abbreviation �J φ ≡ ¬�J¬φ.
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3 Running Example

To further motivate the study of similarity and to illustrate how our results can
be applied, we present a specification of a cruise controller taken from [4] and
provide a very basic implementation that we use for comparison.

The goal of the cruise controller is to stabilize the system at a velocity dif-
ference of v = 0 to some target velocity within a certain time bound if it was
started with a velocity difference v between −30 and 30. If the velocity difference
is below −15 the controller just chooses the maximum acceleration 1.5. In the
range of −15 to 15 a proportional-integral (PI) controller takes over. It controls
the acceleration proportional to the current and the accumulated velocity dif-
ference since this mode was entered. The velocity difference is accumulated by
integration over v. We, here, write the integral implicitly as differential equation
ẋ = v. The integral part is used by the PI controller to smoothen the velocity
trajectory as it is approaching its target, i.e. a velocity difference of v = 0.

If the difference is above 15 the controller enforces braking with maximal
deceleration of −2. Figure 2a shows the corresponding automaton. The model
consists of three modes. Depending on the initial velocity difference, exactly one
of these is enabled. The variable x is used to track the integral over v such that
the PI control used in the central mode can access this data.

ẋ = v
v̇ = −0.001x− 0.052v

−15 ≤ v ≤ 15

v̇ = 1.5
−30 ≤ v ≤ −15

v̇ = −2
15 ≤ v ≤ 30

v ≥ −15
x := 0

v ≤ −15
x := 0

v ≥ 15
x := 0

v ≤ 15
x := 0

2a: Original specification

v̇ = a
ṫ = 1
t ≤ τ

t ≥ τ ∧−30 ≤ v < −15
t := 0∧a := 1.5∧x := 0

t ≥ τ ∧−15 ≤ v ≤ 15
t := 0

x := x+ τv
a := −0.001x− 0.052v

t ≥ τ ∧ 15 < v ≤ 30
t := 0∧a := −2∧x := 0

2b: Implementation

Fig. 2. Cruise controller variants

A sampling implementation is provided by the automaton depicted in Fig. 2b.
Here, a single mode is sufficient and the acceleration is updated depending on
the current velocity difference with a sampling rate of τ := 10 time units. The
two systems do not produce identical trajectories and the implementation is
not a classical refinement of the specification. Still, they are similar in their
behavior.
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4 Similarity

To introduce a notion of similarity, we compare the observable values of the
system trajectories. Like in the definition of the logic, we restrict our focus to
a single valuation of variable at each real-valued point in time. Now, the idea is
to say that two runs are similar if both evolve in a similar fashion by comparing
variable valuations of one system with valuations of the other that might be
shifted in time. This means given a valuation of the variables of one system at
some point in time, there is within close distance in time a point where the
valuation of the variables of the other system is close. We restrict the temporal
distance by a constant ε and the spatial distance by another constant δ.

Definition 7. For two streams σi : R
+×N → Rp with i ∈ {1, 2}, given two non-

negative real numbers ε, δ, we say that σ1 is ε-δ-simulated by stream σ2 (denoted
by σ1 �ε,δ σ2) iff there is some left-total, surjective relation r ⊆ R+ × R+ with

∀(t, t̃) ∈ r : |t− t̃| < ε ∧ ∀(t′, t̃′) ∈ r : (t ≤ t′ → t̃ ≤ t̃′) (7)

and
∀(t, t̃) ∈ r : ||c(σ1)(t), c(σ2)(t̃)|| < δ (8)

where for k ∈ {1, 2}: c(σk) is defined by c(σk)(t) := limq→∞ σk(t, q).

As r allows stretching or compressing the time line, we call it a retiming relation.
An example for such a relation is depicted in Fig. 3. The relation is motivated
by the fact that slight variations in the switching points of the system as those
variations should not endanger the safety of any robust real-world system.

0 1 2 3 4 5 6 7 8 9
t

0 1 2 3 4 5 6 7 8 9
t

Fig. 3. Example for a retiming relation r

In some cases it is sufficient to use a slightly weaker notion of similarity. This
can be obtained by dropping the bound on the temporal distance. If we do not
impose an upper bound on the temporal distance, we can still get useful insights.
When comparing systems where the timing behavior is of limited interest, to
prove that, for instance, the one system works within certain spatial bounds
compared to the other one, it is sufficient to use the following notion of similarity.

Definition 8. For two streams σi : R+ × N → Rp with i ∈ {1, 2}, given a
non-negative real number δ, we say that σ1 is weakly δ-simulated by stream σ2

(denoted by σ1 �δ σ2) iff there is some left-total, surjective relation r ⊆ R+×R+

with
∀(t, t̃) ∈ r : ∀(t′, t̃′) ∈ r : (t ≤ t′ → t̃ ≤ t̃′) (9)

and (8) holds.
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We apply the same definitions to output streams as well, by ignoring the location
component of those. Now we introduce the main similarity notion on hybrid
systems used in this paper using the notion of the stream similarity.

Definition 9. A hybrid system A is ε-δ-simulated by another system B (denoted
by A �ε,δ B) iff for all input streams ιA and for all input streams ιB for which
ιA �ε,δ ιB and for all output streams ωA ∈ Ξ(ιA) of A, there is an output
stream ωB ∈ Ξ(ιB) of B such that ωA �ε,δ ωB holds. And similarly, A is weakly
δ-simulated by B (denoted by A �δ B) iff the above conditions hold for weak
δ-simulations on the streams.

Note that if a system has no input variables, then it still has a possible input
stream of type R+ × N → ∅. Therefore, in the absence of input variables, the
whole relation is determined by the system outputs.

5 Determining Similarity

In this section we present a sufficient criterion for determining whether two
systems are similar. We assume that the system inputs can be described by
differential equations. This way we can add these differential equations to each
mode and further assume inputless systems.

Now, we give an encoding of the question whether a system A is ε-δ-simulated
by a system B into a two player game. The idea is that if there is a winning
strategy for the second player then the systems are in simulation relation.

First, we give the general definition of hybrid games.

Definition 10 (Hybrid Game). A hybrid game HG = (S,Ec, Uc, l) consists
of a hybrid automaton S = (U,X,L,E, F, Inv, Init), a set of controllable tran-
sitions Ec ⊆ E, a set of controllable variables Uc ⊆ U , and a location l ∈ L.

The game is played on the states of the hybrid system denoted by S. The
possible moves of the first player are determined by the uncontrollable transitions
E \Ec and the corresponding invariants and guards. The second player plays on
the controllable transitions Ec. In addition, the second player always proposes a
function that gives the future valuations of the variables in Uc until the next move
is determined. At every state of the game each player chooses an action that is
either a finite number of discrete transitions (uncontrollable transitions for the
first player and controllable ones for the second player) or a time period they
want to let pass. If both players choose discrete transitions then the first player
gets precedence and all transitions of the first player are executed. Afterwards the
transitions proposed by the second player are executed, if they are still enabled.
If both players choose to let time pass, the smaller amount of time is taken. In
case one chooses a discrete transition and the other one chooses to let time pass,
the discrete transition gets precedence.

The first player wins, if he can force the game to enter the location l or if the
second player does not have any more moves. The second player wins, if he can
assert that the location l is avoided.
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The case where the second player has no more moves can happen if for example
the system is on the edge of an invariant region and thus a discrete transition
has to happen, but no controllable transition is enabled.

To translate the question whether two systems are in simulation relation into
such a hybrid game, we encode the restrictions of the simulation relation into a
hybrid automaton that is able to check whether either the distance between the
system states is too large, or whether we are not able to find a suitable retiming
at a certain point. The retiming is modeled by speeding up/slowing down the
system dynamics by multiplying them with either s for the dynamics of the first
system or 2 − s for those of second one. As s can be altered arbitrarily we can
emulate all possible retiming relations. We keep track of the temporal distance
of the systems in the variable r that represents the integral over 2s− 2. That r
indeed models the temporal distance can be seen if one considers the evolution
of local clocks. A clock in the first system evolves with rate s while a clock in a
second system evolves with 2 − s. In case s = 1 both evolve with speed 1. Else
we have a clock drift of s− (2− s) = 2s− 2.

The spatial distance can be checked directly. We add invariants that force
the automaton to go to the bad location if the distance is too large. Most of
the controllable transitions are only enabled as long as the system variables
and timings are close. Only in cases, where the second player reacts on some
action performed by an uncontrollable transition this is not directly enforced.
Therefore, all uncontrollable transitions lead to a location (second component is
in L̂) where the second player might react. However, in these locations no time
must pass which is enforced using the fresh clock c.

Formally this gives:

Definition 11 (Simulation Game). Given two real numbers ε, δ, a hybrid
system A = (UA, XA, LA, EA, FA, InvA, InitA), and another hybrid system B =
(UB, XB, LB, EB , FB, InvB, InitB), we define, w.l.o.g. assuming VA ∩ VB = ∅,
a hybrid game SG = (A�B,Ec, {s}, bad) in the following way:

– A�B = (U�, X�, L�, E�, F�, Inv�, Init�)
– The variables of the resulting system are given by U� = UA ∪ UB ∪ {s} and

X� = XA ∪XB ∪ {r, c} where w.l.o.g. (VA ∪ VB) ∩ {s, r, c} = ∅ holds.
– The locations are given by L� = LA × (LB ∪ L̂B) ∪̇ {bad}, where L̂B are

duplicates of the original locations in LB.
– Let χ be the following formula: ||xA, xB || < δ ∧ |r| < ε, where xA and xB

are the state vectors of the systems A and B respectively.
– The discrete transitions E� are the smallest set such that:

• If (lA, φ, l
′
A) ∈ EA then for all lB ∈ LB,

((lA, lB), φ ∧ χ ∧ c′ = 0, (l′A, l̂B)) ∈ E� .

• If (lB , φ, l
′
B) ∈ EB then for all lA ∈ LA,

((lA, lB), φ ∧ χ, (lA, l
′
B)) ∈ (E� ∩ Ec)

and
((lA, l̂B)), φ, (lA, l

′
B)) ∈ (E� ∩Ec) .
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• For all lA ∈ LA and all lB ∈ LB, ((lA, lB),¬χ, bad) ∈ E�.

• For all lA ∈ LA and all lB ∈ LB, ((lA, l̂B), true, (lA, lB)) ∈ (E� ∩ Ec).

– For all l = (lA, lB) ∈ L� or l = (lA, l̂B) ∈ L� we construct F�(l) as
ṙ = 2s− 2 ∧ ċ = 1 ∧mod(FA(lA), s) ∧mod(FB(lB), 2 − s) where mod(F, x)
alters f by multiplying the right side of each differential equation occurring
in F with x.

– The invariants of the locations are given by Inv� which assigns each location
(lA, lB) or (lA, l̂B) an invariant of the form InvA(lA) ∧ InvB(lB) ∧ χ ∧ 0 ≤
s ≤ 2. If l = (lA, l̂B) we further add c ≤ 0.

– Init� = {((lA, lB), InitA(lA) ∧ InitB(lB)) | lA ∈ LA ∧ lB ∈ LB}

Using this game, we can determine whether two systems stand in simulation
relation as defined in Def. 9.

Theorem 1. Given two hybrid systems A and B. If there is a winning strategy
for the second player in the game (A�B,Ec, {s}, bad) then A �ε,δ B holds.

Proof. Assume that there is a winning strategy but A �ε,δ B does not hold.
From the latter, we know that there is a run of system A such that, no matter
which retiming is applied, system B cannot stay close enough. Let this run
be ξ. We now construct a winning strategy for the first player using ξ. The
first player chooses his actions in a way that the valuations of the variables
of the first system at time t coincide with ξ(t − r). The second player is not
able to influence the valuations of the variables at those points, as the discrete
transitions that it can choose from are those of B. He is also not able to restrict
the movement of the first player, as the intermediate locations only allow him
to react on actions performed by the first player and as he looses if there is a
time deadlock, he can also not avoid time going to infinity. This, as there was
no run of B that stays close enough to ξ, eventually leads to a state where the
condition ||xA, xB || < δ ∧ |r| < ε is violated. In this state the first player can
choose to enter the location bad. This contradicts the assumption that there is
a winning strategy for the second player and thus concludes the proof. �
Note that the reverse implication does not hold, as the game demands a tighter
coupling of the system behaviors with regard to branching than our notion of
ε-δ-simulation.

Corollary 1. If we restrict the possible moves of the second player by adding
differential equations describing the evolution of s and he is still able to win the
game, then the systems are in simulation relation.

This follows directly from the fact that Theorem1 demands the existence of a
winning strategy. Now, if we can find a winning strategy for a system where
the control of s is further restricted, we still can assert that there is a winning
strategy for the original system.

A good strategy to use for controlling s is optimal control with the goal of
minimizing the value of ||xA, xB ||. As the Euclidean distance contains a square
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root we w.l.o.g. take the square of the distance as minimization target. This
yields equivalent results as the square root is a monotone transformation. For
xA = (xA,1, . . . , xA,n) and xB = (xB,1, . . . , xB,n), the square of the distance
evolves as follows:

d(||xA, xB||)2
dt

=
d(

√
((xA,1 − xB,1)2 + · · ·+ (xA,n − xB,n)2)

2
)

dt

=
d((xA,1 − xB,1)

2 + · · ·+ (xA,n − xB,n)
2)

dt

= Σn
i=1(2(xA,i − xB,i) · (s

dxA,i

dt
− (2− s)

dxB,i

dt
))

Let smin be the s that minimizes this term. Now choose s in the following way:
If r < ε ∧ smin > 1 or r > −ε ∧ smin < 1 choose s = smin. Otherwise choose
s = 1. The resulting strategy, for controlling s can then be encoded into a hybrid
automaton and included into the original automaton.

The choice of the strategy is motivated by the fact that the location bad can
only be entered if the distances between the two systems become too large. As
we might be able to trade spatial distance against temporal distance we choose
to minimize the spatial distance. However, this strategy is only an heuristic as
there are systems, where it is necessary to let the spatial distance increase a bit
to for example unify switching timings, as the guard effects might otherwise lead
to a violation of the bounds on the spatial distance.

Definition 12. A hybrid automaton is considered deterministic if (1) all of its
transitions are urgent, i.e. all the guards of the transitions are overlapping in
a singular point with the border of its sources invariant and all trajectories of
the mode are pointing outwards of the invariant region at that point, and (2) for
each point in time, at most one transition is enabled.

Let A be a hybrid automaton and B be a deterministic hybrid automaton. If
we modify A � B in a way that the assumptions of Corollary1, assume that
the system values are identical at the initial locations, and are able to show
that on all runs of this modified version of A � B the location bad is avoided,
then, by Corollary 1, A �ε,δ B holds. The assumptions of Corollary1 could, e.g.,
be satisfied by using the optimal control strategy. Thus, we can use a model
checker (e.g. FOMC [3], PHAVer [8], SpaceEx [9], or HSolver [20], depending
on the system class and complexity) to search for a certificate for the fact that
bad is unreachable. Provided that suitable inductive invariants can be found,
we could also prove that the trajectories of these two uncontrolled systems stay
close using a theorem prover for hybrid systems like KeYmaera [19].

On a similar line of thought, if one can prove that the systems stabilize within
a certain time, as it is the case for our running example, it also possible to
use bounded model checking up until the time of stabilization. This could be
performed, e.g., using iSAT [10].

Let us now consider our example presented in Sect. 3 with respect to these
results. Using MATLAB Simulink we can determine that the maximum distance
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Fig. 4. Simulated velocities over time

between these two systems if started in the initial state v = 16 is 12.7. The
velocity trajectories of the two systems are shown in Fig. 4a and Fig. 4b. A plot
of the resulting differences is depicted in Fig. 5a.

Using optimal control to keep the distance between the two systems minimal
as long as the retiming bounds allow and the fact that both systems stabilize
at v = 0 we can also show that there is a 5-6.61-simulation, if the initial region
is restricted to this singular point v = 16. This enables us to transfer more
knowledge from one model to the other than the previous observation. The
resulting trajectory corresponds to applying a retiming relation that results in
the temporal differences depicted in Fig. 5c to the original trajectories and we
get the smaller differences (compared to Fig. 5a) shown in Fig. 5b.
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Fig. 5. Maximal differences of the system velocities over time

6 Preservation of Logical Properties

Now that we have identified sufficient conditions for our simulation relation, we
study what properties are preserved by the relation.

The similarity notion defined in Def. 9 can be used to transfer properties from
one system to another. As we have upper bounds on the deviations we can use
those to weaken the formulas to be sure that they still hold in similar systems.

Theorem 2. If hybrid systems A and B satisfy A �ε,δ B and B |= φ then
A |= φ+δ

+ε where φ+δ
+ε := reε,δ(φ) and reε,δ is defined by:
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– reε,δ(x ∈ I) := x ∈ I ′, where I ′ = {a | ∃b ∈ I : a ∈ [b− δ, b+ δ]}.
– reε,δ(f(x1, . . . , xn) ≤ 0) := f(x1, . . . , xn)−δ·M ≤ 0 where M is the Lipschitz

constant for f .
– reε,δ(¬φ) := ¬roε,δ(φ).
– reε,δ(φ ∧ ψ) := reε,δ(φ) ∧ reε,δ(ψ).
– reε,δ(φUJ ψ) := reε,δ(φ)UJ ′ reε,δ(ψ), where J ′ = {a | ∃b ∈ J : a ∈ [b −

ε, b+ ε] ∩ [0,∞)}.

The transformation function roε,δ is given by:

– roε,δ(x ∈ I) := x ∈ I ′, where I ′ = {a | ∃b ∈ I : a ∈ [b+ δ, b− δ]}.
– roε,δ(f(x1, . . . , xn) ≤ 0) := f(x1, . . . , xn)+δ·M ≤ 0 where M is the Lipschitz

constant for f .
– roε,δ(¬φ) := ¬reε,δ(φ).
– roε,δ(φ ∧ ψ) := roε,δ(φ) ∧ roε,δ(ψ).
– roε,δ(φUJ ψ) := roε,δ(φ)UJ ′ roε,δ(ψ), where J ′ = {a | ∃b ∈ J : a ∈ [b +

ε, b− ε] ∩ [0,∞)}.

As before I ⊆ R and J ⊆ R+ hold.

The function reε,δ is applied if the current subformula is in a context of an even
number of negation, whereas the function roε,δ is applied to subformulas under
an odd number of negations. Note that if the set indexing an until operator
becomes empty, the formula is trivially false.

Our notion of similarity can be seen as a decrease of the resolution of the
image we have of the system behavior thus blurring the borders. If we originally
knew that at some time between t and t′ some event would happen, we now
have to account for the timing deviations that might occur. Thus, if the event
originally happened at time t it might now occur in the worst case already at
t − ε. If it originally occurred at time t′, the worst case we have to consider is
that it now might occur as late as t′ + ε. This widens the set of possible time
points for the event, thus reducing our knowledge about exact timings. A similar
effect happens on the variable valuations.

This theorem can be proven by induction over the formula structure and the
time. The induction base is formed by showing that the modified formulas hold
at time 0. One important argument for this is the fact that (0, 0) ∈ r and of
course the bounds on the deviations. Now the only operation that modifies the
time at which the formulas are evaluated is the until operator. As stated in the
previous paragraph, from the fact that the systems are in simulation relation,
we know that the postcondition was originally satisfied during some point in the
set annotation, the modified version of the formula might now hold a bit earlier
or a bit later but is forced to hold at some point. Up until this point, all the
values have to be similar to those originally satisfying the precondition.

The other crucial point is to prove that negated formulas can be transfered.
This can be shown by another induction. Again the difficult part is to show that
the proposition holds for the until operator. If we assume, the modified formula
would not hold, we can use our relation r that gives us a point in time where
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the original pre- and postconditions touches. This, however, is a contradiction
to the fact that the until is not satisfied for the original system.

Using the weaker version of similarity we can also transfer some properties.
The version is weaker with respect to knowledge about timing. Those timings
are only present in the intervals indexing the until-operators in the formulas.
Thus weakening these operators by replacing those intervals by [0,+∞) removes
all exact timing informations. Only temporal properties are preserved in that
case, e.g. we could still retain knowledge about event orders.

Theorem 3. If for hybrid systems A and B holds A �δ B and B |= φ, where φ
does not contain any until-operations in a negative context, then A |= φ+δ

∼ where
φ+δ
∼ = w(re0,δ(φ)) and w replaces the index of every until operator by R+.

The proof follows easily from the proof for Theorem2 by altering the induction
steps for the until operator. Unfortunately, we here loose to much information
about the timings to keep knowledge about until operations in a negative context,
i.e. under an odd number of negations, thus the restriction to positive contexts
in this theorem.

7 Summary

In this paper we presented our notion of similarity for hybrid systems that we
call ε-δ-simulation. We have given a translation of the question whether one
system simulates another into hybrid games and given sufficient conditions under
which a winning strategy for these games exists. Further, we have studied what
properties are preserved under this notion of similarity.

Currently, we can only determine similarity of a restricted class of models
and the approach itself has a large complexity making it easier in many cases to
check the properties one wants to transfer on the implementation directly. For
future work, we will study how we can incorporate system decompositions into
our approach. For this goal, we need to find a way to determine whether two
open-loop systems are in simulation relation.

Acknowledgments. We like to thank Ernst-Rüdiger Olderog and Anders Ravn
for the fruitful discussions, and Sven Linker, Johannes Faber, and Mani Swami-
nathan for reading preliminary versions of this paper.
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Abstract. Timed automata as acceptors of languages of finite timed
words form a very useful framework for the verification of safety prop-
erties of real-time systems. Many of the classical automata-theoretic de-
cision problems are undecidable for timed automata, for instance the
inclusion or the universality problem. In this paper we consider restric-
tions of these problems: universality for deterministic timed automata
and inclusion of a nondeterministic one by a deterministic one. We then
advocate the use of SMT solvers for the exact incremental analysis of
timed automata via these problems. We stratify these problems by con-
sidering domains of timed words of bounded length only and show that
each bounded instance is in (co-)NP. We present some experimental data
obtained from a prototypical implementation measuring the practical
feasibility of the approach to timed automata via SMT solvers.

1 Introduction

Timed automata as introduced in [3] are one of the most well-established models
for the specification and verification of systems in which events can happen
arbitrarily close in time [14].

The real numbers present an adequate model for continuous time; systems
in which such timing aspects need to be modeled are therefore also called real-
time systems. Execution traces of real-time systems can be modeled by timed
words—sequences of events which are attached to the time at which they occur.
Timed automata then act as acceptors of languages of timed words for instance,
and various verification problems on real-time systems can be phrased as classic
automata-theoretic problems. For instance the classic problem of determining
whether an implementation satisfies a specification can be modeled as a language
inclusion problem on timed automata.

Real-time aspects introduce additional complexity. The state space of a timed
automaton is in fact infinitely large due to the infinitely many moments in time
that the execution along a timed word presents. While emptiness for finite au-
tomata is NLOGSPACE-complete, and universality (is L(A) = Σ∗?) and inclu-
sion (is L(A) ⊆ L(B)?) are PSPACE-complete [3]; emptiness for timed automata
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is already PSPACE-complete and universality and inclusion even are undecidable
[3]. This has always limited the analysis of such automata to a great extent. To
circumvent this problem extensive research has been done, in which certain limi-
tations are imposed on the structure of the automata, for instance by restricting
the resources that a timed automaton has access to.

In this paper we consider the problems of language universality and inclusion
for timed automata. In order to obtain effective algorithmic solutions we restrict
the universality problem to deterministic timed automata, and in the inclusion
problem L(A) ⊆ L(B) we require that B is deterministic. In Sect. 2 we recall very
simple constructions that embed the former as well as the emptiness problem for
nondeterministic timed automata into the latter. Because of this we can restrict
our attention to this inclusion problem.

In Sect. 3 we then develop an incremental approach to these three problems
using an idea that has been developed for bounded model checking: by limiting
the space of possible witnesses or counterexamples to the emptiness, universality
or inclusion problem one can obtain a computationally easier problem. Formally,
we define bounded variants of these three problems which are obtained by adding
a further input parameter k. The bounded emptiness problem then asks whether
or not there is a word in the language that has length at most k. Bounded vari-
ants of the two other problems are defined accordingly. We first give a lower
complexity bound on the emptiness and inclusion problem showing that they
remain at least NP-hard (for unarily encoded additional input parameter k). A
corresponding co-NP-lower bound for the universality problem cannot be pre-
sented for lack of space but does exist.

In Sect. 4 we first develop a generic propositional logic over integer and real-
valued constraints and show that its satisfiability problem is in NP. We then
present an encoding of the bounded inclusion problem into the satisfiability prob-
lem for this logic. Encodings of the two other bounded problems can easily be
obtained from this one. This shows NP-completeness of the bounded emptiness
and inclusion problems as well as inclusion in co-NP of the bounded universality
problem; compare this to the PSPACE-completeness of the unbounded versions.
Hence, the transition from the unbounded to the bounded problems reduces the
complexity measurably but it also is the case that the bounded problems are
not necessarily solvable in polynomial time (which would make the approach via
satisfiability problems questionable).

This generic propositional logic can easily be embedded into logics that are
supported by many modern SMT solvers. An SMT (“satisfiability modulo the-
ories”) is a satisfiability checker for predicate logics that are obtained by ex-
panding propositional logic with a so-called theory, for example the theory of
arithmetic over the real numbers.

SMT solvers extend SAT solvers which can only check plain propositional
formulas for satisfiability but cannot handle numbers or interpreted function
symbols like addition for instance. This does not mean that SAT solvers cannot
be used for satisfiability problems using natural numbers for example: if their
domain is bounded then they can easily be modeled by propositional variables
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based on the bit representation. This is not restricted to natural numbers. Even
timed automata analysis which inherently relies on adding real numbers has
been done with SAT solvers [12]. This requires some sort of abstraction though,
for instance by approximating real numbers up to a feasible precision which
enables representations with a fixed number of bits. In fact, this is nothing more
than the region-based abstraction technique seen in classical algorithms on timed
automata.

Here we argue that SMT solvers over theories incorporating simple real arith-
metic form a promising alternative to the analysis of timed automata using SAT
solvers. In effect, they offer the following advantages.

1) SMT solvers can get rid of the need for abstraction techniques. The abstrac-
tion needed to solve a problem over a continuous domain with a discrete step
algorithm is removed from the timed automata analysis and entirely handled
by the SMT solver. This simplifies correctness proofs on the timed automata
side a lot as the proofs contained in this paper show. We emphasize the lack
of need for such abstractions by calling the SMT-based analysis “exact”.

2) SMT solvers are not restricted to problems of a certain complexity like
SAT solvers are restricted to problems in NP (unless one accepts exponen-
tially large encodings). In this paper we only consider a very weak fragment
of logics that can be handled by modern SMT solvers: quantifier-free logic
over very simple linear integer or real-valued inequalities. This is enough for
the problems on timed automata considered here. However, SMT solvers of-
fer a lot more in terms of available predicate logics. The question of which
other problems on timed automata can be tackled (not necessarily “solved”
because of decidability issues) using SMT solvers needs to be answered in
future investigations.

3) Research in SMT solving is catching up with SAT solving. For example,
incremental solving—the possibility of adding and deleting constraints after
solving—is available for some SMT solvers as well. Incrementality is what
makes the transition from the unbounded emptiness, universality and inclu-
sion problem to the bounded variant a feature rather than a weakness [20].

In Sect. 5 we examine the practical feasibility of using SMT solvers for timed
automata analysis by reporting on some experimental results obtained from a
prototype implementation using the SMT solver Z3 [1]. We conclude the paper
in Sect. 6 with ideas for future work on top of the one presented here.

Related Work. Many works also consider restricted cases in which the universal-
ity or inclusion problem becomes decidable [2, 4, 18, 19]. While we also restrict
these problems (to some deterministic automata), the purpose of doing so is
entirely different. We are not primarily concerned with obtaining a decidable
subcase. It is just that this decidable subcase can be handled with a relatively
simple translation into the SMT framework, and the complexity considerations
in this paper are done in order to classify the obtained subcase accordingly. The
NP-hardness lower bound shows that there is no known way of solving the prob-
lem efficiently. The NP upper bound shows that the analysis problems fit into a
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relatively simple fragment of quantifier-free predicate logic over the integers and
the reals.

The works that are closely related to the one presented here are probably
[6, 17] where the authors extend some existing SAT-solvers in order to verify
timed automata against reachability properties specified as LTL formula. This
is when, in this paper we compare the (generalized) timed automata with each
other to investigate properties like language inclusion and universality as well.
Our approach is also different from [12, 21] where the authors present some
encoding of the emptiness problem for networks of timed automata into SAT.
The main difference between these and the work presented here does not lie in
the extension to asynchronous networks. It is not hard to see that the encoding
presented here can be extended to networks of timed automata as well. The main
difference is, as argued above, the use of SMT instead of SAT solving technology.
The simplification due to lack of need for explicit discretisation is imminent when
comparing the correctness proofs here with the ones in there.

Timed automata as a subclass of hybrid automata can of course be dealt
with using the approaches introduced in [5, 13]. These methods are designed in
such a way that they can handle the non-linear constraints in hybrid automata
efficiently. However, our intention is to provide a technique that is specifically
designed for timed automata, whose clock constraints in a generalized form only
compare the difference of two variables with a constant value, e.g. x− y ≤ 2.

2 Timed Automata

2.1 Syntax, Semantics, Runs

A timed automaton consists of a finite state automaton together with a finite
set of clocks. Clocks are non-negative real valued variables which keep track of
the time delay since the last reset. A finite state automaton describes the system
control states and its discrete transitions. All clocks are initially set to 0, and
evolve at the same speed. A configuration of the system is given by the current
control location of the automaton and the value of each clock, denoted 〈q, v〉,
where q is the control location and v is the valuation function which assigns
to each clock its current value. Transitions are enabled by guards which are
constraints on clock values. The language Φ(X) of all constraints over a set of
clocks X is given by

g ::= true | x� c | x− y � c | ¬g | g ∧ g

where x, y ∈ X , c ∈ N and � ∈ {≤, <}. We will also use other Boolean and
arithmetic operators that are definable using the ones above like g1 ∨ g2 :=
¬(¬g1 ∧ ¬g2), etc.

The definition above, as called in the literature [8, 10] diagonal constraint,
renders timed automata more expressive than its classical variant [3, 9] where
atomic constraints contain only one clock variable, e.g. x ≤ c.

A valuation for a set X of clocks is a function v : X → R≥0, assigning non-
negative real values to the clocks. The satisfication of a clock constraint over
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Fig. 1. a) a nondeterministic timed automaton. b) a deterministic timed automaton.

X by some valuation over X is defined straight-forwardly by induction on the
structure of the constraint, e.g. v |= x�c iff v(x)�c for � ∈ {≤, <}. A constraint
g is satisfiable if there is a v s.t. v |= g. Otherwise it is unsatisfiable.

A (nondeterministic) timed automaton (TA in short) is a tuple 〈L, L0, LF , Σ,
X, E〉 where L is a finite set of locations, L0 ⊆ L is a set of initial locations,
LF ⊆ L is a set of final locations, Σ is a finite alphabet called events, X is a
finite set of clock variables, and E ⊆ L × Φ(X) × Σ × 2X × L is a finite set of
symbolic transitions.

There are two kinds of concrete transitions in a timed automaton, delay and
discrete ones. A delay transition lets time elapse, in which case the value of all
clocks will increase accordingly. For instance, a delay transition of some non-
negative time t ∈ R≥0 transforms state 〈q, v〉 into state 〈q, v + t〉, where v + t

assigns to each clock x the value v(x) + t. It is denoted 〈q, v〉 t−→ 〈q, v + t〉.
A discrete transition can change the control location. There is a discrete tran-

sition with event a from state 〈q, v〉 to state 〈q′, v′〉, denoted by 〈q, v〉 a−→ 〈q′, v′〉,
if there is a symbolic transition (q, g, a, R, q′) ∈ E s.t. the clock valuation v sat-
isfies the guard g, and v′ is obtained from v by setting all clocks in R to 0.

It should be clear that two successive delay transitions with time delays t1
and t2 can be combined into a single delay. Furthermore, a delay transition
followed by a discrete transition can be explained as a single transition based on
a symbolic transition (q, g, a, R, q′) ∈ E by simply requiring that the guard g is
satisfied by the clock valuation obtained from adding the delay to the current
valuation: we have 〈q, v〉 t,a−→ 〈q′, v′〉 if 〈q, v〉 t−→ 〈q, v′′〉 and 〈q, v′′〉 a−→ 〈q′, v′〉
for some (necessarily unique) valuation v′′. In the following we will consider
only this kind of combined delay-discrete transition to explain the operational
semantics.

A timed word of length k over Σ is a finite sequence (a0, t0), (a1, t0 + t1), . . . ,
(ak−1, t0 + · · ·+ tk−1), where for each 0 ≤ i < k : ai ∈ Σ and ti ∈ R≥0. The set
of all timed words is denoted by TΣ∗.

Timed automata have runs on timed words just like finite automata have
runs on ordinary finite words. Each event-delay pair of a timed word causes a
delay-discrete transition in the automaton. As usual, runs start in initial states
and are accepting if they reach a final state at the end of the input word.
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Given a timed automaton A = 〈L, L0, LF , Σ, X, E〉 and a timed word w =
(a0, t0), (a1, t0+t1), . . . (ak−1, t0+· · ·+tk−1) over Σ, a run ofA on w is a sequence

〈q0, v0〉
t0,a0−→ 〈q1, v1〉

t1,a1−→ . . .
tk−1,ak−1−→ 〈qk, vk〉

where for all 0 ≤ i < k there is a (qi, g, ai, R, qi+1) ∈ E for some g and a such
that: vi + ti |= g, and for each x ∈ X we have vi+1(x) = 0 if x ∈ R, and
vi+1(x) = vi(x) + ti otherwise. The run is accepting if additionally we have
q0 ∈ L0 and qk ∈ LF . The language L(A) of the TA A is the set of all timed
words for which there is an accepting run of A.

Example 1. The timed word w = (a, 1), (a, 2.5), (b, 2.7), (b, 2.8) is accepted by
the TA of Fig. 1 (a) which is witnessed by the run

〈q0, 0, 0〉 1,a−→ 〈q0, 0, 1〉 1.5,a−→ 〈q1, 1.5, 2.5〉 0.2,b−→ 〈q2, 1.7, 0〉 0.1,b−→ 〈q1, 1.8, 0.1〉
where 〈q, t, t′〉 represents the state 〈q, v〉 for which v(x) = t and v(y) = t′. The
language of this automaton can be described as L(A) = {(a, t0), . . . (a, ti), (b, t′1),
. . . , (b, t′j) | ti ≥ 1 and i, j ≥ 0}.
A TA is deterministic, DTA in short, when L0 has only one element and each
two transitions with same source location and same label have disjoint guards.
I.e., if (q, g, a, R, q′) ∈ E and (q, g′, a, R′, q′′) ∈ E then g ∧ g′ is unsatisfiable. A
DTA B is complete if for each timed word w ∈ TΣ∗ there is a run of B over w.

It is not hard to see that every DTA B = (L, q0, LF , Σ, X, E) can be made
complete by adding a new non-final control location q⊥ and transitions (q⊥, true,
a, ∅, q⊥) for every a ∈ Σ as well as (q,

∧
g∈Gq,a

¬g, a, ∅, q⊥) for every q ∈ L, and
a ∈ Σ where Gq,a = {g | ∃R.∃q′.(q, g, a, R, q′) ∈ E}. We therefore assume that
DTA are always complete.

2.2 Three Decision Problems on TA and DTA

We consider three decision problems for timed automata.

1. Non-emptiness for TA (nEMPTY) is: given a TA A, is L(A) = ∅?
2. Universality for DTA (dUNIV) is: given a DTA B, is L(B) = TΣ∗?
3. TA-DTA inclusion (ndINCL) is: given a TA A and a DTA B, is L(A) ⊆

L(B)?

Note that more general problems like universality or inclusion between a TA and
a TA are undecidable [3]. It is not difficult to see that ndINCL subsumes the two
other problems: the universal language can easily be recognised by a one-state
TA Auniv , and the empty language can also be recognised by a one-state TA
Aempty which is in fact also a DTA. Then we have L(B) = ∅ iff L(B) ⊆ L(A) for
any TA B, and we have L(B) = TΣ∗ iff L(Auniv ⊆ L(B) for any DTA B.

Proposition 1 ([3]). There are linear-time reductions from nEMPTY and
dUNIV to ndINCL.

Consequently, we can concentrate on ndINCL for the remainder of this paper,
and any method for this problem easily induces methods for nEMPTY and
dUNIV as well.
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3 Bounded Decision Problems

Bounded versions restrict the length of witnesses or counterexamples to a so-
lution by an additional parameter. The bounded TA-DTA inclusion problem
(ndINCL≤) for instance is the following: given a TA A, a DTA B and a k ∈ N,
is every timed word of length at most k that is accepted by A also accepted by
B? In that case we write L(A) ⊆k L(B). A witness (for non-inclusion) is a timed
word w s.t. |w| ≤ k, w ∈ L(A) and w ∈ L(B).

The following is easy to see. It shows how the bounded TA-DTA inclusion
problem can be used in order to approximate the TA-DTA inclusion problem.

Proposition 2. Let A be a TA, B be a DTA. Then L(A) ⊆ L(B) iff for all
k ∈ N: L(A) ⊆k L(B).

The bounded TA emptiness problem and the bounded DTA universality problem
are defined in the same way by adding an input parameter k and asking for
words of length at most k which are (not) in the language of the given TA, resp.
DTA.

It is not hard to see that the constructions in the proof of Prop. 1 go through
for the bounded versions of the three considered problems there. The bounding
parameter always remains the same. We therefore state the following without
an extra proof.

Theorem 1. There are linear-time reductions from nEMPTY≤ and dUNIV≤

to ndINCL≤.

It is known that the three decision problems nEMPTY, dUNIV and nd-
INCL are all PSPACE-complete [3, 4].1 We will show that bounding these prob-
lems makes them computationally easier: nEMPTY≤ and ndINCL≤ are NP-
complete. For the upper bound we consider a more general satisfiability problem
in the next section which will also be used to obtain implementations. It can
also be used to show that dUNIV≤ is in co-NP. Here we prove the NP-lower
bounds. dUNIV≤ is also co-NP-hard which can be shown by a reduction from
the complement of nEMPTY≤.

Theorem 2. nEMPTY≤ and ndINCL≤ are NP-hard for a singleton alphabet
and two clocks already.

Proof. We prove the claim for nEMPTY≤ by a reduction from the well-known
Hamiltonian path problem. Given a directed graph G = (V, E) and a node
u ∈ V , is there a path starting in u that visits each vertex exactly once? This
problem is known to be NP-complete [15]. The result then follows for ndINCL≤

immediately with Thm. 1.
Let G = (V, E) and u0 ∈ V be given. W.l.o.g. we assume V = {0, . . . , |V |−1}.

We build a TA AG that has (almost) the same transition structure as G and
1 [3] states PSPACE-completeness of dUNIV but only shows the upper bound by a

reduction to ndINCL. dUNIV is also PSPACE-hard though: it is possible (but more
complicated) to reduce ndINCL to dUNIV in polynomial time.



184 B. Badban and M. Lange

uses two clocks: x is used to enforce a certain time delay, namely exactly time
2i in state i; and y is used to measure the overall time used in a run. We only
add a single final state which is reachable whenever time 2n − 1 has passed.

Thus, let AG = (V ∪ {fin}, {u0}, {fin}, {a}, {x, y}, E′) where

E′ := {(i, (x = 2i), a, {x}, j) | (i, j) ∈ E} ∪ {(i, (y = 2|V |− 1), a, ∅, fin) | i ∈ V }

Finally, let kG := |V |+1. It should be clear that this construction is polynomial.
Note that the representation of 2i for instance only requires i bits. We now claim
that G has a Hamiltonian path starting in u iff L(AG) contains a word of length
at most kG.

“⇒” Let n = |V | and suppose that u0, . . . , un−1 is a Hamiltonian path. It is
not hard to see that AG has an accepting run on the timed word (u0, 2u0), . . . ,
(un−1, 2un−1), (fin, 0). The delay 2ui in the i-th part of this word is exactly what
is needed in order to enable the guard on a transition leaving location ui. Fur-
thermore, since every state is visited exactly once, we have

∑n−1
i=0 2ui = 2n − 1

which enables the transition to the final state in the end.
“⇐”. Suppose (u0, t0), . . . , (un−1, tn−1), (fin, tn) is an accepting run of some

word in L(AG) and n ≤ kG. Since fin is only reachable by enabling the guard
y = 2|V | − 1, and no transition ever resets the clock y, we must have

∑n−1
i=0 ti =

2|V | − 1. Furthermore, every transition resets the clock x, and every transition
out of some state i is only possible after a delay of exactly 2i in this state. Hence,
all the ti for i = 0, . . . , n− 1 are powers of 2, add up to 2|V | − 1, and there are
at most |V | of them. This is only possible if n − 1 = |V | and each of the 2i

occurs exactly once in this sum. But this is only possible if the accepting run
visits each location exactly once, i.e. forms a Hamiltonian path in the underlying
graph G. ��

4 Incremental Encodings of Some Decision Problems

4.1 A Generic Constraint Logic

We consider a generic propositional logic which can have constraints over integer-
and real-valued variables as literals, and present an encoding of the bounded in-
clusion problems into this logic. Decidability and implementability of the bounded
inclusion problem can then be tackled by translating this logic into some known
and specialised formalism.

Let VZ and VR be two disjoint sets of natural and real-valued variables. We use
two different fonts in order to distinguish variables and constant values: x, y, . . .
are variables, b, c, . . . are constants. We also assume that it will always be clear
from the context what the type of a given variable is.

An integer constraint is of the form b · x ≤ c where x ∈ VZ, b ∈ {1,−1},
and c ∈ Z. A real constraint is of the form

∑m
i=1 bi · xi � c where � ∈ {<,≤},

bi ∈ {0, 1}, xi ∈ VR for all i = 1, . . . , m, and c ∈ R.
Formulas of the generic constraint logic (GCL) are simply propositional for-

mulas over atomic constraints.

ϕ ::= C | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ
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where C is one of the constraints above. It should be clear that, with Boolean
operators at hand, many other constraints become definable, for instance x =
c := x ≤ c ∧−x ≤ −c, x < c := x ≤ (c− 1) in case of an integer constraint, etc.

We write |ϕ| to denote the size of ϕ measured in terms of occurrences of
logical, relational and arithmetic symbols as well as size of a representation for
the constants, for instance encoded in binary.

A variable assignment is a ϑ = (ϑZ, ϑR) s.t. ϑX : VX → X for X ∈ {Z, R}.
Hence, it assigns integer, resp. real values to the integer, resp. real variables. The
truth value of a formula ϕ under an assignment ϑ is defined straight-forwardly
by evaluating the constraints and subformulas under the usual rules for <, ≤,
+, −, ∧, ∨, and ¬. We write ϑ |= ϕ to state that ϕ evaluates to true under the
assignment ϑ.

A formula is satisfiable if there is a ϑ s.t. ϑ |= ϕ. Clearly, such a ϑ only needs
to be defined on the variables that actually occur in ϕ which allows us to assume
that these assignments have finite domains. Two formulas are equivalent, written
ϕ ≡ ψ, if for all ϑ we have ϑ |= ϕ iff ϑ |= ψ.

A formula is positive it it does not contain any occurrences of the negation
operator ¬. Note that this is stronger than the well-known concept of positive
normal form which still would allow negation operators. The following is easy to
prove using the duality between ≤ and <.

Lemma 1. For every ϕ there is a positive ψ s.t. ϕ ≡ ψ and |ψ| ≤ 2|ϕ|.

Theorem 3. The satisfiability problem for GCL is NP-complete.

Proof. NP-hardness is a simple consequence of the fact that integer variables can
be restricted to the domain {0, 1} using the available constraints and thus model
Boolean variables. It is therefore possible to embed the NP-hard satisfiability
problem for propositional logic [11] into the satisfiability problem for GCL.

For the upper bound we describe a nondeterministic algorithm. Let ϕ be a
GCL formula. According to Lemma 1 we can assume ϕ to be positive. First guess
a truth value for each atomic constraint in it. Clearly, there are at most |ϕ| many,
and the truth values can be propagated up in the formula in polynomial time to
see whether the result is true. Next we need to decide whether there are variable
assignments that fulfil the atomic constraints which are guessed to be true. Note
that the integer constraints and the real constraints are independent of each
other because they do not share any variables. Hence, they can be dealt with
separately.

Solving a set of integer constraints of the form b · x ≤ c can be done in
polynomial time using interval arithmetic. Note that the solution to each such
constraint is given by an interval (−∞, c] if b = 1, and [c,∞) if b = −1. Com-
puting intersections of such constraints is easy.

In order to deal with real-valued constraints we use the linear programming
optimisation problem. First of all, we add a new variable y and replace every
strict inequality

∑m
i=1 bi ·xi < c by y+

∑m
i=1 bi ·xi ≤ c. This creates a linear pro-

gram with cost function y, i.e. we are looking for a solution to these constraints
that maximises the value of y. In order to ensure that there is a maximal value
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we also add a constraint like y ≤ 1. It is known that the linear programming
optimisation problem can be solved in deterministic polynomial time when the
coefficients are also taken into account as part of the input [16]. Finally, the
result of the optimisation problem needs to be translated back into a result of
the original system of constraints. If the system is not solvable then so is the
original one. If the maximal feasible value for y is at most 0 then the original
system is also not solvable. If the maximal feasible value for y is strictly positive,
then there is also a solution to the original system. ��

4.2 The Incremental Encoding

We fix a TA A = (LA, LA
0 , LA

F , Σ, XA, EA), a DTA B = (LB, qB0 , LB
F , Σ, XB, EB)

and a natural number k for the remainder of this section. We will define a formula
ϕA,B

k that is satisfiable iff L(A) ⊆k L(B). Moreover, its size will be linear in the
sizes of |A|, |B|, and in k. Note that this is the value of k, not the number of
bits needed to represent it.

In order to make the presentation of ϕA,B
k as intuitive as possible, we divide

it into several parts and present it statically first. At the end we will discuss how
to make it incremental in the sense that the formula ϕA,B

k+1 can be obtained from
ϕA,B

k by deleting and adding single components.
The first part states that the witnessing word is well-formed. It uses natural

number variables a0, . . . , ak−1 to encode the events in a witness, as well as real-
valued variables t0, . . . , tk−1 for the time delays of such a witness. W.l.o.g. we
assume the alphabet to be {1, . . . , |Σ|}. Furthermore, remember that the formula
to be built should state that there is a word of length at most k with some
property. In order to capture words of length < k as well, we take an additional
value, say 0, and represent such a shorter timed word w by w(0, t1) . . . (0, tm)
where m = k − |w| and the ti are arbitrary values. The following formula then
states well-formedness of such a timed word.

wordk :=
( k−1∧

i=0

0 ≤ ti
)
∧

( k−1∧
i=0

0 ≤ ai∧ai < |Σ|
)
∧

( k−2∧
i=0

ai = 0 → ai+1 = 0
)

Next we formalise that the timed word w represented by values for those variables
is accepted by A. We use k + 1 integer variables �0, . . . , �k to represent the
locations in an accepting run of A on w. W.l.o.g. we can assume that LA =
{0, . . . , |LA|−1}. We also use (k +1) · |XA| many real-valued variables vc

i where
c ∈ X and 0 ≤ i ≤ k}, in order to represent the values of the clocks in each state
of this accepting run. We first state that the run is well-formed in the sense that
each pair of adjacent states is connected by a transition that is possible in A
unless the event symbol at that position is 0.

runA
k :=

k−1∧
i=0

∧
q∈LA

�i = q ∧ ¬(ai = 0) →
∨

(q,g,a,R,q′)∈EA
sat i(g) ∧ ai = a ∧

progressi(R) ∧ �i+1 = q′
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where sat i(g) states that the guard g is satisfied by the clock valuation after the
i-th delay has passed. It is defined by induction on the structure of g:

sat i(x ≤ c) := vx
i + ti ≤ c sat i(¬g) := ¬sat i(g)

sat i(x < c) := vx
i + ti < c sat i(g1 ∧ g2) := sat i(g1) ∧ sat i(g2)

Furthermore, progressi(R) formalises the progression of time. In particular, the
clock valuation at the next moment results from delaying at the current moment
and resetting clocks afterwards.

progress i(R) :=
( ∧

x∈R

vx
i+1 = 0

)
∧

( ∧
x∈XA\R

vx
i+1 = vx

i + ti
)

Finally, we need to say that the run is accepting, i.e. starts in an initial location
with all the clocks set to 0 at that moment. A final location needs to be reached
at that point when the next event symbol either does not exist anymore (i.e. the
k-the location in the run) or is 0 (for words of length < k).

accAk :=
(∧
x∈XA

vx
0 = 0

)
∧

(∨
q∈LA

0

�0 = q
)
∧

( k−1∧
i=0

ai = 0 →
∨

q∈LA
F

�i = q
)
∧

(
¬(ak−1 = 0) →

∨
q∈LA

F

�k = q
)

Next we need to state that B does not accept the timed word given by the values
for the ai and ti variables. In general, this is a universal statement over all runs
of the automaton but, since it is assumed to be deterministic and complete, it
can equivalently be rephrased as “there is a run that is not accepting”. Hence,
the constraints runB

k are formed exactly in the same way as for runA
k but using

fresh variables �′0, . . . , �
′
k for the locations in the run of B. W.l.o.g. we can assume

XA∩XB = ∅, i.e. the two automata use different clocks. We then have variables
vx

i as above for every clock x ∈ XB and every i = 0, . . . , k.
We also define a constraint rejBk similar to accAk now stating that the run of

B given by the valuations of the �′i and vx
i variables is rejecting.

rejBk :=
( ∧

x∈XB
vx
0 = 0

)
∧ �0 = qB0 ∧

( k−1∧
i=0

∧
q∈LA

F

ai = 0 → �′i = q)

Finally, we define ϕA,B
k := wordk ∧ runA

k ∧ accAk ∧ runB
k ∧ rejBk . There are

two important aspects to note about ϕA,B
k : it is small, i.e. linear in its three

parameters, and it characterises the bounded TA-DTA inclusion problem.

Proposition 3. |ϕA,B
k | = O(k · (|A|+ |B|)).

Theorem 4. ϕA,B
k is satisfiable iff L(A) ⊆k L(B).
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Proof. “⇐” Suppose L(A) ⊆k L(B). Then there is a w=(a0, t0), . . . , (an−1, tn−1)
∈ TΣ∗ s.t. n ≤ k and w ∈ L(A) and w ∈ L(B). Then there is an accepting run
〈q0, v0〉, . . . , 〈qn, vn〉 of A on w. Furthermore, the unique run 〈q′0, v′0〉, . . . , 〈q′n, v′n〉
of B on w is not accepting, i.e. it does not end in a final location.

It is now routine to check that the variable assignment ϑ = (ϑZ, ϑR) satisfies
ϕA,B

k , where

ϑZ(ai) =

{
ai , if i < n

0 , if n ≤ i < k
ϑR(ti) =

{
ti , if i < n

0 , if n ≤ i < k

ϑZ(�i) =

{
qi , if i ≤ n

qn−1 , if n < i ≤ k
ϑR(vx

i ) =

{
vi(x) , if i ≤ n

0 , otherwise

ϑZ(�′i) =

{
q′i , if i ≤ n

q′n−1 , if n < i ≤ k

“⇒” Suppose ϕA,B
k has a satisfying variable assignment ϑ = (ϑZ, ϑR). The ϑZ-

values of a0, . . . , ak−1 and the ϑR-values of t0, . . . , tk−1 encode a timed word over
the alphabet Σ ∪{0}. Because of wordk this is in fact a timed word in T (Σ∗0∗).
Hence, there is an n ≤ k, s.t. w′ := (ϑZ(a0), ϑR(t0)), . . . , (ϑZ(an−1), ϑR(tn−1)) ∈
TΣ∗. Furthermore, consider the sequence 〈ϑZ(�0), v0〉, . . . , 〈ϑZ(�n), vn〉 where
vi(x) = ϑR(vx

i ) for every i = 0, . . . , n and every x ∈ XA. Because of runA
k

this forms a run of A on w′ which can be extended to a run on w by simply
repeating the last pair in this sequence k− n times. Because of accAk this run is
accepting; it starts with all clocks set to 0 and ends in a final location.

In the same way one can see that runB
k and rejBk enforce the unique run of B

on w to be rejecting. Hence, we have L(A) ⊆k L(B). ��

It should be clear that similar formulas characterising the bounded TA emptiness
or the bounded DTA universality problem can easily be defined as well. In fact,
it is not necessary to carry out the cnstructions sketched for Prop. 1. Instead,
for bounded emptiness it suffices to remove the constraints involving B in ϕA,B

k ;
for bounded universality it suffices to remove those involving A.

Also note that the encoding can easily be made incremental in the sense that
the formula ϕA,B

k+1 can be obtained by certain operations on ϕA,B
k . In detail:

1. Add the conjuncts 0 ≤ tk, 0 ≤ ak, ak ≤ |Σ|, ak−1 = 0→ ak → 0 to wordk.
2. Extend the conjunctions in runA

k and runB
k by one to the range i = 0, . . . , k.

3. Remove the last conjunct from accAk , extend the conjunction before that to
the range i = 0, . . . , k, and add the conjunct ¬(ak = 0)→

∨
q∈LA

F
�k+1 = q.

Finally, the translation gives us an upper complexity bound matching the lower
bound in Thm. 2. It follows immediately from Thm. 4 and Thm. 3.

Corollary 1. nEMPTY≤ and ndINCL≤ are NP-complete for a unarily en-
coded bounding parameter k. The lower bound requires at least two clocks. Also,
dUNIV≤ is in co-NP.
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4.3 Translations into Other Formalisms

The extension of the propositional logic proposed above is extensive enough for
our purpose here, which is the encoding of bounded representations of the three
decidability problems under consideration. A natural question that arises is how
this can help to solve these problems in practice.

We refer to the SMT-LIB [7] framework, a standardisation for propositional
and predicate logics over various domains. It contains well-documented input
languages, including theories of difference logic over integers and reals and their
combinations. It is not hard to see that the propositional logic defined above can
esily be embedded into some of these formalisms, for instance the combination
of QF IDL (difference logic over integers) and QF RDL (difference logic over the
reals).

Furthermore, most SMT solvers nowadays comply with the SMT-LIB stan-
dards in the sense that it is clearly stated which theories they handle.

5 Implementation and Experimental Results

The approach described above is realised in a prototypical implementation done
in OCaml. It creates constraints according to some pre-defined families of bench-
marks, and uses the SMT solver Z3 in order to solve the bounded emptiness,
inclusion or universality problem as defined above in an incremental way.

All tests reported here were run on a compute server equipped with 16 Intel
Xeon cores at 1.87GHz and 256GB main memory. Note that neither the reduction
nor the SMT solver support parallelism, thus each test only occupies one core.

Here we report on three benchmarks testing different aspects of this approach,
all phrased as some series of emptiness problems.

Fischer’s Mutex Protocol. The first benchmarking family models Fischer’s pro-
tocol for mutual exclusion between n processes communicating via one shared
variable as one timed-automaton. Note that the state-spaces of the TA are ex-
ponential in n. Their languages consist of all runs of the asynchronous product
of these n processes which end in a state that has at least two processes in
the critical section. Thus, this is a classical safety verification problem. In this

Table 1. Experimental analysis of emptiness for timed automata

Fischer’s Mutex protocol

n size create solve

2 4238 0.01 0.02

3 33750 0.05 0.93

4 230760 0.20 20.86

5 1433948 1.16 6511.16

Diagonal Constraints

s length size

1 1141 197422

5 1040 179096

10 1160 198972

20 1299 224922

50 1499 259522

100 1699 294122

Exponential Witnesses

n size create solve c

2 1136 0.01 0.00 5

3 3230 0.02 0.02 8

4 8415 0.05 0.27 14

6 37121 0.32 42.77 38

8 179827 89.54 7050.78 134
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model, the delay times are set such that mutual exclusion is not guaranteed for
otherwise the languages would be empty.

Table 1 presents experimental data showing the size of the resulting formula
in number of logical operators in it, the time it takes to create it and the time
it takes to solve it in seconds. This benchmark is created in order to stress the
point that SMT solvers can check relatively large formulas for satisfiability.

Diagonal Constraints. There is an example of an 8-state TA using diagonal con-
straints in [9]. Its language is empty. The example shows that having diagonal
constraints in the timed automaton makes the classical forward analysis ap-
proach, implemented in most timed automata verification tools like KRONOS
and UPPAAL, unsound.

We use this benchmark to demonstrate that the approach in this paper can
easily deal with diagonal constraints, but also to examine the effect of varying
the step width s in which larger and larger ranges of lengths of timed words are
considered. Thus, a value of s = 7 for instance means checking for witnesses of
length {0, . . . , 6} first, then of length {7, . . . , 13}, etc.

Table 1 presents the maximal range length that could be examined within a
run time of one hour, as well as the size of the formula at the end. Thus, the
implementation showed for instance within one hour, that the TA under consid-
eration does not accept any word of length at most 1699. The interpretation of
the data is: larger incremental steps can save some time.

Exponential Witnesses. As a last benchmark we consider a family of TA with
n + 1 states s.t. their language is non-empty but the shortest word that they
accept is of length 2n − 1 + n. This can be enforced with a trick that is similar
to the one used in the NP-hardness proof in Thm. 2. However, a näıve approach
would cause a quadratic number of transitions. Here we use a slightly randomised
model of such TA which only needs a linear number of transition.

Table 1 shows size of formula, creation and solving time in seconds as well as
number c of calls to the SMT solver before a witness is being found. The step
width for ranges in the incremental analysis is fixed, thus this number grows
exponentially. Note that the reported solving time is the accumulated time of c
calls. This benchmark shows that the SMT solver can still find relatively long
witnessing words, here for instance of length 263 = 28 − 1 + 8. Note that the
numbers for formula sizes in the table clearly do not grow linearly. This is because
they represent formulas for exponentially differing ranges of word length, namely
those of the shortest words witnessing non-emptiness.

6 Further Work

There is a vast possibility for follow-up work. For starters, the encoding should
be extended to richer models, for instance TA with state invariants which is very
easy. It is also worth considering asynchronous networks of TA. It is easy to see
that the emptiness problem can be encoded in the same way, but the two other



Exact Incremental Analysis of Timed Automata with an SMT-Solver 191

problems may not be capturable as concurrency introduces nondeterminism.
Then there is the question of extending this to TA on infinite timed words.

There are two more extensions which show the vast potential that the use of
SMT solvers has as opposed to using SAT solvers: the latter are restricted to
problems in NP, the former are hardly restricted at all. Thus, far richer clock
constraint languages (for instance with all arithmetic operations) can easily be
handled by SMT solvers. At last, a very promising extension is the considera-
tion of richer logical (rather than just arithmetic) formalisms on the SMT side,
for instance logics with quantification. It remains to be seen which problems on
timed automata can also be encoded this way. Note that this is not restricted
to decidable problems since there are SMT logics which are undecidable in gen-
eral. Still, using SMT solvers for these problems may offer a practically viable
approach which may just not be complete or not always terminating.
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Abstract. Quantitative conformance testing of cyber-physical system
(CPS) exploits time series of measurements, such as temperature or
energy, for validating the correctness of deployed systems. This paper
presents the foundations of segmented state space traversal in the setting
of quantitative conformance testing of a CPS. It is demonstrated how
this strategy together with domain-specific adaptations remedies state
space explosion inherent to formal (state-based) verification. The pre-
sented contributions improve the scalability of quantitative conformance
testing of a CPS and is demonstrated with a case study.

1 Introduction

Motivation: Cyber-physical systems (CPS) operate on the edge between the
physical world and its continuous quantities, and the discrete world of comput-
ing devices. It is this complexity that makes the design and implementation
of CPS difficult and error-prone; tragic loss and costly damages due to system
flaws were encountered in the past. Hence correctness of system design is not
only desired, but a requirement. In the cyber-physical setting correctness does
not only encompass algorithmic and functional aspects, but also includes extra-
functional properties, e. g. temperature levels, power consumption and timing.
However, verifying the correctness of state-based system models commonly re-
quires the unfolding of all possible behaviors. Due to the notorious state space
explosion problem this may fail in practice; traversal and storage of exponentially
many states induces a non-tolerable memory and computation time overhead.
As an alternative to verification, formal frameworks for testing have shown their
usefulness, and remain the predominantly choice of industry when it comes to
validating the correctness of system’s implementation. In previous work [12,13]
we developed a Timed Automata (TA) based technique that exploits time se-
ries of measurements for uncovering implementation flaws of CPS. The proposed
framework is implemented on top of a standard timed model checker and there-
fore relies on the efficiency of the state space traversal scheme of the employed
model checker. However, the quantitative conformance testing as proposed by
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us, together with the characteristics of CPS to be tested yields a problem for-
malization, whose structure allows us to use problem-specific improvements in
the state space traversal. These improvements are the focus of this paper.

Related Work: In previous works we have have proposed a framework for quanti-
tative conformance testing of CPS [12,13]. In a nutshell, our TA-based technique
works as follows: (a) from a running system one obtains a timed series of mea-
surement values. (b) The data points of the measured trace are aggregated and
translated into a (linear) observer TM . (c) Joint execution of the trace model
TM and a TA-based model of the system allows for checking the reachability of
the terminal location of the trace model TM . If this is possible, we infer that
the measurements conform to the expected behavior of the system. This scheme
clearly differs from real-time testing with TA-based tester as introduced in a
series of publications, e. g. [5,9], where one derives a tester from a TA-based
system model and applies it to the system’s real-world implementation.

As pointed out above, the here presented conformance testing depends on a
reachability check. This requires a state space traversal until either the terminal
location of TM is contained in a state labeling or until all system states have
been visited. For a state space exploration routine to terminate it is essential
that one does not re-explore states that have already been under consideration.

Christensen et al. [6] present the sweep-line method where one removes states
from the memory as soon as they are known to be unreachable for all possible
evolutions of the system (model), i. e. once it is known that the system can not
loop back to them. In turn this reduces the memory overhead as imposed by the
storage of states that are not needed to be stored since the state space traversal
will never visit them again. A similar line of thought can be exploited for quan-
titative conformance testing where a TA-based system model is tested against a
measured trace. When carrying out the state space traversal in a breadth-first
search (bfs) manner, previously generated states can be dropped as soon as the
next reading from the measured trace is processed. This technique, which is
due to the linear character of any measured trace, has been implemented in the
Uppaal-based tool TRON [8]. When executing a conformance test TRON gen-
erates the trajectory of the modeled system, w. r. t. a set of possible states, and
w. r. t. the time stamp of the next data point of the measured trace. Now, the
newly generated states are filtered w. r. t. the current reading of the measured
trace, and all non conformant trajectories, as well as all previously generated
states are discarded, or dropped respectively. This procedure that starts with
the initial system configuration is repeated until the end of the measured trace
is reached or until all possible system trajectories have been discarded. A draw-
back is that this procedure requires to store and explore all successor states
which are conformant to the current reading from the measured trace. Hence,
it might, nevertheless, suffer from the state space explosion problem, especially
when dealing with system models showing a high-degree of non-determinism;
this issue has been studied in [13] and is also shown in Sec. 2.3. In this paper
we follow a different approach: contrary to TRON and its bfs-based state space
traversal we follow a depth-first search (dfs) and segmented scheme and thereby
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trading memory with runtime. This is useful as for complex models conformance
testing tends to be infeasible due to the limited availability of memory.

In recent work McMillan [11] developed the lazy annotation method. This
scheme aims to produce a witness or counter-example for a given system model
and w. r. t. a safety property, i. e. a property that can be verified by executing a
state space traversal, or a reachability analysis respectively. At its core the pro-
posed techniques steers the traversal on a system’s abstract computation tree by
inferring Floyd/Hoare style annotations. These annotations prevent the traver-
sal to repetitively branch into directions that have already been identified as un-
successful w. r. t. the property under consideration. Our approach, the segmented
state space traversal presented in this paper, can be seen as an extension of McMil-
lan’s lazy annotation approach to the setting of TA. This is because the unfolding
of a TA’s underlying zone graph until a dedicated goal location (in this work the
terminal location of the trace automaton) is marked active resembles the unfold-
ing of the computation tree. However, whereas McMillan employs Floyd/Hoare
style annotations the method of this paper make use of symbolic clock evalua-
tions, i. e. clock zones, for preventing the traversal to branch into directions that
have previously been identified as unsuccessful. Due to the linear nature of the
trace automaton and re-storage of clock zones, our technique can be organized in
independent runs of the model checker, whereas in case of McMillan’s lazy anno-
tation re-exploration of known system configurations must be prevented.

Contribution: In Sec. 3 this paper develops a segmented scheme for organizing
the state space traversal, in order to keep the memory requirements below a
threshold, and thereby achieving scalability of quantitative conformance testing
to real-world CPS. Such a real-world case study is presented in Sec. 4, where
we test the conformance of concurrently obtained power measurements of two
communicating wireless sensor nodes and an abstract system model. This test
is not feasible without our proposed innovations.

2 Background Theory

2.1 Preliminaries
For conformance testing we exploit TA [1] with variables and location invariants.
A set of such TA can be composed into a network of cooperating TA, where
the notation A||B refers to the parallel execution of (component) TA A and
(component) TA B. In the following we simply speak of TA, but in fact are
referring to networks of TA. Furthermore we informally clarify now only few,
but relevant details; cf. [1,14,4,3] for further information.
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An edge traversal in a TA may change its (active) locations, may reset a
set of clocks and may update the set of variables. This operational character is
referred to by edge executions. Due to the dense time model where delays of
edge executions can be sampled from intervals in R+, a TA may show infinitely
many different behaviors. However, by exploiting the notion of clock regions
the infinite behavior of a TA A can be captured by a finite graph T SA. The
nodes of this graph, commonly denoted as system configurations or states refer
to clock regions, rather than individual clock evaluations; for details cf. [1,14].
In the reminder of this paper we are also dealing with non-zeno systems only.
Thereby we exclude TA where the subsequent execution of infinitely many edges
is possible without the time progressing.

A system configuration or state of a network of TA is a tuple s = (l, c, v)
where
– l = (l0, ..., ln) is a vector of location identifier. Its i’th component refers to

the active location of the i’th component TA; the active location of a TA is
the location the TA currently resides in.

– c is a set of clock constraints defining a region (or zone) and
– v is the vector of values currently held by the variables of the TA.

The initial state s0 of a network of TA is defined by initial locations of the
component TA, clocks all set to 0 and by an initial assignment for all variables.

A path in the state graph underlying a TA is a sequence of transitions (edges
of the state graph) and states (nodes of the state graph) strictly alternating
(cf. Fig. 3). A transition of the state graph either refers to the execution of an
edge of the TA or to an abstract delay transition, where the latter represents
the progress of time. With π(s0) we refer to a path starting at the initial system
configuration and π(s0)[i] addresses the i’th state visited on path π(s0). With
ΠA we refer to the set of all paths constructible from A. In the following we will
also use the notation sj

α. This addresses a state s, indexed by j and containing
location identifier (or label) α.

As demonstrated below, quantitative conformance testing as proposed by us
can be mapped to finding the answer to a reachability problem of a network of
TA and w. r. t. a location identifier. Hence this paper is solely concerned with
finite terminal paths that start in state s0 and end in some state sk, opposed to
liveness properties that refer to non-terminal paths.

A location identifier α is denoted reachable in a TA A iff there exists a path
(fragment) π(s0) that ends in a state sj

α, with j as some state index and we
write:

A |= E<> α ⇔ ∃π(s0) : π(s0)[i] = sj
α for some i, j ∈ N0 (1)

In the above equation |= is the satisfaction relation defined on TA and the set
of CTL formulae.

2.2 Quantitative Conformance Testing

Having formal models for both measurement trace (TA TM) and (expected) sys-
tem behavior (TA Sys), the state graph of composite Sys||TM can be
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generated. The conformance test is considered positive iff the terminal location
of TM is reachable. In the following, we briefly detail on these aspects.

The System Model Sys: The locations of Sys are annotated with clock and
variable invariants. This results in a description of the system w. r. t. timing and
the behavior of the physical quantity to be exploited for the conformance test,
e. g. power consumption. For dealing with deviations in the physical quantities
we partition its continuous value space into finitely many intervals (see also
discussion on greatest common intervals following below). The interval associated
with the current system state is defined by a pair of (global) variables hlow, hup.
For system models that are networks of timed automata, the overall bounds,
i. e. the values of hlow and hup, can be obtained by aggregating the bounds of
the component TA accordingly, where aggregation and updating takes place
upon edge execution.

Trace Model TM : The finite trace of measurements is translated into a TA
TM that features a single clock for modeling the individual holding times of
the measurements. The individual measurement values are stored as a variable
that we denote p. This yields a finite sequence of locations and edges where the
terminal location is equipped with the label final. For obtaining a compact trace
model we advocate the usage of intervals w. r. t. the measured physical quantity,
rather than using the exact, measured values. This way we can compress millions
of data points into a processable number of locations in TM [12]. The intervals
are defined by all possible combinations of the upper and the lower values to be
assigned to hup, respectively hlow of Sys. These combinations, e. g. by addition
for power consumption, feature the a priori definition of a set of disjoint greatest
common intervals (GCI) for the construction of TM . In the measured trace
we replace each measurement value with the mean of the corresponding GCI.
Adjacent, equal measurement values are modeled by a single location in TM
and by adapting the location-holding times accordingly. This yields a quotient
TA that exhibits an equivalent behavior w. r. t. the system model and w. r. t. the
GCI-membership of a measurement point [13]. In the following, TM refers to
such a quotient TA.

Conformance Testing is performed by querying the reachability of location
final of the composite Sys||TM . When jointly executing Sys and TM , the
model checker may execute enabled edges of Sys as long as for the generated
system states invariant hlow ≤ p ≤ hup holds. On the other hand variable p is
updated when edges of TM are executed. However, updates of p may invalidate
this invariant. This is resolved by using intermediate update location in the
component TA of Sys, i. e. locations where time does not pass and where the
above invariant w. r. t. the modeled quantity is absent. Once an update location
is marked active in a state, yet for all successor states the invariant would be
violated, the state space traversal yields a deadlock. This behavior is enforced
by Sys as all successor locations of an update location require once again the
validity of invariant hlow ≤ p ≤ hup when being entered and marked active. On
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the other hand the state space traversal yields no deadlock if there is at least
one successor location where the above invariant holds. Hence, this may lead to
reaching a state where location final is marked active. In this case a path has
been generated that witnesses the conformance of measured trace and system
model Sys.

2.3 Scalability, an Open Issue

Now we study the feasibility of quantitative conformance testing.

Sensitivity w. r. t. the Length of the Time Series of Measurements: In
the case study of Sec. 4 we analyze wireless sensor nodes, where we exploit power
measurements for conformance testing. In a series of experiments we employed a
single sensor node and two kinds of trace models, Idle and Wakeup (cf. Fig. 2).
Idle is an artificial trace model, with the sensor node permanently residing in
its low-power mode. Wakeup is a measurement in operation.

Let Sys be the system model of a wireless sensor node (hardware and software
parts). We loop over the respective trace models for obtaining traces of significant
lengths, and we verify: (a) Idle |= E<> final, (b) Wakeup |= E<> final, (c)
Sys‖Idle |= E<> final and (d) Sys‖Wakeup |= E<> final. final is the label
of the terminal location of the (extended) trace models.1 Fig. 2a shows the
number of reachable states in relation to the number of locations of the trace
models, when verifying the above property. The figure clearly demonstrates that
the number of stored states is proportional to the number of locations of the
respective trace model. As shown in Fig. 2a, this problem exacerbates when
there is more activity in the trace model: composite Idle||Sys does not expose the
non-determinism inherent in the system model, whereas composite Wakeup||Sys
does as seen in its steep slope.
1 We verified these properties with Uppaal using various state space search options

and the results are similar.



Segmented State Space Traversal for Conformance Testing of CPS 199

Sensitivity w. r. t. the Modeled Non-determinism: For investigating the
effect of non-determinism we carried out an experiment with two communi-
cating nodes. We modeled two interacting sensor nodes and checked the con-
formance w. r. t. the synchronously obtained series of measurements by verify
Sys1‖TM1‖Sys2‖TM2 |= E<> (final1 ∨ final2). Sysi is the model of sensor
node i (component models for hardware and software parts), TM i is the trace
model derived from the power measurement measured on sensor node i, and
finali is the final location of trace model TM i. The result of this bench-
mark is shown in Fig.2b. Unicast and broadcast are concurrent measurements
from two sensor nodes as described in Sec. 4. After reaching the 30’th location of
TM1, the trace model for the first sensor node, the model checker already stored
17, 986, 721 states. This prohibits timed verification of more complex models as
memory of commodity computers is limited. The experiments illustrate that
quantitative conformance testing is severely hampered by state space explosion.

3 Segmented State Space Traversal

In the following we formally develop a segmented reachability scheme allowing us
to verify the conformance of system models and measurements obtained from the
implementation. With this strategy we intend to keep the memory consumption
of a model checker below a threshold allowing the conformance testing of longer
time series of measurements and more complex systems.

3.1 Concept and Definitions

Preliminaries: The proposed conformance test is organized as a reachability
check, i. e. it answers the question if for a model Sys||TM a state space traversal
can generate a path π(s0 ) ending in a state st with the dedicated location final
of TM marked as active in st (This means that in Eq. 1 we replace model A with
Sys||TM and α with final). Now we refine the notation for a path as follows:
π(s0) := s0 γ→ si γ→ sj γ→ sk . . .

γ→ sl
t; where γ-transitions are either abstract

delay transitions or discrete transitions referring to edge executions in the TA
and i, j, k, l are some state indexes. As prefix of a path w. r. t. to a state s we
define the initial path fragment up to state s, not including state s.

TM is a TA with a single, linear time-line of development, i. e. no alternative
system evolution is possible. Let the i’th location of TM be equipped with
identifier tmi and let t be the index of the terminal location of TM . Let the
edge connecting location tmi with location tmi+1 be equipped with action label
mi. In the following, we refer to these edges as m-edges. For convenience we also
equip location tmt with the label final as this dedicated location is terminal,
i. e. it possesses no outgoing edge. Let us denote the single clock of TM as y.
The time duration during which location tmj (0 ≤ j < t), is marked active is
defined by the obtained measurement series, where in TM we enforce this by a
respective location invariant (y ≤ ctmj with ctmj ∈ N as clock constant). The
location invariant, together with a corresponding edge guard (y == ctmj ) of the
outgoing edge mj yields that TM resides exactly ctmj time units in location
tmj ; y is reset upon the execution of the m-edges.
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The Sweep-Line Criterion: For exemplification one may consider a state
space traversal scheme, where only few system states can be stored permanently
in memory. Such a scheme will not terminate as soon as there is a loop contained
in T SSys||TM that has a diameter that exceeds the number of states which can
be keept in the memory at the same time. Let K be the largest number of
different states visited on a path π(stmk−1) and ending in a state stmk

, with
k ∈ {1, . . . , t}. In the following we will show that in our setting any state space
traversal scheme that stores at least K states will terminate, provided that the
scheme terminates when all different states are kept in the memory. Intuitively
this is because, for all paths going through a state stmk

a looping back to a state
stmj with j < k is not possible, due to the linear character of TM . This yields
that for the verification of Sys||TA |= E<> final, all states that are generated
a priori to the execution of an m-labelled edge do not have to be stored, i. e. they
can be erased from memory.

Lemma 1. Each path π(s0
tm0

) to be generated for Sys||TM and ending in a
state sk

final has to be of the following kind:

s0
tm0

γ→ s1
tm0

γ→ s2
tm0

γ→ · · · m1→ sa
tm1

γ→ · · · mk→ sb
tmk

γ→ · · · mt→ sc
final (2)

where a γ-transition refers either to an abstract delay transition or to a discrete
transition as induced by an edge execution in Sys. The m-transitions refer to
transitions as induced by the executions of m-edges in TM . The upper indices
for the states enumerate the different states seen on path π(s0), where in the
following on the occurrence of an m-transition this index is reset to 0, i. e. a, b, c =
0. In the following we denote such a path as witness (cf. to Fig. 3 for an example).

Proof: The lemma above is correct as location final is only reachable iff loca-
tion tmt is reachable. This later location is only reachable iff location tmt−1 is
reachable, etc.. �
A path that ends in a state where location tmk is active is denoted in the
following as tmk-witness.

Lemma 2. Each path π(s0) constructible in T SSys||TM is a tmk-witness.

Proof: The initial state s0
tm0

is a tmk-witness, namely for k = 0. As all paths are
terminal and ending in a deadlock with tmk marked as active, each path must
be a tmk-witnesses. �
In this setting one may find the following property:

Theorem 1. Discarding all states generated a priori to the generation of state
s0

tmi+1
does not interfere with the termination of the applied state space traversal

scheme, provided that the scheme would have terminated when all different states
of T SSys||TM would have been stored.

Proof: For any tmk witness it holds that the pairs (mk, s0
tmk

) appearing on such
a path are unique. This is because location tmk is marked for the very first time,
i. e. there is no other state in the prefix of π w. r. t. s0

tmk
resp., with tmk marked
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Fig. 3. Example of segmenting a trace model

active. Hence on the execution of edge mk one cannot loop back to any state
previously seen on π. As a consequence to this, all previously visited states do
not have to be stored or can be erased from memory respectively, as a looping
back is not possible. �

Virtual Segmentation: The above theorem features segmentation of trace
models that is performed as follows: we equip n arbitrarily selected and non-
adjacent locations with the dedicated label finalj , where index j ∈ N is orga-
nized in an ascending order w. r. t. the labels of the picked locations. The terminal
location labeled with tmt, or final respectively, is always included in this selec-
tion. For an example, please refer to Fig. 3. This figure illustrates the effect of the
above labeling scheme w. r. t. to a witness that confirms Sys||TA |= E<> final.

Initial Configurations and Their Generation: Let the states sfinalj ,
i. e. states where location finalj is marked active, be the start and ending points
of segment-wise conformance tests. It is evident that each time one validates
the conformance of a segment j of TM , which is the TA starting in location
finalj−1 and ends in location finalj , it is necessary to restore the active lo-
cations of Sys, the valuations of the clocks, as well as the values held by the
variables when reaching state sfinalj−1 . In case of example Fig. 3 one needs to
restore state s0

final1
, s0

final2
, . . . (here sa

tm25
, sb

tm48
, . . .) when validating segment

1, 2, . . .. In fact, we need to restore the sets of active locations, the clock regions
and possible variable values. It is interesting to note that there are sets of states
of the kind s0

finalj
as there might be sets of witnesses contained in Π . In the

following, we generically denote the triples of active locations, clock regions and
variable vectors associated with a state s0

finalj
as a configuration ci

j , where i is
the index of the configuration and j the index of the segments. Label cj denotes
the set of configurations of the j’th segment.

A configuration ci
j for initializing segment j is obtained by generating a

counter-example using formula [Sys||TM ](ci
j−1) |= ¬E<>

(
finalj−1

)
.2 The

2 In Uppaal we need to reformulate the formula: [Sys||TM ](cij−1) |= A�¬ (finalj−1).
Note that this is straightforward due to the duality of the existential and all-
quantifier in combination with the negation.
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final state sfinalj−1 of the provided counterexample contains such a configura-
tion ci

j . The expression [Sys||TM ](ci
j−1) denotes the initialization of composite

Sys||TM where configuration ci
j−1 is a configuration deduced in a previous run;

configuration c1
1 is defined by the initial system state.

As there are potentially many counterexamples producible when testing seg-
ment j − 1, there are potentially many initial configurations for starting the
conformance test of segment j. However, not each configuration ci

j−1 may actu-
ally allow us to reach state s0

finalj
. In such cases, new configurations (if available)

must be used as a starting point. New configurations can be determined by re-
verifying the preceding segment j − 1, but now excluding all previously used
configurations stored in set cj−1:

[Sys||TM ](ck
j−2) |= ¬E<>

⎛
⎝finalj−1 ∧

|cj|∨
i=1

¬cij−1

⎞
⎠ ,

where ck
j−2 ∈ cj−2 addresses some valid (initial) configuration for segment j− 2.

The negation of used configurations is necessary, as the model checker needs to
be prevented from re-generating a previously used counter-example, i. e.we need
to enforce the generation of a new configuration.

Digitization of Clock Regions: If one only employs clock constraints of the
kind x � c with �∈ {≤,≥}, clocks can be digitized without loss of generality as
far as the reachability of locations is concerned [7,2]. This allows one to sample
clock values from configurations, rather than re-generating the complete clock
region. This might be essential as initialization of clocks is difficult in timed
model checkers and may lead to very complex models when using inequalities
for clock initialization.

Exploiting a Domain-Specific Property: For low-power CPS, there is usu-
ally a dedicated recurrent operational mode, the low-power sleep mode. Here, the
system does not need to perform any tasks and hence all hardware components
are transferred into their low-power sleep mode. The power consumption in this
low-power mode is unique and can be unambiguously associated with a measured
value in the trace model, as well as with a set of locations in the network of TA
modeling the CPS. In between subsequent low-power sleep modes, several oper-
ations are performed that have different impact on the system state, e. g. setting
variables or resetting timers. We propose to associate a unique measurement with
this unique set of locations and mark the corresponding measurement location
in the trace model TM . Now virtual segmentation of the trace model TM can
be facilitated using this property: we label each location of TM indicating the
low-power mode with label finalj . In case of multiple simultaneously measured
traces that are tested for conformance in the same run, it is clear that segments
are only created at locations of the trace models, where all trace models flag
the recurrent, low-power mode. Such points in time usually exist in practice, as
low-power CPS typically reside most of their deployment time (≥ 90%) in the
low-power mode.
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Algorithm 1. Conformance check of a virtually segmented trace model
procedure SegmentedTraceInclusionCHK(Sys, s0, TM, {tm1 . . . tmm})

excluded{1,...,m} = {∅, . . . , ∅}
allocate Stack4Configurations
j = 1, configuration := ExtractConfiguration(s0)
while true do

π := verifyta
(
[Sys||TM ](configuration) |= ¬E<>

(
finalj ∧

(∨
k ¬excludedj,k

)))
if π �= ∅ then

if j = m return true end if
push(Stack4Configurations, configuration)
st := GetLastState(π)
configuration := ExtractConfiguration(st)
j := j + 1
continue

else
if j = 1 return false end if
excludedj := excludedj ∪ configuration
configuration := pop(Stack4Configurations)
j = j − 1

end if
end while

end procedure

3.2 The Procedure

A trace model is conformant w. r. t. a system model Sys iff all segments can be
concatenated to a single witnesses and each final state of a segment coincides
with the initial state of the preceding segment, i. e. formally:

Sys||TM |= E<> final⇔

∃{ck1
1 , . . . , ckn

n } :
(

n∧
i:=2

[Sys||TM ](cki−1
i−1 ) |= E<>

(
finali ∧ ckii

))
,

where c1
1 (= s0) is the initial system configuration. Configuration cki

i is one spe-
cific configuration from the set of valid configurations of the segment, i. e. cki

i ∈ ci.
Configuration ckn

n is true. The above formula allows one to validate trace mod-
els in a sequential, segmented fashion, where a configuration is derived from
a segment and carried over when resuming with the validation of the following
segment. Overall this considerably reduces the peak memory consumption of the
reachability problem inherent to the proposed conformance testing, as previously
visited segments and their states can be ignored. With a segmented version of
state space traversal, the peak memory consumption is reduced to the maximum
of the peak memory consumptions of the segments.

Algorithm: We propose a depth-first search approach for validating the seg-
ments in a sequential fashion: a single configuration is selected and directly
applied to the consecutive segment. Once the validation of a segment fails the
algorithm has to backtrack and resumes with a preceding segment for generating
a new configuration. The procedure terminates either if one successfully showed
that the last segment allows for the reachability of location finaln or the ini-
tial configuration is unable to provide a new configuration and maintaining the
reachability of location final1.
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The pseudo-code shown as Algo. 1 implements this functionality as follows:
the algorithm takes a system model Sys, the trace model TM , the initial state
s0 and m location labels that identify the starting point of the (virtual) trace
model segments ({tm1 . . . tmm}) as inputs. SegmentedTraceInclusionCHK iter-
atively checks the conformance of the virtual trace segments and the provided
system model. As main data structures it employs a multi-set excluded and a
stack Stack4Configurations. The sets of excluded are used for storing those con-
figurations that did not lead to a positive conformance test w. r. t. a specific
segment. The stack Stack4Configurations is used for remembering the valid con-
figurations of the preceding segments. The main functionality of the algorithm
is provided by the while loop: at first we call a model checker, here Uppaal’s
verifyta, and check if the current segment can be validated. This is done by
generating a counterexample, a path π, using the negated reachability check of
location finalj . We use the function GetLastState(π) to determine the last
state of a path π. We use the function ExtractConfiguration(s) to generate a
configuration of a state s. Note that we initialize the models Sys and TM appro-
priately, i. e. with the configuration derived from state s0. In case of a positive
answer to the conformance check (π = ∅) of virtual segment j, the algorithm
prepares the check of the following segment and proceeds.

If there is no witness (π = ∅), i. e. the current segment cannot be validated by
using the current configuration, the algorithm backtracks and tries to generate a
new configuration for the current segment, by excluding previously unsuccessful
configurations in the query to the model checker. The negative configurations,
i. e. the ones that did not produce a witness, are stored in the respective set as
contained in multi-set exclude. The statement

∨
k ¬excludej,k as employed in

the query provided to the model checker guarantees the exclusion of previously
“unsuccessful” configurations. One may note that the elements of excludej in
fact refer not only to clock constraints, but also to variable values to be excluded
from the witness to be produced.

4 Case Study

In this section we investigate the applicability of the proposed segmentation
for testing the conformance of synchronously measured power traces of two
communicating sensor nodes, i. e. we test whether Sys1‖TM1‖Sys2‖TM2 |=
E<>(final1 ∧ final2) holds. One may already note that the conformance of
two communicating sensor nodes with corresponding simultaneously measured
power consumption cannot be verified by Uppaal in a single execution, as the
memory demand exceeds the capabilities of commodity computers.

Testing communicating sensor nodes: A fundamental property of sensor net-
works is their low-power operation. Since the radio is the major contributor to
power consumption, the focus of this case study is the Medium Access (MAC)
layer. MAC protocols trade off bandwidth for energy by duty-cycling the radio.
Our focus is on the predominant class of random-access MAC protocols. When
testing such MAC protocols, most test cases can be formulated with two or three
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Table 1. Comparing power trace locations (Loc.) and states stored (States)

Model Naive Segmented
Locations States Locations States Segments Σ States

Unicast 1213 Fails ≤217 ≤1,881,237 15 5,828,634

Broadcast 6957 Fails ≤6317 ≤2,614,433 8 6,318,540

sensor nodes. A sender and a receiver are fundamental and a third node may be
added to test for interference, hidden terminals, etc.. This case study tests for
basic functionality of the MAC protocol using two sensor nodes.

The case study uses a previously developed low-power MAC protocol [10],
the so-called Harvester, that employs a low-power listening (LPL) MAC. This
implies that a node may only receive at certain times, when its radio is turned on.
The time between two consecutive wakeups is called the wakeup interval TW . In
particular, Harvester uses a variant of a synchronized low-power MAC protocol.
In this MAC protocol scheme, nodes sleep for most of the time, yet wake up
and turn on their radio after a given wakeup period to check for ongoing traffic.
The MAC protocol offers two distinct operations to the sensor node software:
(a) broadcast operations that are used to send a message to all nodes in the
environment and (b) unicast operations, where a node sends a message to a
specific neighbor. In steady-state operation, nodes only send a unicast message to
another node shortly before this other node wakes up to be ready for reception. A
node stops its unicasts immediately after receiving indication of reception from
the addressed node. Broadcasts address all neighbors and are sent therefore
for the complete wakeup period TW in order to guarantee that all nodes in
the neighborhood receive this message. Hence, a broadcast takes longer than a
unicast, since it needs to last a complete wakeup period. This allows the following
high-level modeling:

– We define Tw = [0.96s, 1s], where nodes have to wake up each Tw.
– A sender wanting to send a unicast packet is synchronized to its receiver.
– A broadcast may start at any time and is sent for a complete Tw.
– After a broadcast the wake-up cycle of the sender may shift in time.
– After sending, receiving and listening the radio goes back to sleep.

The underlying radio and the basic MAC functionality is implemented in a radio
component model, including the timing of receive, unicast and broadcast opera-
tions. The higher level functionality of periodic wakeups and re-synchronization
after transmissions is modeled in a radio software model. All models including
software and hardware models for the radio are adapted from [12].

Experimental setup: We monitor two communicating sensor nodes, one that
only sends unicast and broadcast messages (node 10) and the other only re-
ceiving (node 12). These sensor nodes are fed by a constant voltage from a DC
Power Supply (Agilent E3631A). We use two channels, one per sensor node, of a
Tektronix MSO4054 Mixed Signal Oscilloscope for sampling power consumption
at a rate of 50kS/s, i. e. every 20 us. The low current draw of the sensor node
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Table 2. Comparison of runtimes on a 2.93GHz Intel Xeon core

Testcase Naive Depth-Fist Search Segmented

Unicast Out of memory 43541s 4957s

Broadcast Out of memory Does not finish 3 2932s

combined with the noisiness of the scope in this low value ranges, necessitates an
amplification of the sensor nodes’ current draw. We use a Maxim MAX9922 and
change the Sense resistor to 1Ω to be comparable to previous experiments [12].

Results: There are two test cases that include the wakeup behavior of two nodes:
for the first test case (Unicast) there is a single unicast sent and for the second
test case (Broadcast) there is a single broadcast sent. Other than these com-
munication events, both nodes merely perform a periodic wakeup for listening.
Table 1 summarizes the experiments to characterize the measured traces. First,
we can see that a ”naive” approach always fails due to an ”Out of memory”
exception (having a high exploration load of 7,520,099 and 6,942,903 states re-
spectively) and hence is not applicable, even for simple test cases. The right
part of Table 1 shows that using our segmented trace inclusion checking the
traces are partitioned into 15 and 8 segments respectively. By segmenting the
power trace models, the number of locations per segment is limited. In turn, the
number of states per segment is limited. The maximal number of stored states
is 1,881,237 states for the unicast (for 88 locations in TM1

8 and 4 locations in
TM2

8 ) and 2, 614, 433 for the broadcast test case (for 6265 locations in TM1
2 and

52 locations in TM2
2 ; with the lower index referring to the segment number).

Additionally, we performed runtime experiments for testing the conformance
shown in Table 2, where we compare the segmented conformance test to ”naive”
Uppaal exploration as well as a DFS exploration. In both test cases, our tool
checks the conformance without any backtracking. This is not surprising: (i)
Each segment has a well defined initial state w. r. t. to system locations - the low-
power mode; this is independent of previous behavior. (ii) Due to the uncertainty
in measurements and variability in HW and SW, the formal model features
(relaxed) bounds on timing requirements. As an example for the radio software,
the invariant on the low-power state is t ∈ [47500, 50000].

Figure 4 depicts the results for each segment, i. e. each data point represents
the validation of a segment model (’x’ for the Unicast and ’o’ for the Broadcast
test case) w. r. t. its number of locations of TM1 and the number of stored
states by the model checker. The lines in the figure repeat the results from
Fig. 2 b) for comparison, where the exploration aborts after ≈ 40 locations
are visited within the power trace model TM1. Fig. 4 also depicts the memory
wall, an experimental barrier for the naive checking of Sys1‖TM1‖Sys2‖TM2 |=
E<>(final1 ∧ final2). It is this barrier that limits the number of state visits in
a single run of the model checker and that prohibits a scaling of quantitative
conformance testing to more complex models. However, due to the proposed
3 We stopped the run after 6 days, i. e. 518400s.
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segmented trace inclusion check, the individual executions of the model checker,
i. e. checking of individual segments of the TMs, stay well below this memory
wall making conformance testing feasible in case of more complex models and
longer measurements.

5 Summary

For conformance testing we have a linear structure of the measured trace. This
paper has shown how to exploit this problem inherent structure and thereby
keeping the memory requirement of conformance testing of complex system be-
low a threshold. This works particularly well for low-power CPS, as they feature
a uniquely identifiable low-power mode. In order to check the conformance of
segments in isolation, the initial configuration for each segment, i. e. locations as
well as clock and variable valuations has to be restored. We have shown how
to determine the configurations and presented an algorithm for the sequential
checking of trace segments. We validated the approach on power traces of com-
municating wireless sensor nodes.
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Abstract. Event clock automata (ECA) are a model for timed languages that has
been introduced by Alur, Fix and Henzinger as an alternative to timed automata,
with better theoretical properties (for instance, ECA are determinizable while
timed automata are not). In this paper, we revisit and extend the theory of ECA.
We first prove that no finite time abstract language equivalence exists for ECA,
thereby disproving a claim in the original work on ECA. This means in particular
that regions do not form a time abstract bisimulation. Nevertheless, we show
that regions can still be used to build a finite automaton recognizing the untimed
language of an ECA. Then, we extend the classical notions of zones and DBMs
to let them handle event clocks instead of plain clocks (as in timed automata) by
introducing event zones and Event DBMs (EDBMs). We discuss algorithms to
handle event zones represented as EDBMs, as well as (semi-) algorithms based
on EDBMs to decide language emptiness of ECA.

1 Introduction

Timed automata have been introduced by Alur and Dill in the early nineties [2] and
are a successful and popular model to reason about timed behaviors of computer sys-
tems. Where finite automata represent behaviors by finite sequences of actions, timed
automata define sets of timed words (called timed languages) that are finite sequences
of actions, each paired with a real time stamp. To this end, timed automata extend fi-
nite automata with a finite set of real valued clocks, that can be tested and reset with
each action of the system. The theory of timed automata is now well developed [1]. The
algorithms to analyse timed automata have been implemented in several tools such as
Kronos [7] or UppAal (which is increasingly applied in industrial case studies) [4].

Timed automata, however, suffer from certain weaknesses, at least from the theo-
retical point of view. As a matter of fact, timed automata are not determinizable and
cannot be complemented in general [2]. Intuitively, this stems from the fact that the re-
set of the clocks cannot be made deterministic wrt the word being read. Indeed, from a
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given location, there can be two transitions, labeled by the same action a but different
reset sets.

This observation has prompted Alur, Fix and Henzinger to introduce the class of
event clock automata (ECA for short) [3], as an alternative model for timed languages.
Unlike timed automata, ECA force the clock resets to be strongly linked to the occur-
rences of actions. More precisely, for each action a of the system, there are two clocks
←−xa and −→xa in an ECA: ←−xa is the history clock of a and always records the time elapsed
since the last occurrence of a. Symmetrically,−→xa is the prophecy clock for a, and always
predicts the time distance up to the next occurrence of a. As a consequence, while his-
tory clocks see their values increase with time elapsing (like clocks in timed automata
do), the values of prophecy clocks decrease over time. However, this scheme ensures
that the value of any clock is uniquely determined at any point in the timed word being
read, no matter what path is being followed in the ECA. A nice consequence of this
definition is that ECA are determinizable [3]. While the theory of ECA has witnessed
some developments [14,11,16,9,12] since the seminal paper, no tool is available that
exploits the full power of event clocks (the only tool we are aware of is TEMPO [15]
and it is restricted to event-recording automata, i.e. ECA with history clocks only).

In this paper, we revisit and extend the theory of ECA, with the hope to make it
more practical and amenable to implementation. A widespread belief [3] about ECA
and their analysis is that ECA are similar enough to timed automata that the classical
techniques (such as regions, zones or DBMs) developed for them can readily be applied
to ECA. The present research, however, highlights fundamental discrepancies between
timed automata and ECA:

1. First, we show that there is no finite time abstract language equivalence on the val-
uations of event clocks, whereas the region equivalence [2] is a finite time abstract
language equivalence for timed automata. This implies, in particular, that regions
do not form a finite time-abstract bisimulation for ECA , thereby contradicting a
claim found in the original paper on ECA [3].

2. With timed automata, checking language emptiness can be done by building the
so-called region automaton [2] which recognizes Untime(L(A)), the untimed ver-
sion of A’s timed language. A consequence of the surprising result of point 1 is that,
for some ECA A, the region automaton recognizes a strict subset of Untime(L(A)).
Thus, the region automaton (as defined in [2]) is not a sound construction for check-
ing language emptiness of ECA . We show however that a slight modification of the
original definition (that we call the existential region automaton) allows to recover
Untime(L(A)). Unlike the timed automata case, our proof cannot rely on bisimu-
lation arguments, and requires original techniques.

3. Efficient algorithms to analyze timed automata are best implemented using zones
[1], that are in turn represented by DBMs [10]. Unfortunately, zones and DBMs
cannot be directly applied to ECA. Indeed, a zone is, roughly speaking, a conjunc-
tion of constraints of the form x− y ≺ c, where x, y are clocks,≺ is either < or≤
and c is an integer. This makes sense in the case of timed automata, since the dif-
ference of two clock values is an invariant with time elapsing. This is not the case
when we consider event clocks, as prophecy and history clocks evolve in opposite
directions with time elapsing. Thus, we introduce the notions of event-zones and
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Event DBMs that can handle constraints of the form x + y ≺ c, when x and y are
of different types.

4. In the case of timed automata two basic, zone-based algorithms for solving lan-
guage emptiness have been studied: the forward analysis algorithm that iteratively
computes all the states reachable from the initial state, and the backward analy-
sis algorithm that computes all the states that can reach an accepting state. While
the former might not terminate in general, the latter is guaranteed to terminate [1].
We show that this is not the case anymore with ECA: both algorithms might not
terminate again because of event clocks evolving in opposite directions.

These observations reflect the structure of the paper. We close it by discussing the pos-
sibility to define widening operators, adapted from the closure by region, and the k-
approximation that have been defined for timed automata [6]. The hardest part of this
future work will be to obtain a proof of correctness for these operators, since, here
again, we will not be able to rely on bisimulation arguments.

Remark. Due to lack of space, most proofs have been omitted and can be found in a
companion technical report [13].

2 Preliminaries

Words and timed words. An alphabet Σ is a finite set of symbols. A (finite) word is a
finite sequence w = w0w1 · · ·wn of elements of Σ. We denote the length of w by |w|.
We denote by Σ∗ the set of words over Σ. A timed word over Σ is a pair θ = (τ, w)
such that w is a word over Σ and τ = τ0τ1 · · · τ|w|−1 is a word over R≥0 with τi ≤ τi+1

for all 0 ≤ i < |w| − 1. We denote by TΣ∗ the set of timed words over Σ. A (timed)
language is a set of (timed) words. For a timed word θ = (τ, w), we let Untime(θ) = w.
For a timed language L, we let Untime(L) = {Untime(θ) | θ ∈ L}.

Event clocks. Given an alphabet Σ, we define the set of associated event clocks CΣ =
HΣ ∪ PΣ , where HΣ = {←−xσ | σ ∈ Σ} is the set of history clocks, and PΣ = {−→xσ |
σ ∈ Σ} is the set of prophecy clocks. A valuation of a set of clocks is a function
v : C → R≥0 ∪ {⊥}, where ⊥ means that the clock value is undefined. We denote
by V (C) the set of all valuations of the clocks in C. For a valuation v ∈ V(C), for
all x ∈ HΣ , we let 〈v1(x)〉 = �v(x)� − v(x) and for all x ∈ PΣ , we let 〈v(x)〉 =
v(x) − �v(x)�, where �v(x)� and �v(x)� denote respectively the largest previous and
smallest following integer. We also denote by v± the valuation s.t. v±(x) = v(x) for
all x ∈ HΣ , and v±(x) = −v(x) for all x ∈ PΣ .

For all valuation v ∈ V (C) and all d ∈ R≥0 such that v(x) ≥ d for all x ∈ PΣ ∩C,
we define the valuation v + d obtained from v by letting d time units elapse: for all
x ∈ HΣ ∩C, (v + d)(x) = v(x) + d and for all x ∈ PΣ ∩C, (v + d)(x) = v(x) − d,
with the convention that ⊥ + d = ⊥ − d = ⊥. A valuation is initial iff v(x) = ⊥ for
all x ∈ HΣ , and final iff v(x) = ⊥ for all x ∈ PΣ . We note v[x := c] the valuation that
matches v on all its clocks except for v(x) that equals c.

An atomic clock constraint over C ⊆ CΣ is either true or of the form x ∼ c, where
x ∈ C, c ∈ N and ∼ ∈ {<, >, =}. A clock constraint over C is a Boolean combi-
nation of atomic clock constraints. We denote Constr (C) the set of all possible clock
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constraints over C. A valuation v ∈ V (C) satisfies a clock constraint ψ ∈ Constr (C),
denoted v |= ψ according to the following rules: v |= true, v |= x ∼ c iff v(x) ∼ c,
v |= ¬ψ iff v |= ψ, and v |= ψ1 ∧ ψ2 iff v |= ψ1 and v |= ψ2.

Event-clock automata. An event-clock automaton A = 〈Q, qi, Σ, δ, α〉 (ECA for short)
is a tuple, where Q is a finite set of locations, qi ∈ Q is the initial location, Σ is an
alphabet, δ ⊆ Q×Σ×Constr (CΣ)×Q is a finite set of edges, and α ⊆ Q is the set of
accepting locations. We additionally require that, for each q ∈ Q, σ ∈ Σ, δ is defined
for a finite number of ψ ∈ Constr (CΣ). An extended state (or simply state) of an ECA
A = 〈Q, qi, Σ, δ, α〉 is a pair (q, v) where q ∈ Q is a location, and v ∈ V (CΣ) is a
valuation.

Runs and accepted language. The semantics of an ECA A = 〈Q, qi, Σ, δ, α〉 is best
described by an infinite transition system TSA =

〈
QA, QA

i ,→, αA
〉
, where QA = Q×

V (CΣ) is the set of extended states of A, QA
i = {(qi, v) | v is initial}, αA = {(q, v) |

q ∈ α and v is final}. The transition relation→ ⊆ QA×R≥0×QA∪QA×Σ×QA is

s.t. (i)
(
(q, v), t, (q, v′)

)
∈ → iff v′ = v+t (we denote this by (q, v) t−→ (q, v′)), and (ii)(

(q, v), σ, (q′, v′)
)
∈→ iff there is (q, σ, ψ, q′) ∈ δ and v ∈ V (CΣ) s.t. v[−→xσ := 0] = v,

v[←−xσ := 0] = v′ and v |= ψ (we denote this (q, v) σ−→ (q′, v′)). We note (q, v)
t,σ−−→

(q′, v′) whenever there is (q′′, v′′) s.t. (q, v) t−→ (q′′, v′′) σ−→ (q′, v′′). Intuitively, this
means that an history clock←−xσ always records the time elapsed since the last occurrence
of the corresponding σ event, and that a prophecy clock−→xσ always predicts the delay up
to the next occurrence of σ. Thus, when firing a σ-labeled transition, the guard must be
tested against v (as defined above) because it correctly predicts the next occurrence of σ
and correctly records its last occurrence (unlike v and v′, as v(−→xσ) = 0 and v′(←−xσ) = 0).

A sequence (q0, v0)(t0, w0)(q1, v1)(t1, w1)(q2, v2) · · · (qn, vn) is a (q, v)-run of A
on the timed word θ = (τ, w) iff: (q0, v0) = (q, v), t0 = τ0, for any 1 ≤ i ≤ n − 1:

ti = τi − τi−1, and for any 0 ≤ i ≤ n − 1: (qi, vi)
ti,wi−−−→ (qi+1, vi+1). A (q, v)-run

is initialized iff (q, v) ∈ QA
i (in this case, we simply call it a run). A (q, v)-run on

θ, ending in (qn, vn) is accepting iff (qn, vn) ∈ αA. In this case, we say that the run
accepts θ. For an ECA A and an extended state (q, v) of A, we denote by L(A, (q, v))
the set of timed words accepted by a (q, v)-run of A, and by L(A) the set of timed
words accepted by an initialized run of A.

3 Equivalence Relations for Event-Clocks

A classical technique to analyze timed transition systems is to define time abstract
equivalence relations on the set of states, and to reason on the quotient transition sys-
tem. In the case of timed automata, a fundamental concept is the region equivalence [2],
which is a finite time-abstract bisimulation, and allows to decide properties of timed au-
tomata such as reachability. Contrary to a widespread belief [3], we show that the class
of ECA does not benefit of these properties, as ECA admit no finite time-abstract
language equivalence.
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q0 q1 q2

b
−→xb = 1 ∧

−→xa > 1

b
−→xa = 1 a

Fig. 1. The automaton Ainf

Time-abstract equivalence relations Let C be a class of ECA, all sharing the same
alphabet Σ. We recall three equivalence notions on event clock valuations:

– � ⊆ V (CΣ)×V (CΣ) is a time abstract simulation relation for the class C iff, for
all A ∈ C, for all location q of A, for all (v1, v2) ∈ �, for all t1 ∈ R≥0, for all a ∈
Σ: (q, v1)

t1,a−−→ (q′, v′1) implies that there exists t2 ∈ R≥0 s.t. (q, v2)
t2,a−−→ (q′, v′2)

and v′1 � v′2. In this case, we say that v2 simulates v1. Finally, ! ⊆ V (CΣ) ×
V (CΣ) is a time abstract simulation equivalence iff there exists a time abstract
simulation relation � s.t. ! = {(v1, v2) | v1 � v2 and v2 � v1}

– ∼ is a time abstract bisimulation equivalence for the class C iff it is a symmetric
time abstract simulation for the class C.

– ≈L ⊆ V (CΣ)×V (CΣ) is a time abstract language equivalence for the class C iff
for all A ∈ C, for all location q of A, for all (v1, v2) ∈ ≈L: Untime(L(q, v1)) =
Untime(L(q, v2))

We say that an equivalence relation is finite iff it is of finite index. Clearly, any time
abstract bisimulation is a time abstract simulation equivalence, and any time abstract
simulation equivalence is a time abstract language equivalence. We prove the absence
of finite time abstract language equivalence for ECA, thanks to Ainf depicted in Fig. 1:

Proposition 1. There is no finite time abstract language equivalence for ECA.

Proof (Sketch). Assume≈L is a time abstract language equivalence on event-clock val-
uations. For any n ∈ N, let vn denote the initial valuation of C{a,b} s.t. vn(−→xa) = n and
vn(−→xb) = 0, and let θn be the timed word (b, 0)(b, 1)(b, 2) · · · (b, n−1)(a, n). Consider
the automaton Ainf in Fig. 1 and observe that for all n ≥ 0, Untime(L(Ainf , (q0, v

n))) =
Untime({θn}) = {bna}. Hence for all the (infinitely many) pairs (i, j) with i = j:
vi ≈L vj , and thus ≈L is not finite. ��
Corollary 2. There is no finite time abstract language equivalence, no finite time ab-
stract simulation equivalence and no finite time abstract bisimulation for ECA.

4 Regions and Event Clocks

For the class of timed automata, the region equivalence has been shown to be a finite
time-abstract bisimulation, which is used to build the so-called region automaton, a
finite-state automaton recognizing Untime(L(A)) for all timed automata A [2]. Corol-
lary 2 tells us that regions are not a time-abstract bisimulation for ECA (contrary to
what was claimed in [3]). Let us show that we can nevertheless rely on the notion of
region to build a finite automaton recognizing Untime(L(A)) for all ECA A.
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Regions. Let us fix a set of clocks C ⊆ CΣ and a constant cmax ∈ N. We first recall
two region equivalences from the literature. The former, denoted≈cmax , is the classical
Alur-Dill region equivalence for timed automata [2] while the latter (denoted ≈∠

cmax )
is adapted from Bouyer [6] and refines the former:

– For any v1, v2 ∈ V (C): v1 ≈cmax v2 iff:
(C1) for all x ∈ C, v1(x) = ⊥ iff v2(x) = ⊥,
(C2) for all x ∈ C: either v1(x) > cmax and v2(x) > cmax , or �v1(x)� = �v2(x)�

and �v1(x)� = �v2(x)�,
(C3) for all x1, x2 ∈ C s.t. v1(x1) ≤ cmax and v1(x2) ≤ cmax : 〈v1(x1)〉 ≤

〈v1(x2)〉 if and only if 〈v2(x1)〉 ≤ 〈v2(x2)〉.
– For all v1, v2 ∈ V (C): v1 ≈∠

cmax v2 iff: v1 ≈cmax v2 and:
(C4) For all x1, x2 ∈ C s.t. v1(x1) > cmax or v1(x2) > cmax : either we have∣∣v±1 (x1)− v±1 (x2)

∣∣ > 2 · cmax and
∣∣v±2 (x1)− v±2 (x2)

∣∣ > 2 · cmax ; or we
have �v±1 (x1) − v±1 (x2)� = �v±2 (x1) − v±2 (x2)� and �v±1 (x1) − v±1 (x2)� =
�v±2 (x1)− v±2 (x2)�.

Equivalence classes of both ≈cmax and ≈∠
cmax are called regions. We denote by

Reg (C, cmax ) and Reg∠ (C, cmax ) the set of regions of ≈cmax and ≈∠
cmax respec-

tively. Fig. 2 (a), (b) and (c) illustrate these two notions. Comparing (a) and (b) clearly
shows how ≈∠

cmax refines ≈cmax by introducing diagonal constraints between clocks
larger than cmax . Moreover, (c) shows why we need to rely on v±1 and v±2 in C4: in this
case, C contains an history and a prophecy clock that evolve in opposite directions with
time elapsing. Thus, their sum remains constant over time (hence the 2 · cmax in C4).

Observe that, for any cmax , and for any finite set of clocks C, Reg (C, cmax ) and
Reg∠ (C, cmax ) are finite sets. A region r on set of clocks C is initial (resp. final) iff it
contains only initial (final) valuations.

Regions are not a language equivalence. Since both notions of regions defined above
are finite, Corollary 2 implies that they cannot form a language equivalence for ECA.
Let us explain intuitively why it is not the case. Consider Reg

(
P{a,b}, 1

)
and the two

valuations v1 and v2 in Fig. 2 (a). Clearly, v1 can reach the region where −→xa = 1 and
−→xb > 1, while v2 cannot. Conversely, v2 can reach −→xa > 1 and −→xb = 1 but v2 cannot.
It is easy to build an ECA with cmax = 1 that distinguishes between those two cases
and accepts different words. Then, consider Reg∠ (

P{a,b}, 1
)

and the valuations v3 and
v4 (not shown in the figure) s.t. v3(−→xb) = v4(−→xb) = 1, v3(−→xa) = 4 and v4(−→xa) = 5. It
is easy to see that for Ainf in Fig. 1: Untime(L(Ainf , (q0, v

3))) = {bbba} = {bbbba} =
Untime(L(Ainf , (q0, v

4))), although v3 and v4 belong to the same region. Indeed, from
v3, the (q0, q0) loop can be fired 3 times before we reach −→xa = 1 and the (q0, q1)
edge can be fired. However, the (q0, q0) loop has to be fired 4 times from v4 before
we reach −→xa = 1 and the (q0, q1) edge can be fired. Remark that these are essentially
the same arguments as in the proof of Proposition 1. These two examples illustrate the
issue with prophecy clocks and regions. Roughly speaking, to keep the set of regions
finite, valuations where the clocks are too large (for instance, > cmax in the case of
Reg (C, cmax )) belong to the same region. This is not a problem for history clocks
as an history clock larger than cmax remains over cmax with time elapsing. This is
not the case for prophecy clocks whose values decrease with time elapsing: eventually,
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(a) 1

1

−→xa

−→xb
v1

v2

(b) 1

1

−→xa

−→xb

v2v1

r1

r2

r3

r4

r5

2

2

3 4 (c) 1

1

−→xa

v1

←−xa2

2

Fig. 2. The sets of regions (a) Reg
(
P{a,b}, 1

)
, (b) Reg∠ (

P{a,b}, 1
)

and (c) Reg∠ (
C{a}, 1

)
.

Dotted arrows show the trajectories followed by the valuations with time elapsing. Curved arrows
are used to refer to selected regions.

those clocks reach a value≤ cmax , but the region equivalence is too coarse to allow to
predict the region they reach.

Region automata. Let us now consider the consequence of Corollary 2 on the notion of
region automaton. We first define two variants of the region automaton:

Definition 3. Let A = 〈Q, qi, Σ, δ, α〉 and R be a set of regions on V (CΣ). Then,
the existential (resp. universal)R-region automaton ofA is the finite transition system
RA(∃,R, A) (resp. RA(∀,R, A)) defined by

〈
QR, QR

i , Σ, δR, αR
〉

s.t.:

1. QR = Q×R
2. QR

i = {(qi, r) | r is an initial region}
3. δR ⊆ QR × Σ × QR is s.t.

(
(q1, r1), a, (q2, r2)

)
∈ δ iff there exists a valuation

(resp. for all valuations) v1 ∈ r1, there exists a time delay t ∈ R≥0 and a valuation

v2 ∈ r2 s.t. (q1, v1)
t,a−−→ (q2, v2).

4. αR = {(q, r) | q ∈ α and r is a final region}

Let R =
〈
QR, QR

i , Σ, δR, αR
〉

be a region automaton and w be an (untimed) word over
Σ. A run of R on w = w0w1 . . . wn is a finite sequence (q0, r0)(q1, r1) . . . (qn+1, rn+1)
of states of R s.t.: (q0, r0) ∈ QR

i and for all 0 ≤ i ≤ n:
(
(qi, ri), wi, (qi+1, ri+1)

)
∈

δR. Such a run is accepting iff (qn+1, rn+1) ∈ αR (in that case, we say that w is
accepted by R). The language L(R) of R is the set of all untimed words accepted by
R.

Let A be an ECA with alphabet Σ and maximal constant cmax . If we adapt and
apply the notion of region automaton, as defined for timed automata [2], to A we ob-
tain RA(∀, Reg (CΣ, cmax ) , A). To alleviate notations, we denote it by RegAut∀ (A).
In the rest of the paper, we also consider three other variants: (i) RegAut∠∀ (A) =
RA(∀, Reg∠ (CΣ , cmax ) , A), (ii) RegAut∃ (A) = RA(∃, Reg (CΣ , cmax ) , A) and
(iii) RegAut∠∃ (A) = RA(∃, Reg∠ (CΣ , cmax ) , A). Observe that, for timed automata,
all these automata coincide, and thus accept the untimed language (this can be proved
by a bisimulation argument) [2]. Let us see how these results adapt (or not) to ECA.

Recognized language of universal region automata. Let us show that, in general uni-
versal region automata do not recognize the untimed language of the ECA.
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Lemma 4. There is an ECA A such that L(RegAut∀ (A)) � Untime(L(A)) and such
that L(RegAut∠∀ (A)) � Untime(L(A)).

Proof (Sketch). The ECA Ainf in Fig. 1 enjoys this property. We detail the arguments for
the second case. Since cmax = 1, the set of regions we consider is depicted in Fig. 2 (b)
(for the valuations where clocks are = ⊥). Assume there is, in RegAut∠∀ (Ainf), an edge
of the form

(
(q0, r), b, (q0, r

′)
)

were r is initial. This implies that r′ ∈ {r1, . . . , r5}
(we refer to the names in Fig. 2), because of the guard of the (q0, q0) loop. Since
Untime(L(Ainf)) = {bna | n ≥ 1}, it must be possible to accept an arbitrary num-
ber of b’s from one of the (q0, r

′). Let us show that it is not the case. From r3 and r4

we have edges
(
(q0, r3), b, (q0, r1)

)
and

(
q0, r4), b, (q0, r2)

)
. However, there is no val-

uation v ∈ r1 ∪ r2 s.t. (v + t)(−→xb) = 0 and (v + t)(−→xa) > 1 for some t. Thus, there is,
in RegAut∠∀ (Ainf), no edge of the form

(
(q0, r), b, (q0, r

′)
)

when r ∈ {r1, r2}. Finally,
there is no edge of the form

(
(q0, r5), b, (q0, r)

)
because some valuations of r5 (such as

v1) will reach r3 and some others (such as v2) will stay in r5 after the firing of the loop.
Since we consider an universal automaton, (q0, r5) has no successor. ��

Recognized language of existential region automata. Fortunately, the definition of ex-
istential region automaton allows us to recover a finite transition system recognizing
exactly Untime(L(A)), for all ECA A. Remark that, to establish this result, we cannot
rely on bisimulation arguments. Let us show that Untime(L(A)) ⊆ L(RegAut∠∃ (A)) ⊆
L(RegAut∃ (A)) ⊆ Untime(L(A)).

The two leftmost inequalities are easily established. Let (q0, v0)(t0, w0)(q1, v1)
(t1, w1) · · · (qn, vn) be an accepting run of A on θ = (τ, w). Thus, θ ∈ L(A). For
all 0 ≤ i ≤ n let ri be the (unique) region containing vi. Then, by definition of
RegAut∠∃ (A), (q0, r0)w0(q1, r1)w1 · · · (qn, rn) is an accepting run of RegAut∠∃ (A) on
w = Untime(θ). Hence Untime(L(A)) ⊆ L(RegAut∠∃ (A)). Second, since ≈∠

cmax re-
fines ≈cmax , each accepting run (q0, r0)w0(q1, r1)w1 · · · (qn, rn) in RegAut∠∃ (A) cor-
responds to an accepting run (q0, r

′
0)w0(q1, r

′
1)w1 · · · (qn, r′n) in RegAut∃ (A), where

for any 0 ≤ i ≤ n, r′i is the (unique) region of Reg (CΣ , cmax ) that contains ri. Hence,
L(RegAut∠∃ (A)) ⊆ L(RegAut∃ (A)).

To establish L(RegAut∃ (A)) ⊆ Untime(L(A)) we need to rely on the notion of
weak time successor. The set of weak time successors of v by t time units is:

v+w t =

⎧⎨
⎩

(
x ∈ PΣ and v(x) > cmax

)
implies v′(x) > cmax − t

v′ ∀x : and(
x /∈ PΣ or v(x) ≤ cmax or v(x) = ⊥)

implies v′(x) = (v + t)(x)

⎫⎬
⎭

As can be seen, weak time successors introduce non-determinism on prophecy clocks
that are larger than cmax . So, v +w t is a set of valuations. Let q be a location of an ECA.

We write (q, v) t−→w (q, v′) whenever v′ ∈ (v +w t). Then, a sequence (q0, v0)(t0, w0)
(q1, v1)(t1, w1)(q2, v2) · · · (qn, vn) is an initialized weak run, on θ = (τ, w), of an
ECA A = 〈Q, qi, Σ, δ, α〉 iff q0 = qi, v0 is initial, t0 = τ0, for any 1 ≤ i ≤ n − 1:

ti = τi − τi−1, and for any 0 ≤ i ≤ n− 1: there is (q′i, v
′
i) s.t. (qi, vi)

ti−→w (q′i, v
′
i)

wi−→
(qi+1, vi+1). A weak run is accepting iff qn ∈ α and vn is final. The weak language
wL(A) of A is the set of all timed words θ s.t. there is an accepting weak run on θ.
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Clearly, L(A) ⊆ wL(A) as every run is also a weak run. However, the converse also
holds, since the non-determinism appears only on clocks larger than cmax , which the
automaton cannot distinguish:

Proposition 5. For any ECA A: L(A) = wL(A).

Then, we prove that weak time successors enjoy a property which is reminiscent of time
abstract bisimulation. This allows to establish Theorem 7.

Lemma 6. Let C be a set of clocks and let cmax be a natural constant. For any v1, v2 ∈
V (C) s.t. v1 ≈cmax v2, for any t1 ∈ R≥0, there exist t2 and v′ ∈ (v2 +w t2) s.t.
v1 + t1 ≈cmax v′.

Theorem 7. For any ECA A = (Σ, Q, qi, δ, α): L(RegAut∃ (A)) ⊆ Untime(L(A)).

Proof (Sketch). For every run on w in the region automaton, we build a sequence of
time stamps τ s.t. θ = (τ, w) is in L(A). The main difficulty stems from the fact
that we consider an existential automaton: assume there are

(
(q1, r1), a, (q2, r2)

)
and(

(q2, r2), b, (q3, r3)
)

in δR. Then, there are v1 ∈ r1, v′1, v2 ∈ r2 and v′2 ∈ r3 s.t.

(q1, v1)
a,t1−−→ (q2, v

′
1) and (q2, v2)

b,t2−−→ (q3, v
′
2) for some t1, t2, but possibly with

v′1 = v2. Building θ by induction is thus more involved than with a universal automaton.
However, for any run of RegAut∃ (A) over a word w ∈ Σ∗, we can inductively build,
by using Lemma 6, a time sequence τ and a weak run of A over (τ, w) that visits the
same locations. By Proposition 5, this concludes the proof. ��

Size of the existential region automaton. The number of Alur-Dill regions on n clocks
and with maximal constant cmax is at most R(n, cmax ) = n!×2n× (2×cmax +2)n

[2]. Adapting this result to take into account the⊥ value, we have: |Reg (CΣ , cmax ) | ≤
R(2× |Σ|, cmax + 1). Hence, the number of locations of RegAut∃ (A) for an ECA A
with m locations and alphabet Σ is at most m×R(2×|Σ|, cmax+1). In [3], a technique
is given to obtain a finite automaton recognizing Untime(L(A)) for all ECA A: first
transform A into a non-deterministic timed automaton [2] A′ s.t. L(A′) = L(A), then
compute the region automaton of A′. However, building A′ incurs a blow up in the
number of clocks and locations, and the size of the region automaton of A′ is at most
m × 2K × R(K, cmax ) where K = 6 × |Σ| × (cmax + 2) is an upper bound on
the number of atomic clock constraints in A. Our construction thus yields a smaller
automaton.

5 Zones and Event-Clocks

In the setting of timed automata, the zone datastructure [10] has been introduced as an
effective way to improve the running time and memory consumption of on-the-fly algo-
rithms for checking emptiness. In this section, we adapt this notion to the framework of
ECA, and discuss forward and backward analysis algorithms. Roughly speaking, a zone
is a symbolic representation for a set of clock valuations that are defined by constraints
of the form x−y ≺ c, where x, y are clocks,≺ is either < or≤, and c is an integer con-
stant. Keeping the difference between clock values makes sense in the setting of timed
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automata as all the clocks have always real values and the difference between two clock
values is an invariant over the elapsing of time. To adapt the notion of zone to ECA, we
need to overcome two difficulties. First, prophecy and history clocks evolve in different
directions with time elapsing. Hence, it is not always the case that if v(x) − v(y) = c
then (v + t)(x) − (v + t)(y) = c for all t (for instance if x is a prophecy clocks and y
an history clock). However, the sum of clocks of different types is now an invariant, so
event clock zones must be definable, either by constraints of the form x − y ≺ c, if x
and y are both history or both prophecy clocks, or by constraints of the form x + y ≺ c
otherwise. Second, clocks can now take the special value⊥. Formally, we introduce the
notion of event-zone as follows.

Definition 8. For a set C of clocks over an alphabet Σ, an event-zone is a subset of
V (C) that is defined by a conjunction of constraints of the form x = ⊥; x ∼ c;
x1 − x2 ∼ c if x1, x2 ∈ HΣ or x1, x2 ∈ PΣ; and x1 + x2 ∼ c if either x1 ∈ HΣ and
x2 ∈ PΣ or x1 ∈ PΣ and x2 ∈ HΣ , with x, x1, x2 ∈ C, ∼ ∈ {≤,≥, <, >} and c ∈ Z.

Event-clock Difference Bound Matrices In the context of timed automata, Difference
Bound Matrices (DBMs for short) have been introduced to represent and manipulate
zones [5,10]. Let us now adapt DBMs to event clocks.

Formally, an EDBM M of the set of clocks C = {x1, . . . , xn} is a (n + 1) square
matrix of elements from

(
Z×{<,≤}

)
∪{(∞, <), (⊥, =), (?, =)} s.t. for all 0 ≤ i, j,≤

n: mi,j = (⊥, =) implies i = 0 or j = 0 (i.e., ⊥ can only appear in the first position
of a row or column). Thus, a constraint of the form xi = ⊥ will be encoded with either
mi,0 = (⊥, =) or m0,i = (⊥, =). As in the case of DBMs, we assume that the extra
clock x0 is always equal to zero. Moreover, since prophecy clocks decrease with time
evolving, they are encoded by their opposite value in the matrix. Hence the EDBM
naturally encodes sums of variables when the two clocks are of different types. Each
element (mij ,≺ij) of the matrix thus represents either the constraint xi − xj ≺ij mij

or the constraint xi + xj ≺ij mij , depending on the type of xi and xj . Finally, the
special symbol ? encodes the fact that the variable is not constrained (it can take any
real value, or the ⊥ value). Formally, an EDBM M on set of clocks C = {x1, . . . , xn}
represents the zone [[M ]] on set of clocks C s.t. v ∈ [[M ]] iff for all 0 ≤ i, j ≤ n: if
Mi,j = (c,≺) with c = ? then v±(xi) − v±(xj) ≺ c (assuming v±(x0) denotes the
value 0 and assuming that for all k ∈ Z∪{⊥}:⊥+k = ⊥−k = k+⊥ = k−⊥ = ⊥).
When [[M ]] = ∅, we say that M is empty. In the sequel, we also rely on the ≤ ordering
on EDBM elements. We let (m;≺) ≤ (m′;≺′) iff one of the following holds: either (i)
m′ = ?; or (ii) m, m′ ∈ Z ∪ {∞} and m < m′; or (iii) m = m′ and either ≺=≺′ or
≺′=≤.

As an example, consider the two following EDBMs that both represent x1 = ⊥∧0 <
x3 − x4 < 1 ∧ x2 + x4 ≤ 2 (where x1, x2 are prophecy clocks, and x3, x4 are history
clocks):⎛

⎜⎜⎜⎜⎝
(0,≤) (⊥, =) (?, =) (?, =) (?, =)
(⊥, =) (?, =) (?, =) (?, =) (?, =)
(0,≤) (?, =) (0,≤) (?, =) (?, =)
(?, =) (?, =) (?, =) (0,≤) (1, <)
(?, =) (?, =) (2,≤) (0, <) (0,≤)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

(0,≤) (⊥, =) (∞, <) (0,≤) (0,≤)
(⊥, =) (?, =) (?, =) (?, =) (?, =)
(0,≤) (?, =) (0,≤) (0,≤) (0,≤)
(∞, <) (?, =) (∞, <) (0,≤) (1, <)
(∞, <) (?, =) (2,≤) (0, <) (0,≤)

⎞
⎟⎟⎟⎟⎠
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Normal form EDBMs. As in the case of DBMs, we define a normal form for EDBM,
and show how to turn any EDBM M into a normal form EDBM M ′ s.t. [[M ]] = [[M ′]].
A non-empty EDBM M is in normal form iff the following holds: (i) for all 1 ≤ i ≤ n:
Mi,0 = (⊥, =) iff M0,i = (⊥, =) and Mi,0 = (?, =) iff M0,i = (?, =), (ii) for all
1 ≤ i ≤ n: Mi,0 ∈ {(⊥, =), (?, =)} implies Mi,j = Mj,i = (?, =) for all 1 ≤ j ≤ n,
(iii) for all 1 ≤ i, j ≤ n : Mi,j = (?, =) iff either Mi,0 ∈ {(?, =), (⊥, =)} or
Mj,0 ∈ {(?, =), (⊥, =)} and (iv) the matrix M ′ is a normal form DBM [10], where
M ′ is obtained by projecting away all lines 1 ≤ i ≤ n s.t. Mi,0 ∈ {(?, =), (⊥, =)} and
all columns 1 ≤ j ≤ n s.t. M0,j ∈ {(?, =), (⊥, =)} from M . To canonically represent
the empty zone, we select a particular EDBM M∅ s.t. [[M∅]] = ∅. For example, the
latter EDBM of the above example is in normal form.

Then, given an EDBM M , Algorithm 1 allows to compute a normal form EDBM
M ′ s.t. [[M ]] = [[M ′]]. This algorithm relies on the function DBMNormalise(M ,S),
where M is an (�+1)× (�+1) EDBM, and S ⊆ {0, . . . , �}. DBMNormalise(M ,S)
applies the classical normalisation algorithm for DBMs [10] on the DBM obtained by
projecting away from M all the lines and columns i ∈ S. Algorithm 1 proceeds in
three steps. In the first loop, we look for lines (resp. columns) i s.t. Mi,0 (resp. M0,i)
is (⊥, =), meaning that there is a constraint imposing that xi = ⊥. In this case, the
corresponding M0,i (resp. Mi,0) must be equal to (⊥, =) too, and all the other elements
in the ith line and column must contain (?, =). If we find a j s.t. Mi,j = (?, =) or
Mj,i = (?, =), then the zone is empty, and we return M∅. Then, in the second loop,
the algorithm looks for lines (resp. columns) i with the first element equal to (?, =)
but containing a constraint of the form (c,≺), which imposes that the variable i must
be different from ⊥. We record this information by replacing the (?, =) in Mi,0 (resp.
M0,i) by the weakest possible constraint that forces xi to have a value different from⊥.
This is either (0,≤) or (∞, <), depending on the type of xi and is taken care by the
SetCst() function. At this point the set S contains the indices of all variables that
are constrained to be real. The algorithm finishes by calling the normalisation function
for DBMs. Remark, in particular, that the algorithm returns M∅ iff M is empty which
also provides us with a test for EDBM emptiness.

Proposition 9. For all EDBM M , EDBMNormalise(M) returns a normal form
EDBM M ′ s.t. [[M ′]] = [[M ]].

Operations on zones. The four basic operations we need to perform on event-zones are:
(i) future of an event-zone Z :

−→
Z = {v ∈ V(CΣ) | ∃v′ ∈ Z, t ∈ R≥0 : v = v′ + t};

(ii) past of an event-zone Z :
←−
Z = {v ∈ V(CΣ) | ∃t ∈ R≥0 : v + t ∈ Z};

(iii) intersection of two event-zones Z and Z ′; and (iv) release of a clock x in Z:
relx(Z) = {v[x := d] | v ∈ Z, d ∈ R≥0 ∪ {⊥}}. Moreover, we also need to be able to
test for inclusion of two zones encoded as EDBMs. Let M , M1 and M2 be EDBMs in
normal form, on n clocks. Then:

Future. If M = M∅, we let
−→
M = M∅. Otherwise, we let

−→
M be s.t.:

−→
M i,j =

⎧⎪⎨
⎪⎩

(0,≤) if Mij /∈ {(⊥, =), (?, =)}, j = 0 and xi ∈ PΣ

(∞, <) if Mij /∈ {(⊥, =), (?, =)}, j = 0 and xi ∈ HΣ

Mi,j otherwise
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1 EDBMNormalise(M) begin
2 Let S = {0} ;
3 foreach 1 ≤ i ≤ n s.t. Mi,0 = (⊥,=) or M0,i = (⊥,=) do
4 if ∃1 ≤ j ≤ n s.t. Mi,j �= (?,=) or Mj,i �= (?,=) then return M∅ ;
5 Mi,0 ← (⊥,=) ; M0,i ← (⊥,=) ;

6 foreach 0 ≤ i, j ≤ n s.t. Mi,j /∈ {(?,=), (⊥,=)} do
7 S ← S ∪ {i, j} ;

8 foreach i, j ∈ S do SetCst(Mi,j) ;
9 M ′ ← DBMNormalise(M ,S) ;

10 if M ′ = Empty then return M∅ ;
11 return M ′ ;

12 SetCst(Mi,j) begin
13 if Mi,j = (?,=) then
14 if xi ∈ PΣ and (xj ∈ HΣ or xj = x0) then Mi,j ← (0,≤) ;
15 else Mi,j ← (∞, <) ;

Algorithm 1. A normalisation algorithm for EDBMs

Past. If M = M∅, we let
←−
M = M∅. Otherwise, we let

←−
M be s.t. for all i, j:

←−
M i,j =

⎧⎪⎨
⎪⎩

(∞, <) if Mij /∈ {(⊥, =), (?, =)}, i = 0 and xj ∈ PΣ

(0,≤) if Mij /∈ {(⊥, =), (?, =)}, i = 0 and xj ∈ HΣ

Mi,j otherwise

Intersection. We consider several cases. If M1 = M∅ or M2 = M∅, we let M1 ∩
M2 = M∅. If there are 0 ≤ i, j ≤ n s.t. M1

i,j ≤ M2
i,j and M2

i,j ≤ M1
i,j , we let

M1∩M2 = M∅ too. Otherwise, we let M1∩M2 be the EDBM M ′ s.t for all i, j:
M ′

i,j = min(M1
i,j , M

2
i,j).

Release. Let x be an event clock. In the case where M = M∅, we let relx(M) = M∅.
Otherwise, we let relx(M) be the EDBM s.t. for all i, j:

relx(M)i,j =

{
Mi,j if xi = x and xj = x

(?, =) otherwise

Inclusion. We note M1 ⊆M2 iff M1
i,j ≤M2

i,j for all 0 ≤ i, j ≤ n.

Proposition 10. Let M, M1, M2 be EDBMs in normal form, on set of clocks C. Then,

(i)
−−→
[[M ]] =

[[−→
M

]]
, (ii)

←−−
[[M ]] =

[[←−
M

]]
, (iii)

[[
M1 ∩M2

]]
=

[[
M1

]]
∩
[[

M2
]]

, (iv) for

all clock x ∈ C, relx([[M ]]) = [[relx(M)]] and (v)
[[
M1

]]
⊆

[[
M2

]]
iff M1 ⊆M2.

Forward and backward analysis. We present now the forward and backward analysis al-
gorithms adapted to ECA. From now on, we will consider an ECA A = 〈Q, qi, Σ, δ, α〉.
We also let Post ((q, v)) = {(q′, v′) | ∃t, a : (q, v)

t,a−−→ (q′, v′)} and Pre ((q, v)) =
{(q′, v′) | ∃t, a : (q′, v′)

t,a−−→ (q, v)} and we extend those operators to sets of states
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1 ForwExact begin
2 Let Visited = ∅ ; Let Wait = {(qi, Z0)} ;
3 while Wait �= ∅ do
4 Get and remove (q, Z) from Wait ;
5 if q ∈ α and Z ⊆ Zf then return Yes ;
6 if there is no (q, Z′) ∈ Visited s.t. Z ⊆ Z′ then
7 Visited := Visited∪ {(q, Z)} ; Wait := Wait ∪ Post ((q, Z)) ;

8 return No ;

9 BackExact begin
10 Let Visited = ∅ ; Let Wait = {(q, Zf ) | q ∈ α} ;
11 while Wait �= ∅ do
12 Get and remove (q, Z) from Wait ;
13 if q = qi and Z ⊆ Z0 then return Yes ;
14 if there is no (q, Z′) ∈ Visited s.t. Z ⊆ Z′ then
15 Visited := Visited∪ {(q, Z)} ; Wait := Wait ∪ Pre ((q, Z)) ;

16 return No ;

Algorithm 2. The forward and backward algorithms

in the natural way. Moreover, given a set of valuations Z and a location q, we abuse
notations and denote by (q, Z) the set {(q, v) | v ∈ Z}. Also, we let Post∗ ((q, Z)) =⋃

n∈N
Postn ((q, Z)) and Pre∗ ((q, Z)) =

⋃
n∈N

Pren ((q, Z)), where Post0 ((q, Z)) =
(q, Z) and Postn ((q, Z)) = Post

(
Postn−1 ((q, Z))

)
, and similarly for Pren ((q, Z)).

The Post and Pre operators are sufficient to solve language emptiness for ECA:

Lemma 11 (adapted from [3], Lemma 1). Let A = 〈Q, qi, Σ, δ, α〉 be an ECA, let
I = {(qi, v) | v is initial}, and let α = {(q, v) | q ∈ α and v is final}. Then:

Post∗ (I) ∩ α = ∅ iff Pre∗ (α) ∩ I = ∅ iff L(A) = ∅.

Let us show how to compute these operators on event-zones. Given a location q, an
event-zone Z on CΣ , and an edge e = (q, a, ψ, q′) ∈ δ, we let:

Poste ((q1, Z)) =

{(
q′,

(
rel←−xa

(
rel−→xa

(
−→
Z ∩ (−→xa = 0)) ∩ ψ

))
∩ (←−xa = 0)

)
if q1 = q

∅ otherwise

Pree ((q1, Z)) =

{(
q,
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(
rel−→xa

(rel←−xa
(Z ∩ (←−xa = 0)) ∩ ψ)

)
∩ (−→xa = 0)

)
if q1 = q′

∅ otherwise

Then, it is easy to check that Post ((q, Z)) = ∪e∈δPoste ((q, Z)) and that Pre ((q, Z))=
∪e∈δPree ((q, Z)). With the algorithms on EDBMs presented above, these definitions
can be used to compute the Pre and Post of zones using their EDBM encodings. Re-
mark that Pre and Post return sets of event-zones as these are not closed under union.

Let us now consider the ForwExact and BackExact algorithms to test for language
emptiness of ECA, shown in Algorithm 2. In these two algorithms Z0 denotes the
zone

∧
x∈HΣ

x = ⊥ containing all the possible initial valuations and Zf denotes the
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(a)
q0 q1 q2

a
←−
xa = 1

a

a
−→
xb = 1

b

(b)

1

1

−→xa

−→xb

Z

= ClosureR(Z) \ Z

=
−→
Z \ Z

r

(c) 1

1

−→xa

←−xa2

2

r

Z

Fig. 3. (a): An ECA for which backward analysis does not terminate. (b) and (c): Examples for
ClosureR and Approxk .

zone
∧

x∈PΣ
x = ⊥ representing all the possible final valuations. By Lemma 11, it is

clear that ForwExact and BackExact are correct when they terminate. Unfortunately,
Fig. 3 (a) shows an ECA on which the backward algorithm does not terminate. Since
history and prophecy clocks are symmetrical, this example can be adapted to define an
ECA on which the forward algorithm does not terminate either. Remark that in the case
of timed automata, the forward analysis is not guaranteed to terminate, whereas the
backward analysis always terminates (the proof relies on a bisimulation argument) [1].

Proposition 12. Neither ForwExact nor BackExact terminate in general.

Proof. We give the proof for BackExact, a similar proof for ForwExact can then be
deduced by symmetry. Consider the ECA in Fig. 3 (a). Running the backward analysis
algorithm from (q2, Zf), we obtain, after selecting the transition e = (q2, b,true, q2),
the zone Z1 = −→xa = ⊥ ∧ ←−xb = 0. Then, the transition e′ = (q1, a,−→xb = 1, q2) is
back-firable and we attain the zone Z2 = −→xa ≥ 0 ∧ −→xb ≥ 1 ∧ −→xb − −→xa = 1. At this
point the transition e′′ = (q1, a,←−xa = 1, q1) is back-firable, which leads to the zone
Z3 = −→xb ≥ 1 ∧ −→xa ≥ 0 ∧ 0 ≤ ←−xa ≤ 1 ∧ −→xb −−→xa ≥ 1 ∧ −→xb +←−xa ≥ 2. The back-firing
of the e′′ transition can be repeated, and, by induction, after n iterations of the loop,
the algorithm reaches the zone Zn = −→xb ≥ n ∧ −→xa ≥ 0 ∧ 0 ≤ ←−xa ≤ 1 ∧ −→xb − −→xa ≥
n∧−→xb +←−xa ≥ n + 1. Thus, the condition of the if in line 14 is always fulfilled, and the
algorithm visits an infinite number of zones, without reaching q0. ��

6 Future Work: Widening Operators

As said earlier, the zone-based forward analysis algorithm does not terminate either
in the case of timed automata. To recover termination, widening operators have been
defined. The most popular widening operator is the so-called k-approximation on zones
[8]. Roughly speaking, it is defined as follows: in the definition of the zone, replace any
constraint of the form xi ≺ c or xi−xj ≺ c, by respectively xi <∞ and xi−xj < ∞
if and only if c > k, and replace any constraint of the form c ≺ xi or c ≺ xi − xj ,
by respectively k < xi and k < xi − xj , if and only if c > k. Such an operator can
be easily computed on DBMs, and is a standard operation implemented in several tools
such as as UppAal [4] for more more than 15 years. Nevertheless, this operator has been
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widely discussed in the recent literature since Bouyer has pointed out several flaws in
the proposed proofs of soundness [6]. Actually, the k-approximation is sound when
the timed automaton contains no diagonal constraints. Unfortunately, k-approximation
is not sound when the timed automaton contains diagonal constraints, and no sound
widening operator exists in this case.

In [6], Bouyer identifies some subclasses of timed automata for which the widening
operator is provably correct. The idea of the proof relies mainly on the definition of an-
other widening operator, called the closure by regions, which is shown to be sound.
The closure by regions of a zone Z , with respect to a set of regions R is defined
as the smallest set of regions from R that have a non-empty intersection with Z , i.e.
ClosureR(Z) = {r ∈ R | Z ∩ r = ∅}. Then, the proof concludes by showing that
Approxk(Z) is sound for some values of k (that are proved to exist) s.t.

Z ⊆ Approxk(Z) ⊆ ClosureR(Z). (1)

In the perspective of bringing ECA from theory to implementation, provably correct
widening operators are necessary, since neither the forward nor the backward algorithm
terminate in general. We plan to adapt the k-approximation to ECA, and we believe
that we can follow the general idea of the proof in [6]. However, the proof techniques
will not be applicable in a straightforward way, for several reasons. First, the proof of
[6] relies on the following property, which holds in the case of timed automata: for
all zone Z and all location q: Post ((q, ClosureR(Z))) ⊆ ClosureR(Post ((q, Z))).
Unfortunately this is not the case in general with ECA. Indeed, consider the zone Z and

the region r in Fig. 3 (b). Clearly, r is included in
−−−−−−−−−→
ClosureR(Z) but r is not included in

ClosureR(
−→
Z ) (recall that prophecy clocks decrease with time elapsing). Moreover, the

definition of the k approximation will need to be adapted to the case of ECA. Indeed, the
second inclusion in (1) does not hold when using the k-approximation defined for timed
automata, which merely replaces all constants > k by∞ in the constraints of the zone.
Indeed, consider the event-zone Z defined by ←−xa + −→xa ≤ 2 in Fig. 3 (c), together with
the set of regions R = Reg

(
C{a}, 1

)
. Clearly, with such a definition, the constraint

←−xa +−→xa ≤ 2 would be replaced by←−xa +−→xa < ∞, which yields an approximation that
intersects with r, and is thus not contained in ClosureR(Z). We keep open for future
works the definition of a provably correct adaptation of the k-approximation for ECA.

References

1. Alur, R.: Timed automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

2. Alur, R., Dill, D.: A Theory of Timed Automata. Theoretical Computer Science 126(2),
183–236 (1994)

3. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of timed
automata. Theoretical Computer Science 211(1-2), 253–273 (1999)
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Abstract. Construction of automata for Metric Temporal Logics has been an
active but challenging area of research. We consider here the continuous time
Metric temporal logic MTL[ UI , SI ] as well as corresponding signal automata.
In previous works by Maler, Nickovic and Pnueli, the signal automaton synthesis
has mainly addressed MTL under an assumption of bounded variability. In this
paper, we propose a novel technique of “Temporal Projections” that allows easy
synthesis of safety signal automata for continuous time MITL[UI , SI ] over finite
signals without assuming bounded variability. Using the same technique, we also
give synthesis of safety signal automata for MITL[ UI , SI ] with bounded future
operators over infinite signals. For finite signals, the Temporal Projections allow
us to syntactically transform an MITL formula φ(Q) over a set of propositions
Q to a pure past time MITL formula ψ(P,Q) with extended set of propositions
(P,Q) which is language equivalent “modulo temporal projection”, i.e. L(φ) =
L(∃P.�ψ). A similar such transformation over infinite signals is also formulated
for MITL[UI , SI ] restricted to Bounded Future formlae where the Until operators
use only bounded (i.e.non-infinite) intervals. It is straightforward to construct
safety-signal-automaton for the transformed formula. We give complexity bounds
for the resulting automaton. Our temporal projections are inspired by the use of
projections by D’Souza et al for eliminating past in MTL.

1 Introduction

Logic automaton connection has proved to be influential in finding practical model
checking technique for the verification of programs, as well as in theoretical studies on
expressiveness and decidability of logics. For example, the well known Vardi-Wolper
technique gives synthesis of a Buchi automaton recognizing the language of an LTL
formula. By using this automaton as a synchronous monitor, the LTL formula can be
model checked. This approach has been applied to several other logics too. However,
extending this approach to timed logics has been challenging.

A prominent (linear) timed logic is MTL[ UI , SI ]. Here the temporal modalities
UI and SI are time constrained using a time interval I with integer end-points. The
logic can be interpreted over different forms of time. For example, MTL[ UI , SI ] over
timed words gives the so called pointwise MTL where as MTL[UI , SI ] over timed state
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sequences (also called signals), gives the continuous timed MTL (see [1]). Moreover,
the timed behaviour may be infinite (extending up to infinity in time) or finite. In this
paper, we confine ourselves to continuous timed MTL. Logics MTL over finite and
infinite behaviours are respectively denoted as MTLfin and MTLinf .

The expressiveness and decidability properties of the temporal logic vary according
to the nature of time assumed, permitted operators and permitted time intervals. Full
MTL[ UI , SI ] is undecidable for both finite and infinite behaviours. Alur, Feder and
Henzinger [2] proposed MITL[UI , SI ] as a restriction of MTL[UI , SI ] where singular
(or punctual) intervals of the form [l, l] are disallowed in formulae. Alur, Feder and
Henzinger established the EXPSPACE satisfiability of MITL[ UI ] by constructing a
tableaux for the formula. However, the proposed construction for MITL[U , �I ,S, �−I ]
is complex and not very practicable. Hence, several subsequent papers have addressed
simpler techniques for the construction of signal automata for various fragments of
continuous time MTL[ UI , SI ] [6,7,8]. Thus, Maler et al [6] exhibited synthesis of
deterministic signal automata for the purely past time logic MITLfin[S, �−I ]. Extending
this, Maler et al [7] gave a construction of a deterministic signal automaton A(φ, k)
for a bounded future formula MTL[ UJ , SI ] and a variability index k. The automaton
accepts exactly those k-variable signals which satisfy the formula φ. A signal is called
k-variable if it does not change more than k times in any unit interval.

In this paper, we consider a novel technique for the synthesis of MITL[U , �I ,S, �−I ]
formula automaton without any restriction of bounded variability. Note that this logic
MITL[U , �I ,S, �−I ] is equivalent to the more traditional MITL[ UI , SI ]. Our main
results are as follows.

– For MITLfin[U , �I ,S, �−I ] formula (over finite signals) we construct a safety signal
automaton which accepts a signal iff the signal satisfies the formula.

– For BMITL (over infinite signals) which consists only of formulae with bounded
future, we construct a safety signal automaton which accepts a signal iff the signal
satisfies the formula.

In both cases, the automaton construction uses a novel technique called temporal pro-
jections. A formula�φ holds for a behaviour if it holds at every point in the behaviour.
A formula φ over a set of propositions Q is called “equivalent modulo projection” to a
formula ψ over a set of propositions P ∪Q provided φ ≡ ∃Pψ. The composite operator
∃P� is named temporal projection.

For finite signals, the Temporal Projections allow us to syntactically transform an
MITLfin[U , �I ,S, �−I ] formula φ(Q) over a set of propositions Q to a pure past time
MITLfin[S, �−I ] formula ψ(P, Q) with extended set of propositions (P, Q) which is lan-
guage equivalent “modulo temporal projection”, i.e. L(φ) = L(∃P �ψ). Our temporal
projections are inspired by the use of projections by D’Souza et al [3] for eliminating
past in MTL. They allow us to state future requirements in terms of past requirements by
shifting the time point of reference. A similar such transformation over infinite signals
is also formulated for BMITL where the future operators use only bounded (i.e.non-
infinite) intervals. Thus, temporal projections allow us to reduce MITL[U , �I ,S, �−I ]
formulas to a purely past time formula.

In this paper, we consider timed state sequences in their full generality. We also con-
sider the full logic MITL without any restrictions. This must be contrasted with [6,7]
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where some restrictions are placed on the timed state sequences as well as the inter-
vals permitted in formulae. Dealing with this generality forces us to extend the signal
automaton definition of Maler et al to automata which can distinguish between signals
with open/closed/half-open/singular intervals. In this richer setting, the notion of deter-
ministic signal automata and their closure properties requires some care in formulation.
Using these automata, we first adapt the synthesis of deterministic signal automata for
pure past time MITL[S, �−I ] given by Maler et al [7] to all finitely variable signals. Thus,
in Section 6, we give the synthesis of language equivalent signal-safety-automaton for
a formula �ψ with past time MITL[S, �−I ] formula ψ. A projection operation on the
resulting automaton eliminates the added witness propositions P in formula ∃P � ψ
by introducing nondeterminism. Thus, we obtain a rather simple technique for syn-
thesizing signal automata for full MITL[U , �I ,S, �−I ] by first reducing it to temporal
projection of pure past time MITL. The resulting automata are exponential in the size
of the formula.

2 Syntax and Semantics of MTL

The time domain that is considered is R≥0, the set of non negative reals. Intervals as
usual are convex subsets of R≥0, they may be open or closed from either side and they
may be bounded or unbounded. Interval arithmetic like t + I is used to indicate the set
{t′|t′ − t ∈ I} while t − I is used to indicate {t′|t − t′ ∈ I}.

Continuous time MTL formulae are evaluated over timed state sequences (TSS) (also
called finitely variable signals) which act as models of behaviours for timed systems.
We use the terms TSS or signal or behaviour interchangeably while talking about mod-
els for timed systems. Let P be the set of atomic propositions. A TSS (or signal) is a
pair τ = (s̄, Ī), where s̄ is a finite or infinite sequence s0, s1, . . . of subsets of P and Ī
is a corresponding sequence I0, I1, . . . of intervals satisfying:

– I0 is of the form [0, r] or [0, r) where r ≥ 0
– ∀i ≥ 0 intervals Ii and Ii+1 are disjoint and Ii ∪Ii+1 is an interval. Let Dom(τ) =
∪iIi.

– The TSS τ is called infinite if ∪iIi = R≥0. We require that τ is time divergent, i.e.
if s̄ is an infinite sequence then τ is necessarily infinite.

– TSS τ is called finite if Dom(τ) = [0, M ] for some real number M . In this case,
we require that Ī is finite and the last interval In is of the form (r, M ] or [r, M ].

The TSS τ = (s̄, Ī) denotes a finitely variable function which takes value si throughout
the interval Ii. A function over reals is finitely variable if it has only finitely many
discontinuities in any finite interval. Hence, will use τ(t) = si to denote that t ∈ Ii.

The syntax of MTL[ UI , SI ] over the set of propositions P is given by

ϕ ::= p(∈ P ) | BP | EP | ¬ϕ | ϕ ∨ ϕ | ϕ UIϕ | ϕ SIϕ

where I is an interval with endpoints in N0 ∪∞. Note that I can be open, closed, half-
open, singleton (i.e.[c, c]) or unbounded (i.e. 〈c,∞)). We use 〈 to range over [, ( and 〉
to range over ], ).
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Let τ be a (finite or infinite) TSS over P and t ∈ Dom(τ). The pair (τ, t) is called a
model. Then, the semantics of continuous time MTL is given by

(τ, t) � p ↔ p ∈ τ(t)
(τ, t) � BP ↔ t = 0
(τ, t) � EP ↔ Dom(τ) = [0, M ] ∧ t = M
(τ, t) � ¬ψ ↔ (τ, t) � ψ
(τ, t) � ψ1 ∨ ψ2 ↔ (τ, t) � ψ1 or τ, t � ψ2

(τ, t) � ψ1 UIψ2 ↔ ∃t′ ∈ t + I ∧ t′ > t, (τ, t′) � ψ2 and ∀t′′ ∈ (t, t′), (τ, t′′) � ψ1

(τ, t) � ψ1 SIψ2 ↔ ∃t′ ∈ t − I ∧ t′ < t, (τ, t′) � ψ2 and ∀t′′ ∈ (t′, t), (τ, t′′) � ψ1

Following the anchored interpretation of temporal logic, let τ |= ψ iff τ, 0 |= ψ. Let
L(ψ) = {τ | τ, 0 |= ψ}. It is very useful to define strong satisfaction of a formula: let
τ |= �ψ iff τ, t |= ψ for all t ∈ Dom(τ). Finally, let L(�ψ) = {τ | τ |= �ψ}. The
strong satisfaction operator will play a crucial role in this paper.

Derived Operators. Define untimed modalities U def= U(0,∞), S def= S(0,∞), �
def=

�(0,∞) and �− def= �−(0,∞). Also, let unary modalities �I
def= True UIψ and �−Iψ

def=

True SIψ. Define �Iψ
def= ¬�I¬ψ and �Iψ

def= ¬�−I¬ψ. Let ↗ ψ
def= ψ Uψ. This

holds at any point where ψ is continuously true in its small right neighbourhood. Alter-

nately, define ↗ ψ
def= ψ U(0,1)ψ using a bounded modality. Similarly, we can define

↖ ψ.

Sublogics. The sublogic (syntactic subset) of MTL where singular (punctual) intervals
of the form [c, c] are disallowed in the formulae is called MITL. We use MTL[OPLIST ]
and MITL[OPLIST ] to denote subset of formulae where only the temporal operators
from OPLIST are used. For example MITL[S, �−I ] denotes the past-time fragment of
MITL. When formulae are interpreted only over finite (or infinite) signals we denote
this by MTLfin (or MTLinf).

Transformations. All forms of open/closed/half-open intervals are allowed in the syn-
tax of MITL formulae. The following equivalences show that it is sufficient to use for-
mulae with only the open interval and the reduction causes only linear blowup in size.

Lemma 1. – We have, �[0,r)p ↔ p ∨ �(0,r)p
– For l �= 0, we have �[l,r)p ↔ �(l,r)p ∨ �(l−1,l)�(0,1)(p ∧ (↗ ¬p))

�(l,r]p ↔ �(l,r)p ∨ �(r−1,r)�(0,1)(p ∧ (↖ ¬p))

Next, we show that it is possible to remove the modalities UI and SI . An equivalent
formula using only the untimed modalities U , S and timed unary modalities �I ,�−I

can be constructed with only linear blowup in size. Hence, in the rest of this paper, in
place of MITL[ UI , SI ] we shall confine ourselves to MITL[U , �I ,S, �−I ] where only
open intervals I are used.

Lemma 2. p U(l,r)q ↔ �(l,r)q ∧ �(0,l](p ∧ (p Uq))

Now we define the notion of reflection for finite behaviours and MTL[U , �I ,S, �−I ]
formulae and show that formula satisfaction is preserved under reflection. Let τ be a
finite signal with Dom(τ) = [0, d]. Then, The reflection of τ denoted by τ̂ is a finite
signal with Dom(τ̂ ) = [0, d] such that p ∈ τ(t) iff p ∈ τ̂(t̂) where t̂ = d − t.
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The reflection of a formula α ∈ MTL[U , �I ,S, �−I ] denoted by α̂ is a formula
obtained by exchanging future and past operators, i.e. ( U ↔ S), (�I ↔ �−I) and
(BP ↔ EP ).

Proposition 1. For any finite behaviour τ (τ, t) � α iff (τ̂ , t̂) � α̂ and hence τ � �α
iff τ̂ � �α̂. ��

3 Temporal Projections and S Operator Elimination

Let P be a set of propositions, and let τ ′ be a signal over P ∪ P ′, where P ′ is a set of
propositions disjoint from P . Then τ ′ � P is a signal over P s.t. (τ ′ � P )(t) = τ ′(t)∩P
forall t ∈ Dom(τ). Given τ over P a signal τ ′ over P ∪ P ′ is called P ′-extension of τ
provided τ ′ � P = τ .

Given a formula ψi over P and a fresh proposition qi, the equivalence qi ⇔ ψi is
called a temporal definition and qi is called its witness. Let X be a given conjunction
of temporal definitions. Let the set of its witnesses be P ′. Then, a P ′-extension τ ′ of τ
is called canonical with respect to X provided τ ′ |= �X . For every τ (over P ) there is
a unique canonical extension τ ′ w.r.t. X .

Let ψ be MTL formula over propositions P ∪P ′ and let τ be a signal over P . Define
τ |= ∃P ′ � ψ iff τ ′ |= �ψ for some P ′-extension τ ′ of τ . Hence, let L(∃P ′ � ψ) =
{τ ′ � P | τ ′ |= �ψ}.

Temporal projections ∃P ′ � ψ are quite powerful. Given a formula φ (over P ) of
logic L1, we can often find a formula ψ (over P ∪ P ′) of a much simpler/desirable
logic L2 such that L(φ) = L(∃P ′ � ψ). We say that φ is equivalent modulo temporal
projection to ψ. For example, we can flatten a formula φ (over Q) to formula ψ by
introducing a fresh proposition pi for each subformula of φ such that τ, 0 |= φ iff
τ |= ∃p1, . . . , pn�ψ. We illustrate this by an example below. Full details can be found
in [3].

Example 1. Let φ = (q1 UI(q2 Sq3)) ∨ �−Jq4. Define ψ as conjunction of formulae
(p1 ⇔ �−Jq4) and (p2 ⇔ (q2 Sq3)) and (p3 ⇔ (q1 UIp2)) and (BP ⇒ (p3 ∨ p1)).
Then, L(φ) = L(∃p1, . . . p3.� ψ).

In the next two sections, we shall give several other examples of equivalence modulo
temporal projections.

S elimination. D’Souza et al showed how to eliminate untimed S using U and temporal
projections [3]. We adapt their construction and make it apply uniformly to both finite
and infinite signals. Let rd(ψ) be defined as ψ ∧ (↗ ¬ψ) and let

α(ψ, μ) ≡ (ψ U((¬ψ) ∨ rd(ψ) ∨ EP )) ⇒ ((ψ ∧ μ) U(((¬ψ) ∨ rd(ψ) ∨ EP ) ∧ μ))

Note that α(ψ, μ) holds at a point t provided for all t′ > t, if ψ holds in (t, t′) then μ
holds in (t, t′].

ν = (BP ⇒ ¬r) ∧ ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5

such that
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1. ϕ1 : α(p ∧ q, r)
2. ϕ2 : ((r ∧ p) ∨ q) ⇒ α(p ∧ ¬q, r)
3. ϕ3 : ¬((r ∧ p) ∨ q) ⇒ α(p ∧ ¬q,¬r)
4. ϕ4 : α(¬p ∧ ¬q,¬r)
5. ϕ5 : α(¬p ∧ q,¬r)

Lemma 3. [3] Let ν ∈ MTL[U , BP, EP ] be as constructed above. Then, for any (finite
or infinite) signal τ , we have τ � �ν iff τ ��(pSq ⇔ r). ��

Applying the reflection property (proposition 1) to above lemma, we can also eliminate
U using S over finite behaviours. Let ν̂ be the reflection of formula ν given above.

Corollary 1. For a finite signal τ , we have τ � �ν̂ iff τ ��(p Uq ⇔ r). Note that
ν̂ ∈ MTLfin[ S, BP, EP ].

D’Souza et al [3] also showed how to eliminate �−I operator using only the future op-
erators and temporal projections. We can generalize their proof to give a uniform �−I

elimination for finite and infinite signals. Moreover, in contrast with [3], we do not have
any prefix where the elimination is not applicable. This is captured in the following the-
orem whose proof can be found in the full version of the paper.

Theorem 1. For every ϕ ∈ MITL[U , �I ,S, �−I ] over P we can construct ψfut ∈
MITL[U , �I ] over P ′ ∪ P such that L(φ) = L(∃P ′.� ψfut).

4 Eliminating Future Modality �I

In this section, we look at eliminating �I from MITL[U , �I ,S, �−I ] formula. This re-
sult, coupled with the U elimination of Corollary 1 helps us to obtain a pure past formula
starting from a formula in MITLfin[U , �I ,S, �−I ]. In previous works, [7] has eliminated
�I from formlae in MTLinf [ U , �I ] with bounded intervals I to obtain equivalent past
formulae.

Theorem 2. For every ϕ ∈ MITLfin[U , �I ,S, �−I ] over P , we can construct ψpast ∈
MITLfin[S, �−I ] over P ′ ∪ P such that L(ϕ) = L(∃P ′ � ψpast).

Proof. First we eliminate U using Corolloary 1. Then to handle �I we construct a
formula that gets rid of �I using only �−I , ↖ and S. As seen in Lemma 1, it is sufficient
to consider formulae with only open intervals.

First we consider the case when I is of the form (l,∞). Let the temporal definition

X = (q ⇔ �Ip) ∧ (p′ ⇔ �p)

Here p′, q are the witness propositions. We construct νp ∈ MITLfin[ S, �−I , U ] and we
claim that τ ′ � �X iff τ ′ � �νp. Let νp = ϕ1 ∧ ϕ2 ∧ ϕ3, where

ϕ1 : (p ⇒ �p′) ∧ (EP ⇒ ([¬p′ ∧�¬p′)] ∨ [¬p′ ∧ (¬p′ S(p ∧ ¬p′))])
ϕ2 : ¬p′ ⇒ �[0,l]¬q

ϕ3 : (p ⇒ �(l,∞)q)
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First we show that τ ′ |= �X implies τ ′ � �νp:

1. ϕ1: If p occurs at a point, then by the definition of canonical extension, p′ should
be true for all points before it, and p′ cannot become true at a point unless p occurs
once later.

2. ϕ2 : If p does not become true in the future, then �(l,∞)p cannot become true for
at least l length of time.

3. ϕ3: If p occurs at t then �Ip will be true throughout t− I . As I = (l,∞), we have
�(l,∞)q holds at t.

Now we prove the converse that τ ′ � �νp implies τ ′ |= �X : The first two points below
establish the relationship between p and p′ while the last two establish the relationship
between p and q.

1. Let (τ ′, t) � �p. Then, the formula p ⇒ �p′ ensures p′ is true at t.
2. Let (τ ′, t) � �p. Then, EP ⇒ ([¬p′ ∧�¬p′)]∨ [¬p′ ∧ (¬p′ S(p∧¬p′))]) ensures

that p′ is false from EP leftward up to the point where p became true for the last
time from BP .

3. Let (τ ′, t) � �Ip. Then ϕ3 ensures q is true at t.
4. Let (τ ′, t) � �Ip. p does not occur anywhere after t + l, so p′ is false at t + l and

then ϕ2 ensures q is false at t.

Next, we consider the case when the interval is bounded i.e I is of the form (l, r). Let
the temporal definition

X = (q ⇔ �Ip) ∧ (p′ ⇔ �p).

We construct νp ∈ MITLfin[S, �−I ] and we claim that τ ′ � �X iff τ ′ � �νp.

Define νp
def= ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7, where

ϕ1 : (p ⇒ �(0,∞)p
′) ∧ EP ⇒ ([¬p′ ∧�¬p′)] ∨ [¬p′ ∧ (¬p′ S(p ∧ ¬p′))])

ϕ2 : (¬p′ ⇒ �[0,l]¬q)
ϕ3 : (p ⇒ �(l,r)q)
ϕ4 : ¬q ⇒ [�¬q ∨ ((¬q S(�(0,r−l)q ∧ ¬q))]
ϕ5 : (q ⇒ (qS¬q)) ∨�q

ϕ6 : [�(0,r−l)¬p] ⇒ �−(l,r]¬q ∨ �−(0,r)BP

ϕ7 : [�(l,r)q ∧ �−[l,r)¬q] ⇒ [p ∨ (↖ p)]

First we show that τ ′ |= �X implies τ ′ � �νp:

1. ϕ1 ϕ2 ϕ3 : same as in the case (l,∞)
2. ϕ4: We show that maximal q intervals are right open and of length at least r − l. If

maximal q intervals were not right open, then there is a point t where q holds, and
q does not hold in the immediate right neighbourhood of t. So, for any small ε > 0,
¬q holds at t+ε. Using the fact that q is true at t and ¬q is true at t+ε for any small
ε, we have �(l,r)p true at t and �(l,r)¬p at t + ε. Let p hold at t′ ∈ (t + l, t + r).
Thus, t′ > t + l. It is possible to pick a sufficiently small ε such that t′ > t + l + ε.
This contradicts the fact that �¬p holds in (t + l + ε, t + r + ε).
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To show that the length of the maximal q-intervals is at least r − l. Consider a
maximal q-interval (t1, t2) with t2− t1 < r− l. Let Ii = ti +(l, r) for i = 1, 2. By
definition �p holds in both I1, I2. As t2− t1 < r− l, (t2 + l, t1 + r) ⊂ I1, I2. Pick
a point t3 in (t1, t2), and let I3 = t3 + (l, r). Then I3 ⊂ I1 ∪ I2. We know q holds
at t3, hence �p holds in I3. The fact that (t1, t2) is a maximal interval implies that
we have �p in (t1 − ε + l, t1 − ε + r) as well as (t2 + ε + l, t2 + ε + r) for any
small ε. This contradicts the fact that �p holds in I3.

3. ϕ5: Maximal q intervals are left open. Similar to above.
4. ϕ6: Suppose �(0,r−l)¬p holds at t. Then ¬q holds at t − r, and hence �−(l,r]¬q

holds at t. If t− r does not exist (for instance, if t = r − l) then we say �−(0,r)BP .
5. ϕ7: Suppose the LHS of the implication ϕ7 is true at t. Then �¬p holds throughout

(t, t + (r − l)). If ↖ p and p are both not true at t, then then we can find a small
enough ε > 0 such that �¬p holds in (t − ε, t]. Since q holds throughout (t −
r, t − l), we can pick ε such that q holds at t − l − ε. This means, �p holds in
(t − ε, t + (r − l) − ε), which is a contradiction.

Now, we prove the converse, i.e. τ ′ � �νp implies τ ′ |= �X : ϕ1 ensures that the
relationship between p and p′ as in the definition of canonical-extension is met. Now
using the rest of the formulae we prove the relationship between p and q:

If (τ ′, t1) � �(l,r)p then ϕ3 ensures τ ′, t1 � q.
Now assume (τ ′, t1) � �(l,r)p. Let us denote by EP the end point of τ ′.

case EP − t1 < r: When EP − t1 > l, it is easy to see that ϕ2 ensures τ ′, t1 � ¬q. If
EP − t1 ≤ l, then using ϕ1, we have ¬p′ holds good at EP , and then ϕ2 gives that ¬q
is true at t1.

case EP − t1 ≥ r: suppose τ ′, t1 � q, then there exists a point t2 which is the earliest
point after t1 at which ¬q holds. Such a point does exist because q-intervals are right
open and ¬q holds at EP . Now EP − t2≥ l because ¬p′ is true at EP and ϕ2 says ¬q
holds in [EP − l, EP ].

Applying ϕ7 at t2+l we obtain that at t2+l, p ∨ (↖ p) should hold. Since t1 < t2
we have t1 + l < t2+ l. By assumption, τ ′, t1 � �(l,r)p which implies p cannot hold
anywhere between t1 + l and t1 + r. Putting the last two lines together, we get that
t1+r < t2+l. Now consider the earliest point on or after t1+r where p∨ (↗ p) is true,
call it t3. Such a point exists because we know there is a point namely t2+ l > t1 +r
at which p ∨ (↖ p) holds. Now we have t2 + l ≥ t3 > t1 +r. Applying ϕ6 at t3 we
get τ, t3−r � ¬q, but we also have t1 < t3−r ≤ t2 − (r − l) and we know q holds
throughout [t1, t2). This is a contradiction. Hence, it cannot be the case that τ, t1 � q.

To prove the statement of our theorem, let ϕ ∈ MITLfin[U , �I ,S, �−I ] be the given
formula. First we replace each �Ip subformulae in ϕ with new witness propositions q
from P ′. Call this formula ψ. Then we add the conjuncts Wp = [(q ⇔ �Ip) ∧ (�p ⇔
p′)] to ψ. We need to remove the conjuncts Wp from ψ. Use

∧
p∈P

νp to replace this, to

get the formula ψ ∧
∧

p∈P

νp. Our final formula ψpast will be (BP ⇒ ψ) ∧
∧

p∈P

νp. ��

A result similar to Theorem 2 is proved by Maler et al in [7]. They showed that a
formula φ ∈ MTLinf [U , �I ] with bounded intervals can be transformed into φ′ ∈
MITLinf [S, �−I ] such that L(φ) = L(φ′). Our result differs in the following ways:
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1. Maler et al [7] crucially uses punctuality to make the transformation from future to
past, where as in our case punctuality is disallowed, and hence our method differs
significantly.

2. The method of [7] would extend to finite behaviour as well but if we try to eliminate
unbounded U using the same technique one would a priori have to know the length
of the behaviour to construct the formula

It should be noted that this method of interchanging future and past in Theorem 2 will
not work in the case of infinite behaviours because the time domain in that case is
asymmetric with respect to future and past. So in order to eliminate future in the infinite
domain, we will have to follow a different method as shown in the next theorem.

4.1 Eliminating Bounded Future over Infinite signals

Let BMITL denote MITLinf [�J ,S, �−I ] with bounded future intervals. That is, the in-
tervals J appearing in �J are bounded (i.e. not infinite).1

Lemma 4. For any infinite signal τ we have τ � �(↗ p ⇔ q) iff τ � �(α̂(p, q) ∧
α̂(¬p,¬q)).

Theorem 3. For every φ ∈ BMITL over P , we can construct ψpast ∈ MITLinf [S, �−I ]
over P ′ ∪ P such that L(ϕ) = L(∃P ′ � ψpast).

Proof. Consider the temporal definition

X = (q ⇔ �Ip) ∧ (p′ ⇔ �p)

As in Theorem 2, we construct a formula νp that characterizes the canonical extensions.
Let

ϕ1 : (p ⇒ �(l,r)q)
ϕ2 : ¬q ⇒ ((¬�(0,r−l) q) ⇒ α̂(¬�(0,r−l) q,¬q))
ϕ3 : q ⇒ ((q S¬q) ∨�q)
ϕ4 : (�(0,r−l)¬p ∧�(r,2r−l)q ∧ ¬�−[0,r)BP ) ⇒ �−[r,2r−l)(¬q)
ϕ5 : (�(l,r)q ∧ �−(l,r]¬q) ⇒ p ∨ (↗ p)

Define νp
def= ϕ1 ∧ . . . ∧ ϕ5.

An important point to note here is that although in general it may not be possible to
eliminate U in the infinite time domain, it is definitely possible to do so in the special
case when it occurs in the form of ↗ p, as seen in Lemma 4.
Let τ ′ be a canonical extension of τ . Then ϕ1 ∧ . . . ϕ5 are satisfied at all points of τ ′.

1. ϕ1: If p occurs at t then �Ip will be true throughout t − I because
∀t′ ∈ t − I τ, t � p implies ∀t′ : t ∈ t′ + I τ, t � p. Hence by semantics of �I

we have τ, t′ � �Ip and τ ′ is a canonical extn which implies τ ′, t′ � q. Hence ϕ1

holds.
1 Extending sublogic BMITL with bounded UJ does not increase its expressive power as shown

in the full version of the paper.
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2. ϕ2: Maximal q intervals are right open and are either atleast of length r − l or
interrupted by BP .
We first show why maximal q-intervals should be right open. If not, then there is a
point t where q holds, and q does not hold in the immediate right neighbourhood
of t. Pick a sufficiently small ε such that at t + ε, ¬q holds. Using the fact that q is
true at t and ¬q is true at t+ ε for any small ε, and by virtue of τ ′ being a canonical
extn, we have �(l,r)p is true at t and �(l,r)¬p holds at t + ε for any small ε. This
implies that p holds somewhere in t + (l, r). Let this point be t′ ∈ t + (l, r). It is
possible to pick a sufficiently small ε such that t′ > t + l + ε. But this contradicts
the fact that �(l,r)¬p holds at t + ε.
Now we show q intervals are of length atleast r − l or are interrupted by BP .
Let the maximal q interval end at t (0)
q is false at t as seen above. Since τ ′ is a canonical extn, we get
p does not hold anywhere in t + (l, r) (1)
Case 1: ¬p is true at t + l. Then it cannot be the case that ¬p is true in the left
neighbourhood of t + l because if it were so, then for some small ε, ¬p would hold
throughout t + l − (0, ε]. This along with (1) and the case assumption we would
obtain that p does not hold anywhere in (t + l − ε, t + r − ε) for sufficiently small
ε. This means q does not hold to the left of t which contradicts (0). Now for any
t′ ∈ (t − r + l, t) we have t + l ∈ (t′ + l, t′ + r), which implies that for all such
t′, q holds at t′ because p holds to the immediate left of t + l which is contained in
(t′ + l, t′ + r).
Case 2: p holds at t + l. We have already seen that ϕ1 holds everywhere, applying
at t + l we get the required result.

3. ϕ3: this formula says that the q intervals are right open which can be proved in
similar fashion as the above.

4. Suppose the LHS of ϕ4 is true at t. Then the point t−r exists because of¬�−[0,r)BP .
�(0,r−l)¬p implies ¬�(l,r)p is true at t − r. Now along with �(r,2r−l)q it is easy
to see why RHS of ϕ4 is true at t.

5. Suppose LHS of ϕ5 is true at t. Then we can deduce from the conjuncts containing
q that ¬�(l,r)p holds at t − r and �(l,r)p holds in its immediate right. If p∨ ↗ p
were not true at t, then using the fact that τ ′, t � �(0,r−l)¬p we can deduce that
¬p should be true throughout t + (−r + l + ε, ε) for a small enough ε > 0, which
then contradicts the fact that �(l,r)p holds in the immediate right of t − r. Hence
ϕ5 holds everywhere as well.

Now, we prove the converse. Assume τ ′ � �(ϕ1∧ . . . ϕ5) and show that τ ′ is canonical
extn. (We use the notation τ ′, I � ϕ to say ϕ holds everywhere in I).

1. If (τ ′, t) � �(l,r)p. Then p holds at t′ ∈ (t + l, t+ r). By ϕ3, we get that q holds at
every point in (t′ − r, t′ − l) and t lies in this interval, Hence τ ′, t � q.

2. If (τ ′, t) � ¬�(l,r)p.
Consider the earliest point t1 such that
(τ ′, [t1, t]) � ¬�(l,r)p. (1)
Such a point exists because of two facts
(a) �(l,r) intervals are right open(or ¬�−(l,r) are left closed) and
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(b) the time domain under consideration is bounded along the negative axis.
From (1), (τ ′, t1) � ¬�(l,r)p which implies
(τ, t1 + r) � �(0,r−l)¬p (2)

Now, (τ ′, t1 + r) � �(r,2r−l)q (3)
because of the following facts
(a) minimality of t1
(b) the fact that �(l,r) intervals are of length atleast r − l or end at BP (A)
(c) for any t, (τ ′, t) � �(l,r)p implies τ ′, t � q from part 1 (B)
Now using (2) and (3) we apply ϕ4 at t1 + r to obtain
(τ ′, t1) � ¬q (4)

Now let us assume (τ ′, t) � q (C)
Consider the earliest point t2(< t) such that
(τ ′, (t2, t]) � q and (τ ′, t2) � ¬q (5)
Such a point exists because q intervals are left open.
Also, t2 ≥ t1 (6)
because of (4) and (5).

Now, (τ ′, t2 + r) � �(l,r)q because of (A),(B)
using this with (5) we apply ϕ5 at t2 + r to obtain
(τ ′, t2 + r) � p ∨ (↗ p) (7)
Observe that (τ ′, (t1 + l, t + r)) � ¬p due to (1)
but t2 + r ∈ (t1 + l, t + r) from (5) and (6)
and this contradicts (7).
Hence (C) must be incorrect and τ ′, t � ¬q

So τ ′ is indeed a canonical extn w.r.t. X if it satisfies �(ϕ1 ∧ . . . ∧ ϕ5). To prove the
statement of our theorem: Let ϕ ∈ BMITL be the given formula. First we replace each
�Jp subformulae in ϕ with new witness propositions q from P ′. Call this formula ψ.
Then we add the conjuncts Wp = (q ⇔ �Jp) to ψ. We need to remove the conjuncts
Wp from ψ. Use

∧
p∈P

νp to replace this. The resultant formula is ψ ∧
∧

p∈P

νp. Our final

formula ψpast will be (BP ⇒ ψ) ∧
∧

p∈P

νp. ��

5 Signal Automata

We define signal automata over finite and infinite signals where the the signals can
have open/closed/half-open as well as singular intervals and the automaton behaviour
can distinguish between these. In this sense, our signal automata are a generalization
of signal automata of Maler et al [6]. At any time point during its run, a signal au-
tomaton can be in in an accepting or non-accepting configuration. The run is “safety
accepted” if the automaton stays in accepting configurations throughout the run. Signal
automata which accept signals using this safety acceptance criterion are called safety-
signal-automata. For finite signals we use acceptance by reaching a final state, and
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for infinite signals we use Buchi acceptance. Additiona also consider safety-signal au-
tomata which use safety-acceptance criterion. We define the important notion of deter-
ministic signal automata and we explore the closure properties of signal automata as
well as non-emptiness checking.

Given a finite set of clocks C = {x1, . . . , xn}, a valuation ν ∈ H with H = (R≥0)n

gives the value of each clock. A configuration of a timed automaton is a pair of the form
(q, ν), where q is a state. An atomic clock constraint has the form x op c where x is a
clock, op ∈ {<,≤, >,≥} and c ∈ N.

Definition 1. A signal automaton A is a tuple (Q, Q0, P, C, λ, Inv, Δ, F ) where (i) Q
is a finite set of states; (ii) Q0 ⊆ Q is the set of initial states; (iii) P is a finite set of
propositional variables; (iv) C is a finite set of clocks; (v) λ : Q → 2P associates to
every state a set of propositional variables. We call λ(q) the label of state q; (vi) The
invariant Inv assigns to every state q a conjunction of atomic clock constraints of the
form x ≤ m for clock x, and m ∈ N; (vii) Δ is the transition function. It is a set of
tuples (q, g, u, d, q′) where g is a guard, u is the update function, and d is a bit. d = 1
specifies that the automaton must be in state q′ at the time of the transition and d = 0
specifies that the automaton must be in state q at the time of the transition2. A guard is
a boolean combination of atomic clock constraints. An update function u specifies for
each clock x a reset of the form x := 0 or an assignment of the form x := y (to the value
of clock y); (viii) F : Q → Φ(C) specifies for each state q a boolean combination F (q)
of atomic clock constraints such that (q, ν) is an accepting configuration iff ν |= F (q).
clock valuations are given by boolean combinations of clock constraints.

These automata take finite or infinite signals (as defined in section 2) as input. A run of

A over a signal τ = (s0, I0) (s1, I1) . . . is a sequence (q0, I
′
0, ν0)

δ0−→ (q1, I
′
1, ν1)

δ1−→
(q2, I

′
2, ν2)

δ2−→ . . . where I ′0I
′
1I

′
2 . . . is an interval sequence (as defined in section 2)

which is a refinement of the sequence I0I1I2 . . . , with λ(qj) = si where I ′j ⊆ Ii for
all j. Here, νi gives the valuations of the clocks at time I ′−i , the left limit of I ′i . Also
ν0 = (0, 0, . . . , 0). Note that the sequence I ′0I

′
1I

′
2 . . . needs to be a refinment of I0I1I2

because in the run there is a not only a transition at then end of every Ii but there may

be a transition at a point inside Ii. A step (q, I, ν) δ−→ (q′, I ′, ν′) where δ is a transition
(q, g, u, d, q′) is taken at I+, the right limit of I , provided
(1) If d = 1, then I ′ must be left-closed and I is right-open, and if d = 0, then I must
be right-closed and I ′ is left-open.
(2) ∀t ∈ I , ν + (t − I−) |= Inv(q), and ν′ = u(ν + I+),
(3) (ν + I+) � g, and ∀t′ ∈ I ′, ν′ + (t′ − I ′−) |= Inv(q′). For the above run ρ,
the set Accset(ρ) gives the set of time points when the automaton is in an accepting
configuration, i.e. for any t ∈ I ′i we have t ∈ Accset(ρ) iff νi + t − I ′−i |= F (qi).

Acceptance. A run ρ accepts time point t ∈ Dom(τ) if it is in accepting configuration
at time t, i.e. t ∈ Accset(ρ). The run is called safety-accepting if it accepts all t ∈

2 Pictorially, a transition with d = 1 is denoted by (q, I, ν)
δ •−→ (q′, I ′, ν′) and one with d = 0

is denoted as (q, I, ν)
• δ−→ (q′, I ′, ν′). Whenever the • omitted, it means a pair of transitions,

one of the form
δ •−→ and the other of the form

• δ−→ .
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Dom(τ). The automaton safety-accepts the signal τ if it has a run on τ which is safety
accepting. The resulting automaton is called a safety-signal-automaton and denoted by
�A. Note that safety acceptance is identically defined for signal automata over both
finite and infinite signals. A signal-safety-automaton is called unambiguous if for any
signal τ it has at most one accepting run.

Determinism. A signal automaton is said to be deterministic if it satisfies:

(I) For any two initial states q0, q
′
0 ∈ Q0, λ(q0) �= λ(q′0).

(A) For two distinct transitions (q, g1, ρ1, d1, q1) and (q, g2, ρ2, d2, q2),
(A1) λ(q1) �= λ(q2) or
(A2) If λ(q1) = λ(q2) �= λ(q), then either Inv(q) ⇒ ¬(g1 ∧ g2), or d1 �= d2.
(A3) If λ(q1) = λ(q2) = λ(q), then Inv(q) ⇒ ¬(g1 ∧ g2).

(B) For every transition (q, g, ρ, d, q′)
(B1) λ(q) �= λ(q′) or
(B2) If λ(q) = λ(q′), then Int(Inv(q)) ∩ g = ∅ and d = 0.

The following lemmas give some useful properties of deterministic signal automata.
Their proof may be found in the full verison of the paper.

Lemma 5. Let A be a deterministic signal automaton and τ be a signal. Then A has a
unique run on τ . ��

Lemma 6. If A1 and A2 are two deterministic signal automata, then the product A1×
A2 is also deterministic.

Boolean closure Deterministic signal automata are closed under boolean operations in
the following sense. Let Accset(A, τ) denote Accset(ρ) where ρ is the unique run of
A on τ .

Lemma 7. Given deterministic signal automata A1 and A2, we can construct deter-
ministic signal automata (¬A1), A1 ∩ A2 and A1 ∪ A2 such that for any signal τ ,
Accset(¬A1, τ) = Dom(τ)−Accset(A1, τ), Accset(A1 ∩A2, τ) = Accset(A1, τ)∩
Accset(A2, τ), and Accset(A1 ∪ A2, τ) = Accset(A1, τ) ∪ Accset(A2, τ).

Definition 2. Let �A be a safety-signal-automaton accepting signals over a set of
propositions P ′. Let P ⊆ P ′. The safety-signal-automaton �A � P is constructed
by projecting A onto P . This is obtained by restricting labelling function λ in A to P
(or dropping propositions in λ(q) not in P ). Note that size of �A � P is same as the
size of �A but it may be non-deterministic even if A is deterministic.

Lemma 8. Let A be an automaton accepting signals over a set of propositions P ′. Let
P ⊆ P ′. Then L(A) � P = L(A � P ). ��

6 MITL to Signal Automata

In Section 4, we have given a reduction from MITLfin[U , �I ,S, �−I ] (or BMITL) for-
mula φ to language equivalent formula ∃P � ψ where ψ is a pure past-time formula
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of MITL. Maler et al [6] gave a synthesis of deterministic signal automaton (with end-
state based acceptance) for finite signals and this was extended to infinite signals in [7].
In this section, we adapt this result to the more general setting of all finitely variable
signals. Making use of this deterministic signal automaton for the past time formula ψ,
we obtain a straightforward construction of (nondeterministic) safety-signal-automaton
for ∃P � ψ.

Lemma 9. Given a formula ϕ in MITLfin[S, �−I ] or MITLinf [S, �−I ], we can construct
a deterministic signal automaton Aϕ such that

– for any signal τ and t ∈ Dom(τ) we have τ, t |= ϕ iff t ∈ Accset(Aϕ, τ).
– Hence, L(�Aϕ) = {τ | τ � �ϕ}.

Proof (sketch). The construction is a variant of the construction of Maler et al [6].
We start with the assumption that formula φ in MITLfin[S, �−I ] (or MITLinf [S, �−I ]) is
already flattened. For each conjunct involving one temporal operator, we construct a
deterministic signal automaton. Their intersection automaton (as given by Lemma 7)
gives the desired deterministic signal automaton for φ. In the full version of the pa-
per, we show the construction of deterministic automata corresponding to the operators
�−(a,b)p, �−(a,∞)p and p Sq. Below we only explain the construction of the automaton
for the formula �−(a,∞)p.

¬p p ¬p
q0 q1 q2

x := 0

Fig. 1. Automata for �−(a,∞)p

Define C = (Q, {q0, q1, q2}, {p}, {x}, λ, Inv, Δ, F ), where Δ, λ are as depicted in
Figure 1. F = {(q, x > a) | q ∈ {q1, q2}} and Inv is true for all states. It is easy
to see that the signal automaton is deterministic since there are no transitions between
states of the same label. p may remain false initially; when p becomes true, the clock
is reset. The accepting configurations (q1, x > a) and (q2, x > a) ensure that a p was
seen in (a,∞) in the past. ��

Theorem 4. For any formula ϕ ∈ MITLfin[U , �I ,S, �−I ] (or BMITL), we can con-
struct an unambiguous safety signal automaton �A such that L(�A) = {τ | τ, 0 |=
ϕ}.

Proof. Starting from ϕ ∈ MITLfin[U , �I ,S, �−I ] (or BMITL) over P , we will obtain
(using Theorems 2, 3) a formula ϕ′ ∈ MITLfin[S, �−I ] (or MITLinf [S, �−I ]) over P ∪P ′

such that L(ϕ) = L(∃P ′ � ϕ′). Note that the size of this formula is polynomial in
size of the original formula. As observed in Lemma 9, we can construct a deterministic
safety signal automaton �A accepting L(�ϕ′). Now consider the automaton �A � P
obtained by dropping from the states of �A, the propositions in P ′, as in Lemma 8.
Clearly, L(�A � P ) = L(∃P ′ � ϕ′). We argue that A � P is unambiguous.
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Assume to contrary that τ is a signal which has two distinct accepting runs ρ1 and
ρ2 in �A � P . Then, τ |= ∃P ′ � φ. As shown in proofs of Theorems 2 and 3 there
exists a canonical extension τ ′ such that τ ′ |= �ϕ′. Hence, the automaton �A has the
two distinct accepting runs on τ ′. But as �A is a determinstic safety signal automaton,
this is impossible, giving a contradiction. ��

6.1 Complexity

We now investigate the size of the signal automaton that we have constructed for a MITL
formula ϕ. Each base formula �−(a,b)p requires O( b

b−a ) states and clocks [6]. As a and
b are integers it becomes O(b). Let B denote the max b appearing in any interval used
in φ. Then the automaton we construct will have O(B|φ|) states and O(B|φ|) clocks
with maximum clock constant B. The size of the automaton for ∃P ′ � ϕ is same as
the size of the automaton for ϕ, except that it can be non-deterministic. The constructed
automaton can be used to check satisfiability of ϕ using standard region construction:
this results in an EXPSPACE algorithm for satisfiability checking.
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Abstract. An increasing number of applications in particular in the
verification area leverages Craig interpolation. Craig interpolants (CIs)
can be computed for many different theories such as: propositional logic,
linear inequalities over the reals, and the combination of the preceding
theories with uninterpreted function symbols. To the best of our knowl-
edge all previous tools that provide CIs are addressing decidable theories.
With this paper we make Craig interpolation available for an in general
undecidable theory that contains Boolean combinations of linear and
non-linear constraints including transcendental functions like sin(·) and
cos(·). Such formulae arise e.g. during the verification of hybrid systems.
We show how the construction rules for CIs can be extended to handle
non-linear constraints. To do so, an existing SMT solver based on a close
integration of SAT and Interval Constraint Propagation is enhanced to
construct CIs on the basis of proof trees. We provide first experimental
results demonstrating the usefulness of our approach: With the help of
Craig interpolation we succeed in proving safety in cases where the ba-
sic solver could not provide a complete answer. Furthermore, we point
out the (heuristic) decisions we made to obtain suitable CIs and discuss
further possibilities to increase the flexibility of the CI construction.

Keywords: SAT, SMT, Craig Interpolation, Interval Arithmetic, BMC.

1 Introduction

The analysis and verification of hybrid systems is an important task, e.g. in the
automotive or aviation industry. Wherever complex systems are developed for
applications with safety critical aspects, the developers must fulfill a number of
safety requirements, which in general slows down the process of development
and increases its costs. This has motivated the development of tools that can
deal with the verification task of such systems. One technique widely used in
multiple verification tools is Craig interpolation. In this paper we present a
method that allows the construction of Craig interpolants (CIs) [1] for arbitrary
Boolean combinations of linear and non-linear constraint formulae.
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CIs are of particular use in bounded model checking (BMC). In [2] McMillan
extended the traditional BMC procedure for Kripke structures to an unbounded
model checking algorithm, i.e. a procedure that is able to show that a given sys-
tem is safe in the sense that a certain safety property always holds. In [3,4] this
work is extended to the quantifier-free theory of linear inequalities and uninter-
preted function symbols. The authors of [5] compute optimized representations
for non-convex polyhedra with the help of Craig interpolation. More in detail,
Craig interpolation here is used to remove redundant linear constraints with the
aid of a Satisfiability Modulo Theories (SMT) solver. A representative for a state-
of-the-art SMT solver that can produce CIs is presented in [6], but this work is
limited to linear constraints. Since we focus on verification of hybrid systems, we
are interested in a solver that can deal with the inherent linear and non-linear
behavior of such systems. Our contributions are: (i) we generalize proof-based
construction rules for CIs [2] to formulae containing non-linear constraints and
prove the correctness of the rules, (ii) we built these modifications on top of the
SMT solver iSAT [7], (iii) experimental results illustrate that the so computed
CIs can be used in a similar fashion as suggested by [2] to verify safety prop-
erties but this time for systems containing non-linear dynamics; last but not
least, we discuss the choices we made for the CI construction and discuss further
possibilities to influence the construction of CIs and possibly find "good" CIs.

The remainder of this paper is structured as follows: First we describe the
core of iSAT, the underlying solver used in this paper and then show how this
solver can produce proofs of unsatisfiability. Next we present the construction
rules to achieve valid CIs. We then present some promising results, illustrating
that interpolation can be successfully applied to BMC problems containing non-
linear constraints. Before concluding the paper we discuss how the strength of a
CI can be influenced by analysing the slackness between contradictionary theory
constraints that are detected during the solving process of iSAT.

2 Foundations

As already mentioned above, on the one hand side we of course need a solver
that is able to handle linear as well as non-linear constraints, and on the other
hand provides a proof in the case of unsatisfiability. In order to construct CIs
and do the experimental work, we modified the SMT solver iSAT [7] in a corre-
sponding way. Nevertheless, the main construction principles together with the
applications presented should be transferable to any SMT solver that is capable
of handling linear and non-linear constraints.

Since the solver underlying our work is iSAT, we provide a short description
of the solver as far as it is necessary for the understanding on generating CIs.
For more information on iSAT refer to [7].

2.1 Basics on iSAT

The iSAT algorithm aims at solving Boolean combinations of mixed linear and
non-linear constraint formulae (including transcendental functions). The
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undecidability of this theory in general follows from the fact that it is undecid-
able to answer whether a Diophantine equation has an integer solution or not [8].

iSAT contains an integration of a Davis-Putnam-Logemann-Loveland (DPLL)
procedure [9,10] and interval constraint propagation (ICP)1 allowing it to reason
about (highly non-linear) arithmetic constraints. In contrast to decidable the-
ories, iSAT can not always classify a problem as “satisfiable” or “unsatisfiable”.
Instead, the result can also be “unknown”. However, iSAT can handle arithmetic
expressions like sin(·), cos(·) or exp(·) which are not supported by common SMT
solvers.

The solving process of iSAT consists of two phases. First iSAT transforms
an arbitrary Boolean combination of linear and non-linear constraints into an
equisatisfiable Conjunctive Normal Form (CNF) with normalized constraints
using the following syntax:

formula ::= {clause ∧}∗clause
clause ::= ({atom ∨}∗atom)
atom ::= simple_bound | arithmetic_predicate

simple_bound ::= variable relation rational_const
arithmetic_predicate ::= variable relation uop variable |

variable relation variable bop variable
variable relation rational_const bop variable

In the above syntax, uop and bop are unary and binary operation symbols re-
spectively, including +, −, ×, sin(·), etc., rational_const ranges over the rational
constants, and relation ∈ {<,≤, =,≥, >}. To illustrate this phase, imagine that
we have the following formula:

(x ≥ 0) ∧ (x ≤ 10) ∧ ((sin(1/3x) +
√

x ≥ y) =⇒ (y ≥ 1/4x + 3)) (1)

First we eliminate the Boolean operators by applying a Tseitin-transformation
[12], e.g. the implication will be replaced by a new auxiliary Boolean variable
(b). The remaining formula is then normalized by introducing additional real
variables r1, r2 and r3 and the following constraints r1 = 1/3x, r2 = sin(r1) and
r3 =

√
x. Finally, the normalized CNF problem looks like follows:

(b) ∧ (x ≥ 0) ∧ (x ≤ 10) ∧ (b ∨ r2 + r3 < y ∨ y ≥ r4 + 3)∧
(r2 + r3 ≥ y ∨ b) ∧ (y < r4 + 3 ∨ b)∧
(r1 = 1/3x) ∧ (r2 = sin(r1)) ∧ (r3 =

√
x) ∧ (r4 = 1/4x)

(2)

Now all clauses are consistent with the syntax described above and can be trans-
ferred to the solver. In the remainder of the paper we will assume that a nor-
malization has been performed in advance and thus the formula ϕ considered is
normalized.

Before describing the solving process in detail, we informally define the under-
lying semantics. A constraint formula ϕ is satisfied by a valuation of its variables
1 cf. [11] for an extensive survey.
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iff all its clauses are satisfied, that is, iff at least one atom is satisfied in any clause.
An atom is satisfied wrt. the standard interpretation of the arithmetic operators
and the ordering relations over the reals. A constraint formula ϕ is satisfiable iff
there exists a satisfying valuation, referred to as a solution of ϕ. Otherwise, ϕ is
unsatisfiable. We remark that by definition of satisfiability, a formula ϕ includ-
ing or implying the empty clause, denoted by ⊥, cannot be satisfied at all, i.e.
if ⊥∈ ϕ or ϕ =⇒ ⊥ then ϕ is unsatisfiable.

Instead of real-valued variable valuations, iSAT manipulates interval ranges.
Using the function ρ : Var → IR, where Var is a set of variables and IR is the set
of convex subsets of R, we define a range for each variable. Note, that we also
support discrete variable domains (integer and Boolean). To this end, it suffices
to clip the interval of integer variables accordingly, such that [−3.4, 6.0) becomes
[−3, 5] ⊂ Z, for example. The Boolean domain is represented by B = [0, 1] ⊂ Z. If
both ρ′ and ρ are interval valuations, then ρ′ is called a refinement of ρ iff ρ′(v) ⊆
ρ(v) for each variable v ∈ Var. The lower and upper interval borders of an interval
ρ(x) for a variable x can be encoded as simple bounds. We denote the lower
and upper interval border of the interval ρ(x) by lower(ρ(x)) and upper(ρ(x)),
respectively. E.g., for the interval ρ(x) = (−4, 9] we have lower(ρ(x)) = (x > −4)
and upper(ρ(x)) = (x ≤ 9).

Let x and y be variables, ρ be an interval valuation, and ◦ be a binary op-
eration. Then ρ(x ◦ y) denotes the interval hull of ρ(x)◦̂ρ(y) (i.e. the smallest
enclosing interval which is representable by machine arithmetic), where the oper-
ator ◦̂ corresponds to ◦ but is canonically lifted to sets. This is done analogously
for unary operators. We say that an atom a is inconsistent under an interval
valuation ρ, referred to as ρ � a, iff no values in the intervals ρ(x) of the variables
x in a satisfy the atom a, i.e.

¬∃v ∈ ρ(x) : v ∼ c if a = (x ∼ c),
¬∃v ∈ ρ(x),¬∃v′ ∈ ρ(◦y) : v ∼ v′ if a = (x ∼ ◦y),
¬∃v ∈ ρ(x),¬∃v′ ∈ ρ(y ◦ z) : v ∼ v′ if a = (x ∼ y ◦ z)

where ∼∈ {<,≤, =,≥, >}. Otherwise a is consistent under ρ. For instance, the
constraint x = 3 · y is inconsistent for ρ(x) = [5, 10] and ρ(y) = [−2, 1].

For our purpose we do not need the definition of interval satisfaction. It is
sufficient to talk about atoms which are still consistent. We remark that proving
the satisfiability of an iSAT formula is not trivial. For more details confer [7].
In Algorithm 1, the pseudocode of iSAT is given. Before the main iSAT routine
starts, it is assumed that all the unit clause information contained in the original
formula has already been propagated, which can sometimes allow us to derive
tighter bounds. Once this is ensured, Algorithm 1 begins by making a decision,
and splitting the interval range of a variable, e.g. splits a variable’s range in
half (line 3). This decision will be propagated in line 4. If a conflict is detected
(e.g. an evaluated clause becomes inconsistent during propagation) it will be
analyzed in line 5. The conflict analysis routine uses the implication graph of
the solver to compute the reasons for the conflict. By doing so a conflict clause is
learned, allowing iSAT to prune off unsatisfiable parts of the search space. iSAT
terminates in either line 5 or 8 with either unsat, sat, or unknown.
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Data: CNF F1
Result: sat, unsat or unknown2

/* Main DPLL loop. DecideVar returns false once the msw for all */
/* variables is reached, and no further decisions are possible. */
while decideVar() do3

/* Propagates current decision and unit constraints. */
if propagateICP() = Conflict then4

/* Function tries resolve the conflict by backtracking. If */
/* the conflict is unresolvable, problem is unsatisfiable. */
if analyseBacktrack() = Unresolvable then return unsat;5

end6

end7

/* Final test to see if all the constraints are satisfied. */
if allClausesSat() then return sat; else return unknown;8

Algorithm 1. DPLL + ICP

As termination can not be guaranteed by dividing an interval range indefi-
nitely, iSAT stops making decisions when every problem variable has reached a
current interval width that is less or equal to a given minimal width. We call this
width the minimal splitting width (msw). It is still possible for this current ρ to
contain a solution, as such, this result is sometimes referred to as a Candidate
Solution. However, if iSAT found an arising conflict as unresolvable during the
conflict analysis routine the problem formula is classified as unsatisfiable. As
our construction of CIs is proof-based, we describe in the next section how these
certificates can be computed.

2.2 Proof Certificates in iSAT

This section summarises the work of [13] where iSAT is used to produce certifi-
cates. We introduce the two rules used in iSAT and provide simple examples.
For a detailed description refer to [13].

The first rule is based on unit propagation, and the second one is based on
resolution. Conceptually, the rules from modern SAT solvers for proof generation
are adapted to our context.

In order to apply the deduction rule, there must be a clause cl that contains
at most one atom ai that does not evaluate to false under the current interval
assignment ρ. In other words, clause cl is either a unit-clause with its unit-literal
ai, or it is the conflicting clause. In order to extend ρ to a satisfying assignment we
have to satisfy atom ai. With the help of interval arithmetic, iSAT tries to derive
new upper and/or lower bounds for the variables contained in ai. Assume we
want to solve a CNF formula ϕ that contains the clause cl = (x < −8∨ y = x2),
and the current variable intervals defined by ρ are x ∈ [3, 7] and y ∈ [−2, 25].
Here, the first atom of cl is inconsistent because there exists no value between 3
and 7 that is less than −8 (ρ � (x < −8)). The second atom, y = x2, is therefore
the unit literal of cl. The reason why a clause cl is a unit-clause is given by
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a subset of the current interval assignment ρ containing all current lower and
upper bounds that are responsible for the inconsistency of the remainder atoms
(reason_unit(cl, y = x2, ρ) = {x ≥ 3}). Now, we know that x ∈ [3, 7] and we
further have the unit literal y = x2. Putting this information together we see
that y must be in the interval [9, 49]. Since the current range is y ∈ [−2, 25],
we can derive a new lower bound for variable y that is y ≥ 9 by applying ICP

((x ≥ 3)
y=x2

	 (y ≥ 9)), and prune away unsatisfiable parts of the search space.
Differently spoken, the clause derived by deduction contains the negation of the
reasons and the derived new bound information as literals. In the more general
case, we write c1
c2 to express that c2 can be derived by applying the deduction
rule on c1. More formally, this rule is defined as follows:

cl = (a1 ∨ . . . ∨ an),
∃ρ : ∃i ∈ {1, . . . , n} : ∀j �= i : ρ � aj, (b′1, . . . , b

′
k) ai	 (b′) ,

{b′1, . . . , b′k} ⊆ {lower(ρ(x)), upper(ρ(x)) : x ∈ ai},
reason_unit(cl, ai, ρ) = {b1, . . . , bm}

(¬b1 ∨ . . . ∨ ¬bm ∨ ¬b′1 ∨ . . . ∨ ¬b′k ∨ b′)
(3)

Therefore the deduction rule for the just presented example is:

cl = (x < −8 ∨ y = x2),

ρ � (x < −8), (x ≥ 3)
y=x2

	 (y ≥ 9) ,
reason_unit(cl, y = x2, ρ) = {x ≥ 3}

(x < 3 ∨ y ≥ 9)

The second rule used in iSAT is resolution. In state-of-the-art SAT solvers, reso-
lution is performed during conflict analysis. The same holds for iSAT. This rule
can be defined as:

c1 = (a ∨ a1 ∨ . . . ∨ an), c2 = (b ∨ b1 ∨ . . . ∨ bm)
a, a1, . . . , an, b, b1, . . . , bm are simple bounds

a = (x ∼ k), b = (x ∼′ k′), {v : v ∼ k} ∩ {v : v ∼′ k′} = ∅
cres = (a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm)

(4)

Resolution is applied on two clauses c1 and c2 where both clauses contain only
simple bounds. In order to apply this rule, c1 must contain a simple bound a
that is contradictory to a simple bound b from clause c2. To illustrate this rule
consider the following two clauses: c1 = (x > 4 ∨ y ≤ 6 ∨ z < 5) and c2 = (x <
−8 ∨ w > 3). The simple bound x > 4 from clause c1 and the simple bound
x < −8 from clause c2 cannot be valid at the same time. By resolving these two
simple bounds we generate the following resolvent cres = (y ≤ 6∨z < 5∨w > 3).
We just write res(c1, c2, p) � cres as an abbreviation for the fact that cres can be
derived by applying the resolution rule to clauses c1 and c2 on variable p. Before
presenting the construction of CIs in iSAT in the next section, we want to take
a deeper look at the resolution steps. At first glance the resolution rule is very
similar compared to resolution between two propositional clauses. But in the
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just presented example the resolved simple bounds x > 4 and x < −8 contain
besides the contradictory information also information about the strength of
the contradiction. We call this slackness information and it can be obtained by
computing the distance between these bounds, here |4− (−8)| = 12. This is one
of the main reasons why we implemented the generation of CIs in an interval
arithmetic based SMT solver as we want to use the slackness information in later
versions of iSAT to influence the construction of these interpolants. In order to
understand the construction of CIs in iSAT, it is important to know the two
rules, namely resolution and deduction. To illustrate how iSAT uses these rules,
we present a small example. Suppose iSAT has to solve the normalized CNF ϕ:

ϕ = c1 ∧
c2︷ ︸︸ ︷

(sin(x) < 0.3 ∨ y < 7.5)∧
c3︷ ︸︸ ︷

(y − x ≤ 8 ∨ b)∧c4 ∧ . . . ∧ cn

Here x and y are real valued variables and b is a Boolean variable. At each
step iSAT maintains the current interval valuation ρ. Suppose that the current
interval valuation is: x ∈ [0, 1], y ∈ [7, 10], and b is unassigned. Next, iSAT
makes a decision on variable y by splitting the current interval at its midpoint,
e.g. y ∈ [8.5, 10]. While propogating this decision, iSAT detects that clause c2

is now unit as literal (y < 7.5) evaluates to false under the current interval
valuation. The unit-literal is sin(x) < 0.3 and is used to fuel deduction. iSAT
then derives a new upper bound x ≤ 0.31 for variable x (more in detail, based
on the deduction rule we may conclude c2 
 (y < 8.5 ∨ x > 1 ∨ x ≤ 0.31)).
Again no conflicts are encountered, so iSAT is free to make another decision,
and for instance sets b to false. With this decision clause c3 becomes unit and
literal (y − x ≤ 8) is used for deduction. Under the current interval valuation
of x and y a new upper bound for variable y via ICP is deduced: y ≤ 8.31
(c3 
 (b ∨ x > 0.31 ∨ y ≤ 8.31)). This newly derived bound conflicts with the
current interval valuation y ∈ [8.5, 10]. iSAT resolves this conflict by analyzing
the implication graph. Afterwards a conflict clause is learned to prune away
unsatisfiable parts of the search space. During the conflict analysis a partial
proof will be generated based on the two rules namely deduction and resolution.
This partial proof is shown in Fig. 1. Moreover, iSAT has been modified to
produce so-called partial CIs during conflict analysis.

As usual, we define sup(F ) to be the set of variables contained in a formula
F . Then, according to [1] a CI is defined as follows.

Definition 1 (Craig Interpolant (CI)). Let A and B be formulae with the
property that A ∧ B is unsatisfiable. A formula I is referred to as a CI if the
following three properties hold:

1. sup(I) ⊆ sup(A) ∩ sup(B)
2. |= A ⇒ I
3. |= I ⇒ ¬B

We call I a Craig interpolant or just interpolant for the formula pair A and B.
This interpolant contains only variables occurring in sup(A) ∩ sup(B) and can
be seen as an over-approximation of the formula A that is completely disjoint



Craig Interpolation for Non-linear Constraints 247

c2︷ ︸︸ ︷
(sin(x) < 0.3 ∨ y < 7.5)

(y < 8.5 ∨ x > 1 ∨ x ≤ 0.31)

c3︷ ︸︸ ︷
(y − x ≤ 8 ∨ b)

(b ∨ x > 0.31 ∨ y ≤ 8.31)

deduction rule

(b ∨ y < 8.5 ∨ x > 1)︸ ︷︷ ︸
learned clause

resolution rule

Fig. 1. Partial Proof Tree

from B (i.e. the intersection of I and B is empty). Now, using these basics, the
next sections will show how CIs are calculated and how they are used in hybrid
system verification by iSAT.

3 Construction of Craig Interpolants Using iSAT

In Fig. 1 of Sec. 2 we showed how iSAT produces a partial proof. In this section
we present how iSAT can compute partial interpolants using a partial proof. First
we provide the construction rules, before proving their soundness. Furthermore,
we will apply these rules to the partial proof shown in Fig. 1.

With every formula pair (A, B) we associate the following three sets of vari-
ables: 1) G contains all the variables occurring in both formulae, i.e. G =
sup(A) ∩ sup(B), 2) LA contains only variables located in the A-formula but
not in the B-formula, and 3) LB and contains all variables from the B-formula
but not located in the A-formula. We assume that the formula pair (A, B) is
in CNF format and we have a proof tree that derives the empty clause from
A ∧ B. For every node c in the proof tree (internal nodes correspond to clauses
derived by applying deduction or resolution) we define construction rules that
generate partial interpolants. Note, all internal nodes of the proof tree, including
the empty clause ⊥, contain only simple bounds. With this in mind, we define
the construction rules and the concept of projection as follows:

Definition 2 (Construction Rules). Let c be a node in the proof tree corre-
sponding to a clause containing only simple bounds. Then we denote the partial
interpolant of clause c by pi(c), and define

pi(c) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∨

lj∈c,var(lj)∈G

lj : (c ∈ A) or (∃c′ ∈ A : c′ 
 c)

pi(c1) ∧ pi(c2) : res(c1, c2, p) � c and p ∈ G ∪ LB

pi(c1) ∨ pi(c2) : res(c1, c2, p) � c and p ∈ LA

true : else
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c2 ∈ A︷ ︸︸ ︷
(sin(x) < 0.3 ∨ y < 7.5)

d2 = (y < 8.5 ∨ x > 1 ∨ x ≤ 0.31)

pi(d2) = (y < 8.5 ∨ x > 1 ∨ x ≤ 0.31)

c3 ∈ B︷ ︸︸ ︷
(y − x ≤ 8 ∨ b)

d3 = (b ∨ x > 0.31 ∨ y ≤ 8.31)

pi(d3) = true

d4 = (b ∨ y < 8.5 ∨ x > 1)

pi(d4) = pi(d2) ∧ pi(d3) = (y < 8.5 ∨ x > 1 ∨ x ≤ 0.31)

resolution (x ∈ G)

Fig. 2. Partial Interpolant

Definition 3 (Projection). Let Θ be a disjunction of simple bound literals

Θ =
k∨

j=1

lj with var(lj) ∈ G∪LA ∪LB. Then, Θ |A is the projection of Θ to LA

and Θ |B is the projection of Θ to LB ∪ G:

Θ |A=
k∨

var(lj)∈LA

lj Θ |B=
k∨

var(lj)∈G∪LB

lj

In order to prove the correctness of the construction rules we prove the soundness
of the following lemma:

Lemma 4. Let F = A ∧ B be a CNF formula that is unsatisfiable and let P be
a proof of the unsatisfiability. Then for every internal proof node c, the partial
interpolant pi(c) is a CI of the formula pair (A′, B′) with A′ = A ∧ ¬(c |A) and
B′ = B ∧ ¬(c |B).

Before giving a proof sketch of the lemma above we note the following: Lemma
4 implies that pi(⊥) is a valid CI for the formula pair (A, B). This is clear as
A′ = A∧¬(⊥|A) = A∧ true = A and B′ = B∧¬(⊥|B) = B ∧ true = B. We will
now illustrate how iSAT computes a partial interpolant for the partial proof in
Fig. 1. Suppose clause c2 belongs to the clause set A and clause c3 belongs to B.
Further, let x ∈ G, y ∈ G and b ∈ LB. In Fig. 2 we decorated the partial proof
with the corresponding partial interpolants by applying the construction rules
(Definition 2). For the computed partial interpolant pi(d4) of the clause d4 we
will now show that Lemma 4 is valid. To do so we compute A′ = A ∧ ¬(d4 |A)
and B′ = B ∧ ¬(d4 |B). As d4 does not contain variables from LA, we know
¬(d4 |A) = true. Because of |= A ⇒ d2 (c2 ∈ A and c2 
 d2) and pi(d4) = d2,
we conclude |= A′ ⇒ pi(d4). In order to show |= pi(d4) ⇒ ¬B′ we show that
the negation is unsatisfiable (pi(d4) ∧ B′). To obtain B′ we have to compute
¬(d4 |B) = ¬b ∧ (y ≥ 8.5) ∧ (x ≤ 1) = f4. We know that |= B′ ⇒ d3 as c3 
 d3

and c3 ∈ B. It is easy to see that f4 and d3 imply f5 = (x > 0.31). Furthermore,
formula part f4 together with pi(d4) imply f6 = (x ≤ 0.31) which contradicts f5

and thus proves the unsatisfiability of pi(d4) ∧ B′.
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F = A⇒

Ad

∧ B ← original CNF⇒ ← deduction rules
Bd ← derived CNF

⊥ ← resolution rules

Fig. 3. Motivation

The proof of Lemma 4 is further motivated by the following fact: Suppose
iSAT has classified a problem formula as being unsatisfiable by applying resolu-
tion. The resolution steps are either performed on clauses containing only simple
bounds (e.g. x > 0.31) as literals or on simple bounds that have been derived
using the deduction rule. To visualize this, Fig. 3 illustrates how iSAT derives
the empty clause. Assume F = A ∧ B is unsatisfiable. Then the deduction rule
can only be applied to clauses from either A or B. For a clause clderived derived
by the deduction rule, we can state the following:

if c ∈ A, c
 clderived then |= A ⇒ clderived

if c ∈ B, c
 clderived then |= B ⇒ clderived

(5)

Imagine that through deduction, iSAT was able to derive all clauses needed
to produce the empty clause. In Fig. 3, the clause sets Ad and Bd contain all
these derived clauses. iSAT derives the empty clause ⊥ by applying resolution on
clauses that are contained in Ad ∪Bd. Remember, by definition of the deduction
rule, all clauses derived by this rule contain only simple bounds as literals. If
we construct a CI I for the two clause sets Ad and Bd, it is also a valid CI
for the original defined clause sets A and B. This is because Ad and Bd are
over-approximations of A and B. As I is a CI for Ad and Bd we conclude that
|= Ad ⇒ I and |= I ⇒ ¬Bd. Together with (5) we conclude |= A ⇒ Ad ⇒ I and
|= I ⇒ ¬Bd ⇒ ¬B. Now we provide a proof sketch of Lemma 4:

Proof Sketch.2 The proof is similar to that presented in [14]. There, the authors
proved that the symmetric construction rules presented by Pavel Pudlàk’s algo-
rithm [15] are sound. In our case we have asymmetric rules (similar to McMil-
lan [2]). But it is still possible to prove the invariant of Lemma 4. The proof is
given by induction over the depth of a proof tree P computed by iSAT. This
makes it necessary to distinguish between different cases and every case itself is
proved by showing that the following three properties are valid: (1) For every
literal l of pi(c) it holds that var(l) ∈ G, (2) A′ ⇒ pi(c), and (3) pi(c) ⇒ ¬B′.

4 iSAT and BMC with Craig Interpolation

As mentioned in Sec. 1, CIs can be applied in BMC. By using CIs, McMillan [2]
modified a normal BMC procedure for so called Kripke Structures in such a way
2 A detailed proof can be found under
http://www.informatik.uni-freiburg.de/~skupfers/tech-report-01.pdf

http://www.informatik.uni-freiburg.de/~skupfers/tech-report-01.pdf
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that the modified procedure could prove safety properties of a given system.
Here, we extend the BMC approach of McMillan to our context so that systems
described through rich arithmetic constraints can be verified. Initial experiments
with an extension of iSAT as underlying solver illustrate the usefulness of this
method. Before presenting the experimental results, we will shortly summarize
the main ideas on how BMC can be turned into a proof system.

4.1 Basics

A BMC problem consists of a predicate INIT (x0) describing the initial state,
a predicate TRANS(xi, xi+1) defining how variables change from step i to step
i + 1, and lastly a predicate describing unsafe system states TARGET (xk). A
system trace is then defined as follows:

Φk = INIT (x0) ∧
k−1∧
i=0

TRANS(xi, xi+1) ∧ TARGET (xk)

Here, the value k is called the depth, and the classical BMC approach tries to
detect whether or not a system S can reach an unsafe state at a certain depth.
This is done by iteratively checking whether Φ0, Φ1, . . . , Φk is satisfiable or not.
If no failures for large values of k can be found it could be the case that the target
state is unreachable for every k. One approach to prove this is done by checking
that all reachable states have been proven to be safe. To accomplish this, we can
first check the initial reachable states, exactly those described through INIT (x0).
We define the state set that is reachable in exactly k transition steps through:

REACHk = ∃x0, . . . , xk−1INIT (x0) ∧
k−1∧
i=0

TRANS(xi, xi+1)

One way to check whether all states have been explored by normal BMC and
searching depth k could be:

REACHk [xk/x] ⇒ REACHk−1 [xk−1/x] ∨ · · · ∨ REACH1 [x0/x] ∨ INIT (x)

This is called a fixed-point-check (FPC). The notation [xk−1/x] stands for the
substitution of the vector xk−1 through the vector x. The check above has the
disadvantage of containing several ∃-quantifiers which require many quantifier
eliminations to be performed in order to solve the formula. There are two main
issues associated with quantifier elimination. The first is elimination of quanti-
fiers can lead to an exponential blowup in the size of the formula. The second
issue occurs when solving problems that contain transcendental functions (as we
do), as there exist no such elimination rules. To obtain an alternative solution,
Craig interpolation can be used. We define:

Definition 5 (PREFl, SUFF k
l ). Given Φk we define PREFl and SUFF k

l as:

PREFl = INIT (x0) ∧
l−1∧
i=0

TRANS(xi, xi+1)
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SUFF k
l =

k−1∧
i=l

TRANS(xi, xi+1) ∧
k∨

i=k−l

TARGET (xk)

Here l is the parameter responsible for the number of over-approximated tran-
sition steps (l > 0). If Φk is unsatisfiable, a CI p is computed for the formulae
A = PREFl and B = SUFF k

l . If p implies the initial state, a fixed-point has
been reached (i.e. it has been proved that the target state is unreachable). If the
initial state is not implied by the CI, we continue increasing the depth k by using
p as a new initial state as p is an over-approximation of all states reachable in l
steps from the initial state. By setting p as the new initial state the number of
added unwindings has been increased by l because p over-approximates all the
states reachable in l transition steps. Going on like this could eventually lead to
a satisfiable problem formula. This does not mean that the target state is reach-
able as our initial state is an over-approximation, which can result in a spurious
counterexample being detected. In these cases, the solver would then discard
the previously calculated CIs, and start a new BMC run at the current unroll
depth. For more details please refer to [2]. We want to remark that the challenge
in finding a fixed-point depends highly on the generated over-approximations
represented by the computed CIs. A problem arising in the context of BMC
and Craig interpolation is found in the strengths of the computed interpolants.
If a CI or over-approximation is to close to the exact reachable states we will
have to iterate this procedure many times until a fixed-point is detected. Such
CIs are called strong. However, if they are too weak it can happen that we will
often detect counterexamples in the over-approximations. In order to compute
interpolants of different strength in the future, we are going to take the slackness
information provided by iSAT into account when computing CIs.

4.2 Experiments with iSAT

We implemented the presented approach into the solver iSAT. The data structure
used in the iSAT extension stores the partial CIs as a modified And-Inverter-
Graph (AIG) [5]. This can be done as the CIs in this case are Boolean combi-
nations of simple bounds. Such formulae can be encoded as an equisatisfiable
Boolean formula by introducing Boolean variables for each simple bound and
further adding constraints that encode the corresponding relations among these
simple bounds. The benefit of this data structure is that it supports all Boolean
operations needed to construct interpolants. Further, the AIG package can per-
form satisfiability checks needed in iSAT’s FPC routine when applying BMC and
Craig interpolation. To get a better picture of how the CIs that iSAT produces
look like, we will first give a small two dimensional example. Let A and B be
two formulae defined as:

A := ((x < 2.5) ⇒ (y ≥ 2 sin(x)))
∧((x ≥ 2.5 ∧ x < 5) ⇒ (y ≥ 0.125x2 + 0.41))
∧((x ≥ 5 ∧ x ≤ 6) ⇒ (y ≥ −0.5x + 6.04))

B := ((x < 3) ⇒ (y ≤ −0.083 + (x cos(0.1 exp(x)))))
∧((x ≥ 3 ∧ x ≤ 6) ⇒ (y ≤ −x2 + 10x − 22.35))

(6)



252 S. Kupferschmid and B. Becker

Fig. 4. On the left side you see two formulae A and B with the property that A ∧ B
is unsatisfiable. On the right side a CI for the formula pair (A,B) is pictured. The CI
has been computed by using iSAT.

Using the initial bounds x ∈ [0, 6] and y ∈ [−2, 4], the problem can be visualized
on the left hand side of Fig. 4. In this figure, the region where the formula A (B)
is satisfied is labeled with A (B). It is quite obvious that A ∧ B is unsatisfiable
as the intersection of the two regions is empty, and iSAT is easily able to find an
AB-refutation. A CI which is generated on-the-fly can be seen on the right hand
side of Fig. 4. The CI ci covers the region of A and is thus implied by A. As ci
has an empty intersection with B it directly follows that ci ∧B is unsatisfiable.
The shape of the interpolant is a combination of boxes. This is explained by the
construction rules and the fact that iSAT only performs resolution on clauses
containing simple bounds as literals.

To show the usefulness of the CIs that iSAT can produce, we studied six differ-
ent BMC benchmarks together with some valid safety properties. The transition
relations of these benchmarks contain non-linear and linear equations. Of course,
even our approach is not designed for pure linear systems, it should in principle
work for such systems. To show this, we modeled two linear systems presented
by Alur et al. in [16]. The first system describes a thermostat and the second
one is a version of a leaking gas burner.

The first non-linear problem is called the logistic map [17] and is a polynomial
mapping of degree 2. Mathematically, the logistic map is written as xn+1 =
r · xn(1 − xn) where xn is a number between zero and one. This map illustrates
chaotic behaviour, but can exhibit periodic behavior by setting r = 3.2. When
r = 3.2, the logistic map oscillates between two values, and we defined the safety
regions to be (0.78 ≤ x ∧ x ≤ 0.82)∨(0.48 ≤ x ∧ x ≤ 0.52) (approx. 0.8 and 0.5).

The next example is the Hènon map [18], a chaotic map introduced by Michel
Hènon and mathematically defined as xn+1 = yn +1−ax2

n and yn+1 = bxn. The
map depends on two parameters a and b. Setting a = 1.25 and b = 0.3 makes the
Hènon map oscillating between seven different values. The safety properties for
these maps are the disjunction of small intervals containing the periodic values
in a similar fashion to the logistic map case.
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Table 1. Results

Benchmark #Decisions #Deductions #AigNodes Depth Time FPC Time
hènon 6797 13799353 10260 283 0.8 45.26
logistic 2085 596984 3187 60 0.05 2.02
accelerate 13 1809 88 7 0.00 0.02
cruise control 384 99841 1960 55 0.01 0.27
thermostat 346 93855 105291 6 0.19 1.18
gas burner 6189 3439885 34105 21 0.31 24.12

Next, we consider two BMC problems describing an accelerating car. Taking
the air resistance into account, the relationship between the car’s velocity and
the physical drag contains quadratic functions. The first benchmark describes
the velocity of a car that is accelerating with constant force. Due to the air
resistance the car cannot drive faster than 49.61 m

sec which is our safety property.
The initial state (INIT) and the transition relation (TRANS) of this hybrid
system are:

vcar0 = 0∧ // velocity at step 0
INIT := Fres0 = 1000∧ // resultant force at step 0

acar0 = 0.0005 · Fres0 // acceleration at step 0
(7)

The transition relation computes the resultant force Fresi+1 at time step i + 1.
In order to compute Fresi+1 we need to compute Fairi first. In this example the
interaction caused by the drag simplifies to Fairi = 0.40635 · v2

cari
.

Fresi+1 = 1000− Fairi∧ // resultant force at step i + 1
TRANS := Fairi = 0.5418 · v2

cari
∧ // drag force at step i

acari+1 = 0.0005 · Fresi+1∧ // acceleration at step i + 1
vcari+1 = vcari + acari // velocity at step i + 1

(8)

We also extended the above example by adding a controller that is responsible
for accelerating the car. By doing this we end up with a simplified cruise control
system. The job of the controller is to maintain a certain velocity by either
accelerating with a constant force, or applying no force at all. The safety property
in this example is that the velocity is between 9.9 m

sec and 10.1 m
sec (additionally,

we set the velocity in the initial state to 10, i.e. vcar0 = 10).
The results of our work with iSAT and Craig interpolation can be seen in

Table 1. The test machine used for the results stated here has a Quadcore Intel
Q9450 processor @ 2.66GHz.

The columns #Decisions and #Deductions show the number of decisions
and deductions iSAT needs to solve the entire problem. The number of internal
AIG-nodes needed to store the partial CIs is given in column #Aig-Nodes.
The unroll depth where the FPC was successful is provided in column Depth.
The last two columns provide information about the time needed for performing
the FPC (Time FPC) and the overall time (Time). The examples presented
demonstrate that it is possible to successfully apply Craig interpolation in the
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case of systems containing non-linear behaviour, and the time needed to solve the
FPC is negligible. Further the column #Aig-Nodes shows that the approximate
size of the CIs stays relatively small in all cases. Concerning the Hènon Map
where the property and the behaviour are very complex, the overall time is
increasing as many CIs have to be computed until the FPC is successful, in
this case the solving depth is 283. To further demonstrate the efficacy of Craig
interpolation for iSAT we also considered the behaviour of "pure" iSAT on the
benchmarks given above.In the case of the Hènon map iSAT obtains unsat for
BMC unrolling depth k < 158 and terminates with a candidate solution at unroll
depth 158. In contrast to this, using CIs in iSAT helps to prove the unsatisfiability
for all k and thus prove safety. In order to find a fixed-point we had to modify
certain parameters that influence the overall search procedure. It seems to be
profitable to modify the iSAT variable decision heuristic to first decide Boolean
simple bounds, next real simple bounds, and in the end iSAT is allowed to split
certain intervals. Besides different decision heuristics, one can generate different
CIs by changing the minimal splitting width. At the moment we do not take
slackness information into account when computing CIs. Suppose you want to
verify that a variable x ≥ 10 cannot reach any negative value when divided
again and again by 2. A possible CI representing those states that are reachable
in one system step could look like x ≥ 5. But you could also compute a CI with
x ≥ 0. If the later CI becomes the new initial state for the next iteration one
could achieve the same CI again, and thus implies that we found a fixed-point.
In order to compute such CIs we will have to take slackness information during
resolution steps into account and influence the computation of CIs accordingly.

5 Conclusion

In this paper we introduced a method to generate CIs for formulae containing
non-linear equations. Furthermore, we implemented our approach in the SMT
solver iSAT, which is based on interval arithmetic embedded in a DPLL frame-
work allowing it to reason about linear and non-linear constraints. To the best
of our knowledge this is the first approach to compute CIs for arbitrary formulae
containing Boolean combinations of linear and non-linear constraints. We showed
that the CIs constructed can be used to verify safety properties, extending the
work done by McMillan. Currently, we study heuristics to strengthen CIs for
a given formula pair (A, B), e.g. by exploiting slackness between different con-
straints. We are also integrating a linear program solver (LP-solver) to combine
LP-solving and iSAT’s Craig interpolation and thus increase the performance of
our solver for systems containing a large number of linear constraints.
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Abstract. We study decidability and undecidability results for parame-
terized verification of a formal model of timed Ad Hoc network protocols.
The communication topology is represented by a graph and the behavior
of each node is represented by a timed automaton communicating with
its neighbors via broadcast messages. We consider verification problems
formulated in terms of reachability, starting from initial configurations
of arbitrary size, of a configuration that contain at least one occurrence
of a node in a certain state. We study the problem for dense and discrete
time and compare the results with those obtained for (fully connected)
networks of timed automata.

1 Introduction

In recent years there has been an increasing interest in analysis and verifica-
tion methods for ad hoc networks, see e.g. [7,8,11,14,15,16]. Ad hoc networks
consist of collections of wireless hosts that communicate with their neighbors
by sending broadcast messages. In this context, protocols are supposed to work
independently from a specific configuration of the network. Indeed, discovery
protocols are often applied in order to identify the vicinity of a given node. In
the AHN model proposed in [7] undirected graphs are used to represent a net-
work in which each node executes an instance of a fixed (untimed) interaction
protocol. Since individual nodes are not aware of the network topology, it is
natural to consider here verification problems in which the size and shape of the
initial configuration is not fixed a priori. For an untimed model of ad hoc network
protocols, decidability and undecidability of this kind of parameterized verifica-
tion problems are studied in [7]. We observe however that protocols for ad hoc
networks are often based on time-sensitive conditions like time-outs and time-
stamps added to flooded data. Parameterized verification of timed automata
has been studied for fully connected networks with rendez-vous communication
(Timed Networks), e.g., in [3,4,5,6].

A natural combination of the AHN model in [7] and of Timed Networks is
obtained by adding a connectivity graph to a network of timed automata com-
municating via broadcast messages, we call the resulting model Timed Ad hoc
Networks (TAHNs). For a fixed initial configuration, TAHNs can be specified in

� This author is partially supported by ANR ImpRo (ANR-10- BLAN-0317).

U. Fahrenberg and S. Tripakis (Eds.): FORMATS 2011, LNCS 6919, pp. 256–270, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



On the Verification of Timed Ad Hoc Networks 257

model checkers like Uppaal [17] by using a shared global matrix to specify the
communication topology. This idea has been used to verify safety properties of
the LMAC protocol for initial configurations with a small number of nodes [11].

Following [7,8], in this paper we study decidability and undecidability proper-
ties of the local state reachability problem parametric on the initial configuration
of a TAHN, i.e., the problem of checking the existence of an initial configuration
that can evolve using continuous and discrete steps into a configuration exposing
a given local state – usually representing an error.

Compared to the positive results obtained for Timed Networks where the
control state reachability problem is decidable for processes with a single clock,
for the same type of processes the problem becomes undecidable in a very simple
class of topologies in which nodes are connected so as to form stars with diameter
five. The undecidability result can be ported to the more general class of graphs
with bounded path (for some bound N ≥ 5 on the length – number of nodes – of
paths). In the untimed case local state reachability is decidable for bounded path
topologies [7]. Furthermore, the problem turns out to be undecidable in the class
of cliques of arbitrary order (that contains graphs with arbitrarily long paths)
in which each timed automaton has at least two clocks. Decidability holds for
special topologies like stars with diameter three and cliques of arbitrary order
assuming that the timed automaton in each node has a single clock (as in Timed
Networks).

For discrete time, we show that the local state reachability problem becomes
decidable for processes with any number of clocks in the class of graphs with
bounded path. The same holds for cliques of arbitrary order as in the case of
dense time.

Related Work. Decidability issues for untimed models of ad hoc Networks have
been considered in [7,8]. Abstraction techniques for untimed selective broadcast
protocols has been considered in [14]. Model checking for timed automata has
been applied to verify protocols for ad hoc networks with a fixed number of nodes
in [11]. Models with a discrete global clock and a lazy exploration of configura-
tions of fixed size has been considered in [16]. Formal specification languages for
timed models of ad hoc networks have been proposed, e.g., in [13]. In contrast
to these works, we consider computatibility issues for verification of timed ad
hoc networks with parametric initial configurations. Decidability of some cases
is proved by resorting to an extension of Timed Networks with transfers. In
the untimed case the combination of rendez-vous and transfers is considered in
Datanets, a model in which processes have data taken from an ordered domain
[12].

Outline. In the next section we give some preliminaries. The models of Timed
Ad Hoc Networks and Time Networks are introduced in Sections 3–4. In Sec-
tion 5, we introduce the undecidability results for three different topologies. We
give decidability for different topologies under the dense time semantic in Sec-
tion 6 and under the discrete time semantics in Section 7. Finally, we give some
conclusions in Section 8.

Detailed proofs are given in [2].
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2 Preliminaries

We use N and R≥0 for the set of natural numbers and set of non-negative real
numbers respectively. For sets A and B, we use f : A  → B to denote that f is
a total function that maps A to B. For a ∈ A and b ∈ B, we use f [a ←↩ b] to
denote the function f ′ defined as follows: f ′(a) = b and f ′(a′) = f(a′) for all
a′ �= a. We use [A  → B] to denote the set of all total functions from A to B.

3 Timed Ad Hoc Networks

An ad hoc network consists of a graph where the nodes represent processes that
run a common predefined protocol. This protocol is defined by a communicating
timed automaton. The values of the clocks of the automata inside the processes
are incremented continuously all at the same rate. In addition, a process may
perform a discrete transition. The latter is either a local transition or the result
of a communication event. In a local transition, the process changes its local
state without interacting with the other processes. Communication is performed
through selective broadcast, where a process sends a broadcast message to the
network. The effect of a broadcast is local to the vicinity of the sender, i.e.,
only the neighbors of the sending process are able to receive the message. The
connectivity of the nodes is reflected by the edges of the graph. Furthermore,
transitions are conditioned by values of the clocks of the process, and may reset
the values of some clocks.

We assume that each process operates on a set X of clocks. A guard is a
Boolean combination of predicates of the form k � x for k ∈ N, � ∈ {=, <,≤
, >,≥}, and x ∈ X . A reset R is a subset of X . We will use guards to impose
conditions on the clocks of processes that participate in transitions, and use
resets to identify the clocks that will be reset during the transition. A clock
valuation is a mapping X : X  → R≥0. For a guard g and a clock valuation X, we
write X |= g to indicate the validity of the formula we get by replacing each clock
x in g by its value X(x). Also, we will assume a finite alphabet Σ. The alphabet
induces a set of events, where an event is of one of three forms: (i) empty event τ
that represents a local move; (ii) broadcast event !!a, with a ∈ Σ, that represents
broadcasting the message a; or (ii) receive event ??a with a ∈ Σ, that represents
receiving the message a (that has been broadcast by another process).

Formally, a Timed Ad Hoc Network (TAHN for short) is defined by a pair
T = (G, P ). The first component G = (V, E) is graph where V is a finite set
of vertices and E ⊆ V × V is a set of edges. The second component P , called
the protocol, is a pair (Q,R) where Q is a finite set of states, and R is a finite
set of rules. Intuitively, the graph G defines the topology of T where the set V
represents the nodes, and E defines the connectivity of the nodes. The vertices
belonging to an edge are called the endpoints of the edge. For an edge (u, v) ∈ E,
we often use the notation u ∼ v and say that the vertices u and v are adjacent
to each other. Furthermore, P defines the protocol that runs inside the nodes,
where Q is the set of local states of each node, while R is a set of rules describing
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the behavior of each node. A rule ρ ∈ R is of the form
(
q, g

e−→ R, q′
)

where
q, q′ ∈ Q, g is a guard, e is an event, and R is a reset. We use CLOCKS(P ) to
denote that number of clocks inside each process.

Configurations. A configuration γ is a pair (Q,X ), where Q : V  → Q and
X : V  → [X → R≥0], i.e., the configuration assigns to each node a local state
and assigns to each clock in the node a value (in R≥0).

Transition Relation. For configurations γ = (Q,X ) and γ′ = (Q′,X ′), we
write γ =⇒T γ′ to denote that one of the following conditions is satisfied:

– Local: There exists a rule ρ =
(
q, g

τ−→ R, q′
)

and a vertex v ∈ V such that
Q(v) = q, X (v) |= g, Q′ = Q [v ←↩ q′], and X ′ = X [v ←↩ X] where X(x) = 0
if x ∈ R and X(x) = X (v)(x) otherwise.

– Broadcast: There exists a rule
(
q, g

!!a−→ R, q′
)

and a vertex v ∈ V such that
Q(v) = q, X (v) |= g, Q′(v) = q′, X ′(v)(x) = 0 if x ∈ R, and X ′(v)(x) =
X (v)(x) otherwise. Furthermore, for each v1 ∈ V −{v}, one of the following
conditions is satisfied:
• v1 ∼ v and there is a rule of the form

(
q1, g1

??a−→ R1, q
′
1

)
such that

Q(v1) = q1, X (v1) |= g1, Q′(v1) = q′1, X ′(v1)(x) = 0 if x ∈ R1, and
X ′(v1)(x) = X (v1)(x) otherwise.

• Q′(v1) = Q(v1), X ′(v1) = X (v1), and either v1 �∼ v or there is no rule
of the form

(
q1, g1

??a−→ R1, q
′
1

)
for any g1, R1, q

′
1 with Q(v1) = q1 and

X (v1) |= g1.
– Time: There is a δ ∈ R≥0 such that Q(v′) = Q(v) and X ′(v)(x) = X (v)(x)+δ

for all v ∈ V and x ∈ X .

Topology. A topology Top restricts the shape of the underlying graph G =
(V, E) in a TAHN T = (P, G). We write G ∈ Top to indicate that G satisfies
Top. Below, we give examples of some topologies.

– We denote by GRAPH the topology consisting of all finite graphs.
– The star topology of depth � (with � ≥ 0), denoted STAR(�), characterizes

graphs G for which there is a partitioning {v0} ∪ V1 ∪ · · · ∪ V� of V such
that (i) v0 ∼ v1 for all v1 ∈ V1, (ii) for each 1 ≤ i < � and vi ∈ Vi there is
exactly one vi+1 ∈ Vi+1 with vi ∼ vi+1, (iii) for each 1 < i ≤ � and vi ∈ Vi

there is exactly one vi−1 ∈ Vi−1 with vi ∼ vi−1, and (iv) no other nodes are
adjacent to each other. In other words, in a star topology of dimension �,
there is a central node v0 and an arbitrary number of rays. A ray consists of
a sequence of � nodes, starting from v0 followed by some v1 ∈ V1, and then
by some v2 ∈ V2, etc. We call v0 the root, call the nodes in V1, . . . , V�−1 the
internal nodes, and call the nodes in V� the leaves of G.

– The bounded path topology of bound � (with � ≥ 0), denoted BOUNDED(�),
characterizes graphs G for which the length of the maximal simple path in
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G is bounded by �. This means that there does not exist a finite sequence of
vertices (vi)1≤i≤m satisfying the following conditions (1) m > �, (2) vi �= vj

for all i, j in {1, . . . , m} such that i �= j and (3) vi ∼ vi+1 for all i such that
1 ≤ i < m − 1.

– The set of cliques, denoted CLIQUE characterizes graphs G where v1 ∼ v2 for
all v1, v2 ∈ V with v1 �= v2.

Reachability. We assume a distinguished local state qinit ∈ Q. A configuration
γinit is said to be initial if it is of the form

(
Qinit

Q ,X init
)

where Qinit
Q (v) = qinit ,

and Qinit
Q (v)(x) = 0 for all v ∈ V and x ∈ X . In other words, all the processes are

in their initial local states and all the clocks have value 0. A computation π of T
is a sequence γ0 =⇒T γ1 =⇒T · · · =⇒T γn where γ0 is an initial configuration.
In such a case, we say that γn is reachable in T . For a local state q ∈ Q, we
say that q is reachable in T if there is a configuration γ = (Q,X ) such that γ is
reachable in T and Q(v) = q for some v ∈ V .

The (local state) reachability problem for a topology Top and a number K,
denoted TAHN−Reach(Top, K), is defined as follows:

Given a protocol P with CLOCKS(P ) = K and a local state q ∈ Q, is
there a TAHN T = (P, G) such that G ∈ Top and q is reachable in T .

The following results concerning untimed Ad Hoc Networks have been proved.

Theorem 1 ([7]). TAHN−Reach(GRAPH, 0) is undecidable. For each K ≥ 0, the
problem TAHN−Reach(BOUNDED(K), 0) is decidable.

4 Timed Networks

In this section, we recall the model of Timed Networks (TN for short) [6]. In a
similar manner to TAHNs, a TN contains an arbitrary number of identical timed
processes that operate on a finite number of local real-valued clocks. However,
there are three main differences between TNs and TAHNs. First, a TN contains
a distinguished controller that is a finite-state automaton without any clocks1.
Second, each process in a TN may communicate with all other processes and
hence it is not meaningful to describe topologies in the case of TNs. Finally,
communication takes place through rendez-vous between fixed sets of processes
rather than broadcast messages. In a similar manner to TAHNs, the values of
all clocks in a TN are incremented continuously at the same rate. In addition,
the TN can change its configuration according to a finite number of rules. Each
rule describes a set of transitions in which the controller and a fixed number
of processes synchronize and simultaneously change their states. A rule may be
conditioned on the local state of the controller, together with the local states
and clock values of the processes. If the conditions for a rule are satisfied, then a

1 This is the model defined in [6]. Adding clocks to the controller does not affect the
decidability results.
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transition may be performed where the controller and each participating process
changes its state. During a transition, a process may reset some of its clocks to 0.

We assume a finite set X of clocks and define guards and resets in a similar
manner to TAHNs. A family of timed networks (timed network for short) N is
a pair (Q,R), where Q is a finite set of states, partitioned into a set Qctrl of
controller states, and a set Qproc of process states; and R is a finite set of rules
where each rule is of the form

[q0 → q′0] [q1; g1 → R1; q′1] · · · [qn; gn → Rn; q′n]

such that q0, q
′
0 ∈ Qctrl , for all i : 1 ≤ i ≤ n we have: qi, q

′
i ∈ Qproc, gi is a guard,

and Ri is a reset. Intuitively, the set Qctrl represents the states of the controller
and the set Qproc represents the states of the processes. A rule of the above form
describes a set of transitions of the network. The rule is enabled if the state of
the controller is q0 and if there are n processes with states q1, · · · , qn whose clock
values satisfy the corresponding guards. The rule is executed by simultaneously
changing the state of the controller to q′0 and the states of the n processes to
q′1, · · · , q′n, and resetting the clocks belonging to the sets R1, . . . , Rn.

Configurations. A configuration γ of a timed network (Q,R) is a tuple of the
form (I, q,Q,X ), where I is a finite index set, q ∈ Qctrl , Q : I → Qproc, and
X : I → X → R≥0. Intuitively, the configuration γ refers to the controller whose
state is q, and to |I| processes, whose states are defined by Q. The clock values
of the processes are defined by X . More precisely, for i ∈ I and x ∈ X , X (i)(x)
gives the value of clock x in the process with index i. We use |γ| to denote the
number of processes in γ, i.e., |γ| = |I|.

Transition Relation. The timed network N above induces a transition relation
−→N on the set of configurations. The relation −→N is the union of a discrete
transition relation −→D, representing transitions induced by the rules, and a
timed transition relation −→T which represents passage of time.

The discrete relation −→D is the union
⋃

r∈R −→r , where −→r represents
a transition performed according to rule r . Let r be a rule of the form de-
scribed in the above definition of timed networks. Consider two configurations
γ = (I, q,Q,X ) and γ′ = (I, q′,Q′,X ′). We use γ −→r γ′ to denote that there
is an injection h : {1, . . . , n} → I such that for each i : 1 ≤ i ≤ n we have:

1. q = q0, Q(h(i)) = qi, and X (h(i)) |= gi. That is, the rule r is enabled.
2. q′ = q′0, and Q′(h(i)) = q′i. The states are changed according to r .
3. If x ∈ Ri then X ′(h(i))(x) = 0, while if x �∈ Ri then X ′(h(i))(x) =

X (h(i))(x). In other words, a clock is reset to 0 if it occurs in the corre-
sponding set Ri. Otherwise its value remains unchanged.

4. Q′(j) = Q(j) and X ′
k(j) = Xk(j), for j ∈ I \ range(h), i.e., the process states

and the clock values of the non-participating processes remain unchanged.

A timed transition is of the form γ −→T=δ γ′ where γ = (I, q,Q,X ), δ ∈ R≥0,
γ′ = (I, q,Q,X ′), X ′(j)(x) = X (j)(x) + δ for all j ∈ I and x ∈ X . We use
γ −→T γ′ to denote that γ −→T=δ γ′ for some δ ∈ R≥0.
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We define −→N to be −→D ∪ −→T and use ∗−→N to denote the reflexive
transitive closure of −→N . Notice that if γ −→N γ′ then the index sets of γ and
γ′ are identical and therefore |γ| = |γ′|. For a configuration γ and a controller
state q, we use γ

∗−→N q to denote that there is a configuration γ′ of the form
(I ′, q,Q′,X ′) such that γ

∗−→N γ′.
Given γ0 −→N γ1 −→N γ2 . . . −→N γn, we say that γ0, . . . , γn is a computa-

tion of N .

Reachability. We assume a distinguished initial controller state qinit
ctrl ∈ Qctrl

and a distinguished initial process state qinit
proc ∈ Qproc. A configuration γinit =

(I, q,Q,X ) is said to be initial if q = qinit
ctrl , Q(i) = qinit

proc, and X (i)(x) = 0 for
each i ∈ I and x ∈ X . This means that an execution of a timed network starts
from a configuration where the controller and all the processes are in their initial
states, and the clock values are all equal to 0. Notice that there is an infinite
number of initial configurations, namely one for each index set I. Concepts such
as that of computations and reachability are extended from TAHNs to TNs in
the obvious way.
The (controller state) reachability problem TN−Reach (K) is defined by a timed
network (Q,R) with K clocks (in each process), and a controller state q. The
task is to check whether q is reachable or not. In [3], the following result is shown.

Theorem 2. TN−Reach (2) is undecidable.

5 Undecidability with Dense Time

In this section, we show undecidability of the reachability problem for three
classes of TAHNs, namely (i) those with star topologies of depth 2 (one root and
several rays with two nodes) and with a single clock in each node; (ii) those with
clique topologies provided that each node has two clocks; and (iii) those with
bounded path topologies if the length of simple paths of the underlying graph
is at least 5 and with a single clock in each node. In the first two cases, the
undecidability result is shown through a reduction from TN−Reach(2) (that is
undecidable by Theorem 2). The main idea of the proofs is to show that we
can simulate rendez-vous (the communication model of TNs) by broadcast (the
communication model of TAHNs) In each case we will simulate a TN N with two
clocks per process by a TAHN T . We will refer to the clocks inside a process of
N as x1 and x2 respectively. For each state q in N , we will have a corresponding
state T (q) in T . Furthermore, we will have a number of auxiliary states in T that
we need to perform the simulation. The third undecidability result (for bounded
path topologies) is shown by simulating the star case.

Two-Star Topologies. We show that the reachability problem for the star
topology is undecidable even when the rays are restricted to have depth 2 and
the nodes are restricted to have a single clock.
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Theorem 3. TAHN−Reach(STAR(2), 1) is undecidable.
Given a TN N = (Q,R) and a controller state q in N , we define a TAHN
T = (P, G) such that G ∈ STAR(2) and CLOCKS(P ) = 1, together with a local
state T (q), such that q is reachable in T iff q is reachable in N . The root of T
plays the role of the controller in N . Furthermore, each ray in T plays the role
of one process in N . The local state of a process in T is stored in the internal
node of the corresponding ray. Furthermore, the two clocks x1, x2 of a process
are represented by the clock of the internal node resp. the clock of the leaf of
the ray. For technical reasons, we require that T has at least three rays. In
case N has fewer than three processes, the additional rays will not simulate any
processes, and remain passive (except during the initialization phase; see below).
The simulation consists of two phases.

Initialization. Recall that the nodes of a TAHN are identical in the sense that
they execute the same (predefined) protocol. This means that the nodes are not
a priori aware of their positions inside the network. The purpose of the initial-
ization phase is to identify the nodes that play the roles of the controller and
those that play the roles of the different processes. First, a node may broadcast
a message where it requests to become the node that simulates the controller
in N . In order to succeed, P requires that it should receive acknowledgements
from at least three other processes.

Notice that only the root of T can be successful since it is the only node that
is connected to more than two other nodes (the internal nodes are connected to
two other nodes while the leafs are connected to only one other node).

Once the root has become the controller, it will make the internal nodes aware
of their positions. It does that by sending a broadcast message. Due to the star
topology, this message is received only by the internal nodes. A node receiving
this broadcast message will initiate a “local protocol” inside its ray as follows: (i)
It changes local state to reflect that it now knows that it is indeed an internal
node. (ii) It makes the leaf of the ray aware of its position by broadcasting a
message. Such a message is received only by the leaf of the ray and by the root
(the latter simply ignores the message). (iii) The leaf broadcasts an acknowl-
edgment (that can only be received by the internal node of the ray). (iv) The
internal node changes state when it receives the acknowledgement and declares
itself ready for the next step. Notice that the internal node and the leaf may
choose to ignore performing steps (ii) or (iv). In such a case we say that the
ray has “failed”, otherwise we declare the ray to be “successful”. In the last step
of the initialization, the root will send one more broadcast where the following
takes places: (i) It changes local state to T (qinit

ctrl ) which means that it is now
simulating the initial controller state. (ii) It checks that its clock is equal to 0
which means that the initialization phase has been performed instantaneously.
(iii) The internal nodes of the successful rays will change state to T (qinit

proc). The
rest of the nodes will remain passive throughout the rest of the simulation. Now
all the nodes are ready: the root of T is in the initial state of the controller of N ;
the internal nodes of the successful rays are in the initial states of the processes
of N , and all clocks have values equal to 0.
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Simulating Discrete Transitions. Below, we show how T simulates a rule of
the form [q0 → q′0] [q1; g1 → R1; q′1] · · · [qn; gn → Rn; q′n] . The root of T is in
the state T (q0). First, the root resets its clock to 0 (this is done so that it can later
make sure that the simulation of the rule has not taken time). The simulation
consists of different phases, where in each phase the root tries to identify a ray
that can play the role of process k for 1 ≤ k ≤ n. To find the first ray, it sends
a broadcast message. An (internal) node that receives the broadcast and whose
local state is q1 may either decide to ignore the message or to try to become the
node that simulates the first process in the rule. In the latter case it will enter a
temporary state from which it initiates a sub-protocol whose goal is to confirm
its status as the simulator of the first process. In doing so, the node has guessed
(perhaps wrongly) that its clocks satisfy the values specified by the guard. If
the node has guessed wrongly it will eventually be excluded from the rest of
the simulation (will remain passive in the rest of the simulation). At the end of
this phase, exactly one node will be chosen among the ones that have correctly
guessed that their clocks satisfy g1. The successful node will be the one that
plays the role of the first process. The sub-protocol proceeds as follows: (i) The
internal node checks whether the value of its clock satisfies the guard g1. Recall
that each node contains one clock. Since the guard g1 only compares the clocks
x1, x2 with constants, the conditions of g1 can be tested on each of x1 and x2

separately. If the clock of the node does not satisfy g1 (which means that x1 does
not satisfy g1), the node will remain passive from now on (it has made the wrong
guess). Otherwise, the node resets its clock if R1 contains x1, and then broadcasts
a message (such a message is received by the leaf of the ray); (ii) The leaf checks
whether the value of its clock satisfies the guard g1 (i.e., if x2 satisfies g1); if yes it
resets its clock if x2 is included in R1, and then broadcasts an acknowledgement.
(iii) Upon receiving the above acknowledgement, the internal node declares itself
ready for the next step by broadcasting an acknowledgement itself. At the same
time, it moves to new local state and waits for a last acknowledgement from the
root (described below) after which it will move to local state T (q′1). (iv) When
the root receives the acknowledgement it sends a broadcast declaring that it has
successfully found a ray to simulate the first process. All the nodes in temporary
states will now enter local states from which they remain passive. To prevent
multiple nodes to play the role of the first process, the root enters en error state
if it happens to receive acknowledgements from several internal nodes. The root
now proceeds to identify the ray to simulate the second process. This continues
until all n processes have been identified. Then the root makes one final move
where the following events take place: (i) It moves its local state to T (q′0) (ii) It
sends a final boraodcast where the node ready for simulating the ith process will
now move to T (q′i) for all i : 1 ≤ i ≤ n (notice that there is at most one such
node for each i). (iii) It checks that its clock is equal to 0 (the simulation of the
rule has not taken any time).

Simulating Timed Transitions. This is done in a straightforward manner by
letting time pass in T by the same amount as it has done in N .
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Cliques. We show that the reachability problem for the clique topology is un-
decidable if the nodes have two clocks.

Theorem 4. TAHN−Reach(CLIQUE, 2) is undecidable.

We will build a protocol P with CLOCKS(P ) = 2 which will simulate N on the
clique topology. In a similar manner to the case of star topologies, the simulation
consists of two phases.

Initialization Phase. The purpose of the initialization phase is to choose a
node that will simulate the controller. This choice is done non-deterministically
through a protocol that is initialized by a broadcast message. Notice that this
protocol exists in all the nodes since they run the same pre-defined protocol.
The first node which will perform the broadcast will become the controller (from
now on we refer to this node as the controller node). When the controller node
performs the above broadcast it moves to the state T (qinit

ctrl ), while all the other
nodes will move to T (qinit

proc).

Simulating Discrete Transitions. Below, we show how a rule of the form of
the previous sub-section is simulated. In a similar manner to the case of stars,
the controller node first resets its clock to 0. The simulation again consists of
different phases, where in each phase the controller node tries to identify a ray
that can play the role of process i for 1 ≤ i ≤ n. To find the first process it sends
a broadcast. A node that receives the broadcast, whose local state is q1, and
whose clocks (x1 and x2) satisfy the guard g1, may decide to ignore the message
or to try to become the node that simulates the first process in the rule. In the
latter case, the node declares itself ready for the next step by broadcasting an
acknowledgement. At the same time, it moves to a new local state and waits for
a last acknowledgement from the controller node (described below) after which
it will move to local state T (q′1). To prevent multiple nodes to play the role
of the first process, the controller node enters en error state if it happens to
receive acknowledgements from several nodes. The controller node now proceeds
to identify the node to simulate the second process. This continues until all n
processes have been identified. Then the controller node performs the same three
steps as the ones in the final phase of the simulation described above for stars.

Bounded Path Topologies. Using the result of Theorem 3 we can show that
the reachability problem can be extended to bounded path topologies. The result
uses a reduction to the two-star case, thus we need to consider topologies in which
the (number of vertices) simple paths can have 5 vertices in order to be able to
rebuild stars with rays of depth 2.

For such a reduction, we need a preliminary protocol that discovers a two-star
topology in an arbitrary graph in paths are allowed to have (at least) five nodes.
The discovery protocol first selects root, internal and leaf candidates and then
verify that they are connected in the desired way by sending all other nodes in
their vicinities to a special null state. Combining the discovery protocol and the
undecidability results for two-star topology we obtain the following theorem.
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Theorem 5. TAHN−Reach(BOUNDED(5), 1) is undecidable.

6 Decidability with Dense Time

In the previous section we showed that TAHN−Reach(STAR(2), 1) is undecidable.
In this section we consider two other classes of topologies for which reachability
becomes decidable when nodes have a single clock, namely the class STAR(1)
and CLIQUE. A convenient way to prove these results is to resort to an extension
of Timed Networks with transfers for which control state reachability is still
decidable. When executed together with a rendez-vous, a transfer action from q
to q′ forces all processes in state q to move to state q′ (as in transfer arcs for
Petri nets). We give next a more detailed definition of the extended TN model.

Timed Networks with Transfers (TNT). A rule of a timed network with
transfer (TNT) N combines rendez-vous synchronization and transfer actions.
Namely, a TNT rule has the following form:

[q0 → q′0] [q1; g1 → R1; q′1] · · · [qn; gn → Rn; q′n]
[p1; g′1 →t R′

1; p
′
1] · · · [p�; g′� →t R′

�; p
′
�]

where actions with → denote rendez-vous communication, whereas actions with
→t denote transfers. For i : 1 ≤ i ≤ �, gi →t Ri is a guarded transfer where gi is
a guard, Ri is a reset, pi, p

′
i ∈ Qproc. We assume that there are no i : 1 ≤ i ≤ �

and j : 1 ≤ j ≤ n such that pi = qj ; and assume that pi �= pj if i �= j. A TNT
rule is enabled if the state of the controller is q0 and if there are n processes
with states q1, · · · , qn whose clock values satisfy the corresponding guards. The
rule is executed by simultaneously changing the state of the controller to q′0
and together with the states of selected processes p1, · · · , p�. Furthermore, each
process in state pi for i : 1 ≤ i ≤ � whose clock value satisfies the guard g′i
moves to p′i while its clocks are reset according to R′

i. Note that for a rule to be
enabled there is no requirement on the presence or absence of processes in states
p1, · · · , p�.

The (controller state) reachability problem TNT−Reach (K) for processes with
K clocks is defined by replacing the TN transition relation with that for TNT.
The following result then holds.

Theorem 6. TNT−Reach(1) is decidable.

Sketch of proof. In [6], it is proved that TN−Reach (1) is decidable. The proof
is based on the general results in [1] based on a well quasi orderings of TN
configurations under which the transition relation is monotonic. Monotonicity
of the transition relation of a TNT still holds for the same ordering used in [6].
Furthermore, the algorithm used for computing predecessors can be extended
in order to cope with transfer action. This extension is similar to that used for
Data nets [12] or, for processes without clocks, to that used for Petri nets with
transfer arcs. We prove next that in TAHNs with one clock restricted to the
clique topology, the reachability problem is decidable.



On the Verification of Timed Ad Hoc Networks 267

Theorem 7. TAHN−Reach(CLIQUE, 1) is decidable.

Proof. We reduce TAHN−Reach(CLIQUE, 1) to TNT−Reach (1). The reduction
works as follows. Since in a clique graph all nodes are connected to each other,
a broadcast message sent by a node is always received by all other nodes. In
other words working with a clique is like working with a multiset of processes
as in a TNT. Broadcast communication can then be simulated by using TNT
rules in which the sender perfoms an individual step and reception of a message
is simulated by transfer actions, one for each state in which the message can be
received. Furthermore, we can insert a special rule to synchronize the controller
with the local state we want to reach in the TAHN. Local state reachability
corresponds then to control state reachability in the resulting TNT. The claim
then follows from Theorem 6.

A similar positive result can be obtained for TAHN with 1 clock restricted to the
star topology of depth 1. The main difference compared to the previous result is
that in a star of depth 1 we have to distinguish the root (the central node) from
the leaves. When the root performs a broadcast, it is transmitted to all the leaf
nodes, but when a leaf performs one, only the root can receive it.

Theorem 8. TAHN−Reach(STAR(1), 1) is decidable.

Proof. We reduce TAHN−Reach(STAR(1), 1) to TNT−Reach (1). Let T be a TAHN
with star topology of depth 1. We construct a TNT N that simulates T as follows.
Initially all TNT processes are in state qi. We first define an initialization step
in which the controller non-deterministically selects one of the processes in state
qi and elects it as the root of the simulated TAHN. All the remaining processes
in state qi are then used to simulate the leaves of the star. After this step, the
simulation of each TAHN rule r is split in two TNT rules: one for the root
process and one for a leaf process. A local rule is simulated by a rendez-vous
(with no transfer) for the root process and by a rendez-vous for a leaf process.
A broadcast rule executed by the root node is simulated with a TNT transfer
action involving the root process and all the leaf processes, whereas a broadcast
executed by a leaf is translated into a rendez-vous between a leaf and the root
process only. As for cliques, we can add rules for the controller to observe when
the root of a leaf process has reached a given local state. The claim then follows
from Theorem 6.

7 Decidability with Discrete Time

In this section we study the reachability problem for Discrete Time Ad Hoc
Networks (DTAHN). In this model clocks range over the natural numbers instead
of the reals. Let μ′ be the maximum constant used in the protocol rules and let
μ = μ′ + 1. When using discrete time, it is enough to restrict the valuation of
clocks to the finite range I = [0, μ]. This follows from the fact that guards of
the form x > c remain enabled when time passes once the clock associated to
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variable x reaches a value greater or equal to μ; while guards of the form x ≤ c
remain disabled. Therefore, beyond μ we need not distinguish between different
values for the same clock (see e.g. [3]). For every DTAHN T , we can then define a
finite-state process that describes the behavior of a node. We use Cμ,K to denote
configurations over undirected graphs with labels in Q× IK , where Q is the set
of local states of a process, I is the interval [0, μ], and K is the number of clocks
in each process.

The transition relation ⇀T is obtained from that of TAHN by assuming that
the valuation of clock variables is a function X : V  → [X → I] and by replacing
the time step by the discrete time step defined as follows.
Discrete Time Step For configurations γ = (Q,X ) and γ′ = (Q′,X ′), we write
γ ⇀T γ′ if, for all v ∈ V and x ∈ X , the following conditions are satisfied:

– Q(γ′) = Q(γ),
– X ′(v)(x) = X (v)(x) + 1, if X (v)(x) < μ
– X ′(v)(x) = X (v)(x) = μ, otherwise.

For a topology class Top and K ≥ 0, the control state reachability problem
DTAHN−Reach(Top, K) is the natural reformulation of the one defined for TAHN.

We show next that reachability is decidable when restricting the topology to
the class of bounded path graphs BOUNDED(N) for any fixed N > 1. The decision
procedure is obtained by resorting to the theory of well-structured transition sys-
tems [1]. The procedure is based on a symbolic backward exploration algorithm
in which we use constraints to finitely represent sets of configurations of variable
size taken from the class BOUNDED(N) (the configurations may potentially belong
to different TAHNs).

Ordering. We first introduce the following ordering between configurations of
variable size. Given configurations γ = (Q,X ) defined over G = (V, E) and
γ′ = (Q′,X ′) defined over G′ = (V ′, E′), γ " γ′ iff there exists an injective
function h : V  → V ′ such that:

– ∀u, u′ ∈ V , (u, u′) ∈ E if and only if (h(u), h(u′)) ∈ E′;
– ∀u ∈ V , Q(u) = Q′(h(u)) and X (u) = X ′(h(u)).

An upward closed set U satisfies the property that U = {γ′ | γ " γ′, γ ∈ U}.
The following property then holds.

Proposition 1. If U is an upward closed set of configurations (of variable size),
then Pre(U) = {γ | γ ⇀T γ′, γ′ ∈ U} is still upward closed wrt. ".

Proof. In [7] it has been proven, that for untimed AHN, selective broadcast is
monotone w.r.t. ". We observe that DTAHN restricted to configurations in Cμ,K

can be viewed as untimed AHN extended with a time step transition. Thus, we
just have to show monotonicity wrt. a time step γ ⇀T γ′. Since time can always
proceed, for every β # γ there is a configuration β′ such that β ⇀T β′ with a
time step. Now since h is label preserving both time steps will have the same
effect on nodes identified by h and thus γ′ " β′.
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Constraints. Assume a given process definition P . A constraint is a tuple
Φ = (G,Q,X ), where G = (V, E) is a graph in BOUNDED(N), and Q and X are
defined on the set of vertices V . We call γΦ the associated configuration (Q,X )
over the graph G. The denotation of a constraint Φ is defined as the infinite
set of configurations [[Φ]] = {γ′ | γΦ " γ′} with variable size and topology. The
following proposition then holds.

Proposition 2. Given a constraint Φ, there exists an algorithm to compute a
finite set of constraints whose denotation corresponds to Pre([[Φ]]).

Proof. We can extend the symbolic predecessor operator defined for untimed
AHN in [7] by adding some new conditions and steps. In order to correctly
obtain predecessors of γ, rules of the form

(
q, g

e−→ R, q′
)

must be applied only
to nodes in state q′ which satisfy the post-condition R. When R is not empty,
i.e. some clocks have been reset, we do not know their values before the step. In
this case it is necessary to add a predecessor to the set Pre(γ) for every possible
combination of i ∈ I for those clocks – keeping the old values of the node from
configuration γ otherwise.

As an addition to regular protocol rules, we also have to consider time steps.
Thus, for every configuration γ that does not have 0-valued clocks, we have to
add to its set of predecessors every configuration γ′ such that γ′ can make a time
step into γ.

Theorem 9. DTAHN−Reach(BOUNDED(N), K) is decidable for any N ≥ 1 and
K ≥ 0.

Proof. From propositions 1 and 2, we can apply the general results in [1] to define
a backward search algorithm working on upward closed sets of extended config-
urations represented by their finite basis. The finite set of constraints (G, Q, X)
in which G is a single node v, Q(v) = q, and X(v) ∈ I can be used as finite rep-
resentation of all configurations containing the control state q. Furthermore, for
a fixed N ≥ 1 the induced subgraph relation is a well-quasi-ordering on the class
of N -bounded path graphs [10]. This implies that for any sequence of constraints
Φ0Φ1 . . . there exists i and j with i < j s.t. Φi " Φj . This property ensures the
termination of the symbolic backward reachability algorithm.

8 Conclusions

We have studied local state reachability for Timed Ad Hoc Networks in different
classes of topologies by taking the number of clocks of each node as a parameter.
In order to refine our analysis, it could be interesting to investigate restricted
form of guards, e.g., open and closed specifications as in [5], to obtain decidable
fragments of the full model. Furthermore, similarly to the untimed case [9], it
would be interesting to evaluate the impact of failures and delays in the decid-
ability of local reachability for TAHNs. From a more practical point of view, by
exploiting symbolic representations of timed regions it could be interesting to
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apply backward reachability analysis in order to extract preconditions (in form
of minimal representation of topologies) for violations of safety conditions in
protocol models like those considered in [11]. Finally, finding abstractions for
topology- and time-dependent broadcast protocols that could be used to reason
on arbitrary configurations is another interesting direction for future work.
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Abstract. In this paper, we introduce a new approach to computing
abstractions for hybrid dynamical systems whose continuous behavior is
governed by non-linear ordinary differential equations. The abstractions
try to capture the reachability information relevant for a given safety
property as succinctly as possible. This is achieved by an incremental
refinement of the abstractions, simultaneously trying to avoid increases
in their size as much as possible. The approach is independent of a con-
crete technique for computing reachability information, and can hence
be combined with whatever technique suitable for the problem class at
hand. We illustrate the usefulness of the technique with computational
experiments.

1 Introduction

In this paper, we study hybrid (dynamical) systems, that is, systems with both
discrete and continuous state and evolution. We address the computation of
abstractions of hybrid systems that capture a given safety property as succinctly
as possible. In other words, given a hybrid system, a set of initial states, and a set
of states considered to be unsafe, we try to characterize the set of trajectories (of
unbounded length) from an initial to an unsafe state. In cases where the input
system does not have such a trajectory (i.e., it fulfills the safety property), we aim
at computing an empty abstraction, which verifies the safety property at hand. In
other cases, the computed abstraction can be used to guide testing/falsification
of the input system.

The abstractions are computed incrementally. This has the obvious advantages
of such incremental computation, which are analogous to the case of discrete
systems. However, in addition to that, for systems with (complex) continuous
dynamics, incrementality has another important aspect: In such cases, even over
bounded time, exact reachability computation is possible only for very special
cases, and hence (unlike for discrete systems) one has to use over-approximation.
It is a-priori not clear, how much and where to over-approximate in order to
prove a given property. By incremental computation one can adapt the level of
over-approximation to the given problem.
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Our technique is parametric in the method used for computing reachability
information. We have an implementation that is based on hyper-rectangles and
interval constraint propagation [4]. But instantiations with various alternative
techniques are possible.

Moreover, our technique is orthogonal to other techniques for abstraction re-
finement, especially counter-example guided abstraction refinement
(CEGAR) [1,7]: The essential step of our technique tries to capture informa-
tion about the given safety verification problem without increasing the size of
the abstraction. Moreover, this step is not inherently exponential in the problem
dimension, hence allowing the computation of abstractions of high dimension.
In contrast to that, CEGAR approaches are inherently based on increasing the
number of states of the abstraction. Both approaches can be used in combination.
See also the approach of abstraction slicing [6] in a discrete CEGAR setting.

Computational experiments show the usefulness of the approach.
Concerning other related work, some approaches to hybrid systems verifica-

tion do exploit incrementality in reachability computation [12,11]. But, reuse of
analyses only concerns dropping initial/unsafe states that have been shown not
to lie on any error trajectory—no reuse is done concerning the analysis itself.

Parts of the material in this paper can be viewed as an adaptation and ex-
tension of the framework of abstract interpretation [8,13] to a situation where
abstractions are incrementally refined, and where specific properties of contin-
uous time systems are exploited. The reader will find more discussion on the
relation to that approach throughout the paper.

Our previous approach for hybrid systems verification [16] computes abstrac-
tions based on an algorithm that is a special case of the method presented here.
However, as our computational experiments will show, variants of our method
that are different from that special case, show much better behavior, especially
for hybrid systems with cyclic behavior. Moreover, our previous approach was re-
stricted to boxes, and a very specific way of computing reachability information
based on the mean-value theorem and interval constraint propagation.

The content of the paper is as follows: in Section 2 we describe the used formal-
ism for modelling hybrid systems, in Section 3 we describe how to incrementally
improve an abstraction of a given hybrid system, in Section 4 we show how to
further improve the technique, in Section 5 we discuss a concrete implementation
of the method, in Section 6 we discuss the behavior of this implementation on
some computational experiments, and in Section 7 we conclude the paper.

2 Hybrid Systems

In this section, we briefly recall our formalism for modelling hybrid systems. It
captures many relevant classes of hybrid systems, and many other formalisms
for hybrid systems in the literature are special cases of it. We use a set S to
denote the discrete modes of a hybrid system, where S is finite and nonempty.
I1, . . . , Ik ⊆ R are compact intervals over which the continuous variables of a
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hybrid system range. Φ denotes the state space of a hybrid system, i.e., Φ =
S × I1 × · · · × Ik.

Definition 1. A hybrid system H is a tuple (Flow, Jump, Init, Unsafe), where
Flow ⊆ Φ × Rk, Jump ⊆ Φ × Φ, Init ⊆ Φ, and Unsafe ⊆ Φ.

Informally speaking, the predicate Init specifies the initial states of a hybrid
system and Unsafe the set of unsafe states that should not be reachable from
an initial state. The relation Flow specifies the possible continuous flow of the
system by relating states with corresponding derivatives, and Jump specifies the
possible discontinuous jumps by relating each state to a successor state. Formally,
the behavior of H is defined as follows:

Definition 2. A flow of length l ≥ 0 in a mode s ∈ S is a function r : [0, l] → Φ
such that the projection of r to its continuous part is differentiable and for all
t ∈ [0, l], the mode of r(t) is s. A trajectory of H is a sequence of flows r0, . . . , rp

of lengths l0, . . . , lp such that for all i ∈ {0, . . . , p},

1. if i > 0 then (ri−1(li−1), ri(0)) ∈ Jump, and
2. if li > 0 then (ri(t), ṙi(t)) ∈ Flow, for all t ∈ [0, li], where ṙi is the derivative

of the projection of ri to its continuous component.

A (concrete) error trajectory of a hybrid system H is a trajectory r0, . . . , rp of
H such that r0(0) ∈ Init and rp(l) ∈ Unsafe, where l is the length of rp. H is
safe if it does not have an error trajectory.

In the rest of the paper we will assume an arbitrary, but fixed hybrid system H .
We will denote the set of its error trajectories by E .

Instead of defining some concrete syntax in which hybrid systems are de-
scribed, we keep this paper independent of concrete syntax, and require the user
to provide certain operations on hybrid systems that we will introduce in the
next section.

3 Incremental Abstract Forward/Backward Computation

For hybrid systems with complex continuous dynamics even bounded time reach
set computation necessarily involves over-approximation. In such cases one would
like to first compute approximate information using loose over-approximation,
and then incrementally refine this.

Our approach will be based on an incremental refinement of a covering of the
hybrid systems state space by connected sets that we will call regions. We will
form the regions in such a way that no two regions will overlap (i.e., regions are
allowed to intersect, but only on their boundaries). The method is independent
of the class of regions used. In the instantiation of the method used by our
implementation (see Section 5), the regions will be formed by pairs consisting
of a mode and a Cartesian product of intervals (i.e., a box ), but other classes of
regions (e.g., based on polyhedra) are equally conceivable.
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Definition 3. An abstraction is a graph whose vertices (which we call abstract
states) may be labelled with labels Init or Unsafe. Moreover, to each abstract
state, we assign a region. We call the edges of an abstraction abstract transitions.

By abuse of notation, we will usually use the same notation for an abstract state
and the region assigned to it.

We call a sequence of abstract states a1, . . . , an an abstract trajectory. If all
abstract states and all transitions between successive abstract states in an ab-
stract trajectory belong to an abstraction A, we call it an A-abstract trajectory
and we denote it by a1 → · · · → an. An (A-)abstract trajectory represents the
set of concrete trajectories that begin in the region of a1, move from one abstract
state region to the next only if there is a corresponding concrete transition, and
end in the region of an. We denote this set by [[a1, . . . , an]] for a given abstract
trajectory or [[a1 → · · · → an]] for some A-abstract trajectory.

This can be formalized as follows: We define a splitting of a flow l to be a
sequence of flows s1, . . . , sj such that s1(0) = l(0), sj(length(sj)) = l(length(l))
and if i > 1 then si−1(length(si−1)) = si(0). A trajectory splitting is a concate-
nation of splittings of its individual contained flows. [[a1, . . . , an]] then is the set
of all concrete trajectories r1, . . . , rp that have a trajectory splitting q1, . . . qn,
such that for all i, the mode of abstract state ai is the same as the projection of
qi to its discrete part and such that the projection of qi to its continuous part is
in the region of ai.

An A-abstract error trajectory is an A-abstract trajectory a1 → · · · → an

such that in A, a1 is labelled initial, and an is labelled unsafe.
An abstraction A represents the set of all concrete trajectories [[a1 → · · · →

an]] for abstract error trajectories a1 → · · · → an in the abstraction A. We
denote this set by [[A]].

The intuition is that, during abstraction refinement, the abstraction stays an
over-approximation of the set of error trajectories E of a given system. We say
that an abstraction A∗ is a refinement of an abstraction A iff

– the abstraction A∗ represents less trajectories than A, that is, [[A∗]] ⊆ [[A]],
and

– the abstraction A∗ does not lose error trajectories that are present in A,
that is [[A∗]] ⊇ [[A]] ∩ E .

Now we will come up with an algorithm that will incrementally improve an
abstraction by refining it, without increasing the number of abstract states in
the abstraction. Note that, in particular, A is a refinement of A itself, but in
practice we will try to remove as many trajectories from the abstraction as
possible.

Given abstract states a and a′, we will assume a procedure InitReach(a) that
computes an over-approximation of the set of points in a that are reachable
from an initial point in a, and a procedure Reach(a, a′) that computes an over-
approximation of the set of points in a′ reachable from a according to the system
dynamics (here we do not assume any time bound, implementations of those pro-
cedures that compute reachability over bounded time would only require slight
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modifications of our algorithms). Our method is independent of the concrete
technique used to compute those procedures. Still, in Section 5.2 we will present
an example of how this can be implemented in practice. We assume that smaller
inputs improve the precision of these operations, that is:

– a1 ⊆ a2 implies InitReach(a1) ⊆ InitReach(a2)
– a1 ⊆ a2 and a′

1 ⊆ a′
2 implies Reach(a1, a

′
1) ⊆ Reach(a2, a

′
2)

Furthermore, we assume that these procedures exploit information about empty
inputs, that is:

– a = ∅ implies InitReach(a) = ∅
– a = ∅ implies Reach(a, a′) = ∅
– a′ = ∅ implies Reach(a, a′) = ∅

In the following, we require the existence of operations % and & on regions, with
the following properties.

– % such that if a∗ % a, then for all n ∈ N, for all i ∈ {1 . . . n} and for all
regions b1 . . . bi−1, bi+1 . . . bn we have that [[b1, . . . , bi−1, a

∗, bi+1, . . . , bn]] ⊆
[[b1, . . . , bi−1, a, bi+1, . . . , bn]] i.e., less concrete trajectories follow a given ab-
stract trajectory after replacing an abstract state by smaller one wrt. %
operation.

– & s.t. for all regions a1, a2, b : a1 % b∧a2 % b implies a1&ba2 % b, a1 % a1&ba2

and a2 % a1 &b a2.

Since in our case abstract states represent sets, this can be ensured by the
following:

– & s.t. for all a1, a2 ⊆ b: a1 ∪ a2 ⊆ a1 &b a2 and a1 &b a2 ⊆ b
– % s.t. a1 % a2 iff a1 ⊆ a2

This is our natural interpretation of & and %. However, different choices are
possible, as long as they fulfill the above properties: For certain representations
of regions it might be convenient to use a weaker form of %, for efficiency rea-
sons. Also, later (Section 4.1) we will see that for being able to encode more
information into abstract states, different interpretations of those symbols are
convenient.

In the instantiation of the method with boxes, a1 &b a2 is the smallest box
that includes both argument boxes a1 and a2, but does not exceed b (i.e., box
union intersected with bounding box), and % is the subset operation on boxes.
Note that for a1, a2 ⊆ b defining a1 % a2 iff a1 &b a2 = a2 fulfills the above
property.

The following algorithm (which we will call pruning algorithm) computes a
refinement of a given abstraction A:

A∗ ← copy of A, all regions set to ∅, no initial labels, no edges
// from now on, for every abstract state a of A,
// we denote by a∗ the corresponding abstract state of A∗

for all a ∈ A, a is initial
a∗ ← InitReach(a)
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if a∗ �= ∅ then mark a∗ as initial
while there is a pair of abstract states (a1, a2) in A with

a1 → a2, s.t. Reach(a∗
1, a2) �% a∗

2 or (a∗
1 �→ a∗

2 and Reach(a∗
1, a2) �= ∅) do

if a∗
1 �→ a∗

2 in A∗ then introduce an edge a∗
1 → a∗

2 into A∗

if Reach(a∗
1, a2) �% a∗

2 then a∗
2 ← (a∗

2 &a2 Reach(a∗
1, a2))

return A∗

In contrast to similar algorithms in abstract interpretation, this algorithm ex-
ploits and refines the knowledge already available in the abstraction A. In con-
trast to CEGAR approaches, the algorithm does not increase the size (i.e., the
number of nodes) of the abstraction. Still it deduces some interesting informa-
tion:

Theorem 1. The result of the pruning algorithm is a refinement of the input
abstraction A.

Proof. We have to prove two items:
– [[A∗]] ⊆ [[A]]: This follows from the following:

• the set of initial/unsafe marks of A∗ is a subset of the set of marks of A
• the set of edges of A∗ is a subset of the set of edges of A
• the abstract states of A∗ are subsets of the corresponding abstract states

of A since InitReach(a) ⊆ a, and a∗
2 &a2 Reach(a∗

1, a2) ⊆ a2 from the
definition of &.

– [[A∗]] ⊇ [[A]]∩E : Let T be an A-error trajectory in [[A]]∩E . We prove that T
is an element of [[A∗]]. Let a1 → · · · → an be an A-abstract error trajectory
s.t. T ∈ [[a1 → · · · → an]]. We prove that for the corresponding A∗-abstract
trajectory a∗

1 → · · · → a∗
n, also T ∈ [[a∗

1 → · · · → a∗
n]]. Let Ti be a fragment

of trajectory T before the transition ai → ai+1 is made. We will prove by
induction that for all i: Ti ∈ [[a∗

1 → · · · → a∗
i ]] and observation T = Tn

concludes the proof.
• a1 contains the initial point of T and InitReach(a1) contains all points

of T in a1. After the first loop of the algorithm, a∗
1 is initial in A∗ and

it is equal to InitReach(a1). After that, all regions in A∗ only increase
w.r.t. % operation and that implies that Ti ∈ [[a∗

1]].
• We assume that for some i < n: Ti ∈ [[a∗

1 → · · · → a∗
i ]]. Since T leaves ai

to ai+1, a∗
i contains all the points of T in ai, Reach(a∗

i , ai+1) contains all
the points of T in ai+1. Since Reach(a∗

i , ai+1) is non-empty, the abstract
transition a∗

i → a∗
i+1 is introduced into A∗ and from the while cycle

termination condition, we have: Reach(a∗
i , ai+1) % a∗

i+1, thus Ti+1 ∈
[[a∗

1 → · · · → a∗
i+1]].

��

Note that the second part of the proof does not depend on the definition of &.
Hence, for ensuring that no error trajectory is lost by the algorithm, & does not
necessarily have to fulfill the requirement stated above. This requirement just
ensures that all computed reachability information is captured, and hence will
not have to be re-computed again.
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Note moreover, that it is a-priori not clear, that the pruning algorithm ter-
minates. However, termination can be ensured, for example, by using a rep-
resentation for which, for given regions a and b, there is not infinite chain
a % a1 % a2 % · · · % b. See Section 5.1 for a more detailed discussion of this
issue.

As already mentioned, the pruning algorithm tries to deduce information
about a given system without increasing the size of the abstraction. In cases,
where it can deduce no more information, we have to fall back to some increase
of the size of the abstraction (cf. to a similar approach in constraint program-
ming where one falls back to exponential-time splitting, when polynomial-time
deduction does not succeed any more).

We do this by the Split operation that chooses an abstract state and splits it
into two, copying all the involved edges and introducing edges between the two
new states. All the labels and abstract transitions to other abstract states are
copied as well. Moreover, two new abstract transitions that connect the original
abstract state with its copy are added. The region assigned to the abstract state is
equally split among two abstract states. Such an refinement decreases the amount
of over-approximation in subsequent calls to the pruning algorithm due to the
properties of the Reach and InitReach. We chose such a simple splitting strategy
to show the usefulness of our approach in isolation. However, it is possible to
use much more sophisticated splitting strategies, for example, one could use one
CEGAR step [1,7] instead of our simple splitting technique.

It is clear that the pruning algorithm can also be done backward in time (i.e.,
removing parts of the abstraction not leading to an unsafe state)[12,11]. We will
denote the resulting algorithm by Prune−(A).

Now we have to following overall algorithm for computing increasingly fine
abstractions:

initialize A with an arbitrary abstraction such that
[[A]] contains all error trajectories of the input system

while there is an A-abstract error trajectory
A ← Prune(A)
A ← Prune−(A)
A ← Split(A)

return ”safe”

The most simple way to initialize the abstraction A in this algorithm is to use the
trivial abstraction containing just one vertex for every mode marked with both
Init and Unsafe marks, containing a transition to all other vertices and itself,
and a region containing the whole state space of the input system. However, one
may also reflect some known structure of the input system, see Section 5 for
more details.

Since neither pruning nor splitting removes an error trajectory, the absence
of an A-abstract error trajectory at the termination of the while loop implies
the absence of an error trajectory of the original system. Hence, in such a case,
the algorithm correctly returns the information that the input system was safe.
In cases where the input does have an error trajectory, this algorithm does not
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terminate. However, in such cases, the algorithm maintains an abstraction that,
at any time, can be used by other algorithms [17] for searching for this error
trajectory.

Note that forward pruning may enable further backward pruning and vice
versa, hence the algorithm may be extended in such a way that forward and back-
ward pruning are done in a loop until no further improvement occurs. If either
forward or backward pruning is dropped from the algorithm, it will incrementally
compute a tighter and tighter over-approximation of the (forward/backward)
reach set.

4 Improvements

In this section we introduce three improvements to the basic pruning algorithm.
The first improvement exploits the specific structure of hybrid systems (continu-
ous time, discontinuous jumps) and the two other improvements introduce more
incrementality into the way the algorithms handles the abstraction.

4.1 Exit Regions

When computing Reach(a∗
1, a2) we get an over-approximation of the set of points

in a2 reachable from a∗
1 according to the system dynamics. However, trajectories

can leave a∗
1 not arbitrarily, but only at points fulfilling certain conditions:

– flows can leave a∗
1 only over its boundary, and

– jumps can leave a∗
1 only over parts of a∗

1 belonging to the projection of the
set Jump to its first part corresponding to jump source, that is, over the set
{(m, x) ∈ S × Rk | ∃x′ ∈ Rk, m′ ∈ S . ((m, x), (m′, x′)) ∈ Jump}.

Hence, in the computation of Reach(a∗
1, a2), instead of the full region a∗

1 we
can use a subset fulfilling this condition. However, a∗

1 already is an over-
approximation. Hence, it is better to directly compute an over-approximation of
the points fulfilling this condition, as follows:

We assume that the function InitReach(a), in addition to an over-
approximation of the set of points in a that are reachable from an initial point in
a, also computes an over-approximation of the set of states in a through which
a trajectory starting from an initial point in a leaves a. Moreover, we assume
that Reach(a, a′) in addition to an over-approximation of the set of points in
a′ reachable from a, computes an over-approximation of the set of states in a′

through which a trajectory coming from a leaves a′.
We store those additional regions with abstract states, calling them exit re-

gions. For extending the operations & and % to abstract states consisting of a
region and an exit region we will need the following:

Lemma 1. Assume a region a that contains a trajectory T , an a∗ % a that also
contains T and an exit region ae containing the point L where T leaves a. Then
T also leaves a∗ at L.
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Proof. Since a∗ contains all points of T in a, it also contains L. Let us assume
that T leaves a∗ at L∗ and that L∗ �= L. Since a∗ contains T and both L
and L∗, it also contains a flow r, that is a part of the trajectory T , such that
r(0) = L∧r(length(r)) = L∗. Since a∗ % a, flow r is also in a and that contradicts
the assumption that T leaves a at L. ��

Hence, T leaves a∗ at a point that already was an element of the exit region ae

of the original box a. This motivates us to extend the check % to abstract states
with exit regions in such a way that for abstract states (i.e., region/exit region
pairs) (cr, ce) and (dr , de), (cr, ce) % (dr, de) iff cr % dr and ce % de. Moreover, &
will also apply the corresponding operation on both the region and exit region.

This makes it possible to implement InitReach and Reach in such a way that
they are compatible with %.

Now, we extend the semantics of abstract trajectories in such a way that
concrete trajectories have to leave abstract states through their exit regions.
The correctness of the pruning algorithm is preserved, if the new operations &
and % still fulfill the necessary properties. This is clearly the case for &. But also
% again fulfills the required property:

Theorem 2. For % extended with exit regions, for all abstract states a = (ar, ae)
and a∗ = (a∗

r , a
∗
e), if a∗

r % ar and a∗
e % ae then a∗ % a.

Proof. Let T be a trajectory in [[b1, . . . bi−1, a
∗, bi+1, . . . , bn]]. We show that this

trajectory is also in [[b1, . . . , bi−1, a, bi+1, . . . , bn]]. Since a∗
r % ar, T is covered by

the region ar. All we have to prove is that T leaves a at the point in ae. From
Lemma 1, we know that T leaves a and a∗ at the same point L. Since T is in
[[b1, . . . bi−1, a

∗, bi+1, . . . , bn]], L belongs to a∗
e and since a∗

e % ae it also belongs
to ae. ��

Corollary 1. The result of the pruning algorithm extended with exit regions is
a refinement of the input abstraction A.

Exit regions can be computed in both forward (i.e., Prune(A)) and backward
(i.e., Prune−(A)) computation. We will call such a region computed during
backward computation an enter region. Exit regions are computed only during
forward computation, while enter regions are computed only during backward
computation. When doing computation in one direction, the dual exit regions
do not change.

Moreover, in the computation of Reach(a∗
1, a2), one can exploit not only the

exit region of a∗
1, where the trajectory leaves a∗

1, but also the enter region of a2,
where the trajectory has to enter the region of a2. Such an information can then
be used by the underlying reachability computation algorithm to constrain the
reachable states.

Furthermore, in Split(A), new boundaries are created. A trajectory can now
enter and exit the region through this new boundary and we have to create
new abstract states in such a way that the new boundary is part of the enter and
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exit regions. For new abstract state a∗, new boundary b and original exit region
ae, we create a new exit region a∗

e in such a way that (ae ∩ a∗) ∪ b ⊆ a∗
e . This

clearly does not change the set of represented error trajectories.

4.2 Avoiding Redundant Edge Checks

One disadvantage of the pruning algorithm is that it may do redundant tests for
the condition Reach(a∗

1, a2) �% a∗
2 in the update function. Whenever such a test

has been made, this can be remembered until the information is not valid any
more.

To this purpose we add additional edges to the abstraction that we label with
% (and which we call consistency edges). We keep the invariant (that we will
call consistency invariant) that whenever a∗

1 →
 a∗
2, then Reach(a∗

1, a2) % a∗
2.

Moreover we use a procedure propChange(a) that, for every a′ with a → a′

deletes every edge a →
 a′. This allows us to change the while loop in the
pruning algorithm as follows:

A∗ ← copy of A, all regions set to ∅, no initial labels, no edges
// from now on, for every abstract state a of A,
// we denote by a∗ the corresponding abstract state of A∗

for all a ∈ A, a is initial
a∗ ← InitReach(a)
if a∗ �= ∅ then

mark a∗ as initial
propChange(a∗)

while there is a pair of abstract states (a1, a2) in A with
a1 → a2, s.t. a∗

1 �→
 a∗
2 and Reach(a∗

1, a2) �% a∗
2 or

(a∗
1 �→ a∗

2 and Reach(a∗
1, a2) �= ∅) do

introduce an edge a∗
1 →
 a∗

2

if a∗
1 �→ a∗

2 in A∗ then introduce an edge a∗
1 → a∗

2 into A∗

if Reach(a∗
1, a2) �% a∗

2 then a∗
2 ← a∗

2 &a2 Reach(a∗
1, a2)

propChange(a∗
2)

return A∗

Algorithms of such a type are known in the literature under them name ”chaotic
iteration” or ”worklist algorithms”. They have been used and studied mainly in
the context of abstract interpretation [8,5,13] and constraint satisfaction [2,3].

Theorem 3. Independent of the consistency edges of the input A, the improved
pruning algorithm computes the same result as the original one.

Due to space restrictions we omit the proof of this theorem.

4.3 Incremental Refinement of Abstraction

Now observe that splitting, or dual pruning, only changes a part of the abstrac-
tion. Still, the pruning algorithms do a complete re-computation. This is not
necessary, and in order to avoid it:
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– We mark all abstract states for which we know, that a re-computation will
not improve, with the mark Cons (the consistency mark).

– Whenever splitting or dual pruning changes an abstract state, we delete this
consistency mark, and all consistency marks of states reachable from it.

– At the beginning of the pruning algorithm for all abstract states we reset
the abstract state with the result of InitReach only if the consistency mark
is not set. Abstract states with the consistency mark, retain the value from
the input abstraction A.

Since we do separate forward and backward pruning, we also need separate
consistency marks for both cases. Splitting removes both consistency marks at
the same time.

5 Implementation

The method introduced in this paper can be instantiated with various techniques
for forming and representing abstract states, and computing reachability infor-
mation. Nonetheless, in order to study the viability of the approach, we created
a specific implementation that uses boxes (with floating point endpoints) for
representing regions.

We initialize the abstraction by creating a single abstract state for each mode
with box containing over-approximation of all reachable states in that mode. In
our case, we have this box in the input. Abstract transitions are introduced for
all pairs of abstract states contained in the Jump relation.

In the Split operation on boxes, we pick a splitting dimension of the box
assigned to the region and we split the box into halves using this dimension.
For picking the splitting dimension, a round-robin strategy has proved to be the
useful heuristics [16].

5.1 Widening

Termination of the algorithm that uses boxes for region representation is en-
sured by doing all the computations on the finite set of floating point numbers.
Hence there are only finitely many possibilities of changing boxes with &, until
a fixpoint is reached. This may in some cases lead to stuttering (i.e., many small
improvements by close floating point numbers) and thus to a slow convergence
to a fixpoint.

We designed a widening strategy to avoid stuttering and speed up
the convergence of the algorithm. Here, widening is applied to the line
a∗
2 ← (a∗

2 &a2 Reach(a∗
1, a2)) of the algorithm, that we replace with a∗

2 ←
widening(a2, a

∗
2, a

∗
2&a2 Reach(a∗

1, a2)). Informally speaking, when a change from
a∗
2 to a∗

2 &a2 Reach(a∗
1, a2) would be small compared to a2, widening gives us

region a bit bigger than a∗
2 &a2 Reach(a∗

1, a2), but still smaller or equal than a2.
Formally, the widening operates on each individual dimension separately (re-

call that in our implementation regions are represented by boxes, that is Carte-
sian products of intervals). Let b be the box a∗

2 &a2 Reach(a∗
1, a2) and in the
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considered dimension i let [a2i
, a2i], [a∗

2i
, a∗

2i] and [bi, bi] be the intervals of the
boxes a2, a∗

2 and b respectively. We will denote by wi := a2i−a2i
the width of the

box a2 in its i-th dimension. For a given, pre-chosen constant c ∈ [0, 1] (which
we call widening-constant), the result of widening in the considered dimension is
[a2i

, a2i]∩ [min(bi, a
∗
2i
−cw), max(bi, a∗

2i +cw)]. Hence, widening depends on the
width of the box in the original abstraction. After splitting the region, widening
in the next execution of pruning algorithm adds smaller parts of the region. In
our implementation, we use the widening constant c = 1/16.

Our previous approach for hybrid systems verification [16] computes ab-
stractions based on an algorithm that can be viewed as is a special case of
the method presented here that uses some extreme form of widening where
widening(a2, a

∗
2, a

∗
2 &a2 Reach(a∗

1, a2)) = Reach(a1, a2). In other words, the
method does not accumulate reachability information at all, and immediately
uses the weaker old abstract state a1 instead of a∗

1. This results in a much simpler
algorithm where instead of our while loop, reachability information is computed
only once for each neighbor in the abstraction. However, as our computational
experiments will show, different variants of the method presented in this pa-
per show much better behavior than that particular instantiation, especially for
hybrid systems with cyclic behavior.

5.2 Computation of Reachability Information

The way we compute reachability information in our implementation, as needed
by functions Reach and InitReach is described in detail in older publications [16].
The main challenge is to come up with a way of handling the differentiation op-
erator. One can over-approximate it to a purely polynomial constraint using
Taylor expansion. Since Reach and InitReach only need reachability information
in bounded regions, this results in bounds on all derivatives, and hence Reach and
InitReach can be computed in a conservative way, even over unbounded time.
Our current implementation only uses Taylor polynomials of degree one which
corresponds to the mean-value theorem. This is a very crude over-approximation,
which is sufficient for studying the behavior of the algorithm presented in this
paper. In order to arrive at an efficient implementation, one would have to use
Taylor polynomials of higher degrees, which is an easy, but tedious, implemen-
tation exercise.

The resulting constraint contains variables corresponding to derivatives and
to the source points of trajectories and jumps. In order to arrive at a description
of the set of reachable states, those have to be eliminated. In theory, one could
use quantifier elimination procedures for this (cf. the notion of logical interpre-
tation [18]). However, in the case of polynomials and real numbers, those do
not scale in the problem dimension at all. Hence we simply project the boxes
computed by interval constraint propagation [4] (we also have a generalization of
this technique available [14]). We also have investigated an alternative method
based on an over-approximation of Fourier-Motzkin elimination [10].
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6 Computational Experiments

We studied the behavior of our implementation in two scenarios: First, the sce-
nario where the abstraction refinement method of this paper is used for hybrid
systems verification. And second, where it is used for computing abstractions of
high-dimensional systems that can then be used for other purposes (e.g., running
simulations for testing). Since we did not want to test the underlying reachability
computation algorithms, but the incremental abstract computation algorithm in-
troduced in this paper, we only used the highly over-approximating reachability
computation described in Section 5.2. For practical analysis of concrete hybrid
systems, one can use much more sophisticated reachability algorithms, adapted
to the type of system at hand.

For studying the first scenario, we took benchmarks from our database (avail-
able on the web at http://hsolver.sourceforge.net/benchmarks). For each
example, the behavior of a full verification cycle is described in Table 1. Here,
the three main columns describe the three widening strategies described in Sec-
tion 5.1, i.e., verification algorithm with (moderate) widening, without widening,
and with the extreme widening strategy that corresponds to the previous algo-
rithm from [16]. The column Refine represents the number of refinement steps
of the overall algorithm for safety verification from Section 3. All timings were
measured on PC with Intel Core 2 3.0GHz CPU and 4GB RAM. From the mea-
sured results we conclude that an extreme widening strategy does not pay off
and can solve less benchmark examples than approaches with less aggressive
widening. This is illustrated particularly nicely by the cycle benchmark, where
verification finishes in one refinement step with the method presented in this
paper, while the previous approach is not able to solve this benchmark at all.
The reason is that for such benchmarks with cyclic system behavior, widening
should not prevent the analysis of full system cycles.

We also conclude that the moderate widening strategy pays off since it causes
only negligible run time increase, but removes stuttering in the mutant bench-
mark and does not increase the number of refinement steps in any benchmark.

For studying the second scenario we conducted computational experiments
with high dimensional problems. For this purpose, we created two example prob-
lems using the parallel composition of several instances of simpler benchmarks.
Our first high dimensional example contains 102 clock variables and one mode.
The example was not verified in the time limit of one hour, however, the volume
of all boxes in the abstraction was pruned from the size of approximately 8×1040

down to 1 × 1030. Hence, our method resulted in an abstraction whose volume
is 8 × 1010 times smaller, and that contains additional information about initial
and unsafe states, and abstract transitions. The result can be used to guide test-
ing or falsification [17], since we know that the pruned parts of the abstraction
do not contain any error trajectory. Our second high dimensional benchmark is a
benchmark with 100 variables with non-linear evolution, one clock variable and
one mode. It was verified using thirteen refinement steps in 36 minutes. From the
measured results in high dimension we conclude, that our technique for abstrac-
tion refinement is feasible also in case of high dimensional benchmarks.

http://hsolver.sourceforge.net/benchmarks
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Table 1. Experimental results

F/B + widening F/B reachability orig. alg.
Name Refine Time Refine Time Refine Time

1-flow 2 < 1s 2 < 1s 2 < 1s
2-tanks 2 < 1s 2 < 1s 9 1s
car 1 < 1s 1 < 1s 1 < 1s
circuit 101 752s 101 706s N/A
clock 15 1s 15 1s 16 2s
convoi-1 1 < 1s 2 < 1s 2 < 1s
convoi 19 4s 20 4s N/A
cycle 1 < 1s 1 < 1s N/A
eco 24 18s 24 18s N/A
fischer2 1 < 1s 1 < 1s 6 40s
focus 5 < 1s 5 < 1s 5 < 1s
hallstah 134 463s 134 427s N/A
mixing 1 < 1s 1 < 1s 1 < 1s
mutant 2 < 1s N/A N/A
sinusoid 118 121s 118 109s N/A
van-der-pole 1 < 1s 1 < 1s 2 < 1s

The first benchmark we used was the parallel composition of 34, three-variable
1-flow benchmarks from our database. The second benchmark was a paral-
lel composition of 50 three-variable clock benchmarks, where all the instances
share the common third clock variable, but have separate variables for non-
linear evolution. The original clock benchmark needs fifteen refinement steps
including fifteen splitting steps. Splitting in such a high dimension would cre-
ate huge abstractions, so we have simplified the instances of the benchmark,
changing the constant in the differential equation from ẋ1 = −5.5x2 + x2

2 to
ẋ1 = −5.5x2 + 0.3x2

2. We believe, that instantiation of the technique with a
reachability computation method that requires less splitting steps allows verifi-
cation of the benchmark without this simplification.

7 Conclusion

In this paper we introduced a technique for computing abstractions of hybrid
systems that can handle arbitrary hybrid systems for which certain reachability
computation algorithms are provided. The abstractions are computed in such a
way that they are as succinct as possible. Computational experiments confirm the
usefulness of the approach. Especially, the approach can compute information for
high-dimensional systems that can be used for guiding testing or falsification.
In future work we will instantiate this technique with different methods for
reachability computation and we will try to create an algorithm that provably
terminates for all robust inputs [9,15].
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Abstract. A recent automatic proof method for the region stability
of a hybrid system is based on the reachability analysis for a trans-
formed hybrid system with double dimensionality (the transformation
duplicates each of the continuous variables). We propose a new method
which composes the reachability analyses for a sequence of transformed
hybrid systems with essentially the same dimensionality (each transfor-
mation in the sequence duplicates one of the continuous variables). The
new method thus trades the double dimensionality for the number of
reachability analyses.

1 Introduction

Region stability is a correctness property for a hybrid system which expresses
that each trajectory of the hybrid system eventually reaches a time point such
that, from this time point on, the states of the trajectory remain in a specified
region [4,5,6]. This property can be expressed by the finiteness of certain snapshot
sequences of the hybrid system (certain sequences of states on a trajectory; the
snapshot states lie outside the region although states between the snapshots
lie possibly inside). The existing proof method for region stability computes a
representation of the snapshot sequences of the hybrid system via the reachability
analysis of a transformed hybrid system with double dimensionality [4,5,6]. This
duplication of the dimensionality of the hybrid system is a severe bottleneck of
the proof method.

We propose to split the computation of the representation of the snapshot se-
quences of the system. We sequentially compute parts of the snapshot sequences,
that is sequences of snapshots of only one continuous variable. If we can prove
that one of these partial snapshot sequences are finite (by proving that the binary
reachability relation between the snapshots is well-founded, using an automatic
tool like RankFinder [7]), we can conclude that the system is stable. If no, we
continue by computing partial snapshot sequences for other variable, combine
the results of the two analysis, and try again to prove the finiteness of the snap-
shots sequences, now made out of two variables. We continue this procedure until
either the stability could be proven (as consequence of well-foundedness of a bi-
nary reachability relation between some partial snapshots), or we have computed
the partial snapshot sequences for all continuous variables of the hybrid system.

U. Fahrenberg and S. Tripakis (Eds.): FORMATS 2011, LNCS 6919, pp. 286–300, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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The conjunction of all partial snapshot sequences describes the same snapshot
sequences as delivered by the analysis of the system with double dimensionality.

In [2], the authors present a method to incorporate the result of a first analysis
(of an abstraction of the original system), into a second analysis (of another
abstraction of the same original system). Our present work differs in that it
decomposes the reachability analysis inside the stability proof method itself,
and obtains the same result as the monolithic analysis.

In summary, we present a new method to reduce the computational effort
needed for the stability proof. We propose to compose the results of a sequence
of analyses of hybrid systems obtained each by incrementing the number of
variables by just 1. We thus trade the dimension explosion for the complexity of
the composition of the stability proofs.

2 Motivation

In this section we will illustrate the idea of the present work on the basis of
a simple example. In Figure 1 we have an hybrid system with two continuous
variables, x and y, and two locations, �1 and �2. The system is stable wrt. region
x ≤ 0, that is, each trajectory eventually reaches the region x ≤ 0 and remains
there forever. If we want to prove stability following the method from [5], we
will compute a representation of the snapshot sequences of the system, that is,
a binary reachability relation between pair of states along the same trajectories,
and try to prove well-foundedness for it. The well-foundedness of the binary
reachability relation implies then finiteness of the snapshot sequences and thus
stability [5]. The binary reachability relation is computed by reachability analysis
of a transformed system which duplicates all continuous variables. In the case of
the system from Figure 1, we observe that the behavior and the constraints on
y do not influence the evolution of x, and thus are not relevant for the stability
property. In such a case it is enough to compute the binary reachability relation
between the x-snapshots (that is, the values of the variable x) along a trajectory.
To compute the representation of the binary reachability relation we can use
a reachability tool like PHAVer [3], and we obtain a symbolic representation
of the reachable states, as are the constraints from (1). The variables d and
flag are auxiliary variables needed for the generation of snapshot sequences.
Variable d is an auxiliary clock variable which ensures that there is at least
δ time distance between the snapshots (in our examples δ is set to 1

100 ). The
atomic propositions of the form flag == �k

i , k ∈ {1, 2, 3, 4}, describe the type
of snapshot sequence being generated: flag == �1

i will denote a sequence of
snapshots on monotone ascending flows of the location �i, flag == �2

i a sequence
of snapshots on monotone descending flows of the location �i, flag == �3

i a
sequence of extremal snapshots in the location �i, and flag == �4

i a sequence
of entry points for the location �i, that is, points just after a discrete jump
happened. In Section 5 we describe in more detail the differe

The x-snapshot sequences for the system depicted in Figure 1, computed
while taking into consideration the evolution of variable y, are described by the
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x≥0

y≥0
��

�1
ẋ = −1
ẏ = −1
y ≥ 0 true

��

�2
ẋ = −1
ẏ = 0
true

true

��

Fig. 1. Example of a hybrid system with two continuous variables, x and y. The system
is stable with respect to x ≤ 0. For the stability proof it is enough to show the well-
foundedness of x-snapshot sequences, if their representation is computed taking into
consideration the evolution of the variable y, too.

constraints from (1). We observe that each constraint of the disjunction describes
a well-founded relation in �x and x. The variable �x denotes the old value of x.

�x ≥ x + d ∧ y ≥ x ∧ 100d > 1 ∧ x > 0 ∧ flag == �4
2 ∨

�x ≥ x + d ∧ 100d > 1 ∧ y + d ≥ �x ∧ x > 0 ∧ flag == �4
2 ∨

�x ≥ x + d ∧ y ≥ x + d ∧ 100d > 1 ∧ x > 0 ∧ flag == �4
1 ∨

x + d == �x ∧ 100�x > 100x + 1 ∧ y ≥ x ∧ x > 0 ∧ flag == �3
1 ∨

y + d == �x ∧ y ≥ x ∧ 100�x > 100y + 1 ∧ x > 0 ∧ flag == �4
2 ∨

x + d == �x ∧ 100�x > 100x + 1 ∧ y ≥ �x ∧ x > 0 ∧ flag == �2
2 ∨

x + d == �x ∧ x == y ∧ 100�x > 100x + 1 ∧ x > 0 ∧ flag == �3
1

(1)

The next step is to consider systems like presented in Figure 2. In location �1,
the evolution of x allows no useful reasoning for the stability proof. Indeed, if
we compute the relation between the x-snapshots, we will obtain the constraints
from (2). We observe that the second and the third disjunct describe a non
well-founded relation.

�x ≥ x + d ∧ 100d > 1 ∧ y ≥ 0 ∧ x > 0 ∧ flag == �4
1 ∨

�x ≥ x ∧ 100d > 1 ∧ y ≥ 0 ∧ x > 0 ∧ flag == �4
2 ∨

�x == x ∧ 100d > 1 ∧ y ≥ 0 ∧ x > 0 ∧ flag == �1
1 ∨

x + d ==� x ∧ 100�x > 100x + 1 ∧ y ≥ 0 ∧ x > 0 ∧ flag == �3
2

(2)

But, we can compute the binary reachability relation between the y-snapshot
sequences, too. These are described by the constraints from (3). Again, not all
constraints describe well-founded relations. But if we consider now the conjunc-
tion between the constraints from (2) and (3), conjunction which describes the
binary reachability relation between the snapshots of the original system (this
will be proved later in this paper), we obtain well-founded relations.

�y ≥ y ∧ 100d > 1 ∧ y ≥ 0 ∧ x > 0 ∧ flag == �4
1 ∨

�y ≥ y + d ∧ 100d > 1 ∧ y ≥ 0 ∧ y ≥ 0 ∧ x > 0 ∧ flag == �4
2 ∨

y + d ==� y ∧ 100�y > 100y + 1 ∧ y ≥ 0 ∧ x > 0 ∧ flag == �1
1 ∨

y ==� y ∧ 100d > 1 ∧ y ≥ 0 ∧ x > 0 ∧ flag == �3
2

(3)

Of course, we can follow the approach from [5] and directly compute the bi-
nary reachability by reachability analysis on the transformed hybrid system with
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x≥0

y≥0
��

�1
ẋ = 0
ẏ = −1
y ≥ 0 true

��

�2
ẋ = −1
ẏ = 0
true

true

��

Fig. 2. Example of a hybrid system with two continuous variables, x and y. The system
is stable with respect to x ≤ 0. For the stability proof both x-snapshot sequences and
y-snapshot sequences are needed.

double dimensionality. This analysis will return the constraints from (4). We
observe that these constraints describe the same snapshot sequences as the con-
straints from (2) and (3). The drawback is that the reachability analysis is done
on a hybrid system with 2n(+2n) variables. If we compute sequentially the x-
snapshot sequences like previously described in this section, the reachability
analysis is done on a system with n + 1(+2) continuous variables. In worst case
(as for the system from Figure 2), we carry out n reachability analysis on systems
of dimension n + 1(+2). In best case (as for the system from Figure 1), we do
reachability analysis for only one system with n + 1(+2) continuous variables.

�x ≥ x + d ∧ �y ≥ y ∧ 100d > 1 ∧ y ≥ 0 ∧ x > 0 ∧ flag == �4
1 ∨

x + d == �x ∧ 100�x > 100x + 1 ∧ �y ≥ y ∧ y ≥ 0 ∧ x > 0 ∧ flag == �4
1 ∨

�x ≥ x ∧ �y ≥ y + d ∧ 100d > 1 ∧ y ≥ 0 ∧ x > 0 ∧ flag == �4
2 ∨

y + d == �y ∧ �x ≥ x ∧ 100�y > 100y + 1 ∧ y ≥ 0 ∧ x > 0 ∧ flag == �4
2 ∨

y + d == �y ∧ x == �x ∧ 100�y > 100y + 1 ∧ y ≥ 0 ∧ x > 0 ∧ flag == �1
1 ∨

x + d == �x ∧ y == �y ∧ 100�x > 100x + 1 ∧ y >= 0 ∧ x > 0 ∧ flag == �3
2

(4)

3 Preliminaries

A hybrid system [1] is formally a tuple H = (Loc,V , Init , Rcont, Rdisc, Inv)
defining

• the finite set of locations Loc,
• the set of continuous variables V = {v1, . . . , vn},
• the initial condition, given by the constraint Init(�) for each location �,
• the continuous transition relation, given by the expression e = Rcont(�)(v)

for each continuous variable v and each location �; the expression e (in the
variables v1, . . . , vn) is used in the differential equation v̇ = e that defines
the flow of the continuous variable v in the location �,

• the discrete transition relation, given by a set Rdisc of transitions; a transition
is formally a tuple (�, g, ξ, �′) defining
• the source location � and the target location �′,
• the guard, given by a constraint g,
• the update, given by a (possibly empty) set ξ of assignments v := e of

expressions to continuous variables,
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• the invariant, given by the constraint Inv(�) for each location �.

Examples of a hybrid systems are given in Section 2.
A state of the hybrid system H is a tuple (�, x1, . . . , xn) consisting of a location

� in Loc and values of the continuous variables in V . A set of states is also called
a region. In what follows, we will consider only interval regions, i.e., regions
ϕ described through ϕ ≡ v ∈ [xmin, xmax], where v is a continuous variable
of the hybrid system and xmin and xmax are constants (including ±∞) with
xmin < xmax.

We now give the formal definition of the semantics of a hybrid system, in the
form of the set of its runs. We write T for the set of all continuous time points
which are denoted by non-negative real values, i.e., T = IR+

0 . A trajectory τ
assigns to every time point t in T a location and a valuation of the variables v
in V . Formally, a trajectory τ is a tuple

τ = (�̂, v̂1, . . . , v̂n)

of functions �̂ : T → Loc (for the current location) and v̂ : T → IR (for the
current value of the variable v in V ), such that there exists an infinite sequence
of switching time points,

(ti)i∈ω ∈ T ω

which starts in 0 and is strictly increasing, i.e., t0 = 0 and ti < ti+1, such that
the following five conditions hold:

• “non-zenoness”
∀t ∈ T ∃i : t ≤ ti (5)

• “switching time”
∀i ∀t ∈ [ti, ti+1) : �̂(t) = �̂(τi) (6)

• “continuous evolution”

∀v ∈ V ∀i ∀t ∈ [ti, ti+1) :
d

dt
v̂(t) = e[v̂1, . . . , v̂n](t) (7)

where e = Rcont(�)(v) with � = �̂(ti),
• “invariants”

∀i ∀t ∈ [ti, ti+1) : (v̂1(t), . . . , v̂n(t)) |= Inv(�) (8)

where � = �̂(ti),
• “discrete transition firing”

∀i ∃ (�, g, ξ, �′) ∈ Rdisc :
�̂ (ti) = �

�̂ (ti+1) = �′

∃ σ : V → IR ∀v ∈ V :
σ(v) = lim

u→ti+1
v̂(u)

σ |= g

v̂(ti+1) =
{

σ(e), if v := e ∈ ξ
σ(v), otherwise.

(9)
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Condition (5) states that we do not allow Zeno behavior. The time sequence
(ti)i∈ω identifies the time points where location switches may occur, which is
expressed in Condition (6). Only at those points discrete transitions may be
taken. Condition (7) expresses that the dynamics of the continuous variables
obeys their respective differential equations. Condition (8) requires that for each
location the valuation of continuous variables satisfies the local invariant while
staying in that location. Condition (9) expresses that whenever a discrete tran-
sition is taken, variables may be assigned new values, obtained by evaluating the
right-hand side of the respective assignment using the previous values of vari-
ables. If there is no such assignment, the variable maintains its previous value,
which is determined by taking the limit of the trajectory of the variable as t
converges to the switching time ti+1.

A hybrid system is stable with respect to a region ϕ if for every trajectory τ
there exists a point in time tτ such that from then on, the trajectory is always
in the region ϕ.

∀ τ ∃tτ ∀t > tτ : τ(t) ∈ ϕ

For a given hybrid system H and a region ϕ, a snapshot sequence is defined like
follows.

A snapshot sequence
s0, s1, s2, . . .

is a sequence of states such that

(i) ∃τ ∀i ∃ti : si = τ(ti),
(ii) ∀i : si /∈ ϕ,
(iii) ∃δ > 0 ∀i : ti+1 − ti > δ.

A snapshot is thus a state of the hybrid system which does not lie in the region
ϕ.

Definition 1 (vi-Snapshot Sequence). The projection of a snapshot on the
first component (stays for the discrete location) and the i-th variable vi, is called
a vi-snapshot.

If we consider the projection on the first component and the i-th variable of
each state of a snapshot sequence, we obtain a sequence

(�0, x
0
i ), (�1, x

1
i ), (�2, x

2
i ), . . .

called a vi-snapshot sequence.

In the remainder of this paper, we will distinguish between three different types of
snapshot sequences [5]. A snapshot sequence on monotonic flow is the discretiza-
tion of a monotonic trajectory without jumps. Sequences of extremal points are
sequences of points at which a trajectory changes its monotonicity behavior
during a continuous flow. Sequences of entry-points are made of points just af-
ter a discrete jump happened. These three kinds of snapshot sequences can be
naturally extended to the notion of vi-snapshot sequences by considering the
projection of the snapshot sequence on the variable vi.
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4 Complexity Reduction for Stability Proof

First, we recall the sound and complete stability proof method presented in [5].

Theorem 1 ([5]). A hybrid system H is stable with respect to the region ϕ if
and only if the following three conditions hold altogether.

(1) There is no infinite snapshot sequence such that
(i) no entry points lies between two states of the sequence and
(ii) no extremal-point lies between two states of the sequence.

(2) There is no infinite snapshot sequence such that all states of the sequence
are extremal points.

(3) There is no infinite snapshot sequence such that all states of the sequence
are entry-points.

Once this sound and complete result was established, the challenge is to first
compute a representation of the sequences of snapshot sequences, and second,
prove their finiteness. In [5], the computation of an effective representation of the
set of the snapshot sequences is done via reachability analysis of a transformation
T (H) of the hybrid system H. Since this transformation duplicates all continuous
variables of H, the analysis of T (H), and thus the computation of the set of
snapshot sequences, becomes difficult even for low dimensions of H.

It is trivial to observe that the finiteness of snapshot sequences is equivalent
to the finiteness of v-snapshot sequences, since this property remains unchanged
under the projection.

Remark 1. A hybrid system H is stable with respect to the region ϕ if and only
if the following three conditions hold altogether.

(1) There is no v ∈ V and there is no infinite v-snapshot sequence, such that
(i) no entry points lies between two states of the sequence and
(ii) no extremal-point lies between two states of the sequence.

(2) There is no v ∈ V and there is no infinite v-snapshot sequence such that all
states of the sequence are extremal points.

(3) There is no v ∈ V and there is no infinite v-snapshot sequence such that all
states of the sequence are entry-points.

In this paper we exploit the equivalence between the finiteness of snapshot se-
quences and the finiteness of v-snapshot sequences. We show how to iteratively
compute v-snapshot sequences, duplicating only one continuous variable at a
time. We define a simplified system transformation, Tv(H), for each v ∈ V . We
then combine the different v-snapshot sequences such that, in worst case, we
reobtain the set of snapshot sequences of H. This procedure reduces the anal-
ysis of a 2n(+2)-dimensional hybrid system to, in worst case, n analyses of a
n + 1(+2)-dimensional hybrid systems.
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5 Compute Effective Representation of Snapshot
Sequences

In [5,8], it is shown that it suffices to prove the finiteness of three types of
snapshot sequences, since this is equivalent to the finiteness of the whole set of
snapshot sequences. These three types of snapshot sequences are mentioned at
the end of Section 3.

For the hybrid systems H and the region ϕ ≡ v ∈ [vmin, vmax], let vi ∈ V be
a variable of H. To compute a representation of the vi-snapshot sequences we
use a simplified version of the system transformation from [5,8]. We denote the
transformed system from [5,8] by T (H), and the system used to compute the
vi-snapshot sequences by Tvi(H), for vi ∈ V . The system Tvi(H) will be defined
later in this section.

Now, we recall the generation of the three types of snapshot sequences from
[5,8], and point out the differences we made to compute the vi-snapshot se-
quences.

Both systems T (H) and Tx(H) contain two auxiliary variables d and flag. The
variable d is a clock variables and assures that at least δ units of time elapsed
between two snapshots. The variable flag acts like a program counter and gives
information about the type of snapshot sequence being generated.

Each state of the system T (H) corresponds to a pair of states (�s, s) of H,
with s a tuple of the form s = (�, x1, . . . , xn). Whenever the state s is reachable
from the state �s in the original system, (�s, s) is reachable in the transformed
system. This property is referred as binary reachability to, i.e., a pair of states
(�s, s) is called binary reachable in a hybrid system H, if there exists a trajectory
τ of H such that

• �s is a state on τ at time point �t: �s = τ(�t);
• s is a state on τ at time point t: s = τ(t);
• �t < t.

This property of T (H) is achieved by sampling the trajectories of H. Technically,
this is realized by duplicating all continuous variables of H; we speak now about
old variables �v, and variables v. Initially, the variables �v and v behave similarly.
After the elapse of a discretization step δ and if the actual values of v do not
satisfy the region property, the old values �v are frozen, and only the variables
v continue evolving. After another passing of at least δ time units, and if again
the variables v do not lie in the region, the variables v are frozen. The pair of
states described by the valuations of the old variables �v and the variables v,
((��,� x1, . . . ,

� xn), (�, x1, . . . , xn)), are binary reachable in H.
The states of Tvi(H) will be of the form (�,� xi, x1, . . . , xn) with the prop-

erty that whenever ((��,� x1, . . . ,
� xn), (�, x1, . . . , xn)) is binary reachable in H,

(�,� xi, x1, . . . , xn) is reachable in Tvi(H).
The vi-snapshot pair (�xi, xi) is binary reachable in H, if there exists a pair

of states (�s, s) which is binary reachable in H and its projection on the i-th
component is (�xi, xi).
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Technically, we duplicate only the variable vi; we have now the new variable
�vi. Initially, the variables �vi and vi behave similarly. After the elapse of a
discretization step δ and if the actual values of the variables v do not satisfy the
region property, the old variable �vi is frozen, and only the unprimed variables
continue evolving. After another passing of at least δ time units, and if again
the variables v do not lie in the region, the unprimed variables are frozen, too.

Since we are interested only in three types of snapshot sequences, we infor-
mally describe how can we compute only these kinds of snapshots.

(vi-)Sequences of extremal points: For the generation of sequences of ex-
tremal points for a location, we must assure that each snapshot corresponds
to an extremal point of the trajectory of v (v is the variable occurring in
the region description). This can be done by doing the discretization inside
a location only when the derivative of v is 0.

(vi-)Snapshots on monotone flows: For the generation of snapshots on
monotone flows within a location, we must assure that each snapshot lies
on an descending or ascending part of a trajectory, and that no direction
change takes place in between. This can be done by testing the sign of the
derivative of v, and discretizing as long as the sign remains uchanged.

(vi)-Sequences of entry points: For the generation of sequences of entry
points for a location, we must assure that each snapshot, that is, each dis-
cretization of the trajectory, corresponds to a state just after a discrete jump.

We now give the formal definition of the system Tx(H), in the style of the
definition of T (H) [4].

Given a hybrid system

H = (Loc,V , Init , Rcont, Rdisc, Inv)

for which we want to prove stability with respect to the interval region

ϕ ≡ v ∈ [vmin, vmax] ,

the transformed system Tvi(H), vi ∈ V is given by

Locations: Each location �s of the original system corresponds to five locations
�0
s, . . . , �

4
s in the transformed system. We refer to the set of all locations from

�k
1 to �k

m as Lock,

Lock = {�k
1 , . . . , �

k
m} , k ∈ {0, 1, 2, 3, 4} .

In addition, the transformed system has two locations �init and �end. Alto-
gether, the set LocTvi of locations of the transformed system consists of the
following components:

LocTvi = {�init} ∪ Loc0 ∪ Loc1 ∪ Loc2 ∪ Loc3 ∪ Loc4 ∪ {�end}

Variables: The set V Txi of variables of the transformed system contains all
variables of V , the old vi, �vi, an additional variable flag, and the clock
variable d.

V Tvi = {�vi} ∪ V ∪ {flag, d}
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�x=x ∧ d:=0

flag:=�init

��

�init
˙�x = 0
ẋ = 0
ẏ = 0

ḋ = 0
true

x≥0

y≥0
��

�01
˙�x = 0
ẋ = 0
ẏ = −1

ḋ = 0
y ≥ 0

true

��

¬ϕ∧flag:=�42

��

¬ϕ ∧ ẋ==0 ∧ flag:=�31

��

�02
˙�x = −1
ẋ = −1
ẏ = 0

ḋ = 0
true

true

��

¬ϕ ∧ flag:=�41

��

¬ϕ ∧ ẋ<0 ∧ flag:=�22

		
�31

˙�x = 0
ẋ = 0
ẏ = −1

ḋ = 1
y ≥ 0

¬ϕ ∧ ẋ==0 ∧ d>δ





�41
˙�x = 0
ẋ = 0
ẏ = −1

ḋ = 1
y ≥ 0

true

��

flag==�42∧¬ϕ ∧ d>δ

��

�42
˙�x = 0

ẋ = −1
ẏ = 0

ḋ = 1
true

true

��

flag==�41∧¬ϕ ∧ d>δ

��

�22
˙�x = 0

ẋ = −1
ẏ = 0

ḋ = 1
ẋ < 0

¬ϕ ∧ ẋ<0 ∧ d>δ

��

�end
˙�x = 0
ẋ = 0
ẏ = 0

ḋ = 0
true

Fig. 3. System transformation Tx(H) for the computation of x-snapshot sequences for
the hybrid system depicted in Figure 2. The stable region is ϕ ≡ x ≤ 0.

Initial conditions: Initially, the variable �vi has the same value as vi, the values
of d and flag are set to 0 and �init, respectively; the system starts in the
location �init.

InitTvi (�init) ≡ �vi = vi ∧ d = 0 ∧ flag = �init

InitTvi (�) ≡ false ∀ � �= �init

Continuous Transition Relation: First, in the locations �init and �end the flow
of all continuous variables is 0.

Rcont
Tvi

(�init)(v) ≡ v̇ = 0, v ∈ V Tvi

Rcont
Tvi

(�end)(v) ≡ v̇ = 0, v ∈ V Tvi

In each location �0
s of Loc0, the flow of the variables v1, . . . , vn in the trans-

formed system is the same as the flow of v1, . . . , vn in the original system;
the variable �vi behaves exactly like its unprimed version, that is the flow of
�vi is equal to the flow of the original system after replacing the variable vi

by its pre-primed version �vi.
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Rcont
Tvi

(�0
s)(vj) ≡ Rcont

Tvi
(�0

s)(vj) , vj ∈ V

Rcont
Tvi

(�0
s)(

�vi) ≡ Rcont
Tvi

(�0
s)(vi)[�vi/vi]

In each location of Loc1 ∪ . . . ∪ Loc4 the value of the variable �vi is fixed,
i.e. its flow is constantly 0. The variables v1, . . . , vn continue evolving as
before. The flow of the the clock variable d is 1 and the variable flag remains
constant.

Rcont
Tvi

(�k
s)(�xi) ≡ ˙�vi = 0

Rcont
Tvi

(�k
s)(xj) ≡ Rcont(�s)(vj) , vj ∈ V

Rcont
Tvi

(�k
s)(d) ≡ ḋ = 1

Rcont
Tvi

(�k
s)(flag) ≡ ˙flag = 0

Discrete Transition Firing: A discrete transition is possible from the loca-
tion �init to any location �0

s of Loc0 if the initial condition of the location �s

of the original system H is fulfilled for the variables (v1, . . . , vn).

(�init, Init(�s), ∅, �0
s) ∈ Rdisc

Tvi

The second kind of discrete transitions are transitions between two loca-
tions of Loc0 and between two locations of Loc4, respectively. The condition
for a jump between the location �0

s and the location �0
t for the variables

(�vi, v1, . . . , vn) corresponds to the jump condition between the locations �s

and �t of the original system H for the variables (v1, . . . , vn). Similarly a
jump condition between the locations �4

s and �4
t of the transformed system

corresponds to the jump condition from location �s to �t.

(�0
s, g, ξ ∪ ξ[�vi/vi], �0

t ) ∈ Rdisc
Tvi

iff (�s, g, ξ, �t) ∈ Rdisc

(�4
s, g, ξ, �4

t ) ∈ Rdisc
Tvi

iff (�s, g, ξ, �t) ∈ Rdisc

To compute sequences on monotonic flows we allow jumps from �0
s ∈ Loc0 to

�1
s ∈ Loc1 (and to �2

s ∈ Loc2, respectively) if the first derivative of v is greater
than 0 (and less than 0, respectively) and if v does not lie in ϕ. During the
jump the value of flag is set to the label �1

s (and �2
s, respectively).

(�0
s, v̇ > 0 ∧ ¬ϕ, {flag := �1

s}, �1
s) ∈ Rdisc

Tvi

(�0
s, v̇ < 0 ∧ ¬ϕ, {flag := �2

s}, �2
s) ∈ Rdisc

Tvi

Similarly, the transformed system can take a jump from a location �0
s ∈ Loc0

to a location �3
s ∈ Loc3 if the first derivative of v is 0 and if v does not lie in

ϕ. During the jump the value of flag is set to the label �3
s.

(�0
s, v̇ = 0 ∧ ¬ϕ, {flag := �3

s}, �3
s) ∈ Rdisc

Tvi
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A jump from �1
s to �end (and from �2

s to �end, respectively) is possible if the
first derivative of v is greater than 0 (and less than 0, respectively), if v does
not lie in ϕ, and if if the system has at least spend time δ in the location �1

s

(and in �2
s, respectively).

(�1
s, v̇ > 0 ∧ ¬ϕ ∧ d > δ, ∅, �end) ∈ Rdisc

Tvi

(�2
s, v̇ < 0 ∧ ¬ϕ ∧ d > δ, ∅, �end) ∈ Rdisc

Tvi

Similarly, the transformed system can jump from �3
s to �end if the system has

at least spend time δ in the location �3
s, if the first derivative of v is 0, and

if v is not in ϕ.

(�3
s, v̇ = 0 ∧ ¬ϕ ∧ d > δ, ∅, �end) ∈ Rdisc

Tvi

For the computation of pairs of entry-points of the original system we need
a jump from a location �0

s ∈ Loc0 to a location �4
t ∈ Loc4 whenever the jump

condition between the locations �s and �t of the original system H is possible
but only if v is not in the region ϕ. During the jump the value of flag is set
to the label �4

t of the target location.

(�0
s, g ∧ ¬ϕ, ξ ∪ {flag := �4

t}, �4
t ) ∈ Rdisc

Tvi
iff (�s, g, ξ, �t) ∈ Rdisc

The transformed system can jump from �4
s ∈ Loc4 to �end if v is not in ϕ,

the value of flag is t, and the jump condition from �s to �t of the original
system H holds. Additionally we must guarantee the discretization width δ
(for δ > 0 constant). The condition flag = �4

t ensures that the denoted binary
relation represents sequences of entry-points such that all entry-points have
the same location �t.

(�4
s, g ∧ flag = �4

t ∧¬ϕ ∧ d > δ, ∅, �end) ∈ Rdisc
Tvi

iff (�s, g, ξ, �t) ∈ Rdisc

Invariants: For the locations �init and �end the invariant condition is true.

InvTvi (�init) ≡ true
InvTvi (�end) ≡ true

For a location �0
s in Loc0 the invariant condition over �xi, x1, . . . , xn, flag, d

is the same as the invariant condition of the original system H for �s over
x1, . . . , xn.

InvTxi (�0
s) ≡ Inv(�s)

For a location �1
s ∈ Loc1 (and �2

s ∈ Loc2, respectively) the invariant condi-
tion over �vi, v1, . . . , vn, flag, d corresponds to the invariant condition of the
original system H for �s over v1, . . . , vn in addition to the condition v̇ > 0
(and v̇ < 0, respectively).

InvTvi (�1
s) ≡ Inv(�s) ∧ v̇ > 0

InvTvi (�2
s) ≡ Inv(�s) ∧ v̇ < 0
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For a location �3
s ∈ Loc3 or �4

s ∈ Loc4 the invariant condition over
�vi, v1, . . . , vn, flag, d is the same as the invariant condition of the original
system H for �s over v1, . . . , vn.

InvTvi (�3
s) ≡ Inv(�s)

InvTvi (�4
s) ≡ Inv(�s)

We say that a state s = (�, . . .) is reachable at �end in T (H) (in Tv(H), respec-
tively), if � = �end.

Figure 3 depicts the system transformation Tx(H) for the hybrid system from
Figure 2.

Lemma 1. The transformed systems T (H) and Tvi(H) generate the same se-
quences of vi-snapshots. Moreover, we have that

Reach(T (H)) ↓�end
={(�end,

� x1, . . . ,
� xn, x1, . . . , xn, d, �k), k ∈ {1, 2, 3, 4}, d >δ |

(�end,
� xi, x1, . . . , xn, d, �k) ∈ Reach(Tvi(H))}

Proof. The proof of the lemma follows from the construction of Tvi(H). By
definition, the evolution of the variables �vi, vi is the same in both systems T (H)
and Tvi(H). The guards of the discrete transition relation and the invariants are
all conditions in the unprimed variables v, so they do not change the switching
behavior of Tvi(H). �

The reachable set at �end in Tvi(H) describes the binary reachability relation
between the vi-snapshots of the original system H, result stated in the lemma
bellow.

Lemma 2. A pair ((�,� xi), (�, xi)) of vi-snapshots is binary reachable in H iff
there exists a state s̃ reachable at �end in Tvi(H) such that s̃=(�end,

� xi, . . . , xi, . . . ,
�k), with k ∈ {1, 2, 3, 4}.

Proof. The proof of the lemma follows from Lemma 1 and the results established
in [5,8].

The pair ((�,� xi), (�, xi)) is binary reachable in H iff there exists a pair of
states of H, (�s, s) = ((�,� x1, . . . ,

� xn), (�, x1, . . . , xn)), such that s is reachable
from �s in H, and �s and s does not lie in the region ϕ.

From [4,5,8], we know that the reachability relation of T (H) is the binary
reachability relation between the snapshots of H. This means that the state
(�end,

� x1, . . . ,
� xn, x1, . . . xn, d, �k), k ∈ {1, 2, 3, 4}, d > δ, is reachable at �end in

T (H). From Lemma 1, we have that s̃ = (�end,
� xi, x1, . . . xn, d, �k) is reachable

at �end in Tvi(H), too. �

In [4], a soundness result is established between the well-foundedness of the
reachability relation of T (H) and the region stability property of H. More ex-
actly, the well-foundedness of the binary reachability relation of H (that is, the
reachability relation of T (H)) implies region stability. From Lemma 2, we have
the same soundness result for the conjunction of the reachability relations of
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the systems Txi(H). Moreover, we observe that the well-foundedness of a single
relation of Reach(Tvi (H)) is a stronger condition for region stability, since it
implies the well-foundedness of Reach(T (H)) and so the region stability of H.
This observation is summarized by the following lemma.

Lemma 3. If there exists an vi ∈ V such that the relations describing the vi-
snapshot sequences are well-founded, then the hybrid system H is stable wrt. ϕ.

Algorithm 1. Input: Hybrid system H and ϕ Output: ‘H is stable wrt to ϕ’
or ‘stability unknown’
1: S ← ∅
2: for � ∈ Loc do
3: for k = 1 to 4 do
4: ckl ← true
5: end for
6: end for
7: repeat
8: chose vi from V \ S
9: S ← S ∪ {vi}

10: Build Tvi (H); Caux ← Reach(Tvi(H))
11: if Caux is disjunctive well-founded then
12: return H is stable wrt. ϕ
13: end if
14: for each ckl , ckl not disjunctive well-founded, do
15: ckl ← ck� ∧ Caux

16: end for
17: until V \ S = ∅ or exists a not well-founded ckl
18: if for all � ∈ Loc, k = 1, 4, ckl is disjunctive well-founded then
19: return H is stable wrt. ϕ
20: else
21: return stability unknown
22: end if

Our approach to prove stability of H wrt. to a region x ∈ [xmin, xmax] is
summarized in Algorithm 1. We denote by ck

� , � ∈ Loc, k ∈ {1, 2, 3, 4}, the con-
straints describing the different types of snapshot sequences for the location �.
At the beginning all these constraints are true. Our goal is to prove by itera-
tive computation of vi-snapshot sequences that each such constraint describes a
disjunctive well-founded relation. Let C =

∨
�∈Loc

∨
k=1,4 ck

� .
We first start by choosing a variable vi from V and construct the transformed

hybrid system Tvi(H). A reachability tool like PHAVer [3] delivers a symbolic
representation of Reach(Tvi(H)) of the reachability set in form of a disjunction
of conjunctions of constraints over the variables of Tvi(H). If Reach(Tvi(H)) is
disjunctive well-founded (property which can be checked using automated tools
like [7]), then the system is stable by Lemma 3 (such a case is the hybrid system
from Figure 1; the x-snapshot sequences suffices to prove stability wrt. x ≤ 0).
If this is not the case, let C := C ∧ Reach(Tvi(H)). Now, if C is a disjunctive
well-founded (in ((�v1, . . . ,

� vi), (v1, . . . , vi))), then we can stop with the answer
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‘systems is stable’. If no, we continue by choosing a new variable vi+1 from V ,
and repeat the procedure. For the systems from Figure 2, we need to compute
both Reach(Tx(H)) and Reach(Ty(H)) and to build the conjunction between the
two sets of partial snapshots.

The algorithm stops if either the system is stable (that is, C is a disjunction
of well-founded relations), or there there is no new variable in V to be chosen.
In the last case, the answer will be ‘stability unknown’.

6 Conclusion

In this paper, we have presented a new method to compute and combine parts
of snapshot sequences of a hybrid system. We have obtained an approach where
one can incorporate the results of at most n reachability analyses, and thus avoid
the analysis of a hybrid system with double dimensionality.

Our approach is applicable to all classes of hybrid systems. The computation
of the representation of snapshot sequences is restricted to class of systems which
can be handled by the reachability tool (like for example PHAVer [3]).
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Abstract. In the context of a hybrid process calculus, we present a
formal discretization procedure that abstracts a class of hybrid systems
to simply timed systems while preserving observational congruence. The
resulting term is not completely discrete because the temporal synchro-
nization between concurrent hybrid processes needs to be maintained. In
this paper, we (i) define the hybrid process calculus HCCS as a suitable
minimalistic extension of CCS [18] , (ii) study its metatheory including
an important connection between behavioural congruence and zenoness,
(iii) state and prove properties that are required for a rigorous analysis
of discretization, and (iv) apply our methodology to prove a hybrid tank
system correct.

Keywords: Timed Process Calculi, Discretization, Hybrid Systems.

1 Introduction

A hybrid system is, from our perspective of modeling embedded systems, the
combination of discrete algorithms with a continuous environment and consists
of (i) a controller, modeled by a discrete algorithm, and (ii) an environment,
modeled by differential equations (DEs). The controller is activated upon sched-
uled timeouts or events issued by the environment, it reads part of the status of
the environment, applies a control strategy, and modifies the set of DEs of the
environment to some extent (depending on the formalism) before hibernating.

The complexity of hybrid systems stems from the undecidability of the halt-
ing problem and the intractability of arbitrary DEs (both problems are inher-
ited from their respective domain). Although semi-deciders (e.g., HyTech[15],
HyperTech[16], HySAT[12]) and automatic theorem provers (e.g., for the dif-
ferential dynamic logic dL over nonparallel hybrid programs[20]) have been
constructed, a theory for the rigorous verification of hybrid systems is called
for: where automation fails, the software technician and a strong set of formal
methodologies focused on user interaction for all reasonable selections of features
of hybrid systems are indispensable.

In this paper we propose a behavior-preserving transformation (called dis-
cretization) to replace continuous steps by simple delays (for maintaining inter-
process synchronization) and assignments (for preserving the observability of
the environment by the controller1) to facilitate purely algebraic, thus rigorous
1 Further discussed in the explanation of the rule CTermB on page 307.
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(even formal), analysis. The transformation is (i) oblivious to an exchange of the
expression languages that describe the DEs (up to solvability of the described
DEs), (ii) an endomorphism preserving the term constructors, (iii) non-shallow
in the sense that after discretization any reachable process has no derivation
containing nontrivial CTs (continuous trajectories) (because only simple delays
remain in the process after discretization), and (iv) not introducing infinite
branching. The term discretization is reasonable, since, although the derived
process contains realtime aspects, the complexity of its temporal behavior is
negligible compared to hybrid systems.

The soundness of the approach (i.e., the behavior-preservation) is formalized
by comparing the discretized term with its shallow (also termed semantic) dis-
cretization in any context using a reasonable notion of weak congruence. As we
perform shallow abstraction by simple hiding of continuous behavior without
any internal modification of the term, it is natural that the comparison with the
shallow abstraction provides a rigorous and adequate measure for the goodness
of syntactic discretization.

The discretization is valuable since (i) from our perspective, any formal verifi-
cation would usually proceed along the lines of the construction of the syntactic
discretization of this paper, that is, the elimination of the complex hybrid be-
haviour from the systems description to identify the durations and intermediate
values of the trajectories observable from the hybrid system. Thus, the applica-
tion of the discretization procedure is no additional overhead to the verification
task. Furthermore, the major problem (aside from handling the discrete con-
troller) consists in the exploration of possible continuous steps, which becomes
trivial after discretization. Thus, our main contribution is the separation of the
concerns (a) analysis of the CTs and (b) the correctness of the problem at hand.
This separation can best be understood through the inspection of the proof of
Theorem 6.1. (ii) the specification of reachability problems is facilitated. With-
out the presented methodology it is not possible to specify a reachability problem
using reasonable structural notions of behavioral congruence, since (a) if shallow
abstraction is used in the wrapper, then it is not possible to state properties
about valuations intermediately traversed by the environment because it is pre-
cisely this information that is lost by the shallow abstraction and (b) if shallow
abstraction is avoided in the wrapper, then the specification has to comprise a
congruent temporal behavior that is also to be avoided for keeping the speci-
fication as simple as possible. One way to solve this problem is by using code
annotations as follows: (a) the formal discretization derives the set of interme-
diately traversed valuations and (b) these valuations may be exposed to the
environment by introducing an additional output prefix into the continuation of
the CP (continuous prefix). Aside from the observability of this special action,
the observational behavior of the closed loop system is unchanged. For example,
this method facilitates the execution of a failure-exposing step whenever a bad
state has been reached. From the perspective of control engineers the primary ob-
ject of investigation is the continuous behavior of the system (as a set of traces)
while the switching algorithms are understood as interruptions of the regular
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behavior. Our perspective is quite contrary: the CTs are intermediate calcula-
tions between two executions of the controller. The structure of the paper is as
follows: The Sections 2, 3, and 4 introduce syntax, semantics, and the behavioral
congruence of HCCS, Section 5 contains the discretization and our main proper-
ties thereof, Section 6 contains a case study exemplifying the methodology, and
Section 7 concludes the paper with discussion about related and future work.

2 Syntax

In this section, we introduce the syntax of the process calculus HCCS, assuming
that the reader is familiar with the widely used and well-known CCS [18] . The
calculus is an extension of Value Passing CCS with value comparison ([v = n ] .P )
and calculation ([ �x�f(�v) ] . P ) by two operators for continuous behavior as
follows. The hiding operator (ς x)P for the continuous variable x is neutral for
discrete steps but removes x from any CT that is generated by P . Thus, the
variable x is hidden and not observable from the context in which (ς x) P is
executed; the other variables of a CT are not modified, thus the valuations of x
may be deduced in some cases from the other observable valuations which are
not removed from the CT. The operator describing CTs [ α1 | φ | α2 | Q ] . P
contains five subterms: (i) the continuation term P is executed when the CP
has reached completion without being aborted (the process P has access to the
final valuation of the executed CT), (ii) the abortion process Q may communicate
with a process evolving in parallel to Q′ resulting in an abortion of the CP which
is subsequently replaced by the Q′, (iii) the assertion term α1 defines the initial
condition for the described CTs, (iv) the flow term φ defines the flow condition
for the described CTs, and (v) the termination term α2 holds precisely at the
final time point of any derived CT. Thus, every generated CT is terminated and
has therefore a finite length.

Definition 2.1 (Processes). The sets of processes P (P, Q, . . . ) and summa-
tions (M, N, . . . ) are generated as follows:

P � P |P (ν a)P (ς x)P a〈�v〉 .P !P 0 M

[�x�f(�v) ] .P [v = n ] .P [α | φ | α | P ] .P

M �M + M a(�x) .P

The set of pre-post-assertions A (α, . . . ) contains finite sequences of equalities
of the form x = v. The set of flows F (φ, . . . ) contains finite sequences of
equalities of the form ẋ = v. A variable x is defined with definition y iff the
unique contained equality x = z resp. ẋ = z satisfies y = z2. The set of values
V (r, . . . ) contains real numbers and sets of real numbers. The set of variables
X (x, y, z, . . . ) contains variables that may be substituted by values3. Finally, we
2 E.g., x is defined with definition y in ẋ = y but not in ẋ′ = y (if x = x′) or
ẋ = y, ẋ = y′ (if y = y′).

3 Variables on the left side of = in assertion and flow terms are termed continuous
variables and are only affected by alpha renaming substitutions.
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are using the set of extended values V+ � V ∪X (v, w, . . . ), the set of names N
(a, b, c, . . . ), natural numbers n, and total functions f on values.

For presentation purposes, the terms for pre-post-assertions and flows are quite
restricted. However, more complex hybrid systems can be used by simply re-
placing the expression language for these terms, e.g., by allowing inequalities for
assertions x ≤ 10 and linear flow terms ẋ = r y.

Substitution of variables, and the sets of free names, bound names, variables,
continuous variables, and recursion variables of terms are defined straightfor-
ward: (ν a)P is a binder for names, (ς x)P is a binder for continuous variables,
and [�x�f(�v) ] .P and a(�x) .P are binders for arbitrary variables.

Remark 2.2 (Notation). Aside from the standard notations for (i) omission of
trailing . 0, (ii) omission of empty parameter lists, (iii) nested restrictions,
and (iv) nested hiding, we use shortcuts for: (i) delayed abortable processes4:
[ δ
Q ] . P � (ς t) [ t = 0 | ṫ = 1 | t = δ | Q ] . P , (ii) delayed processes:
[δ ] .P � [δ
0 ] .P , (iii) full hiding �P � (ς fv(P ))P where fv(·) is assumed to
return a (finite) ordered sequence of the free continuous variables contained in
P , (iv) complex comparisons [f(�x) ] .P � [ b�f(�x) ] . [ b = 1 ] .P where b is fresh,
and (v) assuming recursion variables ranging over X, Y as process terms we can
use recursion by encoding it using replication: (μX)P � (ν a) (a | !a.{a/X}P )

We conclude our definition of the syntactic elements of the calculus by straight-
forwardly defining process contexts, including prefixes and summations.

Definition 2.3 (Process Contexts). The set of process contexts C, ranging
over C is generated by replacing a single subprocess of a process P ∈ P with [·].

For example, the following important variants of control and systems can be
modeled: (i) clock based systems (by using [ δ ] . P and [ δ
Q ] . P ). (ii) event
based systems (by expressing the event conditions in the termination condition
of a CP), and (iii) systems where the evolution of a variable x depends on
multiple components (by aborting and restarting the actual evolution of x with
the updated flow whenever one of the influencing systems modifies its influence
on the flow). Note, as for many CCS-like calculi, the HCCS processes contain
the state of the whole system including the DEs and state of the enviroment of
a modelled controller.

3 Semantics

In this section we introduce CTs along with essential combinators and compara-
tors on them. In contrast to the usual habit for nonhybrid process calculi, some
of our labels (the CTs) are not defined purely syntactically. We justify the usage
of nonsyntactic labels (which seems unfavorable for syntax oriented formalism
as this process calculus) for CTs by the additional expected overhead for the
following definitions when using solely syntactical means.
4 The variable t is assumed to be only used for simple delays.
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The following rather generic definition of strings and some operations on them
is required for our further presentation.

Definition 3.1 (Finite/Infinite Discrete/Continuous Strings). For A ∈
{N, R≥0 } the set of all strings over B with index set A are given by AB �
{ f : A ⇀ B | ∀t ∈ supp(f), t′ < t . t′ ∈ supp(f) } (set of partial functions with
leftclosed or empty support). For n ∈ supp(f), f(n) is the element with index n.
The duration dur(f) of f is the supremum of its support supp(f) over A∪{∞}.
A string f is empty (denoted f = λ) iff supp(f) = ∅. A string f is bounded iff
supp(f) �= A. A nonempty string f : NB has a first element head(f) = f(0).
A bounded nonempty string f : NB has a tail string tail(f)(n) = f(n + 1)
(for n < max(supp(f))), and a last element last(f) = f(max(supp(f))). If
f1 : NB is a bounded string and f2 : NB is a string, then their ordinary
sequential concatenation is f1f2 = h : NB iff f1 = f2 = h = λ or

h(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f2(n) , f1 = λ �= f2 ∧ n ≤ max(supp(f2))
f1(n) , f1 �= λ = f2 ∧ n ≤ max(supp(f1))
f1(n) , f1, f2 �= λ ∧ n ≤ max(supp(f1))

f2(n − max(supp(f1))) − 1) ,

⎧⎪⎨⎪⎩
f1, f2 �= λ

∧ max(supp(f1)) < n

∧ n ≤ max(supp(f2))

and the non duplicating sequential concatenation f1 ( f2 = g : NB iff where

g =

{
f1 tail(f2) , last(f1) = first(f2)
f1f2 , else

A CT describes the evolution of (some of) the continuous variables over (some)
fragment of time5. Since continuous variables may jump during instantaneous
switching (successive CTs are concatenated6), a single variable may have multi-
ple values at a single point in time; as usual, all such time-identical values are
represented as a trace of countable length.

Definition 3.2 (Continuous Trajectory). A map ξ : R≥0(X →(NR))
is a CT iff (i) ξ �= λ, (ii) supX (ξ) � { x ∈ X | ∃t ∈ supp(ξ) . ξ(t)(x) �= λ }
(the set of variables that ξ mentions) is finite, and (iii) for any t ∈ supp(ξ):
dur(ξ(t)(x)) �= ∞. Ξ is the set of all CTs.

We continue with some basic definitions about CTs.

Definition 3.3 (Empty CT). The set Ξ∅ = { ξ ∈ Ξ | supX (ξ) = ∅ }
contains all variable free CTs. ξr

∅ ∈ Ξ∅ is the unique CT with dur(ξ) = r and
greatest support.

5 A single step generates CTs of finite duration but sequential CTs may add up to
infinite duration.

6 Concatenation takes place in the 4th rule in Figure 2.
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Definition 3.4 (Final Valuation of CTs). The final valuation final(ξ) :
X ⇀R of a CT ξ satisfies (i) supp(final(ξ)) = supX (ξ) and (ii) for any x ∈
supX (ξ): final(ξ)(x) = last(ξ(t)(x)) = ξ(t)(x)(max(supp(ξ(t)(x)))) s.t. there is
no t′ > t satisfying ξ(t′)(x) �= λ.

Remark 3.5. The t in the last definition is not necessarily identical for each x:
A variable has a last value even if it is not used throughout the evolution of the
system but only duration a certain period.

Sequential composition of CTs is straightforward except for the join point where
for non-jumping continuous variables a replication of the last value is removed
to enable the invisibility of interruptions after concatenation of CTs.

Definition 3.6 (Sequential Composition of CTs). Let ξ1 and ξ2 be two
CTs. Their sequential composition ξ1; ξ2 is the CT ξ iff (i) dur(ξ) = dur(ξ1) +
dur(ξ2), (ii) dur(ξ1) �= ∞, (iii) ξ(t) = ξ1(t), if t < dur(ξ1), (iv) ξ(t) = ξ2(t −
dur(ξ1)), if t > dur(ξ1), and (v) for t = dur(ξ1) and any x: ξ(t)(x) = ξ1(t)(x)(
ξ2(0)(x). A CT ξ1 is a temporal extension of a CT ξ2 (written ξ1 ) ξ2) iff there
is a CT ξ3, s.t., ξ1 = ξ2; ξ3.

Remark 3.7. If the first CT has a nonterminating discrete behaviour (livelock or
zeno behaviour (cf. Definition 4.5)) at the last point in time (formally ξ1(t)(x)
is not finite), then the sequential composition ξ1; ξ2 is undefined.

Parallel composition of CTs can be defined to combine CTs according to com-
plex combinators as in HYPE [13]. Since these combinators are the subject of
our analysis (and are therefore supposed to be expressed within the terms) we
are simply using a simple union operation as composition operator for non-
conflicting CTs.

Definition 3.8 (Parallel Composition of CTs). Let ξ1 and ξ2 be two CTs.
Their parallel composition ξ1 ∪ ξ2 is ξ iff for t ∈ supp(ξ) and variables x ∈ X it
holds that (i) dur(ξ) = dur(ξ1) = dur(ξ2), (ii) ξ(t)(x) = ξ1(t)(x), if ξ1(t)(x) �= λ
and otherwise ξ(t)(x) = ξ2(t)(x), and (iii) ξ1(t)(x) �= ξ2(t)(x) then ξ1(t)(x) = λ
or ξ2(t)(x) = λ. A CT ξ1 is a variable extension of a CT ξ2 (written ξ1 > ξ2)
iff ξ1 ⊇ ξ2.

Remark 3.9. The parallel composition is associative, commutative, and for any
CT ξ the (empty) CT ξ

dur(ξ)
∅ is neutral. The sequential composition is associative

with neutral element ξ0
∅ (given the first CT has finite duration).

We now introduce maps for the translation of assertion (A) and flow (F) predi-
cates into set theoretic valuations and CTs.

Definition 3.10 (Semantics for Assertions, Flows, and CPs). The map
: A∪F ⇀(X ⇀R) returns the set theoretic valuations for A and F terms7.

The map : A×F ×A→ 2Ξ returns the set theoretic CTs described by a CP.
Their concrete definition is straightforward.
7 Partiality is due to possibly contradicting subterms.
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We are now all set to define the labels used in the semantics.

Definition 3.11 (Labels). LC = Ξ is the set of (unannotated) CTs ξ. LA
C

contains for ξ ∈ Ξ the annotated CTs 0�ξ and 1�ξ. The set LD, ranged over by
μ, contains the labels for input a(�v), output a〈�v〉, and unspecified interaction τ .
The set L, ranged over by κ, is the union of LC and LD.

In the maximal progress semantics of this calculus, the duration of a common
CT of multiple parallel processes is determined by the quickest process (i.e., the
process whose maximal active continuous step has the shortest duration among
all contained processes.) The annotation distinguishes between passive steps that
are restricted by some parallel process (annotation 0) and active steps which can
not be extended (annotation 1).

Finally, we present the definition of the LTS of the calculus.

Definition 3.12 (Labelled Transition System for HCCS). The semantics
of HCCS is given by the LTS (P ,L, ) where � ( ∪ ) ⊂ P×L×P,

⊂ P × LC × P, ⊂ P × LD × P, ⊂ P × LA
C × P are the smallest

relations satisfying the rules in Figure 1.

We omit any detailed discussion on the standard rules of the Value Passing CCS
fragment (rules Alpha through Asgn). Note that the semantics is “early”, which
implies that closed terms always evolve into closed terms and that the greedy
construction of continuous steps ensures that only the early input prevents the
transition system of being finitely branching. The other rules behave as follows:
(i) CNeut: every process that can not perform some discrete or active con-
tinuous step allows time to progress without restricting the possible behavior,
(ii) Conv: only steps of active CTs are transferred into the LTS, (iii) CAbort:
the abortion of the continuous evolution is possible when the abortion process
Q can communicate with the environment, however, zero length CTs can not be
aborted, (iv) CAbortP: the abortion process may perform internal computa-
tions, (v) CPass: a process can perform a passive step, if it can be extended to
an active step where the CT ξ of the passive step is created solely by the CP
in front of P , (vi) CTermA: multiple CPs may be consumed at once, CTs of
subsequently consumed CP are composed sequentially. The side-condition states
that ξ completes the CP in front of P , (vii) CTermB: the recursive greedy con-
struction by sequential composition of active CTs terminates if the subsequent
term can execute only the passive step generated by the CNeut rule where the
substitutions on P model that the controller measures the environment upon ac-
tivation, (viii) CJoin: two parallel terms may execute a CT if their individual
CTs can be composed according to Definition 3.8 and no τ step is immediately
available (it is certainly acceptable to have blocked inputs and outputs). The
resulting CTs are active iff at least one of the two CTs ξ1, ξ2 is active, i.e., if
max(k1, k2) = 1. The side condition requires that the CT of each passive step
can be extended to a CT of some active step, (ix) CRes1: abusing notation
all traces of the variable c (for any point in time) are removed from ξ, and
(x) CRes2: continuous restriction is neutral for discrete steps.
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Alpha
Q κ Q′

P κ Q′ P =α Q ASum1
P

μ
P ′

P + Q
μ
P ′

Inp
a(�x) .P

a(�v) {�v/�x}P

Out
a〈�v〉 .P a〈�v〉

P
{�v } ⊆ V Rep

P | !P μ
P ′

!P
μ
P ′

ARes
P κ P ′

(ν a)P κ (ν a)P ′ a /∈ names(κ) APar1
P

μ
P ′

P |Q μ
P ′ |Q

Com1
P

a(�v)
P ′ Q

a〈�v〉
Q′

P |Q τ
P ′ |Q′ Cond

P
μ
P ′

[v = n ] .P
μ
P ′ v = n

Asgn
{�w/�x}P μ

P ′

[�x�f(�v) ] .P
μ
P ′

{
f(�v) = �w
{�v } ⊂ V CNeut

∀ξ′ . P 1	ξ′ P  τ

P 0	ξ P
ξ ∈ Ξ∅

Conv
P 1	ξ P ′

P
ξ
P ′

CAbort
α1 Q

μ
Q′

[α1 | φ | α2 | Q ] .P
μ
Q′ ∃ξ ∈ α1, φ, α2 . dur(ξ) = 0, μ = τ

CAbortP
α1 Q

τ
Q′

[α1 | φ | α2 | Q ] .P
τ

[α1 | φ | α2 | Q′ ] .P
∃ξ ∈ α1, φ, α2 . dur(ξ) = 0

CPass
[α1 | φ | α2 | Q ] .P 1	ξ′′

[α1 | φ | α2 | Q ] .P 0	ξ [α′
1 | φ | α2 | Q ] .P

⎧⎨⎩
ξ′ ∈ α1, φ, α2

ξ � ξ′ � ξ′′

α′
1 = final(ξ)

CTermA
{final(ξ)(�x)/�x}P k	ξ′ P ′

[α1 | φ | α2 | Q ] .P k	ξ;ξ′ P ′

{
ξ ∈ α1, φ, α2

�x = supX (ξ)

CTermB
{final(ξ)(�x)/�x}P k	ξ′ P ′

[α1 | φ | α2 | Q ] .P 1	ξ {final(ξ)(�x)/�x}P

⎧⎨⎩
ξ ∈ α1, φ, α2

�x = supX (ξ)
k = 0 ∨ ξ′ /∈ Ξ∅

CJoin
P k1	ξ1 P ′ Q k2	ξ2 Q′ P |Q  τ

P |Q max(k1,k2)	ξ1∪ξ2 P ′ |Q′ max(k1, k2) = 1 ∨ P |Q 1	ξ

CRes1
P k	ξ P ′

(ς c)P
k	ξ[c �→undef]

(ς c)P ′ CRes2
P

μ
P ′

(ς c)P
μ

(ς c)P ′

Fig. 1. Rules for the construction of the strong LTS

P
μ
Q

P
μ
Q

P k	ξ Q

P
ξ
Q

P �ξ Q

P
ξ
Q

P
ξ1 ξ2 Q

P
ξ1;ξ2 Q P τ P

P
τ κ τ

Q

P κ Q

Fig. 2. Rules for the construction of the weak LTS
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4 Behavioral Congruence

This section covers a definition of weak congruence capable of handling contin-
uous evolutions and our congruence theorem.

The definition of weak steps comprises CTs from active steps, passive steps
(for the simulation of active steps), and CTs constructed by infinite sequen-
tial composition of CTs leading to the unique (up to strong bisimilarity) limit
process. The intermediate processes need to be reduced in size8 using strong
bisimilarity to reach a finite limit process.

Definition 4.1 (Weak Step). Let : P × L × P be the smallest relation
satisfying the rules in Figure 2.

Definition 4.2 (R (Bi)Simulation). A relation R ⊆ P×P is a R simulation
iff P R Q implies that
– if P

μ
P ′, then there is Q′ with (Q, μ, Q′) ∈ R and P ′ R Q′.

– if P
ξ

P ′, then there are Q′ and ξ′ > ξ with (Q, ξ′, Q′) ∈ R and P ′ R Q′.
R is a strong (weak) simulation iff R is a ( ) simulation.
R is a strong (weak) bisimulation iff R and R−1 are strong (weak) simulations.
Strong (weak) bisimilarity ∼ (≈) is the largest strong (weak) bisimulation.

Definition 4.3 (Limit Process). The limit process of P is {�vl/�x}Q with limit
CT ξ (denoted P �ξ {�vl/�x}Q) iff (i) Q is value free (i.e., no element of V is
contained), (ii) (ξi ∈ Ξ)i∈N are CTs, (iii) (Pi ∈ P)i∈N are value free processes,
(iv) (�vi)i∈N are vectors of values converging pointwise to �vl, (v) {�v0/�x}P0 = P ,
(vi) ∀n ∈ N . {�vn/�x}Pn

ξn ∼ {�vn+1/�x}Pn+1, and (vii) ξ = ξ0; ξ1; . . . .

We continue with the definition of weak steps which makes τ steps unobservable.
Note that non-trivial open terms9 may not have steps themselves and thus be

(weak) bisimilar to 0. When plugged into a context where the hole occurs in the
scope of binders, previously impossible steps become enabled. Thus, as usual,
weak bisimilarity is no full congruence. To achieve a full congruence property,
we refine weak bisimilarity by requiring closure under arbitrary substitutions.

Definition 4.4 (Weak Congruence). The relation ≈c ⊆ P ×P is defined by:
P ≈c Q iff for any substitution σ is holds that σP ≈ σQ.

Since discrete steps are instantaneous and the duration of continuous steps has no
lower bound (minimal dwell time) HCCS produces the same unrealistic modeling
artifact as in many other timed formalisms: zenoness. As usual, we consider a
process P to be zeno iff P can do an infinite number of steps in finite time.

Definition 4.5 (Zeno Process). A process P ∈ P is zeno iff there are two
sequences η1 : N→L and η2 : N→P s.t. (i) the sequences model an evo-
lution according to the HCCS semantics: ∀n ∈ N . η2(n) η1(n)

η2(n + 1),
8 Garbage collection of dead code such as [0 = 1] .P ∼ P and P |0 ∼ P .
9 A term is open (resp. closed) iff it has (resp. has not) free variables (which could be

replaced via an input).
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(ii) the evolution has P as its origin: η2(0) = P , and (iii) time converges:∑
n∈N dur(η1(n)) �= ∞ (where for any discrete label μ: dur(μ) = 0).

The definition of weak congruence is inadequate for zeno processes because it
lacks the means (i) to detect limit points (points in time to which time converges)
and (ii) to analyze the processes’ behavior after any reachable limit point.

Example 4.6 (Zenoness Breaks Congruence). Consider the zeno processes P0 �
(ν a) (!a | !a) and P1 � (ν a) (a〈1〉 | !a(x) . [x�x/2 ] . [x ] . ([x = 0 ] . b |a〈x〉)) with
zeno behavior. The weak congruences P0 ≈c 0 and P1 ≈c 0 are not preserved
by the context C � [ 1 ] . 0 | [·]. The process C[0] has the step labeled with ξ1

∅ .
This step can not be simulated by C[P0] because the process P0 is not capable
of doing any temporal step at all. The situation is different for the process C[P1]
which can simulate the step but the resulting term has a b〈〉 step which can not
be simulated by the continuation of C[0] after executing the ξ1

∅ step.

This example demonstrates that the absence of zenoness (including divergence)
must be verified separately to ensure the adequacy of ≈c. Nevertheless, excluding
zeno processes is sufficient to derive the following congruence property.

Theorem 4.7 (Weak Bisimilarity is a Congruence). For all contexts C ∈ C
and all nonzeno processes P, Q ∈ P, if P ≈c Q, then C[P ] ≈c C[Q].

Proof (Sketch). We exhibit a weak congruence containing the pair (C[P ], C[Q]):
≈̇� { (C[P1], C[P2] ) | nonzeno P1, P2 ∈ P , C ∈ C, P1 ≈c P2 } ∪ ≈c (on open
terms) and proof that it is contained in ≈c. The proof proceeds by case analysis
on the context C. The most demanding cases are (as expected) the continuous
steps with the contexts P | [·] and [α1 | φ | α2 | Q ] . [·]. ��

Sufficient (at best structural) conditions for nonzenoness are called for.

Proposition 4.8 (Nonzenoness). A process P is nonzeno, if in every of its
executions (i) infinitely many CTs with nonzero-duration occur and (ii) finitely
many values v are communicated.

Proposition 4.8 is satisfactory for P0 and P1 from Example 4.6 and the system
in the Toy Example in Section 6. The formal (in depth) treatment of this aspect
is beyond the scope of this paper.

5 Syntactic Discretization

Discretization simplifies the continuous behavior while preserving the observable
behavior to facilitate less complex proofs of relevant statements about the em-
bedded system or its controller. Shallow discretization, implemented in HCCS
via the operator �P , does not modify the internals of P , which therefore retains
its full complexity. Therefore shallow discretization is useless for verification pur-
poses. Nevertheless, we consider it to be an adequate benchmark for a syntactic
discretization: both notions should coincide.
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Example 5.1 (Discretization in a Small Action). Consider the hybrid process H
and its syntactic discretization D (where obvious simplifications have been exe-
cuted).

H � (ν a, e)(ς y)
{

a〈5〉 . [1 ] .e
| a(x) . [y = 1 | ẏ = 2 | y = x | e .ob〈y〉 ] .ob〈y〉

D � (ν a, e)(ς y)
{

a〈5〉 . [1 ] .e
| a(x) . [d�(x − 1)/2] . [d
[y�2 t + 1] .e .ob〈y〉 ] .ob〈x〉

This example demonstrates how free variables in the CP and abortions are han-
dled. Furthermore, it demonstrates how the obvious reasoning steps about H
are implemented by applying the discretization, i.e., verification of H would as
well require the calculation of the durations and final valuations.

After this introductory example, we give the definition of discretization which
replaces each CP with a temporal delay to preserve the temporal behaviour and
an assignment to retain the final values of the CT of the CP.

Definition 5.2 (Discretization). We define an operation : P ⇀P that
abstracts a (possibly continuous) process to a simply timed process. If two paral-
lel processes share common continuous variables the discretization is undefined.
The definition is homomorphic for all operations except CP, e.g., (ν a)P �
(ν a) P . The operation is now defined for the CP

[α1 | φ | α2 | Q ] .P �
compute delay [d�f(�v1, �v2, �v3) ] .

delay [d

flow abstraction [�x, �x◦�g(�v1, �v2, t) ] .

abortion Q ] .
flow abstraction [�x, �x◦�g(�v1, �v2, d) ] .

continuation P

where (i) variable for the duration: the fresh variable d is for storing the du-
ration of the CT, (ii) calculation of the duration: the function f : R∗→R
computes the minimal duration for which the abortion criterion α2 is satisfied:
f(�vi, �vr, �vt) � min({ dur(�vi,k, �vr,k, �vt,k) | 1 ≤ k ≤ |�vi| } ∪ { −1 | |�vi| = 0 })
where (a) dur(i, r, t) = (t − i)/r if r > 0 and t ≥ i or r < 0 and i ≥ t,
(b) dur(i, r, t) = 0 if r = 0 and i = t, and (c) dur(i, r, t) = −1 for all other
cases, (iii) flow variables: �x contains precisely the variables defined in α1 and
φ, (iv) duration determining parameters: �vi (�vr, �vt) contains for each x ∈ �x
for which x is defined in α2 the definition of x contained in α1 (φ, α2), and
(v) computation of postflow values: �x◦ is obtained from �x by adding ◦ to each
contained variable; g : R∗→R∗ × 2R∗ computes the final value and the set of
intermediate values for the variables that participate in the flow. g(�vi, �vr, d) com-
putes (a) for the k-th variable x from �x the value �vi,k + d �vr,k and (b) for the
k-th variable x◦ from �x◦ the value [�vi,k, �vi,k + d �vr,k] ∪ [�vi,k + d �vr,k, �vi,k].

Obviously the duration of a continuous step may depend on free variables whose
future replacement can not be determined statically (by the undecidability of
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the halting problem) as in Example 5.1. We term our syntactic discretization
complete since both functions f and g can be given in the explicit form of
Definition 5.2. Complex classes of DEs (i.e., classes in which DEs can not be
solved automatically) can be used using a different expression language. For
such expression languages the completeness of the discretization procedure is un-
achievable by the intractability of the expressed classes of DEs. However, even a
(partial) discretization using some incomplete discretization procedure could still
simplify the process. Even for these expression languages where the derivation of
durations can not be automated the duration can be approximated or manually
derived. Verified discretization procedures for more complex DEs are deferred
to future work. The partiality of our definition is solely due to parallel processes
with reachable conflicting CTs (i.e., reachable temporal deadlocks) which are
certainly implementation faults to be excluded. Our approach for prohibiting
parallel processes with intersecting continuous variables is an overapproxima-
tion of the set of deadlocking processes. The condition is statically decidable
and, as we believe, no restriction for real world applications. It merely enforces a
compositional implementation of the system using explicit rather than implicit
combination (as in [13]) of multiple influences.

Discretization restricts the observability to discrete steps and durations of
continuous steps. As already explained in the introduction, the abstracted infor-
mation can be recovered by standard code annotation techniques: the additional
variable y◦ for storing the intermediate values may be used in a unobstrusive
output in the continuation on a fresh name n by replacing the discretization

P of the continuation of the CP by P |a〈y◦〉 in the resulting process.
The following notion of continuous discrete equivalence relates processes P

and Q iff their semantic discretization cannot be distinguished by any context
w.r.t. weak congruence.

Definition 5.3 (CD-equivalence)
P +CD Q iff for all contexts C ∈ C: C[�P ] ≈c C[�Q].

The following theorem contains the major property of this section and states
that syntactical discretization coincides with the semantical abstraction w.r.t.
weak congruence.

Theorem 5.4 (Syntactic Discretization is Sound).
For all nonzeno P ∈ P: P ≈c �P .

Proof (Sketch). We exhibit a weak congruence (on open terms) relating syn-
tactic and semantic discretization: C = { ( P ,�P ) | nonzeno P ∈ P }∪≈c.
The proof of C ⊆ ≈c is straightforward except for the case of CP. There, it is
obvious that both terms have two types of steps (abortions and steps completing
the simple delay or the CP). By construction and careful analysis, the bisimula-
tion conditions are verified. ��
The intuition that syntactic discretization preserves behavior is captured as fol-
lows.
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Corollary 5.5 (Discretization is Sound).
For all nonzeno P ∈ P: P +CD P .

Proof (Sketch). By the congruence Theorem 4.7 and Theorem 5.4. ��

6 Toy Example

0l

100l
A tank with 100 l volume has a pump that either removes
10l/s from the tank or inserts 10 l/s into the tank. The goal
of the controller is that the tank is at about 50 l, is never
full/empty, and the valve is not switching too often. The
controller polls the tank with period 1s.

We proceed as follows: (a) we give a system process H : H generates an inter-
rupt for the controller, sending the current status of the tank; then it receives the
control signal from the controller; then 1 s elapses before the loop is restarted.
(b) we give a controller process C: C receives the current status of the tank;
according to the control strategy a control signal is sent to the system; finally
the loop is restarted. (c) we give the nonreachability specification as a discrete
(simply timed) process S: after a finite sequence of high/low signals the valve is
switched every three seconds (and no fault message occurs). (d) we obtain the
discretization D = H , and (e) prove that the closed loop system satisfies
the specification.

Theorem 6.1 (Adequate Control). For arbitrary r ∈ [0, 100] the closed loop
system is behaviorally congruent to the specification (which does not contain the
action fail ). Let σ = {r,⊥/x,p} and �n = up, down. Formally we state: σ(ν �n) �
(H |C) ≈c {r/x}S.

Proof (Sketch). σ(ν �n) � (H |C) ≈c σ(ν �n) H | C ≈c σ(ν �n) (D |C) ≈c

{r/x}S. The 1st step holds by Corollary 5.5. The 2nd step holds by applying our
syntactic discretization properly. The 3rd step needs to be shown by standard
analysis of simple timed systems. Since inter-process synchronization is absent
the contained delay is irrelevant. ��

7 Related Work and Future Work

Related Work: There are various formalisms for hybrid systems featuring differ-
ent aspects. Semantical formalisms as hybrid automata [14,17] and adhoc treat-
ment as in [19,11,10] are broadly accepted, yet non-operational for the modeling
of the controller (i.e., the control strategy is not contained in the model as an al-
gorithm). Some of HCCS’s most important characteristics are (a) the algebraic
analysis (to formally proof correspondence between specification and implemen-
tation as in Theorem 6.1): the calculi HyPA [8], χ [3], φ [23], ACPsrt

hs [5], HYPE,
and BHPC [6] have comparable capabilities, however, some of them have a huge
number of operators making the development of meta-theoretical results tough.
(b) the explicit algebraic handling of DEs (to enable the explicit transformation
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H: Hybrid System

H0 � (μX) ([x < 50] .up〈L〉 .H1) | ([x ≥ 50] .up〈H〉 .H1)

H1 � down(s) .H2

H2 �
{

[s = +] . [ t = 0 ∧ x = x | ṫ = 1 ∧ ẋ = 10 | t = 1 | 0 ] .H3

| [s = − ] . [ t = 0 ∧ x = x | ṫ = 1 ∧ ẋ = −10 | t = 1 | 0 ] .H3

H3 � ([x ∈ [0, 100] ] .X) |([x /∈ [0, 100] ] . fail)
C: Controller

C0 � (μX)up(c) .C1

C1 � ob〈c〉 .C2

C2 �
{

[p = H ∨ (p = ⊥∧ c = H) ] .down〈−〉 .C3

| [p = L ∨ (p = ⊥ ∧ c = L) ] .down〈+〉 .C3

C3 � [p�c ] .X
S: Specification

S � ([x < 50] . [n��(50 − x)/10� ] .SL) |([x ≥ 50] . [n�1 + �(x− 50)/10� ] .SH)

Sv � ob〈v〉 . [1 ] . [n�n− 1] .([n = 0] . [n, v�3, invertLH(v) ] .Sv) |([n > 0] .Sv)
D: Discretization of H (after garbage collection)

D0 � (μX) ([x < 50] .up〈L〉 .D1) |([x ≥ 50] .up〈H〉 .D1)

D1 � down(s) .D2

D2 � ([s = +] . [1 ] . [x�x+ 10] .D3) |([s = − ] . [1 ] . [x�x− 10] .D3)

D3 � ([x ∈ [0, 100] ] .X) | ([x /∈ [0, 100] ] . fail)

Fig. 3. A tank with its controller, specification and discretization

required for the discretization procedure): this is, to the best of our knowledge,
only straighforwardly available to a comparable degree in HyPA and ACPsrt

hs .
(c) the CCS based communication (which we believe to be more natural for
controller-internal communication than broadcast communication as in, e.g.,
BHPC, HyPA, ACPsrt

hs ): the formalisms χ and the CIF [26] also feature CCS based
communication for the same reasons as we, however, both formalisms happen to
be rather large-scale modelling formalisms trying to cover a wide range of—if not
all—hybrid systems, and (d) the greedy construction of continuous steps (to fa-
cilitate an almost finitely branching semantics simplifying the reasoning about
enabled steps greatly as explained before). HCCS, differently from φ, does not con-
tain mobility [18] because mobility is primarily important for distributed rather
than for embedded systems. Since none of the available calculi mentioned above
offered all features that are necessary for our work (mainly value passing, compu-
tation, and explicit algebraic handling of DEs) while still being reasonably small
to be able to proof the relevant meta-theorems with moderate effort we have cho-
sen to extend CCS with only two new operators to obtain a very small and suit-
able, yet comparably simple, calculus instead of extending some subset of, e.g.,
χ or the CIF. The calculus extends CCS by constructs for modeling CTs using
DEs and the realization of the greediness follows along the lines of CCSrt [7]. The
abortion of continuous flows is contained for a similar reason as the disrupt oper-
ator is contained in HyPA; there, the latter is used to terminate a prefix describ-
ing the current (non-terminating) continuous evolution. Some implications of zeno
behavior on bisimulation are also discussed in [9,8]. Decidability for various selec-
tions of features of hybrid systems is analysed in [2] where finite quotients of the
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hybrid systems are constructed w.r.t. LTL satisfaction equivalence.Deviating from
the former approach in [25] a simplifying quotienting technique (using predicate
abstraction and qualitative reasoning) is introduced. The resulting loss of infor-
mation is kept sufficiently small to establish certain safety results.

In [1] another discretization of hybrid systems is presented. However, they are
dealing with a modification of hybrid systems where the state variables are pe-
riodically sampled using digitization with finite precision and where the discrete
step is not instantaneous. In this quite different class of hybrid systems, reachabil-
ity is decidable and the sequences of states and actions are regular and the corre-
sponding finite automata can be effectively constructed. In [21] the hybrid system
is simplified by abstracting the continuous behavior replacing flows with flow in-
clusions and implementing the abstraction as a timed automaton whose reach set
is a superset of the reach set of the original hybrid system, that is, as opposed to
this paper, their discretization includes an overapproximation. In [24] a top-down
refinement approach (based on the notion of trace inclusion for hybrid automata)
with the focus on taking the variants of inexact implementations methodologically
into account is introduced while the bottom-up techniques of this paper require the
explicit modelling of disturbances and models are related by bisimulations.

Future Work: Our work lays the foundation for various extensions. (i) Dis-
cretization also plays a key role in the hierarchical control of embedded systems
[22]. Initial results suggest that our discretization can be extended to deal prop-
erly with hierarchical abstractions. (ii) HCCS can be extended to deal with dis-
tributed reconfiguring multicontroller systems using mobility such as in swarm
systems. (iii) While we are convinced that this calculus is adequate for the model-
ing of embedded systems, an in-depth comparisonwith hybrid automata and other
formailsms (e.g., the CIF) is called for to be able to transfer the obtained results
in a sound manner. Presumably hybrid automata deviate only in their handling
of enabled discrete steps: where hybrid automata allow discrete steps (may) the
calculus HCCS enforces these steps (must) which is similar to the ASAP semantics
in [27]. (iv) For more complex DEs, an extension could include the usage of known
over- and under approximations of the sets of traversed valuations and the final
valuation of a CTs for the execution of meaningful discretizations. (v) Further-
more, we expect it to be straightforward to extend our discretization such that it
covers aspects like uncertain input, disturbances, and less perfect hybrid systems
as with inexact synchronization [4] and imperfect tests [27].
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Abstract. Infusion pumps are commonly used in home/hospital care to inject
drugs into a patient at programmable rates over time. However, in practice, a com-
bination of faults including software errors, mechanical failures and human error
can lead to catastrophic situations, causing death or serious harm to the patient.
Dependability analysis techniques such as failure mode effect analysis (FMEA)
can be used to predict the worst case outcomes of such faults and facilitate the
development of remedies against them.

In this paper, we present the use of model-checking to automate the depend-
ability analysis of programmable, real-time medical devices. Our approach uses
timed and hybrid automata to model the real-time operation of the medical de-
vice and its interactions with the care giver and the patient. Common failure
modes arising from device failures and human error are modeled in our frame-
work. Specifically, we use “mistake models” derived from human factor studies
to model the effects of mistakes committed by the operator. We present a case-
study involving an infusion pump used to manage pain through the infusion of
analgesic drugs. The dynamics of analgesic drugs are modeled by empirically
validated pharmacokinetic models. Using model checking, our technique can sys-
tematically explore numerous combinations of failures and characterize the worse
case effects of these failures.

1 Introduction

The delivery of critical medications through “smart” infusion pumps has become quite
commonplace in home/hospital medical care. Yet, there have been numerous fatal or
near-fatal incidents due to errors such as software error, pump malfunctions and human
operator errors [1, 20, 24, 44, 46]. In this paper, we present a framework using formal
verification techniques over timed and hybrid automata models to analyze the worst
case effects of combinations of human and machine errors on the safety of the patient.
Our framework systematically considers combinations of failure modes and provides
quantitative predictions of the worst case outcomes for each combination. The failure
modes considered here include mechanical failures in the pump, air bubbles, occlusions,
empty vials, data entry errors and a failure to respond to alarms in a timely manner.

Our approach models the infusion pump by composing a simple hybrid automaton,
incorporating a model of the pump, along the lines of the generic infusion pump model
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Fig. 1. Effect chamber concentration in the patient predicted by a pharmacokinetic model for
(left) originally intended infusion (y-axis range: [0, 1×10−3] mg/ml), and (right) actual infusion
as a result of user error (y-axis range: [0, 0.045] mg/ml)

proposed by Arney et al. [2] and the patient using a pharmacokinetic model that de-
scribes the concentration of the drug in various parts of the patient’s body as the infusion
proceeds over time [26, 39, 41]. Mechanical failures are modeled using failure mode
variables and transitions. Our approach incorporates models of pump programming er-
rors based on generic human error models commonly studied in the human factors com-
munity [22, 27, 36] along with the results of studies and reports on the common types of
errors committed by caregivers while programming infusion pumps [3, 4, 28, 37, 47].
The composition of these models yields an affine hybrid automaton. The composed
model is analyzed using bounded model checking (BMC) to compare the concentration
of the drug in the original failure-free (original) model with the concentration in the
failure-enabled model [5]. Specifically, the use of BMC allows us to search for execu-
tions, wherein, the timing of the faults and external disturbances yield the maximum (or
minimum) possible concentration of the drug being infused in the patient’s body. Com-
paring the range of drug concentrations resulting from the original fault-free model with
the range obtained from the fault-enabled models provides a quantitative measure of the
potential effects of the fault on the safety of the patient. Thus, the output of our analysis
can be used as the starting point to help risk analysts construct dependability models in
the form of a fault trees or failure mode effects analysis (FMEA) tables [17].

1.1 Motivation

We consider a brief summary of a fatal overdose incident due to wrong programming
of an infusion pump, revealing some of the key hazards to patient safety due to pro-
grammable infusion pumps [20].

Event: The intended prescription ordered a 50 mcg/ml dose of the opioid (pain-killer)
Fentanyl through a patient controlled analgesic (PCA) pump. A PCA pump allows the
patient to request a preset dose of the drug by pressing a key. PCA pumps also enforce
a set minimum lockout times between two requests. In this case, PCA request dose was
10 mcg with 6 minute lockout between doses. An extra bolus dose of 20 mcg (infused
at maximum possible rate) was prescribed in case the pain level was high.
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The device required as input: (a) the concentration of the drug stated in the vial,
which was incorrectly entered as 1 mcg/ml instead of the correct concentration of 50
mcg/ml1.This error may have resulted, in part, due to a “feature” in the device that
silently reverted back to a previously entered value if an entry was not confirmed within
some time limit; and (b) The demand dose for PCA was incorrectly set to 0.1 mcg
instead of 10 mcg.

Outcome: Upon each PCA request the pump infused 0.1 mcg at 1 mcg/ml = 0.1 ml by
volume. However, the actual drug concentration in the vial was 50 mcg/ml. This meant
that the patient received 50 mcg/ml × .1 ml = 5 mcg upon each PCA demand dose.
Fortunately, this was half the originally intended amount: the error in concentration had
nullified that in the PCA demand dose. However, the pain persisted and a bolus dosage
of 20 mcg was entered without correcting the error in the drug concentration. The pump
infused 20 mcg at 1 mcg/ml = 20 ml of the drug into the patient. However, the patient
actually received a dose of 20 ml × 50 mcg/ml = 1000 mcg of the drug, which resulted
in a 50 × overdose. This overdose proved ultimately fatal.

Approach: Our approach can predict the scenario outlined as follows:

1. We consider the effect of numerous common pump programming errors on the data
entered, as described in Section 4.

2. For each such error, our approach compares the intended vs. actual concentrations
of the drug in the patient’s body. To achieve this, we use hybrid automata models
for the pump (Section 3.1) and pharmacokinetic models (Section 3.2).

3. Finally, we use bounded-model checking (BMC) using SMT solvers on a fixed
time step approximation of the composed hybrid model to compare the possible
range of drug concentrations in the original fault-free execution and the modified
fault-enabled execution.

Figure 1 shows the concentration of the drug in the effect compartment of a pharma-
cokinetic model as a function of time both for the originally intended infusion and the
infusion that occurs as a result of the error. The kinetics used for Fentanyl are as re-
ported in the literature (Cf. Vuyk et al. [48]). Based on a comparison of the original
with the faulty trace, it is seen that the new prescription results in a overdose of roughly
40 times the original concentration.

While the effects of an extreme scenario described above are easy to predict qualita-
tively, our framework provides three key advantages: It systematically explores a large
range of possible operator mistakes and hardware/software failures. Secondly, our ap-
proach can explore the space of timings of the faults and the patient actions such as
requesting a PCA bolus that can cause a worst-case outcome. Finally, our approach can
quantitatively predict the worst-case outcome of a combination of faults on the patient
using empirically validated pharmacokinetic models to predict the drug concentrations.

2 Preliminaries

We briefly recall the hybrid automaton model [21] and describe the use of formal ver-
ification to model faults and analyze dependability properties of dynamic systems [7].

1 Note that recent models use barcode readers to obtain this information from the vial.



320 S. Sankaranarayanan, H. Homaei, and C. Lewis

Hybrid automata are commonly used to model the composition of a discrete (software-
based) controller interacting with a continuous environment [21].

Definition 1. A hybrid automaton H is a tuple 〈x, d,L, T ,F , I, Θ〉, wherein,

– x ∈ Rn refers to a vector of continuous system variables.
– d ∈ Rm refers to a set of continuous external input (disturbance) variables.
– L refers to a finite set of discrete locations or modes.
– T refers to a set of discrete transitions (or mode changes). Each transition τ ∈ T

is of the form 〈�, m, ρτ [x, d, x′]〉, wherein, �, m ∈ L refer to the pre and post
locations respectively, and ρτ is an assertion, representing the transition relation
relation between the current state (x) and the next state variables (x′).

– D associates each location � ∈ L with a system of ordinary differential equations
(ODEs) dx

dt = F�(x, d), wherein F� : Rn × Rm → Rn is a Lipschitz continuous
function over x, d.

– I maps each location to a domain I(�) ⊆ Rn.
– Θ ⊆ L× Rn refers to the initial conditions.

The semantics and properties of hybrid automata are discussed elsewhere [21, 43].

2.1 Dependability Analysis

Dependability analysis of a safety critical systems identifies potential faults that may
occur in the system and the worst-case effects of these faults on the safety, reliability
and the performance of the system as a whole [17]. It has played a significant role in
the design of safety critical control systems including avionics, satellites and nuclear
reactors. Traditionally, dependability analysis techniques are static in nature, wherein
the timing of the faults and the evolution of system state are not modeled.

Fault Tree: A fault tree is an enhanced circuit with logic gates (AND/OR/XOR) and
other gates for modeling fault propagation, that computes the possibility of a particular
type of system level failure as a function of the individual failure modes. Fault trees
enable the computation of failure probabilities and expected time to failure as a function
of the probability of the individual faults.

Failure Mode Effects Analysis: A failure mode effects analysis (FMEA) table lists
different failure modes, mapping each failure mode to its causes, detection mecha-
nisms, severity, expected frequency of occurrence and possible mitigations. FMEA is
performed by risk analysts during system or process design.

In many complex systems, however, the timing of the events and the dynamics of the
system are key to understanding the effects of failures. As a result, there has been much
work on dynamic reliability techniques using a combination of continuous, discrete
and stochastic models (including hybrid automata models [35]) in conjunction with
techniques such as Monte-Carlo simulation for predicting failure probabilities [42].

Formal Dependability Analysis: There has been much recent progress in the use of
formal verification techniques such as model checking for automating dynamic depend-
ability analyses [7, 8]. We provide a brief description of these approaches to model and
reason about the effect of faults.
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Infusion Data

Caregiver
Infusion
Pump Patient

Fig. 2. (left) Examples of commercial infusion pumps and (right) major components of the drug
infusion model

Let H represent the model of the original system over state variables x. The effect
of failure is modeled by a combination of non-deterministic Boolean valued failure
mode variables f1, . . . , fm and extra locations and transitions for modeling the system’s
operation upon failures to obtain a system Hf that can model the effects of failures. The
primary purpose of the failure mode variables is to guard the transition to a subsystem
modeling failure. Let ϕ1, . . . , ϕk represent assertions that signify safety properties of
the system H. We assume that the original system satisfies these properties.

Symbolic model checking, or any reachability analysis technique, can be used on
the augmented model Hf to search for reachable states that violate some of the safety
properties [12]. Let s ∈ �ϕj� be a reachable error state in Hf . Since H itself is assumed
safe, we note that some subset Fs of the failure mode variables were enabled to reach
the error state s. The overall analysis systematically collects such subsets Fs, which are
termed cut-sets. Bozzano et al. also present techniques for finding minimal cut-sets of
failure mode variables. The collection of failure modes that can lead a system to violate
a property can be presented in the form of a fault tree or a FMEA table to help the
panel of risk analysts better understand all the possible threats. This analysis has been
integrated in the tool SLIM [8]. Our work is directly inspired by these efforts.

However, in our work, the modeling of human operator error is a key aspect of med-
ical device failures. Mistakes such as data entry errors, unit conversion mistakes and
misinterpretation of prescription labels modify the parameters of our model. Secondly,
while it is possible to specify safety properties in terms of limits on how much drug can
be infused, it is more natural in our setting to compare the range of doses that can be
achieved using the original parameters (the intended infusion) vs. the range achieved
by the fault-enabled parameters. Finally, we investigate pharmacokinetic models with
dynamics that can be affine or non-linear.

3 System Models

Drug infusion pumps are commonly used in home/hospital medical care to inject drugs
directly into the blood stream of a patient. Most infusion pumps are “programmable”
by the caregiver, whose role consists of entering vital information from the prescription
to the start of the infusion through a user interface. Infusion pumps support various
delivery modes, as shown in Table 1. Combinations of these modes (eg., Bolus + PCA+
Cont. or Bolus + Cont.) are supported by many infusion pump models. The interface
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Table 1. Basic infusion modes supported by pump models along with the parameters relevant to
each mode

Mode Description Parameters
Continuous Infusion at a continuous rate rate cRate (mcg/min)

concentration c (mcg/ml)
Bolus Fast infusion of drug volume. dosage wb (mcg)

concentration c (mcg/ml)
Patient-Control A bolus administered upon patient request amtPerRequest (mcg)
(PCA) lockout (min)

dose limit (mcg/hr)
concentration (mcg/ml)

CONT BOLUS

PCA

ALARMMANAGER

Infusing
V > 0
dV
dt

= − cRate
c

VialEmpty
V = 0
dV
dt

= 0

Fault
V > 0
dV
dt

= 0

flt!rst?

Infusing

V > Vinit − wb
c

dV
dt

= −maxRate

Stop

V ≤ Vinit − wb
c

dV
dt

= 0

Fault

V > Vinit − wb
c

dV
dt

= 0

flt!rst?

EMPTY
V = 0
dV
dt

= 0
dT
dt

= 1

Start
V > 0
dV
dt

= 0
dT
dt

= 1

PCA

V > V0 − wpca
c

dV
dt

= −maxRate
dT
dt

= 1

FAULT
dV
dt

= 0
dT
dt

= 1

V = 0 → flt!

rst? →
T := lockOut
V := Vinit

pcaReq? ∧ T > lockOut

∧V >
wpca

c→ V0 := V

T := 0flt!
rst? →
T := 0

flt!

ALRM

Ta ∈ [Ta,min, Ta,max]
dTa
dt

= 1

OK
dTa
dt

= 1

rst!
flt? →
Ta := 0

Fig. 3. Pump model for continuous, bolus, PCA infusion modes and the alarm manager compo-
nent

to the infusion pump includes protections from tampering such as a physical key to
prevent reprogramming by the patient once the infusion has commenced.

The major components that are universally present in most pump models are: (1)
A user-interface that allows the caregiver to “program” the infusion by entering the
infusion mode and the data pertaining to each mode. (2) A syringe or bag loaded with a
given total volume of the infused drug at some known concentration. (3) Various alarms
that are sounded upon conditions such as airbubbles, blockages, pump failures, empty
vials and so on. It is the responsibility of caregiver to reset the system to resume the
infusion upon an alarm. (4) In Patient Controlled Analgesic (PCA) pumps, the patient
can request a bolus of the drug by pressing a key.

Figure 2 shows some examples of infusion pumps and the three major components
that we model as part of the dependency analysis of a drug infusion pump. We first
discuss how various components are modeled in our approach and then present failure
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V1 Ve

V2 V3

input
k10 ke0

k12

k21

k31

k13

Var Remarks
Vi Volume of the ith chamber (ml).
x1,2,3 Concentration in the ith chamber (mcg/ml).
xe Concentration in the effect chamber (mcg/ml).
u instantaneous infused concentration (mcg/min).
kij kinetic diffusion param. from Vi and Vj .
k10 param. for drug leaving chamber V1.

Fig. 4. Three compartment pharmacokinetic model with an effect compartment. The kinetic pa-
rameters associated with each edge is shown.

modes associated with the caregiver and the infusion pump itself. We refer the reader
to the work of Arney et al. as part of the generic infusion pump modeling project for a
classification of existing models into many different types and their proposed generic
(and comprehensive) infusion pump model [2]. In this work, we use a simplified version
inspired by the Arney et al. infusion pump model. Our model is augmented with a
patient model for the purposes of dependability analysis.

3.1 Pump Model

The pump itself is modeled by a hybrid automaton whose discrete modes describe the
infusion mode. The continuous variables describe the rate at which the drug is leaving
the vessel (and entering the patient) and the volume left in the vessel. We recall the three
infusion modes as described in Table 1. The (simplified) hybrid automaton model for
these modes are shown in Figure 3. We note that in each case, the pump component has
a variable V representing the volume of the pump. Parameter Vinit represents the volume
in the syringe at the start of the infusion, wb represents the ordered bolus weight and
c represents the drug concentration, cRate the programmed rate of continuous infusion
and maxRate the maximum possible rate at which the drug can be delivered (for a
bolus/pca infusion). The infusion mode and the parameters wb,c,wpca and lockOut can
be read in through barcode readers or entered through the user interface.

The pump issues internal fault events upon detection of a bubble, an occlusion or
a pump failure. As a result, it transitions to a mode where the dynamics model the
stoppage of the pump. These faults are transient in nature and result in an alarm being
issued to the human operator. The operator then remedies the situation causing the fault
and resets the operation back to the point in the infusion where the fault occurred.
We assume in our model that all faults end up stopping the infusion. However, in many
models, the infusion can often continue during some faults like low charge in the battery.

Alarm Manager: The alarm management model is shown in Fig. 3. We model a single
alarm type that can be issued for various reasons. Our model assumes that alarms are
handled within some fixed time interval by resetting the system to some fixed state. Our
model uses timers to track the amount of time the current state is in a given mode. This
allows us to model delays in the reset transition due to inattention to alarms.

3.2 Patient Model

The model of the patient is intended to capture the effect of the infusion in the pa-
tient’s body. Since infusion pumps are able to deliver drugs at various pre-programmed
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Enter Mode

Enter PCA
Dose (mcg)

Enter Cont.
Dose (mcg/min)

Enter lockout
Time (min)

Enter Cont.
Dose (mcg/min)

Dose
Limit?

Enter
Lim (mcg/hr)

Final
Confirm

PCA

PCA+CONT

CONT

Y

N

Prompt Value
Enter Mode PCA + Cont.
Enter Cont. Dose 0.1 mcg/min
Enter PCA Dose 1 mcg
Enter Lockout 5 min
Dose Limit? Y
Enter Limit 10 mcg/hr

Fig. 5. (Left) Schematic interaction diagram for a medical infusion pump. Diagram is based
roughly on the abbott PCA3 infusion pump. (Right) An example prescription entered through
the interface.

concentrations over time, we require a dynamical model of the drug as it is absorbed
(and possibly metabolized) by the various cells in the patient’s body and removed from
the blood stream. We therefore use pharmacokinetic models to capture such effects over
time [26, 39, 41].

A pharmacokinetic model uses multiple compartments, representing the various sys-
tems such as the vascular system, organs such as the liver, kidneys and the skin. The
number of compartments used in a model depends on the specific drug whose kinetics
are being modeled. The model is described by an ordinary differential equation whose
variables represent the concentration of the drug in the various compartments. The dy-
namics of the model are given by⎛⎜⎜⎝

ẋ1

ẋ2

ẋ3

ẋe

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−(k10 + k12 + k13) k21

V2
V1

k31
V3
V1

0
k12

V1
V2

−k21 0 0
k13

V1
V3

0 −k31 0
ke0 0 0 −ke0

⎞⎟⎟⎠
⎛⎜⎜⎝

x1

x2

x3

xe

⎞⎟⎟⎠ +

⎛⎜⎜⎝
1
V1

u

0
0
0

⎞⎟⎟⎠ .

The values of the parameters may vary, depending on the drug whose dynamics is under
investigation. Representative values are obtained as a result of studies conducted on a
group of patients (Cf. [18, 30], for instance).

4 Human Interaction Models

In this section, we present a methodology for modeling human operator actions and
the mistakes committed in the course of their interactions. In the setting of the infusion
pump study, a human operator of the infusion pump is the care giver who is responsible
for programming the infusion parameters at the start of the infusion and responding to
alarms raised by faults such as air bubbles and occlusions in a timely manner.
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Table 2. Major pump programming errors found in the literature

Error Description References
1 Fields in the prescription are misinterpreted [37, 40, 47]
2 Dosage Data Entry Error [20, 37]
3 Unit Conversion Calculation Errors [1, 4, 24, 28]
4 Pump mode selection errors [3]

User Interface: Infusion pumps communicate with human operators by means of an
user interface that displays messages to prompt the human operator and allows the user
to enter values. Due to a lack of standardization of such interfaces, different devices
offering the same set of basic functionalities may present a variety of interfaces for the
same task [2]. Figure 5 shows an example interaction flowchart for an infusion pump
based on an existing commercial model.

Prescriptions: Infusions of analgesics such as Fentanyl or morphine are tightly regu-
lated, often requiring a prescription that carefully specifies the allowed dosage and the
recommended mode of infusion. The details of a how a given infusion is prescribed can
vary significantly, in general [4].

Example 1. An example prescription may call for a basal continuous dosage of 6 mcg/hr
(=.1 mcg/min) of 50 mcg/ml of morphine and a PCA delivery of 1 mcg per request with
a lockout interval of 5 minutes with an overall limit of 10 mcg each hour. It is the role
of a care giver (often a registered nurse) to program this prescription using the infusion
pump interface as shown in Figure 5. The data entered by the user is also shown.

4.1 Modeling Operator Mistakes

We discuss common mistakes that are committed by the operator during the course of
an interaction and present a generic modeling system for these interaction errors. In
theory, any unintentional deviation from a correct sequence of actions needed to deliver
a given prescription of a drug to a patient can be classified as a mistake. There have been
extensive studies by human factors experts and psychologists on the cognitive factors
underlying human error [22, 23, 36]. Furthermore, the specific types of mistakes that
operators commit while operating an infusion pump have also been well-studied and
documented [3, 9, 20, 24, 28, 37, 40, 47]. Table 2 lists some of the common pump
programming errors as reported in the literature. A comprehensive list of many types
of hazards (including human error) for a generic infusion pump model has been put
together by Arney et al. [3].

Data Entry Errors: In general, data entry errors depend on the type of interface used
by the pump. For instance, empirical studies have shown that for pumps with keypads,
the most harmful keypad entry errors include decimal point errors. Therein, a decimal
point may either be inserted or deleted from the number entered due to the proximity
of the decimal point key or variations in its placement across different interfaces [44].
Quirks in the interface such as reverting to a default value or a previously entered pre-
scription also contribute to data entry errors (Cf. Section 1.1).
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Mode: PCA+Cont.
ContDose: 5.2 mg/hr
PCABolus: 1.0 mg
PCALockout: 15 min
PCALim: 10 mg/hr

Mode: PCA+Cont.
ContDose: 21 mg/hr
PCABolus: 1.0 mg
PCALockout: 15 min
PCALim: 10 mg/hr

Unit Error
21 mg/4 hr
entered as
21 mg/hr

Mode: PCA+Cont.
ContDose: 52 mg/hr
PCABolus: 1.0 mg
PCALockout: 15 min
PCALim: 10 mg/hr

Decimal Error
5.2 mg/hr
entered as
52 mg/hr

Mode: PCA+Cont.
ContDose: 5.2 mg/hr
PCABolus: 1.0 mg
PCALockout: 15 min
PCALim: None

PCALim not set.

Mode: PCA
PCABolus: 1.0 mg
PCALockout: 15 min
PCALim: 10 mg/hr

Wrong PCA mode

Mode: PCA+Cont.
ContDose: 5.2 mg/hr
PCABolus: 10 mg
PCALockout: 15 min
PCALim: 10 mg/hr

Unit Error
0.1 ml @ 10 mg/ml
entered as
10 mg

Mode: PCA+Cont.
ContDose: 5.2 mg/hr
PCABolus: 1.0 mg
PCALockout: 25 min
PCALim: 10 mg/hr

Data Entry Error

Fig. 6. Transformation of a prescription (shown center) through various mistakes

Unit Conversion Errors: Prescriptions may be provided in units that differ from those
required by the interface, requiring a calculation to be carried out for unit conversion.
As a common example, an interface may require inputs in mg/hrwhile the prescription
orders a dosage in mcg / kg/min. The conversion from the latter requires multiply-
ing by the patient weight in kg and multiplying by 60 to convert from min to hr and
finally dividing by 1000 to convert from mcg to mg [1, 4]. Some “calculator pumps”
enable caregivers to carry out this calculation using the interface. Other types of pumps
can accept inputs in one of many different choice of units. Yet, these models are not
without hazards. A common error occurs when the difference between the originally
prescribed units and the entered units is simply ignored, or the wrong units are ascribed
to a dose. For example, a prescription that calls for X mg over Y days can be entered
as X mg/hr, leading to a 24 fold overdose [24].

This leads to three types of errors: (a) the wrong calculation may be carried out (eg.,
divide by 60 instead of multiplying), (b) the right calculation may be carried out to yield
a wrong result nevertheless or (c) the difference in units may be ignored and the original
value entered as is. Unit conversion errors have been well documented especially in the
context of infusion pump programming errors. Bates et al. presents a detailed study of
the variability in the units used to prescribe dosages [4]. Furthermore, Lesar reports on
a study of such unit conversion calculations to characterize the types of errors, their
rates and effects [28].

Mode Selection Errors: It is often possible that pump can be misprogrammed by
choosing the wrong delivery mode in the first place. A common example in PCA pumps
is the choice of a “PCA only” mode where a “PCA+Cont.” mode was ordered in the
first place. Often, a wrong mode selection error can be detected during data entry if the
pump prompts the user for data that is not part of the original prescription. The presence
of too much redundant data in the prescription label is often a factor. This phenomenon
is discussed in the context of infusion pumps by Thimbleby [46].
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4.2 Mistake Models

We now describe a simple framework to model the effect of operator mistakes that
will be used later in our overall analysis framework to predict worst case outcomes of
human operator error. We may view the effects of a mistake simply as a transforma-
tion between the intended prescription and the actual prescription that results due to
the mistake being committed [19, 22, 36]. Therefore, we simulate pump programming
mistakes through set of transformations, wherein each transformation takes the original
prescription as input and yields a set of possible “mistaken prescriptions” that could
result, as if the mistake were actually committed. We illustrate this through an example.

Example 2. Figure 6 shows various transformations of an original prescription due to
the errors such as mode selection error, data entry errors, calculation errors and other
pump programming errors. For convenience, we have shown transformations due to
single mistakes. However, it is possible to consider multiple mistakes as part of our
mistake model by composing transformations.

5 Analysis Framework

We will now describe the framework used to explore possible worst case scenarios that
may occur due to the presence of faults due to mechanical failures and human error.

The inputs to the analysis include the model of the pump, the patient and the data
for the original prescription. The overall analysis has two parts: (a) Identify all failure
modes. Machine/human errors in the model are identified by analyzing the process of
prescribing the drug and the interface used to enter the data into the infusion pump;
and (b) For each combination of k or less failure modes, we use model checking to
search for runs of the model that exhibit the maximum values of the drug concentrations.
Specifically, the model checker searches in the space of possible failure times for the
various enabled failure modes and the timing of the PCA requests by the patient.

Analysis of Failure Mode Combinations: The overall idea behind our analysis frame-
work is to compare the range of drug concentrations possible for the reference model,
assuming the absence of faults and a fault-enabled model, wherein some pre-defined
combination of faults are enabled. The focus of the comparison in our infusion pump
case-study is the variable xe in the patient model that represents the concentration of
the drug in the effect compartment.

Fixed Time Step Approximation: Our analysis uses bounded model checking (BMC)
[5] using SMT solvers [13, 31] on a fixed time step approximation of the model to find
worst-case scenarios that can potentially maximize or minimize the value of x4 at some
time instant. We now briefly define the notion of a Δ time step approximation. We use
some basic results for affine ODEs to discretize fixed time step approximations.

Definition 2 (Fixed Time Step Runs). Let H be an affine hybrid automaton. A run σ
of H is said to conform to a fixed time step of Δ iff all discrete transitions in σ are taken
at time instants that are integral multiples of Δ.
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Input:
Original Prescription Data.
Set of enabled failure modes.

Output:
Worst-case execution traces

1: Compute range of effect chamber concentrations over original prescription: [xmin, xmax].
2: Simulate pump programming errors to create faulty prescription.
3: Create BMC encoding ΨM using faulty prescription parameters
4: Compute range [ymin, ymax] for effect chamber concentration (using an SMT solver).
5: Compare [xmin, xmax] with [ymin, ymax] to compute worst-case deviations.

Fig. 7. Overview of Analysis Algorithm

A Δ time step approximation of a hybrid automaton for some time step Δ > 0 considers
only those runs σ that conform to a fixed time step of Δ.

It is easy to see that a fixed time step leads to an under approximation of the origi-
nal event-triggered semantics. I.e, any (finite or infinite) run under the fixed time step
approximation is also a run of the original system. On the other hand, there may be
transitions that cannot be taken at integral multiples of Δ. Therefore, the choice of Δ
needs to be small enough to retain most of the behaviors of the original system.

Assuming that the dynamics are of the form dx
dt = Ax + u, where A is invertible

and the value of u remains constant during any time step interval, we conclude that

x(t + Δ) = Mx(t) + Nu, wherein M = eΔA, and N = A−1(eΔA − I) .

Note that the pharmacokinetic models considered here satisfy the conditions required
for the discretization.

Bounded Model Checking: Using a fixed time step Δ allows us to under approximate
the original model in terms of a purely discrete model. Such a model is amenable to
many verification techniques for discrete transition systems without the need to deal
with the effects of ODEs, directly. For our study, we chose to use Bounded Model
Checking (BMC) [5]. Using BMC, we encode the set of all runs of the model up to some
fixed depth limit k by means of a logical formula in linear arithmetic. This formula is
then solved by powerful SMT solvers such as Yices and Z3 [13, 16, 31].

6 Experiments

We report on an experimental evaluation of the ideas in this paper. The experimental
evaluation focuses on the study of the infusion of the opioid Remifentanil through an
infusion pump interface based roughly on existing commercial model — the Abbott
PCA III infusion pump. Figure 8 shows the data fields entered through the pump inter-
face and some of the calculations performed by the pump based on the entered data to
derive model parameters.
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Data Range Value Used Entry Method
DrugConc 50 mcg/ml 50 Barcode
Weight [30-120] kg 60 Caregiver
PCAMode {PCA-CONT, PCA-ONLY } PCA-CONT Caregiver
ContDose [0 - 0.5] mcg/kg/min 0.1 Caregiver
PCABolus [0.01 - 1] mcg/kg 0.5 Caregiver
Lockout [5-20] min 10 Caregiver
DoseLimit [3-10] req/hr or no lim 4 Caregiver

Field Equation

CRate(ml/min)

{
ContDose∗Weight

DrugConc if PCAMode = PCA-CONT

0 if PCAMode = PCA-ONLY

PCABolusVol(ml) PCABolus∗Weight
DrugConc

Lockout As input
DoseLim As input

Fig. 8. Data fields entered in a PCA infusion pump along with limits on the data values used in
our simulations and (bottom) calculations performed to derive infusion pump parameters from
entered data

Mistake Effect
Mode selection error (PCA-CONT vs. PCA-ONLY) CRate’ = 0
Weight entry error CRate’ = 2.2 * CRate
(weight in lb entered as kg) PCABolusVol’ = 2.2 * PCABolusVol
Weight entry error CRate’ = CRate/2.2
(weight kg entered as lb) PCABolusVol’ = PCABolusVol/2.2
Unit Error CRate’ = 60 * CRate
(mcg/kg/hr entered as mcg/kg/min)

Fig. 9. Possible data entry mistakes

The pump and the human patient models are as discussed in Section 3. We consider
a set of human mistakes based on the interface used for data-entry as shown in Figure 9.

Implementation: We have implemented our analysis on top of a hierarchical, guarded
command modeling language similar to existing tools such as SLIM that allows us
to model the various components, faults and their interactions [8]. We compile and
discretize our model and generate constraints to represent bounded depth executions.
These constraints were solved using the solver Yices [16]. The maximization of the
variable x4 was performed by simulating a binary search over an interval. The minimum
value achieved in our model is trivially 0 at the starting state. This procedure currently
requires numerous calls to the solver. Our implementation along with the models used
here are available upon request.

Model: The composed model of PCA pump with faults has roughly 6 modes, 11 pa-
rameters, 12 real-valued variables and 4 finite domain variables. Since machine faults
are assumed to be transient, a counter nFaults is used in the model to store the num-
ber of machine faults to be considered in any execution. The initial value of this counter
is varied from 0 (no fault) to 4 (four faults happen at non-deterministic time instances).
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Table 3. Analysis results showing the influence of user error and machine faults on the predicted
maximum drug effect chamber concentration. nFaults: Number of transient faults in a trace,
Conc: maximum concentration achieved in ng/mL and Time: model checker time (seconds).

Mistake nFaults = 0 nFaults = 1 nFaults=2 nFaults=4
Conc. Time Conc. Time Conc. Time Conc. Time

None 6.1 64 5.4 447 5.1 1219 4.8 1218
Mode Selection Err. 3.1 16 3.1 213 2.9 500 2.8 459
Unit Selection Err. 150 78 149 210 132 182 101.2 1474
Weight (lbs as kgs) 13.4 73 12.6 1011 11.5 1306 10.5 2250
Weight (kgs as lbs) 2.7 41 2.6 534 2.4 1492 2.2 1617

Table 4. Analysis over 10 randomly selected prescriptions over the range described in Figure 8.
The maximum concentration of reference model is normalized to 1. All figures rounded to one
significant digit after decimal point.

Mistake nFaults = 0 nFaults = 1 nFaults=2 nFaults=4
Avg Min Max Avg Min Max Avg Min Max Avg Min Max

None 1 1 1 1 1 1.1 1 1 1.1 0.9 0.8 1.0
Mode Selection Err. 0.2 .1 4 0.3 0.1 0.4 0.3 .2 .4 .2 .1 .4
Unit Selection Err. 23 14 36 22 10 35 23.4 10 33 14.2 14.2 14.2
Weight (lbs as kgs) 2.0 1.8 2.3 2.2 2.1 2.5 2.2 2.1 2.4 2 1.8 2.3
Weight (kgs as lbs) .4 .3 .4 .4 .4 .4 .4 .4 .5 .4 .4 .4

Table 3 shows the results of the analysis of various fault combinations in terms of
the maximum concentration of drug achieved and the time taken by the model checker
to complete the analysis. Comparing the maximum drug concentration of 6.1ng/mL
predicted for the reference model (no human/machine faults) against the maximum val-
ues for other fault combinations yields insights into the effects of various faults. For
instance, it is clear that mode selection errors roughly halve the maximum concentra-
tion achievable. The presence or absence of machine faults has little or no impact on
the maximum. On the other hand, unit errors cause a 23 fold increase in the maximum
effect chamber concentration achievable.

Overall, the results predicted by model checking agree well with our qualitative pre-
dictions of the outcome of the faults. However, the results are more useful since they
can provide quantitative predictions and allow us to compare/rank faults based on the
severity of their effects. For instance, the under dosage caused by machine faults is pre-
dicted to be less significant than that caused by a mode selection error or a unit error
wherein the weight in kgs is treated as if it were in lbs. Note that under doses as well as
over doses can have serious consequences, since restoring control of pain after an under
dose can be difficult.

Finally, we investigate how the overall trends vary with the prescription data. Table 4
summarizes the results of repeating the experiment with 10 different randomly chosen
prescriptions. The range of values for various parameters is described in Figure 8. In
each case, the maximum value found for the reference execution is normalized to 1,
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thus allowing us to compare the results from different prescriptions. Table 4 shows the
result of this comparison on 10 different randomly generated prescriptions. We note that
the overall direction of the effect of error seems independent of the actual prescription
data themselves. Furthermore, in many cases, the magnitudes are quite similar.

7 Related Work and Conclusions

A vast body of work has focused on modeling and verification of functional correctness
properties for user interfaces (Cf. [14, 33, 34], for instance). Much of this work has
focused on the search for specific topologies in the state diagram of the interface that
can indicate the presence of serious faults such as mode confusion [25, 29, 38]. The
problem of characterizing various forms of human error has been studied in detail by
cognitive scientists and human factors experts [15, 36]. In this regard, the use of generic
mistake models to transform a given ideal interaction into a faulty interactions has been
proposed in the past, notably by Hollnagel [22]. Fields presents an integration of this
approach with formal verification tools to model and reason about operator error [19].

Formal and Semi-formal techniques have been applied to analyze infusion pumps
for the presence of hidden modes and inconsistencies in the interface transitions [44,
45]. Bolton and Bass present a detailed model of the user interaction with an infusion
pump by extending the operator function model framework. Their model lends itself
to analysis using formal verification tools [6]. Bolton et al. apply their approach to
provide a detailed model of the interface and various user actions required to program an
infusion. However, in this paper, we consider a detailed model of the pump’s operation
and the dynamics of the drug concentration in the patient while summarizing the effect
of user’s mistakes using a mistake model. A combination of the two approaches seems
quite desirable. However, it is quite likely that the analysis of such a detailed combined
model may be intractable.

Model-based techniques remain popular in many domains including the development
of reliable and safe user interfaces [10, 11, 32]. A common approach to the model-based
testing of UI applications requires the construction of mental models of the user to char-
acterize ways in which the interface can be used [10, 11]. However, these approaches
seek to test the functional correctness of the interface itself, while operator errors are
usually ignored.

In conclusion, we present a framework for dependability analysis of infusion pumps.
In the future, we wish to extend this framework to study other types of programming
errors in devices such as implantable pace-makers and total intravenous anesthesia. The
model results also support exploration of user interface modifications that could guard
against likely errors. One approach could be to incorporate logic into the pump con-
troller to recognize possible user mistakes that may result in underdoses or overdoses.
Since the appropriate dose depends on patient weight, so that the doses appropriate for
adults are quite different from those for children, for example, it is not possible to spec-
ify definitely what the allowable range of doses is, within wide limits. Another sugges-
tion could be to build closed loops to prevent mishaps by estimating drug concentrations
using pharmacokinetic models and observable signals such as the respiration rate and
blood oxygen content.
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Abstract. In this paper we present a Design-for-Verification framework
for a Configurable Performance-Critical Communication Interface. To
manage the inherent complexity of the problem we decomposed the inter-
face into independent parametrisable communication blocks. Tock-CSP
was then used to model the timing and functional specifications of our
interface. The FDR model checker and its tau-priority model were used
to prove that the properties of the configured interface are within the
properties of targeted communication protocols.

Keywords: CSP, tock-CSP, Design-for-Verification, tau-priority.

1 Introduction

Communication interfaces are an important aspect of modern processors espe-
cially in the context of multi-core heterogeneous platforms. End users expect I/O
interfaces to support a variety of existing protocols [3, 6, 8, 11, 19]. Such inter-
faces must also be generic to accommodate new protocols. These interfaces are
expected to implement a relatively complex set of functional and timing aspects
of the target protocols and thereby reduce the communication and processing
demands on the processor or network-on-chip.

In practice this can be achieved by providing the user with a set of configura-
tion modes to customise an I/O interface towards a particular type of communi-
cation; a complete protocol is thus characterised by a set of configurations of the
I/O interface. Generic I/O interfaces are a challenge for both designers and ver-
ification engineers. To manage their inherent complexity a structured approach
is considered most tractable. This involves decomposing the I/O interface into
functionally independent blocks.

These blocks can be configured to obtain a specific instance that matches
the functional or timing behaviour required to implement a particular protocol.
The parallel composition of these blocks, suitably configured, then provides the
overall functional and timing properties of the I/O protocol to be supported. As
these blocks can be designed and verified individually at block level this gives
rise to a Design-for-Verification approach.
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This paper demonstrates how such a generic I/O interface can be formalised
in Hoare’s Communicating Sequential Processes algebra, CSP [9]. CSP was well
suited since each functional block can be composed as an independent sequential
process and the set of blocks (now CSP processes) synchronize over communi-
cation events. We demonstrate how selected example protocols [6, 8] can be
obtained by configuring this generic I/O interface. Using the refinement models
of CSP a proof is obtained which confirms that the configured instances of the
hardware are indeed valid implementations of the respective higher level protocol
specifications. We are particularly interested in the specification and automatic
model-checking of real-time aspects [21] of the configured system with respect
to higher level protocol timing specifications. The tau-priority model initially
suggested by Ouaknine [18] was recently released in the Failures-Divergence Re-
finement (FDR) model-checker [7]. Its availability was an additional motivation
for the use of CSP.

While the individual ideas of formal protocol specification, hardware decom-
position into functional blocks, conformance checking of protocols, and timing
requirement validation are well established techniques [3, 11, 12, 22–24], we be-
lieve that our integrated formal framework for the design and model-checking
of communication protocols’ functional and performance aspects is a novel and
unique approach. It represents a sound contribution to the ever increasing inter-
est in the verification of real-time aspects of parallel communication system. We
also believe that our work presents the first application of the new tau-priority
CSP model.

1.1 Related Work

The design and formal verification of configurable hardware that can be used for
implementing real-time communication protocols has many aspects of related
work.

Addressing the model checking aspect of protocols, Seidel [22] has used tock-
CSP and FDR to model-check the PI-Bus [17] protocol. The work only addressed
a specific protocol and does not give any framework for modelling other proto-
cols. It also used an experimental version of FDR’s tau-priority model and we
have been unable to verify the results of that study.

Müffke [16] has presented a framework for the modelling and specification
of communication protocols. His work does not address the verification of the
protocols specification or the hardware implementation of such protocols.

Böhm and Melham [5] have presented a refinement approach to designing and
verifying communication protocols. It addresses on-chip protocols with special
focus on the AMBA [4] Bus architecture. The core design step and the following
transformations are only relevant to the protocol in question and much of the
work requires manual proofs. Applying such a framework to other protocols
would require a considerable expertise and effort. It also does not address real-
time aspects of protocol specification and verification.
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In our previous short paper [1] we presented a brief progress update of our
work. At that stage some properties and functional requirements of protocols
were investigated. Complete protocols were not yet expressible. In this paper
we present the full modelling framework, the Configurable Interface hardware
and also the verification framework for specifying and verifying communication
protocols.

1.2 Common Communication Protocols’ Features

As part of this project a number of communication protocols have been re-
viewed [3, 6, 8, 11, 17, 19]. A brief discussion of some of those protocols and
their functional and timing requirements follows:

– Universal Asynchronous Receiver/Transmitter (UART) [6] is a basic proto-
col any configurable interface is expected to support. It is an asynchronous
protocol and there is no external clock exchanged between devices. The im-
plementing interface is expected to have its own time management including
an internal clock which is used to sample the data. The protocol is serial in
nature and ideally the interface must be able to collect a number of the in-
coming data bits and present them to the host as one unit possibly stripping
out control information such as start/stop bits and parity bits.

– Serial Peripheral Interface (SPI) is a de-facto standard protocol that is used
between ASIC chips and controller systems. It has no official standard, how-
ever, an application note is provided for reference [8]. The main features of
the protocol is that it is a master-slave architecture. A clock is exchanged be-
tween devices which is generated by the master and used by all slave devices
in the system.

– Media Independent Interface (MII) [3] is a physical interface used to com-
municate with Ethernet physical layer chips. This protocol is becoming an
essential requirement of an embedded system especially in consumer elec-
tronics devices. The bus size is four bits wide and the interface is expected
to be able to serialise and deserialise multiple data items while stripping
out control information such as the data preamble. Framing signals are ex-
changed between devices which specify when the data bus carries valid data.
In a receiver the interface is expected to use such external signals to en-
able/disable sampling the data bus and the transmitter interface is expected
to auto generate these signals.

From the review the following common features in many protocols were identi-
fied:

– The clocking mechanisms and timing requirements are a dominant aspect of
all reviewed protocols whether the clock was internally managed or externally
exchanged.

– The ability of an external event to automatically trigger internal action in
the interface independent of any interaction from the host controller.

– The ability to switch the function of an interface between input and output.
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The set of functional and timing observations above were used as a guide for
designing the generic I/O interface. This generic configurable interface was later
used as a model for checking the full communication protocols’ specification.

1.3 Approaches to Hardware Support of Configurability

A brief discussion of the different approaches to supporting interface config-
urability is given next. The aim is to show the recent trends in the design of
communication interfaces, and the need for a generic framework for the design
and verification of such interfaces.

Traditionally, hardware protocols were supported using dedicated hardware
interfaces with basic configurable options to accommodate the various options
within the same protocol [15]. A fundamental functional change to the inter-
face behaviour was impossible and supporting multiple interfaces would require
considerable design and verification effort. The development of the FPGA [2]
technology on the other hand introduced a true sense of configurability to hard-
ware design. A fully configurable interface was more tangible [10]. Nevertheless
this approach suffers from high power consumption and relatively low clocking
speeds [13]. May et al. [14] suggested a different approach to configurability
which involves providing the user with a communication interface that has a
set of fine grained configurability options. The problem with this approach is
that it is not easily verifiable using traditional approaches due to the state space
explosion problem resulting from the large number of possible configurations.

We devise a framework for the modelling and verification of a configurable
communication interface which provides a natural progression to the evolution
denoted above. The framework suggested particularly addresses the state space
explosion problem through the separation of functional and timing aspects.

2 Formal Modelling: Theory, Concepts and Tools

We briefly discussed in Section 1 the motivation for using CSP. Here we expand
on the ideas behind using CSP and tock-CSP in particular, and using an example,
present the motivation for the use of the tau-priority model.

2.1 Tock-CSP

One important aspect of communication protocols is their performance and real-
time behaviour. Tock-CSP is the discrete approach to timed-CSP designed for
specifying and validating performance aspects of protocols automatically. In this
approach the passage of time is represented by an external event (usually called
tock) which is a global event that happens regularly and forever. This changes the
semantics of many CSP constructs and models including the failures/divergences
and traces model [18].
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Consider this scenario: since no process in a parallel composition should be
allowed to run faster than another, all processes must be forced to synchronise on
tock. Consequently, processes are allowed to be idle and hence pass the tock event
infinitely often. However, for many semantic reasons including the avoidance of
false divergences (i.e. ones where only the tock event is involved), some events
must have priority over tock.

A minimal approach for supporting tock-CSP is currently implemented in [7]
in which internal events have priority over tock under the tau-priority model.

Let us consider the following two processes as an example:

P1 = (a → b → tock → P1) \ a

P2 = (a → b → tock → P2 � tock → P2) \ a

One way to interpret the difference between the two processes is that process
P2 takes into account an idle state where event a is not available in which case
it can allow tock events to happen. P1 however must always be able to execute
event a immediately at the start which makes event a an urgent event. The
details of this model can be found in [18, 20].

Under the tau-priority model the two processes are understood to be equiv-
alent because, when run independently, both processes are able to execute the
event a at the start. Consequently, the choice to execute the tock event in pro-
cess P2 is ignored. However, the situation becomes more interesting when those
processes are composed in parallel in a wider system in which event a is not
available at the start. In this case, process P1 would introduce what is called a
time− stop in which tock events cannot happen. The process P2 does not suffer
such limitation.

This is useful in the context of communication systems and signal propagation:
all signals in the system need to propagate and settle before the next tock event
and processes which do not have any signal change in that clock cycle should
be able to execute the tock event gracefully. There are many timing related
assertions and checks to be considered when validating such models which will
be discussed later in Section 4.

We believe that the tock-CSP framework is very promising. It integrates the
modelling and verification of real-time performance aspects of embedded systems
with the well understood CSP model-checking framework. This paper adds an
important contribution through the application of such approach to a complex
performance-critical communication interface.

2.2 Abstractions and Refinements and Equivalences

The CSP model-checking framework provides a robust platform for verifying the
functional aspects of our design. It allows the specification of a model on various
abstraction levels where a model is specified with minimum details. Such spec-
ification serves as a top-level specification. Then, by adding various implemen-
tation details, we can automatically verify that the added details still conform
to the top-level specification by proving a suitable refinement relation of both.
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The Evaluation Section 4 provides more details where the refinement relations
of various specification and implementation models of both the communication
interface as well as the communication protocols in question are checked. Fur-
ther, we can use the automatic refinement checks to prove that two models are
equivalent when we can prove that each model is a refinement of the other. This
involves running two refinement checks and is particularly useful for proving that
the configured communication system behaves exactly as the top-level protocol
specification requires.

3 Formal Modelling: The CSP Models

First a formal abstraction of the individual communication protocols is briefly
presented. The need for such an abstraction will become apparent in the evalua-
tion section. Then the formal model of the communication interface is presented.
Finally an Instruction Set Architecture (ISA)-oriented Specification of the com-
munication protocols is realised which is also further discussed in the evaluation
section. The detailed CSP models are beyond the scope of this paper. The code
is available online at http://www.cs.bris.ac.uk/~kharmeh/cspCode.tar and
was verified using FDR version 2.91.

3.1 The Protocol Abstract Specification

An abstract specification of communication protocols is independent of any im-
plementation details. Each protocol can be specified at various abstraction levels.
We are most interested in a specification that captures all timing and functional
aspects.

To provide timing information at the specification level we deploy tock-CSP in
a rather simplistic manner: only one process is responsible for executing the tock
events (called SpecTimer). All other processes in this specification synchronise
with the SpecTimer on events other than tock (Reset, Set, Trigger among oth-
ers). This results in an implicit synchronisation on tock events and consequently
provides essential timing information for the rest of the specification.

Another process (Phy in Figure 2) is devised to provide the specification with
an abstract description of the physical interface. Its main function is to register
the physical value of the interface set by a transmitter and make this value
available to a receiver at any time.

Below we discuss the abstract specification of two simple yet representative
protocols which we later use to demonstrate the conformance checking of the
Communication Interface. The specification of each protocol is split into a trans-
mitter process and a receiver process which, once connected, form an abstract
communication channel.

UART. Different abstraction levels were investigated where timing and func-
tional details were added incrementally. We use an abstraction in which all timing
information is present.

http://www.cs.bris.ac.uk/~kharmeh/cspCode.tar
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Based on system specific assumptions the number of tock events per bit
(ClkPerBit) is calculated.

This is then used to trigger events in the SpecTimer process. Such events are
then used to control the timing of transmission/reception.

The transmitter (UartSpecTx ) is modelled as a sequence of events on a CSP
channel called UartOut which represents changes to the physical transmission
line. The transmission process is then defined as an infinite transmission of data
words of specific length. The transmission of a data item (word) starts with the
start bit (UartOut!0 ) followed by a timer Reset. Then, using the SpecTimer, all
data bits are outputted serially (UartOut!(word%2)) in a timely manner. Finally,
the transmission ends with the stop bit (UartOut!1 ).

Similarly, the receiver (UartSpecRx ) waits for the start bit to appear (Uar-
tIn?0 ) at which point it sets the SpecTimer with duration 1.5 * ClkPerBit. This
is to skip the start bit and sample the first data bit at the halfway point. It does
so for all subsequent data bits and observes the stop bit to end reception.

SPI. This protocol has a more complex interface than UART. Devices are classi-
fied into “master” which is responsible for generating the bus clock (SCLK ) and
“slave” which uses that clock to synchronise its actions on the bus. This external
clock should not be confused with the internal system clock events (tock).

Our main focus is the timing specification hence we assume there is only one
slave in the system. This allows us to abstract away the chip-select line and also
assume that the bus is active all the time and that in each clock cycle the data
lines carry valid data.

Both Master and Slave devices have two data lines: Master Output Slave
Input (MOSI ) and Master Input Slave Output (MISO) and hence both Master
and Slave are capable of transmitting and receiving data at the same time.

The number of tock events per bus clock cycle is calculated (ClkPerBit). Ac-
cording to this the master generates the system clock (SCLK ) using the Spec-
Timer process described earlier.

The master (SpiSpecMaster) initiates the SPI bus cycle by driving the first
data bit on the MOSI line followed by driving the system clock low (SCLK!0 ).
At the half cycle point (at time ClkPerBit/2 ) the clock is driven high (SCLK!1 )
and the data input line is read (MISO?d). Finally, at the end of the cycle (at
time ClkPerBit), the clock is driven low (SCLK!0 ). This is repeated for the
number of bits per data item.

The slave bus cycle (SpiSpecSlave) is similar to that of the master except that
it does not need to generate timing and clock events. Its cycle is controlled by
events input on the clock channel (SCLK ) which are generated by the master.

3.2 The Communication Interface Model

The approach taken to model the communication interface is through the sep-
aration of functional requirements into functionally independent configurable
hardware blocks. Figure 1 shows a high level view of the different functional
blocks modelled.
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At this point, four types of configuration modes were modelled: Raw, Condi-
tional, Timed, and Direction.

We also modelled a simple ISA to allow us to configure the functional blocks,
and consequentially specify the ISA-oriented Specification of the communication
protocols.

Fig. 1. Communication Interface Model

A description of each functional block and its configurations is given below:

Timed. This functional block is responsible for keeping track of time by keep-
ing a counter of the total number of clock cycles elapsed. This counter has a
resolution which is specified by the design engineer. Once this counter reaches
its limit, it resets to zero and starts counting up again.

It responds to the following commands:

– Timed I/O (or time dependent I/O): received from the ISA block. The Timed
block compares the required operation time with the current time at each
cycle. Once the operation time is reached, it signals the RawC block to
commit the operation.

– Time-stamping: received from the RawC block and their response is internal
to the Timed block. It involves the saving of a copy of the current time
counter which is called a time-stamp.

– Time-stamp read: received from the ISA block. The Timed block responds
with the time-stamp value stored at the last executed operation

For the correct timing operation of the system all system components are clocked
(i.e. are able to execute tock events in an orderly fashion): It is essential for the
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RawC block to request the time-stamping at the exact clock cycle the I/O opera-
tion completes. It is also essential that ISA instructions happen in a timely man-
ner for the whole system to meet protocol deadlines. Special attention needed to
be paid to avoid race conditions and time lags between different system compo-
nents. The absence of such issues was essential for the system level verification
described later.

RawC. This functional block is responsible for interaction with the outside
world. It receives I/O commands from the ISA block as well as the Timed block.

These commands include:

– Unconditional I/O: the RawC block can receive this command from the
Timed block once the correct time of the operation has elapsed. Uncon-
ditional I/O can also be initiated from the ISA block. The RawC block
responds back to the ISA block with the physical interface state as a re-
sponse to an input operation. An output operation might trigger a Physical
Interface Change command described below.

– Physical Interface Change: the physical interface is modelled as signal change
events received and sent by the RawC block. The state of the physical inter-
face is kept internally within this block. A signal change event might be sent
by this module as a result of an output operation. Alternatively it can be
received as a result of an external change to the physical interface triggered
by another entity connected to the interface.

– Conditional I/O (or data dependent I/O): the ISA block can issue a condi-
tional input command where the condition requires the data on the physical
interface to have some specific value. The RawC block would only commit
this command when the value on the physical interface matches the value
requested by the ISA.

As mentioned earlier RawC needs to synchronise on the timing event tock be-
cause it is responsible for triggering the timestamps at the exact clock cycle the
operation was performed. Many RawC processes are then composed in parallel
to reflect the number of ports in the system.

ISA. This block is an abstraction of a simple controller instruction set. The mod-
elled instructions are mainly used for communication interface configuration and
data I/O. This module synchronises on tock events so as to meet communication
protocols’ deadlines and to avoid many race conditions. For that reason instruc-
tions must execute in a timely manner and each instruction takes at least one
cycle (one tock event). A special No-Operation (NOP) instruction is provided
for implementing time delays.

The instructions modelled are:

– Unconditional I/O: takes exactly one clock cycle to execute and does not
rely on any timing or data condition to commit.

– Conditional I/O (or data dependent I/O): takes at least one clock cycle and
can possibly take infinitely many cycles depending on the physical interface
state.
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– Timed I/O (or time dependent I/O): takes at least one clock cycle and
commits once the specified time is met by the Timed block.

– Time-stamp read: takes exactly one clock cycle in which the Timed block
returns the time-stamp of the last committed operation. This is used to
schedule subsequent timed operations.

– No-Operation: takes exactly one cycle. It is useful for implementing time
delays.

A top-level abstract description of the ISA block is seen as an infinite sequence
of any combination of the above instructions.

A communication protocol’s property-oriented specification [21] is then seen as
a well-defined combination of those instructions. For example, a UART receiver
starts with a Conditional I/O to capture the start bit followed by a Timed I/O
for each data bit. The time of each Timed I/O is realised using the Time-
stamp read instruction. Finally, one last Timed I/O is performed to capture
the stop bit. The full sequence of instructions for the UART receiver is called
UartIsaRx while the transmitter is called UartIsaTx. We call these specifications
“ISA-oriented Specification”.

The detailed specifications of the SPI slave (SpiIsaSlave) and and SPI master
(SpiIsaMaster) are too complex to be included in this paper

Finally, the whole communication interface is expressed as the parallel com-
position of all the individual functional blocks:

CommInterface = ((ISA ‖
aTimed

T imed) ‖
aRawC

RawC)

where aTimed and aRawC are the synchronisation alphabets of the processes
Timed and RawC respectively.

There are many parameters that affect the overall complexity and state space
of the communication interface. For example, the number of ports in the system
and the size of the time stamp (TimeSize). Please refer to Table 1 for more
information.

Table 1. Communication Interface Complexity

Port Size System ISA Timed RawC
& Time Size States Trans States Trans States Trans States Trans

1 880 1840 64 96 54 144 20 62
2 16624 53296 74 114 332 880 400 1860
3 347104 1501984 94 150 2328 6048 8000 50600
4 8191936 44490176 134 222 17456 44608 160000 1290000

We address the complexity issues later in the evaluation section.

4 Evaluation

We demonstrate the framework for the design and formal verification of a config-
urable communication interface through various progressions of functional and
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performance checks. First we perform basic functional and timing checks. Then
we check the interface conformance incrementally starting from Instruction-level
functional checks through system-level functional and performance checks. Fi-
nally we check the conformance of the overall interface with targeted communi-
cation protocols’ abstract specifications.

4.1 Basic Functional and Timing Verification

First, all individual functional blocks as well as the individual protocols’ abstract
specifications are checked for deadlock and divergence freedom. The divergence
and deadlock checks for the timed processes are coupled with basic timing checks:

– Infinitely many ordinary events can never happen between two tock events
– No time-stops can happen in a timed process: a time-stop is when the tock

event cannot happen due to an ill-defined tock synchronisation.

The above is true if for each timed process Q the following assertion holds:

TOCKS %FD Q \ (Σ �{tock})

where TOCKS = tock → TOCKS.
This was used to determine the temporal validity of our models.

4.2 Instruction-Level Functional Verification

We establish the functional correctness of an instruction or a sequence of instruc-
tions through what we called earlier an ISA-oriented Specification. It involved
specifying a sequence of CSP events (a trace) that described a specific functional
task (say UartIsaTx ). We then use this specification to check the unconfigured
communication interface’s willingness to execute such task (or set of tasks) as
follows:

CommInterface %FD UartIsaTx \ {|consume|}

The {|consume|} hidden set of events is used in later checks. Similar checks are
performed for all ISA-oriented Specifications.

4.3 System-Level Functional Verification

We verify the ability of the CSP models to establish a channel of communication
by setting up a system of transmitters and receivers joined together back-to-
back. We then check this set-up for equivalence against the functional view of
the system as a multi-entry buffer as described in Section 4.3 of Roscoe [20].
This is performed for both the protocols’ abstract specifications 3.1 as well as
the Communication Interface’s ISA-oriented Specification 3.2. This establishes
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the functional correctness of the transmitters’ and receivers’ specifications and
establishes that data integrity is maintained through the communication process.

For example, an SPI specification channel composed of the SpiSpecMaster
and SpiSpecSlave is called SpiSpecChannel as in Figure 2.

If we let SpiSpecSlave=SSS, SpiSpecMaster=SSM, SpiSpecChannel=SSC and
aPhy={i1, o1, i2, o2} then:

SSC =

(
SSS[[i1, i2/miso,mosi]] ‖

i1,i2

Phy(aPhy)

)

‖
o1,o2,sclk

SSM [[o1, o2/miso,mosi]]

We then define the process Buffer to be a multi-entry buffer with alphabet
aBuffer = {|produce, consume|}.

A delayable buffer DelBuf = Buffer ||| TOCKS is one which allows the
passage of any number of clock cycles between input and output. This is useful
for the tau-priority refinement model in FDR version 2.91 where events are
either delayable or urgent. We use this delayable buffer to verify the functional
correctness of the SpiSpecChannel as follows:

DelBuf %T SSC \ Σ � (aBuffer ∪ {tock}): [tau priority over] : {tock}

On the right-hand side of the refinement all events apart from aBuffer∪{tock}
are made internal. It is necessary to make the tock event visible and subsequently
give it lower priority with respect to internal events under the tau-priority model.

Similar checks are performed to verify the functional correctness of Uart-
SpecTx and UartSpecRx. Using the same approach, two similar channels
connecting UartIsaTx to UartIsaRx and SpiIsaMaster to SpiIsaSlave were con-
structed as illustrated in Figure 3. The functional equivalence of those channels
to a multi-entry buffer was then verified.

This evaluation approach reduces the complexity of the overall system con-
siderably because the number of all possible configurations is reduced to those
which are essential to the functional correctness of the system as specified. Ta-
ble 2 provides more details.

Table 2. Evaluation Models Complexity

Time Size
SpiIsaMaster SpiIsaSlave SpiIsaChannel

States Trans States Trans States Trans

2 5547 11798 4433 11669 4986 8601
3 12603 26614 11161 29461 10258 17369
4 31323 65462 31529 83477 22146 36249
5 87195 180022 99913 265237 51298 79385



Design-for-Verification Framework for Communication Interface 347

Fig. 2. SPI Specification Channel Verification

Fig. 3. ISA-oriented Channels Verification
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4.4 System-Level Performance Verification

Performance metrics are possible to verify automatically through translating
those metrics into a tock-CSP specification process.

For instance, a latency trace specification could be:

TOCK(0) = SKIP

TOCK(n) = tock → TOCK(n − 1)
LAT (N) = produce?byte → TOCK(N) ; consume!byte → SKIP

� tock → LAT (N)

If we know that the latency of a data word through the SpiSpecChannel to be
X then we can use the latency specification above to verify the SpiSpecChannel
performance:

LAT (X) %T SpiSpecChannel \ Σ � (aBuffer ∪ {tock})

It can be tricky to translate performance metrics into trace specifications espe-
cially when one does not know in advance the numerical value for such metric.
In such case, a construction can be made to extract this numerical value auto-
matically using FDR (see Section 14.6 of Roscoe [20] for more details).

4.5 Protocol Conformance Verification

The final set of checks performed were to establish that the ISA-oriented Speci-
fication of a protocol is equivalent to the abstract specification of that protocol.
For example, UartSpecRx and UartIsaRx are equivalent and interchangeable. We
prove this through the functional verification of a channel construction where at
one end of the channel is a transmitter’s ISA-oriented Specification (UartIsaTx )
and the other end is a receiver’s abstract protocol specification (UartSpecRx ).
Let UartIsaTx=UIT, UartSpecRx=USR and aUIT = {|uTx, tock, produce|} then
the conformance channel (ConfChan) is defined as follows:

ConfChan =

(
UIT \ Σ � aUIT ‖

uTx,tock

Phy(uTx, uRx)

)
‖

uRx,tock

USR

The refinement check:

DelBuf %T ConfChan \ Σ � (aBuffer ∪ {tock}) : [tau priority over] : {tock}

verifies that the ISA-oriented Specification of a transmitter is compatible with
(and hence conforms to) the abstract protocol specification of a receiver. Simi-
lar checks can be constructed to verify the conformance of other functional and
performance aspects of the protocols.



Design-for-Verification Framework for Communication Interface 349

The total number of automatic assertion checks performed was 51. To avoid
any memory limitations we use the 64 bit version of FDR and we run it on a
machine with 40GB physical memory. We also use compression techniques built
into FDR to reduce verification time. By setting the TimeSize to 4 bits FDR
spent 31 minutes to verify all assertions.

5 Conclusion and Outlook

To manage the inherent complexity of a configurable performance-critical com-
munication interface, we demonstrated a Design-for-Verification framework for
such an interface. This is achieved through the separation of functional aspects
into independent hardware building blocks with clear interfaces and functions
which can be verified at the block level.

We took a novel approach to protocol conformity checking, whereby a pro-
tocol’s abstract specification was verified with respect to an instance configu-
ration of our Communication Interface’s CSP model through what we called
ISA-oriented Specification. These conformity checks carried out in Section 4.5
not only confirm protocol functional conformance but also timing conformance.

The integration of performance and functional modelling in the general CSP
framework is a promising approach. This is achieved through the use of tock-
CSP and the tau-priority model to carry out timing analysis and performance
checks at an early stage of the design cycle. This provides crucial and precise
real-time metrics of the system as well as performance conformance verification
with respect to a particular protocol. Our project demonstrates this approach,
and we believe it is the first project to use the newly released tau-priority model.

The complexity and grand scale of recent design problems especially in multi-
core parallel systems with multiple clock domains highlight the importance of
formal design and verification and the automation of its tools. Though FDR
proved very useful for designing systems and protocols in the past, it requires a
good knowledge of CSP and its theories. This is one of the reasons for the lack
of wide adoption in the design community. With the addition of the tau-priority
model it becomes even more important to address the usability of FDR. For
that reason, and as part of an ongoing work, we are investigating improvements
to the user interface of FDR such as the auto-generation of timing waveforms
as well as Finite State Machine graphs. Such improvements can be useful for
analysing hardware and timing specifications. This would greatly improve the
adoption of the tool in general as well as any new design approaches such as
tock-CSP and the tau-priority model. We are also investigating the reduction of
the verification time by parallel optimisation of the front end of FDR.

Future work also involves the investigation of other functional and perfor-
mance aspects of hardware design. Our target is to re-use the developed frame-
work to model and verify more complex interfaces with additional functional
blocks and multiple clock domains. We also aim to target communication pro-
tocols of higher functional and performance requirements.
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