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Abstract. By using the known lower and upper complexity bounds of the cov-
erability problem for VASS, we characterize the complexity of the classical back-
ward algorithm for VASS coverability, and provide optimal bounds on the size of
the symbolic representation it computes.

1 Introduction

In [3, 4, 15, 10] checking safety properties for concurrent systems like multithreaded
programs, communication protocols, or asynchronous programs is reduced to the cov-
erability problem of VASS (Vector Addition System with States), turning it into a central
problem in verification of concurrent systems. Given a VASS G and two configurations
s0 and s f , the coverability problem asks whether s f is coverable from s0, i.e. there is a
computation in G starting at s0 and leading to a configuration s which covers s f ; that
is, s and s f are in the same control state and the counters of s are pointwise greater or
equal than those of s f (this is noted s f � s). The complexity of the coverability prob-
lem, which is complete for EXPSPACE, was settled in the late 70’s (Lipton [13] for the
lower bound and Rackoff [14] for the matching upper bound). However, rather surpris-
ingly, the complexity analysis of the algorithms that have been implemented to solve
the coverability problem have received little or no attention.1

In this work, we propose to characterize the complexity of the so-called backward
algorithm which has been implemented in several tools and whose definition can be at-
tributed to [1, 9] and to some extent [2]. Given a VASS G and a target configuration s f ,
the backward algorithm iteratively computes the configurations from which s f is cover-
able in 0 steps, 1 step, . . . until the set of configurations is saturated. More precisely, the
algorithm symbolically computes an increasing (w.r.t set inclusion) sequence of sets of
configurations starting from the set of configurations which cover s f . Let us call each
element of the computed sequence an iterate which is given by a set of configurations
closed by above for �. Since such upward closed sets are infinite, each iterate is finitely
represented and manipulated by its basis, that is the finite set of its minimal elements
(w.r.t �). First, let us recall that the minimal elements yields a decidable, finite, and

� This author was sponsored by Comunidad de Madrid’s Program PROMETIDOS-CM

(S2009TIC-1465), PEOPLE-COFUND’s program AMAROUT (PCOFUND-2008-229599), and by
the Spanish Ministry of Science and Innovation (TIN2010-20639).

1 As far as we know, no implementation of Rackoff’s algorithm exists.
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canonical representation of each iterate, and second, because � is a well-quasi ordering
on the set of configurations, it follows that the algorithm is guaranteed to reach a fixpoint
B(G,s f ) after finitely many steps. Since B(G,s f ) is the basis of the set of configurations
from which s f is coverable in G, we obtain a decision procedure for the coverability
problem: (G,s0,s f ) is a positive instance of the coverability problem iff smin � s0 for
some smin ∈ B(G,s f ). Note that B(G,s f ) can be used to solve other coverability related
problems such as checking whether from each G-configuration, s f is coverable.

Our contribution. In this paper, we show that the “backward algorithm” is optimal to
solve the coverability problem. Using Rackoff’s and Lipton’s results [14, 13], respec-
tively, we give upper and lower bounds on the number of iterations of the backward
algorithm as well as its execution time. Moreover, our complexity analysis allows us to
derive upper bounds on the cardinality of B(G,s f ) and the maximal size of the single
elements of B(G,s f ), which are doubly exponential in the dimension of G (the number
of counters). Furthermore, we provide matching lower bounds by a readaptation of the
Lipton’s proof [13].

Besides the backward algorithm, VASS analysis tools often implement a forward al-
gorithm whose definition is due to Karp and Miller [12]. The forward algorithm returns
a finite representation (the covering set) of an overapproximation (the coverability set)
of the set of configurations reachable from the given initial configuration s0. Such an
overapproximation is sound and also complete for certain problems like the coverability
problem. By using the covering set, one can solve, for instance, the coverability problem
(by asking whether the target configuration s f belongs to the coverability set) but also
the boundedness problem which asks whether the set of reachable configurations from
the given initial configuration is finite. From a complexity standpoint, it is mentioned in
[7] that the algorithm of Karp and Miller requires non-primitive recursive space. Let us
also cite [8] which gives a more refined complexity analysis of the forward algorithm.

Related work. The closest works to our are [17] which provide an upper bound on
the size of B(G,s f ). However, the algorithm to compute B(G,s f ) (originally given in
[16]) differs from the backward algorithm and does not yield any conclusion about the
complexity of the backward algorithm. Moreover, contrary to us the authors do not
provide lower bounds on the size of B(G,s f ).2

2 Preliminaries

2.1 Notations and Definitions

Let Z be the set of integers, N be the set of nonnegative integers, and N
+ be the set of

positive integers. For each k ∈ N
+ and vector v ∈ Z

k, v[i] denotes the ith component
of v, for i ∈ {1, . . . ,k}. If v1,v2 ∈ Z

k, then v1 + v2 denotes that vector v ∈ Z
k such that

v[i] = v1[i]+ v2[i] for all i ∈ {1, . . . ,k}; v1 − v2 is defined similarly. Let v ∈ Z
k, define

‖v‖ = max({abs(v[i]) | i ∈ {1, . . . ,k}}), where abs(v[i]) is the absolute value of v[i].
Finally, for a finite set Q, |Q| denotes the cardinality of Q.

2 Similarly to Rackoff’s algorithm we do not know of any implementation of the algorithm of
[16].
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2.2 Well-Quasi Orderings

Recall that for a set S, a partial order � over S is a reflexive, transitive and antisym-
metric binary relation on S. We say that � is a well-quasi ordering (wqo, for short)
if additionally, for each infinite sequence s0,s1, . . . of elements of S there are indices
i < j such that si � s j . Given a partial order � over S, a subset U of S is upward-closed
(w.r.t. �) if for all s,s′ ∈ S, s ∈ U and s � s′ entail s′ ∈ U . A basis of U (w.r.t. �) is a
subset B of U satisfying the following: (1) for each s ∈U , there is s′ ∈ B such that s′ � s,
and (2) for all s,s′ ∈B, s� s′ implies s = s′ (i.e., distinct elements of B are incomparable
w.r.t. �). The following is a well-known result.

Lemma 1. [11] Let S be a set and � be a partial order over S which is wqo. Then,
each upward-closed subset U of S (w.r.t. �) admits a unique basis, which is finite and
consists of the minimal elements of U (w.r.t. �). Moreover, for each monotone infinite
sequence of upward-closed sets U0 ⊆U1 ⊆ . . ., there is i ≥ 0 such that Ui+1 = Ui.

Let k ∈ N
+. We consider the partial order over N

k, written �, which is the componen-
twise extension of ≤ over N: let v,v′ ∈ N

k, v � v′ iff v[i] ≤ v′[i] for each 1 ≤ i ≤ k.
Moreover, for a finite set Q, we consider the partial order over Q×N

k, which (with a
little abuse of notation) is again denoted by �, defined as: 〈q,v〉 � 〈q′,v′〉 iff q = q′
and v � v′. It is well-known that � is a wqo over N

k (this result is known as Dickson’s
Lemma [5]). Hence, it easily follows that � is a wqo over Q×N

k, for each finite set Q.
For s ∈ Q×N

k, we denote by s↑ the upward-closed set given by
{

s′ ∈ Q×N
k | s � s′

}
.

In the rest of this paper, if we say that some set U ⊆ Q×N
k is upward-closed, we mean

that U is upward-closed set w.r.t. �. For X ⊆Q×N
k, min(X) denotes the set of minimal

elements in X (w.r.t. �). Note that according to Lemma 1, min(X) is the unique (finite)
basis of X if X is upward-closed.

2.3 Vector Addition Systems with States (VASS)

Let d ∈ N
+. A d-VASS G is a pair 〈Q,Δ〉, where Q is a non-empty finite set of control

points and Δ ⊆ Q×Z
d ×Q is a finite set of transitions in Q×Z

d ×Q. The d-VASS G
induces an infinite directed graph [[G]] =

〈
Q×N

d,→〉
whose set of vertices is given by

Q×N
d and the set of edges is defined as: 〈q,v〉 → 〈q′,v′〉 iff there is 〈q,u,q′〉 ∈ Δ such

that v′ = v+u. Vertices of [[G]] are called G-states or simply states when G is clear from
the context. A run π = s1, . . . ,sn of G is a finite path in the graph [[G]]. The length |π| of
π is n. We define ‖Δ‖ = max({‖v‖ | 〈q,v,q′〉 ∈ Δ}). Moreover, for a state s = 〈q,v〉 and
a finite set S of states, define ‖s‖ = ‖v‖ and ‖S‖= max({‖s‖ | s ∈ S}).

For each set S of G-states, Pre∗(G,S) denotes the set of G-states s such that there is
a run of G from s to some state in S. Moreover, Pre(G,S) denotes the set of G-states s
such that s → s′ is an edge of [[G]] for some s′ ∈ S. It is well-known (see e.g. [1, 9]) that
if S is upward-closed, then Pre∗(G,S) and Pre(G,S) are upward-closed as well (this can
be easily checked).

2.4 Coverability Problem and Rackoff’s Upper Bound

Given a d-VASS G = 〈Q,Δ〉 and two G-states s0 and s f , a covering in G of s f w.r.t. s0 is a
run of G from s0 which leads to a state s satisfying s f � s. If such a covering exists, i.e.,
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s0 ∈ Pre∗(G,s f ↑), we say that s f is coverable from s0 in G. The coverability problem
asks whether s f is coverable from s0 in G for a given d-VASS G and G-states s0 and s f .
By a straightforward adaptation of the Rackoff’s algorithm for the coverability problem
[14], we obtain the following result.

Theorem 1. Let G = 〈Q,Δ〉 be a d-VASS and s f be a state. For each state s, if s f

is coverable from s in G, then there is a covering in G of s f w.r.t. s whose length is
independent on ‖s‖ and is at most [|Q| · (‖Δ‖+‖s f‖+ 2)](3d)!+1.

Proof of Theorem 1. We need additional definitions. Let d ∈N
+ and I ⊆{1, . . . ,d}. For

u∈Z
d , uI denotes the vector in Z

d defined as uI[i] = u[i] if i∈ I, and uI[i] = 0 otherwise.
For a d-VASS G = 〈Q,Δ〉, GI denotes the d-VASS GI =

〈
Q,{〈q,uI,q′

〉 | 〈q,u,q′〉 ∈ Δ}〉.
Note that G{1,...,d} = G. Let s = 〈q,v〉 be a G-state, we denote by sI the G-state given by〈
q,vI

〉
, and for a run π, we denote by πI the sequence of G-states obtained from π by

replacing each state s along π with sI . Note that πI is a run in GI . For B ∈ N, a vector
v ∈ N

d is B-bounded if v[i]≤ B for each i ∈ {1, . . . ,d}. A run π of G is B-bounded if for
each state 〈q,v〉 occurring along π, v is B-bounded.

Fix a d-VASS G = 〈Q,Δ〉 and a state s f =
〈
q f ,v f

〉
. For each I ⊆ {1, . . . ,d} and G-

state s, define dist(I,s) to be the length of the shortest covering in GI of (s f )I w.r.t. sI ,
if (s f )I is coverable from sI in GI (note that dist(I,s) ≥ 1), and dist(I,s) = 0 otherwise.
Moreover, for each k ∈ {0,1, . . . ,d}, define f (k) = sup{dist(I,s) | |I| = k and s is a
G-state} (note that f (k) ≥ 1 since s f is coverable from itself in G). Then:

Lemma 2. For all k ∈ {0,1, . . . ,d}, the following inequalities hold:

f (k) ≤
{ |Q| if k = 0
|Q| · ((‖Δ‖+‖s f‖) · f (k−1))k + f (k−1) if k > 0

Proof. The case k = 0 is trivial. Now, assume that k > 0. By ind. hyp., f (k−1) is finite.
Let s be a G-state and I ⊆ {1, . . . ,d} s.t. |I| = k and there is a covering π in GI of
(s f )I w.r.t. sI . We need to show that there is a covering in GI of (s f )I w.r.t. sI of length
bounded by |Q| · ((‖Δ‖+ ‖s f ‖) · f (k− 1))k + f (k− 1). Let B = ‖Δ‖ · f (k− 1)+ ‖s f‖.
We distinguish two cases:

Case 1: π is B-bounded. Let s′ be the last state of π. Then, there is a B-bounded run π′
in GI from sI to s′ such that the states visited by π′ are mutually distinct. It is routine to
check that the length of π′ is at most |Q| ·Bk. By hypothesis (s f )I � s′, hence π′ is also
a covering in GI of (s f )I w.r.t. sI . Thus, since |Q| ·Bk ≤ |Q| · ((‖Δ‖+‖s f ‖) · f (k−1))k,
the result holds in this case.

Case 2: π is not B-bounded. Then, there is a G-state s2 s.t. π can be written in the form
π = π1 ·π2 so that π1 is either empty or B-bounded, π2 starts at state (s2)I = 〈q2,v2〉,
and v2 is not B-bounded. Hence, there is i ∈ I such that v2[i] > B. Assume that π1 is
not empty and B-bounded (the other case being simpler). Let s1 be the last state of π1.
As in case 1, we can replace π1 with a run π′

1 in GI from sI to s1 of length at most
|Q| ·Bk. Let J = I \ {i} (hence, |J| = k− 1). Since (π2)J is a covering in GJ of (s f )J

w.r.t. (s2)J , by the ind. hyp., there is a covering π′
2 in GJ of (s f )J w.r.t. (s2)J of length

at most f (k−1). Note that at each step of a run of G, any component of a G-state can
decrease at most by ‖Δ‖. Thus, since π′

2 has length at most f (k−1), (s2)I = 〈q2,v2〉, and
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v2[i] > B = ‖Δ‖· f (k−1)+‖s f ‖, it follows that there exists a covering π′′
2 in GI of (s f )I

w.r.t. (s2)I of length at most f (k−1). Hence, π′
1 ·π′′

2 is a covering in GI of (s f )I w.r.t. sI

of length at most |Q| ·Bk + f (k−1). Since |Q| ·Bk ≤ |Q| · ((‖Δ‖+‖s f ‖) · f (k−1))k, we
are done. ��
By solving the recurrence in Lemma 2, we obtain the following result. Hence, Theo-
rem 1 directly follows.

Lemma 3. For all k ∈ {0,1, . . . ,d}, f (k) ≤ (|Q| · (‖Δ‖+‖s f‖+ 2)
)(3k)!+1

.

Proof. By induction on k. The base case k = 0 directly follows from Lemma 2. Now,
assume that k > 0. Let C = ‖Δ‖+‖s f ‖+ 2. Then,

f (k) ≤ |Q| · (C · f (k−1))k + f (k−1) by Lemma 2

≤ |Q| · [(C · f (k−1))k + f (k−1)]

≤ |Q| · (C · f (k−1))k+1 since C · f (k−1) ≥ 2

≤ (|Q| ·C · f (k−1))k+1

≤ ((|Q| ·C)(3(k−1))!+2)k+1 by induction hypothesis

≤ (|Q| ·C)(3k)!+1

��
Note that min(Pre∗(G,s f ↑)) constitutes a finite canonical representation of the possibly
infinite set Pre∗(G,s f ↑), for which the membership problem (and other basic questions)
are decidable.3 It is well-known that min(Pre∗(G,s f ↑)) can be computed by a least
fixpoint algorithm [1, 9] refered to as the backward algorithm. However, no elementary
upper bound is known on the execution time of this algorithm. By using Theorem 1,
we provide in the next section such an upper bound. As a consequence, we derive an
upper bound on the cardinality of min(Pre∗(G,s f ↑)), which is doubly exponential in the
dimension d of G. In Section 4, we show that this double exponential blow-up cannot
be avoided.

3 Complexity of the Backward Algorithm for Coverability

First, we recall the standard backward algorithm for coverability [1, 9]. Fix a d-VASS

G = 〈Q,Δ〉 and a state s f . We define a monotone infinite sequence U0 ⊆ U1 ⊆ . . . of
upward-closed sets of states as: U0 = s f ↑, and Ui+1 = Ui ∪Pre(G,Ui) for each i ≥ 0.
Since � (over Q×N

d) is a wqo, Ui ⊆Ui+1 for each i ≥ 0, and Ui = Ui+1 iff min(Ui) =
min(Ui+1), by Lemma 1 and definition of the sets Ui, we obtain the following.4

Remark 1. For each i ≥ 0, Ui is the set of states s such that there is a covering of s f

w.r.t. s of length less or equal to i. Moreover, there is i ≥ 0 such that min(Ui+1) =
min(Ui). Also, whenever min(Ui+1) = min(Ui) for some i ≥ 0, then Pre∗(G,s f ↑) = Ui.

3 Given min(U) for an upward-closed set U of G-states, one can decide if a given state is in U
(membership problem).

4 Note that Pre∗(G,s f ↑) is the least fixpoint of µX .(s f ↑)∪Pre(G,X).
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Remark 2. [1, 9] Given a G-state s, one can compute min(Pre(G,s↑)). Hence, for each
i ≥ 0, given min(Ui), one can compute min(Ui+1) as follows:

min(Ui+1) = min(min(Ui)∪⋃
s∈min(Ui) min(Pre(G,s↑))) .

Then, the backward algorithm at ith step computes min(Ui). If min(Ui) = min(Ui+1),
then the algorithm terminates and outputs min(Ui). By Remark 1, the algorithm termi-
nates and outputs the basis of Pre(G,s f ↑). Now, we analyze its complexity. Let H be
the upper bound in Theorem 1 for G and s f , i.e., H = [|Q| · (‖Δ‖+‖s f‖+ 2)](3d)!+1.

Lemma 4. The sequence min(U0),min(U1), . . . is stable at H, i.e. min(UH) =
min(UH+1).

Proof. By contradiction. Assume that min(UH) �= min(UH+1). Then, UH �= UH+1 and
since UH ⊆ UH+1, there must be s ∈ UH+1 \UH . By Remark 1, it follows that each
covering in G of s f w.r.t. s has length at least H +1. Since s ∈UH+1 ⊆ Pre∗(G,s f ↑), s f

is coverable from s. Thus, by definition of H and Theorem 1, there must be a covering
of s f w.r.t. s of length at most H, which is a contradiction. ��

Lemma 5. Let S be a finite set of states. Then, one can compute a finite set BS of states
such that min(S↑∪Pre(G,S↑)) ⊆ BS ⊆ S↑∪Pre(G,S↑), |BS| is at most O(|Δ| · |S|), and
‖BS‖ is at most O(‖Δ‖+ ‖S‖). Moreover, BS can be computed in time O(d · |Δ| · |S| ·
log(‖Δ‖+‖S‖+ 2)).

Proof. For v∈Z
d , pos(v) denotes the vector in N

d defined as: pos(v)[i] = v[i] if v[i]∈N,
and pos(v)[i] = 0 otherwise. Then, BS = S∪AS, where AS is given by

AS = {〈q,pos(v′ − v)
〉 | 〈q,v,q′

〉 ∈ Δ and
〈
q′,v′

〉 ∈ S for some q′ ∈ Q}

We show the following, hence, the result easily follows:

1. AS ⊆ Pre(G,S↑)
2. For each s ∈ Pre(G,S↑), there is s′ ∈ AS such that s � s′.

Proof of Property 1: let s ∈ AS. By construction there are 〈q,v,q′〉 ∈ Δ and 〈q′,v′〉 ∈ S
such that s = 〈q,pos(v′ − v)〉. Evidently, it suffices to show that pos(v′ − v)+ v � v′.
Since pos(v′ − v) � v′ − v, the result follows.

Proof of Property 2: let s ∈ Pre(G,S↑), where s = 〈q,v〉 for some q ∈ Q and v ∈ N
d .

Then, there is 〈q,v′,q′〉 ∈ Δ such that 〈q′,v + v′〉 ∈ S↑. Hence, there is 〈q′,vmin〉 ∈ S such
that v+ v′ � vmin. Hence, v � vmin − v′. Since v ∈ N

d , we obtain that v � pos(vmin − v′).
Let s′ = 〈q,pos(vmin − v′)〉. Note that s′ ∈ AS. Thus, since s � s′, we are done. ��

Note that given a finite set S of G-states, min(S) can be easily computed in time O(d ·
|S|2 · log(‖S‖+ 2)). Hence, by Lemma 5, we obtain the following.

Corollary 1. Let S be a finite set of G-states and Smin = min(S↑∪ Pre(G,S↑)). Then,
‖Smin‖ is at most O(‖Δ‖+ ‖S‖). Moreover, Smin can be computed in time O(d · |Δ|2 ·
|S|2 · log(‖Δ‖+‖S‖+ 2)).
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By Lemma 4 and Remark 1, min(Pre∗(G,s f ↑)) = min(UH). Then, Corollary 1 shows
that the backward algorithm terminates in time

O(H ·d · |Δ|2 ·max0≤i≤H|min(Ui)|2 · log(‖Δ‖+ max0≤i≤H‖min(Ui)‖+ 2))

Note that, by Corollary 1, for each i≥ 0, ‖min(Ui)‖= O(i ·‖Δ‖+‖s f‖). Hence, |min(Ui)|
is at most O(|Q| ·(i ·‖Δ‖+‖s f ‖)d). Also, max0≤i≤H‖min(Ui)‖= O(H ·‖Δ‖+‖s f ‖) and
max0≤i≤H|min(Ui)|2 = O(|Q|2 · (H · ‖Δ‖+‖s f‖)2d). Therefore, since H =

(|Q| · (‖Δ‖+

‖s f ‖+ 2)
)2O(d·logd)

, we obtain the following.

Theorem 2. The backward algorithm terminates in time
(|Q| ·(‖Δ‖+‖s f ‖+2)

)2O(d·logd)
,

‖min(Pre∗(G,s f ↑))‖ and |min(Pre∗(G,s f ↑))|are at most
(|Q| ·(‖Δ‖+‖s f‖+2)

)2O(d·logd)
.

4 Lower Bound

In this section, we prove the following result by an adaptation of Lipton’s proof of
EXPSPACE-hardness for reachability in VASS [13].

First, we need the following notation. Let G = 〈Q,Δ〉 be a d-VASS and q ∈ Q. We
denote by q↑ the upward-closed set {q}×N

d of G-states. Also, for a set S of G-states,
we denote by [Pre∗(G,S)]q the subset of N

d given by {v ∈ N
d | 〈q,v〉 ∈ Pre∗(G,S)}.

Theorem 3. For each n∈N, one can build a O(n)-VASS Gn = 〈Qn,Δn〉 and qn ∈ Qn s.t.
|Qn|= O(n), |Δn|= O(n), ‖Δn‖ = 1, and the following holds: (1) |min(Pre∗(Gn,qn↑))|
is at least 22n

(hence, ‖min(Pre∗(Gn,qn↑)))‖ is at least 22Ω(n)
), and (2) there are states

s ∈ min(Pre∗(Gn,qn↑)) s.t. each run from s to a state in qn↑ has length at least 22n
.

By Property 2 in Theorem 3 and the results in the previous section, we easily deduce
the following.

Corollary 2. Let n ∈ N, Gn = 〈Qn,Δn〉 and qn ∈ Qn as in Theorem 3. Then, the number
of iterations of the backward algorithm with input Gn and 〈qn,〈0, . . . ,0〉〉 is at least 22n

.

To make clear the proof of Theorem 3, we consider an high-level variant of VASS, called
net Programs [6], corresponding to a subclass of nondeterministic counter machines
with nonrecursive subroutines. Then, we show that in order to prove Theorem 3, it is
sufficient to prove a similar result for net programs. Finally, in Section 4.2, we prove
the variant of Theorem 3 for net programs.

For m,k ∈ N
+ s.t. k ≤ m and U ⊆ N

m, Πk(U) denotes the subset of N
k given by {v ∈

N
k | 〈v[1], . . . ,v[k],0, . . . ,0〉 ∈ U}. Note that Πk(U) is upward-closed if U is upward-

closed. Moreover, the following holds.

Lemma 6. Let m,k ∈ N
+ such that k ≤ m and U be an upward-closed subset of N

m.
Then, |min(U)| ≥ |min(Πk(U))|.
Proof. For v ∈ N

k, we denote by v ·0 the vector in N
m given by 〈v[1], . . . ,v[k],0, . . . ,0〉.

Let v ∈ min(Πk(U)). We show that v · 0 ∈ min(U), hence, the result follows. Since
v ·0 ∈ U , there is v′ ∈ min(U) such that v′ � v ·0 ∈ U . Hence, v′ = v′′ ·0, v′′ ∈ Πk(U),
and v′′ � v. Since v ∈ min(Πk(U)), it follows that v′′ = v, hence v ·0 = v′ ∈ min(U), and
we are done. ��
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4.1 Net Programs

A net program is similar to a nondeterministic Minsky counter machine, but does not
have the ability to test a (counter) variable for zero. However, it has the possibility of
transferring control to a subroutine (or subprogram). Formally, a net program P on a fi-
nite set {x1, . . . ,xd} of (counter) variables is a tuple P = 〈ID1, . . . , IDn,Code〉, where
ID1, . . . , IDn are pairwise distinct subprogram identifiers, and Code assigns to each
1 ≤ p ≤ n, the code Code(IDp) of subprogram IDp, which is a sequence of the form

Code(IDp) = l1 : I1; . . .lk−1 : Ik−1;lk : return;
where k ≥ 1, l1, . . . ,lk are pairwise distinct (instruction) labels, l1 (resp., lk) is the
initial (resp., final) label of subprogram IDp, and each I j is an instruction of the form:

– increment: xi := xi + 1 (where 1 ≤ i ≤ d),
– decrement: xi := xi −1 (where 1 ≤ i ≤ d),
– unconditional jump: goto l (where l ∈ {l1, . . . ,lk}),
– nondeterministic jump: goto l or goto l′ (where l,l′ ∈ {l1, . . . ,lk}),
– subprogram call: call IDi (where i > p).5

Additionally, we require that labels of distinct subprograms are distinct as well. The
subprogram ID1 is called the main subprogram of P, and the initial (resp., final) label
of P is the initial (resp., final) label of the main subprogram. For each (instruction) label
l of P, we denote by ID(l) the identifier of the unique subprogram having l as label.
Moreover, if l is the label of a call instruction, we denote by called(l) the identifier
of the called subprogram. Now, we formally define the semantics of net programs. An
extended label of the net program P above is a pair of the form 〈C,l〉, where l is a label
of P and C is a caller context, i.e., a (possibly empty) sequence of P-labels C = l1 . . .lk

such that the following holds: (i) each li is the label of a call instruction, and (ii) if C
is nonempty, then ID(li+1) = called(li) for each 1 ≤ i ≤ k, where lk+1 = l. Note that
the set of extended labels of P, written EL(P), is finite. A P-state is a pair 〈〈C,l〉,v〉,
where 〈C,l〉 ∈ EL(P) and v ∈ N

d is a valuation of variables {x1, . . . ,xd} assigning to
each variable xi, the value v[i]. The net program P induces a transition relation → over
P-states, as follows 〈〈C,l〉,v〉 → 〈〈C′,l′〉,v′〉 iff:

– if l is the label of an increment (resp., decrement, resp., jump) instruction, then
〈〈C′,l′〉,v′〉 is as expected (note that C′ = C and if l is the label of a decrement,
then 〈〈C,l〉,v〉 has a successor iff the value in v of the decremented variable is
greater than 0);

– if l is the label of a call instruction “call ID j”, then v′ = v, C′ = C ·l, and l′ is the
initial label of subprogram ID j;

– if l is the label of a return instruction, then v′ = v, C = C′ ·l′′ for some l′′, and l′
is the label which follows the call instruction label l′′ in Code(ID(l′′)).

A run or execution of P is a finite sequence s1, . . . ,sh of P-states such that si → si+1

for each 1 ≤ i < h. For a set S of P-states, let Pre∗(P,S) be the set of P-states s such
that there is a run of P from s leading to some P-state in S. For each label l, we denote
by [Pre∗(P,S)]l the set

{
v ∈ N

d | 〈〈ε,l〉,v〉 ∈ Pre∗(P,S)
}

, and by l↑ the set of P-states

5 The requirement i > p ensures that there are no recursive calls.
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{〈ε,l〉} ×N
d . It is easy to show that if S is an upward-closed set of P-states, then

Pre∗(P,S) is upward-closed as well. The following result allows us to reduce the proof
of Theorem 3 to its variant for the class of net programs.

Theorem 4. Let P be a net program on {x1, . . . ,xd}, k be the number of call instructions
of P, and start and end be the initial and final labels of P. Then, one can build in
linear-time a (d+k)-VASS G = 〈Q,V 〉 such that Q is the set of P-labels, ‖Δ‖= 1, |Δ| ≤
2 · N, where N is the number of P-instructions, and |min([Pre∗(G,end↑)]start)| ≥
|min([Pre∗(P,end↑)]start)|. Moreover, for each s ∈ min(Pre∗(P,end↑)), there is a G-
state s′ ∈ min(Pre∗(G,end↑)) such that for each run π in G from s′ to a G-state in
end↑, there is a run of P from s to a P-state in end↑ of length |π|.
Proof. Let L = {l1, . . . ,lk} be the set of call instruction labels of P. The (d+k)-VASS

G = 〈Q,Δ〉 is defined as follows (intuitively, we use an additional dimension for each
call instruction label of P): Q is the set of P-labels and the set of transitions Δ is obtained
in the following way:

– for each increment “l : xi := xi +1; l′ : I ; . . .”, we add the transition 〈l,v,l′〉, where
v[i] = 1 and v[ j] = 0 for j �= i;

– for each decrement “l : xi := xi−1; l′ : I ; . . .”, we add the transition 〈l,v,l′〉, where
v[i] = −1 and v[ j] = 0 for j �= i;

– for each unconditional jump “l : goto l′; . . .”, we add transition
〈
l,0d+k,l′

〉
;

– for each nondeterministic jump “l : goto l′ or goto l′′; . . .”, we add two transitions
given by

〈
l,0d+k,l′

〉
and

〈
l,0d+k,l′′

〉
;

– for each call instruction “li : call IDp; l : I ; . . .” (where 1 ≤ i ≤ k), we add two
transitions 〈li,v+,l0〉 and

〈
l f ,v−,l

〉
, where: (i) l0 (resp., l f ) is the initial (resp.,

final) label of subprogram IDp, (ii) v+[d + i] = 1 and v+[ j] = 0 for j �= d + i, and
(iii) v−[d + i] = −1 and v−[ j] = 0 for j �= d + i.

Note that ‖Δ‖ = 1 and |Δ| ≤ 2 · N, where N is the number of P-instructions. Now,
we establish the correspondence between the runs of P and the runs of G. Let H be
the mapping assigning to each state s of P of the form

〈〈
li1 . . .lip ,l

〉
,v

〉
, the G-state

H(s) defined as follows (note that i1, . . . , ip ∈ {1, . . . ,k} and are pairwise distinct)6:
H(s) = 〈l,vext 〉, where for each 1 ≤ j ≤ d + k, vext [ j] = v[ j] if j ≤ d, vext [ j] = 1 if
j = d + ih for some 1 ≤ h ≤ p, and vext [ j] = 0 otherwise. By construction, we obtain the
following:

Claim: let s0,s1, . . . ,sn be a sequence of states of P. Then, s0,s1, . . . ,sn is a run of P if
and only if H(s0),H(s1), . . . ,H(sn) is a run of G. Moreover, for each state s′0 of P, each
run of G from H(s′0) has the form H(s′0),H(s′1), . . . ,H(s′m) for some sequence s′1, . . . ,s

′
m

of P-states.

By the claim above, it follows that Πd([Pre∗(G,end↑)]start) = [Pre∗(P,end↑)]start.
Thus, by Lemma 6 and the claim above, Theorem 4 easily follows. ��

4.2 Proof of Theorem 3

Theorem 3 directly follows from Theorem 4 and the following result.

6 Moreover, note that called(li1 ), . . . ,called(lik) are pairwise distinct and called(lik ) = ID(l).
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Theorem 5. For each n ∈ N, one can build a net program Pn with initial (resp., final)
label start (resp., end), O(n) instructions, and O(n) variables such that
|min([Pre∗(Pn,end↑)]start )| ≥ 22n

. Also, there exists v∈min([Pre∗(Pn,end↑)]start ) such
that each run from 〈〈ε,start〉,v〉 to a state in end↑ has length at least 22n

.

In the rest of this section, we prove Theorem 5.

Construction of Pn. Let n ∈ N, define Varn = {w1,w2,yn,yn}∪
⋃n−1

i=0 {yi,yi,zi,zi}. The
net program Pn has set of variables Varn and is given by

〈Mainn,Liptonn, Init0, . . . , Initn−1,Decn(yn),Decn−1(yn−1),Decn−1(zn−1), . . .
Dec0(y0),Dec0(z0),Setn,Code〉

where Code is given in Figures 1–3.7

The construction of Pn ensures the following: if initially (i.e., at call time of the main
subprogram Mainn) each variable in Varn \ {w1,w2} has value 0, then the main sub-
program Mainn can return8 if and only if the sum of the initial values of w1 and w2

is greater or equal to 22n
. Now, we proceed with the description of the various sub-

programs of Pn. The main subprogram Mainn simply calls the subprograms Setn and
Liptonn (in the given order) and returns. It is easy to check (see Figure 1) that the
subprogram Setn ensures the following.

Mainn :

start : call Setn;
call Liptonn;

end : return.

Liptonn :

start : call Init0;
. . . . . .
call Initn−1;
call Decn(yn);

end : return.

Setn :

start : goto 0 or goto end;
0 : goto 1 or goto 2;
1 : w1 := w1 −1;yn = yn + 1;

goto start;
2 : w2 := w2 −1;yn = yn + 1;

goto start;
end : return.

Fig. 1. The subprograms Mainn, Liptonn, and Setn of Pn

Lemma 7. Assume that Setn is called with the value of yn being 0. Then: (1) whenever
Setn returns, the value of yn is less or equal to the sum of the initial values (at call time
of Setn) of variables w1 and w2, and (2) there is an execution such that Setn returns with
the value of yn being exactly the sum of the initial values of w1 and w2.

7 In Figures 1–3, for clarity, some instruction labels are omitted, and some labels of distinct
subprograms are equal (we tacitely assume that they are prefixed by the ID of the associated
subprogram).

8 i.e., there is a run leading to a state whose label is the final label of subprogram Mainn.
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The subprogram Liptonn (see Figure 1), whose construction corresponds to a variant of
that given by Lipton in [13] (see also [6]), ensures the following: if initially (i.e., at call
time of Liptonn) all the variables in Varn \ {w1,w2,yn} have value 0, then Liptonn can
return if and only if the initial value of yn is greater or equal to 22n

. The implementation
of Liptonn is based on subprograms Initi, Deci(zi), and Dec j(y j) (where 0 ≤ i ≤ n−
1 and 0 ≤ j ≤ n). The subprograms Deci(zi) and Dec j(y j) (see Figure 2) ensure the
following.

Dec0(x0) :

* x0 is either y0 or z0*
start : x0 := x0 −1;

x0 := x0 −1;
x0 := x0 + 1;
x0 := x0 + 1;

end : return.

Deci+1(xi+1) :

* xi+1 is either yi+1 or zi+1 *
* Initially, yi = zi = 22i

and yi = zi = 0 *

out-loop : yi := yi −1;yi := yi + 1;
in-loop : zi := zi −1;zi := zi + 1;

xi+1 := xi+1 −1;xi+1 := xi+1 + 1;
goto in-continue or goto in-exit;

in-continue : zi := zi −1;zi := zi + 1;goto in-loop;
in-exit : call Deci(zi);

goto out-continue or goto out-exit;
out-continue : yi := yi −1;yi := yi + 1;goto out-loop;

out-exit : call Deci(yi);
end : return.

Fig. 2. The subprograms Dec0(x0) and Deci+1(xi+1) of Pn

Lemma 8. Let 0 ≤ j ≤ n and x j ∈ {y j,z j} such that x j = y j if j = n. Assume that
Dec j(x j) is called with the values of yh and zh being 0 and the values of yh and zh being

22h
for each 0 ≤ h < j. Then, the following holds:

– Dec j(x j) can return iff the initial value of x j (at call time of Dec j(x j)) is at least

22 j
. Moreover, if the initial value of x j is exactly 22 j

and the initial value of x j

is 0, then whenever Dec j(x j) returns, the values of x j and x j (at return time) are

swapped (i.e., x j has value 22 j
and x j has value 0).

– Whenever Dec j(x j) returns, there are no side-effects on the variables x ∈ Varn \
{x j,x j} (the values of x at call and return times are the same).

– Whenever Dec j(x j) returns, the number of computational steps from the call time

to the return time is at least 22 j
.

Proof. The proof is by induction on j. The base case ( j = 0) is trivial (see Figure 2).
Now, assume that j = i+1 for some 0 ≤ i < n. Let us consider the code of Deci+1(xi+1)
in Figure 2, which consists of two nested loops: the inner loop is associated with the
counter variable zi, while the outer loop is associated with the counter variable yi. Note
that the body of the inner loop decrements xi+1. Essentially, since the initial values of yi

and zi are 22i
, each of two nested loops can be executed 22i

-times. Since 22i ·22i
= 22i+1

,
it follows that xi+1 can be decreased by 22i+1

. Fix xi ∈ {yi,zi}. First, note that at each step
the invariant xi + xi = 22i

is preserved. Moreover, for the loop associated with counter
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variable xi, Deci+1(xi+1) can guess that the continuation (resp., exit) condition is satis-
fied, i.e., xi > 0 (resp., xi = 0), by a nondeterministic jump instruction. The continuation
condition is implemented by decrementing and then incrementing xi, while the exit con-
dition is implemented by a call to Deci(xi). By the induction hypothesis, Deci(xi) can
return if and only if xi has value 22i

, i.e., xi has value 0. Thus, if the guess is not correct,
the subprogram Deci+1(xi+1) stops without returning. Moreover, by the induction hy-
pothesis, whenever Deci(xi) returns, the values of xi and xi are swapped. This ensures
that the inner loop can be re-initialized correctly, and whenever Deci+1(xi+1) returns,
the values of xi and xi correspond to the initial ones. Thus, it follows that Deci+1(xi+1)
can return if and only if xi+1 can be decreased by 22i+1

(i.e., the initial value of xi+1 is
at least 22i+1

). Finally, if the initial value of xi+1 is 22i+1
and the initial value of xi+1 is

0, then the body of the inner loop of Deci+1(xi+1) ensure that at return time, the values
of xi+1 and xi+1 are swapped. ��
Finally, for each 0 ≤ i ≤ n− 1, the subprogram Initi (see Figure 3) is used to set the
values of yi and zi to 22i

. More precisely, Initi ensures the following.

Init0 :

start : y0 := y0 + 1;
y0 := y0 + 1;
z0 := z0 + 1;
z0 := z0 + 1;

end : return.

Initi+1 :

out-loop : yi := yi −1;yi := yi + 1;
in-loop : zi := zi −1;zi := zi + 1;

yi+1 := yi+1 + 1;zi+1 := zi+1 + 1;
goto in-continue or goto in-exit;

in-continue : zi := zi −1;zi := zi + 1;goto in-loop;
in-exit : call Deci(zi);

goto out-continue or goto out-exit;
out-continue : yi := yi −1;yi := yi + 1;goto out-loop;

out-exit : call Deci(yi);
end : return.

Fig. 3. The subprograms Init0 and Initi+1 of Pn

Lemma 9. Let 0 ≤ j ≤ n− 1. Assume that Init j is called with the following condition
being satisfied at call time: (i) the values of y j,z j,y j,z j are 0, and (ii) the values of

yh,zh are 0 and the values of yh and zh are 22h
for each 0 ≤ h < j. Then, Initi can

return. Moreover, whenever Initi returns, yi and zi have value 22i
and there are no-side

effects for the other variables x ∈ Varn \ {yi,zi} (i.e., the values of x at call and return
times are the same).

Proof. The proof is by induction on j. The base case ( j = 0) is trivial (see Figure 3).
Now, assume that j = i+ 1 for some 0 ≤ i < n−1. Let us consider the code of Initi+1

in Figure 3, which is the same as Deci+1(xi+1), with the unique difference that the
body of the inner loop increments the two variables yi+1 and zi+1. Hence, reasoning as
in the proof of Lemma 8, the result easily follows (in particular, under the considered
assumptions, whenever Initi+1 returns, the values of yi+1 and zi+1 are increased exactly
by 22i+1

). ��
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Assume that at call time of subprogram Liptonn, each variable in Varn\{w1,w2,yn} has
value 0. Then, By Lemmata 8 and 9, Liptonn can return iff at call time yn has value at
least 22n

. Moreover, whenever Liptonn returns, then the number of computational steps
from the call time to the return time is at least 22n

. Thus, by Lemma 7, we obtain the
following.

Lemma 10. Assume that at call time of Mainn each variable in Varn \ {w1,w2} has
value 0. Then, Mainn can return iff the sum of the values of w1 and w2 at call time is at
least 22n

. Moreover, whenever Mainn returns, then the number of computational steps
from the call time to the return time is at least 22n

.

Proof of Theorem 5. First, we need an additional result. For all n ∈ N, we denote by
Λn and ϒn ⊆ Λn the subsets of N

2 given by

Λn = {v ∈ N
2 | v[1]+ v[2]≥ 22n} and ϒn = {v ∈ N

2 | v[1]+ v[2] = 22n}
Lemma 11. Let n,m∈N and U be an upward-closed subset of N

m+2 such that Π2(U)=
Λn. Then, |min(U)| ≥ 22n

and min(U) ⊇ {v ·0m | v ∈ ϒn}.

Proof. For v ∈ N
2, we denote by v · 0 the vector in N

m+2 given by 〈v[1],v[2],0, . . . ,0〉.
First,we show the following.

Claim 1: ϒn ⊆ min(Λn)
Proof of Claim 1: Let v ∈ ϒn. Since v ∈ Λn, there must be vmin ∈ min(Λn) such that
vmin � v (note that Λn is upward-closed). By definition of ϒn, it follows that vmin ∈ ϒn.
Thus, since all elements in ϒn are pairwise incomparable, we obtain that vmin = v. Hence,
v ∈ min(Λn), and the result follows. ��
Moreover, by the proof of Lemma 6, the following holds

Claim 2: min(U) ⊇ {v ·0 | v ∈ min(Π2(U))}.

Evidently, ϒn has cardinality 22n
. By hypothesis, Π2(U) = Λn. Thus, by Claims 1 and

2, the result follows. ��
Fix n ∈ N and an ordering of Varn such that w1 and w2 precede all the other variables.
Let start (resp., end) be the initial (resp., final) label of Pn. By construction, Pn has
O(n) instructions and O(n) variables. Thus, by Lemmata 10 and 11, Theorem 5 easily
follows.
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