

Lecture Notes in Computer Science 6945
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Giorgio Delzanno Igor Potapov (Eds.)

Reachability
Problems

5th International Workshop, RP 2011
Genoa, Italy, September 28-30, 2011
Proceedings

13

Volume Editors

Giorgio Delzanno
Università di Genova
Dipartimento di Informatica e Scienze dell’Informazione
via Dodecaneso 35, 16146 Genoa, Italy
E-mail: delzanno@disi.unige.it

Igor Potapov
University of Liverpool
Department of Computer Science
Ashton Building, Ashton St, Liverpool, L69 3BX, UK
E-mail: potapov@liverpool.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-24287-8 e-ISBN 978-3-642-24288-5
DOI 10.1007/978-3-642-24288-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011936633

CR Subject Classification (1998): F.3, D.2, F.2, D.3, F.4, F.4.1, F.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the 5th Workshop on Reachability
Problems RP 2011 during September 28–30, 2011 in the Department of Infor-
matics and Computer Science, University of Genoa, Italy. RP 2011 was the fifth
in the series of workshops following four successful meetings at Masaryk Univer-
sity of Brno, Czech Republic, in 2010, Ecole Polytechnique, France, in 2009, at
the University of Liverpool, UK, in 2008 and at Turku University, Finland, in
2007.

The Reachability Workshop is specifically aimed at gathering together schol-
ars from diverse disciplines and backgrounds interested in reachability problems
that appear in algebraic structures, computational models, hybrid systems, logic,
and verification.

Reachability is a fundamental problem that appears in several different con-
texts: finite- and infinite-state concurrent systems, computational models like
cellular automata and Petri nets, decision procedures for classical, modal and
temporal logic, program analysis, discrete and continuous systems, time crit-
ical systems, hybrid systems, rewriting systems, probabilistic and parametric
systems, and open systems modelled as games.

Typically, for a fixed system description given in some form (reduction rules,
systems of equations, logical formulas, etc.) a reachability problem consists in
checking whether a given set of target states can be reached starting from a
fixed set of initial states. The set of target states can be represented explic-
itly or via some implicit representation (e.g., a system of equations, a set of
minimal elements with respect to some ordering on the states). Sophisticated
quantitative and qualitative properties can often be reduced to basic reacha-
bility questions. Decidability and complexity boundaries, algorithmic solutions,
and efficient heuristics are all important aspects to be considered in this context.
Algorithmic solutions are often based on different combinations of exploration
strategies, symbolic manipulations of sets of states, decomposition properties, re-
duction to linear programming problems, and they often benefit from approxima-
tions, abstractions, accelerations and extrapolation heurisitics. Ad hoc solutions
as well as solutions based on general purpose constraint solvers and deduction
engines are often combined in order to balance efficiency and flexibility.

The purpose of the conference is to promote exploration of new approaches
for the predictability of computational processes by merging mathematical, al-
gorithmic and computational techniques. Topics of interest include (but are not
limited to): reachability for infinite state systems, rewriting systems; reacha-
bility analysis in counter/timed/cellular/communicating automata; Petri-nets;
computational aspects of semigroups, groups and rings; reachability in dynami-
cal and hybrid systems; frontiers between decidable and undecidable reachability

VI Preface

problems; complexity and decidability aspects; predictability in iterative maps
and new computational paradigms.

All these aspects were discussed in the 20 presentations of the fifth edition
of the RP workshop.

The proceedings of the previous editions of the workshop appeared in the
following volumes:

Mika Hirvensalo, Vesa Halava, Igor Potapov, Jarkko Kari (Eds.): Proceedings of
the Satellite Workshops of DLT 2007. TUCS General Publication No 45, June
2007. ISBN: 978-952-12-1921-4.

Vesa Halava and Igor Potapov (Eds.): Proceedings of the Second Workshop on
Reachability Problems in Computational Models (RP 2008). Electronic Notes in
Theoretical Computer Science. Volume 223, Pages 1-264 (26 December 2008).

Olivier Bournez and Igor Potapov (Eds.): Reachability Problems, Third Interna-
tional Workshop, RP 2009, Palaiseau, France, September 23–25, 2009, Lecture
Notes in Computer Science, 5797, Springer 2009.

Antonin Kucera and Igor Potapov (Eds.): Reachability Problems, Fourth In-
ternational Workshop, RP 2010, Brno, Czech Republic, August 28–29, 2010,
Lecture Notes in Computer Science, 6227, Springer 2010.

The four keynote speakers at the 2011 edition of the conference were:

– Krishnendu Chatterjee, IST Austria, “Graph Games with Reachability Ob-
jectives: Mixing Chess, Soccer and Poker”

– Bruno Courcelle, Labri, Université Bordeaux 1, “Automata for Monadic
Second-Order Model-Checking”

– Joost-Pieter Katoen, RWTH Aachen, “Timed Automata as Observers of
Stochastic Processes”

– Jean-Francois Raskin, CFV, Université Libre de Bruxelles, “Reachability
Problems for Hybrid Automata”

There were 24 submissions. Each submission was reviewed by at least three
Program Committee members. The full list of the members of the Program
Committee and the list of external reviewers can be found on the next two
pages. The Program Committee is grateful for the highly appreciated and high-
quality work produced by these external reviewers. Based on these reviews, the
Program Committee decided finally to accept 16 papers, in addition to the four
invited talks.

We gratefully acknowledge the financial support from the Games for Design
and Verification initiative of the European Science Foundation that helped us
invite keynote speakers of exceptionally high scientific level to Genoa.

We also gratefully acknowledge the support of the University of Genoa, of
the Department of Informatics and Computer Science, and of the ASAP team
for the help in the organization of the workshop.

Preface VII

It is also a great pleasure to acknowledge the team of the EasyChair system,
and the fine cooperation with the Lecture Notes in Computer Science team
of Springer, which made possible the production of this volume in time for the
conference. Finally, we thank all the authors for their high quality contributions,
and the participants for making this edition of RP 2011 a success.

September 2011 Giorgio Delzanno
Igor Potapov

Organization

Program Committee

Parosh Abdulla Uppsala University, Sweden
Davide Ancona University of Genoa, Italy
Bernard Boigelot University of Liege, Belgium
Olivier Bournez LIX - Ecole Polytechnique, France
Cristian Calude University of Auckland, New Zealand
Giorgio Delzanno University of Genoa, Italy
Stephane Demri LSV - ENS Cachan - CNRS, France
Javier Esparza Technische Universität München, Germany
Laurent Fribourg LSV - ENS Cachan, France
Vesa Halava University of Turku, Finland
Juhani Karhumaki University of Turku, Finland
Antonin Kucera Masaryk University, Czech Rebublic
Alexander Kurz University of Leicester, UK
Jerome Leroux CNRS LABRI Bordeaux, France
Alexei Lisitsa University of Liverpool, UK
Igor Potapov University of Liverpool, UK
Arnaud Sangnier LIAFA - University Paris 7 - CNRS, France
Hsu-Chun Yen National Taiwan University, Taiwan
Gianluigi Zavattaro University of Bologna, Italy

Additional Reviewers

André, Étienne
Atig, Mohamed Faouzi
Bardin, Sebastien
Bell, Paul
Czerwiński, Wojciech
Doyen, Laurent
Guan, Nan
Göller, Stefan
Habermehl, Peter
Holik, Lukas

Jancar, Petr
Jha, Sumit
Knapp, Alexander
Lazic, Ranko
Rezine, Ahmed
Schmitz, Sylvain
Soulat, Romain
Trtik, Marek

Table of Contents

Graph Games with Reachability Objectives (Invited Talk) 1
Krishnendu Chatterjee

Observing Continuous-Time MDPs by 1-Clock Timed Automata
(Invited Talk) . 2

Taolue Chen, Tingting Han, Joost-Pieter Katoen, and
Alexandru Mereacre

Automata for Monadic Second-Order Model-Checking (Invited Talk) . . . 26
Bruno Courcelle

Reachability Problems for Hybrid Automata (Invited Talk) 28
Jean-François Raskin

Synthesis of Timing Parameters Satisfying Safety Properties 31
Étienne André and Romain Soulat

Formal Language Constrained Reachability and Model Checking
Propositional Dynamic Logics . 45

Roland Axelsson and Martin Lange

Completeness of the Bounded Satisfiability Problem for Constraint
LTL . 58

Marcello M. Bersani, Achille Frigeri, Matteo Rossi, and
Pierluigi San Pietro

Characterizing Conclusive Approximations by Logical Formulae 72
Yohan Boichut, Thi-Bich-Hanh Dao, and Valérie Murat

Decidability of LTL for Vector Addition Systems with One Zero-Test . . . 85
Rémi Bonnet

Complexity Analysis of the Backward Coverability Algorithm for
VASS . 96

Laura Bozzelli and Pierre Ganty

Automated Termination in Model Checking Modulo Theories 110
Alessandro Carioni, Silvio Ghilardi, and Silvio Ranise

Monotonic Abstraction for Programs with Multiply-Linked
Structures . 125

Parosh Aziz Abdulla, Jonathan Cederberg, and Tomáš Vojnar

XII Table of Contents

Efficient Bounded Reachability Computation for Rectangular
Automata . 139

Xin Chen, Erika Ábrahám, and Goran Frehse

Reachability and Deadlocking Problems in Multi-stage Scheduling 153
Christian E.J. Eggermont and Gerhard J. Woeginger

Improving Reachability Analysis of Infinite State Systems by
Specialization . 165

Fabio Fioravanti, Alberto Pettorossi, Maurizio Proietti, and
Valerio Senni

Lower Bounds for the Length of Reset Words in Eulerian Automata 180
Vladimir V. Gusev

Parametric Verification and Test Coverage for Hybrid Automata Using
the Inverse Method . 191

Laurent Fribourg and Ulrich Kühne

A New Weakly Universal Cellular Automaton in the 3D Hyperbolic
Space with Two States . 205

Maurice Margenstern

A Fully Symbolic Bisimulation Algorithm . 218
Malcolm Mumme and Gianfranco Ciardo

Reachability for Finite-State Process Algebras Using Static Analysis 231
Nataliya Skrypnyuk and Flemming Nielson

Author Index . 245

Graph Games with Reachability Objectives
(Invited Talk)

Krishnendu Chatterjee

IST Austria (Institute of Science and Technology Austria)

Abstract. Games played on graphs provide the mathematical framework to an-
alyze several important problems in computer science as well as mathematics,
such as the synthesis problem of Church, model checking of open reactive sys-
tems and many others. On the basis of mode of interaction of the players these
games can be classified as follows: (a) turn-based (players make moves in turns);
and (b) concurrent (players make moves simultaneously). On the basis of the
information available to the players these games can be classified as follows:
(a) perfect-information (players have perfect view of the game); and (b) partial-
information (players have partial view of the game). In this talk we will consider
all these classes of games with reachability objectives, where the goal of one
player is to reach a set of target vertices of the graph, and the goal of the op-
ponent player is to prevent the player from reaching the target. We will survey
the results for various classes of games, and the results range from linear time
decision algorithms to EXPTIME-complete problems to undecidable problems.

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Observing Continuous-Time MDPs

by 1-Clock Timed Automata�

Taolue Chen1, Tingting Han1, Joost-Pieter Katoen2, and Alexandru Mereacre1

1 Department of Computer Science, University of Oxford, United Kingdom
2 Software Modeling and Verification Group, RWTH Aachen University, Germany

Abstract. This paper considers the verification of continuous-time Mar-
kov decision process (CTMDPs) against single-clock deterministic timed
automata (DTA) specifications. The central issue is to compute the max-
imum probability of the set of timed paths of a CTMDP C that are
accepted by a DTA A. We show that this problem can be reduced to
a linear programming problem whose coefficients are maximum timed
reachability probabilities in a set of CTMDPs, which are obtained via a
graph decomposition of the product of the CTMDP C and the region
graph of the DTA A.

1 Introduction

Markov decision processes (MDPs) are a prominent mathematical system model
for modeling decision-making—modeled as nondeterministic choices—in situ-
ations where outcomes are partly random and partly under the control of a
decision maker [24]. MDPs, also referred to as turn-based 1 1

2 -player games, are
intensively used in decision making and planning with a focus on optimiza-
tion problems which are typically solved via dynamic programming. They are
a discrete-time stochastic control process where at each time step, the decision
maker (i.e., the scheduler) may select any action α that is enabled in the current
state s. The MDP reacts on this choice by probabilistically moving to state s′

with probability P(s, α, s′). A discrete-time Markov chain (DTMC) is an MDP
where for each state only a single action is enabled. Since the mid-eighties, MDPs
(and DTMCs as special subclass) have been the active subject of applying model
checking. Whereas the initial focus was on qualitative properties (e.g., “can a
state be reached almost surely, i.e., with probability one?”), the emphasis soon
shifted towards quantitative properties. Several specification formalisms have
been adopted, such as LTL [34,19], probabilistic versions of CTL [9,6], as well
as automata [19,21]. The key issue in the quantitative verification of MDPs is to
determine the maximum, or dually, minimum probability of a certain event of in-
terest, such as �G, ��G, and so forth, where G is a set of states which is either
given explicitly or as a state formula. For finite-state MDPs, it is well-known
that e.g., extremum reachability probabilities can be obtained by solving linear
� This research is partially supported by the EU FP7 Project MoVeS and the ERC

Advanced Grant VERIWARE.

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 2–25, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Observing Continuous-Time MDPs by 1-Clock Timed Automata 3

programming (LP) problem and that memoryless schedulers suffice to obtain
such extrema. If the reachability event is constrained by the maximum number
of allowed transitions, one has to resort to finite-memory schedulers, but still a
simple value iteration technique suffices to compute the extremum probabilities
with the required accuracy. Such techniques have been implemented in model
checkers such as Prism

1 and LiQuor [18] and successfully applied to several
practical case studies such as randomized distributed protocols.

Continuous-time Markov decision processes (CTMDPs) [32] extend MDPs by
associating a random delay in state s on selecting action α by the scheduler.
Choosing action α in state s yields a random delay in s by the CTMDP which
is governed according to an exponential distribution with rate rα(s). Thus, the
probability to wait at most d time units in state s on choosing α is 1− e−rα(s)·d.
After delaying, a CTMDP evolves like an MDP probabilistically to state s′ with
probability P(s, α, s′). A continuous-time Markov chain (CTMC) is a CTMDP
where for each state only a single action is enabled. The state residence time in
a CTMC is thus independent of the action chosen. CTMCs have received quite
some attention by the verification community since the late nineties. This work
has primarily focused on CSL (Continuous Stochastic Logic), a timed proba-
bilistic version of the branching-time temporal logic CTL. The key issue in CSL
model checking is to compute the probability of the event �≤T G where T ∈ R≥0

acts as a time bound. It has been shown that such probabilities can be character-
ized as least solution of Volterra integral equation systems and can be computed
in a numerically stable and efficient way by reducing the problem to transient
analysis of CTMCs [4]. This has been implemented in model checkers such as
Mrmc [25]2 and Prism, and has been applied successfully to several cases from
systems biology and queueing theory, to mention a few.

Recently, the verification of CTMCs has been enriched by considering linear-
time properties equipped with timing constraints. In particular, [15,16] treat
linear real-time specifications that are given as deterministic timed automata
(DTA) [2]. DTA are automata equipped with clock variables that can be used to
measure the elapse of time, can be reset to zero, and whose value can be inspected
in transition guards. The fact that these automata are deterministic means that
for any clock valuation and state, the successor state is uniquely determined.
Whereas timed automata are typically used as system models describing the
possible system behaviors, we use them—in analogy to [1]—as objectives that
need to be fulfilled by the system. In our context, DTA specifications include
properties of the form “what is the probability to reach a given target state
within the deadline, while avoiding unsafe states and not staying too long in
any of the dangerous states on the way?”. DTA have recently also been adopted
as specification language for generalized semi-Markov processes (and their game
extensions) in [11,12]. The central issue in checking a DTA specification is com-
puting the probability of the set of paths in a CTMC that are accepted by the
DTA. This can be reduced to computing the (simple) reachability probability

1 http://www.prismmodelchecker.org/
2 http://www.mrmc-tool.org/trac/

http://www.prismmodelchecker.org/
http://www.mrmc-tool.org/trac/

4 T. Chen et al.

qnormqD1 qD2

qG

inD2, true , {x}

inNorm, x < T2, ∅

inD1, true , {x}

inNorm, x < T1, ∅

goal , true , ∅

inD2, x < T2, ∅inD1, x < T1, ∅

inNorm, true , ∅

Fig. 1. An example 1-clock DTA that goes beyond timed reachability

in a (somewhat simplified variant of) piecewise deterministic Markov process
(PDP, [20]), basically a stochastic hybrid model which is obtained by a syn-
chronous product construction between the CTMC and the region graph of the
DTA [16]. A prototypical implementation of this technique has recently been
presented [7] and has led to the efficient verification of CTMCs of several hun-
dreds of thousands of states against one-clock DTA specifications. The appealing
properties of this algorithm are that it resorts to standard computational proce-
dures, i.e., graph analysis, region graph construction, solving systems of linear
equations, and transient analysis of CTMCs for which efficient algorithms exist.

In contrast to MDPs, CTMDPs have received far less attention by the ver-
ification community; in fact, the presence of nondeterminism and continuous
time makes their analysis non-trivial. CTMDPs have originated as continuous-
time variants of finite-state probabilistic automata [26], and have been used for,
among others, the control of queueing systems, epidemic, and manufacturing
processes. Their analysis is mainly focused on determining optimal schedulers
for criteria such as expected total reward and expected (long-run) average re-
ward, cf. the survey [23]. The formal verification of CTMDPs has mostly con-
centrated on computing extremum probabilities for the event �≤TG with time
bound T ∈ R≥0. Whereas memoryless schedulers suffice for extremum reachabil-
ity probabilities in MDPs, maximizing (or minimizing) timed reachability prob-
abilities requires timed schedulers, i.e., schedulers that “know” how much time
has elapsed so far [29,28,8]. As these schedulers are infinite objects, most work
has concentrated on obtaining ε-optimal schedulers—mostly piecewise-constant
schedulers that only change finitely often in the interval [0, T]—that approximate
the extremum probability obtained by a timed scheduler up to a given accuracy
ε > 0 [31,33]. Recently, the use of adaptive uniformization has been proposed
as an alternative numerical approach to obtain such ε-optimal schedulers [13].
Another approach is to concentrate on sub-optimal schedulers, and consider the
optimal time-abstract scheduler [5,10]. This is a much simpler and efficient pro-
cedure that does not rely on discretization, and in several cases suffices. Some of
the techniques for both timed and time-abstract schedulers have recently been
added to the model checker Mrmc [25].

In this paper, we concentrate on a larger class of properties and consider the
verification of CTMDPs against linear real-time specifications given as single-
clock DTA. Note that single-clock DTA cover a whole range of safety and liveness

Observing Continuous-Time MDPs by 1-Clock Timed Automata 5

objectives and naturally include timed reachability objectives such as �≤TG. We
believe that DTA are a very natural specification formalism that captures a rich
set of practically interesting properties. For instance, Fig. 1 presents an example
1-clock DTA that goes beyond timed reachability properties. It asserts “reach
a given target G (modeled by state qG) while not staying too long (at most T1

and T2 time units in respective zones D1 and D2) in any of the two “dangerous
zones on the way”. For simplicity, we assume the dangerous zones D1 and D2 are
not adjacent. In case the system stays too long in one of the dangerous zones, it
resides in either location qD1 or qD2 forever, and will never reach the goal state.
This property can neither be expressed in CSL nor in one of its existing dialects
[3,22]. The central issue now in checking such a DTA specification is computing
the extremum probability of the set of paths in a CTMDP C that are accepted
by the DTA A. We show that the approach in [15,16,7] can be adapted to this
problem in the following way. We first establish that the extremum probability of
CTMDP C satisfying DTA A can be characterized as the extremum reachability
probability in the product of C and the region graph of A. Here, the region graph
is based on a variant of the standard region construction for timed automata [2].
The product C ⊗ G(A) is in fact a simple instance of a piecewise deterministic
Markov decision process (PDDP, [20]). The extremum reachability probabilities
in C ⊗ G(A) are then characterized by a Bellman equation. These results so
far are also applicable to DTA with an arbitrary number of clocks (although
formulated in this paper for single-clock DTA only). For 1-clock DTA, we then
show that solving this Bellman equation can be reduced to an LP problem whose
coefficients are extremum timed reachability probabilities in the CTMDP C, i.e.,
events of the form �≤TG. The size of the obtained LP problem is in O(|S|·|Q|·m),
where S is the state space of CTMDP C, Q is the state space of DTA A, and m
is the number of distinct constants appearing in the guards of A.

To put in a nutshell, this paper shows that the verification of CTMDPs against
1-clock DTA objectives can be done by a region graph construction, a product
construction, and finally solving an LP problem whose coefficients are extremum
timed reachability probabilities in CTMDPs. 1-clock DTA objectives model a
rich class of interesting properties in a natural manner and include timed reach-
ability. To the best of our knowledge, this is the first work towards treating linear
real-time objectives of CTMDPs. The main appealing implication of our result is
that CTMDPs can be verified against 1-clock DTA objectives using rather stan-
dard means. The availability of the first practical implementations for timed
reachability of CTMDPs paves the way to a realization of our approach in a
prototypical tool.

Organization of this paper. Section 2 defines the basic concepts for this paper:
CTMDPs, DTA, and formalizes the problem tackled in this paper. Section 3
shortly recapitulates a mathematical characterization of maximum timed reach-
ability probabilities in CTMDPs. Section 4 introduces the product C ⊗ G(A)
and provides a Bellman equation for reachability events in this product. Sec-
tion 5 is the core of this paper, and shows that for 1-clock DTA, the solu-
tion of the Bellman equation can be obtained by solving an LP problem whose

6 T. Chen et al.

coefficients are extremum timed reachability probabilities in CTMDPs obtained
from C⊗G(A). Section 6 concludes the paper. The proof of Theorem 2 is included
in the appendix.

2 Preliminaries

Given a setH , let Pr : F(H) → [0, 1] be a probability measure on the measurable
space (H,F(H)), where F(H) is a σ-algebra over H .

2.1 CTMDP

Let AP be a fixed, finite set of atomic propositions.

Definition 1 (CTMDP). A continuous-time Markov decision process is a tu-
ple C = (S, s0,Act,P, r, L), where

– S is a finite set of states;
– s0 is the initial state;
– Act is a finite set of actions;
– P : S×Act×S → [0, 1] is a transition probability matrix, such that for any

state s ∈ S and action α ∈ Act,
∑

s′∈S P(s, α, s′) ∈ {0, 1};
– r : S × Act → R≥0 is an exit rate function; and
– L : S → 2AP is a labeling function.

The set of actions that are enabled in state s is denoted Act(s) = {α ∈ Act |
rα(s) > 0 } where rα(s) is a shorthand for r(s, α). The operational behavior of
a CTMDP is as follows. On entering state s, an action α, say, in Act(s) is non-
deterministically selected. The CTMDP now evolves probabilistically as follows.
Given that action α has been chosen, the residence time in state s is exponen-
tially distributed with rate rα(s). Hence, the probability to leave state s via
action α in the time interval [l, u] is given by

∫ u

l
rα(s)·e−rα(s)·t dt and the aver-

age sojourn time in s is given by 1
rα(s) . We say that there is an α-transition from

s to s′ whenever Pα(s, s′)·rα(s) > 0 where Pα(s, s′) is shorthand of P(s, α, s′).
If multiple outgoing α-transitions exist, they compete: the probability that tran-
sition s α−−→ s′ is taken is Pα(s, s′). Putting the pieces together, this means that
the CTMDP transits from state s to s′ on selecting α in s in the time interval
[l, u] with a likelihood that is given by:

Pα(s, s′) ·
∫ u

l

rα(s)·e−rα(s)·t dt.

Note that the probabilistic behavior of a CTMDP conforms to that of a CTMC;
indeed, if Act(s) is a singleton set in each state s ∈ S, the CTMDP is in fact
a CTMC. In this case, the selection of actions is uniquely determined, and the
function P can be projected to an (S × S)-matrix, the transition probability
matrix. If we abstract from the exponential state residence times, we obtain a
classical MDP. For CTMDP C = (S, s0,Act,P, r, L), its embedded MDP is given
by emb(C) = (S, s0,Act,P, L).

Observing Continuous-Time MDPs by 1-Clock Timed Automata 7

Example 1. Fig. 2 shows an example CTMDP with AP = {a, b} and initial
state s0. The state-labelings are indicated at the states, whereas the transition
probabilities are attached to the edges. Rates are omitted from the figure and
are defined as: rα(s0) = 10, rβ(s0) = 5, and rβ(s3) = rβ(s1) = rγ(s2) = 1. In
s0, there is a nondeterministic choice between the actions α and β.

Definition 2 (CTMDP paths). A sequence π = s0
α0,t0−−−−→ s1

α1,t1−−−−→ · · · is an
infinite path in a CTMDP C = (S, s0,Act,P, r, L), where for each i ≥ 0, si ∈ S
is a state, αi ∈ Act is an action, and ti ∈ R>0 is the sojourn time in state si. A
finite path is a fragment of an infinite path ending in a state.

The length of an infinite path π, denoted |π|, is ∞; the length of finite path π with
n+1 states is n. For a finite path π = s0

α0,t0−−−−→ s1
α1,t1−−−−→ · · · αn−1,tn−1−−−−−−−−→ sn, let

π↓ = sn be the last state of π. Let Paths(C) (respectively Pathss(C)) denote the
set of infinite paths (respectively starting in state s) in C; let Pathsn(C) (respec-
tively Pathsn

s (C)) denote the set of finite paths of length n (respectively starting
in state s). To simplify notation, we omit the reference to C whenever possible.

An example path in the CTMDP of Fig. 2 is π = s0
α,2.5−−−−→ s2

γ,1.4−−−−→ s0
α,

√
2−−−−→

s1
β,2.8−−−−→ s1 · · · .

s0

s1

s2

s3

α, 0.9

α, 0.1

β, 1

γ, 1

β, 1

β, 1

{b} {a} {a}

{b}

Fig. 2. An example CTMDP

In order to construct a measurable space
over Paths(C), we define the following sets:
Ω = Act × R≥0 × S and the σ-field J =
σ(2Act×JR×2S), where JR is the Borel σ-field
over R≥0. The σ-field over Pathsn is defined
as JPathsn = σ({S0 ×M0 × S1 × · · · ×Mn−1 |
Si ⊆ S,Mi ∈ J }). A set B ∈ JPathsn is a
base of a cylinder set C if C = Cyl(B) =
{π ∈ Paths | π[0 . . . n] ∈ B}, where π[0 . . . n] is the prefix of length n of
the path π. The σ-field JPaths of measurable subsets of Paths(C) is defined
as JPaths = σ(∪∞

n=0{Cyl(B) | B ∈ JPathsn}). Hence we obtain a measurable
space (Paths(C),JPaths).

Schedulers. Nondeterminism in a CTMDP is resolved by a scheduler. In the
literature, schedulers are sometimes also referred to as adversaries, policies, or
strategies. For deciding which of the next actions to take, a scheduler may “have
access” to the current state only or to the path from the initial to the current
state (either with all or with partial information). Schedulers may select the next
action either deterministically, i.e., depending on the available information, the
next action is chosen in a deterministic way, or randomly, i.e., depending on the
available information, the next action is chosen probabilistically. In our setting,
deterministic schedulers suffice to achieve extremum probabilities and can base
their decision on a complete information of the current path so far. Moreover, it
is not evident how to define the probability measure for randomized schedulers,
as exit rates depend on the actions. Hence we only consider deterministic rather
than randomized schedulers in this paper. Furthermore, like in [35], we consider
measurable functions as schedulers. Formally,

8 T. Chen et al.

Definition 3 (Schedulers). A scheduler for CTMDP C = (S, s0,Act,P, r, L)
is a measurable function D : Paths(C) → Act such that for n ∈ N,

D(s0
α0,t0−−−−→ s1

α1,t1−−−−→ · · · αn−1,tn−1−−−−−−−−→ sn) ∈ Act(sn). (1)

We denote the set of all schedulers of C as DC .

Remark 1. According to the above definition, we consider schedulers that make
a decision as soon as a state is entered. In particular, the sojourn time in the
current state sn is not considered for selecting the next action. Such schedulers
are called early schedulers in [30]. In contrast, a late scheduler will choose an
action upon leaving a state, i.e., besides the history s0 α0,t0−−−−→ · · · αn−1,tn−1−−−−−−−−→ sn,
it will consider also the elapsed time so far in state sn. Late schedulers suffice for
determining extremum reachability probabilities for a certain class of CTMDPs,
the so-called locally uniform ones, i.e., CTMDPs in which the exit rate for any
enabled action in a state is the same [30].

Probability measure. For a path π ∈ Paths(C) and m ∈ Ω = Act × R≥0 × S, we
define the concatenation of π and m as the path π′ = π ◦m. Below we define
a probability measure over the measurable space (Paths(C),JPaths) under the
scheduler D.

Definition 4 (Probability measure). Let C = (S, s0,Act,P, r, L) be a CT-

MDP, n ∈ N and D a scheduler in DC. The probability Prn
s,D : JPathsn → [0, 1]

of sets of paths of length n > 0 starting in s is defined inductively by:

Prn+1
s,D (B) =

∫
Pathsn

Prn
s,D(dπ)

∫
Ω

1B(π ◦m)
∫

R≥0

rα(π↓)·e−rα(π↓)·τ

·
∑
s′∈S

1m(α, τ, s′)·Pα(π↓, s′) dm dτ,

where

– α = D(π), the action selected by scheduler D on the path π of length n,
– B ∈ Pathsn+1 and for n = 0 we define Pr0s(B) = 1 if s ∈ B, and 0 otherwise,
– 1B(π ◦m) = 1 when π ◦m ∈ B, and 0 otherwise,
– 1m(α, τ, s′) = 1 when m = (α, τ, s′), and 0 otherwise.

Intuitively, Prn+1
s,D (B) is the probability of the set of paths π′ = π ◦m of length

n+1 defined as a product between the probability of the set of paths π of length
n and the one-step transition probability to go from state π↓ to state π′↓ by the
action α as selected by the scheduler D. For a measurable base B ∈ JPathsn

s
and

cylinder set C = Cyl(B), let Prs,D(C) = Prn
s,D(B) as the probability of subsets

of paths from Pathss. Sometimes we write PrD(C) to when the starting state s
is clear from the context.

Observing Continuous-Time MDPs by 1-Clock Timed Automata 9

2.2 Single-Clock DTA

Let x be a clock, which is a variable in R≥0
3. A clock valuation is a function η

assigning to x the value η(x) ∈ R≥0. A clock constraint on x is a conjunction of
expressions of the form x �� c, where ��∈ {<,≤, >,≥} is a binary comparison
operator and c ∈ N. Let Bx denote the set of clock constraints over x and let g
range over Bx.

Definition 5 (DTA). A single-clock deterministic timed automaton (DTA)
is a tuple A = (Σ,Q, q0, QF ,→) where
– Σ is a finite alphabet;
– Q is a nonempty finite set of locations;
– q0 ∈ Q is the initial location;
– QF ⊆ Q is a set of accepting locations; and
– → ∈ (Q \QF)×Σ×Bx×{∅, {x}}×Q is an edge relation satisfying:
q a,g,X−−−−→ q′ and q a,g′,X′

−−−−−→ q′′ with g �= g′ implies g ∧ g′ ≡ False.

We refer to q a,g,X−−−−→ q′ as an edge, where a ∈ Σ is an input symbol, the guard
g is a clock constraint on x, X = {∅, {x}} is the set of clocks that are to be reset
and q′ is the successor location. Intuitively, the edge q a,g,X−−−−→ q′ asserts that the
DTA A can move from location q to q′ when the input symbol is a and the
guard g on clock x holds, while the clocks in X should be reset when entering q′.
DTA are deterministic as they have a single initial location, and outgoing edges
of a location labeled with the same input symbol are required to have disjoint
guards. In this way, the next location is uniquely determined for a given location
and a given clock valuation, together with an action. In case no guard is satisfied
in a location for a given clock valuation, time can progress. If the advance of
time will never reach a situation in which a guard holds, the DTA will stay in
that location ad infinitum. Note that DTA do not have location invariants, as
in safety timed automata. However, all the results presented in this paper can
be adapted to DTA with invariants without any difficulties.

Runs of a DTA are timed paths. In order to define these formally, we need
the following notions on clock valuations. A clock valuation η satisfies clock
constraint x �� c, denoted η |= x �� c, if and only if η(x) �� c; it satisfies
a conjunction of such expressions if and only if η satisfies all of them. Let 0
denote the valuation that assigns 0 to x. The reset of x, denoted η[x := 0], is
the valuation 0. For δ ∈ R≥0 and η, η+δ is the clock-valuation η′′ such that
η′′(x) := η(x)+δ.

Definition 6 (Finite DTA path). A finite timed path in DTA A is of the
form θ = q0

a0,t0−−−−→ q1
a1,t1−−−−→ · · · an,tn−−−−→ qn+1, such that for all 0 � i ≤ n, it

holds ti > 0, x0 = 0, xj+tj |= gj and xj+1 = (xj+tj)[Xj := 0], where xj is the
clock evaluation4 on entering qj, gj is the guard on the uniquely enabled edge in
3 Throughout this paper, we use x for the clock variable of the 1-clock DTA under

consideration.
4 As there is only a single clock we sometimes write x for the value of clock x as

shorthand for η(x).

10 T. Chen et al.

the DTA leading from qj to qj+1 when xj+tj |= gj, and Xj is the set of clocks
on that edge that needs to be reset. Path θ is accepted whenever qn+1 ∈ QF .

The concepts defined on CTMDP paths, such as |θ|, will be applied to timed
DTA paths without modification.

Regions. We consider a variant of the standard region construction for timed
automata [2] to DTA. As we consider single-clock DTA, the region construction
is rather simple. We basically follow the definition and terminology of [27]. Let
{c0, . . . , cm} be the set of constants appearing in the guards of DTA A with
c0 = 0. W.l.o.g. we assume 0 = c0 < c1 < · · · < cm. Regions can thus be
represented by the intervals: [c0, c0], (c0, c1), . . . , [cm, cm] and (cm,∞). (In fact,
these regions are also sometimes called zones.) In the continuous probabilistic
setting of this paper, the probability of the CTMC taking a transition in a point
interval is zero. We therefore combine a region of the form [ci, ci] with a region
of the form (ci, ci+1) yielding [ci, ci+1). In the rest of the paper, we slight abuse
nomenclature and refer to [ci, ci+1) as a region. As a result, we obtain the regions:
Θ0 = [c0, c1), . . . , Θm = [cm,∞). Let Δci = ci+1 − ci for 0 � i < m and let RA
be the set of regions of DTA A, i.e., RA = {Θi | 0 ≤ i ≤ m}. The region Θ
satisfies a guard g, denoted Θ |= g, iff for all η ∈ Θ we have η |= g.

Definition 7 (Region graph). The region graph of DTA A = (Σ,Q, q0, QF ,
→), denoted G(A), is the tuple (Σ,W,w0,WF , ���) with W = Q × RA the set
of states; w0 = (q0,0) the initial state; WF = QF × RA the set of final states;
and ���⊂ W × ((Σ × {∅, {x}}) � { δ }) ×W the smallest relation such that:

– (q,Θi)
δ��� (q,Θi+1) for 0 ≤ i < m;

– (q,Θi)
a,{x}
��� (q′, Θ0) if ∃g ∈ Bx such that q a,g,{x}−−−−−→q′ with Θi |= g; and

– (q,Θi)
a,∅��� (q′, Θi) if ∃g ∈ Bx such that q a,g,∅−−−−→q′ with Θi |= g.

States in G(A) are thus pairs of locations (of the DTA A) and a region on
clock x. The initial state is the initial location in which clock x equals zero. The
transition relation of G(A) is defined using two cases: (1) a delay transition in
which the location stays the same, and the region Θi is exchanged by its direct
successor Θi+1, (2) a transition that corresponds to taking an enabled edge in
the DTA A. The latter corresponds to the last two items in the above definition
distinguishing the case in which x is reset (second item) or not (third item).

Example 2. Fig. 3(a) depicts an example DTA, where q0 is the initial state and
q1 is the only accepting state. In q0, the guards of the two a-actions are disjoint,
so this TA is indeed deterministic. The part of the region graph of the DTA that
is reachable from (q0,0) is depicted in Fig. 3(b).

2.3 Problem Statement

We now are settled to formalize the problem of interest in this paper. Recall that
our focus is on using DTA as specification objectives and CTMDPs as system

Observing Continuous-Time MDPs by 1-Clock Timed Automata 11

q0 q1

a, x < 1, ∅

a, 1 < x < 2, {x}

b, x > 1, ∅

(a) An example DTA

q0, [0, 1) q0, [1, 2) q0, [2,∞)

q1, [2,∞)q1, [1, 2)

δ

a, {x}

δ

δ

b b

a

(b) Region graph

Fig. 3. Example DTA and its region graph

models, and our aim is to determine the probability of the set of timed paths of
the CTMDP C that are accepted by A. Let us first define what it means for a
CTMDP path to be accepted by DTA A.

Definition 8 (Acceptance). Given a CTMDP C = (S, s0,Act,P, r, L) and
a single-clock DTA A = (Σ,Q, q0, QF ,→), we say that an infinite timed path
π = s0

α0,t0−−−−→ s1
α1,t1−−−−→· · · in C is accepted by A if there exists some n ∈ N such

that the finite fragment of π up to n, i.e., s0 α0,t0−−−−→ s1 · · · sn−1
α0,tn−1−−−−−−→ sn, gives

rise to an “ augmented” timed path θ = q0
L(s0),t0−−−−−−→ q1 · · · qn−1

L(sn−1),tn−1−−−−−−−−−→ qn
of A with qn ∈ QF . Let Pathss0(C |= A) denote the set of paths in CTMDP C
that start in s0 and are accepted by A.

Note that the labels of the states that are visited along the CTMDP path π
are used as input symbols for the associated timed path in the DTA. Thus, the
alphabet of the DTA will be the powerset of AP, the set of atomic propositions.
The aim of this paper is to determine the maximum probability of Pathss0(C |=
A) over all possible schedulers, i.e.,

sup
D∈DC

Prs0,D(Pathss0(C |= A)).

In the remainder of this paper, we will show that these maximum probabilities
can be characterized as a solution of an LP problem, whose coefficients are given
as timed reachability probabilities in a set of CTMDPs. Let us first briefly recall
such reachability probabilities.

3 Timed Reachability in CTMDP

Given a CTMDP C = (S, s0,Act,P, r, L), a set of goal states G ⊆ S, and a time
bound T ∈ R≥0, let Pathss0(�≤TG) denote the set of timed paths reaching G
from the initial state s0 within T time units. Formally,

Pathss0(�
≤TG) = {π ∈ Paths(s0) | ∃t ≤ T. π@t ∈ G}

where π@t denotes the state occupied by π at time t, i.e., π@t = π[i] where i
is the smallest index i such that

∑i
j=0 tj > t. The timed reachability problem

amounts to computing

12 T. Chen et al.

sup
D∈DC

Prs0,D(Pathss0(�
≤T G)).

This problem has been solved, to a large extent, forty years ago by Miller [29],
and has recently been revisited in the setting of formal verification by, amongst
others, [5,31]. We briefly recapitulate the main results. Let Ψ(s, x) be the max-
imum probability to reach G, within T time units, starting from state s given
that x time units have passed so far. It follows that Ψ(s, x) can be characterized
by the following set of Bellman equations:

Ψ(s, x) = max
α∈Act(s)

{∫ T−x

0

∑
s′∈S

rα(s)·e−rα(s)·τ ·Pα(s, s′)·Ψ(s′, x+τ) dτ

}
,

if s /∈ G and x ≤ T ; and 1 if s ∈ G and x ≤ T ; and 0, otherwise. The term on
the right-hand side takes the action that maximizes the probability to reach G
in the remaining T−x time units from s by first moving to s′ after a delay of τ
time units in s and then proceeding from s′ to reach G with elapsed time x+τ .

There are different ways to solve this Bellman equation. One straightforward
way is by applying discretization [28,31,17]. An alternative approach is to reduce
it to a system of ordinary differential equations (ODEs) with decisions. To that
end, let Pi,j(t) be the maximum probability to reach state sj at time t starting
from state si at time 0. For any two states si and sj we obtain the ODE [8]:

dPi,j(t)
dt

= max
α∈Act(si)

{
rα(si) ·

∑
sk∈S

Pα(si, sk) · (Pk,j(t) − Pi,j(t))

}
.

which using Rα(s, s′) = rα(s) · Pα(s, s′) can be simplified to:

dPi,j(t)
dt

= max
α∈Act(si)

{∑
sk∈S

Rα(si, sk) · (Pk,j(t) − Pi,j(t))

}
.

For t � T , we obtain the following system of ODEs in matrix form:

dΠ(t)
dt

= max
α∈Act

{Π(t) · Qα} ,

where Π(t) is the transition probability matrix at time t, i.e., the element (i, j)
of Π(t) equals Pi,j(t), Π(0) = I, the identity matrix, Qα = Rα−rα is the in-
finitesimal generator matrix for action α where Rα is the transition rate matrix,
i.e., the element (i, j) is rα(si)·Pα(si, sj), and rα is the exit rate matrix in which
all diagonal elements are the exit rates, i.e., rα(i, i) = rα(si) and its off-diagonal
elements are all zero. Recently, [13] showed that the above system of ODEs can
be solved by adopting a technique known as adaptive uniformization.

4 Product Construction

Recall that our aim is to compute the maximum probability of the set of paths
of CTMDP C accepted by the DTA A, that is,

sup
D∈DC

Prs0,D(Pathss0(C |= A)).

Observing Continuous-Time MDPs by 1-Clock Timed Automata 13

In this section, we show that this can be accomplished by computing maximum
reachability probabilities in C⊗G(A), i.e., the product between C and the region
graph of A.

Definition 9 (Product). The product of CTMDP C = (S, s0,Act,P, r, L)
and DTA region graph G(A) = (Σ,W,w0,WF , ���), denoted C ⊗ G(A), is the
tuple (Act, V, v0, VF , Λ, ↪→) with V = S ×W , v0 = (s0, w0), VF = S ×WF , and

– ↪→ ⊆ V × ((Act × [0, 1] × {∅, {x}})� {δ}) × V is the smallest relation s.t.:

• (s, w)
δ
↪→ (s, w′) iff w

δ��� w′; and

• (s, w)
α,p,X
↪→ (s′, w′) iff p = Pα(s, s′) with p > 0, and w

L(s),X
��� w′.

– Λ : V × Act → R�0 is the exit rate function where:

Λ(s, w, α) =

{
rα(s) if (s, w)

α,p,X
↪→ (s′, w′) for some (s′, w′) ∈ V

0 otherwise.

Example 3. The product of the CTMDP in Fig. 2 and the DTA region graph
in Fig. 3(b) is depicted in Fig. 4.

v0=
(
s0,q0,[0,1)

)

v1=
(
s3,q0,[0,1)

)

v2=
(
s1,q0,[0,1)

)

v6=
(
s0,q0,[1,2)

)

v5=
(
s3,q0,[1,2)

)

v3=
(
s2,q0,[0,1)

)
v7=

(
s2,q0,[1,2)

)

v8=
(
s1,q0,[1,2)

)

v4=
(
s3,q1,[1,2)

)

v9=
(
s1,q1,[1,2)

)

v10=
(
s3,q1,[2,∞)

)

v11=
(
s3,q0,[2,∞)

)

v12=
(
s1,q0,[2,∞)

)

v13=
(
s1,q1,[2,∞)

)

β, 1

α, 0.9

α, 0.1

β, 1

δ

δ

δ

δ

γ, 1, {x}

β, 1

δ

δ

β, 1

δ

δ

β, 1

γ, 1

α, 0, 9, {x}

α, 0.1, {x}

β, 1, {x}

P0 P1 P2

Fig. 4. The product of CTMC and DTA region graph (the reachable part)

Vertex v in the product C ⊗ G(A) is a triple consisting of a CTMDP state s, a
DTA state q and a region Θ. Let v�i denote the i-th component of the triple v;
e.g., if v = (s, q, Θ), then v�2 = q. Furthermore, let Act(v) be the set of enabled

actions in vertex v, i.e., Act(v) = Act(v�1). Edges of the form v
δ
↪→ v′ are called

delay edges, whereas those of the form v
α,p,X
↪→ v′ are called Markovian edges.

14 T. Chen et al.

The product C ⊗ G(A) is essentially a (simple variant of a) PDDP, i.e., a
decision variant of a PDP. The notions of paths and schedulers for a PDDP

can be defined in a similar way as for CTMDP in Section 2; we do not dwell
upon the details here. For the sake of brevity, let P = C ⊗ G(A). In the sequel,
let DP denote the set of all schedulers of the product P . A scheduler D ∈ DP
on the product P induces a PDP which is equipped with a probability measure
PrPv0,D over its infinite paths in a standard way; for details, we refer to [20]. Let
Pathsv0(�VF) denote the set of timed paths in P that reach some vertex in VF

from vertex v0 starting with clock-valuation 0 ∈ Θ0.

Lemma 1. Given CTMDP C and DTA A,

sup
D∈DC

Prs0,D(Pathss0(C |= A)) = sup
D∈DP

PrPv0,D(Pathsv0(�VF)).

Proof (Sketch). We first show that there is a one-to-one correspondence between
Pathss0(C |= A) and PathsPs0

(�VF).

(=⇒) Let π = s0
α0,t0−−−−→ s1 · · · sn−1

αn−1,tn−1−−−−−−−−→ sn with π ∈ Pathss0(C |= A). We
prove that there exists a path ρ ∈ PathsPs0

(�VF) with π = ρ�1. We have x0 = 0
and for 0 ≤ i < n, xi+ti |= gi with xi+1 = (xi+t1)[Xi := 0]. Here xi is the clock
valuation in A on entering state si in C. We now construct a timed path θ in A
from π such that θ = q0

L(s0),t0−−−−−−→ q1 · · · qn−1
L(sn−1),tn−1−−−−−−−−−→ qn, where the clock

valuation on entering si and qi coincides. Combining timed paths π and θ yields:

ρ = 〈s0, q0〉 t0−−→〈s1, q1〉 · · · 〈sn−1, qn−1〉 tn−1−−−−→〈sn, qn〉,

where 〈sn, qn〉 ∈ LocF . It follows that ρ ∈ PathsPs0
(�VF) and π = ρ�1.

(⇐=) Let ρ = 〈s0, q0〉 α0,t0−−−−→ · · · αn−1,tn−1−−−−−−−−→〈sn, qn〉 ∈ PathsPs0
(�VF). We prove

that ρ�1 ∈ Pathss0(C |= A). Clearly, we have that 〈sn, qn〉 ∈ LocF , x0 = 0, and
for 0 ≤ i < n, xi+ti |= gi and xi+1 = (xi+ti)[Xi := 0], where xi is the clock
valuation when entering location 〈si, qi〉. It then directly follows that qn ∈ QF

and ρ�1 ∈ Pathss0(C |= A), given the entering clock valuation xi of state si.

Following this path correspondence, it is not difficult to show that for each
scheduler D of the CTMDP C, one can construct a scheduler D′ of the prod-
uct P , such that the induced probability measures Prs0,D and Prv0,D′ on the
corresponding paths coincide. The detailed arguments are quite similar to (and
actually simpler than) those of [16, Thm. 4.3]. ��

Thanks to this lemma, it suffices to concentrate on determining maximum reach-
ability probabilities in the product P = C ⊗ G(A). It is well-known [20] that in
this case, memoryless schedulers suffice. This basically stems from the fact that
the elapsed time is “encoded” in the state space of the product P ; recall that
any vertex in P is of the form (s, q, Θ) where Θ is the current region of the single
clock x. Namely, the decision solely depends on (s, q, Θ, x) where (s, q, Θ) is a
vertex in P , and x is the actual clock value.

Now we introduce the Bellman equation on the product P that characterizes
supD∈DP PrPv0,D(Pathsv0(�VF)). The following auxiliary definition turns out to

Observing Continuous-Time MDPs by 1-Clock Timed Automata 15

be helpful. For a vertex v ∈ V with v�3 = Θi and clock value x, we define the
boundary function �(v, x) = ci+1−x if i < m; and ∞ if i = m. Intuitively, �(v, x)
is the minimum time (if it exists) to “hit” the boundary of the region of vertex v
starting from a clock value x. Let Ψ(v, x) be the maximum probability to reach
VF starting from vertex v given clock value x. Then it follows from [20] that
Ψ(v, x) = 1 if v ∈ VF , and otherwise:

Ψ(v, x) = max
α∈Act(v)

{ ∑

v
α,p,X

↪→ v′

∫
(v,x)

0

Λα(v)·e−Λα(v)·τ ·p︸ ︷︷ ︸
(�)

·Ψ(v′, (x+τ)[X := 0]) dτ

+
∑

v
δ

↪→v′

e−Λα(v)·
(v,x)

︸ ︷︷ ︸
(��)

·Ψ (v′, x+�(v, x))

}
, (2)

The term (�) represents the probability to take the Markovian edge v
α,p,X
↪→ v′

while the term (��) denotes the probability to take the delay edge v
δ
↪→ v′. (Note

that there is only a single such delay edge, i.e., the second summation ranges
over a single delay edge.)

Theorem 1. For P = (Act, V, v0, VF , Λ, ↪→) we have:

Ψ(v0,0) = sup
D∈DP

PrPv0,D(Pathsv0(�VF)).

Together with Lemma 1, we thus conclude that our problem—determining the
maximum probability that CTMDP C satisfies the DTA specification A—
reduces to determining Ψ(v0,0) for the Bellman equation (2) on the product
P = C ⊗ G(A).

5 Reduction to a Linear Programming Problem

In this section, we show that the solution Ψ(v0,0) of the Bellman equation (2)
coincides with the solution of an LP problem whose coefficients are maximum
timed reachability probabilities in a set of CTMDPs that are obtained by a
graph decomposition of the product P = C ⊗G(A). Let us first define the graph
decomposition of the product P . The operational intuition can best be explained
by means of our running example, see Fig. 4. The idea is to group all vertices
with the same region, i.e., we group the vertices in a column-wise manner. In
the example this yields three sub-graphs P0 through P2. A delay in Pi (with
i = 0, 1) yields a vertex in Pi+1, taking an edge in the DTA in which clock x is
unaffected (i.e., not reset) yields a vertex in Pi (for all i), whereas in case clock
x is reset, a vertex in P0 is obtained. This is formalized below as follows.

Definition 10 (Graph decomposition). The graph decomposition of P =
(Act, V, v0, VF , Λ, ↪→) yields the set of graphs {Pi | 0 ≤ i ≤ m} where Pi =
(Act, Vi, VFi , Λi, ↪→i) with:

16 T. Chen et al.

– Vi = {(s, q, Θi) ∈ V } and VFi = Vi ∩ VF ,
– Λα

i (v) = Λα(v), for v ∈ Vi, and
– ↪→i =

(⋃
α∈Act{Mα

i ∪Bα
i }
)
∪ Fi where:

• Mα
i is the set of Markovian edges (without reset) within Pi labeled by α,

• Bα
i (backward) is the set of Markovian edges (with reset) from Pi to P0,

• Fi (forward) is the set of delay edges from the vertices in Pi to Pi+1.

As the graph Pm only involves unbounded regions, it has no outgoing delay
transitions.

Example 4. The product P in Fig. 4 is decomposed into the graphs P0,P1, P2 as
indicated by the dashed ovals. For P1, e.g., we have Mβ

1 = {v5 ↪→ v4, v8 ↪→ v9};
Bα

1 = {v6 ↪→ v3, v6 ↪→ v2}, Bβ
1 = {v6 ↪→ v1}, and Bγ

1 = {v7 ↪→ v0}. Its delay
transitions are F1 = {v4 ↪→ v10, v5 ↪→ v11, v8 ↪→ v12, v9 ↪→ v13}.

For graph Pi (0 ≤ i ≤ m) with |Vi| = ki, define the probability vector

�Ui(x) = [u1
i (x), . . . , u

ki

i (x)]T ∈ R(x)ki×1,

where uj
i (x) is the maximum probability to go from vertex vj

i ∈ Vi to some
vertex in the goal set VF (in M) at time point x. Our aim is to determine �U0(0).
In the sequel, we aim to establish a relationship between �Ui(0) and �Uj(0) for
i �= j. To that end, we distinguish two cases:

Case 0 ≤ i < m. We first introduce some definitions.

– Pα,M
i ∈ [0, 1]ki×ki and Pα,B

i ∈ [0, 1]ki×k0 are probability transition matri-
ces for Markovian and backward transitions respectively, parameterized by

action α. For α ∈ Act(v), let Pα,M
i [v, v′] = p, if v

α,p,∅
↪→ v′; and 0 other-

wise. Similarly Pα,B
i [v, v′] = p if v

α,p,{x}
↪→ v′; and 0 otherwise. Moreover, let

Pα
i =

(
Pα,M

i Pα,B
i

)
. Note that Pα

i is a stochastic matrix, as:

∑
v′

Pα,M
i [v, v′] +

∑
v′′

Pα,B
i [v, v′′] = 1.

– Dα
i (x) ∈ Rki×ki is the delay probability matrix, i.e., for any 1 ≤ j ≤ ki,

Dα
i (x)[j, j] = e−rα(vj

i)x. Its off-diagonal elements are zero;
– Eα

i ∈ Rki×ki is the exit rate matrix, i.e., for any 1 ≤ j ≤ ki, Eα
i [j, j] = rα(vj

i).
Its off-diagonal elements are zero;

– Mα
i (x) = Eα

i ·Dα
i (x)·Pα,M

i ∈ Rki×ki is the probability density matrix for
Markovian transitions inside Pi. Namely, Mα

i (x)[j, j′] indicates the pdf to
take the α-labelled Markovian edge without reset from the j-th vertex to the
j′-th vertex in Pi;

– Bα
i (x) = Eα

i ·Dα
i (x)·Pα,B

i ∈ Rki×k0 is the probability density matrix for the
reset edges Bα

i . Namely, Bα
i (x)[j, j′] indicates the pdf to take the Markovian

edge with reset from the j-th vertex in Pi to the j′-th vertex in P0;

Observing Continuous-Time MDPs by 1-Clock Timed Automata 17

– Fi ∈ Rki×ki+1 is the incidence matrix for delay edges Fi. Thus, Fi[j, j′] = 1
iff there is a delay edge from the j-th vertex in Pi to the j′-th vertex in Pi+1.

Example 5 (Continuing Example 4). According to the definitions, we have the
following matrices for P0 and P1. Let rα

i be a shorthand of the exit rate rα(si):

Mα
0 (x) =

⎛
⎜⎜⎜⎝

rα
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
E0

⎛
⎜⎜⎜⎝

e−rα
0 x 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
D0(x)

⎛
⎜⎜⎜⎝

0 0 0.9 0.1

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
P

α,M
0

=

⎛
⎜⎜⎜⎝

0 0 0.9rα
0 e−rα

0 x 0.1rα
0 e−rα

0 x

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠

Similarly,

Bβ
1 (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 1·e−r
β
0 x 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and F0 =

⎛
⎜⎜⎜⎝

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

⎞
⎟⎟⎟⎠

By instantiating (2), we obtain the following for 0 ≤ i < m:

�Ui(x) = max
α∈Act

{∫ Δci−x

0

Mα
i (τ) · �Ui(x+τ)dτ

︸ ︷︷ ︸
(�)

+
∫ Δci−x

0

Bα
i (τ) dτ · �U0(0)

︸ ︷︷ ︸
(��)

+Dα
i (Δci−x) · Fi

�Ui+1(0)

}
,

(3)

Let us explain the above equation. First of all, recall that �(v, x) = Δci−x for
each state v ∈ Vi with i < m. Term (�) (resp. (��)) reflects the case where clock
x is not reset (resp. is reset and returned to P0). Note that Mα

i (τ) and Bα
i (τ) are

the matrix forms of the density function (�) in (2). The matrix Dα
i (Δci−x) indi-

cates the probability to delay until the “end” of region i, and Fi·�Ui+1(0) denotes
the probability to continue in Pi+1 (at relative time point 0), and Dα

i ·(Δci−x)·Fi

is the matrix form of the term (��) in (2).

Case i = m. In this case, �Um(x) is simplified as follows:

�Um(x) = max
α∈Act

{∫ ∞

0

M̂α
m(τ)·�Um(x+τ) dτ + 1̃F +

∫ ∞

0

Bα
m(τ)dτ · �U0(0)

}
, (4)

where M̂α
m(τ)[v, ·] = Mα

m(τ)[v, ·] for v /∈ VF , 0 otherwise. 1̃F is a characteristic
vector such that 1̃F [v] = 1 iff v ∈ VF .

Our remaining task now is to solve the system of integral equations given by
equations (3) and (4). First observe that, due to the fact that Pi only contains

18 T. Chen et al.

v6

v7

v1

v2

v3

v5 v4

v8 v9

β, 1

β, 1

β, 1, {x}

α, 0.9, {x}

α, 0.1, {x}

1

1

1

v01
γ, 1, {x}

Fig. 5. Augmented CTMDP C�
1

Markovian edges, the struc-
ture (Vi, Λi,Mi) forms a CT-

MDP, referred to as Ci. For
each Pi, we define the aug-
mented CTMDP C�

i with
state space Vi ∪ V0 such that
all V0-vertices are made ab-
sorbing (i.e., their outgoing
edges are replaced by a self-
loop) and all edges connecting
Vi to V0 are kept. The aug-
mented CTMDP C�

1 for P1 in Fig. 4 is shown in Fig. 5.
By instantiating (2), we have the following equation (in the matrix form) for

the transition probability:

Π(x) = max
α∈Act

{∫ x

0

M̃α(τ)·Π(x−τ) dτ
}

+ Dα(x), (5)

where M̃α(τ)[v, v′] = rα(v)·e−rα(v)·τ ·p if there is a Markovian edge v
α,p,∅
↪→ v′; 0

otherwise. In fact, the characterization of Ψ(s, x) in Section 4 is an equivalent
formulation of Eq.(5). For augmented CTMDP C�

i , M̃α(τ) we have:

M̃α(τ) =
(

Mα
i (τ) Bα

i (τ)
0 I

)
,

where 0 ∈ Rk0×ki is the matrix with all 0’s and I ∈ Rk0×k0 is the identity matrix.
Now given any CTMDP Ci (resp. augmented CTMDP C�

i) corresponding to
Pi, we obtain Eq. (5), and write its solution as Πi(x) (resp. Π�

i (x)). We then
define Π̄�

i ∈ Rki×k0 for an augmented CTMDP C�
i to be part of Π�

i , where Π̄�
i

only keeps the probabilities starting from Vi and ending in V0. As a matter of
fact,

Π�
i (x) =

(
Πi(x) Π̄�

i (x)
0 I

)
.

The following theorem is the key result of this section. Its proof is technically
involved and is given in the Appendix.

Theorem 2. For sub-graph Pi of P, it holds:

�Ui(0) = Πi(Δci) · Fi · �Ui+1(0) + Π̄�
i (Δci) · �U0(0), if 0 ≤ i < m (6)

where Πi(·) and Π̄�
i (·) are defined on CTMDP Ci and (augmented) C�

i as above.

�Um(0) = max
α∈Act

{
P̂α

m · �Um(0) + �1F + B̂α
m · �U0(0)

}
, if i = m (7)

with P̂α
m(v, v′) = Pα

m(v, v′) if v /∈ VFm ; 0 otherwise, and B̂α
m =

∫∞
0 Bα

m(τ) dτ .

Observing Continuous-Time MDPs by 1-Clock Timed Automata 19

Recall that we intend to solve the system of integral equations given by the
equations (3) and (4) so as to obtain the vectors �Ui(0) for 0 ≤ i ≤ m. Theorem 2
entails that instead of accomplishing this directly, one alternatively can exploit
equations 6 and 7, where �Ui(0) (0 ≤ i ≤ m) can be regarded as a family of vari-
ables and the coefficients Πi(·) can be obtained by computing the corresponding
maximum timed reachability probabilities of CTMDPs C�

i . It is not difficult
to see that the set of equations in Theorem 2 can be easily reduced to an LP
problem, see, e.g., [9].

6 Conclusion

We showed that the verification of CTMDPs against 1-clock DTA objectives
can be reduced to solving an LP problem whose coefficients are extremum timed
reachability probabilities in CTMDPs. This extends the class of timed reacha-
bility properties to an interesting and practically relevant set of properties. The
main ingredients of our approach are a region graph and a product construction,
computing timed reachability probabilities in a set of CTMDPs, and finally solv-
ing an LP problem. The availability of the first practical implementations for
timed reachability of CTMDPs paves the way to a realization of our approach
in a prototypical tool. Like in [7], our approach facilitates optimizations such as
parallelization and bisimulation minimization. Such implementation and exper-
imentation is essential to show the practical feasibility of our approach and is
left for further work.

Another interesting research direction is to consider other acceptance criteria
for DTA, such as Muller acceptance. We claim that this can basically be done
along the lines of [16] for CTMCs; the main technical difficulty is that one
needs to resort to either finite memory schedulers or randomized schedulers, see
e.g. [14].

References

1. Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of reachability testing
for timed automata. Theor. Comput. Sci. 300(1-3), 411–475 (2003)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Baier, C., Cloth, L., Haverkort, B.R., Kuntz, M., Siegle, M.: Model checking
Markov chains with actions and state labels. IEEE Trans. Software Eng. 33(4),
209–224 (2007)

4. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algo-
rithms for continuous-time Markov chains. IEEE Trans. Software Eng. 29(6),
524–541 (2003)

5. Baier, C., Hermanns, H., Katoen, J.-P., Haverkort, B.: Efficient computation of
time-bounded reachability probabilities in uniform continuous-time Markov deci-
sion processes. Theor. Comput. Sci. 345(1), 2–26 (2005)

6. Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time
logic with fairness. Distrib. Comput. 11, 125–155 (1998)

20 T. Chen et al.

7. Barbot, B., Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Efficient CTMC model
checking of linear real-time objectives. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 128–142. Springer, Heidelberg (2011)

8. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
9. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic

systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995)

10. Brázdil, T., Forejt, V., Krcál, J., Kret́ınský, J., Kucera, A.: Continuous-time
stochastic games with time-bounded reachability. In: FSTTCS, pp. 61–72 (2009)

11. Brázdil, T., Krcál, J., Kret́ınský, J., Kucera, A., Rehák, V.: Stochastic real-time
games with qualitative timed automata objectives. In: Gastin, P., Laroussinie, F.
(eds.) CONCUR 2010. LNCS, vol. 6269, pp. 207–221. Springer, Heidelberg (2010)

12. Brázdil, T., Krcál, J., Kret́ınský, J., Kucera, A., Rehák, V.: Measuring perfor-
mance of continuous-time stochastic processes using timed automata. In: HSCC,
pp. 33–42. ACM Press, New York (2011)

13. Buchholz, P., Schulz, I.: Numerical analysis of continuous time Markov decision
processes over finite horizons. Computers & OR 38(3), 651–659 (2011)

14. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: Trading memory for randomness.
In: Quantitative Evaluation of Systems (QEST), pp. 206–217. IEEE Computer
Society, Los Alamitos (2004)

15. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Quantitative model checking of
continuous-time Markov chains against timed automata specifications. In: LICS,
pp. 309–318 (2009)

16. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Model checking of continuous-
time Markov chains against timed automata specifications. Logical Methods in
Computer Science 7(1–2), 1–34 (2011)

17. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Reachability probabilities in
Markovian timed automata. Technical report, RR-11-02, OUCL (2011)

18. Ciesinski, F., Baier, C.: Liquor: A tool for qualitative and quantitative linear time
analysis of reactive systems. In: Quantitative Evaluation of Systems (QEST), pp.
131–132. IEEE Computer Society, Los Alamitos (2006)

19. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

20. Davis, M.H.A.: Markov Models and Optimization. Chapman and Hall, Boca Raton
(1993)

21. de Alfaro, L.: How to specify and verify the long-run average behavior of proba-
bilistic systems. In: LICS, pp. 454–465 (1998)

22. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic prop-
erties with CSLTA. IEEE Trans. Software Eng. 35(2), 224–240 (2009)

23. Guo, X., Hernández-Lerma, O., Prieto-Rumeau, T.: A survey of recent results on
continuous-time Markov decision processes. TOP 14(2), 177–257 (2006)

24. Howard, R.A.: Dynamic Programming and Markov Processes. MIT Press, Cam-
bridge (1960)

25. Katoen, J.-P., Zapreev, I., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Perf. Ev. 68(2), 90–104 (2011)

26. Knast, R.: Continuous-time probabilistic automata. Information and Control 15(4),
335–352 (1969)

27. Laroussinie, F., Markey, N., Schnoebelen, P.: Model checking timed automata with
one or two clocks. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS,
vol. 3170, pp. 387–401. Springer, Heidelberg (2004)

Observing Continuous-Time MDPs by 1-Clock Timed Automata 21

28. Martin-Löfs, A.: Optimal control of a continuous-time Markov chain with periodic
transition probabilities. Operations Research 15, 872–881 (1967)

29. Miller, B.L.: Finite state continuous time Markov decision processes with a finite
planning horizon. SIAM Journal on Control 6(2), 266–280 (1968)

30. Neuhäußer, M.R., Stoelinga, M., Katoen, J.-P.: Delayed nondeterminism in
continuous-time Markov decision processes. In: de Alfaro, L. (ed.) FOSSACS 2009.
LNCS, vol. 5504, pp. 364–379. Springer, Heidelberg (2009)

31. Neuhäußer, M.R., Zhang, L.: Time-bounded reachability probabilities in
continuous-time Markov decision processes. In: Quantitative Evaluation of Sys-
tems (QEST), pp. 209–218. IEEE Computer Society, Los Alamitos (2010)

32. Puterman, M.L.: Markov Decision Processes. Wiley, Chichester (1994)
33. Rabe, M., Schewe, S.: Finite optimal control for time-bounded reachability in

CTMDPs and continuous-time Markov games. CoRR, abs/1004.4005 (2010)
34. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-

grams. In: FOCS, pp. 327–338. IEEE Computer Society, Los Alamitos (1985)
35. Wolovick, N., Johr, S.: A characterization of meaningful schedulers for continuous-

time Markov decision processes. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006.
LNCS, vol. 4202, pp. 352–367. Springer, Heidelberg (2006)

A Proof of Theorem 2

Theorem 2. For subgraph Pi of M with ki states, it holds:

– For 0 ≤ i < m,

�Ui(0) = Πi(Δci) · Fi
�Ui+1(0) + Π̄�

i (Δci) · �U0(0), (8)

where Πi(Δci) and Π̄�
i (Δci) are for CTMDP Ci and (augmented) C�

i , re-
spectively.

– For i = m,

�Um(0) = max
α∈Act

{
P̂α

m · �Um(0) + �1F + B̂α
m · �U0(0)

}
, (9)

where P̂α
m(v, v′) = Pα

m(v, v′) if v /∈ VFm ; 0 otherwise, and B̂α
m =

∫∞
0

Bα
m(τ)dτ .

Proof. We first deal with the case i < m. If in Pi, for some action α there
exists some backward edge, namely, for some j, j′, Bα

i (x)[j, j′] �= 0, then we shall
consider the augmented CTMDP C�

i with k�
i = ki+k0 states. In view of this,

the augmented version of the integral equation �Vi(x) is defined as:

�V �
i (x) = max

α∈Act

{∫ Δci−x

0

Mα,�
i (τ)·�V �

i (x+τ)dτ + Dα,�
i (Δci−x) · F�

i · �̂V i(0)

}
,

where

– �V �
i (x) =

(
�Vi(x)
�V ′

i (x)

)
∈ Rk�

i ×1, where �V ′
i (x) ∈ Rk0×1 is the vector representing

reachability probabilities for the augmented states in Pi;

22 T. Chen et al.

– Mα,�
i (τ) =

(
Mα

i (τ) Bα
i (τ)

0 0

)
∈ Rk�

i ×k�
i . The exit rate of augmented states

is 0 for all actions.

– Dα,�
i (τ) =

(
Dα

i (τ) 0
0 I

)
∈ Rk�

i ×k�
i .

– F�
i =

(
F′

i B′
i

)
∈ Rk�

i ×(ki+1+k0) such that

• F′
i =

(
Fi

0

)
∈ Rk�

i ×ki+1 is the incidence matrix for delay edges and

• B
′
i =
(

0
I

)
∈ Rk�

i ×k0 .

– �̂
V i(0) =

(
�Ui+1(0)
�U0(0)

)
∈ R(ki+1+k0)×1.

In the sequel, we prove two claims:

Claim 1. For each 0 ≤ j ≤ ki, �Ui[j] = �V �
i [j].

Proof of Claim 1. According to the definition, we have that

�V �
i (x) = max

α∈Act

{∫ Δci−x

0

(
Mα

i (τ) Bα
i (τ)

0 0

)
· �V �

i (x+τ)dτ

+
(

Dα
i (Δci−x) 0

0 I

)
·
(

Fi 0
0 I

)
·
(
�Ui+1(0)
�U0(0)

)}
.

It follows immediately that �V ′
i (x) = �U0(0). For �Vi(x), we have that

�Vi(x)

= max
α∈Act

{∫ Δci−x

0

Mα
i (τ)�Vi(x+τ)dτ +

∫ Δci−x

0

Bα
i (τ)�V ′

i (x+τ)dτ

+Dα
i (Δci−x)·Fi·�Ui+1(0)

}

= max
α∈Act

{∫ Δci−x

0

Mα
i (τ)�Vi(x+ τ)dτ +

∫ Δci−x

0

Bα
i (τ)dτ · �U0(0)

+Dα
i (Δci − x) · Fi · �Ui+1(0)

}

= �Ui(x) .

♣

Claim 2.
�V �

i (x) = Π�
i (Δci − x) · F�

i
�̂
V i(0) ,

where

Π�
i (x) = max

α∈Act

{∫ x

0

Mα,�
i (τ)Π�

i (x − τ)dτ + Dα,�
i (x)

}
.

Observing Continuous-Time MDPs by 1-Clock Timed Automata 23

Proof of Claim 2. Standard arguments yield that the optimal probability corre-
sponds to the least fixpoint of a functional and can be computed iteratively. Let
ci,x = Δci − x. We define

�V
�,(0)
i (x) = �0

�V
�,(j+1)
i (x) = max

α∈Act

{∫ ci,x

0

Mα
i (τ)�V �,(j)

i (x+τ)dτ + Dα,�
i (ci,x) · F�

i
�̂
V i(0)

}
.

and

Π�,(0)
i (ci,x) = 0

Π�,(j+1)
i (ci,x) = max

α∈Act

{∫ ci,x

0

M�
i (τ)Π

�,(j)
i (ci,x−τ)dτ + Dα,�

i (ci,x)
}

.

By induction on j, we prove the following relation:

�V
�,(j)
i (x) = Π�,(j)

i (ci,x) · Fi
�̂
V i(0) .

– Base case. �V �,(0)
i (x) = �0 and Π�,(0)

i (ci,x) = 0.
– Induction hypothesis.

�V
�,(j)
i (x) = Π�,(j)

i (ci,x) · F�
i
�̂
U i(0) .

– Induction step. We have that

�V
�,(j+1)
i (x)= max

α∈Act

{∫ ci,x

0

M�,α
i (τ)�V �,(j)

i (x+ τ)dτ + Dα,�
i (ci,x) · F�

i
�̂
U i(0)

}
.

It follows that

�V
�,(j+1)

i (x)

= max
α∈Act

{∫ ci,x

0

M�,α
i (τ)�V

�,(j)
i (x + τ)dτ + Dα,�

i (ci,x) · F�
i
�̂
V i(0)

}

I.H.
= max

α∈Act

{∫ ci,x

0

M�,α
i (τ) · Π�,(j)

i (ci,x−τ) · F�
i
�̂
V i(0)dτ + Dα,�

i (ci,x) · F�
i
�̂
V i(0)

}

= max
α∈Act

{(∫ ci,x

0

M�,α
i (τ)Π

�,(j)
i (ci,x − τ)dτ + D�

i (ci,x)

)
· F�

i
�̂
V i(0)

}

= max
α∈Act

{∫ ci,x

0

M�,α
i (τ)Π

�,(j)
i (ci,x − τ)dτ + Dα

i 	 (ci,x)

}
· F�

i
�̂
V i(0)

= Π
α,(j+1)
i (ci,x) · F�

i
�̂
V i(0) .

Clearly,
Π�

i (ci,x) = lim
j→∞

Π�,(j)
i (ci,x) ,

and
�V �

i (x) = lim
j→∞

�V
�,(j)
i (x) .

It follows the conclusion. ♣

24 T. Chen et al.

We now proceed with the main proof. Let x = 0 and we obtain

�V �
i (0) = Π�

i (ci,0) · Fi
�̂
Vi(0) .

We can also write the above relation for x = 0 as:
(
�Vi(0)
�V ′

i (0)

)
= Π�

i (Δci)
(
F′

i B′
i

)(�Ui+1(0)
�U0(0)

)

=
(

Πi(Δci) Π̄�
i (Δci)

0 I

)(
Fi 0
0 I

)(
�Ui+1(0)
�U0(0)

)

=
(

Πi(Δci)Fi Π̄�
i (Δci)

0 I

)(
�Ui+1(0)
�U0(0)

)

=

(
Πi(Δci)Fi

�Ui+1(0) + Π̄�
i (Δci)�U0(0)

�U0(0)

)
.

As a result we can represent �Vi(0) in the following matrix form

�Vi(0) = Πi(Δci)Fi
�Ui+1(0) + Π̄a

i (Δci)�U0(0) ,

by noting that Πi is formed by the first ki rows and columns of matrix Π�
i and

Π̄�
i is formed by the first ki rows and the last k�

i − ki = k0 columns of Π�
i . (8)

follows from Claim 1.

For the case i = m, i.e., the last graph Pm, the region size is infinite, therefore
delay transitions do not exist. Recall that

�Um(x) = max
α∈Act

{∫ ∞

0

M̂α
m(τ)�Um(x+ τ)dτ +�1F +

∫ ∞

0

Bα
m(τ)dτ · �U0(0)

}
.

We first prove the following claim:

Claim 3. For any x ∈ R≥0, �Um(x) is a constant vector function.

Proof of Claim 3. We define

�U (0)
m (x) = �0

�U (j+1)
m (x) = max

α∈Act

{∫ ∞

0

M̂α
m(τ)�U (j)

m (x+ τ)dτ +�1F +
∫ ∞

0

Bα
m(τ)dτ · �U0(0)

}
.

It is not difficult to see that �Um(x) = limj→∞ �U
(j)
m (x). We shall show, by induc-

tion on j, that �U (j)
m (x) is a constant vector function.

– Base case. �U (0)
m (x) = �0, which is clearly constant.

– Induction Hypothesis. �U (j)
m (x) is a constant vector function.

Observing Continuous-Time MDPs by 1-Clock Timed Automata 25

– Induction step.

�U (j+1)
m (x)

= max
α∈Act

{∫ ∞

0

M̂a
m(τ)�U (j)

m (x + τ)dτ +�1F +
∫ ∞

0

Bα
m(τ)dτ · �U0(0)

}

I.H.= max
α∈Act

{∫ ∞

0

M̂a
m(τ) · �U (j)

m (x)dτ +�1F +
∫ ∞

0

Bα
m(τ)dτ · �U0(0)

}

= max
α∈Act

{∫ ∞

0

M̂a
m(τ)dτ · �U (j)

m (x) +�1F +
∫ ∞

0

Bα
m(τ)dτ · �U0(0)

}
.

The conclusion follows trivially. ♣

Since �Um(x) is constant vector function, we have that

�Um(x) = max
α∈Act

{∫ ∞

0

M̂α
m(τ)dτ · �Um(x) +�1F +

∫ ∞

0

Bα
m(τ)dτ · �U0(0)

}
.

Moreover, it is easy to see that
∫∞
0

M̂α
m(τ)dτ boils down to P̂α

m and
∫∞
0

Ba
m(τ)dτ

boils down to B̂α
m. Also we add the vector �1F to ensure that the probability to

start from a state in GF is one. Hence, (9) follows trivially. ��

Automata for Monadic Second-Order

Model-Checking

Bruno Courcelle

Université Bordeaux-1, LaBRI, CNRS
351, Cours de la Libération

33405, Talence, France
courcell@labri.fr

We describe the construction of finite automata on terms establishing that the
model-checking problem for every monadic second-order graph property is fixed-
parameter linear for tree-width and clique-width (Chapter 6 of [6]).

In this approach, input graphs of small tree-width and clique-width are de-
noted by terms over finite signatures. These terms reflect the corresponding
hierarchical decompositions and monadic second-order sentences are translated
into automata intended to run on them. For the case of clique-width, this trans-
lation is a straightforward extension of that for finite words. It is a bit more
complicated in the case of tree-width ([3], [4]).

In both cases, the practical use of these constructions faces the problem that
the automata are huge. (The number of states is typically an h-iterated exponen-
tial where h is the quantifier alternation depth.) We present some tools (based
on common work in progress with I. Durand, see [5]) that help to overcome
this difficulty, at least in some cases. First we use automata whose states are
described in an appropriate syntax (and not listed) and whose transitions are
computed only when needed (and not compiled in unmanageable tables). In par-
ticular, automata are not systematically determinized. They can take as input
terms denoting graphs having a tree-width or clique-width that is not a priori
bounded. Our second tool consists in attaching to each position of the input
term a contextual information (computed by one or two preliminary top-down
and/or bottom-up passes), that helps to reduce the size of the automata.

The automata approach to monadic second-order model-checking is flexible
in that it is not problem specific. Another similar flexible one, based on games,
is developed by Kneiss et al. in [11].

The parsing problem consisting in checking that the tree-width or clique-
width of a given graph is at most some given integer and in constructing a
witnessing decomposition is also difficult ([1], [2], [9]), but we do not discuss it
in this communication.

References

1. Bodlaender, H., Koster, A.: Treewidth computations I. Upper bounds. Information
and Computation 208, 259–275 (2010)

2. Bodlaender, H., Koster, A.: Treewidth computations II. Lower bounds. Information
and Computation (in Press 2011)

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 26–27, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Automata for Monadic Second-Order Model-Checking 27

3. Courcelle, B.: Special tree-width and the verification of monadic second-order graph
properties. In: Lodaya, K., Mahajan, M. (eds.) Foundations of Software Technology
and Theoretical Computer Science, Chennai, India, vol. 8, pp. 13–29. LIPICs (2010)

4. Courcelle, B.: On the model-checking of monadic second-order formulas with edge
set quantifications. Discrete Applied Mathematics (May 2010),
http://hal.archives-ouvertes.fr/hal-00481735/fr/ (to appear)

5. Courcelle, B., Durand, I.: Automata for the verification of monadic second-order
graph properties (in preparation 2011)

6. Courcelle, B., Engelfriet, J.: Graph structure and monadic second-order logic, a
language theoretic approach. Cambridge University Press, Cambridge (2011),
http://www.labri.fr/perso/courcell/Book/TheBook.pdf

7. Courcelle, B., Makowsky, J., Rotics, U.: On the fixed parameter complexity of graph
enumeration problems definable in monadic second-order logic. Discrete Applied
Mathematics 108, 23–52 (2001)

8. Downey, R., Fellows, M.: Parameterized complexity. Springer, Heidelberg (1999)
9. Fellows, M., Rosamond, F., Rotics, U., Szeider, S.: Clique-width is NP-complete.

SIAM J. Discrete Math. 23, 909–939 (2009)
10. Flum, J., Grohe, M.: Parametrized complexity theory. Springer, Heidelberg (2006)
11. Kneiss, J., Langer, A., Rossmanith, P.: Courcelle’s Theorem - A Game-Theoretic

Approach, ArXiv, CoRR abs/1104.3905 (2011)

http://hal.archives-ouvertes.fr/hal-00481735/fr/
http://www.labri.fr/perso/courcell/Book/TheBook.pdf

Reachability Problems for Hybrid Automata

Jean-François Raskin

Département d’Informatique – Université Libre de Bruxelles (U.L.B.), Belgium

Abstract. The reachability problem for hybrid automata is undecid-
able, even for linear hybrid automata. This negative result has triggered
several research lines, leading among others to:

– the definition of subclasses of hybrid automata with a decidable
reachability problem;

– the definition of semi-algorithms that are useful in practice to attack
the reachability problem;

– the definition of variants of the reachability problem that are decid-
able for larger classes of hybrid automata.

In this talk, we summarize classical and more recent results about those
three research lines.

Hybrid Automata. The formalism of hybrid automata [1] is a well-established
model for hybrid systems. Important examples of hybrid systems are digital
controllers embedded within physical environments. The state of a hybrid system
changes both through discrete transitions (of the controller), and continuous
evolutions (of the environment). The discrete state of a hybrid system is encoded
by a location � taken in the finite set Loc of locations of the hybrid automaton,
and the continuous state is encoded by a valuation v of the real-valued variables
X of the automaton. Discrete transitions are modeled by edges between locations
of the automaton while continuous evolutions are modeled by dynamical laws
constraining the first derivative Ẋ of the variables in each discrete location.
Hybrid automata have proven useful in many applications, and their analysis is
supported by several tools [11,10].

A central problem in hybrid-system verification is the reachability problem
which is to decide if there exists an execution from a given initial location � to
a given goal location �′.

Classes of HA with Decidable Reachability. While the reachability prob-
lem is undecidable for simple classes of hybrid automata (such as linear hybrid
automata [1]), the decidability frontier of this problem is now sharply under-
stood [13,14]. For example, the reachability problem is decidable for the class
of initialized rectangular automata where (i) the flow constraints, guards, in-
variants and discrete updates are defined by rectangular constraints of the form
a ≤ ẋ ≤ b or c ≤ x ≤ d (where a, b, c, d are rational constants), and (ii) whenever
the flow constraint of a variable x changes between two locations � and �′, then
x is reset along the transition from � to �′. Of particular interest is the class of
timed automata [2] which is a special class of initialized rectangular automata.

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 28–30, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Reachability Problems for Hybrid Automata 29

Semi-algorithms. While the reachability problem is undecidable for the class
of linear hybrid automata, there is a natural symbolic semi-algorithm to con-
struct a symbolic representation of the reachable states for that class. This
symbolic semi-algorithm relies on the following property: the set of one-step
successors and the set of time successors of a set of states defined by a pair
(�, R), where � is a location of the linear hybrid automaton and R is a poly-
hedra of valuations for its continuous variables, is definable by a finite set of
such pairs [1]. This symbolic semi-algorithm has been implemented in tools like
HyTech [11] and PhaVer [10] and used to analyze hybrid systems of practical
interest, see for example [15,5]. On the other hand, if the evolution of contin-
uous variables are subject to more complicated flow constraints, for example
affine dynamics like ẋ = 3x − y, computing the flow successor is more difficult
and only approximate methods are known. There is a rich literature on the prob-
lem of approximating the set of reachable states of complex hybrid automata,
see for example [12,3,8,7]. Here we concentrate on [8], where we show how to
efficiently compute over-approximations for the class of affine hybrid automata,
that is, hybrid automata whose continuous dynamics are defined by systems of
linear differential equations. More precisely, it is shown there (i) how to compute
automatically rectangular approximations for affine hybrid automata, (ii) how
to refine automatically and in an optimal way rectangular approximations that
fail to establish a given safety property (the dual of a reachability property),
(iii) how to target refinement only to relevant parts of the state space. Such
techniques have been implemented with success within PhaVer [10].

The Bounded-Time Reachability Problem for HA. In recent years, it has
been observed that new decidability results can be obtained in the setting of time-
bounded verification of real-time systems [16,17]. Given a time bound T ∈ N, the
time-bounded verification problems consider only traces with duration at most T.
Note that due to the density of time, the number of discrete transitions may still be
unbounded. Several verification problems for timed automata and real-time tem-
poral logics turn out to be decidable in the time-bounded framework (such as the
language-inclusion problem for timed automata [16]), or to be of lower complexity
(such as the model-checking problem for MTL [17]). The theory of time-bounded
verification is therefore expected to be more robust and better-behaved in the case
of hybrid automata as well. In [4], we revisit the reachability problem for hybrid
automata with time-bounded traces. The time-bounded reachability problem for
hybrid automata is to decide, given a time bound T ∈ N, if there exists an exe-
cution of duration less than T from a given initial location � to a given goal lo-
cation �′. We study the frontier between decidability and undecidability for this
problem and show how bounding time alters matters with respect to the classical
reachability problem: the time-bounded reachability problem is decidable for non-
initialized rectangular automata when only positive rates are allowed1. The time-
bounded reachability problem can be reduced to the satisfiability of a formula in
the first-order theory of real addition, decidable in EXPSPACE [9]. To characterize
1 This class is interesting from a practical point of view as it includes, among others,

the class of stopwatch automata [6], for which unbounded reachability is undecidable.

30 J.-F. Raskin

the boundary of decidability, we also show that simple relaxations of this class of
hybrid automata leads to undecidability.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theor. Comput. Sci. 138(1), 3–34 (1995)

2. Alur,R.,Dill,D.L.:Atheoryoftimedautomata.Th.Comp.Sci.126(2),183–235(1994)
3. Asarin, E., Dang, T., Maler, O., Bournez, O.: Approximate reachability analysis

of piecewise-linear dynamical systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC
2000. LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000)

4. Brihaye, T., Doyen, L., Geeraerts, G., Ouaknine, J., Raskin, J.-F., Worrell, J.:
On reachability for hybrid automata over bounded time. In: Aceto, L., Henzinger,
M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 416–427. Springer,
Heidelberg (To apper 2011) CoRR, abs/1104.5335

5. Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.-F., Reynier, P.-A.: Automatic
synthesis of robust and optimal controllers - an industrial case study. In: Majum-
dar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 90–104. Springer,
Heidelberg (2009)

6. Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000)

7. Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems.
In: HSCC. ACM, New York (2010)

8. Doyen, L., Henzinger, T.A., Raskin, J.-F.: Automatic rectangular refinement of
affine hybrid systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS,
vol. 3829, pp. 144–161. Springer, Heidelberg (2005)

9. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real
addition with order. SIAM J. Comput. 4(1), 69–76 (1975)

10. Frehse, G.: Phaver: algorithmic verification of hybrid systems past hytech. Int. J.
Softw. Tools Technol. Transf. 10, 263–279 (2008)

11. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: A model checker for hybrid
systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer,
Heidelberg (1997)

12. Henzinger, T.A., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond hytech: Hy-
brid systems analysis using interval numerical methods. In: Lynch, N.A., Krogh,
B.H. (eds.) HSCC 2000. LNCS, vol. 1790, p. 130. Springer, Heidelberg (2000)

13. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

14. Henzinger, T.A., Raskin, J.-F.: Robust undecidability of timed and hybrid systems.
In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 145–159.
Springer, Heidelberg (2000)

15. Henzinger, T.A., Wong-Toi, H.: Using hytech to synthesize control parameters for a
steam boiler. In: Abrial, J.-R., Börger, E., Langmaack, H. (eds.) Dagstuhl Seminar
1995. LNCS, vol. 1165, pp. 265–282. Springer, Heidelberg (1996)

16. Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: Bravetti,
M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 496–510. Springer,
Heidelberg (2009)

17. Ouaknine, J., Worrell, J.: Towards a theory of time-bounded verification. In: Abram-
sky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.)
ICALP 2010, Part II. LNCS, vol. 6199, pp. 22–37. Springer, Heidelberg (2010)

Synthesis of Timing Parameters Satisfying

Safety Properties

Étienne André and Romain Soulat

LSV, ENS Cachan & CNRS

Abstract. Safety properties are crucial when verifying real-time con-
current systems. When reasoning parametrically, i.e., with unknown con-
stants, it is of high interest to infer a set of parameter valuations consistent
with such safety properties. We present here algorithms based on the in-
verse method for parametric timed automata: given a reference parameter
valuation, it infers a constraint such that, for any valuation satisfying this
constraint, the discrete behavior of the system is the same as under the
reference valuation in terms of traces, i.e., alternating sequences of loca-
tions and actions. These algorithms do not guarantee the equality of the
trace sets, but are significantly quicker, synthesize larger sets of parame-
ter valuations than the original method, and still preserve various proper-
ties including safety (i.e., non-reachability) properties. Those algorithms
have been implemented in Imitator II and applied to various examples of
asynchronous circuits and communication protocols.

Keywords: Real-Time Systems, Timed Automata, Verification,
Imitator.

1 Introduction

Timed Automata are finite-state automata augmented with clocks, i.e., real-
valued variables increasing uniformly, that are compared within guards and tran-
sitions with timing delays [AD94]. Although techniques can be used in order to
verify the correctness of a timed automaton for a given set of timing delays, these
techniques become inefficient when verifying the system for a large number of
sets of timing delays, and don’t apply anymore when one wants to verify dense
intervals of values, or optimize some of these delays. It is therefore interesting to
reason parametrically, by assuming that those timing delays are unknown con-
stants, or parameters, which give Parametric Timed Automata (PTAs) [AHV93].

We consider here the good parameters problem [FJK08]: “given a PTA A
and a rectangular domain V bounding the value of each parameter, find all the
parameter valuations within V such that A has a good behavior”. Such good
behaviors can refer to any kind of properties. We will in particular focus here on
safety properties, i.e., the non-reachability of a given set of “bad” locations.

Parameters Synthesis for PTAs. The problem of parameter synthesis is known
to be undecidable for PTAs, although semi-algorithms exist [AHV93] (i.e., if

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 31–44, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

32 É. André and R. Soulat

the algorithm terminates, the result is correct). The synthesis of constraints has
been implemented in the context of PTAs or hybrid systems, e.g., in [AAB00]
using TReX [CS01], or in [HRSV02] using an extension of Uppaal [LPY97] for
linear parametric model checking. In [HRSV02], decidability results are given
for a subclass of PTAs, viz., “L/U automata”.

The problem of parameter synthesis for timed automata has been applied in
particular to communication protocols (e.g., the Bounded Retransmission Proto-
col [DKRT97] using Uppaal and Spin [Hol03], and the Root Contention Protocol
in [CS01] using TReX) and asynchronous circuits (see, e.g., [YKM02, CC07]).

The authors of [KP10] synthesize a set of parameter valuations under which a
given property specified in the existential part of CTL without the next operator
(ECTL−X) holds in a system modeled by a network of PTAs. This is done by
using bounded model checking techniques applied to PTAs.

In the framework of Linear Hybrid Automata, techniques based on counterex-
ample guided abstraction refinement (CEGAR) [CGJ+00] have been proposed.
In [JKWC07], a method of iterative relaxation abstraction is proposed, com-
bining CEGAR and linear programming. In [FJK08], when finding a counterex-
ample, the system obtains constraints that make the counterexample infeasible.
When all the counterexamples have been eliminated, the resulting constraints
describe a set of parameters for which the system is safe. Also note that an
approach similar to the inverse method is proposed in [AKRS08], in order to
synthesize initial values for the variables of a linear hybrid system.

Contribution. We introduced in [ACEF09] the inverse method IM for PTAs.
Different from CEGAR-based methods, this original semi-algorithm for param-
eter synthesis is based on a “good” parameter valuation π0 instead of a set of
“bad” states. IM synthesizes a constraint K0 on the parameters such that, for
all parameter valuation π satisfying K0, the trace set, i.e., the discrete behav-
ior, of A under π is the same as for A under π0. This preserves in particular
linear time properties. However, this equality of trace sets may be seen as a too
strong property in practice. Indeed, one is rarely interested in a strict ordering
of the events, but rather in the partial match with the original trace set, or more
generally in the non-reachability of a given set of bad locations.

We present here several algorithms based on IM , which do not preserve the
equality of trace sets, but preserve various properties. In particular, they all
preserve non-reachability: if a location is not reachable in A under π0, it will not
be reachable in A under π, for π satisfying K0. The main advantage is that these
algorithms synthesize weaker constraints, i.e., larger sets of parameters. Beside,
termination is improved when compared to the original IM and the computation
time is reduced, as shown in practice in the implementation Imitator II.

Plan of the Paper. We briefly recall IM in Section 2. We introduce in Section 3
algorithms based on IM synthesizing weaker constraints for safety properties,
and show their interest compared to IM . We extend in Section 4 these al-
gorithms in order to perform a behavioral cartography of the system. We show in

Synthesis of Timing Parameters Satisfying Safety Properties 33

Section 5 the interest in practice by applying these algorithms to models of the
literature. We also introduce algorithmic optimizations for two variants allowing
to considerably reduce the state space. We conclude in Section 6.

2 The Inverse Method

Preliminaries. 1 Given a setX of clocks and a set P of parameters, a constraintC
over X and P is a conjunction of linear inequalities on X and P . Given a
parameter valuation (or point) π, we write π |= C when the constraint where all
parameters within C have been replaced by their value as in π is satisfied by a
non-empty set of clock valuations. We denote by ∃X : C the constraint over P
obtained from C after elimination of the clocks in X .

Definition 1. A PTA A is (Σ,Q, q0, X, P,K, I,→) with Σ a finite set of ac-
tions, Q a finite set of locations, q0 ∈ Q the initial location, X a set of clocks, P
a set of parameters, K a constraint over P , I the invariant assigning to every
q ∈ Q a constraint over X and P , and → a step relation consisting of elements
(q, g, a, ρ, q′), where q, q′ ∈ Q, a ∈ Σ, ρ ⊆ X is the set of clocks to be reset, and
the guard g is a constraint over X and P .

The semantics of a PTA A is defined in terms of states, i.e., couples (q, C)
where q ∈ Q and C is a constraint over X and P . Given a point π, we say
that a state (q, C) is π-compatible if π |= C. Runs are alternating sequences of
states and actions, and traces are time-abstract runs, i.e., alternating sequences
of locations and actions. The trace set of A corresponds to the traces associated
with all the runs of A. Given A and π, we denote by A[π] the (non-parametric)
timed automaton where each occurrence of a parameter has been replaced by its
constant value as in π. Given two states s1 = (q1, C1) and s1 = (q2, C2), we say
that s1 is included into s2 if q1 = q2 and C1 ⊆ C2, where ⊆ denotes the inclusion
of constraints. One defines Post i

A(K)(S) as the set of states reachable from a set S
of states in exactly i steps under K, and Post∗A(K)(S) =

⋃
i≥0 Post i

A(K)(S).

Description. Given a PTA A and a reference parameter valuation π0, the inverse
method IM synthesizes a constraint K0 on the parameters such that, for all
π |= K0, A[π0] and A[π] have the same trace sets [ACEF09]. We recall IM in
Algorithm 1, which consists in two major steps.

1. The iterative removal of the π0-incompatible states, i.e., states whose con-
straint onto the parameters is not satisfied by π0, prevents for any π |= K0

the behavior different from π0 (by negating a π0-incompatible inequality J).
2. The final intersection of the projection onto the parameters of the constraints

associated with all the reachable states guarantees that all the behaviors
under π0 are allowed for all π |= K0.

1 Fully detailed definitions are available in [AS11].

34 É. André and R. Soulat

Algorithm 1. Inverse method algorithm IM (A, π0)
input : PTA A of initial state s0, parameter valuation π0

output: Constraint K0 on the parameters

1 i ← 0 ; K ← true ; S ← {s0}
2 while true do
3 while there are π0-incompatible states in S do
4 Select a π0-incompatible state (q, C) of S (i.e., s.t. π0 �|= C) ;
5 Select a π0-incompatible J in (∃X : C) (i.e., s.t. π0 �|= J) ;

6 K ← K ∧ ¬J ; S ←
⋃i

j=0 Postj
A(K)({s0}) ;

7 if PostA(K)(S) � S then return
⋂

(q,C)∈S(∃X : C)

8 i ← i + 1 ; S ← S ∪ PostA(K)(S) ; // S =
⋃i

j=0 Post j
A(K)

({s0})

Item 1 is compulsory in order to prevent the system to enter “bad” (i.e., π0-
incompatible) states. However, item 2 can be lifted when one is only interested
in safety properties. Indeed, in this case, it is acceptable that only part of the
behavior of A[π0] is available in A[π] (as long as the behavior absent from A[π0]
is also absent from A[π]).

Properties. The main property of IM is the preservation of trace sets. As a
consequence, linear-time properties are preserved. This is the case of properties
expressed using the Linear Time Logics (LTL) [Pnu77], but also using the SE-
LTL logics [CCO+04], constituted by both atomic state propositions and events.

It has been shown that IM is non-confluent, i.e., several applications of IM
can lead to different results [And10b]. This comes from the non-deterministic
selection of a π0-incompatible inequality J (line 5 in Algorithm 1). IM behaves
deterministically when such a situation of choice is non encountered. The non-
confluence of IM leads to the non-maximality of the output constraint. In other
words, given A and π0, there may exist points π �|= IM (A, π0) such that A[π]
and A[π0] have the same trace sets. However, it can be shown that, when IM is
deterministic, the output constraint is maximal.

Reachability analysis is known to be undecidable for PTAs [AHV93]. Hence,
although we showed sufficient conditions, IM does not terminate in general.

3 Optimized Algorithms Based on the Inverse Method

A drawback of IM is that the notion of equality of trace sets may be seen as
too strict in some cases. If one is interested in the non-reachability of a certain
set of bad states, then there may exist different trace sets avoiding this set of
bad states. We introduce here several algorithms derived from IM : none of them
guarantee the strict equality of trace sets, but all synthesize weaker constraints
than IM and still feature interesting properties. They all preserve in particular
safety properties, i.e., non-reachability of a given location. In other words, if a
given “bad” location is not reached in A[π0], it will also not be reached by A[π],

Synthesis of Timing Parameters Satisfying Safety Properties 35

for π satisfying the constraint output by the algorithm. The corollary is that the
set of locations reachable in A[π] is included into the set reachable in A[π0].

We introduce algorithms derived from IM , namely IM⊆, IM ∪, and IM K .
We then introduce combinations between these algorithms. For each algorithm,
we briefly state that the constraint is weaker than IM (when applicable), study
the termination, and formally state the properties guaranteed by the output
constraint. (We do not recall the preservation of non-reachability.) The fully
detailed algorithms and all formal properties with proofs can be found in [AS11].

3.1 Algorithm with State Inclusion in the Fixpoint

The algorithm IM⊆ is obtained from IM by terminating the algorithm, not when
all new states are equal to a state computed previously, but when all new states
are included into a previous state.

The constraint output by IM⊆ is weaker than the one output by IM , and
IM⊆ entails an earlier termination than IM for the same input, and hence a
smaller memory usage because states are merged as soon as one is included into
another one. IM⊆ preserves the equality of traces up to length n, where n is the
number of iterations of IM⊆ (i.e., the depth of the state space exploration).

Proposition 1. Suppose that IM⊆(A, π0) terminates with output K0 after n
iterations of the outer do loop. Then, we have:

1. π0 |= K0,
2. for all π |= K0, for each trace T0 of A[π0], there exists a trace T of A[π] such

that the prefix of length n of T0 and the prefix of length n of T are equal,
3. for all π |= K0, for each trace T of A[π], there exists a trace T0 of A[π0] such

that the prefix of length n of T0 and the prefix of length n of T are equal.

Proposition 2. Suppose that IM⊆(A, π0) terminates with output K0. Then, for
all π |= K0, the sets of reachable locations of A[π] and A[π0] are the same.

3.2 Algorithm with Union of the Constraints

The algorithm IM ∪ is obtained from IM by returning, not the intersection of
the constraints associated with all the reachable states, but the union of the
constraints associated with the last state of each run. This notion of last state is
easy to understand for finite runs. When considering infinite (and necessarily2

cyclic) runs, it refers to the second occurrence of a same state within a run, i.e.,
the first time that a state is equal to a previous state of the same run.

The constraint output by IM ∪ is weaker than the one output by IM . Note
that the constraints output by IM⊆ and IM ∪ are incomparable (see example
in Section 3.6 for which two incomparable constraints are synthesized). The
termination is the same as for IM .

Although the equality of trace sets is no longer guaranteed for π |=
IM ∪(A, π0), we have the guarantee that, for all π |= K0, the trace set of A[π] is
2 If the runs are infinite but not cyclic, the algorithm does not terminate.

36 É. André and R. Soulat

a subset of the trace set of A[π0]. Furthermore, each trace of A[π0] is reachable
for at least one valuation π |= K0.

Proposition 3. Let K0 = IM ∪(A, π0). Then:

1. π0 |= K0;
2. For all π |= K0, every trace of A[π] is equal to a trace of A[π0];
3. For all trace T of A[π0], there exists π |= K0 such that the trace set of A[π]

contains T .

Finally note that, due to the disjunctive form of the returned constraint, the
synthesized constraint is not necessarily convex.

3.3 Algorithm with Direct Return

The algorithm IM K is obtained from IM by returning only the constraint K
computed during the algorithm instead of the intersection of the constraints
associated to all the reachable states.

The constraint output by IM K is weaker than the one output by IM . Also note
that the constraints output by IM⊆ and IM K are incomparable (see example in
Section 3.6). Termination is the same for IM K and IM .

Proposition 4. Let K0 = IM K(A, π0). Then, for all π |= K0, every trace
of A[π] is equal to a trace of A[π0].

This algorithm only prevents π0-incompatible states to be reached but, contrarily
to IM and IM ∪, does not guarantee that any “good” state will be reached. Hence,
this algorithm only preserves the non-reachability of locations.

3.4 Combination: Inclusion in Fixpoint and Union

One combine the variant of the fixpoint (viz., IM⊆) with the first variant of
the constraint output (viz., IM ∪), thus leading to IM ∪

⊆. The constraint out-
put by IM ∪ is weaker than the ones output by both IM⊆ and IM ∪. Note that
the constraints output by IM ∪

⊆ and IM K are incomparable (see example in
Section 3.6 for which two incomparable constraints are synthesized). The termi-
nation is the same as for IM⊆. This algorithm combines the properties of IM⊆
and IM ∪. Although not of high interest in practice, this result implies preser-
vation of non-reachability. Finally note that, due to the disjunctive form of the
returned constraint, the output constraint is not necessarily convex.

3.5 Combination: Inclusion in Fixpoint and Direct Return

One can also combine the variant of the fixpoint (viz., IM⊆) with the second
variant of the constraint output (viz., IM K), thus leading to IM K

⊆ . The con-
straint output by IM K

⊆ is weaker than the ones output by both IM K and IM ∪
⊆.

Termination is the same as for IM⊆. This algorithm only preserves the non-
reachability of locations.

3.6 Summary of the Algorithms

We summarize in Table 1 the properties of each algorithm.

Synthesis of Timing Parameters Satisfying Safety Properties 37

Table 1. Comparison of the properties of the variants of IM

Property IM IM⊆ IM∪ IM K IM∪
⊆ IM K

⊆
Equality of trace sets

√ × × × × ×
Equality of trace sets up to n

√ √ × × × ×
Inclusion into the trace set of A[π0]

√ × √ √ × ×
Preservation of at least one trace

√ × √ × × ×
Equality of location sets

√ √ × × × ×
Convex output

√ √ × √ × √

Preservation of non-reachability
√ √ √ √ √ √

IM IM∪ IM K

IM⊆ IM∪
⊆ IM K

⊆

IM

IM⊆

IM∪ IM K

IM∪
⊆ IM K

⊆
⊆

⊆ ⊆

⊆
⊆

⊆

⊆

Fig. 1. Comparison of termination (left) and constraint output (right)

We give in Figure 1 (left) the relation between terminations: an oriented
edge from A to B means that, for the same input, termination of variant A
implies termination of B. We give in Figure 1 (right) the relations between the
constraints synthesized by each variant: for example, given A and π0, we have
that IM (A, π0) ⊆ IM⊆(A, π0). Obviously, the weakest constraint is the one
synthesized by IM K

⊆ . This variant should be thus used when one is interested only
in safety properties; however, when one is interested in stronger properties (e.g.,
preservation of at least one trace of A[π0]), one may want to use another variant
according to their respective properties. We believe that the most interesting
algorithms are IM , for the equality of trace sets, IM ∪, for the preservation of at
least one maximal trace, and IM K

⊆ , for the sole preservation of non-reachability.

Non-maximality. Actually, none of these algorithms synthesize the maximal con-
straint corresponding to the property they are characterized with. This is due
to their non-confluence, itself due to the random selection of a π0-incompatible
inequality. However, it can be shown that the constraint is maximal when the
algorithm runs in a fully deterministic way. We address the issue of synthesizing
a maximal constraint in Section 4. Also note that the comparison between the
constraints (see Figure 1 (right)) holds only for deterministic analyses.

Comparison Using an Example of PTA. Let us consider the PTA Avar depicted
below. We consider the following π0: p1 = 1∧p2 = 4. In A[π0], location q4 is not
reachable, and can be considered as a “bad” location.

Let us suppose that a bad behavior of Avar corresponds to the fact that a
trace goes into location q4. Under π0, the system has a good behavior. As a

38 É. André and R. Soulat

q0 q1 q2

q3

q4

x1 ≤ 2p1

∧ x1 ≤ 2 x2 ≤ p2

x1 ≤ p2

a
x1 := 0
x2 := 0

x1 ≥ p2

c

a

x1 ≥ 3
b

x1 ≥ p1

a
x1 := 0

b

c

Fig. 2. A PTA Avar for comparing the variants of IM

consequence, by the property of non-reachability of a location met by all algo-
rithms, the constraint synthesized by any algorithm also prevents the traces to
enter q4. One can show that the parameter valuations allowing the system to
enter the bad location q4 are comprised in the domain 2 ∗ p1 ≤ p2 ∧ p2 ≤ 2. As
a consequence, the (non-convex) maximal set of parameters avoiding the bad
location q4 is 2 ∗ p1 > p2 ∨ p2 > 2.

We give below the six constraints synthesized by the six versions of the inverse
method. For each graphics, we depict in dark gray the parameter domain covered
by the constraint, and in light gray the parameter domain corresponding to a
bad behavior (the constraint itself is given in [AS11]). The “good” zone not
covered by the constraint is depicted in very light gray. The dot represents π0.

This example illustrates well the relationship between the different con-
straints. In particular, the constraint synthesized by IM K

⊆ dramatically improves
the set of parameters synthesized by IM . Also note that we chose on purpose
an example such that none of the methods synthesizes a maximal constraint
(observe that even IM K

⊆ does not cover the whole “good” zone). This will be
addressed in Section 4.

p1

p2

0 1 2 3 4 5 6 7 8

0
1
2
3
4
5
6
7
8

IM

p1

p2

0 1 2 3 4 5 6 7 8

0
1
2
3
4
5
6
7
8

IM∪

p1

p2

0 1 2 3 4 5 6 7 8

0
1
2
3
4
5
6
7
8

IM K

p1

p2

0 1 2 3 4 5 6 7 8

0
1
2
3
4
5
6
7
8

IM⊆

p1

p2

0 1 2 3 4 5 6 7 8

0
1
2
3
4
5
6
7
8

IM∪
⊆

p1

p2

0 1 2 3 4 5 6 7 8

0
1
2
3
4
5
6
7
8

IM K
⊆

Fig. 3. Comparison of the constraints synthesized for Avar

Synthesis of Timing Parameters Satisfying Safety Properties 39

Experimental Validation. The example above shows clearly the gain of the algo-
rithms w.r.t. IM . However, for real case studies, although checking the gain of
these algorithms in terms of computation time is possible, measuring the gain in
terms of the “size” of the constraints synthesized requires measures of polyhedra,
which is not trivial when they are non-convex. Hence, we postpone this study
to the framework of the cartography (see Section 5).

4 Behavioral Cartography

Although IM has been shown of interest for a large panel of case studies, its
main shortcoming is the non-maximality of the output constraint. Moreover,
the good parameters problem relates to the synthesis of parameter valuations
corresponding to any good behavior, not to a single one.

The behavioral cartography algorithm BC relies on the idea of covering the
parameter space within a rectangular real-valued parameter domain V0 [AF10].
By iterating IM over all the integer points of V0 (of which there are a finite
number), one is able to decompose V0 into a list Tiling of tiles, i.e., dense sets
of parameters in which the trace sets are the same.

Then, given a property ϕ on trace sets (viz., a linear time property), one can
partition the parameter space between good tiles (for which all points satisfy ϕ)
and bad tiles. This can be done by checking the property for one point in each
tile (using, e.g., Uppaal, applied to the PTA instantiated with the considered
point). Then the set of parameters satisfying ϕ corresponds to the union of the
good tiles. Note that BC is independent from ϕ; only the partition between good
and bad tiles involves ϕ.

In practice, not only the integer valuations of V0 are covered by Tiling , but
also most of the real-valued space of V0. Furthermore, the space covered by Tiling
often largely exceeds the limits of V0. However, there may exist a finite number
of “small holes” within V0 (containing no integer point) that are not covered by
any tile of Tiling . A refinement of BC is to consider a tighter grid, i.e., not only
integer points, but rational points multiple of a smaller step than 1. We showed
that, for a rectangle V0 large enough and a grid tight enough, the full coverage
of the whole real-valued parameter space (inside and outside V0) is ensured for
some classes of PTAs, in particular for acyclic systems (see [And10b] for details).

Combination with the Variants. By replacing within BC the call to IM by a call
to one of the algorithms introduced in Section 3, one changes the properties of
the tiles: for each tile, the corresponding trace set inherits the properties of the
considered variant, and does not necessarily preserve the equality of trace sets.
However, as shown in Section 3, they all preserve (at least) the non-reachability.

The main advantage of the combination of BC with one of the algorithms,
say IM ′, of Section 3 is that the coverage of V0 needs a smaller number of tiles,
i.e., of calls to IM ′. Indeed, due to the weaker constraint synthesized by IM ′,
and hence larger sets of parameters, one needs less calls to IM ′ in order to
cover V0. Furthermore, due to the quicker termination of IM ′ when compared

40 É. André and R. Soulat

to IM , the computation time decreases considerably. Finally, due to an earlier
termination IM ′ (i.e., less states computed) and the lower number of calls to IM ′

(hence, less trace sets to remember), the memory consumption also decreases.

5 Implementation and Experiments

All these algorithms, as well as the original IM , have been implemented in
Imitator II [And10a]. We give in Table 2 the summary of various experiments
of parameter synthesis applied to case studies from the literature as well as
industrial case studies. For each case study, we apply each version of BC to
a given V0. Then, we split the tiles between good and bad w.r.t. a property.
Finally, we synthesize a constraint corresponding to this property. For each case
study, V0 is either entirely covered, or “almost entirely covered”. We give from
left to right the name of the case study, the number of parameters varying in
the cartography and the number of points within V0. We then give the number
of tiles and the computation time for each algorithm. We denote by BC⊆ the
variant of BC calling IM⊆ instead of IM (and similarly for the other algorithms).
All experiments were performed on an Intel Core 2 Duo 2,33Ghz with 3,2Go
memory, using the no-random, no-dot and no-log options of Imitator II.

Table 2. Comparison of the algorithms for the behavioral cartography

Example Tiles Time (s)

Name |P | |V0| BC BC∪ BCK BC⊆ BC∪
⊆ BCK

⊆ BC BC∪ BCK BC⊆ BC∪
⊆ BCK

⊆
Avar 2 72 14 10 10 7 5 5 0.101 0.079 0.073 0.036 0.028 0.026

Flip-flop 2 644 8 7 7 8 7 7 0.823 0.855 0.696 0.831 0.848 0.699
AND–OR 5 151 200 16 14 16 14 14 14 274 7154 105 199 551 68.4

Latch 4 73 062 5 3 3 5 3 3 16.2 25.2 9.2 15.9 25 9.1
CSMA/CD 3 2 000 139 57 57 139 57 57 112 276 76.0 46.7 88.0 22.6
SPSMALL 2 3 082 272 78 77 272 78 77 894 405 342 894 406 340

Since V0 is always (at least “almost”) entirely covered by Tiling , the number
of tiles needed to cover V0 gives a measure of the size of each tile in terms of
parameter valuations: the lesser tiles needed, the larger the sets of parameter
valuations are, the more efficient the corresponding algorithm is. Since the good
property for all case studies is a property of (non-)reachability, the constraint
computed is the same for all versions of BC . The latest version3 of Imitator II
as well as all the mentioned case studies can be found on Imitator II’s Web
page4. Details on case studies can be found in [AS11].

As expected from Section 2, all algorithms bring a significant gain in term of
size of the constraint, because the number of tiles needed to cover V0 is almost
always smaller than for IM . Only IM⊆ has a number of tiles often equal to IM ;
however, the computation is often much quicker for IM⊆. As expected, the most

3 Note that the software named Imitator 3 is an independent fork of Imitator II for
hybrid systems [FK11]. The latest version of Imitator for PTAs is Imitator 2.3.

4 http://www.lsv.ens-cachan.fr/Software/imitator/imitator2.3/

http://www.lsv.ens-cachan.fr/Software/imitator/imitator2.3/

Synthesis of Timing Parameters Satisfying Safety Properties 41

efficient algorithm is IM K
⊆ : both the number of tiles and the computation times

decrease significantly. When one is only interested in reachability properties, one
should then use this algorithm.

The only surprising result is the fact that IM ∪ is sometimes slower than IM ,
although the number of tiles is smaller. This is due to the way it is implemented
in Imitator II. Handling non-convex constraints is a difficult problem; hence,
we compute a list of constraints associated with the last state of each trace.
Unfortunately, many of these constraints are actually equal to each other. For
systems with thousands of traces and hundreds of tiles, we manipulate hundreds
of thousands of constraints; every time a new point is picked up, one should check
whether it belongs to this huge set before calling (or not) IM on this point. This
also explains the relatively disappointing speed performance of IM ∪

⊆. Improving
this implementation is the subject of ongoing work. A possible option would be
to remove the constraints equal to each other in this constraint set; this would
dramatically decrease the size of the set, but would induce additional costs for
checking constraint equality.

On-the-fly Computation of K. We finally introduce here another modification of
some of the algorithms in order to avoid the non-necessary duplication of some
reachable states, leading to a dramatic diminution of the state space. Indeed,
we met cases where two states (q, C) and (q, C′) are not equal at the time they
are computed, but are equal with the final intersection K of the constraints, i.e.
(q, C∧K) = (q, C′∧K). Such a situation is depicted in the trace sets of Figure 4,
where identical states under IM (A, π0) are unmerged on the left part of the
figure and merged on the right part. We can solve this problem by performing
dynamically the intersection of the constraints, i.e., adding ∃X : C to all the
states previously computed, every time a new state (q, C) is computed. This has
the effect of merging such states, and hence often considerably decreasing the
state space. With this modification, the algorithm only needs to return K at the
end of the computation, since the intersection is performed on the fly. We give
this algorithm IM otf in Algorithm 2.

Fig. 4. Example of state space explosion due to unmerged states

42 É. André and R. Soulat

Algorithm 2. IM otf (A, π0)
input : PTA A of initial state s0, parameter valuation π0

output: Constraint K0 on the parameters

1 i ← 0 ; K ← true ; S ← {s0}
2 while true do
3 foreach s = (q, C) ∈ S do
4 if s is π0-incompatible then
5 Select a π0-incompatible J in (∃X : C)
6 K ← K ∧ ¬J ;
7 foreach (q′, C′) ∈ S do
8 C′ ← C′ ∧ ¬J

9 else
10 K ← K ∧ ∃X : C ;
11 foreach (q′, C′) ∈ S do
12 C′ ← C′ ∧ ∃X : C

13 if PostA(K)(S) � S then return K

14 i ← i + 1 ; S ← S ∪ PostA(K)(S) ; // S =
⋃i

j=0 Postj
A(K)({s0})

This modification can be extended to IM⊆ in a straightforward manner, by
applying to IM otf the fixpoint modification as described in Section 3.1. However,
applying it to other algorithms would modify their correctness, since the final
intersection of the constraints is not performed in the other algorithms.

Using this modification, we successfully computed a set of parameters for
the SPSMALL memory designed by ST-Microelectronics. We analyzed a much
larger version of the “small” model considered above (see differences between
these models in [And10b]). The larger model of this memory contains 28 clocks
and 62 parameters. The computation consists in 98 iterations of the outer DO
loop of IM . Without this optimization, IM crashed from lack of memory at
iteration 27 (on a 2GB memory machine), but the size of the state space was
exponential, so we believe that the full computation would have required a huge
amount of memory, preventing more powerful machine to perform the compu-
tation. Using this optimization, we computed quickly a constraint, made of the
conjunction of 49 linear constraints. Full details are available in [And10b].

6 Conclusion

We introduced here several algorithms based on the inverse method for PTAs.
Given a PTA A and a reference parameter valuation π0, these algorithms syn-
thesize a constraint K0 around π0, all preserving non-reachability properties: if a
location (in general “bad”) is not reached for π0, it is also not reachable for any
π |= K0. Furthermore, each algorithm preserves different properties: strict equal-
ity of trace sets, inclusion within the trace set of A[π0], preservation of at least

Synthesis of Timing Parameters Satisfying Safety Properties 43

one trace of A[π0], etc. The major advantage of these variants is the faster com-
putation of K0, and a larger set of parameter valuations defined by K0. These
algorithms have been implemented in Imitator II and show significant gains of
time and size of the constraint when compared to the original IM . When used in
the behavioral cartography for synthesizing a constraint w.r.t. a given property,
they cover both using less tiles and in general faster the parameter space.

Also recall that, although the algorithms preserve properties based on traces,
i.e., untimed behaviors, it is possible to synthesize constraints guaranteeing timed
properties by making use of an observer; this is the case in particular for the
SPSMALL memory.

As a future work, the inverse method and the cartography algorithm, as well
as the variants introduced here, could be extended in a rather straightforward
way to the backward case.

Furthermore, we presented in [AFS09] an extension of the inverse method to
probabilistic systems: given a parametric probabilistic timed automaton A and
a reference valuation π0, we synthesize a constraint K0 by applying IM to a non-
probabilistic version of A and π0. Then, we guarantee that, for all π |= K0, the
values of the minimum (resp. maximum) probabilities of reachability properties
are the same in A[π]. Studying what properties each of the algorithms presented
here preserves in the probabilistic framework is the subject of ongoing work.

It would also be of interest to consider the combination of these algorithms
with the extension of the inverse method to linear hybrid automata [FK11].

References

[AAB00] Annichini, A., Asarin, E., Bouajjani, A.: Symbolic techniques for paramet-
ric reasoning about counter and clock systems. In: Emerson, E.A., Sistla,
A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 419–434. Springer, Heidelberg
(2000)

[ACEF09] André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method
for parametric timed automata. International Journal of Foundations of
Computer Science 20(5), 819–836 (2009)

[AD94] Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235
(1994)

[AF10] André, É., Fribourg, L.: Behavioral cartography of timed automata. In:
Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 76–90.
Springer, Heidelberg (2010)

[AFS09] André, É., Fribourg, L., Sproston, J.: An extension of the inverse method to
probabilistic timed automata. In: AVoCS 2009. Electronic Communications
of the EASST, vol. 23 (2009)

[AHV93] Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In:
STOC 1993, pp. 592–601. ACM, New York (1993)

[AKRS08] Alur, R., Kanade, A., Ramesh, S., Shashidhar, K.C.: Symbolic analysis for
improving simulation coverage of simulink/stateflow models. In: EMSOFT
2008, pp. 89–98. ACM, New York (2008)

[And10a] André, É.: IMITATOR II: A tool for solving the good parameters problem
in timed automata. In: INFINITY 2010. EPTCS, vol. 39, pp. 91–99 (2010)

44 É. André and R. Soulat

[And10b] André, É.: An Inverse Method for the Synthesis of Timing Parameters in
Concurrent Systems. Ph.d. thesis, Laboratoire Spécification et Vérification,
ENS Cachan, France (2010)

[AS11] André, É., Soulat, R.: Synthesis of timing parameters satisfying safety
properties (full version). Research report, Laboratoire Spécification et
Vérification, ENS Cachan, France (2011),
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS LSV/

PDF/rr-lsv-2011-13.pdf

[CC07] Clarisó, R., Cortadella, J.: The octahedron abstract domain. Sci. Comput.
Program. 64(1), 115–139 (2007)

[CCO+04] Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.:
State/event-based software model checking. In: Boiten, E.A., Derrick, J.,
Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 128–147. Springer, Hei-
delberg (2004)

[CGJ+00] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-
guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

[CS01] Collomb–Annichini, A., Sighireanu, M.: Parameterized reachability analysis
of the IEEE 1394 Root Contention Protocol using TReX. In: RT-TOOLS
2001 (2001)

[DKRT97] D’Argenio, P.R., Katoen, J.P., Ruys, T.C., Tretmans, G.J.: The bounded
retransmission protocol must be on time! In: Brinksma, E. (ed.) TACAS
1997. LNCS, vol. 1217, Springer, Heidelberg (1997)

[FJK08] Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to
parameter synthesis for linear hybrid automata. In: Egerstedt, M., Mishra,
B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg
(2008)

[FK11] Fribourg, L., Kühne, U.: Parametric verification and test coverage for hy-
brid automata using the inverse method. In: Delzanno, G., Potapov, I.
(eds.) RP 2011. LNCS, vol. 6945, pp. 191–204. Springer, Heidelberg (2011)

[Hol03] Holzmann, G.: The Spin model checker: primer and reference manual.
Addison-Wesley Professional, Reading (2003)

[HRSV02] Hune, T.S., Romijn, J.M.T., Stoelinga, M.I.A., Vaandrager, F.W.: Linear
parametric model checking of timed automata. Journal of Logic and Alge-
braic Programming (2002)

[JKWC07] Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear
hybrid automata using iterative relaxation abstraction. In: Bemporad, A.,
Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300.
Springer, Heidelberg (2007)

[KP10] Knapik, M., Penczek, W.: Bounded model checking for parametric time
automata. In: SUMo 2010 (2010)

[LPY97] Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International
Journal on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

[Pnu77] Pnueli, A.: The temporal logic of programs. In: SFCS 1977, pp. 46–57.
IEEE Computer Society, Los Alamitos (1977)

[YKM02] Yoneda, T., Kitai, T., Myers, C.J.: Automatic derivation of timing con-
straints by failure analysis. In: Brinksma, E., Larsen, K.G. (eds.) CAV
2002. LNCS, vol. 2404, pp. 195–208. Springer, Heidelberg (2002)

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2011-13.pdf
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2011-13.pdf

Formal Language Constrained Reachability and

Model Checking Propositional Dynamic Logics�

Roland Axelsson1 and Martin Lange2

1 Dept. of Computer Science, University of Munich, Germany
2 School of Electr. Eng. and Computer Science, University of Kassel, Germany

Abstract. We show interreducibility under (Turing) reductions of low
polynomial degree between three families of problems parametrised by
classes of formal languages: the problem of reachability in a directed
graph constrained by a formal language, the problem of deciding whether
or not the intersection of a language of some class with a regular language
is empty, and the model checking problem for Propositional Dynamic
Logic over some class of formal languages. This allows several decidability
and complexity results to be transferred, mainly from the area of formal
languages to the areas of modal logics and formal language constrained
reachability.

1 Introduction

This paper investigates three families of decision problems from the domains of
formal language theory, digraph reachability, and model checking. Each family
is parametrised by a class L of formal languages which can be any class but we
are mainly concerned with known and natural classes like the regular, context-
free, context-sensitive languages, and also some equally natural but lesser known
classes. We will always assume that there is a finite representation of any member
of that class, for instance a finite-state automaton for a regular language or
a context-free grammar for a context-free language, etc. The three families of
problems are the following.

i) REG-Intersection for L: determine for a given language L ∈ L and a regular
language R, whether or not L ∩R is empty.

ii) L-Reachability: decide for a given directed graph with edge labels and node
predicates whether or not there is a path from a designated source node to a
designated target area s.t. the path is described by a given language L ∈ L.

iii) Model checking PDL[L]: decide for a given state of a Kripke structure and
a given formula of Propositional Dynamic Logic over L whether or not the
state satisfies the formula.

� The European Research Council has provided financial support under the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no 259267.

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 45–57, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

46 R. Axelsson and M. Lange

These problems have been considered each on its own so far, and the state of
the art in knowing about decidability and complexity of these problems is the
following.

(i) Closure under intersection with a regular language and decidability of the
emptiness problem are two of the most important features usually investigated
with any class of formal languages. Note that a class that is closed under in-
tersections with regular languages and has a decidable emptiness problem also
has a decidable REG-intersection problem. The converse need not necessarily
be the case but to the best of our knowledge there is no natural class which
would witness this. It can safely be said that the REG-intersection problem is
well-understood in the domain of formal languages.

(ii) Digraph reachability is of course one of the most fundamental problems in
computer science and related disciplines. The use of constraints restricting the
paths under which certain vertices should be reachable has been outlined for
multi-modal path planning for instance [5]. Complexity and decidability issues
have been investigated with respect to a class of formal languages used to con-
strain the paths. It has been found that using context-free languages as opposed
to no languages or regular ones increases the complexity from NLOGSPACE to
PTIME, and using context-sensitive languages, this problem becomes unde-
cidable [5]. To the best of our knowledge, the space between context-free and
context-sensitive languages has not been looked at from the perspective of for-
mal language constrained reachability problems.

(iii) Propositional Dynamic Logic (PDL) has been introduced by Fischer and
Ladner [8] as a modal logic for reasoning about programs. Various applications
of PDL have been identified, for instance in program verification because of its
similarity to the branching-time temporal logic CTL and its apparent relation to
Hoare logic; in knowledge representation and artificial intelligence because the
test-free fragment for example turns out to equal the description logic ALCreg

[10], because it can be used to reason about knowledge [6] or about actions [25],
etc. While much attention is being paid to its satisfiability problem, its model
checking problem also has applications. It mainly occurs in automatic program
verification, and certain inference problems in description logics for example
can be reduced to model checking problems and then be tackled using database
technology [3].

The original PDL is in fact PDL over regular programs—here written as
PDL[REG]—since the programs which are interpreted as binary relations on
program states, are built from atomic ones using the constructors union, com-
position and iteration. Such programs are denoted syntactically using regular
expressions, and it is imminent that other formalisms for describing formal lan-
guages can be used instead, too.

Variants of PDL over richer classes of formal languages have been studied
with a focus on their satisfiability problems [12,13,14,11]. This is undecidable for
PDL[CFL] – PDL over context-free languages – already [12]. On the other hand,
model checking for PDL[CFL] is PTIME-complete [18] as it is for PDL[REG]

Formal Language Constrained Reachability 47

[8], and larger classes as parameters have not been considered yet under this
aspect.

In this paper we show that these problems are (Turing-)interreducible to each
other in polynomial time: one reduction is a genuine Turing reduction of quadratic
time, the others are many-one reductions of linear time. The constructions are
simple, and so are their proofs of correctness. However, these simple construc-
tions pave the way for a number of new decidability and complexity results on
formal language constrained reachability analysis as well as on model checking
extensions of Propositional Dynamic Logic. As a consequence, the gap between
decidability and undecidability in terms of the class of formal languages used as
the parameter has been narrowed down significantly: with the results obtained
here we now know that it lies between a large subclass of CSL known as the
multi-stack visibly pushdown languages (MVPL) and CSL itself.

The paper is organised as follows. Sect. 2 introduces the three problems for-
mally. Sect. 3 motivates the study of the interconnection between these three
problems and their respective areas by presenting exemplary applications of
these problems. It gives a brief insight into the fact that these three problems,
despite being very much related as decision problems, have been studied inde-
pendently in different domains. Sect. 4 proves the interreducibility. New decid-
ability and complexity results about model checking and reachability problems
are derived in Sect. 5 from corresponding language-theoretic problems using this
interreducibility. Finally, Sect. 6 provides a summary of the complexity and de-
cidability results known in these areas.

2 Preliminaries

Classes of formal languages and their representations. LetΣ be a finite alphabet.
As usual, a formal language is a L ⊆ Σ∗, and a class of formal languages is a L ⊆
2Σ∗

. We do not want to advertise nor restrict the use of a particular specification
formalism for formal languages like automata, grammars, algebraic expressions,
systems of equations, etc. We therefore identify a class L of formal languages
with a class of its acceptors and restrict our attention to classes which can be
represented by such acceptors. This means that we can assume a size measure
||L|| which is a finite value for any L, even though it may contain infinitely
many words. For instance, for L = REG this may be the size of a smallest
nondeterministic finite automaton recognising L.

We make another very reasonable assumption on each L: given an L ∈ L, its
alphabet must be computable in time O(||L||).1 We write Σ(L) to denote the
alphabet that is underlying L.

The REG-intersection problem for classes of formal languages. Remember that
the non-emptiness problem for a class L of languages is the following: given a
1 This is true of virtually all known specification formalisms for formal languages and

only precludes strange acceptors like encrypted strings representing automata, etc.

48 R. Axelsson and M. Lange

suitably represented L ∈ L, decide whether or not L �= ∅. Furthermore, a class
L is closed under intersections with regular languages if for every L ∈ L and
every regular language R we have L∩R ∈ L. These are combined into a decision
problem which is of particular interest here. We assume familiarity with the
theory of regular languages. Note that L(A) denotes the language recognised by
the automaton A.

Definition 1. The problem of non-emptiness of intersection with a regular lan-
guage – REG-intersection problem for short – for L is the following: given a
suitably represented L ∈ L and a non-deterministic finite automaton (NFA) A
over Σ, decide whether or not L ∩ L(A) �= ∅.

Clearly, if a class of languages is closed under intersections with regular languages
and has a decidable non-emptiness problem, then its REG-intersection problem
is decidable, too. The converse may not be true in general.2 Furthermore, if a
class of languages is closed under intersections with regular languages but has
an undecidable non-emptiness problem (like CSL for instance) then its REG-
intersection problem is necessarily also undecidable.

Kripke structures, labeled digraphs, and words. Let Σ be a finite set of symbols
and P be a countably infinite set of propositional constants. A Kripke structure
is a triple T = (S,−→, �), where S is a set of states, −→ ⊆ S×Σ×S is a transition
relation and � : S → 2P labels each state with a set of propositions that are true
in that state. We write s a−→ t instead of (s, a, t) ∈ −→. We will restrict ourselves
to finite Kripke structures, i.e. those for which |S| is finite.

The accessibility relation −→ is inductively extended to words overΣ as follows.

s ε−→ t iff s = t

s aw−−→ t iff ∃u ∈ S with s a−→u and u w−−→ t

An edge-labeled directed graph is a Kripke structure T as above such that �(s) = ∅
for all s ∈ S. In the following, when we speak of a graph it is implicitly to be
understood as an edge-labeled directed graph. We will denote such a structure
like a Kripke structure but leaving out the labeling function, i.e. as T = (S,−→).

The L-reachability problem for a class of formal languages L.

Definition 2. Let L be a class of languages over Σ. The L-reachability problem
is the following: given a graph T = (S,−→), a state s ∈ S, a set of target states
T ⊆ S and a suitably represented L ∈ L, decide whether or not there is a w ∈ L
and a t ∈ T s.t. s w−−→ t.

We also say that T is L-reachable from s in T if these form a positive instance
of the L-reachability problem.
2 However, we are unaware of any (necessarily strange) class of languages that wit-

nesses the failure of the converse direction. It also does not matter for our purposes
here.

Formal Language Constrained Reachability 49

Propositional Dynamic Logic over a class of formal languages. Formulas of
Propositional Dynamic Logic (with tests) over a class L of formal languages
over some finite alphabet Σ — PDL[L] — are defined recursively as the least
set Form satisfying the following.

(i) P ⊆ Form
(ii) If ϕ ∈ Form and ψ ∈ Form then ¬ϕ ∈ Form and ϕ ∨ ψ ∈ Form.
(iii) If L is a language over the alphabet Σ ∪ {ψ? | ψ ∈ Form} s.t. |Σ(L)| < ∞

and ϕ ∈ Form then 〈L〉ϕ ∈ Form.

We use the usual abbreviations: tt := q∨¬q for some q ∈ P , ff := ¬tt, ϕ∧ψ :=
¬(¬ϕ ∨ ¬ψ), ϕ → ψ := ¬ϕ ∨ ψ, [L]ϕ := ¬〈L〉¬ϕ. We define |ϕ| as the number
of different subformulas of ϕ plus the sum over all ||L|| s.t. 〈L〉ψ is a subformula
of ϕ for some ψ.

Suppose L is a language over Σ ∪ {ψ? | ψ ∈ Φ} for some finite Φ ⊂ Form. We
then write Tests(L) for this set Φ. By the assumption made above about L being
represented reasonably, we can also assume that Tests(L) can be computed in
time O(||L||).

Formulas of PDL[L] are interpreted in states s of Σ-labeled Kripke structures
T = (S,−→, �) as follows.

T , s |= q iff q ∈ �(s)
T , s |= ¬ϕ iff T , s �|= ϕ

T , s |= ϕ ∨ ψ iff T , s |= ϕ or T , s |= ψ

T , s |= 〈L〉ϕ iff there are w ∈ L and t ∈ S s.t. s w−−→′ t and T , t |= ϕ where
−→′ := −→∪{(u, ψ?, u) | u ∈ S, ψ ∈ Tests(L), and T , u |= ψ}

Definition 3. The model checking problem for PDL[L] is the following: given a
Kripke structure T = (S,−→, �), a state s ∈ S and a formula ϕ ∈ PDL[L], decide
whether or not T , s |= ϕ holds.

3 Applications

We will briefly give some examples of the use of the three problems introduced
in the previous section showing that each of them has attracted interest inde-
pendent of the others.

Verification of Programs with Stack Inspection. In order to detect access viola-
tions in safety critical routines, inspection of the call stack may become necessary,
e.g. in case of nested calls, where the initial call came from a method without
the required permission. This has been implemented for instance in the runtime
access control mechanism of JDK 1.2. In [22], such programs are modeled as the
set of possible sequences of the call stack w.r.t. the program flow, called traces.
The set of possible traces Ltr is an indexed language. The class IL of indexed
languages [1] forms a subclass of the context-sensitive languages which properly

50 R. Axelsson and M. Lange

includes the context-free languages and possesses some nice closure properties
and decidability results.

One considers a regular language Lsafe representing the set of safe traces. The
verification itself is then performed by checking Ltr ⊆ Lsafe, i.e. Ltr ∩ Lsafe = ∅.
and therefore is an instance of the REG-intersection problem for IL. Note that
REG is closed under complement.

CFL- and REG-Reachability. The REG-reachability problem is at the core of
several applications in network routing and intermodal route planning for in-
stance [5]. It is known that the reachability problem in directed graphs when
constrained with a regular language is not more difficult than the plain di-
graph reachability problem, i.e. NLOGSPACE-complete. However, it becomes
PTIME-complete when the constraints are formed by context-free languages [5].
Such reachability problems, in particular for context-free languages have impor-
tant applications in static analysis [26]. CFL-reachability for instance is used
in type-based polymorphic flow analysis [7], field-sensitive points-to analysis or
interprocedural dataflow analysis [27].

It is worth investigating decidability and complexity issues for classes beyond
CFL which may allow more refined program analyses. Only little is known in this
area so far, namely it is known that CSL-reachability is undecidable [5] which is
very easily seen to be the case.

Model Checking PDL[CFL] in Abstract Interpretation. Consider the following
system of mutually recursive functions where “+” denotes nondeterministic
choice, “;” denotes sequential composition, and “term” denotes an anonymous
terminating function.

f0 := f2; f3 + f2; f1
f1 := f3; f1 + f2; f3 + f1; f3
f2 := f1; f2 + f2; f3 + term
f3 := f1; f1 + term

The function f0 is the entry point of the system. Suppose we were interested
in detecting whether on all possible system executions the call of f3 is preceded
by a successful return of f1 (security check). Note that the stack behaviour,
i.e. the sequences of function calls and returns is non-regular in general (for
a non-fixed number of functions). We state the property we wish to verify as
the regular expression Lsafe = Σ∗c1Σ

∗r1Σ
∗c3Σ

∗, where a call of function fi
is indicated by ci, a return by ri respectively. It is possible to use abstract
interpretation and overapproximate the system of recursive function into a one-
state transition system with looping transitions for all elements in Σ. In order
to restrict this overapproximation to non-spurious runs one can consider the
context-free grammar

F0 → c0F2F3r0 | c0F2F1r0
F1 → c1F3F1r1 | c1F2F3r1 | c1F1F3r1
F2 → c2F1F2r2 | c2F2F3r2 | c2r2
F3 → c3F1F1r3 | c3r3

Formal Language Constrained Reachability 51

which is straight-forwardly derived from the recursive functions. Safety of the
system is then established by checking the PDL[CFL] property ϕsafe = ¬〈L(G)∩
Lsafe〉tt. It is easy to see that the only state s does not satisfy ϕsafe: F0 ⇒
c0F2F1r0 ⇒3 c0c2c2r2c3r3r2F1r0. Every derivation continuing from this point
will end in a violation of Lsafe, because every derivation from F1 will be prefixed
by c1.

4 The Connection between the Three Problems

We first show that the three problems defined in Sect. 2 are interreducible onto
each other. This is done as follows.

L− reachability
O(n)

��

O(n)

��

model checking PDL[L]
O(n2)��

REG-intersection for L

O(n)

��

A single line from X to Y denotes a many-one reduction from X into Y transfer-
ing lower bounds along the arrow and upper bounds in the opposite direction. A
double line denotes a Turing reduction transferring only an upper bound down
the arrow but not a lower bound up the arrow.

We will begin with the forth and back between L-reachability and model
checking PDL[L] (Lemmas 1 and 2), and then show the linear-time equivalence
of L-reachability and REG-intersection for L (Lemmas 3 and 4). Note that a
circular series of reductions would not save any effort since the reduction from
REG-intersection to model checking is very easily obtained as the composition
of the two arrows via reachability. Moreover, a reduction from model checking to
REG-intersection would also only be a Turing reduction, and it is not conceptu-
ally simpler than the composition of the two respective arrows via reachability.

4.1 Forth and Back between Graphs and Formulas

Lemma 1. Let L be a class of languages. The L-reachability problem reduces in
linear time to the model checking problem for PDL[L].

Proof. Let T = (S,−→) be a graph, s ∈ S and T ⊆ S. Now take a proposition qT
and let P := {qT }. Define T ′ = (S,−→, �′) s.t. for all u ∈ S: qT ∈ �′(u) iff u ∈ T .
It is not hard to see that, for any L ∈ L, there is a w ∈ L and a t ∈ T with
s w−−→ t iff T ′, s |= 〈L〉qT . Furthermore, both T ′ and 〈L〉qT can be constructed in
time O(|T | + ||L||).

The converse direction is not necessarily true. There does not seem to be a
generic many-to-one reduction from the model checking problem for PDL[L] to
a single instance of the L-reachability problem. However, a Turing reduction is
possible. The following algorithm solves the model checking problem for PDL[L]

52 R. Axelsson and M. Lange

given a procedure Reach which takes as arguments a graph T , an L-language,
and a set U of target states and returns the set of all states which have an
L-successor in U in this graph.

MC-PDL(T , ϕ) =
let (S,−→, �) = T in
case ϕ of

q : {s ∈ S | q ∈ �(s)}
¬ψ : S \ MC-PDL(T , ψ)
ψ1 ∨ ψ2 : MC-PDL(T , ψ1) ∪ MC-PDL(T , ψ2)
〈L〉ψ : let −→′ = −→ ∪ {(u, ψ?, u) | ψ ∈ Tests(L),

u ∈ MC-PDL(T ,ψ) }
in Reach((S,−→′), L, MC-PDL(T ,ψ))

Lemma 2. Let L be a class of languages. The model checking problem for
PDL[L] Turing-reduces to the L-reachability problem in quadratic time.

Proof. It is not hard to see that algorithm MC-PDL can be made to run in time
O(|T | · |ϕ|) when regarding Reach as an orcale. Using a dynamic programming
approach one can restrict the numbers of recursive calls to one per subformula
or test occurring in the input formula. Also, set operations and updates of the
labeling function can be made to run in time O(|T |). By assumption, Tests(L)
can be computed in time O(||L||) for every L occurring in ϕ.

Correctness of MC-PDL is straight-forward to show by induction on ϕ: for all
states s of T we have: s ∈ MC-PDL(T ,ϕ) iff T , s |= ϕ.

4.2 Forth and Back between Graphs and Formal Languages

Lemmas 1 and 2 provide a connection between L-reachability and model check-
ing PDL[L]. This allows to transfer lower complexity bounds from the graph-
theoretic side to the logical side, and upper complexity bounds vice-versa. We
will provide a further link from the formal-language side, allowing to transfer
complexity results from that side — which are usually easier to achieve than for
the more specialised graph-theoretic or logical problems. This can also be viewed
as the aim to find a sufficient and necessary condition on the class L of languages
that guarantees the model checking problem for PDL[L] to be decidable.

Lemma 3. Let L be a class of languages. The REG-intersection problem for L
reduces in linear time to the L-reachability problem.

Proof. Let A be an NFA (Q,Σ, δ, qinit, F) and L ∈ L. Define a graph TA :=
(Q,−→) with s

a−→ t iff t ∈ δ(s, a) for any s, t ∈ Q. Now note that L ∩ L(A) �= ∅
iff there is a f ∈ F s.t. q0

w−−→ f for some w ∈ L iff F is L-reachable from q0 in
TA. Clearly, |TA| + ||L|| = O(|A| + ||L||).

Lemma 4. Let L be a class of languages. The L-reachability problem reduces in
linear time to the REG-intersection problem for L.

Formal Language Constrained Reachability 53

Proof. Let T = (S,−→) be a graph, s ∈ S, T ⊆ S, and L ∈ L. Define an NFA
AT ,s,T := (S, Σ, δ, s, T) s.t. for all t ∈ S and all a ∈ Σ: δ(t, a) := {u | t a−→u}.
Now there is a w ∈ L and a t ∈ T with s

w−−→ t iff there is a path in T from s to
some t ∈ T s.t. the transition labels along that path form the word w. This is
the case iff w ∈ L(AT ,s,T) ∩ L. Hence, there is such a w iff L ∩ L(AT ,s,T) �= ∅.
Clearly, |AT ,s,T | + ||L|| = O(|T | + ||L||).

Theorem 1. The model checking problem for PDL[L] is equivalent under
quadratic-time Turing reductions to the REG-intersection problem for L.

Proof. Immediately from Lemmas 1–4.

5 New Decidability and Complexity Results on
Model Checking and Formal Language Constrained
Reachability

Thm. 1 allows many known results from the theory of formal languages to
be transfered to the model checking theory of PDL[L]. For example, regular
languages are closed under intersections and have a decidable non-emptiness
problem. Hence, their REG-intersection problem is decidable, too. In fact, it
is decidable in linear time which then yields quadratic-time decidability of the
model checking problem for PDL[REG]. This has of course been known for a
while [8].3

It is also known that CFL is closed under intersections with regular languages
and has a non-emptiness problem that is decidable in polynomial time. Hence,
Thm. 1 reproves that model checking for PDL[CFL] is also P-complete [18].

Note that a Turing reduction, i.e. an algorithm using an oracle an arbitrary
number of times, is only needed in the embedding of the model checking problem
into the REG-intersection problem. The other direction is realised as an ordi-
nary reduction. Hence, complexity-theoretic hardness results can be transferred
in this direction, too. For example, the class CSL of context-sensitive languages
is closed under intersections with regular languages but its non-emptiness prob-
lem is undecidable. Hence, its REG-intersection problem is undecidable, too.
The same holds for the classes ACFL of alternating context-free languages [21]
and CL of conjunctive languages generated by conjunctive grammars [23,17].
Both extend the class of context-free languages by introducing conjunctions into
context-free grammars. It then also holds for their extension boolean grammars
which gives rise to boolean languages BL [24].

Corollary 1. Let L ∈ {CSL,ACFL,CL,BL}. Then the model checking prob-
lems for PDL[L] as well as the L-reachability problem are undecidable.

3 Note that PDL[REG] is often said to be model checkable in linear time. However,
standard algorithms are only linear in the formula and in the structure but not in
both.

54 R. Axelsson and M. Lange

Note that the non-emptiness problem for context-sensitive languages is r.e. be-
cause the word problem is decidable. However, since the reduction in Lemma 2
is only a Turing-reduction, recursive enumerability does not extend to the model
checking problem. This would also contradict undecidability because model check-
ing problems for logics like PDL are closed under complement. Thus, if it was
r.e. it would also be co-r.e. and therefore decidable.

The limits of decidability lie somewhere between the context-free and the
context-sensitive ones. One class of languages that is known to contain CFL and
be contained in CSL itself is the class IL of indexed languages [1]. It is known that
indexed languages are closed under intersections with regular languages (with
polynomial blow-ups only) and that their non-emptiness problem is EXPTIME-
complete [1,28]. Hence, so is their REG-intersection problem. Applying Thm. 1
again yields positive results for model checking and graph reachability.

Corollary 2. The model checking problem for PDL[IL] and the IL-reachability
problem are EXPTIME-complete.

There are other classes which contain CFL, have a decidable non-emptiness
problem and are closed under intersections with regular languages. For exam-
ple, there are mildly context-sensitive formalisms like the class LIL of linear
indexed languages [9,30]. Again, they are closed under intersections with regular
languages and their non-emptiness problem is decidable — even in polynomial
time. Since the blow-up in the construction of intersecting a linear-indexed gram-
mar with a regular language is polynomial, their REG-intersection problem is
PTIME-complete as well. Thm. 1 then transfers the upper bound to the cor-
responding model checking as well as graph reachability problem. A matching
lower bound follows trivially from the model checking problem for PDL[REG]
or PDL[CFL] for instance. In [30] it is shown that linear indexed grammars are
equivalent under polynomial-time reductions to several other at first glance dif-
ferent formalisms, namely head grammars, combinatory categorical grammars
and tree adjoining grammars. We denote by HL, CCL and TAL the language
classes generated by those formalisms respectively.

Corollary 3. Let L ∈ {LIL,HL,CCL,TAL}. Then the model checking problem
for PDL[L] and the L-reachability problem are PTIME-complete.

Finally, another class of context-sensitive languages with nice algorithmic prop-
erties has recently been discovered: MVPL is the class of languages recognised by
multi-stack visibly pushdown languages [29]. Since it is closed under intersections
in general and subsumes REG it is closed under intersections with regular lan-
guages in particular. Furthermore, its emptiness problem is decidable in double
exponential time. A lower bound is currently not known. Thm. 1 then transfers
this upper bound to the model checking problem of PDL[MVPL].

Corollary 4. The model checking problem for PDL[MVPL] and MVPL-reach-
ability are decidable in 2EXPTIME.

Formal Language Constrained Reachability 55

language class L REG-inters. for L L-reachability mod. check. PDL[L]

ACFL, CL, BL, CSL undec. [16] undec. [5] undec. (here)

MVPL 2EXPTIME [29] 2EXPTIME (here)

IL EXPTIME-c [1],[28] EXPTIME-c (here)

LIL, HL, CCL, TAL PTIME-c [9],↓ PTIME-c (here)

DCFL, CFL PTIME-c [4],↓ PTIME-c [5],↓ PTIME-c [18],↓
SML, SSML, VPL PTIME-c ↑,↓

REG NLOGSPACE-c [15] PTIME-c [8], folkl.

Fig. 1. Decidability and complexity results for REG-intersection, reachability and
model checking

6 Summary

Fig. 1 summarises the decidability and complexity results about the REG-
intersection problem for class L, the L-reachability problem, and the model
checking problem for PDL[L] with regards to some of the most popular classes
L between REG and CSL. For a complexity class C we write C-c to denote com-
pleteness for this class under the usual reductions. The table contains references
to the location where the results have been shown first. In case of completeness,
if two references are given then the first one concerns the upper, the second one
the lower bound. An arrow down states that the lower bound follows from the
line below, an arrow up states that the upper bound follows from the line above.
All the results of the two rightmost columns — apart from PTIME-hardness in
the case of L = REG — can be derived from Thm. 1 and the REG-intersection
column. The complexities in the last row of L = REG do not coincide as op-
posed to the other rows because NLOGSPACE is presumably not closed under
quadratic-time reductions.

References

1. Aho, A.V.: Indexed grammars - an extension of context-free grammars. J.
ACM 15(4), 647–671 (1968)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. 36th Ann. ACM
Symp. on Theory of Computing (STOC 2004), pp. 202–211. ACM Press, New York
(2004)

3. Baader, F., Lutz, C., Turhan, A.-Y.: Small is again beautiful in description logics.
KI – Künstliche Intelligenz (2010) (to appear)

4. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase struc-
ture grammars. Zeitschrift für Phonologie, Sprachwissenschaft und Kommunika-
tionsforschung 14, 113–124 (1961)

5. Barrett, C., Jacob, R., Marathe, M.: Formal-language-constrained path problems.
SIAM Journal on Computing 30(3), 809–837 (2000)

56 R. Axelsson and M. Lange

6. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
Press, Cambridge (1995)

7. Fähndrich, M., Rehof, J.: Type-based flow analysis and context-free language
reachability. Mathematical Structures in Computer Science 18(5), 823–894 (2008)

8. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Jour-
nal of Computer and System Sciences 18, 194–211 (1979)

9. Gazdar, G.: Applicability of indexed grammars to natural languages. In: Reyle, U.,
Rohrer, C. (eds.) Natural Language Parsing and Linguistic Theories, pp. 69–94.
Reidel, Dordrecht (1988)

10. De Giacomo, G., Lenzerini, M.: Boosting the correspondence between description
logics and propositional dynamic logics. In: Proc. of the 12th National Conference
on Artificial Intelligence (AAAI 1994), pp. 205–212. AAAI-Press/The MIT-Press
(1994)

11. Harel, D., Kaminsky, M.: Strengthened results on nonregular PDL. Technical Re-
port MCS99-13, Weizmann Institute of Science, Faculty of Mathematics and Com-
puter Science (1999)

12. Harel, D., Pnueli, A., Stavi, J.: Propositional dynamic logic of nonregular programs.
Journal of Computer and System Sciences 26(2), 222–243 (1983)

13. Harel, D., Raz, D.: Deciding properties of nonregular programs. SIAM J. Com-
put. 22(4), 857–874 (1993)

14. Harel, D., Singerman, E.: More on nonregular PDL: Finite models and Fibonacci-
like programs. Information and Computation 128(2), 109–118 (1996)

15. Hunt, H.B.: On the time and tape complexity of languages I. In: ACM (ed.) Conf.
Rec. of 5th Annual ACM Symp. on Theory of Computing (STOC 1973), pp. 10–19.
ACM Press, New York (1973)

16. Landweber, P.S.: Three theorems on phrase structure grammars of type 1. Inform.
and Control 6, 131–136 (1963)

17. Lange, M.: Alternating context-free languages and linear time μ-calculus with se-
quential composition. In: Proc. 9th Workshop on Expressiveness in Concurrency
(EXPRESS 2002). ENTCS, vol. 68.2, pp. 71–87. Elsevier, Amsterdam (2002)

18. Lange, M.: Model checking propositional dynamic logic with all extras. Journal of
Applied Logic 4(1), 39–49 (2005)

19. Löding, C., Lutz, C., Serre, O.: Propositional dynamic logic with recursive pro-
grams. J. Log. Algebr. Program 73(1-2), 51–69 (2007)

20. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85,
pp. 422–435. Springer, Heidelberg (1980)

21. Moriya, E.: A grammatical characterization of alternating pushdown automata.
TCS 67(1), 75–85 (1989)

22. Nitta, N., Seki, H., Takata, Y.: Security verification of programs with stack inspec-
tion. In: SACMAT, pp. 31–40 (2001)

23. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6(4), 519–535 (2001)

24. Okhotin, A.: Boolean grammars. Information and Computation 194(1), 19–48
(2004)

25. Prendinger, H., Schurz, G.: Reasoning about action and change. A dynamic logic
approach. Journal of Logic, Language and Information 5(2), 209–245 (1996)

26. Reps, T.: Shape analysis as a generalized path problem. In: Proc. ACM
SIGPLAN Symp. on Partial Evaluation and Semantics-Based Program Manipu-
lation, pp. 1–11 (1995)

Formal Language Constrained Reachability 57

27. Reps, T.W.: Program analysis via graph reachability. Information & Software Tech-
nology 40(11-12), 701–726 (1998)

28. Tanaka, S., Kasai, T.: The emptiness problem for indexed language is exponential-
time complete. Systems and Computers in Japan 17(9), 29–37 (2007)

29. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: Proc. 22nd Conf. on Logic in Computer Science (LICS 2007),
pp. 161–170. IEEE, Los Alamitos (2007)

30. Vijay-Shanker, K., Weir, D.J.: The equivalence of four extensions of context-free
grammars. Mathematical Systems Theory 27, 27–511 (1994)

Completeness of the Bounded Satisfiability
Problem for Constraint LTL�

Marcello M. Bersani, Achille Frigeri, Matteo Rossi, and Pierluigi San Pietro

Politecnico di Milano
{bersani,frigeri,rossi,sanpietr}@elet.polimi.it

Abstract. We show that the satisfiability problem for LTL (with past
operators) over arithmetic constraints (Constraint LTL) can be answered
by solving a finite amount of instances of bounded satisfiability problems
when atomic formulae belong to certain suitable fragments of Presburger
arithmetic. A formula is boundedly satisfiable when it admits an ulti-
mately periodic model of the form δπω, where δ and π are finite sequences
of symbolic valuations. Therefore, for every formula there exists a com-
pleteness bound c, such that, if there is no ultimately periodic model
with |δπ| ≤ c, then the formula is unsatisfiable.

1 Introduction

Given a formula φ expressed in a logical formalism, the satisfiability problem
for φ is to determine whether there exists a model σ for φ (written σ |= φ),
i.e., an assignment of values to all of its atomic elements satisfying the for-
mula. The logical formalism adopted here is CLTLB(D), which has already been
studied in [7], though it was introduced in [4]. It is an extension of LTL in
which atomic formulae are arithmetic constraints of a constraint system D; e.g.,
(Xx < y)U(x ≡2 Yz) is a legal formula when D is the structure (N, <,≡d), x, y, z
are variables over N, U is the until temporal operator of LTL and X and Y are
temporal operators on variables meaning the next value and the previous value,
respectively. The satisfiability problem for CLTLB(D) was analyzed in depth
when D is (D,<,≡d) for D ∈ {N,Z,Q,R} in [5], and when D is the language of
Integer Periodic Constraints in [7]. The decidability of the satisfiability problem
for the above cases is shown by using an automata-based approach similar to the
standard case for LTL. Given a CLTLB(D) formula φ, it is possible to define an
automaton Aφ such that φ is satisfiable iff L (Aφ) is not empty. Since the empti-
ness of L (Aφ) is decidable in PSpace (polynomial space in the dimension of φ)
[7], then the satisfiability problem is also decidable with the same complexity.

In this paper, we solve the satisfiability problem by following a different ap-
proach. We reduce the satisfiability of a CLTLB(D) formula φ to a finite number
of instances of the bounded satisfiability problem (BSP) for φ. BSP is defined,
given a formula φ and a constant k ∈ N, as the problem of deciding whether
� This research was partially supported by Programme IDEAS-ERC and Project

227977-SMScom.

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 58–71, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Completeness of the Bounded Satisfiability Problem for Constraint LTL 59

φ admits an ultimately periodic model of length k, i.e., of the form δπω with
|δπ| = k. Each instance of BSP is then reduced to the satisfiability of Quantifier-
Free Linear Integer (Real) Arithmetic with Uninterpreted Function QF-UFLIA
(QF-UFLRA), by encoding the semantics of CLTLB(D) into a QF-UFLIA (QF-
UFLRA) formula, following the approach introduced in [1]. Theory QF-UFLIA
(QF-UFLRA) is the union of the theory of Equality with Uninterpreted functions
and the quantifier-free fragment of Presburger (Real) arithmetic; its decidability
can easily be proved by combining the decision procedures of the underlying the-
ories, leading also to the efficient implementations of SMT-solvers such as Z31

or Yices2. Constant k is bounded by the length of the longest acyclic path of a
Büchi automaton Aφ representing the models of φ, which can effectively be com-
puted. Since k is bounded, it is always possible, at least in theory, to decide the
satisfiability of a CLTLB(D) formula. Hence, we say that our decision procedure
for the satisfiability problem is complete. The value bounding the number of in-
stances of BSP to be solved is called the completeness bound. Since the decision
procedure is complete, the class of properties that can be automatically verified
includes not only the reachability problems investigated in [1] (“the system will
eventually be in configuration c”), but also more complex properties like liveness
properties (e.g., GF(Xx > y)).

To the best of our knowledge, the completeness bound for CLTLB(D) has
never been investigated before. A related work about completeness for some
classes of LTL formulae, but tailored to model checking over Kripke structures,
is shown in [2], while further refinements can be found in [3], which gives a
method to define the bound for full LTL.

The analysis presented herein is effective; the bounded satisfiability problem
can be solved by using tools implementing the encoding of LTL with arithmetic
constraints and temporal modalities over variables. Our version of the encoding
has been already presented in [1] and implemented in the Zot3 tool.

The main results of this paper are the following: (i) CLTLB(D) formulae using
both the X and Y operators on variables are equisatisfiable w.r.t. CLTLB(D)
formulae using only X. (ii) BSP is defined and it is shown to be complete with
respect to the satisfiability problem of CLTLB(D); i.e., there is a finite bound
on the number of BSP instances to be solved in order to answer the satisfiability
problem. (iii) The satisfiability problem for CLTLB(D), when D is one of the
constraint systems mentioned above, can be reduced to the satisfiability problem
of a QF-UFLIA (QF-UFLRA) formula.

2 Languages

CLTL(D) is an extension of LTL enriched with temporal modalities over vari-
ables, where atomic formulae are defined by Boolean combinations of arithmetic
formulae belonging to a constraint system D. The logic CLTLB(D) extends
1 http://research.microsoft.com/en-us/um/redmond/projects/z3/
2 http://yices.csl.sri.com/
3 http://home.dei.polimi.it/pradella/Zot/

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://yices.csl.sri.com/
http://home.dei.polimi.it/pradella/Zot/

60 M.M. Bersani et al.

CLTL(D) allowing the use of past operators. This section recalls the definitions
of constraint system and of CLTLB(D).

Constraint Language. Let V be a finite set of variables; a constraint system is a
pair D = 〈D,Π〉 where D is a specific domain of interpretation for variables and
constants and Π is a family of relations on D that is closed under complement.
An atomic D-constraint is a term of the form R(x1, . . . , xn), where R is an n-ary
relation on D and x1, . . . , xn are variables. A D-valuation is a mapping v : V →
D, i.e., an assignment of a value in D to each variable. A constraint is satisfied
by a D-valuation v, written v |=D R(x1, . . . , xn), if (v(x1), . . . , v(xn)) ∈ R.

In this paper we consider D to be one of the following constraint systems:
Integer Periodic Constraints (IPC∗) or fragments (e.g., (Z, <,=) or (N, <,=))
and (D,<,=) when < is a dense order without endpoints, e.g., D = R,Q. The
language IPC∗ is defined by the following grammar, where ξ is the axiom:

ξ := θ | x < y | ξ ∧ ξ | ¬ξ
θ := x ≡c d | x ≡c y + d | x = y | x < d | x = d | θ ∧ θ | ¬θ

where x, y ∈ V , c ∈ N+ and d ∈ Z. The first definition of IPC∗ can be found in
[6]; it is different from ours since it allows the existentially quantified formulae
(i.e., θ := ∃xθ) to be part of the language. However, since IPC∗ is a fragment of
Presburger arithmetic, it has the same expressivity of the above quantifier-free
version (but with an exponential blow-up to remove quantifiers). The restriction
IPC++ is the language defined by considering θ, rather than ξ, as the axiom in
the above grammar.

Given a valuation v, the satisfaction relation |=D is defined:

– v |=D x ∼ y iff v(x) ∼ v(y);
– v |=D x ∼ d iff v(x) ∼ d;
– v |=D x ≡c d iff v(x) − d = kc for some k ∈ Z;
– v |=D x ≡c y + d iff v(x) − v(y) − d = kc for some k ∈ Z;
– v |=D ξ1 ∧ ξ2 iff v |=D ξ1 and v |=D ξ2;
– v |=D ¬ξ iff v �|=D ξ.

A constraint is satisfiable if there is a valuation v such that v |=D ξ. Given a set
of IPC∗ constraints C, we write v |=D C when v |=D ξ for every ξ ∈ C.

Temporal Language. CLTLB(D) includes Boolean connectives as well as the
usual temporal modalities of LTL X (next) and U (until), together with their
past counterparts Y (yesterday) and S (since). Let x be a variable in V , an
arithmetic temporal term (a.t.t.) α is defined by the grammar:

α := x | Xα | Yα.

The depth |α| of an a.t.t. α is defined by induction as: |x| = 0, |Xα| = |α| +
1, |Yα| = |α|−1. The syntax of (well formed) formulae of CLTLB(D) is defined
as follows:

φ := α1 ∼ α2 | φ ∧ φ | ¬φ | Xφ | Yφ | φUφ | φSφ.

Completeness of the Bounded Satisfiability Problem for Constraint LTL 61

Let φ be a CLTLB(D) formula. Let at(φ) be the set of all a.t.t’s occurring in
formula φ; moreover, if x is a variable, atx(φ) ⊆ at(φ) is the set of all a.t.t.’s in
which x appears. We define the “look-forwards” �φ�x and “look-backwards” φ!x

of φ relatively to x as: �φ�x = maxαi∈atx(φ){0, |αi|}, φ!x = minαi∈atx(φ){0, |αi|}.
The above definitions naturally extend to V by letting �φ� = maxx∈V {�φ�x},
 φ! = minx∈V { φ!x}. Hence, �φ� (φ!) is the largest (smallest) depth of all
the a.t.t.’s of φ, representing the length of the future (past) segment needed to
evaluate φ in the current instant.

The semantics of a formula φ of CLTLB(D) is defined w.r.t. a sequence of
D-valuations σ : Z × V → D. The satisfaction relation |= is defined for i ≥ 0 as
follows, for every formulae φ, ψ and for every a.t.t. α (where xαi is the variable
that appears in αi):

σ, i |=D α1 ∼ α2 ⇔ σ(i+ |α1|, xα1) ∼ σ(i+ |α2|, xα2)
σ, i |= ¬φ ⇔ σ, i �|= φ

σ, i |= φ ∧ ψ ⇔ σ, i |= φ ∧ σ, i |= ψ

σ, i |= Xφ ⇔ σ, i + 1 |= φ

σ, i |= Yφ ⇔ σ, i − 1 |= φ ∧ i > 0
σ, i |= φUψ ⇔ ∃j ≥ i : σ, j |= ψ ∧ σ, n |= φ ∀i ≤ n < j

σ, i |= φSψ ⇔ ∃0 ≤ j ≤ i : σ, j |= ψ ∧ σ, n |= φ ∀j < n ≤ i

A formula φ ∈ CLTLB(D) is satisfiable if there exists a sequence σ such that
σ, 0 |= φ (in which case σ is a model of φ). The CLTLB(D) language admits the
use of the “previous” operator Y on a.t.t.’s, nevertheless, we shall only consider
the future fragment of the language defining the a.t.t.’s as Y can be removed
from formulae. Let Xi (resp. Yi) represent the nesting of X (resp. Y) i times and
let p : CLTL(D) → CLTL(D) be the rewriting function defined recursively as:

p(Xix) def= Xi−�φ�x p(Yix) def= Yi+�φ�x p(α1 ∼ α2)
def= p(α1) ∼ p(α2)

p(¬φ) def= ¬p(φ) p(φ ∧ ψ) def= p(φ) ∧ p(φ) p(Xφ) def= Xp(φ)
p(Yφ) def= Yp(φ) p(φUψ) def= p(φ)Up(ψ) p(φSψ) def= p(φ)Sp(ψ)

Given a CLTLB(D) formula φ it is easy to see that Y does not occur in p(φ)
since Y−i can be rewritten as Xi (e.g., X3y = Y−3y). The equisatisfiability of
formulae is guaranteed by moving the origin of φ by − φ! instants in the past.
Since only X occurs in p(φ), then models for CLTLB(D) formulae without Y are
now sequences of D-valuations σ : N × V → D.

Proposition 1. Let φ be a CLTLB(D) formula, then σ, 0 |= φ ⇔ σ, φ! |= p(φ).

Proof. Let s = φ!. We show that for all i ≥ 0, σ, i |= φ ⇔ σ, i + s |= p(φ) by
induction on the structure of the formula φ.
The base case of the induction is given on the atomic formulae φ = α1 ∼ α2.
Since σ, i |=D φ ⇔ σ(i+ |α1|, xα1) ∼ σ(i+ |α2|, xα2), by shifting the instant i of
s the satisfaction relation is σ, i |=D φ ⇔ σ(i+s+ |α1|−s, xα1) ∼ σ(i+s+ |α2|−
s, xα2). Then, we can equivalently write σ, i |=D φ ⇔ σ(i + s + |p(α1)|, xα1) ∼

62 M.M. Bersani et al.

σ(i+ s+ |p(α2)|, xα2) that is σ, i+ s |= p(α1) ∼ p(α2) and σ, i+ s |= p(α1 ∼ α2).
In fact, if α = Xix then p(α) = Xi−sx and |p(α)| = |α| − s. If α = Yix then
p(α) = Yi+sx and |p(α)| = −(i+ s) = |α| − s, since |α| = −i.

Inductive Step

– If φ = ¬ψ then σ, i |= φ ⇔ σ, i �|= ψ. By inductive hypothesis, this is
equivalent to σ, i+ s �|= p(ψ), i.e. σ, i+ s |= p(φ), as p(φ) = ¬p(ψ).

– If φ = ψ1 ∧ ψ2 then σ, i |= φ ⇔ σ, i |= ψ1 and σ, i |= ψ2. By inductive
hypothesis, this is equivalent to σ, i + s |= p(ψ1) and σ, i + s |= p(ψ2), i.e.
σ, i+ s |= p(ψ1) ∧ p(ψ2), and σ, i+ s |= p(φ).

– If φ = Xψ then σ, i |= φ ⇔ σ, i + 1 |= ψ. By inductive hypothesis, this is
equivalent to σ, i + 1 + s |= p(ψ), i.e., σ, i + s |= Xp(ψ), which corresponds
to σ, i+ s |= p(φ).

– If φ = Yψ then σ, i |= φ ⇔ σ, i− 1 |= ψ. By inductive hypothesis, this is the
same as σ, i − 1 + s |= p(ψ), i.e., σ, i + s |= Yp(ψ), and σ, i + s |= p(φ), as
p(φ) = Yp(ψ).

– If φ = ψ1Uψ2 then σ, i |= φ iff there exists j ≥ i s.t. σ, j |= ψ2 and σ, n |=
ψ1 forall i ≤ n < j, that is, by inductive hypothesis, σ, j+s |= p(ψ2) and σ, n
|= p(ψ1) forall i + s ≤ n < j + s, which in turn is equivalent to σ, i + s |=
p(ψ1)Up(ψ2) and σ, i + s |= p(φ).

– If φ = ψ1Sψ2 then σ, i |= φ iff there exists 0 ≤ j ≤ i s.t. σ, j |= ψ2 and σ, n
|= ψ1 forall j < n ≤ i, that is, by inductive hypothesis σ, j+s |= p(ψ2) and σ,
n |= p(ψ1) forall j + s < n ≤ i + s, which is equivalent to σ, i + s |=
p(ψ1)Sp(ψ2) and σ, i+ s |= p(φ).

Finally, σ, 0 |= φ ⇔ σ, s |= p(φ) by taking i = 0. ��

3 Symbolic Valuations

In order to represent exactly models of a CLTL(D) formula φ by means of
automata, we need to represent symbolically all sequences σ such that σ |= φ.
The same representation can be adopted also for CLTLB(D) formulae (without
occurrences of Y). In this section, we briefly recall some useful notions. At the
end, we give a slightly different construction than that of [5] of the automaton
recognizing models of CLTLB(D) formulae, one that is tailored to results given
in Section 5.1.

Let φ be a CLTLB(D) formula, terms(φ) be the set of arithmetic terms of the
form Xix for all 0 ≤ i ≤ �φ� and for all x ∈ V and c(φ) be the set of constants
occurring in φ. A set of D-constraints over terms(φ) is maximally consistent if,
for every D-constraint θ over terms(φ) and c(φ), either θ or ¬θ is in the set. A
symbolic valuation sv for φ is a maximally consistent set of D-constraints over
terms(φ) and c(φ); the set of all symbolic valuations for φ is denoted by SV (φ).

A valuation v : V → D naturally extends to a valuation v′ : terms(φ) → D,
such that v′ |=D α1 ∼ α2 iff v′(α1) ∼ v′(α2). Then, a symbolic valuation sv for φ
is satisfiable if there exists a D-valuation v′ : terms(φ) → D such that v′ |=D ξ,
for all ξ belonging to sv. We write v′ |=D sv when sv is satisfied by v′.

Completeness of the Bounded Satisfiability Problem for Constraint LTL 63

Given a symbolic valuation sv and a D-constraint ξ over a.t.t.’s, we write
sv |=s ξ if for every D-valuation v′ such that v′ |=D sv then v′ |= ξ. Observe that
in the considered constraint systems, the problem of checking whether sv |=s ξ
is decidable. All symbolic valuations may be defined by means of a syntactic
construction on formula φ by using a procedure similar to the one in [5].

A pair of symbolic valuations (sv1, sv2) is locally consistent if, for all ∼ in D:

Xi1x1 ∼ Xi2x2 ∈ sv1 implies Xi1−1x1 ∼ Xi2−1x2 ∈ sv2.

A sequence of symbolic valuations sv0, sv1, . . . is locally consistent if all pairs
(svi, svi+1), i ≥ 0, are locally consistent. A locally consistent infinite sequence
ρ : N → SV (φ) of symbolic valuations admits a model, written σ |= ρ, if there
exists a model σ of φ such that for every i ≥ 0, σ, i |= ρ(i). In this case, ρ is
called a symbolic model for φ.

The satisfaction relation |=s can also be extended to sequences of symbolic
valuations; it is the same as |= for all temporal operators except for atomic
formulae:

ρ, i |=s ξ ⇔ ρ(i) |=s ξ.

The following fundamental proposition draws a link between the satisfiability by
sequences of symbolic valuations and by sequences of D-valuations.

Proposition 2 ([5]). A CLTL(D) formula φ is satisfiable iff there exists a sym-
bolic model for φ.

Given a CLTL(D) formula φ, it is possible [5] to define an automaton Aφ recog-
nizing symbolic models of φ, which reduces satisfiability of CLTL(D) to empti-
ness of Buchi automata. The idea is that automaton Aφ should accept the inter-
section of the following languages, which defines exactly the language of symbolic
models of φ:

(i) the language of LTL models ρ;
(ii) the language of sequences of locally consistent symbolic valuations;
(iii) the language of sequences of symbolic valuations for φ which admit an

arithmetic model.

Languages (i) and (ii) can be accepted by Büchi automata, called respectively As

and A�. In general, however, the language (iii) may not be ω-regular. Nonethe-
less, automaton Aφ can be defined to accept a superset of the language of the
sequences of locally consistent symbolic valuations that are models for φ, such
that the ultimately periodic models of Aφ are all ultimately periodic models of
φ. Then, from Lemma (1) below, it follows that φ is satisfiable iff Aφ recognizes
an ultimately periodic word.

Aφ is defined as the product of automata A�, As, and AC , where AC defines
a condition C guaranteeing the existence of a sequence σ such that σ |= ρ. In
particular, for constraint systems IPC∗ and (N, <,=), (Z, <,=), AC can effec-
tively be built. Condition C is given by considering the graph representation Gρ

of sequences of symbolic valuations ρ. It enforces the absence of infinite <-strict

64 M.M. Bersani et al.

paths in graph Gρ, i.e., that between any two nodes of Gρ there are no paths of
infinite length in which relation < occurs (see details in [5]). When the condition
C is sufficient and necessary for the existence of models σ such that σ |= ρ, then
automaton Aφ represents all the sequences of symbolic valuations which admit
a model. A fundamental lemma, on which Proposition 3 below relies on, draws
a sufficient and necessary condition for the existence of models of sequences of
symbolic valuations.

Lemma 1 ([5]). Let ρ be an ω-periodic sequence of symbolic valuations of the
form ρ = α(β)ω that is locally consistent. Then ρ admits a model σ iff ρ satisfies
C.

Proposition 3 ([5]). A CLTL(D) formula is satisfiable iff the language L (Aφ)
is not empty.

3.1 Automaton Construction

It is worth noticing that the definition of Aφ is given by considering as alpha-
bet the set SV (φ) of all symbolic valuations of φ. This construction can be
slightly modified in the definition of As since this automaton can be built using
a restricted alphabet instead of SV (φ). This allows us to use the fixpoint repre-
sentation of the semantics of formula φ, as we will actually do in Section 5.1. In
this section we define the synchronization of the three automata.

Let φ be a CLTL(D) formula, let A ⊆ D be the closure under negation of the
set of arithmetic constraints occurring in φ, and let As = (Σ,Q′, Q0, η, F) be the
symbolic Büchi automaton of φ. Alphabet Σ is the subset valid(A) ⊆ ℘(A) such
that for every atomic formula ξ of φ, β ∈ valid(A) iff either ξ or ¬ξ belongs to β.
The closure of φ, denoted cl(φ), is the smallest set containing all subformulae of
φ that is also closed under negation. An atom Γ ⊆ cl(φ) is a subset of formulae
of cl(φ) that is maximally consistent, i.e., such that, for each formula ξ in φ,
either ξ ∈ Γ or ¬ξ ∈ Γ . It is worth noticing that an atom so defined might
be unsatisfiable, i.e., there does not exist a valuation v′ over a.t.t.’s such that
v′ |=D ξ, for all ξ in Γ , since cl(φ) is closed under negation. A pair (Γ1, Γ2) of
atoms is one-step temporally consistent when Γ1 and Γ2 agree on the structure
of temporal operators, that is:

– for every Xψ ∈ cl(φ), then Xψ ∈ Γ1 ⇔ ψ ∈ Γ2,
– for every Yψ ∈ cl(φ), then Yψ ∈ Γ2 ⇔ ψ ∈ Γ1,
– if ψ1Uψ2 ∈ Γ1, then ψ2 ∈ Γ1 or (ψ1 ∈ Γ1 and ψ1Uψ2 ∈ Γ2),
– if ψ1Sψ2 ∈ Γ2, then ψ2 ∈ Γ2 or (ψ1 ∈ Γ2 and ψ1Sψ2 ∈ Γ1).

The automaton As = (Σ,Q,Q0, η, F) is then defined as follows:

– Q is the set of atoms;
– Q0 = {Γ ∈ Q : φ ∈ Γ,Yψ /∈ Γ for all ψ ∈ cl(φ), ψ1Sψ2 ∈ Γ iff ψ2 ∈ Γ};
– Γ1

β−→ Γ2 ∈ η iff

Completeness of the Bounded Satisfiability Problem for Constraint LTL 65

• β = Γ1 ∩A,
• (Γ1, Γ2) is one-step consistent;

– F = {F1, . . . , Fm}, where Fi = {Γ ∈ Q | φiUψi /∈ Γ or ψi ∈ Γ} and
{φ1Uψ1, . . . , φmUψm} is the set of Until formulae occurring in cl(φ).

The automaton As is a generalized Büchi automaton. In order to provide the
automaton Aφ, we shall translate As into a classical Büchi automaton, still
preserving the language of accepted ω−words. For ease of writing, we also denote
this automaton with As.

Let A = (SV (φ), Q′, Q′
0, δ

′, F ′) be the automaton over the alphabet of sym-
bolic valuations given by the intersection of automata A� and A¬C , as shown
in [5]. Automaton Aφ = (SV (φ), Q′′, Q′′

0 , η, F
′′) is defined as the product of As

and A, according to the standard intersection of Büchi automata but adapted
in the definition of η:

– Q′′ = Q×Q′ × {0, 1, 2};
– Q′′

0 = {(Γ, q′, 0) : Γ ∈ Q0 and q′ ∈ Q′
0};

– (Γ1, q
′, i) sv−→, (Γ2, p

′, j) ∈ η iff Γ1
β−→ Γ2 ∈ δ, q′ sv−→ p′ ∈ δ′ and sv |=s ξ, for

all ξ ∈ Γ1, and:
• if i = 0 then j = 1;
• if i = 1 and Γ1 ∈ F , then j = 2;
• if i = 2 and q′ ∈ F ′, then j = 0;
• otherwise i = j;

– F ′′ = Q×Q′ × {0}.

Proposition 3 holds also for Aφ. The proof follows the line of Lemma 6.3 of [5].

Proof. Suppose that φ is satisfiable. From Proposition 2, there exists a sequence ρ
such that ρ |=s φ and ρ admits a model σ. The sequence of symbolic valuations is
such that, at each step, a set of D-constraints β ∈ A is satisfied, ρ(i) |=s β. Then
sequence ρ ∈ L (As), and ρ is locally consistent; hence, ρ ∈ L (A�). Moreover,
by Lemma 1, ρ ∈ L (AC), and so also ρ ∈ Aφ.

Conversely, suppose Aφ accepts a word ρ. By the nature of its acceptance
condition, Aφ must also accept some ultimately periodic word, say ρ′. As ρ′ ∈
L (As), it follows that ρ′ |=s φ, with ρ′ locally consistent and satisfying C. By
Lemma 1, ρ′ admits a sequence of D-valuations σ such that σ |= ρ′. Moreover,
since ρ′ |=s φ and σ |= ρ′ then, by Proposition 2, σ |= φ. Hence, φ is satisfiable.

4 Extensions

This section is based on concepts given in [5] in order to simplify and extend
the results presented in Section 3. In particular, the construction of Aφ can be
made simpler when D benefits of a property of completion, that, when only order
relations are consider, reduces to require that it is a dense and open ordered set,
as (R, <,=) and (Q, <,=). Moreover, we prove that some fragments of IPC∗ can
be enriched by constants allowing the use of constraints like x < d with d ∈ D
without affecting the construction of the automaton Aφ.

66 M.M. Bersani et al.

Completion Property. As explained before, each automaton involved in the
definition of Aφ has the function of “filtering” sequences of symbolic valuations
so that 1) they are locally consistent, 2) they satisfy an LTL property and 3) they
admit a (arithmetic) model. For some constraint systems, admitting a model is
a consequence of local consistency. A constraint systems D has the completion
property if, given:

(i) a symbolic valuation sv over a finite set of variables H ⊆ V ,
(ii) a subset H ′ ⊆ H ,
(iii) a D-valuation v′ over H ′ such that v′ |= sv′, where sv′ is the subset of

D-constraints in sv which uses only variables in H ′

then there exists a D-valuation v over V extending v′ such that v |= sv. An
example of such a constraint system is (R, <,=).

Lemma 2 ([5]). Let D be a constraint system of the form (D,<,=), where D
is infinite and < is a total order. Then, D satisfies the completion property iff
D is dense and open.

The following result relies on the fact that every locally consistent sequence of
symbolic valuations with respect to the constraint system D admits a model.

Proposition 4. Let D be a constraint system satisfying the completion prop-
erty and φ be a CLTL(D) formula. Then, the language of sequences of symbolic
valuations which admit a model is ω-regular.

In this case, automaton Aφ recognizing the sequence of symbolic valuations may
be defined by Aφ = As ∩ A�.

Adding Constants. Languages CLTL(D,<,=) can be extended by allowing
the use of constants. As shown in [5], both the satisfiability and the model-
checking problems are still decidable. This follows by introducing new fresh
variables to replace the occurrences of constants, with some CLTL constraints.

If the constraint system satisfies the completion property, let c1, . . . , cn be the
constants occurring in a formula φ, with c1 < c2 < · · · < cn, and let φ′ be the
formula

φ[c1 ← y1, . . . , cn ← yn] ∧
n−1∧
i=1

(yi < yi+1) ∧ G(
n∧

i=1

yi = Xyi)

where y1, . . . , yn are new variables not occurring in φ and φ[c1 ← y1, . . . , cn ←
yn] is the formula obtained from φ by the replacing all occurrences of ci with yi,
1 ≤ i ≤ n. It is easy to see that φ and φ′ are equisatisfiable.

Otherwise, if the constraint system (D,<,=) does not have the completion
property (e.g., D ∈ {N,Z}); the satisfiability of a CLTL formula involving con-
stants can still be reduced to the satisfiability of a formula in CLTL(D,<,=)
without constants. Indeed, let φ be a CLTL(D,<,=) formula using constants,
with m and M being, respectively, the minimum and the maximum value of

Completeness of the Bounded Satisfiability Problem for Constraint LTL 67

such constants. Let n = |M −m| and let ci = m + i − 1, 1 ≤ i ≤ n, then, by
introducing n new variables yi not occurring in φ, the formula

φ′′ = φ′ ∧
∧

x∈var(φ)

G

(
(x < y1) ∨

n∨
i=1

(x = yi) ∨ (x > yn)

)
,

where var(φ) is the set of variables of V occurring in φ, is equisatisfiable with
φ.

5 Bounded Satisfiability Problem

The Bounded Satisfiability Problem is defined by considering bounded symbolic
models of CLTLB(D) formulae. A bounded symbolic model is, informally, a
finite representation of infinite CLTLB(D) models over the alphabet of symbolic
valuations SV (φ). We restrict the analysis to ultimately periodic models, i.e.,
sequences of symbolic valuations of the form α(β)ω , where α, β are finite words.
BSP is defined with respect to a partial model σk : {0, . . . , k + �φ�} × V → D,
a finite sequence ρ′, |ρ′| = k, of symbolic valuations and a partial satisfaction
relation |=k defined as follows:

σk |=k ρ
′ iff σk, i |=s ρ

′(i) for all 0 ≤ i ≤ k.

The k-bounded satisfiability problem of CLTLB(D) is defined as follows:

Input: a CLTLB(D) formula φ, a constant k ∈ N;
Problem: is there an ultimately periodic sequence of symbolic valuations ρ =

δ(π)ω such that k = |δπ| and ρ, 0 |=s φ, and which admits a partial model
σk such that σk |=k ρ

′ with ρ′ = δπ?

Since the length k is fixed, the satisfiability of CLTLB(D) formulae over bounded
models is not complete: even if automaton Aφ has no accepting runs of length
k, it might have one of length k′ > k. The next section explains how to make
BSP complete. The completeness property is defined as follows:

Definition 1. A CLTLB(D) formula φ has the completeness property if there
is a constant K ∈ N, depending on φ, such that φ is satisfiable if, and only if, φ
is K-bounded satisfiable.

Hence, if φ has the completeness property for a value K and there is no finite
model σK of φ, then φ is unsatisfiable.

5.1 Completeness Bound for CLTLB(D)

Completeness has been studied in depth for Bounded Model Checking. Given a
state-transition systemM and a temporal logic property φ, BMC looks for a wit-
ness of bounded length k to prove ¬φ. If the model does not admit a bounded
witness then length k is increased. The process terminates when a witness is

68 M.M. Bersani et al.

found or when k reaches a value, the completeness threshold, which guarantees
that if no counterexample has been found so far, then no counterexample disprov-
ing property φ exists for M . For LTL it is shown that a completeness threshold
always exists; [3] shows a procedure to estimate an over-approximation of the
value, by satisfying a formula representing the existence of an accepting run of
the product automaton M ×B¬φ, with B¬φ the Büchi automaton for ¬φ.

In this section, we study the existence of a completeness threshold for the
satisfiability problem of CLTLB(D) formulae. Since model checking and sat-
isfiability problems are reducible to each other when D-automata or D-Kripke
structures are considered, then a completeness threshold for satisfiability may be
used to derive one also for the model checking problem, by using the traditional
transformation proposed in [9].

Informally, the idea for finding a completeness threshold for a CLTLB(D)
formula is based on the fact that ultimately periodic symbolic models ρ of
CLTLB(D) formulae admit an arithmetic model σ if condition C holds (see
Proposition 3). Also, if a CLTLB(D) formula φ is satisfiable, then all ultimately
periodic symbolic models ρ, such that ρ |=s φ, admit a model σ such that σ |= ρ.
Completeness is a consequence of the existence of a finite value c for which all
initialized runs of Aφ, representing models for φ, of length greater than c visit
at least one control state twice. Consequently, if a CLTLB(D) formula is not
(boundedly) satisfiable by any ultimately periodic model of length less than or
equal to the value c+ 1, then the formula is unsatisfiable. Let c be the length of
the longest loop-free path of automaton Aφ. c is commonly known as recurrence
diameter of Aφ, and, in general, it can be defined for every transition system
with a finite set of states. This value can be computed by using a SAT-based
procedure which builds a sequence of control states such that none of them is
repeated along the path. A SAT-based procedure for the computation of the
recurrence diameter is proposed in [2].

In order to define a procedure to decide the satisfiability for φ by reducing
the problem to a finite amount of bounded satisfiability problem, we use the
framework proposed in [1] to effectively represent the automata and the fixpoint
representation of formula φ. Instead of defining the automaton Aφ we define a
CLTLB(D) formula φ′ such that if it is boundedly satisfiable for some k ∈ N

then the formula φ is satisfiable. In particular, we firstly define formulae φ� and
φAC for automata A� and AC whose models are exactly words of the language
recognized by the automata. Finally, φ′ is the conjunction of the two formulae
above, φ� and φAC , with φ which is, then, checked for bounded satisfiability.
Both automata A� and AC involved in the construction of Aφ do not depend
on the LTL temporal modalities appearing in φ, but only on the constraint
system D, i.e., the set of variables V , the set of constants and, also, the length
�φ� of symbolic valuations. Let A� = (SV (φ), QA�

, Q0, δA�
, FA�

) be the Büchi
automaton such that Q = Q0 = F = SV (φ) and its transition relation is such

that sv sv′
−−→ sv′ ∈ δ iff (sv, sv′) are locally consistent. Observe that sequences

of locally consistent symbolic valuations recognized by automaton A� are also
models of the formula G(

∨m
1 svi). In fact, since (i) in the encoding introduced

Completeness of the Bounded Satisfiability Problem for Constraint LTL 69

in [1] the representation of formulae is not contradictory, i.e. two consecutive
symbolic valuations are satisfiable iff they are locally consistent, and (ii) the
symbolic valuation sv satisfied in a position i is unique (because of the maximal
consistency of symbolic valuations, Lemma 4 of [7]), then G(

∨m
1 svi) represents

exactly the words of L (A�). According to [5], automaton AC is not directly built
from condition C. Instead, an automaton A¬C , recognizing the complement
language of L (AC), is built first. Then, automaton AC is obtained through
Safra’s method [8] for complementing Büchi automata. In general, AC is defined
by AC = (SV (φ), QAC , Q0, δAC , FAC). We are going to use the reduction of the
model-checking problem to the satisfiability problem, given in [9], to represent
the automaton AC by a CLTL formula. Let φAc be the formula representing Ac:

∨
qi∈Q0

qi ∧ GF(
∨

qi∈F

qi) ∧ G

⎛
⎝∨

i∈N

(qi ∧
∧

j∈N\{i}
¬qj) ∧

∧
i∈N

(qi ⇒
∨
t∈δ

(sv ∧ Xqj))

⎞
⎠

where N = {1, . . . , |Q|}, t = (qi, sv, qf), Gψ = ¬(TU¬ψ) and Fψ = %Uψ.
We want to verify if the following formula is boundedly satisfiable with respect
to k ∈ N:

I(x0) ∧ φ ∧ φAc ∧ φ� (1)

where I(x0) is a general initialization of variables and φ� = G(
∨m

1 svi) with
m = |SV (φ)|. If the formula (1) is boundedly unsatisfiable for all k ∈ [1, c + 1]
then there does not exist an ultimately periodic symbolic model ρ such that
ρ |=s φ and such that there exists an arithmetic model σ with σ |= ρ. Hence,
formula φ is unsatisfiable. Otherwise, there exists an ultimately periodic symbolic
model ρ of length k > 0 which admits a model σ. From the bounded solution, we
know exactly the model ρ = δ(π)ω and the bounded model σk. Then, the infinite
model σ is defined from σk by iterating infinitely many times the sequence of
symbolic valuations in π.

Lemma 3. Formula (1) is satisfiable, for some k ∈ [1, c+1], if and only if there
exists an ultimately periodic model which is accepted by automaton Aφ.

The completeness bound for BSP of CLTLB(D) formulae is defined by the re-
currence diameter of Aφ. We are ready to give the main result of the paper.

Proposition 5. For constraint systems IPC∗, (N, <,=), (Z, <,=), (D,<,=),
where D is dense and open, and their extensions with constants, there exists a
finite completeness threshold for BSP.

Proof. The statement is a consequence of Proposition 3. In particular, if Aφ

accepts a word ρ then it must accept also ultimately periodic words (by the
nature of the acceptance condition of the automaton) which admit arithmetic
models since they respect condition C. From Lemma 3, if there does not exist a
value of k which makes the formula satisfiable, then language L (Aφ) is empty;
otherwise, there exists a model σ and an ultimately periodic sequence of symbolic
valuations ρ such that σ |= ρ.

70 M.M. Bersani et al.

In practice, when the domain of D is N or Z, formula (1) can be simplified. In
fact, if it is satisfiable, the sequence accepted by the automaton AC is already
locally consistent, as two consecutive symbolic valuations are satisfiable iff they
are locally consistent, due to the consistency of the encoding. Then, formula
φ� can be removed and formula (1) becomes I(x0) ∧ φ ∧ φAc . When the
domain of D has the completion property, instead, formula (1) becomes I(x0) ∧
φ ∧ φ�. In this case, formula φ� is necessary to define the sequence of locally
consistent symbolic valuations, since the automaton AC is not needed anymore.
Moreover, we can estimate the value of the completeness bound without building
automaton Aφ. Since the size of the set of control states of Aφ is O(2|φ|), we
can consider a rough estimation for the completeness bound defined by the value
d× |SV (φ)| × 2|φ|, where d is the cardinality of the control state set of Ac and
|SV (φ)| is representative of the dimension of φ� (which is again exponential in
the size of the formula).

6 Conclusions

We provide a novel approach to solve the satisfiability problem for CLTLB(D)
formulae by means of a reduction to the satisfiability problem over ultimately
periodic models. Although the finite representation captures only models of the
form δπω , it is possible to solve the general satisfiability problem since the num-
ber of instances of BSP to be solved is bounded. This allows us to claim that
the bounded satisfiability problem is complete w.r.t. the satisfiability problem.
We know that this value is, in the worst case, the recurrence diameter of the
automaton Aφ accepting the models of φ. The decision procedure presented in
Section 5.1 which we used to solve the satisfiability problem for a CLTLB(D)
formula is effective. Given a CLTLB(D) formula φ and a natural k, our tool Zot
reduces an instance of bounded satisfiability for φ into the satisfiability problem
for a formula of the decidable theory QF-UFLIA or QF-UFLRA. Since decision
procedures for these theories are supported by many SMT-solvers, like Z3 and
Yices, we are able to effectively solve the satifiability problem for CLTLB(D).

Acknowledgments. We thank Stéphane Demri for fruitful conversations about
this work.

References

1. Bersani, M.M., Frigeri, A., Morzenti, A., Pradella, M., Rossi, M., San Pietro, P.:
Bounded reachability for temporal logic over constraint systems. In: Markey, N.,
Wijsen, J. (eds.) TIME, pp. 43–50. IEEE Computer Society, Los Alamitos (2010)

2. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model check-
ing. Advances in Computers 58, 118–149 (2003)

3. Clarke, E.M., Kroening, D., Ouaknine, J., Strichman, O.: Completeness and com-
plexity of bounded model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004.
LNCS, vol. 2937, pp. 85–96. Springer, Heidelberg (2004)

Completeness of the Bounded Satisfiability Problem for Constraint LTL 71

4. Comon, H., Cortier, V.: Flatness is not a weakness. In: Clote, P., Schwichtenberg,
H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 262–276. Springer, Heidelberg (2000)

5. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. Inf.
Comput. 205(3), 380–415 (2007)

6. Demri, S., Gascon, R.: Verification of qualitative Z constraints. In: Abadi, M., de
Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 518–532. Springer, Heidelberg
(2005)

7. Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger
LTL. In: TIME, pp. 94–104. IEEE Computer Society, Los Alamitos (2007)

8. Safra, S.: On the complexity of omega-automata. In: FOCS, pp. 319–327 (1988)
9. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.

J. ACM 32(3), 733–749 (1985)

Characterizing Conclusive Approximations by

Logical Formulae

Yohan Boichut1, Thi-Bich-Hanh Dao1, and Valérie Murat2

1 LIFO - Université Orléans, France
2 IRISA - Université Rennes 1, France

Abstract. Considering an initial set of terms E, a rewriting relation R
and a goal set of terms Bad, reachability analysis in term rewriting tries
to answer to the following question: does there exists at least one term
of Bad that can be reached from E using the rewriting relation R?

Some of the approaches try to show that there exists at least one
term of Bad reachable from E using the rewriting relation R by com-
puting the set of reachable terms. Some others tackle the unreachability
problem i.e. no term of Bad is reachable by rewriting from E. For the
latter, over-approximations are computed. A main obstacle is to be able
to compute an over-approximation precise enough that does not inter-
sect Bad i.e. a conclusive approximation. This notion of precision is often
defined by a very technical parameter of techniques implementing this
over-approximation approach. In this paper, we propose a new character-
ization of conclusive approximations by logical formulae generated from
a new kind of automata called symbolic tree automata. Solving a such
formula leads automatically to a conclusive approximation without extra
technical parameters.

1 Introduction

In the rewriting theory, the reachability problem is the following: given a term
rewriting system (TRS) R and two terms s and t, can we decide whether s →∗

R t
or not? This problem, which can easily be solved on strongly terminating TRSs
(by rewriting s into all its possible reduced forms and compare them to t), is
undecidable on non terminating TRSs. There exists several syntactic classes
of TRSs for which this problem becomes decidable: some are surveyed in [8],
more recent ones are [14,19]. In general, the decision procedures for those classes
compute a finite tree automaton recognising the possibly infinite set of terms
reachable from a set E ⊆ T (F) of initial terms, by R, denoted by R∗(E). Then,
provided that s ∈ E, those procedures check whether t ∈ R∗(E) or not. On
the other hand, outside of those decidable classes, one can prove s �→∗

R t using
over-approximations of R∗(E) [16,8] and proving that t does not belong to this
approximation.

Recently, reachability analysis turned out to be a very efficient verification
technique for proving properties on infinite systems modeled by TRSs. Some of
the most successful experiments, using proofs of s �→∗

R t, were done on cryp-
tographic protocols [17,11,4] where protocols and intruders are described using

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 72–84, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Characterizing Conclusive Approximations by Logical Formulae 73

a TRS R, E represents the set of initial configurations of the protocol and t a
possible flaw. Some other have been carried out on Java byte code programs [2]
and in this context, R encodes the byte code instructions and the evolution of
the Java Virtual Machine (JVM), E specifies the set of initial configurations of
the JVM and t a possible flaw.

Then reachability analysis can prove the absence of flaws (if ∀s ∈ E : s �→∗
R

t). In [8], given a TRS R, a set of terms E and an abstraction function γ, a
sequence of sets of terms Appγ

0 , App
γ
1 , . . . , App

γ
k is built such that Appγ

0 = E
and R(Appγ

i) ⊆ Appγ
i+1. This technique is called tree automata completion. The

role of the abstraction γ is to define equivalence classes of terms and to allot
each term to an equivalence class. The computation stops when on the one
hand, the number of equivalence classes introduced by the abstraction function
is bounded, and on the other hand, each equivalence class is R−closed, i.e. when
there exists N ∈ N such that R(Appγ

N) = Appγ
N . Then, Appγ

N represents an
over-approximation of terms reachable by R from E. The abstraction function
γ should be well designed in such a way that on one hand Appγ

N exists, and
on the other hand t �∈ Appγ

N . However, the main drawback of this technique
based on tree automata, is that if t �∈ R∗(E) then it is not trivial (when it is
possible) to compute a such fix-point over-approximation Appγ

N . Indeed, a high-
level expertise in this technique is required for defining a pertinent abstraction
function. In a recent work [12], the approximation function is seen as a set
of equations γ. Let C1 and C2 be two equivalence classes and t1 and t2 be
respectively terms of classes C1 and C2. If t1 = t2 modulo the set of equations
γ then C1 and C2 are merged together.

In [5], the authors propose a similar technique in which they use tree trans-
ducers instead of TRSs. The approximation functions they use can be seen as
predicates. More precisely, if two different equivalence classes satisfy the same
set of predicates then they are merged together. So, one has to define carefully
the set of predicates. Once again, a high-level expertise in the technique itself
is required for obtaining conclusive analysis. But contrary to the technique pre-
sented in [8], their technique is equipped with a refinement process acting when
the approximation function leads to inconclusive analysis. Nevertheless, the re-
finement process may be expensive since it involves backward computations for
detecting the point where the approximation has become too coarse.

So, to summarize, both of the techniques mentioned previously are instru-
mented either by equations or predicates for the computation of over-approxima-
tions. Both of them use tree automata to represent over-approximations. More
precisely, set of terms are represented by tree automata languages. However,
these parameters often require a highly specialized expertise for expecting a
conclusive analysis.

In this paper, we characterize by a logical formula all the criteria of such
a conclusive analysis performed with the technique proposed in [10,8,12]. The
idea is that instead of reasoning with a tree automaton A, we generalize A to
a symbolic tree automaton (STA) As, whose states are represented by vari-
ables. The rewriting relations and “bad” terms are represented by boolean

74 Y. Boichut, T.-B.-H. Dao, and V. Murat

combinations of equalities and inequalities on these variables. An instantiation
of these variables by states gives a tree automaton, and each valid instantiation
of this formula ensures that, as soon as the STA is instantiated, the language
of the resulting tree automaton is a conclusive over-approximation of the set
of terms reachable from the language of A according to the rewriting relation.
With this formulation, finding a conclusive analysis becomes solving logical for-
mulae. Thus, different solving and search techniques, for example in artificial
intelligence, can be applied.

The paper is organized as follows: Section 2 recalls background on terms,
rewriting and tree automata as well as the connection between rewriting and
tree automata. In this section we also describe the kind of formulae we manipu-
late and notion of instantiations. Section 3 introduces symbolic tree automata.
In this section, we point out the connection between an STA and traditional tree
automata. Section 4 describes the cornerstone of our contribution: the matching
algorithm for STA. In other words, given a term t, we characterize each solution
of this pattern as well as its existence condition by a formula. Section 5 presents
our main contribution: the characterization of a conclusive over-approximation
by a formula. Before concluding, in Section 6, given a TRS R, a tree automaton
A and a set of goal terms Bad, we describe a semi-algorithm for computing auto-
matically a conclusive approximation. For a lack of space, the proofs of this pa-
per are available at http://www.univ-orleans.fr/lifo/prodsci/rapports/
RR/RR2011/RR-2011-04.pdf.

2 Background and Notations

In this section, we introduce some definitions and concepts that will be used
throughout the rest of the paper (see also [1,7,13]). Let F be a finite set of
symbols, each one is associated with an arity, and let X be a countable set of
variables. T (F ,X) denotes the set of terms and T (F) denotes the set of ground
terms (terms without variables). The set of variables of a term t is denoted by
Var(t). A term t is said linear if there is no variable appearing more than once
in t. A substitution is a function σ from X into T (F ,X), which can be uniquely
extended to an endomorphism of T (F ,X). The substitution σ applied to the
term t (denoted tσ) is constructed such that xσ = σ(x), where x ∈ X , and
f(t1, ..., tn)σ = f(t1σ, ..., tnσ). Let A, B and C be three sets of elements. Let σ
and μ be two substitutions such that σ : A &→ B and μ : B &→ C. We denote by
σ ◦ μ the substitution such that σ ◦ μ(x) = μ(σ(x)) where x ∈ A.

A term rewriting system (TRS) R is a set of rewrite rules l → r, where
l, r ∈ T (F ,X), l, r �∈ X 1, and Var(l) ⊇ Var(r). A rewrite rule l → r is left-
linear if l is linear. A TRS R is left-linear if every rewrite rule l → r of R is
left-linear. The TRS R induces a rewriting relation →R on terms as follows. Let
s, t ∈ T (F ,X) and l → r ∈ R, s →R t denotes that there exists a subterm u
of s and a substitution σ such that u = lσ and t is obtained by substituting
u by rσ in s. The reflexive transitive closure of →R is denoted by →∗

R. The
1 A more general definition is that only l must not be a variable.

http://www.univ-orleans.fr/lifo/prodsci/rapports/RR/RR2011/RR-2011-04.pdf
http://www.univ-orleans.fr/lifo/prodsci/rapports/RR/RR2011/RR-2011-04.pdf

Characterizing Conclusive Approximations by Logical Formulae 75

set of R-descendants of a set of ground terms I is R∗(I) = {t ∈ T (F) | ∃s ∈
I s.t. s →∗

R t}. We now define tree automata that are used to recognize possibly
infinite sets of terms. Let Q be a finite set of symbols with arity 0, called states,
such that Q ∩ F = ∅. T (F ∪ Q) is called the set of configurations. A transition
is a rewrite rule c → q, where c is a configuration and q is a state. A transition
is normalized when c = f(q1, . . . , qn), f ∈ F is of arity n, and q1, . . . , qn ∈ Q .

Definition 1 (Bottom-up nondeterministic finite tree automaton). A
bottom-up nondeterministic finite tree automaton (tree automaton for short) over
the alphabet F is a tuple A = 〈Q ,F ,QF , Δ〉, where QF ⊆ Q is the set of final
states, Δ is a set of normalized transitions.

The transitive and reflexive rewriting relation on T (F ∪ Q) induced by all the
transitions of A is denoted by →∗

A. The tree language recognized by A in a state
q is L(A, q) = {t ∈ T (F) | t →∗

A q}. We define L(A) =
⋃

q∈QF
L(A, q).

Some of the techniques marry ([8,18,5]) tree automata and rewriting for com-
puting the set of reachable terms from a given tree automata A i.e. R∗(L(A)).
Unfortunately, enumerating reachable terms may never terminate. There is thus
a need to “accelerate” the search through the term space in order to reach, in a
finite amount of time, terms at unbounded depths.

Definition 2. A tree automaton B is R-closed if for each rule l → r ∈ R, for
any substitution σ : X &→ Q, lσ is recognized by B into state q then so is rσ.
The situation is represented with the following graph:

lσ R
��

∗B

��

rσ

∗
B��q

It is easy to see that if B is R-closed and L(B) ⊇ L(A), then L(B) ⊇ R∗(L(A))[6].
In the following definitions, we introduce the logical formulae that we manip-

ulate as well as notions of instantiation and satisfaction of a formula.

Definition 3 (W [XQ]). Let XQ be a set of variables. We define W [XQ] to be
the set of logical formulae on XQ as following:

– %,⊥ ∈ W [XQ];
– X = Y , X �= Y ∈ W [XQ] with X,Y ∈ XQ;
– if α, β ∈ W [XQ] then ¬α, α ∧ β, α ∨ β, α ⇒ β are in W [XQ].

Definition 4 (Instantiation/satisfaction). Let D be a domain which is a
non-empty set. An instantiation ι of variables of XQ is a function ι : XQ → D.
The instantiation ι satisfies a formula α ∈ W [XQ], denoted by ι |= α, iff:

– ι |= %;
– ι |= X = Y iff ι(X) = ι(Y); ι |= X �= Y iff ι(X) �= ι(Y);
– ι |= ¬α iff ι �|= α; ι |= α ∧ β iff ι |= α and ι |= β;
ι |= α ∨ β iff ι |= α or ι |= β; ι |= α ⇒ β iff ι �|= α or ι |= α ∧ β.

76 Y. Boichut, T.-B.-H. Dao, and V. Murat

Example 1. Let XQ be the set of variables such that XQ = {X1, X2, X3}. Thus,
(X1 �=X2) ∧ ((X1 =X3) ∨ (X2 =X3)) is a formula in W [XQ]. Let D = {1, 2}
and ι be the instantiation such that ι(X1) = 2, ι(X2) = ι(X3) = 1. We have
ι �|= X1 = X2 and ι |= (X1 = X2) ∨ (X2 = X3) .

Note that instantiations will be also considered as substitutions in the remainder
of the paper.

3 Symbolic Tree Automata

Let XQ be a set of variables that we call symbolic states. Symbolic tree automata
(STA) are tree automata where states are variables. An STA is composed of
normalized symbolic transitions as defined below.

Definition 5 (Normalized symbolic transition). Let XQ be a set of sym-
bolic states. A normalized symbolic transition is of the form f(X1, .., Xn) → X
where f ∈F of arity n and X,X1, .., Xn∈XQ.

Definition 6 (STA). An STA is a tuple 〈XQ,F ,X f
Q, Δ〉 where XQ is a set of

symbolic states, F a set of functional symbols, X f
Q ⊆ XQ a set of final symbolic

states and Δ a set of normalized symbolic transitions.

Example 2. Let F be a set of functional symbols such that F = {a : 0, s : 1}.
Let XQ and X f

Q be two sets of symbolic states such that XQ = {Xq0 , Xq1}
and X f

Q = {Xq1}. Let Δ be a set of symbolic transitions such that Δ = {a →
Xq0 , a → Xq1 , s(Xq0) → Xq1}. Thus, considering AS = 〈XQ,F ,X f

Q, Δ〉, AS is
an STA.

The following definition gives details on how a tree automaton can be obtained
from a STA and a given instantiation from XQ to a domain Q .

Definition 7 (Instance of a STA). Let Q be a non-empty set of states. Let
AS be an STA 〈XQ,F , X f

Q, Δ〉 and ι be an instantiation XQ → Q. An instance
of AS by ι, denoted by Aι

S, is a tree automaton 〈QAι
S ,F ,QAι

S

f , ΔAι
S 〉 where:

– QAι
S = {ι(X) | X ∈ XQ}; QAι

S

f = {ι(X) | X ∈ X f
Q};

– ΔAι
S = {f(ι(X1), . . . , ι(Xn)) → ι(X) | f(X1, . . . , Xn) → X ∈ Δ}.

Example 3. Let AS be the STA defined in Example 2. Let ι1 and ι2 be two
instantiations such that ι1 = {Xq0 &→ q,Xq1 &→ q} and ι2 = {Xq0 &→ q′, Xq1 &→
q}. Thus, Aι1

S = 〈{q},F , {q}, {a→ q, s(q) → q}〉 and Aι2
S = 〈{q′, q},F , {q}, {a→

q′, a → q, s(q′) → q}〉. Note that L(Aι1
S) = {sn(a) | n ≥ 0} and L(Aι2

S) =
{a, s(a)}.

For a term t ∈ T (F ,XQ), a formula α ∈ W [XQ] and a symbolic state X , we
define the relation t

α−→AS X . In a couple of words, if an instantiation ι satisfies

Characterizing Conclusive Approximations by Logical Formulae 77

α then the relation ensures that Aι
S accepts the term t in the state ι(X). Note

that if t α−→AS X then α is a conjunction of equalities between symbolic states.
This is involved by a straightforward reduction of the term t using transitions
of AS .

Definition 8 (t α−→AS X). Let AS be an STA 〈XQ, F , X f
Q, Δ〉. Let t be a term

of T (F ,XQ) and X a symbolic state of XQ. One has:

– X
�−→AS X

– If t → Y ∈ Δ then t
X=Y−−−→AS X

– If t = f(t1, ..., tn) and t1
α1−→AS X1, . . ., tn

αn−−→AS Xn and f(X1, ..., Xn) →
Y ∈ Δ then t

α1∧···∧αn∧X=Y−−−−−−−−−−−→AS X

Example 4. Let AS be the STA defined in Example 2. Let t be a term of T (F)
such that t = s(s(s(a))). According to Definition 8, one has t α−→AS Xq1 with
α = Xq0 = Xq1 . Let ι1 be the instantiation defined in Example 3. Note that,
according to Definition 4, ι1 |= α. Note also that s(s(s(a))) →∗

A
ι1
S

ι1(Xq1).

Usually, given an STA AS, a term t, a formula α, a symbolic state X and an
instantiation ι, one cannot deduce that t �→∗

Aι
S
ι(X) if ι �|= α. Nevertheless, if for

any formula α such that t α−→AS X one has ι �|= α then one can conclude that
t �→∗

Aι
S
ι(X).

The following proposition presents the characterization by a formula of the ac-
ceptance of a term t by a given STA. Consequently, each instantiation satisfying
this formula leads to an automaton recognizing t.

Proposition 1. Let AS = 〈XQ,F , X f
Q, Δ〉 be an STA and ι be an instantiation.

Let t ∈ T (F ,XQ) and X ∈ XQ. Let Reco(t,X) =
∨

{t
α−→AS

X} α. Then, one has:

ι |= Reco(t,X) iff tι →∗
Aι

S
ι(X).

4 Solutions for Patterns in STA

Let t be a term of T (F ,X). For a classical tree automaton A and a state q, the
matching problem t� q has a solution if there exists a substitution σ : X &→ Q
such that tσ →∗

A q. Let us recall that this point is essential for testing whether
an automaton is R−closed or not (see Definition 2).

In this section, we propose to solve this problem in the context of STA. Thus,
the matching problem is formalized on symbolic states instead of classical states
i.e. t � X with X ∈ XQ. Actually, in this context and considering an STA AS ,
solutions are represented as a set of pairs (α, σ) where σ is a substitution from
X to XQ and α a formula such that tσ α−→AS X . Suppose ι : XQ &→ Q is an
instantiation. Semantically, a solution (α, σ) means that, as soon as ι |= α, the
substitution σ ◦ ι is a solution of the matching problem t � ι(X) in the tree
automaton Aι

S.

78 Y. Boichut, T.-B.-H. Dao, and V. Murat

Definition 9 (Matching Algorithm – St
X). Let AS be an STA 〈XQ,F ,

X f
Q, Δ〉. We denote by St

X the solution set of the matching problem t�X where
t is a linear term. St

X is built recursively as follows:

St
X =

⎧⎪⎪⎨
⎪⎪⎩

{(%, {t &→ X})} if t ∈ X (V ar)
{(X = Y, ∅)} if t = Y ∈ XQ or t → Y ∈ Δ (SymbV ar)⊗X=Y

k=1...n(Stk

Xk
) if t = f(t1, . . . , tn) and (Delta)
f(X1, . . . , Xn) → Y ∈ Δ

where
⊗φ

k=1...n(Stk

Xk
) = {(φ, ∅) ⊕ (φ1, σ1) ⊕ · · · ⊕ (φn, σn) | (φi, σi) ∈ Sti

Xi
}, and

(φ, σ) ⊕ (φ′, σ′) = (φ ∧ φ′, σ ∪ σ′).

The following proposition shows that this algorithm is sound and complete.

Proposition 2. Let AS be an STA 〈XQ,F , X f
Q, Δ〉, X be a symbolic state in

XQ, t be a linear term in T (F ,X) and σ be a substitution from Var(t) into XQ.
One has

∀(α, σ), tσ α−→AS X iff (α, σ) ∈ St
X .

Example 5. Let AS be an STA whose symbolic transition setΔ = {a→ Xq0 , a →
Xq1 , s(Xq0) → Xq1}. Using the rules we can find that Sa

Xq0
= {(%, ∅), (Xq1 =

Xq0, ∅)}, Ss(a)
Xq1

= {(%, ∅), (Xq1 = Xq0, ∅)} and Ss(s(a))
Xq1

= {(Xq0 = Xq1, ∅), (Xq0 =
Xq1, ∅)}.

5 Finding a Conclusive Fix-Point Automaton

Let us recall that the Graal of the tree automata completion is to detect a
conclusive fix-point automaton. Given a set of terms Bad, a TRS R and an
initial tree automaton A, a conclusive fix-point automaton is a tree automaton
A� such that A� is R-closed with regard to A and L(A�) ∩Bad = ∅. Note also
that the tree automata completion is only sound for left linear TRSs. So, we
only consider left linear TRSs .

In this section, given an STA AS, a TA A, a TRS R and a set of bad terms
Bad, we propose two formulae φFP

R,AS
and φBad

AS
such that any instantiation ι

of AS satisfying both formulae leads to a conclusive automaton. Moreover, we
define a notion of compatibility between A and AS ensuring that the automaton
Aι

S is a conclusive automaton with regard to A.
The constraint presented below depicts a condition, built from AS, to satisfy

for any instantiation ι in order to ensure that Aι
S is R-closed. In [8], a TA A is

R-closed (fix-point automaton) if ∀l → r ∈ R, ∀σ : X &→ Q and ∀q, if lσ →∗
A q

then rσ →∗
A q .

Definition 10 (φFP
R,AS

). Let AS be an STA 〈XQ,F , X f
Q, Δ〉 and let R be a

left-linear TRS. We denote by φFP
R,AS

the formula defined as follows:

φFP
R,AS

def
=

∧
l→r∈R

∧
X∈XQ

∧
(α,σ)∈Sl

X

(α ⇒
∨

(β,)∈Srσ
X

β)

Characterizing Conclusive Approximations by Logical Formulae 79

Example 6. Let AS be the STA of the example 5 and let R be a TRS such that
R = {s(a) → s(s(a))}. The formula φFP

R,AS
is then:

(% ⇒ (Xq0 = Xq1 ∨Xq0 = Xq1)) ∧ (Xq0 = Xq1 ⇒ (Xq0 = Xq1 ∨Xq0 = Xq1))

We state in the following proposition the use of φFP
R,AS

.

Proposition 3. Let AS be an STA and R be a left-linear TRS. Let Q be a set of
states and ι be an instantiation XQ → Q. Thus, ι |= φFP

R,AS
iff Aι

S is R-closed.

At this point, for a given STA AS , we are able to formalize a fix-point con-
dition. However, a particular fix-point is needed. Suppose that there exists an
instantiation ι such that ι |= φFP

R,AS
. We recall that our goal is to find a fix-point

automaton A� such that L(A�) ∩Bad = ∅. The following Definition proposes a
formula characterizing the no-recognition of the whole set Bad by any instance
of Aι

S as soon as ι also satisfies this formula.

Definition 11 (φBad
AS

). Let AS be an STA 〈XQ,F , X f
Q, Δ〉 and Bad be a finite

set of ground terms. We denote by φBad
AS

the formula defined as follows:

φBad
AS

def
=

∧
t∈Bad

∧

X∈X f
Q

∧
(α,)∈St

X

¬α.

Proposition 4. Let AS be a STA 〈XQ,F , X f
Q, Δ〉. Let Bad be a finite set of

ground terms. Let Q be a set of states and ι be an instantiation XQ &→ Q. Thus,
ι |= φBad

AS
iff L(Aι

S) ∩Bad = ∅.

We are close to the claimed goal. Indeed, given a STA AS, a TRS R and a set of
terms Bad, we can deduce that for any instantiation ι satisfying φBad

AS
∧ φFP

R,AS
,

R(L(Aι
S)) ⊆ L(Aι

S) and L(Aι
S) ∩ Bad = ∅. Is it sufficient to ensure that this

fix-point is interesting for our input data i.e. A, R and Bad? In other words,
can we deduce that R∗(L(A)) ∩Bad = ∅ from ι |= φBad

AS
∧ φFP

R,AS
? Trivially the

answer is no since no relation is specified between AS and A. So, we define a
compatibility notion between AS and A leading to our expected result.

Definition 12 (A-compatibility). Let AS be an STA 〈XQ,F ,X f
Q, ΔS〉 and A

be a TA 〈Q ,F ,QF , Δ〉. The STA AS is said to be A-compatible iff these three
criteria are satisfied: (1) {Xq|q ∈ Q} ⊆ XQ; (2) {Xq|q ∈ QF } ⊆ X f

Q; and (3)
{f(Xq1 , . . . , Xqn) → Xq|f(q1, . . . , qn) → q ∈ Δ} ⊆ ΔS.

The notion of A-compatibility presented above ensures that each instantiation
of a STA AS contains the language L(A).

Proposition 5. Let AS be a STA and A be a TA such that AS is A-compatible.
For any ι : XQ &→ Q, one has L(A) ⊆ L(Aι

S).

Consequently, our main result is that we are able to characterize a conclusive
fix-point automaton, that can be found using a technique such as completion,
by a single formula of W [XQ].

80 Y. Boichut, T.-B.-H. Dao, and V. Murat

Theorem 1. Let AS be a STA and A be a TA such that AS is A-compatible.
Let R be left-linear TRS and Bad be a finite set of ground terms. Let ι be an
instantiation from XQ to Q. Thus,

ι |= φBad
AS

∧ φFP
R,AS

iff Aι
S is R-closed, L(A) ⊆ L(Aι

S) and L(Aι
S) ∩Bad = ∅.

Another way to interpret this result is the following:

Theorem 2. Let AS be a STA and A be a TA such that AS is A-compatible.
Let R be left-linear TRS and Bad be a finite set of ground terms. Let ι be an
instantiation from XQ to Q. Thus,

ι |= φBad
AS

∧ φFP
R,AS

implies that R∗(L(A)) ⊆ L(Aι
S) and R∗(L(A)) ∩Bad = ∅.

6 Reachability Analysis via Logical Formula Solving

In this section we synthesize our contribution in the semi-algorithm Algorithm
6.1. Given a TRS R, a tree automaton A and a set of goal terms Bad, Algo-
rithm 6.1 searches an STA for which there exists an instantiation leading to a
conclusive fix-point. It is indeed a semi-algorithm since a such conclusive fix-
point may not exist (see [3]). In this case, the computation will not terminate.
In a couple of words, the algorithm starts with the STA immediately obtained
from A. If the whole formula has no solution then the current STA is improved
by adding new symbolic transitions (using Norm defined in Algorithm 6.1). The
whole formula is computed for the new STA and its satisfiability is checked us-
ing hasNoV alidSolution. The process is iterated until finding a solution. We
have used Mona [15] for solving formulae (hasNoV alidSolution). Mona is a
tool handling monadic second-order logic. Given a formula, Mona computes an
automaton recognizing all of its solutions.

Algorithm 6.1 Given a left-linear TRS R, a tree automaton A = 〈Q ,F ,QF , Δ〉
and a set of goal terms Bad, areTermsUnreachable?(A,R, Bad) is defined as
follows

Variables
(* Starting STA *)
AS := 〈{Xq |q ∈ Q},F , {Xq |q ∈ QF }, {f(Xq1 , . . . , Xqn) → Xq |f(q1, . . . , qn) ∈ Δ}〉;
(* Starting Formula *)

φ := φF P
R,AS

∧ φBad
AS

;
00 Begin
01 While (hasNoValidSolution(φ)) do
02 Foreach l → r ∈ R do
03 σ := {x1 �→ X1, . . . , xn �→ Xn} where X1, . . . , Xn are new symbolic states
04 (Δ′,X ′

Q) := Norm(rσ, Xn+1) where Xn+1 is new symbolic state

05 AS := 〈XQ ∪ X ′
Q ∪ {X1, . . . , Xn},F ,X f

Q, Δ′ ∪ Δ〉;
06 done;

07 φ := φF P
R,AS

∧ φBad
AS

;
08 EndWhile

Characterizing Conclusive Approximations by Logical Formulae 81

09 return true;
10 End

The function Norm used at Line 04 is defined as follows:

Norm(t,X) =

{
(∅, ∅), if t ∈ XQ
(Δ′,X ′

Q) if t = f(t1, . . . , tn)

where Δ′ = {f(X1, . . . , Xn) → X} ∪
⋃n

i=1(Δ
i), X ′

Q = {X}
⋃n

i=1(X i
Q), Norm(ti,

Xi) = (Δi,X i
Q) and Xi is either a new symbolic states or equal to ti if ti ∈ XQ.

We present now a complete example. The idea is to show that all terms
of the form f(s(k)(0))) reachable from f(0) using the following TRS Rf =
{f(x) → f(s(s(x)))} are such that k is even. So, we define the parity test
using three rules: Rparity = {even(f(s(s(x)))) → even(f(x)), even(f(0)) →
true, even(f(s(0))) → false}. Thus, the given inputs are: R = Rf ∪ Rparity ,
Bad = {false} and A = 〈Q ,F ,Qf , δ〉 with Q = {q0, q1, q2}, F = {f : 1, s : 1, 0 :
0, even : 1, true : 0, false : 0}, Qf = {q2} and δ = {even(q1) → q2, f(q0) →
q1, 0 → q0}. So, if a conclusive over-approximation can be found then it ensures
that the set of terms reachable from f(0) using the rule f(x) → f(s(s(x))) is
necessarily of the form f(sk(0)) with k an even integer.

So, the starting STA is such that Δ = {even(Xq1) → Xq2 , 0 → Xq0 , f(Xq0) →
Xq1} and XQ = {Xq0 , Xq1 , Xq2}. Applying Definition 10, one obtains the follow-
ing formula:

Rule involved
φF P
R,AS

=
∧

Y ∈{Xq1 ,Xq2 ,Xq3}(� ∧ Xq1 = Y ⇒⊥)∧ f(x) → f(s(s(x)))∧
X,Y ∈{Xq1 ,Xq2 ,Xq3}(⊥⇒ �∧ X = Y)∧ even(f(s(s(x)))) → even(f(x))∧
Y ∈{Xq1 ,Xq2 ,Xq3}(� ∧ Xq2 = Y ⇒⊥)∧ even(f(0)) → true

⊥⇒⊥ even(f(s(0))) → false

Clearly, φFP
R,AS

is unsatisfiable. Indeed, φFP
R,AS

= φ1∧(%∧Xq1 = Xq1 ⇒⊥)∧φ2

with φ1, φ2 ∈ W [XQ]. By simplifying the formula, one obtains that φFP
R,AS

=
φ1 ∧ (% ⇒⊥) ∧ φ2 =⊥. So, φ (at line 01 in Algorithm 6.1) is also unsatisfiable.
Consequently, the STA AS needs to be extended. In this example, four substitu-
tions (one per rule following the order of the table above) σ1, σ2, σ3 and σ4 are
created such that σ1 = {x &→ Xq4}, σ2 = {x &→ Xq8} and σ3 = σ4 = ∅ where
Xq4 and Xq8 are two new symbolic states.

Consequently, applying the substitutions σ1, σ2, σ3, σ4 respectively on terms
f(s(s(x))), even(f(x)), true and false, one has to normalize the terms f(s(s(
Xq4))), even(f(Xq8)), true and false. Let Xq3 , Xq7 , Xq10 and Xq11 be four new
symbolic states, the normalization steps at Line 04 – Norm(f(s(s(Xq4))), Xq3),
Norm(even(f(Xq8)), Xq7), Norm(true,Xq10) and Norm(false,Xq11) – may pro-
duce the following STA: AS = 〈XQ,F ,X f

Q, Δ〉 XQ = {Xq0 , . . . , Xq11}, X f
Q =

{Xq2} and Δ = {true → Xq10 , false → Xq11 , s(Xq5) → Xq6 , s(Xq4) → Xq5 , 0 →
Xq0 , even(Xq9) → Xq7 , even(Xq1) → Xq2 , f(Xq8) → Xq9 , f(Xq6) → Xq3 , f(Xq0)
→ Xq1}. Note that AS is still A-compatible.

82 Y. Boichut, T.-B.-H. Dao, and V. Murat

Following Definition 11, one obtains φBad
AS

= Xq2 �= Xq11 .
Let us construct the instantiation ι from the solution returned by Mona2.

We obtain: ι = {Xq0 &→ q0, Xq1 &→ q0, Xq2 &→ q0, Xq3 &→ q1, Xq4 &→ q1, Xq5 &→
q0, Xq6 &→ q1, Xq7 &→ q1, Xq8 &→ q1, Xq9 &→ q1, Xq10 &→ q0, Xq11 &→ q1}. Applying ι
on AS , the resulting TA is: Aι

S = 〈{q0, q1},F , {q0}, Δι〉 with Δι = {false →
q1, 0 → q0, s(q0) → q1, s(q1) → q0, even(q1) → q1, even(q0) → q0, true →
q0, f(q1) → q1, f(q0) → q0}.

This tree automaton is actually R-closed. Indeed, concerning the rule f(x) →
f(s(s(x))), note that f(q0) and f(s(s(q0))) can both be reduced to q0. Similarly,
f(q1) and f(s(s(q1))) can be reduced on q1. For the rule even(f(s(s(x)))) →
even(f(x)), one has even(f(s(s(q0)))) →∗

Aι
S
q0 and even(q0) →∗

AS
q0. Similarly,

one has even(f(s(s(q1)))) →∗
Aι

S
q1 and even(q1) →∗

Aι
S
q1. Finally, for the rule

even(f(0)) → true one has even(f(0)) →∗
Aι

S
q0 and true →∗

Aι
S
q0. Moreover, the

term false is not in L(Aι
S). Thus, Aι

s is a conclusive fix-point automaton.

7 Conclusion

To summarize, given an STA AS, a set of forbidden terms Bad, a TA A and a
TRS R, we have characterized by a logical formula what a conclusive fix-point
in terms of reachability analysis is. Each solution of such a formula is an instan-
tiation that can be applied on AS. The automatically obtained automaton is an
automaton that could have been obtained using a technique as in [8]. Such a
technique requires a technical parameter (a set of equations or an approxima-
tion function) influential on the quality of the approximation computed. This
parameter requires a certain expertise of the technique itself. For instance in [12],
one has to define a set of equations whose goal is to define a finite number of
equivalence classes of terms. A finite number of equivalence classes ensures the
computation terminates. But, the crucial point remains in finding a conclusive
approximation. Thus, the set of equation has to be defined very carefully. In
[5], they used a set of predicates for defining a finite set of equivalence classes
of terms. Once again, a highly specialized expertise in the technique itself is
needed. Concerning ours, we generate an STA from the initial TA A and we are
looking for solutions. If no solution is found then we are sure that there is no
conclusive R-closed automaton for the given AS . So, we increase the size of the
starting STA and so on.

In [9], the authors encode the tree automata completion by logic programs
(Horn clauses). Consequently, they use several results obtained on static analysis
of logic programs in order to compute precise approximations in the sense of
static analysis. In the field of the tree automata completion, an approximation
is precised enough as soon as this latter allows us to show the unreachability
of a term or a set of terms. In this context, our proposition allows us to find

2 The Mona program and thus the formula φF P
R,AS

, can be downloaded at
http://www.univ-orleans.fr/lifo/Members/Yohan.Boichut/research/

exampleMona.txt

http://www.univ-orleans.fr/lifo/Members/Yohan.Boichut/research/exampleMona.txt
http://www.univ-orleans.fr/lifo/Members/Yohan.Boichut/research/exampleMona.txt

Characterizing Conclusive Approximations by Logical Formulae 83

only conclusive approximations, contrary to the ones obtained in [9]. Indeed, our
approach is in some sense goal oriented while the one proposed in [9] check the
reachability of a term only after having computed an approximation.

This work is a first step towards a verification technique based on formula
solving. In the verification framework, it allows us to prove safety property. We
claim that it is only a first step since specifications involving STA containing
more than 20 variables or a bigger TRS are out of the Mona scope. Even if the
formulas involved by such a specification present a certain regularity in their
form, their size may be huge (in particular for φFP

R,AS
see Definition 10). We are

also aware that the solving problem is not elementary, but we are working on
dedicated solving techniques and search heuristics for handling huge formulae.
We are also studying a symbolic technique à la Mona. First results of both
techniques are very promising.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

2. Boichut, Y., Genet, T., Jensen, T., Leroux, L.: Rewriting Approximations for Fast
Prototyping of Static Analyzers. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533,
pp. 48–62. Springer, Heidelberg (2007)

3. Boichut, Y., Héam, P.-C.: A theoretical limit for safety verification techniques with
regular fix-point computations. Inf. Process. Lett. 108(1), 1–2 (2008)

4. Boichut, Y., Héam, P.-C., Kouchnarenko, O.: Approximation-based tree regular
model-checking. Nord. J. Comput. 14(3), 216–241 (2008)

5. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree
model checking. ENTCS 149(1), 37–48 (2006)

6. Boyer, B., Genet, T., Jensen, T.: Certifying a Tree Automata Completion Checker.
In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 523–538. Springer, Heidelberg (2008)

7. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2008)

8. Feuillade, G., Genet, T., Viet TriemTong, V.: Reachability Analysis over Term
Rewriting Systems. Journal of Automated Reasonning 33(3-4), 341–383 (2004)

9. Gallagher, J., Rosendahl, M.: Approximating term rewriting systems: a horn clause
specification and its implementation. In: Cervesato, I., Veith, H., Voronkov, A.
(eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 682–696. Springer, Heidelberg
(2008)

10. Genet, T.: Decidable approximations of sets of descendants and sets of normal
forms. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 151–165. Springer,
Heidelberg (1998)

11. Genet, T., Klay, F.: Rewriting for Cryptographic Protocol Verification. In:
McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 271–290. Springer,
Heidelberg (2000)

12. Genet, T., Rusu, R.: Equational tree automata completion. JSC 45, 574–597 (2010)

13. Gilleron, R., Tison, S.: Regular tree languages and rewrite systems. Fundamenta
Informaticae 24, 157–175 (1995)

84 Y. Boichut, T.-B.-H. Dao, and V. Murat

14. Gyenizse, P., Vágvölgyi, S.: Linear Generalized Semi-Monadic Rewrite Systems
Effectively Preserve Recognizability. TCS 194(1-2), 87–122 (1998)

15. Henriksen, J., Jensen, J., Jørgensen, M., Klarlund, N., Paige, B., Rauhe, T., Sand-
holm, A.: Mona: Monadic second-order logic in practice. In: Brinksma, E., Steffen,
B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS,
vol. 1019, pp. 89–110. Springer, Heidelberg (1995)

16. Jacquemard, F.: Decidable approximations of term rewriting systems. In:
Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 362–376. Springer, Heidel-
berg (1996)

17. Monniaux, D.: Abstracting Cryptographic Protocols with Tree Automata. In:
Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 149–163. Springer,
Heidelberg (1999)

18. Takai, T.: A Verification Technique Using Term Rewriting Systems and Abstract
Interpretation. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 119–133.
Springer, Heidelberg (2004)

19. Takai, T., Kaji, Y., Seki, H.: Right-linear finite-path overlapping term rewriting sys-
tems effectively preserve recognizability. In: Bachmair, L. (ed.) RTA 2000. LNCS,
vol. 1833, pp. 246–260. Springer, Heidelberg (2000)

Decidability of LTL for Vector Addition Systems
with One Zero-Test

Rémi Bonnet

LSV, CNRS, ENS Cachan

Abstract. We consider the class of Vector Addition Systems with one
zero-test and we show that the model-checking problem for LTL is de-
cidable thanks to a reduction to the computability of the cover and the
decidability of reachability. Our proof uses the notion of increasing loop,
that we refine to fit the non-standard monotony of our system.

1 Introduction

Petri Nets. Vector Addition Systems (VAS) are a well-known classes of counter
systems, equivalent to Petri Nets. The reachability problem is known to be decid-
able [14,15,16,17] even if its complexity is still an open problem. As the equality
of the reachability sets (the set of states that are reachable from an initial state)
of two such systems is undecidable [13], one cannot compute a canonical finite
representation of the reachability set. However, there is such an effective finite
representation for the cover, the downward closure of the reachability set, which
is connected to various verification problems, like the control state reachability
problem.

If we add to VASS the ability to test at least two counters to zero, one obtains
a model equivalent to Minsky machines, for which all nontrivial properties are
undecidable. The study of VASS with a single zero-test transition began recently,
and a reasonable number of results are now known. Reinhardt [18] has shown
that the reachability problem is decidable. Abdulla and Mayr [2] have provided
an algorithm based on the backward procedure of Well Structured Transition
Systems [1,9] to decide coverability of a state. Termination and Boundedness
were shown by Finkel and Sangnier [8], while an algorithm to compute the
maximal elements of the cover has been found by Bonnet, Finkel, Leroux and
Zeitoun [3].

LTL. Linear-time logic is a widely used logic in order to express safety and
liveness properties of a system. Emerson [4] provided an algorithm based on a
covering graph that worked on well structured transition systems, but that was
not guaranteed to terminate. Esparza [5,6] showed that LTL on the actions of a
VASS was decidable, but that CTL was not, and that LTL became undecidable
when predicates regarding the states were added. Habermehl [12] completed this
proof by showing EXPSPACE-completeness of LTL satisfiability.

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 85–95, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

86 R. Bonnet

Our contribution. We complete the works of [3] by showing decidability of
LTL model checking. We start by the usual reduction of LTL model-checking
to repeated control state reachability by defining the synchronized product of
a VASS0 and a Buchi automaton. Then, we show that repeated control state
reachability can be decided by looking at the existence of a special kind of in-
creasing loop. We first provide a reduction of this problem of existence of a loop
to the reachability problem for VASS0 when the starting point of there is a fi-
nite number of such subsets, and hence that if one is able to compute a finite
representation of the cover, existence of an increasing loop can be decided by
looking at all the subsets.

2 Preliminaries

2.1 Generalities

Sets and Vectors. The cartesian product of two sets X and Y is noted X ×
Y and the disjoint union X � Y . For d ≥ 1, we write any x ∈ Xd as x =
(x[0], . . . , x[d − 1]), with x[i] ∈ X . For x1 ∈ Xd1 and x2 ∈ Xd2, we let (x1, x2)
be the vector of Xd1+d2 obtained by gluing x1 and x2. Addition of vectors is
defined by (x+ y)[i] = x[i] + y[i] and substraction similarly.

We denote by Nω the set N ∪ {ω} where ω is an element strictly greater than
all integers. We will use the notations 0d to denote the vector composed of d
0’s, ωd for the vector composed of d ω’s, and ed

i be the vector of Nd such that
ed

i [i] = 1 and ed
i [j] = 0 if i �= j.

Orderings. An ordering * on a setX is a reflexive, transitive and antisymmetric
binary relation on X . Given x, y ∈ X , we write x ≺ y for x * y and x �= y. The
pointwise ordering on Xd, still denoted *, is defined by x * y if x[i] * y[i] for
all i. Given Y ⊆ X , ↓�Y = {x ∈ X | ∃y ∈ Y, x * y} denotes the downward
closure of Y with respect to *. The set Y is downward closed if Y = ↓�Y . In
Nd, we shorten ↓≤ as ↓.

An ordering * on X is well if, given any sequence (xi)i∈N of elements of X ,
one can find i < j such that xi ≤ xj . The usual ordering on Nd is well.

Basis in Nd
ω. Given a downward-closed set X ⊆ Nd, a basis of X is a finite

subset B of Nd
ω such that ↓B ∩ Nd = X . Any downward-closed set of Nd admits

a basis [7] and one can show that the maximal elements of any basis B of X still
form a basis which does not depend of B. It is minimal for inclusion among all
basis, and is called the minimal basis.

Words. The set of finite words (shortly words) on A is denoted A∗. A word
u ∈ A∗ is written a1a2...an, ai ∈ A, and we will also use the notation u[i] to
refer to the i-th letter of u. The concatenation of two words u and v is simply
written uv and the empty word ε, with εa = aε = a. A+ denotes the set of
non-empty words. An infinite word on A is a sequence (ai)i∈N. Given an infinite
word u, we use the notation u[k . . .] to refer to the subsequence (u[k + i])i∈N.
The set of infinite words on A is written Aω and the union of finite and infinite
words is written A≤ω.

Decidability of LTL for Vector Addition Systems with One Zero-Test 87

2.2 Transition Systems

Definition 1. A Labelled Transition System (LTS) S is a tuple 〈X,A,→, sin〉
where X is the set of states, A is the set of transition labels, →⊆ X×(A∪{ε})×X
is the transition relation and sin is the initial state.

We will use the notations States(S), Actions(S) and Init(S) to refer respectively
to X , A, sin. Moreover, we write s

a−→ s′ if (s, a, s′) ∈→ and we extend this
notation to words by s

ε−→ s and s
uv−→ s′ iff ∃s′′, s u−→ s′′

v−→ s′. Note that
transitions may be labelled by ε and hence that s a−→ s′ where a ∈ A doesn’t
mean that s′ is reached from s by one transition, but by one transition labelled
by a and any number of ε-transitions.

A run w of S is a sequence (si, ti) ∈ (States(S)×Actions(S))≤ω such that s0 =
Init(S) and ∀i, si

ti−→ si+1. Given a run (si, ti)i, we define actions(w) as (ti)i. The
reachability set is defined as Reach(S) = {y ∈ States(S) | ∃u ∈ Actions(S)∗ |
Init(S) u−→ y}. If States(S) is ordered by ≤, the cover is Cover≤(S) = ↓≤Reach
(S). The subscript ≤ will be omitted when it is clear from the context.

2.3 Vector Addition Systems

Definition 2. A Vector Addition System with States and one zero-test (shortly
VASS0) of dimension d is a tuple V = 〈Q,A, aZ , T, sin〉 where Q is a finite set
of control states, A is a finite alphabet of actions, aZ ∈ A is called the zero-test,
T ⊆ Q×Zd ×A×Q is the finite set of transitions, and sin = (qin, xin) ∈ Q×Nd

is the initial state.

Intuitively, a VASS0 works on d counters, one for each component, whose initial
values are given by xin. If (q, v, a, q′) ∈ T , a ∈ A when the VASS0 is in control
state q adds the vector v to the counters and moves the system in the control
state q′. This action can be executed only if the resulting counters values are
non-negative. Moreover, we have the restriction that aZ can be fired only if the
first counter is zero.

More formally, a VASS0 〈Q,A, aZ , T, sin〉 induces a transition system S by:

States(S) = Q× Nd

Actions(S) = A
Init(S) = (qin, xin)

(q, x) a−→S (q′, x′) ⇐⇒ (q, x′ − x, a, q′) ∈ T for a �= aZ

(q, x) aZ−−→S (q′, x′) ⇐⇒
{

(q, x′ − x, aZ , q
′) ∈ T

x[0] = 0

A finite automaton (FA) is a VASS0 of dimension 0. We get back the usual
definition of VASS (without zero-test) as 〈Q,A, T, sin〉 whose semantics are the
same as the VASS0 〈Q,A � {aZ}, aZ , T, sin〉 where aZ doesn’t appear in T .

88 R. Bonnet

We recall from previous works the following properties of VASS0 that we will
use in the sequel :

Theorem 1. (Reachability [18], Coverability [2]) Let S be the transition system
associated to a VASS0. Membership in Reach(S) and Cover(S) is decidable.

Regarding coverability, we can be even more precise. Actually, Cover(S) is not
only recursive, but also has a finite representation.

Theorem 2. (Cover [3]) Let S be the transition system associated to a VASS0.
One can compute the minimal basis of Cover(S).

To simplify some proofs, we will only consider normed VASS0, i.e. VASS0 such
that there exists a unique (q, q′, δ) for which (q, δ, az, q

′) ∈ T . We show in the
appendix (proposition 3) that any VASS0 can be rewritten in a normed VASS0

satisfying the same LTL formulas.

3 The LTL Logic

3.1 Buchi Automata and LTL

Definition 3. A Buchi automaton is a pair 〈A, F 〉 where A is a finite automa-
ton and F ⊆ States(S).

An infinite run ((qi, xi), ti)i∈N of a Buchi Automata is accepted iff {i ∈ N | qi ∈
F} is infinite.

Definition 4. Given a set A, the set of LTL formulae is given by the following
grammar, where a ranges over A :

ϕ ::= true | a | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2

Formulas are interpreted on infinite words over the alphabet A. We denote that
w satisfies a formula ϕ by w |= ϕ. This relation is defined inductively on the
structure of ϕ by:

w |= true
w |= a ⇐⇒ w[0] = a
w |= ¬ϕ ⇐⇒ w �|= ϕ
w |= ϕ1 ∧ ϕ2 ⇐⇒ w |= ϕ1 and w |= ϕ2

w |= Xϕ ⇐⇒ w[1 . . .] |= ϕ
w |= ϕ1Uϕ2 ⇐⇒ ∃i, ∀0 ≤ j < i, w[j . . .] |= ϕ1 ∧ w[i . . . |= ϕ2

Given a LTL formula ϕ, one can build a Buchi automaton Bϕ such that the set
of infinite words satisfying ϕ is exactly the infinite words accepted by Bϕ. We
refer to the abundant literature on this subject for the construction (Proposition
4.1 of [5], but also [11] and [10]).

Decidability of LTL for Vector Addition Systems with One Zero-Test 89

3.2 Model Checking

We consider two problems on VASS0. LTL Model Checking consists in, given a
VASS0 V inducing a transition system S and a LTL formula ϕ on Actions(S), de-
termining whether there exists an infinite run w of S such that actions(w) |= ϕ.
Repeated Control State Reachability consists in, given a VASS0 S = 〈Q,A, aZ , T,
sin〉 and a control state qf ∈ Q, determining whether there exists an infinite run
w = (s1, t1) . . . (sk, tk) . . . of S such that {j ∈ N | ∃xj , sj = (qf , xj)} is infinite.

We have the following usual reduction :

Proposition 1. LTL Model Checking on VASS0 reduces to Repeated Control
State Reachability on VASS0.

Proof. Let V = 〈Q,A, aZ , T, (qin, xin)〉 be a VASS0 and ϕ a LTL formula on A.
Let B = 〈QB, A, TB, qinB, F 〉 be a Buchi automaton representing ϕ. The synchro-
nized product of V and B is defined as the VASS0 V ′ = 〈Q×QB, A, aZ , T

′, ((qin,
qinB), xin)〉 with :

T ′ = {((q1, q2), δ, a, (q′1, q′2)) | (q1, δ, a, q′1) ∈ T ∧ (q2, a, q′2) ∈ TB}

This VASS0 induces a transition system S′, and it is easy to check that a sequence
((q1i , q

2
i , xi), ai)i is a run of S′ if and only if ((q1i , xi), ai)i is a run of S and (q2i , ai)i

is a run of B. Hence, there exists a run of S′ that visits infinitely often Q × F ,
if and only if there exists runs w of S and w′ of B such that actions(w) =
actions(w′) and w′ visits infinitely often F , which means that actions(w) |= ϕ.

4 Decidability of Repeated Control State Reachability

Let us introduce the order ≤0 as x ≤0 y ⇐⇒ x ≤ y ∧ x[0] = y[0]. We have the
following monotony property for VASS0:

Proposition 2. Let q ∈ Q and x, y ∈ Nd with x ≤0 y. If a sequence of transi-
tions can be fired from (q, x), it can be fired from (q, y).

Our idea is to make an equivalence between repeated control state reachability
and the existence of an increasing loop going through this state.

Definition 5. Let V be a VASS0 and S its associated transition system.
Given � in N × Nd−1

ω , we say that (x, u, y) ∈ Nd × A+ × Nd is a �-increasing
loop on q in V if we have (q, x) u−→S (q, y), x ≤0 y and x ≤0 �.

Our proof is in three steps : First we show that if we have the restriction that
�[0] = 0, we can decide the existence of an �-increasing loop. Then we show that,
assuming the run we are looking for goes infinitely through the zero-test, the
existence of a run visiting infinitely often a control state reduces to the existence
of a �-increasing loop with �[0] = 0. We conclude by taking also care of runs
visiting the zero-test only a finite number of times.

We will fix a normed VASS0 V = 〈Q,A, aZ , T, sin〉 of dimension d and S its
associated transition system. Unless otherwise specified, all lemmas refer to this
VASS0.

90 R. Bonnet

Lemma 1. Let qf ∈ Q and � ∈ {0} × Nd−1
ω . The existence of an �-increasing

loop on qf is decidable.

Proof. Let us take � ∈ {0} × Nd−1
ω . Without loss of generality (by reordering

counters), we have � = (0, ωm, b), b ∈ Nn, with d = 1 +m+ n.
We will build a VASS0 V ′ inducing a transition system S′ that will mimic S

in the following sense (x represents a state S, and x′ the associated state in S′):

– The counter that can be tested for zero is preserved.
– A counter x[i] for 1 ≤ i ≤ m (the ones for which �[i] = ω) is replaced by two

counters x′[i] and x′[i+m], such that x′[i+m]− x′[i] ≤ x[i]. This simulates
a counter that can go arbitrarily below its initial value, and that can leak
non-deterministically.

– A counter x[i] for m+1 ≤ i ≤ m+n (the ones for which �[i] �= ω) is replaced
by one counter x′[i+m] such that x′[i+m] ≤ x[i]. This simulates a counter
that can leak non-deterministically.

Note that states of S will be represented as (x, v, z) with x ∈ N, v ∈ Nm

and z ∈ Nn while states of S′ will be represented as (x, v, w, z) with x ∈ N,
(v, w) ∈ Nm × Nm and z ∈ Nn.

Formally, we define V ′ = 〈Q,A, aZ , T
′, s′in〉 of dimension d′ = 1 + 2m+ n by:

s′in = (0, 0, 0, b)

T ′ =

{(q, a, (x, 0m, v, w), q′) | (q, a, (x, v, w), q′) ∈ T }∪ (T1)
{(q, ε, (0, 0m, 0m,−en

i), q) | q ∈ Q ∧ 1 ≤ i ≤ n}∪ (T2)
{(q, ε, (0, em

i , e
m
i , 0

n), q) | q ∈ Q ∧ 1 ≤ i ≤ m}∪ (T3)
{(q, ε, (0,−em

i ,−em
i , 0

n), q) | q ∈ Q ∧ 1 ≤ i ≤ m}∪ (T4)
{(q, ε, (0, 0m,−em

i , 0
n), q) | q ∈ Q ∧ 1 ≤ i ≤ m} (T5)

(T1) is the traduction of the transition of S. (T2) makes the counters of index
from 1+2∗m+1 to 1+2∗m+n (we recall these counters represent the counters
of index 1 + m + 1 to 1 + m + n in S) lossy. (T3) + (T4) imply that only the
relative value of the counters i and i+m matters (for 1 ≤ i ≤ m). This simulates
a counter living in Z. Finally, (T5) makes the previous counter lossy.

We will show that the existence of x, y ∈ {0} × Nd−1 and u ∈ A+ such
that x ≤ �, (qf , x)

u−→S (qf , y) and x ≤ y is equivalent to the reachability in
S′ of (0, 0m, 0m, b) from itself using at least one non-epsilon transition. Note
that reachability by using at least one non-epsilon transition is reducible to
reachability by adding a lossy counter, starting at zero, that is increased when
a non-epsilon transition is fired.

⇒ Let us assume the existence of x, y ∈ {0} × Nd−1 and u ∈ A+ such that
x ≤ �, x u−→ y and x ≤ y.
Let x = (0, α1, β1), y = (0, α2, β2) and � = (0, ωm, b) with α1 ≤ α2, β1 ≤ β2

and β1 ≤ b.
Because (qf , 0, α1, β1)

u−→S (qf , 0, α2, β2), we have (qf , 0, α1, α1, β1)
u−→S′

(qf , 0, α1, α2, β2). Because β1 ≤ b, we also have that (qf , 0, α1, α1, b)
u−→S′

(qf , 0, α1, α2, β2 + b− β1).

Decidability of LTL for Vector Addition Systems with One Zero-Test 91

qzq′z

qf

qpre

q′f

x[d] + +

x[d] + +

aZ

x[d] − −

Fig. 1. Schema of the reduction

Then, we have :

(qf , 0, 0m, 0m, b) ε−→S′ (qf , 0, α1, α1, b)
u−→S′ (qf , 0, α1, α2, b+ β2 − β1)
ε−→S′ (qf , 0, α1, α1, b)
ε−→S′ (qf , 0, 0m, 0m, b)

⇐ Assume that we have (qf , 0, 0m, 0m, b) u−→ (qf , 0, 0m, 0m, b). We will show
there exist x, y ∈ {0} × Nd−1 with x ≤ � such that (qf , x)

u−→S (qf , y).
Let (ti, vi, wi, zi)0≤i≤k such that (ti, vi, wi, zi) →S′ (ti+1, vi+1, wi+1, zi+1)
and (t, v0, w0, z0) = (t, vk, wk, zk) = (0, 0m, 0m, b).
Let α be the vector defined by α[i] = max0≤j≤k{vj [i]}. We define μ from Nd′

to Nd by μ(t, v, w, z) = (t, w− v+α, z). Then, an induction on the length of
the transition sequence gives that (q, s1)

u−→S′ (q′, s2) =⇒ ∃s3 ∈ Nd, s3 ≤1

μ(s2) ∧ (q, μ(s1))
u−→S (q′, s3).

This gives the result.

Note that we can treat a VASS as a VASS0 where the component tested for zero
is unused. We get the following corollary of lemma 1 (a similar result can be
found in [5] and [4]) that we will also need to use:

Corollary 1. Let V ′ = 〈Q,A, T, sin〉 be a VASS, qf ∈ Q and � ∈ Nd
ω. It is

possible to decide whether there exists a �-increasing loop on qf in V ′.

Lemma 2. Let qf be a control state.
Testing whether there is a run of S visiting infinitely often qf and on which

the zero-test is fired infinitely often is decidable.

Proof. We reduce this problem to the one of lemma 1. Because S is normed,
there is a single transition labelled by aZ in T : (qz , δz,aZ , q′z). We define S′ =
〈Q′, A, aZ , T

′, s′in〉 of dimension d+ 1 (schematized in figure 1) by:

92 R. Bonnet

Q′ = Q ∪ {qpre, q
′
f}

s′in = (qin, (xin, 0))

T ′ =

{(q, (δ, 0), a, q′) | (q, δ, a, q′) ∈ T ∧ q′ /∈ {qf , qz}}∪
{(q, (δ, 1), a, qf) | (q, δ, a, qf) ∈ T }∪
{(q, (δ, 0), a, qpre) | (q, δ, a, qz)}∪{
(qpre, 0d+1, ε, qz), (qz , (0d,−1), ε, q′f), (q′f , 0

d+1, ε, qz)
}

Note that in S′, the last component of the state contains the difference between
the number of times the system visited qf and the number of times the system
visited q′f .

First, let us show that there is a run visiting infinitely often qf and going
through the zero-test infinitely often in S if and only if there is a run visiting
infinitely often q′f in S′.

⇒ Let us assume there is a run in S that visits infinitely often qf and that
goes infinitely often through the zero-test. This run is also a valid run in
S′ because we only added places and a counter that is only incremented by
actions of S. Now, we alter this run by inserting as many loops qz � qf
as possible before each zero-test. This new run fulfills x[d] = 0 infinitely
often, and because this counter marks the difference between the number of
passages in qf and the number of passages in q′f , this means q′f is visited
infinitely often.

⇐ Let us assume there is a run in S′ that visits q′f infinitely often. Because
of the x[d] counter, this run visits qf infinitely often. Moreover, because q′f
can only be reached by qz, that can only go to q′f or through the zero-test,
and that the loop qz � qf can only be done a finite number of times, if q′f
is visited infinitely often on a run, then the zero-test is also fired an infinite
number of times. Hence, we have a run of S′ that visits infinitely often qf
and on which the zero-test is fired infinitely often. Now, if we remove in this
run the loops qz � qf , we get a run using only transitions of S, and removing
the additionnal counter can’t make this run non-fireable, so we get a run of
S that visits infinitely often qf and the zero-test.

Now, assume we have a run visiting infinitely often q′f . We have an infinite
sequence (xi)i, xi ∈ Nd+1 such that for all i ∈ N, (qf , xi)

∗−→ (qf , xi+1). By well-
order of Nd+1, there exists i < j such that xi ≤ xj . Also, because the zero-test
is fired after the iterations q′f � qz, this means that xi[0] = 0. So, we have a run
visiting infinitely often q′f if and only if there exists (qf , x) reachable state with
x[0] = 0, y with x ≤0 y and u ∈ A+ such that (qf , x)

u−→ (qf , y) (the "if" part is
immediate).

Because the first counter is necessarily 0 on the q′f control state (assuming an
infinite run) and because our system is monotonic with respect to ≤0 (proposition
2), we can replace "(qf , x) reachable state" by "(qf , x) coverable state" in the
previous equivalence. Hence, our problems reduce to decide whether there exists
a �-increasing loop on qf , for � a maximal element of Cover(S).

Decidability of LTL for Vector Addition Systems with One Zero-Test 93

By [3], we can compute the maximal elements of Cover(S). Then, for each
such maximal element, we can use lemma 1 to get our result.

Lemma 3. Let qf be a control state.
Testing whether there is a run of S visiting infinitely often qf and on which

the zero-test is not fired infinitely often is decidable.

Proof. Let us consider a run visiting qf infinitely often. Because the zero-test
is fired only a finite number of times, after some point, we have a run visiting
qf infinitely often without firing the zero-test. Hence, we reduce our problem to
repeated control state reachability in VASS.

We make the intersection of Cover(S) (computed through [3]) with ({qf}×Nd).
By well-order, if qf is visited infinitely often, then there exists x, x′ ∈ Nd and
u ∈ (A\{az})+ such that (qf , x)

u−→ (qf , x′), x ≤ x′. Detecting such an increasing
loop in a VASS can be seen as a special case of lemma 1 (corollary 1), and by
testing the presence of an increasing loop for each maximal element of the cover,
we get our result.

Finally, we can combine lemmas 2 and 3 to get:

Theorem 3. Let qf be a control state.
Testing whether there is a run of S visiting infinitely often qf is decidable.

And by proposition 1,

Corollary 2. Model-Checking LTL is decidable on VASS0.

5 Conclusion

We have shown that despite VASS0 looking more expressive than VASS, another
decidability result of VASS is preserved. Between the numerous decidability re-
sults that have recently been shown for VASS0 and this new one, a rule of thumb
seems to be that VASS0 and VASS enjoy the same decidability properties, and
counter-examples have yet to be found. One can wonder if the few problems
(regularity of the recognized language for example) that are decidable for VASS
and remain unknown for VASS0 follow this rule.

However, it is interesting to note that, despite repeated control state reacha-
bility being independent from reachability for Vector Addition Systems [6], our
proof requires both reachability and place-boundedness on VASS0. This makes
the complexity of our procedure unknown. One might wonder a proof might
exist without using reachability and/or place-boundedness, or whether reacha-
bility and place-boundedness can actually be reduced to LTL. We leave these
questions for future work.

94 R. Bonnet

References

1. Abdulla, P., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: Symposium on Logic in Computer Science, p. 313
(1996)

2. Abdulla, P., Mayr, R.: Minimal cost reachability/coverability in priced timed
petri nets. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 348–363.
Springer, Heidelberg (2009)

3. Bonnet, R., Finkel, A., Leroux, J., Zeitoun, M.: Place-boundedness for vector addi-
tion systems with one zero-test. In: Lodaya, K., Mahajan, M. (eds.) Proceedings of
the 30th Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 2010). Leibniz International Proceedings in Informatics,
vol. 8, pp. 192–203. Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2010)

4. Emerson, E.A., Namjoshi, K.S.: On model checking for non-deterministic infinite-
state systems. In: Proceedings of the 13th Annual IEEE Symposium on Logic in
Computer Science LICS 1998, p. 70. IEEE Computer Society, Washington, DC,
USA (1998)

5. Esparza, J.: On the decidability of model checking for several μ-calculi and petri
nets. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 115–129. Springer, Hei-
delberg (1994), 10.1007/BFb0017477

6. Esparza, J.: Decidability and complexity of petri net problems: An introduction.
In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428.
Springer, Heidelberg (1998)

7. Finkel, A., Goubault Larrecq, J.: Forward analysis for WSTS, Part I: Completions.
In: Albers, S., Marion, J.-Y. (eds.) 26th International Symposium on Theoretical
Aspects of Computer Science - STACS 2009, pp. 433–444. IBFI Schloss Dagstuhl,
Germany (2009)

8. Finkel, A., Sangnier, A.: Mixing coverability and reachability to analyze vass with
one zero-test. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B.
(eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 394–406. Springer, Heidelberg (2010)

9. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
retical Computer Science 256(1-2), 63–92 (2001)

10. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

11. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic ver-
ification of linear temporal logic. In: Proceedings of the Fifteenth IFIP WG6.1
International Symposium on Protocol Specification, Testing and Verification XV,
pp. 3–18. Chapman & Hall, Ltd., London (1996)

12. Habermehl, P.: On the complexity of the linear-time μ-calculus for petri nets. In:
Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 102–116. Springer,
Heidelberg (1997)

13. Hack, M.: The equality problem for vector addition systems is undecidable. Theo-
retical Computer Science 2(1), 77–95 (1976)

14. Kosaraju, S.R.: Decidability of reachability in vector addition systems. In: Pro-
ceedings of the Fourteenth Annual ACM Symposium on Theory of Computing,
STOC 1982, pp. 267–281. ACM, New York (1982)

15. Leroux, J.: The general vector addition system reachability problem by presburger
inductive invariants. In: Symposium on Logic in Computer Science, pp. 4–13 (2009)

Decidability of LTL for Vector Addition Systems with One Zero-Test 95

16. Leroux, J.: Vector addition system reachability problem: a short self-contained
proof. SIGPLAN Not. 46, 307–316 (2011)

17. Mayr, E.W.: An algorithm for the general petri net reachability problem. In: Pro-
ceedings of the Thirteenth Annual ACM Symposium on Theory of Computing,
STOC 1981, pp. 238–246. ACM, New York (1981)

18. Reinhardt, K.: Reachability in petri nets with inhibitor arcs. Electronic Notes in
Theoretical Computer Science 223, 239–264 (2008); Proceedings of the Second
Workshop on Reachability Problems in Computational Models (RP 2008)

A Additionnal Reductions

Definition 6. Let S1 = 〈Q1, A, aZ , T1, sin1〉 and S2 = 〈Q2, A, aZ , T2, sin2〉 be
two VASS0 of respective dimensions d1 and d2. S1 and S2 are weakly bisimilar
if there exists a relation ∼⊆ (Q1 × Nd1) × (Q2 × Nd2) such that:

– sin1 ∼ sin2

–
{
s1 ∼ s2
s1

a−→S1 s
′
1

=⇒ ∃s′2 ∈ Q× Nd2

{
s2

a−→S2 s
′
2

s′1 ∼ s′2

–
{
s1 ∼ s2
s2

a−→S2 s
′
2

=⇒ ∃s′1 ∈ Q× Nd2

{
s1

a−→S1 s
′
1

s′1 ∼ s′2

Note that we are using weak bisimilarity because of the presence of epsilon-
transitions. Satisfiability of a LTL formula is stable by weak bisimilarity1.

We provide here a quick proof of a well known reduction of VASS0.

Proposition 3. Let S be a VASS0. There exists a VASS0 S′ weakly bisimilar
to S such that there exists a unique (qz, aZ , q

′
z, δz) ∈ T .

Proof. If S has no such transition, we can simply add new unreachable control
states and add the required transition, so we will only consider the case of S
having more than one transition.

Let S = 〈Q,A, aZ , T, (qin, xin)〉 be a VASS0 of dimension d.
Let Tz = {(qz,i, aZ , q

′
z,i, δz,i) | 0 ≤ i ≤ p} be the transitions of S using

the zero-test. Let T0 be the other transitions. T = T0 � Tz. We define S′ =
〈Q′, A, aZ , T

′, s′in〉 of dimension d+ 2 by:

Q′ = Q � {qz, q′z}

T ′ =

{(q, a, q′, (δ, 0, 0)) | (q, a, q′, δ) ∈ T0)}∪
{(qz,i, ε, qz, (δz,i, i, p− i) | 1 ≤ i ≤ p}∪
{(q′z, ε, q′z,i, (0

d,−i,−(p− i)) | 1 ≤ i ≤ p}∪
{(qz, az, q

′
z , 0

d+2)}
s′in = (qin, (xin, 0, 0))

We note that we have the invariant that the last two components are always
zero in all states of Q. Bisimilarity comes easily from that.

1 For a survey of weak bisimilarity and other notions of system equivalence, one might
look at "The linear time-branching time spectrum II: The semantics of sequential
processes with silent moves", by RJ. van Glabbeek.

Complexity Analysis of the Backward Coverability
Algorithm for VASS

Laura Bozzelli1 and Pierre Ganty2,�

1 UPM Facultad de Informática, Madrid, Spain
2 IMDEA Software Institute, Madrid, Spain

Abstract. By using the known lower and upper complexity bounds of the cov-
erability problem for VASS, we characterize the complexity of the classical back-
ward algorithm for VASS coverability, and provide optimal bounds on the size of
the symbolic representation it computes.

1 Introduction

In [3, 4, 15, 10] checking safety properties for concurrent systems like multithreaded
programs, communication protocols, or asynchronous programs is reduced to the cov-
erability problem of VASS (Vector Addition System with States), turning it into a central
problem in verification of concurrent systems. Given a VASS G and two configurations
s0 and s f , the coverability problem asks whether s f is coverable from s0, i.e. there is a
computation in G starting at s0 and leading to a configuration s which covers s f ; that
is, s and s f are in the same control state and the counters of s are pointwise greater or
equal than those of s f (this is noted s f � s). The complexity of the coverability prob-
lem, which is complete for EXPSPACE, was settled in the late 70’s (Lipton [13] for the
lower bound and Rackoff [14] for the matching upper bound). However, rather surpris-
ingly, the complexity analysis of the algorithms that have been implemented to solve
the coverability problem have received little or no attention.1

In this work, we propose to characterize the complexity of the so-called backward
algorithm which has been implemented in several tools and whose definition can be at-
tributed to [1, 9] and to some extent [2]. Given a VASS G and a target configuration s f ,
the backward algorithm iteratively computes the configurations from which s f is cover-
able in 0 steps, 1 step, . . . until the set of configurations is saturated. More precisely, the
algorithm symbolically computes an increasing (w.r.t set inclusion) sequence of sets of
configurations starting from the set of configurations which cover s f . Let us call each
element of the computed sequence an iterate which is given by a set of configurations
closed by above for �. Since such upward closed sets are infinite, each iterate is finitely
represented and manipulated by its basis, that is the finite set of its minimal elements
(w.r.t �). First, let us recall that the minimal elements yields a decidable, finite, and

� This author was sponsored by Comunidad de Madrid’s Program PROMETIDOS-CM

(S2009TIC-1465), PEOPLE-COFUND’s program AMAROUT (PCOFUND-2008-229599), and by
the Spanish Ministry of Science and Innovation (TIN2010-20639).

1 As far as we know, no implementation of Rackoff’s algorithm exists.

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 96–109, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Complexity Analysis of the Backward Coverability Algorithm for VASS 97

canonical representation of each iterate, and second, because � is a well-quasi ordering
on the set of configurations, it follows that the algorithm is guaranteed to reach a fixpoint
B(G,s f) after finitely many steps. Since B(G,s f) is the basis of the set of configurations
from which s f is coverable in G, we obtain a decision procedure for the coverability
problem: (G,s0,s f) is a positive instance of the coverability problem iff smin � s0 for
some smin ∈ B(G,s f). Note that B(G,s f) can be used to solve other coverability related
problems such as checking whether from each G-configuration, s f is coverable.

Our contribution. In this paper, we show that the “backward algorithm” is optimal to
solve the coverability problem. Using Rackoff’s and Lipton’s results [14, 13], respec-
tively, we give upper and lower bounds on the number of iterations of the backward
algorithm as well as its execution time. Moreover, our complexity analysis allows us to
derive upper bounds on the cardinality of B(G,s f) and the maximal size of the single
elements of B(G,s f), which are doubly exponential in the dimension of G (the number
of counters). Furthermore, we provide matching lower bounds by a readaptation of the
Lipton’s proof [13].

Besides the backward algorithm, VASS analysis tools often implement a forward al-
gorithm whose definition is due to Karp and Miller [12]. The forward algorithm returns
a finite representation (the covering set) of an overapproximation (the coverability set)
of the set of configurations reachable from the given initial configuration s0. Such an
overapproximation is sound and also complete for certain problems like the coverability
problem. By using the covering set, one can solve, for instance, the coverability problem
(by asking whether the target configuration s f belongs to the coverability set) but also
the boundedness problem which asks whether the set of reachable configurations from
the given initial configuration is finite. From a complexity standpoint, it is mentioned in
[7] that the algorithm of Karp and Miller requires non-primitive recursive space. Let us
also cite [8] which gives a more refined complexity analysis of the forward algorithm.

Related work. The closest works to our are [17] which provide an upper bound on
the size of B(G,s f). However, the algorithm to compute B(G,s f) (originally given in
[16]) differs from the backward algorithm and does not yield any conclusion about the
complexity of the backward algorithm. Moreover, contrary to us the authors do not
provide lower bounds on the size of B(G,s f).2

2 Preliminaries

2.1 Notations and Definitions

Let Z be the set of integers, N be the set of nonnegative integers, and N+ be the set of
positive integers. For each k ∈ N+ and vector v ∈ Zk, v[i] denotes the ith component
of v, for i ∈ {1, . . . ,k}. If v1,v2 ∈ Zk, then v1 + v2 denotes that vector v ∈ Zk such that
v[i] = v1[i]+ v2[i] for all i ∈ {1, . . . ,k}; v1 − v2 is defined similarly. Let v ∈ Zk, define
‖v‖ = max({abs(v[i]) | i ∈ {1, . . . ,k}}), where abs(v[i]) is the absolute value of v[i].
Finally, for a finite set Q, |Q| denotes the cardinality of Q.

2 Similarly to Rackoff’s algorithm we do not know of any implementation of the algorithm of
[16].

98 L. Bozzelli and P. Ganty

2.2 Well-Quasi Orderings

Recall that for a set S, a partial order * over S is a reflexive, transitive and antisym-
metric binary relation on S. We say that * is a well-quasi ordering (wqo, for short)
if additionally, for each infinite sequence s0,s1, . . . of elements of S there are indices
i< j such that si * s j . Given a partial order * over S, a subset U of S is upward-closed
(w.r.t. *) if for all s,s′ ∈ S, s ∈ U and s * s′ entail s′ ∈ U . A basis of U (w.r.t. *) is a
subset B of U satisfying the following: (1) for each s ∈U , there is s′ ∈ B such that s′ * s,
and (2) for all s,s′ ∈ B, s * s′ implies s = s′ (i.e., distinct elements of B are incomparable
w.r.t. *). The following is a well-known result.

Lemma 1. [11] Let S be a set and * be a partial order over S which is wqo. Then,
each upward-closed subset U of S (w.r.t. *) admits a unique basis, which is finite and
consists of the minimal elements of U (w.r.t. *). Moreover, for each monotone infinite
sequence of upward-closed sets U0 ⊆ U1 ⊆ . . ., there is i ≥ 0 such that Ui+1 = Ui.

Let k ∈ N+. We consider the partial order over Nk, written �, which is the componen-
twise extension of ≤ over N: let v,v′ ∈ Nk, v � v′ iff v[i] ≤ v′[i] for each 1 ≤ i ≤ k.
Moreover, for a finite set Q, we consider the partial order over Q×Nk, which (with a
little abuse of notation) is again denoted by �, defined as: 〈q,v〉 � 〈q′,v′〉 iff q = q′

and v � v′. It is well-known that � is a wqo over Nk (this result is known as Dickson’s
Lemma [5]). Hence, it easily follows that � is a wqo over Q×Nk, for each finite set Q.
For s ∈ Q×Nk, we denote by s↑ the upward-closed set given by

{
s′ ∈ Q×Nk | s � s′

}
.

In the rest of this paper, if we say that some set U ⊆ Q×Nk is upward-closed, we mean
that U is upward-closed set w.r.t. �. For X ⊆ Q×Nk, min(X) denotes the set of minimal
elements in X (w.r.t. �). Note that according to Lemma 1, min(X) is the unique (finite)
basis of X if X is upward-closed.

2.3 Vector Addition Systems with States (VASS)

Let d ∈ N+. A d-VASS G is a pair 〈Q,Δ〉, where Q is a non-empty finite set of control
points and Δ ⊆ Q×Zd ×Q is a finite set of transitions in Q×Zd ×Q. The d-VASS G
induces an infinite directed graph [[G]] =

〈
Q×Nd,→

〉
whose set of vertices is given by

Q×Nd and the set of edges is defined as: 〈q,v〉 → 〈q′,v′〉 iff there is 〈q,u,q′〉 ∈ Δ such
that v′ = v+u. Vertices of [[G]] are called G-states or simply states when G is clear from
the context. A run π = s1, . . . ,sn of G is a finite path in the graph [[G]]. The length |π| of
π is n. We define ‖Δ‖ = max({‖v‖ | 〈q,v,q′〉 ∈ Δ}). Moreover, for a state s = 〈q,v〉 and
a finite set S of states, define ‖s‖ = ‖v‖ and ‖S‖ = max({‖s‖ | s ∈ S}).

For each set S of G-states, Pre∗(G,S) denotes the set of G-states s such that there is
a run of G from s to some state in S. Moreover, Pre(G,S) denotes the set of G-states s
such that s → s′ is an edge of [[G]] for some s′ ∈ S. It is well-known (see e.g. [1, 9]) that
if S is upward-closed, then Pre∗(G,S) and Pre(G,S) are upward-closed as well (this can
be easily checked).

2.4 Coverability Problem and Rackoff’s Upper Bound

Given a d-VASS G = 〈Q,Δ〉 and two G-states s0 and s f , a covering in G of s f w.r.t. s0 is a
run of G from s0 which leads to a state s satisfying s f � s. If such a covering exists, i.e.,

Complexity Analysis of the Backward Coverability Algorithm for VASS 99

s0 ∈ Pre∗(G,s f ↑), we say that s f is coverable from s0 in G. The coverability problem
asks whether s f is coverable from s0 in G for a given d-VASS G and G-states s0 and s f .
By a straightforward adaptation of the Rackoff’s algorithm for the coverability problem
[14], we obtain the following result.

Theorem 1. Let G = 〈Q,Δ〉 be a d-VASS and s f be a state. For each state s, if s f

is coverable from s in G, then there is a covering in G of s f w.r.t. s whose length is
independent on ‖s‖ and is at most [|Q| · (‖Δ‖+‖s f‖+ 2)](3d)!+1.

Proof of Theorem 1. We need additional definitions. Let d ∈N+ and I ⊆{1, . . . ,d}. For
u ∈Zd , uI denotes the vector in Zd defined as uI[i] = u[i] if i ∈ I, and uI[i] = 0 otherwise.
For a d-VASS G = 〈Q,Δ〉, GI denotes the d-VASS GI =

〈
Q,{
〈
q,uI,q′〉 | 〈q,u,q′〉 ∈ Δ}

〉
.

Note that G{1,...,d} = G. Let s = 〈q,v〉 be a G-state, we denote by sI the G-state given by〈
q,vI
〉
, and for a run π, we denote by πI the sequence of G-states obtained from π by

replacing each state s along π with sI . Note that πI is a run in GI . For B ∈ N, a vector
v ∈ Nd is B-bounded if v[i] ≤ B for each i ∈ {1, . . . ,d}. A run π of G is B-bounded if for
each state 〈q,v〉 occurring along π, v is B-bounded.

Fix a d-VASS G = 〈Q,Δ〉 and a state s f =
〈
q f ,v f

〉
. For each I ⊆ {1, . . . ,d} and G-

state s, define dist(I,s) to be the length of the shortest covering in GI of (s f)I w.r.t. sI ,
if (s f)I is coverable from sI in GI (note that dist(I,s) ≥ 1), and dist(I,s) = 0 otherwise.
Moreover, for each k ∈ {0,1, . . . ,d}, define f (k) = sup{dist(I,s) | |I| = k and s is a
G-state} (note that f (k) ≥ 1 since s f is coverable from itself in G). Then:

Lemma 2. For all k ∈ {0,1, . . . ,d}, the following inequalities hold:

f (k) ≤
{
|Q| if k = 0
|Q| · ((‖Δ‖+‖s f‖) · f (k−1))k + f (k−1) if k > 0

Proof. The case k = 0 is trivial. Now, assume that k > 0. By ind. hyp., f (k−1) is finite.
Let s be a G-state and I ⊆ {1, . . . ,d} s.t. |I| = k and there is a covering π in GI of
(s f)I w.r.t. sI . We need to show that there is a covering in GI of (s f)I w.r.t. sI of length
bounded by |Q| · ((‖Δ‖+ ‖s f ‖) · f (k − 1))k + f (k− 1). Let B = ‖Δ‖ · f (k − 1)+ ‖s f‖.
We distinguish two cases:

Case 1: π is B-bounded. Let s′ be the last state of π. Then, there is a B-bounded run π′

in GI from sI to s′ such that the states visited by π′ are mutually distinct. It is routine to
check that the length of π′ is at most |Q| ·Bk. By hypothesis (s f)I � s′, hence π′ is also
a covering in GI of (s f)I w.r.t. sI . Thus, since |Q| ·Bk ≤ |Q| · ((‖Δ‖+‖s f ‖) · f (k−1))k,
the result holds in this case.

Case 2: π is not B-bounded. Then, there is a G-state s2 s.t. π can be written in the form
π = π1 ·π2 so that π1 is either empty or B-bounded, π2 starts at state (s2)I = 〈q2,v2〉,
and v2 is not B-bounded. Hence, there is i ∈ I such that v2[i] > B. Assume that π1 is
not empty and B-bounded (the other case being simpler). Let s1 be the last state of π1.
As in case 1, we can replace π1 with a run π′

1 in GI from sI to s1 of length at most
|Q| ·Bk. Let J = I \ {i} (hence, |J| = k − 1). Since (π2)J is a covering in GJ of (s f)J

w.r.t. (s2)J , by the ind. hyp., there is a covering π′
2 in GJ of (s f)J w.r.t. (s2)J of length

at most f (k−1). Note that at each step of a run of G, any component of a G-state can
decrease at most by ‖Δ‖. Thus, since π′

2 has length at most f (k−1), (s2)I = 〈q2,v2〉, and

100 L. Bozzelli and P. Ganty

v2[i]> B = ‖Δ‖· f (k−1)+‖s f ‖, it follows that there exists a covering π′′
2 in GI of (s f)I

w.r.t. (s2)I of length at most f (k−1). Hence, π′
1 ·π′′

2 is a covering in GI of (s f)I w.r.t. sI

of length at most |Q| ·Bk + f (k−1). Since |Q| ·Bk ≤ |Q| · ((‖Δ‖+‖s f ‖) · f (k−1))k, we
are done. ��

By solving the recurrence in Lemma 2, we obtain the following result. Hence, Theo-
rem 1 directly follows.

Lemma 3. For all k ∈ {0,1, . . . ,d}, f (k) ≤
(
|Q| · (‖Δ‖+‖s f‖+ 2)

)(3k)!+1
.

Proof. By induction on k. The base case k = 0 directly follows from Lemma 2. Now,
assume that k > 0. Let C = ‖Δ‖+‖s f ‖+ 2. Then,

f (k) ≤ |Q| · (C · f (k−1))k + f (k−1) by Lemma 2

≤ |Q| · [(C · f (k−1))k + f (k−1)]

≤ |Q| · (C · f (k−1))k+1 since C · f (k−1) ≥ 2

≤ (|Q| ·C · f (k−1))k+1

≤ ((|Q| ·C)(3(k−1))!+2)k+1 by induction hypothesis

≤ (|Q| ·C)(3k)!+1

��

Note that min(Pre∗(G,s f ↑)) constitutes a finite canonical representation of the possibly
infinite set Pre∗(G,s f ↑), for which the membership problem (and other basic questions)
are decidable.3 It is well-known that min(Pre∗(G,s f ↑)) can be computed by a least
fixpoint algorithm [1, 9] refered to as the backward algorithm. However, no elementary
upper bound is known on the execution time of this algorithm. By using Theorem 1,
we provide in the next section such an upper bound. As a consequence, we derive an
upper bound on the cardinality of min(Pre∗(G,s f ↑)), which is doubly exponential in the
dimension d of G. In Section 4, we show that this double exponential blow-up cannot
be avoided.

3 Complexity of the Backward Algorithm for Coverability

First, we recall the standard backward algorithm for coverability [1, 9]. Fix a d-VASS

G = 〈Q,Δ〉 and a state s f . We define a monotone infinite sequence U0 ⊆ U1 ⊆ . . . of
upward-closed sets of states as: U0 = s f ↑, and Ui+1 = Ui ∪Pre(G,Ui) for each i ≥ 0.
Since � (over Q×Nd) is a wqo, Ui ⊆ Ui+1 for each i ≥ 0, and Ui = Ui+1 iff min(Ui) =
min(Ui+1), by Lemma 1 and definition of the sets Ui, we obtain the following.4

Remark 1. For each i ≥ 0, Ui is the set of states s such that there is a covering of s f

w.r.t. s of length less or equal to i. Moreover, there is i ≥ 0 such that min(Ui+1) =
min(Ui). Also, whenever min(Ui+1) = min(Ui) for some i ≥ 0, then Pre∗(G,s f ↑) = Ui.

3 Given min(U) for an upward-closed set U of G-states, one can decide if a given state is in U
(membership problem).

4 Note that Pre∗(G,s f ↑) is the least fixpoint of µX .(s f ↑)∪Pre(G,X).

Complexity Analysis of the Backward Coverability Algorithm for VASS 101

Remark 2. [1, 9] Given a G-state s, one can compute min(Pre(G,s↑)). Hence, for each
i ≥ 0, given min(Ui), one can compute min(Ui+1) as follows:

min(Ui+1) = min(min(Ui)∪
⋃

s∈min(Ui) min(Pre(G,s↑))) .

Then, the backward algorithm at ith step computes min(Ui). If min(Ui) = min(Ui+1),
then the algorithm terminates and outputs min(Ui). By Remark 1, the algorithm termi-
nates and outputs the basis of Pre(G,s f ↑). Now, we analyze its complexity. Let H be
the upper bound in Theorem 1 for G and s f , i.e., H = [|Q| · (‖Δ‖+‖s f‖+ 2)](3d)!+1.

Lemma 4. The sequence min(U0),min(U1), . . . is stable at H, i.e. min(UH) =
min(UH+1).

Proof. By contradiction. Assume that min(UH) �= min(UH+1). Then, UH �= UH+1 and
since UH ⊆ UH+1, there must be s ∈ UH+1 \UH . By Remark 1, it follows that each
covering in G of s f w.r.t. s has length at least H +1. Since s ∈ UH+1 ⊆ Pre∗(G,s f ↑), s f

is coverable from s. Thus, by definition of H and Theorem 1, there must be a covering
of s f w.r.t. s of length at most H, which is a contradiction. ��

Lemma 5. Let S be a finite set of states. Then, one can compute a finite set BS of states
such that min(S↑∪Pre(G,S↑)) ⊆ BS ⊆ S↑∪Pre(G,S↑), |BS| is at most O(|Δ| · |S|), and
‖BS‖ is at most O(‖Δ‖+ ‖S‖). Moreover, BS can be computed in time O(d · |Δ| · |S| ·
log(‖Δ‖+‖S‖+ 2)).

Proof. For v ∈Zd , pos(v) denotes the vector in Nd defined as: pos(v)[i] = v[i] if v[i]∈N,
and pos(v)[i] = 0 otherwise. Then, BS = S∪AS, where AS is given by

AS = {
〈
q,pos(v′ − v)

〉
|
〈
q,v,q′〉 ∈ Δ and

〈
q′,v′

〉
∈ S for some q′ ∈ Q}

We show the following, hence, the result easily follows:

1. AS ⊆ Pre(G,S↑)
2. For each s ∈ Pre(G,S↑), there is s′ ∈ AS such that s � s′.

Proof of Property 1: let s ∈ AS. By construction there are 〈q,v,q′〉 ∈ Δ and 〈q′,v′〉 ∈ S
such that s = 〈q,pos(v′ − v)〉. Evidently, it suffices to show that pos(v′ − v)+ v � v′.
Since pos(v′ − v) � v′ − v, the result follows.

Proof of Property 2: let s ∈ Pre(G,S↑), where s = 〈q,v〉 for some q ∈ Q and v ∈ Nd .
Then, there is 〈q,v′,q′〉 ∈ Δ such that 〈q′,v + v′〉 ∈ S↑. Hence, there is 〈q′,vmin〉 ∈ S such
that v+ v′ � vmin. Hence, v � vmin − v′. Since v ∈ Nd , we obtain that v � pos(vmin − v′).
Let s′ = 〈q,pos(vmin − v′)〉. Note that s′ ∈ AS. Thus, since s � s′, we are done. ��

Note that given a finite set S of G-states, min(S) can be easily computed in time O(d ·
|S|2 · log(‖S‖+ 2)). Hence, by Lemma 5, we obtain the following.

Corollary 1. Let S be a finite set of G-states and Smin = min(S↑∪ Pre(G,S↑)). Then,
‖Smin‖ is at most O(‖Δ‖+ ‖S‖). Moreover, Smin can be computed in time O(d · |Δ|2 ·
|S|2 · log(‖Δ‖+‖S‖+ 2)).

102 L. Bozzelli and P. Ganty

By Lemma 4 and Remark 1, min(Pre∗(G,s f ↑)) = min(UH). Then, Corollary 1 shows
that the backward algorithm terminates in time

O(H ·d · |Δ|2 ·max0≤i≤H|min(Ui)|2 · log(‖Δ‖+ max0≤i≤H‖min(Ui)‖+ 2))

Note that, by Corollary 1, for each i≥ 0, ‖min(Ui)‖= O(i ·‖Δ‖+‖s f‖). Hence, |min(Ui)|
is at most O(|Q| ·(i ·‖Δ‖+‖s f ‖)d). Also, max0≤i≤H‖min(Ui)‖ = O(H ·‖Δ‖+‖s f ‖) and
max0≤i≤H|min(Ui)|2 = O(|Q|2 · (H · ‖Δ‖+‖s f‖)2d). Therefore, since H =

(
|Q| · (‖Δ‖+

‖s f ‖+ 2)
)2O(d·logd)

, we obtain the following.

Theorem 2. The backward algorithm terminates in time
(
|Q| ·(‖Δ‖+‖s f ‖+2)

)2O(d·logd)
,

‖min(Pre∗(G,s f ↑))‖ and |min(Pre∗(G,s f ↑))|are at most
(
|Q| ·(‖Δ‖+‖s f‖+2)

)2O(d·logd)
.

4 Lower Bound

In this section, we prove the following result by an adaptation of Lipton’s proof of
EXPSPACE-hardness for reachability in VASS [13].

First, we need the following notation. Let G = 〈Q,Δ〉 be a d-VASS and q ∈ Q. We
denote by q↑ the upward-closed set {q}×Nd of G-states. Also, for a set S of G-states,
we denote by [Pre∗(G,S)]q the subset of Nd given by {v ∈ Nd | 〈q,v〉 ∈ Pre∗(G,S)}.

Theorem 3. For each n ∈ N, one can build a O(n)-VASS Gn = 〈Qn,Δn〉 and qn ∈ Qn s.t.
|Qn| = O(n), |Δn| = O(n), ‖Δn‖ = 1, and the following holds: (1) |min(Pre∗(Gn,qn↑))|
is at least 22n

(hence, ‖min(Pre∗(Gn,qn↑)))‖ is at least 22Ω(n)
), and (2) there are states

s ∈ min(Pre∗(Gn,qn↑)) s.t. each run from s to a state in qn↑ has length at least 22n
.

By Property 2 in Theorem 3 and the results in the previous section, we easily deduce
the following.

Corollary 2. Let n ∈ N, Gn = 〈Qn,Δn〉 and qn ∈ Qn as in Theorem 3. Then, the number
of iterations of the backward algorithm with input Gn and 〈qn,〈0, . . . ,0〉〉 is at least 22n

.

To make clear the proof of Theorem 3, we consider an high-level variant of VASS, called
net Programs [6], corresponding to a subclass of nondeterministic counter machines
with nonrecursive subroutines. Then, we show that in order to prove Theorem 3, it is
sufficient to prove a similar result for net programs. Finally, in Section 4.2, we prove
the variant of Theorem 3 for net programs.

For m,k ∈ N+ s.t. k ≤ m and U ⊆ Nm, Πk(U) denotes the subset of Nk given by {v ∈
Nk | 〈v[1], . . . ,v[k],0, . . . ,0〉 ∈ U}. Note that Πk(U) is upward-closed if U is upward-
closed. Moreover, the following holds.

Lemma 6. Let m,k ∈ N+ such that k ≤ m and U be an upward-closed subset of Nm.
Then, |min(U)| ≥ |min(Πk(U))|.
Proof. For v ∈ Nk, we denote by v ·0 the vector in Nm given by 〈v[1], . . . ,v[k],0, . . . ,0〉.
Let v ∈ min(Πk(U)). We show that v · 0 ∈ min(U), hence, the result follows. Since
v ·0 ∈ U , there is v′ ∈ min(U) such that v′ � v ·0 ∈ U . Hence, v′ = v′′ ·0, v′′ ∈ Πk(U),
and v′′ � v. Since v ∈ min(Πk(U)), it follows that v′′ = v, hence v ·0 = v′ ∈ min(U), and
we are done. ��

Complexity Analysis of the Backward Coverability Algorithm for VASS 103

4.1 Net Programs

A net program is similar to a nondeterministic Minsky counter machine, but does not
have the ability to test a (counter) variable for zero. However, it has the possibility of
transferring control to a subroutine (or subprogram). Formally, a net program P on a fi-
nite set {x1, . . . ,xd} of (counter) variables is a tuple P = 〈ID1, . . . , IDn,Code〉, where
ID1, . . . , IDn are pairwise distinct subprogram identifiers, and Code assigns to each
1 ≤ p ≤ n, the code Code(IDp) of subprogram IDp, which is a sequence of the form

Code(IDp) = l1 : I1; . . .lk−1 : Ik−1;lk : return;
where k ≥ 1, l1, . . . ,lk are pairwise distinct (instruction) labels, l1 (resp., lk) is the
initial (resp., final) label of subprogram IDp, and each I j is an instruction of the form:

– increment: xi := xi + 1 (where 1 ≤ i ≤ d),
– decrement: xi := xi −1 (where 1 ≤ i ≤ d),
– unconditional jump: goto l (where l ∈ {l1, . . . ,lk}),
– nondeterministic jump: goto l or goto l′ (where l,l′ ∈ {l1, . . . ,lk}),
– subprogram call: call IDi (where i > p).5

Additionally, we require that labels of distinct subprograms are distinct as well. The
subprogram ID1 is called the main subprogram of P, and the initial (resp., final) label
of P is the initial (resp., final) label of the main subprogram. For each (instruction) label
l of P, we denote by ID(l) the identifier of the unique subprogram having l as label.
Moreover, if l is the label of a call instruction, we denote by called(l) the identifier
of the called subprogram. Now, we formally define the semantics of net programs. An
extended label of the net program P above is a pair of the form 〈C,l〉, where l is a label
of P and C is a caller context, i.e., a (possibly empty) sequence of P-labels C = l1 . . .lk

such that the following holds: (i) each li is the label of a call instruction, and (ii) if C
is nonempty, then ID(li+1) = called(li) for each 1 ≤ i ≤ k, where lk+1 = l. Note that
the set of extended labels of P, written EL(P), is finite. A P-state is a pair 〈〈C,l〉,v〉,
where 〈C,l〉 ∈ EL(P) and v ∈ Nd is a valuation of variables {x1, . . . ,xd} assigning to
each variable xi, the value v[i]. The net program P induces a transition relation → over
P-states, as follows 〈〈C,l〉,v〉 → 〈〈C′,l′〉,v′〉 iff:

– if l is the label of an increment (resp., decrement, resp., jump) instruction, then
〈〈C′,l′〉,v′〉 is as expected (note that C′ = C and if l is the label of a decrement,
then 〈〈C,l〉,v〉 has a successor iff the value in v of the decremented variable is
greater than 0);

– if l is the label of a call instruction “call ID j”, then v′ = v, C′ = C ·l, and l′ is the
initial label of subprogram ID j;

– if l is the label of a return instruction, then v′ = v, C = C′ ·l′′ for some l′′, and l′

is the label which follows the call instruction label l′′ in Code(ID(l′′)).

A run or execution of P is a finite sequence s1, . . . ,sh of P-states such that si → si+1

for each 1 ≤ i < h. For a set S of P-states, let Pre∗(P,S) be the set of P-states s such
that there is a run of P from s leading to some P-state in S. For each label l, we denote
by [Pre∗(P,S)]l the set

{
v ∈ Nd | 〈〈ε,l〉,v〉 ∈ Pre∗(P,S)

}
, and by l↑ the set of P-states

5 The requirement i > p ensures that there are no recursive calls.

104 L. Bozzelli and P. Ganty

{〈ε,l〉} × Nd . It is easy to show that if S is an upward-closed set of P-states, then
Pre∗(P,S) is upward-closed as well. The following result allows us to reduce the proof
of Theorem 3 to its variant for the class of net programs.

Theorem 4. Let P be a net program on {x1, . . . ,xd}, k be the number of call instructions
of P, and start and end be the initial and final labels of P. Then, one can build in
linear-time a (d+k)-VASS G = 〈Q,V 〉 such that Q is the set of P-labels, ‖Δ‖ = 1, |Δ| ≤
2 · N, where N is the number of P-instructions, and |min([Pre∗(G,end↑)]start)| ≥
|min([Pre∗(P,end↑)]start)|. Moreover, for each s ∈ min(Pre∗(P,end↑)), there is a G-
state s′ ∈ min(Pre∗(G,end↑)) such that for each run π in G from s′ to a G-state in
end↑, there is a run of P from s to a P-state in end↑ of length |π|.

Proof. Let L = {l1, . . . ,lk} be the set of call instruction labels of P. The (d+k)-VASS

G = 〈Q,Δ〉 is defined as follows (intuitively, we use an additional dimension for each
call instruction label of P): Q is the set of P-labels and the set of transitions Δ is obtained
in the following way:

– for each increment “l : xi := xi +1; l′ : I ; . . .”, we add the transition 〈l,v,l′〉, where
v[i] = 1 and v[j] = 0 for j �= i;

– for each decrement “l : xi := xi−1; l′ : I ; . . .”, we add the transition 〈l,v,l′〉, where
v[i] = −1 and v[j] = 0 for j �= i;

– for each unconditional jump “l : goto l′; . . .”, we add transition
〈
l,0d+k,l′

〉
;

– for each nondeterministic jump “l : goto l′ or goto l′′; . . .”, we add two transitions
given by

〈
l,0d+k,l′

〉
and

〈
l,0d+k,l′′

〉
;

– for each call instruction “li : call IDp; l : I ; . . .” (where 1 ≤ i ≤ k), we add two
transitions 〈li,v+,l0〉 and

〈
l f ,v−,l

〉
, where: (i) l0 (resp., l f) is the initial (resp.,

final) label of subprogram IDp, (ii) v+[d + i] = 1 and v+[j] = 0 for j �= d + i, and
(iii) v−[d + i] = −1 and v−[j] = 0 for j �= d + i.

Note that ‖Δ‖ = 1 and |Δ| ≤ 2 · N, where N is the number of P-instructions. Now,
we establish the correspondence between the runs of P and the runs of G. Let H be
the mapping assigning to each state s of P of the form

〈〈
li1 . . .lip ,l

〉
,v
〉
, the G-state

H(s) defined as follows (note that i1, . . . , ip ∈ {1, . . . ,k} and are pairwise distinct)6:
H(s) = 〈l,vext 〉, where for each 1 ≤ j ≤ d + k, vext [j] = v[j] if j ≤ d, vext [j] = 1 if
j = d + ih for some 1 ≤ h ≤ p, and vext [j] = 0 otherwise. By construction, we obtain the
following:

Claim: let s0,s1, . . . ,sn be a sequence of states of P. Then, s0,s1, . . . ,sn is a run of P if
and only if H(s0),H(s1), . . . ,H(sn) is a run of G. Moreover, for each state s′0 of P, each
run of G from H(s′0) has the form H(s′0),H(s′1), . . . ,H(s′m) for some sequence s′1, . . . ,s

′
m

of P-states.

By the claim above, it follows that Πd([Pre∗(G,end↑)]start) = [Pre∗(P,end↑)]start.
Thus, by Lemma 6 and the claim above, Theorem 4 easily follows. ��

4.2 Proof of Theorem 3

Theorem 3 directly follows from Theorem 4 and the following result.

6 Moreover, note that called(li1), . . . ,called(lik) are pairwise distinct and called(lik) = ID(l).

Complexity Analysis of the Backward Coverability Algorithm for VASS 105

Theorem 5. For each n ∈ N, one can build a net program Pn with initial (resp., final)
label start (resp., end), O(n) instructions, and O(n) variables such that
|min([Pre∗(Pn,end↑)]start)| ≥ 22n

. Also, there exists v∈min([Pre∗(Pn,end↑)]start) such
that each run from 〈〈ε,start〉,v〉 to a state in end↑ has length at least 22n

.

In the rest of this section, we prove Theorem 5.

Construction of Pn. Let n ∈ N, define Varn = {w1,w2,yn,yn}∪
⋃n−1

i=0 {yi,yi,zi,zi}. The
net program Pn has set of variables Varn and is given by

〈Mainn,Liptonn, Init0, . . . , Initn−1,Decn(yn),Decn−1(yn−1),Decn−1(zn−1), . . .
Dec0(y0),Dec0(z0),Setn,Code〉

where Code is given in Figures 1–3.7

The construction of Pn ensures the following: if initially (i.e., at call time of the main
subprogram Mainn) each variable in Varn \ {w1,w2} has value 0, then the main sub-
program Mainn can return8 if and only if the sum of the initial values of w1 and w2

is greater or equal to 22n
. Now, we proceed with the description of the various sub-

programs of Pn. The main subprogram Mainn simply calls the subprograms Setn and
Liptonn (in the given order) and returns. It is easy to check (see Figure 1) that the
subprogram Setn ensures the following.

Mainn :

start : call Setn;
call Liptonn;

end : return.

Liptonn :

start : call Init0;
.
call Initn−1;
call Decn(yn);

end : return.

Setn :

start : goto 0 or goto end;
0 : goto 1 or goto 2;
1 : w1 := w1 −1;yn = yn + 1;

goto start;
2 : w2 := w2 −1;yn = yn + 1;

goto start;
end : return.

Fig. 1. The subprograms Mainn, Liptonn, and Setn of Pn

Lemma 7. Assume that Setn is called with the value of yn being 0. Then: (1) whenever
Setn returns, the value of yn is less or equal to the sum of the initial values (at call time
of Setn) of variables w1 and w2, and (2) there is an execution such that Setn returns with
the value of yn being exactly the sum of the initial values of w1 and w2.

7 In Figures 1–3, for clarity, some instruction labels are omitted, and some labels of distinct
subprograms are equal (we tacitely assume that they are prefixed by the ID of the associated
subprogram).

8 i.e., there is a run leading to a state whose label is the final label of subprogram Mainn.

106 L. Bozzelli and P. Ganty

The subprogram Liptonn (see Figure 1), whose construction corresponds to a variant of
that given by Lipton in [13] (see also [6]), ensures the following: if initially (i.e., at call
time of Liptonn) all the variables in Varn \ {w1,w2,yn} have value 0, then Liptonn can
return if and only if the initial value of yn is greater or equal to 22n

. The implementation
of Liptonn is based on subprograms Initi, Deci(zi), and Dec j(y j) (where 0 ≤ i ≤ n −
1 and 0 ≤ j ≤ n). The subprograms Deci(zi) and Dec j(y j) (see Figure 2) ensure the
following.

Dec0(x0) :

* x0 is either y0 or z0*
start : x0 := x0 −1;

x0 := x0 −1;
x0 := x0 + 1;
x0 := x0 + 1;

end : return.

Deci+1(xi+1) :

* xi+1 is either yi+1 or zi+1 *
* Initially, yi = zi = 22i

and yi = zi = 0 *

out-loop : yi := yi −1;yi := yi + 1;
in-loop : zi := zi −1;zi := zi + 1;

xi+1 := xi+1 −1;xi+1 := xi+1 + 1;
goto in-continue or goto in-exit;

in-continue : zi := zi −1;zi := zi + 1;goto in-loop;
in-exit : call Deci(zi);

goto out-continue or goto out-exit;
out-continue : yi := yi −1;yi := yi + 1;goto out-loop;

out-exit : call Deci(yi);
end : return.

Fig. 2. The subprograms Dec0(x0) and Deci+1(xi+1) of Pn

Lemma 8. Let 0 ≤ j ≤ n and x j ∈ {y j,z j} such that x j = y j if j = n. Assume that
Dec j(x j) is called with the values of yh and zh being 0 and the values of yh and zh being

22h
for each 0 ≤ h < j. Then, the following holds:

– Dec j(x j) can return iff the initial value of x j (at call time of Dec j(x j)) is at least

22 j
. Moreover, if the initial value of x j is exactly 22 j

and the initial value of x j

is 0, then whenever Dec j(x j) returns, the values of x j and x j (at return time) are

swapped (i.e., x j has value 22 j
and x j has value 0).

– Whenever Dec j(x j) returns, there are no side-effects on the variables x ∈ Varn \
{x j,x j} (the values of x at call and return times are the same).

– Whenever Dec j(x j) returns, the number of computational steps from the call time

to the return time is at least 22 j
.

Proof. The proof is by induction on j. The base case (j = 0) is trivial (see Figure 2).
Now, assume that j = i+1 for some 0 ≤ i< n. Let us consider the code of Deci+1(xi+1)
in Figure 2, which consists of two nested loops: the inner loop is associated with the
counter variable zi, while the outer loop is associated with the counter variable yi. Note
that the body of the inner loop decrements xi+1. Essentially, since the initial values of yi

and zi are 22i
, each of two nested loops can be executed 22i

-times. Since 22i ·22i
= 22i+1

,
it follows that xi+1 can be decreased by 22i+1

. Fix xi ∈ {yi,zi}. First, note that at each step
the invariant xi + xi = 22i

is preserved. Moreover, for the loop associated with counter

Complexity Analysis of the Backward Coverability Algorithm for VASS 107

variable xi, Deci+1(xi+1) can guess that the continuation (resp., exit) condition is satis-
fied, i.e., xi > 0 (resp., xi = 0), by a nondeterministic jump instruction. The continuation
condition is implemented by decrementing and then incrementing xi, while the exit con-
dition is implemented by a call to Deci(xi). By the induction hypothesis, Deci(xi) can
return if and only if xi has value 22i

, i.e., xi has value 0. Thus, if the guess is not correct,
the subprogram Deci+1(xi+1) stops without returning. Moreover, by the induction hy-
pothesis, whenever Deci(xi) returns, the values of xi and xi are swapped. This ensures
that the inner loop can be re-initialized correctly, and whenever Deci+1(xi+1) returns,
the values of xi and xi correspond to the initial ones. Thus, it follows that Deci+1(xi+1)
can return if and only if xi+1 can be decreased by 22i+1

(i.e., the initial value of xi+1 is
at least 22i+1

). Finally, if the initial value of xi+1 is 22i+1
and the initial value of xi+1 is

0, then the body of the inner loop of Deci+1(xi+1) ensure that at return time, the values
of xi+1 and xi+1 are swapped. ��

Finally, for each 0 ≤ i ≤ n − 1, the subprogram Initi (see Figure 3) is used to set the
values of yi and zi to 22i

. More precisely, Initi ensures the following.

Init0 :

start : y0 := y0 + 1;
y0 := y0 + 1;
z0 := z0 + 1;
z0 := z0 + 1;

end : return.

Initi+1 :

out-loop : yi := yi −1;yi := yi + 1;
in-loop : zi := zi −1;zi := zi + 1;

yi+1 := yi+1 + 1;zi+1 := zi+1 + 1;
goto in-continue or goto in-exit;

in-continue : zi := zi −1;zi := zi + 1;goto in-loop;
in-exit : call Deci(zi);

goto out-continue or goto out-exit;
out-continue : yi := yi −1;yi := yi + 1;goto out-loop;

out-exit : call Deci(yi);
end : return.

Fig. 3. The subprograms Init0 and Initi+1 of Pn

Lemma 9. Let 0 ≤ j ≤ n− 1. Assume that Init j is called with the following condition
being satisfied at call time: (i) the values of y j,z j,y j,z j are 0, and (ii) the values of

yh,zh are 0 and the values of yh and zh are 22h
for each 0 ≤ h < j. Then, Initi can

return. Moreover, whenever Initi returns, yi and zi have value 22i
and there are no-side

effects for the other variables x ∈ Varn \ {yi,zi} (i.e., the values of x at call and return
times are the same).

Proof. The proof is by induction on j. The base case (j = 0) is trivial (see Figure 3).
Now, assume that j = i+ 1 for some 0 ≤ i < n−1. Let us consider the code of Initi+1

in Figure 3, which is the same as Deci+1(xi+1), with the unique difference that the
body of the inner loop increments the two variables yi+1 and zi+1. Hence, reasoning as
in the proof of Lemma 8, the result easily follows (in particular, under the considered
assumptions, whenever Initi+1 returns, the values of yi+1 and zi+1 are increased exactly
by 22i+1

). ��

108 L. Bozzelli and P. Ganty

Assume that at call time of subprogram Liptonn, each variable in Varn\{w1,w2,yn} has
value 0. Then, By Lemmata 8 and 9, Liptonn can return iff at call time yn has value at
least 22n

. Moreover, whenever Liptonn returns, then the number of computational steps
from the call time to the return time is at least 22n

. Thus, by Lemma 7, we obtain the
following.

Lemma 10. Assume that at call time of Mainn each variable in Varn \ {w1,w2} has
value 0. Then, Mainn can return iff the sum of the values of w1 and w2 at call time is at
least 22n

. Moreover, whenever Mainn returns, then the number of computational steps
from the call time to the return time is at least 22n

.

Proof of Theorem 5. First, we need an additional result. For all n ∈ N, we denote by
Λn and ϒn ⊆ Λn the subsets of N2 given by

Λn = {v ∈ N2 | v[1]+ v[2]≥ 22n} and ϒn = {v ∈ N2 | v[1]+ v[2] = 22n}

Lemma 11. Let n,m∈N and U be an upward-closed subset of Nm+2 such that Π2(U)=
Λn. Then, |min(U)| ≥ 22n

and min(U) ⊇ {v ·0m | v ∈ ϒn}.

Proof. For v ∈ N2, we denote by v · 0 the vector in Nm+2 given by 〈v[1],v[2],0, . . . ,0〉.
First,we show the following.

Claim 1: ϒn ⊆ min(Λn)
Proof of Claim 1: Let v ∈ ϒn. Since v ∈ Λn, there must be vmin ∈ min(Λn) such that
vmin � v (note that Λn is upward-closed). By definition of ϒn, it follows that vmin ∈ ϒn.
Thus, since all elements in ϒn are pairwise incomparable, we obtain that vmin = v. Hence,
v ∈ min(Λn), and the result follows. ��
Moreover, by the proof of Lemma 6, the following holds

Claim 2: min(U) ⊇ {v ·0 | v ∈ min(Π2(U))}.

Evidently, ϒn has cardinality 22n
. By hypothesis, Π2(U) = Λn. Thus, by Claims 1 and

2, the result follows. ��

Fix n ∈ N and an ordering of Varn such that w1 and w2 precede all the other variables.
Let start (resp., end) be the initial (resp., final) label of Pn. By construction, Pn has
O(n) instructions and O(n) variables. Thus, by Lemmata 10 and 11, Theorem 5 easily
follows.

Acknowledgement. We would like to thank Rupak Majumdar for asking about the
complexity of the backward algorithm and Javier Esparza for encouraging us.

References

[1] Abdulla, P., Čerāns, K., Jonsson, B., Tsay, Y.: General Decidability Theorems for Infinite-
State Systems. In: LICS 1996, pp. 313–321. IEEE Computer Society Press, Los Alamitos
(1996)

[2] Arnold, A., Latteux, M.: Recursivite et cones rationnels fermes par intersection. Calcolo 15,
381–394 (1978)

Complexity Analysis of the Backward Coverability Algorithm for VASS 109

[3] Delzanno, G., Raskin, J.-F.: Symbolic representation of upward-closed sets. In: Graf, S.
(ed.) TACAS 2000. LNCS, vol. 1785, pp. 426–440. Springer, Heidelberg (2000)

[4] Delzanno, G., Raskin, J.-F., Van Begin, L.: Attacking symbolic state explosion. In: Berry,
G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 298–310. Springer, Hei-
delberg (2001)

[5] Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct
prime factors. American Journal of Mathematics 35, 413–422 (1913)

[6] Esparza, J.: Decidability and Complexity of Petri Net Problems - An Introduction. In:
Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428. Springer,
Heidelberg (1998)

[7] Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Journal of Informatik
Processing and Cybernetics 30(3), 143–160 (1994)

[8] Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and primitive-
recursive bounds with Dickson’s lemma. In: LICS 2011: Proc. 26th Annual IEEE Symp.
on Logic in Computer Science, pp. 269–278. IEEE Computer Society Press, Los Alamitos
(2011)

[9] Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical
Computer Science 256(1-2), 63–92 (2001)

[10] Ganty, P., Majumdar, R.: Algorithmic verification of asynchronous programs. CoRR,
abs/1011.0551 (2010)

[11] Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the London Math-
ematical Society (3) 2(7), 326–336 (1952)

[12] Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Comput. Syst. Sci. 3(2),
147–195 (1969)

[13] Lipton, R.: The Reachability Problem Requires Exponential Space. Technical Report 62,
Yale University (1976)

[14] Rackoff, C.: The Covering and Boundedness Problems for Vector Addition Systems. Theo-
retical Computer Science 6, 223–231 (1978)

[15] Sen, K., Viswanathan, M.: Model checking multithreaded programs with asynchronous
atomic methods. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 300–314.
Springer, Heidelberg (2006)

[16] Valk, R., Jantzen, M.: The residue of vector sets with applications to decidability problems
in Petri nets. Acta Informatica 21, 643–674 (1985)

[17] Yen, H.-C., Chen, C.-L.: On minimal elements of upward-closed sets. Theoretical Computer
Science 410(24-25), 2442–2452 (2009)

Automated Termination in

Model Checking Modulo Theories

Alessandro Carioni1, Silvio Ghilardi1, and Silvio Ranise2

1 Università degli Studi di Milano, Milano, Italia
2 FBK-Irst, Trento, Italia

Abstract. We use a declarative SMT-based approach to model-checking
of infinite state systems to design a procedure for automatically estab-
lishing the termination of backward reachability by using well-quasi-
orderings. Besides showing that our procedure succeeds in many
instances of problems covered by general termination results, we argue
that it could predict termination also on single problems outside the
scope of applicability of such general results.

1 Introduction

Infinite state model checking is nowadays a mature field and many successful
attempts have been made to verify disparate problems, using various kinds of
methodologies. Still, termination of search (both forward and backward) is a
major problem and it is sometimes difficult to predict in advance whether a
given problem will be solved in a finite amount of time or some source of di-
vergence is hidden somewhere and appropriate techniques (such as acceleration
or abstraction) should be employed in order to make the search terminating.
In the literature, several results for the termination of backward reachability
are known covering entire classes of infinite state systems [13,11,5,2,6]. In most
cases, following the seminal work in [1], these results are based on the use of
well-quasi-orders on configurations, which are (finite) symbolic representations
of infinite sets of backward reachable states. Thus, their applicability crucially
rely on the human ability to reformulate a given specification so that it fits in
one of the classes of systems for which termination is guaranteed.

In this paper, we propose an automated technique capable (when successful)
of predicting termination from the static analysis of a given verification problem
that is amenable to backward reachability. We develop our ideas in the model
checking modulo theories framework [14,18] where array-based (guarded assign-
ment) transition systems are used to symbolically specify a wide range of systems
by using certain classes of first-order formulae and background theories. There
are two main ingredients. The former is that of a wqo-theory W , which is the
declarative counterpart of a well-quasi-order on configurations used in the main
arguments for termination in [1]. The second ingredient is the standard notion
in first-order logic textbooks (see, e.g., [12]) of syntactic interpretation. Then,
we cook these two ingredients together to design a method for establishing the

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 110–124, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Automated Termination in Model Checking Modulo Theories 111

termination of backward reachability on a given verification problem by checking
for the existence of a syntactic translation from W , satisfying certain conditions.
Such conditions refer to a search space restricted to formulae describing small
models and the possibility of such restriction is indeed the essential content of our
main result (Theorem 4.5 below). Interestingly, the conditions of Theorem 4.5
can all be checked trough proof obligations that can be efficiently discharged by
using SMT solving techniques. We shall turn to an informal discussion on our
main issue at the beginning of Section 4.

For space constraints, we shall supply here only high level explanations and
formal statements of our results: the interested reader is referred to the online
available extended version [8] for worked out examples and full proofs.

2 Preliminaries

We assume the usual syntactic (e.g., signature, variable, term, ground term,
atom, literal, formula, and sentence) and semantic (e.g., structure, sub-structure,
embedding, assignment, truth, and validity) notions of many-sorted first-order
logic (see, e.g., [12,10]). The equality symbol = is included in all signatures
considered below. We use L,M, . . . for literals and φ, ψ, . . . for formulae. A
signature is relational iff it does not contain function symbols and it is quasi-
relational iff the only function symbols it contains are constants. A formula is
open (or quantifier-free) iff it does not contain quantifiers; it is universal (resp.
existential) iff it is obtained from an open formula by prefixing it a finite sequence
of universal (resp. existential) quantifiers. If φ(x) is a formula with free variables
included in the tuple x = x1, . . . , xn and a = a1, . . . , an is a (sort-conforming)
tuple of elements of the support |M| of a structure M, we write M |= φ(a) to
denote that φ(x) is valid in M under the assignment {x1 &→ a1, . . . , xn &→ an}.

SMT. Following [22], a theory T is a pair (Σ, C), where Σ is a signature and
C is a class of Σ-structures; the structures in C are the models of T . Below, let
T = (Σ, C). A Σ-formula φ is T -satisfiable if there exists a Σ-structure M in
C such that φ is true in M under a suitable assignment to the free variables
of φ (in symbols, M |= φ); it is T -valid (in symbols, T |= ϕ) if its negation
is T -unsatisfiable. Two formulae ϕ1 and ϕ2 are T -equivalent if ϕ1 ↔ ϕ2 is T -
valid. The quantifier-free satisfiability modulo the theory T (SMT (T)) problem
amounts to establishing the T -satisfiability of quantifier-free Σ-formulae. A the-
ory is said to be syntactically specified if we are given a set of Σ-sentences (called
the axioms of T): in this case, the class C of the models of T is formed by the
Σ-structures in which all the axioms of T are true. A theory T is universal iff it
is syntactically specified and its axioms are universal sentences.

Diagrams. Given a (finite, in our applications) Σ-structure M, take a free
variable xa for every a in the support of M and call x the set of all xa (varying
a). The Σ-diagram δM of M [10] is the set of all Σ-literals L(x) such that
M, a |= L, where a is the assignment mapping xa to a. By abuse of notation,
we shall confuse the variable xa with the element a. Intuitively, we can view δM

112 A. Carioni, S. Ghilardi, and S. Ranise

as a sort of ‘multiplication table’ of the structure M. Notice that the diagram
of a finite structure is also finite and can be seen as the formula obtained by the
conjunction of its literals.

Interpretations. Informally, an interpretation (−)∗ of a Σ-theory T into a
Σ′-theory T ′ is a mapping from the expressions of T to the expressions of T ′

which preserves the validity of sentences. We will consider a special class of
interpretations, generalizations of our definition exist—see, e.g., [12]—but we do
not need them here. Formally, (−)∗ is a mapping associating (i) a sort S∗ of
Σ′ with each sort S of Σ, (ii) a Σ′-formula R∗(x1, . . . , xn) with each predicate
symbol R of Σ in such a way that the variables x1, . . . , xn occurring free in R∗

match the translations of the arity sorts of R (implicitly we assume that identity
of sort S is translated into identity of sort S∗), and (iii) a Σ′-term f∗(x1, . . . , xn)
with each function symbol f of Σ (with the same condition on x1, . . . , xn as for
predicate symbols). Then, (−)∗ can be extended inductively to formulae in the
obvious way: (R(t1, . . . , tn))∗ = R∗(t∗1/x1, . . . , t

∗
n/xn) for atomic formulae and

(A ∧ B)∗ = A∗ ∧ B∗, (¬A)∗ = ¬A∗, (∀xA)∗ = ∀xA∗ for non-atomic formulae.
The last requirement that (−)∗ is supposed to satisfy is the following: (iv) for
every sentence φ in the signature of T , if T |= φ then T ′ |= φ∗. Notice that, if
T is specified syntactically, it is sufficient to check (iv) only for the axioms of
T . In this paper, we shall limit ourselves to quantifier-free translations, i.e. to
translations in which the formulae R∗ mentioned in (ii) above are quantifier-free.

3 Array-Based Systems and Backward Reachability

Array-based transition systems [14,19,16,18] have been proved useful for the ver-
ification of several classes of infinite state systems, such as broadcast protocols,
lossy channel systems, timed networks, parametric and distributed systems. The
Model Checker Modulo Theories (mcmt) tool [20] implements symbolic back-
ward reachability for array-based systems (its executable, several benchmark
problems, the documentation, and related papers can be downloaded at http://
homes.dsi.unimi.it/~ghilardi/mcmt). The state variables of array-based sys-
tems are arrays “connecting” the theories TI and TE : the former describes the
topology and the latter the data structures of the system. We fix for the whole
paper the following conventions:

(T1) TI = (ΣI , CI) is a relational mono-sorted theory whose unique sort is
named INDEX), its SMT (TI)-problem is decidable, and CI is closed under
substructures (meaning that CI contains every substructure of any M ∈ CI);

(T2) TE is a multi-sorted theory whose sorts are ELEM1, ..., ELEMS for some S ≥ 1
and its SMT (TE)-problem is decidable;

(T3) AE
I is a compound theory, intended to describe ‘arrays with indexes in TI

and elements in TE .’ Formally, the signature of AE
I contains the sort symbols

of ΣI ∪ ΣE , together with a new sort symbol ARRAY� for each sort ELEM� of
ΣE ; it contains also all the function and predicate symbols in ΣI ∪ ΣE

together with a new function symbol []� : ARRAY�, INDEX −→ ELEM� for

http://homes.dsi.unimi.it/~ghilardi/mcmt
http://homes.dsi.unimi.it/~ghilardi/mcmt

Automated Termination in Model Checking Modulo Theories 113

each sort ELEM� of ΣE . The models M of AE
I are the structures whose ΣI -

and ΣE-reducts are models of TI and TE , respectively; the sort ARRAY� is
interpreted as the set of total functions INDEXM −→ ELEMM� and the symbol
[]� as function application.

So, a[i]� denotes the element of sort ELEM� stored in the array a of sort ARRAY�

at index i; the subscript � is dropped whenever it is clear from the context.

Definition 3.1. An array-based (transition) system (for (TI , TE)) is a triple
S = (a, I, τ) where (i) a = a1, . . . , as is a tuple of free constants of array sorts
(these are to be thought as state variables storing data of sorts ELEM1, . . . , ELEMs,
respectively); (ii) I(a) is the initial formula; (iii) τ(a, a′) is the transition for-
mula, where a′ contains the renamed copies of the variables in a. The formula
I is assumed to be a ∀I-formula and the formula τ is a disjunction

∨r
h=1 τh of

guarded assignments in functional form.

To give the definition of a ∀I -formula and of a guarded assignment in func-
tional form, we preliminarily introduce the following notational convention and
definitions. Below, d, e range over variables of a sort ELEM� of ΣE , i, j, k, z, . . .
over variables of sort INDEX. An underlined variable name abbreviates a tuple
of variables of unspecified (but finite) length and, if i := i1, . . . , in, the notation
a[i] abbreviates the s ∗ n-tuple of terms a1[i1], . . . , as[i1], . . . , a1[in], . . . , as[in].
Possibly sub/super-scripted expressions of the form φ(i, e), ψ(i, e) denote quan-
tifier-free (ΣI ∪ ΣE)-formulae in which at most the variables i ∪ e occur. Also,
φ(i, t/e) (or simply φ(i, t)) abbreviates the substitution of the Σ-terms t for
the variables e. Thus, for instance, φ(i, a[i]) denotes the formula obtained by
replacing e with a[i] in the quantifier-free formula φ(i, e).

Given a theory T (in our case, T will be AE
I), a T -partition is a finite set

C1(x), . . . , Cn(x) of quantifier-free formulae (with free variables contained in
the tuple x) such that T |= ∀x

∨n
i=1 Ci(x) and T |=

∧
i�=j ∀x¬(Ci(x) ∧ Cj(x)).

The formulae C1, . . . , Ck are called the components of the T -partition. A case-
definable extension T ′ = (Σ′, C′) of a theory T = (Σ, C) is obtained from T by
applying (finitely many times) the following procedure: (i) take a T -partition
C1(x), . . . , Cn(x) together with Σ-terms t1(x), . . . , tn(x); (ii) let Σ′ be Σ ∪ {F},
where F is a “fresh” function symbol (i.e. F �∈ Σ) whose arity is equal to the
length of x; (iii) take as C′ the class of Σ′-structures M whose Σ-reduct is a
model of T and such that M |=

∧n
i=1 ∀x (Ci(x) → F (x) = ti(x)). Thus a case-

definable extension T ′ of a theory T contains finitely many additional function
symbols, called case-defined functions. By abuse of notation, below, we shall
identify T with its case-definable extensions T ′.

A formula ∀i.φ(i, a[i]) is a ∀I-formula, one of the form ∃i.φ(i, a[i]) is an
∃I-formula, and a sentence ∃a ∃i ∀j ψ(i, j, a[i], a[j]) is an ∃A,I∀I-sentence. A
guarded assignment in functional form is a formula of the form

∃e∃k (φL(e, k, a[k]) ∧ a′ = λj.F (e, k, a[k], j, a[j]) (1)

where: (i) F = F1, . . . , Fs is a tuple of case-defined functions; (ii) the existentially
quantified data variable e ranges over a sort ELEM� such that TE admits quantifier
elimination with respect to quantified variables of sort ELEM�.

114 A. Carioni, S. Ghilardi, and S. Ranise

Given an array-based system S = (a, I, τ) and an ∃I -formula U(a) describing
a set of unsafe states (also called error states), the symbolic backward reachabil-
ity procedure iteratively computes the set of backward reachable states BR(a)
as follows. (Below, we give a very high-level description of the symbolic back-
ward reachability procedure implemented in mcmt. For a description of the
techniques and heuristics used to make the procedure effective in practice, the
reader is pointed to [19,17,16,18]. In particular, [18] reports an extensive experi-
mental evaluation of the tool.) Preliminarily, define (for n ≥ 0) the n-pre-image
of a formula K(a) as Pre0(τ,K) := K and Pren+1(τ,K) := Pre(τ, Pren(τ,K)),
where Pre(τ,K) := ∃a′.(τ(a, a′) ∧K(a′)). Intuitively, Pren(τ, U) describes the
set of backward reachable states in n ≥ 0 steps. At the n-th iteration, the back-
ward reachability procedure computes the formula BRn(τ, U) :=

∨n
i=0 Pre

i(τ, U)
representing the set of states which are backward reachable from the states in
U with at most n steps. While computing BRn(τ, U), the procedure also checks
whether the system is unsafe by establishing if the formula I ∧ Pren(τ, U) is
AE

I -satisfiable (safety test) or whether a fix-point has been reached by check-
ing if (BRn(τ, U) → BRn−1(τ, U)) is AE

I -valid or, equivalently, if the formula
BRn(τ, U) ∧ ¬BRn−1(τ, U) is AE

I -unsatisfiable (fix-point test).
To mechanize this procedure, it is mandatory to identify a class of formulae for

representing sets of backward reachable states which is closed under pre-image
computation and such that the safety and fix-point checks are decidable. Using
∃I -formulae for representing unsafe states, this is indeed the case as stated in
the following theorem, a corollary of more general results in [14,18].

Theorem 3.2. Let S = (a, I, τ) be an array-based system; we have that
(RF1) if K is an ∃I-formula, then Pre(τ,K) is equivalent to an (effectively

computable) ∃I-formula;
(RF2) if the set U of unsafe states is represented by an ∃I -formula, then the

AE
I -satisfiability checks for safety and fix-point of the backward reachability

procedure are effective.

As shown in [14,19,18,9,7], this theorem allows the automated verification of
reachability properties for several classes of systems (e.g., parameterised systems,
timed networks, or fault-tolerant algorithms). For several of these problems, a
(declarative reformulation of) the approximate model technique (see, e.g., [4]) is
required as explained in [15]. (RF2) is a special case of the decidability of the
AE

I -satisfiability problem for ∃A,I∀I -sentences in [18]. Assumptions (T1) on TI

are essential for (RF2) because, if they are dropped, undecidability of ∃A,I∀I -
sentences arises [18]. The proof of (RF2) in [18] consists of a decision procedure
integrating quantifier-free SMT solving and quantifier instantiation. Powerful
heuristics [17] are also crucial for implementation.

An important refinement of the backward reachability procedure above is to
exploit invariants whenever they are available. An invariant J(a) for the array-
based system S = (a, I, τ) is a ∀I -formula such that (a) AE

I |= I(a) → J(a)
and (b) AE

I |= Pre(τ, J) → J(a). The requirement that J(a) is a ∀I -formula
allows us to reduce conditions (a) and (b) to the AE

I -satisfiability of ∃A,I∀I -
sentences, which is decidable because of (T1). Techniques for invariant synthesis

Automated Termination in Model Checking Modulo Theories 115

are discussed in [18] and are also implemented in mcmt. Whenever an invariant
J is known, we can replace AE

I with AE
I ∪ {J} in our satisfiability tests (e.g. for

fix-point in the backward reachability procedure). The presence of invariants in
such tests is often crucial either to greatly speed up the performances of mcmt

or to obtain termination (see again [18] for details).

3.1 Closure under Pre-image Computation

The proof of (RF1) (Theorem 3.2) in, e.g., [14,18] consists of simple logical
manipulations (this is a distinguishing feature of our approach). Here, we briefly
discuss a variant of such proofs, whose details are needed to state the main result
of this paper (see Theorem 4.5 below).

Let S = (a, I, τ) be an array-based system, where τ is a finite disjunction of
formulae τ1, ..., τr of the form (1). We consider only Pre(τh,K) since Pre(τ,K)
is easly seen to be equivalent to the disjunction of Pre(τ1,K), ..., P re(τr ,K).
Let us now focus on the definition of F = F1, ..., Fs in (1). Without loss of
generality (since partitions admit common refinements), we assume that the AE

I -
partition {C1(e, k, a[k], j, a[j]), . . . , Cm(e, k, a[k], j, a[j])} is the same for each Fl

(l ∈ {1, ..., s}). Thus, each case-defined function Fl can be written as

Fl(j, a[j]) := case of{C1(j, a[j]) : tl1(j, a[j]); · · · Cm(j, a[j]) : tlm(j, a[j])},(2)

for l = 1, . . . , s. (According to the definition of case-definable extension, the
logical reading of the case of construct is the conjunction of the formulae∧m

z=1 ∀j.(Cz(j, a[j]) → Fl(j, a[j]) = tlz) for each l = 1, ..., s.) Notice that Fl, C1,
. . . , Cm, tl1, . . . , tlm depend not only on j, a[j] but also on e, k, a[k]; to simplify
notation, we omit these dependences in the rest of this paper. If K(a) is the
∃I -formula ∃i ψ(i, a[i]), then Pre(τh,K) is logically equivalent to the formula
obtained from

φL ∧ ψ(i, F [i]) (3)

by prefixing it with the existential quantifiers ∃i ∃k ∃e; here the notation F [i]
abbreviates the (n ∗ s)-tuple of terms Fl(iz, a[iz]), varying l = 1, . . . , s and z =
1, . . . , n when i = i1, . . . , in. We can further manipulate the formula (3) in order
to eliminate the defined symbols F1, ..., Fs. To do this, we consider the functions
f : i → {1, . . . ,m} and rewrite the formula (3) as the disjunction (varying f) of
the formulae

τh[ψ, f] := φL ∧Cf(i1)(i1, a[i1]) ∧ · · · ∧ Cf(in)(in, a[in]) ∧
∧ψ(i, t1f(i1)(i1, a[i1]), . . . , tsf(in)(in, a[in])) .

At this point, it is clear that Pre(τh,K) is equivalent to
∨

f ∃i∃k ∃e τh[ψ, f],
where the functions f indexing the disjunction will be called case-marking func-
tions and their purpose is to mark each index in i with the case that formally
applies to it. This concludes the proof of (RF1).

116 A. Carioni, S. Ghilardi, and S. Ranise

4 Wqo-Theories, QE-Degrees, and Termination

The assumptions of Theorem 3.2 guarantee that the backward reachability pro-
cedure described in the previous section can be mechanized but they are not suf-
ficient to guarantee termination. This is because the symbolic representation of
pre-images (in our case, ∃I -formulae) may not be expressive enough to represent
a fix-point of the set of backward reachable states. Termination can be achieved
only under additional assumptions. The classical (non declarative) method for ob-
taining termination (see, e.g., [1,5,6]) consists in endowing the states of the sys-
tem with a preorder relation* and in assuming that (1) pre-images are monotonic
w.r.t. * and (2) * is a well-quasi-ordering (wqo). Now, (1) implies that the pre-
image of an upward-closed (w.r.t. *) set is still upward-closed and (2) implies that
every upward-closed set can be characterized by a finite set of minimal (w.r.t. *)
elements. Thus, starting from an upward-closed set U of states, the iterative com-
putation of the backward reachable configurations from U necessarily terminates
because the fixpoint is upward closed and hence its minimal elements are rech-
able in finitely many steps. Obviously, this requires that relevant upward-closed
sets can be effectively represented and manipulated. Our goal here is to recast
this argument in our declarative framework underlying the backward reachability
procedure of Section 3. Roughly, our plan is as follows: without loss of generality
(see [18], Section 4), states of the system can be identified with the values assigned
to the array constants a in a model M having finitely many generators of sort
INDEX. Since we represent backward reachable states by ∃I -formulae, we replace
* by the embeddability relation between such finitely generated models. The fact
that existential formulae are preserved by super-structures guarantees that they
describe upward closed sets of states. However, it would be too strong to require
embeddability among finitely generated models to be a wqo: instead, we make
an abstraction of the system, through a wqo-theory W and a syntactic transla-
tion into AE

I . This will replace embeddability between finitely generated models
of AE

I by embeddability between the abstract states, i.e. between the finitely gen-
erated models of W . The definition of a wqo theory just says that embeddability
between such abstract states is a wqo. The key step of our plan consists of checking
whether every pre-image Pi computed by the backward reachability procedure is
a translation of an existential formula βi in W for i ≥ 0 where P0 := U . The se-
quence β0, β1, ... is finite because it describes increasingly larger upsets of a wqo,
hence the sequence P0, P1, ... must be finite too. In fact, if there exists b ≥ 1 such
that βb is a fix-point, i.e. W |= βb → βb−1, by using the syntactic translation we
must also have that AE

I |= Pb → Pb−1 where Pb and Pb−1 are the translations
of βb and βb−1, respectively. Hence Pb is a fixed point of our backward reachabil-
ity procedure. Thus we must find a condition that guarantees that the backward
reachability procedure generates only ∃I -formulae which are translations of ex-
istential formulae of W : to this aim, we reduce the general case to finitely many
cases involving formulae of the kind ∃e ∃i∃k τh[ψ, f], where ψ is the translation of
the diagram of a “small” model of W . Finally, since the elimination of the exis-
tentially quantified data variable e is required, we need also assumptions on the
quantifier elimination algorithm.

Automated Termination in Model Checking Modulo Theories 117

Wqo-Theories. A wqo (P,≤) is a set P endowed with a binary reflexive and
transitive relation ≤ such that for every infinite sequence p1, p2, . . . of elements
from P there are i < j such that pi ≤ pj .

Definition 4.1. A wqo-theory is a universal theory whose finitely generated
models1 are a well-quasi-order with respect to the embeddability relation.

Simple examples of wqo-theories can be obtained by taking vector spaces on
a fixed field, torsion-free abelian groups, etc. The reason why we get a wqo in
these cases is that an embedding always exists whenever the dimension is lower.
Examples of wqo-theories which are more relevant to this paper can be obtained
by re-interpreting declaratively some special cases of Kruskal theorem or Higman
lemma, as sketched in the following example.

Example 4.2. Consider a signature contaning one sort, finitely many 0-ary and
1-ary predicates and a single binary predicate ≤ (besides equality). We get a
wqo theory W by Higmann lemma if we syntactically specify W through the
following set of axioms

∀x (x ≤ x), ∀x, y, z (x ≤ y ∧ y ≤ z → x ≤ z), and ∀x, y (x ≤ y ∨ y ≤ x),

(the axioms say that ≤ is to be interpreted as a total pre-order relation).

QE-Degree. A theory T admits quantifier elimination (relative to a sort S) iff
for every formula ϕ(x) containing only quantified variables of sort S, there exists
a quantifier-free formula ϕ′(x) such that T |= ∀x(ϕ(x) ↔ ϕ′(x)).

A set P of Σ-predicates is said to be T -representative for a Σ-theory T iff
for every Σ-literal L(x) one can compute a formula ψ(x) which is a positive
combination (i.e. a disjunction of conjunctions) of atoms whose root predicate
symbol is in P such that T |= ∀x (L ↔ ψ). The atoms whose root symbol is a
predicate in P are called T -representative literals. The set of T -representative
literals is denoted by LP . Notice that T -representative literals are closed under
taking substitutions of terms for variables, by definition.

Definition 4.3. Let T be a theory eliminating quantifiers for a sort S. We say
that T has QE-degree N with respect to a set of representative predicates P iff
for every finite family {Li}i∈I of literals from LP , the formula

∃x (
∧
i∈I

Li) ↔
∧

I0⊆N I

∃x (
∧
i∈I0

Li) (4)

is T -valid (here the variable x is of sort S and I0 ⊆N I means that I0 is a subset
of I having cardinality at most N).

Notice that the left-to-right implication in (4) is universally valid.

1 Recall that a model M is finitely generated iff there is a finite subset X of the
support |M| of M such that for every c ∈ |M|, there are b ⊆ X and a term t(x)
such that M |= t(b) = c.

118 A. Carioni, S. Ghilardi, and S. Ranise

Example 4.4. Real linear arithmetic has the signature {0, 1,−,+,=, <,≤} and
the single structure R (endowed with the natural interpretation) as class of
models. If we take the predicates in {<,≤,=} as representatives, an inspection of
the formulae produced by the Fourier-Motzkin quantifier elimination procedure
shows that this theory has QE-degree equal to 2. A similar result holds for the
so-called real and integer ‘difference logic.’

We remark that Definition 4.3 does not allow negative literals to be T -represen-
tatives. However, there is an obvious way to circumvent this limitation (when
needed) by expanding the signature in an inessential way. For instance, if we want
negated equations to be T -representative, it is sufficient to expand the signature
with a new binary predicate Neq, to let the formula ∀x∀y(Neq(x, y) ↔ x �= y)
be T -valid (e.g., by adding it to the axioms of T), and then to include Neq into
the set P of representative predicates. Because of this, we prefer to speak of ‘T -
representative literals’ rather than of ‘T -representative atoms’. Finally, notice
that, in a multi-sorted context, we might be interested in quantifier elimination
over just one sort (e.g., the sort representing time, in timed networks); in this
case, it is convenient to take all predicates not involving such sort and their
negations as representative, by using the above trick.

4.1 Automated Termination

Let us fix from now on a wqo theory W and an array-based system S = (a, I, τ)
(built up over theories TI , TE). We make the following extra assumptions:

(E1) TE has QE-degree N for all sorts occurring in τ as sorts of an existentially
quantified data variable (this is the variable e in (1));

(E2) for each disjunct of the form (1) in τ , φL and the partition components in
F are conjunctions of representative literals;

(E3) W has a finite relational signature ΣW with unique sort S and there is a
syntactic interpretation (−)∗ from W into AE

I such that S∗ = INDEX.

The fact that a translation map (−)∗ is a syntactic interpretation from W into
AE

I is decidable since the axioms for W are universal and their translations
modulo AE

I generate ∃A,I∀I -sentences, whose satisfiability is decidable. As a
consequence, if the signature of AE

I is finite (which is always the case in practi-
cal examples), the syntactic interpretations (−)∗ can be enumerated. In theory,
this guarantees the possibility to find the right translation (if it exists) for the
termination argument of Theorem 4.5 below to work, relatively to the wqo W ,
the array-based system S, and the set of unsafe states U under consideration.
In practice, however, the search for the right translation could be driven by user
provided hints.

We are ready to state the main results of the paper. We use α(i), β(i), . . . to
denote quantifier-free ΣW -formulae in which at most the variables i occur. We
say that an ∃I -formula ∃i ψ(i, a[i]) is a translation iff ψ is equivalent (modulo
AE

I) to a formula α∗ for some α(i). Being a translation is clearly a decidable
notion: this is because the signature of W is finite and relational, so the search

Automated Termination in Model Checking Modulo Theories 119

space for the suitable α(i) is finite (the required validity tests fall within the
decidability result for ∃A,I∀I -sentences).

Theorem 4.5. Assume (E1)-(E3). Suppose that the ∃I-formula U(a) describ-
ing unsafe states is a translation and let M be the maximum arity of the predicate
symbols in ΣW . The backward reachability procedure terminates if the following
conditions are satisfied by every finite model M of W (&M indicates the cardi-
nality of the support of M):

(i) if &M ≤ M , then the the translation δ∗M of the diagram of M is AE
I -

equivalent to a conjunction of representative literals LM
1 ∧ · · · ∧ LM

kM ;
(ii) if &M ≤ M , then for every substructure M[i0] of M, for every r=1, . . . , kM,

we have that if LM
r is of the kind L(i0, a[i0]) (i.e. if it mentions at most the

elements i0 of the support of M[i0]), then AE
I |= δ∗M[i0]

→ LM
r ;

(iii) if &M ≤ M ∗ N , then the formulae obtained after the elimination of the
quantifier ∃e from the formulae ∃e τh[δ∗M, f] (varying τh among the disjuncts
of τ and f under the suitable case-marking functions) are all translations.

In practice, N and M have very small values, typically N = M = 2. Thus, only
small models must be inspected in order to apply the theorem. When there is no
existentially quantified data variable in all transitions (i.e. variable e does not
occur neither in the φL’s nor in the F ’s of (1)), the proof of Theorem 4.5 shows
that we can assume N = 1 and condition (i) is not needed. In general, condition
(i) might not be made fully automated; however, if it holds, an enumerative
search can always effectively checks it. In practice, the situation is simple because
the following straightforward procedure succeeds and is sufficient to guarantee
(i). Consider δ∗M(i): if we replace in it all literals by their Boolean combinations
of representative literals and put the result in disjunctive normal form, we get
a formula of the form θ1(i, a[i])∨ · · · ∨ θk(i, a[i]) where the θj ’s are conjunctions
of representative literals. Condition (i) of Theorem 4.5 is certainly guaranteed
if k = 1 or if all θj but one are AE

I -inconsistent. Condition (ii) is technical but
usually holds trivially (we can figure that only pathological examples may violate
it). The significant condition to verify is just (iii); it can be effectively checked
because “being a translation” is decidable.

Theorem 4.5 covers termination of the backward reachability procedure de-
scribed in Section 3 for several classes of systems including broadcast proto-
cols [13,11], lossy channels systems [5], timed networks with integer clocks [3],
and timed networks with a single real clock [6].

The complexity of the procedure of Theorem 4.5 is hard to evaluate, because
too many parameters contribute to it (not only M,N , but also the size of τ ,
of ΣW , and of the translated atoms, the complexity of quantifier elimination,
the number and the complexity of the involved SMT tests, etc.); however, it is
arguable that we are well below the lower bounds known for deciding problems
which are nevertheless covered by Theorem 4.5 (see e.g. [21]). Thus it might
be convenient to apply our termination test before directly running backward
search.

120 A. Carioni, S. Ghilardi, and S. Ranise

Legend : t is the local clock value,
v is a shared variable, p is a pos-
itive parameter

Fig. 1. Automaton for one process of the Fischer’s protocol

4.2 An Application of Theorem 4.5: The Fischer Protocol

The goal of the Fischer protocol is to ensure mutual exclusion in a network of
processes, using a clock and a shared variable v. Each process has a local clock
and a control state variable ranging over {1, 2, 3, 4}. Each process is identified
by a natural number > 0 and can read/update a shared variable whose values
is either 0 or the index of one of the processes. A process wishing to enter the
critical section 4 starts in 1. If v = 0, the process goes to 2 and resets its local
clock. From 2, the process can go to state 3 if the clock is < p time unit (where p
is a positive parameter), sets v to its own index, and again resets its clock. From
3, the process can go to 4 if the clock is > p time unit and v is still equal to the
index of the process performing the transition. When exiting 4, the process sets
v to 0. The set of unsafe states, i.e. those states violating the mutual exclusion
property, can be characterized by the presence of at least two processes entering
4 at the same time. This specification is depicted in Figure 1. Before applying
Theorem 4.5, we make few observations to simplify the technical development.
As implemented in mcmt, the shared variable v is modelled as a constant array
which is updated uniformly so that the invariant ∀i ∀j (v[i] = v[j]) holds. The
invariant will be taken into consideration during backward search as explained in
Section 3. For simplicity, below, we do not indicate the redundant dependency on
the index i and write just v instead of v[i]. A second remark concerns processes
identifiers (id’s), which are integers and the sort of integers is not the same as
the sort INDEX. Formally, we view the id’s as an array id : INDEX → Z that is
never updated; we implicitly add the conjunct ∀i ∀j (id[i] = id[j] → i = j) to
the initial formula I and use this too as an invariant (this invariant just says
that different processes have different id’s); again, for simplicity however, below
we write just i for id[i]. Since the id’s are positive, we also implicitly add the
conjunct ∀i (id[i] > 0) to the initial formula and use it as an invariant. A third
remark is about the use of additional trivial invariants that are a substantial
part of the specification of the problem and do not capture any deep insight into
the system. In our case, for local clocks, stored in the real-valued array t, we use
the invariant ∀i (t[i] ≥ 0) in order to specify that clock values are non-negative.

The theory AE
I is composed of the theory of pure equality for TI and the

theory TE is the union of three theories TE1 , TE2, TE3 , where TE1 is linear real
arithmetic, TE2 is the theory of the single finite structure Q = {1, 2, 3, 4} (the
signature of TE2 has just four constants and the identity predicate), and TE3 is
linear integer arithmetic. Since the specification contains the positive parameter

Automated Termination in Model Checking Modulo Theories 121

p, the theory TE1 is extended with a further constant p constrained by the axiom
p > 0. Quantifier elimination is assumed only for TE1 and we take as represen-
tative predicates all the predicates of TE2 , TE3 together with their negations;
we pick just <,≤,= as representative predicates from TE1 (we get QE-degree
2 with this choice). The following array-based system (a, I, τ) formalizes the
Fischer protocol:

– a is a 4-tuple of array variables 〈l, t, v, id〉, whose target sorts are those of
TE1 , TE2 and TE3 (twice), respectively (l is the array of locations, t is the
array of clocks, v is the shared register, and id is the array of the id’s);

– the formula I is ∀i (l[i] = 1 ∧ t[i] = 0 ∧ v = 0), which constrains the initial
locations to be equal to 1 and that clocks and the shared variable to 0;

– τ is the disjunction of the time elapsing transition τ1 and the discrete tran-
sitions τ2, ..., τ6 listed below above (identical updates of the array id are not
displayed for the sake of conciseness):

τ1 := ∃c.
(
c > 0 ∧ v′ = v ∧ l′ = l ∧ t′ = λj.(t[j] + c)

)

τ2 := ∃i.

⎛
⎝
l[i] = 1 ∧ v = 0 ∧ v′ = v∧
l′ = λj. (if j = i then 2 else l[j]) ∧
t′ = λj. (if j = i then 0 else t[j])

⎞
⎠

τ3 := ∃i.

⎛
⎝
l[i] = 2 ∧ t[i] ≤ p ∧ v′ = i ∧
l′ = λj. (if j = i then 3 else l[j]) ∧
t′ = λj. (if j = i then 0 else t[j])

⎞
⎠

τ4 := ∃i.
(
l[i] = 3 ∧ v �= i ∧ v′ = v ∧ t′ = t ∧
l′ = λj. (if j = i then 1 else l[j])

)

τ5 := ∃i.
(
l[i] = 3 ∧ v = i ∧ t[i] > p ∧ v′ = v ∧ t′ = t ∧
l′ = λj. (if j = i then 4 else l[j])

)

τ6 := ∃i.
(
l[i] = 4 ∧ v′ = 0 ∧ t′ = t ∧
l′ = λj. (if j = i then 1 else l[j])

)

This completes the array-based specification for the Fischer protocol. Finally, the
∃I -formula U describing the set of unsafe states in which the mutual exclusion
property for location 4 is violated is ∃i1 ∃i2 (i1 �= i2 ∧ l[i1] = 4 ∧ l[i2] = 4).

To apply Theorem 4.5, we use the theory W in Example 4.2, relatively to the
set of predicates indicated below, together with their syntactic translations.

– The unary predicates Q1, . . . , Q4 are translated as the formulae l[i] =
1, . . . , l[i] = 4, respectively;

– the unary predicates P=0, P>0, P<p, P=p, P>p are translated as t[i] = 0, t[i] >
0, t[i] < p, t[i] = p, t[i] > p, respectively;

– the unary predicate F is translated as v = i;
– the 0-ary predicate f is translated as v = 0;
– the binary predicate ≤ is translated as t[i1] ≤ t[i2].

Clearly, the translations of the axioms of W (namely reflexivity, transitivity
and linearity axioms for ≤) are valid modulo AE

I . The unsafety formula is a

122 A. Carioni, S. Ghilardi, and S. Ranise

translation because i1 �= i2 ∧ l[i1] = 4 ∧ l[i2] = 4 is the translation of i1 �=
i2 ∧Q4(i1) ∧Q4(i2). It remains to check conditions (i)-(ii)-(iii) of Theorem 4.5.
For lack of space, we outline how to do this for (iii) by analysing the models of
W having at most four elements. Instead of examining them one by one, we use
a powerful heuristics. All representative literals coming from the translations of
the diagrams of the four-elements models are included in the following list:

(L) k �= k′, l[k] = 1, l[k] = 2, l[k] = 3, l[k] = 4, v = k, v �= k, v = 0, v �= 0,
t[k] = 0, t[k] > 0, t[k] < p, t[k] = p, t[k] > p, t[k] ≤ t[k′], t[k] < t[k′],

where k, k′ ∈ {i1, i2, i3, i4} - the literal t[k] < t[k′] is the translation of k′ �≤ k.
(Notice that to get the list above, it is sufficient to consider models on a support
with at most two elements, because there are no function symbols and at most
binary predicates in ΣW , so any model has a diagram which is the conjunction
of the diagrams of all submodels of cardinality at most two.) If we succeed in
proving that the formulae ∃e τ1[L1 ∧ L2, f] and τh[L1 ∧ L2, f] (2 ≤ h ≤ 6) are
translations for every pair of literals L1, L2 coming from the above list (with
possibly L1 ≡ L2), we actually proved more than what is required by condition
(iii) (the limitation to at most two literals is due to the fact the QE-degree is 2).

The case of the discrete transitions τ2, ..., τ6 is trivial. It remains to analyze
the time elapsing transition τ1 where ∃e τ1[L1∧L2, f] does not have case-marking
function and is ∃e (e > 0 ∧ L+e

1 ∧ L+e
2) where L+e

i is Li after the substitution
of the terms t[k] with t[k] + e. The relevant cases to be analyzed are 28 and in
all of them we get that ∃e τ1[L1 ∧ L2, f] is a translation. For example, ∃e (e >
0 ∧ t[k1] + e > 0 ∧ t[k2] + e = p) gives p > t[k2] ∧ t[k1] + p − t[k2] > 0 which
is equivalent to p > t[k2] (i.e. to P<p(k2)∗), taking into account the invariant
saying that clocks are non-negative.

Thus, all conditions from Theorem 4.5 have been checked and we can predict
termination of backward search for Fischer protocol. We emphasize that the
above arguments can be fully mechanized: they consist just in satisfiability checks
that can be automatically generated and quickly discharged by suitable tools.

5 Conclusions

We identified a sufficient condition for the termination of a symbolic backward
reachability procedure encompassing many results from the literature in a uni-
form and declarative framework. We believe that the statement of Theorem 4.5
could be seen as a paradigm for a declaratively-oriented approach to termination;
the statement itself needs to be further investigated and exploited in connection
to more examples of wqo-theories and syntactic translations arising from encod-
ing termination arguments based on Kruskal theorem.

An interesting direction for future work consists in applying the methods of
this paper in connection to abstraction techniques: our results could be prof-
itably employed to predict whether a proposed abstraction of a system yields a
terminating search.

Automated Termination in Model Checking Modulo Theories 123

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: Proc. of LICS, pp. 313–321 (1996)

2. Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model checking
without transducers. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS,
vol. 4424, pp. 721–736. Springer, Heidelberg (2007)

3. Abdulla, P.A., Deneux, J., Mahata, P.: Multi-clock timed networks. In: Proc. of
LICS 2004, the 18th IEEE Int. Symp. on Logic in Computer Science (2004)

4. Abdulla, P.A.: Forcing monotonicity in parameterized verification: From mul-
tisets to words. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J.,
Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 1–15. Springer, Heidelberg
(2010)

5. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Informa-
tion and Computation 127(2), 91–101 (1996)

6. Abdulla, P.A., Jonsson, B.: Model checking of systems with many identical timed
processes. Theoretical Computer Science, 241–264 (2003)

7. Alberti, F., Ghilardi, S., Pagani, E., Ranise, S., Rossi, G.P.: Brief Announcement:
Automated Support for the Design and Validation of Fault Tolerant Parameter-
ized Systems—a case study. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010.
LNCS, vol. 6343, pp. 392–394. Springer, Heidelberg (2010)

8. Carioni, A., Ghilardi, S., Ranise, S.: Automated Termination in Model Checking
Modulo Theories - extended version,
http://homes.dsi.unimi.it/~ghilardi/allegati/CGR_RP11_extended.pdf

9. Carioni, A., Ghilardi, S., Ranise, S.: MCMT in the Land of Parametrized Timed
Automata. In: Proc. of VERIFY 2010 (2010)

10. Chang, C.-C., Keisler, J.H.: Model Theory, 3rd edn. North-Holland, Amsterdam
(1990)

11. Delzanno, G., Esparza, J., Podelski, A.: Constraint-based analysis of broadcast
protocols. In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683,
pp. 50–66. Springer, Heidelberg (1999)

12. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, New York
(1972)

13. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
Proc. of LICS, pp. 352–359. IEEE Computer Society, Los Alamitos (1999)

14. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Towards SMT Model-Checking
of Array-based Systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 67–82. Springer, Heidelberg (2008)

15. Ghilardi, S., Ranise, S.: A Note on the Stopping Failures Models, Unpublished
Draft, mcmt web site (2009)

16. Ghilardi, S., Ranise, S.: Goal Directed Invariant Synthesis for Model Checking
Modulo Theories. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS,
vol. 5607, pp. 173–188. Springer, Heidelberg (2009)

17. Ghilardi, S., Ranise, S.: Model Checking Modulo Theory at work: the integration
of Yices in MCMT. In: AFM 2009 (co-located with CAV 2009) (2009)

18. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by
SMT-solving: termination and invariant synthesis. LMCS 6(4) (2010)

19. Ghilardi, S., Ranise, S., Valsecchi, T.: Light-Weight SMT-based Model-Checking.
In: Proc. of AVOCS 2007-2008, ENTCS (2008)

http://homes.dsi.unimi.it/~ghilardi/allegati/CGR_RP11_extended.pdf

124 A. Carioni, S. Ghilardi, and S. Ranise

20. Ghilardi, S., Ranise, S.: MCMT: A Model Checker Modulo Theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22–29. Springer, Heidelberg
(2010)

21. Philippe, S.: Verifying lossy channel systems has nonprimitive recursive complexity.
Information Processing Letters 83(5), 251–261 (2002)

22. Ranise, S., Tinelli, C.: The SMT-LIB Standard: Version 1.2. Technical report, Dep.
of Comp. Science, Iowa (2006), http://www.SMT-LIB.org/papers

http://www.SMT-LIB.org/papers

Monotonic Abstraction for Programs with
Multiply-Linked Structures�

Parosh Aziz Abdulla1, Jonathan Cederberg1, and Tomáš Vojnar2

1 Uppsala University, Sweden
2 FIT, Brno University of Technology, Czech Republic

Abstract. We investigate the use of monotonic abstraction and backward reach-
ability analysis as means of performing shape analysis on programs with multiply
pointed structures. By encoding the heap as a vertex- and edge-labeled graph, we
can model the low level behaviour exhibited by programs written in the C pro-
gramming language. Using the notion of signatures, which are predicates that
define sets of heaps, we can check properties such as absence of null pointer
dereference and shape invariants. We report on the results from running a proto-
type based on the method on several programs such as insertion into and merging
of doubly-linked lists.

1 Introduction

Dealing with programs manipulating dynamic pointer-linked data structures is one of
the most challenging tasks of automated verification since these data structures are of
unbounded size and may have the form of complex graphs. As discussed below, vari-
ous approaches to automated verification of dynamic pointer-linked data structures are
currently studied in the literature. One of these approaches is based on using mono-
tonic abstraction and backward reachability [4,2]. This approach has been shown to
be very successful in handling systems with complex graph-structured configurations
when verifying parameterized systems [3]. However, in the area of verification of pro-
grams with dynamic linked data structures, it has so far been applied only to relatively
simple singly-linked data structures.

In this paper, we investigate the use of monotonic abstraction and backward reach-
ability for verification of programs dealing with dynamic linked data structures with
multiple selectors. In particular, we consider verification of sequential programs writ-
ten in a subset of the C language including its common control statements as well as its
pointer manipulating statements (apart from pointer arithmetics and type casting). For
simplicity, we restrict ourselves to data structures with two selectors. This restriction
can, however, be easily lifted. We consider verification of safety properties in the form
of absence of null and dangling pointer dereferences as well as preservation of shape
invariants of the structures being handled.

We represent heaps in the form of simple vertex- and edge-labeled graphs. As is
common in backward verification, our verification technique starts from sets of bad

� The first two authors were supported by the Swedish UPMARC project, the third author was
supported by the COST OC10009 project of the Czech Ministry of Education.

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 125–138, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

126 P.A. Abdulla, J. Cederberg, and T. Vojnar

configurations and checks whether some initial configurations are backward reachable
from them. For representing sets of bad configurations as well as the sets of configura-
tions backward reachable from them, we use the so-called signatures which arise from
heap graphs by deleting some of their nodes, edges, or labels. Each signature represents
an upward-closed set of heaps wrt. a special pre-order on heaps and signatures. We
show that the considered C pointer manipulating statements can be approximated such
that one can compute predecessors of sets of heaps represented via signatures wrt. these
statements.

We have implemented the proposed approach in a light-weight Java-based prototype
and tested it on several programs manipulating doubly-linked lists and trees. The results
show that monotonic abstraction and backward reachability can indeed be successfully
used for verification of programs with multiply-linked dynamic data structures.

Related work. Several different approaches have been proposed for automated verifi-
cation of programs with dynamic linked data structures. The most-known approaches
include works based on monadic second-order logic on graph types [10], 3-valued
predicate logic with transitive closure [14], separation logic [12,11,15,6], other kinds
of logics [16,9], finite tree automata [5,7], forest automata [8], graph grammars [13],
upward-closed sets [4,2], as well as other formalisms.

As we have already indicated above, our work extends the approach of [4,2] from
singly-linked to multiply-linked heaps. This extension has required a new notion of sig-
natures, a new pre-order on them, as well as new operations manipulating them. Not
counting [4,2], the other existing works are based on other formalisms than the one
used here, and they use a forward reachability computation whereas the present pa-
per uses a backward reachability computation. Apart from that, when comparing the
approach followed in this work with the other existing approaches, one of the most
attractive features of our method is its simplicity. This includes, for instance, a sim-
ple specification of undesirable heap shapes in terms of signatures. Each such signa-
ture records some bad pattern that should not appear in the heaps, and it is typically
quite small (usually with three or fewer nodes). Furthermore, our approach uses local
and quite simple reasoning on the graphs in order to compute predecessors of sym-
bolically represented infinite sets of heaps1. Moreover, the abstraction used in our ap-
proach is rather generic, not specialised for some fixed class of dynamic data struc-
tures.

Outline. In Section 2, we give some preliminaries and introduce our model for describ-
ing heaps. We present the class of programs we consider in Section 3. In Section 4,
we introduce signatures as symbolic representations for infinite sets of configurations.
We show how to use signatures for specifying bad heap patterns (that violate safety
properties of the considered programs) in Section 5. In Section 6, we describe a sym-
bolic backward reachability analysis algorithm for checking safety properties. Next, we
report on experiments with the proposed method in Section 7. Finally, we give some
conclusions and directions for future work in Section 8.

1 Approaches based on separation logic and forest automata also use local updates, but the up-
dates used here are still simpler.

Monotonic Abstraction for Programs with Multiply-Linked Structures 127

2 Heaps

Preliminaries. For a partial function f : A → B and a ∈ A, we write f (a) =⊥ to signify
that f is undefined at a. We take f [a &→ b] to be the function f ′ such that f ′(a) = b and
f ′(x) = f (x) otherwise. We define the restriction of f to A′, written f |A′ , as the function
f ′ such that f ′(a) = f (a) if a ∈ A′, and f ′(a) = ⊥ if a �∈ A′. Given b ∈ B, we write
f−1(b) to denote the set {a ∈ A : f (a) = b}.

y

#

t2 x, t

1

2

1

2

1

2

1

2

y

#

x

t2 t

1

2

1

2

1

2

1

2

y

#

x

t2 t

1

2

1

2

1

2

1

2

Fig. 1. Heaps

Heaps. We model the dynamically allocated memory, also
known as the heap, as a labeled graph. The nodes of the
graph represent memory cells, and the edges represent how
these nodes are linked by their successor pointers. Each
edge is labeled by a color, reflecting which of the possi-
bly many successor pointers of its source cell the edge is
representing. In this work, we—for simplicity—consider
structures with two selectors, denoted as 1 and 2 (instead
of, e.g., next and prev commonly used in doubly-linked
lists or left and right used in trees) only. The results
can, however, be generalized to any number of selectors.

To model null pointers, we introduce a special node
called the null node, written #. Null successors are then
modeled by making the corresponding edge point to this
node. When allocated memory is relinquished by a pro-
gram, any pointers previously pointing to that memory be-
come dangling. Dangling pointers also arise when mem-
ory is freshly allocated and not yet initialized. This situa-
tion is reflected in our model by the introduction of another
special node called the dangling node, denoted as ∗. In the
same manner as for the null node, a pointer being dangling
is modeled by having the corresponding edge point to the
dangling node.

Furthermore, we model a program variable by labeling
the node that a specific variable is pointing to with the vari-
able in question.

Three examples of heaps can be seen in Figure 1 (we
will get back to what they represent in Section 3). To avoid unnecessarily cluttering the
pictures, the special node ∗ has been left out. We will adopt the convention of omitting
any of the special nodes ∗ and # from pictures unless they are labeled or have edges
pointing to them.

Assume a finite set of program variables X and a set C = {1,2} of edge colors.
Formally, a heap is a tuple (M,E,s,t,τ,λ) where

– M = M ∪{#,∗} represents the finite set of allocated memory cells, together with
the two special nodes representing the null value and the dangling pointer, respec-
tively.

– E is a finite set of edges.

128 P.A. Abdulla, J. Cederberg, and T. Vojnar

– The source function s : E → M is a total function that gives the source of the edges.
– The target function t : E → M is a total function that gives the target of the edges.
– The type function τ : E → C is a total function that gives the color of the edges.
– λ : X → M is a total function that defines the positions of the program variables.

We also require that the heaps obey the following invariant:

∀c ∈ C ∀m ∈ M : |s−1(m)∩ τ−1(c)| = 1.

The invariant states that among the edges going out from each cell there is exactly
one with color 1 and one with color 2. Note that as a consequence of these invariants,
each cell has exactly two outgoing edges. Therefore, each heap h induces a function
succh,c : M → M for each c ∈ C, which maps each cell to its c-successor. For m ∈ M,
succh,c(m) is formally defined as the m′ ∈ M such that there is an edge e ∈ E with
s(e) = m, t(e) = m′, and τ(e) = c. This is indeed a function due to the fact that there
must be exactly one such edge, according to the specified invariants.

Auxiliary Operations on Heaps. We will now introduce some notation for operations
on heaps to be used in the following.

Assume a heap h = (M ,E,s,t,τ,λ). For m ∈ M, we write h 1 m to describe the
heap h′ where m has been deleted together with its two outgoing edges, and any ref-
erences to m are now dangling references. Formally, h 1 m is defined as the heap
h′ = (M′

,E ′,s′,t ′,τ′,λ′) where M
′ = M \ {m}, E ′ = E \ s−1(m), s′ = s|E ′ , t ′ : E ′ → M

′

is a function such that t ′(e) = ∗ if e ∈ t−1(m) and t ′(e) = t(e) otherwise, τ′ = τ|E ′ , and
λ′(x) = ∗ if x ∈ λ−1(m) and λ′(x) = λ(x) otherwise. In a similar manner, for m′ �∈ M,
we write h⊕m′ to mean the heap where we have added a new cell as well as two new
dangling outgoing edges. Formally, h⊕m′ = (M′

,E ′,s′,t ′,τ′,λ) where M
′ = M∪{m′},

E ′ = E ∪ {e1,e2}, s′ = s[e1 &→ m′,e2 &→ m′], t ′ = t[e1 &→ ∗,e2 &→ ∗] and τ′ = τ[e1 &→
1,e2 &→ 2] for some e1,e2 �∈ E . By h.s[e &→ m], we mean the heap identical to h, ex-
cept that the source function now maps e ∈ E to m ∈ M. This is formally defined as
h.s[e &→ m] = (M,E,s[e &→ m],t,τ,λ). The definitions of h.t[e &→ m], h.τ[e &→ m], and
h.λ[x &→ m] are analogous.

3 Programming Language

In this section, we briefly present the class of programs which our analysis is designed
for. We also formalize the transition systems which are induced by such programs.

In particular, our analysis and the prototype tool implementing it are designed for se-
quential programs written in a subset of the C language. The considered subset contains
the common control flow statements (like if, while, for, etc.) and the C pointer manip-
ulating statements, excluding pointer arithmetics and type casting. As for the structures
describing nodes of dynamic data structures, we—for simplicity of the presentation as
well as of the prototype implementation—allow one or two selectors to be used only.
However, one can easily generalize the approach to more selectors. Statements manip-
ulating data other than pointers (e.g., integers, arrays, etc.) are ignored—or, in case of
tests, replaced by a non-deterministic choice. We allow non-recursive functions that can
be inlined2.

2 Alternatively, one could use function summaries, which we, however, not consider here.

Monotonic Abstraction for Programs with Multiply-Linked Structures 129

1 typedef struct DLL {
2 struct DLL *next;
3 struct DLL *prev;
4 int data;
5 } DLL;
6
7 DLL *merge(DLL *l1, DLL *l2) {

...
17 while(!(x==NULL)&&!(y==NULL)) {
18 if(x->data < y->data) {
19 t = x;
20 x = t->next;
21 } else {
22 t = y;
23 y = t->next;
24 }
25 t->prev = t2;
26 t2->next = t;
27 t2 = t;
28 }

...

Fig. 2. A program for merging doubly-linked lists

Figure 2 contains an exam-
ple code snippet written in the
considered C subset (up to the
tests on integer data that will be
replaced by a non-deterministic
choice for the analysis). In this
example, the data structure DLL
represents nodes of a doubly-
linked list with two successor
pointers as well as a data value.
The function merge takes as in-
put two doubly-linked lists and
combines them into one doubly-
linked list3. In Figure 1, the
result of executing two of the
statements in the merge can be
seen. From the top graph, the
middle is generated by execut-
ing the statement at line 20. By
then executing the statement at
line 25, the bottom graph is gen-
erated. (Note that instead of the
next and prev selectors, the fig-
ure uses selectors 1 and 2, re-
spectively.)

Operational Semantics and the Induced Transition System. From a C program, we
can extract a control flow graph (PC,T) by standard techniques. Here PC is a finite set
of program counters, and T is a finite set of transitions. A transition t is a tuple of the
form (pc,op, pc′) where pc, pc′ ∈ PC, and op is an operation manipulating the heap.
The operation op is of one of the following forms:

– x == y or x != y, which means that the program checks the stated condition.
– x = y, x = y.next(i), or x.next(i) = y, which are assignments functioning

in the same way as assignments in the C language4.
– x = malloc() or free(x), which are allocation and deallocation of dynamic mem-

ory, working in the same manner as in the C language.

When firing t, the program counter is updated from pc to pc′, and the heap is modified
according to op with the usual C semantics formalized below.

3 In fact, if the input lists are sorted, the output list will be sorted too, but this is not of interest
for our current analysis—let us, however, note that one can think of extending the analysis to
track ordering relations between data in a similar way as in [2], which we consider as one of
interesting possible directions for future work.

4 Here, next(i) refers to the i-th selector of the appropriate memory cell.

130 P.A. Abdulla, J. Cederberg, and T. Vojnar

The induced transition system. We will now define the transition system (S,−→) in-
duced by a control flow graph (PC,T). The states of the transition system are pairs
(pc,h) where pc ∈ PC is the current location in the program, and h is a heap. The
transition relation −→ reflects the way that the program manipulates the heap during
program execution.

Given states s = (pc,h) and s′ = (pc′,h′) there is a transition from s to s′, written

s −→ s′, if there is a transition (pc,op, pc′) ∈ T such that h
op−→ h′. The condition h

op−→
h′ holds if the operation op can be performed to change the heap h into the heap h′. The
definition of

op−→ is found below.
Assume two heaps h = (M,E,s, t,τ,λ) and h′ = (M′

,E ′,s′,t ′,τ′,λ′). We say that

h
op−→ h′ if one of the following is fulfilled:

– op is of the form x == y, λ(x) = λ(y) �= ∗, and h = h′.5

– op is of the form x != y, λ(x) �= λ(y), λ(x) �= ∗, λ(y) �= ∗, and h = h′.
– op is of the form x = y, λ(y) �= ∗, and h′ = h.λ[x &→ λ(y)].
– op is of the form x = y.next(i), λ(y) �∈ {∗,#}, succh,i(λ(y)) �= ∗, and h′ = h.λ[x &→

succh,i(λ(y))].
– op is of the form x.next(i) = y, λ(x) �= ∗, λ(y) �= ∗, and h′ = h.t[e &→ λ(y)] where

e is the unique edge in E such that s(e) = λ(x) and τ(e) = i.
– op is of the form x = malloc() and there is a heap h1 such that h1 = h⊕m and

h′ = h1.λ[x &→ m] for some m �∈ M.6

– op is of the form free(x), λ(x) �= ∗, and h′ = h1λ(x).

4 Signatures

In this section, we introduce the notion of signatures which is a symbolic representation
of infinite sets of heaps.

Intuitively, a signature is a predicate describing a set of minimal conditions that
a heap has to fulfill to satisfy the predicate. It can be viewed as a heap with some
parts “missing”.

Formally, a signature is defined as a tuple (M,E,s, t,τ,λ) in the same way as a heap,
with the difference that we allow the τ and λ functions to be partial. For signatures, we
also require some invariants to be obeyed, but they are not as strict as the invariants for
heaps. More precisely, a signature has to obey the following invariants:

1. ∀c ∈ C ∀m ∈ M : |s−1(m)∩ τ−1(c)| ≤ 1,
2. ∀m ∈ M : |s−1(m)| ≤ 2.

These invariants say that a signature can have at most one outgoing edge of each color
in the set {1,2}, and at most two outgoing edges in total. Note that heaps are a special
case of signatures, which means that each heap is also a signature.

5 Note that the requirement that λ(x) and λ(y) are not dangling pointers are not part of the
standard C semantics. Comparing dangling pointers are, however, bad practice and our tool
therefore warns the user.

6 Although the malloc operation may fail, we assume for simplicity of presentation that it always
succeeds.

Monotonic Abstraction for Programs with Multiply-Linked Structures 131

Operations on Signatures. We formalize the notion of a signature as a predicate by
introducing an ordering on signatures. First, we introduce some additional notation for
manipulating signatures. Recall that, for a heap h = (M ,E,s, t,τ,λ) and m ∈ M, h1m
is a heap identical to h except that m has been deleted. As the formal definition of 1
carries over directly to signatures, we will use it also for signatures.

Given a signature sig = (M,E,s, t,τ,λ), we define the removal of an edge e ∈ E ,
written sig 	 e, as the signature (M,E ′,s′, t ′,τ′,λ) where E ′ = E \ {e}, s′ = s|E ′ , t ′ =
t|E ′ , and τ′ = τ|E ′ . Similarly, given m1 ∈ M, m2 ∈ M, and c ∈ C, the addition of a c-
edge from m1 to m2 is written sig
 (m1

c→ m2). This is formalized as sig
 (m1
c→

m2) = (M,E ′,s′,t ′,τ′,λ) where E ′ = E ∪ {e′} for some e′ �∈ E , s′ = s[e′ &→ m1], t ′ =
t[e′ &→ m2], and τ′ = τ[e′ &→ c]. Note that the addition of edges might make the result
violate the invariants for signatures. However, we will always use it in such a way that
the invariants are preserved. Finally, for m �∈ M, we define sig.(M := M ∪{m}) as the
signature (M ∪{m},E,s,t,τ,λ).

Ordering on Signatures. For a signature sig = (M ,E,s, t,τ,λ) and m ∈ M, we say
that m is unlabeled if λ−1(m) = /0. We say that m is isolated if m is unlabeled and
also s−1(m) = /0 and t−1(m) = /0 both hold. We call m simple when m is unlabeled
and s−1(m) = {e1}, t−1(m) = {e2}, e1 �= e2, and τ(e1) = τ(e2) all hold. Intuitively, an
isolated cell has no touching edges, whereas a simple cell has exactly one incoming
and one outgoing edge of the same color. For sig1 = (M1,E1,s1, t1,τ1,λ1) and sig2 =
(M2,E2,s2,t2,τ2,λ2), we write that sig1 � sig2 if one of the following is true:

– Isolated cell deletion. There is an isolated m ∈ M2 s.t. sig1 = sig2 1m.
– Edge deletion. There is an edge e ∈ E2 such that sig1 = sig2 	 e.
– Contraction. There is a simple cell m ∈ M2, edges e1,e2 ∈ E2 with t2(e1) = m,

s2(e2) = m, τ(e1) = τ(e2), and a signature sig′ such that sig′ = sig2.t[e1 &→ t(e2)]
and sig1 = sig′ 1m.

– Edge decoloring. There is an edge e ∈ E2 such that sig1 = sig2.τ[e &→ ⊥].
– Label deletion. There is a label x ∈ X such that sig1 = sig2.λ[x &→ ⊥]).

We call the above operations ordering steps, and we say that a signature sig1 is smaller
than a signature sig2 if there is a sequence of ordering steps from sig2 to sig1, written
sig1 2 sig2. Formally, 2 is the reflexive transitive closure of �.

The Semantics of Signatures. Using the ordering relation 2 defined above, we can
interpret each signature as a predicate. As previously noted, the intuition is that a heap
h satisfies a predicate sig if h contains at least the structural information present in sig.
We make this precise by saying that h satisfies sig, written h ∈ �sig�, if sig 2 h. In
other words, �sig� is the set of all heaps in the upward closure of sig with respect to the
ordering 2. For a set S of signatures, we define �S� =

⋃
s∈S �s�.

5 Bad Configurations

We will now show how to use the concept of signatures to specify bad states. The main
idea is to define a finite set of signatures characterizing the set of all heaps that are not
considered correct. Such a set of signatures is called the set of bad patterns.

132 P.A. Abdulla, J. Cederberg, and T. Vojnar

We present the notion on a concrete example, namely, the case of a program that
should produce a single acyclic doubly-linked list pointed to by a variable x. In such
a case, the following properties are required to hold at the end of the program:

1. Starting from any allocated memory cell, if we follow the next(1) pointer and then
immediately the next(2) pointer, we should end up at the original memory cell.

2. Likewise, starting from any allocated cell, if we follow the next(2) pointer and
then immediately the next(1) pointer, we should end up at the original cell.

3. If we repeatedly follow a pointer of the same type starting from any allocated cell,
we should never end up where we started. In other words, no node is reachable
from itself in one or more steps using only one type of pointer.

4. The variable x is not dangling, and there are no dangling next pointers.
5. The variable x points to the beginning of the list.
6. There are no unreachable memory cells.

We call properties 1 and 2 Doubly-Linkedness, property 3 is called Non-Cyclicity, prop-
erty 4 is called Absence of Dangling Pointers, property 5 is called Pointing to the Be-
ginning of the List, and, finally, property 6 is called Absence of Garbage.

b1: 1 2

b2: 2 1

#b3: 1 2

#b4: 2 1

Doubly-Linkedness. As noted above, the set of bad states with
respect to a property p is characterized by a set of signatures such
that the union of their upward closure with respect to 2 contains
all heaps not fulfilling p. The property we want to express is that
following a pointer of one color and then immediately following
a pointer of the other color gets you back to the same node. The
bad patterns are then simply the set {b1,b2,b3,b4}, shown to the
right, as they describe exactly the property of taking one step of
each color and not ending up where we started.

b5:

1

b6:

2
Non-Cyclicity. To describe all states that violate the property
of not being cyclic, is to describe exactly those states that do
have a cycle. Note that all the edges of the cycle has to be of the
same color. Therefore, the bad patterns we get for non-cyclicity
is the set {b5,b6}, depicted to the right.

∗
x

b7: b8: ∗
Absence of Dangling Pointers. To describe dangling pointers,
two bad patterns suffice—namely, the pattern b7 depicted to the
right stipulates that the variable x that should point to the re-
sulting list is not dangling, and the pattern b8 requires that there is no dangling next
pointer.

x
b9: 2Pointing to the Beginning of the List. To describe that the pointer

variable x should point to the beginning of a list, one bad pattern
suffices—namely, the pattern b9 depicted to the right (saying that the
node pointed by x has a predecessor). Note that the pattern does not prevent the resulting
list from being empty.

Monotonic Abstraction for Programs with Multiply-Linked Structures 133

#
x

b10:

#b11:
1

2

Absence of Garbage. To express that there should be no garbage,
the patterns b10 and b11 are needed. The b10 pattern says that if the
resulting list is empty, there should be no allocated cell. The b11 pat-
tern designed for non-empty lists then builds on that we check the
Doubly-Linkedness property too. When we assume it to hold, the
isolated node can never be part of a well-formed list segment: In-
deed, since the two edges in b11 are both pointing to the null cell, any possible inclusion
of the isolated node into the list results in a pattern that is larger either than b1 or than b2.

Clearly, the above properties are common for many programs handling doubly-
linked lists (the name of the variable pointing to the resulting list can easily be adjusted,
and it is easy to cope with multiple resulting lists too). We now describe some more
properties that can easily be expressed and checked in our framework.

#
x

b12:
Absence of Null Pointer Dereferences. The bad pattern used to prove ab-
sence of null pointer dereferences is b12. A particular feature of this pattern
is that it is duplicated many times. More precisely, for each program state-
ment of the form y = x.next(i) or x.next(i) = y, the pattern is added to the start-
ing set of bad states Sbad coupled with the program counter just before the operation. In
other words, we construct a state that we know would result in a null pointer derefer-
ence if reached and try to prove that the configuration is unreachable. The construction
for dangling pointer dereferences is analogous.

#b13:
Cyclicity. To encode that a doubly-linked list is cyclic, we use b13 as
a bad pattern. Given that we already have Doubly-Linkedness, we only
need to enforce that the list is not terminated. This is achieved by the ex-
istence of a null pointer in the list since such a pointer will break the doubly-linkedness
property. Note that this relies on the fact that the result actually is a doubly-linked list.

b14:
b15:

b16:

Treeness. To violate the property of being a tree, the data
structure must have a cycle somewhere, two paths to the same
node, or two incoming edges to some node. The bad patterns
for trees are thus the set {b14,b15,b16} depicted to the right.

A Remark on Garbage. Note that the treatment of garbage
presented above is not universal in the sense that it is valid
for all data structures. In particular, if the data structure under
consideration is a tree, garbage cannot expressed in our present framework. Intuitively,
there is only one path in each direction that ends with null in a doubly-linked list,
whereas a tree can have more paths to null. Thus a pattern like b11 is not sufficient since
the isolated node can still be incorporated into the tree in a valid way. One way to solve
this problem, which is a possible direction for future work, is to add some concept of
anti-edges which would forbid certain paths in a structure from arising.

6 Reachability Analysis

In this section, we present the algorithm used for analysing the transition system de-
fined in Section 3. We do this by first introducing an abstract transition system that

134 P.A. Abdulla, J. Cederberg, and T. Vojnar

has the property of being monotonic. Given this abstract system, we show how to per-
form backward reachability analysis. Such analysis requires the ability to compute the
predecessors of a given set of states, all of which is described below.

Monotonic Abstraction. Given a transition system T = (S,−→) and an ordering 2 on
S, we say that T is monotonic if the following holds. For any states s1,s2 and s3 such
that s1 2 s2 and s1 −→ s3, we can always find a state s4 such that s2 2 s4 and s3 −→ s4.

The transition system defined in Section 3 does not exhibit this property. We can,
however, construct an over-approximation of our transition relation in such a way that
it becomes monotonic. This new transition system −→A is constructed from −→ by
using the state s3 above as our required s4. Formally, s −→A s′ iff there is an s′′ such
that s′′/J 2 s and s′′ −→ s′.

Since our abstraction generates an over-approximation of the original transition sys-
tem, if it is shown that no bad pattern is reachable under this abstraction, the result
holds for the original program too. The inverse does not hold, and so the analysis may
generate false alarms, which, however, does not happen in our experiments. Further, the
analysis is not guaranteed to terminate in general. However, it has terminated in all the
experiments we have done with it (cf. Section 7).

Auxiliary Operations on Signatures. To perform backward reachability analysis, we
need to compute the predecessor relation. We show how to compute the set of prede-
cessors for a given signature with respect to the abstract transition relation −→A.

In order to compute pre, we define a number of auxiliary operations. These opera-
tions consist of concretizations; they add “missing” components to a given signature.
The first operation adds a variable x. Intuitively, given a signature sig, in which x is
missing, we add x to all places in which x may occur in heaps satisfying sig.

Let M# = M ∪{#} and sig = (M ,E,s, t,τ,λ). We define the set sig↑(λ(x) �∈ {⊥,∗})
to be the set of all signatures sig′ = (M′

,E ′,s′, t ′,τ′,λ′) s.t. one of the following is true:

– λ(x)∈ M# and sig = sig′. The variable is already present in sig, so no changes need
to be made.

– λ(x) = ⊥ and there is a cell m ∈ M# such that sig′ = sig.λ[x &→ m]. We add x to
a cell that is explicitly represented in sig.

– λ(x) = ⊥, and there is a cell m �∈ M and a signature sig1 such that sig1 = sig.(M :=
M ∪{m}) and sig′ = sig1.λ[x &→ m]. We add x to a cell that is missing in sig. Note
that according to the definition of �sig�, there may exist cells in h ∈ �sig� that are
not explicitly represented in sig.

– λ(x) = ⊥, and there is a cell m �∈ M, edges e1 ∈ E , e2 �∈ E and signatures sig1,

sig2 and sig3 such that sig1 = sig.(M := M ∪{m}), sig2 = sig1
 (m
τ(e1)→ t(e1)),

sig3 = sig2.t[e1 &→ m] and sig′ = sig3.λ[x &→ m]. We add x to a cell that is not explicit
in sig. The difference to the previous case is that the missing cell lies between two
explicit cells m1, m2 in sig, along an edge between them.

We now define an operation that adds a missing edge between to specific cells in a
signature. Given cells m1 ∈ M,m2 ∈ M, we say that a signature sig′ is in the set sig↑
(m1

c→ m2) if one of the following is true:

Monotonic Abstraction for Programs with Multiply-Linked Structures 135

– There is an e ∈ E such that s(e) = m1, t(e) = m2, τ(e) = c and sig′ = sig. The edge
is already present, so no addition of edge is needed.

– There is an e ∈ E such that s(e) = m1, t(e) = m2, τ(e) = ⊥, there is no e′ ∈ E
such that s(e′) = m1 and τ(e′) = c, and we have and sig′ = sig.τ[e &→ c]. There is
a decolored edge whose color we can update to c. To do this we need to ensure that
there is no such edge already.

– There is no e ∈ E such that s(e) = m1 and τ(e) = c, |s−1(m1)| ≤ 1 and sig′ =
sig
(m1

c→ m2). The edge is not present, and m1 does not already have an outgoing
edge of color c. We add the edge to the graph.

The third operation adds labels x and y to the signature in such a way that they both
label the same cell.

Formally, we say that a signature sig′ is in the set sig↑(λ(x) = λ(y)) if one of the
following is true:

– λ(x) ∈ M#, λ(x) = λ(y) and sig′ = sig. Both labels are already present and labeling
the same cell, so no changes are needed.

– λ(y) = ⊥ and there is a sig1 ∈ sig↑(λ(x) �∈ {⊥,∗}) such that sig′ = sig1.λ[y &→
λ1(x)]. The label y is not present, so we add it to a signature where x is guaranteed
to be present.

– λ(x) = ⊥, λsig(y) ∈ M# and sig′ = sig.λ[x &→ λ(y)]. The label x is not present, so
we add it to the cell that is labeled by y.

Computing Predecessors. We will now describe how to compute the predecessors of
a signature sig and an operation op, written pre(op)(sig).

Assume a signature sig = (M,E,s, t,τ,λ). We define pre(x = malloc())(sig) as
the set sig′ of signatures such that there are signatures sig1 = (M1,E1,s1, t1,τ1,λ1),
sig2, and sig3 satisfying

– sig1 ∈ sig↑(λ(x) �∈ {⊥,∗}), there is no y ∈ X such that λ1(y) = λ1(x) and no e ∈ E1

such that t1(e) = λ1(x),
– sig2 ∈ sig1↑(λ1(x)

1→∗),
– sig3 ∈ sig2↑(λ1(x)

2→∗), and
– sig′ = sig3 1λ1(x).

We let pre(x = y)(sig) be the set sig′ of signatures such that there is a signature sig1

satisfying sig1 ∈ sig↑(λ(x) = λ(y)) and sig′ = sig1.λ[x &→ ⊥].
Next, we define pre(x==y)(sig) to be the set of all sig′ s.t. sig′ ∈ sig↑(λ(x) = λ(y)).

On the other hand, we define pre(x!=y)(sig) to be the set of all sig′ = (M′
,E ′,s′, t ′,τ′,λ′)

with λ′(x) �= λ′(y) and such that there is a signature sig1 ∈ sig↑(λ(x) �∈ {⊥,∗}) such that
sig′ ∈ sig1↑(λ(y) �∈ {⊥,∗}).

Further, pre(x = y.next(i))(sig) is defined as the set of all signatures sig′ =
(M′

,E ′,s′,t ′,τ′,λ′) such that there are sig1, sig2 = (M2,E2,s2, t2,τ2,λ2), sig3 with

– sig1 = sig↑(λ(x) �∈ {⊥,∗}),
– sig2 = sig1↑(λ(x) �∈ {⊥,∗}),

136 P.A. Abdulla, J. Cederberg, and T. Vojnar

– sig3 ∈ sig↑(λ2(y)
i→ λ2(x)), and

– sig′ = sig3.λ[x &→ ⊥].

We let pre(x.next(i) = y)(sig) be the set of all sig′ = (M′
,E ′,s′,t ′,τ′,λ′) such that

there are sig1, sig2, sig3 = (M3,E3,s3, t3,τ3,λ3), and e ∈ E3 with

– sig1 = sig↑(λ(x) �∈ {⊥,∗}),
– sig2 = sig1↑(λ(x) �∈ {⊥,∗}),
– sig3 ∈ sig↑(λ2(x)

i→ λ2(y)),
– s3(e) = λ3(x), t3(e) = λ3(y), τ(e) = i, and
– sig′ = sig3 	 e.

Finally, we define pre(free(x))(sig) to be the set of all sig′ = (M′
,E ′,s′,t ′,τ′,λ′) such

that there are sig1 = (M1,E1,s1,t1,τ1,λ1), sig2, and m �∈ M1 with

– M1 = M, E1 = E \ t−1(∗), s1 = s|E1 , t1 = t|E1 , τ1 = τ|E1 and λ1(x) = ⊥ if λ(x) = ∗,
λ1(x) = λ(x) otherwise,

– sig2 = sig1 ⊕m, and
– sig′ = sig2.λ[x &→ m].

The Reachability Algorithm. We are now ready to describe the backward reachability
algorithm used for checking safety properties. Given a set Sbad of bad patterns for the
property under consideration, we compute the successive sets S0, S1, S2, . . . , where
S0 = Sbad and Si+1 =

⋃
s∈Si

pre(s). Whenever a signature s is generated such that there
is a previously generated s′ with s′ 2 s, we can safely discard s from the analysis.
When all the newly generated signatures are discarded, the analysis is finished. The
generated signatures at this point denote all the heaps that can reach a bad heap using
the approximate transition relation −→A. If all the generated signatures characterize
sets that are disjoint from the set of initial states, the safety property holds.

Remark. As the configurations of the transition system are pairs consisting of a heap
and a control state, the set Sbad is a set of pairs where the control state is a given
state, typically the exit state in the control flow graph. This extension is straightforward.
For a more in depth discussion of monotonic abstraction and backwards reachability,
see [1].

7 Implementation and Experimental Results

We have implemented the above proposed method in a Java prototype. To improve the
analysis, we combined the backward reachability algorithm with a light-weight flow-
based alias analysis to prune the state space. This analysis works by computing a set
of necessary conditions on the program variables for each program counter. Whenever
we compute a new signature, we check whether it intersects with the conditions for the
corresponding program counter, and if not, we discard the signature. Our experience
with this was very positive, as the two analyses seem to be complementary. In particular,
programs with limited branching seemed to benefit from the alias analysis.

Monotonic Abstraction for Programs with Multiply-Linked Structures 137

We also used the result of the alias analysis to add additional information to the sig-
natures. More precisely, suppose that, the alias analysis has given us that at a specific
program counter pc, x and y must alias. Furthermore, suppose that we compute a signa-
ture sig that is missing at least one of x and y at pc. We can then safely replace sig with
sig↑(λ(x) = λ(y))).

Table 1. Experimental results

Program Struct Time #Sig.
Traverse DLL 11.4 s 294
Insert DLL 3.5 s 121
Ordered Insert DLL 19.4 s 793
Merge DLL 6 min 40 s 8171
Reverse DLL 10.8 s 395
Search Tree 1.2 s 51
Insert Tree 6.8 s 241

In Table 1, we show results ob-
tained from experiments with our proto-
type. We considered programs traversing
doubly-linked lists, inserting into them
(at the beginning or according to the
value of the element being inserted—
since the value is abstracted away,
this amounts to insertion to a random
place), merging ordered doubly-linked
lists (the ordering is ignored), and revers-
ing them. We also considered algorithms
for searching an element in a tree and for inserting new leaves into trees. We ran the
experiments using a PC with Intel Core 2 Duo 2.2 GHz and 2GB RAM (using only one
core as the implementation is completely serial). The table shows the time it took to
run the analysis, and the number of signatures computed throughout the analysis. For
each program manipulating doubly-linked lists, we used the set {b1,b2, . . . ,b11} as de-
scribed in Section 5 as the set of bad states to start the analysis from. For the programs
manipulating trees, we used the set {b14,b15,b16}.

The obtained results show that the proposed method can indeed successfully handle
non-trivial properties of non-trivial programs. Despite the high running times for some
of the examples, our experience gained from the prototype implementation indicates
that there is a lot of space for further optimizations as discussed in the following section.

8 Conclusions and Future Work

We have proposed a method for using monotonic abstraction and backward analysis
for verification of programs manipulating multiply-linked dynamic data structures. The
most attractive feature of the method is its simplicity, concerning the way the shape
properties to be checked are specified as well as the abstraction and predecessor com-
putation used. Moreover, the abstraction used in the approach is rather generic, not
specialised for some fixed class of dynamic data structures. The proposed approach has
been implemented and successfully tested on several programs manipulating doubly-
linked lists and trees.

An important direction for future work is to optimize the operations done within
the reachability algorithm. This especially concerns checking of entailment on the heap
signatures (e.g., using advanced hashing methods to decrease the number of signatures
being compared) and/or minimization of the number of generated signatures (perhaps
using a notion of a coarser ordering on signatures that could be gradually refined to
reach the current precision only if a need be). It also seems interesting to parallelize
the approach since there is a lot of space for parallelization in it. We believe that such

138 P.A. Abdulla, J. Cederberg, and T. Vojnar

improvements are worth the effort since the presented approach should—in principle—
be applicable even for checking complex properties of complex data structures such
as skip lists which are very hard to handle by other approaches without their signifi-
cant modifications and/or help from the users. Finally, it is also interesting to think of
extending the proposed approach with ways of handling non-pointer data, recursion,
and/or concurrency.

References

1. Abdulla, P.A.: Well (and Better) Quasi-Ordered Transition Systems. Bulletin of Symbolic
Logic 16, 457–515 (2010)

2. Abdulla, P.A., Atto, M., Cederberg, J., Ji, R.: Automated Analysis of Data-Dependent Pro-
grams with Dynamic Memory. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799,
pp. 197–212. Springer, Heidelberg (2009)

3. Abdulla, P.A., Ben Henda, N., Delzanno, G., Rezine, A.: Handling Parameterized Systems
with Non-atomic Global Conditions. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI
2008. LNCS, vol. 4905, pp. 22–36. Springer, Heidelberg (2008)

4. Abdulla, P.A., Bouajjani, A., Cederberg, J., Haziza, F., Rezine, A.: Monotonic Abstraction for
Programs with Dynamic Memory Heaps. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 341–354. Springer, Heidelberg (2008)

5. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree Model
Checking of Complex Dynamic Data Structures. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134,
pp. 52–70. Springer, Heidelberg (2006)

6. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional Shape Analysis by
Means of Bi-abduction. In: Proc. of POPL 2009. ACM Press, New York (2009)

7. Deshmukh, J.V., Emerson, E.A., Gupta, P.: Automatic Verification of Parameterized Data
Structures. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 27–41. Springer,
Heidelberg (2006)

8. Habermehl, P., Holı́k, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest Automata for Verifi-
cation of Heap Manipulation. Technical Report FIT-TR-2011-01, FIT BUT, Czech Republic
(2011), http://www.fit.vutbr.cz/˜isimacek/pub/FIT-TR-2011-01.pdf

9. Madhusudan, P., Parlato, G., Qiu, X.: Decidable Logics Combining Heap Structures and
Data. In: Proc. of POPL 2011. ACM Press, New York (2011)

10. Møller, A., Schwartzbach, M.: The Pointer Assertion Logic Engine. In: Proc. of PLDI 2001.
ACM Press, New York (2001)

11. Nguyen, H.H., David, C., Qin, S., Chin, W.N.: Automated Verification of Shape and Size
Properties via Separation Logic. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS,
vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

12. Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures. In: Proc. of
LICS 2002. IEEE CS, Los Alamitos (2002)

13. Rieger, S., Noll, T.: Abstracting Complex Data Structures by Hyperedge Replacement. In:
Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214,
Springer, Heidelberg (2008)

14. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric Shape Analysis via 3-valued Logic.
TOPLAS 24(3) (2002)

15. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W.: Scal-
able Shape Analysis for Systems Code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

16. Zee, K., Kuncak, V., Rinard, M.: Full Functional Verification of Linked Data Structures. In:
Proc. of PLDI 2008. ACM Press, New York (2008)

http://www.fit.vutbr.cz/~isimacek/pub/FIT-TR-2011-01.pdf

Efficient Bounded Reachability Computation for

Rectangular Automata

Xin Chen1, Erika Ábrahám1, and Goran Frehse2

1 RWTH Aachen University, Germany
2 Université Grenoble 1 Joseph Fourier - Verimag, France

Abstract. We present a new approach to compute the reachable set
with a bounded number of jumps for a rectangular automaton. The
reachable set under a flow transition is computed as a polyhedron which
is represented by a conjunction of finitely many linear constraints. If the
bound is viewed as a constant, the computation time is polynomial in
the number of variables.

1 Introduction

Hybrid systems are systems equipped with both continuous dynamics and dis-
crete behavior. A popular modeling formalism for hybrid systems are hybrid
automata. In this paper, we consider a special class of hybrid automata, called
rectangular automata [1]. The main restriction is that the derivatives, invariants
and guards are defined by lower and upper bounds in each dimension, form-
ing rectangles or boxes in the value domain. Rectangular automata can be used
to model not only simple timed systems but also asymptotically approximate
hybrid systems with nonlinear behaviors [2,3,4,5].

Since hybrid automata often model safety-critical systems, their reachability
analysis builds an active research area. The reachability problem is decidable
only for initialized rectangular automata [1], which can be reduced to timed
automata [6]. The main merit of rectangular automata is that the reachable set
under a flow is always a (convex) polyhedron. It means that the reachable set
in a bounded number of jumps can be exactly computed as a set of polyhedra,
unlike for general hybrid automata which need approximative methods such
as [7,8,9]. In the past, some geometric methods are proposed for exactly or
approximately computing the reachable sets in a bounded number of jumps
(see, e.g., [4,3]). There are also tools like HyTech [10] and PHAVer[11] which can
compute bounded reachability for rectangular automata in a geometric way.

However, nearly all of the proposed methods compute the exact reachable set
under a flow based on the vertices of the initial set and the derivative rectangle.
Since a d-dimensional rectangle has 2d many vertices, those methods are not able
to handle high-dimensional cases. In [3], an approximative method is proposed
to over-approximate the reachable set by polyhedra which are represented by
conjunctions of linear constraints. Since only 2d linear constraints are needed to
define a d-dimensional rectangle, the computation time of the method is poly-
nomial in d. However, the accuracy degenerates dramatically when d increases.

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 139–152, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

140 X. Chen, E. Ábrahám, and G. Frehse

In this paper, we compute the reachable set as polyhedra which are repre-
sented by finite linear constraint sets [12], where we need only 2d linear con-
straints to define a d-dimensional rectangle. We show that when the number of
jumps is bounded by a constant, the computational complexity of our approach
is polynomial in d. We also include the cases that some of the rectangles in the
definition of a rectangular automaton are not full-dimensional.

The paper is organized as follows. After introducing some basic definitions in
Section 2, we describe our efficient approach for computing the bounded reach-
able set in Section 3. In Section 4, we compare our approach and PHAVer based
on a scalable example. Missing proofs can be found in [13].

2 Preliminaries

2.1 Polyhedra and Their Computation

For a point (or column vector) v ∈ Rd in the d-dimensional Euclidean space Rd

we use v[i] to denote its ith component, 1 ≤ i ≤ d, and vT for the row vector
being its transpose.

In the following we call linear inequalities cTx ≤ z for some c ∈ Rd, z ∈ R

and x a variable, also constraints. Given a finite set L of linear equalities and
linear inequalities, we write S : L for S = {x ∈ Rd | x satisfies

∧
L∈L L}, and

also write S : L instead of S : {L}. We say that L ∈ L is redundant in L if
S : L = S′ : L\{L}. Redundant (in)equalities can be detected using linear
programming [14].

A finite set {v1, . . . , vd′} ⊆ Rd of linearly independent vectors span an (d′−1)-
dimensional affine subspace Π of Rd by the affine combinations of v1, . . . , vd′ :

Π = {
∑

1≤i≤d′
λivi |

∑
1≤i≤n

λi = 1, λi ∈ R}

The affine hull aff(S) of a set S ⊆ Rd is the smallest affine subspace Π ⊆ Rd

containing S, and we have that dim(S) = dim(aff(S)). We call a subset of a
vector space full-dimensional if its affine hull is the whole space.

A ((d−1)-dimensional) hyperplane in Rd is a (d−1)-dimensional affine sub-
space of Rd. Each hyperplane H can be defined as H : cTx = z for some c ∈ Rd

and z ∈ R. For d′ < d−1, a d′-dimensional affine subspace H ′ of Rd is called
a lower- or d′-dimensional hyperplane and can be defined as an intersection of
d−d′ many hyperplanes (see [12]), i.e., as H ′ :

∧
1≤i≤d−d′ cTi x = zi. Since every

linear equation cTx = z can be expressed by cTx ≤ z ∧ −cTx ≤ −z, for d′′ ≤ d,
a d′′-dimensional hyperplane can be defined by a set of 2(d−d′′) constraints.

A (d-dimensional) halfspace S in Rd is a d-dimensional set S : cTx ≤ z for
some c ∈ Rd and z ∈ R. For d′ < d, a d′-dimensional set S′ ⊆ Rd is a lower- or
d′-dimensional halfspace if it is the intersection of a (d-dimensional) halfspace S
and a d′-dimensional hyperplane H ′ �⊆ S. Note that for d′′ ≤ d, a d′′-dimensional
halfspace can be defined by a set of 2(d−d′′)+1 constraints.

Efficient Bounded Reachability Computation for Rectangular Automata 141

Given a constraint cTx ≤ z, its corresponding equation is cTx = z. The
corresponding hyperplane of a d′-dimensional halfspace S with d′ ≤ d is the
(d′−1)-dimensional hyperplane defined by the set of the corresponding equations
of the constraints that define S.

For a finite set L of constraints we call P : L a polyhedron. Polyhedra can
also be understood as the intersection of finitely many halfspaces. Polytopes are
bounded polyhedra.

A constraint cTx ≤ z is valid for a polyhedron P if all x ∈ P satisfy it. For
cTx ≤ z valid for P and for HF : cTx = z, the set F : P ∩ HF is a face of
P . If F �= ∅ then we call HF a support hyperplane of P , and the vectors λc
for λ > 0 are the normal vectors of HF . The hyperplane H : cTx = z is a
support hyperplane of a polyhedron P if and only if for the support function
ρP : Rd → R ∪ {∞}, ρP (v) = sup vTx s.t. x ∈ P , we have that ρP (c) = z.
We call a face F of a polyhedron P facet if dim(F) = dim(P)−1, and vertex if
dim(F) = 0. For d′-dimensional faces we simply write d′-faces. We use NF(P)
to denote the number of P ’s facets. Given a face F of P , the outer normals of
F are the vectors vF ∈ Rd such that ρP (vF) = sup vT

Fx for any x ∈ F . We also
define N (F, P) as the set of the outer normals of F in P .

For a d′-dimensional polyhedron P : LP , every facet FP of P can be deter-
mined by some LFP ⊆ LP , that is LFP defines a d′-dimensional halfspace which
contains P and the corresponding hyperplane is the affine hull of FP (see [12]).

Lemma 1. If a constraint set L defines a d′-dimensional polyhedron P⊆Rd and
there is no redundant constraint in L, then the set L contains NF(P)+2(d−d′)
constraints.

Proof. We need a set L′ of 2(d−d′) constraints to define aff(P). For every facet
FP of P , we need a constraint LFP such that L′ ∪ {LFP } determines FP .

For a polyhedron P :
⋃

1≤i≤n{cTi x ≤ zi} and a scalar λ ≥ 0, the scaled polyhedron
λP can be computed by λP :

⋃
1≤i≤n{cTi x ≤ λzi}. The conical hull of P is the

polyhedral cone cone(P) =
⋃

λ≥0 λP . If the conical hull of P is d′-dimensional,
then P is at least (d′−1)-dimensional (see [12]).

Example 1. Figure 1(a) shows a polyhedron P : x2 ≤ 3∧−x1 ≤ −1∧ x1−2x2 ≤
−3 with three irredundant constraints. The support hyperplanes H1, H2, H3 in-
tersect P at its facets. The fourth hyperplane H4 is also a support hyperplane
of P , but it only intersects P at a vertex, and the related constraint −x2 ≤ −2
is redundant. The conical hull of P is shown in Figure 1(b).

Given two polyhedra P : LP and Q : LQ, their intersection P ∩Q can be defined
by the union of their constraints P ∩Q : LP ∪LQ. The Minkowski sum P ⊕Q of
P and Q is defined by P ⊕Q = {p+q | p ∈ P, q ∈ Q}. It is still a polyhedron, as
illustrated in Figure 2. We have the following important theorem for the faces
of P ⊕Q.

Theorem 1 ([15,16]). For any polytopes P and Q, each face F of P⊕Q can be
decomposed by F = FP ⊕FQ for some faces FP and FQ of P and Q respectively.
Moreover, this decomposition is unique.

142 X. Chen, E. Ábrahám, and G. Frehse

x1

x2

1 2 3

1

2

3

0

H1 : x2 = 3

H2 : −x1 = −1

H3 : x1 − 2x2 = −3

H4 : −x2 = −2

P

(a)

x1

x2

1 2 3

1

2

3

0

P

(b)

Fig. 1. A 2-dimensional polytope and its conical hull

x1

x2

1 2 3

1

2

3

0

P ⊕

x1

x2

1 2 3

1

2

3

0

Q

=

x1

x2

1 2 3

1

2

3

0

P ⊕ Q

Fig. 2. An example of P ⊕ Q

2.2 Rectangular Automata

A box B ⊆ Rd is an axis-aligned rectangle which can be defined by a set of
constraints of the form x ≤ a or −x ≤ −a where x is a variable, and a, a are
rationals. A box B : LB is bounded if for every variable x there are constraints
x ≤ a and −x ≤ −a in LB for some rationals a, a, otherwise B is unbounded.
Let Bd be the set of all boxes in Rd.

Rectangular automata [1] are a special class of hybrid automata [17].

Definition 1. A d-dimensional rectangular automaton is a tuple
A = (Loc,Var,Flow, Jump, Inv, Init,Guard,ResetVar,Reset) where

– Loc is a finite set of locations, also called discrete states.
– Var = {x1, . . . , xd} is a set of d ordered real-valued variables. We denote the

variables as a column vector x = (x1, . . . , xd)T .
– Flow : Loc → Bd assigns each location a flow condition which is a box in Rd.
– Jump : Loc × Loc is a set of jumps (or discrete transitions).
– Inv : Loc → Bd maps to each location an invariant which is a bounded box.
– Init :Loc→Bd maps to each location a bounded box as initial variable values.
– Guard : Jump → Bd assigns to each jump a guard which is a box.
– ResetVar : Jump → 2Var assigns to each jump a set of reset variables.
– Reset : Jump → Bd maps to each jump a reset box such that for all e ∈ Jump

and xi ∈ ResetVar(e) the box Reset(e) is bounded in dimension i.

Example 2. Figure 3 shows an example rectangular automaton. For brevity, we
specify boxes by their defining intervals. The location set is Loc = {l0, l1}. The

Efficient Bounded Reachability Computation for Rectangular Automata 143

l0
ẋ1 ∈ [1, 2]
ẋ2 ∈ [2, 3]
x1 ∈ [−5, 5]
x2 ∈ [0, 10]

l1
ẋ1 ∈ [−1, 1]
ẋ2 ∈ [2, 3]
x1 ∈ [−5, 5]
x2 ∈ [0, 15]

e1 : x1 = 5 →
x1 := 0

e2 : x2 ≤ 15 →
x2 := [0, 1]

x1 := 0
x2 := 0

Fig. 3. A rectangular hybrid automaton A

P

P ⊕ Q

F

F ′

FP ⊕ FQ

FP

Fig. 4. A 3D example of R

initial states are Init(l0) = [0, 0] × [0, 0] and Init(l1) = ∅. The flows are defined
by Flow(l0) = [1, 2] × [2, 3] and Flow(l1) = [−1, 1] × [2, 3], and the invariants by
Inv(l0) = [−5, 5] × [0, 10] and Inv(l1) = [−5, 5] × [0, 15]. There are two jumps
Jump = {e1, e2} with e1 = (l0, l1) and e2 = (l1, l0). The guards are Guard(e1) =
[5, 5]×(−∞,+∞) and Guard(e2) = (−∞,+∞)×(−∞, 15], the reset variable sets
ResetVar(e1) = {x1} and ResetVar(e2) = {x2}, and the reset boxes Reset(e1) =
[0, 0] × (−∞,+∞) and Reset(e2) = (−∞,+∞) × [0, 1].

A configuration of A is a pair (l, u) such that l ∈ Loc is a location and
u ∈ Inv(l) a vector assigning the value u[i] to xi for i = 1, . . . , d. There are two
kinds of transitions between configurations:

– Flow: A transition (l, u) t→ (l, u′) where t ≥ 0, such that there exists b ∈
Flow(l) such that u′ = u+tb and for all 0 ≤ t′ ≤ t we have u+t′b ∈ Inv(l).

– Jump: A transition (l, u) e→ (l′, u′) such that e=(l, l′) ∈ Jump, u ∈ Guard(e),
u′ ∈ Inv(l′) ∩ Reset(e), and u[i]=u′[i] for all xi ∈ Var\ResetVar(e).

An execution of A is a sequence (l0, u0)
α0→ (l1, u1)

α1→ · · · where αi→ is either a
flow or a jump for all i. A configuration is reachable if it can be visited by some
execution. The reachability computation is the task to compute the set of the
reachable configurations. In this paper we consider bounded reachability with
the number of jumps in the considered executions bounded by a positive integer.

3 A New Approach for Reachability Computation

In this section, we present a new approach to compute the reachable set for a
rectangular automaton where the number of jumps is bounded.

3.1 Facets of the Reachable Set Under Flow Transitions

For a location l of a rectangular automaton with Flow(l) = Q and Init(l) = P ,
the states reachable from P via the flow can be computed in a geometric way:

Rl(P) = (P ⊕ cone(Q)) ∩ Inv(l). (1)

144 X. Chen, E. Ábrahám, and G. Frehse

As already mentioned, previously proposed methods compute Rl(P) by consid-
ering the evolutions of all vertices of P under the flow condition Q. That means,
also all vertices of Q must be considered. Since Q is a bounded box, it has
2d vertices which make the computation intractable for large d. We present an
approach to compute Rl(P) exactly based on three constraint sets which define
P,Q and Inv(l) respectively. We show that if we are able to compute a constraint
set that defines P ⊕Q in PTIME, then a constraint set which defines Rl(P) can
also be computed in PTIME.

We firstly investigate the faces of the set R = P ⊕ cone(Q) in the general
case that P and Q are polytopes in Rd. From the following two lemmata we
derive that the number of R’s facets is bounded by (nP +nP⊕Q) where nP is the
number of the facets of P and nP⊕Q is the number of the faces from dimension
(dim(R)−2) to (dim(R)−1) in P ⊕Q.

Lemma 2. Given a polytope Q ⊆ Rd and a positive integer d′, a d′-face Fcone(Q)

of the polyhedron cone(Q) can be expressed by cone(FQ) where FQ is a nonempty
face of Q and it is at least (d′−1)-dimensional.

Proof. The polyhedron cone(Q) can be expressed by cone(VQ) where VQ is the
vertex set of Q. Then a nonempty face Fcone(Q) of cone(Q) can be expressed
by cone(V ′

Q) where V ′
Q ⊆ VQ is nonempty. Assume S is the halfspace whose

corresponding hyperplane is H = aff(Fcone(Q)). Since cone(Q) ⊆ S, we also have
that Q ⊆ S, moreover, we can infer that H is a support hyperplane of Q and
FQ = H ∩Q is a nonempty face of Q whose vertex set is V ′

Q. Therefore, the face
Fcone(Q) can be expressed by cone(FQ). From the definition of conical hull, if
Fcone(Q) is d′-dimensional then FQ is at least (d′ − 1)-dimensional. ��

Lemma 3. Given two polytopes P,Q ⊆ Rd, any d′-face FR of the polytope R =
P⊕cone(Q) is either a d′-face of P , or the decomposition FR =

⋃
λ≥0(FP ⊕λFQ)

where FP , FQ are some nonempty faces of P,Q respectively and FP ⊕ FQ is a
face of P ⊕Q which is at least (d′−1)-dimensional.

Proof. We have two cases for a face FR of R, (1) FR is a face of P ; (2) FR can be
expressed by FP ⊕ cone(FQ) where FQ is a nonempty face of Q (from Theorem
1 and Lemma 2). In the case (2), we rewrite R and FR by

R = P ⊕ cone(Q) =
⋃
λ≥0

(P ⊕ λQ) and FR = FP ⊕ cone(FQ) =
⋃
λ≥0

(FP ⊕ λFQ)

Since FR is a face of R, i.e., it is on the boundary of R, we infer that for all
λ ≥ 0 the set FP ⊕ λFQ is a face of P ⊕ λQ. Thus FP ⊕ FQ is a face of P ⊕Q.
Since FR is d′-dimensional, the set FP ⊕FQ is at least (d′ − 1)-dimensional. ��

Example 3. In Figure 4 on page 143, the set F is a facet of both P and R. In
contrast, the facet F ′ can be expressed by

⋃
λ≥0(FP ⊕ λFQ).

The facets of R can be found by enumerating all the facets of P , and all the
faces from dimension (dim(R)−2) to (dim(R)−1) in P ⊕Q.

Efficient Bounded Reachability Computation for Rectangular Automata 145

Lemma 4. Let P : LP and P ⊕ Q : LP⊕Q be some polytopes with LP⊕Q =
{gT

j x ≤ hj | 1 ≤ j ≤ m} irredundant. We define the constraint set L =⋃
1≤i<j≤m Li,j such that for each 1 ≤ i < j ≤ m, Li,j = {Li,j} if the inter-

section of Hi : gT
i x = hi, Hj : gT

j x = hj and P ⊕ Q is nonempty, and Li,j is a
constraint whose corresponding hyperplane Hi,j satisfies (1) Hi,j is a support hy-
perplane of P , (2) Hi,j is a support hyperplane of P ⊕Q and (3) Hi∩Hj ⊆ Hi,j.
Otherwise Li,j = ∅.

Suppose that L′ is the set of all constraints in LP and LP⊕Q that are valid
for R. Then the polytope R can be defined by L ∪ L′.

Note that Li,j is not unique for each 1 ≤ i < j ≤ m, but we only need one of
them. Intuitively, for any facet FR of R, if FR is also a facet of P then it can
be determined by a subset L′

P of LP . Since the constraints in L′
P are also valid

for R, we also have that L′
P ⊆ L′. Otherwise FR =

⋃
λ≥0(FP ⊕ λFQ) for some

nonempty faces FP , FQ of P,Q respectively. There are two cases, (a) if FP ⊕FQ

is (dim(R)−1)-dimensional, then FR can be determined by a subset L′
P⊕Q of

LP⊕Q, it is also included by L′; (b) if FP ⊕ FQ is (dim(R)−2)-dimensional, the
facet FR is determined by a subset of L. Hence, L ∪ L′ defines R.

3.2 Compute the Reachable Set under Flow Transitions

In order to compute the constraint set that defines R, we need to find the
hyperplanes Hi,j stated in Lemma 4. We determine the Hi,j : cTx = z by
solving a feasibility problem for the normal vector c ∈ Rd and the value z ∈ R as
follows. Assume dim(R) = dR, P : LP and P ⊕Q is defined by the irredundant
set LP⊕Q = {gT

j x ≤ hj | 1 ≤ j ≤ m}. Firstly, we check if the setHi∩Hj∩(P⊕Q)
with Hi : gT

i x = hi and Hj : gT
j x = hj is nonempty by solving the following

linear program:

Find xI ∈ Rd s.t. gT
i xI = hi ∧ gT

j xI = hj ∧ xI ∈ P ⊕Q.

If such an xI is found, then the intersection is nonempty, and there must be
a (dR−2)-face FP⊕Q of P ⊕ Q contained in it since LP⊕Q is irredundant. We
require that Hi,j is a support hyperplane of P ⊕Q and contains FP⊕Q. This can
be ensured by finding c in the set Ci,j = {αgi+βgj | α, β ≥ 0, α+β > 0} and
demanding cTxI = z. An example is shown in Figure 5.

We also require that Hi,j is a support hyperplane of P . This can be guaranteed
by demanding ρP (c) = z and c = αgi+βgj . In order to replace ρP (αgi+βgj) by
αρP (gi) + βρP (gj), we need to ensure their equivalence. This can be done by
finding at least one point p ∈ P such that gT

i p = ρP (gi) and gT
j p = ρP (gj). Since

the (dR−2)-face FP⊕Q is contained in Hi∩Hj , we have that gT
i x = ρP⊕Q(gi) and

gT
j x = ρP⊕Q(gj) for all x ∈ FP⊕Q. From Theorem 1, FP⊕Q can be decomposed

by FP ⊕FQ for some faces FP , FQ of P,Q respectively, and we can infer that for
all x ∈ FP it holds that gT

i x = ρP (gi) and gT
j x = ρP (gj). Hence we can replace

ρP (αgi+βgj) by αρP (gi) + βρP (gj).
Then the vector c can be computed by solving the following problem:

Find c ∈ Rd s.t.

{
c = αgi+βgj ∧ α+β > 0 ∧ α ≥ 0 ∧ β ≥ 0
cTxI = αρP (gi)+βρP (gj)

(2)

146 X. Chen, E. Ábrahám, and G. Frehse

gi

gj

c
Hi,j

Hi

Hj

xI

Fig. 5. A 3-dimensional example of the vector c

P ⊕ Q

P

H1
H2

H1 ∩ H2

H1,2

FR

Fig. 6. An example of Hi,j

Algorithm 1. Algorithm to compute R
Input: P : LP , Q : LQ

Output: An irredundant constraint set LR of R
1: Compute an irredundant constraint set LP⊕Q of P ⊕ Q; LR := ∅;
2: for all constraints cT x ≤ z in LP ∪ LP⊕Q do
3: if cT x ≤ z is valid to R then
4: Add the constraint cT x ≤ z into LR;
5: end if
6: end for
7: for all constraints gT

i x = hi and gT
j x = hj in LP⊕Q do

8: Find a hyperplane Hi,j : cT x = z by solving Problem (2);
9: if Hi,j exists then

10: Add the constraint cT x ≤ z to LR;
11: end if
12: end for
13: Remove the redundant constraints from LR;
14: return LR

We set z = ρP (c). An example of Hi,j is given in Figure 6.
We also need to find the valid constraints for R in LP and LP⊕Q. Given a

constraint L : cTx ≤ z, L is valid for R if and only if ρR(c) ≤ z. Since

ρR(c) = ρP (c)+λρQ(c) = sup cTx+λ sup cT y s.t. x ∈ P, y ∈ Q, λ ≥ 0,

we compute ρP (c) and ρQ(c) by linear programming. If ρQ(c) ≤ 0 then ρR(c) =
ρP (c), otherwise ρR(c) = ∞.

If we have the constraints for P ⊕Q then Problem (2) is linear. Algorithm 1
shows the computation of the irredundant constraints of R. Finally, the polytope
LRl(X) can be defined by the set LR ∪ LInv(l) where LInv(l) defines Inv(l).

3.3 Compute the Reachable Set After a Jump

A jump e = (l, l′) of a rectangular automaton can update a variable by a value in
an interval [a, a]. If the set of the reachable states in l is computed as (l, Rl(X)),

Efficient Bounded Reachability Computation for Rectangular Automata 147

x1

x2

1 2 3 4

1

2

3

4

0

P

Rl(X)

Guard(e)

(a) The set P

x1

x2

1 2 3 4

1

2

3

4

0

(b) After eliminating x1

x1

x2

1 2 3 4

1

2

3

4

0

Re(Rl(X))

Reset(e)

(c) The set Re(Rl(X))

Fig. 7. A 2-dimensional example of resetting x1 to [1, 3]

then the set of states at which e is enabled can be computed by (l, Rl(X) ∩
Guard(e)). Thus the reachable set after the jump e is (l′, Re(Rl(X))) where

Re(Rl(X)) ={u′ ∈ Inv(l′) ∩ Reset(e) | ∃u ∈ Rl(X) ∩ Guard(e).
∀xi ∈ Var\ResetVar(e).u′[i] = u[i]}

(3)

The set Re(Rl(X)) can also be computed in a geometric way. The guard can
be considered by defining Rl(X) ∩ Guard(e) : LRl(X) ∪ LGuard(e). The polytope
Re(Rl(X)) can be defined by Le ∪LReset(e) where Le is the set of the constraints
computed from LRl(X) ∪ LGuard(e) by eliminating all reset variables by Fourier-
Motzkin elimination [12], and LReset(e) defines the box Reset(e).

Example 4. We show an example in Figure 7, where Rl(X) ∩ Guard(e) is given
by the polytope P : −2x1+x2 ≤ 0∧x1−2x2 ≤ 0∧x1 ≤ 2∧−x1 ≤ −1. The reset
box is Reset(e) : x1 ≤ 3∧−x1 ≤ −1, and Inv(l′) is the box [0, 5]× [0, 5]. Firstly,
we compute the maximum and minimum value of the variable x1, and we obtain
x1 ≤ 2 and −x1 ≤ −1. By using the constraint x1 ≤ 2, we eliminate the variable
x1 from −2x1+x2 ≤ 0 and obtain a new constraint x2 ≤ 4. Similarly, we use
−x1 ≤ −1 to eliminate the variable x1 from x1 − 2x2 ≤ 0 and get −x2 ≤ −0.5.
At last, the set Re(Rl(X)) is the polytope

Re(Rl(X)) : x2 ≤ 4 ∧ −x2 ≤ −0.5 ∧ x1 ≤ 3 ∧ −x1 ≤ −1

Algorithm 2 shows the computation of the reachable set after a jump. Although
the Fourier-Motzkin elimination is double-exponential in general, in the next
section we show that it is efficient on the reachable sets.

3.4 Complexity of the Reachability Computation

The reachable set of a rectangular automaton A can be computed by Algorithm
3. Any reachable set Rl(X) in Algorithm 3 is computed by a sequence

X0 → Rl0(X0) → X1 → Rl1(X1) → · · · → Xk → Rlk(Xk)

where Xj = Rej (Rlj−1(Xj−1)) for 1 ≤ j ≤ k, and X0 = Init(l0). Although the
termination of Algorithm 3 is not guaranteed, if we lay an upper bound k on

148 X. Chen, E. Ábrahám, and G. Frehse

Algorithm 2. Algorithm to compute the constraints of Re(Rl(X))
Input: The jump e = (l, l′), the constraints of Rl(X) : L
Output: The constraints of Re(Rl(X))
1: Compute the constraint set LP of P = Rl(X) ∩ Guard(e); S ← LP ;
2: for all xi ∈ ResetVar(e) do
3: Eliminate xi from the constraints in S by Fourier-Motzkin elimination;
4: end for
5: return S ∪ LReset(e)

Algorithm 3. Reachability computation for a rectangular automaton
Input: A rectangular hybrid automaton A
Output: The reachable set of A
1: RA ← {(l, Init(l)) | l ∈ Loc};
2: Define a queue Q with elements (l, X) ∈ RA;
3: while Q is not empty do
4: Get (l, X) from Q; Y ← Rl(X); RA ← RA ∪ {(l, Y)};
5: for all e = (l, l′) ∈ Jump do
6: Z ← Re(Y);
7: if (l′, Z) /∈ RA then
8: Insert (l′, Z) into Q; RA ← RA ∪ {(l′, Z)};
9: end if

10: end for
11: end while
12: return RA

k then it always stops. We prove that if k is viewed as a constant, then the
computation is polynomial in the number of the variables of A.

We prove it by showing that an irredundant constraint set of Xj can be
computed from an irredundant constraint set of Xj−1 in PTIME. Notice that
this property is not possessed by any of the methods proposed in the past.

Lemma 5. For 1≤j≤k, both NF(Xj) and NF(Xj−1⊕Bj−1) are polynomial in
NF(Xj−1).

Proof. By Lemma 1, the size of the irredundant constraint set of Xj is propor-
tional to NF(Xj), then we consider the facets of Xj . We define Gj = Inv(lj) ∩
Guard(ej+1) and Bj = Flow(lj). If the whole space is Rd, in order to maximize
the number of Xj’s facets, we assume Bi, Gi for 0 ≤ i ≤ j−1 are full-dimensional
boxes, and Xj is also full-dimensional. Since Xj can be expressed by

⋃
aj−1≤λj−1≤bj−1

· · ·
⋃

a0≤λ0≤b0

Rej ((· · ·Re1((X0⊕λ0B0)∩G0) · · ·⊕λj−1Bj−1)∩Gj−1)

a facet FXj of it can be uniquely expressed by
⋃

a′
j−1≤λj−1≤b′j−1

· · ·
⋃

a′
0≤λ0≤b′0

F (λ0, . . . , λj−1) (4)

Efficient Bounded Reachability Computation for Rectangular Automata 149

where ai ≤ a′i and b′i ≤ bi for 0 ≤ i ≤ j − 1, such that

(i) F (λ0, . . . , λj−1) is a face of the box Φ(λ0, . . . , λj−1) = Rej ((· · ·Re1((X0 ⊕
λ0B0) ∩ G0) · · · ⊕ λj−1Bj−1) ∩ Gj−1) and there is no higher dimensional
face of Φ(λ0, . . . , λj−1) can be used to express FXj ;

(ii) if the maximum dimension of all those faces F (λ0, . . . , λj−1) is d′ where
d−d′−1 ≤ j, then there are exactly (d−d′−1) many λi where 0 ≤ i ≤ j−1
such that these parameters help to determine N (FXj , Xj);

(iii) for any 0 ≤ i ≤ j − 1, if λi helps to determine N (FXj , Xj), then the box
Gi could also help to determine N (FXj , Xj);

(iv) for any 0 ≤ i ≤ j − 1, any γi, γ
′
i where

{
a′i < γi, γ

′
i < b′i, if a′i < b′i

γi = γ′i = a′i, otherwise

we have that F (γ0, . . . , γj−1), F (γ′0, . . . , γ′j−1) have the maximum dimension
among all the faces F (λ0, . . . , λj−1), and N (F (γ0, . . . , γj−1), Φ(γ0, . . . , γj−1))
= N (F (γ′0, . . . , γ

′
j−1), Φ(γ′0, . . . , γ

′
j−1)).

In brief, the above properties tell that N (FXj , Xj) depends on (a) the set
N (F (γ0, . . . , γj−1), Φ(γ0, . . . , γj−1)) in the property (iv), i.e., the outer normals
of a bounded box face (we call those faces related), (b) the (d− d′ − 1) parame-
ters in the property (ii), and (c) the dependence of N (FXj , Xj) and Gi for every
0 ≤ i ≤ j − 1 such that λi helps to determine N (FXj , Xj). Thereby if FB is a
d′-face of a bounded box, it has at most 2d−d′−1

(
j

d−d′−1

)
related facets in Xj .

Given a dimension d′ where d − d′ − 1 ≤ j, as we said, if a d′-face FB of a
bounded box B is related to some facet FXj then there are exactly (d− d′ − 1)
many λi’s help to determine the outer normals of FXj . Thus there are (d−d′−1)
steps to determine N (FXj , Xj). We define Pi as the set of the d′-faces in B which
possibly have related facets in Xj after the ith step. Obviously, P0 contains all
the d′-faces in B. In every (i+ 1)th step, at least half of the faces in Pi lose the
possibility to have related facets in Xj since Xi is a union of boxes and every
box is centrally symmetric. Hence, there are at most

2−(d−d′−1)Fd
d′ = 2−(d−d′−1)

(
2d−d′

(
d

d′

))
= 2
(
d

d′

)

d′-faces of B could have related facets in Xj , where Fd
d′ is the number of the d′-

faces in B. Therefore, there are at most 2d−d′(j
d−d′−1

)(
d
d′
)

facets in Xj which are
related to some d′-faces of B. By considering all max(d− j − 1, 0) ≤ d′ ≤ d− 1,
we can conclude that NF(Xj) is polynomial in NF(Xj−1) for j ≥ 1. Similarly,
we can also prove that NF(Xj−1 ⊕Bj−1) is polynomial in NF(Xj−1) for j ≥ 1.

��
Now we give our method to compute Xj from Xj−1. The most expensive part
in the computation is computing Xj−1 ⊕Bj−1. We decompose Bj−1 by Bj−1 =
[a1, a1]1⊕ [a2, a2]2⊕· · ·⊕ [ad, ad]d, such that for 1 ≤ i ≤ d, x[i] ≤ ai,−x[i] ≤ −ai

150 X. Chen, E. Ábrahám, and G. Frehse

are irredundant constraints for Bj−1 and [ai, ai]i is a line segment (1-dimensional
box) defined by the following constraint set:

{x[i] ≤ ai,−x[i] ≤ −ai}∪{x[i′] ≤ 0 | i′ �= i}∪{−x[i′] ≤ 0 | i′ �=i}

We denote the polytope resulting from adding the first m line segments onto
Xj−1 by Xm

j−1, then for all 1 ≤ m ≤ d, NF(Xm
j−1) is polynomial in NF(Xj−1).

Since an irredundant constraint set for Xm
j−1 can be computed in PTIME based

on an irredundant constraint set of Xm−1
j−1 , we conclude that an irredundant

constraint set which defines Xj−1 ⊕Bj−1 can be computed in a time polynomial
in d if j is viewed as a constant.

Next we consider the complexity of the Fourier-Motzkin elimination on the
set Rlj (Xj). Since NF(Xj+1) is polynomial in NF(Xj), the polyhedron resulting
from the elimination of each reset variable has a number of facets which is
polynomial in NF(Xj). Since eliminating one variable is PTIME, we conclude
that the Fourier-Motzkin elimination on Rlj (Xj) is polynomial in d if j is viewed
as a constant. If we use interior point methods [14] to solve linear programs then
the bounded reachability computation is polynomial in d.

Theorem 2. The computational complexity of Rlj (Xj) is polynomial in d if j
is viewed as a constant.

Theorem 3. The computational complexity of the reachable set with a bounded
number of jumps is polynomial in d if the bound is viewed as a constant.

Unfortunately, the worst-case complexity is exponential in j. However, it only
happens in extreme cases. The exact complexity of our approach mainly depends
on the complexity of solving linear programs.

4 Experimental Results

We implemented our method in MATLAB using the CDD tool [18] for linear
programming. We compared our implementation with PHAVer (embedded in
SpaceEx [19]) on a scalable artificial example. Since there are rare high dimen-
sional examples published, we design a scalable example which is given in Figure
8, where d is the (user-defined) dimension of the automaton and i denotes all
the integers from 1 to d. The automaton Ad helps to generate reachable sets
with large numbers of vertices and facets, and for each jump, nearly half of the
variables are reset.

The experiments were run on a computer with a 2.8 GHz CPU and 4GB mem-
ory, the operating system is Linux. The experimental results are given by Table
1. Since MATLAB does not provide a build-in function to monitor the memory
usage of its programs on Linux, the listed memory usage is the total memory
usage minus MATLAB memory usage before the experiment. Our method can
handle A10 efficiently, however PHAVer stops at A7. Our implementation is a
prototype and the running times can even be improved by a C++ implementa-
tion and a faster LP solver.

Efficient Bounded Reachability Computation for Rectangular Automata 151

�0

ẋi ∈ [i − 1, 2i − 1]

xi ∈ [−10d, 10d]

�1

ẋi ∈ [−i,−i + 1]

xi ∈ [−10d, 10d]

xi ∈ [0, 1]

xd ≥ 5d →

xd ≤ −8d →

xj := [−2,−1] where

�d/2� + 1 ≤ j ≤ d

xj := [0, 1] where 1 ≤ j ≤ �d/2�

Fig. 8. Rectangular automaton Ad

Table 1. Experimental results. Time is in seconds, memory in MBs. “MaxJmp” is
the bound on the number of jumps, “ToLP” is the total linear programming time,
“LPs” is the number of linear programs solved (including the detection of redundant
constraints), “Constraints” is the number of irredundant constraints computed, “n.a.”
means not available, “t.o.” means that the running time was greater than one hour.

Dimension MaxJmp
PHAVer Our method

Memory Time Memory Time ToLP LPs Constraints

5 2 9.9 0.81 < 10 2.36 2.20 1837 81

6 2 48.1 21.69 < 10 4.96 4.68 3127 112

7 2 235.7 529.01 < 10 15.95 15.28 7214 163

8 2 n.a. t.o. < 10 27.42 26.48 10517 209

9 2 n.a. t.o. < 10 107.99 105.59 23639 287

10 2 n.a. t.o. < 10 218.66 215.45 32252 354

5 4 10.2 1.51 < 10 4.82 4.50 3734 167

6 4 51.1 35.52 < 10 11.25 10.64 7307 240

7 4 248.1 1191.64 < 10 32.93 31.60 16101 352

8 4 n.a. t.o. < 10 72.04 69.81 27375 466

9 4 n.a. t.o. < 10 240.51 235.61 64863 641

10 4 n.a. t.o. < 10 543.05 535.77 86633 816

5 Conclusion

We introduced our efficient approach for the bounded reachability computation
of rectangular automata. However, the method of computing the reachable set
under a flow transition can also be applied to linear hybrid automata. With some
more effort this approach can also be adapted for the approximative analysis of
hybrid systems with nonlinear behavior.

References

1. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

2. Henzinger, T.A., Ho, P., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid
systems. IEEE Transactions on Automatic Control 43(4), 540–554 (1998)

152 X. Chen, E. Ábrahám, and G. Frehse

3. Preußig, J., Kowalewski, S., Wong-Toi, H., Henzinger, T.A.: An algorithm for the
approximative analysis of rectangular automata. In: Ravn, A.P., Rischel, H. (eds.)
FTRTFT 1998. LNCS, vol. 1486, pp. 228–240. Springer, Heidelberg (1998)

4. Wong-Toi, H., Preußig, J.: A procedure for reachability analysis of rectangular
automata. In: Proc. of American Control Conference, vol. 3, pp. 1674–1678 (2000)

5. Doyen, L., Henzinger, T.A., Raskin, J.: Automatic rectangular refinement of affine
hybrid systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829,
pp. 144–161. Springer, Heidelberg (2005)

6. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

7. Chutinan, A., Krogh, B.H.: Computing polyhedral approximations to flow pipes
for dynamic systems. In: Proc. of CDC 1998. IEEE Press, Los Alamitos (1998)

8. Stursberg, O., Krogh, B.H.: Efficient representation and computation of reach-
able sets for hybrid systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS,
vol. 2623, pp. 482–497. Springer, Heidelberg (2003)

9. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005)

10. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: A model checker for hybrid
systems. Software Tools for Technology Transfer (1), 110–122 (1997)

11. Frehse, G.: Phaver: Algorithmic verification of hybrid systems past hytech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

12. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152.
Springer, Heidelberg (1995)

13. Chen, X., Abraham, E., Frehse, G.: Efficient bounded reachability computation
for rectangular automata. Technical report, RWTH Aachen University (2011),
http://www-i2.informatik.rwth-aachen.de/i2/hybrid_research_pub0/

14. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

15. Fukuda, K.: From the zonotope construction to the minkowski addition of convex
polytopes. J. Symb. Comput. 38(4), 1261–1272 (2004)

16. Weibel, C., Fukuda, K.: Computing faces up to k dimensions of a minkowski sum
of polytopes. In: Proc. of CCCG 2005, pp. 256–259 (2005)

17. Henzinger, T.A.: The theory of hybrid automata. In: Proc. of LICS 1996, pp. 278–
292 (1996)

18. Fukuda, K.: cdd, cddplus and cddlib homepage,
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/

19. Frehse, G., Le Guernic, C., Donzé, A., Ray, R., Lebeltel, O., Ripado, R., Girard, A.,
Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011)

http://www-i2.informatik.rwth-aachen.de/i2/hybrid_research_pub0/
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/

Reachability and Deadlocking Problems in

Multi-stage Scheduling

Christian E.J. Eggermont and Gerhard J. Woeginger

Department of Mathematics and Computer Science, TU Eindhoven, Netherlands

Abstract. We study reachability and deadlock detection questions in
multi-stage scheduling systems. The jobs have partially ordered process-
ing plans that dictate the order in which the job passes through the
machines. Our results draw a sharp borderline between tractable and
intractable cases of these questions: certain types of processing plans
(that we call unconstrained and source-constrained) lead to algorithmi-
cally tractable problems, whereas all remaining processing plans lead to
NP-hard problems.

We give conditions under which safe system states can be recognized in
polynomial time, and we prove that without these conditions the recogni-
tion of safe system states is NP-hard. We show that deciding reachability
of a given state is essentially equivalent to deciding safety. Finally, we
establish NP-hardness of deciding whether the system can ever fall into
a deadlock state.

Keywords: Scheduling, resource allocation, deadlock, computational
complexity.

1 Introduction

A robotic cell consists of three machines that install colored nibbles onto ding-
bats; the first machine installs yellow nibbles, the second machine blue nibbles,
and the third machine installs red nibbles. Currently two dingbats are mov-
ing through the cell and want to visit all three machines: dingbat A needs the
blue nibble mounted before the red nibble, and dingbat B needs the blue nibble
mounted before the yellow nibble. Dingbat A receives its yellow nibble on the
first machine, and then its blue nibble on the second machine. In the meaintime
dingbat B receives its red nibble on the red machine. Now a catastrophe has
happened!! The robotic cell is stuck! Dingbat A blocks the second machine, and
wants to move to the third machine. The third machine is blocked by dingbat
B, which wants to move to the second machine. One cannot help but wonder:
would there have been a better way of handling these dingbats?

More generally, we consider real-time multi-stage scheduling systems with m
machines M1, . . . ,Mm and n jobs J1, . . . , Jn. Each machine Mi has a corre-
sponding capacity cap(Mi), which means that at any moment in time it can
simultaneously hold and process up to cap(Mi) jobs. Each job Jj has a pro-
cessing plan: it requests processing on a certain subset M(Jj) of the machines,

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 153–164, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

154 C.E.J. Eggermont and G.J. Woeginger

and the way in which the job passes through these machines is constrained by a
partial order ≺j. Whenever Ma ≺j Mb holds for two machines in M(Jj), then
job Jj must complete its processing on machine Ma before it can visit Mb.

The various jobs move through the system in an unsynchronized fashion and
hop from machine to machine. In the beginning a job is asleep and waiting
outside the system. For technical reasons, we assume that the job occupies an
artificial machine M0 of unbounded capacity. After some time the job wakes up
and starts looking for an available machine on which it can be processed next
in agreement with its processing plan. If no such machine is available, then the
job falls asleep again. If the job finds such a machine and if this machine has
free capacity, then the job moves there, receives its processing, and falls asleep
for some time; then it wakes up again, and the game repeats. As soon as the
processing of the job on all relevant machines is completed, the job leaves the
system; we assume that the job then moves to an artificial final machine Mm+1

(with unbounded capacity), and disappears.
The following example puts the dingbat and nibble robotic cell (as described

in the first paragraph of this paper) into our formal framework.

Example 1. A scheduling system has three machines M1,M2,M3 of capacity 1.
There are two jobs J1 and J2 that both require processing on all three machines,
with M2 ≺1 M3 and M2 ≺2 M1 and no further constraints imposed by their
processing plans.

Suppose the following happens. The first job moves to machine M1. The first
job moves to machine M2. The second job moves to machine M3. Once the two
jobs have completed their processing on these machines, they keep blocking their
machines and simultaneously keep waiting for the other machine to become idle.
The processing never terminates, and the system is in deadlock.

The described framework is closely related to shop models from classical schedul-
ing theory. In an open shop system, all partial orders ≺j are empty. In a flow
shop system, all partial orders ≺j are total orders and all machine sets M(Jj)
contain all available machines. In a job shop system, all partial orders ≺j are to-
tal orders and the machine sets M(Jj) depend on the job. For more information
on multi-stage scheduling systems, the reader is referred to the survey [4].

Summary of Considered Problems and Derived Results

We discuss the computational complexity of several fundamental problems in
multi-stage scheduling systems that are centered around the reachability of cer-
tain desired and certain undesired system states. We are interested in the bor-
derline between easy and hard special cases. A particularly simple special case
arises, if all jobs have isomorphic processing plans ; this means that all partial
orders ≺j are isomorphic to each other. One example for such a system are the
flow shops, and another example is described in Example 1. Most of our com-
plexity results hold for systems with such isomorphic processing plans, and we
precisely separate the processing plans with good behavior (polynomially solv-
able problem variants) from the processing plans with bad behavior (NP-hard

Reachability and Deadlocking Problems in Multi-stage Scheduling 155

problem variants). Section 2 classifies some typical processing plans that arise
in our theorems.

The most fundamental question is to distinguish the unsafe system states
(for which an eventual deadlock is unavoidable) from the safe ones (for which
deadlocks can permanently be avoided):

Problem: Safe State Recognition

Instance: A scheduling system. A system state s.
Question: Is state s safe?

Lawley & Reveliotis [5] established NP-hardness of Safe State Recognition,
even for the special job shop case where every processing plan is totally ordered.
The construction in [5] crucially builds on jobs with very long processing plans.

We prove a substantially stronger result: Safe State Recognition is NP-
hard, even in the extremely primitive special case every processing plan is a total
order of only three machines. More generally, in Section 5 we will establish
NP-hardness for all systems with isomorphic processing plans with only two
exceptions. The first exception concerns processing plans where the partial order
is empty. The second exception concerns processing plans where the partial order
is source-constrained. This means that the partial order points out a machine to
which the job must go first (and no further constraints); see Figure 1(c) for an
illustration. Section 4 shows that for these two exceptional cases Safe State

Recognition in fact is polynomially solvable.
Another fundamental question is to characterize those system states that ac-

tually can be reached while the system is running:

Problem: Reachable State Recognition

Instance: A scheduling system. A system state s.
Question: Can the system reach state s when starting from the initial
situation where all machines are empty?

In Section 6 we show that deciding reachability essentially is equivalent to de-
ciding safety in a closely related system. The (simple) idea is to reverse the time
axis, and to make the system run backward.

A third class of problems is centered around the question whether a scheduling
system can ever fall into a deadlock state. In case it can not, there are no
reachable unsafe states: the system is fool-proof and will run smoothly without
supervision.

Problem: Reachable Deadlock

Instance: A scheduling system.
Question: Can the system ever reach a deadlock state when starting
from the initial situation?

In Section 7 we will prove NP-hardness of Reachable Deadlock in several
highly restricted situations. Our main result states that the problem is NP-
hard for all systems with isomorphic processing plans with only two exceptions

156 C.E.J. Eggermont and G.J. Woeginger

(a) unconstr. (b) linear

(c) source-constr. (d) sink-constr.

Fig. 1. Some specially structured job processing plans

(which are closely related to the two exceptions that we got for Safe State

Recognition). The first exception concerns processing plans where the partial
order is empty and uses at most three machines. The second exception concerns
processing plans where the partial order is source-constrained and uses at most
four machines. The computational complexity of these two exceptional cases
remains unclear.

Due to lack of space, many proofs and details are deferred to the journal
version of this paper.

2 A Taxonomy of Job Processing Plans

Consider a job Jj that requests processing on some subset M(Jj) of machines.
The way in which job Jj passes through the machines in M(Jj) is governed
by a strict order ≺j on the set M(Jj). Whenever Ma ≺j Mb holds for two
machines Ma,Mb ∈ M(Jj) in this strict order, job Jj must complete its pro-
cessing on machine Ma before it can visit machine Mb. The machine set M(Jj)
together with the strict order ≺j is called the processing plan of job Jj . There
is a number of specially structured processing plans that play a crucial role in
our investigations:

Unconstrained. If the strict order ≺j is empty, then the ordering in which
job Jj passes through the machines in M(Jj) is immaterial and can be
chosen arbitrarily. We call such a processing plan unconstrained. Note that
in classical multi-stage scheduling unconstrained processing plans occur in
so-called open shops.

Linear. If the strict order ≺j is a total order on M(Jj), then we say that the
processing plan is linear. In classical multi-stage scheduling linear processing
plans occur in so-called job shops.

Reachability and Deadlocking Problems in Multi-stage Scheduling 157

Source-constrained. Assume that there exists a machine M source in M(Jj),
such thatM source ≺j M holds for all machinesM ∈ M(Jj)−{M source} and
such that the strict order imposes no further constraints. Such a processing
plan is called source-constrained, and M source is called the source of the
processing plan.

Sink-constrained. In a symmetric fashion to source-constrained processing
plans, we define sink-constrained processing plans: there exists a machine
M sink in M(Jj), such that M ≺j M

sink for all machines M ∈ M(Jj) −
{M sink} and there are no further constraints. The machine M sink is called
the sink of the processing plan.

Definition 1. A processing plan has an αβγδ-decomposition if there are two
machines Dα �= Dβ and if there is a partition of the remaining machines in
M(Jj) − {Dα, Dβ} into two sets Dγ and Dδ with the following properties:

(i) Dβ �≺j D
α

(ii) Dγ := succ
(
Dβ
)

forms a non-empty antichain
(iii) pred

(
Dδ
)
⊆ Dδ

Lemma 1. (Decomposition lemma). If a processing plan is neither uncon-
strained nor source-constrained, then it has an αβγδ-decomposition.

Proof. If M(Jj) and ≺j form a processing plan that is neither unconstrained nor
source-constrained, then there exists an element that has at least one successor
and at least one non-successor. Among all such elements, pick element Dβ such
that succ

(
Dβ
)

has minimum cardinality. Choose Dα �= Dβ as a sink on the
ordered set induced by the non-successors of Dβ , let Dγ := succ

(
Dβ
)
, and let

Dδ contain all remaining elements (which are non-successors of Dβ).
Properties (i) and (iii) hold by construction. Furthermore Dγ is non-empty,

and the existence of two elements M,M ′ in Dγ with M ≺j M
′ would contradict

the choice of Dβ (as M then would have fewer successors than Dβ). Hence also
(ii) is satisfied. �

The simplest example of a processing plan that is neither unconstrained nor
source-constrained consists of three machines Ma,Mb,Mc with constraints
Ma ≺j Mb ≺j Mc. The corresponding αβγδ-decomposition is unique and given
by Dα = Ma, Dβ = Mb, Dγ = {Mc}, and Dδ = ∅. The following example
illustrates that αβγδ-decompositions need not be unique.

Example 2. Consider a job J with M(J) = {M1,M2,M3,M4} and M1 ≺ M3,
M1 ≺ M4, M2 ≺ M4. There are two αβγδ-decompositions:

– Dα = M3, Dβ = M2, Dγ = {M4} and Dδ = {M1},
– Dα = M2, Dβ = M1, Dγ = {M3,M4} and Dδ = ∅.

These decompositions are illustrated in Figure 2.

158 C.E.J. Eggermont and G.J. Woeginger

Fig. 2. Two αβγδ-decompositions of the partial order of Example 2

Definition 2. A processing plan is a pitchfork, if it possesses an αβγδ-
decomposition with Dδ = ∅. The cardinality of Dγ in such a decomposition is
called its prong-number.

The αβγδ-decomposition in the righhand side of Figure 2 demonstrates that job
J in Example 2 has a pitchfork processing plan. Also Example 1 is a schedul-
ing system in which all processing plans are pitchforks. Some further typical
examples of pitchforks are given in Figure 3.

Fig. 3. Two typical pitchforks with αβγδ-decomposition (Dδ = ∅)

3 System States: Safe, Unsafe, and Deadlocks

A state of a scheduling system is a snapshot of a situation that might potentially
occur while the system is running. A state s specifies for every job Jj

– the machine M s(Jj) on which this job is currently waiting or currently being
processed,

– the set Ms(Jj) ⊆ M(Jj) − {M s(Jj)} of machines on which the job still
needs future processing.

The machines M s(Jj) implicitly determine

– the set J s(Mi) ⊆ {J1, . . . , Jn} of jobs currently handled by machine Mi.

Reachability and Deadlocking Problems in Multi-stage Scheduling 159

The initial state 0 is the state where all jobs are still waiting for their first
processing; in other words in the initial state all jobs Jj satisfy M0(Jj) = M0

and M0(Jj) = M(Jj). The final state f is the state where all jobs have been
completed; in other words in the final state all jobs Jj satisfy Mf (Jj) = Mm+1

and Mf (Jj) = ∅.
A state t is called a successor of a state s, if it results from s by moving a

single job Jj from its current machine M s(Jj) to some machine M that is a
source in set Ms(Jj), or by moving a job Jj with Ms(Jj) = ∅ from its current
machine to Mm+1. In this case we also say that the entire system moves from s
to t. This successor relation is denoted s → t. A state t is said to be reachable
from state s, if there exists a finite sequence s = s0, s1, . . . , sk = t of states (with
k ≥ 0) such that si−1 → si holds for i = 1, . . . , k. A state s is called reachable,
if it is reachable from the initial state 0. A state is called safe, if the final state
f is reachable from it; otherwise the state is called unsafe. A state is a deadlock,
if it has no successor states and if it is not the final state f . A state is called
super-safe, if no deadlock states are reachable from it.

Example 3 (continuation of Example 1). We show several potential successor
states of state 0 illustrating the terms mentioned. Unless otherwise noted in the
description of a state each job still needs to visit all machines other than its
current location:

– state u: Mu(J1) = M1 and Mu(J2) = M3,
– state s: M s(J1) = M2 and M s(J2) = M3,
– state d: Md(J1) = M2, Md(J1) = {M3} and Md(J2) = M3,
– state p: Mp(J1) = M2, Mp(J1) = {M3} and Mp(J2) = M1, Mp(J2) =

{M3},

Out of these four states, only p is not reachable (explained in Example 4), and
only states s and p are safe. Furthermore, state u is unsafe but not deadlock.
Finally note that state s is super-safe, whereas the initial state 0 is not super-safe.

4 Deciding Safety: Easy Cases

This section discusses special cases for which the safety of states can be decided in
polynomial time. The following theorem unifies and extends several results from
the literature; see Sulistyono & Lawley [6, Th.3, p.825] and Lawley & Reveliotis
[5, p.398] (which also contains further references). The proof method is standard
for the area, but the theorem in its full generality appears to be new.

Theorem 1. Safe State Recognition can be decided in polynomial time, if
machines of unit capacity only occur in unconstrained and source-constrained
processing plans.

If a job requires processing on only one or two machines, then its processing plan
is either unconstrained or source-constrained. This yields the following trivial
corollary to Theorem 1.

160 C.E.J. Eggermont and G.J. Woeginger

Corollary 1. Safe State Recognition can be decided in polynomial time, if
every job requires processing on at most two machines.

The rest of this section presents the proof of Theorem 1. We will show that in
the setting of this theorem, the existence of an unsafe state is equivalent to the
existence of a so-called blocking set (Lemma 4). Since the existence of a blocking
set is decidable in polynomial time (Lemma 2), the theorem follows.

A machine M is called full in state s, if it is handling exactly cap(M) many
jobs. For a subset J of jobs we let Nexts(J) denote the set of machines M
for which there is a job Jj ∈ J with M ∈ Ms(Jj) and for which there is no
N ∈ Ms(Jj) with N ≺j M ; in other words, such a machine M is a potential
candidate for being requested by job Jj in its next processing step. A non-empty
subset B of the machines is called blocking for state s,

– if every machine in B is full, and
– if every job Jj that is on some machine in B satisfies ∅ �= Nexts(Jj) ⊆ B.

The machines in a blocking set B all operate at full capacity on jobs that in
the immediate future only want to move to other machines in B; in other words
Nexts(J s(B)) ⊆ B. Since these jobs are permanently blocked from moving, the
state s must eventually lead to a deadlock and hence is unsafe.

Lemma 2. For a given state s, it can be decided in polynomial time whether s
has a blocking set of machines.

Proof. Create an auxiliary directed graph that corresponds to state s: the ver-
tices are the machines M1, . . . ,Mm. Whenever some job Jj occupies a machine
Mi, the directed graph contains an arc from Mi to every machine in Nexts(Jj).
Obviously state s has a blocking set of machines if and only if the auxiliary
directed graph contains a strongly connected component with the following two
properties: (i) All vertices in the component are full. (ii) There are no arcs leav-
ing the component. Since the strongly connected components of a directed graph
can be determined and analyzed in linear time, the statement follows. �

Here is a simple procedure that determines whether a given machineMi is part of
a blocking set in state s: Let B0 = {Mi}. For k ≥ 1 let Bk = Nexts(J s(Bk−1))∪
Bk−1. Clearly B0 ⊆ B1 ⊆ · · · ⊆ Bm−1 = Bm. Furthermore machine Mi belongs
to a blocking set, if and only if Bm is a blocking set, if and only if all machines
in Bm are full. In case Bm is a blocking set, we denote it by Bs

min(Mi) and call
it the canonical blocking set for machine Mi in state s. The same procedure
can be used starting from any subset B0 of machines, and the resulting set of
machines Bm will be denoted by Rs(B0). In particular Bs

min(Mi) = Rs({Mi}).
The canonical blocking set is the smallest blocking set containing Mi:

Lemma 3. If Mi belongs to a blocking set B in state s, then Bs
min(Mi) ⊆ B.

In the case of open shop it is known (Eggermont, Schrijver & Woeginger [2])
that every unsafe state is caused by blocking sets. The following shows a gener-
alization.

Reachability and Deadlocking Problems in Multi-stage Scheduling 161

Lemma 4. Consider a scheduling system where machines of unit capacity only
occur in unconstrained and source-constrained processing plans. Then a state s
is unsafe if and only if state s contains a blocking set of machines.

Proof. Without restriction of generality, we can assume all jobs have entered
the system and require further processing. For deadlock states the statement
is obvious. Clearly a state containing a blocking set is unsafe. For the other
direction, assume there is an unsafe state s without a blocking set where any
possible move will result in a state containing a blocking set. Let E be a machine
contained in Nexts(Jj) for some job Jj , that is not full in s. Without loss of
generality, we assume that among all successors of state s resulting from a job
moving to E, state t has smallest cardinality canonical blocking set for machine
E. Clearly E has to be in every blocking set of t.

Case where cap(E) ≥ 2: Since there have to be jobs on E in state s (otherwise
E would not be full in t), we can look at the set B = Rs(Nexts(J s(E))). The
jobs on E in state s are part of a blocking set in t, so Nexts(J s(E)) �= ∅. Clearly
B is contained in every minimal blocking set in every successor of state s which
is the result of a move of some job to E. If E �∈ B, then B is a blocking set in s,
which we assumed was not the case. So E ∈ B and let J ′ be on M ′ ∈ B for which
E ∈ Nexts(J ′). Let state t′ be the successor of state s resulting from moving J ′

(from M ′) to E. As noted before, the minimal blocking set Bt′
min(E) contains E

and hence also B. However M ′ ∈ B is not full in t′ since J ′ just left M ′, so this
gives the required contradiction.

Case where cap(E) = 1: There is a job J ′ on a machine in Bt
min(E) with E ∈

Nextt(J ′) = Nexts(J ′), as otherwise Bt
min(E) − {E} would be a blocking set in

state s. Since J ′ had already entered the system in state s and requires processing
on E of unit capacity, by assumption the processing plan of J ′ in state s must
be unconstrained, and thus B ⊆ Bt

min(E). Let t′ be the successor of state s
resulting from moving J ′ to E and denote by B the set Rs(Ms(J ′)). Since J ′

was on a machine in Bt
min(E) we have B ⊆ Bt

min(E). Similarly B ⊆ Bt′
min(E).

Finally E ∈ Ms(J ′) implies that

Bt′
min(E) = Rt′ ({E}) = Rs(Ms(J ′)) = B.

Since the machine M s(J ′) = M t(J ′) ∈ Bt
min(E) is no longer full in t′ so we have

that Bt′
min(E) � Bt

min(E), resulting in a contradiction with the minimality of the
cardinality of Bt

min(E) taken over all successors of s resulting from a job moving
to E. �

5 Deciding Safety: Hard Cases

In this section we show that Safe State Recognition is NP-hard in all cases
that are not covered by Theorem 1.

Theorem 2. Let D be a fixed directed graph that is neither unconstrained nor
source-constrained. Safe State Recognition is NP-hard, even if all processing

162 C.E.J. Eggermont and G.J. Woeginger

plans are isomorphic to D. Furthermore this problem variant (with all processing
plans isomorphic to D) remains NP-hard, even if the system contains only a
single machine of unit capacity.

Theorem 2 is proved by a reduction from the satisfiability problem; see Garey
& Johnson [3].

Problem: Three-Satisfiability

Input: A set X = {x1, . . . , xn} of n logical variables; a set C =
{c1, . . . , cm} of m clauses over X that each contain three literals.

Question: Is there a truth assignment for X that satisfies all the clauses
in C?

Given an instance (X,C) of the problem Three-Satisfiability, we construct
a scheduling system with a state s. We will show that state s is safe if there is
a truth assignment for X that satisfies all clauses in C, and unsafe otherwise.

The (technical and somewhat lengthy) proof can be found in the full version
of the paper.

6 Reachability

In this section we show that deciding reachability is essentially equivalent to
deciding safeness.

Consider a scheduling system and some fixed system state s. We define a new
(artificial) scheduling system and a new state ρ(s) where Mρ(s)(Jj) := M s(Jj),
and Mρ(s)(Jj) := M(Jj)−Ms(Jj)−{M s(Jj)}. Furthermore for all jobs Jj , ≺j

in ρ(s) coincides with 3j in s. Note that in both states s and ρ(s) every job is
sitting on the same machine, but the work that has already been performed in
state s is exactly the work that still needs to be done in state ρ(s).

Lemma 5. State s is reachable in the old system, if and only if state ρ(s) is
safe in the new system.

Proof. First assume that s is reachable, and let 0 = s0 → s1 → · · · → sk =
s denote a corresponding witness sequence of moves. Define a new sequence
ρ(s) = tk → tk−1 → · · · → t0 = f of moves: whenever the move s� → s�+1

(0 ≤ � ≤ k − 1) results from moving job Jj from machine Ma to machine Mb,
then the move t�+1 → t� results from moving job Jj from machine Mb to machine
Ma. Hence ρ(s) is safe. A symmetric argument shows that if ρ(s) is safe then s
is reachable. �

Example 4. (Continuation of Example 3). State p is not reachable, since ρ(p)
is a deadlock: Mρ(p)(J1) = M2, Mρ(p)(J1) = {M1}, and Mρ(p)(J2) =
M1, Mρ(p)(J2) = {M2}.

As the construction of the new scheduling system and state ρ(s) can be done in
polynomial time, deciding reachability is algorithmically equivalent to deciding
safeness. Hence Theorems 1 and 2 yield the following:

Reachability and Deadlocking Problems in Multi-stage Scheduling 163

Theorem 3. Problem Reachable State Recognition is decidable in poly-
nomial time if machines of unit capacity only occur in unconstrained and sink-
constrained processing plans, and NP-hard otherwise.

The following lemma is used in the proof of Theorem 6.

Lemma 6. Let s be a state, and let K be a subset of machines such that every
job Jj that still needs further processing in s satisfies M s(Jj) ∈ K, and, K �≺j N
holds for each K ∈ K and N ∈ M(Jj)\K, and finally

Ms(Jj) ∪ {M s(Jj)} = K ∩M(Jj).

Then s is a reachable system state. �

7 Reachable Deadlock

In this section we establish NP-hardness of Reachable Deadlock, even for
some highly restricted special cases. We first recall a hardness result from [2]:

Theorem 4. (Eggermont, Schrijver & Woeginger [2])
Reachable Deadlock is NP-hard for jobs with unconstrained processing
plans, even if every job requires processing on at most four machines and if
all machine capacities are at most three. �

This theorem easily implies the following.

Theorem 5. Reachable Deadlock is NP-hard for jobs with source-con-
strained processing plans, even if every job requires processing on at most five
machines and if all machine capacities are at most three.

Proof. We modify a scheduling system with unconstrained processing plans into
another scheduling system with source-constrained processing plans: for each
job J we create a new machine M src(J) of unit capacity and add this machine
as new source to J ’s processing plan. It is straightforward to see that the old
system has a reachable deadlock if and only if the new system has a reachable
deadlock. �

The main result of this section is the following.

Theorem 6. Let D be a fixed directed graph that is neither unconstrained nor
source-constrained. Reachable Deadlock is NP-hard, even if all processing
plans are isomorphic to D and if all machines have unit capacity.

The proof of Theorem 6 can be found in the full version of the paper. The
following observation will be useful.

Lemma 7. If there exists a reachable deadlock, then there also exists a reachable
deadlock where the set of all occupied machines forms a minimal blocking set.

164 C.E.J. Eggermont and G.J. Woeginger

References

1. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM Journal on Computing 1, 131–137 (1972)

2. Eggermont, C.E.J., Schrijver, A., Woeginger, G.J.: Analysis of multi-state open shop
processing systems. In: Proceedings of 28th International Symposium on Theoretical
Aspects of Computer Science, LIPIcs, vol. 9, pp. 484–494 (2011)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

4. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and
scheduling: Algorithms and complexity. In: Handbooks in Operations Research and
Management Science, vol. 4, pp. 445–522. North Holland, Amsterdam (1993)

5. Lawley, M., Reveliotis, S.: Deadlock avoidance for sequential resource allocation
systems: hard and easy cases. The International Journal of Flexible Manufacturing
Systems 13, 385–404 (2001)

6. Sulistyono, W., Lawley, M.A.: Deadlock avoidance for manufacturing systems with
partially ordered process plans. IEEE Transactions on Robotics and Automation 17,
819–832 (2001)

Improving Reachability Analysis

of Infinite State Systems by Specialization

Fabio Fioravanti1, Alberto Pettorossi2,
Maurizio Proietti3, and Valerio Senni2,4

1 Dipartimento di Scienze, University ‘G. D’Annunzio’, Pescara, Italy
fioravanti@sci.unich.it

2 DISP, University of Rome Tor Vergata, Rome, Italy
{pettorossi,senni}@disp.uniroma2.it

3 CNR-IASI, Rome, Italy
maurizio.proietti@iasi.cnr.it

4 LORIA-INRIA, Villers-les-Nancy, France
valerio.senni@loria.fr

Abstract. We consider infinite state reactive systems specified by us-
ing linear constraints over the integers, and we address the problem of
verifying safety properties of these systems by applying reachability anal-
ysis techniques. We propose a method based on program specialization,
which improves the effectiveness of the backward and forward reachabil-
ity analyses. For backward reachability our method consists in: (i) spe-
cializing the reactive system with respect to the initial states, and then
(ii) applying to the specialized system a reachability analysis that works
backwards from the unsafe states. For forward reachability our method
works as for backward reachability, except that the role of the initial
states and the unsafe states are interchanged. We have implemented our
method using the MAP transformation system and the ALV verifica-
tion system. Through various experiments performed on several infinite
state systems, we have shown that our specialization-based verification
technique considerably increases the number of successful verifications
without significantly degrading the time performance.

1 Introduction

One of the present challenges in the field of automatic verification of reactive
systems is the extension of the model checking techniques [5] to systems with
an infinite number of states. For these systems exhaustive state exploration is
impossible and, even for restricted classes, simple properties such as safety (or
reachability) properties are undecidable (see [10] for a survey of relevant results).

In order to overcome this limitation, several authors have advocated the
use of constraints over the integers (or the reals) to represent infinite sets of
states [4,8,9,15,17]. By manipulating constraint-based representations of sets
of states, one can verify a safety property ϕ of an infinite state system by one of
the following two strategies:

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 165–179, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

166 F. Fioravanti et al.

(i) Backward Strategy: one applies a backward reachability algorithm, thereby
computing the set BR of states from which it is possible to reach an unsafe state
(that is, a state where ¬ϕ holds), and then one checks whether or not BR has
an empty intersection with the set I of the initial states;
(ii) Forward Strategy: one applies a forward reachability algorithm, thereby com-
puting the set FR of states reachable from an initial state, and then one checks
whether or not FR has an empty intersection with the set U of the unsafe states.

Variants of these two strategies have been proposed and implemented in various
automatic verification tools [2,3,14,20,25]. Some of them also use techniques
borrowed from the field of abstract interpretation [6], whereby in order to check
whether or not a safety property ϕ holds for all states which are reachable from
the initial states, an upper approximation BR (or FR) of the set BR (or FR)
is computed. These techniques improve the termination of the verification tools
at the expense of a possible loss in precision. Indeed, whenever BR ∩ I �= ∅ (or
FR ∩ U �= ∅), one cannot conclude that, for some state, ϕ does not hold.

One weakness of the Backward Strategy is that, when computing BR, it does
not take into account the properties holding on the initial states. This may lead,
even if the formula ϕ does hold, to a failure of the verification process, because
either the computation of BR does not terminate or one gets an overly approx-
imated BR with a non-empty intersection with the set I. A similar weakness
is also present in the Forward Strategy as it does not take into account the
properties holding on the unsafe states when computing FR or FR.

In this paper we present a method, based on program specialization [19], for
overcoming these weaknesses. Program specialization is a program transforma-
tion technique that, given a program and a specific context of use, derives a spe-
cialized program that is more effective in the given context. Our specialization
method is applied before computing BR (or FR). Its objective is to transform
the constraint-based specification of a reactive system into a new specification
that, when used for computing BR (or FR), takes into consideration also the
properties holding on the initial states (or the unsafe states, respectively).

Our method consists of the following three steps: (1) the translation of a
reactive system specification into a constraint logic program (CLP) [18] that im-
plements backward (or forward) reachability; (2) the specialization of the CLP
program with respect to the initial states (or the unsafe states, respectively),
and (3) the reverse translation of the specialized CLP program into a special-
ized reactive system. We prove that our specialization method is correct, that
is, it transforms a given specification into one which satisfies the same safety
properties.

We have implemented our specialization method on the MAP transformation
system for CLP programs [22] and we have performed experiments on several in-
finite state systems by using the Action Language Verifier (ALV) [25]. These ex-
periments show that specialization determines a relevant increase of the number
of successful verifications, in the case of both backward and forward reachability
analysis, without a significant degradation of the time performance.

Improving Reachability Analysis of Infinite State Systems by Specialization 167

2 Specifying Reactive Systems

In order to specify reactive systems and their safety properties,we use a simplified
version of the languages considered in [2,3,20,25]. Our language allows us to
specify systems and properties byusing constraints over the setZ of the integers.

A system is a triple 〈Var, Init,Trans〉, where: (i) Var is a variable declaration,
(ii) Init is a formula denoting the set of initial states, and (iii) Trans is a formula
denoting a transition relation between states.

Now we formally define these notions. A variable declaration Var is a se-
quence of declarations of (distinct) variables each of which may be either: (i) an
enumerated variable, or (ii) an integer variable. (i) An enumerated variable x is
declared by the statement: enumerated x D, meaning that x ranges over a
finite set D of constants. The set D is said to be the type of x and it is also said
to be the type of every constant in D. (ii) An integer variable x is declared by
the statement: integer x, meaning that x is a variable ranging over the set Z of
the integers. By X we denote the set of variables declared in Var, and by X ′ we
denote the set {x′ | x ∈ X} of primed variables.

Constraints are defined as follows. If e1 and e2 are enumerated variables or
constants of the same type, then e1 =e2 and e1 �=e2 are atomic constraints. If p1

and p2 are linear polynomials with integer coefficients, then p1 =p2, p1≥p2, and
p1>p2 are atomic constraints. A constraint is either true, or false, or an atomic
constraint, or a conjunction of constraints. Init is a disjunction of constraints
on the variables in X . Trans is a disjunction of constraints on the variables in
X ∪ X ′.

A specification is a pair 〈Sys,Safe〉, where Sys is a system and Safe is a formula
of the form ¬EFUnsafe, specifying a safety property of the system, and Unsafe
is a disjunction of constraints on the variables in X .

Example 1. Here we show a reactive system (1.1) and its specification (1.2) in
our language.

〈x1,x2〉

(1.1) (1.2)x′
1 = x1+x2

x′
2 = x2+1

Var : integer x1; integer x2;
Init : x1 ≥ 1 ∧∧ x2 = 0;

Trans: x′
1 = x1+x2 ∧∧ x′

2 = x2+1;
Safe: ¬EF(x2 >x1) �

Now we define the semantics of a specification. Let Di be a finite set of constants,
for i= 1, . . . , k. Let X = 〈x1, . . . , xk, xk+1, . . . , xn〉 be a listing of the variables
in X , where: (i) for i = 1, . . . , k, xi is an enumerated variable of type Di, and
(ii) for i = k+1, . . . , n, xi is an integer variable. Let X ′ be a listing 〈x′1, . . . , x′k,
x′k+1, . . . , x

′
n〉 of the variables in X ′. A state is an n-tuple 〈r1, . . . , rk, zk+1, . . . , zn〉

of constants in D1 × . . .×Dk × Zn−k.
A state s of the form 〈r1, . . . , rk, zk+1, . . . , zn〉 satisfies a disjunction d of con-

straints on X , denoted s |= d, if the formula d[s/X] holds, where [s/X] denotes
the substitution [r1/x1, . . . , rk/xk, zk+1/xk+1, . . . , zn/xn]. A state satisfying Init
(resp., Unsafe) will be called an initial (resp., unsafe) state.

168 F. Fioravanti et al.

A pair of states 〈s, s′〉 satisfies a constraint c on the variables in X ∪ X ′, de-
noted 〈s, s′〉 |= c, if the constraint c[s/X, s′/X ′] holds. A computation sequence
is a sequence of states s0, . . . , sm, with m≥ 0, such that, for i = 0, . . . ,m−1,
〈si, si+1〉 |= c, for some constraint c in {cj | j ∈ J}, where Trans =

∨
j∈J cj .

State sm is reachable from state s0 if there exists a computation sequence
s0, . . . , sm. The system Sys satisfies the safety property, called Safe, of the form
¬EFUnsafe, if there is no state s which is reachable from an initial state and
s |= Unsafe.

A specification 〈Sys1,Safe1〉 is equivalent to a specification 〈Sys2,Safe2〉 if
Sys1 satisfies Safe1 if and only if Sys2 satisfies Safe2.

3 Constraint-Based Specialization of Reactive Systems

Now we present a method for transforming a specification 〈Sys,Safe〉 into an
equivalent specification whose safety property is easier to verify. This method has
two variants, called Bw-Specialization and Fw-Specialization. Bw-Specialization
specializes the given system with respect to the disjunction Init of constraints
that characterize the initial states. Thus, backward reachability analysis of the
specialized system may be more effective because it takes into account the in-
formation about the initial states. A symmetric situation occurs in the case
of Fw-Specialization where the given system is specialized with respect to the
disjunction Unsafe of constraints that characterize the unsafe states.

Here we present the Bw-Specialization method only. (The Fw-Specialization
method is similar and it is described in Appendix.) Bw-Specialization transforms
the specification 〈Sys,Safe〉 into an equivalent specification 〈SpSys, SpSafe〉 ac-
cording to the following three steps.
Step (1). Translation: The specification 〈Sys,Safe〉 is translated into a CLP pro-

gram, called Bw, that implements the backward reachability algorithm.
Step (2). Specialization: The CLP program Bw is specialized into a program

SpBw by taking into account the disjunction Init of constraints.
Step (3). Reverse Translation: The specialized CLP program SpBw is translated

back into a new, specialized specification 〈SpSys,SpSafe〉, which is equivalent
to 〈Sys,Safe〉.

The specialized specification 〈SpSys,SpSafe〉 contains new constraints that are
derived by propagating through the transition relation of the system Sys the
constraints Init holding in the initial states. Thus, the backward reachability
analysis that uses the transition relation of the specialized system SpSys, takes
into account the information about the initial states and, for this reason, it is
often more effective (see Section 4 for an experimental validation of this fact).

Let us now describe Steps (1), (2), and (3) in more detail.

Step (1). Translation. Let us consider the system Sys = 〈Var, Init,Trans〉 and
the property Safe. Suppose that:

(1) X and X ′ are listings of the variables in the sets X and X ′, respectively,
(2) Init is a disjunction init1(X) ∨∨ . . . ∨∨ initk(X) of constraints,

Improving Reachability Analysis of Infinite State Systems by Specialization 169

(3) Trans is a disjunction t1(X,X ′) ∨∨ . . . ∨∨ tm(X,X ′) of constraints,
(4) Safe is the formula ¬EFUnsafe, where Unsafe is a disjunction u1(X) ∨∨ . . .

∨∨un(X) of constraints.

Then, program Bw consists of the following clauses:

I1: unsafe ← init1(X) ∧∧ bwReach(X)
· · ·

Ik: unsafe ← initk(X) ∧∧ bwReach(X)
T1: bwReach(X) ← t1(X,X ′) ∧∧ bwReach(X ′)

· · ·
Tm: bwReach(X) ← tm(X,X ′) ∧∧ bwReach(X ′)
U1: bwReach(X) ← u1(X)

· · ·
Un: bwReach(X) ← un(X)

The meaning of the predicates defined in the program Bw is as follows:
(i) bwReach(X) holds iff an unsafe state can be reached from the state X in zero
or more applications of the transition relation, and (ii) unsafe holds iff there
exists an initial state X such that bwReach(X) holds.

Example 2. For the system of Example 1 we get the following CLP program:
I1: unsafe ← x1 ≥ 1 ∧∧ x2 = 0 ∧∧ bwReach(x1, x2)
T1: bwReach(x1, x2) ← x′1 =x1 + x2 ∧∧ x′2 = x2 + 1 ∧∧ bwReach(x′1, x

′
2)

U1: bwReach(x1, x2) ← x2>x1 �

The semantics of program Bw is given by the least Z-model, denotedM(Bw), that
is, the set of ground atoms derived by using: (i) the theory of linear equations
and inequations over the integers Z for the evaluation of the constraints, and
(ii) the usual least model construction (see [18] for more details).

The translation of the specification 〈Sys,Safe〉 performed during Step (1) is
correct in the sense stated by Theorem 1. The proof of this theorem is based
on the fact that the definition of the predicate bwReach in the program Bw is a
recursive definition of the reachability relation defined in Section 2.
Theorem 1 (Correctness of Translation). The system Sys satisfies the for-
mula Safe iff unsafe /∈M(Bw).

Step (2). Specialization. Program Bw is transformed into a specialized pro-
gram SpBw such that unsafe ∈ M(Bw) iff unsafe ∈ M(SpBw) by applying the
specialization algorithm shown in Figure 1.

This algorithm modifies the initial program Bw by propagating the informa-
tion about the initial states Init and it does so by using the definition
introduction, unfolding, clause removal, and folding rules for transforming con-
straint logic programs (see, for instance, [11]). In particular, our specializa-
tion algorithm: (i) introduces new predicates defined by clauses of the form
newp(X) ← c(X) ∧∧ bwReach(X), corresponding to specialized versions of the
bwReach predicate, and (ii) derives mutually recursive definitions of these new
predicates by applying the unfolding, clause removal, and folding rules.

170 F. Fioravanti et al.

Input : Program Bw.
Output : Program SpBw such that unsafe ∈ M(Bw) iff unsafe ∈ M(SpBw).

Initialization:
SpBw := {J1, . . . , Jk}, where J1: unsafe ← init1(X) ∧∧ newu1(X)

· · ·
Jk: unsafe ← initk(X) ∧∧ newuk(X);

InDefs := {I ′
1, . . . , I

′
k}, where I ′

1: newu1(X) ← init1(X) ∧∧ bwReach(X)
· · ·

I ′
k: newuk(X) ← initk(X) ∧∧ bwReach(X);

Defs := InDefs;
while there exists a clause C: newp(X) ← c(X) ∧∧ bwReach(X) in InDefs do

Unfolding: SpC := {newp(X) ← c(X) ∧∧ t1(X, X ′) ∧∧ bwReach(X ′),
· · ·

newp(X) ← c(X) ∧∧ tm(X, X ′) ∧∧ bwReach(X ′),
newp(X) ← c(X) ∧∧ u1(X),
· · ·

newp(X) ← c(X) ∧∧ un(X) };
Clause Removal:
while in SpC there exist two distinct clauses E and F such that E R-subsumes F or

there exists a clause F whose body has a constraint which is not R-satisfiable
do SpC := SpC − {F} end-while;

Definition-Introduction & Folding:
while in SpC there is a clause E of the form: newp(X) ← e(X,X ′) ∧∧ bwReach(X ′)
do

if in Defs there is a clause D of the form: newq(X)←d(X) ∧∧ bwReach(X) such
that e(X,X ′) �R d(X ′), where d(X ′) is d(X) with X replaced by X ′

then SpC := (SpC − {E}) ∪ {newp(X) ← e(X,X ′) ∧∧ newq(X ′)};
else let Gen(E,Defs) be the clause newr(X) ← g(X) ∧∧ bwReach(X) where:

(i) newr is a predicate symbol not in Defs and (ii) e(X, X ′)�R g(X ′);
Defs := Defs ∪ {Gen(E,Defs)}; InDefs := InDefs ∪ {Gen(E,Defs)};
SpC := (SpC − {E}) ∪ {newp(X) ← e(X, X ′) ∧∧ newr(X ′)};

end-while;

SpBw := SpBw ∪ SpC;

end-while

Fig. 1. The specialization algorithm

An important feature of our specialization algorithm is that the applicability
conditions of the transformation rules used by the algorithm are expressed in
terms of the unsatisfiability (or entailment) of constraints on the domain R of the
real numbers, instead of the domain Z of the integer numbers, thereby allowing
us to use more efficient constraint solvers (according to the present state-of-the-
art solvers). Note that, despite this domain change from Z to R, the specialized
reachability program SpBw is equivalent to the initial program Bw w.r.t. the least
Z-model semantics (see Theorem 4 below). This result is based on the correctness
of the transformation rules [11] and on the fact that the unsatisfiability (or
entailment) of constraints on R implies the unsatisfiability (or entailment) of
those constraints on Z. For instance, let us consider the rule that removes a
clause of the form H ← c ∧∧ B if the constraint c is unsatisfiable on the integers.

Improving Reachability Analysis of Infinite State Systems by Specialization 171

Our specialization algorithm removes the clause if c is unsatisfiable on the reals.
Clearly, we may miss the opportunity of removing a clause whose constraint
is satisfiable on the reals and unsatisfiable on the integers, thereby deriving a
specialized program with redundant satisfiability tests. More in general, the use
of constraint solvers on the reals may reduce the specialization time, but may
leave in the specialized programs residual satisfiability tests on the integers that
should be performed at verification time on the specialized system.

Let us define the notions of R-satisfiability, R-entailment, and R-subsumption
that we have used in the specialization algorithm. Let X and X ′ be n-tuples of
variables as indicated in Section 2. The constraint c(X) is R-satisfiable, if there
exists an n-tuple A in D1 × . . .×Dk ×Rn−k such that c(A) holds. A constraint
c(X,X ′) R-entails a constraint d(X,X ′), denoted c(X,X ′) 2R d(X,X ′), if for
all A,A′ in D1 × . . . × Dk × Rn−k, if c(A,A′) holds then d(A,A′) holds. (Note
that the variables X or X ′ may be absent from c(X,X ′) or d(X,X ′).) Given two
clauses of the forms C: H ← c(X) and D: H ← d(X) ∧∧ e(X,X ′) ∧∧ B, where the
constraint e(X,X ′) and the atom B may be absent, we say that C R-subsumesD,
if d(X) ∧∧ e(X,X ′) 2R c(X).

As usual when performing program specialization, our algorithm also makes
use of a generalization operator Gen for introducing definitions of new predicates
by generalizing constraints. Given a clauseE: newp(X)←e(X,X ′) ∧∧ bwReach(X ′)
and the set Defs of clauses that define the new predicates introduced so far
by the specialization algorithm, Gen(E,Defs) returns a clause G of the form
newr(X) ← g(X) ∧∧ bwReach(X) such that: (i) newr is a fresh, new predi-
cate symbol, and (ii) e(X,X ′) 2R g(X ′) (where g(X ′) is the constraint g(X)
with X replaced by X ′). Then, clause E is folded by using clause G, thereby
deriving newp(X) ← e(X,X ′) ∧∧ newr(X ′). This transformation step preserves
equivalence with respect to the least Z-model semantics. Indeed, newr(X ′) is
equivalent to g(X ′) ∧∧ bwReach(X ′) by definition and, as already mentioned,
e(X,X ′) 2R g(X ′) implies that e(X,X ′) entails g(X ′) in Z.

The generalization operator we use in our experiments reported in Section 4,
is defined in terms of relations and operators on constraints such as widening
and well-quasi orders based on the coefficients of the polynomials occurring in
the constraints. For lack of space we will not describe in detail the generalization
operator we apply, and we refer to [13,23] for various operators which can be
used for specializing constraint logic programs. It will be enough to say that the
termination of the specialization algorithm is ensured by the fact that, similarly
to the widening operator presented in [6], our generalization operator guarantees
that during specialization only a finite number of new predicates is introduced.

Thus, we have the following result.

Theorem 2 (Termination and Correctness of Specialization). (i) The
specialization algorithm terminates. (ii) Let program SpBw be the output of the
specialization algorithm. Then unsafe∈M(Bw) iff unsafe∈M(SpBw).

Example 3. The following program is obtained as output of the specialization
algorithm when it takes as input the CLP program of Example 2:

172 F. Fioravanti et al.

J1: unsafe ← x1≥1 ∧∧ x2 =0 ∧∧ new1(x1, x2)
S1: new1(x1, x2) ← x1≥1 ∧∧ x2 =0 ∧∧ x′1 =x1 ∧∧ x′2 =1 ∧∧ new2(x′1, x

′
2)

S2: new2(x1, x2) ← x1≥1 ∧∧ x2 =1 ∧∧ x′1 = x1+1 ∧∧ x′2 =2 ∧∧ new3(x′1, x′2)
S3: new3(x1, x2) ← x1≥1 ∧∧ x2≥1 ∧∧ x′1 =x1+x2 ∧∧ x′2 =x2+1 ∧∧ new3(x′1, x

′
2)

V1: new3(x1, x2) ← x1≥1 ∧∧ x2>x1 �

Step (3). Reverse Translation. The output of the specialization algorithm is
a specialized program SpBw of the form:

J1: unsafe ← init1(X) ∧∧ newu1(X)
· · ·

Jk: unsafe ← initk(X) ∧∧ newuk(X)
S1: newp1(X) ← s1(X,X ′) ∧∧ newt1(X ′)

· · ·
Sm: newpm(X) ← sm(X,X ′) ∧∧ newtm(X ′)
V1: newq1(X) ← v1(X)

· · ·
Vn: newqn(X) ← vn(X)

where: (i) s1(X,X ′), . . . , sm(X,X ′), v1(X), . . . , vm(X) are constraints, and
(ii) the (possibly non-distinct) predicate symbols newui’s, newpi’s, newti’s, and
newqi’s are the new predicate symbols introduced by the specialization algo-
rithm. Let NewPred be the set of all of those new predicate symbols.

We derive a new specification 〈SpSys,SpSafe〉, where SpSys is a system of the
form 〈SpVar,SpInit,SpTrans〉, as follows.

(1) Let xp be a new enumerated variable ranging over the set NewPred of pred-
icate symbols introduced by the specialization algorithm.
Let the variable X occurring in the program SpBw denote the n-tuple of
variables 〈x1, . . . , xk, xk+1, . . . , xn〉, where: (i) for i = 1, . . . , k, xi is an enu-
merated variable ranging over the finite set Di, and (ii) for i = k+ 1, . . . , n,
xi is an integer variable.
We define SpVar to be the following sequence of declarations of variables:

enumerated xp NewPred ;
enumerated x1 D1; . . . ; enumerated xk Dk;
integer xk+1; . . . ; integer xn.

(2) From clauses J1, . . . , Jk we get the disjunction SpInit of k constraints, each
of which is of the form: initi(X) ∧∧ xp =newui.

(3) From clauses S1, . . . , Sm we get the disjunction SpTrans of m constraints,
each of which is of the form: si(X,X ′) ∧∧ xp =newpi ∧∧ x′p =newti.

(4) From clauses V1, . . . , Vn we get the disjunction SpUnsafe of n constraints,
each of which is of the form: vi(X) ∧∧ xp =newqi.
SpSafe is the formula ¬EFSpUnsafe.

The reverse translation of the program SpBw into the specification
〈SpSys,SpSafe〉 is correct in the sense stated by the following theorem.

Theorem 3 (Correctness of Reverse Translation). The following equiva-
lence holds: unsafe /∈ M(SpBw) iff SpSys satisfies SpSafe.

Improving Reachability Analysis of Infinite State Systems by Specialization 173

Example 4. The following specialized specification is the result of the reverse
translation of the specialized CLP program of Example 3:

SpVar : enumerated xp {new1, new2, new3}; integer x1; integer x2;
SpInit : x1≥1 ∧∧ x2 =0 ∧∧ xp =new1;

SpTrans : (x1≥1 ∧∧ x2 =0 ∧∧ xp =new1 ∧∧ x′1 =x1 ∧∧ x′2 =1 ∧∧ x′p =new2) ∨∨
(x1≥1 ∧∧ x2 =1 ∧∧ xp =new2 ∧∧ x′1 =x1+1 ∧∧ x′2 =2 ∧∧ x′p =new3) ∨∨
(x1≥1 ∧∧ x2≥1 ∧∧ xp =new3 ∧∧ x′1 =x1+x2 ∧∧ x′2 =x2+1 ∧∧ x′p =new3)

SpSafe: ¬EF(x1≥1 ∧∧ x2>x1 ∧∧ xp =new3)

Note that the backward reachability algorithm implemented in the ALV tool [25]
is not able to verify (within 600 seconds) the safety property of the initial speci-
fication (see Example 1). Basically, this is due to the fact that working backward
from the unsafe states where x2>x1 holds, ALV is not able to infer that, for all
reachable states, x2 ≥ 0 holds. The Bw-Specialization method is able to derive,
from the constraint characterizing the initial states, a new transition relation
SpTrans whose constraints imply x2 ≥ 0. By exploiting this constraint, ALV
successfully verifies the safety property of the specialized specification. �

The correctness of our Bw-Specialization method is stated by the following the-
orem, which is a straightforward consequence of Theorems 1, 2, and 3.

Theorem 4 (Correctness of Bw-Specialization). Let 〈SpSys,SpSafe〉 be
the specification derived by applying the Bw-Specialization method to the specifi-
cation 〈Sys,Safe〉. Then, 〈Sys,Safe〉 is equivalent to 〈SpSys,SpSafe〉.

4 Experimental Evaluation

In this section we present the results of the verification experiments we have
performed on various infinite state systems taken from the literature [3,8,9,25].

We have run our experiments by using the ALV tool, which is based on a
BDD-based symbolic manipulation for enumerated types and on a solver for
linear constraints on integers [25]. ALV performs backward and forward reacha-
bility analysis by an approximate computation of the least fixpoint of the tran-
sition relation of the system. We have run ALV using the options: ‘default’
and ‘A’ (both for backward analysis), and the option ‘F’ (for forward analysis).
The Bw-Specialization and the Fw-Specialization methods were implemented
on MAP [22], a tool for transforming CLP programs which uses the SICStus
Prolog clpr library to operate on constraints on the reals. All experiments were
performed on an Intel Core 2 Duo E7300 2.66 GHz under Linux.

The results of our experiments are reported in Table 1, where we have in-
dicated, for each system and for each ALV option used, the following times
expressed in seconds: (i) the time taken by ALV for verifying the given system
(columns Sys), and (ii) the total time taken by MAP for specializing the system
and by ALV for verifying the specialized system (columns SpSys).

The experiments show that our specialization method always increases the
precision of ALV, that is, for every ALV option used, the number of properties

174 F. Fioravanti et al.

verified increases when considering the specialized systems (columns SpSys) in-
stead of the given, non-specialized systems (columns Sys). There are also some
examples (Consistency, Selection Sort, and Reset Petri Net) where ALV is not
able to verify the property on the given reactive system (regardless of the option
used), but it verifies the property on the corresponding specialized system.

Now, let us compare the verification times. The time in column Sys and the
time in column SpSys are of the same order of magnitude in almost all cases.
In two examples (Peterson and CSM, with the ‘default’ option) our method
substantially reduces the total verification time. Finally, in the Bounded Buffer
example (with options ‘default’ and ‘A’) our specialization method significantly
increases the verification time. Thus, overall, the increase of precision due to
the specialization method we have proposed, does not determine a significant
degradation of the time performance.

The increase of the verification times in the Bounded Buffer example is due
to the fact that the non-specialized system can easily be verified by a backward
reachability analysis and, thus, our pre-processing based on specialization is
unnecessary. Moreover, after specializing the Bounded Buffer system, we get a

Table 1. Verification times (in seconds) using ALV [25]. ‘⊥’ means termination with
the answer ‘Unable to verify’ and ‘∞’ means ‘No answer’ within 10 minutes.

default A F

EXAMPLES Sys SpSys Sys SpSys Sys SpSys

1. Bakery2 0.03 0.05 0.03 0.05 0.06 0.04

2. Bakery3 0.70 0.25 0.69 0.25 ∞ 3.68

3. MutAst 1.46 0.37 1.00 0.37 0.22 0.59

4. Peterson 56.49 0.10 ∞ 0.10 ∞ 13.48

5. Ticket ∞ 0.03 0.10 0.03 0.02 0.19
6. Berkeley RISC 0.01 0.04 ⊥ 0.04 0.01 0.02

7. DEC Firefly 0.01 0.02 ⊥ 0.03 0.01 0.07

8. IEEE Futurebus 0.26 0.68 ⊥ ⊥ ∞ ∞
9. Illinois University 0.01 0.03 ⊥ 0.03 ∞ 0.07

10. MESI 0.01 0.02 ⊥ 0.03 0.02 0.07
11. MOESI 0.01 0.06 ⊥ 0.05 0.02 0.08

12. Synapse N+1 0.01 0.02 ⊥ 0.02 0.01 0.01

13. Xerox PARC Dragon 0.01 0.05 ⊥ 0.06 0.02 0.10

14. Barber 0.62 0.21 ⊥ 0.21 ∞ 0.08

15. Bounded Buffer 0.01 3.10 0.01 3.16 ∞ 0.03

16. Unbounded Buffer 0.01 0.06 0.01 0.06 0.04 0.04
17. CSM 56.39 7.69 ⊥ 7.69 ∞ 125.32

18. Consistency ∞ 0.11 ⊥ 0.11 ∞ 324.14

19. Insertion Sort 0.03 0.06 0.04 0.06 0.18 0.02

20. Selection Sort ∞ 0.21 ⊥ 0.21 ∞ 0.33

21. Reset Petri Net ∞ 0.02 ⊥ ⊥ ∞ 0.01
22. Train 42.24 59.21 ⊥ ⊥ ∞ 0.46

Number of verified properties 18 22 7 19 11 21

Improving Reachability Analysis of Infinite State Systems by Specialization 175

new system whose specification is quite large (because the MAP system generates
a large number of clauses). We will return to this point in the next section.

5 Related Work and Conclusions

We have considered infinite state reactive systems specified by constraints over
the integers and we have proposed a method, based on the specialization of
CLP programs, for pre-processing the given systems and getting new, equivalent
systems so that their backward (or forward) reachability analysis terminates
with success more often (that is, precision is improved), without a significant
increase of the verification time. The improvement of precision of the analysis
is due to the fact that the backward (or forward) verification of the specialized
systems takes into account the properties which are true on the initial states (or
on the unsafe states, respectively).

The use of constraint logic programs in the area of system verification has
been proposed by several authors (see [8,9], and [15] for a survey of early works).
Also transformation techniques for constraint logic programs have been shown
to be useful for the verification of infinite state systems [12,13,21,23,24]. In the
approach presented in this paper, constraint logic programs provide as an in-
termediate representation of the systems to be verified so that one can easily
specialize those systems. To these constraint logic programs we apply a variant
of the specialization technique presented in [13]. However, unlike [12,13,21,23,24],
the final result of our specialization is not a constraint logic program, but a new
reactive system which can be analyzed by using any verification tool for reac-
tive systems specified by linear constraints on the integers. In this paper we have
used the ALV tool [25] to perform the verification task on the specialized systems
(see Section 4), but we could have also used (with minor syntactic modifications)
other verification tools, such as TReX [2], FAST [3], and LASH [20]. Thus, one
can apply to the specialized systems any of the optimization techniques imple-
mented in those verification tools, such as fixpoint acceleration. We leave it for
future research to evaluate the combined use of our specialization technique with
other available optimization techniques.

Our specialization method is also related to some techniques for abstract
interpretation [6] and, in particular, to those proposed in the field of verification
of infinite state systems [1,5,7,16]. For instance, program specialization makes use
of generalization operators [13] which are similar to the widening operators used
in abstract interpretation. The main difference between program specialization
and abstract interpretation is that, when applied to a given system specification,
the former produces an equivalent specification, while the latter produces a more
abstract (possibly, finite state) model whose semantics is an approximation of the
semantics of the given specification. Moreover, since our specialization method
returns a new system specification which is written in the same language of the
given specification, after performing specialization we may also apply abstract
interpretation techniques for proving system properties. Finding combinations
of program specialization and abstract interpretation techniques that are most

176 F. Fioravanti et al.

suitable for the verification of infinite state systems is an interesting issue for
future research.

A further relevant issue we would like to address in the future is the reduction
of the size of the specification of the specialized systems. Indeed, in one of the
examples considered in Section 4, the time performance of the verification was
not quite good, because the (specification of the) specialized system had a large
size, due to the introduction of a large number of new predicate definitions. This
problem can be tackled by using techniques for controlling polyvariance (that is,
for reducing the number of specialized versions of the same predicate), which is
an important issue studied in the field of program specialization [19].

Finally, we plan to extend our specialization technique to specifications of
other classes of reactive systems such as linear hybrid systems [14,17].

Acknowledgements. This work has been partially supported by PRIN-MIUR
and by a joint project between CNR (Italy) and CNRS (France). The last au-
thor has been supported by an ERCIM grant during his stay at LORIA-INRIA.
Thanks to Laurent Fribourg and John Gallagher for many stimulating conver-
sations.

References

1. Abdulla, P.A., Delzanno, G., Ben Henda, N., Rezine, A.: Monotonic abstraction
(On efficient verification of parameterized systems). Int. J. of Foundations of Com-
puter Science 20(5), 779–801 (2009)

2. Annichini, A., Bouajjani, A., Sighireanu, M.: TReX: A tool for reachability analysis
of complex systems. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 368–372. Springer, Heidelberg (2001)

3. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: Acceleration from theory to
practice. Int. J. on Software Tools for Technology Transfer 10(5), 401–424 (2008)

4. Bultan, T., Gerber, R., Pugh, W.: Model-checking concurrent systems with un-
bounded integer variables: symbolic representations, approximations, and experi-
mental results. ACM TOPLAS 21(4), 747–789 (1999)

5. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixpoints. In: Proc. POPL
1977, pp. 238–252. ACM Press, New York (1977)

7. Dams, D., Grumberg, O., Gerth, R.: Abstract interpretation of reactive systems.
ACM TOPLAS 19(2), 253–291 (1997)

8. Delzanno, G.: Constraint-based verification of parameterized cache coherence pro-
tocols. Formal Methods in System Design 23(3), 257–301 (2003)

9. Delzanno, G., Podelski, A.: Constraint-based deductive model checking. Int. J. on
Software Tools for Technology Transfer 3(3), 250–270 (2001)

10. Esparza, J.: Decidability of model checking for infinite-state concurrent systems.
Acta Informatica 34(2), 85–107 (1997)

11. Etalle, S., Gabbrielli, M.: Transformations of CLP modules. Theoretical Computer
Science 166, 101–146 (1996)

Improving Reachability Analysis of Infinite State Systems by Specialization 177

12. Fioravanti, F., Pettorossi, A., Proietti, M.: Verifying CTL properties of infinite
state systems by specializing constraint logic programs. In: Proc. VCL 2001, Tech.
Rep. DSSE-TR-2001-3, pp. 85–96. Univ. of Southampton, UK (2001)

13. Fioravanti, F., Pettorossi, A., Proietti, M., Senni, V.: Program specialization for
verifying infinite state systems: An experimental evaluation. In: Alpuente, M. (ed.)
LOPSTR 2010. LNCS, vol. 6564, pp. 164–183. Springer, Heidelberg (2011)

14. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HYTECH. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

15. Fribourg, L.: Constraint logic programming applied to model checking. In: Bossi,
A. (ed.) LOPSTR 1999. LNCS, vol. 1817, pp. 31–42. Springer, Heidelberg (2000)

16. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using
modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001.
LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001)

17. Henzinger, T.A.: The theory of hybrid automata. In: Proc., LICS 1996, pp. 278–292
(1996)

18. Jaffar, J., Maher, M.: Constraint logic programming: A survey. J. of Logic Pro-
gramming 19/20, 503–581 (1994)

19. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall, Englewood Cliffs (1993)

20. LASH homepage, http://www.montefiore.ulg.ac.be/~boigelot/research/lash
21. Leuschel, M., Massart, T.: Infinite state model checking by abstract interpretation

and program specialization. In: Bossi, A. (ed.) LOPSTR 1999. LNCS, vol. 1817,
pp. 63–82. Springer, Heidelberg (2000)

22. MAP homepage, http://www.iasi.cnr.it/~proietti/system.html
23. Peralta, J.C., Gallagher, J.P.: Convex hull abstractions in specialization of CLP

programs. In: Leuschel, M. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp. 90–108.
Springer, Heidelberg (2003)

24. Roychoudhury, A., Narayan Kumar, K., Ramakrishnan, C.R., Ramakrishnan, I.V.,
Smolka, S.A.: Verification of parameterized systems using logic program transfor-
mations. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, pp. 172–187. Springer,
Heidelberg (2000)

25. Yavuz-Kahveci, T., Bultan, T.: Action Language Verifier: An infinite-state model
checker for reactive software specifications. Formal Methods in System De-
sign 35(3), 325–367 (2009)

Appendix. Specialization Method for Forward Reachability

Let us briefly describe the Fw-Specialization method to be applied as a pre-
processing step before performing a forward reachability analysis.

Fw-Specialization consists of three Steps (1f), (2f), and (3f), analogous to
Steps (1), (2), and (3) of the backward reachability case described in Section 3.
Step (1f). Translation. Consider the system Sys = 〈Var, Init,Trans〉 and the
property Safe specified as indicated in Step (1) of Section 3. The specification
〈Sys,Safe〉 is translated into the following constraint logic program Fw that
encodes the forward reachability algorithm.

G1: unsafe ← u1(X) ∧∧ fwReach(X)
· · ·

Gn: unsafe ← un(X) ∧∧ fwReach(X)

http://www.montefiore.ulg.ac.be/~boigelot/research/lash
http://www.iasi.cnr.it/~proietti/system.html

178 F. Fioravanti et al.

R1: fwReach(X ′) ← t1(X,X ′) ∧∧ fwReach(X)
· · ·

Rm: fwReach(X ′) ← tm(X,X ′) ∧∧ fwReach(X)

H1: fwReach(X) ← init1(X)
· · ·

Hk: fwReach(X) ← initk(X)

Note that we have interchanged the roles of the initial and unsafe states (compare
the clausesGi’s and Hi’s of program Fw with clauses Ii’s and Ui’s of program Bw
presented in Section 3), and we have reversed the direction of the derivation of
new states from old ones (compare clauses Ri’s of program Fw with clauses Ti’s
of program Bw).

Step (2f). Forward Specialization. Program Fw is transformed into an equiv-
alent program SpFw by applying a variant of the specialization algorithm de-
scribed in Figure 1 to the input program Fw, instead of program Bw. This trans-
formation consists in specializing Fw with respect to the disjunction Unsafe of
constraints that characterizes the unsafe states of the system Sys.

Step (3f). Reverse Translation. The output of the specialization algorithm
is a program SpFw of the form:

L1: unsafe ← u1(X) ∧∧ newu1(X)
· · ·

Ln: unsafe ← un(X) ∧∧ newun(X)

P1: newp1(X ′) ← p1(X,X ′) ∧∧ newd1(X)
· · ·

Pr: newpr(X ′) ← pr(X,X ′) ∧∧ newdr(X)

W1: newq1(X) ← w1(X)
· · ·

Ws: newqs(X) ← ws(X)

where (i) p1(X,X ′), . . . , pr(X,X ′),w1(X), . . . ,ws(X) are constraints, and (ii) the
(possibly non-distinct) predicate symbols newui’s, newpi’s, newd i’s, and newqi’s
are the new predicate symbols introduced by the specialization algorithm.

Now we translate the program SpFw into a new specification 〈SpSys,SpSafe〉,
where SpSys = 〈SpVar,SpInit,SpTrans〉. The translation is like the one presented
in Step (3), the only difference being the interchange of the initial states and
the unsafe states. In particular, (i) we derive a new variable declaration SpVar
by introducing a new enumerated variable ranging over the set of new predicate
symbols, (ii) we extract the disjunction SpInit of constraints characterizing the
new initial states from the constrained facts Wi’s, (iii) we extract the disjunc-
tion SpTrans of constraints characterizing the new transition relation from the
clauses Pi’s, (iv) we extract the disjunction SpUnsafe of constraints characteriz-
ing the new unsafe states from the clauses Li’s which define the unsafe predicate,
and finally, (v) we define SpSafe as the formula ¬EFSpUnsafe.

Similarly to Section 3, we can prove the correctness of the transformation
consisting of Steps (1f), (2f), and (3f).

Improving Reachability Analysis of Infinite State Systems by Specialization 179

Theorem 5 (Correctness of Fw-Specialization). Let 〈SpSys,SpSafe〉 be the
specification derived by applying the Fw-Specialization method to the specification
〈Sys,Safe〉. Then, 〈Sys,Safe〉 is equivalent to 〈SpSys,SpSafe〉.

Starting from the specification of Example 1, by applying our Fw-Specialization
method, we get the following specialized specification:

SpVar : enumerated xp {new1,new2}; integer x1; integer x2;
SpInit : x1≥1 ∧∧ x2 =0 ∧∧ xp =new2;

SpTrans : (x1<1 ∧∧ xp =new2 ∧∧ x′1 = x1+x2 ∧∧ x′2 = x2+1 ∧∧ x′p =new1) ∨∨
(xp =new2 ∧∧ x′1 = x1+x2 ∧∧ x′2 = x2+1 ∧∧ x′p =new2)

SpSafe: ¬EF(x2>x1 ∧∧ xp =new2)

The forward reachability algorithm implemented in ALV successfully verifies
the safety property of this specialized specification, while it is not able to verify
(within 600 seconds) the safety property of the initial specification of Example 1.

Lower Bounds for the Length of Reset Words in

Eulerian Automata�

Vladimir V. Gusev

Ural Federal University, Ekaterinburg, Russia
vl.gusev@gmail.com

Abstract. For each odd n ≥ 5 we present a synchronizing Eulerian
automaton with n states for which the minimum length of reset words is

equal to n2−3n+4
2

. We also discuss various connections between the reset
threshold of a synchronizing automaton and a sequence of reachability
properties in its underlying graph.

1 Background and Overview

A complete deterministic finite automaton A is called synchronizing if the ac-
tion of some word w resets A , that is, leaves the automaton in one particular
state no matter at which state it is applied. Any such word w is said to be a reset
word for the automaton. The minimum length of reset words for A is called the
reset threshold of A and denoted by rt(A). Synchronizing automata constitute
an interesting combinatorial object and naturally appear in many applications
such as coding theory, robotics and testing of reactive systems. For a brief in-
troduction to the theory of synchronizing automata we refer the reader to the
recent surveys [10,14]. The interest to the field is also heated by the famous
Černý conjecture.

In 1964 Jan Černý [2] constructed for each n > 1 a synchronizing automaton
Cn with n states whose reset threshold is (n−1)2. Soon after that he conjectured
that these automata represent the worst possible case, that is, every synchroniz-
ing automaton with n states can be reset by a word of length (n− 1)2. Despite
intensive research, the best upper bound on the reset threshold of synchronizing
automata with n states achieved so far is n3−n

6 , see [8], so it is much larger than
the conjectured value. Though the Černý conjecture is open in general, it has
been confirmed for various restricted classes of synchronizing automata, see, e.g.,
[5,3,6,13,15]. We recall here a result by Jarkko Kari from [6] as it has served as
a departure point for the present paper.

Kari [6] has shown that every synchronizing Eulerian automaton with n states
possesses a reset word of length at most n2 − 3n + 3. Even though this result
confirms the Černý conjecture for Eulerian automata, it does not close the syn-
chronizability question for this class of automata since no matching lower bound

� Supported by the Russian Foundation for Basic Research, grant 10-01-00524, and
by the Federal Education Agency of Russia, grant 2.1.1/13995.

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 180–190, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Lower Bounds for the Length of Reset Words in Eulerian Automata 181

for the reset threshold of Eulerian automata has been found so far. In order to
find such a matching bound, we need a series of Eulerian automata with large
reset threshold, which is the main problem that we address in the present paper.

Our first attempt was following an approach from [1]. In that paper, several
examples of slowly synchronizing automata, which had been discovered in the
course of a massive computational experiment, have been related to known ex-
amples of primitive graphs with large exponent from [4] and then have been
expanded to infinite series. The idea was to apply a similar analysis to Eulerian
graphs with large exponent that have been characterized in [12]. However, it
turns out that in this way we cannot achieve results close to what we can get by
computational experiments. Thus, a refinement of the approach from [1] appears
to be necessary. Here we suggest such a refinement, and this is the main novelty
of the present paper. As a concrete demonstration of our modified approach, we
exhibit a series of slowly synchronizing Eulerian automata whose reset threshold
is twice as large as the reset threshold of automata that can be obtained by a
direct application of techniques from [1]. We believe that the method suggested
in this paper can find a number of other applications and its further development
may shed a new light on the properties of synchronizing automata.

2 Preliminaries

A complete deterministic finite automaton (DFA) is a couple A = 〈Q,Σ〉, where
Q stands for the state set and Σ for the input alphabet whose letters act on Q
by totally defined transformations. The action of Σ on Q extends in natural way
to an action of the set Σ∗ of all words over Σ. The result of the action of a word
w ∈ Σ∗ on the state q ∈ Q is denoted by q · w. Triples of the form (q, a, q · a)
where q ∈ Q and a ∈ Σ are called transitions of the DFA; q, a and q · a are
referred to as, respectively, the source, the label and the target of the transition
(q, a, q · a).

By a graph we mean a tuple of sets and maps: the set of vertices V , the
set of edges E, a map t : E → V that maps every edge to its tail vertex, and
a map h : E → V that maps every edge to its head vertex. Notice that in a
graph, there may be several edges with the same tail and head. 1 We assume the
reader’s acquaintance with basic notions of the theory of graphs such as path,
cycle, isomorphism etc.

Given a DFA A = 〈Q,Σ〉, its underlying graph D(A) has Q as the vertex set
and has an edge eτ with t(eτ) = q, h(eτ) = q ·a for each transition τ = (q, a, q ·a)
of A . We stress that if two transitions have a common source and a common
target (but different labels), then they give rise to different edges (with a common
tail and a common head). It is easy to see that a graph D is isomorphic to the
underlying graph of some DFA if and only if each vertex of D serves as the tail
for the same number of edges (the number is called the outdegree of D). In the
sequel, we always consider only graphs satisfying this property. Every DFA A

1 Our graphs are in fact directed multigraphs with loops. But we use a short name,
since no other graph species will show up in this paper.

182 V.V. Gusev

1 2

34

a b

b

b

a

a

a b

1 2

34

a a

a

b

b

b

a b

1 2

34

Fig. 1. A graph and two of its colorings

such that D ∼= D(A) is called a coloring of D. Thus, every coloring of D is
labeling its edges of by letters from some alphabet whose cardinality is equal
to the outdegree of D such that edges with a common tail get different colors.
Fig. 1 shows a graph and two of its colorings by Σ = {a, b}.

A graph D = 〈V,E〉 is said to be strongly connected if for every pair (v, v′) ∈
V × V , there exists a path from v to v′. A graph is Eulerian if it is strongly
connected and each of its vertices serves as the tail and as the head for the same
number of edges. A DFA is said to be Eulerian if so is its underlying graph.
More generally, we will freely transfer graph notions (such as path, cycle, etc)
from graphs to automata they underlie.

A graph D = 〈V,E〉 is called primitive if there exists a positive integer t such
that for every pair (v, v′) ∈ V × V , there exists a path from v to v′ of length
precisely t. The least t with this property is called the exponent of the digraph
D and is denoted by exp(D).

Let w be a word over the alphabet Σ = {a1, a2, . . . , ak}. We say that a word
u ∈ Σ∗ occurs � times as a factor of w if there are exactly � different words
x1, . . . , x� ∈ Σ∗ such that for each i, 1 ≤ i ≤ �, there is a word yi ∈ Σ∗ for which
w decomposes as w = xiuyi. The number � is called the number of occurrences
of u in w and is denoted by |w|u. The vector (|w|a1 , |w|a2 , . . . , |w|ak

) ∈ Nk
0 is

called the Parikh vector of the word w; here N0 stands for the set of non-negative
integers.

Now suppose that A = 〈Q,Σ〉 is a DFA and α is a path in A labelled by a
word w ∈ Σ∗. If a vector v ∈ Nk

0 is equal to the Parikh vector of w, then we say
that v is the Parikh vector of the path α. We refer to any path that has v as its
Parikh vector as a v-path.

3 Main Results

We start with revisiting the technique used in [1] to obtain lower bounds for the
reset threshold of certain synchronizing automata.

Consider an arbitrary synchronizing automaton A = 〈Q,Σ〉. Let w be a reset
word for A that leaves the automaton in some state r ∈ Q, that is, p · w = r
for every p ∈ Q. Then, for every state p ∈ Q, the word w labels a path from

Lower Bounds for the Length of Reset Words in Eulerian Automata 183

p to r. Therefore, for every state p ∈ Q there is a path of length |w| from p
to r in the underlying graph D(A). This leads us to the following notion. We
say that a strongly connected graph D = (V,E) is 0-primitive if there exists an
integer k > 0 and a vertex r ∈ V such that for every vertex p ∈ V there is a
path of length exactly k from p to r. The minimal integer k with this property
(over all possible choices of r) is called the 0-exponent of D and is denoted by
exp0(D). We write exp0(A) instead of exp0(D(A)). Then we have that every
synchronizing automaton A is 0-primitive and

rt(A) ≥ exp0(A). (1)

It is not hard to see that the notions of 0-primitivity and primitivity are equiv-
alent. Indeed, every primitive digraph is obviously 0-primitive. Conversely, let
D be a 0-primitive digraph with n vertices. By the definition there are paths
of length exactly exp0(D) from every vertex to some fixed vertex r. Consider
two arbitrary vertices p and q of D. Since D is strongly connected, there is a
path α of length at most n − 1 from r to q. Now take any path β of length
n − 1 − |α| starting at p and let s be the endpoint of β. There is a path γ of
length exp0(D) from s to r. Now the path βγα leads from p to q (through s and
r) and |βγα| = n−1+exp0(D). Thus, the digraph D is primitive, and moreover,
we have the following inequality:

exp0(D) + n− 1 ≥ exp(D). (2)

The reader who may wonder why we need such a slight variation of the standard
notion will see that this variation fits better into a more general framework that
we will present below.

First, however, we demonstrate how to construct Eulerian automata with a
relatively large reset threshold on the basis of the notion of 0-primitivity. For this,
we need Eulerian digraphs with the largest possible exponent (or 0-exponent)
among all primitive Eulerian digraphs with n vertices. Such digraphs have been
classified by Shen [12].

For every odd n ≥ 5, consider the automaton Dn with the state set Q =
{1, 2, . . . , n} and the input letters a and b acting on Q as follows:

1 · a = 2, 1 · b = 3; (n− 1) · a = 2, (n− 1) · b = 1; n · a = 1, n · b = 3; and for
every 1 < k < n− 1

k · a =

{
k + 2 if k is even,
k + 1 if k is odd;

k · b =

{
k + 3 if k is even,
k + 2 if k is odd.

The automaton Dn is shown in Fig. 2. We denote the underlying graph of Dn by
Dn.

Proposition 1. If G is a primitive Eulerian graph with outdegree 2 and n ver-
tices, n ≥ 8, then exp(G) ≤ (n−1)2

4 + 1. The equality holds only for the graph
Dn.

184 V.V. Gusev

1

2

3

4

5

6

7

n−3

n−2

n−1

n

a

b

a

b

a

b

a

b

a

b . . .

. . . a

b

a

b

b

a

a
b

Fig. 2. The automaton Dn

Proposition 1 and the inequalities (1) and (2) guarantee that every synchroniz-
ing coloring of the graph Dn has reset threshold of magnitude n2

4 + o(n2). In
particular, we can prove the following result using the technique developed in [1].

Proposition 2. The reset threshold of the automaton Dn is equal to n2−4n+11
4 .

Proof. We start with estimating exp0(Dn). Observe that for every � ≥ exp0(Dn)
there is a cycle of length � in Dn. Indeed, let r be a state such that for every
p ∈ Q there is a path of length exp0(Dn) from p to r. Now take an arbitrary
path α of length �− exp0(Dn) starting at r and let s be the endpoint of α. By
the choice of r, there is a path β of length exp0(Dn) from s to r. Thus, the path
αβ is a cycle of length exactly �.

Now consider the partition π of the set Q into n+1
2 classes Vi, 0 ≤ i ≤ n−1

2 ,
where V0 = 1 and Vi = {2i, 2i+ 1} for every 0 < i ≤ n−1

2 . We define a graph Gn

with the quotient set Q/π as the vertex set and with the edges induced by the
edges of Dn as follows: there is an edge e′ in Gn with t(e′) = Vi and h(e) = Vj

if and only if there is an edge e in Dn with t(e) ∈ Vi and h(e) ∈ Vj . Then every
cycle in Dn induces a cycle of the same length in Gn. In particular, for every
� ≥ exp0(Dn) there is a cycle of length � in Gn. It is easy to see that the graph
Gn has precisely two simple cycles: one of length n−1

2 and one of length n+1
2 .

We conclude that every � ≥ exp0(Dn) is expressible as a non-negative integer
combination of n−1

2 and n+1
2 .

Here we invoke the following well-known and elementary result from arith-
metic:

Lemma 1 ([9, Theorem 2.1.1]). If k1, k2 are relatively prime positive integers,
then k1k2 −k1 −k2 is the largest integer that is not expressible as a non-negative
integer combination of k1 and k2.

Applying lemma 1 we conclude that exp0(Dn) ≥ n2−4n+3
4 and there is no cycle

of length n2−4n−1
4 in Gn. The inequality 1 implies that rt(Dn) ≥ n2−4n+3

4 , and

Lower Bounds for the Length of Reset Words in Eulerian Automata 185

it remains to exclude two cases: rt(Dn) = n2−4n+3
4 and rt(Dn) = n2−4n+7

4 . This
is easy.

Suppose that w is a shortest reset word for Dn which leaves Dn in some state
r ∈ Vi. Note that i �= 0 (otherwise the word obtained by removing the last letter
from w would be a shorter reset word, and this is impossible).

If |w| = n2−4n+3
4 , we write w = xw′ for some letter x and apply the word w

to some state from Vi−1. We conclude that w′ induces a cycle from Vi to Vi in
Gn. This cycle would be of length n2−4n−1

4 , which is impossible.
Finally suppose that the length of w is n2−4n+7

4 . If i �= 1, then the same
argument as in the previous paragraph leads to a contradiction. (We just apply
w to a state from Vi−2.) If i = 1, let w = xyw′ for some letters x and y.
Depending on x, either n · xy ∈ V1 or (n− 1) · xy ∈ V1. In both cases w′ induces
a cycle from V1 to V1 in Gn of length n2−4n−1

4 , which is impossible.
We thus see that the reset threshold of the automaton Dn is at least n2−4n+11

4 .
Since the word aa(ba

n−1
2)

n−5
2 bb resets Dn, we conclude that this bound is

tight.

Our computational experiments show that the largest reset threshold among all
synchronizing colorings of Dn is equal to (n−1)2

4 + 1. Therefore, n2

4 + o(n2) is
the best lower bound on the reset threshold of synchronizing Eulerian automata
with n states that can be obtained by a direct encoding of Eulerian graphs with
large exponent. However, our main result (see Theorem 1 below) shows that
for every odd n there is a synchronizing Eulerian automaton with n states and
reset threshold n2−3n+4

2 . This indicates that the notion of 0-exponent is too
weak to be useful for isolating synchronizing Eulerian automata with maximal
reset threshold. The reason for this is that we have discarded too much informa-
tion when passing from synchronizability to 0-primitivity—we forget everything
about paths labelled by reset words except their length. Thus, we use another
notion in which more information is preserved, namely, the Parikh vectors of the
paths are taken into account.

Consider a DFA A = 〈Q,Σ〉 with |Σ| = k and fix some ordering of the letters
in Σ. We define a subset E1(A) of Nk

0 as follows: a vector v ∈ Nk
0 belongs to

E1(A) if and only if there is state r ∈ Q such that for every p ∈ Q, there exists
a v-path from p to r. If the set E1(A) is non-empty, then the automaton A
is called 1-primitive. The minimum value of the sum i1 + i2 + · · · + ik over all
k-tuples (i1, i2, . . . , ik) from E1(A) is called the 1-exponent of A and denoted
by exp1(A). We would like to note that a very close concept for colored multi-
graphs has been studied in [11,7]. Clearly, every synchronizing automaton A is
1-primitive and

rt(A) ≥ exp1(A). (3)

In order to illustrate how the notion of 1-exponent may be utilized, we prove
a statement concerning the Černý automata Cn (this statement will be used in

186 V.V. Gusev

1

7 2

6 3

5 4

b

b

a, b

b

b

b

b

aa

aa

aa

Fig. 3. The automaton Cn for n = 7

the proof of our main result). Recall the definition of Cn. The state set of Cn is
Q = {1, 2, . . . , n} and the letters a and b act on Q as follows:

i · a =

{
2 if i = 1,
i if 1 < i;

i · b =

{
i+ 1 if i < n,

1 if i = n.

The automaton Cn for n = 7 is shown in Fig. 3. Here and below we adopt the
convention that edges bearing multiple labels represent bunches of edges sharing
tails and heads. In particular, the edge 1

a,b−−→ 2 in Fig. 3 represents the two
parallel edges 1 a−→ 2 and 1 b−→ 2.

Proposition 3. Every reset word of the automaton Cn contains at least n2 −
3n+ 2 occurrences of the letter b and at least n− 1 occurrence of the letter a.

Proof. Since the automaton Cn is synchronizing, the set E1(Cn) is non-empty.
We make use of the following simple property of E1(Cn): if v = (α, β) ∈ E1(Cn),
then for every t ∈ N we have (α, β + t) ∈ E1(Cn). Indeed, let r be a state such
that for every p ∈ Q there is a v-path from p to r. We aim to show that there
is also an (α, β + t)-path from an arbitrary state p to r. Let q = p · bt, then
by definition of r there is a v-path from q to r. Augmenting this path in the
beginning by the path staring at p and labeled bt, we obtain an (α, β + t)-path
from p to r.

Now observe that there is a v-path from r to r. This path is a cycle and it
can be decomposed into simple cycles of the automaton Cn. The simple paths
in Cn are loops labeled a with the Parikh vector (1, 0), the cycle

1 a−→ 2 b−→ 3 b−→ . . .
b−→ n− 1 b−→ n

b−→ 1

with the Parikh vector (1, n− 1) and the cycle

1 b−→ 2 b−→ 3 b−→ . . .
b−→ n− 1 b−→ n

b−→ 1

Lower Bounds for the Length of Reset Words in Eulerian Automata 187

with the Parikh vector (1, n − 1). Thus, there are some x, y, z ∈ N0 such that
the following equality holds true:

(α, β) = x(1, 0) + y(1, n− 1) + z(0, n).

It readily implies that β = y(n − 1) + zn. Since for every t ∈ N the vector
(α, β + t) also belongs to E1(Cn), we conclude that β + t is also expressible
as a non-negative integer combination of n and n − 1. Lemma 1 implies that
β ≥ n(n−1)−n−(n−1)+1 = n2−3n+2. If w is a reset word of the automaton
Cn, then the Parikh vector of w belongs to E1(Cn), whence w contains at least
n2 − 3n+ 2 occurrences of the letter b.

It remains to prove that w contains at least n− 1 occurrences of the letter a.
Note that for every set S of states, we have |S ·b| = |S| and |S ·a| ≥ |S|−1. Hence,
to decrease the cardinality from n to 1, one has to apply a at least n− 1 times,
and any word w such that |Q·w| = 1 must contain at least n−1 occurrences of a.

As a corollary we immediately obtain Černý’s result [2, Lemma 1] that rt(Cn)=
(n−1)2. Indeed, Proposition 3 implies that the reset threshold is at least (n−1)2,
and it is easy to check that the word (abn−1)n−2a of length (n− 1)2 resets Cn.
Also we see that a reset word w of minimal length for Cn is unique. Indeed, w
cannot start or end with b because b acts as a cyclic permutation. Thus, w = aua
and the word u has n2 − 3n + 2 occurrences of b and n − 3 occurrences of a.
Note that bn cannot occur as a factor of u since bn acts is an identity mapping.
Clearly, there is only one way to insert n− 3 letters a in the word bn

2−3n+2 such
that the resulting word contains no factor bn. Though the series Cn is very well
studied, to the best of our knowledge the uniqueness of the shortest reset word
for Cn has not been explicitly stated in the literature.

Observe that exp0(Cn) = n − 1 and we could not extract any strong lower
bound for rt(Cn) from the inequality (2). In [1] a tight lower bound for rt(Cn)
has been obtained in an indirect way, via relating Cn to graphs with largest
possible 0-exponent from [16]. In contrast, Proposition 3 implies that exp1(Cn)
is close to (n− 1)2 so the inequality (3) gives a stronger lower bound.

Now we are ready to present main result of this paper. We define the automa-
ton Mn (from Matricaria) on the state set Q = {1, 2, . . . , n}, where n ≥ 5 is
odd, in which the letters a and b act as follows:

k · a =

{
k if k is odd,
k + 1 if k is even;

k · b =

⎧⎪⎨
⎪⎩

k + 1 if k �= n is odd,
k if k is even,
1 if k = n.

Observe that Mn is Eulerian. The automaton Mn for n = 7 is shown in Fig. 4
on the left.

Theorem 1. If n ≥ 5 is odd, then the automaton Mn is synchronizing and its
reset threshold is equal to n2−3n+4

2 .

Proof. Let w be a reset word of minimum length for Mn. Note that the action
of aa is the same as the action of a. Therefore aa could not be a factor of w.

188 V.V. Gusev

1

7 2

6 3

5 4

b

a

b

a

b

a

b

a

ba

ab

ba

1

7 2

6 3

5 4

b, c

c

b, c

c

b, c
c

b, c

b

b

b

Fig. 4. The automaton Mn for n = 7 and the automaton induced by the actions of b
and c = ab

(Otherwise reducing this factor to just a results in a shorter reset word.) So every
occurrence of a, maybe except the last one, is followed by b. If we let c = ab,
then either w or wb (if w ends with a) could be rewritten into a word u over
the alphabet {b, c}. The actions of b and c induce a new automaton on the state
set of Mn (this induced automaton is shown in Fig. 4 on the right). It is not
hard to see that in both cases u is a reset word for the induced automaton. After
applying the first letter of u it remains to synchronize the subautomaton on the
set of states S = {1}∪{2k | 1 ≤ k ≤ n−1

2 }, and this subautomaton is isomorphic
to Cn+1

2
.

Suppose u = u′c for some word u′ over {b, c}. Since the action of c on any
subset of S cannot decrease its cardinality, we conclude that u′ is also a reset
word for the induced automaton. But c is the last letter of u only if w = w′a
and w′ was rewritten into u′. Thus, w′ also is a reset word for Mn, which is a
contradiction.

If u = xu′ for some letter x, then by Proposition 3 we conclude that u′ has at
least (n+1

2)2−3(n+1
2)+2 = n2−4n+3

4 occurrences of c and at least n−1
2 occurrences

of b. Since each occurrence of c in u′ corresponds to an occurrence of the factor ab
in w, we conclude that the length of w is at least 1+2n2−4n+3

4 + n−1
2 = n2−3n+4

2 .
One can verify that the word b(b(ab)

n−1
2)

n−3
2 b is a reset word for Mn whence

the above bound is tight.

It is not hard to see that exp0(Mn) = n − 1 and also exp1(Mn) is linear in n.
Thus, both 0-exponent and 1-exponent are far too weak to give a good lower
bound for the reset threshold of Mn. That is why we have obtained a tight lower
bound for rt(Mn) in an indirect way, via relating Mn to an automaton with a
large 1-exponent (namely, to Cn+1

2
). Now we are going to develop a notion that

can give a good bound in a more direct way.

Lower Bounds for the Length of Reset Words in Eulerian Automata 189

Observe that the most important part of the proof of Theorem 1 deals with
estimating the number of occurrences of the factor ab in a reset word. In fact,
a rough estimation can be done directly. Let w be a reset word that leaves Mn

in the state 2 and k = |w|ab. Consider a path from 2 to 2 in which the state 2
does not occur in the middle. Words labeling such paths come from the language
L = b∗(a+b+)

n−1
2 ba∗b. Thus, w can be divided into several blocks from L. Since

every block has either n−1
2 or n+1

2 occurrences of the factor ab, we conclude that
k is expressible as a non-negative integer combination of the numbers n−1

2 and
n+1

2 . Note that (ab)tw, where t ∈ N, is a reset word that leaves Mn in the state 2.
Since ab occurs k+t times as a factor in (ab)tw, we see that k+t also is expressible
as a non-negative integer combination of n−1

2 and n+1
2 . Applying lemma 1 we

conclude that k ≥ n2−4n+3
4 . Thus, the length of w is at least n2−4n+3

2 .
The above reasoning suggests the following generalization. Let A = 〈Q,Σ〉

be a DFA with Q = {1, 2, . . . , n} and let k be a non-negative integer. We say
that the automaton A is k-primitive if there exist words u1, u2, . . . , un such
that 1 · u1 = 2 · u2 = · · · = n · un and for every word v of length at most k we
have |u1|v = |u2|v = . . . = |un|v. Note that the last condition implies that all
words u1, u2, . . . , un have the same length. The minimal length of words that
witness k-primitivity of A is called the k-exponent of A and is denoted by
expk(A). Observe that the rough estimation in the previous paragraph shows
that exp2(Mn) is close to rt(Mn).

Consider now an arbitrary synchronizing automaton A . It is clear that A
is k-primitive for every k and rt(A) ≥ expk(A). Thus, we have the following
non-decreasing sequence:

exp0(A) ≤ exp1(A) ≤ · · · ≤ expk(A) ≤ expk+1(A) ≤ (4)

At every next step we require that words u1, u2, . . . , un get more similar to each
other than they were in previous step. Thus, eventually these words converge to
a reset word and the sequence stabilizes at rt(A). So we hope that studying the
sequence (4) may lead to a new approach to the Černý conjecture.

References

1. Ananichev, D.S., Gusev, V.V., Volkov, M.V.: Slowly synchronizing automata
and digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 55–65. Springer, Heidelberg (2010)

2. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami.
Matem.-fyzikalny Časopis Slovensk. Akad. Vied 14(3), 208–216 (1964) (in Slovak)

3. Dubuc, L.: Sur les automates circulaires et la conjecture de Černý. RAIRO Inform.
Théor. Appl. 32, 21–34 (1998) (in French)

4. Dulmage, A.L., Mendelsohn, N.S.: Gaps in the exponent set of primitive matrices.
Ill. J. Math. 8, 642–656 (1964)

5. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19,
500–510 (1990)

6. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theoret. Comput.
Sci. 295, 223–232 (2003)

190 V.V. Gusev

7. Olesky, D.D., Shader, B., van den Driessche, P.: Exponents of tuples of nonnegative
matrices. Linear Algebra Appl. 356, 123–134 (2002)

8. Pin, J.-E.: On two combinatorial problems arising from automata theory. Ann.
Discrete Math. 17, 535–548 (1983)

9. Ramı́rez Alfonśın, J.L.: The diophantine Frobenius problem. Oxford University
Press, Oxford (2005)

10. Sandberg, S.: Homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)

11. Shader, B.L., Suwilo, S.: Exponents of nonnegative matrix pairs. Linear Algebra
Appl. 363, 275–293 (2003)

12. Shen, J.: Exponents of 2-regular digraphs. Discrete Math. 214, 211–219 (2000)
13. Trahtman, A.N.: The Černý conjecture for aperiodic automata. Discrete Math.

Theor. Comput. Sci. 9(2), 3–10 (2007)
14. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,

C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)

15. Volkov, M.V.: Synchronizing automata preserving a chain of partial orders. Theo-
ret. Comput. Sci. 410, 2992–2998 (2009)

16. Wielandt, H.: Unzerlegbare, nicht negative Matrizen. Math. Z. 52, 642–648 (1950)
(in German)

Parametric Verification and Test Coverage for

Hybrid Automata Using the Inverse Method

Laurent Fribourg and Ulrich Kühne

LSV - ENS Cachan & CNRS, 94235 Cachan, France
{kuehne,fribourg}@lsv.ens-cachan.fr

Abstract. Hybrid systems combine continuous and discrete behavior.
Hybrid Automata are a powerful formalism for the modeling and verifi-
cation of such systems. A common problem in hybrid system verification
is the good parameters problem, which consists in identifying a set of
parameter valuations which guarantee a certain behavior of a system.
Recently, a method has been presented for attacking this problem for
Timed Automata. In this paper, we show the extension of this method-
ology for hybrid automata with linear and affine dynamics. The method
is demonstrated with a hybrid system benchmark from the literature.

1 Introduction

Hybrid systems combine continuous and discrete behavior. They are especially
useful for the verification of embedded systems, as they allow the unified mod-
eling and the interaction of discrete control and the continuous environment or
system state such as position, temperature or pressure.

There are several classes of formal models for hybrid systems. In general,
there is a trade-off between the expressivity of the model and the complexity of
the algorithmic apparatus that is needed for its formal analysis. Linear Hybrid
Automata (LHA) provide a good compromise. In contrast to more general hy-
brid automata models, which allow arbitrary dynamics of the continuous state
variables, LHA are restricted to linear dynamics. This allows the use of efficient
algorithms based on convex polyhedra. Furthermore, more complex dynamics
– like hybrid automata with affine dynamics (AHA) – can easily be approxi-
mated conservatively by LHA. Although reachability is undecidable for LHA
[12], practically relevant results have been obtained using this formalism [11].

For the modeling of embedded systems it is handy to use parameters either to
describe uncertainties or to introduce tuning parameters that are subject to op-
timization. Instead of setting these parameters manually and then verifying the
resulting concrete system, parameterized models are used to perform automatic
parameter synthesis. A common assumption is the existence of a set of bad states
that should never be reached. Then the parameter synthesis can be solved by
treating the parameters as additional state variables and computing the reach-
able states of the parameterized system in a standard manner[11]. However, this
standard approach is not feasible except for very simple cases. It is therefore

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 191–204, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

192 L. Fribourg and U. Kühne

essential to dynamically prune the search space. The method presented in [9]
is based on the CEGAR approach, iteratively refining a constraint over the pa-
rameters by discarding states that violate a given property. A similar refinement
scheme has already been used for (non-parameterized) reachability problems of
hybrid systems (see e.g. [14]), starting with an abstraction and refining until the
property has been proved or a counterexample has been found.

While these traditional approaches to parameter synthesis are based on the
analysis of bad states or failure traces, a complementary – or inverse – method
has been proposed in [4]. It uses a parameter instantiation that is known to
guarantee a good behavior in order to derive a constraint on the parameters
that leads to the same behavior. While the algorithm in [4] is restricted to
Timed Automata (TA), we present its extension to LHA in this paper.

There are different scenarios for the application of the presented approach.
If a given parameter instantiation is known to guarantee certain properties, the
inverse method can be used to derive an enlarged area of the parameter space
that preserves these properties, while possibly allowing for enhanced performance
of the system. In the The inverse method can also be used to obtain a measure of
coverage of the parameter space by computing the zones of equivalent behavior
for each point. This approach is also known as behavioral cartography [5] and will
be discussed in this paper. While the natural extension of these algorithms works
well for simple LHA, it does not scale well to LHA models that approximate
more complex dynamics. Therefore, we present an enhanced algorithm that can
be applied on affine hybrid automata.

The presented algorithms are implemented in a tool called IMITATOR (In-
verse Method for Inferring Time AbstracT behaviOR) [3]. The tool has orig-
inally been developed for the analysis of TA. The new version IMITATOR 3
implements the semantics of LHA as presented in Sect. 3. The manipulation of
symbolic states is based on the polyhedral operations of the Parma Polyhedra
Library [6].

Throughout the paper, we will use a running example – a distributed tem-
perature control system – to illustrate the presented concepts. Further examples
can be found in [10].

2 Related Work

The presented approach exhibits the same general differences with the CEGAR-
based approach of [9] at the LHA level as formerly at the TA level. First, the
input of CEGAR-based methods is a bad location to be avoided while the input
of our inverse method is a good reference valuation for the parameters; second,
the constraint in CEGAR-based methods guarantees the avoidance of bad loca-
tions while the constraint generated by the inverse method guarantees the same
behavior (in terms of discrete moves) as under the reference valuation.

Additionally, our inverse method based approach for LHA is comparable to the
symbolic analysis presented in [1] for improving the simulation coverage of hybrid
systems. In their work, Alur et al. start from an initial state x and a discrete-time

Parametric Verification and Test Coverage for Hybrid Automata 193

simulation trajectory, and compute a constraint describing those initial states
that are guaranteed to be equivalent to x, where two initial states are considered
to be equivalent if the resulting trajectories contain the same locations at each
discrete step of execution. The same kind of constraint can be generated by our
inverse method when initial values of the continuous variables are defined using
parameters. The two methods are however methodologically different. On the
one hand, the generalization process done by the inverse method works, using
forward analysis, by refining the current constraint over the parameters that
repeatedly discards the generated states that are incompatible with the initial
valuation of x; on the other hand, the method of Alur et al. generalizes the initial
value of x by performing a backward propagation of sets of equivalent states.
This latter approach can be practically done because the system is supposed
to be deterministic, thus making easy the identification of transitions between
discrete states during the execution. Our inverse method, in contrast, can also
treat nondeterministic systems.

The approach presented in [15] shares a similar goal, namely identifying for
single test cases a robust environment that leads to the same qualitative behav-
ior. Instead of using symbolic reachability techniques, their approach is based
on the stability of the continuous dynamics. By using a bisimulation function
(or contraction map), a robust neighborhood can be constructed for each test
point. As traditional numeric simulation can be used, this makes the technique
computationally effective. But, for weakly stable systems, a lot of test points
have to be considered in order to achieve a reasonable coverage. For some of the
examples in [15], we achieve better or comparable results (see [10]).

3 Hybrid Automata with Parameters

3.1 Basic Definitions

In the sequel, we will refer to a set of continuous variables X = x1, . . . , xN and a
set of parameters P = p1, . . . , pM . Continuous variables can take any real value.
We define a valuation as a function w : X → R, and the set of valuations over
variables X is denoted by V(X). A valuation w will often be identified with the
point (w(x1), . . . , w(xN)) ∈ RN . A parameter valuation is a function π : P → R

mapping the parameters to the real numbers.
Given a set of variables X , a linear inequality has the form

∑N
i=1 αixi �� β,

where xi ∈ X , αi, β ∈ Z and �� ∈ {<,≤,=}. A convex linear constraint is a finite
conjunction of linear inequalities. The set of convex linear constraints over X is
denoted by L(X). For a constraint C ∈ L(X) satisfied by a valuation w ∈ V(X),
we write w |= C. For a constraint over continuous variables and parameters
C ∈ L(X ∪ P) satisfied by a valuation w and a parameter valuation π, we write
〈w, π〉 |= C. By convention, we also write w |= C for partial valuations. For
example, a valuation w ∈ V(X) is said to satisfy a constraint C ∈ L(X ∪P) iff it
can be extended with at least one parameter valuation π such that 〈w, π〉 |= C.

Sometimes we will refer to a variable domain X ′, which is obtained by re-
naming the variables in X . Explicit renaming of variables is denoted by the

194 L. Fribourg and U. Kühne

substitution operation. Here, (C)[X/Y] denotes the constraint obtained by re-
placing in C the variables of X by the variables of Y .

A convex linear constraint can also be interpreted as a set of points in the
space RN , more precisely as a convex polyhedron. We will use these notions
synonymously. In this geometric context, a valuation satisfying a constraint is
equivalent to the polyhedron containing the corresponding point, written as
w ∈ C. Also here, for a partial valuation w (i.e. a point of a subspace of C), we
write w ∈ C iff w is contained in the projection of C on the variables of w.

Definition 1. Given a set of continuous variables X and a set of parameters
P , a (parameterized) hybrid automaton is a tuple A = (Σ,Q, q0, I,D,→), con-
sisting of the following

– a finite set of actions Σ
– a finite set of locations Q
– an initial location q0 ∈ Q
– a convex linear invariant Iq ∈ L(X ∪ P) for each location q
– an activity Dq : Rn → Rn for each location q

– discrete transitions q
g,a,μ−−−→ q′, with guard condition g ∈ L(X ∪ P), action

a ∈ Σ and a jump relation μ ∈ L(X ∪ P ∪X ′).

Given a parameter constraint K ∈ L(P), the automaton A with the parame-
ters restricted to K is denoted by A(K). Given a parameter valuation π, the
automaton A with all parameters instantiated as in π is denoted by A[π].

Without loss of generality, it is assumed here that all continuous variables x
are initialized with x = 0. Arbitrary initial values can be modeled by adding a
transition with appropriate variable updates. Parameters can be seen as addi-
tional state variables which do not evolve in time (null activity).

The activities Dq describe how the continuous variables evolve within each
location q. In order to obtain automata models which can be symbolically ana-
lyzed, restrictions have to be made to these activities. This leads to the following
classes of hybrid automata.

Definition 2. We define the following subclasses of hybrid automata.

(1) A linear hybrid automaton (LHA) is a hybrid automaton, where in each
location q, the activity is given by a convex linear constraint Dq ∈ L(Ẋ)
over the time derivatives of the variables.

(2) An affine hybrid automaton (AHA) is a hybrid automaton, where in each
location q, the activity is given by a convex linear constraint Dq ∈ L(X ∪ Ẋ)
over the variables and the time derivatives.

The class of timed automata can be obtained by restricting the derivatives to
ẋ = 1 and limiting the jump relations to either x′ = x or x′ = 0 (clock reset)
for all variables x ∈ X . In total, the automata models defined above form a
hierarchy TA ⊂ LHA ⊂ AHA.

Parametric Verification and Test Coverage for Hybrid Automata 195

The reachable states of LHA can be efficiently represented by convex polyhe-
dra. Due to the more complex dynamics, this is not true for AHA. In the fol-
lowing, we consider linear hybrid automata with parameters. But, AHA can be
approximated by LHA with arbitrary precision by partitioning the state space,
as e.g. described in [8]. In Sect. 4.3 it is discussed, how these techniques can be
adapted to suit our methods. In the following, we give an example of a hybrid
system, that will later on be used to illustrate the approaches proposed here.

Example 1. The room heating benchmark (RHB) has been described in [7]. It
models a distributed temperature control system. There are m movable heaters
for n > m rooms. The temperature xi in each room i is a continuous variable
that depends on the (constant) outside temperature u, the temperature of the
adjacent rooms, and whether there is an activated heater in the room.

Depending on the relations between the temperatures measured, the heaters
will be moved. If there is no heater in room i, a heater will be moved there
from an adjacent room j, if the temperature has reached a threshold xi ≤ geti
and there is a minimum difference of the temperatures xj − xi ≥ difi. Note
that in contrast with the RHB modeled in [1], the heater move from a room to
another one is nondeterministic, since multiple guard conditions can be enabled
simultaneously (in [1], the nondeterminism is resolved by moving only the heater
with the smallest index). The dynamics is given by equations of the form:

ẋi = cihi + bi(u− xi) +
∑
i�=j

ai,j(xj − xi) (1)

where ai,j are constant components of a symmetric adjacency matrix, constants
bi and ci define the influence of the outside temperature and the effectiveness of
the heater for each room i, and hi = 1 if there is a heater in room i and hi = 0
otherwise. Here, we will study an instantiation of RHB as given in [1] with
n = 3,m = 2, outside temperature u = 4, the constants b = (0.4, 0.3, 0.4), c =
(6, 7, 8). The adjacency matrix ai,j is given as

(
0.0 0.5 0.0
0.5 0.0 0.5
0.0 0.5 0.0

)
and the thresholds

are set to get = 18 and dif = 1 for all rooms.
The system can be modeled as an AHA, as shown in Fig. 1. There are three

control modes, corresponding to the positions of the two heaters. The automaton
has four variables, the temperatures X = {x1, x2, x3} and a variable t acting as
clock. In this example, the temperatures are sampled at a constant rate 1

h , where
h is a parameter of the automaton. This sampling scheme is used in the models
of sampled-data hybrid systems of [16] and simulink/stateflow models [1].

3.2 Symbolic Semantics

The symbolic semantics of a LHA A(K) are defined at the level of constraints, a
symbolic state is a pair (q, C) of a location q and a constraintC over variables and
parameters. The corresponding operations are therefore performed on convex
polyhedra rather than on concrete valuations. One necessary operation is the
progress of time within a symbolic state, modeled by the time-elapse operation.

196 L. Fribourg and U. Kühne

Q011

t ≤ h ∧ ṫ = 1∧
Ẋ =

(−0.9 0.5 0
0.5 −1.3 0.5
0 0.5 −0.9

)
X +

(
1.6
8.2
9.6

)

Q101

t ≤ h ∧ ṫ = 1∧
Ẋ =

(−0.9 0.5 0
0.5 −1.3 0.5
0 0.5 −0.9

)
X +

(
7.6
1.2
9.6

)

Q110

t ≤ h ∧ ṫ = 1∧
Ẋ =

(−0.9 0.5 0
0.5 −1.3 0.5
0 0.5 −0.9

)
X +

(
7.6
8.2
1.6

)

t = h ∧ (x1 ≥ 18 ∨ x2 − x1 < 1) / t′ = 0 t = h ∧ (x3 ≥ 18 ∨ x2 − x3 < 1) / t′ = 0

t = h ∧ (x2 ≥ 18 ∨ (x1 − x2 < 1 ∧ x3 − x2 < 1)) / t′ = 0

t = h ∧ x1 < 18∧
x2 − x1 ≥ 1/t′ = 0t = h ∧ x2 < 18∧

x1 − x2 ≥ 1/t′ = 0

t = h ∧ x3 < 18∧
x2 − x3 ≥ 1/t′ = 0 t = h ∧ x2 < 18∧

x3 − x2 ≥ 1/t′ = 0

Fig. 1. Automaton model for room heating benchmark

Definition 3. Given a symbolic state (q, C), the states reached by letting t time
units elapse, while respecting the invariant of q, are characterized as follows:

w′ ∈ C ↑t
q iff ∃w ∈ C, v ∈ Dq : w′ = w + t · v ∧ w′ ∈ Iq.

We write w′ ∈ C ↑q if w′ ∈ C ↑t
q for some t ∈ R+.

Note that due to the convexity of the invariants, if C ⊆ Iq and C ↑t
q⊆ Iq,

then also ∀t′ ∈ [0, t] : C ↑t′
q ⊆ Iq. The operator preserves the convexity of C.

Furthermore, the operator C ↓X denotes the projection of the constraint C on
the variables in X . Based on these definitions, the symbolic semantics of a LHA
A(K) is given by a labeled transition system (LTS).

Definition 4. A labeled transition system over a set of symbols Σ is a triple
(S, S0,⇒) with a set of states S, a set of initial states S0 ⊆ S and a transition
relation ⇒ ⊆ S × Σ × S. We write s

a⇒ s′ for (s, a, s′) ∈⇒. A run of length
m is a finite alternating sequence of states and symbols of the form s0

a0⇒ s1
a1⇒

. . .
am−1⇒ sm, where s0 ∈ S0.

Definition 5. The symbolic semantics of LHA A(K) is a LTS with

– states S = {(q, C) ∈ Q× L(X ∪ P) | C ⊆ Iq}
– initial state s0 = (q0, C0) with C0 = K ∧ [

∧N
i=1 xi = 0] ↑q0

– discrete transitions (q, C) a→ (q′, C′) if exists q
a,g,μ→ q′ and

C′ =
(
[C(X) ∧ g(X) ∧ μ(X,X ′)] ↓X′ ∧Iq′ (X ′)

)
[X′/X]

Parametric Verification and Test Coverage for Hybrid Automata 197

– delay transitions (q, C) t→ (q, C′) with C′ = C ↑t
q

– transitions (q, C) a⇒ (q′, C′) if ∃t, C′′ : (q, C) a→ (q′, C′′) t→ (q′, C′)

The trace of a symbolic run (q0, C0)
a0⇒ . . .

am−1⇒ (qm, Cm) is obtained by pro-
jecting the symbolic states to the locations, which gives: q0

a0⇒ . . .
am−1⇒ qm. Two

runs are said to be equivalent, if their corresponding traces are equal.
The set of states reachable from any state in a set S in exactly i steps is

denoted as PostiA(K)(S) = {s′ | ∃s ∈ S : s a0⇒ . . .
ai−1⇒ s′}. Likewise, the set of all

reachable states from S is defined as Post∗A(K)(S) =
⋃

i≥0 Post
i
A(K). The reach-

able states of an automaton A(K) are defined as ReachA(K) = Post∗A(K)({s0}),
where s0 is the initial state of A(K).

Note that during a run of A(K), the parameter constraints associated to the
reachable states can only get stronger, since the parameters do not evolve under
the time elapse operation, and can only be further constrained by invariants or
guard conditions. This gives rise to the following observation.

Lemma 1. For any reachable state (q, C) ∈ ReachA(K), it holds that (∃X :
C) ⊆ K. This implies that for each parameter valuation π |= C, also π |= K.

The lemma follows directly from the definition of the symbolic semantics. We
say that a state (q, C) is compatible with a parameter valuation π, or just π-
compatible, if π |= C. Conversely, it is π-incompatible if π �|= C. These observa-
tions are the basis for the Inverse Method, is described in next section.

4 Algorithm

4.1 Inverse Method

The Inverse Method for LHA attacks the good parameters problem by gener-
alizing a parameter valuation π that is known to guarantee a good behavior.
Thereby, the valuation π is relaxed to a constraint K such that the discrete be-
havior – i.e. the set of traces – of A[π] and A(K) is identical. The algorithm has
first been described for parametric timed automata in [4]. It has been applied
for the synthesis of timing constraints for memory circuits [2].

Algorithm 1 describes the Inverse Method for LHA. The overall structure is
similar to a reachability analysis. In the main loop, the reachable states with
increasing depth i are computed. In parallel, the constraint K is derived. It is
initialized with true. Each time a π-incompatible state (q, C) is reached, K
is refined such that the incompatible state is unreachable for A(K). If C is π-
incompatible, then there must be at least one inequality J in its projection on the
parameters (∃X : C), which is incompatible with π. The algorithm selects one
such inequality and adds its negation ¬J to the constraint K. Before continuing
with the search, the reachable states found so far are updated to comply with
the new constraint K (line 1). If there are no more π-incompatible states, then
i is increased and the loop continues.

198 L. Fribourg and U. Kühne

Algorithm 1. IM (A, π)

input : Parametric linear hybrid automaton A
input : Valuation π of the parameters
output: Constraint K0 on the parameters

i ← 0 ; K ← true ; S ← {s0}1

while true do2

while there are π-incompatible states in S do3

Select a π-incompatible state (q, C) of S (i.e., s.t. π �|= C) ;4

Select a π-incompatible inequality J in (∃X : C) (i.e., s.t. π �|= J) ;5

K ← K ∧ ¬J ;6

S ←
⋃i

j=0 Postj
A(K)({s0}) ;7

if PostA(K)(S) � S then return K0 ←
⋂

(q,C)∈S(∃X : C)8

i ← i + 1 ;9

S ← S ∪ PostA(K)(S)10

The algorithm stops as soon as no new states are found (line 1). The output
of the algorithm is then a parameter constraint K0, obtained as the intersection
of the constraints associated with the reachable states. The resulting constraint
can be characterized as follows.

Proposition 1. Suppose that the algorithm IM (A, π0, k) terminates with the
output K0. Then the following holds:

– π0 |= K0

– For all π |= K0, A[π0] and A[π] have the same sets of traces.

A proof along the lines of [13] can be found in [10]. We obtain a (convex) con-
straint K0 including the initial point π0, that describes a set of parameter val-
uations for which the same set of traces is observable. In particular, if A[π0] is
known to avoid a set of (bad) locations for π0, so will A[π] for any π |= K0.

The algorithm IM is not guaranteed to terminate1. Note also that the pre-
sented algorithm involves nondeterminism. In Algorithm 1 in lines 1 and 1, one
can possibly choose among several incompatible states and inequalities. This may
lead to different – nevertheless correct – results. This implies in particular that
the resulting constraint K0 is not maximal in general. (In order to overcome this
limitation, the behavioral cartography method will be proposed in Section 4.2).

Example 2. In order to enable the application of the inverse method as described
above to the RHB from example 1, the AHA automaton is converted to a LHA.
This is done using the method described in [8]. The space is partitioned into
regions, and within each region, the activity field is overapproximated using
linear sets of activity vectors. For each region R delimiting a portion of the
partitioned state space, the activities are statically overapproximated as

ẋi ∈ [min{fi(x) | x ∈ R},max{fi(x) | x ∈ R}] ,
1 Termination of such a general reachability-based procedure cannot be guaranteed

due to undecidability of reachability for TA with parameters and LHA [12].

Parametric Verification and Test Coverage for Hybrid Automata 199

(a) Starting from a single point

(b) Starting from a tile synthesized by the Inverse Method

Fig. 2. Reachable states for room heating benchmark

where fi(x) corresponds to the right-hand side in (1). The approximation can be
made arbitrarily accurate by approximating over suitably small regions of the
state space. Here, each region R corresponds to a unit cube (of size 1 degree
Celsius) in the dimensions x1, x2, x3.

We now consider the following (bounded liveness) property:

Prop1: At least one of the heaters will be moved within a given time interval
[0, tmax] with tmax = 1

2 and a sampling time h = 1
10 .

The upper bound tmax plays here the role of the maximal number of discrete
transitions that are used in the method of [1]. In the automaton model, a viola-
tion of the property is modeled by a transition to a location qbad. To check the
property Prop1 for varying initial conditions, we add the parameters a1, a2, a3

and constrain the initial state with x1 = a1 ∧x2 = a2 ∧x3 = a3. For initial point
(a1, a2, a3) = (18, 17, 18), the reachable states for the variables x1, x2 and x3 are
shown in Fig. 2(a). The bad location is not reached from this point. Using the
Inverse Method (Algorithm 1), the initial point can be generalized to a larger
region around the starting point (18, 17, 18), resulting in the constraint

a1 ≥ a2 + 181
200 ∧ a1 <

a3
2 + 37

4 ∧ a2 >
3381
200 ∧ a2 <

35
2 ∧ a3 >

35
2 ∧ a3 <

456
25 .

The symbolic runs starting from this enlarged initial region are depicted in
Fig. 2(b). The sets of traces of the two figures coincide, i.e. the sequence of
discrete transitions of every run represented in Fig. 2(b) is identical to the se-
quence of discrete transitions of some run in Fig. 2(a).

200 L. Fribourg and U. Kühne

Algorithm 2. BC

input : Parametric linear hybrid automaton A
input : Parameter bounds min1 . . . minM and max1 . . . maxM

input : Step sizes δ1 . . . δM

output: Set of constraints Z on the parameters

Z ← ∅1

V ← {π | πi = mini + �i · δi, πi ≤ maxi, �1, . . . , �M ∈ N}2

while true do3

Select point π ∈ V with ∀K ∈ Z : π �|= K4

K ← IM (A, π)5

Z ← Z ∪ {K}6

if ∀π ∈ V : ∃K ∈ Z : π |= K then7

return Z8

4.2 Behavioral Cartography

The inverse method works efficiently in many cases, since large parts of the state
space can effectively be pruned by refining the parameter constraint K. In this
way, many bad states never have to be computed, in contrast to the traditional
approach to parameter synthesis. A drawback of the inverse method is that the
notion of equivalence of the traces may be too strict for some cases. If e.g. one
is interested in the non-reachability of a certain bad state, then there may exist
several admissible regions in the parameter space that differ in terms of the
discrete behavior or trace-sets. In order to discover these regions, the inverse
method needs to be applied iteratively with different starting points.

The systematic exploration of the parameter space using the inverse method
is called behavioral cartography [5]. It works as shown in Algorithm 2. For each
parameter pi, the interval [mini,maxi], possibly containing a single point, speci-
fies the region of interest. This results in a rectangular zone v0 = [min1,max1]×
· · · × [minM ,maxM]. Furthermore, step sizes δi ∈ R are given. The algorithm
selects (yet uncovered) points defined by the region v0 and the step sizes and
calls the inverse method on them. The set Z contains the tiles (i.e. parameter
constraints) computed so far. The algorithm proceeds until all starting points
are covered by some tile K ∈ Z.

By testing the inclusion in some computed tile, repeated computations are
avoided for already covered points. The result of the cartography is a set of
tiles of the parameter space, each representing a distinct behavior of the LHA
A. Note that the computed tiles do not necessarily cover the complete region
v0. On the other hand, it is possible that v0 be covered by very few calls to
the inverse method. Note also that, compared to the algorithm in [1], this is a
stronger result, as each tile corresponds to a set of traces that exploits all possible
behavior for the covered parameter valuations, including nondeterminism.

Example 3. The cartography is illustrated by a further experiment on the RHB
model from example 2. Again, we check Prop1. The initial point is varied for

Parametric Verification and Test Coverage for Hybrid Automata 201

15.5 16.0 16.5 17.0 17.5 18.0 18.5
15.5

16.0

16.5

17.0

17.5

18.0

18.5

a1

a2

Fig. 3. Cartography of the initial states of RHB

the initial values a1 and a2, while fixing a3 = 18. Therefore, the cartography
procedure is used, iterating the initial point within the rectangle [16, 18]2 (i.e,
min1 = min2 = 16 and max1 = max2 = 18) with a step size of δ1 = δ2 = 1

3 .
This leads to a total of 32 tiles, shown in Fig. 3. By analyzing the cartography,
one gets a quantitative measure of the coverage of the considered region (shown
as a dashed rectangle in the figure). In this case, the computed tiles cover 56%
of the rectangle. All tiles in the figure have been classified as good tiles.

4.3 Enhancement of the Method for Affine Dynamics

It can be observed that for some systems there are areas in the parameter space,
where slight variations of the initial conditions lead to many different traces. In
this case, a good coverage based the cartography approach will be very costly,
since many points have to be considered. In general, the inverse method and the
behavioral cartography is quite limited when applied to LHA models that were
obtained from AHA by static partitioning.

As described in [8], AHA can be approximated by LHA with arbitrary preci-
sion. This is done by partitioning the invariant of a location, usually into a set
of small rectangular regions. For each region R, the affine dynamics are over-
approximated by linear dynamics. In this way, the locations are split up until
the desired precision is obtained.

Due to this partitioning, the resulting LHA will have more locations than the
original AHA, leading also to more different traces for each parameter instantia-
tion. This renders the inverse method ineffective for AHA, as the region around
a parameter valuation π that corresponds to the same trace set, will generally
be very small. This is because the traces contain a lot of information on the
transitions between partitions that are irrelevant wrt. the system’s behavior.

These limitations can be overcome by grouping reachable states that only
represent different partitions of the same invariant of a location q. In our algo-
rithm, this is done as an extension of the time-elapse operator. Each time that
the time-elapse C ↑q needs to be computed for a location with affine dynamics
Dq, the following steps are performed:

202 L. Fribourg and U. Kühne

1. Build local partitions P of the invariant Iq
2. Compute a linear over-approximation D̂P of Dq for each partition P

3. Compute the locally reachable states S wrt. partitions P and dynamics D̂P

4. Compute the convex hull of the states S

Here, the number of partitions Δ per dimension is chosen by the user. Note that
cost and precision of the overall analysis may strongly depend on the chosen
value for Δ. In practice, one would iterate the methods presented in this paper
in order to refine the analysis by increasing Δ.

Given this variant of the time-elapse for affine dynamics, the computed reach-
able states are an over-approximation due to the piecewise linearization of the
dynamics and the convex hull operation. Thus, the trace equivalence is no longer
valid. But, as we compute an over-approximation of the possible runs, non-
reachability is preserved.

Proposition 2. Given an AHA A, suppose that the algorithm IM (A, π0, k) ter-
minates with the output K0. Then the following holds:

– π0 |= K0

– If for A[π0], a location qbad is unreachable, then it is also unreachable for all
A[π] with π |= K0

Example 4. The adapted algorithm is applied to the RHB. With the discussed
techniques, we can apply the inverse method and thus the cartography directly
on the AHA model, without statically partitioning the state space in order to
obtain a LHA. Again, by repeating the inverse method, a large part of the sys-
tem’s initial state space is decomposed into tiles of distinct discrete behavior.
The reachability analysis for the AHA model is quite costly. Therefore, we will
try to cover large parts of the parameter space using a very coarse linearization,
given by a small number Δ of partitions. This is illustrated in the following.
As reported in Example 3, applying the cartography on the statically linearized

15 16 17 18 19
15

16

17

18

19

a1

a2

Fig. 4. Enhanced cartography for room heating benchmark

Parametric Verification and Test Coverage for Hybrid Automata 203

RHB model delivers a coverage of only 56% when fixing a3 = 18. Instead, we
apply the enhanced method directly on the AHA model, again regarding prop-
erty Prop1. Here, the initial values a1 and a2 are varied within the rectangle
[15.5, 18.5]2 (i.e, min1 = min2 = 15.5 and max1 = max2 = 18.5) with a step
size of δ1 = δ2 = 1

2 . In the first step, the invariants will be uniformly linearized,
i.e. we set Δ = 1. The resulting cartography in Fig. 4 consists of 12 tiles, where
the good ones are shown in green, while the tiles corresponding to a bad behavior
are shown in red (and outlined in bold). Note that the whole rectangular region
is covered and that already with a coarse linearization, most of the tiles could
be proved good.

5 Final Remarks

In this paper, we present a method to derive parameter constraints for LHA,
that guarantee the same behavior as for a reference valuation of the parame-
ters. This method has been recently introduced for deriving timing constraints
for timed automata. Here, we provide the extension of the method to LHA.
Furthermore, it is shown how the reachability procedure can be adapted to en-
able the analysis of systems with affine dynamics. By early pruning of invalid
states, the method is more efficient than the parameter synthesis based on stan-
dard reachability analysis. Repeated analysis for different starting points yields
a “behavioral cartography”. This allows to cover large parts of the initial state
space of nondeterministic hybrid systems, and provides an alternative tool to
the symbolic simulation method of [1], which gives sometimes better results.

References

1. Alur, R., Kanade, A., Ramesh, S., Shashidhar, K.: Symbolic analysis for improving
simulation coverage of simulink/stateflow models. In: EMSOFT, pp. 89–98 (2008)

2. André, É.: IMITATOR: A tool for synthesizing constraints on timing bounds of
timed automata. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684,
pp. 336–342. Springer, Heidelberg (2009)

3. André, É.: IMITATOR II: A tool for solving the good parameters problem in timed
automata. In: INFINITY. EPTCS, vol. 39, pp. 91–99 (September 2010)

4. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. IJFCS 20(5), 819–836 (2009)

5. André, É., Fribourg, L.: Behavioral cartography of timed automata. In: Kučera,
A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 76–90. Springer, Heidelberg
(2010)

6. Bagnara, R., Hill, P., Zaffanella, E.: Applications of polyhedral computations to the
analysis and verification of hardware and software systems. Theoretical Computer
Science 410(46), 4672–4691 (2009)

7. Fehnker, A., Ivancic, F.: Benchmarks for hybrid systems verification. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidel-
berg (2004)

8. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech.
STTT 10(3), 263–279 (2008)

204 L. Fribourg and U. Kühne

9. Frehse, G., Jha, S., Krogh, B.: A counterexample-guided approach to parameter
synthesis for linear hybrid automata. In: Egerstedt, M., Mishra, B. (eds.) HSCC
2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg (2008)

10. Fribourg, L., Kühne, U.: Parametric verification of hybrid automata using the
inverse method. Research Report LSV-11-04, LSV, ENS Cachan, France (2011)

11. Henzinger, T., Ho, P.-H., Wong-Toi, H.: HyTech: A model checker for hybrid sys-
tems. STTT 1, 110–122 (1997)

12. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? In: JCSS, pp. 373–382 (1995)

13. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model
checking of timed automata. JLAP 52-53, 183–220 (2002)

14. Jha, S., Krogh, B., Weimer, J., Clarke, E.: Reachability for linear hybrid automata
using iterative relaxation abstraction. In: Bemporad, A., Bicchi, A., Buttazzo, G.
(eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer, Heidelberg (2007)

15. Julius, A., Fainekos, G., Anand, M., Lee, I., Pappas, G.: Robust test generation
and coverage for hybrid systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.)
HSCC 2007. LNCS, vol. 4416, pp. 329–342. Springer, Heidelberg (2007)

16. Silva, B., Krogh, B.: Modeling and verification of sampled-data hybrid systems. In:
ADPM (2000)

A New Weakly Universal Cellular Automaton in

the 3D Hyperbolic Space with Two States

Maurice Margenstern

Université Paul Verlaine − Metz,
LITA EA 3097, UFR MIM, and CNRS, LORIA,

Campus du Saulcy,
57045 METZ Cédex 1, France

margens@univ-metz.fr

http://www.lita.sciences.univ-metz.fr/~margens

Abstract. − In this paper, we show a construction of a weakly universal
cellular automaton in the 3D hyperbolic space with two states. Moreover,
based on a new implementation of a railway circuit in the dodecagrid,
the construction is a truly 3D-one. This result under the hypothesis of
weak universality and in this space cannot be improved.

Keywords: cellular automata, weak universality, hyperbolic spaces,
tilings.

1 Introduction

In this paper, we construct a weakly universal cellular automaton in the 3D
hyperbolic space with two states. Moreover, based on a new implementation of
a railway circuit in the dodecagrid,the construction is a truly 3D-one.

The dodecagrid is the tiling {5, 3, 4} of the 3D hyperbolic space, and we refer
the reader to [15,6] for an algorithmic approach to this tiling. We remind the
reader that in the just mention denotation of the tiling, 5 represents the number
of sides of a face, 3 the number of faces meeting at a vertex and 4 the number
of dodecahedra around an edge. We also refer the reader to [5,7] for an imple-
mentation of a railway circuit in the dodecagrid which yields a weakly universal
cellular automaton with 5 states. The circuit is the one used in other papers
by the author, alone or with co-authors, inspired by the circuit devised by Ian
Stewart, see [18]. The notion of weak universality is discussed in previous papers,
see for instance [20,3,9,5] and comes from the fact that the initial configuration
is infinite. However, it is not an arbitrary configuration: it has to be regular at
large according to what was done previously, see [5,17,16,11].

Due to the small room left for this paper, we very briefly mention the new
features of the implementation of the railway circuit in Section 2. In Section 3,
we define the elements of the new implementation and, in Section 4 we describe
the scenario of the simulation. We refer the reader to [14] for a detailed study
and, in particular, for the rules of the automaton whose correctness was checked
by a computer program, allowing us to state the following result:

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 205–217, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.lita.sciences.univ-metz.fr/~margens

206 M. Margenstern

Theorem 1. There is a weakly universal cellular automaton in the dodecagrid
which is weakly universal and which has two states exactly, one state being the
quiescent state. Moreover, the cellular automaton is rotation invariant and the
set of its cells changing their state is a truly 3D-structure.

In Section 5 we look at the remaining tasks.

2 The Railway Circuit

As initially devised in [18] and then mentioned in [4,2,17,16,7], the circuit uses
tracks represented by lines and quarters of circles and switches. There are three
kinds of switches: the fixed, the memory and the flip-flop switches. They are
represented by the schemes given in Figure 1.

�
�
�

�
�
�

�
�
�
�

Fig. 1. The three kinds of switches. From left to right: fixed, flip-flop and memory
switches.

A switch is an oriented structure: on one side, it has a single track u and, on
the the other side, it has two tracks a and b. This defines two ways of crossing
a switch. Call the way from u to a or b active. Call the other way, from a or b
to u passive. The names comes from the fact that in a passive way, the switch
plays no role on the trajectory of the locomotive. On the contrary, in an active
crossing, the switch indicates which track, either a or b will be followed by the
locomotive after running on u: the new track is called the selected track.

The fixed switch is left unchanged by the passage of the locomotive. It
always remains in the same position: when actively crossed by the locomotive,
the switch always sends it onto the same track. The flip-flop switch is assumed to
be crossed actively only. Now, after each crossing by the locomotive, it changes
the selected track. The memory switch can be crossed by the locomotive actively
and passively. In an active passage, the locomotive is sent onto the selected track.
Now, the selected track is defined by the track of the last passive crossing by the
locomotive. Of course, at initial time, the selected track is fixed.

With the help of these three kinds of switches, we define an elementary
circuit as in [18], which exactly contains one bit of information. The circuit is
illustrated by Figure 2, below and it is implemented in the Euclidean plane. It
can be remarked that the working of the circuit strongly depends on how the
locomotive enters it. If the locomotive enters the circuit through E, it leaves the
circuit through O0 or O1, depending on the selected track of the memory switch
which stands near E. If the locomotive enters through U , the application of the
given definitions shows that the selected track at the switches near E and U
are both changed: the switch at U is a flip-flop which is changed by the actual
active passage of the locomotive and the switch at E is a memory one which

A New Weakly Universal Cellular Automaton in the 3D Hyperbolic Space 207

10

1

0

O

O

1

0

E

U

Fig. 2. The elementary circuit

is changed because it is passively crossed by the locomotive and through the
non-selected track. The actions of the locomotive just described correspond to a
read and a write operation on the bit contained by the circuit which consists
of the configurations of the switches at E and at U . It is assumed that the write
operation is triggered when we know that we have to change the bit which we
wish to rewrite.

For a detailed use of this element, the reader is referred to [4,2]. For an imple-
mentation in the hyperbolic plane and in the hyperbolic 3D space, the reader is
referred to [10,14].

3 A New Implementation in the Dodecagrid

Remember that the first weakly universal cellular automaton in the dodecagrid
had five states, see [5]. The second result of the same type in the dodecagrid,
see [10] is a cellular automaton with 3 states. As usual in this type of research,
this important improvement requires something new in the scenario. The dif-
ference between these results relies on the implementation of the tracks. In the
former paper, the track is materialized by a state which is different from the
quiescent state and the locomotive consists of two contiguous cells of the track
where one of them is another colour. In the latter paper, the track is a more com-
plex structure: the locomotive always occupies cells which are quiescent when
the locomotive is not there. The track is not materialized, but it is indicated by
milestones, cells in another state, one of the two ones required by the locomotive.
These milestones are placed close to the track in a way which allows the motion
of the locomotive in both directions along the track, see [10]. As a consequence,
the configuration of the switches is very different in the latter paper from what
it is in the former.

This new important improvement, the last one as the present result cannot be
improved for what is the number of states, is also based on a new implementation
of the tracks with deep consequences on the tracks.

In order the reader could better understand this new implementation, we
remind a few features on the representation of the dodecagrid.

208 M. Margenstern

3.1 Representation of the Dodecagrid

Due to the small room of this paper, it is not possible to provide the reader with
a short introduction to hyperbolic geometry and to the tiling which we are using
now. Here, we assume that the reader knows the pentagrid, the tiling {5, 4} of
the hyperbolic plane and we refer him/her to the papers of the author, see [6,7]
as an example.

If we fix a face F of a dodecahedron Δ of the dodecagrid, the plane which
supports F also supports faces of infinitely many dodecahedra. We shall use this
property to project parts of the dodecagrid on planes supporting faces of its tiles
as illustrated by Figure 3. For each of these dodecahedra, we shall say that its
face on the plane of F is its back. Its face, opposite to its face is its top.

5

4

3

2

1
6

10

9 8

711

Fig. 3. Two different ways for representing a pseudo-projection on the pentagrid. On
the left-hand side: the tiles have their colour. On the right-hand side: the colour of a
tile is reflected by its neighbours only. Note the numbering of the central tile on the
left-hand side picture. Face 0 of the tile is on the plane of projection.

On these figures, a dodecahedron is represented by its central projection on
the plane Π of its back from a point which is on the axis joining the back and
the top. Consider two neighbouring dodecahedra Δ1 and Δ2 with their backs
on Π . Let σ be their common edge lying on Π . Then, in the projection, the
common face of Δ1 and Δ2 is represented by two faces of the projections having
in common σ. We shall take advantage of this property to represent the state of
a cell by its colour on the projections of its outer faces, those in contact with Π
on the projections of the same spatial face in the neighbour of the cell.

When the projection on one plane will not be enough, we shall use a projection
on another plane, perpendicular to the first one.

3.2 The New Tracks

In this new setting, the locomotive is reduced to one cell and it will be called the
particle. We have two colours this time: white and black. White is the quiescent
state and the particle is always black. The implementation of the milestones

A New Weakly Universal Cellular Automaton in the 3D Hyperbolic Space 209

around a cell of the track is not symmetric with respect to the plane of the back
of the cell. For this reason, we decide that a track is one way.

Accordingly, when the return motion is needed, tracks are defined by pairs,
as this is mostly the case in real life where they are parallel. Now, in the hyper-
bolic plane, it is very difficult to construct ‘parallel’ lines. Thanks to the third
dimension, we can find a more efficient solution, illustrated by Figure 4.

6

10

4

0

17
11

9 3

28

Fig. 4. Left-hand side: The new vertical ways with two tracks. In yellow, one direction;
in brown, the opposite direction. Right-hand side: up: the numbering of the faces in a
dodecagrid of the tracks; down: a cut of the tracks in the plane of the face 10 of the
central cell.

The idea is to put the track one upon the other on both sides of the plane Π ,
taking advantage of the third dimension. On the figure, especially in the cut
performed according to a plane orthogonal to Π , we can see that the milestones
are organized as a kind of catenary above the back faces of the cells of the tracks.

1

5

4

3

27
6

10 9

811

Fig. 5. The new horizontal ways with two tracks. In yellow and green, one direction. In
brown and purple, the opposite direction. Note that here we have straight elements and
corners. We also have two kinds of horizontal elements as well as two kinds of corners.

The track represented in Figure 4 represent one kind of tracks which play here
the role of the verticals in the Euclidean representation. We need another kind
of tracks, playing the role of the horizontals, which are represented by Figure 5.

210 M. Margenstern

Now, as in the previous papers, we take advantage of the third dimension to
remove the crossings: they are replaced by bridges.

The bridges require some care but we have no room here to detail this issue.
We just mention the following feature. Let Π be the plane separating the direct
and the return tracks. As the return track is below Π , the part concerning this
track is a bridge belowΠ too: it is the reflection of the bridge overΠ on which the
direct track travels. The reader is referred to [14] for the exact implementation.

Now, we can turn to the implementation of the switches in this new setting.

3.3 The New Switches

For this analysis, we shall again use the tracks u, a and b defined in Section 2. We
remind that the active passage goes from u to either a or b and that the passive
crossing goes from either a or b to u. As we split the ways into two tracks, we
shall denote them by ud, ur, ad, ar, bd and br respectively, where the subscript
d indicates the active direction and r indicates the return one. A priori, this
defines two switches: the first one from ud to ad or bd and the second one from
ar or br to ur. We shall call the first one the active switch and the second one
the passive switch. Note that each of these new switches deals with one-way
tracks only. This can be illustrated by the right-hand side picture of Figure 6.

As the flip-flop switch is used in an active passage only, there is no return
track and, consequently no passive switch. A flip-flop makes use of single tracks
only, in the direction to the switch for the way u defined in Section 2.

fixed switch memory switch

Fig. 6. The new switches. On the left-hand side, the fixed switch; on the right-hand
side: the memory switch.

And so, we remain with the fixed and the memory switches.
First, let us look at the fixed switch. As the switch is fixed, we may assume

that u always goes to a. This means that the track bd is useless. Now, it is plain
that ud and ad constitute the two rays of a line issued from a point of the line.
Consequently, there is no active fixed switch. The switch is concerned by the
return tracks only: ur, ar and br, it is a passive switch. It is easy to see that it
works as a collector: it collects what comes from both ar and br and send this
onto ur. Now, as at any time there is at most one particle arriving at the switch

A New Weakly Universal Cellular Automaton in the 3D Hyperbolic Space 211

from the union of ar and br, the collector receives the particle from ar or br
alternately, never at the same time, see the left-hand side picture of Figure 6.

Now, let us look at the memory switch. It is clear that, in this case, we have
both an active and a passive switch. However, a closer look at the situation shows
that the passive memory switch has a tight connection with the fixed switch and
that the active memory switch has a tight connection with the flip-flop switch.
We shall return to this point in Section 4 to which we turn now.

4 The Scenario of the Simulation

4.1 The Motion of the Particle

We briefly mention the general way of motion. On a vertical segment, where the
cells have their back on the same plane Π , the particle enters a cell through
its face 10 and it exits through its face 1, see the cell with numbered faces in
Figure 4. Other directions, as an example from face 4 to face 1 are possible. On
a horizontal segment, the straight elements work in a similar way. But there are
also corners, see Figure 5. As they are not symmetric, there are two kinds of
them. One is used for one way, from face 1 to face 2 and the other is used for
the opposite direction, from face 2 to face 1, again see Figure 5.

We are now ready to study the implementation of the switches.
We shall examine the three kinds of switch successively. We startwith the trivial

case of the fixed switch. We go on with the rather easy case of the flip-flop switch
and we complete the study by the rather involved case of the memory switch.

4.2 Fixed Switches

As known from Section 2, we have a passive switch only to implement. The
definition of the motion of the particle by a passage from face 4 or 10 to face 1
shows that there is nothing to do but abutting the two arriving tracks to the
exiting one. This is illustrated by Figure 7. It is enough to make the central cell

Fig. 7. Two fixed switch: left-hand side and right-hand side. Note the symmetry of the
figure. Also note that this requires straight elements only.

212 M. Margenstern

symmetric, which is easy to realize: it is enough to rotate a straight element
around its face 1 in such a way that the face lying on Π0 is now face 0.

Now, it is easy to put the return track, either along one arriving track or along
the other: Figure 7 shows that the orientation of the milestones presented in the
figure makes both constructions possible.

We shall see that this easy implementation will help us to realize a rather
simple implementation of the passive memory switch.

4.3 Flip-Flop Switches

Now, we have to realize the flip-flop switch. We can easily see that it is not
enough to reverse the straight elements with respect to the previous figure in
order to realize the switch. The central cell must have a specific pattern. We
decide to append just one additional milestone and we change a bit the pattern,
making it symmetric and significantly different from that of the fixed switch, see
Figure 8.

This fixes the frame but now, we have to implement the mechanism which
first, forces the particle to go to one side and not to the other one and then, to
change the selected track.

3

2

1

5

49
8

7 6

1011

cell 11

3

2

1

5

49
8

7 6

1011

cell 12

3

2

1

5

49
8

7 6

1011

cell 13

Fig. 8. The flip-flop switch: Left-hand side: here the selected track is the right-hand
side one. Three cells have a particular patter: the central one and those which the
ways a and b abut.Right-hand side: the control device; cell 13 is the controller, cells 11
and 12 are mere signals. Here cell 11 is black, signaling the forbidden track.

Let us number a few cells using the numbers they are given in the computer
program which checks the simulation: the central cell of the picture is 4, and
its neighbours on the tracks a and b are 5 and 8 respectively. All these cells
have their back as face 0. We distinguish cells 11, 12 and 13 on cells 5, 8 and 4
respectively which are on the face 9 of these cells. The numbering of the faces of
cells 11, 12 and 13 in the right-hand side of Figure 8 allows to locate the face 0 of
cells 4, 5 and 8 respectively. Note that cells 11 and 13 are in contact: the face 4 of
the former coincides with the face 3 of the latter. Cells 12 and 13 are in contact
symmetrically. Cells 11 and 12 are sensors and cell 13 is the controller.

A New Weakly Universal Cellular Automaton in the 3D Hyperbolic Space 213

Cells 11 and 12 signalize the selected track: one of them is white and the other
is black, the black cell being on the forbidden track. The controller is usually
white and when it flashes to black, cells 11 and 12 simultaneously change their
state to the opposite one. Cell 13 is black just for this action: after that it goes
back to the white state.

How can cell 13 detect the situation? As already indicated, cells 11 and 12
are in contact with cell 13. It is also in contact with cell 4. When the particle
is in cell 4, cell 13 detects it and flashes. So, at the next step, the particle is
on the expected track, as the black cell 11 or 12 bars the corresponding track.
Now, cells 11 and 12 can see cell 13 in black: they both change their state. This
is visible at the next time but cell 13 is again white and the particle has gone
further so that cells 11 and 12 have the opposite state with respect to the one
they had before the particle arrived to cell 4.

4.4 Memory Switches

The memory switch is the most complex structure in our implementation. This is
not due to the fact that we have to implement two single-track switches: a passive
one and an active one. It is mainly because these two single-track switches must
be connected. This comes from the definition of the memory switch: the selected
track of the active switch is defined by the last crossing of the passive switch.

The passive switch is not as inactive as its name would mean. If the particle
happens to cross the passive switch through the non-selected track, it changes
the selected track in the passive switch and, also, it sends a signal which triggers
the change of the selected track in the active switch. This can be performed by
carefully mixing the characteristics of the fixed and the flip-flop switches.

Figure 9 represents the passive memory switch. Here, the selected track is the
left-hand side one.

As in the case of the flip-flop switch, we number the cells involved in the
passive switch by taking the number they received in the computer program.

The central cell again receives number 4 and cells 5 and 8 are its neighbours
belonging to the parts a and b of the tracks. Cell 4 can see cells 5 and 8 through
its faces 3 and 4 respectively and, conversely, cells 5 and 8 can see cell 4 through
their face 4 and 3 respectively. Cells 11, 12 and 13 are very different from the cells
with the same numbers in a flip-flop switch. Here, cell 13 can be characterized
as follows: let A be the common vertex of cells 4, 5 and 8. Above Π0, there are
four dodecahedra sharing A. We just mentioned three of them. The fourth one is
cell 13, which is obtained from cell 4 by reflection in the plane orthogonal to Π0

which passes throughA and which cuts the faces 1 of cell 5 and 8 perpendicularly.
Now, we can number the faces of cell 13 in such a way that cell 13 can see cells 5
and 8 through its faces 4 and 3. Cells 11 and 12 are put on cell 13, on its faces 10
and 8. Cells 11 and 12 are the reflection of cells 5 and 8 respectively in the edge
which is shared by both the concerned dodecahedra. If the selected track is b,
cell 12 is black and cell 11 is white. If the selected track is a, cell 11 is black and
cell 12 is white. Now we can describe what happens more clearly.

214 M. Margenstern

As required by the working of a memory switch, if the particle crosses the
passive memory switch through the selected track, nothing happens.

And so, consider the case when the particle crosses the passive switch through
the non-selected track. When the particle is in cell 8, cell 13 can see the particle
and, as its cell 12 is black, it knows that it must flash. This means that it becomes
black for the next time and then returns to the white state at the following time.

When cell 13 flashes, cells 11 and 12 exchange their states: if it was black it
becomes white and conversely.

3

2

1

5

49
8

7 6

1011

flip_flop

3

2

1

5

49
8

7 6

1011

memory

Fig. 9. Left-hand side: the passive memory switch, here the left-hand side one. Nothing
happens if the particle comes through this track. If it comes through the other one,
this will trigger the change of selection, both in the passive and in the active switch.
Right-hand side: the difference between the patterns of the controller of the flip-flop
and that of the passive memory switch.

But this is not enough. The change must also happen in the active switch. To
this purpose, a track conveys the particle created by the flash of cell 13 to the
active memory switch. We can see this as a kind of branching which is ready
and which captures the particle which consists of cell 13 when it is black.

This track leads the new particle to the active switch while the previous
particle, that which plays the role of the locomotive goes on along the way
defined by its track. And so, as long as the new particle does not reach its
goal in the active memory switch, we have two particles in the circuit. The new
particle can be seen as a temporary copy of the first one.

The active switch is implemented as a flip-flop switch with its cells with the
same number as previously. However, here cell 13 is very different from the cell 13
in a flip-flop switch. This can be seen on the patterns illustrated by the right-
hand side picture of Figure 9. Now, the active switch is put on a plane Π1 which
has a common perpendicular δ with the plane Π0 of the passive memory switch.
We can choose this common perpendicular in such a way that the top faces of
the cell 13 in both switches are also perpendicular to δ. The track leading the
new particle arrives on the top of the cell 13 of the active memory switch. Now
the active switch works as a fixed switch: nothing happens when it is crossed by
the particle playing the role of the locomotive. But when the temporary particle

A New Weakly Universal Cellular Automaton in the 3D Hyperbolic Space 215

arrives to cell 13, this makes this cell to flash as it becomes black, but at the
next time it becomes again white so that the new particle vanishes. Now, like
in the case of the flip-flop switch, when cell 13 flashes, cells 11 and 12 exchange
their states which triggers the change of the selected track in the active memory
switch too.

We have not the room here to give the rules of the cellular automaton which
complete the proof of Theorem 1. We refer the reader to [14] for a precise account
about the rules.

4.5 A Word about the Computer Program

The computer program is based on the same one which was used to check the
rules of the weakly universal cellular automaton on the dodecagrid with three
states which was used in [10]. However, it was adapted to this automaton in
the part computing the initial configuration and, also in the main function as
the control steps are a bit different from those of the previous program. All the
steps of the scenario were checked by this program which also makes sure that
the rules are rotation invariant: they are unchanged if the states of the neighbour
are changed according to a rotation leaving invariant the dodecahedron on which
the cell is based.

This allows us to say that with this checking, the proof of Theorem 1 is now
complete.

5 Conclusion

With this result, we reached the frontier between decidability and weak univer-
sality for cellular automata in hyperbolic spaces: starting from 2 states there
are weakly universal such cellular automata, with 1 state, there are none, which
is trivial. Moreover, the set of cells run over by the particle is a true spatial
structure. We can see that the third dimension is much more used in this imple-
mentation than in the one considered in [10].

What can be done further?
In fact, the question is not yet completely closed. In [12] we proved that it

is possible to implement a 1D-cellular automaton with n states into the pen-
tagrid, the heptagrid and the dodecagrid and also a whole family of tilings of
the hyperbolic plane with the same number of states. For the pentagrid, it was
needed to append an additional condition which is satisfied, in particular, by
the elementary cellular automaton defined by rule 110, for which the reader is
referred to [1,19]. Consequently, as stated in [12]:

Theorem 2. (M. Margenstern, [12]). There is a weakly universal rotation in-
variant cellular automaton with two states in the pentagrid, in the heptagrid
and in the dodecagrid.

However, this is a general theorem based on the very complicate proof of a deep
result involving a number of computations in comparison with which those of this

216 M. Margenstern

paper are quasi-nothing. Also, the implementation provides a structure which is
basically a linear one. This is why, it seems to me that the construction of the
present paper is worth of interest: it is a truly spatial construction. Moreover,
the construction is very elementary.

Now, there are still a few questions. What can be done in the plane with a
true planar construction? At the present moment, the smaller number of states
is 4, in the heptagrid, see [11], while it is 9 in the pentagrid, see [17].

Moreover, the question of the number of states in order to achieve strong uni-
versality is almost completely open. Remember that strong universality means
that we start the computations from a finite initial configuration: all cells are
question except finitely many of them. There is a result in [13] which constructs
a strongly universal cellular automaton in the pentagrid with 9 states only. Most
probably, this can also be performed in the dodecagrid. But, again, the automa-
ton relies on a structure which is mainly a linear one, so that the question is still
relevant.

And so, there is some definite effort before closing this question.

References

1. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1),
1–40 (2004)

2. Herrmann, F., Margenstern, M.: A universal cellular automaton in the hyperbolic
plane. Theoretical Computer Science 296, 327–364 (2003)

3. Margenstern, M.: Frontier between decidability and undecidability a survey. The-
oretical Computer Science 231(2), 217–251 (2000)

4. Margenstern, M.: Two railway circuits: a universal circuit and an NP-difficult one.
Computer Science Journal of Moldova 9, 1–35 (2001)

5. Margenstern, M.: A universal cellular automaton with five states in the 3D hyper-
bolic space. Journal of Cellular Automata 1(4), 315–351 (2006)

6. Margenstern, M.: Cellular Automata in Hyperbolic Spaces. Theory, vol. 1, 422
p. OCP, Philadelphia (2007)

7. Margenstern, M.: Cellular Automata in Hyperbolic Spaces. Implementation and
computations, vol. 2, 360 p. OCP, Philadelphia (2008)

8. Margenstern, M.: Surprising Areas in the Quest for Small Universal Devices. Elec-
tronic Notes in Theoretical Computer Science 225, 201–220 (2009)

9. Margenstern, M.: Turing machines with two letters and two states. Complex Sys-
tems (2010) (accepted)

10. Margenstern, M.: A weakly universal cellular automaton in the hyperbolic 3D space
with three states. arXiv:1002.4290[cs.FL], 54 (2010)

11. Margenstern, M.: A universal cellular automaton on the heptagrid of the hyperbolic
plane with four states. Theoretical Computer Science (2010) (to appear)

12. Margenstern, M.: About the embedding of one dimensional cellular automata into
hyperbolic cellular automata. arXiv:1004.1830 [cs.FL], 19 (2010)

13. Margenstern, M.: An upper bound on the number of states for a strongly universal
hyperbolic cellular automaton on the pentagrid. In: JAC 2010, TUCS Proceedings,
Turku, Finland (2010)

14. A new weakly universal cellular automaton in the 3D hyperbolic space with two
states. arXiv:1005.4826v1[cs.FL], 38 (2010)

A New Weakly Universal Cellular Automaton in the 3D Hyperbolic Space 217

15. Margenstern, M., Skordev, G.: Tools for devising cellular automata in the hyper-
bolic 3D space. Fundamenta Informaticae 58(2), 369–398 (2003)

16. Margenstern, M., Song, Y.: A universal cellular automaton on the ternary hepta-
grid. Electronic Notes in Theoretical Computer Science 223, 167–185 (2008)

17. Margenstern, M., Song, Y.: A new universal cellular automaton on the pentagrid.
Parallel Processing Letters 19(2), 227–246 (2009)

18. Stewart, I.: A Subway Named Turing, Mathematical Recreations. Scientific Amer-
ican, 90–92 (1994)

19. Wolfram, S.: A new kind of science. Wolfram Media, Inc., Champaign (2002)
20. Neary, T., Woods, D.: Small Semi-Weakly Universal Turing Machines. Fundamenta

Informaticae 91(1), 179–195 (2009)

A Fully Symbolic Bisimulation Algorithm

Malcolm Mumme and Gianfranco Ciardo

University of California, Riverside CA 92521, USA
{mummem,ciardo}@cs.ucr.edu

Abstract. We apply the saturation heuristic to the bisimulation prob-
lem for deterministic discrete-event models, obtaining the fastest to date
symbolic bisimulation algorithm, able to deal with large quotient spaces.
We compare performance of our algorithm with that of Wimmer et al.,
on a collection of models. As the number of equivalence classes increases,
our algorithm tends to have improved time and space consumption com-
pared with the algorithm of Wimmer et al., while, for some models with
fixed numbers of state variables, our algorithm merely produced a mod-
erate extension of the number of classes that could be processed before
succumbing to state-space explosion. We conclude that it may be pos-
sible to solve the bisimulation problem for systems having only visible
deterministic transitions (e.g., Petri nets where each transition has a dis-
tinct label) even if the quotient space is large (e.g., 109 classes), as long
as there is strong event locality.

Keywords: bisimulation, symbolic methods, algorithms, decision dia-
grams, saturation, locality, verification

1 Introduction

The bisimulation problem has applications in verification of model equivalence
and model minimization in preparation for analysis or composition. An algorithm
by Paige and Tarjan [9] finds the largest bisimulation of an explicitly-represented
transition system with N states and M transitions using O(M log N) time. The
only major performance improvement over that algorithm, for explicitly rep-
resented systems with cycles, is the linear time algorithm [10] for the single
function coarsest partition problem, the special case of the bisimulation problem
where there is a single transition relation and that relation is a function.

In practice, it is desirable to minimize transition systems with large state
spaces which cannot conveniently be represented explicitly. Symbolic encodings
can be used, in some cases, to store state spaces many orders of magnitude larger
than possible with explicit representations. These encodings have been used for
bisimulation with varying degrees of success. The empirically fastest prior sym-
bolic algorithms [6,14] represent bisimulations as partitions corresponding to
the minimized state space, and use data structures with size at least linear in
the number of partition classes. Those algorithms may be efficient when there
are relatively few large partition classes, but become infeasible when the min-
imized transition system still has many states, since each class is symbolically
represented while the collection of classes itself is instead explicitly represented.

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 218–230, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Fully Symbolic Bisimulation Algorithm 219

It was noted [2] that an interleaved representation (Section 2.3) has the po-
tential to efficiently handle the desired partitions. However, the bisimulation
algorithm [2] employing this representation performed relatively poorly on large
problems. We consider the case where the transition relation of a globally asyn-
chronous system is disjunctively partitioned into multiple transition relations
according to the high-level system description. Our algorithm handles the spe-
cial case where each of these transition relations is a partial function, as is the
case with Petri nets with unique transition labels. We reduce the functional
case of bisimulation to a transitive closure problem, then show that, usually,
this problem may be solved efficiently using a saturation-based algorithm with
interleaved partition representation.

2 Background

2.1 Deterministic Colored Labeled Transition Systems (DCLTSs)

A deterministic colored labeled transition system is a tuple 〈S,Sinit, E , TE , C, c〉,
where S is a set of states ; Sinit ⊆ S are the initial states ; E is a set of events
(transition labels); TE ⊆ S ×E ×S is a labeled set of partial transition functions
over S, so that, for α ∈ E , we have Tα : S � S, where the notation “�” stresses
that the function might be undefined for some domain elements; C is a set of
colors; and c : S → C is a state coloring function. We write 〈s1, α, s2〉 ∈ TE as
s2 = Tα(s1) or s1

α→ s2 for convenience. If the DCLTS is in state s1 ∈ S, its
state may nondeterministically change to s2, for any transition 〈s1, α, s2〉 ∈ TE .

In the context of bisimulation, a DCLTS may be thought of as a black box,
since the current state is not directly visible, only its color is. Upon instantiation,
a DCLTS has its state set to one of the initial states in Sinit. Beyond instantiation
and querying the current state color, the only other operation permitted on the
DCLTS is requesting to take the transition corresponding to α ∈ E in the current
state (the operation cannot be completed if Tα is undefined in the current state).

2.2 Bisimulation [8,11]

A bisimulation is an equivalence relation among the states of a colored labeled
transition system (CLTS). For example, the states of a minimized finite-state
automaton (FSA) are given by the quotient of the original set of states over
the largest bisimulation of the original FSA. States s1 and s2 are extension-
ally equivalent iff s1 ∼ s2, where ∼ is the largest bisimulation of the automa-
ton. Equivalent (bisimilar) states of the original FSA are merged into a single
state in the minimized FSA. Formally, the largest bisimulation ∼ of a DCLTS
〈S,Sinit, E , TE , C, c〉, is the largest equivalence relation B ⊆ S × S where:

1. Bisimilar states (pairs in B) have the same color: 〈p, q〉 ∈ B ⇒ c(p) = c(q).
2. Bisimilar states have only matching transitions, to bisimilar states:

〈p, q〉 ∈ B ⇒ ∀α ∈ E , ∀p′ ∈ S, (p α→ p′ ⇒ ∃q′ ∈ S, q
α→ q′ ∧ 〈p′, q′〉 ∈ B).

220 M. Mumme and G. Ciardo

2.3 Quasi-Reduced Ordered Multi-way Decision Diagrams

Given a sequence of K finite sets SK:1
def= (SK , ...,S1) (w.l.o.g. we assume Sk =

{0, 1, ..., nk − 1}), we encode a non-empty set of K-tuples X ⊆Ŝ =SK×· · ·×S1

as a Quasi-reduced ordered Multi-way Decision Diagram (MDD) of depth K.
An MDD is a uniform-depth, acyclic, finite, single-rooted, directed graph, where
each non-leaf node r at level level(r) = k ∈ K, ..., 1 (the distance from r to a leaf
node) has at most nk outgoing edges uniquely labeled from Sk, is itself an MDD
root (of the subgraph induced by the nodes reachable from r), and is canonical
(no two nodes are roots of MDDs encoding identical sets).

We write r[i] to denote the MDD node reached by following the i-labeled
edge from r, if it exists. We use an MDD d to encode a (non-empty) set with
characteristic function Map(d) from K-tuples Ŝ to booleans, defined as follows:

– Map(d) = 〈→ true〉 where 〈→ b〉 is the nullary map to b, (for a leaf MDD).

– Map(d) =
⋃

s∈Slevel(d)
s×
{

〈Slevel(d−1)×···×S1→false〉
Map(d[s])

otherwise

if d[s] exists
}

(otherwise).

Thus, MDD a has a path with arcs labeled sK:1 from the root a to some leaf
labeled b iff Map(a) contains the tuple 〈sK:1 → b〉. Depending on the context,
we use a single symbol (say Q) to represent either the MDD, the root node of
the MDD, or the set whose characteristic function is Map(Q).

The ability to combine tuples provides for encoding of arbitrary finite rela-
tions over the elements of a tuple domain. Both concatenation and interleaving
are used to combine tuples. In concatenated representation, we represent a bi-
nary relation R on Ŝ as a set of tuples from the product domain Ŝ × Ŝ, by
concatenation of the elements in each pair of R, so that the pair 〈〈sK:1〉, 〈s′K:1〉〉
becomes 〈sK , ..., s1, s

′
K , ..., s′1〉. In interleaved representation, the same pair in

R is instead represented as 〈sK , s′K , ..., s1, s
′
1〉. Interleaved representations of-

ten produce more compact MDD encodings than concatenated representations,
presumably due to the proximity of correlated variables in the former.

We encode sets of states in DCLTSs, as well as sets of transitions and parti-
tions, as MDDs, typically in interleaved representation. Our SmArT MDD library
provides efficient implementations of set operations, such as union, intersection,
difference, symmetric difference, relation composition, relational product, carte-
sian product, and quantification, in interleaved or concatenated representation.
In SmArT, a unique-table mechanism maintains canonicity. A newly-constructed
node might be the root of an MDD that coincidentally encodes the same map
as some other existing MDD, thus is submitted to the unique-table mechanism
which provides a node at the root of an MDD encoding with the desired map
while preserving the canonicity of the collection of stored MDDs. Mutation of
existing data structures is not allowed, resulting in a functional-like style of
programming where operations on maps encoded as MDDs tend to be written
recursively, employing concurrent DFS-like searches through homologous parts
of input MDDs. Function caching is used to avoid exponential runtimes.

A Fully Symbolic Bisimulation Algorithm 221

2.4 Saturation

The transitive closure of a labeled set of relations TE over Ŝ starting from a set of
initial states Sinit is the least fixpoint S of the union

⋃
α∈E Tα of those relations

containing Sinit and may be written as S = (
⋃

α∈E Tα)∗(Sinit). The saturation
[13] heuristic is a state-of-the-art symbolic algorithm to efficiently explore large
state spaces of asynchronous systems by evaluating (

⋃
α∈E Tα)∗(Sinit). In this

work, we employ saturation to produce a similar fixpoint, on relations.
A breadth-first algorithm for this iterates Stemp ← (Stemp)∪(

⋃
α∈E Tα(Stemp))

on a variable Stemp initialized to Sinit, until no change occurs, leaving the final
result in Stemp. A chaining heuristic relies on the decomposition of TE into the
individual Tα’s, for α ∈ E , to break each iteration into a sequence of smaller
iterations, such as Stemp ← Stemp ∪ Tα(Stemp) for all α ∈ E . Saturation uses the
following decomposition, which may be assumed w.l.o.g.: a state is described as
a K-tuple of simple variables, 〈sK:1〉 ∈ Ŝ. The transition relation T =

⋃
α∈E Tα

is partitioned in such a way that E = {1, ..., K} and the support of Tα is limited
to variables {1, ..., α}. That is, there exists an “equivalent” transition relation
T ′

α, involving only variables 1, ..., α of the state tuple, so that variables α+1...K
do not influence the enabling of T ′

α and T ′
α acts on them as the identity function:

〈sK:1, s
′
K:1〉 ∈ Tα ⇔ (sK:α+1 = s′K:α+1 ∧ 〈sα:1, s

′
α:1〉 ∈ T ′

α).
Thus, T ′

α contains the same information as Tα. Since the MDD encoding of
Tα has depth 2K, saturation instead uses T ′

α, with encoded depth 2α.
Saturation requires that a transition Tα is applied (1) only to sets already

closed under all the transitions Tα−1:1, and (2) only at level α of an encoding of
Stemp, by applying T ′

α (with interleaved encoding) instead of Tα. Requirement
(1) has a tendency to keep the encodings of various values of Stemp compact,
while requirement (2) tends to result in efficient application of the Tα’s. Both
requirements can be implemented with a recursive algorithm as shown by the
pseudocode in Fig. 1, where SatClos uses saturation to compute the smallest
closure of input Sin over the relations Tk:1 corresponding to the input MDDs
encoding T ′

k:1 (in interleaved representation). This algorithm returns the MDD in
working variable S. In line 7, the children of working variable S are initialized to
versions of children of the input Sin, closed under relations Tk−1:1. Consequently,
S is also closed under relations Tk−1:1, and Sin ⊆ S. Property Sin ⊆ S continues
to hold, since S is only increased in lines 11 and 15, and its elements are never
removed. Line 14 guarantees the value of S′ is closed under relations Tk−1:1.
The purpose of the code in lines 6-16 is to iteratively close a working variable
S over transition T ′

k , using the assignment S ← S ∪ T ′
k (S), while maintaining

closure over transitions Tk−1:1. It must therefore assure that T ′
k (S) ⊆ S and

Sin ⊆ S. This is guaranteed by line 11 and the termination condition, together
with the fact that no element is ever removed from S. Loop termination can be
shown by considering the termination condition together with the monotonically
increasing nature of S. Consequently, after line 14, S = T ∗(Sin). The recursive
calls always terminate, as the leaf case is trivially handled in the first line while
the remaining cases involve recursive calls, always with parameters of lower rank.

222 M. Mumme and G. Ciardo

MDD SatClos(in MDD T ′
k:1, in MDD Sin) is

local MDD S • converges to output
local MDD Sprev

1 if k = 0 or Sin = ∅ • leaf or empty
2 then return Sin

3 if SatClos(T ′
k:1,Sin) is in cache then

4 return cached result
5 S ← new MDD node of size |Sk|
6 foreach i ∈ Sk do
7 S [i] ← SatClos(T ′

k−1:1,Sin[i])
8 S ← unique(S) •make canonical
9 repeat • invariant: S closed on T ′

k−1:1

10 Sprev ← S
11 S ← S ∪ T ′

k (S) • break invariant
12 S ′ ← new MDD node of size |Sk|
13 foreach i ∈ Sk do • reestablish invariant
14 S ′[i]←SatClos(T ′

k−1:1,S [i])
15 S ← unique(S ′) • canonical
16 until S = Sprev

17 place into cache:
18 S = SatClos(T ′

k:1,Sin)
19 return S

Fig. 1. Least set closure computation

The basic saturation algorithm described above may be enhanced in various
ways, such as addition of fine-grained chaining [3]. Although some enhancements
may produce additional improvement, our work uses the basic saturation algo-
rithm described above to obtain the largest bisimulation of a DCLTS.

2.5 Symbolic Bisimulation

Several symbolic algorithms exist for largest bisimulation (see Section 5). Among
them, the ones with faster observed performance are limited by the fact that
their runtime is always at least linear in the number of states of the minimized
automaton. Our algorithm overcomes this limitation by focusing on the special
case where the automaton has deterministic transitions, as in a Petri net with
unique transition labels. In this case, the bisimulation problem can be reduced
to an equivalent transitive closure problem, to which saturation applies well.

Symbolic bisimulation algorithms are typically based on iterative partition
refinement, using splitting techniques. Generally, a working variable P initially
holds a partition of the state space, either the partition containing a single
equivalence class, or block (i.e., the entire state space) or, when there is more than
one color, the partition containing a block for each color (i.e., each block contains
all states of the corresponding color). Ultimately, the output is a partition of the
state space with the equivalence classes based on bisimilarity. After initialization,
P is iteratively refined by a splitting operation, which may split one or more

A Fully Symbolic Bisimulation Algorithm 223

blocks to increase compliance with clause 2 of the definition of bisimilarity: if a
block B1 contains states x and y and, for some transition α, there is a block B2

containing state x′ such that x
α→ x′, but B2 contains no y′ such that y

α→ y′,
then states x and y are not bisimilar. Consequently, we may use the splitter
B2 to split block B1 into blocks B′

1 = {x ∈ B1|∃x′ ∈ B2 : x
α→ x′} and

B′′
1 = B1 \ B′

1 = {y ∈ B1 | ¬∃y′ ∈ B2 : y
α→ y′}.

Repeated iterations produce the partition corresponding to the maximum
bisimulation. More advanced algorithms combine many splitting operations into
one step, or chain them in an organized manner to improve efficiency [6,14].

3 Main Results

3.1 Bisimulation Partition Refinement Relations

Given a DCLTS with state space S and transition relations {Tα : α ∈ E}, we
define a set of bisimulation partition refinement relations (BPRR) {Pα : α ∈ E}:

∀α ∈ E : Pα ⊆ Ŝ4 = {〈〈s1, s2〉, 〈s3, s4〉〉 : s1 = Tα(s3) ∧ s2 = Tα(s4)},

where we may write 〈s3, s4〉 ∈ Pα(〈s1, s2〉) to mean 〈〈s1, s2〉, 〈s3, s4〉〉 ∈ Pα. The
complement ∼ of the maximum bisimulation of a transition system is closed
under these BPRRs, since ∼ contains exactly all pairs of non-bisimilar states
〈s1, s2〉 where s1 /∼s2. To prove this, consider a specific tuple 〈〈s1, s2〉, 〈s3, s4〉〉
from a specific bisimulation partition refinement relation Pα. We need to show
that 〈s1, s2〉 ∈ ∼ implies 〈s3, s4〉 ∈ ∼. Thus, according to our definition of
BPRR, we must prove that 〈Tα(s3), Tα(s4)〉 ∈ ∼ implies 〈s3, s4〉 ∈ ∼. This is the
same as saying that s3 ∼ s4 implies Tα(s3) ∼ Tα(s4), and the latter is a direct
consequence of the definition of bisimulation together with Tα being a function.
This closure of ∼ over BPRRs suggests that computation of ∼ is reducible to a
set closure problem for systems with deterministic transitions.

3.2 Reduction of Deterministic Bisimulation to Set Closure

In systems with deterministic transitions, the generic splitting step can be sim-
plified by considering three cases, based on the partial/full nature of a transition
relation under consideration. Given transition relation Tα and a candidate pair
〈s3, s4〉, for which we wish to determine whether s3 ∼ s4, we have:

Case 1: If neither s3 nor s4 is in the domain of Tα, the pair cannot be eliminated
using Tα with any splitter.
Case 2: If exactly one member, say s4, is in the domain of Tα and if there is an
s2 = Tα(s4) for which there is no s1 = Tα(s3) such that 〈s1, s2〉 ∈∼, then, the
pair 〈s3, s4〉 will be eliminated by splitting.
Case 3: If both s3 and s4 are in the domain of Tα, there is a pair 〈s1, s2〉, where
s1 = Tα(s3)∧s2 = Tα(s4), so that 〈s3, s4〉 ∈ Pα〈s1, s2〉 as discussed above. Then,
splitting will eventually eliminate 〈s3, s4〉 iff 〈s1, s2〉 is absent or eliminated.

224 M. Mumme and G. Ciardo

BPRRclosure :

1 foreach α ∈ E do •Pα =BPRR for Tα

2 Pα←{〈〈s1,s2〉,〈s3,s4〉〉 :s1=T ′
α(s3),s2 =T ′

α(s4)}
3 let L = {level(Pα) : α ∈ E}
4 foreach β ∈ L do
5 P ′

β ←
⋃

α∈E|level(Pα)=β Pα

6 foreach β /∈ L do
7 P ′

β ← ∅ •P ′ is P merged by top level
8 foreach α ∈ E do
9 Sα←{s∈S: ∃s′, s α→ s′} • states enabling α

10 B0←{〈s1,s2〉 : c(s1) �=c(s2)} • initialize B0

11 foreach α ∈ E do • augment B0

12 B0←B0∪(Sα×(S\Sα))∪((S\Sα)×Sα)
13 B ← SatClos(P ′

4K:1,B0) • B ← P∗(B0)
14 return B ← (S × S) \ B

Fig. 2. Saturation for DCLTS bisimulation

Thus, we may restructure the generic splitting algorithm as follows. First,
we initialize variable B (complement of a partition) to the set of pairs 〈s3,s4〉
where, for some α ∈ E , exactly one member of 〈s3,s4〉 is in the domain of Tα.
This eliminates all pairs discussed in Case 2 above. Then, we iterate the following
until B is stable: for each α∈E , augment B with Pα(〈s1,s2〉) for each 〈s1,s2〉∈B.
This eventually eliminates pairs as required in Case 3. At the end of these steps,
B=∼, so we compute ∼ as S2 \ B.

This algorithm may be stated more formally as follows. Consider a DCLTS
〈S,Sinit, E , TE , C, c〉, where the relations T ′

E , corresponding to the deterministic
transition relations TE , as described in Section 2.4, are also available. To compute
the largest bisimulation B of this DCLTS, use algorithm BPRRclosure of Fig. 2.

4 Experimental Results

We implemented our algorithm, as well as the algorithm of [14], in the SmArT

verification tool using the SmArT MDD library. We then measured the perfor-
mance of each implementation by computing the largest bisimulation of many
cases of various Petri net models including the four models described below.

Flexible Manufacturing System (Kanban). This net describes a kanban-
style flexible manufacturing system [12], having fixed size and topology, and is
parameterized by manufacturing station capacity. No two states are equivalent,
so there are always as many equivalence classes as there are states.

This model comprises four connected identical manufacturing stations, each
having the same capacity given by the model parameter N . Each task held by
a station is either in work, in a waiting-for-rework state, or ready for output.
The first station may begin processing any number of jobs up to its capacity.
A task in the first station that is ready for output may spawn a task in both

A Fully Symbolic Bisimulation Algorithm 225

idle[i] full[i]

ask[i]

snd[i] ld[i]

ok[i]

wt[i]

R[i]
res

ask[i] buf[i]

ld2[i]ld1[i]

snd1[i+1]

snd2[i+1]

snd1[i]

snd2[i]

idle[0] full[0]

ask[0]

snd[0] ld[0]

ok[0]

wt[0]

R[0]
res

ask[0] buf[0]

ld2[0]ld1[0]

snd1[1]

snd2[1]

snd1[0]

snd2[0]

(a) Processor 0 (b) Processor i �= 0

Fig. 3. Petri net model: robin with initial marking

the second and third stations, when those stations have sufficient capacity; this
event releases capacity in the first station. A task finishing in both the second
and third stations produce a task in the fourth station, releasing capacity in
the second and third station. Finally, a task finishing in the fourth station is
considered finished and immediately releases capacity in the fourth station.

Scheduler (Round-Robin). This round-robin scheduler model [4,7] is similar
to Milner’s scheduler [8], with some additional complications. An extra place,
shared by all processors, is used as a lock to disallow states where more than one
processor is in a “start” local state. The case where a processor finishes before
its successor finishes a previous task is distinguished from the case where the
processor finishes after its successor finished a previous task, by the occurrence
of a separate transition sequence. This model is variable-sized, parameterized
in the number N of processors. As with the previous model, no two states are
equivalent, so there are always as many equivalence classes as there are states.

The model comprises a ring of N processors (numbered from 0 to N − 1)
which must be scheduled so that, for i ∈ 0...N − 1, processor (i+1) mod N may
not start a new task until processor i starts a new task, with the exception that
a specific processor, 0, may initially start. Each processor executes a single task
to completion, and the tasks may finish in any order. The Petri net shown in
Fig. 3(b) corresponds to a single typical processor in the ring, showing the initial
marking. Fig. 3(a) shows the initial marking for the Petri net modeling processor
0, which starts the first task. In these (sub)Petri nets, place res is common to
all processors, while the places and transitions having names with brackets (i.e.,
“[i]”) have one copy per processor. Also, transitions snd1 [i] and snd2 [i], at the
left and right of each subnet, are shared between adjacent processors.

The presence of a token in place ask [i] indicates that processor i may start a
new task, while a token in wt [i] means processor i is waiting to start a new task.
Firing of ask [i] places processor i exclusively in a “start” state, as this requires

226 M. Mumme and G. Ciardo

the only token from the shared place res . Processor i moves from the start state
to a fully running state by firing buf [i], returning the token to res , and moving the
token in idle [i] to full [i]. Since firing ask [i] also places a token in ok [i], transition
snd1 [(i + 1) mod N] is enabled if processor (i + 1) mod N is waiting. Then,
snd1 [(i + 1) mod N] may fire, permitting processor (i + 1) mod N to possibly
start and also enabling ld2 [i]. Firing of ld2 [i] indicates task completion, moving
the token in full [i] back to idle [i], placing a token in wt [i], indicating waiting. If
processor (i+1) mod N is busy (not waiting, as indicated by absence of a token in
wt [(i + 1) mod N]), processor i may indicate completion by firing ld1 [i], moving
the token in full [i] back to idle [i], and also moving the token from ok [i] to snd [i].
If processor (i+1) mod N subsequently waits (as indicated by presence of a token
in wt [(i+1) mod N]), enabling snd2 [(i+1) mod N], then snd1 [(i+1) mod N] is
disabled, distinguishing the two cases. Firing snd2 [(i+1) mod N] puts processor
i into a waiting state, and enables processor (i + 1) mod N to start a new task.

Extrema Finding (Leader). This model simulates the distributed extrema
finding algorithm of [5]. Numeric tokens are passed unidirectionally around a ring
of processes in a sequence of phases resulting in the recognition of the largest
token. This model is variable-sized, parameterized in the number N of processes.
There is significant event locality. Some states are equivalent, resulting in about
10% fewer equivalence classes than states.

This model comprises a ring of processes joined by unidirectional buffers.
Initially, each process holds a unique numeric token, and is considered “active”.
In the initial phase, each process sends this token to its successor. Between
phases, the state of each process includes three items: (1) the token it currently
holds, (2) the value of the largest token it has previously held, and (3) whether
the process is active or inactive. In subsequent phases, before the largest token
is recognized, each active process receives from its predecessor a token which it
will hold next. Inactive processes simply forward messages. An active process not
holding the largest token may become inactive as follows. It becomes inactive if
the value of the token it will hold next is less than the value of the largest token
it has previously held. Each active process also forwards the value of the token it
will hold to its successor process, and receives such a value from its predecessor. It
then becomes inactive if the value received is greater than the value of the token
it will hold next. Eventually exactly one process remains active, it receives the
largest token and recognizes this as the same value remembered as the largest
token it has previously held, and then enters a unique state, recognizing the
maximum token.

Few Classes (Cascade). As ordinary models having only visible deterministic
transitions (no “τ”-transitions) tend to have many equivalence classes, we devel-
oped a model with few equivalence classes, to evaluate algorithm performance
in this important case. This model has a variable number of stages with three
places each and three transitions between each stage of places. The initial mark-
ing, shown in Fig. 4, has one token in each place in the first stage and no other
tokens. In any state other than the final state, all three transitions after one of

A Fully Symbolic Bisimulation Algorithm 227

...

...

...

Fig. 4. Petri net model: cascade with initial marking

the stages are enabled and no other transition is enabled. The three transitions
fire in such a way that one of them firing results in disabling the other two
transitions and in depositing one token in each place of the next stage, enabling
all transitions after the subsequent stage. Each firing also leaves one token in a
place that records the firing, so that every state remembers the firing sequence
that produced it. In this variable-size model, parameterized in the number of
stages N , there are exponentially many states in the number of stages, while the
number of classes equals the number of stages.

Performance. Table 1 lists the model sizes in the first set of columns, while
the remaining columns summarize performance results for our saturation-based
algorithm and for our implementation of the algorithm of Wimmer et al. The
number of classes is shown as “=” when the number of classes is the same as the
number of states. For the algorithm of Wimmer et al., column iter reports the
number of iterations executed (including a final iteration resulting in no changes),
while column refine gives the number of calls to the “Refine” subroutine of
their algorithm, indicating the number of attempted block refinements [14]. The
runtime and maximum memory to store the unique table for all runs are given
in seconds and mega-bytes, respectively.

It is clear that, for models with strong event locality, the memory perfor-
mance of our saturation-based algorithm quickly becomes superior as model size
increases, resulting in vastly improved runtimes for those cases. For the kanban
model, which has limited locality due to fixed model size (independent of N),
the improvement does not appear to grow as rapidly with increasing N as it
does with the other models. Nevertheless, the memory and runtime advantages
with respect to Wimmer et al.’s algorithm is still enormous.

5 Related Work

Symbolic Bisimulation Minimisation[2]. describes an algorithm based on
iterative partition refinement that, at each iteration, splits every block using ev-
ery other block as a splitter, performing a constant number of advanced symbolic
operations. It is among the earliest work on symbolic bisimulation methods. The
purpose of their algorithm is to compute weak bisimulation, a form of bisimu-
lation where some transitions are unobservable. Pre-processing the collection of
transition relations transforms a weak bisimulation problem into the standard
bisimulation problem. Their article compares their algorithm using interleaved
decision diagrams vs. using non-interleaved diagrams and found that the relative

228 M. Mumme and G. Ciardo

Table 1. Performance results summary for bisimulation algorithms

Wimmer et al. (no block ordering) Saturation
N states classes iter refine runtime memory runtime memory

kanban (K = 21)

2 4600 = 4 5424 92.268 27.403 0.171 0.805
3 58400 = 5 71946 7700.186 307.898 0.646 1.816
4 454475 = out of memory (> 1.5 GB) 1.527 3.660
9 384392800 = 231.041 41.267

10 1005927208 = 1501.159 75.444
11 2435541472 = 21720.048 112.244

robin (K = N + 1)

9 10368 = 3 11208 141.732 28.965 1.092 3.368
11 50688 = 3 54861 2895.590 153.717 2.303 8.091
13 239616 = 3 259344 60823.424 699.049 4.338 14.027
15 1105920 = timeout (> 1 day) 6.916 21.280
20 47185920 = 19.336 46.180
25 1887436800 = 52.838 123.950

leader (K = 18N)

3 488 467 7 499 19.575 12.509 3.851 14.534
4 3576 3418 17 4139 291.322 76.391 15.433 38.786
5 26560 25329 28 34016 9579.915 389.100 25.185 45.286
6 197984 188322 out of memory (> 1.5 GB) 49.003 105.547

10 614229504 5.7×108 156.238 229.728
15 1.4×1013 1.2×1013 434.673 619.918

cascade (K = 3N)

9 9841 9 2 8 15.206 36.120 0.101 0.630
10 29524 10 2 9 49.640 98.490 0.124 0.767
11 88573 11 2 10 191.265 302.936 0.158 0.882
20 1.7×109 20 out of memory (> 1.5 GB) 0.947 3.176
40 6.1×1018 40 4.000 11.089
80 7.4×1037 80 27.290 53.081

160 1.1×1076 160 216.283 189.881

performance using these structures depended on the final partition. Interleaved
decision diagrams perform better when the partition has many blocks, while
non-interleaved diagrams perform better when it has very few blocks.

An Efficient Algorithm for Computing Bisimulation Equivalence[6].
produces a (probably) good initial partition of the state-space based on the com-
puted rank of states. Their explicit implementation uses the set-theoretic notion
of rank, where nodes in the transition graph correspond to sets (say, node c
corresponds to set c′), and arcs between nodes correspond to membership be-
tween the respective sets (arc a → b corresponds to b′ ∈ a′). This is reasonable
because states with different rank cannot be equivalent. The possibility of cy-
cles in transition graphs forces the use of non-well-founded-set theory [1]. Their
symbolic implementation uses the following definition of rank: the rank of a non-
well-founded node is one more than the highest rank of any well-founded node

A Fully Symbolic Bisimulation Algorithm 229

it reaches on any path, or −∞ when there is no such path. They show that their
algorithm always terminates in a number of symbolic steps linear in the number
of states. After initial partitioning based on rank, some other algorithm must be
used to complete the partitioning. The rank sequence of the initial partition can
be used to efficiently direct the order of splitting operations.

Forwarding, Splitting, and Block Ordering to Optimize BDD-Based
Bisimulation Computation[14]. describes several methods to accelerate sym-
bolic bisimulation computation. The main algorithm is similar to that of [2],
although blocks are represented explicitly, and assigned unique serial numbers.
Aside from complications relating to weak bisimulation, their main optimizations
are:

(1) Use of state signatures, as in [2], to compute block refinements. States with
different signatures belong to different partition blocks. Their BDD encoding for
signatures puts state variables toward the root and signature variables toward
the leaves. This allows efficient partition refinement by substitution of block
serial numbers into the BDD at the level of the signature, as the canonicity of
the BDD guarantees that each node at that level corresponds to a distinct block.
This technique is doomed to failure when there are many classes, as the encoding
requires at least one BDD node per class.
(2) Block forwarding updates the current partition immediately after blocks are
split. They split (and compute signatures for) only one block at a time. The
partition is updated after each block splitting, allowing subsequent splittings to
benefit immediately from the more refined partition.
(3) Split-driven refinement uses a backward signature (similar to the inverse of
the transition relation) to determine which blocks may require splitting after
the splitting of a given block, and skips the splitting of blocks whose elements
signatures include no blocks split since the given block was created.
(4) Block ordering is the deliberate choice of which splitter to use at any given
time that such a choice is available. They found that two heuristic orderings:
“choose the block with a larger backward signature”, and “choose the larger
block”, both produced improved run times compared to random choice.

6 Conclusions

Saturation-based bisimulation provides efficient bisimulation for DCLTS where
strong event locality is present (the same models where saturation is ideal for
state-space generation). Our algorithm is effective both when the bisimulation
results in few classes and when it instead results in many classes, possibly even
one per state. This is particularly important because we envision a tool chain
where a bisimulation reduction is routinely attempted after state-space genera-
tion and prior to any further analysis. In this framework, it is then essential for
the bisimulation algorithm to be efficient even (or perhaps, especially) when its
application does not result in a reduction of the state space.

230 M. Mumme and G. Ciardo

Techniques that produced improvement in saturation-based state-space gen-
eration may yet improve this algorithm. We believe that the saturation heuristic
is also applicable to weak bisimulation and to non-deterministic CLTS bisimula-
tion (nondeterminism may arise even in Petri nets, if multiple transitions share
the same label). Our work is proceeding in that direction.

References

1. Aczel, P.: Non-Well-Founded Sets. CSLI, Stanford (1988)
2. Bouali, A., Simone, R.D.: Symbolic bisimulation minimisation. In: Probst, D.K.,

von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 96–108. Springer,
Heidelberg (1993)

3. Chung, M.Y., Ciardo, G., Yu, A.J.: A fine-grained fullness-guided chaining heuris-
tic for symbolic reachability analysis. In: Graf, S., Zhang, W. (eds.) ATVA 2006.
LNCS, vol. 4218, pp. 51–66. Springer, Heidelberg (2006)

4. Ciardo, G., et al.: SMART: Stochastic Model checking Analyzer for Reliability and
Timing, User Manual, http://www.cs.ucr.edu/~ciardo/SMART/

5. Dolev, D., Klawe, M., Rodeh, M.: An O(n log n) unidirectional distributed algo-
rithm for extrema finding in a circle. J. of Algorithms 3(3), 245–260 (1982)

6. Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisimu-
lation equivalence. Theor. Comput. Sci. 311, 221–256 (2004)

7. Graf, S., Steffen, B., Lüttgen, G.: Compositional minimisation of finite state sys-
tems using interface specifications. Journal of Formal Aspects of Computing 8(5),
607–616 (1996)

8. Milner, R.: Communication and concurrency. Prentice-Hall, Inc., NJ (1989)
9. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal of

Computing 16, 973–989 (1987)
10. Paige, R., Tarjan, R.E., Bonic, R.: A linear time solution to the single function

coarsest partition problem. Theoretical Computer Science 40, 67–84 (1985)
11. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)

GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)
12. Tilgner, M., Takahashi, Y., Ciardo, G.: SNS 1.0: Synchronized Network Solver. In:

1st Int. Workshop on Manuf. & Petri Nets, Osaka, Japan, pp. 215–234 (June 1996)
13. Wan, M., Ciardo, G.: Symbolic state-space generation of asynchronous systems

using extensible decision diagrams. In: Nielsen, M., Kučera, A., Miltersen, P.B.,
Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404,
pp. 582–594. Springer, Heidelberg (2009)

14. Wimmer, R., Herbstritt, M., Becker, B.: Forwarding, splitting, and block order-
ing to optimize BDD-based bisimulation computation. In: Haubelt, C., Teich, J.
(eds.) Proceedings of the 10th GI/ITG/GMM-Workshop “Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen”
(MBMV), pp. 203–212. Shaker Verlag, Erlangen (2007)

http://www.cs.ucr.edu/~ciardo/SMART/

Reachability for Finite-State Process Algebras

Using Static Analysis

Nataliya Skrypnyuk and Flemming Nielson

Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
{nsk,nielson}@imm.dtu.dk

Abstract. In this work we present an algorithm for solving the reacha-
bility problem in finite systems that are modelled with process algebras.
Our method uses Static Analysis, in particular, Data Flow Analysis, of
the syntax of a process algebraic system with multi-way synchronisation.
The results of the Data Flow Analysis are used in order to “cut off” some
of the branches in the reachability analysis that are not important for
determining, whether or not a state is reachable. In this way, it is possible
for our reachability algorithm to avoid building large parts of the system
altogether and still solve the reachability problem in a precise way.

Keywords: reachability, process algebra, static analysis.

1 Introduction

Process algebras describe systems in a compositional way: they separately de-
scribe subsystems and interactions between them, thus achieving concise syn-
tactic descriptions of the systems. In order to solve the reachability problem for
a system specified in some process algebra it is however necessary to “expand”
the definition and to make all the interactions between subsystems explicit, thus
computing the semantics of the system. This may lead to the infamous state
space explosion problem [1].

In this work we shall make use of the conciseness of the syntactic description of
a system while solving the reachability problem. The idea is to analyse the syntax
with Static Analysis methods [7] first. These methods can be exponentially faster
than the methods based on the semantics of the systems. On the other hand,
Static Analysis methods return in general approximations (in one direction only)
of the actual results [7].

In our algorithm we estimate state reachability, while possibly being “overop-
timistic”. This means that in case we assess the state in question as not reachable,
then it is definitely not reachable. If we estimate that the state is reachable then
it is only possibly reachable. We use this kind of estimation in order not to build
transitions out of states from which the state in question definitely cannot be
reached. This allows us in some case to avoid building large parts of the systems
and still obtain the correct answer to the reachability problem.

This work is a modification and extension of the reachability analysis of the al-
gebra of IMC [2, 4] that has been developed in the PhD thesis [13]. In particular,
the algorithms in Section 4 are new compared to [13].

G. Delzanno and I. Potapov (Eds.): RP 2011, LNCS 6945, pp. 231–244, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

232 N. Skrypnyuk and F. Nielson

Table 1. A process is in PA if it has a syntactic form of E, a ∈ Act ∪ {τ}, � ∈ Lab,
X ∈ Var, A ⊆ Act

P ::= 0 | (1)

a�.X | (2)
a�.P | (3)
P + P | (4)
X := P (5)

E ::= P | (6)
hide A in E | (7)
E �A �E (8)

2 The Process Algebra

Our reachability algorithm will be developed for a process algebra called PA.
The algebra of PA has a CSP-style, i.e. multi-way, synchronisation model [5].
An important difference with CSP is that PA only allows for finite semantic
models. This is required in order for the Data Flow Analysis developed by us
to be applicable to it without using techniques like widening [7]. Finiteness of
semantic models of PA processes is ensured on the syntactic level – i.e., if a
process’ syntactic definition complies with the PA syntax from Table 1, then it
is ensured that its semantic model is finite.

The syntax of PA is defined using a set of external actions Act, a distin-
guished internal action τ , with τ �∈ Act, a set of labels Lab and a set of process
identifiers or process variables Var. The syntactic description of a particular
PA process is always finite. The syntax of PA contains a number of standard
process algebraic operators listed in Table 1. These are prefixing (2)-(3), choice
(4), process recursive definition (5), abstraction or hiding (7) and parallel com-
position (8) operators. The terminal process (1) is also allowed in PA. If P is
a (not necessary genuine) subexpression of a PA expression E, then we denote
this fact by P � E. Clearly E � E always holds.

An apparent difference between the syntax of PA and the syntax of the ma-
jority of other process algebras is that action names in PA are supplied with
labels. This feature has been adopted from the variant of CCS process algebra
[6] proposed in [9] where Data Flow Analysis has been developed for it. Labels do
not influence the semantics of PA (we will see in Table 2 that they just decorate
the transitions) but they serve as pointers into the syntax that make it easier to
express the properties that we will be proving for PA.

The definition of the syntax of PA in Table 1, in particular, the application
of abstraction (7) and parallel composition (8) operators only on top of process
recursive definitions (5), has been inspired by the syntax of the algebra of In-
teractive Markov Chains (IMC) [2, 4]. The set of closed (i.e. no free process
variables) PA expressions is actually a subset of IMCXL defined in [4]. It has
been proved in [4] that IMCXL expressions have only finite semantic models,
therefore the same is true for closed PA expressions. Guardedness of process
variables in PA expressions (which is required in order to guarantee that their

Reachability for Finite-State Process Algebras Using Static Analysis 233

Table 2. Structural Operational Semantics of PA: a ∈ Act∪{τ}, C ⊆ Lab, C1 ⊆ Lab,
C2 ⊆ Lab, � ∈ Lab, X ∈ Var, A ⊆ Act; E, E′, F , F ′ are PA processes

a�. E
a−−→

{�}
E (1)

E
a−−→
C

E′

E + F
a−−→
C

E′ (2)
F

a−−→
C

F ′

E + F
a−−→
C

F ′ (3)

E
a−−→
C

E′ a �∈ A

hide A in E
a−−→
C

hide A in E′ (4)
E

a−−→
C

E′ a ∈ A

hide A in E
τ−−→
C

hide A in E′ (5)

E
a−−→
C

E′ a �∈ A

E �A �F
a−−→
C

E′
�A �F

(6)
F

a−−→
C

F ′ a �∈ A

E �A �F
a−−→
C

E �A �F ′ (7)

E
a−−→

C1
E′ F

a−−→
C2

F ′ a ∈ A

E �A �F
a−−−−−→

C1 ∪ C2
E′

�A �F ′ (8)
E{X := E/X } a−−→

C
E′

X := E
a−−→
C

E′ (9)

semantics is well-defined) is ensured by the rule (2) in Table 1: all process iden-
tifiers are directly guarded in PA.

The semantics of PA is defined in the style of Structural Operational Se-
mantics (SOS) introduced by G. Plotkin in [12]. We define the semantics of a
PA expression as a Labelled Transition System (LTS) with the smallest set of
transition relations that satisfy the rules in Table 2. Recursion unfolding in the
rule (9) involves the substitution of each free X in E for its process definition
X := E, denoted by E{X := E/X }.

Note that all the transitions in Table 2 are decorated by sets of labels. Labels
in the set are those that are labelling actions which “participate” in the transition
by giving rise to the rule (1) in Table 2. Due to the multi-way synchronisation ((8)
in Table 2) there can be any number of actions “participating” in the transition.
In this case all the corresponding labels will be contained in the set decorating
the transition.

Assuming that E and E′ are PA expressions, the notation E −−→ E′ means

that there exists a transition E
a−−→
C

E′ for some a ∈ Act ∪ {τ} and C ⊆ Lab.

The notation E
∗−−→ E′ means that the pair (E, E′) is contained in the reflexive

and transitive closure of −−→.
We will make use of two auxiliary operators on PA expressions. The operator

Labs returns all the labels occurring in its argument expression: for example,
Labs(hide b in a�1 .b�2 .0) = {�1, �2}. The operator fl (“free labels”) returns all
the labels that do not belong to τ or to an action that has been abstracted by
the application of the rule (7) in Table 1: fl(hide b in a�1 .b�2 .0) = {�1}. Note that
due to the application of the hiding operator ((7) in Table 1) solely on top of
process definitions ((5) in Table 1) we avoid the situation where an originally free
label can become hidden after a number of transitions. The last can namely occur
only after a recursion unfolding, as in the expression X := a�1 .hide a in b�2 .X

234 N. Skrypnyuk and F. Nielson

but expressions of this kind are excluded from PA. The operators Labs and fl
will be used in the Data Flow Analysis in Section 3.

3 Data Flow Analysis

The reachability algorithm that will be presented in Section 4.2 takes as input a
PA expression and a state in the LTS induced by its semantics. The algorithm
returns true in case the state is reachable from the start state of the LTS and
false otherwise. While answering this question we will not build the whole LTS
as a first step. Rather we will perform a particular kind of Static Analysis – Data
Flow Analysis – on the input PA expression first.

Data Flow Analysis techniques have been originally developed for program-
ming languages (see, for example, [7]). They have been transferred to the area
of process algebras in [9, 10, 8, 11] etc. We have developed Data Flow Analysis
for the algebra of IMC in the PhD thesis [13]. The description of the method
and proved theoretical results will appear in [14]. The current section is based
on the adaptation of the methods developed for IMC to the algebra of PA.

We will mostly do the Data Flow Analysis of so-called PA programs. These
are closed PA expressions that are precisely defined: all the syntactically distinct
actions are labeled with distinct labels and all the distinct process identifier
definitions refer to distinct process variables.

The primal idea of the Data Flow Analysis is to represent each PA expression
by a set of its exposed labels. These are labels that can decorate the transi-
tions enabled for the expression according to its semantics. For example, ex-
posed labels of X := a�1 .X + b�2 .0 are �1 and �2: they decorate the transitions

X := a�1 .X + b�2 .0 a−−−→
{�1}

X := a�1 .X + b�2 .0 and X := a�1 .X + b�2 .0 b−−−→
{�2}

0.

The set of exposed labels can be computed inductively on the syntax of a PA

expression by the operator E defined in Table 3. Note that the E is parametrised
by the argument PA expression (i.e. we will compute EF �F � for a PA program
F) in order to be able to determine the exposed labels of process identifiers
(rule (8) in Table 3) which are in fact the exposed labels of the process identifier
definitions.

Assume that there exists a transition decorated by a set containing only one
label. We would like to determine the exposed labels in the state reachable
through this transition. In order to be able to do this, we have defined two Data
Flow Analysis operators on PA– the generate operator G and the kill operator
K. They are inspired by the definitions of the G and K operators in [9].

The K operator returns a mapping where each label in its argument PA

expression is assigned to a set of labels that cease to be exposed in the PA ex-
pression reachable through the transition decorated by the label. In our example
X := a�1 .X + b�2 .0 both �1 and �2 will be mapped to {�1, �2} by the K operator.
The operator G, on the other hand, returns a mapping where labels from its ar-
gument expression are assigned to sets of labels that will become newly exposed
after the transition decorated by them. In our example �1 will be mapped to
{�1, �2} and �2 will be mapped to the empty set by the G operator.

Reachability for Finite-State Process Algebras Using Static Analysis 235

Table 3. Definition of the exposed operator E : PA → 2Lab, F ∈ PA

EF �0� = ∅ (1)

EF �a�.X � = {�} (2)

EF �a�.P� = {�} (3)
EF �P1 + P2� = EF �P1� ∪ EF �P2� (4)
EF �X := P� = EF �P� (5)

EF �hide A in P� = EF �P� (6)
EF �P1 �A �P2� = EF �P1� ∪ EF �P2� (7)

EF �X � =
⋃

X:=P	F EF �P� (8)

Table 4. Definition of the kill operator K : PA → (Lab → 2Lab), F ∈ PA

KF �0� = ⊥K (1)

KF �a�.X � = ⊥K [� �→ {�}] (2)

KF �a�.P�(�′) = KF �P�(�′) ∪ ⊥K [� �→ {�}] (�′) for all �′ ∈ Lab . (3)

KF �P1 + P2�(�) =

{
EF �P1 + P2� if � ∈ EF �P1 + P2� ,

KF �P1�(�) ∪ KF �P2�(�) otherwise .
(4)

KF �X := P� = KF �P� (5)
KF �hide A in P� = KF �P� (6)
KF �P1 �A �P2�(�) = KF �P1�(�) ∪ KF �P2�(�) for all � ∈ Lab . (7)

Table 5. Definition of the generate operator G : PA → (Lab → 2Lab), F ∈ PA

GF �0� = ⊥G (1)

GF �a�.X � = ⊥G [� �→ EF �X �] (2)

GF �a�.P�(�′) = GF �P�(�′) ∪ ⊥G [� �→ EF �P�] (�′) for all �′ ∈ Lab . (3)
GF �P1 + P2�(�) = GF �P1�(�) ∪ GF �P2�(�) for all � ∈ Lab . (4)

GF �X := P� = GF �P� (5)
GF �hide A in P� = GF �P� (6)
GF �P1 �A �P2�(�) = GF �P1�(�) ∪ GF �P2�(�) for all � ∈ Lab . (7)

The operators K and G are defined inductively on the syntax of PA in Tables
4 and 5. They make use of the mappings ⊥K and ⊥G that map all the labels
from Lab to the empty set. The operators are parametrised by PA expressions
which are given as arguments to the operator E whenever the last is called. At
the top level we will be computing KF �F � and GF �F � for a PA program F .

We are now ready to explain the connection between the operators E , K and
G. Assume that we are given a PA expression E. Then in case E

a−−→
{�}

E′ for

some a, � and E′, we have that EE′�E′� = EE�E�\KE�E�(�) ∪ GE�E�(�). The
operators G and K thus “capture” the effect of the transition.

Assume now that we are given a PA program F and that F
∗−−→ E. Then in

the above equality we can in fact reuse the mappings computed on F . We can also
use F as a parameter while computing the exposed labels of E because process

236 N. Skrypnyuk and F. Nielson

Table 6. Definition of the chain operator T : PA → 22Lab
, F ∈ PA

TF �0� = ∅ (1)

TF �a�.X � = {{�}} (2)

TF �a�.P� = TF �P� ∪ {{�}} (3)
TF �P1 + P2� = TF �P1� ∪ TF �P2� (4)
TF �X := P� = TF �P� (5)

TF �hide A in P� = TF �P� (6)

TF �P1 �A �P2� = {C|C ∈ TF �P1�,∃� ∈ C,∃a�.P� � P1

such that (a �∈ A) ∨ (� �∈ fl(P1))} ∪
{C|C ∈ TF �P2�,∃� ∈ C,∃a�.P� � P2

such that (a �∈ A) ∨ (� �∈ fl(P2))} ∪
{{C1 ∪ C2}|C1 ∈ TF �P1�, C2 ∈ TF �P2�, ∃�1 ∈ C1,

∃�2 ∈ C2,∃a1
�1 .P�1 � P1,∃a2

�2 .P�2 � P2,
such that (a1 = a2) ∧ (a1 ∈ A)
∧ (a1 ∈ fl(P1)) ∧ (a2 ∈ fl(P2))} (7)

definitions in F and E do not differ. We thus obtain EF �E′� = EF �E�\KF �F �(�)∪
GF �F �(�). In other words, knowing the mappings returned by the operators G
and K on a PA program is enough to predict exposed labels after any number of
transitions. The equality is unusual for Static Analysis methods – for example,
the method in [9] is computing overapproximations of exposed labels – and is
due to the finiteness of the semantic models of PA expressions.

Due to the multi-way synchronisation in PA, there can be more than one label
decorating a transition. For example, for X := a�1 .X �a�Y := a�2 .b�3 .Y there is a
transition decorated by {�1, �2}. In order to take care of this situation, we have
introduced in Table 6 a so-called chain operator T (inspired by the definition
in [13]) on PA expressions. It returns all the sets of labels (that will be called
chains in the following) that can decorate the transitions from an argument PA

expression. In the above example it will return {�1, �2} and {�3}.
Similarly to the operators K and G, the results returned by the T on a PA

program are applicable after any number of transitions. If a chain contains more
than one label then in order to determine the effects of the G and K operators,
the union of the mappings of all the labels in the chain should be taken.

The properties of the E , K, G and T operators are expressed more formally
in Theorem 1. It states that the results of the operators on a PA program are
enough to reproduce its semantics. Note that due to the uniqueness of labels in
PA programs, each label has its unique corresponding action name. All the labels
in a chain have the same corresponding name according to the construction in
Table 6. Theorem 1 will be used in the reachability algorithm in Section 4.2.

Theorem 1. Given a PA program F , then for all E such that F
∗−−→ E we have:

E
a−−→
C

E′ iff C ∈ TF �F �, C ⊆ EF �E�, EF �E′� = (EF �E�\(
⋃

�∈C KF �F �(�))) ∪⋃
�∈C GF �F �(�) and a�.P� � F for some P� � F for all � ∈ C.

Reachability for Finite-State Process Algebras Using Static Analysis 237

Proof. The proof consists of several steps. We can first show that all the exposed
labels in E are distinct. Therefore we can simply use label sets in our discussion
and not multisets of labels as in, for example, [9]. We can then prove that all the
labels decorating the transitions from any PA expression E1 are exposed in it.
Moreover, all the sets of labels decorating the transitions from E1 are in TF �E1�

and no further sets. We can then prove that in case E1
a−−→
C

E2 for some action a,

chain C and PA expression E2, we have EF �E2� = (EF �E1�\(
⋃

�∈C KF �E1�(�)))∪⋃
�∈C GF �E1�(�).
After this we have to prove that the results of the generate, kill and chains

operators on a PA program F are applicable after any number of transitions. In
particular, if F

∗−−→ E and for some C ∈ TF �F � all the labels in C are occurring

in E, then C ∈ TF �E� as well. A similar statement is true for the generate
operator. For the kill operator the “killed” sets in KF �E� can in general be
smaller than in KF �F �, but the result of their subtraction from EF �E� is the
same. Altogether these considerations prove the statement of the theorem.

Lemmas 3.14-3.15 and Theorem 3.16 in Chapter 3 of the PhD thesis [13]
state similar facts for the variant of the calculus of IMC. See the proofs in the
appendix of [13] for the details. ��

4 Reachability Algorithm

4.1 Determining Possible States

The reachability algorithm in Section 4.2 will determine whether a state repre-
sented by the exposed labels is reachable in the LTS induced by the semantics
of a PA program. Before computing the state’s reachability, we would like to
determine whether the state in question actually represents a meaningful con-
figuration of exposed labels. For example, for X := a�1 .b�2 .X it does not make
sense to ask whether the state represented by {�1, �2} is reachable.

We will apply the operator excl to PA programs prior to conducting the
reachability analysis. The operator excl is inductively defined on the syntax of
PA in Table 7. It computes a set of label pairs: labels in a pair are those that
mutually exclude the “exposedness” of each other. The operator makes use of
the consideration that two labels cannot be exposed at the same time if one of
them is in the prefix of the expression which contains the other one. Lemma 1
states the correctness of the excl operator.

Lemma 1. Given a PA program F , then for all E such that F
∗−−→ E we have:

((�1, �2) ∈ exclF �F �) ∧ (�1 ∈ EF �E�) ⇒ (�2 �∈ EF �E�).

Proof. We prove the lemma by proving a more general statement that ((�1, �2) ∈
exclF �F �) ∧ (�1 ∈ EF �E′′�) ⇒ (�2 �∈ EF �E′′�) for any subexpression E′′ of E.
This will establish the lemma because E � E is true. We make our proof by
induction on the number of steps in the derivation F

∗−−→ E.
The statement holds for F : this can be shown by induction on the structure

of F using the rules of the operator excl in Table 7. We have therefore to prove

238 N. Skrypnyuk and F. Nielson

Table 7. Definition of the operator excl : PA → 2Lab×Lab

exclF �0� = ∅ (1)

exclF �a�.X � = ∅ (2)

exclF �a�.P� = exclF �P� ∪
⋃

�′∈Labs(P){(�, �
′)} (3)

exclF �P1 + P2� = exclF �P1� ∪ exclF �P2� ∪⋃
�1∈Labs(P1)\EF �P1�

⋃
�2∈Labs(P2)\EF �P2�{(�1, �2)} (4)

exclF �X := P� = exclF �P� (5)
exclF �hide A in P� = exclF �P� (6)

exclF �P1 �A �P2� = exclF �P1� ∪ exclF �P2� (7)

that in case F
∗−−→ E −−→ E′ and the statement is true for E then it is also true

for E′. We prove this by induction on the transition derivation according to the
rules in Table 2.

The statement is clear for the rule (1) in Table 2 because in this case E′ � E.
The statement easily follows from the induction hypothesis for the majority of
the other rules (for the rules (6)-(8) it can be shown that Labs(P1)∩Labs(P2) = ∅
holds for P1 �A�P2 � E). For the rule (9) we need to additionally show that the
statement of the lemma holds for P{X := P/X} if it holds for X := P – this is
necessary for the induction hypothesis to become applicable.

We can deduce the statement for all P ′′ � P directly from the induction
hypothesis for X := P. For subexpressions of the type P ′′{X := P/X} it can be
shown that EF �P ′′� = EF �P ′′{X := P/X}� (this follows from the guardedness
of the syntax of PA in Table 1). In this way, the induction hypothesis for the
subexpressions of X := P is applicable also to P ′′{X := P/X} with P ′′ � P. ��

4.2 Computing Reachable Labels

We will now describe the actual reachability algorithm in several steps. First, we
define the algorithms init and refine in Table 8. The algorithm init initialises
and returns the data structure gchains . This data structure maps the labels in
a PA program (given as an input F) to the set of chains (computed on F) that
contain a label which generates the label mapped to this set. For example, for
F � (b�1 .a�2 .c�3 .0 + a�4 .a�5 .d�6 .0) �{a, b}�a�7 .0 we have init(F) = {�1 �→ ∅, �2 �→
∅, �3 �→ {{�2, �7}}, �4 �→ ∅, �5 �→ {{�4, �7}}, �6 �→ {{�5, �7}}, �7 �→ ∅}.

The algorithm refine computes a set of labels L which is an overapproximation
of labels reachable from a state as represented by the exposed labels in an input
S. The reachability is determined for the LTS induced by the semantics of an
input PA program F . We call a label “reachable” if it is exposed in one of the
reachable states.

The algorithm recursively deletes all those chains from the gchains ′-mapping
(initialised by the value of an input gchains) in which at least one constituting
label is mapped to the empty set and is not in S, until no deleting is possible.
Reachable labels are those that are either contained in S or are mapped to a

Reachability for Finite-State Process Algebras Using Static Analysis 239

Table 8. Algorithms init and refine : F ∈ PA, gchains ∈ Labs(F) → 2TF �F �, S ⊆
Labs(F)

Initialisation step:
proc init(F) is
for all � ∈ Labs(F) do

gchains(�) := {C ∈ TF �F �|∃�′ ∈ C such that � ∈ GF �F �(�′)}
return gchains
Refinement step:
proc refine(F , S , gchains) is
L := S; gchains ′ := gchains;
while ∃� ∈ Labs(F) such that (gchains ′(�) = ∅) ∧ (� �∈ S) do

for all �′ ∈ Labs(F) do
gchains ′(�′) := gchains ′(�′)\{C ∈ TF �F �|� ∈ C}

for all � ∈ Labs(F) do
if gchains ′(�) �= ∅ then

L := L ∪ {�};
return L, gchains ′

non-empty set at the end of the algorithm’s run. For the last there exists at least
one chain generating it in which all the labels are considered to be reachable.
We state in Lemma 2 the correctness of the init and refine procedures.

In our example, after computing (L, gchains) = refine(F , EF �F �, init(F)), we
have gchains = {�1 �→ ∅, �2 �→ ∅, �3 �→ ∅, �4 �→ ∅, �5 �→ {{�4, �7}}, �6 �→
{{�5, �7}}, �7 �→ ∅} and therefore L = {�1, �4, �5, �6, �7}. The mapping for the
label �4 has been updated, therefore it will be correctly identified as unreach-
able. On the other hand, the label �6 will be considered reachable which is not
the case, which shows that L is only an overapproximation of reachable labels.

Lemma 2. Given a PA program F , we define a domain D = {d ∈ (Labs(F) →
2TF �F �)|d(�) ⊆ init(F)(�) for all � ∈ Labs(F)}. Further we define a function
GS : D → D with S ⊆ Labs(F) such that GS(d)(�) = {C ∈ d(�)|∀�′ ∈ C (�′ ∈
S) ∨ (d(�′) �= ∅)}. For (L, gchains) = refine(F ,S , init(F)) we have:

1. gchains = GFP(GS), where GFP stands for the greatest fixed point;

2. if F
∗−−→ E

∗−−→ E′ for some E and E′ and S = EF �E� then EF �E′� ⊆ L.

Proof. The domain D can be understood as a complete lattice with the order
d1 ≤ d2 iff d1(�) ⊆ d2(�2) for all � ∈ Labs(F). The function GS is monotone,
therefore there exists the greatest fixed point of GS on D according to the
Knaster-Tarski theorem. The domain D satisfies the Descending Chain Con-
dition because it is finite. Therefore the GFP of GS can be computed by the
repeated application of GS to the greatest element of D until the descending
chain stabilises. The algorithm refine in Table 8 can be understood as the re-
peated application of the function GS with the initial argument init(F) which
is equal to the greatest element of D. Therefore it stabilises on GFP(GS).

240 N. Skrypnyuk and F. Nielson

Concerning the statement 2, it is clear that all the labels that are reachable
from E are either exposed in E or are generated by a chain all the labels in
which are reachable from E. We can define a mapping gch such that gch(�) =
{C ∈ init(F)(�)|∃E′′ such that (E ∗−−→ E′′)∧(C ⊆ EF �E′′�)} for all � ∈ Labs(F).
The mapping gch is a fixed point of GEF �E�, therefore it is smaller or equal to
GFP(GEF �E�). All the labels reachable from E are either in EF �E� (and therefore
in L) or are mapped to a non-empty set by gch – and therefore are mapped to
a (larger or equal) non-empty set by GFP(GEF �E�), hence are in L. ��

We will usually apply the init once to a PA program F . On the contrary,
we might need to compute the refine many times with different sets S. In case
F

∗−−→ E
∗−−→ E′ we can, for example, reuse the gchains-parameter returned

by (L, gchains) = refine(F , EF �E�, init(F)) as an input to the computation of
refine(F , EF �E ′�, gchains). We can safely reuse the previously computed map-
ping from labels to chains because the set of reachable labels can only become
smaller after several transitions.

In the example above we have F
a−−−−−→

{�1, �4}
E with E � a�2 .b�3 .0 �a �0 and we

can compute refine(F ,EF �E�, gchains) with gchains being the second output re-
turned by (L, gchains) = refine(F ,EF �F �, init(F)), which is faster than comput-
ing refine(F ,EF �E�, init(F)). This consideration will be used in the reachability
algorithm in Table 9.

4.3 Main Algorithm

The main reachability algorithm reach is described in Table 9. It takes as an
input a PA program F and a state characterised by the exposed labels in S?
and returns true if and only if the state is reachable from the start state in the
semantics of F . The algorithm makes use of the Data Flow Analysis operators
in determining states reachable after one transition (see Theorem 1).

Each newly computed state is checked for whether the set of its exposed labels is
equal to S? (lines 1 and 17) or has been computed before, i.e. is in States (line 16)
– in the first case the algorithm terminates returning true and in the second case
it discards the state. Otherwise the refine algorithm is performed with the newly
created state and the current value of gchains as input values (lines 7 and 18).

If all the labels in S? are in the set of reachable labels returned by refine, then
all the transitions from the state are created (line 15). Otherwise the state is
discarded (lines 8 and 19). In this way, we are “cutting off” branches in the LTS
induced by the semantics of F that according to Lemma 2 do not lead to S?. The
algorithm terminates because the number of states is always finite. Theorem 2
states the correctness of the reach algorithm.

Theorem 2. Given a PA program F , then F
∗−−→ E iff reach(F ,EF �E�) = true.

Proof. It is easy to see from the algorithm reach in Table 9 that if for some
S? ⊆ Lab we have reach(F ,S?) = true then there exists some E such that
F

∗−−→ E and EF �E� = S?. We can namely use Theorem 1 in order to show

Reachability for Finite-State Process Algebras Using Static Analysis 241

Table 9. Algorithm reach taking as arguments a PA program F and S? ⊆ Lab. The
set States contains already encountered states, the set W is a working list.

proc reach(F, S?) is
1: if EF �F � = S? then
2: return true;
3: if S? �⊆ Labs(F) then
4: return false;
5: if ∃�1 ∈ S?, ∃�2 ∈ S? such that (�1, �2) ∈ exclF �F � then
6: return false;
7: gchains := init(F); (L′, gchains ′) := refine(F , EF �F �, gchains);
8: if S? �⊆ L′ then
9: return false;
10: States :={EF �F �};
11: W := {(EF �F �, gchains)};
12: while (W �= ∅) do
13: choose (S , gchains) from W ; W := W\{(S , gchains)}
14: for all C ∈ TF �F � such that C ⊆ S do
15: S′ := S\(

⋃
�∈C KF �F �(�)) ∪

⋃
�∈C GF �F �(�);

16: if S′ ∈ States then break;
17: if (S′ = S?) then return true;
18: (L′, gchains ′) := refine(F , S ′, gchains);
19: if S? �⊆ L′ then break;
20: States := S ∪ {S′}; W := W ∪ {(S ′, gchains ′)};
21: return false

that for each (S , gchains) added to W holds S = EF �E� for some F
∗−−→ E. The

algorithm returns true only in case S = S? for one of such (S , gchains) ∈ W .
It is left to show the other direction. The algorithm always terminates, there-

fore it is equivalent to showing that from reach(F ,S?) = false follows that there
does not exist any E such that F

∗−−→ E and EF �E� = S?.
From the definition of reach in Table 9 and from Theorem 1, we can deduce

that in case reach(F ,S?) = false then for all F
∗−−→ E′ we have either EF �E′� �=

S? or there exists some E′′ such that F
∗−−→ E′′ ∗−−→ E′ and S? �⊆ L with

L returned by (L, gchains) = refine(F ,EF �E′′�, init(F)). According to Lemma
2, this means that at least one of the labels in S? is unreachable from E′′,
therefore E′ �= S?. We are actually computing refine(F ,EF �E′′�, gchains) with
the “current” value of gchains instead of init(F) for efficiency reasons – it is
“safe” to do because the set of reachable labels can only become smaller for E′′

compared to F . ��

4.4 Algorithmic Complexity

In this section we will assess the complexity of the proposed reachability analysis.
We need first of all to assess the complexity of the Static Analysis operators.

242 N. Skrypnyuk and F. Nielson

Computations of the E , G and K can be done in linear time in the syntax of a
PA program F . We could save the exposed labels of the definitions of process
variables while traversing F in order not to compute them anew according to the
rule (8) in Table 3 each time the variables occur in F . Then the linear coefficient
for the complexity of the G and K operators will be equal to the maximal number
of components connected by the +-construct in the syntax of F . For example,
for F = a�1 .(b�2 .0+ c�3 .0) the label �1 generates both �2 and �3 which are choice
alternatives, similarly �2 “kills” both �2 and �3, therefore the G and K for this
F can be computed in time complexity 2 ∗ |F |.

Computing the T as it is represented in Table 6 is not very efficient, as the
Cartesian product is taken in the rule (7). It is however possible to use a data
structure for representing chains where each label is saved at most once. For
example, we could save [�1, {�2, �3}] instead of both {�1, �2} and {�1, �3} for
a�1 .0 �a� (a�2 .0 + a�3 .0). We would need to “connect” for each a ∈ A in each
subexpression P1 � A � P2 of the analysed PA program the chains correspond-
ing to a from P1 and the chains corresponding to a from P2. In this way, the
computation of chains can be performed in linear time. The variant in Table 6
has been chosen for the sake of simplicity of presentation.

Computing the operator excl on a PA program F can be done in time
quadratic in the syntax of the program: for each label � there exists a set of labels
(at most |Labs(F)|) such that they cannot be exposed together with �. Checking
whether a state is “valid” according to the excl can be done in time quadratic
in the number of exposed labels in the state as we need to check whether there
exists a pair of exposed labels in the state which cannot be exposed together.

The algorithm reach requires the execution of the procedure init(F). Using
the above mentioned concise data structure for chains, this can be performed in
time linear in the number of labels in F . Each label will namely be linked with
those labels in the chain data structure that generate it – then the number of
such links is linear in the number of labels with linear coefficient equal to the
maximal number of +-alternatives in F .

The main computational overhead in the refine procedure (which is performed
in each new state created by reach) is the recomputation of the gchains-mapping.
This can be done in time linear in the number of labels that were exposed before
the transition into the state plus the number of labels that became unreachable
after the transition. The reason is that each label that was previously exposed
(and therefore reachable) should be checked for being reachable in the new state.
If this is not the case then the links of all the labels generated by it into the
chain data structure should be updated.

The refine procedure can be performed with the worklist W organised as a
stack (the depth-first search). Then the maximal number of gchains structures
saved in W at the same time will be equal to the maximal number of choice
options encountered along one path in the LTS induced by the semantics of
an input PA program. We do not need to save the whole gchains structure
each time it is added to W but can just save changes compared to the previous
gchains .

Reachability for Finite-State Process Algebras Using Static Analysis 243

Altogether, the additional time overhead (compared to building the whole
LTS) of our reachability analysis is at most quadratic in the size of the syn-
tax. Additional space needed for performing the reach algorithm can also be
quadratic in the worst case.

On the other hand, computing reachable labels beforehand in our method
can bring considerable advantages in the reachability analysis. For example, in
a program of the type (a�1b�n .0 + c�′1d�′n .0) �∅� e�′′1f�

′′
n .0 if we would like

to know whether the state with {�n} exposed is reachable, we do not need to
follow the choice branch c�′1d�′n .0 – we can determine that the label �n is not
reachable along this choice branch with our reach algorithm. Moreover, we do
not need to build the states reachable as the result of interleaving the processes
c�′1d�′n .0 and e�′′1f�

′′
n .0, which leads to a considerable win in complexity.

We envision several possible enhancements of our algorithm. First, we can
check the reachability of all/some of the states from a set by checking whether the
labels of all/some of them are contained in the set of reachable labels. Second, we
can not only check the reachability of a fully specified state but of a state defined
by a subset of its exposed labels – this subset may represent some important
property that holds or does not hold independently of other exposed labels.
Finally, we can first determine which labels are “important” (i.e. influence the
reachability of the state in question) and update the information only on them.

5 Conclusions

In this paper we have presented a reachability algorithm for a process algebra
with finite state space. The algorithm is built upon the application of several
Data Flow Analysis operators to the syntax of the system first. Data Flow Anal-
ysis is used in order to reduce the state space of the reachability analysis. In
this way, we are combining Static Analysis and Model Checking methods in one
algorithm, as the results of the Static Analysis are constantly refined until the
correct answer to the reachability problem is obtained.

The algorithm requires some additional computational time and space in order
to create and update auxiliary data structures, but it can also be considerably
faster (see the example in Section 4.4) than an algorithm that builds the whole
state space of the system. After slight modifications, our algorithm can also
check the reachability of several states at the same time and of states which are
only partially specified, i.e. with a subset of their exposed labels.

Future work includes the extension of the algorithm to other process algebras
as well as to other formalisms specifying systems in a compositional way. We
plan to make use of other proposed improvements in the study of reachability
– for example, of identifying independent labels similar to the partial order
reduction method [3, 1]. The order of independent labels is irrelevant for the
computation of states reachable through the transitions decorated by them. This
consideration may lead to further reduction of the state space of the reachability
algorithm.

244 N. Skrypnyuk and F. Nielson

References

[1] Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press, Cambridge (2008)

[2] Brinksma, E., Hermanns, H.: Process Algebra and Markov Chains. In: Brinksma,
E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS,
vol. 2090, pp. 183–231. Springer, Heidelberg (2001)

[3] Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branch-
ing time logic model checking. In: Proceedings of ISTCS 1995 (1995)

[4] Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428, pp. 129–154. Springer,
Heidelberg (2002)

[5] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

[6] Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

[7] Nielson, F., Nielson, H.R., Hankin, C.L.: Principles of Program Analysis. Springer,
Heidelberg (1999) Second printing, 2005

[8] Nielson, F., Nielson, H.R., Priami, C., Rosa, D.: Static analysis for systems biology.
In: Proceedings of WISICT 2004. Trinity College Dublin (2004)

[9] Nielson, H.R., Nielson, F.: Data flow analysis for CCS. In: Reps, T., Sagiv, M.,
Bauer, J. (eds.) Wilhelm Festschrift. LNCS, vol. 4444, pp. 311–327. Springer,
Heidelberg (2007)

[10] Nielson, H.R., Nielson, F.: A monotone framework for CCS. Comput. Lang. Syst.
Struct. 35(4), 365–394 (2009)

[11] Pilegaard, H.: Language Based Techniques for Systems Biology. PhD thesis, Tech-
nical University of Denmark (2007)

[12] Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

[13] Skrypnyuk, N.: Verification of Stochastic Process Calculi. PhD thesis, Technical
University of Denmark (2011)

[14] Skrypnyuk, N., Nielson, F.: Pathway Analysis for IMC. Journal of Logic and
Algebraic Programming (to appear)

Author Index

Abdulla, Parosh Aziz 125
Ábrahám, Erika 139
André, Étienne 31
Axelsson, Roland 45

Bersani, Marcello M. 58
Boichut, Yohan 72
Bonnet, Rémi 85
Bozzelli, Laura 96

Carioni, Alessandro 110
Cederberg, Jonathan 125
Chatterjee, Krishnendu 1
Chen, Taolue 2
Chen, Xin 139
Ciardo, Gianfranco 218
Courcelle, Bruno 26

Dao, Thi-Bich-Hanh 72

Eggermont, Christian E.J. 153

Fioravanti, Fabio 165
Frehse, Goran 139
Fribourg, Laurent 191
Frigeri, Achille 58

Ganty, Pierre 96
Ghilardi, Silvio 110
Gusev, Vladimir V. 180

Han, Tingting 2

Katoen, Joost-Pieter 2
Kühne, Ulrich 191

Lange, Martin 45

Margenstern, Maurice 205
Mereacre, Alexandru 2
Mumme, Malcolm 218
Murat, Valérie 72

Nielson, Flemming 231

Pettorossi, Alberto 165
Proietti, Maurizio 165

Ranise, Silvio 110
Raskin, Jean-François 28
Rossi, Matteo 58

San Pietro, Pierluigi 58
Senni, Valerio 165
Skrypnyuk, Nataliya 231
Soulat, Romain 31

Vojnar, Tomáš 125

Woeginger, Gerhard J. 153

	Title
	Preface
	Organization
	Table of Contents
	Graph Games with Reachability Objectives
	Observing Continuous-Time MDPs by 1-Clock Timed Automata
	Introduction
	Preliminaries
	CTMDP
	Single-Clock DTA
	Problem Statement

	Timed Reachability in CTMDP
	Product Construction
	Reduction to a Linear Programming Problem
	Conclusion
	References

	Automata for Monadic Second-Order Model-Checking
	References

	Reachability Problems for Hybrid Automata
	References

	Synthesis of Timing Parameters Satisfying Safety Properties
	Introduction
	The Inverse Method
	Optimized Algorithms Based on the Inverse Method
	Algorithm with State Inclusion in the Fixpoint
	Algorithm with Union of the Constraints
	Algorithm with Direct Return
	Combination: Inclusion in Fixpoint and Union
	Combination: Inclusion in Fixpoint and Direct Return
	Summary of the Algorithms

	Behavioral Cartography
	Implementation and Experiments
	Conclusion
	References

	Formal Language Constrained Reachability and Model Checking Propositional Dynamic Logics
	Introduction
	Preliminaries
	Applications
	The Connection between the Three Problems
	Forth and Back between Graphs and Formulas
	Forth and Back between Graphs and Formal Languages

	New Decidability and Complexity Results on Model Checking and Formal Language Constrained Reachability
	Summary
	References

	Completeness of the Bounded Satisfiability Problem for Constraint LTL
	Introduction
	Languages
	Symbolic Valuations
	Automaton Construction

	Extensions
	Bounded Satisfiability Problem
	Completeness Bound for CLTLB(D)

	Conclusions
	References

	Characterizing Conclusive Approximations by Logical Formulae
	Introduction
	Background and Notations
	Symbolic Tree Automata
	Solutions for Patterns in STA
	Finding a Conclusive Fix-Point Automaton
	Reachability Analysis via Logical Formula Solving
	Conclusion
	References

	Decidability of LTL for Vector Addition Systems with One Zero-Test
	Introduction
	Preliminaries
	Generalities
	Transition Systems
	Vector Addition Systems

	The LTL Logic
	Buchi Automata and LTL
	Model Checking

	Decidability of Repeated Control State Reachability
	Conclusion
	References

	Complexity Analysis of the Backward Coverability Algorithm for VASS
	Introduction
	Preliminaries
	Notations and Definitions
	Well-Quasi Orderings
	Vector Addition Systems with States (VASS)
	Coverability Problem and Rackoff's Upper Bound

	Complexity of the Backward Algorithm for Coverability
	Lower Bound
	Net Programs
	Proof of Theorem 3

	References

	Automated Termination in Model Checking Modulo Theories
	Introduction
	Preliminaries
	Array-Based Systems and Backward Reachability
	Closure under Pre-image Computation

	Wqo-Theories, QE-Degrees, and Termination
	Automated Termination
	An Application of Theorem 4.5: The Fischer Protocol

	Conclusions
	References

	Monotonic Abstraction for Programs with Multiply-Linked Structures
	Introduction
	Heaps
	Programming Language
	Signatures
	Bad Configurations
	Reachability Analysis
	Implementation and Experimental Results
	Conclusions and Future Work
	References

	Efficient Bounded Reachability Computation for Rectangular Automata
	Introduction
	Preliminaries
	Polyhedra and Their Computation
	Rectangular Automata

	A New Approach for Reachability Computation
	Facets of the Reachable Set Under Flow Transitions
	Compute the Reachable Set under Flow Transitions
	Compute the Reachable Set After a Jump
	Complexity of the Reachability Computation

	Experimental Results
	Conclusion
	References

	Reachability and Deadlocking Problems in Multi-stage Scheduling
	Introduction
	A Taxonomy of Job Processing Plans
	System States: Safe, Unsafe, and Deadlocks
	Deciding Safety: Easy Cases
	Deciding Safety: Hard Cases
	Reachability
	Reachable Deadlock
	References

	Improving Reachability Analysis of Infinite State Systems by Specialization
	Introduction
	Specifying Reactive Systems
	Constraint-Based Specialization of Reactive Systems
	Experimental Evaluation
	Related Work and Conclusions
	References

	Lower Bounds for the Length of Reset Words in Eulerian Automata
	Background and Overview
	Preliminaries
	Main Results
	References

	Parametric Verification and Test Coverage for Hybrid Automata Using the Inverse Method
	Introduction
	Related Work
	Hybrid Automata with Parameters
	Basic Definitions
	Symbolic Semantics

	Algorithm
	Inverse Method
	Behavioral Cartography
	Enhancement of the Method for Affine Dynamics

	Final Remarks
	References

	A New Weakly Universal Cellular Automaton in the 3D Hyperbolic Space with Two States
	Introduction
	The Railway Circuit
	A New Implementation in the Dodecagrid
	Representation of the Dodecagrid
	The New Tracks
	The New Switches

	The Scenario of the Simulation
	The Motion of the Particle
	Fixed Switches
	Flip-Flop Switches
	Memory Switches
	A Word about the Computer Program

	Conclusion
	References

	A Fully Symbolic Bisimulation Algorithm
	Introduction
	Background
	Deterministic Colored Labeled Transition Systems (DCLTSs)
	Bisimulation
	Quasi-Reduced Ordered Multi-way Decision Diagrams
	Saturation
	Symbolic Bisimulation

	Main Results
	Bisimulation Partition Refinement Relations
	Reduction of Deterministic Bisimulation to Set Closure

	Experimental Results
	Related Work
	Conclusions
	References

	Reachability for Finite-State Process Algebras Using Static Analysis
	Introduction
	The Process Algebra
	Data Flow Analysis
	Reachability Algorithm
	Determining Possible States
	Computing Reachable Labels
	Main Algorithm
	Algorithmic Complexity

	Conclusions
	References

	Author Index

