

H. Deng et al. (Eds.): AICI 2011, CCIS 237, pp. 100–107, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Improving Depth-First Search Algorithm of VLSI Wire
Routing with Pruning and Iterative Deepening*

Xinguo Deng, Yangguang Yao, and Jiarui Chen

College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China
Center for Discrete Mathematics and Theoretical Computer Science, Fuzhou University,

Fuzhou 350003, China

Abstract. A depth-first search (DFS) algorithm requires much less memory
than breadth-first search (BFS) one. However, the former doesn’t guarantee to
find the shortest path in the VLSI (Very Large Integration Circuits) wire routing
when the latter does. To remedy the shortcoming of DFS, this paper attempts to
improve the DFS algorithm for VLSI wire routing by introducing a method of
pruning and iterative deepening. This method guarantees to find all of the
existing shortest paths with the same length in the VLSI wire routing to provide
the wire routing designers more options for optimal designs.

Keywords: Depth-first search, Pruning, Iterative deepening, Wire routing,
Shortest paths.

1 Introduction

Wire routing is a computation intensive task in the physical design of integrated
circuits. With increasing chip sizes and a proportionate increase in circuit densities, the
number of nets on a chip has increased tremendously. Typically, during the physical
design of a VLSI (Very Large Integration Circuits) chip, it almost becomes mandatory
to run the routing algorithm repeatedly in search of an optimal solution. [1]

Traditionally, routing is done in two stages of global routing and detailed routing
sequentially [2, 3]. In the two stage routers, the global router abstracts the details of
the routing architecture and performs routing on a coarser architecture. Then, the
detailed router refines the routing done by the global router in each channel.

Lee [4] introduced an algorithm for routing a two terminal net on a grid in 1961.
Since then, the basic algorithm has been improved for both speed and memory
requirements. Lee’s algorithm and its various improved versions form the class of
maze routing algorithms.[5]

As noted in [6], the algorithm of Rat in a Maze does not guarantee to find a
shortest path from maze entrance to exit. However, the problem of finding a shortest

* The work was supported by the Natural Science Foundation of Fujian Province

(No.2009J05142), the Talents Foundation (No.0220826788) and the Scientific &
Technological Development Foundation (No.2011-xq-24) of Fuzhou University.

 Improving Depth-First Search Algorithm of VLSI Wire Routing 101

path in a maze arises in the VLSI wire routing, too. To minimize signal delay, we
wish to route the wire through a shortest path.

The algorithm of Rat in a Maze in [6] is essentially a DFS algorithm. To overcome
the shortcoming of DFS algorithm, this paper focuses on improving the DFS
algorithm for VLSI wire routing so as to achieve better wiring quality by simplifying
the paths and therefore to reduce manufacturing costs and to increase the reliability.
Our objective is to find all of the existing different shortest paths with the same
length.

2 DFS Algorithm Improvement

2.1 Weakness of DFS Algorithm

The first path to the end traversed by a BFS algorithm is always the shortest one. A
DFS algorithm requires much less memory than BFS one. However, the former
doesn’t guarantee to find the shortest path in the VLSI wire routing but the latter does.

Assuming figure 1 is a searching tree after optimizing the depth (A is the start
position and F is the end position).There are various paths from the start to the end.
Among them there is only one shortest path. The following are all possible cases:
ABD (not a solution), ABEF (not an optimal solution),ACEF (not
an optimal solution),ACF(the optimal solution). To overcome the blindness of
DFS algorithm, the constraints of pruning and iterative deepening are added.

Fig. 1. An example of DFS

2.2 Pruning and Iterative Deepening

Pruning is a technique in machine learning that reduces the size of decision trees by
removing sections of the tree that provide little power to classify instances. The dual
goals of pruning are reduced complexity of the final classifier as well as better
predictive accuracy by the reduction of over fitting and removal of sections of a
classifier that may be based on noisy or erroneous data. [7]

Iterative deepening depth-first search (IDDFS) is a state space search strategy in
which a depth-limited search is run repeatedly, increasing the depth limit with each
iteration until it reaches d, the depth of the shallowest goal state. On each iteration,
IDDFS visits the nodes in the search tree in the same order as DFS, but the
cumulative order in which nodes are first visited, assuming no pruning, is effectively
breadth-first. [8,9]

102 X. Deng, Y. Yao, and J. Chen

2.3 Measures Taken

Pruning can be used to improving the DFS algorithm so that the wire routing can be
implemented with great efficiency and speed.

1. Variable minStep reprents the shortest distance from a start to the end
temporarily. minStep is initialized as a very big integer and dynamically changes in
the course of search amongvarious existing paths with different lengths between a
start and the end. Variable dep reprents the distance from a start to the current grid. If
dep>=minStep and the current grid is not the end, the search should backtrack rather
than proceed. The reason is that the current path is not one of the shortest paths in this
case.

2. dis[][] is a two dimensional array. dis[x][y] represents the shortest distance
from the start to the present grid temporarily. (nx,ny) is the neighbor of (x,y). If
dis[x][y]+1>dis[nx][ny], the search should also backtrack rather than proceed. The
reason is the same as in the case 1 above.

3. matDis [][] is a two dimensional array. matDis[x][y] represents the
Manhattan distance [10] from the current grid (x,y) to the end (ex,ey), i.e. |x - ex| + |y
- ey|. It is the shortest distance between these two grids if there is no obstacle. If
dep+matDis[x][y]>minStep， the search should backtrack rather than proceed too. The
reason is that the distance of the current path is greater than the previous minimum
distance minStep.

Pruning can dramatically shorten the search time in an ordinary situation.
However, the longest distance from a start to the end is n2-1 in a matrix n×n. The
large depth leads to the great search space. Even if the above pruning method is taken,
the time complexity is still very large in the worst case.

Iterative deepening works by running depth-first search repeatedly with a growing
constraint on how deep to explore the tree. This gives a search that is effectively
breadth-first with the low memory requirements of DFS.

Except for pruning, constraint can be added to the distance dep between a start and
the current grid. The increment of the distance dep with an initial value is one in a
cyclic search. What’s the range of the distance dep? It’s between the Manhattan
distance matDis[sx][sy] and the longest distance from a start to the end. The
repetition can be broken in advance if all shortest paths with the same length are
found.

3 C++ Implementation

3.1 Design

The methodology of top-down modular is adopted to design the program. There are
three basic aspects on the problem: input the maze, find all paths, and output all paths.
A fourth module “Welcome” that displays the function of the program is also
desirable. While this module is not directly related to the problem at hand, the use of
such a module enhances the user-friendliness of the program. A fifth module
“CalculateMemory” that calculates the memory is necessary here.

 Improving Depth-First Search Algorithm of VLSI Wire Routing 103

3.2 Program Plan

The design phase has already pointed out the need for five program modules. A root
(or main) module invokes five modules in the following sequence: welcome module,
input module, find all paths module, output module and calculate memory module.

A C++ program is designed by following the modular structure in Figure 2. Each
program module is coded as a function. The root module is coded as the function
“main”; “Welcome”, “InputMaze”, “FindAllPaths”, “DFS”, “CheckBound”,
“ShowAllPaths”, “ShowOnePath” and “CalculateMemory” modules are implemented
through different functions.

Fig. 2. Modular structure

3.3 Program Development

Function “Welcome” explains the function of the whole C++ program. Function
“InputMaze” informs the user that the input is expected as a matrix of “0”s and “#”s
besides a start and the end. The size of the matrix is determined first, so the number of
rows and the number of columns of a matrix are needed before an input begins. It
needs to be determined whether the matrix is to be provided by rows or by columns.
In our experiement, the matrix is inputted by rows, and the input process is
implemented by importing the input data from a text file called “in.txt”.

The idea of IDDFS is embodied in the function “FindAllPaths”. At first, the bool
flag found is initialized with false. Then a cycle embedded the recursive subroutine
DFS begins. The cyclic vabiable i with an increment of one represents the depth
limited by IDDFS. It is between the Manhattan distance matDis[sx][sy] and the
longest distance from a start to the end. The repetition can be terminated ahead when
all shortest paths with the same length are found.

The following figure 3 details the recursive function “DFS”. The four function
parameters represent sequentially the horizontal coordinate, & the vertical coordinate,
the distance from the start to the current grid, and the depth limited by IDDFS. The
function returns in the following three conditions of pruning. 1. The depth of the
current position is greater than the depth controlled; 2. The depth of the current
position is greater than the previous minimum length when traversing from the start to
the end; 3. The sum of the depth and the Manhattan distance of the current grid is

104 X. Deng, Y. Yao, and J. Chen

larger than the depth controlled. Otherwise, the minimum depth of the current grid is
updated dynamically.

If the present position is the end, then a path is found. The bool flag found is
changed to true. The current depth is exactly the shortest distance from a start to the
end. To construct a shortest path between the start and the end, traversal begins from
the end to the start. The movement is from the present position to its neighbor labeled
one less. Such a neighbor must exist as each grid’s label is one more than that of at
least one of its neighbors. While back to start, coordinates of a shortest path are
reserved in a vector. The vector is added to another two dimensional vector
representing all shortest paths. The current recursive function returns to the upper one.

If the present position is not the end, its east, south, west or north neighbor is
checked sequentially. If the neighbor is within the bound and is not blocked and the
depth of the current position after one increment is not larger than the depth of the
neighbor, the next step procedes. The visited label of the neighbor is marked.
Coordinates of the neighbor are reserved in the matrix of the path. The recursive
function “DFS” is called after the depth of the current position is increased by one.
This means that the recursive search continues from the neighbor. The label of visited
the neighbor is cancelled before the traversal backtracks.

The function “Checkbound” is used to judge whether a position is within the
reasonable bound or not. It is called by the recursive function “DFS”. The details of
the functions “ShowAllPaths”, “ShowOnePath” and “CalculateMemory” are omitted
here. The effect of these functions will be illustrated in next section.

Fig. 3. The recursive function DFS

 Improving Depth-First Search Algorithm of VLSI Wire Routing 105

4 Algorithm Complexity and Experimental Results

4.1 Algorithm Complexity

For analysis of the algorithm complexity, the worst case is introduced when there is
no obstacle in the maze at all. From interior (i.e. non-boundary) positions of the maze,
four moves are possible: east, south, west or north. From positions on the boundary of
the maze, either two or three moves are possible. However, if the present position is
not the end, it is marked “visited” so as to prevent the search from returning here.
Thus, the count of moves should be one less. The upper bound for the recursive
function “DFS” is O(a2n) for a maze of n×n matrix theoretically (2<a<3). The actual
upper bound should be less than O(a2n) owing to the limit of pruning and iterative
deepening. The more obstacles there are, the less the complexity of the recursive
function “DFS” is. The reason is that the count of moves decreases with the increase
of obstacles.

4.2 Experimental Results

Figure 4 is partial data of the output about a random maze of 17×17 matrix. The
figure shows that the length of shortest paths is 38 and there are 160 different paths
from the start to the end in all. Then the coordinates and the map of these paths are
output respectively. Only one of them is shown below. The data of other 159 paths are
omitted here due to the limit of the paper. The next is the final map of these 160 paths
overlapped. The last are the total running time and the memory occupied.

The amount of the shortest paths with the same length, running time and memory
consumed of the program vary greatly with the size of the maze and the distribution
of obstacles. The worst case occurs when there is not any obstacle in the maze at all.
Table 1 displays part of the statistic data of the worst case. The table shows that paths,
time and memory rise sharply along with the increase of the size of the maze.

Table 1. Partial statistic data of worst case

n paths time(ms)
Memory

(kB)
a^2n
(a=2)

2 2 0 326 16
3 6 0 326 64
4 20 15 327 256
5 70 15 330 1024
6 252 62 345 4096
7 924 218 412 16384
8 3432 734 701 65536
9 12870 2859 1934 262144
10 48620 11734 7163 1048576
11 184756 49625 29194 4194304
12 705432 211391 121572 16777216

106 X. Deng, Y. Yao, and J. Chen

… …

Fig. 4. Partial output data about a random maze of 17×17 matrix

 Improving Depth-First Search Algorithm of VLSI Wire Routing 107

5 Conclusion

In order to find all shortest paths with the same length in the VLSI wire routing, the
depth-first search algorithm is improved with the method of pruning and iterative
deepening, providing wire routing designers various options to optimize their designs.
Therefore, a C++ program is developed to implement the enhancing DFS algorithm.
Further, the satisfactory experimental results of running the C++ program are
presented. This new method guarantees to find all existing shortest paths with the
same length in the VLSI wire routing with only moderate computer memory
consumption.

Nevertheless, more refinement work of the aforementioned enhanced DFS
algorithm is needed. The upper bound of the algorithm complexity is O(a2n) for a
maze of n×n matrix theoretically (2<a<3). Even if experimental results show that the
actual upper bound is far less than O(a2n), the algorithm needs further better before its
practical application. Future work includes the improvement of the efficiency of the
algorithm and further reducing the computer memory consumption.

References

1. Kumar, H., Kalyan, R., Bayoumi, M., Tyagi, A., Ling, N.: Parallel implementation of a cut
and paste maze routing algorithm. In: Proceedings of IEEE International Symposium on
Circuits and Systems ISCAS 1993, vol. 3, pp. 2035–2038 (1993)

2. Taghavi, T., Ghiasi, S., Sarrafzadeh, M.: Routing algorithms: architecture driven rerouting
enhancement for FPGAs. In: Proceedings of IEEE International Symposium on Circuits
and Systems ISCAS 2006, pp. 5443–5446 (2006)

3. Wolf, W.: Modern VLSI Design: System-on-Chip Design, 3rd edn., pp. 518–522. Pearson
Education, Inc, London (2003)

4. Lee, C.Y.: An algorithm for path connections and its applications. IRE Trans. Electronic
Computers (September 1961)

5. Sherwani, N.A.: Algorithms for VLSI Physical Design Automation, 3rd edn., pp. 286–288.
Kluwer Academic Publishers, Dordrecht (2002)

6. Sahni, S.: Data Structures, Algorithms, and Applications in C++, 2nd edn., pp. 268–279.
McGraw-Hill, New York (2004)

7. Kantardzic, M.: Data Mining:Concepts, Models, Methods, and Algorithms, 1st edn., pp.
139–164. Wiley-IEEE Press (2002)

8. Ibrahim, A., Fahmi, S.A., Hashmi, S.I., Ho-Jin, C.: Addressing Effective Hidden Web
Search Using Iterative Deepening Search and Graph Theory. In: Proceedings of IEEE 8th
International Workshops on Computer and Information Technology, CIT 2008, pp. 145–
149 (July 2008)

9. Cazenave, T.: Optimizations of data structures, heuristics and algorithms for path-finding
on maps. In: Proceedings of IEEE International Symposium on Computational Intelligence
and Games, CIG 2006, pp. 27–33 (2006)

10. Dar-Jen, C., Desoky, A.H., Ming, O.Y., Rouchka, E.C.: Compute Pairwise Manhattan
Distance and Pearson Correlation Coefficient of Data Points with GPU. In: Proceedings of
IEEE International Conference on Software Engineering, Artificial Intelligences,
Networking and Parallel/Distributed Computing, SNPD 2009, pp. 501–506 (2009)

	Improving Depth-First Search Algorithm of VLSI Wire Routing with Pruning and Iterative Deepening*
	Introduction
	DFS Algorithm Improvement
	Weakness of DFS Algorithm
	Pruning and Iterative Deepening
	Measures Taken

	C++ Implementation
	Design
	Program Plan
	Program Development

	Algorithm Complexity and Experimental Results
	Algorithm Complexity
	Experimental Results

	Conclusion
	References

